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Detecting Public Transport Mode in The City of Tartu Using Smartphone-Based 

GPS Data and Machine Learning Methods 

Abstract 

Nowadays, cities are competing between them to be more green, sustainable and 

intelligent, which can be summarized as being a smart city. The ease of mobility around 

these cities and the available transportation systems are one of the major factors that 

determine the urban health of these metropolis. Public transport has acquired higher 

interest in recent years as one of the most sustainable and environment-friendly 

transport modes that able to stratify the increasing demand of mobility in large cities. 

The ability of accurately detecting and distinguishing between transportation modes is 

the first required step in order to carry out any subsequent analysis for the efficiency of 

the existing transportation system. The aim of the study is to detect public transport use 

in the city of Tartu from GPS data collected using smartphone application MobilityLog. 

Raw GPS training data along with supervised machine learning classifiers such as k-

nearest neighbours (KNN), Decision Tree (DT) and Random Forest (RF) have been 

utilized in order to detect the different transportation modes. The results show that 

Random Forest model has achieved the highest prediction score of 87.443%. After 

prediction phase, a downstream spatial process has been used in order to filter out 

wrongly predicted public transport instances using model’s precision and information 

about public transport routes location. 

 

Keywords: Tartu, GPS, machine learning, Random Forest, smart cities, public 

transport, transportation modes  

CERCS code: S230 –Social geography 

 
Ühistranspordi kasutamise tuvastamine Tartu linnas nutitelefonipõhiste GPS-

andmete ja masinõppe meetoditel 

Lühikokkuvõte 

Tänapäeval konkureerivad linnad omavahel, et olla rohelisemad, jätkusuutlikumad ja 

intelligentsemad, mida võib kokkuvõtlikult nimetada targaks linnaks. Liikumise lihtsus 

ja olemasolevad transpordisüsteemid on ühed peamised tegurid, mis määravad linna 

heaolu. Viimastel aastatel on ühistransport muutunud üha olulisemaks kui üks 

säästlikumaid ja keskkonnasõbralikumaid transpordiliike, mis võimaldab eristada üha 

suurenevat liikuvuse nõudlust suurlinnades. Võimekus täpselt tuvastada ja eristada 

erinevaid transpordiliike on esimene vajalik samm olemasoleva transpordisüsteemi 

tõhususe parandamiseks. Käesoleva magistritöö eesmärk on määrata ühistranspordi 

kasutamine Tartus GPS andmete põhjal, mis on kogutud rakendusega MobilityLog. 

Töös on kasutatud GPS-toorandmeid ja masinõppe meetodeid k-lähimad naabrid (K-

nearest neighbours – KNN), otsustuspuu (Decision Tree – DT) ja otsustusmets 

(Random Forest – RF), et tuvastada erinevaid transpordiliike. Tulemused näitavad, et 

RF mudel saavutas kõrgeima prognoosiskoori 87.443 protsenti. Ennustusfaasile 

järgnevalt on filtreeritud valesti ennustatud ühistranspordi juhtumid, kasutades selleks 

mudeli täpsust ja teavet ühistranspordi marsruutide asukoha kohta.  

 

Märksõnad: Tartu linn, GPS, masinõpe, otsustusmets, ühistransport, targad linnad 

transpordiliigid 

CERCS kood: S230 –Sotsiaalgeograafia 



3 

 

Table of contents 
 

1 Introduction ............................................................................................................ 4 

2 Theoretical overview .............................................................................................. 6 

2.1 Public transport systems .................................................................................. 6 
2.2 History and methods of travel data collection ................................................. 7 
2.3 GPS history and advantages ............................................................................ 8 
2.4 Machine learning ........................................................................................... 10 

3 Data and methods ................................................................................................. 12 

3.1 Data sources .................................................................................................. 12 
3.2 Data cleaning and wrangling ......................................................................... 16 

3.2.1 Data cleaning ......................................................................................... 16 

3.2.2 Data wrangling ....................................................................................... 17 

3.3 Methods ......................................................................................................... 18 
3.3.1 Data segmentation .................................................................................. 18 

3.3.2 Applying machine learning .................................................................... 21 

3.3.3 Spatial filtering....................................................................................... 23 

4 Results .................................................................................................................. 25 

4.1 Data segmentation ......................................................................................... 25 
4.2 Comparison of machine learning algorithms and mobility features ............. 26 

4.2.1 k-nearest neighbours (KNN) .................................................................. 27 

4.2.2 Decision tree (DT) ................................................................................. 28 

4.2.3 Random forest (RF) ............................................................................... 29 

4.2.4 Model choice .......................................................................................... 30 

4.2.5 Applying the chosen model on MobilityLog segments ......................... 32 

4.2.6 Mixing machine learning algorithms with geographical analysis ......... 32 

5 Discussion and conclusion.................................................................................... 34 

Kokkuvõte .................................................................................................................... 36 

Acknowledgments........................................................................................................ 38 

References .................................................................................................................... 39 

 



4 

 

1 Introduction 

Throughout history, advances in transportation methods have been associated with the 

steps taken towards human civilization. The need to build large cities and connect 

between them in order to exchange goods and people, in addition to military 

considerations at war times, have been the most important motivations that contributed 

to the transportation revolution (Nolan, 2009). Nowadays, half of the world's population 

lives in large cities (Knupfer, Pokotilo, & Woetzel, 2018).In order to improve the living 

conditions for their citizens and their economic development, large cities compete 

between them to be more green, sustainable and intelligent which can be summarized 

as being a smart city (Bamwesigye & Hlavackova, 2019). According to the 

International Telecommunication Union (ITU) "A smart sustainable city (SSC) is an 

innovative city that uses information and communication technologies (ICTs) and other 

means to improve quality of life, efficiency of urban operation and services, and 

competitiveness, while ensuring that it meets the needs of present and future 

generations with respect to economic, social and environmental aspects" ((ITU-T), 

2014). The ease of mobility around these cities and the available transportation systems 

are among the major factors that determine the urban health of these metropolises 

(Knupfer, Pokotilo, & Woetzel, 2018). 

 

Nowadays, we live in a big data age, where vast amounts of data are generated every 

second. Statistics show that in 2010, there were five billion mobile phones in use 

(Manyika, et al., 2011). Most people are using their phones to tweet and post social 

media updates. Many sensors and cameras are installed in streets and squares capturing 

traffic information and people's movements. Governmental organizations utilize 

computer systems to store citizens' data and enable them to finish the paperwork in a 

short time. Companies and organizations are storing tremendous amounts of data about 

their customers and suppliers in addition to financial and human resource information 

about their employees. There is a potential to use big data to improve many aspects in 

different fields of life. One of these fields is to use big data in the urban development 

context to help make cities smarter and more organized. As per the previous definition, 

smart cities use data collected to be more green, clean and efficient. Big data also helps 

decision-makers and city planners make the right decisions and actions (Steenbruggen, 

Tranos, & Nijkamp, 2014), which will finally be reflected on citizens' happiness and 

how they enjoy their cities. Smart transportation is one of the main keys to building 

smarter cities, and leveraging big data capabilities can provide better insights and a 

deep understanding of people's travel patterns and modes (Wang, He, & Leung, 2017). 

 

However, collecting big data is not enough as data needs to be analyzed using tools and 

algorithms in order to extract meaningful information and insights (Sivarajah, Kamal, 

Irani, & Weerakkody, 2017).Machine learning (ML) methods are at the core of 

transforming big data into useful information that can help decision-makers and smart 

cities planners. This is due to its ability to learn from large magnitudes of data and 

detect the patterns among them (L'Heureux, Grolinger, El Yamany, & Capretz, 2017).  
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Public transport has acquired a higher interest in recent years (Saif, Maghrour Zefreh, 

& Torok, 2018) as one of the most sustainable and environment-friendly transport 

modes that able to stratify the increasing demand for mobility in large cities (Elias & 

Shiftan, 2012). The city of Tartu has a modern public transport system that is formed 

only of buses. The system has 15 bus routes and is served by 64 buses (Inner City Bus 

Transportation, 2021), however, the larger share of Tartu population has only medium 

access to the public transport system (Dijkstra & Poelman, 2015). Because of the need 

to design a reliable public transport system in order to plan a smart, sustainable city and 

improve the quality of life for city citizens, and in the light of the need of improvement 

of population accessibility to the current bus systems in the city of Tartu, the main 

focus of this master thesis is to use data collected using MobilityLog smartphone 

application and machine learning (ML) algorithms along with the spatial data of 

the public transport system like the locations of bus routes in order to build a 

model that able to detect public transport use in the city of Tartu. The ability to 

detect and distinguish between transportation modes is the first step to carry on any 

subsequent analysis of the efficiency of the existing transportation system, which leads 

to robust enhancement plans. In order to achieve the thesis goal, the following research 

questions were framed:  

1. What is/are the most important mobility feature(s) that can be used to detect 

public transport mobility mode? 

