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Lühikokkuvõte  

 

Selles uurimustöös analüüsitakse erinevatel ruumilistel ja ajalistel skaaladel 

kvalitatiivselt ja kvantitatiivselt Maowusu kõrbe taimedega kaetuse dünaamikat 

perioodil 1986–2020. Analüüs põhineb Landsati kogu 1. astme andmetel, 

kliimaandmetel ja NASADEM-i andmetel. Samal ajal uuriti ka NDVI, RSEI ja veel 

kolme ökoloogilise näitaja (NDSI, Wet, LST) võimalikku suhet. Maowusu kõrbe 

ökoloogilise muutumise seireks ja hindamiseks kasutati spetsiaalselt ökoloogilise 

indeksi põhist kaugseiret (RSEI). Nimetatud indeksi all on kokku võetud neli olulist 

ökoloogilist näitajat, mida keskkonna hindamisel sageli kasutatakse. Need on rohelus, 

kuivus, märgus ja kuumus. Neid nelja näitajat esindavad vastavalt neli RS-i näitajat, 

mis on NDVI, NDSI, Wet ja LST.  

Tulemused näitavad järgmist. 

(1) 1986. aastal oli uuritud ala kõrbestumise etapis ning selle taimedega kaetus oli 

peamiselt vähene ja kõrbestunud ala moodustas kokku 87% uuritud alast. 2020. aastaks 

on kõrbestumise ohje abil saavutatud märkimisväärseid tulemusi. Vähene taimedega 

kaetus on suuresti asendunud keskmise ja suure taimedega kaetusega ning kõrbestunud 

ala on umbes 30% võrra vähenenud.  

(2) Mitmekesise reljeefiga alad pakuvad taimestikule parema kasvukeskkonna ja 

vähene taimestikuga kaetus muutub seal kiiresti rohkeks. Tasasel maastikul on 

kasvutingimused halvemad ja taimestikuga kaetuse määr muutub väga aeglaselt. NDVI 

väärtused on teatud määral seotud ka maapinna kallakuga. 

(3) Kõikehõlmava ökokeskkonna hindamise indeks on koos taimedega kaetuse 

suurenemisega kasvanud. Taimedega kaetuse suurenemine on osaliselt tingitud ka Weti 

suurenemisest ja LST ja NDBSI vähenemisest. 

 

Võtmesõnad: Maowusu kõrb, NDVI, kõrbestumine, RSEI, GEE, kaugseire 

CERCS-i kood: T181 kaugseire 
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Abstract  

 

In this paper, dynamics of vegetation cover on different spatial and temporal scales in 

Mu Us Sand Land were qualitatively and quantitatively analyzed for the period from 

1986 to 2020, based on Landsat Collection 1 Tier 1, climate data, and NASADEM; 

meanwhile, conducting studies to tease out the potential relationship among NDVI, 

RSEI and other three ecological indicators (NDSI, Wet, LST). A remote sensing based 

ecological index (RSEI) was applied specially for monitoring and assessing ecological 

changes of Mu Us Sand Land, the index combined four important ecological indicators 

which are frequently used in evaluating ecology. These are greenness, dryness, wetness, 

and heat. The four indicators were represented respectively by four RS indices, which 

are the NDVI, NDSI, Wet, and LST.  

The results show that: 

(1) In 1986, the study area was in the desertification stage, and its vegetation coverage 

was mainly low, accounting for 87% of the total study area. By 2020, desertification 

control has achieved remarkable results. The low vegetation coverage is mainly 

replaced by medium and high vegetation coverage and has been reduced to about 30%.  

(2) Topographic relief areas provide vegetation better growing habitats, and the 

vegetation coverage rate changes rapidly from low to high. While in flat terrain, the 

growing habitats are worse, and the vegetation coverage rate here changes very slowly. 

Furthermore, NDVI values are related to the slope to a certain degree. 

(3) the comprehensive eco-environment appraisal index has gone up, with the 

improvement of vegetation coverage; Moreover, the increase of vegetation coverage 

partly results in the increase in Wet and the decrease in LST and NDBSI. 

 

Keywords: Mu Us Sandy Land, NDVI, Desertification, RSEI, GEE, Remote Sensing 

CERCS code: T181 Remote Sensing 
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Introduction 

From an ecological and socio-economic perspective, land degradation is considered as 

one of the significant global issues today to be threatening the well-being of no less 

than 3.2 billion people (especially rural communities, smallholder farmers, and the very 

poor), costing over 10 percent of the annual global gross product in terms relating to 

biodiversity loss and ecosystem services, even driving the sixth mass extinction of 

species as a main factor (Scholes, IPBES 2018). Kumar et al.(2014) hold the view that 

climate change is recognized as a major factor responsible for land degradation, but we 

realized mutual influences and relations between climate change and land degradation; 

between 2000 and 2009, land degradation was responsible for annual global emission 

of 3.6-4.4 billion tonnes of CO2 (IPBES 2018) as a driver of climate change through  

the emission of greenhouse gases (GHGs) (Olsson, 2019), which aggravates CO2-

induced climate change by way of the release of CO2 from cleared and dead vegetation 

and by reducing the carbon sequestration potential of degraded land (Arrazia et al., 

2014). By 2050, global cereal production is projected to fall by an average of 10 percent, 

and in some regions could reach 50 percent, primarily due to land degradation and 

climate change (Montanarella, IPBES 2018). The instability of society will be fueled 

without timely action to avoid, reduce and reverse land degradation; Scholes (IPBES 

2018) predicts that 4 billion people will be living in drylands in 2050, while 50 to 700 

million people may be forced to migrate. There are many different definitions of land 

degradation in the literature, with different emphases on biodiversity, ecosystem 

functions, and ecosystem services (Olsson, 2019). The United Nations Convention to 

Combat Desertification (UNCCD) defines land degradation as a ‘reduction or loss, in 

arid, semi-arid, and dry sub-humid areas, of the biological or economic productivity 

and complexity of rain-fed cropland, irrigated cropland, or range, pasture, forest, and 

woodlands resulting from land uses or from a process or combination of processes, 

including processes arising from human activities and habitation patterns, such as: (i) 

soil erosion caused by wind and/or water; (ii) deterioration of the physical, chemical, 

and biological or economic properties of soil; and (iii) long-term loss of natural 

vegetation (WMO, 2005).’ The land degradation mentioned in this paper refers mainly 

to the loss of life-supporting land resources through soil erosion, desertification, 

salinization, etc. The term ‘Desertification’ here is seen as a form of land degradation 

by which fertile land becomes desert (WHO, 2020). 

The phenomenon of desertification has been around for a long time, but the scientific 

understanding of its causes and consequences is very recent. 'Desertification' was first 

popularised by French botanist André Aubréville in 1948, which used to describe how 

tropical forest regions in Africa were being transformed into 'desert-like regions' 
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(Cherlet et al., 2018). Nevertheless, the term 'desertification' was first used by Lavauden 

to describe the low productivity of Tunisian pastures in 1927 (Becerril-Piña et al., 2020). 

In the early 1960s, over-farming contributed to wide-scale land degradation in the 

blackland prairies in the central part of the former Soviet Union, repeating the history 

about 'Black Sunday (storm)' that occurred on April 14, 1935, in northern Texas, which 

also promoted research on soil wind erosion and land management in the former Soviet 

Union. The Sahel region in West Africa is well known for its persistently unsolved 

environmental problems of drought and desertification (Agnew et al., 1999). From the 

late 1960s to the early 1980s, drought-induced famine in the Sahel region killed 100,000 

people, while most of the 50 million people had been affected to varying degrees (UNEP, 

2002). At the end of the 1970s, desertification became one of the most important 

scientific issues worldwide (Plit et al., 1995). Since then, the United Nations passed the 

General Assembly Resolution of 3337 on ’Plan of Action to Combat Desertification’ in 

1975 (Zheng, 2009), and adopted this plan in 1977, which is regarded as the beginning 

of the milestones of United Nations Convention to Combat Desertification (UNCCD) 

(Chasek et al., 2016). The 1977 Nairobi meeting of the United Nations Conference on 

Desertification (UNCOD) informed by 1st world map of desertification made by the 

Food and Agriculture Organization (FAO), the United Nations Environment 

Programme (UNEP) and the United Nations Educational, Scientific and Cultural 

Organization (UNESCO) (Lu, 2014.; Jia, 2018). Furthermore, a definition of 

desertification was proposed as ‘… the diminution or destruction of the biological 

potential of the land, (which) can lead ultimately to desert-like conditions’ (UNCD, 

1977.; Wang, 2013). Common to numerous definitions of desertification until today 

means that desertification is perceived as an adverse environmental process, which 

essentially matches the description regarding desertification in the definition as ‘land 

degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, 

including climatic variations and human activities’ stated by the UNEP (1994).  In 

addition, several scholars with different opinions exist, including one that has been cited 

many times so far, which is the definition used by Dregne (1986) himself as 

‘desertification is the impoverishment of terrestrial ecosystems under the impact of man. 

It is the process of deterioration in these ecosystems that can be measured by reduced 

productivity of desirable plants, undesirable alterations in the biomass and the diversity 

of the micro and macro fauna and flora, accelerated soil deterioration, and increased 

hazards for human occupancy.’  

Although desertification is a phenomenon that exists in almost all regions, it has a high 

concentration in Africa and Asia (GEF&GM 2006). An estimated 40% of people in 

Africa and Asia live in areas under constant threat of desertification (Stather, 2006.; 

Ambalam, 2014). China is severely affected by desertification, with 17.93 percent of 
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its territory covered in the desert (Li et al., 2019), which has the highest number of 

deserts in Asia (Misachi, 2020.; Ren et al., 2015). Desertification is a dominant 

ecological problem in northwest China, which increasingly limits the development of 

the local economy (Cao, 2011). Intending to control desertification, the government of 

China promulgated 'Law of the People's Republic of China on Prevention and Control 

of Desertification' on August 31, 2001. Moreover, implemented a series of large-scale 

mitigation programs, including the Three-North Shelterbelt Programme, to establish 35 

million ha of shelterbelt forests between 1978 and 2050 (SFA PRC, 2018). A focus of 

these projects is on the vegetative cover increase through the prohibition of open-

grazing, the planting of trees and grasses, and the construction of shelterbelt to the 

protection of farmland against blowing sand (Feng et al., 2015). Since 1993, the country 

has been conducting national desertification and sandification monitoring at 5-year 

intervals, and has now done so five times (Tu et al., 2016). The latest monitoring results 

indicated that as of 2014, desertified land and sandy land in China were 2,161,600 

square kilometers and 1,721,200 square kilometers, respectively. By comparison with 

2009, the desertified land area has been reduced by a net 12,120 square kilometers over 

the past five years, with a reduction of 2,424 square kilometers per year on average, 

while the sandy land area has been reduced by a net 9,902 square kilometers, with a 

reduction of 1,980 square kilometers per year on average (SFA PRC, 2015). With 

investments in desertification control totaling approximately US$6.49 billion over the 

period 2013 to 2018, the cumulative area of sandy to be controlled in China is over 10 

million hectares. (NFGA, 2018). As expressed by the Shaanxi Provincial Forestry 

Bureau, Yulin, located within the Mu Us Sandy Land, reversed desertification at an 

annual rate of 1.62%, resulting in a 93.24% rate of sandy land structural consolidation 

in Yulin by April 2020, while forest cover percentage increased from the initial 0.9% to 

34.8%, and sandy land area reduced from 2.4 million hectares to 1.35 million hectares 

(Li, 2021). This study selected the Mu Us Sandy Land, where Yulin is located, as the 

study object, by interpreting long time-series of remote sensing images to examine both 

the changes in vegetation and the eco-environmental changes in the study area.  

