
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Technology

Ihar Suvorau

Real-time visualization of parallel simulations
in CERN material design

Bachelor's Thesis (12 ECTS)

Curriculum Science and Technology

Supervisors:

Prof. Vahur Zadin

Assoc. Prof. Andreas Kyritsakis

Dr. Mihkel Veske

Tartu 2021

2

3

Real-time visualization of parallel simulations in CERN material design
Abstract: This work presents the implementation of the in situ visualization mod-

ule for multiscale-multiphysics simulation code FEMOCS and demonstrates its behavior in

the simulation of vacuum breakdown. The visualization module makes it possible to ob-

serve in real-time the course of the simulation in FEMOCS and makes it more straightfor-

ward to set up a new simulation or develop additional features into the code.

 The first and second chapters briefly introduce the vacuum breakdown phenome-

non and describe general aspects of numerical simulations. The third chapter describes the

in situ method as a way of improving FEMOCS. The fourth and fifth chapters present the

final solution and the impact of the solution on the overall running time of the simulation.

Keywords: Software development, numerical simulations, vacuum breakdown, in

situ, co-processing, post-processing, visualization steering.

CERCS: T111 Imaging, image processing; T120 Systems engineering, computer

technology; T150 Material technology; P170 Computer science, numerical analysis, sys-

tems, control.

Paralleelsete simulatsioonide reaalajas visualiseerimine CERNi materjali

kujundamisel
Lühikokkuvõte: Käesolevas töös esitatakse in situ visualiseerimismoodul

multiskaalsele ja -füüsikalisele simulatsioonikoodile FEMOCS ning demonstreeritakse

selle toimimist vaakumläbilöögi simulatsiooni näitel. Arendatud visualiseerimismoodul

võimaldab jälgida reaalajas FEMOCSi töövoogu ja lihtsustab nii korrektsete

simulatsiooniparameetrite leidmist kui koodi edasist arendamist. Esimeses ja teises

peatükis tutvustatakse lühidalt vaakumläbilöögi nähtust ja käsitletakse numbriliste

simulatsioonidega seonduvat. Kolmandas peatükis kirjeldatakse in situ

visualiseerimismoodulit kui FEMOCSi laiendust. Neljas ja viies peatükk kirjeldavad

lõpplahenduse tehnilisi üksikasju ning mõju simulatsiooni üldisele tööajale.

Võtmesõnad: Tarkvaraarendus, numbrilised simulatsioonid, vaakumläbilöök, in

situ andmetöötlus, andmete järeltöötlus, visualiseerimise juhtimine.

CERCS: T111 Pilditehnika; T120 Süsteemitehnoloogia, arvutitehnoloogia; T150

Meterjalitehnoloogia; P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

(automaatjuhtimisteooria).

4

TABLE OF CONTENTS

TERMS, ABBREVIATIONS, AND NOTATION ... 6

1 Introduction .. 7

1.1 Aim .. 8

2 Rationale .. 9

2.1 Background .. 9

2.2 Motivation .. 12

3 In situ visualization .. 13

3.1 In situ method .. 13

3.2 ParaView Catalyst ... 14

3.3 Drawbacks and limitations ... 15

4 Software development ... 17

4.1 Development environment ... 17

4.2 Adaptor Library ... 18

The C++ CoProcessing module ... 18

The Python coprocessing module .. 19

The FEMOCS interface ... 19

The Adaptor library interface .. 20

The visualization pipeline .. 21

Building ... 22

4.3 VTK ... 22

4.4 LAMMPS extension .. 23

5 Testing and benchmarking ... 24

5.1 Testing ... 24

5.2 Timing analysis .. 24

6 Discussion .. 26

5

6.1 Conclusion ... 26

6.2 Future work .. 26

7 Summary .. 28

References .. 29

Appendices .. 34

I. The Docker script for FEMOCS .. 34

II. The Docker script for the adaptor library .. 36

III. The Docker script for LAMMPS ... 38

IV. The adaptor library interface: CatalystAdaptor.h .. 39

V. The adaptor library implementation: CatalystAdaptor.cpp 40

NON-EXCLUSIVE LICENCE TO REPRODUCE THESIS AND MAKE THESIS PUBLIC

 ... 44

6

TERMS, ABBREVIATIONS, AND NOTATION

ADIOS The Adaptable IO System

API Application programming interface

CERN Conseil européen pour la recherche nucléaire

CESM Community Earth System Model

CLIC Compact Linear Collider

FEM Finite element method

FEMOCS Finite Elements on Crystal Surfaces

FLOPS Floating-point operations per second

HPC High-Performance Cluster

HPL High-Performance Linpack

I/O Input-output (computer operations)

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator

LHC The Large Hadron Collider

MD Molecular dynamics

MPI Message Passing Interface

OS Operating System

POSIX The Portable Operating System Interface

URI Uniform Resource Identifier

VTK The Visualization Toolkit

7

1 INTRODUCTION

Scientific computing is an interdisciplinary field, which provides computational infrastruc-

ture, tools, and methods for studying natural phenomena. For materials science, it gives

a computational framework for creating and developing new materials and studying why the

existing materials fail or underperform. In some cases, computer simulations provide a more

cost-effective way of conducting experiments, in others — it is the only way possible. How-

ever, there is still a fundamental gap between a simulation and a real-world system; thus,

more robust and complex simulations for analysis and predictions are always needed.

Because of that, modern simulations have increased in complexity enormously. The

well-known Top500 list of supercomputers of the world had an entry requirement of 1.32

petaflops on the High-Performance Linpack (HPL) benchmark in 2020 [1]; and the most

performant system in the list was the Fugaku supercomputer from Japan, which did 442

petaflops on the benchmark. Ahrens et al. provide a hypothetical example of how a modern

exascale simulation for temperature and density calculations of 1000 time steps can consume

roughly 24 TB of the disk space for its imagery data [2].

As supercomputers become more accessible to researchers and the complexity of

simulations increases, there is an increased demand for more interactivity in simulations.

The in situ processing method reduces the data storage and transfer cost for simulation users

and developers. Furthermore, the in situ method enables real-time simulation monitoring and

debugging through visualization and simulation steering.

As a use case for applying the in situ visualization technique, we took the problem

of vacuum breakdown in materials design for the Compact Linear Collider project, which

causes damage to the accelerator’s materials and limits the system's overall performance. A

computational model of vacuum breakdown around a nanostructure has been developed in

the collaboration between the University of Tartu and the University of Helsinki [3]–[5]; and

the simulation code was implemented in the software called FEMOCS [4], [6], [7].

To understand how the in situ processing can be helpful in FEMOCS, we can ap-

proximately estimate the computational complexity of the nano-tip simulation. Each time

step of the simulation equals 4 × 10!"# s, if we want to simulate the phenomenon for a na-

nosecond, which is a reasonable duration for vacuum breakdown to occur [5], we need
"×"%!"

&×"%!#$
= 250000 time steps. If each time step takes on average about 2 s to compute on

a single node with multiple cores, this gives us 500000 s or about six days of computational

8

time to finish the simulation. During the simulation development, it is not an easy task to

make everything right from a single approach; thus, multiple runs of a simulation might be

needed; and if the simulation runs roughly for a week per run, and we want to test it for 2−3

times, our waiting time then is about 2−3 weeks.

This example demonstrates that using multiple computers for complex simulations

and the parallelization of simulations is needed; and that receiving feedback from a simula-

tion before the simulation finishes can critically impact the speed of the simulation develop-

ment. The in situ visualization technique is a well-known way of improving the visualization

workflow and reducing the time until the first visual feedback from the simulation by moving

the visualization routines closer to simulation calculations without waiting for the simulation

to finish [8], [9].

FEMOCS uses the post-processing method for visualization at the moment, in which

visualization happens after the full stop of the simulation. This does not allow for interactiv-

ity during a simulation run; thus, this research aims to improve the visualization workflow

of FEMOCS by introducing the in situ visualization capabilities into it and allowing real-

time interactions with the simulation data as the simulation is still running. The new real-

time visualization feature for FEMOCS would allow getting scientifically important insights

from a simulation quicker while also removing the need to store the intermediate simulation

data. Besides the sample nano-tip simulation used in this work, FEMOCS can be used for

a wide range of simulation tasks, which require concurrent atomistic and continuous-space

calculations. For instance, there are attempts to use it for estimating mechanical stress in

nanomaterial [10] and implementing a two-temperature model for swift heavy ion simula-

tions [11]. The in situ capabilities developed in this work can be adjusted for such simula-

tions as well.