2. What is the machine learning algorithm that yields the highest accuracy in 

detecting public transport mobility mode? 

3. How the mix between machine learning algorithms and the classical 

geographical analysis can improve the accuracy of the models used to detect public 

transport mobility mode?  

 

This master's thesis is structured in four main divisions. The first part is a theoretical 

overview in chapter two, followed by the data and methods used to conduct the analysis 

in chapter three. Chapter four includes the results, while the chapter five is the 

discussion and conclusion. 
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2 Theoretical overview  

2.1 Public transport systems 
 

A sustainable transport system aims to provide an efficient and time-saving way to 

move goods and citizens around smart cities while keeping pollution and congestion 

levels low. It also provides a reasonably free and green area for pedestrians and cyclists 

to enjoy movement away from cars (Marek, Daria, & Anna, 2020). Some researches 

show that one of the most essential characteristics of a sustainable transport system is 

to follow the "sustainable transport pyramid" shown in figure 1, where the most 

commutes are done using walking followed by cycles. Private cars come at the bottom 

of the most used transportation modes (Scotland, 2020). This order is based on the fact 

that walking and cycling are the healthiest and most environment-friendly modes of 

transportation (Behrendt, 2016).   

 

 
Figure 1. Sustainable transport pyramid  

Source: (Scotland, 2020) 

 

As per the United Nations (UN), it is expected that 68% of the world population will 

live in large cities by 2050, and by 2030, the world may have 43 megacities with a 

population of over 10 million for each (Nations, 2018). In order to satisfy the need to 

commute in these large cities with that huge population, a high-quality public transport 

system is needed. Public transport is preferred over private methods like cars for many 

reasons such as reducing air pollution, noise, traffic congestion, and safety (Schmöcker, 
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Michael, & Lam, 2003). Among all the available public transportation modes available 

worldwide, the statistics show that buses are the most popular used mode with 59.4% 

of the total usage even in cities with large rail networks like London, Sao Paulo, and 

Mexico City (Vakula & Raviteja, 2017). The below map in figure 2 made by the 

European Commission shows the access to public transport in urban centers in 

Denmark, Sweden, Finland, and Estonia, where the size of the cycle represents the 

number of populations. The map illustrates that the larger portion of city of Tartu 

population has only medium access to the public transportation system (Dijkstra & 

Poelman, 2015)  , that is why this master thesis is focusing on the analysis of public bus 

transportation system in the city of Tartu. 

 

 
 

Figure 2. Access to public transport in urban centers in Denmark, Sweden, Finland 

and Estonia. Source: (Dijkstra & Poelman, 2015) 

 

2.2 History and methods of travel data collection 
 

The mechanism of data collection that is used to understand mobility patterns and to 

help network planners in order to plan cities is categorized into two main categories. 

The first category is the conventional data collection technique, while the second 
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category is the new technology collection techniques. Traditional data collection 

includes different kinds of road sensors, traffic cameras, and household travel surveys 

(HTS). Travel survey data is usually used to conduct research related to predicting 

human travel behaviors (Mitchell, 2014). The idea behind traditional travel surveys is 

that travelers document their travel history manually. Traditional travel survey data has 

many disadvantages like that they are hard to collect, manually generated, not 

structured to a standard format, and not real-time. In addition to that, data collected 

from traditional travel surveys have a high inaccuracy rate which makes it unreliable to 

determine travel start and end time in addition to travel start and end locations. Another 

major problem with traditional travel survey data is under-reporting trips which happen 

when the travelers usually consider the trip unimportant or forget to document it  

(Nguyen, 2015). These disadvantages and more have formulated a limitation for the 

research to grow further. Given the previously mentioned limitations of traditional 

travel surveys and the current revolution in big data methods and techniques, modern 

data sources can aid researchers concerned about studying travel behaviors (Wang, He, 

& Leung, 2017). Social media data and call detail records (CDR) are examples of using 

data to study user movements and locations. Global Positioning System (GPS) data is 

one of the widely used sources to collect information about travel behaviors (Nguyen, 

2015) which is why it will be the main source of data used to conduct this analysis.  

 

Travel surveys have been conducted in many ways over history; in the beginning, 

traditional travel surveys took place in the U.S.A where some interviewers visit the 

participant's home to have face-to-face interviews with him and manually document the 

response of the participant about his trip. The drawback of that method is obvious since 

it is costly, time-consuming, manual, and depends on the participant's memory at the 

time of the visit. This way has developed to a mail-out/mail-back survey method where 

participants receive a document by mail, fill the necessary travel information and send 

it back by mail. Since the late 1990s, when GPS technology became available for public 

use, GPS-based surveys started where participants used dedicated GPS devices to 

record their movement. Eventually, after the widespread of smartphones and their 

applications, the smartphone-based GPS survey is the most common method to collect 

GPS data nowadays (Shen & Stopher, 2014). Due to the importance of GPS as a source 

of data for travel surveys, the following section has been devoted to illustrating the GPS 

history and main strength points as a robust and reliable way to study and analyze travel 

patterns.  

 

2.3 GPS history and advantages  
 

The history of the Global Positioning System (GPS) backed to the 1970s when it was 

initially designed by the U.S. Department of Defense to be used for navigation purposes 

for the U.S.A military. Then it became fully operational in 1995. After GPS technology 

became available for non-military use and in 1996, the first trial had taken place to 

collect GPS data for transportation planning uses sponsored by the Federal Highway 

Administration (FHWA) in Lexington, Kentucky (Wolf, et al., 2014). Due to the 
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increasing advances in network connections, hardware capabilities, and storage 

capacities of the devices in addition to long battery life time, the use of GPS technology 

has become increasingly popular within the transportation research field. In addition to 

that, GPS data showed higher accuracy than traditional travel surveys with respect to 

the low error rates and highly precise determination of location, speed, and time of 

various trips (Nguyen, 2015). 

 

According to Statista (O'Dea, 2019), 80% of Estonia's population has a smartphone that 

enables the users to get real-time location-based information. Smartphones usually 

contain embedded GPS and accelerometers that can generate data at a frequency of one 

point per second. In addition to that, smartphones enable users to download and install 

custom applications from application stores. These applications and with the support of 

the integrated voice recorder, keyboard and camera, give the phone owner the ability to 

record and document his movement and generate active travel surveys which include 

location, time, and even pictures of the trip (Wolf, et al., 2014). Modern programming 

languages and mobile operating systems like Android can also interact with embedded 

GPS devices, which allows the software developers to develop various smart 

applications that can record their movements and leverage embedded GPS devices 

(Komal, Khivsara, & Bramhecha, 2017). The idea of using devices owned by 

participants like smartphones during conducting travel surveys can facilitate and solve 

many problems when implementing travel surveys. These problems are the need to 

purchase new GPS devices for each participant and the cost of losing the device itself. 

In addition to that, once smartphones are connected to the Internet, it is faster to transfer 

data to the end databases (Bricka & Murakami, 2012). Another critical point is that 

travelers usually use their phones during trips, and they are not required to do any extra 

steps to record their movements when they are using cell phones. 

 

Call Detail Records (CDR) data is sometimes used instead of GPS data to conduct travel 

pattern analysis and transportation mode detection studies as they share the same 

advantages with GPS data in addition to the fact that they could cover larger sample 

sizes. However, this advantage over GPS comes with the cost of the inaccuracy of 

spatial precision as CDR data contains the location of the tower that handles the call 

and provides the service, not the cell phone location itself (Oliver, Rein, Erki, & Robert, 

2017). This disadvantage makes it impossible to use spatial data representing the city 

public transportation system to verify and compare the results with the machine 

learning model that this analysis is based on. Due to this limitation and the fact that 

GPS data is available for Tartu city, the decision was made to carry on the analysis 

using GPS data. 

 

Since GPS devices can generate data with a frequency of one point per second, this can 

lead to a massive amount of data containing millions of records in a short time. Data 

with such high volumes requires a huge storage space, and they are hard to process; that 

is why the data generation frequency can be reduced on the GPS devices to be a point 
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every three seconds or a point every five seconds. The point generation frequency 

reduction can lower the amount of data significantly and save the GPS device's battery 

from draining after a short time of usage (Shen & Stopher, 2014). 

 

GPS data processing usually starts with a process to divide the GPS points stream into 

sub-trips called segments where each segment has a different travel mode. Trip 

segments can be calculated using basic trip details and travel mode transitions. Basic 

trip details are the start point, the endpoint, and trip speed, while travel mode transition 

is the point where the travel mode changes from motorized to non-motorized or vice 

versa. Once trip segments are identified, they can be classified into different travel 

modes based on speed and the acceleration of the movement during the trip (Wolf, et 

al., 2014). 