Concerning the numerous characteristics of the Mu Us Sandy Land’s ecosystem, such 

as its importance and fragility, extensive research has been carried out to examine the 

ecological and environmental problems faced by the Mu Us Sandy Land from various 

aspects. Its analysis was first conducted in terms of climate and environment, with 

patterns of past and future climatic and environmental changes in the Mu Us Sandy 

Land revealed and predicted, respectively. Secondly, numerous scholars have 

conducted comprehensive studies on the vegetation of the Mu Us Sandy Land from 

multiple different perspectives to contribute to a deeper study regarding the ecosystem 

of the Mu Us Sandy Land (Zhang, 2006).  
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While the results derived from traditional fieldwork-based ecological data provide a 

fragmentary assessment of ecosystem functions, in contrast, the application of remote 

sensing techniques may be efficient in estimating the functions of an entire ecosystem 

simultaneously. Remote sensing of vegetation is capable of measuring ecosystem 

function at multiple spatial scales that are most comparable to the extent of human-

induced environmental changes (Rocchini et al., 2004). Measuring NDVI values, in 

particular in combination with land-use data, is increasingly vital for distinguishing 

between natural variability in ecosystem function and changes caused by human 

activities. NDVI is also somewhat variable in high-agricultural and urban areas, with a 

high correlation to the degree of vegetation cover (Oindo et al., 2002), which can be 

used to detect a land cover change and as an indicator of landscape heterogeneity and 

biodiversity, thereby identifying priority conservation areas and predicting suitable 

species for that habitat (Hao, 2019). In this paper, NDVI was used as an indicator to  

monitor vegetation coverage changes in the study area, while RSEI was used as an 

ecological index to assess the ecological condition of the desert, with the aim of 

acquiring a macroscopic understanding of the vegetation coverage and ecological 

environment within the study area over the last four decades. There are three primary 

objectives and relevant questions as following, that were proposed in the study: 

⚫ Monitoring and evaluating vegetation status in Mu Us Sandy Land for long time 

series,  

Q: How did vegetation index and coverage change in Mu Us Sandy Land from 1986 to 

2020 

⚫ Finding out the effect of topographic gradient on vegetation coverage in Mu Us 

Sandy land 

Q: Is vegetation coverage change related to topographic gradient?  

How did vegetation coverage change as affected by different degrees of topographic 

gradient? 

⚫ Detecting and evaluating ecological changes in Mu Us Sandy Land for long time 

series. 

Q: How did RSEI-based ecological index change in study area in 1990, 2005, 2019? 

  Is there existing a strong correlation between NDVI, RSEI, and other three indicators 

(LST, NDBSI, Wet) in Study Area? How did they change while the increase of NDVI 

values?  

The following section of this paper consists of four parts. The first part focuses on 

applying remote sensing to monitor vegetation and an overview of the study area in 

theory. The second part describes the data and methods used in this study. The last two 

parts contain the analysis of the outcomes and conclusions, respectively. 
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1. Theoretical Overview 

1.1 Applications of Remote Sensing Technology in Desertification Research 

Nowadays, the amount and availability of multitemporal images is experiencing an 

immediate increase as space exploration technologies continue to evolve. The 

application solutions in any fields can be solved by various remote sensing data types 

such as optical passive sensor images, multi-to hyper-spectral data, multi-to hyper-

temporal data, active SAR images, etc. (Bovolo et al., 2018).  

But decades ago, in a historical context in which still single data or even no remote 

sensing data was available for solving problems, an incipient combination of aerial 

information occurred to solve geographical problems since the 1970s. In 1975, Lamprey, 

based on a vegetation map, a climatic map, and aerial field investigations, affirmed that 

the southern limit of the Sahara was advancing at the rate of 5.5 km per year (Mainguet, 

2012). Following the United Nations Conference on Desertification in 1977, Berry et 

al. (1977) proposed a four-tier system of indicators for monitoring desertification at the 

global, regional, national, and local scales. However, this system revealed a severe 

problem in that human activities were not sufficiently taken into account. Although 

Reining (1978) subsequently developed a monitoring indicator system consisting of 

numerous indicators within the physical, biological and social domains, this indicator 

system is excessively theoretical and lacking in practical application in consideration 

of the interconnectedness between natural and human factors. Otterman (1977) and 

Walker et al.(1981), both of whom noted the influence of anthropogenic factors in their 

studies, used the Landsat multispectral scanner (MSS) imagery to conclude that the 

brightness of albedo is strongly related to the quality of the land, with greater albedo 

values leading to more significant degradation of land quality.  

Researches based on remote sensing techniques have been carried out comparatively 

frequently since the 1990s. Tucker et al. (1991, 1994) evaluated the distribution and 

transition of the Sahara Desert with NDVI derived from NOAA/AVHRR satellite data 

and demonstrated a strong correlation between the desert and precipitation changes. 

Moreover, time-series NOAA/AVHRR data have been widely used in desertification 

research. Li et al. (2002) used the modified soil-adjusted vegetation index (MSAVI) 

during vegetation growing seasons derived from time-series NOAA/AVHRR data to 

monitor the dynamic processes of sandy desertification occurring in the western sandy 

lands of the Northeast China Plain between 1990 and 1997. Liu et al. (2004) assessed 

the multi-year dynamics of desertification in arid and semi-arid zones of the deserts in 

Western China for the period 1982 to 2000 using NOAA/AVHRR time series data. 

Meanwhile, some scholars were using Landsat satellite data to monitor and evaluate 
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desertification status in the Mawusu Desert and Northwest China. Wu et al. (1997) 

conducted dynamic monitoring regarding the desertification inside the Mu Us Sandy 

Land by processing and analyzing TM data for 1987 and 1993. According to the results, 

the total area of desertified land in the study area decreased by 1936 km2 over the seven 

years, with an overall stable reversal; substantially all of the reversal resulted from the 

reduction in fixed and semi-fixed mobile dunes. Guo et al. (2008) collected Landsat 7 

ETM+ in 2000 and Landsat 5 TM in 2005, integrated with aeolian desertification land 

data of 1977 and 1986, which were used to monitor and analyze the spatial distribution 

and dynamic changes of desertified land in Mu Us Sandy Land and its surrounding 

areas in different periods. They indicated that during 1977 – 2005, the area of aeolian 

desertification land decreases continuously in all counties or banners of the study area. 

Furthermore, there was a study carried out by Yan et al. (2013) to retrieve the 

desertification process in Mu Us Sandy Land over the past 40 years using Landsat 

images from 1977 to 2010 as remote sensing data and method coupled with decision 

tree classification and ISODATA unsupervised classification. Zhou (2019) conducted a 

comprehensive study on desertification's spatial and temporal evolution caused by 

sanding, salinization, and water erosion in the study area in 1975, 2000, and 2017 based 

on the multi-scale classification of desert types in mainland China. The spatial and 

temporal evolution patterns of desertification in different periods were obtained by 

comparing the percentage changes of an area in different desertification areas.  

A significant increase in the number of studies combining the digital evaluation model 

(DEM) to analyze the relationship between desertification and topographic relief 

followed around 2010 due to improvements in the quality of DEM data (Hu et al., 2010; 

Liu et al., 2015; Hu et al., 2020). The morphological characteristics of sand dunes are 

an important element in the study of wind and sand modeled landscapes. DEM are 

widely used in sand dune morphology and dynamics studies with their superior 

capability of 3D terrain representation (Wang, 2020). According to Duan's (2013) 

analysis on the relationship between aeolian desertified land and terrain factor, which 

showed the area and severity of aeolian desertified land gradually reduced with the 

increasing elevation, yet, the distribution of aeolian desertified land had no significant 

changes with the slope variation.   

1.2 Evolution in Vegetation Monitoring with Remote Sensing-based Technology 

Numerous ecosystems are being affected by climate change on a global scale, notably 

rising temperatures caused impacts and costs of 1.5 degrees Celsius of global warming 

are far greater than expected (IPCC, 2018). Considered as an essential component of 

terrestrial ecosystems, the response of vegetation to climate change is particularly 

significant. Examples include the increased photosynthetic activity of vegetation at 
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high northern latitudes as a consequence of climate warming (Myneni et al., 1997), and 

vegetation in the Alps spreading over a higher altitude range than before (Grabherr et 

al., 1994). Vegetation change is considered an indicator of global change to a certain 

extent due to the high sensitivity of vegetation to climate change (Ma et al., 2006), 

which has therefore continued to receive long-term attention from researchers (Tucker 

et al., 1986; Stenseth et al., 2002; Zeng et al., 2009). There is variability in the effects 

of different climatic conditions on vegetation. Kawabata et al. (2001) analyzed 

interannual trends in annual and seasonal vegetation activities from 1982 to 1990 on a 

global scale to show that the increase in temperature at mid to high latitudes in the 

northern hemisphere has led to a marked increase in vegetation activities. In contrast, 

in the arid and semi-arid regions of the southern hemisphere, diminishing annual 

precipitation has led to a gradual weakening of plant photosynthesis and, ultimately, a 

reduction in vegetation activities. The significant relationship between vegetation and 

precipitation generally occurs in arid and semi-arid regions with distinct climatic 

differences during the wet and dry seasons, especially in arid and semi-arid ecosystems 

where both the onset and duration of vegetation growth are generally controlled by 

precipitation (Spano et al., 1999). Ichii et al. (2002) analyzed the global vegetation-

climate relationship on an interannual scale and found that the positive correlation 

between vegetation and precipitation occurred in Central Asia, the southern Sahara, 

South Africa, Australia, and southern South America, where the influence of 

precipitation on vegetation was dominant, even though temperature also influenced 

vegetation to some extent in these regions. Philippon et al. (2005) found a conspicuous 

seasonal dependence in the relationship between NDVI and precipitation in Sahel and 

Guinea, with the correlation between them occurring mainly during the rainy season, 

which is also usually the growing season for vegetation. Xin et al. (2007) concluded 

that NDVI in the Loess Plateau region of China is sensitive to precipitation and 

considered that precipitation plays a decisive role in the region's spatial distribution. In 

addition, vegetation changes in arid-semi-arid transition areas show an undoubtedly 

positive response to precipitation (Dekker et al., 2007).  