1.1 Aim
This work aimed to implement in situ visualization capabilities for FEMOCS to improve the

visualization workflow for FEMOCS simulation developers and users. To do that, the fol-

lowing objectives were set in place:

- Write a ParaView Catalyst adaptor library between FEMOCS and ParaView Catalyst.

- Create an extension for LAMMPS to integrate FEMOCS with the adaptor library.

- Investigate the runtime overhead of the resulting adaptor library in comparison to the

rest of the code.

- Test the adaptor library on the existing nano-tip simulation.

9

2 RATIONALE

2.1 Background
The Compact Linear Collider (CLIC) [12]–[14] is a linear electron-positron accelerator un-

der development at CERN. CLIC is one of the most promising projects for further particle

physics experiments, especially Higgs-boson, top-quarks, physics beyond Standard Model,

and Dark Matter. In order to achieve high energies in linear accelerators like CLIC, high

accelerating gradients and thus extremely high electric fields are necessary, since particles

need to be accelerated in short distances; however, such electric fields cause vacuum arcs,

also known as vacuum breakdowns [15], [16]. Vacuum arcs are electrical discharges be-

tween metal electrodes, occurring through vacuum forming plasma effect and plasma for-

mation [17]. This becomes possible when a high electric field is applied to the electrode

material, causing it to switch its state from solid to plasma, which breaks down vacuum

insulation due to plasma's expansive and conductive properties. This phenomenon found its

application in, e.g., vacuum arc deposition of thin films [17]. However, it is an undesirable

effect in CLIC as it distorts the accelerated particle beam and inflicts damage to the acceler-

ator equipment's surface, thus limiting how high an electric field can be applied and down-

Figure 1: Schematic of the partial differential equations and their corresponding bound-

ary conditions used for a nano-tip modeling in the thermal runaway study

(Kyritsakis et al., 2018)

10

grades the overall performance of the project [18]. Vacuum breakdown is a known and ob-

served phenomenon, but its mechanism is not well understood yet. For this reason, extensive

research has been initiated to study the plasma formation during vacuum breakdown.

As a result of one such study, a multi-physics model of vacuum breakdown has been

developed, which concurrently simulates the electric field and temperature distribution on a

nano-tip and its changing shape by dynamically recalculating the mesh around the tip and

positions of atoms [3], [5], [19], [20]. Figure 1 schematically illustrates the nano-tip with

differential equations and boundary conditions used to model this physical phenomenon.

The specifics of the simulation model and physics behind it are out of the scope of this work;

however, to implement the model, a C++ software called FEMOCS was developed, which

combines molecular dynamics (MD) with the finite element method (FEM) in a single

framework [4]. FEMOCS itself and the visualization approach for the results of its simula-

tions is under investigation in this thesis.

The unique feature of FEMOCS is that it extends an atomistic simulation by import-

ing atoms' locations of a nanostructure, building a mesh from the imported atoms, and exe-

cuting continuous-space calculations around this dynamically generated mesh at each simu-

lation step and further returning the solution back to the atomistic simulation [4]. Figure 2

Figure 2: (a)–(c): atomistic simulation of the nano-tip; (d)−(f): continuous-

space simulation represented as the surface of the mesh at the same time steps

(Veske et al., 2018)

11

shows two sets of images: on (a)−(c) we observe the result of the atomistic simulation with

the electric field calculations; and on (d)−(f) we see the dynamically generated mesh at the

corresponding time steps, which is used for the calculation of the heat distribution in the

system.

Currently, the FEMOCS visualization workflow consists of three general steps (Er-

ror! Reference source not found.): pre-processing during which an input describing an

initial state of the model is provided; simulation, which is a computation of the next state of

the model for multiple iterations; post-processing which is any further analysis and visuali-

zation of results saved during the simulation. This is a straightforward and standard work-

flow in scientific visualization, but it has notable drawbacks for large scale long-running and

parallel simulations, such as the data transfer bottleneck between the simulation and post-

processing steps, disk I/O operations, and in some cases, long waiting time between the start

of the simulation and the final post-processing step, when a user gets graphical visualization

of results [21]. To tackle such problems, the so-called in situ or on-the-fly processing ap-

proach has recently started being introduced in simulation software [22], [23].

In situ visualization removes the data transfer bottleneck and disk I/O operations

problem by eliminating the need to write output data to persistent storage before processing,

as visualization and data analysis can be done while the simulation is still running [8]. This

Figure 3: Comparison of the common visualization workflow for FEMOCS

with the in situ approach

12

approach also significantly shortens the waiting time between the start and the actual visu-

alization, as one gets results almost immediately. Additionally, if there is still a need to save

analytical and graphical results on the disk, on-the-fly visualization reduces data as visuali-

zation techniques usually tend to compress data [8].

2.2 Motivation
As was mentioned before, the current FEMOCS' visualization workflow uses a post-pro-

cessing approach for visualization, and it does not allow real-time simulation debugging and

visualization steering. A user usually waits until a simulation is over to visualize it, then

inspects it and, if the simulation needs additional adjustments, updates some initial simula-

tion parameters and runs the simulation all over again. If the simulation requires significant

computational power, it can run for days and weeks, making the simulation development

and debugging a long and inconvenient process. Besides that, the post-processing approach

introduces a need to write data to the disk and store intermediate simulation data, which

increases the runtime and requires additional resources. Again, it can require terabytes of

additional disk space in computationally intensive simulations, which increases the overall

simulation cost.

The main focus of this work is to introduce real-time visualization capabilities to

FEMOCS. To improve the simulation data distribution workflow significantly, it is advised

to look closer at ADIOS, a library designed for extreme-scale I/O operations with a straight-

forward API and different transport possibilities, such as POSIX IO, MPI-IO, DataTap asyn-

chronous IO [24].

13

3 IN SITU VISUALIZATION

3.1 In situ method
In situ processing or co-processing, in comparison to post-processing, is not a new technique,

and it is known since as far as 1964 [8]. The idea behind the in situ method is to move the

processing step closer to calculations without waiting until the simulation's end. Co-pro-

cessing introduces computational interactivity to an application, computational monitoring,

and simulation steering [8]. The in situ method can generate graphical output during a run-

ning simulation, providing a way to receive immediate feedback [9]. Often, scientific prob-

lems require a researcher to look at a problem, at the simulation data and its visualization

from different angles, literally, if we speak about a 3D-scene, or, figuratively, when we speak

about different types of visualization, such as 2D or 3D graphics, series plots, histograms,

tables. One might use one type of simulation data representation, e.g., a 3D scene with an

unstructured grid but multiple fields, like the temperature and electric field. A field itself can

be represented as scalar or vector data. The visualization steering technique provides a way

to change the graphical representation of the simulation data on-the-fly while the simulation

is running [22]. Thus the in situ visualization is a part of the in situ processing method, which

can be used besides visualization for real-time simulation data analysis, data reduction, fea-

ture extraction, index generation for search systems, and other purposes [22].

In situ visualization has become more prominent recently because of the ever-in-

creasing scale of modern scientific simulations [2]. Extreme-scale simulations benefit sig-

nificantly from in situ visualization because of the data transfer reduction and quicker visual

feedback from a simulation, improving the user experience and getting insights from the data

quicker, which is the main idea behind scientific visualization [25].

The term in situ might be ambiguous because there are multiple similar terms: "con-

current processing", meaning data processing as a simulation is running; "co-processing"

refers to the tight coupling between the simulation and visualization code; "runtime visuali-

zation" means visualization in place — to bring clarity The In Situ Terminology Project has

been initiated [26]. As a result, "six axes" or six criteria have been introduced to describe an

in situ system better: the integration type, proximity, access, division of execution (synchro-

nization), operation controls, output type [8], [26] — these criteria are used further to de-

scribe the used in situ system.

