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Enzyme-constrained genome-scale metabolic model of Rhodotorula 

toruloides 

Abstract: 

Rhodotorula toruloides is a non-conventional, oleaginous yeast able to naturally accumulate 

high amounts of microbial lipids when grown on various carbon substrates, including from 

a lignocellulosic origin. Its unique metabolic characteristics, which make lipid synthesis 

possible, are not fully understood. With genome-scale models (GEMs) it is possible to 

systematically study cellular metabolism using metabolic flux predictions in silico. Enzyme-

constrained genome-scale modelling approach has been demonstrated to improve cell 

phenotype predictions in model organisms, including yeasts. In this work, enzyme-

constrained genome-scale metabolic model of R. toruloides was developed, incorporating 

cell physiology and absolute proteomics data on three different carbon substrates (xylose, 

glucose, acetic acid) under exponential growth and lipid accumulation phases. The generated 

model could predict experimental rates measured in all conditions, except for the gases on 

glucose. Further, predicted intracellular flux patterns demonstrated the differences in R. 

toruloides metabolism under different carbon substrates and the importance of cofactor 

balance (NADPH) during the lipid accumulation. These results and the developed genome-

scale model can be further used for the design of efficient microbial cell factories and various 

metabolic studies. 
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Ensümaatiliste piirangutega ülegenoomne mudel pärmile Rhodotorula 

toruloides 

Lühikokkuvõte: 

Rhodotorula toruloides on mittetraditsiooniline õlirikas pärm, mis on võimeline 

akumuleerima suures koguses mikroobseid lipiide, kasvades erinevatel kohalikku päritolu 

toormetel nagu näiteks lignotselluloosne biomass. Selle mikroorganismi ainulaadsed 

metaboolsed omadused, mis võimaldavad lipiidide sünteesi, pole tänaseni veel täielikult 

teada. Ülegenoomsete mudelite (GEM) abil on võimalik süstemaatiliselt uurida raku 

ainevahetust, kasutades metaboolsete voogude analüüsi in silico. Varasemalt on näidatud, et 

ensüümaatiliste piirangutega kasutamine ülegenoomsetes mudelites parandab 

märkimisväärselt raku fenotüübi prognoose mudelorganismides, sealhulgas pärmides. 

Käesolevas töös töötati välja R. toruloides’e ensüümaatilite piirangutega ülegenoomne 

metaboolne mudel, mis sisaldab raku füsioloogiat ja kvantitatiivse proteoomika andmeid 

kolme erineva süsiniku allika (ksüloosi, glükoosi, äädikhappe) kohta nii eksponentsiaalses 

kasvu kui ka lipiidide akumulatsiooni faasis. Loodud mudel suutis prognoosida 

eksperimentaalselt teostatud katsete tulemusi kõikides mõõdetud tingimustes, välja arvatud 

glükoosil kasvades eralduvaid süsihappegaasi koguseid. Lisaks näitasid ennustatud 

rakusisesed voogude mustrid erinevusi R. toruloides ainevahetuses erinevate 

süsinikuallikate korral ja kofaktor NADPH tasakaalu hoidmise olulisust lipiidide 

akumulatsioonil. Neid tulemusi ja väljatöötatud ülegenoomset mudelit saab edaspidi 

täiendavalt kasutada tõhusamate rakuvabrikute kavandamiseks kui ka erinevate 

metaboolsete uuringute läbiviimiseks. 

Võtmesõnad: 

Rhodotorula toruloides; pärm; mitte-traditiooniline pärm; õli-rikas pärm; metabolism; 

ülegenoomne mudeldamine; voogude analüüs; mikroobsed rasvad 

CERCS: 

T490 Biotehnoloogia 
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ABBREVIATIONS 

GEM - genome-scale model 

NADPH - nicotinamide adenine dinucleotide phosphate (reduced form) 

SCO - single cell oil 

AMP - adenosine monophosphate 

TCA - Tricarboxylic acid cycle (citric acid cycle) 

ACL - ATP citrate lyase 

CoA - coenzyme A 

HMF - hydroxymethylfurfural 

TAG - triacylglycerol 

XR - xylose reductase 

XDH - xylitol dehydrogenase 

FBA - Flux Balance Analysis 

kcat - enzymatic turnover number 

EC - Number Enzyme Commission Number 

BRENDA - Braunschweig Enzyme Database 

exp - exponential growth 

Nlim - nitrogen limitation 

DCW - dry cellular weight 

μ - specific growth rate (h-1) 

r - specific rate (g/(gDCW*h) 

Y - yield (g/g) 

PPP - pentose phosphate pathway 

NADH - nicotinamide adenine dinucleotide (reduced form) 

BLAST - Basic Local Alignment Search Tool 

XK - xylulokinase 
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LXR - L-xylulose reductase 

DAD-2 - D-arabinitol 2-dehydrogenase 

RK - ribulokinase 

PK - phosphoketolase 

ACS - acetyl-CoA synthetase 

ACC - acetyl-CoA carboxylase 

ME - malic enzyme 
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INTRODUCTION 

Transition towards biobased, circular economy to reduce the industrial dependence on fossil-

based resources requires new technologies. One of the options is to convert available 

biomass feedstocks into valuable chemicals using microbes as biocatalysts. 

Rhodotorula toruloides is a non-pathogenic, aerobic, non-conventional yeast that has 

recently emerged as one of the most promising yeasts for a sustainable production of 

chemicals and fuels due to its natural ability to synthesize high amounts of lipids and 

carotenoids (Park, Nicaud and Ledesma-Amaro, 2018). However, its unique metabolic 

properties are not yet fully understood. The emergence of systems biology methods, 

including genome-scale modelling and multi-omics analysis, has enabled a holistic 

investigation of the metabolism of non-conventional microorganisms, including R. 

toruloides and, in particularly, its oleaginous phenotype. 

Genome-scale models (GEMs) have enabled in silico prediction of cellular behaviour and 

the biological discovery through contextualising high-throughput data (Kerkhoven, Lahtvee 

and Nielsen, 2015). GEM improved with enzymatic constraints of the model yeast 

Saccharomyces cerevisiae demonstrated the ability to predict complex biological 

phenomenon, such as Crabtree effect (Sánchez et al., 2017). 

The first GEM of R. toruloides, rhto-GEM, (Tiukova, Prigent, et al., 2019) was able to 

provide valid growth predictions on various carbon substrates and predict genetic 

engineering targets, some of which have previously been engineered to successfully increase 

specialty chemicals production. In this work, the development of an enzyme-constrained 

GEM of R. toruloides ecRhtoGEM, is described. The results of model simulation on three 

different carbon substrates – xylose, glucose, and acetic acid – showed the differences in 

metabolic characteristics, in particularly, related to lipid biosynthetic pathways. 
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1 LITERATURE REVIEW 

1.1 The role of yeast cell factories in biobased economy 

To ensure a sustainable development of industrialisation in the future, alternatives to the use 

of fossil fuel-based natural resources are encouraged. Heavy use of fossil fuel resources is 

associated with the greenhouse gas emissions, political disruptions and military conflicts and 

price volatility (Panwar, Kaushik and Kothari, 2011; Owusu and Asumadu-Sarkodie, 2016). 

Among most likely alternatives, biomass is the largest solid renewable natural resource, 

being less polluting in terms of particulates, like sulphur, lead, and greenhouse gasses that 

cause global warming (Goldemberg, 2007; Panwar, Kaushik and Kothari, 2011). Biomass 

feedstock (renewable carbon) includes grasses, wood and forest residues, aquatic biomass 

(algae and seaweeds), agricultural crops and residues (such as wheat, beet, and straw), as 

well as animal, urban and industrial residues, including solid waste and liquid effluents that 

are gradually increasing along with a growing world population (Fernando et al., 2006; 

Goldemberg, 2007; Takkellapati, Li and Gonzalez, 2018). Biorefinery - a system similar to 

petroleum refinery – is a process of refining biomass in a commercial context for the 

production of fuels, chemicals, polymers, materials, food, feed, and value-added products 

with minimum waste generation (Holladay et al., 2007; Koutinas et al., 2014). Integrated 

biorefinery concept includes processes, plants and facilities to produce biofuels, energy and 

chemicals from biomass (Lee, Lee and Lee, 2021). Currently, several biorefinery processes 

exist allowing the use of a single feedstock to produce two or three products, including 

energy-driven products (Lee, Lee and Lee, 2021). Successful transition to biobased economy 

involves the development of new technologies and unit operations, production of new 

building blocks, conversion of these building blocks into marketable products and significant 

investments to scale-up new processes (Koutinas et al., 2014). 

Microorganisms as biocatalysts have been employed for the production of next generation 

biofuels and biobased chemicals for the past decades. Biobased production routes have been 

described to produce: (i) chemicals with 2-6 carbons (C2-C6) that can be further used by the 

chemical industry or other industrial sectors, (ii) single cell oils (SCOs) with 14-24 carbons, 

and (iii) various biopolymers (Koutinas et al., 2014; Lee, Lee and Lee, 2021). Typically, for 

production of the C2-C4 chemicals (lactic acid, propionic acid, 1,3-propanediol (PDO)) and 

biopolymers (polyhydroxyalkanoate (PHA), cellulose) bacteria are more suitable production 

hosts. Nevertheless, yeasts are as well used for the production of several chemicals from the 

C2-C6 category, such as C2 bioethanol (produced approximately 100 billion litres per year 
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globally, (Bajpai, 2021)), C2 polyglycolic acid (Jem and Tan, 2020), C3 polylactic acid 

(PLA) (VTT Technical Research Centre of Finland, 2021), C4 L-malic and fumaric acids 

(Koutinas et al., 2014). Also, for the production of C5 polyol xylitol, yeasts are regarded as 

most appropriate microbial producers as capable of maintaining redox balance during xylitol 

accumulation (Koutinas et al., 2014). Yeasts are the best producers of microbial oils and 

fats, called single cell oils (SCOs) (Koutinas et al., 2014). Yeast SCOs are mainly composed 

of C14-C18 fatty acids (such as saturated myristic, palmitic, stearic, oleic acids) of neutral 

fractions (triglycerides and to a lesser extent steryl-esters) and could be a potential substitute 

for natural oils and fats as feedstock for chemical production, including biodiesel (Koutinas 

et al., 2014; Bandhu et al., 2020). Compared with extraction from oil crops and plants, 

microbial production of lipids has many advantages including short production cycle, 

tailored processes and better accessibility to structural diversity (Wen et al., 2020). 

Oleochemicals can be used to produce biofuels, surfactants, waxes, surface coatings, 

lubricants, cosmetics, and plastics, etc. Oleaginous yeasts of Lipomyces, Yarrowia and 

Rhodotorula genera can natively produce lipid content up to 70% (w/w) and grow on wide 

range of substrates and thus have been used  as model systems to understand genetic control 

of lipid productivity (Li, Zhao and Bai, 2007; Angerbauer et al., 2008; Ageitos et al., 2011). 