 

2.4 Machine learning 
 

Machine learning (ML) can have multiple definitions, one of these definitions is 

"Machine Learning is the science (and art) of programming computers so they can 

learn from data" (Géron, 2019). Another definition of machine learning is" Machine 

Learning is a field of computer science that evolved from studying pattern recognition 

and computational learning theory in artificial intelligence. It is the learning and 

building of algorithms that can learn from and make predictions on data sets.  These 

procedures operate by construction of a model from example inputs in order to make 

driven predictions or choices rather than following firm static program instructions" 

(Simon, Deo, Venkatesan, & Babu, 2015). Machine learning algorithms normally use 

large amount of training data as their input for learning and use what they have learnt 

in a form of a mathematical function to classify or predict unlabled data (Simeone, 

2018). 

 

Machine learning algorithms can be categorized into five main categories, which are: 

supervised learning, unsupervised learning, semi-supervised learning, reinforcement 

learning, and transfer learning (Chollet, 2017). The focus will be on the first category 

as it is much related to the analysis. 

 

Supervised machine learning is a kind of algorithms that use labeled data to learn in 

order to be able to predict classes for unlabeled data. In other words, the algorithm is 

fed with an input training dataset where the output is known during the learning phase, 

and then the model is used to predict the output for input instances with unknown output 

labels (Kotsiantis, 2007). One classic example of supervised machine learning 

algorithms is the "cat-dog" image detection experiment, where the algorithm takes an 

input training set as many pictures of cats and dogs, each image is labeled correctly as 

cat or dog. After the learning phase, the algorithm takes an input image that is not 

labeled. A well-trained algorithm will be able to detect the label/class of the image 

correctly and determine whatever the image describes a cat or a dog. 
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Supervised machine learning techniques are divided into two main categories, which 

are classification and regression. Classification is when the output that the machine 

learning is trying to predict is of categorical or discrete classes. On the other hand, 

regression machine learning models are designed to predict numerical or continues 

outputs (Garbade, 2018). One case example showing the difference between 

classification and regression problems is the weather forecast case (Figure 3). A model 

that can predict as an output whatever the day is hot or cold is a classification model, 

while the model that has it is output as the predicted numerical temperature of the day 

is considered as a regression model (Vieira & Paixao, 2018). 

 

 
Figure 3. Comparison between regression and classification  

Source: (Kohani, 2017) 
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3 Data and methods  

The complete cycle to reproduce the analysis contains the following steps: 

 

1. Data collection 

2. Data cleaning and wrangling 

3. Data segmentation 

4. Applying machine learning algorithms 

5. Measuring the accuracy of machine learning model 

6. Selection of the best model 

7. Applying the best model on MobilityLog unlabelled data 

8. Spatial filtering of the segments wrongly predicted by the model as {Bus} 

using spatial data of the public bus system of the city of Tartu. 

 

Figure 4 shows a summary of the workflow used in the study. 

 

 
Figure 4. Summary of the workflow used in the study 

 

3.1 Data sources 
 

The main type of data used to conduct the analysis is raw GPS data. These GPS raw 

data are divided into two main categorize. The first category is called labeled data, 

where the transportation mode of each GPS point is known. Three labeled datasets have 

been used. Each separate dataset represents one of the three motorized/non-walking 

transportation modes that the analysis aims to predict: {Bike, Bus, Car}. The other 

category of raw GPS data is called unlabeled data, where the transportation mode of 

each GPS point is unknown. Only one unlabeled dataset has been used during this 

analysis. The study aims to use the three labeled datasets to train a machine learning 

model so that the model can predict the transportation mode of GPS points in the 

unlabeled dataset. In addition to raw GPS data, one spatial dataset representing Tartu 

city public transport routes is used. This dataset is used to verify and filter machine 

learning predictions. The details and description of all the data used to conduct the 

analysis are described below. 

Data collection
Data cleaning , 
wrangling and 

feature extraction
Data segmentation

ML model building 
and testing (labeled 

data)

Transport mode 
prediction for 

MobilityLog data 
(unlabeled)

Spatial filtering for 
{Bus} false 
predictions
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1. MobilityLog mobile application (unlabeled) 

This dataset includes a stream of raw GPS points with unknown labels 

(transportation modes). The data is stored in a computer system managed by the 

University of Tartu Mobility Lab and subject to continuous monitoring. The 

data consists of MobilityLog based location data (GPS) on the period 1.09.2019 

to 30.09.2019 for 32 people containing students and staff members of the 

University of Tartu participating in the activity space and mobility survey of the 

University of Tartu Mobility Lab. I have signed an agreement to use these data 

for research purposes only during the period of working on the thesis. This 

dataset is user-based which means that it records the events/locations of 

MobilityLog mobile application users. Number of rows in the dataset is 

1,039,908 

- Important attributes are described in table 1 and a sample of the data itself 

is shown in table 2. 

 

Table 1. Data description of MobilityLog dataset 

 

Attributes Description 

id ID of the user 

time_gps Time of the event in UNIX format 

time_gps_ts Timestamp of the event in yyyy-mm-dd HH:MM:SS format 

point Coordinates of location of event in geom format 

speed Speed of the user at each point in meters/second 

 

Table 2. Data samples of MobilityLog dataset 

 

 

2. City of Tartu public transport data (labeled) 

This dataset includes raw GPS points of bus trips of the city of Tartu public 

transport system on the period of 01.10.2020 to 31.10.2020. This data is used to 

represent {Bus} label/transportation mode when training the machine learning 

model. It is important to highlight that this dataset is trip-based, not user-based, 

which means that points represent bus trips, not user trips. Number of rows in 

dataset is 9,809,697 

- Important attributes are described in table 3 and a sample of the data itself 

is shown in table 4. 

id time_gps time_gps_ts point speed 

11 1.56837E+12 2019-09-13 13:56:28+03 C1E739400000A49630594D4 25.08 

11 1.56784E+12 2019-09-07 11:23:46+03 6A09E38400000A6C933A84D 29.62 

11 1.56768E+12 2019-09-05 13:05:18+03 429FB83A4000005E0CA2304 1.06 

11 1.56837E+12 2019-09-13 13:56:15+03 DE839400000782CD6584D40 24.86 

11 1.56925E+12 2019-09-23 17:48:30+03 20E61000000000C8A11BBA3 2.71 

11 1.56768E+12 2019-09-05 13:05:12+03 483E97B83A4000009ECBA23 1.22 

11 1.56925E+12 2019-09-23 17:48:38+03 18B224BA3A40000060AB2D3 1.4 
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Table 3. Data description of public transport dataset 

 

Attributes Description 

tripId ID of the trip 

vehicleId ID of the vehicle 

timestamp Timestamp of the event in UNIX format 

latitude Latitude of vehicle position 

longitude Longitude of vehicle position 

Trans_mode Transportation mode for each point. All points are labeled as "Bus" 

 

Table 4. Data samples of public transport dataset 

           

tripId Timestamp latitude longitude vehicleId Trans_mode 

1011557 1602023391 58.379826 26.721577 15405 Bus 

1011557 1602023380 58.379826 26.721577 15405 Bus 

1011557 1602023370 58.379826 26.721577 15405 Bus 

1011557 1602023361 58.379826 26.721577 15405 Bus 

1011557 1602023351 58.379826 26.721577 15405 Bus 

1011557 1602023339 58.379826 26.721577 15405 Bus 

1011557 1602023330 58.379826 26.721577 15405 Bus 

 

3. Bike share system data (labeled) 

This dataset includes raw GPS points of users' bike trips using the city of Tartu 

bike share system. Tartu Smart Bike Share is a smart bike-sharing system that 

serves the city of Tartu and consists of approximately 750 bikes which 250 of 

them are regular, and the remaining are electric bikes (Share, 2021). This dataset 

covers the trips in the period of 02.06.2019 to 14.06.2019 and for 3506 different 

users. This data is used to represent {Bike} label/transportation mode when 

training the machine learning model. It is important to highlight that this dataset 

is user-based. Number of rows in the dataset is 5,5881,141 

- Important attributes are described in table 5 and a sample of the data itself 

is shown in table 6. 

