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Abstract

Local field potentials (LFPs) in visual cortex are reliably modulated when the subject’s focus of attention is cued into versus
out of the receptive field of the recorded sites, similar to modulation of spikes. However, human psychophysics studies have
used an additional attention condition, neutral cueing, for decades. The effect of neutral cueing on spikes was examined
recently and found to be intermediate between cued and uncued conditions. However, whether LFPs are also precise
enough to represent graded states of attention is unknown. We found in rhesus monkeys that LFPs during neutral cueing
were also intermediate between cued and uncued conditions. For a single electrode, attention was more discriminable using
high frequency (>30 Hz) LFP power than spikes, which is expected because LFP represents a population signal and therefore
is expected to be less noisy than spikes. However, previous studies have shown that when multiple electrodes are used,
spikes can outperform LFPs. Surprisingly, in our study, spikes did not outperform LFPs when discriminability was computed
using multiple electrodes, even though the LFP activity was highly correlated across electrodes compared with spikes. These
results constrain the spatial scale over which attention operates and highlight the usefulness of LFPs in studying attention.
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Introduction

Power at different frequency bands like alpha (8-12 Hz) and
gamma (30-80 Hz) of the local field potential (LFP) is reliably
modulated by selective attention (Fries et al. 2001, 2008; Chalk
etal. 2010; Khayat et al. 2010; Khamechian et al. 2019) and can be
used to predict behavior (Womelsdorf et al. 2006). These results
have led to suggestions that gamma oscillations could play a
role in routing information across cortical areas (Fries 2015).
However, most of these studies employed a standard attention
task in which the animal’s attention was either cued inside
(attend-in) or outside (attend-out) the receptive field (RF) of the
recording sites.

Additional attentional conditions are often used in psy-
chophysical tasks in humans. Here, a spatial attention task

typically involves cueing the subject to deploy attention to
a desired location at which a target is anticipated (Posner
1980). The target usually occurs at the cued location (which
are called “valid” trials) but can infrequently also occur at
an uncued location (“invalid” trials), such that the behavioral
effect of spatial attention can be measured by comparing the
performance (in terms of detection rates) and reaction times
for valid versus invalid trials (Posner 1980; Carrasco 2011). In
addition, such studies often use an ambiguous or “neutral”
cueing condition where the target change is equally likely
at both locations. These studies have shown that behavioral
performance during neutral cueing is intermediate between
valid and invalid conditions (Posner et al. 1978; Posner 1980;
Mangun and Hillyard 1990; Montagna et al. 2009). While
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neurophysiological studies of spatial attention have compared
neuronal responses for attend-in versus attend-out conditions
for decades (Moran and Desimone 1985; Treue and Maunsell
1996; McAdams and Maunsell 1999), the effect of neutral cueing
on spiking activity has been studied only recently and found to
be intermediate between cued and uncued conditions (Mayo and
Maunsell 2016) (but see Denfield et al. 2018). However, whether
LFP power in different frequency bands during neutral cueing
is also intermediate between cued and uncued conditions is
unknown.

While earlier neurophysiological studies focused mainly on
responses of individual neurons, simultaneous recordings from
multiple neurons have allowed a more comprehensive inves-
tigation of the effect of attention on the neuronal population.
In particular, attention has been shown to reduce spike-count
correlation between pairs of neurons (Cohen and Maunsell 2009;
Mitchell et al. 2009), which can affect the way the neural pop-
ulation encodes a stimulus (Averbeck et al. 2006; Cohen and
Kohn 2011). The spiking activity of a simultaneously recorded
population of neurons has also been used to predict the animals’
focus of attention and behavior in a single trial (Cohen and
Maunsell 2010, 2011). Since handling high-dimensional data is
difficult, many studies have devised methods to obtain a one-
dimensional metric from a high-dimensional dataset to predict
behavior (Cohen and Maunsell 2010; Cunningham and Yu 2014;
Yates et al. 2020). Using a simple method of projecting trials
onto a one-dimensional axis constructed using the mean spik-
ing activity of a neuronal population of two different attention
conditions (Cohen and Maunsell 2010; Mayo et al. 2015), Mayo
and Maunsell (2016) showed that the projections of neutral
cueing condition were also intermediate between cued and
uncued conditions. However, whether the projections remain
similarly graded even when incorporating higher-order statistics
like covariance across electrodes was not tested. Further, it is
unclear how well different attentional states can be discrimi-
nated using LFP power at different frequency bands as compared
with spiking activity, and how this discriminability varies with
the number of microelectrodes.