Oleaginous yeasts can use a variety of substrates as carbon sources – pure sugars, sugar-

enriched wastes (cheese-whey, molasses), vegetable oils, crude industrial saturated fatty 

acids, waste cooking oils, glycerol, mixtures of hydrophilic fats or oils , and lignocellulosic 

biomass derived sugars (Papanikolaou and Aggelis, 2011b). Lignocellulosic biomass is an 

abundant, non-edible organic material in nature. It contains ~40-50% cellulose, a glucose 

polymer; ~25-35% hemicellulose, a sugar heteropolymer; and ~15-20% lignin, a non-

fermentable phenyl-propene unit; plus lesser amount of minerals, oils, soluble sugars, and 

other components (Holtzapple, 1993). To use it for microbial conversion, lignocellulosic 

biomass requires pre-treatment to obtain fermentable sugars (Jin et al., 2015). In 

biorefineries, cellulose fraction of lignocellulosic biomass is used for fuel production, mainly 

bioethanol. Although hemicellulose and lignin are commonly used for energy production, 

higher economic efficiency can be reached if all components of lignocellulose will be 

maximally valorised. Therefore, the integration of hemicellulosic sugars (pentoses, C5) in 

biorefinery concepts is important to reach higher economical efficiencies. Xylose is the 

second most abundant sugar in nature after glucose (Sànchez Nogué and Karhumaa, 2015). 

Xylose and arabinose are part of this renewable and low-cost raw materials interesting 

alternative to conventional carbon sources (Papanikolaou and Aggelis, 2011b). 
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Hemicellulosic fraction of lignocellulose biomass could be a promising substrate for the 

production of microbial oils (SCOs) and oleochemicals. 

In the context of biorefineries, it is important that the microorganisms can consume and 

tolerate the components of the biomass hydrolysate, such as the yeast Rhodotorula 

toruloides. With the advances in biotechnology, genomics and systems biology, microbial 

production of chemicals can be significantly improved with engineered cell factories in 

terms of substrate utilization and production of selected chemicals, compared with the 

metabolic capabilities of native microorganisms. 

 

1.2 Rhodotorula toruloides 

Rhodotorula toruloides (previously known as Rhodosporidium toruloides) is a non-

pathogenic, aerobic, oleaginous red yeast, known as a great producer of microbial (Ageitos 

et al., 2011; Sampaio, 2011) and carotenoids (Dias et al., 2015). Oleaginous microorganisms 

are capable of accumulating at least 20% of their dry cell mass as lipids (Thevenieau and 

Nicaud, 2013), but R. toruloides can accumulate up to 76% (Li et al., 2006). The mechanism 

of SCOs production by oleaginous yeasts has been widely studied.  

SCOs accumulation is achieved using either sugars or hydrophobic compounds as carbon 

sources. Higher lipid accumulation can be achieved under carbon excess and nutrient like 

nitrogen, sulphur (Wu et al., 2011), or phosphorous (Wu et al., 2010) limitation. Nitrogen 

limitation leads to rapid decrease in cellular adenosine monophosphate (AMP). Under these 

conditions, large amounts of tricarboxylic acid (TCA) cycle intermediate citric acid are 

produced, but not further catalysed via TCA cycle. The latter components are secreted to the 

cytoplasm and cleaved by ATP citrate lyase (ACL) – a key enzyme characterizing an 

oleaginous microorganism. ACL cleaves citric acid into acetyl-CoA and oxaloacetate, and 

acetyl-CoA is used by fatty acid synthetase to generate cellular fatty acids and subsequently 

triglycerides (Papanikolaou and Aggelis, 2010, 2011a, 2011b). Without ACL (non-

oleaginous microorganisms) citric acid is secreted into growth medium that subsequently 

leads to the accumulation of polysaccharides (Ratledge and Wynn, 2002; Papanikolaou and 

Aggelis, 2011b). 

R. toruloides has been mostly studied in regard to its lipid accumulation capabilities. 

Production yields and composition of microbial lipids change depending on cultivation 

conditions. High carbon/nitrogen (C/N) ratio improves lipid production (Ratledge and 
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Wynn, 2002) and under different carbon sources, the highest lipid content in biomass was 

achieved when grown on xylose as a sole carbon source (Lopes et al., 2020). R. toruloides 

is a natural producer of other high-value compounds, such as carotenoids (Dias et al., 2015). 

R. toruloides can consume 2nd generation carbon sources, such as glucose (Zhang, Ito, et al., 

2016), xylose (Wiebe et al., 2012), acetate (Huang et al., 2016), glycerol (Xu et al., 2012), 

and complex biomass mixtures, such as non-detoxified sugarcane bagasse hydrolysate 

(Bonturi et al., 2017), lignocellulosic hydrolysates (Fei et al., 2016; Lopes, Bonturi and 

Miranda, 2020). It can tolerate toxic compounds commonly found in complex biomass 

substrates (Palmqvist and Hahn-Hägerdal, 2000; Lopes, Bonturi and Miranda, 2020), such 

as HMF, furfural, acetic acid that can inhibit cell growth in most conventional yeasts 

(Palmqvist and Hahn-Hägerdal, 2000; Lopes, Bonturi and Miranda, 2020). Among other 

non-conventional yeasts, R. toruloides demonstrated the best growth characteristics when 

grown on concentrated hemicellulosic hydrolysate from birch (Monteiro de Oliveira et al., 

2021). 

To facilitate the use of various synthetic and systems biology tools with R. toruloides, 

complete genome sequences have been determined for different strains  (Kumar et al., 2012; 

Zhu et al., 2012; Morin et al., 2014; Hu and Ji, 2016; Zhang, Skerker, et al., 2016; Sambles 

et al., 2017; Tran et al., 2019). A haploid strain NP11,  was the first full genome sequence 

from de novo assembly for R. toruloides (Zhu et al., 2012). Strain IFO0880, also a haploid 

strain, was first annotated by (Zhang, Skerker, et al., 2016), revised by (Coradetti et al., 

2018), and now IFO0880 v4.0. is accessible from Joint Genome Institute’s Mycocosm 

genome portal (Nordberg et al., 2014) (available at mycocosm.jgi.doe.gov). (Coradetti et al., 

2018) performed fitness analysis of gene deletion or disruption mutants within pooled 

populations, improving the original genome annotation (Zhang et al. 2016) with PacBio 

sequencing. Strains NP11 and IFO0880 metabolism is different, but still “closely related” 

(Zhang, Skerker, et al., 2016). Both strains IFO0880  (Zhang, Ito, et al., 2016; Zhang, 

Skerker, et al., 2016) and NP11 (Sun et al., 2017; Yang et al., 2018) have been successfully 

used in metabolic engineering studies to improve lipid production. R. toruloides CCT7815 

was obtained by the adaptation of the strain CCT0783 (synonym IFO10076) in sugarcane 

bagasse hydrolysate (Bonturi et al., 2017). The genomic DNA of CCT0783 was sequenced 

using MiSeq platform and annotated against reference NP11 gene sequences (deposited at 

DDBJ/ENA/GenBank under the accession JABGON000000000i). Genomic analysis 

showed that CCT0783 is possibly a multiploid strain, genome sequence with one of its alleles 
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showing over 98% similarity with NP11, while the other allele shows around 80% of 

similarity (Bonturi et al., under preparation).  

Systems biology methods, including genome-scale modelling and multi-omics analysis, 

have been used for a holistic understanding of R. toruloides metabolism and, in particularly, 

its oleaginous phenotype. Genome-scale models (GEMs) provide an organism-specific 

summary of metabolic network that contains all the known metabolic reactions derived from 

an annotated genome sequence and its gene-protein relationships for the organism of interest 

(Orth, Thiele and Palsson, 2010; Kerkhoven, Lahtvee and Nielsen, 2015). GEMs are not 

only valuable for testing different hypothesis in silico before initiating in vivo laboratory 

experiments, but also for predicting yields or even suggesting targets for gene expression 

changes or knockouts (Kerkhoven, Lahtvee and Nielsen, 2015; O’Brien, Monk and Palsson, 

2015; Zhang and Hua, 2016). To date, GEMs have been reconstructed for R. toruloides 

strains NP11 (rhto-GEM (Tiukova, Prigent, et al., 2019)) and IFO0880 (iRhto1108 (Dinh et 

al., 2019; Kim et al., 2021)). These GEMs were used to design metabolic engineering 

strategies for enhanced triacylgycerol (TAG) (Dinh et al., 2019), linolenic acid and 

carotenoids production in (Tiukova, Prigent, et al., 2019), and to study the phenotypic 

changes under nitrogen limitation (Dinh et al., 2019). In the most recent studies, rhto-GEM 

(Tiukova, Prigent, et al., 2019)  was used to study metabolic mechanisms for the utilization 

of three different carbon sources with the focus on lipid production (Lopes et al., 2020) and 

to explain metabolic mechanisms involved in the xylose assimilation (Pinheiro et al., 2020). 

The utilisation of other substrates that can be often found in lignocellulosic biomass 

hydrolysate was investigated using the GEM by (Kim et al., 2021). 

Enabled by high-throughput technologies, such as genomics, transcriptomics, proteomics, 

metabolomics, and also fluxomics, large-scale biological data sets have been crucial for a 

better understanding the phenotypic characteristics of R. toruloides (Zhu et al., 2012; 

Coradetti et al., 2018). To improve the lipid yield in R. toruloides, metabolic pathways, such 

as acetyl-CoA production (Zhu et al., 2012), ACL (Evans and Ratledge, 1985), 

mitochondrial and peroxisomal 𝛽 oxidation (Hiltunen et al., 2003), and fatty acid synthase 

(FAS) system, have been investigated using proteomics analysis during growth on glucose 

(Liu et al., 2009; Shi et al., 2013) and xylose (Tiukova, Brandenburg, et al., 2019). Fatty 

acid biosynthesis is often limited by the supply of NADPH, and these proteomics studies 

have shown differences in enzyme levels involved in NADPH regeneration. Canonical fatty 

acid biosynthesis starts with the conversion of acetyl-CoA into malonyl-CoA by acetyl-CoA 
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carboxylase (ACC). Fatty acids are synthesized from acetyl-CoA and malonyl-CoA, using 

latter as the extending unit. Each elongation of two carbon units in fatty acid biosynthesis 

requires the oxidation of two NADPH molecules (Lian and Zhao, 2015). In oleaginous 

yeasts, the main candidate enzymes involved in NADPH generation are two enzymes of the 

pentose phosphate pathway (PPP) (glucose-6-phosphate dehydrogenase and 6-

phosphogluconate dehydrogenase), cytosolic malic enzyme (ME), and NADP+-dependent 

isocitrate dehydrogenase, if it occurs in the cytosol (Ratledge, 2014). Malic enzyme is known 

to supplement NADPH for de novo lipogenesis from the early biochemical studies (Wynn, 

Hamid and Ratledge, 1999). In addition to fatty acid biosynthesis, xylose utilisation requires 

NADPH.  Xylose reductase (XR, NADPH-dependent) reduces xylose to xylitol, which is 

then oxidized by xylitol dehydrogenase (XDH, NADH-dependent) to xylulose (Tiukova, 

Brandenburg, et al., 2019). Recently, multi-omics analysis suggested an alternative 

metabolic pathway for xylose utilisation in strain IFO0880 involving D-arabinitol and D-

ribulose forming ribulose-5-phosphate instead of the known pathway forming D-xylulose-

5-phosphate (Kim et al., 2021). 