14

3.2 ParaView Catalyst
In situ visualization can be achieved simply by placing the visualization code after each

simulation iteration. However, to achieve the ability to choose interactively what and how

to visualize the data, to get a more flexible and reliable system, a proper and robust frame-

work is needed. This is a reason for not implementing a custom solution but to use an existing

in situ visualization software. ParaView Catalyst (Catalyst) has been chosen for implement-

ing in situ visualization capabilities for FEMOCS in this work. ParaView on its own is a

well-known and widely used software for scientific visualization, and Catalyst allows a

smooth integration of the in situ code with the visualization tool. Catalyst's unique feature is

the ParaView Live session, which allows on-the-fly debugging of the simulation, analysis,

and visualization steering[8]. For a visualization pipeline, Catalyst accepts its description in

C++ and Python. For this work, the visualization pipeline was described in Python as this

language is widely used in the academic community.

To describe Catalyst, we use six criteria provided by The In Situ Terminology Pro-

ject [8], [26]. Catalyst is a dedicated API, and it uses the application-aware style of integra-

tion, meaning the simulation code directly calls Catalyst API. The visualization code is lo-

cated on the same node as the simulation code, it is the closest proximity possible, and it

allows the direct memory access to data for visualization routines without requiring a deep

copy of the data; thus, a shallow copy of the data can be made for better performance [26].

However, the visualization itself happens on the node or nodes where the ParaView server

is running. Because Catalyst runs synchronously to the simulation, its overhead might be

significant, depending on its integration with the simulation code. Karimabadi et al. [27]

show the Catalyst's overhead of 20−30% on running time. However, the runtime overhead

appeared to be much less in this work and is presented in the Timing analysis chapter.

Regarding the operation controls, Catalyst allows both automatic and human-in-the-

loop ways of controlling the visualization. Automatic control is allowed by a visualization

pipeline script, which defines what data to consider and how to visualize it, while human-

in-the-loop control can be achieved through a ParaView Live session that enables interactive

visualization control and simulation pausing. Finally, as an output, Catalyst provides a wide

range of possibilities: it supports an ability to extract a subset of data, allows in situ trans-

formation, data derivation, e.g., polygonal data geometry, and the extraction of explorable

images [8].

ParaView and ParaView Catalyst use the Visualization Toolkit (VTK) under the

hood, and it is vital to introduce VTK because all underlying data structures, which were

15

used in the intermediate code between the simulation and ParaView in this work, used the

VTK library. VTK is written in the C++ language; it is a cross-platform library, which uses

CMake [28] for the building process, and provides foundational data structures and algo-

rithms as well as utility tools for building scientific visualization software [29]. VTK has a

rich history of 27 years of work and development; it is widely used in different projects, such

as ParaView, VisIt, Avogadro2, tomviz, and others; and it provides Python, Tcl/Tk, and Java

wrappers to extend the usage and adoption of the toolkit [29].

ParaView Catalyst allows to extract and visualize simulation data while it is being com-

puted, and the ParaView Live session feature makes it possible to have an on-the-fly preview

of what is happening in the simulation at the moment, as well as to pause the simulation at a

particular step and inspect the data, visualization parameters or to change a visualization

technique [30]. However, as the complexity and scale of simulations increase, the size of

already visualized data in the form of images can take up many terabytes of disk space, so it

becomes cumbersome to manage the imagery using only an OS file system and the already

mentioned problem with data transfer is still there, even so in this case it is related not to the

simulation data, but to the visualization of the simulation data. For that reason, an image

database can be a better approach to managing the visualization output. There is a practice

to make image collections and archives for further processing and distribution, as an exam-

ple, authors of [2] mention the CESM (Community Earth System Model), an archive of da-

tasets from "Earth's past, present, and future climate states" simulations [31], but even this

can be improved. An image-based approach for extreme-scale in situ visualization has been

developed [2] and is implemented in ParaView Cinema [32]. This approach allows the col-

lection of simulation images together with its metadata, and each image has a URI [2], which

makes it straightforward to locate and display an image wherever it is located; Cinema makes

it possible to create an interactive exploration database with metadata searching and content

querying using GUI [2].

3.3 Drawbacks and limitations
Having the general description and benefits of the in situ visualization technique, it is worth

mentioning possible drawbacks and challenges. The work by Kwan-Liu Ma [22] points to

the scientific community's reluctance to adopt the in situ visualization method because of

the expensive supercomputer time; thus, researchers choose to move the visualization part

to other less expensive computers. Integrating the real-time visualization into a simulation

might also require a significant effort [22]. Even though companies and institutions behind

16

in situ software do their best to simplify a programming interface and documentation, the

task of integrating the in situ visualization into a simulation is still not trivial. It requires

expertise in programming languages, building and debugging tools, code management, and

version control systems.

Relating to the Catalyst specific challenges, as ParaView uses VTK for the data repre-

sentation and processing, it might be unclear at times what VTK data structure is better suited

for the simulation data, thus understanding of VTK internals is essential in order to map the

simulation data to VTK efficiently [33]. Besides knowing VTK, a simulation developer

should also be familiar with the ParaView API (vtkCPProcessor, vtkCPPipeline, vtkCPIn-

putDataDescription, and vtkCPDataDescription classes), therefore introducing a depend-

ency into the simulation code for a particular version of ParaView [33]. To stress this more,

a simulation that incorporates the in situ visualization Catalyst API depends on the same

version of ParaView: if one uses ParaView Catalyst API v.5.8.2, as was done in this work,

a user can use only the ParaView v5.8.* server and client for a visualization task. To build

an adaptor library for converting the simulation data into the data readable by ParaView, a

simulation developer needs to compile the ParaView SDK from the source, further increas-

ing the development complexity [33]. However, these issues have been addressed in the

newer version of ParaView v5.9 [33].

In conclusion, given the benefits and drawbacks of the in situ visualization method, it is still

a viable and attractive solution for implementing on-the-fly visualization capabilities, espe-

cially for extreme-scale simulations. It requires some software development and manage-

ment expertise and might take significant time to implement an adaptor library between a

simulation and ParaView Catalyst. However, in situ frameworks' developers continue to im-

prove their software reducing unnecessary dependencies and making the simulation devel-

opment process more straightforward.

17

4 SOFTWARE DEVELOPMENT

To implement in situ visualization capabilities for FEMOCS, the C++ library was created to

make an adaptor between data structures used in FEMOCS and the ParaView Catalyst pro-

gramming interface. Catalyst uses VTK-based data structures for the simulation data storage

and operations. It also uses ParaView API to pass the simulation data to the ParaView server,

which serves data to the ParaView client. An important feature of FEMOCS is that it uses

LAMMPS [34] for the MD simulation; therefore, we needed to create a LAMMPS extension

to integrate the adaptor library with FEMOCS into a single workflow.

ParaView has a notion of the visualization pipeline [35], which is how a user imple-

ments visualization of a particular piece of data. A visualization pipeline consists of data

sources, filters, data modifiers, and 3D-scene-related parameters, such as camera position,

lighting. The pipeline defines what and how would be visualized at the end. Catalyst allows

providing the visualization pipeline in C++ or as a separate Python script.

4.1 Development environment
During this work, two different computers were used:

• For the software writing, management, and containerization: macOS 11 with 2.6

GHz 6-Core Intel® Core i7 CPU and 16 GB 2667 MHz DDR4 memory; Wi-Fi Air-

Port Extreme 802.11ac.

• For the software building, testing, and benchmarking: Ubuntu 20.04 with 3.00 GHz

10-Core Intel® Xeon® E5-2690 v2 CPU and 264 GB 1866 MHz DDR3, gcc 9.3.0;

Ethernet Intel Corporation 82574L Gigabit Network Connection.

The C++ language was a requirement from the Catalyst's and FEMOCS sides, as the libraries

are written in C++ and provide the corresponding API.

Python 3 was used for the ParaView visualization pipeline script. It is possible to use

C++ for the task as well, but Python appeared to be a more desirable way because the lan-

guage itself requires less programming expertise, and the ParaView GUI provides a way to

automatically export the visualization pipeline Python script.

The latest versions of make (4.2.1), cmake (3.16.3), gcc-9 available for Ubuntu 20.04

at the moment of writing this work, the winter−spring of 2021, were used. There was no

need for specialized debugging software, but to inspect the intermediate states of the soft-

18

ware print statements and logs from FEMOCS and LAMMPS were used. For code manage-

ment and version control, the git software [git version 2.25.1 and git version 2.21.0 (Apple

Git-122.2)] together with the GitHub and GitLab services were used [36]–[38].