 

Table 5. Data description of bike share dataset 

 

Attributes Description 

userID ID of the user 

cyclenumber ID of the bike 

coord_time Timestamp of the event in HH:MM:SS format 

coord_date Date of the event in yyyy/mm/dd format 

latitude Latitude of the user position 

longitude Longitude of user position 

speed Speed of the user at each point in meters/second 

Trans_mode Transportation mode for each point. All points are labeled as "Bike" 
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Table 6. Data samples of bike share dataset 

 

cyclenumber latitude longitude coord_date coord_time userID Trans_mode 

90417 58.38993167 26.68026833 02-06-19 11:55:57+00 28232 Bike 

90417 58.38993167 26.68026833 02-06-19 11:56:02+00 28232 Bike 

90417 58.38993167 26.68026833 02-06-19 11:56:07+00 28232 Bike 

90417 58.38993167 26.68026833 02-06-19 11:56:12+00 28232 Bike 

90417 58.38993167 26.68026833 02-06-19 11:56:17+00 28232 Bike 

90417 58.38993167 26.68026833 02-06-19 11:56:22+00 28232 Bike 

90417 58.38998 26.68013333 02-06-19 11:56:27+00 28232 Bike 

                  

 

4. Car dataset(labeled) 

This dataset includes raw GPS points of users' car trips using their own private 

cars. This data is obtained from two users and has been collected specifically 

for this study. Car usage data from anonymous users could not be obtained 

because they are not available/collected on the same way like bike share system 

data. The users have recorded their car trips using software called Komoot 

(Komoot, 2021). This dataset covers the trips in the period of 08.03.2021 to 

14.03.2021. This data is used to represent {Car} label/transportation mode 

when training the machine learning model. It is important to highlight that this 

dataset is user-based. Number of rows in the dataset is 12,561 

- Important attributes are described in table 7 and a sample of the data itself 

is shown in table 8. 

 

Table 7. Data description of Car dataset 

 

Attributes Description 

userID ID of the user 

timestamp Timestamp of the event in yyyy-mm-dd HH:MM:SS format 

latitude Latitude of the user position 

longitude Longitude of user position 

Trans_mode Transportation mode for each point. All points are labeled as "Car" 

 

Table 8. Data samples of Car dataset 

             

userID timestamp Latitude longitude Trans_mode 

2 2021-03-08T15:12:58.880Z 58.368755 26.722853 Car 

2 2021-03-08T15:13:54.177Z 58.368576 26.722887 Car 

2 2021-03-08T15:13:57.197Z 58.368458 26.722882 Car 

2 2021-03-08T15:14:10.180Z 58.368374 26.722977 Car 

2 2021-03-08T15:14:12.171Z 58.368411 26.723159 Car 

2 2021-03-08T15:14:14.175Z 58.368472 26.723402 Car 

2 2021-03-08T15:14:16.179Z 58.368532 26.723631 Car 
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5. Public transportation routes 

In addition to the previous datasets, the last dataset contains the spatial aspects 

and attributes of the public bus transportation system of Tartu city. The data set 

includes coordinates of bus routes, bus stops locations, and bus route names. 

This dataset is used as a second layer of verification and filtering after the 

machine learning model detects the transportation modes. The data consist of a 

sequence of points through which the vehicle passes in order, so each route is 

represented by a sequence of points, not a single line. Information and details 

about this dataset can be found in (Google, 2021).Number of rows in the dataset 

is 1048,576 

- Important attributes are described in table 9 and a sample of the data itself 

is shown in table 10. 

 

Table 9. Data description of public transportation routes dataset 

 

Attributes Description 

shape_id ID of the user 

shape_pt_lat Latitude of the user position 

shape_pt_lon Longitude of user position 

shape_pt_sequence Speed of the user at each point in meters/second 

 

Table 10. Data description of public transportation routes dataset 

 

shape_id shape_pt_lat shape_pt_lon shape_pt_sequence 

132 58.753472 24.9425 1 

132 58.753545 24.942327 2 

132 58.753743 24.942277 3 

132 58.75423 24.942299 4 

132 58.754435 24.942356 5 

132 58.754942 24.942692 6 

132 58.755266 24.942844 7 

 

3.2 Data cleaning and wrangling  
 

3.2.1 Data cleaning 
 

Most datasets come dirty with many problems like missing values, duplicate values, 

and outliers. These problems can affect the accuracy of any analysis in a significant 

way (Jesmeen, et al., 2018). For this reason, many data cleansings steps have been 

followed to make the data cleaner before using it in the analysis. These steps are 

described below. 

 

1- Each dataset has been filtered in order to exclude any GPS points that exist 

outside the boundaries of the city of Tartu. 
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2- Since datasets are coming from different sources, timestamp has been unified 

across all datasets to be on Estonian Time Zone. 

3- Data records with missing values have been removed for all datasets. 

4- Duplicated records have been removed for all datasets. 

5- Data has been grouped by a user then ordered by date and timestamp to reflect 

each user's real movement sequence. A slightly different approach has been 

applied to the bus dataset since it is trip-based, not user-based. For the bus 

dataset, data has been grouped by trip then ordered by date and timestamp to 

reflect each bus's real sequence of movements. 

6- All irrelevant columns have been removed from all datasets.  

 

3.2.2 Data wrangling 
 

Data wrangling can be defined as the process of preparing and formatting the data (Patil 

& Hiremath, 2018) in order to put them in a form that is usable for conducting the 

required analysis (Kandel, et al., 2011). This section describes the data wrangling 

processes that have been applied to used datasets.   

 

1- Rows in all raw GPS datasets have been formatted as below. This data structure 

gives the ability to calculate time difference, distance, and speed between 

consecutive points.  

- date_start: Date of GPS point 

- date_end: Date of the next GPS point 

- time_start: Time of GPS point 

- time_end: Time of the next GPS point 

- latitude_start: Latitude of GPS point 

- latitude_end: Latitude of next GPS point 

- longitude_start: Longitude of GPS point 

- longitude_end: Longitude of next GPS point 

- userID/tripID: User identifier in case of Bike/Car or Trip identifier in case 

of Bus of GPS point 

- userCheck/tripCheck: User identifier in case of Bike/Car or Trip identifier 

in case of Bus for the next GPS point 

 

2- Rows where userID/tripID and userCheck/tripCheck do not hold the same 

values have been removed. Change in the values between the two fields 

indicates the end of the GPS points stream belongs to the value of user or trip 

in userID/tripID and highlights that the next row is a start for another GPS 

points stream belonging to the user or trip of userCheck/tripCheck. 

 

3- The time difference between each two consecutive GPS points has been 

calculated by subtracting the start timestamp from the end timestamp and 

converting the results to seconds. The following formula has been used. 
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t = (time_end - time_start).to_seconds()                                                  (1) 

where: 

- t is the change in time. 

- to_seconds() is a function to convert the time difference to seconds 

 

4- Distance in meters has been calculated between each two consecutive GPS 

points. There are many methods that can be used to calculate the distance 

between two GPS points, such as Haversine and Trapezoidal; however, 

Haversine formula tends to be more accurate for the GPS points obtained 

through mobile applications (Lindenberg, 2014) which is the case for the used 

raw GPS data used to through this analysis. The following Haversine formula 

has been used to calculate the distance between each two adjacent GPS points 

(Lindenberg, 2014):  

 

haversin 𝜃=sin2(𝜃/2)  

 

            d=2𝑟 sin−1(√ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(𝜙2 − 𝜙1) + 𝑐𝑜𝑠(𝜙1)𝑐𝑜𝑠(𝜙2)ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(𝜆2 − 𝜆1))       (2) 

           Where: 

1- 𝜙1 latitude of the first point p1 or latitude_start 

2- 𝜆1 longitude of the first point p1 or longitude_start 

3- 𝜙2 latitude of the first point p2 or latitude_end 

4- 𝜆2 longitude of the first point p2 latitude_end 

5- r is the radius of the Earth in meters 

6- d is the distance in meters between p1 and p2 

 

5- Speed has been calculated between each two consecutive GPS points. The 

following formula has been used. 

 

speed = d/t                                                                                                    (3) 

Where: d is distance and t is time difference and speed in meters/second 

  

3.3 Methods 
 

3.3.1 Data segmentation 
 

Zheng, Liu, Wang, & Xing (2008) have proposed a robust technique that can be used 

to better divide the GPS points streams into segments based on the change of the 

transportation mode. This framework will be adopted to perform segmentation for 

MobilityLog mobile application unlabeled dataset. In order to better understand the 

framework of segmentation, few definitions should be introduced: 

 

1- Track: the track is a series of GPS points belonging to the same user. 

 

2- Trip: Trip is a subset of the track. When the time difference between two 

consecutive GPS points in the same track exceeds a certain time threshold or 
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certain distance threshold, this indicates the end of a trip and the start of a new 

one. 