Despite these findings, there is still a lack of complete understanding of R. toruloides 

metabolism. Current stoichiometric models of R. toruloides can capture all routes for 

conversion of substrates into biomass and globally balance cofactor needs (Dinh et al., 

2019). However, they cannot link enzyme levels with metabolite concentrations and 

metabolic fluxes (Dinh et al., 2019). This study is aimed at development of a genome-scale 

model with direct integration of enzyme abundances, coupled with the analysis of large-

scale proteomics data sets representing protein levels at multiple environmental conditions. 

 

1.3 Overview of modelling methods 

The first models of metabolic pathways were based on single enzyme kinetics described by 

ordinary differential equations (Liao, 1993). In the late 1990s, after the rise of whole-genome 

sequencing technologies, the field of constraint-based modelling emerged (Kerkhoven, 

Lahtvee and Nielsen, 2015). Nowadays, functions of most of the metabolic genes in an 

organism are identified and assigned using high-throughput sequencing technology together 

with the tools for automated genome annotation. Whole-cell metabolic network is 

reconstructed based on its genome annotation and curated using databases and strain-specific 

physiological information available in literature. Once the protein functions are integrated 
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into a metabolic network, it can be used to analyse, predict and interpret cellular behaviour 

(Figure 1). 

 

 

Figure 1. Simplified scheme of a holistic approach in biology. After identification and 

functional assignment of metabolic genes in organism they are integrated into a metabolic 

network which can then be subjected to the methods such as flux balance analysis to analyse, 

interpret and predict cellular behaviour. 

 

Computational modelling is defined in a form of dynamic mass balances – metabolite 

concentration equals to the difference between the rates at which the metabolite is produced 

and consumed (Edwards, Covert and Palsson, 2002). Dynamic mass balances are formally 
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analogous to Kirchhoff’s first law for electrical circuits (Edwards, Covert and Palsson, 2002) 

and can be represented as follows: 

𝑆 ∙ 𝑣 = 𝑏     (1) 

where S is a matrix consisting of stoichiometric coefficients of all metabolic reactions where 

rows represent metabolites and columns represent individual reactions, v is a vector of 

metabolic rates of n reactions, and b is a vector containing the net metabolite uptake by the 

cell (Varma and Palsson, 1994). 

If a complete kinetic information is not available, as it happens for most reactions, the scope 

of dynamic analysis is limited. In that case, metabolic quasi-steady state is assumed, which 

means that all metabolic fluxes leading to the formation and degradation of any metabolite 

must be balanced. It is assumed that metabolic transients are typically rapid compared to 

cellular growth rates and environmental changes (Varma and Palsson, 1994). Therefore, 

steady state mass balance can be written as: 

𝑆 ∙ 𝑣 = 0      (2) 

Steady state can be reached in chemostat cultivation experiments and, in theory, during the 

controlled batch logarithmic growth phase when organisms grow at their maximum specific 

growth rate (Kerkhoven, Lahtvee and Nielsen, 2015). As normally the number of fluxes 

exceeds the number of metabolites, system is underdetermined and cannot solve equations 

algebraically. 

 

1.3.1 Constraint-based modelling 

At the heart of constraint-based modelling are stoichiometric coefficients of each metabolic 

reaction represented stoichiometric matrix (S). Genome-scale models (GEMs) are genome-

wide constraint-based models constrained by (i) stoichiometry of network; (ii) substrate 

uptake rates but can be also thermodynamics; (iii) assumption of a steady state (Kerkhoven, 

Lahtvee and Nielsen, 2015). Mass balances can be considered “hard-wired” constraints, 

experimental measurements – constraints to the specific condition. (Edwards, Covert and 

Palsson, 2002). Due to steady-state assumption, commonly available optimization 

techniques, such as Flux Balance Analysis (FBA), are applicable to solve the optimization 

problem of the network. Constraint-based modelling is easier to implement and has become 

very popular for many applications from biomedicine to industrial biotechnology. 
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1.3.1.1 Flux Balance Analysis 

Reconstruction of a metabolic network is not sufficient to specify the metabolic phenotypes 

that will be expressed under certain environmental conditions. Metabolic phenotypes can be 

defined in terms of flux distribution (fluxome) through a metabolic network, obtained using 

mathematical calculation and computer simulation techniques (Edwards, Covert and 

Palsson, 2002). FBA is a tool for the analysis of GEMs as a linear programming problem, 

where by setting an objective function it seeks its maximal value within stoichiometrically 

defined domain (Varma and Palsson, 1994). FBA can identify a single optimal flux 

distribution that lies on the edge of allowable solution space (Figure 2) (Orth, Thiele and 

Palsson, 2010): 

 

 

Figure 2. Conceptual basis of constraint-based modelling and FBA. With no constraints, the 

flux distribution of a biological network may lie at any point in a solution space. When mass 

balance constraints imposed by the stoichiometric matrix S (1) and capacity constraints 

imposed by the lower and upper bounds (ai and bi) (2) are applied to a network, it defines an 

allowable solution space denying points outside this space. (Orth, Thiele and Palsson, 2010). 

 

FBA is implemented in software tools for constraint-based modelling that all depend on at 

least one numerical optimization solver (Heirendt et al., 2019). Commonly used objective 

function maximizes specific growth rate, ATP generation or product formation (Burgard and 

Maranas, 2003; Schuetz, Kuepfer and Sauer, 2007): 



 

19 

 

• biomass reaction is an artificial, lumped reaction representing metabolite 

consumption in proportion of cell growth, including nucleoside triphosphate (NTP) 

requirements for mRNA, amino acid requirements for proteins, lipid requirements 

for the cell wall, and metal ion needs (Salvy and Hatzimanikatis, 2020); 

• ATP maintenance requirements are split into growth-associated energy costs 

(GAEC) that quantify energy costs that are not captured in the biomass equation and 

non-growth associated maintenance (NGAM) that accounts for (i) shifts in metabolic 

pathways, (ii) energy spilling reactions, (iii) cell motility, (iv) changes in stored 

polymeric carbon, (v) osmoregulation, (vi) proofreading, synthesis and turnover of 

macromolecular compounds, (vii) defence against O2 stress (van Bodegom, 2007). 

 

1.3.1.2 Enzyme-constrained models 

To address the oversimplified assumption associated with FBA-based model predictions that 

the uptake rate of carbon source limits production and to capture protein level-related 

limitations, further improvements in GEMs in different directions have been developed. This 

can be achieved by: (i) global biochemical constraints, or (ii) direct integration of omics 

data. Models with improved prediction accuracy have mainly been developed for well-

characterized microorganisms, such as Escherichia coli (E. coli) (Salvy and Hatzimanikatis, 

2020) and  Saccharomyces cerevisiae (S. cerevisiae) (Oftadeh et al., 2021). Most advanced 

metabolic models have been able to simulate biologically complex phenotypes, such as 

Crabtree effect (Sánchez et al., 2017), maximal growth rate (Niebel, Leupold and 

Heinemann, 2019). The next challenge, however, is conveying these advanced approaches 

to non-model organisms, such as R. toruloides. 

Different approaches have been developed to account for enzymatic limitations in metabolic 

models. Metabolomics and expression modelling (ME-models) approach includes all 

processes required for the synthesis of functional proteins starting from the transcription 

rates of genes (Lloyd et al., 2018). In FBA with molecular crowding (FBAwMC) approach, 

total proteome capacity constraint is applied without direct integration of proteomics data 

(Beg et al., 2007; van Hoek and Merks, 2012; Nilsson and Nielsen, 2016). The first approach 

that allows for a direct incorporation of proteomics data to account for enzyme limitation 

was the GECKO framework (abbreviated from GEM with enzymatic constraints using 

kinetic and omics data) (Sánchez et al., 2017). 
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The GECKO method is built on the principle that any metabolic reaction flux has a 

biologically natural constraint equal to the intracellular enzyme concentration multiplied by 

the enzyme’s turnover number (𝑘𝑐𝑎𝑡). In metabolic network, the enzyme constraint is 

defined as maximum rate of enzymatic reaction (𝑣𝑚𝑎𝑥) that the metabolic flux cannot exceed 

calculated as: 

𝑣 ≤ 𝑘𝑐𝑎𝑡 ∙ [𝐸]      (3) 

where v is flux of reaction in mmol (gDCW h)-1, kcat is enzyme’s turnover number or specific 

catalytic rate (h)-1, and E is the concentration of an enzyme in mmol gDCW-1. 

In GEMs, metabolism is represented in S-matrix, where columns represent stoichiometric 

coefficients, rows indicate mass balances. In GECKO approach, genome-scale modelling is 

extended by representing enzymes as limited capacity entities in each reaction. New rows 

are added to S-matrix representing enzymes, new columns are added representing enzyme 

usage (Figure 3). 

 

 

Figure 3. GECKO framework includes 4 submatrices that appear inside a new stoichiometric 

matrix: upper left equivalent to the original S matrix, upper right has only zeros, lower left 

with kinetic information, lower right is identity matrix (Sánchez et al., 2017). 

 

With these formalisms, enzymes are not consumed, but rather occupied. Given the steady-

state assumption, for a fraction of second, there is a limited amount of enzyme occupied by 

its substrates to catalyse the corresponding flux. Using the GECKO pipeline requires detailed 

strain physiological parameters that are applied to (i) automatically modify limiting enzyme 
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abundances; (ii) rescale biomass equation, and (iii) fit growth (GAEC) and nongrowth-

associated energy costs (NGAEC). Energy requirements are estimated by maximizing for 

ATP production under carbon substrate uptake rate and growth rate constraints. In case of 

incomplete proteomic data, enzyme constraints are replaced with pseudo-metabolite that acts 

as an enzyme pool – total mass constraint similar to molecular crowding formalism in 

FBAwMC approach (Beg et al., 2007). Enzyme turnover numbers are automatically queried 

from BRENDA (Schomburg et al., 2012). 

Using the GECKO toolbox, enzyme-constrained models (ecModels) have been generated 

for S. cerevisiae, Y. lipolytica, Kluyveromyces marxianus (K. marxianus), E. coli and Homo 

sapiens (Domenzain et al., 2021). In this study, condition-specific enzyme-constrained 

genome-scale model for R. toruloides was developed with an aim to study the differences in 

metabolism under the consumption of xylose, glucose and acetic acid and to identify the 

bottlenecks of the conversion of these three carbon substrates into biomass or other valuable 

products. 
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2 THE AIMS OF THE THESIS 

To design and establish microbial cell factories using non-conventional oleaginous yeast R. 

toruloides, systemic investigation of R. toruloides metabolism is necessary. Enzyme-

constrained genome-scale metabolic modelling allows for a systemic investigation of cell 

metabolism by integration of proteomics and kinetic data. The existing metabolic network 

reconstructions of R. toruloides provide for the basis for further development of condition-

specific metabolic models. 