To document all dependencies and the process of compilation and linking of depend-

encies, the containerization software named Docker (version 20.10.5) was used with the re-

lease notes available at [39]. The Dockerfile-script has a straightforward syntax, easy to read

by a person unfamiliar with Docker, and this tool introduces transparency into the most te-

dious part of the work: figuring out the dependencies and steps needed to build the target

software — which took a significant amount of time and effort. For that reason, it became

evident that a scripted and, better, automated approach to building is necessary to simplify

further work. Appendices I−III provide the relevant Docker scripts.

4.2 Adaptor Library
The adaptor library is a middleman between FEMOCS and ParaView using VTK data struc-

tures. It is also used in the LAMMPS extension. In the beginning, we need to get familiar

with the programming interfaces of these libraries.

ParaView Catalyst is the in situ infrastructure, which provides a set of tools for ena-

bling ad hoc processing for a simulation. Catalyst consists of the CoProcessing C++ li-

brary [40], [41], coprocessing Python module [42], and the Live Insitu C++ module [43].

The C++ CoProcessing module was used directly to pass simulation data to ParaView. The

Python coprocessing module was used in a visualization pipeline script composition, and the

Live Insitu C++ module was not used directly, as this functionality is implemented in Para-

View GUI and can be called through the toolbar's Catalyst menu commands.

The C++ CoProcessing module
The CoProcessing C++ module of version 5.8.* was used, and KitWare Inc. provides the

documentation at the ParaView C++ Reference website [40]. The vtkCPProcessor class pro-

vided means to initialize a Catalyst session, finalize it (to free the used resources) and register

a visualization pipeline Python script by providing a path to the script's location. An instance

of vtkCPProcessor is responsible for determining if the co-processing must be done at this

time step given the current time step and time, as well as it is responsible for actually calling

the co-processing routine on the ParaView side. The vtkCPPythonScriptPipeline class was

used during the initialization step to register a visualization pipeline given a location of an

input Python script. The vtkCPDataDescription class was used in the co-processing step,

19

and it allowed to encapsulate the simulation data and provide the current time step and time

of the simulation for ParaView.

The Python coprocessing module
The Python coprocessing module of version 5.8.* was used, and the documentation is pro-

vided at the ParaView Python Reference website [42]. The Python module, in general, is

a wrapper around the C++ version and provides bindings to the C++ API through the Python

language making the ParaView library accessible for a broader audience. The Python copro-

cessing module was used to compose the visualization pipeline script, which should be pro-

vided during the initialization step of the adaptor library.

The paraview.coprocessing.CoProcessor class provides all the functionality for co-

processing routines. It allows specifying data sources (in terms of VTK, it is the source of

the data that does not have any input data and only has an output [35]), which come from

the adaptor library and are included in the instance of vtkCPDataDescription. The

coprocessing.CoProcessor class gives API for writing data to the disk if needed; it defines

the update frequency for ParaView and enables the Live feature of ParaView for the real-

time simulation visualization.

The paraview.simple Python module provides more general means of setting up a 3D

scene, adding lighting, a camera, and its position, making slices, or adding filters to the pipe-

line. However, this module was not used in this work as it is optional, and all needed manip-

ulation can be done through ParaView's graphical interface.

The FEMOCS interface
From FEMOCS, the adaptor library needs the simulation data: a mesh of the nano-tip and

the field data for atoms, the temperature, and the electric field. Developers of FEMOCS

made it straightforward to extract this data with one overloaded method call (i.e., the same

method with different signatures) on the femocs::FEMOCS class' instance:

• int export_data(double* data, const int n_points, const string& data_type), which

was used for exporting the scalar and vector field data;

• int export_data(const int** data, const string& data_type) was used for exporting

atoms’ locations in 3D space;

• int export_data(const double** data, const string& data_type) was used for export-

ing mesh nodes.

20

The Adaptor library interface
The adaptor library is the core of the solution for the aim of this work. The architecture of

the solution (Figure 4) is based on the work by Fabian et al. [41], in which authors propose

to write an adaptor between the simulation code and ParaView using the ParaView CoPro-

cessing library. The solution presented in this works similar to the one proposed by Fabian

et al. [41] with the addition of one function: void ImportAtoms(double **atoms, int

numAtoms). This function was introduced because the current architecture of the LAMMPS

extension for FEMOCS did not allow to import atoms at the same step, where CoProcess(…)

is called; thus, we needed to import atoms' locations at a different place in the LAMMPS

extension. More about the LAMMPS extension is covered in the LAMMPS extension sec-

tion. The whole interface of the adaptor library, the C++ header file, is listed in Appendix IV.

The logic behind the library can be described with four steps in the order of calling it from

the LAMMPS extension:

1. Initialization of the library, where we register a location of the visualization pipeline

Python script, initiate vtkCPProcessor, and some internal variables.

2. Importing of the atoms' locations, where locations are provided by LAMMPS.

Figure 4: The architecture of the solution to the integration of the ParaView CoPro-

cessing library into the simulation code (Fabian et al., 2011)

21

3. Co-processing, which includes the export of the mesh and field data, and the call of

the underlying ParaView's co-processing routine. In this work, two unstructured

grids were used, one is with the mesh, and the other contained the atomistic data, the

field data, the temperature, and electric field normals and vectors — the VTK section

describes how this data was converted from FEMOCS into VTK data structure for

ParaView's use.

4. Finalization, which is freeing up of all used resources. Because of the use of the new

feature of VTK, the vtkNew template [44], most of the cleaning up is done automat-

ically.

Figure 5 shows the data flow from a program to program and the place of the adaptor and

other pieces of the solution in a single diagram. LAMMPS is the driver of the simulation and

calls the FEMOCS/Catalyst extension, which calls in its turn the FEMOCS and adaptor li-

braries. The adaptor then passes the data to ParaView through Catalyst. The user of the sim-

ulation interacts with ParaView through the ParaView client with GUI.

The visualization pipeline
The visualization pipeline Python script is a way to provide information on what and when

should be extracted and saved from the simulation, as well as on which portion of the data

Figure 5: The dataflow between programs involved in the

in situ solution for FEMOCS

22

the visualization algorithms should be applied to [41]. There are two ways how a user can

compose the pipeline script: manually by writing the script using the ParaView para-

view.simple and paraview.coprocessing modules for Python [42], [45]; the other method is

through a ParaView's plugin, which allows using a sample of the simulation data in order to

set up a scene, position a camera, apply the slicing or filtering of the data, and export these

operations to a Python script [41]. However, during the work on the adaptor library, the au-

tomatic method through the plugin behaved unreliably because the resulted scripts had not

worked straight away without modifications — the scripts required a significant rewrite;

otherwise, the Python interpreter threw critical errors, and it was not able to proceed. Thus,

the first manual approach in the pipeline script composition was used.

Building
The compilation and linking of the adaptor library, i.e., the building phase, is executed

mainly using CMake. In the CMake configuration file, CMakeLists.txt, all the dependencies

are specified together with compilation flags and two building targets: the library itself and

the demo application for testing and debugging purposes. Besides that, the Make system was

used to simplify the calling of CMake because the command-line interface command in

Bash's shell for CMake is quite long.

The source code of the adaptor library was open-sourced and published on GitHub

at [46] and DockerHub at [47]. The use of GitHub greatly simplifies the collaborative devel-

opment process and provides access to the work results to everybody with the internet con-

nection.

4.3 VTK
ParaView uses The Visualization Toolkit (VTK) for scientific data processing [29]; there-

fore, VTK's data types are essential for the adaptor library, as they serve as a bridge between

the simulation and Catalyst.

VTK has a wide range of different data types described in detail by Schroeder et

al. [35]. The simulation data in this work was organized around two datasets, and both are

represented by an unstructured grid. The unstructured grid data type is the most general type

of dataset, it is less computationally efficient than a structured grid, but it gives the freedom

to represent any topology and geometry that may arise during the simulation [35].

23

An unstructured grid for FEM calculations consisted of mesh nodes with XYZ coor-

dinates and cells represented by quadrangles. An unstructured grid for the MD results in-

cluded atoms' XYZ coordinates, and cells were represented as vertices. Besides that, the MD

dataset had the field data: an array of scalars for the temperature at each atom, an array for

the electric field normals, and an array of vectors of the electric field.