Some studies have mainly been interested in research objectives concerning monitoring 

vegetation cover changes in Mu Us Sandy Land in the last few years. Liu et al. (2009) 

analyzed the dynamic variation of vegetation coverage based on NDVI in 1990 and 

2007, and then found low vegetation coverage (NDVI < 0.3) was the main body which 

area declined from 33176.7369 km2 in 1990 to 30671.6454 km2 in 2007, annual change 

rate was – 0.048%. Moderate vegetation coverage (NDVI 0.3 – 0.6) and high vegetation 

coverage (NDVI > 0.6) changed from 1313.5023 km2 in 1990 to 3818.5938 km2 in 

2007, annual changing rate were 3.91% and 3.48% respectively. Huang et al. (2014) 

followed this up with a study of the changes in vegetation cover in the Mu Us Sandy 
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Land during the decade 2000 to 2010 based on MODIS-NDVI, and they concluded a 

substantial increase in grassland area in the study area, in particular between 2005 and 

2010. A trend of gradual increase in vegetation cover in the Mu Us Sandy Land during 

this decade was observed, with a highly significant increase in the north-western and 

south-eastern parts of the study area. Yan et al. (2013) found the vegetation growth 

trends in annual maximum value that mainly fluctuates slightly in Mu Us Sandy Land 

from 2000 to 2011; the worst status of vegetation growth is in 2001, and the best is in 

2010.  

1.3 Study Area 

1.3.1 Overview of the Study Area 

The Mu Us Sandy Land is also known as the Maowusu Desert or Mu Us desert. We are 

more inclined to call sandy land it as its type of desertification is sandy desertification, 

which is land degradation characterized by wind erosion mainly resulted from the 

excessive human activities in arid, semiarid and part of sub-humid regions in northern 

China (Wang, 2014; Zhang, 2020). It covers an area of about 42,200 km2, lying at 

37.45°N-39.37°N, 107.67°E-110.5°E, mainly in the southern part of Ordos City in 

Inner Mongolia, the northern part of Yulin City in Shaanxi Province and the 

northeastern part of Yanchi County in Ningxia Hui Autonomous Region, which as a 

transitional zone forms part of Ordos Plateau and includes part of the Loess Plateau 

alluvial plain with a concave floor (Han, 2019). (Figure 1.1)  

 

Figure 1.1 Location of the Study Area - Mu Us Sandy Land 
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1.3.2 Vegetation Condition 

The central and eastern parts of the Mu Us Sandy Land are in the dry grassland subzone, 

the northwestern edge is in the desert grassland subzone towards the desert transition, 

and the southeastern edge trends towards forest grassland in terms of climatic zones. 

The vegetation in the study area is mainly covered by semi-fixed and fixed dunes, sand 

land, dried mudflats and agricultural land. In the plant cover stipa glareosa, stipa gobica, 

artemisia frigida were predominantly found on agricultural land, and caragana 

korshinskii kom, hedysarum mongolicum turcz, artemisia sphaerocephala, salix 

psammophila, salix psammophila and artemisia ordosica were mainly in shrubs for 

sandy soils (Han, 2019). 

 

1.3.3 Precipitation Condition 

Although annual precipitation in the Mu Us Sandy Land fluctuates repeatedly, the 

overall trend is increasing. 567.175 mm was the highest value in 36 years in 2016, 

falling to 303.711 mm in 2020 (Figure 1.2). As shown in Figure 1.3, precipitation in 

these three years is generally concentrated in the eastern and northeastern parts of the 

study area, with the lowest precipitation in the west. The highest precipitation in 2020 

was 411.13 mm and the lowest was 231.49 mm. on the while, the precipitation condition 

in the Mu Us Sandy Land is quite satisfactory. 

 

Figure 1.2 The Trends of Annual Precipitation in Mu Us Sandy Land 
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1986 2009 2020 

Figure 1.3 Annual Precipitation in 1986, 2009, 2020 

 

1.3.4 Topographic Condition 

As part of the Ordos Plateau, the elevation ranges from 980m to 1,320m (as low as 

906m in some south-eastern valleys, and reaching between 1,434m to 1,610m in the 

north-western area) (Figure 1.4). This is the only one of the twelve sandy regions of 

China that lies in the transition zone between the typical grassland and desert climate.

 

Figure 1.4 DEM of Mu Us Sandy Land 
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2. Data and Methods  

2.1 Data 

2.1.1 Used Landsat Collections for Vegetation Coverage 

The aim of this paper to monitor vegetation changes in the study area over the last forty 

years, considering the Landsat series of satellites could provide sufficient free image 

data for this study, which is the main reason why other satellite data were not applied 

in this study, such as MODIS, which was launched until 2000.  

In 1967, NASA proposed the Earth Resources Technology Satellite program, which 

began a theoretical feasibility study for two Earth observation satellites were 

individually known as ERTS-A and ERTS-B (Wells et al.1976). as shown in Figure 2.1, 

Landsat 1 was launched on July 23, 1972; at that time, the satellite was known as the 

Earth Resources Technology Satellite (ERTS) used for remote sensing of land resources 

on Earth. Later in the 1970s and 1980s, successively more Landsat satellites were 

launched. Landsat 6 was failed in launch, Landsat 7 was launched in 1999, followed by 

Landsat 8, which was launched on 11 February 2013.  

 

Figure 2.1 SLI (Sustainable Land Imaging) architecture, past and ongoing missions (image credit: NASA) 

The data was used to extract the maximum value of NDVI every two years, derived 

from Landsat 5 collection 1 Tier1, Landsat 7 collection 1 Tier1, and Landsat 8 collection 

1 Tier1 in GEE online database. We filtered the Landsat 7 SLC-off data with bad pixel 

or blackline before exporting the result. After that, the total number of remote sensing 

images we used in this study is shown in Table 2.1. Data covering the study area from 

1986 to 2020, with a total of 6185 scenes (see Table 3.5), which includes 2787 scenes 

of Landsat 5(TM) data, 2390 scenes of Landsat7(ETM) data, and 1008 scenes of 

Landsat8(OLI)data. Figure 2.2 shows the time series of Landsat images corresponding 

to each of the data I used in this study. The quality of the data for the years 1986, 1990, 

and 1999 was not favorable. 
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Table 2.1 Used Landsat Data Amount 

Periods         Sensors TM data ETM data OLI data Subtotal 

1986-1987 136 - - 136 

1988-1989 207 - - 207 

1990-1991 207 - - 207 

1992-1993 249 - - 249 

1994-1995 216 - - 216 

1996-1997 209 - - 209 

1998-1999 197 14 - 211 

2000-2001 248 201 - 449 

2002-2003 213 210 - 423 

2004-2005 242 234 - 476 

2006-2007 215 201 - 416 

2008-2009 221 220 - 441 

2010-2011 227 176 - 403 

2012-2013 - 211 78 289 

2014-2015 - 261 254 515 

2016-2017 - 263 268 531 

2018-2019 - 262 272 534 

2020 - 137 136 273 

Total 2787 2390 1008 6185 

 

Figure 2.2 Temporal Distribution of Landsat Images 
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2.1.2 Used Landsat Collections for RSEI 

In order to produce the high-quality result of the ecological index with multi-temporal 

data derived from Landsat Collections, a total of 704 scenes were used, as detailed in 

Table 2.2 below. 

Table 2.2 Data used for RSEI 

Dataset                             Year 1990 2005 2019 

Landsat 5 Surface Reflectance Tier1 

(LANDSAT/LT05/C01/T1_SR) 

75 121 - 

Landsat 8 Surface Reflectance Tier1 

(LANDSAT/LC08/C01/T1_SR) 

- - 117 

Landsat 5 TM Collection 1 Tier 1 TOA Reflectance 

(LANDSAT/LT05/C01/T1_TOA) 

152 116 - 

Landsat 8 Collection 1 Tier 1 TOA Reflectance 

(LANDSAT/LC08/C01/T1_TOA) 

- - 123 

 

2.1.3 Precipitation Data 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) monitored 

the precipitation changes in the study area from 1986 to 2020. This dataset is a 30+ year 

quasi-global rainfall dataset available since 1981, which incorporates 0.05-degree 

resolution satellite imagery with in-situ station data (Funk et al, 2015). In addition, we 

selected precipitation data from the China Meteorological Data Service Centre (CMDC: 

https://data.cma.cn/site/index.html ) for two meteorological stations close to the 

northern boundary of the study area to check the precipitation status near the two 

northern areas with more and less precipitation, respectively. 

2.1.4 NASADEM Dataset 

The digital evaluation dataset used in this paper is NASADEM (NASA JPL, 2020), 

which associated products generated from the Shuttle Radar Topography Mission 

(SRTM) data, with improved accuracy by incorporating auxiliary data from ASTER 

GDEM, ICESat GLAS, and PRISM datasets. There are 15 scenes of digital evaluation 

data with a pixel size of 30 m exported from GEE. 

  

https://data.cma.cn/site/index.html
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2.2 Methods 

2.2.1 Workflow Process 

 

Figure 2.3 Workflow Process 

Regarding the first part of this study, vegetation cover. First, the Landsat Collection SR 

Tier1 was pre-processed in GEE. Then the NDVI was calculated, followed by 

extracting the maximum values for every two years and exporting the images to be 

reclassified into ranges 0-0.3, 0.3-0.6, 0.6-1 for analyzing the changes in vegetation 

during 36-year, and also to overlay with the dem data for correlation analysis in 1988, 

2008, 2020. 

As for the second part, RSEI, the Landsat Collection TOA Tier1, and the Landsat 

Collection SR Tier1 were first pre-processed, then the mean values of WET, NDVI, 

LST, and NDBSI were calculated respectively in 1990, 2005, and 2019, and lastly, 

automatically and objectively weighted according to the nature of the data and the 

contribution of each indicator to PC1 of PCA method, avoiding any bias in the results 

caused by artificially determined weights. 
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2.2.2 Data Preprocessing 

2.2.2.1 Data Processing Platform - GEE 

 

Figure 2.4 Interface of GEE Platform 

Currently there are many tools used to process remote sensing images, such as the most 

popular and well known is the ENVI software, which is fee based at a very high cost. 

Also there are free software and tools, such as QGIS, GDAL, etc. A common feature of 

all these software and libraries is that they run locally, and their processing power is 

positively correlated with the local equipment, while GEE runs on Google Cloud, and 

its processing power is not limited by space or time. Since geographical data are often 

large and complicated to store, GEE provides a quickly accessible collection of ready-

to-use data products. In addition, it is open and free to the public. as shown in Figure 

2.5, We are able to import multiple datasets with thousands of images in GEE to perform 

operations simultaneously and obtain the required data efficiently. Figure 2.6 shows the 

code we used in our study to extract the maximum pixels per two years in the study 

area, which is difficult to achieve using conventional remote sensing software. 