The aims of this thesis are: 

• Generating enzyme-constrained genome-scale model of R. toruloides; 

• Using model simulations, to understand the main sources of NADPH during lipid 

accumulation on different carbon substrates.  
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3 EXPERIMENTAL PART  
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3.1 MATERIALS AND METHODS 

3.1.1 Batch growth experiments 

3.1.1.1 Strain, inoculum and media 

R. toruloides CCT7815 (Coleção de Culturas Tropicais, Fundação André Tosello, Campinas, 

Brazil) was used throughout this study due to its  increased lipid production and induction 

of hydrolysate-tolerance and lipid accumulation genes without physiological changes 

regarding growth and substrate consumption (Bonturi et al., 2017), deeming this strain 

potentially useful for biorefinery applications. 

Pre-inoculum was prepared as described in Pinheiro et al. (2020). Inoculum for the 

cultivation was prepared in batch cultivation on basal mineral medium supplemented with a 

single carbon source (either glucose or acetic acid) and one nitrogen source (ammonium 

sulphate) in duplicate flasks at 200 rpm and 30°C for 24 h. Before inoculation, cells were 

washed with 0.9% (m/v) NaCl solution. The basal mineral medium contained: 3.0 g/L 

KH2PO4, 0.5 g/L MgSO4·7H2O, 1 mL/L vitamin solution, and 1 mL/L trace metal solution 

(Lahtvee et al., 2017). This medium was supplemented with sole carbon source of 18.2 g/L 

glucose or 20.0 g/L acetic acid and 5 g/L (NH4)2SO4. The carbon/nitrogen (C/N) molar ratio 

of the medium was 8.8. 

In bioreactor experiments, basal mineral medium was supplemented with either 63.6 g/L 

glucose and 0.9 g/L urea, or 20.0 g/L acetic acid and 0.6 g/L (NH4)2SO4, and 0.1 mL/L 

antifoam 204 (Sigma-Aldrich, St. Louis, MO, United States). The (C/N) molar ratio of the 

media were set to 69 and 80, respectively, similarly as in experiments on xylose by (Pinheiro 

et al., 2020). 

 

3.1.1.2 Yeast cultivation 

Cultivation in a batch growth regime was performed in 1-L bioreactors (Applikon 

Biotechnology, Delft, the Netherlands) with a working volume of 900 mL at pH 6.0 

controlled by the addition of 2 mol/L KOH. Dissolved oxygen was maintained not lower 

than 25% at 1-vvm airflow by regulating stirring speed between 400 and 600 rpm. CO2 and 

O2 outflow gas composition were measured using an online gas analyser (BlueSens gas 

sensor GmbH, Herten, Germany). Cell turbidity was monitored on-line using Bug Lab 

BE3000 Biomass Monitor (Bug Lab, Concord, CA, United States) at 1300 nm and off-line 
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using UV/Vis spectrophotometer at 600 nm (U-1800, Hitachi High-Tech Science, Tokyo, 

Japan). Data collection and processing was performed with BioXpert V2 software v2.95 

(Applikon Biotechnology, Delft, the Netherlands). 

Cells were inoculated at 0.4 OD600. Samples for dry cell weight were collected every 6 

hours during the exponential growth phase and every 24 hours during the nitrogen limitation 

phase. Samples for the extracellular metabolite, carotenoid, lipid, total cellular protein 

content and proteomics analyses were collected in every 3 hours during the exponential 

growth phase and in every 24 or 48 hours during the nitrogen limitation phase. Samples were 

prepared and stored as previously described (Pinheiro et al., 2020). Samples were taken from 

bioreactors to 2-mL tubes, centrifugated for 30 s at 4°C and 18000×g. The supernatant was 

stored at -20°C for extracellular metabolite analyses. Cell pellets were snap-frozen in liquid 

nitrogen and stored at -80°C for the analyses of biomass composition and proteomics. All 

experiments were performed in duplicate. 

 

3.1.1.3 Analytical methods 

Cell mass was expressed as dry cell weight (DCW) measured gravimetrically and used for 

the calibration of cell optical density data. Extracellular metabolites were quantified using 

HPLC (LC-2030C Plus, Shimazu, Kyoto, Japan) equipped with a refractive index detector 

(RID-20A, Shimadzu, Kyoto, Japan). The concentrations of xylose, glucose, organic acids 

and glycerol were determined using Rezex ROA Organic Acid column (Phenomenex, 

Torrance, United States) with isocratic elution of 5 mmol/L H2SO4 at a flow rate of 0.6 

mL/min and at 45°C. Yields and specific consumption and production rates were calculated 

considering the consumption and production in each growth phase separately starting from 

when the carbon source was consumed. 

Fatty acid content was determined using quantitative gas chromatography-mass 

spectrometry (GC-MC) analysis with the internal standard method, similar as described in 

(Tammekivi et al., 2019). The derivatisation procedure of fatty acids was based on 

(Tammekivi et al., 2021). Fatty acid composition was profiled by using an Agilent 7890A 

GC instrument connected to an Agilent 5975C inert XL MSD with a triple-axis detector, an 

Agilent G4513A autosampler and capillary column Agilent DB-225MS (30 m x 0.25 mm 

diameter, 0.25 µm film thickness) with a (50%-cyanopropylphenyl)-methylpolysiloxane 

stationary phase. Commercial standard mixture of fatty acid methyl esters (FAME, C8-C24, 



 

26 

 

Supelco) was used for fatty acid identification and quantification. Finally, the obtained 

values were recalculated to represent the concentrations of a TAG molecule, where all the 

bonded fatty acids are the same. The sum of the quantified fatty acids was presented as the 

total lipid content. Fatty acids were quantified at late exponential growth phase and at the 

end of nitrogen limitation phase. The results represent cumulative value for each phase. 

Carotenoids were quantified at the late exponential growth phase, mid-nitrogen limitation 

phase and at the end of nitrogen limitation phase. The results were calculated to represent 

cumulative value for each phase. The extraction and quantification of carotenoids was 

performed as described in (Pinheiro et al., 2020) using Acquity Ultra Performance Liquid 

Chromatography (UPLC) (Waters, Franklin, MA, United States) instrument equipped with 

a TUV detector (Waters, Franklin, MA, United States) and C18 column (BEH130, 1.7 μm, 

2.1 x 100 mm, Waters, Franklin, MA, United States). 𝛽-carotene standard (Alfa Aesar, 

Tewksbury, MA, United States) was used to identify all peaks according to the known 

carotenoid retention time profile detected at 450 nm (Lee et al., 2014). 

Total cellular protein content was quantified at mid-exponential growth phase and mid-

nitrogen limitation phase. The results represent cumulative value for each phase. Sample 

preparation and protein extraction were performed as described in (Kumar and Lahtvee, 

2020). Commercially available colorimetric assay (Micro BCA™ Protein Assay Kit, 

Thermo Fisher Scientific, Waltham, MA, United States) with calibration curve of bovine 

serum albumin (BSA) standard of linear range dilutions from 0.5 to 200 μg/mL was used to 

measure protein concentration. 

Absolute proteome analysis was performed using fully labelled cellular biomass as an 

internal standard in the measurements. To produce the internal standard, R. toruloides was 

cultivated in a minimal mineral medium containing labelled heavy 15N, 13C-lysine 

(Silantes, Munich, Germany), resulting in 96.6% heavy labelling of proteogenic lysine 

((Pinheiro et al., 2020), data not shown). Proteome quantification was done using nanoscale 

liquid chromatography with tandem mass spectrometry, as described in (Sánchez et al., 

2021). 

 

3.1.2 Quantification of proteome and bioinformatics 

Mass-spectrometric raw data were identified with MaxQuant v1.6.1.0 software package 

(Tyanova, Temu and Cox, 2016). Data were searched against reference proteome database 
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R. toruloides NP11 proteome (Zhu et al., 2012) in Uniprot (www.uniprot.org). Normalized 

total protein approach (TPA) as described in (Sánchez et al., 2021) was used for absolute 

protein quantification. MS intensities of heavy-labelled internal standard were normalized 

with the number of theoretically observable peptides using the iBAQ (intensity based 

absolute quantification) feature in MaxQuant (Schwanhäusser et al., 2011). The resulting 

“iBAQ” intensities were additionally normalized for the sum of intensities for samples of 

the same carbon source. For computing absolute protein abundances, the sum of MS 

intensities of all detected proteins multiplied by corresponding molecular weights was 

assumed to be proportional to the total amount of protein injected, assuming 80% coverage 

from the total protein abundance. 

 

3.1.3 Genome-scale modelling 

Enzyme-constrained genome-scale metabolic model of R. toruloides was generated using 

the previous metabolic network rhto-GEM version 1.3.0 (Tiukova, Prigent, et al., 2019). 

Enzyme-constrained GEM, named ecRhtoGEM, was generated using a semiautomated 

workflow provided by the GECKO toolbox version 2.0.2 (Sánchez et al., 2017) on 

MATLAB (The MathWorks Inc., Natick, MA, Unites States). All scripts and models are 

available on a dedicated Github repository (https://github.com/alinarekena/ecRhtoGEM/), 

accessible upon request sent to alina.rekena@ut.ee). 

Condition-specific models were generated by incorporating experimental data, including 

absolute protein quantification obtained from the yeast cultivations in this study (Section 

3.1.1) and by (Pinheiro et al., 2020). Data were formatted according to GECKO 

requirements and are provided in the ecRhtoGEM/customGECKO folder. For the manual 

curation of automatically retrieved enzyme kinetic data, the GECKO toolbox template 

manualModifications was modified for ecRhtoGEM and stored in the 

ecRhtoGEM/customGECKO folder in the repository. Targets for the curation of enzyme 

kinetic data were identified using the GECKO toolbox script topUsedEnzymes. 

The biomass equation from rhtoGEM was fitted to include the measured total cellular protein 

and lipid content (Section 3.1.1.3, ecRhtoGEM/data folder), while the carbohydrate 

component was scaled accordingly, and nucleotide levels were remained unchanged. To 

enable simultaneous rescaling of lipid and protein fractions in the biomass, function 

scaleLipidProtein, available in the ecRhtoGEM/code folder, was integrated into GECKO 

http://www.uniprot.org/
https://github.com/alinarekena/ecRhtoGEM/
mailto:alina.rekena@ut.ee
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pipeline. The lipid equation was fitted to the measured fatty acid chain distribution (Section 

3.1.1.3), while lipid class distributions were left unmodified from rhto-GEM (Tiukova, 

Brandenburg, et al., 2019). To enable lipid chain adjustment, functions loadLipidChainData 

and scaleLipidsRhto were integrated into the GECKO pipeline via the function 

scaleLipidProtein (available in the ecRhtoGEM/code folder). The growth-associated energy 

costs (GAEC) and non-growth associated maintenance (NGAM) were fit to measured carbon 

source uptake rates from exponential growth and nitrogen limitation phases and set from 

124.4 to 140.0 mmol/gDCW and from 0 to 3.65 mmol/(gDCW h), respectively 

(Supplementary Table S1).  