4.4 LAMMPS extension
LAMMPS [34] is the driver of the simulation. It starts the simulation given a configuration

file the description of the experiment, it does molecular dynamics calculations and calls

FEMOCS as an extension (a "fix" in terms of LAMMPS), i.e., as an external program, which

given the atomistic data, generates a mesh and calculates the temperature and electric field

distribution around the nano-tip. After that, FEMOCS passes the data back to LAMMPS to

finish an iteration and continue to the next time step.

To integrate the real-time visualization into FEMOCS, the current LAMMPS exten-

sion for FEMOCS has been modified to call not only FEMOCS API but the adaptor’s library

co-processing API as well. As LAMMPS controls the execution of the whole simulation, it

is an obvious choice of the adaptor library incorporation.

To write an extension for LAMMPS, a developer needs to create a new class inher-

iting from the public Fix class and implement the needed logic in this class [48]. Setmask is

the only required method that has to be implemented to satisfy the Fix interface. The rest

depends on a particular use case.

To integrate the adaptor library into the existing FEMOCS extension for

LAMMPS [49], there was no need to change much, but to add additional calls for the adaptor

library API:

• During the fix class initialization, the adaptor library is initialized as well.

• During the post_force() step, the adaptor library is used to import the atoms' data.

• During the end_of_step() step, the adaptor library is called to co-process the simula-

tion data.

• During the class destruction, the adaptor library instance is also destructed.

24

5 TESTING AND BENCHMARKING

5.1 Testing
The testing of the entire system — LAMMPS, FEMOCS, the adaptor library, a ParaView

server and client, a Catalyst server (which is part of the ParaView server) — was conducted

using both of the development machines mentioned in the Development environment section.

The Ubuntu machine ran the simulation (LAMMPS, FEMOCS, the adaptor library), a Para-

View server, a ParaView GUI client. The macOS machine established a network connection

through the University of Tartu VPN to the Ubuntu computer and connected through an SSH

tunnel to the :3389 port using the Parallels Client application for a remote desktop connec-

tion. Then the ParaView client connected to the ParaView server and the Catalyst server.

The test simulation configuration and the visualization pipeline script are available

online at [50]. The in.lmp file contains the description of the simulation for LAMMPS, and

on line 109 (the only modified line for this work) the femocs/catalyst LAMMPS extension

is called providing the path to in.fem, FEMOCS-specific configuration, and the visualization

pipeline script named paraview_pipeline.py.

From the in.fem file, we see that the simulation uses Cu atoms for the atomistic mod-

eling and the time step of 4.0 fs. The simulation length was 200 time steps.

5.2 Timing analysis
To get an insight into the impact of the adaptor library on the rest of the simulation code,

the following time measuring procedure has been conducted. Using the chrono module of

the standard C++ library, we measured the running time of the whole simulation and the

CoProcess(…) function of the adaptor library, which was executed 200 times, one time per

each time step. For each of the CoProcess(…) execution, a duration was saved into a C++

vector of values, and at the end of the simulation, the measurements were saved to the disk

in the CSV format. For further processing using Python, we calculated the total duration of

CoProcess(…), and given the total runtime for the whole code, the average runtime of the

rest of the code per time step was calculated. The results are plotted in Figure 6. We are not

interested in duration differences between time steps for the adaptor library or the rest of the

simulation; for that a more robust benchmarking should be done. We are interested more in

the overall picture about the impact of the adaptor, and from the plot, we see that, on average,

the difference for each timestep is 103. Given the total time of the whole simulation (623 s)

25

and the total runtime of the CoProcess(…) function (163 ms), and neglecting the impact of

initialization and ImportAtoms(…) (which copies only a single pointer), the impact of the

adaptor library is 0.03%. This means that the simulation was running for 99.97% of the time,

while the adaptor library with in situ visualization routines ran for about 0.03% of the total

time.

Even though this is far from the vigorous benchmarking and it was executed only once,

this test gives us an insight that the impact of the adaptor library on the rest of the code is

insignificant; thus, we can propose to use the library for long-running simulations.

Figure 6: Measuring durations of CoProcess(…) of the adaptor library and comparing it to

the rest of the simulation code

26

6 DISCUSSION

6.1 Conclusion
This work presents the current visualization workflow for FEMOCS and an extended one,

using the nano-tip simulation of vacuum breakdown as an example. The extended workflow

allowed real-time monitoring and steering of the visualization; it reduced time to the first

visual feedback, eliminated the need to store intermediate simulation data, and showed very

little overhead in the test run.

The solution was implemented as the C++ adaptor library that was integrated into

the LAMMPS extension for FEMOCS as well, allowing a user to choose between using only

FEMOCS or FEMOCS with ParaView Catalyst. The implementation of the solution was

based on the already developed architecture by Fabian et al. [41] and on the ParaView Co-

Processing library and its dependencies. The little overhead demonstrated in the Timing

analysis chapter suggests that the resulted solution can be used without being concerned with

slowing down the simulation calculations.

Besides the nano-tip simulation, FEMOCS itself can be used in any simulation,

which requires atomistic and continuous-space calculations with automatic mesh recalcula-

tions at each iteration. A new simulation would benefit from the adaptor library as well;

however, some adjustments to the adaptor might still be needed, depending on the require-

ments of the new simulation: one might add or remove the field data, export different types

of data from FEMOCS, or a different cell topology.

6.2 Future work
The current approach to starting all the needed services and programs for the system uses

mostly the command-line interface of Linux. This can be improved by providing a script,

which can encapsulate multiple commands into one. However, a more intuitive approach

can attract more potential users to FEMOCS and its newly designed Catalyst adaptor —

a web UI can greatly simplify the system control. ParaViewWeb [51] provides the JavaS-

cript API that can be used to provide visualization control through a web browser instead of

the ParaView GUI client.

The adaptor library itself requires more rigorous benchmarking to fully understand

the performance implications of the library in different conditions. The memory consump-

27

tion analysis has not been done yet for the adaptor. Running the adaptor in HPC can poten-

tially reveal some additional challenges. Extensive saving of intermediate visualization to

the disk may introduce more considerable performance overhead. As was mentioned in Ra-

tionale, for further improvements related to disk I/O operations, the well developed ADIOS

framework can be used.

One more way of improving the visualization workflow has not been touched in this

work. The resulting new in situ visualization workflow allows real-time monitoring, but if a

user wants to save the intermediate imagery and have the ability to navigate in time between

graphics easily, it is possible only through the Linux file system at the moment. However,

there is a more convenient and enabling solution exists — ParaView Cinema. Cinema is an

exploratory distributed database that allows the storing of visual data and metadata [32].

Having metadata of each visualization may allow a more interactive and comfortable way

of navigating through a large number of images.

Besides that, ParaView developers starting from version 5.9 have changed the Cata-

lyst API significantly, which was announced in January 2021 [52]. The new Catalyst API

was redesigned to loosen the currently tightly coupled in situ visualization code with simu-

lation code. Therefore, for newer versions of ParaView, the solution presented in this work

needs to be revisited as well.

28

7 SUMMARY

As the main goal of this work was to implement in situ visualization capabilities for FEM-

OCS, we can conclude that the goal was successfully achieved. The resulted adaptor library

allows on-the-fly visualization monitoring, debugging and steering, and improves the visu-

alization workflow of a FEMOCS user in general by giving more options to visualization

and eliminating some drawbacks of the post-processing approach to the visualization.

 The solution in this work is presented as the C++ adaptor library and the LAMMPS

extension, which integrates the adaptor into the current FEMOCS approach. The testing of

the full system was conducted on the nano-tip simulation of vacuum breakdown, and the

adaptor performance impact on the rest of the simulation is shown to be insignificant.

29

REFERENCES

[1] “November 2020 | TOP500.” https://top500.org/lists/top500/2020/11/ (accessed May

11, 2021).

[2] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Petersen, “An

Image-Based Approach to Extreme Scale in Situ Visualization and Analysis,” in

SC14: International Conference for High Performance Computing, Networking, Stor-

age and Analysis, New Orleans, LA, Nov. 2014, pp. 424–434. doi:

10.1109/SC.2014.40.