 

Figure 2.5 Importing Landsat Collection in GEE 
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Figure 2.6. Extracting Maximum Value of NDVI 

2.2.2.2 Cloud Mask  

The Landsat collection L1 T1 has been geometrically corrected, radiometric calibrated 

by the USGS (Masek, 2006) and processed with cloud mask based on the FMask 

algorithm (Foga et al., 2017; Zhu et al., 2015) . In particular, FMask (as shown in Figure 

2.7) is the official USGS automated cloud detection algorithm for Landsat images using 

cloud matching techniques and cloud height iteration algorithms for cloud detection. 

After cloud detection by the Fmask algorithm, each image element of each scene has 

its corresponding image cloud flag, which are clear, water, cloud, cloud shadow and 

snow. In this paper, the cloud signatures of cloud, cloud shadow and snow are removed 

and all remaining clear image elements are used for subsequent studies. 

 

  

Figure 2.7 Cloud Mask Code Used in GEE 

2.2.2.3 Band Value Adjustment 

Considering the system error caused by different TM, ETM+, and OLI sensors (Table 

2.3), it is necessary to adjust the band value of different sensors. Roy et al. (2016) 

compared the band values of different sensors in Landsat. They proposed a set of linear 

adjustment formulas to ensure that LDCM data are sufficiently consistent with data 

from the earlier Landsat missions regarding acquisition geometry, calibration, coverage 

characteristics, spectral characteristics, output product quality. In this paper, the 

formulas (1) are used to linearly adjust the image band values of Landsat 8 OLI sensors. 
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{
 
 

 
 
𝐵𝑙𝑢𝑒: 𝑂𝐿𝐼 =  −0.0095 + 0.9785 𝐸𝑇𝑀 +/𝑇𝑀
𝐺𝑟𝑒𝑒𝑛: 𝑂𝐿𝐼 =  −0.0016 + 0.9542 𝐸𝑇𝑀 +/𝑇𝑀
𝑅𝑒𝑑: 𝑂𝐿𝐼 =  −0.0022 + 0.9825𝐸𝑇𝑀 +/𝑇𝑀
𝑁𝐼𝑅: 𝑂𝐿𝐼 =  −0.0021 + 1.0073 𝐸𝑇𝑀 +/𝑇𝑀

𝑆𝑊𝐼𝑅1: 𝑂𝐿𝐼 =  −0.0030 + 1.0171 𝐸𝑇𝑀 + /𝑇𝑀
𝑆𝑊𝐼𝑅2: 𝑂𝐿𝐼 = 0.0029 + 0.9949 𝐸𝑇𝑀 +/𝑇𝑀

             (1) 

Table 2.3 Landsat Bands Combination 

Landsat-5 TM Bands (µm) Landsat-7 ETM+ Band (µm) Landsat-8 OLI and TIRS Bands (µm) 

   30 m Coastal/Aerosol      0.435 – 0.451 Band 1 

Band 1 30 m Blue           0.45 – 0.52 30 m Blue         0.441 - 0.514 30 m Blue                0.452 – 0.512 Band 2 

Band 2 30 m Green           0.52 - 0.60 30 m Green        0.519 – 0.601 30 m Green              0.533 – 0.590 Band 3 

Band 3 30 m Red            0.63 - 0.69 30 m Red          0.631 – 0.692 30 m Red                0.636 – 0.673 Band 4 

Band 4 30 m NIR            0.76 - 0.90 30 m NIR          0.772 – 0.898 30 m NIR                0.851 – 0.879 Band 5 

Band 5 30 m SWIR-1        1.55 - 1.75 30 m SWIR-1       1.547 – 1.749 30 m SWIR-1             1.566 – 1.651 Band 6 

Band 6 120m TIR          10.40 - 12.50 60 m TIR          10.31 – 12.36 100 m TIR-1              10.60 - 11.19 Band 10 

100 m TIR-2              11.50 – 12.51 Band 11 

Band 7 30m SWIR-2         2.08 - 2.35 30 m SWIR-2       2.064 – 2.345 30 m SWIR-2             2.107 – 2.294 Band 7 

Band 8  15 m Pan           0.515 – 0.896 15m Pan                 0.503 – 0.676 Band 8 

 

 

2.2.3 NDVI and Vegetation Coverage 

Most vegetation data in research applications use vegetation indices derived from RS 

satellite images. The current number of vegetation indices recorded in the Index 

Database (IDB) is 67, including the Normalized Difference Vegetation Index (NDVI), 

Simple Ratio Vegetation Index (SR), Difference Vegetation Index (DVI), Soil-Adjusted 

Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Aerosol 

Free Vegetation Index (AFVI), Enhanced Vegetation Index (EVI), etc. (Pinty et al.,1992; 

Hou et al., 2013.) Differing vegetation indices may offer distinct advantages and have 

several limitations. For instance, a SAVI can avoid soil disturbances, and AFVI and 

EVI are better at resisting atmospheric disturbances, whereas the calculation of these 

indices requires more information on the parameters or bands to be known. 

Following previous studies, NDVI is straightforward to calculate and reflects the 

condition of surface vegetation to a large extent. (Julien et al., 2009), Moreover, the 

significant relationship between NDVI and various valued vegetation characteristics 

such as Gross Primary Production (GPP), Fraction of Photosynthetically Active 

Radiation (FPAR), and Leaf Area Index (LAI), which can effectively reflect vegetation 

cover and photosynthetic (Hou et al., 2013). 

NDVI is calculated with the following expression:  

                                  𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑃 − 𝜌𝑅𝑒𝑑
𝜌𝑁𝐼𝑃 + 𝜌𝑅𝑒𝑑

                                                        (2) 
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where NIR is near-infrared light and Red is visible red light.   

The vegetation index values are generally extracted from single view imagery in 

conventional vegetation cover studies and thresholds used to classify vegetation from 

non-vegetation. However, vegetation index values are usually negative in areas where 

after removing clouds, water, and snow by pre-processing, these areas are prone to 

errors in the classification process. In this paper, the maximum value is extracted from 

hundreds of images for each cycle, which also reduces errors such as those described 

above. In this paper, the time series vegetation index was constructed through the 

following steps: 

(1) Divide 18 time periods with a biennial cycle; 

(2) Calculated NDVI index of all images within 2 years, and the maximum value (or 

appropriate threshold value) of each pixel is selected as the NDVI value, so as to obtain 

the vegetation index. 

(3) Obtain vegetation index of 18 time periods to establish time series vegetation index. 

The value of NDVI here will invariably be between -1 and +1. Values between -1 and 

0 indicate dead plants or inorganic matter such as rocks, roads, and houses. Live plants 

tend to fall between a value of 0 and 1 for NDVI, with 1 being the healthiest and 0 being 

the least healthy (As shown in Figure 2.8). Each pixel in an image can be identified 

with a single value.  

 

Figure 2.8 NDVI plant health value (Source: Sentera) 

According to the classification of vegetation range for monitoring the vegetation 

changes in Mu Us Sandy Land by Liu et al.(2009), In this paper, vegetation coverage 

was classified into three grades according to the NDVI value. NDVI value of low 

vegetation coverage ranged from 0.0 to 0.3, medium vegetation coverage ranged from 

0.3 to 0.6, and high vegetation coverage ranged from 0.6 to 1.0. 

This paper investigates the influence of topography on vegetation; we set the slope 

range at 60 degrees (Figure 2.9) to analyze the correlation between slope and vegetation. 

By overlapping vegetation cover data with dem data, we selected three areas (Figure 
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2.10) with different topography to observe the vegetation coverage change on different 

terrains. 

  

Figure 2.9 Slope of DEM                   Figure 2.10 The Three Selected Areas 

2.2.4. RSEI 

The Remote Sensing Ecological Index (RSEI) is based on remote sensing technology, 

coupled with wetness, greenness, dryness and heat indexes directly related to the quality 

of ecological environment, which can visually and quickly evaluate the ecological 

environment, as a natural factor-based system for evaluating the quality of ecological 

environment. With the remote sensing image technology, the WET, NDVI (Gao et al., 

2012), NDBSI (Xu, 2013; Wang et al., 2019) and LST can be obtained to represent the 

four ecological elements of moisture, greenness, dryness and heat respectively. There 

have been many studies using RSEI to assess the ecological environment (Li et al., 

2020; Yang et al., 2019), most of which are urban-based. For example, the Guangdong-

Hong Kong-Macao Greater Bay Area was used as the study area by Zheng (2019), who 

pointed out that the decline in ecological quality in the Guangdong-Hong Kong-Macao 

Greater Bay Area was closely related to the decline in vegetation cover and the increase 

in surface temperature. 

As far as remote sensing technology is concerned, it can use thematic information 

enhancement techniques to extract information on these four important indicators from 

the various remote sensing image data, such as the vegetation index, surface 

temperature, and the humidity component of the tassel transformation to represent 

greenness, heat and humidity respectively. As buildings are an important part of the 

artificial ecosystem, the large number of impermeable surfaces replaces the original 

natural ecosystem of the ground, resulting in the 'drying out' of the ground. The bare 

soil index can therefore be used to represent the 'dryness'. In this way, the proposed 

remote sensing ecological index can be expressed as a function of these four indicators. 

As formula 3 and 4: 

                                                    𝑅𝑆𝐸𝐼 = 𝑓(𝐺,𝑊, 𝑇, 𝐷)                                             (3) 
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Defined by RS index: 

                                          𝑅𝑆𝐸𝐼 = 𝑓(𝑉𝐼,𝑊𝐸𝑇, 𝐿𝑆𝑇,𝑁𝐷𝐵𝑆𝐼)                                 (4) 

Where G is greenness, W is wetness, T is temperature and D is dryness. 

(1) Wetness indicator  

The tassel cap transform is an effective data compression and de-redundancy technique, 

and its brightness, greenness, and wetness components are directly related to the 

physical parameters of the ground surface; consequently, it has been widely used in 

ecological monitoring. The moisture component of this study is represented by the Wet, 

as it is closely related to the moisture content of the vegetation, water body, and soil. 