 

 

3- Segment: Segment is a subset of a trip that satisfies the condition that all the 

GPS points included in the segment should all share the same transportation 

mode. From this definition, it is normal to have a single trip that contains 

multiple transportation modes like Car->Walk->Bus. This trip contains three 

segments and three different transportation modes. An example that illustrates 

the definition more is an example of a student who left his home and went to 

the university. During this trip, he walked to the bike station, took a bike to the 

nearest bus station and finally took a bus that dropped him at the university. In 

this case, all the GPS points between his home to the university represent the 

trip. However, this trip can be divided into three different segments labeled with 

{Walk, Bike, Bus} transportation modes. If the student had walked all the way 

from his home to the university, then the trip and segment are the same because 

there has been no change in transportation mode during the trip, and no further 

segmentation is needed.    

  

4- Segments can be categorized into two categories. The first category is non-

motorized segments which have "Walk" as a transportation mode, while the 

second category is motorized segments which can have any other type of 

transportation modes including {Bike, Bus, Car}. 

 

• Segmentation of labeled datasets 

Each dataset of the three labeled datasets used in this analysis has its unique 

transportation mode. Therefore, no need to search for the change in 

transportation mode when applying the segmentation process. Since all the 

points in each single dataset share the same transportation mode, then trip 

and segment definitions are the same and it is only required to divide each 

of the user tracks into many trips. The trip division strategy is based on 

setting a time and a distance threshold. If the time or distance difference 

between any two consecutive GPS points in the same track have exceeded 

these thresholds, this is marked as a discontinuity in the user movements, 

and then the track is divided into different trips. The following algorithm 

has been used to segment both Tartu City smart shared bike system and car 

datasets. 

The value of time threshold has been set to 60 seconds, while the distance 

threshold has been set to a value equals to the time difference between each 

two consecutive GPS points multiplied by average speed for GPS points in 

each dataset. For bikes, the average speed is 15 meters/second, while for 

cars, the average speed is 40 meters/second. 
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for each_user in all_users: 

     current segment = start a new segment 

     for point in all_GPS_points_of_that_user:  

        if t > tthreshold or d > dthreshold: 

           end the current segment 

          start a new segment 

     else: 

         append point to current segment 

 

The segmentation process of the bus dataset is more straightforward since 

the data is trip-based in the first place, which means all the GPS points that 

belong to the same trip share the same trip identifier. The segmentation 

process then divides the track into many segments where all the points in 

the same segment have the same trip identifier and represent a single bus 

journey. 

 

• Segmentation of unlabeled datasets 

The segmentation process of the MobilityLog mobile application unlabeled 

dataset is more complex than the same process for a labeled dataset for two 

main reasons. The first reason is the fact that it contains points that can 

belong to many transportation modes, which was not the case when dealing 

with the other three datasets where all points in each dataset represent only 

one transportation mode. The other reason is the absence of those 

transportation modes in the dataset. The idea of the segmentation process is 

that the transition between two different motorized transportation modes 

usually contains a non-motorized segment in between where speed is zero 

or very low. The first step is to separate the GPS tracks of each user to 

motorized and non-motorized trips. Distinguishing between motorized and 

non-motorized transportation modes is not difficult because human walking 

speed is usually around 6 km/hour, while the speed of motorized vehicles is 

usually above 40 km/hour (Shen & Stopher, 2014). However, having 

multiple motorized transportation modes could be a problem as buses, cars, 

and bikes may have similar GPS characteristics (Stenneth, Yu, & Xu, 2011). 

Distinguishing between non-motorized segments will be carried on by 

machine learning models in later analysis stages. After applying this first 

technique, the result is a stream of congestive ("motorized," "non-

motorized," "motorized") streams. Some of these middle non-motorized 

segments can represent a real walking period; however, some of them could 

represent a gap in a motorized segment due to a stop for a traffic light or 

even a bus stop. In order to fix this problem, very short non-motorized 

segments between two motorized segments are removed, and the next and 

previous motorized segments are merged into a single segment if there is no 

time or distance gap between them. 
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• After GPS raw data segmentation, each segment is aggregated into a single 

row that contains the main important attributes like user or trip identifier, 

the number of points in the segment, total time, total distance, and more 

importantly, the average speed and average acceleration of the segment, in 

addition to the transportation mode associated with each segment in case of 

labeled data. The segmentation process is beneficial because it models the 

real problem where the analysis is concerned about the whole user trip rather 

than studying each individual GPS point. In addition to that, the 

segmentation process significantly reduces the number of records. This, in 

turn, helps to improve the speed performance of the subsequent machine 

learning algorithms and lower the computational resources needed to 

complete the analysis (Luna, Cano, & Ventura, 2016).   

 

• After completing the segmentation process for each dataset separately, the 

three output datasets are merged into a single dataset containing segments. 

Each segment is labeled with one of these transportation modes {Bike, Bus, 

Car}. 

 

3.3.2 Applying machine learning  

 

The output of the segmentation stage is a single segments dataset. This dataset is used 

as an input for the next stage, which is the stage of building the machine learning model. 

Since machine learning algorithms are categorized into many categories and even each 

category can be divided into other subcategories, it would be useful to accurately define 

the computational problem that the analysis aims to solve. This definition will help to 

choose the appropriate methods. The definition of the problem is "the need to build a 

machine learning model using a labeled dataset as an input training set in order to 

predict the transportation modes of another unlabeled dataset accurately. The 

transportation modes that the machine learning model would predict could be either 

{Bike, Bus, Car}". Since the required machine learning techniques use a labeled training 

set during the learning phase, supervised machine learning methods are the best 

algorithms to use. In addition to that, the supervised machine learning models try to 

predict categorical values, not continuous ones, which means classification supervised 

machine learning methods are the most appropriate method to solve that computational 

problem. Since supervised machine learning classifiers depend on feature inputs to 

build models, then the model output and prediction accuracy will differ. The analysis 

will compare between the prediction accuracy of different supervised machine learning 

models when using only the average speed or average acceleration of each segment as 

an input feature and the prediction accuracy of the same models but when they are 

trained using both average speed and average acceleration of each segment as input 

features. 
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When supervised machine learning algorithms are used, a typical workflow is to split 

the training set into two parts called "learning set" and "testing set". The learning set is 

used as an input to machine learning to build the model, while the testing set is used to 

measure the accuracy of the model predictions by comparing them with the true labels 

in that set. The ratio between the size of the "learning set" and "testing set" can affect 

the model performance and accuracy. In general, there is a positive correlation between 

the size of the learning dataset and the accuracy of the model (Medar, Rajpurohit, & 

Rashmi, 2017). For this analysis, the data has been split, so the ratio of the learning 

dataset to the testing dataset is .7:.3.This ratio ensures that the model has enough large 

amount of data during both the learning and testing phases. 

 

Another aspect to consider with the input learning dataset is the unequal distribution of 

labels. This happens when one label exists more frequently than other labels in a 

learning data. In this case, the dataset is considered to be an imbalanced dataset 

(Chawla, 2005). Feeding supervised machine learning models with an imbalanced 

learning dataset can cause a negative impact on the accuracy of classification (Feng, 

Huang, & Ren, 2018).The reason is that most supervised machine learning classifiers 

are designed to maximize the overall prediction accuracy. As a result, they tend to 

classify all the data into the majority label (Kotsiantis, Kanellopoulos, & Pintelas, 

2005). In the balanced dataset, the instances labeled as {Bike, Bus} will be equally 

represented, while in the imbalanced dataset, the instances labeled as {Bike} will be 

represented more frequently those labeled as {Bus}. 

 

In order to complete these analyses, three different supervised machine learning 

classifiers are used. The used classifiers are the k-nearest neighbors (KNN), Decision 

tree, and Random forest classifiers. These classifiers have been chosen as they are 

among the most used machine learning classifiers (Minastireanu & Mesnita, 2019). A 

brief description of each classifier is below. 

 

• k-nearest neighbours (KNN) 

k-nearest neighbours supervised machine learning classifier, which is simple 

and accurate. The classification is based on the majority voting of labels for the 

k nearest instances of the target (Guo, Wang, Bell, & Bi, 2004). In other words, 

in order to predict a label of an instance, the algorithm selects the nearest k 

records from that instance and determines its label based on the major label of 

these selected k records. The accuracy of the prediction of the k-nearest 

neighbors is mainly determined by the value of k (Imandous & Bolandraftar, 

2013). During this analysis, the k-nearest neighbors will be applied with 

different values of k=1,k=3, k=5, k=7, and k=9. Since k-nearest neighbors is a 

voting algorithm, it is better to choose k values as odd numbers to ensure that 

there will be no instance that has equal votes representing different labels 

(Hassanat, Abbadi, & Alhasanat , 2014).  
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• Decision tree 

Decision tree is a supervised machine learning classifier that is similar to the 

process that a human may follow to make a decision. It starts with a node that 

tests some criteria depending on the input features. The output of these nodes is 

a binary decision that branches to two more additional nodes. The splitting 

criteria continue until a prediction is made (Patel & Prajapati, 2018). 