[3] A. Kyritsakis, M. Veske, K. Eimre, V. Zadin, and F. Djurabekova, “Thermal runaway

of metal nano-tips during intense electron emission,” J. Phys. D: Appl. Phys., vol. 51,

no. 22, p. 225203, Jun. 2018, doi: 10.1088/1361-6463/aac03b.

[4] M. Veske, A. Kyritsakis, K. Eimre, V. Zadin, A. Aabloo, and F. Djurabekova, “Dy-

namic coupling of a finite element solver to large-scale atomistic simulations,” Jour-

nal of Computational Physics, vol. 367, pp. 279–294, Aug. 2018, doi:

10.1016/j.jcp.2018.04.031.

[5] M. Veske, A. Kyritsakis, F. Djurabekova, K. N. Sjobak, A. Aabloo, and V. Zadin,

“Dynamic coupling between particle-in-cell and atomistic simulations,” Phys. Rev. E,

vol. 101, no. 5, p. 053307, May 2020, doi: 10.1103/PhysRevE.101.053307.

[6] M. Veske, A. Kyritsakis, F. Djurabekova, K. N. Sjobak, A. Aabloo, and V. Zadin,

“Dynamic coupling between particle-in-cell and atomistic simulations,” Phys. Rev. E,

vol. 101, no. 5, p. 053307, May 2020, doi: 10.1103/PhysRevE.101.053307.

[7] M. Veske, FEMOCS — Finite Elements on Crystal Surfaces. 2021. Accessed: May

18, 2021. [Online]. Available: https://github.com/veskem/femocs

[8] A. C. Bauer et al., “In Situ Methods, Infrastructures, and Applications on High Per-

formance Computing Platforms,” Computer Graphics Forum, vol. 35, no. 3, pp. 577–

597, Jun. 2016, doi: 10.1111/cgf.12930.

[9] K.-L. Ma, “RUNTIME VOLUME VISUALIZATION FOR PARALLEL CFD,”

NASA Langley Research Center, p. 20, 1995.

[10] V. Zadin et al., “Simulations of surface stress effects in nanoscale single crystals,”

Modelling Simul. Mater. Sci. Eng., vol. 26, no. 3, p. 035006, Feb. 2018, doi:

10.1088/1361-651X/aaa928.

30

[11] J. Liu, H. Vázquez Muíños, K. Nordlund, and F. Djurabekova, “Molecular dynamics

simulation of the effects of swift heavy ion irradiation on multilayer graphene and di-

amond-like carbon,” Applied Surface Science, vol. 527, p. 146495, Oct. 2020, doi:

10.1016/j.apsusc.2020.146495.

[14] CERN, “CERN Yellow Reports: Monographs, Vol 2 (2018): The Compact Linear

e+e− Collider (CLIC) : 2018 Summary Report,” p. 58.39 MB, Jan. 2018, doi:

10.23731/CYRM-2018-002.

[17] R. L. Boxman, D. M. Sanders, and P. J. Martin, Eds., Handbook of vacuum arc sci-

ence and technology: fundamentals and applications. Park Ridge, N.J., U.S.A: Noyes

Publications, 1995.

[18] T. K. Charles and others, “The Compact Linear Collider (CLIC) - 2018 Summary Re-

port,” CERN Yellow Rep. Monogr., vol. 1802, pp. 1–98, 2018, doi: 10.23731/CYRM-

2018-002.

[19] F. Djurabekova, S. Parviainen, A. Pohjonen, and K. Nordlund, “Atomistic modeling

of metal surfaces under electric fields: Direct coupling of electric fields to a molecular

dynamics algorithm,” Physical Review E, vol. 83, no. 2, p. 026704, 2011, doi:

10.1103/PhysRevE.83.026704.

[20] M. Veske, A. Kyritsakis, K. Eimre, V. Zadin, A. Aabloo, and F. Djurabekova, “Dy-

namic coupling of a finite element solver to large-scale atomistic simulations,” Jour-

nal of Computational Physics, vol. 367, pp. 279–294, 2018, doi:

10.1016/j.jcp.2018.04.031.

[21] U. Ayachit et al., “ParaView Catalyst: Enabling In Situ Data Analysis and Visualiza-

tion,” in Proceedings of the First Workshop on In Situ Infrastructures for Enabling

Extreme-Scale Analysis and Visualization, Austin TX USA, Nov. 2015, pp. 25–29.

doi: 10.1145/2828612.2828624.

[22] Kwan-Liu Ma, “In Situ Visualization at Extreme Scale: Challenges and Opportuni-

ties,” IEEE Comput. Grap. Appl., vol. 29, no. 6, pp. 14–19, Nov. 2009, doi:

10.1109/MCG.2009.120.

[23] Hongfeng Yu, Chaoli Wang, R. W. Grout, J. H. Chen, and Kwan-Liu Ma, “In Situ

Visualization for Large-Scale Combustion Simulations,” IEEE Comput. Grap. Appl.,

vol. 30, no. 3, pp. 45–57, May 2010, doi: 10.1109/MCG.2010.55.

[24] J. Lofstead, S. Klasky, and K. Schwan, “Flexible IO and Integration for Scientific

Codes Through The Adaptable IO System (ADIOS),” p. 10.

31

[25] B. H. McCormick, “Visualization in scientific computing,” SIGBIO Newsl., vol. 10,

no. 1, pp. 15–21, Mar. 1988, doi: 10.1145/43965.43966.

[26] W. Bethel and E. Gobbetti, “The In Situ Terminology Project,” presented at the Eu-

rographics Symposium on Parallel Graphics and Visualization, 2016.

[27] H. Karimabadi, B. Loring, P. O’Leary, A. Majumdar, M. Tatineni, and B. Geveci,

“In-situ visualization for global hybrid simulations,” in Proceedings of the Confer-

ence on Extreme Science and Engineering Discovery Environment: Gateway to Dis-

covery, New York, NY, USA, Jul. 2013, pp. 1–8. doi: 10.1145/2484762.2484822.

[28] K. Martin, B. Hoffman, and A. Cedilnik, Mastering CMake: a cross-platform build

system ; covers installing and running CMake ; details converting existing build pro-

cesses to CMake ; create powerful cross-platform build scripts, 5. ed. Clifton Park,

NY: Kitware, 2010.

[29] M. D. Hanwell, K. M. Martin, A. Chaudhary, and L. S. Avila, “The Visualization

Toolkit (VTK): Rewriting the rendering code for modern graphics cards,” SoftwareX,

vol. 1–2, pp. 9–12, Sep. 2015, doi: 10.1016/j.softx.2015.04.001.

[30] A. C. Bauer, B. Geveci, and W. Schroeder, ParaView Catalyst User’s Guide. Kitware

Inc., 2018.

[31] CESM, “The Community Earth System Model,” The National Science Foundation,

2020. https://www.cesm.ucar.edu/models/ (accessed Apr. 22, 2021).

[32] S. McKenzie, S. Jourdain, and Z. Mullen, “ParaView Cinema: An Image-Based Ap-

proach to Extreme-Scale Data Analysis - Kitware Blog,” Sep. 10, 2014.

https://blog.kitware.com/paraview-cinema-an-image-based-approach-to-extreme-

scale-data-analysis/ (accessed Apr. 22, 2021).

[33] “ParaView Catalyst 5.9.* Doxygen Documentation,” Jan. 27, 2021. https://kit-

ware.github.io/paraview-docs/latest/cxx/ParaViewCatalyst.html (accessed Apr. 29,

2021).

[34] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Jour-

nal of Computational Physics, vol. 117, no. 1, pp. 1–19, Mar. 1995, doi:

10.1006/jcph.1995.1039.

[35] W. Schroeder, K. Martin, and B. Lorensen, The visualization toolkit: an object-ori-

ented approach to 3D graphics ; [visualize data in 3D - medical, engineering or sci-

entific ; build your own applications with C++, Tcl, Java or Python ; includes source

code for VTK (supports Unix, Windows and Mac), 4. ed. Clifton Park, NY: Kitware,

Inc, 2018.

32

[36] “Git,” 2021. https://git-scm.com/ (accessed May 04, 2021).

[37] “Build software better, together,” GitHub. https://github.com (accessed May 04,

2021).