The wetness components of TM and OLI correspond to different calculation parameters 

and can be computed with formula 5: 

{
𝑊𝑒𝑡 (𝑇𝑀) = 0.0315 𝜌1  +  0.2021 𝜌2  +  0.3102 𝜌3  + 0.1594 𝜌4  − 0.6706 𝜌5  − 0.6109 𝜌7
𝑊𝑒𝑡 (𝑂𝐿𝐼) = 0.1511 𝜌2  + 0.1973 𝜌3  +  0.3283 𝜌4  + 0.3407𝜌5  − 0.7117 𝜌6  − 0.4559 𝜌7 

 (5) 

(2) Heat indicator 

                                                      𝐿 =  𝑔𝑎𝑖𝑛 ∗ 𝐷𝑁 + 𝑏𝑖𝑎𝑠                                           (6) 

                        𝑇 =  𝐾2/ ln(𝐾1/𝐿 + 1)                                            (7)   

Where K1 and K2 are calibration parameters, K1 = 607.76 W m-2 µm-1sr-1 and K2 = 

1260.56 K if obtained from the TM, and K1 = 774.89 W m-2 µm-1sr-1 and K2 = 1321.08 

K for the Thermal Infrared Sensor (TIRS) Band 10. 

                                                   𝐿𝑆𝑇 =  𝑇/[1 + (𝜆𝑇/𝜌) ln 𝜀]                                             (8)                     

𝜆 is certer wavelength and 𝜀 is surface emissivity 

(3) Dryness 

The dryness of the surface soil is commonly calculated using the bare soil index (SI) in 

RS studies about desertification. Although the study area is a desert, taking into account 

that the part of the study area in Shaanxi Province has a relatively large amount of built-

up land, which also contributes to the dryness of the ground surface. Therefore, this 

study used normalized difference built-up and bare-soil index (NDBSI), which is a 

combination of the SI and an anthropic index, the index-based built-up index (IBI) (Xu, 

2017), to represent the dryness in the study area, as in formula 9. 

                                         𝑁𝐷𝐵𝑆𝐼 =  (𝐼𝐵𝐼 + 𝑆𝐼)/2                                             (9) 

𝐼𝐵𝐼 = 2𝜌5/(𝜌5 + 𝜌4) − [𝜌4/(𝜌4 + 𝜌3) + 𝜌2/(𝜌2 + 𝜌5)]/{2𝜌5/(𝜌5 + 𝜌4)

+ [(𝜌4/(𝜌4/(𝜌4 + 𝜌3) + 𝜌2/(𝜌2 + 𝜌5)]}                            (10) 

           𝑆𝐼 = [(𝜌5 + 𝜌3)  −  (𝜌4 + 𝜌1)]/[(𝜌5 + 𝜌3) + (𝜌4 + 𝜌1)]                (11) 
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In RSEI, the first principal component (PC1) of the Principal Component Analysis 

(PCA) method is used to integrate the 4 indicators. In this case, each indicator is 

automatically and objectively weighted according to the nature of the data and the 

contribution of each indicator to PC1, avoiding any bias in the results caused by 

artificially determined weights (Xu, 2013).  

The RSEI was calculated as formula 12: 

                                    𝑅𝑆𝐸𝐼 = 𝑃𝐶1[𝑓(𝑁𝐷𝑉𝐼,𝑊𝐸𝑇, 𝑁𝐷𝐵𝑆𝐼, 𝐿𝑆𝑇)]                             (12) 

It is necessary to normalize each indicator before performing PCA, resulting in all of 

the values in the range from 0 to 1, normalization formula as follows: 

                                                      𝑁𝐼𝑖 =
𝐼𝑖 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

                                                           (13) 

Where NIi is the normalized value of a pixel, Ii is the value of a pixel, and Imax and Imin 

are the max and min values of a pixel, respectively. 

The value of RSEI is between 0 and 1. The closer the RSEI value is to 1, the better the 

ecological condition is, and vice versa. Based on previous studies, we classify values 

into five grades in equal intervals: 1 – poor (0-0.2), 2 – fair (0.2-0.4), 3 – moderate (0.4-

0.6), 4 – good (0.6-0.8), 5 – excellent (0.8-1.0).  
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3. Evolution and Analysis of Vegetation Coverage 

3.1 Analysis of Temporal and Spatial Evolution on Characteristics of Vegetation 

Coverage Changes Since 1986  

    

1986 (-1987) 1988(-1989) 1990(-1991) 1992(-1993) 

    

1994(-1995) 1996(-1997) 1998(-1999) 2000(-2001) 

    

2002(-2003) 2004(-2005) 2006(-2007) 2008(-2009) 

    

2010(-2011) 2012(-2013) 2014(-2015) 2016(-2017) 

  

  

2018(-2019) 2020   

Figure 3.1.1 NDVI-based vegetation changes from 1986 to 2020 
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 High  Medium Low  

    

1986(-1987) 1988(-1989) 1990(-1991) 1992(-1993) 

    

1994(-1995) 1996(-1997) 1998(-1999) 2000(-2001) 

    

2002(-2003) 2004(-2005) 2006(-2007) 2008(-2009) 

    

2010(-2011) 2012(-2013) 2014(-2015) 2016(-2017) 

  

  

2018(-2019) 2020   

Figure 3.2 Vegetation Coverage Changes from 1986 to 2020 

As shown in Figure 3.2, the area of vegetation in the north-eastern part of Mu Us Sandy 

Land generally appears to be steadily increasing with each cycle, with the quality of the 

vegetation practically being medium until 2020. Only slightly visible moderate 

vegetation cover was observed in the central, northern, and western regions of the study 

area in 2012, compared to these periods from 2014 to 2020, without any significant 
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increase in the extent of cover in these regions up to 2020. A small cover of high 

vegetation occurs on the southern edge in 1994, and by 2020 this area is covered mainly 

by high and medium vegetation, while this is also the main concentration of high 

vegetation coverage during all the study cycles. Notwithstanding the apparent overall 

increase in vegetation cover, there are still large areas where the vegetation is in a 

precarious state of growth, while the quality of vegetation growth has not improved 

significantly. 

According to the hierarchical classification method of vegetation coverage grade, this 

paper has classified the time series vegetation index and has received the classification 

results of time series vegetation coverage since 1986. After analyzing the vegetation 

coverage in the research area since 1986, we found that in the early stage, the vegetation 

coverage was mainly low, followed by the medium vegetation coverage, and the high 

vegetation coverage was less; in the later period, the low vegetation coverage decreased 

significantly, while the medium and high vegetation coverage increased significantly. 

Since 1986, the vegetation index in the Mu Us Sand Land has maintained a continuous 

upward trend, with the median values increasing from 0.18 (1986) - 0.34 (2020) and 

annual values increasing from 0.20 (1986) - 0.38 (2020) in 2020 (Table 3.1),  

Table 3.1 Vegetation index of time series NDVI from 1986-2020 

Stage  Year  Median value Annual average 

Stage 1 

1986 0.18 0.20 

1988 0.20 0.23 

1990 0.21 0.23 

1992 0.18 0.21 

1994 0.22 0.25 

1996 0.21 0.24 

1998 0.20 0.22 

2000 0.20 0.23 

Average  0.21 0.23 

Stage 2 

2002 0.24 0.26 

2004 0.25 0.27 

2006 0.26 0.28 

2008 0.26 0.29 

2010 0.29 0.31 

2012 0.34 0.36 

Average  0.27 0.29 

Stage 3 

2014 0.32 0.35 

2016 0.37 0.39 

2018 0.36 0.39 

2020 0.34 0.38 

Average  0.35 0.38 
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Figure 3.3 median value of time series NDVI from 1986 to 2020 

Table 3.2 Classification results of time series vegetation coverage from 1986 to 2020 

Stage 1 

Year 1986 1988 1990 1992 1994 1996 1998 2000 Average 

Low coverage 87.00% 74.50% 77.70% 86.70% 69.60% 76.20% 82.70% 80.10% 78.20% 

Medium 

coverage 

12.30% 23.90% 20.90% 12.90% 28.10% 21.70% 15.90% 17.90% 20.20% 

High coverage 0.70% 1.60% 1.40% 0.40% 2.30% 2.10% 1.40% 2.00% 1.70% 

Stage 2 

Year 2002 2004 2006 2008 2010 2012 

   

Low coverage 68.80% 67.80% 61.80% 61.30% 54.20% 38.30% 

  

58.70% 

Medium 

coverage 

28.20% 29.50% 34.70% 35.10% 42.10% 54.70% 

  

37.40% 

High coverage 3.00% 2.80% 3.40% 3.60% 3.70% 7.00% 

  

3.90% 

Stage 3 

Year 2014 2016 2018 2020 

     

Low coverage 42.90% 31.60% 34.10% 38.30% 

    

36.70% 

Medium 

coverage 

49.80% 57.70% 54.40% 50.70% 

    

53.10% 

High coverage 7.20% 10.70% 11.50% 11.00% 

    

10.10% 

It can be learned that there are 3 stages (Figure 3.3) of vegetation index change in the 

Mu Us Sand Land since 1986:  

(1)Stage 1(1986-2000): the NDVI value was relatively stable, the median NDVI value 

was basically maintained between 0.18 and 0.22, and the average value was 0.21; 

(2)Stage 2(2002-2012): during this period, the median NDVI kept increasing 

significantly year by year, from 0.24 in 2004 to 0.29 in 2010; 

(3)Stage 3(2014-nowadays): the NDVI values are stable, and maintain a relatively high 
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value between 0.32-0.37, with the average value of 0.35. 

In this paper, the vegetation coverage classification method was adopted to classify the 

NDVI annual median value according to the threshold value, and obtained results of 

time series vegetation coverage from 1986 to 2020 (Table 3.2 and Figure 3.4). 

 

Figure 3.4 Curve graph of time series vegetation coverage classification from 1986-2020 

Thus, the changes of vegetation coverage since 1986 are as follows: 

(1) Stage 1(1986-2020): vegetation coverage was mainly low, accounting for about 

78.2%, the medium coverage was slightly changed, accounting for about 20.0%, and 

there was few high coverage, accounting for about 1.7%.  

(2) Stage 2 (2000-2012): the low vegetation coverage gradually decreased from 68.8% 

in 2002 to 38.3% in 2012; the medium coverage significantly increased from 28.2% in 

2002 to 54.7% in 2012; the high coverage slightly increased from 3.0% in 2002 to 3.9% 

in 2012; 

(3) Stage 3: Since 2014, on the basis of relatively stable low coverage (36.7%) and 

medium coverage (53.1%), the high vegetation coverage increased significantly, the 

average annual coverage has rosen from 7.2 percent in 2014 to 11.0 percent in 2020; 

(4) In 1986, the study area was in the stage of desertification, and its vegetation 

coverage was mainly low, accounting for 87% of the total study area, while by 2020, 

the desertification control in the study area has achieved remarkable results. The 

vegetation coverage is mainly medium and high, and the low coverage has been reduced 

to about 30%. 
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3.2 The Effect of Topographic Gradient on Vegetation Coverage 

Combined with the digital elevation model (DEM) of Mu Us Sand Land, 1988, 

2008 and 2020 are selected as the typical years of the 3 stages according to the terrain 

changes. 3 typical areas (area 1 has a large topographic change, area 2 has the gentlest 

topographic change, and area 3 has a medium topographic change) are selected to 

analyze the vegetation coverage. The vegetation coverage changes are shown in Figure 

3.5-3.7. 