 

• Random forest 

Random forest is a supervised machine learning classifier that works in a way 

similar to a decision tree classifier. However, instead of making a prediction 

based on only one single tree, the algorithm splits learning data randomly then 

it constructs n number of decision trees. After this process, the model's 

prediction is made based on the majority voting of these trees (Ren, Cheng, & 

Han, 2017). Random forest classifier has proved to be an accurate and efficient 

algorithm (Ali, Khan, Ahmad, & Maqsood, 2012). It has many applications in 

different fields like traffic and transport planning, ecology, astronomy, and 

agriculture (Fawagreh, Gaber , & Elyan, 2014). 

 

During the analysis, the three mentioned machine learning models are trained using two 

datasets: imbalanced and balanced. With each model and dataset pair, the speed feature 

of learning segments is used as an input feature in one round. In the second round 

acceleration feature of learning, segments are used as an input feature, and in the last 

round, both speed and acceleration features are used during the training process. After 

training all the models using the previous setup, trained models are applied to the same 

test dataset and prediction accuracy is measured as the percentage of correctly predicted 

instances to the total number of instances in the test dataset (Liu, Zhou, Wen, & Tang, 

2014). In order to find the most fit model and examine the impact of using imbalanced 

data as a training dataset, the model with the highest accuracy from the two setups is 

selected. These two models are examined in terms of two measures called recall and 

precision. Recall is the ratio of true positive predictions to the total of true positive and 

false negative predictions for each class, while precision is the ratio of true positive 

predictions to the total of true positive and false positive predictions for each class 

(Goutte & Gaussier, 2005). Based on these criteria , the final model is selected and 

eventually  applied to motorized MobilityLog data segments to predict their classes. 

The selected model indicates what is the important feature(s) to include during the 

learning phase, whether speed or acceleration alone or both. 

 

3.3.3 Spatial filtering 
 

The focus on this step is directed to MobilityLog segments that the chosen model has 

classified to be of class {Bus} as it is the transportation mode of interest. A spatial 

method is used as a downstream process after applying the selected machine learning 

algorithm on MobilityLog motorized segments to filter out {Bus} false positive 

instances (segments that the model predicts to be of class {Bus} while actually, they are 
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not). This step helps to increase the model precision for the {Bus} class. The idea is to 

calculate the percentage of GPS points that are geographically located within Tartu city 

bus routes to the total number of points in each segment and name this metric as "within 

bus route ratio" (Figure 5). The second step is to order the segments in a descending 

way based on their "within bus route ratio". The precision of the model indicates the 

percentage of these segments that actually are {Bus} segments. A percentage of 

segments equals to the model precision starting from those ones with higher "within 

bus route ratio" are accepted to be of the {Bus} class while the others are filtered out 

as false positive cases.  

 

 
 

Figure 5. within bus route ratio is the ratio between green points to the total points in 

the segment 

 

 

 

 



25 

 

4 Results 

4.1 Data segmentation 
 

The results of the raw GPS points segmentation process are illustrated in table 11. The 

results show that a total of 66,048,259 GPS points have been segmented to 616,925 

segments with a total reduction ratio equals 99.07%. The individual reduction ratios for 

each dataset have been ranged between 98.58% for the MobilityLog dataset and 99.77% 

for the car dataset. The segmentation process results are four datasets called 

MobilityLog, Bike, Bus, and Car datasets for the rest of the analysis. Each dataset 

contains a number of segments with two features called Speed and Acceleration. These 

two features represent the average speed and the average acceleration for all the points 

in each segment. The 4,888 MobilityLog segments are divided as 1,234 {non-

motorized/Walk} segments and 3,654 {motorized} segments.  

 

Table 11. Results of the segmentation process 

 

 Raw GPS points Segments  Reduction % 

MobilityLog  344,860 4,888 98.58% 

public bus system 9,809,697 33,902 99.65% 

shared bike system 5,5881,141 578,106 98.97% 

Car dataset 12,561 29 99.77% 

Total 66,048,259 616,925 99.07% 

 

The mean and standard deviation of Speed and Acceleration features for each 

segmented dataset are shown in table 12. Car segments have the highest average Speed 

with 10.35 meters/second, while Bike segments have the lowest average Speed with 

3.17 meters/second. For the Acceleration, Bus segments have the highest average 

Acceleration with 0.0021 meters/second2, while the lowest average Acceleration is 

represented by the Bike dataset with -0.0082 meter/second2.  

 

Table 12. Mean and Standard deviation of Speed and Acceleration feature     

 

 Mean Speed Std of Speed Mean Acceleration Std of Acceleration 

Bike 3.17 1.24 -0.0082 0.023 

Bus 4.75 1.11  0.0021 0.004 

Car 10.35 3.4 -0.0141 0.077 

 

Figure 6 shows that the Speed feature of Car segments has the highest standard 

deviation between all the other datasets with 3.4 meters/second. In contrast, Bus 

segments have the lowest Speed standard deviation with 1.11 meter/second.    

 

For the standard deviation of the Acceleration feature, Car segments ranked first with 

the highest standard deviation of 0.077 meters/second2. In contrast, Bus segments 

ranked last with .004 meter/second2.Figure 7 shows the difference in Acceleration 

standard deviation among the three datasets.   
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Figure 6. Distribution of Speed feature for the different transportation mode   

 

 
 

Figure 7. Distribution of Acceleration feature for the different transportation mode  

 

4.2 Comparison of machine learning algorithms and mobility features 
 

This section describes the prediction accuracy results after applying three different 

machine learning models (KNN, Decision tree, and Random forest) on the same test 

dataset. These models have been trained using two different learning sets (Imbalanced, 
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Balanced) using Speed feature in one round, Acceleration feature in a second round, 

and both Speed and Acceleration features at the last round. 

 

4.2.1 k-nearest neighbours (KNN) 
 

The results of k-nearest neighbours (KNN) are described in table 13. Five different 

values of k have been used (k=1, k=3, k=5, k=7, k=9) to train the model. The results 

can be summarized as below.  

 

- The accuracy percentage of all the rounds ranged between 67.644% and 

95.296%. 

- In both cases of models trained using imbalanced or balanced datasets, using 

both Speed and Acceleration features of the segments in the training process 

has yielded higher accuracy than using only one feature at a time.  

- For all the cases, models trained using an imbalanced dataset have resulted 

in higher accuracy than the corresponding models trained using a balanced 

dataset.  

- Increasing the value of K does not increase the accuracy in all cases. 

- After this round of testing, the model with the highest accuracy in the 

imbalanced category is KNN with K=9 and accuracy = 95.296%, while the 

model with the highest accuracy in the balanced category is KNN with K=5 

and accuracy = 85.518%. 

 

Table 13. Results of k-nearest neighbours model. The yellow marker shows the 

highest score in the Imbalanced category, while the green marker shows the highest 

score in the Balanced category    

 

 Imbalanced Balanced 

 Speed Acceleration Both Speed Acceleration Both 

K=1 91.018% 90.717% 93.8% 67.644% 74.046% 84.306% 

K=3 93.483% 92.887% 94.81% 71.044% 74.576% 85.27% 

K=5 94.050% 93.633% 95.1% 72.062% 74.853% 85.518% 

K=7 94.243% 94.027% 95.256% 72.676% 74.538% 85.144% 

K=9 94.375% 94.187% 95.296% 73.063% 74.512% 84.953% 

 

 

Figure 8 shows the decision boundaries of a KNN model trained using imbalanced data, 

both Speed and Acceleration as features and a value of K=9. This model has a prediction 

accuracy of 95.296%. Different colours represent the boundaries of each transportation 

mode. The model places each unlabelled segment in this grid using its Speed and 

Acceleration features, then predicts the transportation mode corresponding to the area 

where the segment is located. For example, if for one segment the Speed feature value 

is 5.5 meters/second and the Acceleration feature value is -0.3 meters/second2, then the 

segment is located in the blue area, and then the model predicts its transportation mode 

to be Bike and so on for any unlabelled segment. The model mainly classifies segments 
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based on their Speed feature with this approximate range of [0 - 7.5] meters/second to 

be classified as Bikes, [7.5 - 10.5] to be classified as Bus and any higher speed is 

classified as Car. Acceleration feature is then used to differentiate for places where an 

overlap exists.  

 

 
 

           Figure 8. KNN decision boundaries for K=9 and Speed and Acceleration as 

input features 

    

4.2.2 Decision tree (DT) 
 

The results of the decision tree (DT) model are described in table 14. The results can 

be summarized below.  