The model was improved by adding translation pseudo-reaction (reconstruct_ecRhtoGEM 

(part III), available in the main page of ecRhtoGEM repository) and an alternative D-xylose 

utilisation pathway (edit_rhtoGEM). With the translation reaction, ribosomal subunits were 

introduced in the model as pseudo-metabolites and included as a new amino acid pseudo-

metabolite to the protein pseudo-reaction. Translation reaction was added to the enzyme-

constrained models separately from the GECKO pipeline, all details described in the 

dedicated script reconstruct_ecRhtoGEM, part III. All changes to the metabolic network 

were introduced using addRxns, addMets, and addGenesRaven functions the RAVEN 

toolbox version 2.4.3 (Wang et al., 2018). 

Intracellular metabolic flux patterns were predicted using the FBA from the RAVEN toolbox 

and Gurobi solver (Gurobi Optimization Inc., Houston, Texas, United States). The objective 

function was set as minimisation of the total usage of unmeasured proteins, assuming that 

the regulatory machinery for stress tolerance is represented by the condition-specific protein 

expression profile (Domenzain et al., 2021). Flux variability analysis was done with random 

sampling (at n=2000) of the solution space (Bordel, Agren and Nielsen, 2010), allowing 10% 

variability from the maximal protein pool value, 1% variability from maximal growth rate 

and carbon uptake rate, 1% variability from minimal NGAM rate, 10% variability from 

predicted carbon dioxide production and oxygen consumption rate, and 10% variability from 

measured by-product rates. This resulted in average flux with standard deviation, 

representing the flux variability. Finally, obtained intracellular flux patterns were mapped to 

the original reactions as they were defined in the non-ecModel to adjust for the flux of the 

reversible reaction, if any (function mapRxnsToOriginal, script analyze_ecRhtoGEM).  
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3.2 RESULTS 

3.2.1 Growth characterisation on different carbon substrates 

Detailed physiology characterisation of R. toruloides CCT7815 and absolute proteomics 

analysis was carried out with xylose, acetic acid and glucose as sole carbon sources under 

aerobic batch conditions on a minimal mineral medium. Physiological data with xylose as 

carbon source were taken from (Pinheiro et al., 2020), repeating the absolute proteome 

quantification and fatty acid analysis. All results are presented together. Cells were 

cultivated on glucose and acetic acid, similarly as described in (Pinheiro et al., 2020). Lower 

acetic acid concentration (20 g/L) was used because in higher concentrations acetic acid is 

toxic to the cell membrane (Royce et al., 2013). Cell turbidity, CO2 production and O2 

consumption were monitored on-line. In case of acetic acid and for technical reasons, off-

line cell turbidity measurements were additionally taken. Biomass composition (lipids, 

proteins, carotenoids), metabolites consumption and production were analysed off-line 

(Figure 4). As described in (Pinheiro et al., 2020), a high C/N ratio (80 mol/mol) was used 

in this study. Regardless of the carbon source, two distinct growth phases were observed 

from the growth dynamics and substrate consumption data (Figure 4B, 4D, and 4F, dashed 

line). The transition of the exponential growth phase (exp) into nitrogen limitation phase 

(Nlim) was marked by a sharp decrease in a specific growth rate (μ) at the time point when 

nitrogen was possibly depleted (Figure 4A, 4C, and 4E). The nitrogen limitation phase 

lasted until the depletion of the carbon source. Both phases, exponential (exp) and nitrogen 

limitation (Nlim), were further analysed in this study. The third cultivation phase on xylose, 

characterised by the consumption of the secreted by-products xylitol and arabinitol, as 

described in (Pinheiro et al., 2020), was not analysed in this study. 
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Figure 4. R. toruloides CCT7815 characterisation in bioreactor in 70 g/L xylose (A-B*), 20 

g/L acetic acid (C-D), and 63 g/L glucose (E-F). A, C, and E: CO2 production profiles (%), 

lipid production profiles (g/gDCW), carotenoid production profiles (g/L), and average 

specific growth rate (μ, h-1). B, D and F: carbon source consumption (g/L), xylitol, D-

arabinitol, citric acid and glycerol production profiles (g/L) and growth profile in biomass 

(gDCW/L). Dashed line marks the transition from exponential growth (exp) to nitrogen 

limitation (Nlim) phase. Red arrows point mark sampling point for the absolute proteome 

quantification. * data obtained from (Pinheiro et al., 2020), lipids quantified in this study. 

 

Growth on glucose showed the highest average specific growth rate (μ, 0.190 ± 0.025 h-1), 

while on xylose and acetic acid similarly low growth rates (μ, 0.054 ± 0.001 h-1 and 0.073 

± 0.003 h -1, respectively) were measured (Supplementary Table S2). During exponential 

* * 
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phase, the biomass yields on xylose and acetate were 0.19 gDCW/gsub and 0.19 gDCW/gsub 

(standard deviation (SD): 0.01 and 0.02, respectively), while in glucose 0.52 ± 0.03 

gDCW/gsub (Figure 5A, Supplementary Table S2). At the end of exponential phase, the 

neglectable amount of glycerol (0.30 g/L) and a carbon balance of 100% (Supplementary 

Table S2) suggested that all the glucose consumed was directed toward biomass and CO2 

production only. During nitrogen limitation phase, the biomass yield on glucose decreased 

to 0.24 ± 0.03 gDCW/gsub (Figure 5A, Supplementary Table S2). However, 

approximately the same ratio of consumed carbon was secreted as CO2 as during the 

exponential growth phase, resulting in carbon imbalance (68%) (Supplementary Table S2). 

Although, high biomass yields are desirable, these observations suggest that results on 

glucose should be taken with caution. Ammonia was replaced with urea as the nitrogen 

source in glucose growth media to avoid the previously observed formation of cell 

aggregates, however, the cells still made aggregates disturbing the measurements. Those 

aggregates were not observed during cultivations with xylose and acetic acid. In comparison, 

with xylose as carbon source one third of carbon consumed was secreted as by-products 

(xylitol and D-arabinitol) and one third was secreted as CO2 during the exponential phase. 

During nitrogen limitation phase, the decrease in by-products secretion was balanced by an 

equivalent increase of biomass and CO2 production. compensated by equal increase in 

biomass yield and carbon secreted as CO2. Nevertheless, based on carbon balance analysis, 

additional by-products in small amounts would be expected in xylose exponential phase. In 

acetic acid, carbon balance in exponential growth and nitrogen limitation phases was 

estimated at 85% and 67% (Supplementary table S2), respectively, indicating undetected 

by-products. 

Although growth on glucose showed the highest lipid content in nitrogen limitation phase 

(0.48 ± 0.04 g/gDCW), the specific production rate was low (rLIP, 0.013 ± 0.002 

g/(gDCW*h) due to low growth rate μ (Figure 5B, Supplementary Table S2). In all 

conditions, lipid content increased during nitrogen limitation phase (Figure 5B). R. 

toruloides showed 11 times higher carotenoid content during nitrogen limitation phase in 

acetic acid condition (3.58 ± 0.25 mg/gDCW) than in glucose condition 0.3 ± 0.01 

g/gDCW, Figure 5C, Supplementary Table S2). The specific production rate (rCAR) was 

the highest in exponential growth phase (0.1 ± 0.01 mg/(gDCW*h) on acetate. 
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Figure 5. Biomass yield (YBIOMASS) on substrate (A), and lipid (YLIP) (B) and carotenoid 

(YCAR) (C) yields on biomass (gDCW) during exponential growth (exp) and nitrogen 

limitation (Nlim) phase of R. toruloides on different carbon substrates in under aerobic batch 

cultivation on a minimal mineral medium. Carotenoid and lipid yields were calculated at the 

late-exp growth phase and the end of Nlim phase. Protein yields were calculated at mid-exp 

and mid-Nlim phase. Biomass yields were calculated considering the production in each 

growth phase separately. 

 

3.2.2 ecRhtoGEM: enzyme-constrained model of R. toruloides 

To facilitate the application of R. toruloides for the production of sustainable chemicals and 

fuels, it is fundamental to improve the understanding of its metabolism. GEMs allow for the 

prediction intracellular fluxes at specified experimental conditions. In comparison to 

conventional GEMs, enzyme-constrained models (ecModels) take into account the 

metabolic limitations due to the enzyme capacity. An ecModel of R. toruloides has not been 

published before. 

In this work, an enzyme-constrained GEM of R. toruloides, named ecRhtoGEM, was 

generated from a R. toruloides GEM published earlier by (Tiukova, Prigent, et al., 2019), 

using the GECKO Toolbox (Sánchez et al., 2017). GECKO Toolbox is designed to apply 

enzymatic constraints to the metabolic network via direct integration of absolute proteomics 

data. ecRhtoGEM is hosted on a dedicated Github repository 

(https://github.com/alinarekena/ecRhtoGEM/), where model generation process is tracked, 

https://github.com/alinarekena/ecRhtoGEM/
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all scripts and files described in this work, and models in various file formats (mat, xml, yml) 

are provided, accessible upon request sent to alina.rekena@ut.ee). 

Prior integration of enzymatic constraints, the model was improved by adding ribosome into 

the protein pseudo-reaction and adding an alternative D-xylose utilisation pathway via D-

arabinitol to make the model better accommodate the collected metabolomics and 

proteomics data. Only ribosomal subunits with abundance over 1.e-05 mmol gDCW-1 were 

included, as these are likely essential subunits, while lower abundances are alternative 

subunits (Supplementary Figure S3; ecRhtoGEM/results/ribosome_integration folder). As 

a result, 74 ribosomal subunits were integrated to the model. 

Improvements to the xylose metabolism were motivated by the fact that the last step in 

xylose metabolism, D-xylulokinase (RHTO_04556, protein ID M7X6R2), has not been 

detected or has been detected in low abundance in proteomics and transcriptomics analysis 

in several studies (Pinheiro et al., 2020; Kim et al., 2021), including this work (data available 

in ecRhtoGEM/customGECKO/abs_proteomics.txt). The conventional xylose utilisation 

pathway starts with enzyme D-xylose reductase (XR) that reduces xylose to D-xylitol using 

NADPH as a cofactor (Figure 6). Next in the pathway is D-xylitol dehydrogenase (XDH) 

that converts D-xylitol to D-xylulose. An enzyme responsible for the last step in xylose 

metabolism is D-xylulokinase (XK) that converts D-xylulose to xylulose 5-phosphate at the 

cost of one ATP. Xylulose 5-phosphate is an intermediate of the pentose phosphate pathway 

(PPP). An alternative metabolite to connect xylose metabolism to PPP instead of xylulose 5-

phosphate would be D-ribulose 5-phosphate, as recently suggested by (Kim et al., 2021). 