[38] “GitLab: Iterate faster, innovate together,” GitLab, 2021. https://about.gitlab.com/

(accessed May 04, 2021).

[39] “Docker Engine 20.10.5 release notes,” Docker Documentation, Apr. 30, 2021.

https://docs.docker.com/engine/release-notes/#20105 (accessed Apr. 30, 2021).

[40] “ParaView: ParaView CoProcessing,” Aug. 05, 2020. https://kitware.github.io/para-

view-docs/v5.8.1/cxx/group__CoProcessing.html (accessed May 04, 2021).

[41] N. Fabian et al., “The ParaView Coprocessing Library: A scalable, general purpose in

situ visualization library,” in 2011 IEEE Symposium on Large Data Analysis and Vis-

ualization, Providence, RI, USA, Oct. 2011, pp. 89–96. doi:

10.1109/LDAV.2011.6092322.

[42] “coprocessing Module — ParaView/Python 5.8.1 documentation,” 2013. https://kit-

ware.github.io/paraview-docs/v5.8.1/python/paraview.coprocessing.html (accessed

May 04, 2021).

[43] “ParaView: Live Insitu,” Aug. 05, 2020. https://kitware.github.io/paraview-

docs/v5.8.1/cxx/group__LiveInsitu.html (accessed May 04, 2021).

[44] “VTK: vtkNew< T > Class Template Reference,” Apr. 24, 2021.

https://vtk.org/doc/nightly/html/classvtkNew.html#details (accessed May 05, 2021).

[45] “simple Module — ParaView/Python 5.8.1 documentation,” 2013. https://kit-

ware.github.io/paraview-docs/v5.8.1/python/paraview.simple.html (accessed May 05,

2021).

[46] I. Suvorau, The ParaView Catalyst adaptor library for FEMOCS. 2021. Accessed:

May 13, 2021. [Online]. Available: https://github.com/iharsuvorau/catalyzing-femocs

[47] I. Suvorau, “Docker container for FEMOCS with the ParaView Catalyst adaptor,”

2021. https://hub.docker.com/r/nokal/femocs-catalyst (accessed May 13, 2021).

[48] “3.7. Fix styles — LAMMPS documentation.” https://lammps.sandia.gov/doc/Mod-

ify_fix.html (accessed May 08, 2021).

[49] M. Veske, FEMOCS extension for LAMMPS. 2020. Accessed: May 13, 2021.

[Online]. Available: https://github.com/veskem/lammps/tree/femocs/src/USER-FEM-

OCS

33

[50] “Test configuration for the FEMOCS nano-tip simulation with the Python visualiza-

tion pipeline script for ParaView Catalyst,” GitHub, 2021. https://github.com/iharsu-

vorau/lammps/tree/visual-femocs/examples/USER/femocs-catalyst (accessed May 13,

2021).

[51] “ParaViewWeb,” ParaViewWeb, 2020. https://kitware.github.io/paraviewweb/in-

dex.html (accessed May 10, 2021).

[52] “ParaView: ParaView Catalyst v5.9,” Jan. 27, 2021. https://kitware.github.io/para-

view-docs/latest/cxx/ParaViewCatalyst.html (accessed May 10, 2021).

34

APPENDICES

I. The Docker script for FEMOCS

FROM ubuntu:20.04

tzdata update problem workaround

https://grigorkh.medium.com/fix-tzdata-hangs-docker-image-build-cdb52cc3360d

ENV TZ=Europe/Tallinn

RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone

required software

RUN apt-get update && \

 apt install -y gcc-9 g++-9 gfortran git make cmake build-essential libboost-

all-dev libblas-dev liblapack-dev libtbb-dev libz-dev libmpfr-dev petsc-dev lib-

metis5 wget libarpack2 gsl-bin libnetcdf-c++4-1

getting FEMOCS

WORKDIR /home

RUN git clone --recursive https://github.com/veskem/femocs.git

providing compiled dealii to speedup the building

ADD dealii /home/femocs/dealii

ENV DEAL_II_DIR=/home/femocs/dealii

creating missing symlinks

RUN ln -s /usr/bin/python3.8 /usr/bin/python

RUN ln -s /usr/lib/x86_64-linux-gnu/libmetis.so.5 /usr/lib/x86_64-linux-gnu/lib-

metis.so

RUN ln -s /usr/lib/x86_64-linux-gnu/libarpack.so.2 /usr/lib/x86_64-linux-gnu/li-

barpack.so

RUN ln -s /usr/lib/x86_64-linux-gnu/libgsl.so.23 /usr/lib/x86_64-linux-gnu/lib-

gsl.so

RUN ln -s /usr/lib/x86_64-linux-gnu/libgslcblas.so.0 /usr/lib/x86_64-linux-

gnu/libgslcblas.so

RUN ln -s /usr/lib/x86_64-linux-gnu/libnetcdf.so.15 /usr/lib/x86_64-linux-

gnu/libnetcdf.so

RUN ln -s /usr/lib/x86_64-linux-gnu/libnetcdf_c++4.so.1 /usr/lib/x86_64-linux-

gnu/libnetcdf_c++.so

updating submodules

WORKDIR /home/femocs

RUN git submodule update --init --recursive

35

recent bug workaround

WORKDIR /home/femocs/GETELEC

RUN git checkout 7eb7fe57ef94845187f0eac894b592df54c19236

building

WORKDIR /home/femocs

RUN make install-ubuntu

RUN make lib

CMD ["/bin/bash"]

36

II. The Docker script for the adaptor library

FROM nokal/femocs:84b58f3

required software

RUN apt-get update && \

 apt install -y git cmake build-essential libgl1-mesa-dev libxt-dev python3-dev

python3-numpy libopenmpi-dev libtbb-dev libnetcdf-c++4

1) buildling ParaView on your own

getting ParaView and switching to a specific version

WORKDIR /home

RUN git clone --recursive https://gitlab.kitware.com/paraview/paraview.git

RUN cd paraview && git checkout v5.8.1 && git submodule update --init --recur-

sive

building ParaView

WORKDIR /home/paraview_build

RUN cmake -D PARAVIEW_BUILD_EDITION=CATALYST -D PARAVIEW_USE_PYTHON=ON -D PARA-

VIEW_USE_MPI=ON -D VTK_SMP_IMPLEMENTATION_TYPE=TBB -D VTK_PYTHON_OP-

TIONAL_LINK=OFF -D CMAKE_BUILD_TYPE=Release ../paraview

RUN make -j 6

or 2) providing compiled ParaView

getting ParaView source and switching to a specific version

WORKDIR /home

RUN git clone --recursive https://gitlab.kitware.com/paraview/paraview.git

RUN cd paraview && git checkout v5.8.1 && git submodule update --init --recursive

providing compiled ParaView build

ADD paraview_build /home/paraview_build

WORKDIR /home/paraview_build

cleaning previous cmake cache

RUN rm CMakeCache.txt

regenerating cmake configs

RUN cmake -D PARAVIEW_BUILD_EDITION=CATALYST -D PARAVIEW_USE_PYTHON=ON -D PARA-

VIEW_USE_MPI=ON -D VTK_SMP_IMPLEMENTATION_TYPE=TBB -D VTK_PYTHON_OP-

TIONAL_LINK=OFF -D CMAKE_BUILD_TYPE=Release ../paraview

getting Catalyst Adaptor source

WORKDIR /home

37

RUN git clone https://github.com/iharsuvorau/catalyzing-femocs.git

building

WORKDIR /home/catalyzing-femocs

RUN make FEMOCS_DIR=/home/femocs PARAVIEW_DIR=/home/paraview_build

specifying shared libraries

ENV LD_LIBRARY_PATH=/home/femocs/lib:/home/paraview_build/lib:/home/catalyzing-

femocs/build

WORKDIR /home

CMD ["/bin/bash"]