 

- The accuracy percentage of all the rounds of the decision tree model ranged 

between 67.633% and 93.723%.  

- In both cases of models trained using imbalanced or balanced datasets, using 

both Speed and Acceleration features of the segments in the training process 

has yielded higher accuracy than using only one feature at a time.  

- For all the cases, models trained using an imbalanced dataset have resulted 

in higher accuracy than the corresponding models trained using a balanced 

dataset.  

- After this round of testing, the results have not been changed. The model 

with the highest accuracy in the imbalanced category is still KNN with K=9 

and accuracy = 95.296%, while the model with the highest accuracy in the 

balanced category is still KNN with K=5 and accuracy = 85.518%, which 
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means that the accuracy of KNN model exceeds the accuracy of the decision 

tree model. 

 

Table 14. Results of the Decision Tree model, no markers as the model 

has not shown any improvement over the previous round 

 

Imbalanced Balanced 

Speed Acceleration Both Speed Acceleration Both 

91.057% 92.894% 93.723% 67.663% 74.857% 84.925% 

  

Figure 9 shows part of a decision tree model trained using imbalanced data and has a 

prediction accuracy of 95.2%. The decision is started from the root node, then it splits 

left if the test result is True or right if the test result is False. Each colour is 

corresponding to a certain class, the orange colour represents Bike transportation mode 

while the green colour represents Bus transportation mode. The samples value in each 

node represents the percentage of samples in each stage. The values list in each node 

contains three values corresponding to the probability of prediction for each class of 

the three classes. The node is coloured according to the class with the highest 

probability while the colour intensity of each node is probational for the probability 

value. Higher probability leads to more intense colour. 

 

 
 

Figure 9. Part of a Decision Tree illustration for a model trained with Speed and 

Acceleration as input features   

 

4.2.3 Random forest (RF) 
 

The results of random forest (RF) are described in table 15. Five different values of n 

(number of trees) have been used (n=5, n=10, n=20, n=30, n=40) to train the model. 

The results can be summarized as below.  
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- The accuracy percentage of all the rounds ranged between 68.041% and 

95.113%. 

- In both cases of models trained using imbalanced or balanced datasets, using 

both Speed and Acceleration features of the segments in the training process 

has yielded higher accuracy than using only one feature at a time.  

- For all the cases, models trained using an imbalanced dataset have resulted 

in higher accuracy than the corresponding models trained using a balanced 

dataset.  

- Increasing the value of n does not increase the accuracy in all cases. 

- After this round of testing, the model with the highest accuracy in the 

imbalanced category is KNN with K=9 and accuracy = 95.296%. In 

comparison, the model with the highest accuracy in the balanced category 

is now random forest with n=10 and accuracy = 87.443% replacing KNN 

with K=5 and accuracy = 85.518%. 

 

Table 15. Results of Random Forest model, the green marker indicates that this 

model has the highest score in balanced category after this round 

 

 Imbalanced Balanced 

 Speed Acceleration Both Speed Acceleration Both 

n=5 91.47% 92.145% 94.732% 68.133% 74.119% 86.253% 

n=10 91.774% 92.352% 94.999% 69.565% 74.753% 87.443% 

n=20 91.431% 92.375% 95.058% 68.454% 74.269% 87.038% 

n=30 91.285% 92.394% 95.102% 68.041% 74.152% 86.853% 

n=40 91.186% 92.403% 95.113% 68.879% 74.031% 86.777% 

 

4.2.4 Model choice 
 

The result of all rounds of model training and testing is two models that scored the 

highest prediction accuracy in one of each category. The first model is a 95.296% 

accurate KNN model trained with imbalanced data using Speed and Acceleration 

features and has K=9, while the second model is a 87.443% accurate random forest 

model trained with balanced data using Speed and Acceleration features and has n=10.A 

confusion matrix is used in order to compare the two models and choose the best among 

them in terms of accuracy, recall, and precision. A confusion matrix is a table used to 

assess the prediction performance of a machine learning classifier by comparing the 

actual classes of test instances versus the model predicted classes for the same instances 

(Ting, 2017). The diagonal cells of the confusion matrix represent the number of 

instances that have been correctly predicted by the model as their actual class matches 

the model predicted class, while the other cells of the matrix represent the wrong 

prediction in each class (Mo, et al., 2020). 

 

The confusion matrix of the first model (KNN) is illustrated in table 16. It shows that 

the model has a 98.4% recall for the instances with {Bike} as their actual label, which 
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means that the model is able to correctly predict 98.4% of the actual bike instances. On 

the other hand, the model has a low recall for the other two classes. The model is able 

to correctly predict only 42.1% of instances actually labeled as {Bus}, while 5,885 

instances which actually labeled as {Bus} are predicted to be {Bike} and hence 

considered as false negatives. The same applies to the instance with the {Car} label as 

the model correctly predicts only 33.33% of them. 

 

Table 16. Confusion matrix of KNN model trained with imbalanced data 

 

 Predicted  
Bike Bus Car Total Recall 

A
ct

u
a

l 

  
 

Bike 170,689 2,745 0 173,434 98.4% 

Bus 5,885 4,285 2 10,172 42.1% 

Car 1 3 2 6 33.33% 

Total 176,575 7,033 4 183,612  

 Precision  96.66% 60.92% 50%  

 

Table 17. Confusion matrix of random forest model trained with balanced data 

 
 Predicted  

Bike Bus Car Total Recall 

A
ct

u
a
l Bike 151,629 21,803 2 173,434 87.42% 

Bus 1,248 8,923 1 10,172 87.72% 

Car 2 0 4 6 66.66% 

Total 152,879 30,726 7 183,612  

 Precision 99.1% 29.04% 57.14%  

 

The confusion matrix for the random forest model is illustrated in table 17. This model 

not only has high recall for each class but also scores the highest recall for {Bus} class, 

our class of interest with 87.72% recall. The {Car} recall has been doubled to reach 

66.66%. The {Bike} recall has decreased compared to the KNN model but still achieves 

a high recall rate. The problem with this model is the high number of false positive 

instances classified as {Bus} with 21,803 instances. This high number of false positive 

instances has lowered the model precision for the class {Bus} to be 29.04% which 

means that only 29.04% out of all the instances predicted by the model as {Bus} are 

actually {Bus}. The analysis strategy is to choose the model that lower the number of 

instances with false negative prediction for our class of interest (high recall) so that the 

model does not miss any instances which actually labeled as {Bus}, after that the 

instances with false positive predictions (low precision) is filtered with spatial methods 

using a downstream process. Based on this, the random forest classifier with 87.443% 

accurate rate that has been trained with balanced data using Speed and Acceleration 

features and has n=10 has been chosen to be the best classifier that achieve accepted 

not only overall accuracy among all classes but also a high recall for the {Bus} class 

which is our class of interest. The model precision for {Bus} class is 29.04%. This 

number is used in the spatial filter process to exclude false positive cases. 
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4.2.5 Applying the chosen model on MobilityLog segments  
 

In this section, the random forest model that has been chosen from the previous step of 

analysis is applied to the 3,654 {motorized} segments of MobilityLog data. The results 

of segment classification are that 2,594 segments have been classified as {Bike}, 584 

segments have been classified as {Bus}and 476 segments have been classified as 

{Car}. After adding the 1,234 {Walk} segments from section 4.1 then the final result 

is that 2,594 (53%) segments have been classified as {Bike}, 1,234 (25%) segments 

have been classified as {Walk}, 584 (12%) segments have been classified as {Bus} and 

476 (10%) segments have been classified as {Car}. Figure 10 shows the percentage of 

each transportation mode in MobilityLog data after applying random forest classifiers. 

 

 
 

Figure 10. Distribution of transportation modes in MobilityLog segments 

 

4.2.6 Mixing machine learning algorithms with geographical analysis 
 

The results of spatial filtering for the false positive MobilityLog {Bus} instances are 

shown in figure 11. 

 

 
 

Figure 11. The filtration process of false positive Bus segments  
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According to the random forest model's precision, approximately 30% of the segments 

are accepted, while the other segments are filtered out. The accepted segments have the 

highest "within bus ratio," which ranges between 70% and 100% (green area), while 

the segments in the red area have the lower "within bus ratio" and have been filtered 

out. 
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5 Discussion and conclusion  

Smart cities are believed to be the cities of the future. One of the key pillars to build 

such cities is to design a reliable and sustainable public transportation system that 

facilitates the mobility of citizens and services while being green and environmentally 

friendly at the same time. Many classical techniques have been used in the past to plan 

public transportation systems; however, with the recent revolution in computational 

power and the availability of the huge amount of data that precisely describe patterns 

of movements, this method could be updated to leverage the current resources in order 

to plan more robust and sustainable public transportation systems that satisfy the 

increasing demand and preserve the environment. 