LFPs are thought to reflect the summed synaptic potentials
of at least a few thousand neurons around the microelectrode
tip (Buzsaki et al. 2012). Furthermore, a high-frequency (>80 Hz)
component of the LFP reflects the overall spiking activity of the
neural population (Ray et al. 2008; Ray and Maunsell 2011). Since
spiking activity recorded from a single electrode represents only
a noisy estimate of the true underlying attentional state, aver-
aging across a larger population of neurons (as done implicitly
in population signals like the LFP) reduces noise and provides a
more reliable estimate of the attentional state. However, when
the decoding of behavior is performed using multiple electrodes,
the trends are often reversed, with multichannel spikes outper-
forming multichannel LFPs (Hwang and Andersen 2013). This is
because firing rates are more variable across electrodes than
LFPs, so a decoding algorithm can give more weight to the
more informative channels. This strategy may not work as well
for LFPs, since these signals represent the average activity of
thousands of neurons that may not be informative.

To test these predictions, we recorded spikes and LFPs
from two rhesus macaques performing an attention task
under different cueing conditions and compared how power
in different frequency bands varied across attention conditions.
We also compared LFP-LFP and spike-LFP coherence. Finally,
we compared different weighting strategies to obtain one-
dimensional projections of data using spikes or power in
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different frequency bands and compared the discriminability
of attention conditions across neural measures as a function
of population size. While single-channel LFPs expectedly
outperformed single-channel spikes, surprisingly, multichannel
spikes could not outperform multichannel LFPs.

Materials and Methods
Electrophysiological Recordings

Data used in this study and the experimental procedures were
detailed in a previous report (Mayo and Maunsell 2016) that
described the V4 spiking data in detail. All animal procedures
were approved by the Institutional Animal Care and Use Com-
mittee of Harvard Medical School. Two adult male rhesus mon-
keys (Macaca mulatta) were surgically implanted with a titanium
head post and scleral eye coil before training. After they learned
the behavioral task, a 6 x 8 array of microelectrodes (Blackrock
Microsystem, 48 electrodes in each) was implanted in visual area
V4 in both cerebral hemispheres. The signals were referenced
with respect to a single wire that was wrapped around the
titanium straps that were used to hold the bone flap in place
on top of the arrays. Because popular referencing techniques
such as average or bipolar referencing change the power and
phase of the LFP signals in nontrivial ways (Shirhatti et al. 2016),
the signals were not subsequently re-referenced. The electrodes
were 1 mm long and 400 pm apart with impedance typically
between 0.2 and 1 M2 at 1 kHz. Area V4 was identified using
stereotaxic coordinates and by locating the lunate and superior
temporal sulci during surgery. The azimuths and elevations of
the centers of the RFs of neurons recorded from the two arrays
were around (2°, —7°) and (-7°, —4°) for Monkey A and (6°, —7°)
and (—6°, —3°) for Monkey W.

Signals from 96 channels were recorded using a 128-channel
Cerebus Neural Signal Processor (Blackrock Microsystems). Sig-
nals were filtered between 0.3 Hz (Butterworth filter, 1st order,
analog) and 2.5 kHz (Butterworth filter, 4th order, digital), sam-
pled at 2 kHz, and digitized at 16-bit resolution to obtain the LFP
signals. Note that the low-pass LFP filter was inadvertently set
to a value greater than half the sampling rate and hence could
have led to some aliasing. However, because the power of the LFP
signal falls rapidly with frequency (log PSDs shown in Figure 1C
kept decreasing beyond 200 Hz to about —1.3 at ~700 Hz after
which they flattened), the aliased power above 1000 Hz was
negligible. Signals were separately filtered between 250 Hz (But-
terworth filter, 4th order, digital) and 7.5 kHz (Butterworth filter,
3rd order, analog) and subjected to a threshold followed by spike
sorting using spike sorter software (Plexon) to extract single and
multi-units, which we also refer to as “neurons.”