The construction of the alternative pathway started by adding D-arabinitol production 

pathway, as described in (Jagtap and Rao, 2018). From the two annotated R. toruloides NP11 

D-arabinitol dehydrogenase enzymes (RHTO_07702 and RHTO_07844), only 

RHTO_07844 was detected by the proteomics analysis in this study. It was chosen to add 

RHTO_07844 as D-arabinitol 4-dehydrogenase converting D-xylulose to D-arabinitol at 

cost of one NADH to the metabolic network (Figure 6). Similarly it was done in R. 

toruloides GEM iRhto 1108 (Dinh et al., 2019). The clue for adding D-arabinitol 2-

dehydrogenase (DAD-2, or alternatively, D-ribulose reductase) to the model was found in 

the literature that described reversible L-xylulose reductase (LXR) from L-arabinose 

catabolism of yeast Ambrosiozyma monospora overexpressed in S. cerevisiae converting not 

only L-xylulose to xylitol, but also D-ribulose to D-arabinitol, having no activity with L-

arabinitol (Verho et al., 2004). In that study, LXR was described as NADH-dependent. 

mailto:alina.rekena@ut.ee
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However, in rhtoGEM (Tiukova, Prigent, et al., 2019) based on R. toruloides NP11, LXR 

(RHTO_00373) is NADP-dependent. Previous in silico analysis of the amino acid sequence 

of the LXR enzyme of R. toruloides NP11 by the NCBI conserved domain search tool 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) showed that it could use both or 

either NADH and NADPH (Pinheiro et al., 2020). In order to allow for the NADPH 

regeneration, a bidirectional NADP-dependent DAD-2 (RHTO_00373) to convert D-

arabinitol to D-ribulose was added to the model (Figure 6). Finally, to search for D-

ribulokinase that converts D-ribulose to D-ribulose 5-phosphate, R. toruloides IFO0880 

protein 14368 from a GEM by (Kim et al., 2021) was searched against the whole genome 

annotation of NP11 using the NCBI BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

The search found 98.5% match with RHTO_00950, and it was the only hit. According to the 

Uniprot, the gene corresponds to protein of carboxydrate kinase (FGGY type family) with a 

protein ID M7WVT6. Consequently, an ATP-dependent D-ribulokinase (RHTO_00950) 

was added to the model (Figure 6). Analogous reactions of D-ribulokinase were present in 

GEMs of other non-conventional yeasts Pichia pastoris (Caspeta et al., 2012) and K. 

marxianus (Marcišauskas, Ji and Nielsen, 2019). As a result, a new xylose metabolic 

pathway in line with the protein abundances measured in this study and the recent literature 

was constructed. 

 

 

Figure 6. Xylose utilisation pathway (dashed arrows) integrating a new branch going from 

D-xylulose to D-ribulose-5P to  the original pathway (solid arrows) present in R. toruloides 

NP11 (Zhu et al., 2012). RHTO: gene associations of metabolic reactions, G3P: 

glyceraldehyde 3-phosphate. 
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The integration of enzymatic constraints required as an input all data from batch cultivation 

experiments. To test if applying enzymatic constraints allows the model to predict 

experimentally measured growth rate (i.e. is not growth-limiting), FBA was repeatedly 

performed on temporary model structures (Sánchez et al., 2017). The integration of 

enzymatic constraints was initially an error-trial process, whereby the automatically 

retrieved kcat values reported as growth-limiting were manually curated. Due to lack of data 

availability, many kcat values used to constrain the model belong to other organisms than R. 

toruloides, even non-microbes (Supplementary Tables S3, S4). As a result of manual 

curation, kcat values were increased for altogether 17 enzymes and their respective 

isoenzymes (detailed report at ecRhtoGEM/customGECKO/manualModifications.m). In 

final steps of the GECKO pipeline, protein abundances of growth-limiting enzymes were 

automatically curated again based on the FBA on temporary model structures (lists available 

at ecRhtoGEM/results/generate_protModels_pipeline folder modifiedEnzymes files). Also, 

the model was infeasible with the measured growth parameters on glucose. Therefore, the 

glucose uptake rate for the exponential phase was increased from 2.10 to 2.49 mmol/(gDCW 

h), leaving the growth rate as measured (0.19 h-1) 

(ecRhtoGEM/customGECKO/fermentationData.txt). These modifications should be taken 

into account when interpreting modelling results. 

As a result, six different versions of ecRhtoGEM were generated using the GECKO Toolbox 

to enable condition-specific systematic analysis of exponential growth and nitrogen 

limitation (where lipid accumulation takes place) phases on three different carbon sources 

(xylose, acetic acid and glucose). Biomass composition was adjusted to the measured lipid 

content and fatty acid profiles and total cellular protein content (Supplementary Table S2, 

ecRhtoGEM/data). Exchange fluxes were constrained with measured rates from cultivation 

experiments (Supplementary Table S2 and (Pinheiro et al., 2020)). Enzymatic constraints 

were applied to almost 3000 metabolic reactions, matching 693 different enzymes. 18-28% 

of the total proteome (mass-wise) were integrated as enzymatic constraints (Supplementary 

Table S5). ecRhtoGEM includes 5768 reactions, 3394 metabolites and 909 genes, 

corresponding to 111%, 49% and 7%, increase in comparison to rhto-GEM, respectively. 

High number of reactions in the ecRhtoGEM is associated with many isoenzymes and 

promiscuous enzymes in rhtoGEM metabolic network. 
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The power of the GEM in a combination with FBA is to calculate metabolic flux patterns. 

Model simulations suggested oxaloacetate as the major overflow metabolite in acetate 

condition (5% and 20% of the total acetate flux, ecRhtoGEM/results/model_simulation). 

Glucose models did not confirm any major overflow metabolites in glucose nitrogen 

limitation phase (GNlim), suggesting that the measurements for carbon balance analysis 

(68%, Supplementary Table S2) might have been disturbed by cell aggregates. Model 

prediction was not in agreement with the measured O2 consumption and CO2 production 

rates in glucose condition. Predicted fluxes were approximately 3-4 times higher compared 

with the measured ones in glucose exponential phase (GexpUrea). 

Metabolic flux distribution illustrated the differences of carbon metabolism under the three 

carbon sources – xylose, glucose and acetic acid – in the focus of this work. The main 

difference is that acetate entered central metabolism at the level of acetyl-CoA and activated 

gluconeogenic reactions towards the glucose 6-phosphate (Figure 7A, 7B, orange line), 

while the main catabolic flux of glucose and xylose enters central carbon metabolism 

through glycolysis. Differences were noted in regard to metabolic reactions important for 

lipid synthesis. For example, 21% and 55% of consumed carbon on xylose and glucose 

during lipid accumulation was metabolised via redox-independent phosphoketolase (PK) - 

phosphate transacetylase pathway, and the flux was significantly increased during lipid 

accumulation (Figure 7A, 7B). Similar results on metabolic fluxes of PK in R. toruloides 

grown on xylose and glucose have also been described in the literature (Lopes et al., 2020; 

Pinheiro et al., 2020). PK converts D-xylulose 5-phosphate into acetyl-phosphate and further 

into acetyl-CoA and enables higher efficiency of carbon metabolism since bypasses the 

wasteful decarboxylation pyruvate to acetyl-CoA, which causes a loss of one third of the 

carbon substrate (Tiukova, Brandenburg, et al., 2019). However, on acetic acid, metabolic 

fluxes via PK were predicted close to zero (t_0081, ecRhtoGEM/results/model_simulation) 

due to direct conversion of acetate into acetyl-CoA via acetyl-CoA synthetase (ACS) 

(Figure 7A, 7B). On xylose and glucose, fluxes via acetyl-CoA carboxylase (ACC) that 

converts acetyl-CoA into fatty acid precursor malonyl-CoA were increased on average 2- to 

5-fold during lipid accumulation, corresponding to 23% and 55% of consumed carbon, 

respectively (Figure 7A, 7B). While in acetate condition, metabolic flux via ACC during 

lipid accumulation was downregulated (Figure 7A, 7B), which was not supported by 

previous omics and genome-scale modelling studies in R. toruloides, showing an 

upregulation of key enzymes of lipid production machinery during lipogenesis (Tiukova, 
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Brandenburg, et al., 2019; Pinheiro et al., 2020). Also, the experimentally measured lipid 

yield on biomass increased during nitrogen limitation phase (Figure 5B). 

A unique enzyme of oleaginous yeasts is ATP citrate lyase (ACL) that represents an 

alternative reaction to produce cytosolic acetyl-CoA from citrate. From the simulations of 

ecRhtoGEM, 1% or less of consumed carbon was used by  ACL (y200003, 

ecRhtoGEM/results/model_simulation), which is different from previous rhtoGEM 

predictions (Lopes et al., 2020). This behaviour can be explained in case of acetate, where 

the key enzyme for acetyl-CoA production is ACS, but on xylose and glucose it demonstrates 

that the PK is preferred for the acetyl-CoA production. Using classical rhto-GEM, fluxes up 

to 32% of consumed carbon via ACL have been reported (Lopes et al., 2020). 

Ribosomes are essential for achieving faster cell growth and were reported to comprise the 

largest protein group in xylose-grown cells during exponential phase (almost one third of the 

total proteome) (Pinheiro et al., 2020). The ecRhtoGEM predicted the highest flux via 

translation reaction on glucose during exponential growth phase (7.6% of consumed carbon) 

and during lipid accumulation (4.6% of consumed carbon flux) (translation, 

ecRhtoGEM/results/model_simulation). The lowest fluxes on translation and the decrease 

during nitrogen limitation was predicted on acetate (1.1% and 0.6% of consumed carbon 

flux, respectively). On the contrary, in xylose condition translation flux was higher during 

lipid accumulation (2.9% and 3.4% of consumed carbon during exp and Nlim, respectively) 

(translation, ecRhtoGEM/results/model_simulation). This is counterintuitive to the fact that 

ribosomal protein levels from exponential phase to nitrogen limitation phase decreased in 

xylose-grown cells (Pinheiro et al., 2020). Downregulation ribosomal proteins as a response 

to nutrient starvation in R. toruloides grown on glucose and xylose has been reported before 

(Tiukova, Brandenburg, et al., 2019) (Zhu et al., 2012). 