 

The first step required to conduct this study was obtaining unbiased data that accurately 

describes people's movements and represents the real usage of different transportation 

modes in a balanced way. However, acquiring such kind of data was not such a 

straightforward process. Traditional travel surveys have proved to be an inefficient way 

to collect the required data as they are time-consuming, inaccurate, and not real-time. 

The study has shown that data collected using GPS devices and smartphone 

applications is more convenient, accurate, and easy to collect. However, data usually 

comes with defects and problems that require huge effort and many iterations to solve. 

One of the most critical issues is the existence of outliers. Outliers affect the average of 

measures and can lead to totally different results and observations (Cousineau & 

Chartier, 2010). Removal of outliers was a crucial part of the data cleaning process 

during this analysis as the analysis is mainly based on calculating the mean of speed 

and acceleration for each movement segment and then using these averages to detect 

different transportation modes through machine learning models. Another important 

step when dealing with data from different sources like this analysis case is to ensure 

that all datasets are following the same units and all the timestamps following the same 

format and time zone. After the cleaning phase, GPS data of each user is divided to 

many tracks, trips, and segments. The segmentation process models the real movement 

pattern of users and divides GPS points into chunks that share the same transportation 

mode. During the analysis, the segmentation process has reduced the data by 99.07% 

of each original size, and this has significantly lowered the time and computational 

resources needed to complete the analysis; however, the segmentation process has 

added more complexity to the data processing steps. 

 

The results also show the ability to use supervised machine learning methods trained 

by different GPS segment features in order to build models that able to detect different 

transportation modes in the city of Tartu with a high accuracy rate. Building an accurate 

machine learning model is a function is many variables such as the cautious choice of 

training data, the parameter of the model itself, and the feature used during the learning 

phase. Using an imbalanced dataset during the learning phase results in models with 

higher accuracy than the same models trained with a balanced training dataset; 

however, the overall accuracy is not the only measure to consider when testing machine 
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learning models. Metrics like recall and precision for each individual class are 

important to measure the sensitivity of the model. Machine learning models that trained 

with balanced datasets have shown higher recall and precision for all the classes and 

overall high accuracy. For that reason, only results of models with balanced training 

datasets are considered even if they show lower overall accuracy than the same models 

trained with imbalanced datasets. The second important factor in building a robust 

machine learning model is the selection of the training input features of the movement 

segments; tested models have shown higher accuracy when using the average 

acceleration between segments points than the accuracy when using average speed 

between segments points. However, the same models have shown the highest accuracy 

in detecting public transport mode when using both average speed and acceleration as 

training features. The results show that the model that has scored the highest accuracy 

is a random forest model with a number of trees equals ten and overall accuracy equals 

87.443% and 87.72% recall for the public transport detection, followed by a k-nearest 

neighbours models with k=5 and overall accuracy equals 85.518% and decision tree 

model ranked last with overall accuracy equals to 84.925%. These results are higher 

than results achieved in other studies for the same models (Dabiri & Heaslip, 2018). 

The last thing to consider when building a machine learning model is tuning the model's 

most important parameters. In the case of the random forest model, the results of the 

same model with the same setup have been changed according to the number of training 

trees; the same applies to the KNN model, where accuracy has been varied according 

to the number of neighbours. Another recommendation to achieve higher accuracy is to 

train the model with data coming from the same source or even the same users (Shafique 

& Hato, 2015). This means that models trained with labeled data coming from the 

MobilityLog application could achieve higher accuracy. 

 

The distribution of the four available transportation mode is the city of Tartu {Bike, 

Walk, Bus, Car} based on the random forest prediction are {53%, 25%, 12%, 10%} 

respectively, however, this distribution does not imply on the whole city travel pattern 

and should not be generalized based on the fact that the MobilityLog data is biased 

towards university students and staff and not all the citizens of Tartu. Finally, the 

analysis shows the ability to combine the machine learning output with spatial 

information of the city's bus routes to filter out wrongly predicted bus segments using 

the model's precision value for the {Bus} class. Segments with a larger number of points 

intersecting with the bus routes are more likely to have {Bus} as their transportation 

mode, while segments with a lower number of points intersecting with the bus routes 

should be filtered as they are more likely to be wrongly classified by the model. The 

same framework used in the study can be replicated in other cities in order to detect 

different transportation modes in general and public transport mode in particular.  
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Ühistranspordi kasutamise tuvastamine Tartu linnas 

nutitelefonipõhiste GPS-andmete ja masinõppe meetoditel 

 

Abdelrahman Galal Elnahas 

Kokkuvõte 

On levinud arvamus, et targad linnad on tuleviku linnad. Selliste linnade loomise üheks 

põhisambaks on usaldusväärse ja jätkusuutliku ühistranspordisüsteemi kujundamine, 

mis hõlbustab inimeste ja teenuste liikuvust, olles samal ajal keskkonnahoidlik ja 

keskkonnasõbralik. Ühistranspordisüsteemide kavandamiseks on varasemalt kasutatud 

paljusid klassikalisi tehnikaid. Hiljutine arvutusvõimsuse revolutsioon ja suur 

kättesaadavate andmete hulk, mis täpselt kirjeldavad liikumise mustreid, võimaldavad 

aga kasutada uuemaid meetodeid. See on vajalik, et suurendada olemasolevat ressurssi 

ja seeläbi kavandada jõulisemaid ja jätkusuutlikumaid ühistranspordisüsteeme, mis 

rahuldavad kasvavat nõudlust ja säästavad keskkonda. 

Käesoleva magistritöö eesmärgiks on kasutada GPS-toorandmeid ja masinõppe 

(machine learning – ML) algoritme koos ühistranspordisüsteemi ruumiandmetega nagu 

bussiliinide asukohad, et luua mudel Tartu linna ühistranspordi kasutamise 

tuvastamiseks. Eesmärgist lähtuvalt on sõnastatud kolm järgnevat uurimisküsimust. 

1. Mis on kõige olulisem(ad) liikumisega seotud tunnus(ed) ühistranspordi kasutamise 

tuvastamiseks? 

2. Milline on suurima täpsusega masinõppe algoritm ühistranspordi kasutamise 

tuvastamiseks? 

3. Kuidas saab masinõppe algoritmide ja klassikalise geograafilise analüüsi 

kombineerimisel parandada ühistranspordi kasutamise tuvastamise mudelite täpsust? 

Treeningandmetena on kasutatud kolme märgistatud GPS-toorandmestikku, et 

kasutada masinõppe meetodeid nagu k-lähimad naabrid (K-nearest neighbours – KNN), 

otsustuspuu (Decision Tree – DT) ja otsustusmets (Random Forest – RF). Iga andmestik 

esindab ühte kolmest Tartu linnas olemas olevast transpordiliigist: buss, auto, jalgratas. 

Andmestikud puhastati ja segmenteeriti. Segmenteerimine on protsess iga kasutaja 

GPS-punktide osadeks jagamiseks, kus kõik sama osa punktid on sama 

transpordiviisiga. 10 puuga otsustusmetsa (RF) mudel osutus kõige paremaks, 87,443 

protsendi täpsusega mudeliks. Nii keskmise kiiruse kui ka keskmise kiirenduse 

kasutamine masinõppemudeli sisendina andsid kõrgema täpsuse võrreldes ainult iga 

üksiku liikumise tunnuse kasutamisega. Seejärel kasutati otsustusmetsa (RF) mudelit 

märgistamata MobilityLog mobiilirakenduse andmete jaoks transpordiviiside 

tuvastamiseks. 

Nelja võimaliku Tartu transpordiliigi (jalgratas, jala käimine, buss, auto) jaotus on 

otsustusmetsa (RF) mudeli tuvastamise põhjal vastavalt 53%, 25%, 12%, 10%. Siiski 

ei esinda antud jaotus kogu linnas toimuvat liikumist ja seda ei tohiks üldistada, sest 

MobilityLog’i andmed on kallutatud ülikooli üliõpilaste ja töötajate poole ning ei 

kajasta kogu Tartu elanikke. Masinõppe meetodid on kombineeritud ka Tartu linna 
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bussiliinide ruumiandmetega, et filtreerida valesti tuvastatud bussi kasutamise 

segmendid kasutades mudeli täpsuse väärtust klassi „buss“ jaoks. Lõikudel, kus 

bussiliinidega ristub suurem arv punkte, on suurema tõenäosusega transpordiliigiks 

„buss“. Samas kui bussiliinidega ristuvad väiksema punktide arvuga segmendid tuleks 

filtreerida, kuna need klassifitseeritakse suurema tõenäosusega mudeli poolt valesti. 
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