 

 

1988 

 

2008 

 

2020 

Figure 3.5 Vegetation coverage changes in area 1(1988, 2008 and 2020) 

 

1988 

 

2008 

 

2020 

Figure 3.6 Vegetation coverage changes in area 2(1988, 2008 and 2020) 

 

1988 

 

2008 

 

2020 

Figure 3.7 Vegetation coverage changes in area 3(1988, 2008 and 2020) 

As can be seen from the figures above: in area 1, the topographical changes greatly and 

the vegetation coverage increases rapidly, the vegetation coverage was mainly low in 

1988 and increased significantly in 2008, while in 2020, the vegetation coverage was 

mainly high; in area 2, with gentle terrain and minimal topographical changes, the 

growth of vegetation coverage is very slow, from 1988 to 2008, although the high 

coverage increased slightly, area 2 was still dominated by low coverage, while in 2020, 

the high coverage increased significantly; both topographical changes and growth rate 

of area 3 are between area n1 and area 2.  It can be seen that the vegetation coverage 

change is closely related to topography. The larger the topographical change, the faster 

the vegetation grows; the smaller the topographical change, the slower the vegetation 
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grows.  

Combined with slope data of Mu Us Sand Land, the vegetation index of the study area 

in 3 typical years was analyzed and obtained the correlogram of vegetation index and 

slope (Figure 3.8). 

 

1988 

 

2008 

 

2020 

Figure 3.8 Correlogram of vegetation index and slope(1988, 2008, 2020) 

We can learn that when the NDVI index and the process of vegetation coverage in an 

overall upward trend, they are related with slope in a certain degree: 

➢ At the range of 1-10 degree: the index was mainly distributed between 0.1-0.2 

in 1988,0.2-0.3 in 2008 and around 0.3 in 2020; the growth rate of vegetation 

index in this region was very slow, and its vegetation coverage was still mainly 

low and medium in 2020.  

➢ At the range of 10-30 degree: the index was mainly distributed between 0.1-

0.2 in 1988, 0.3-0.4 in 2008 and around 0.5 in 2020; the growth rate of 

vegetation index increased rapidly in this region, and its vegetation coverage 

was mainly medium, while the high vegetation coverage has increased 

significantly.  
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3.3 Analysis on RSEI-based Ecological Monitoring  

   

Figure 3.9 Spatial distribution of different RSEI quality grades in 1990, 2005, 2019. 

RSEI 
1990 2005 2019 

km2 （%） km2 % km2 % 

1：（0-0.2） 14055.2 23.06 6146.68 10.96 17465 31.15 

2：（0.2-0.4） 32540 60.02 46193.3 82.39 26681.7 47.59 

3：（0.4-0.6） 9048.63 16.14 3509.46 6.25 11177.8 19.94 

4：（0.6-0.8） 335.16 0.63 147.56 0.26 580.9 1.04 

5：（0.8-1） 85.01 0.15 67 0.14 158.6 0.28 

Amount 56064 100 56064 100 56064 100 

           1 – poor (0-0.2), 2 – fair (0.2-0.4), 3 – moderate (0.4-0.6), 4 – good (0.6-0.8), 5 – excellent (0.8-1.0) 

Table3.3 The changes of RSEI in Mu Us Sandy Land 

Observing the ecological condition as a whole over three years, it is Observing the 

ecological condition as a whole over these three years, it is clear as we see that nearly 

all of the areas are in grades 1, 2, and 3, and the areas that can meet the ‘good’ and 

‘excellent’ criteria are barely visible (Figure 3.9).Therefore, in our opinion, the current 

ecological environment of Mu Us Sandy Land is fragile evaluated based on the RSEI. 

In 1990, a portion of the Ejin Horo Banner area located in the northeastern part of the 

Mu Us Sandy Land showed an ecological condition of moderate class, most of the areas 

of the Uxin Banner, Yulin City, and Shenmu County ranged from 0.2 to 0.4, while the 

remaining areas suffered from a severely poor ecological condition. In 2005 the 

ecological condition deteriorated significantly in the area of Ejin Horo Banner and 

Hengshan county located in Mu Us Sandy Land, while the ecology of Otog Front 

Banner, Jingbian County, parts of Uxin Banner, and a minor southern part of Yulin city 

improved to moderate class, with no significant local changes in the rest of study area 

(Figure 3.10 A). Combining the vegetation cover from 2014 and 2015, we found an 

increase in moderate vegetation cover where the Ejin Horo Banner was ecologically 

improved. As of 2019, an improved ecological situation had only been observed in 

Yulin and Shenmu. Compared to 1990, we found a significant reversal between the 

eastern and western parts of the study area over the two cycles (Figure 3.10 B); in 2019, 

there is an 8.09% degradation of the RSEI to class 1, a 12.43% drop in class 2, a 3.8% 

upturn in class 3 and only a very slightly improved in the ecological condition in classes 
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4 and 5. 

  

A. Changes between 1990 and 2005 B. Changes between 2005 and 2019 

Figure 3.10 Change magnitude map of RSEI 

        

 

 

 

 

 

Table 3.4 Correlation matrix in 1990 

 

 

 

 

 

 

 

Table 3.5 Correlation matrix in 2005 

 

 

 

 

Table 3.6 Correlation matrix in 2019 

Combining Table 3.4 and 3.6, we find that an increase in vegetation correlates with an 

increase in RSEI. The negative correlation between RSEI and Surface temperature is 

consistently high. And the increase in vegetation will reduce the surface temperature 

and dryness to some extent, while it enhances the humidity. In 2015, though a very 

slight moderate vegetation increase in the study area, the loss of WET drove a reduction 

in NDVI’s correlation with RSEI.   

 NDVI WET NDBSI LST RSEI 

NDVI 1     

WET 0.325335 1    

NDBSI -0.51884 -0.51678 1   

LST -0.13277 -0.51678 0.517493 1  

RSEI 0.133269 0.517493 -0.41571 -0.9986 1 

 NDVI WET NDBSI LST RSEI 

NDVI 1     

WET 0.516991 1    

NDBSI -0.53648 -0.75811 1   

LST -0.11393 -0.39471 0.440048 1  

RSEI 0.117804 0.400099 -0.44695 -0.99857 1 

 NDVI WET NDBSI LST RSEI 

NDVI 1     

WET 0.540823 1    

NDBSI -0.6427 -0.83434 1   

LST -0.39666 -0.62425 0.59805 1  

RSEI 0.396562 0.628834 -0.5985 -0.9997 1 
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3.4 Summary of Analysis 

This chapter is presented calculated time-series NDVI vegetation index by using the 

long-term series Landsat remote sensing image data with a period of 2 years; dividing 

the NDVI values into three grades according to the thresholds: low vegetation coverage 

(0.0 ~ 0.3), medium vegetation coverage (0.3 ~ 0.6) and high vegetation coverage (0.6 

~ 1.0), analyzing vegetation coverage grade since 1986. Then the vegetation results for 

the three years 1988, 2008, and 2020 were selected and combined DEM to conduct 

researches on the impact of topography on vegetation coverage and correlation analysis 

between slope (range 0-60 degrees) and vegetation coverage. Furthermore, 704 scenes 

Landsat images were processed for monitoring changes in ecological conditions in 

1900, 2005, and 2019 based on the RSEL’s ecological index combining the four 

indicators LST, WET, NDVI, and NDBSI; the normalized results were classified into 

five classes: 1 – poor (0-0.2), 2 – fair (0.2-0.4), 3 – moderate (0.4-0.6), 4 – good (0.6-

0.8), 5 – excellent (0.8-1.0). The results are as follows:  

(1) Since 1986, there are 3 periods of the vegetation coverage in Mu Us Sand Land: 

Period 1 – severe desertification(1986 - 2000), Period 2 – recovery(2002 - 2012), 

Period 3 – stationary(2014 - nowadays) 

(2) Although vegetation cover in the study area increased significantly from 1986 to 

2020, the high vegetation cover is mainly on the southern edge and southeast. 

Growth in vegetation cover has been steady in the east and southeast, with mainly 

medium vegetation. Elsewhere the vegetation cover shows improvement, but the 

quality of growth us not satisfactory.  

(3) the vegetation coverage index processes are as follows: 

➢ Stage 1(1986 - 2000), the NDVI value was generally stable with slight changes 

➢ Stage 2 (2002 - 2012), the NDVI value kept increasing significantly. 

➢ Stage 3(2014 - nowadays), NDVI was stable again and maintained a relatively high 

value. 

(4) the vegetation coverage grade processes are as follows: 

➢ Stage 1(1986-2000): the vegetation coverage during this period was very low, and 

was mainly low vegetation coverage, followed by medium, and high vegetation 

coverage. 

➢ Stage 2(2002-2012): the low vegetation coverage gradually decreased, the medium 

coverage gradually increased, and the high coverage slowly increased. 

➢ Stage 3(2014 – nowadays): the low vegetation coverage rate stably decreased, the 
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medium coverage was relatively stable, and the high coverage increased 

significantly. 

(5) In 1986, the study area was in desertification stage, and its vegetation coverage 

was mainly low, accounting for 87% of the total study area. By 2020, the 

desertification control has achieved remarkable results. The low vegetation 

coverage is mainly replaced by medium and high vegetation coverage, and been 

reduced to about 30%.  

(6) Topography can affect the evolution process of vegetation coverage in a certain 

degree. Topographic relief areas provide vegetation better growing habitats and 

the vegetation coverage rate changes rapidly from low to high. While in flat terrain, 

the growing habitats are worse, and the vegetation coverage rate here changes very 

slowly. 

(7) When the NDVI index and the process of vegetation coverage in an overall 

upward trend, they are related with slope in a certain degree: at the range of 1-10 

degree, the growth rate of vegetation index is very slow, up to 2020, the index has 

been mainly distributed around 0.3, and is mainly low and medium vegetation 

coverage; in the range of 10-30 degree, the growth rate increased rapidly, up to 

2020, it has been mainly distributed around 0.5, and the vegetation coverage is 

mainly medium, with significant increase of high vegetation coverage; 

(8) The desertification control in the study area has achieved remarkable results. In 

1986, the study area was in desertification stage, and the vegetation coverage was 

mainly low. By 2020, the vegetation coverage had been greatly improved, and the 

vegetation coverage was mainly medium and high. 

(9) The comprehensive eco-environment appraisal index has gone up, with the 

improvement of vegetation coverage; Moreover, the increase of vegetation 

coverage partly results in the increase in Wet and the decrease in LST and NDBSI. 

NDVI is only an element of RSEI but not a decisive factor that can change RSEI, 

an increase in NDVI without a substantial change in quality and quantity might 

not significantly impact ecological change. 