 



 

38 

 

 

Figure 7A. Intracellular metabolic fluxes of the central carbon metabolism (normalised to 

the carbon source uptake flux) under exponential growth phase from R. toruloides cultivation 

on xylose (upper value), acetic acid (middle value), and glucose (lower value). Negative 

values represent fluxes of reverse glycolysis. All fluxes are available at 

github.com/alinarekena/ecRhtoGEM/results/model_simulation. G3P: glyceraldehyde 3-

phosphate, F6P: D-fructose 6-phosphate, X5P: D-xylulose 5-phosphate, Ru5P: D-ribulose 

5-phosphate, DHAP: dihydroxyacetone phosphate, LA: L-aspartate, 2-OG: 2-oxoglutarate 

(𝛼-ketoglutarate), TCA: tricarboxylic cycle, PK: phosphoketolase, ACL: ATP-citrate lyase, 

FAS: fatty acid synthase, ACC: acetyl-CoA carboxylase. 
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Figure 7B. Intracellular metabolic fluxes of the central carbon metabolism (normalised to 

the carbon source uptake flux) under nitrogen limitation phase from R. toruloides cultivation 

on xylose (upper value), acetic acid (middle value), and glucose (lower value). Negative 

values represent fluxes of reverse glycolysis. All fluxes are available at 

github.com/alinarekena/ecRhtoGEM/results/model_simulation. G3P: glyceraldehyde 3-

phosphate, F6P: D-fructose 6-phosphate, X5P: D-xylulose 5-phosphate, Ru5P: D-ribulose 

5-phosphate, DHAP: dihydroxyacetone phosphate, LA: L-aspartate, 2-OG: 2-oxoglutarate 

(𝛼-ketoglutarate), GLU: L-glutamate, TCA: tricarboxylic cycle, PK: phosphoketolase, ACL: 

ATP-citrate lyase, FAS: fatty acid synthase, ACC: acetyl-CoA carboxylase. 
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3.2.3 Supply of NADPH during lipid accumulation 

Lipid synthesis is NADPH-demanding process in oleaginous yeasts, but only few enzymes 

in the cytoplasm can generate NADPH. Malic enzyme and pentose phosphate pathway have 

been proposed as the main candidate enzymes for NADPH recycling in R. toruloides   

(Ratledge, 2014). ecRhtoGEM metabolic fluxes showed that on xylose and glucose NADPH 

is recycled via the oxidative part of pentose phosphate pathway, namely, glucose 6-

phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGD) (70% 

of consumed glucose and 42% of consumed xylose during Nlim phase, respectively 

(Figure 8)). In glucose condition PPP was predicted 21 % more active in Nlim phase than 

exp phase. This result can be explained that during nitrogen limitation the high PPP activity 

on glucose coupled with high fluxes via PK (carbon saving) and ACC (lipid synthesis) led 

to the highest measured lipid content in this study (Ypx 0.48 ± 0.04 g/gDCW, Figure 5B, 

Supplementary Table S2). 

On xylose, NADPH demand is higher compared to the other substrates studied, as xylose 

utilisation (XR) is NADPH-dependent. Therefore, the model preferred to use the alternative 

xylose utilisation pathway via D-ribulokinase instead of D-xylulokinase (Figure 9, dashed 

line). During lipid accumulation, 80% of carbon was metabolised via the NADP-dependent 

D-arabinitol 2-dehydrogenase (DAD-2) that converts D-arabinitol into D-ribulose, 

generating one NADPH (Figure 9). 

On acetic acid, the model predicted NADPH regeneration via the TCA-cycle related malic 

enzyme, corresponding to 25% of the consumed acetate during lipid accumulation 

(Figure 8). The flux on nitrogen limitation condition was 5% lower than during exponential 

growth phase. 

An alternative option for NADPH generation is via NADP-dependent isocitrate 

dehydrogenase (IDH), occurring in R. toruloides both in cytosol and in mitochondria. From 

the ecRhtoGEM simulations, only 1-3% of consumed carbon was metabolised using any of 

the IDH enzymes during lipogenesis in xylose and glucose condition, respectively (Figure 

8). On acetate, the fluxes via IDH enzymes were below 1% of the consumed carbon (Figure 

8). 

The NADPH balance analysis showed that in addition to fatty acid biosynthesis and xylose 

utilisation, a high flux involving NADPH-consumption was predicted via NADPH-
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dependent glutamate dehydrogenase (GDH). The fluxes via GDH in xylose condition 

decreased from 18% to 10% of consumed carbon from exponential to nitrogen limitation 

phase, and from 68% to 18% of consumed carbon on glucose (r_0471, 

ecRhtoGEM/results/model_simulation). This is on the contrary with proteomics studies 

where the upregulation of enzymes involved in glutamate biosynthesis in response to 

nitrogen limitation have been shown (Zhu et al., 2012; Tiukova, Brandenburg, et al., 2019). 

 

 

Figure 8. Fluxes of NADPH consumption and regeneration in R. toruloides (normalised to 

the stoichiometric coefficient and carbon uptake flux) under exponential growth (upper 

value) and nitrogen limitation (lower value) phases from cultivation on xylose (A), acetic 

acid (B), and glucose (C). Negative values represent fluxes of NADPH consumption, 

positive values – NADPH regeneration. The upper value represents exponential growth 

phase, the lower value - nitrogen limitation phase. * adjusted for C18:0 stoichiometry. G3P: 

glyceraldehyde 3-phosphate, DHAP: dihydroxyacetone phosphate, LA: L-aspartate, 2-OG: 

2-oxoglutarate (𝛼-ketoglutarate), TCA: tricarboxylic cycle, IDH: isocitrate dehydrogenase. 
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Figure 9. Fluxes of NADPH consumption and regeneration in the xylose utilisation pathway 

(normalised for carbon source uptake) in R. toruloides (normalised to the stoichiometric 

coefficient and carbon uptake flux) under exponential growth (upper value) and nitrogen 

limitation (lower value) phases from cultivation on xylose. Negative values represent fluxes 

of NADPH consumption, positive values – NADPH regeneration. The upper value 

represents exponential growth phase, the lower value - nitrogen limitation phase. G3P: 

glyceraldehyde 3-phospahte, XR: xylose reductase, DAD-2: D-arabinitol 2-dehydrogenase. 
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3.3 DISCUSSION 

Enzyme-constrained genome-scale models can improve microbial strain phenotype 

predictions (Sánchez et al., 2017). In this study, R. toruloides growth characterisation in 

bioreactors on xylose, glucose and acetic acid was carried out and an enzyme-constrained 

genome-scale model, named ecRhtoGEM, was developed. Except for the gases in glucose 

condition, the model could predict experimental rates measured in xylose, glucose and 

acetate condition. Notably, the quality of modelling predictions depends on the quality of 

experimental data provided as an input. To reduce the cell aggregate formation on glucose, 

adding 0.2 M  NaCl or 0.2 M KCl to the cultivation media shown to reduce aggregates 

formation without impacting the growth could be suggested (Illarionov, Lahtvee and Kumar, 

2021). 

Understanding xylose metabolism in R. toruloides is important for the application in 

biorefinery concepts using lignocellulosic biomass, as its hemicellulosic fraction contains 

also C5 sugars. It has been known about the xylose metabolism that XR reduces xylose to 

xylitol, which is then oxidised to xylulose (Tiukova, Brandenburg, et al., 2019). 

Subsequently, phosphorylated xylulose enters the PPP. However, the enzyme responsible 

for the phosphorylation of xylulose (XK) was not detected by the proteomic analysis in the 

present study and also previously (Pinheiro et al., 2020). Therefore, it was proposed that 

xylulose could enter the PPP via another enzyme - ribulokinase. Similar approaches have 

been described earlier in P. stipitis (Jin, Cruz and Jeffries, 2005) and proposed in the most 

recent GEM of R. toruloides (Kim et al., 2021). The ecRhtoGEM simulations in this study 

demonstrated, once again, that the NADPH plays crucial role in xylose metabolism. 

Understanding acetic acid metabolism in R. toruloides is important for the biorefinery 

applications as well, as acetic acid is produced along with C5 and C6 sugars during the pre-

treatment steps of the lignocellulosic biomass (Chandel, da Silva and Singh, 2013). Previous 

studies have suggested that cells growing on acetic acid have a more efficient metabolism 

and physiology, operating at near maximum efficient levels in terms of biomass production 

(Lopes et al., 2020). However, ecRhtoGEM simulations demonstrated decreased metabolic 

fluxes on acetate during lipid accumulation, not typical to what has been mostly described 

in regard to lipid synthesis in xylose and glucose. 

In this work, intracellular flux patterns were used to investigate the sources of NADPH on 

different carbon sources during lipid accumulation in R. toruloides. The main sources of 

NADPH in R. toruloides were predicted to be PPP and malic enzyme, as suggested by 
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previous theoretical calculations (Ratledge, 2014). The differences depending on the carbon 

source can be explained by the proximity of NADPH supplier enzymes to the main catabolic 

flux in the metabolic network. Acetic acid enters central carbon metabolism at the level of 

acetyl-CoA, assimilated by the key enzymes of glyoxylate cycle, isocitrate lyase and malate 

synthase, allowing the formation of malate, which serves as a substrate for malic enzyme. 

While fermentable nutrients, such as glucose and xylose, are assimilated via glycolytic 

pathways. Therefore, it could be more efficient for the cell to use the PPP in case of 

fermentable carbon sources and the ME in case of acetic acid and other nonfermentable 

carbon sources. The results from previous modelling studies with classical rhto-GEM are in 

the agreement with the PPP being the major NADPH supplier on xylose and glucose 

(Pinheiro et al., 2020) (Lopes et al., 2020) (Bommareddy et al., 2015). 

In the present study, the model predicted an increase in the metabolic flux of PPP in response 

to nitrogen limitation on glucose, but a decrease on xylose. These results are in agreement 

with a previous proteomic study on glucose in R. toruloides, where a contribution of 

alternative candidate enzymes (aldehyde dehydrogenases) that in addition to the PPP for the 

NADPH generation during lipogenesis was also proposed (Tiukova, Brandenburg, et al., 

2019). The flux via malic enzyme on acetate was predicted to decrease during nitrogen 

limitation. It has been shown from omics studies on glucose that the regulation of ME 

enzyme activity in R. toruloides is complicated (Zhu et al., 2012). 

Isocitrate dehydrogenase (IDH) has been mentioned as a potential candidate enzyme for 

NADPH production in oleaginous microorganisms in early biochemical studies (Wynn, 

Hamid and Ratledge, 1999). It was also predicted as the main source of NADPH on acetate 

with the classical rhto-GEM (Lopes et al., 2020). However, ecRhtoGEM did not predict 

significant metabolic fluxes via IDH in any of studied conditions. In  S. cerevisiae, elevated 

levels of IDH on nonfermentable carbon sources have been reported to prevent for the 

endogenous toxicity (Minard and McAlister-Henn, 2005). 