38

III. The Docker script for LAMMPS

FROM nokal/femocs-84b58f3_catalyst_pv-5.8.1:latest

RUN apt-get update && apt install -y libpng-dev

WORKDIR /home

RUN git clone --recursive https://github.com/iharsuvorau/lammps.git

ENV LD_LIBRARY_PATH=/home/femocs/lib:/home/paraview_build/lib:/home/catalyzing-

femocs/build

WORKDIR /home/lammps

RUN git checkout visual-femocs

WORKDIR /home/lammps/src/USER-FEMOCS-CATALYST

RUN make \

FEMOCS_DIR=/home/femocs \

DEAL_II_DIR=/home/femocs/dealii/lib/cmake/deal.II \

DEAL_II_INCLUDE=/home/femocs/dealii/include \

FEMOCS_CATALYST_DIR=/home/catalyzing-femocs \

PARAVIEW_DIR=/home/paraview_build

WORKDIR /home

CMD ["/bin/bash"]

39

IV. The adaptor library interface: CatalystAdaptor.h

#pragma once

#include "Femocs.h"

namespace CatalystAdaptor {

 void Initialize(const char *path, const char *meshCellType);

 void Finalize();

 void ImportAtoms(double **atoms, int numAtoms);

 void CoProcess(femocs::Femocs &project,

 const double time,

 const unsigned int timeStep,

 const bool lastTimeStep);

}

40

V. The adaptor library implementation: CatalystAdaptor.cpp

#include <cstdlib>

#include <iterator>

#include <vtkCPDataDescription.h>

#include <vtkCPInputDataDescription.h>

#include <vtkCPProcessor.h>

#include <vtkCPPythonScriptPipeline.h>

#include <vtkCellData.h>

#include <vtkCellType.h>

#include <vtkCellArray.h>

#include <vtkDoubleArray.h>

#include <vtkFloatArray.h>

#include <vtkNew.h>

#include <vtkPointData.h>

#include <vtkPoints.h>

#include <vtkUnstructuredGrid.h>

#include <vtkVertex.h>

#include "CatalystAdaptor.h"

#include "Femocs.h"

namespace CatalystAdaptor {

 vtkCPProcessor *processor = NULL;

 // FEM-related globals

 const char *meshCellType;

 VTKCellType vtkMeshCellType;

 int numNodesPerCell;

 // MD-related globals

 double **atoms;

 int numAtoms;

 void Initialize(const char *path, const char *cellType) {

 std::cout << "CatalystAdaptor::Initialize has been called" << std::endl;

 if (processor == NULL) {

 processor = vtkCPProcessor::New();

 processor->Initialize();

 } else {

 processor->RemoveAllPipelines();

 }

 // registering python visualization script

 vtkNew <vtkCPPythonScriptPipeline> pipeline;

 pipeline->Initialize(path);

41

 processor->AddPipeline(pipeline.GetPointer());

 // parsing mesh-related arguments

 meshCellType = cellType;

 // https://vtk.org/doc/nightly/html/vtkCellType_8h.html

 if (strcmp(meshCellType, "quadrangles") == 0) {

 numNodesPerCell = 4;

 vtkMeshCellType = VTK_QUAD;

 } else if (strcmp(meshCellType, "hexahedra") == 0) {

 numNodesPerCell = 8;

 vtkMeshCellType = VTK_HEXAHEDRON;

 } else {

 std::cout << "cell type is undefined" << std::endl;

 exit(1);

 }

 }

 void Finalize() {

 std::cout << "CatalystAdaptor::Finalize has been called" << std::endl;

 if (processor) {

 processor->Delete();

 processor = NULL;

 }

 }

 void ImportAtoms(double **arr, int num) {

 std::cout << "CatalystAdaptor::ImportAtoms has been called" << std::endl;

 atoms = arr;

 numAtoms = num;

 }

 void CoProcess(femocs::Femocs &project, const double time, const unsigned int

timeStep, const bool lastTimeStep) {

 // creating data description

 vtkNew <vtkCPDataDescription> dataDescription;

 dataDescription->AddInput("MD");

 dataDescription->AddInput("FEM");

 dataDescription->SetTimeData(time, timeStep);

 if (lastTimeStep) {

 dataDescription->ForceOutputOn();

 }

 // determining if co-processing should be done

 if (processor->RequestDataDescription(dataDescription.GetPointer()) == 0)

{

 return;

42

 }

 std::cout << "CatalystAdaptor::CoProcess has been called" << std::endl;

 // Generating FEM grid using mesh data

 // preparing mesh points

 const double *nodes = NULL;

 const int numNodes = project.export_data(&nodes, "nodes");

 vtkNew <vtkPoints> meshPoints;

 meshPoints->Allocate(numNodes);

 for (int i = 0; i < numNodes; i++) {

 meshPoints->InsertNextPoint(nodes[i * 3], nodes[i * 3 + 1], nodes[i *

3 + 2]);

 }

 // preparing mesh cells

 const int *cells = NULL;

 const int numCells = project.export_data(&cells, meshCellType);

 vtkIdType meshCellIDs[numCells][numNodesPerCell];

 for (int i = 0; i < numCells; i++) {

 for (int j = 0; j < numNodesPerCell; j++) {

 meshCellIDs[i][j] = cells[numNodesPerCell * i + j];

 }

 }

 // making mesh grid

 vtkNew <vtkUnstructuredGrid> meshGrid;

 meshGrid->SetPoints(meshPoints);

 for (int i = 0; i < numCells; i++)

 meshGrid->InsertNextCell(vtkMeshCellType, numNodesPerCell,

meshCellIDs[i]);

 // Generating MD grid using atomistic data

 // preparing atoms' points and cells

 vtkNew <vtkPoints> atomPoints;

 atomPoints->Allocate(numAtoms);

 vtkNew <vtkCellArray> atomCells;

 for (int i = 0; i < numAtoms; i++) {

 atomPoints->InsertPoint(i, (*atoms)[i * 3], (*atoms)[i * 3 + 1],

(*atoms)[i * 3 + 2]);

 atomCells->InsertNextCell(1);

 atomCells->InsertCellPoint(i);

 }

43

 // extracting field data for atoms

 double temperatureData[numAtoms] = {0};

 project.export_data(temperatureData, numAtoms, "temperature");

 vtkNew <vtkDoubleArray> temperature;

 temperature->SetName("temperature");

 temperature->SetArray(temperatureData, numAtoms, 1);

 double elfieldNormData[numAtoms] = {0};

 project.export_data(elfieldNormData, numAtoms, "elfield_norm");

 vtkNew <vtkDoubleArray> elfieldNorm;

 elfieldNorm->SetName("electric field normals");

 elfieldNorm->SetArray(elfieldNormData, numAtoms, 1);

 double elfieldData[numAtoms * 3] = {0};

 project.export_data(elfieldData, numAtoms * 3, "elfield");

 vtkNew <vtkDoubleArray> elfield;

 elfield->SetName("electic field");

 elfield->SetNumberOfComponents(3);

 elfield->SetNumberOfTuples(numAtoms);

 for (int i = 0; i < numAtoms * 3; i++) {

 elfieldData[i] *= -1;

 }

 elfield->SetArray(elfieldData, numAtoms * 3, 1);

 // making atomistic grid

 vtkNew <vtkUnstructuredGrid> atomsGrid;

 atomsGrid->SetPoints(atomPoints);

 atomsGrid->SetCells(VTK_VERTEX, atomCells);

 atomsGrid->GetPointData()->AddArray(temperature);

 atomsGrid->GetPointData()->AddArray(elfieldNorm);

 atomsGrid->GetPointData()->SetVectors(elfield);

 // Passing data to Catalyst

 dataDescription->GetInputDescriptionByName("MD")->SetGrid(atomsGrid);

 dataDescription->GetInputDescriptionByName("FEM")->SetGrid(meshGrid);

 processor->CoProcess(dataDescription.GetPointer());

 }

}

44

NON-EXCLUSIVE LICENCE TO REPRODUCE THE-

SIS AND MAKE THESIS PUBLIC

I, Ihar Suvorau,

1. herewith grant the University of Tartu a free permit (non-exclusive license) to repro-

duce, for the purpose of preservation, including for adding to the DSpace digital ar-

chives until the expiry of the term of copyright, “Real-time visualization of paral-

lel simulations in CERN material design”, supervised by Vahur Zadin, Andreas

Kyritsakis, Mihkel Veske.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons license CC BY NC ND 3.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute the

work and communicate it to the public, and prohibits the creation of derivative

works and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe other persons' in-

tellectual property rights or rights arising from the personal data protection legisla-

tion.

Ihar Suvorau,

20.05.2021