In broad terms, as of 2019, only the areas of Yulin and Shenmu located within the 

Mu Us Sandy Land have seen a steady increase in vegetation along with ecological 

improvements, but both are at a moderate level, with vegetation cover and the 

ecological index falling far short of the optimal range. 
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4. Discussion 

Although numerous people in various countries have studied deserts for a long time and 

established corresponding research systems and evaluation indicators, there is still a 

lack of an accepted evaluation indicator worldwide. The causes of desertification are 

mainly human factors and natural conditions. Differences in geographical location and 

climatic conditions can directly affect deserts by forming different deserts to different 

degrees. Contrary to the familiar Sahara Desert, the climatic conditions of the Mu Us 

Sandy Land are distinctly different. With relatively abundant annual rainfall decreasing 

from the northeast, where the precipitation is about 600 mm, to the southwest, where it 

falls to 300 mm. Meanwhile, the average annual temperature ranges from 6.78 to 

10.66°C, with an average of -9.5 to -12°C in January and 22 to 24°C in July. Drivers 

affecting desert areas can be varied from region to region so developing a universally 

accepted system for assessing deserts worldwide is exceptionally challenging. In 

remote sensing, analyzing the desertification issue through remote sensing technology 

is still in the exploratory stage, and no real mature and trustworthy methods available 

at the moment. In arid and semi-arid areas with sparse vegetation and highly 

heterogeneous surfaces, determining the appropriate vegetation index is a key for 

detecting vegetation change through remote sensing. Gao et al. (2006) compared the 

NDVI, SAVI, MSAVI, and GEMI for monitoring vegetation change in arid and semi-

arid areas, indicating that NDVI-based extraction of low vegetation cover produces the 

best outcome arid and semi-areas. We, therefore, used NDVI in this study to calculate 

the vegetation index of the study area. Thus, in this paper, the primary factors for 

evaluating desertification status in the study area are vegetation cover and ecological 

indicators, but whether these two indicators alone can fully reflect desertification status 

is still to be proven. For this study, we referred to some of the previous literature on the 

Mu Us Sandy Land. We found that the boundaries of their research area are almost non-

uniform; the boundary data used in this study were also produced by ourselves 

according to the actual use of the land. Liu et al. (2009) detected the dynamic change 

of vegetation coverage of Mu Us Sandy Land from 1990 to 2007 using the overlay of 

two TM images of the vegetation bloom period during August to September. The area 

of the Mu Us Sandy Land in Liu et al. (2009) study, excluding the Otog Banner and 

part of the Uxin Banner, is only 34490.2392km2, which is nearly 9000km2 less than our 

present study. Even though we used identical data processing formulae and statistical 

methods, their numerical results on vegetation growth were much higher than our 

results. Due to the missing parts of their study, Otog Banner and Uxin Banner were the 

principal distribution areas of low vegetation, in cases when the original pixel extracted 

values should have been lower than our current study, as shown in the table below. 
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Annual changes rates 1990-2007 

VC Classification  Liu et al., 2009 Our study results Our study results 

1986-2020 

Low Coverage -0.048% -0.99375% -1.3528% 

Medium Coverage 3,91% 0.8625% 1.0667% 

High Coverage 3.48% 0.125% 0.64375% 

 

Then we compared the study result with that by Qiu et al.(2019) monitoring vegetation 

change in the Mu Us Sandy Land from 2000 to 2015; in their case, we had a similar 

study boundary. However, he used a dataset containing both NDVI and EVI layers of 

the MOD13 product for the vegetation bloom period covering July to August. In our 

study, to ensure the quality of the pixel values, the highest values from the Landsat 

collection were derived and averaged for every two years. In the Qiu et al. (2109) study, 

the mean values from July to August of each year in the MOD13 product were derived 

and averaged. Then in this comparison, I calculated the average values of each of their 

two years to compare with our results. Since they only had 2015 values without 2016, 

we did not use our average value between 2015 and 2016 for comparison to ensure 

validity. 

Average NDVI in Mu Us Sandy Land 2000-2014 

Years 2000 2002 2004 2006 2008 2010 2012 2014 

Our Results 0.23 0.26 0.27 0.28 0.29 0.31 0.36 0.35 

Qiu et al., 2019 0.20 0.26 0.26 0.25 0.27 0.29 0.33 0.28 

On comparison, one finds that our values are a little higher at all times except 2006 

when they are the same, but the difference between the values is not significant due to 

the high quality of their data products. Nevertheless, in principle it makes no sense for 

me to make a side-by-side comparison like this using maximum and mean values based 

on different satellite data. In the future, if we sought to verify the quality of the MOD13 

product data, perhaps we could extract mean values from our dataset for comparison. 

Presently the DEM data we use is limited as in this study; we used the only data 

available for 2010. For desert studies, many research scholars do fieldwork to collect 

data. However, many field trips are still inaccurate in capturing the actual situation of 

shifting sand dunes. The literature on dynamics monitoring in the Taklamakan, one of 

the most shifting dunes in China, and the Horqin Desert (Duan, 2013), a similar 

environment to the Mu Us Sandy Land, have integrated DEM to analyze land 
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degradation processes. We, therefore, apply DEM data to the analysis of vegetation 

cover in this study. Although we indicate topographic relief areas provide vegetation 

better growing habitats and the vegetation coverage rate changes rapidly from low to 

high in this study result, we consider this result to be a coincidental phenomenon. The 

growth of vegetation may be more strongly related to regional climatic conditions or 

the presence of soils, such as wind. Zhang et al. (2020) carried out 'vegetation 

rehabilitation in the Mu Us Sandy Land primarily affected by wind strength changes 

rather than other climates variables...and lowering of dune and increasing of vegetation 

arising from the decreasing wind strength. ' 

The RSEI, as applied in this paper, is commonly used to evaluate urban ecological 

conditions; we have not found cases where this index has been in use for analyzing 

desert or arid regions. However, by comparing 1990 and 2019, we consider that this 

index is still relatively effective for analyzing ecological problems in desert areas. In 

the future, we may try to improve the results by replacing the indicator calculation, such 

as LST. It is certainly not enough to rely only on these four indicators for ecosystem 

assessment, requiring an in-depth inquiry.  
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5. Conclusion and Expectation 

This paper adopted the full-time Landsat series of remote sensing data (6185 in total) 

to create long-term series of NDVI vegetation index in 2 years from 1986 to 2020, and 

reclassifying NDVI into three grades by the threshold values: low vegetation coverage 

(0.0 ~ 0.3), medium vegetation coverage (0.3 ~ 0.6) and high vegetation coverage (0.6 

~ 1.0). Afterward, three years' vegetation results, 1988, 2008, and 2020, were selected 

to study the effect of topography on vegetation cover and the correlation analysis 

between slope (range 0-60 degrees) and vegetation cover in combination with DEM. 

Furthermore, 704 scenes Landsat images were manipulated for monitoring changes in 

ecological conditions in 1900, 2005, and 2019 based on the RSEL’s ecological index 

combining the four indicators LST, WET, NDVI, and NDBSI; the normalized results 

were classified into five classes: 1 – poor (0-0.2), 2 – fair (0.2-0.4), 3 – moderate (0.4-

0.6), 4 – good (0.6-0.8), 5 – excellent (0.8-1.0). The main conclusions are as follows: 

(1) There is relatively abundant precipitation in Mu Us Sand Land, which is 

conducive to vegetation; 

(2) Since 1986, there are 3 periods of the vegetation coverage in Mu Us Sand Land: 

Period 1 – severe desertification(1986 - 2000), the NDVI value was stable, and 

the vegetation coverage during this period was very low, and was mainly low 

vegetation coverage, followed by medium, and high vegetation coverage; 

Period 2 – recovery(2002 - 2012), the NDVI value kept increasing significantly, 

the low vegetation coverage gradually decreased, the medium coverage 

gradually increased, and the high coverage slowly increased; Period 3 – 

stationary(2014 - 2020), NDVI was stable again and maintained a relatively 

high value, while the low vegetation coverage rate stably decreased, the medium 

coverage was relatively stable, and the high coverage increased significantly.  

(3) Topography can affect the evolution process of vegetation coverage in a certain 

degree. Topographic relief areas provide vegetation better growing habitats and 

the vegetation coverage rate changes rapidly from low to high. While in flat 

terrain, the growing habitats are worse, and the vegetation coverage rate here 

changes very slowly. 

(4) When the NDVI index and the process of vegetation coverage in an overall 

upward trend, they are related with slope in a certain degree: at the range of 1-

10 degree, the growth rate of vegetation index is very slow, up to 2020, the index 

has been mainly distributed around 0.3,; in the range of 10-30 degree, the growth 

rate increased rapidly, up to 2020, it has been mainly distributed around 0.5; 
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(5) The 36 years’ desertification control in the study area has achieved remarkable 

results. In 1986, the study area was desertification stage, and the vegetation 

coverage was mainly low. By 2020, the vegetation coverage had been greatly 

improved, and the vegetation coverage was mainly medium and high. 

(6) The vegetation growth has improved the ecology of the study area to some 

extent, but the specific causes of the ecological deterioration in 2005 we have 

no way of making a judgement based on the results alone and will need to 

explore other years on a case by case basis at a later date. 

(7) The spatial distribution of the ecological index in 1990, 2005, and2019 is 

overwhelmingly in class 1, class 2, and class 3, resulting in a relatively fragile 

ecology for the study area as a whole, with Yulin city and Shenmu county 

showing fairly positive ecological trends in comparison. 

(8) Considerable positive correlations between NDVI and Wet and positive 

correlations between NDVI and RSEI were found, with negative correlation 

indicators between NDVI and either LST or NDBSI increasing at a similar rate 

as the correlation between NDVI and RSEI increased. 

In this paper, an automatic extraction method of vegetation index with 

high spatiotemporal resolution is established, which makes up for the shortcomings of 

conventional research methods such as low monitoring frequency, low automation level 

and so on. Due to the limitation of time, climate change and other conditions, 

conventional research methods usually select remote sensing images of sparse phase 

for processing and analysis, which cannot capture subtle changes of vegetation index. 