The genome scale model developed in this work can be also used to study the fundamental 

characteristics of R. toruloides metabolism. As demonstrated in this study, the model can 

simulate the rate of translation using ribosomal abundances. It enables to search for the 

catalytic activities of the ribosome (krib) that might be governing cell growth laws. The 

correlation between ribosome abundances and specific growth rate has been studied before 

on other organisms (Scott et al., 2014). 
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In conclusion, the model presented in this work can help to understand the metabolism of R. 

toruloides. It can be used to design metabolic engineering strategies, such as improving the 

utilisation of isocitrate dehydrogenase (increasing NADPH supply), as well as to study the 

biochemical mechanisms as response to various environmental stresses, such as nutrient 

starvation. R. toruloides is an attractive host for sustainable chemicals and fuels production 

that has gained a great academic and industrial interest. The genome-scale model developed 

in this work will enhance the understanding of biology of this yeast. 
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SUMMARY 

Previous genome-scale models (GEMs) of R. toruloides have demonstrated the ability to 

predict measured experimental rates and potential targets for the metabolic engineering. An 

enzyme-constrained GEM of R. toruloides, ecRhtoGEM, developed in this study 

demonstrated non-seen differences in predicted intracellular metabolic flux patterns among 

different carbon substrates in metabolic pathways important for lipid synthesis. On acetic 

acid as a sole carbon source, the main supplier enzyme of the cofactor NADPH was predicted 

to be cytosolic malic enzyme (ME). In comparison, on fermentable carbon substrates (xylose 

and glucose) the oxidative part of pentose phosphate pathway (PPP) was predicted to supply 

the majority of NADPH. These results are open to experimental validation and can be 

instructive for the design of further metabolic engineering strategies to improve lipid and 

specialty chemicals production in R. toruloides. 
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SUPPLEMENTARY 

Table S1. Growth- (GAM) and nongrowth-associated (NGAM) energy costs fitted to 

measured carbon uptake rates from exponential growth and nitrogen limitation phases of R. 

toruloides growth under conditions studied in this work. 

model version GAM (mmol/gDCW) NGAM (mmol/(gDCW*h)) 

ecRhtoGEM_Xexp 133.217 3.65 

ecRhtoGEM_XNlim 126.423 3.15 

ecRhtoGEM_Aexp 132.256 3.65 

ecRhtoGEM_ANlim 125.923 3.45 

ecRhtoGEM_GexpUrea 139.991 0 

ecRhtoGEM_GNimUrea 124.354 3.3 

 

Table S2. Physiological parameters of R. toruloides growth in batch cultivation for 

exponential growth (exp) and nitrogen limitation (Nlim) phase in xylose (X), acetic acid 

(A) and glucose (G). μ: specific growth rate, Y: yield, r: specific rate of productivity, rCO2: 

rate of CO2 production, rO2: rate of O2 consumption, C balance: carbon balance, SD: 

standard deviation of two replicates. 

Condition 
µ 

(h-1) 
SD 

rcarbon 

(mmol/ 

gDCW*h) 

SD 
rCO2 (mmol/ 

gDCW*h) 
SD 

rO2 (mmol/ 

gDCW*h) 
SD 

Xexp 0.054 0.001 -1.859 0.022 2.845 0.325 -2.678 0.012 

XNlim 0.021 0.001 -0.434 0.026 1.277 0.139 -1.028 0.012 

Aexp 0.073 0.003 -6.627 0.557 5.224 0.724 -7.144 - 

ANlim 0.012 0.000 -1.971 0.429 2.229 0.198 -2.265 - 

GexpUrea 0.191 0.025 -2.096 0.557 2.685 0.584 -1.423 0.779 

GNlimUrea 0.021 0.007 -0.410 0.007 1.547 0.519 -0.704 0.338 
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Condition 

rxylitol 

(mmol/ 

gDCW*h) 

SD 

rarabinitol 

(mmol/ 

gDCW*h) 

SD 

rcitrate 

(mmol/ 

gDCW*h) 

SD 

rglycerol 

(mmol/ 

gDCW*h

) 

SD 

Xexp 0.223 0.026 0.367 0.0433  -   -  

XNlim 0.004 0.004 0.077 0.0118  -   -  

Aexp  -   -  0.122 0.016  -   

ANlim  -    -   -0.043 0.001  -   

GexpUrea   -   -    -  0.049 0.016 

GNlimUrea  -    -    -  -0.007 0.000 

 

Condition C balance SD 
rcarotenoid 

(mg/gDCW*h) 
SD 

rlipid 

(g/gDCW*h) 
SD 

Xexp 0.893 0.056 0.037 0.001 0.011 0.002 

XNlim 1.086 0.183 0.014 0.001 0.006 0.000 

Aexp 0.849 0.046 0.126 0.010 0.013 0.001 

ANlim 0.665 0.029 0.044 0.001 0.004 0.000 

GexpUrea 1.061 0.155 0.051 0.009 0.011 0.001 

GNlimUrea 0.685 0.056 0.005 0.001 0.013 0.002 

 

Condition 

Yxs 

(gDCW/ 

gsub) 

SD 

Ypx 

(mgcarot/ 

gDCW) 

SD 

Ypx 

(glipid/ 

gDCW) 

SD 

Ypx 

(gprotein/

gDCW) 

SD 

Xexp 0.193 0.006 0.681 0.006 0.202 0.025 0.438 0.013 

XNlim 0.316 0.034 0.700 0.027 0.290 0.006 0.197 0.002 

Aexp 0.185 0.024 1.723 0.025 0.175 0.019 0.386 0.012 

ANlim 0.109 0.020 3.575 0.250 0.341 0.013 0.217 0.012 

GexpUrea 0.515 0.027 0.290 0.086 0.057 0.002 0.636 0.024 

GNlimUrea 0.236 0.029 0.310 0.088 0.483 0.041 0.227 0.031 
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Figure S3. Distribution of average ribosomal subunit abundance obtained from absolute 

proteome quantification in all studied conditions. 

 

Table S3. Kinetic data of enzymes from the central carbon metabolism and sugar 

utilisation pathways. 

Uniprot ID kcat Organism Name 

M7X8C7 324000 Rasamsonia emersonii xylose reductase 

M7WT79 558.999 Ovis aries xylitol dehydrogenase 

M7X6R2 6599.9 Escherichia coli xylulokinase 

M7XGH5 950.8379  D-arabinitol dehydrogenase 

M7WGA7 39.2336 various phosphoketolase 

M7WSJ0 360000 various acetyl-CoA carboxylase 

M7XLR4 360000  acetyl-CoA carboxylase 

M7XNL9 121.8003  transketolase 

M7WY13 121.8003  transketolase_2 

M7X0R7 121.8004  transketolase 

M7XNL9 121.8004  transketolase_2 

M7WY13 12.9997 Escherichia coli transaldolase 

M7WNZ9 650 Homo sapiens glucose-6-phosphate 

isomerase 

M7WR01 3500 Thermotoga maritima glucose 6-phosphate 

dehydrogenase 

M7WWW0 3376.5  6-phosphogluconolactonase 
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M7X3Z4 72.9995 Homo sapiens phosphogluconate 

dehydrogenase 

M7WUP8 39530  ribose-5-phosphate 

isomerase 

M7XEA2 7099.9 Spinacia oleracea ribulose 5-phosphate 3-

epimerase 

M7WNF8 441.9975 Trypanosoma cruzi glyceraldehyde-3-phosphate 

dehydrogenase 

M7WI96 441.9975  glyceraldehyde-3-phosphate 

dehydrogenase 

M7X689 2633 Homo sapiens phosphoglycerate kinase 

M7XSI3 3200 Lactococcus lactis subsp. 

lactis 

phosphoglycerate mutase 

M7XRQ3 3200  phosphoglycerate mutase 

M7X749 230.0056 Saccharomyces cerevisiae enolase 

M7WUI5 3204 Geobacillus 

stearothermophilus 

pyruvate kinase 

M7XNE0 31530 S.cerevisiae and others  pyruvate carboxylase 

M7WZC3 529.999 Escherichia coli aspartate transaminase 

M7WQ86 121600 Triticum aestivum malate dehydrogenase, 

cytoplasmic 

M7X2B5 28650 Symbiobacterium toebii glutamate dehydrogenase 

(NADP) 

M7WIG9 485.9993 Zymomonas mobilis pyruvate dehydrogenase 

 

Table S4. Kinetic data of enzymes from the TCA cycle. 

Uniprot ID kcat Organism Name 

M7XE29 450.0029 Sus scrofa citrate syntase 

M7WHC9 179.6635  ATP-citrate lyase (ACL) 

M7X6X3 200 Mycobacterium tuberculosis citrate to cis-aconitate 

M7X6X3 200  cis-aconitate(3-) to isocitrate 

M7WQ73 200  citrate to cis-aconitate 

M7WQ73 200  cis-aconitate(3-) to isocitrate 

M7WN97 255.0058 Archaeoglobus fulgidus isocitrate dehydrogenase 

M7WW42 29.9999 Homo sapiens isocitrate dehydrogenase 

(NAD+) 

M7XE28 29.9999  isocitrate dehydrogenase 

(NAD+) 

M7XGI7 648.9983  oxoglutarate dehydrogenase 

(lipoamide) 

M7XGI7 898.9863  oxoglutarate dehydrogenase 

(dihydrolipoamide S-

succinyltransferase) 

M7XGI7 898.9863  glycine-cleavage complex 

(lipoamide) 
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M7WR40 648.9983 Homo sapiens oxoglutarate dehydrogenase 

(lipoamide) 

M7WR40 898.9863  oxoglutarate dehydrogenase 

(dihydrolipoamide S-

succinyltransferase) 

M7WR40 898.9863 Homo sapiens glycine-cleavage complex 

(lipoamide) 

M7WKF8 648.9983  oxoglutarate dehydrogenase 

(lipoamide) 

M7WKF8 898.9863  oxoglutarate dehydrogenase 

(dihydrolipoamide S-

succinyltransferase) 

M7WKF8 898.9863  glycine-cleavage complex 

(lipoamide) 

M7WPA9 898.9863  glycine-cleavage complex 

(lipoamide) 

M7X413 898.9863  glycine-cleavage complex 

(lipoamide) 

M7XCY6 898.9863  glycine-cleavage complex 

(lipoamide) 

M7X0P4 898.9863  glycine-cleavage complex 

(lipoamide) 

M7WVW2 200.9969 Acetobacter aceti succinate-CoA ligase (ADP-

forming) 

M7WM30 200.9969  succinate-CoA ligase (ADP-

forming) 

M7XJJ4 259.9942 Paracoccus denitrificans succinate dehydrogenase 

(ubiquinone-6) 

M7XF32 259.9942  succinate dehydrogenase 

(ubiquinone-6) 

M7X6W8 259.9942  succinate dehydrogenase 

(ubiquinone-6) 

M7X560 259.9942  succinate dehydrogenase 

(ubiquinone-6) 

M7XEU6 1150 Escherichia coli fumarase 

M7XHV2 134.3999 Escherichia coli K-12 malic enzyme (NAD) 

M7XHF8 1140 Methylosinus trichosporium malate dehydrogenase 

M7XQ01 670.006 Escherichia coli aspartate transaminase 

M7XFR0 9400 Salmonella enterica acetyl-CoA synthetase 

M7WMR9 161 Colwellia maris malate synthase 

M7XLR4 360000  acetyl-CoA carboxylase 

M7WLQ0 97 Mus musculus carnithine o-acyltransferase 

M7WSW5 120 specific activity of S.cerevisiae fatty acid synthase 

M7XM89 120 specific activity of S.cerevisiae fatty acid synthase 
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Table S5. Integration of proteome to the model. 

model 

version 

Total  

enzymes 

measured 

Total  

protein in 

model 

Total protein 

amount  

measured (g 

gDCW-1) 

Total protein 

amount in 

model (g 

gDCW-1) 

Coverage 

from total 

proteome 

(%) 

Xexp 402 693 0.101 0.439 23 

XNlim 375 693 0.0422 0.197 21 

Aexp 447 693 0.103 0.386 27 

ANlim 443 693 0.0597 0.217 28 

GexpUrea 386 693 0.113 0.636 18 

GNlimUrea 439 693 0.0459 0.227 20 
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