This paper makes full use of all-time series Landsat remote sensing images with a total 

of 6185 scenes, which can accurately identify subtle spatiotemporal characteristics of 

vegetation change in the Mu Us Sand Land. This study has calculated the time series 

NDVI vegetation index by using the long-term Landsat series of remote sensing data 

for 2 years. Due to the uneven spatiotemporal distribution of Landsat satellite remote 

sensing image data, the accuracy is still insufficient. Further studies can explore and 

combine more high-resolution remote sensing images as data sources to improve the 

accuracy of the evolution process of vegetation coverage. The RSEI is an index initially 

designed for the analysis of urban ecosystems. With no background on the use of this 

index to analyze ecological conditions in desert areas, an attempt was made in this study 

to use this index to investigate the study area. As only three years were chosen, it was 

not possible to capture the general overall ecological trends in the study area over 36 

years, and to demonstrate the efficiency of this index when applied to desert areas; we 

would hope to have a further opportunity in the future to try to study the application of 

relevant indexes in this type of area.  
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Kokkuvõte 

 

Magistritöö teema: Maowusu kõrbe haljastamise tuvastamine kaugseire abil 

 

Kõrbestumine on muutunud rahvusvaheliselt ühiskonna jaoks keskseks probleemiks, 

mis mõjutab enam kui sajas riigis rohkem kui ühte viiendikku maailma elanikest (Tolba 

jt, 1992; WIT, 2009). Kõrbestumine põhjustab igal aastal maailmas 42,3 miljardi USA 

dollari ulatuses kahju (UNEP-DCB, 1991). Allika World Atlas of Desertification (2018) 

andmetel on enam kui 75% maailmas praegu kasutatavast maast degradeerunud ja 2050. 

aastaks võib tõenäoliselt olla viljakust kaotanud üle 90% maast, Aasia ning Aafrika on 

seejuures kaks sellest probleemist kõige enam mõjutatud piirkonda. Hiina on üks 

maailma riikidest, millele kõrbestumine on avaldanud kõige rängemat mõju (Ren jt, 

2015; Shen, 2017). Hiina keskvalitsus on ammu pööranud ökoloogilisele ja 

keskkonnakaitsele suurt tähelepanu, see toetab piirkondlike omavalitsuste pühendumist 

keskkonnakaitsetegevusele kohalikul tasandil. Yulini linn üksi on alates 2012. aastast 

eraldanud metsanduse ökosüsteemsele tehnoloogiale ja linna haljastamisele aastas 

peaaegu 60,9 miljonit dollarit (CTAXNEWS, 2020). Seepärast valiti käesoleva 

uurimistöö objektiks Maowusu kõrb ning uurimise eesmärk oli kontrollida kaugseire 

kujutiste töötlemise ja analüüsimise teel uuritava piirkonna haljastamisel tehtud 

edusamme ning seal toimunud ökoloogilisi muutusi. 

 

Uurimistöös püstitati kolm peamist eesmärki ning järgmised nendega seotud küsimused. 

⚫ Maowusu kõrbe taimkatte olukorra pikaajaline tuvastamine ja hindamine  

K: Kuidas on Maowusu kõrbe kasvuindeks ja taimedega kaetus muutunud perioodil 

1986–2020? 

⚫ Topograafilise gradiendi mõju tuvastamine Maowusu kõrbe taimedega kaetusele 

K: Kas muutused taimedega kaetuses on seotud topograafilise gradiendiga?  

Kuidas on taimedega kaetus muutunud erinevate topograafilise gradiendi määrade tõttu? 

⚫ Maowusu kõrbe ökoloogiliste muutuste pikaajaline tuvastamine ja hindamine. 

K: Kuidas on uurimisala RSEI indeks muutunud aastattel 1990, 2005 ja 2019?  

Kas NDVI, RSEI ja kolme teise näitaja (LST, NDBSI, Wet) vahel on uuritud piirkonnas 

tugev korrelatiivne seos? Kuidas need muutusid NDVI väärtuste suurenemise ajal? 
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Uurimustöös kasutatud lähteandmed, mis saadi Google Earth Engine’ist (GEE) ja 

pärinevad Ameerika geoloogiateenistusest (USGS), hõlmavad viiteteist NASADEM-i 

andmete stseeni, Landsat SR-i kogu (1. tase) ja Landsat TOA kogu (1. tase) perioodist 

1986–2020. 

 

Peaaegu kõik andmete kogumise, eeltöötluse ja töötlemisega seotud tehnilised sammud 

viidi läbi kasutades GEE-s Javascripte. See hõlmas näiteks Landsati kogu importimist, 

pilvede maskeerimist, Landsat 7 halva kvaliteediga piltide filtreerimist, igast pikslist 

NDVI väärtuse ning RSEI, LST, NDSI, NDVI (RSEI arvutamiseks) ja Weti väärtustena 

maksimaalse väärtuse võtmist. Landsati kogus käsitleti iga kaheaastast perioodi ühe 

perioodina ning periood 1986–2020 jagati kaheaastaste tsüklitena kaheksateistkümneks 

ajaperioodiks. Klassifitseerisime uuesti NDVI andmed ja RSEI andmed (LST, NDSI 

NDVI ja Wet koos), viisime taimedega kaetuse andmed kokku GIS tarkvaraga 

töödeldud DEM kõrgusandmetega ja arvutasime pärast andmete GEE-st eksportimist 

MATLAB-is välja indeksite korrelatsiooni. 

 

Tulemused tõestavad, et uuritud piirkonnas tervikuna on perioodil 1986–2020 haljastus 

pidevalt laienenud. 1986. aastal oli uuritud ala kõrbestumise faasis ning taimedega 

kaetus peamiselt vähene. 2020. aastaks oli taimedega kaetus oluliselt paranenud ning 

oli peamiselt keskmisel või kõrgel tasemel. Teatud määral mõjutab taimedega kaetuse 

arengut ka topograafiline gradient. Tugevalt reljeefsel alal kaldub taimekasv olema 

parem kui tasasel maastikul. Vegetatsiooniindeksi kasv kiirenes uuritud piirkonnas 

kiiresti ning taimedega kaetus oli seal valdavalt keskmine, 10–30-kraadisel nõlval on 

suur taimestikuga kaetus aga oluliselt laienenud. Ökoloogiline olukord on uuritavas 

piirkonnas vaadeldud perioodil märgatavalt paranenud. Võrreldes 1990. aastaga 

suurenes öko-indeksi väärtus veidi kõigis kolmes vahemikus 0,4-0,6, 0,6-0,8 ja 0,8-1,0. 

Samas, vahemikes 0-0,2 ja 0,2-0,4 vastupidiselt indeksi väärtus vähenes, vahemikus 

0,2-0,4 aastal 2019. kahanes Ökoloogilise Indeksi pindala 12.43. Samal ajal taimkatte 

suurnemisega Wet indeksi väärtused kasvased ning LSI ja NDSI väärtused kahanesid. 

Kuivõrd taimkate on käesoleva uurimise seisukohalt peamine näitaja ökoloogiliseks 

hindamiseks, näitavad kaalutud indeksi väärtused mõningast kuid ebaolulist paranemist 

taimkatte ökoloogilistes tingimustes. 

 



- 44 - 

 

Summary 

 

Master Thesis Topic: Detecting the Greening of Mu Us Sand Land by using Remote 

Sensing 

 

Desertification has become the focus issue of international society that affects over one-

fifth of the world population in more than 100 countries (Tolba et al., 1992; WIT, 2009). 

Each year, desertification accounts for US$42.3 billion in economic loss worldwide 

(UNEP-DCB, 1991). According to the World Atlas of Desertification (2018), more than 

75% of the current world’s land has been degraded, and by 2050, more than 90% of the 

land could probably be degraded, and Asia and Africa will be the two most affected 

regions. China is one of the countries most seriously affected by desertification in the 

world (Ren et al., 2015; Shen, 2017). For a long time, the central government of China 

attaches great importance to ecological and environmental protection, this leads to 

support on regional authorities to devote to local environmental protection enterprise. 

Since 2012, Yulin city alone has allocated nearly US$60.9 million in forestry ecological 

engineering and urban greening construction every year (CTAXNEWS, 2020). 

Therefore, this paper decided to select Mu Us Sand Land as the object of study, our 

purpose in conducting this study was to check the greening achievements and 

ecological changes in study area by processing and analyzing remote sensing imagery. 

 

There are three primary objectives and relevant questions as following, that were 

proposed in the study: 

⚫ Detecting and evaluating vegetation status in Mu Us Sand Land for long time series,  

Q: How did vegetation index and coverage change in Mu Us Sand Land from 1986 to 

2020 

⚫ Finding out the effect of topographic gradient on vegetation coverage in Mu Us 

Sand land 

Q: Is vegetation coverage changing related to topographic gradient?  

How did vegetation coverage change as affected by different degrees of topographic 

gradient? 

⚫ Detecting and evaluating ecological changes in Mu Us Sand Land for long time 

series. 

Q: How did RSEI-based ecological index change in study area in 1990, 2005, 2019? 

Is there existing a strong correlation between NDVI, RSEI, and other three indicators 

(LST, NDSI, Wet) in Study Area? How did they change while the increase of NDVI 

values? 

 

The primary data used for the study were being acquired from google earth engine 

(GEE) and released by USGS, includes 15 scenes of NASADEM data, Landsat SR 

collection (Tier 1) and Landsat TOA collection (Tier 1) from 1986 to 2020. 

 

Almost all of the technical steps regarding collecting, preprocessing, and processing 

data that finished in GEE by using Javascripts such as importing Landsat collection, 
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masking cloud, filtering low quality image of Landsat 7, extracting the maximum value 

of each pixel as the NDVI value and median values of RSEI, LST, NDBSI, NDVI (this 

one is for calculating RSEI), and Wet, from Landsat collection within every two years 

as one time period, there were 18 time periods divided with a biennial cycle in sequence 

from 1986 to 2020. Furthermore, we were reclassifying NDVI data and RSEI data (LST, 

NDBSI NDVI, and Wet attached in the same one data as bands), overlapping vegetation 

coverage with the processed DEM data in GIS software and calculating index 

correlation in MATLAB after data had been exported from GEE.  

 

The results prove that the study area has, on the whole, maintained steady growth in 

greening from 1986 to 2020. In 1986, the study area was in the desertification stage, 

and the vegetation coverage was mainly low. By 2020, the vegetation coverage had 

been greatly improved, and the vegetation coverage was mainly medium and high. 

Furthermore, the evolution process of vegetation coverage would be affected by the 

topography gradient to a certain degree. The growth of vegetation in a strong relief area 

tends to be better than the vegetation was growing in flat terrain. The growth rate of 

vegetation index increased rapidly in the study area, and its vegetation coverage was 

mainly medium, while the high vegetation coverage has increased significantly at the 

range of 10-30 degrees of slope. The study area has witnessed ecological improvement 

during the study period. Moreover, the increase of vegetation coverage partly results in 

the increase in Wet and the decrease in LST and NDBSI. NDVI is only an element of 

RSEI but not a decisive factor that can change RSEI, an increase in NDVI without a 

substantial change in quality and quantity might not significantly impact ecological 

change. In broad terms, as of 2019, only the areas of Yulin and Shenmu located within 

the Mu Us Sandy Land have seen a steady increase in vegetation along with ecological 

improvements, but both are at a moderate level, with vegetation cover and the 

ecological index falling far short of the optimal range. 
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