Behavioral Task

Monkeys learned an orientation change detection task in which
they held their gaze within a 1.8° square window centered on
a fixation spot in the center of the screen throughout the trial.
During fixation, two counterphasing Gabor stimuli appeared
simultaneously and synchronously in the RFs of one of the units
recorded from each hemisphere. At an unsignaled time, chosen
from an exponential distribution (mean 3000 ms, range 500-
5000 ms) and when the contrasts of the counterphasing Gabor
stimuli were both at 0%, the orientation of one of the stimuli
changed. Monkeys were rewarded for making a saccade to the
location of the changed stimulus between 100 and 550 ms after
the orientation change.
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Figure 1. Comparison of firing rate, evoked potential, and PSDs across attend-in, attend-out, and neutral attention conditions. (A) Mean PSTH of all 756 electrodes
relative to stimulus onset (left plot) and target onset (right plot) for attend-in (blue), attend-out (red), and neutral (green) attention conditions. The vertical dashed line
indicates the stimulus onset time (left) and target onset time (right). The bars on the X-axis indicate the periods chosen for analysis. We only consider the valid and
correct responses here (blue: Attend-in Valid Hit, red: Attend-out Valid Hit, green: Target-out Neutral Hit and Target-in Neutral Hit combined). The results for other
attention conditions are shown in Figure 3. (B) Mean ERP of the same electrodes and periods as in (A) for the three attention conditions. (C) PSD of the baseline period
(—0.25 to O s relative to stimulus onset), stimulus period (0.25-0.5 s relative to stimulus onset), and pre-target period (—0.5 to 0 s relative to target onset) for the three
attention conditions. (D) Change in power (in dB) of the three attention conditions, obtained by subtracting the green trace from the other traces shown in (C). Green
trace represents the change in power of the neutral condition with itself and hence is trivially zero. The black vertical dashed line in the bottom plot indicates the

power at 20 Hz SSVEP frequency.

Monkeys were cued to attend to one (valid or invalid cue) or
both (neutral cue) of the stimulus locations for a block of 50 trials
using four instruction trials in which a white spot (0.45° radius)
appeared for 50-100 ms indicating the likely location of the
stimulus change in the upcoming cued block or simultaneously
at both stimulus locations for the neutral block. In cued blocks,
the change occurred at the cued location with 80% probability
(valid cue) and 20% at the uncued side (invalid cue). In neutral
blocks, the change occurred at each stimulus location with equal
probability. Five percent of all trials were catch trials in which
neither of the stimuli changed orientation, and monkeys were
rewarded for maintaining fixation throughout the trial. Catch
trials and instruction trials were excluded from analysis.

Six randomly interleaved orientation change magnitudes
were used in each session to characterize the effects of
attention on behavioral performance. While all of these
orientation changes were used during valid and neutral trials,
only the second and third smallest orientation changes were
used for invalid trials (see (Mayo and Maunsell 2016), for
details). For these orientation changes, the mean behavioral
performance was approximately 73% for validly cued trials,
approximately64% for neutral, and approximately 48% for
invalid trials. As in the previous report (Mayo and Maunsell 2016),
all analyses were restricted to only trials with these orientation
changes for proper comparison of valid and neutral conditions
with the invalid condition.

Stimuli

Two odd symmetric, Gabor stimuli sinusoidally counterphased
at 10 Hz of maximum contrast were used during each record-
ing session. Each had a size (0 range: 0.45°-1.6°) and spatial

frequency (range: 0.3-2.5 cycles/deg) optimized for one of the
units from each hemisphere. Stimuli were displayed on a CRT
monitor (100 Hz frame rate, 1024 x 768 pixels, 8-bit DACs) over
a uniform gray background. The monitor was calibrated to pro-
duce linear steps of luminance and positioned at 57 cm from the
subject. Such counterphasing stimuli produce a salient neuronal
response at twice the stimulus frequency (20 Hz; see Fig. 1A,B).
These responses are referred to as steady-state visually evoked
responses (SSVEPs). Eye position was sampled at 200 Hz using
the scleral eye coil technique (Judge et al. 1980).

Attention Conditions

Attention conditions were defined in two ways. The first formu-
lation was in reference to the RF of the neurons (Figs 3 and 4) and
yielded the standard attend-in and attend-out conditions. The
second formulation was used for population discriminability
analysis that included neurons from both hemispheres (Fig. 5)
and was therefore based only on the cued hemifield. Each for-
mulation consisted of 12 conditions, as described below.

First Formulation

During the cued and uncued conditions, the animals’ attention
was cued either inside or outside the RF. The cue could be
either valid or invalid, and the animal could either detect (hit)
or not detect (miss) the target. This yielded the following eight
conditions: Attend-in Valid Hit, Attend-out Valid Hit, Attend-in
Valid Miss, Attend-out Valid Miss, Attend-in Invalid Hit, Attend-
out Invalid Hit, Attend-in Invalid Miss, and Attend-out Invalid
Miss. During the neutral cueing conditions, trials cannot be des-
ignated as attend-in and attend-out but can be separated based
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on where the final target appeared. This yielded the following
four conditions: Target-in Neutral Hit, Target-out Neutral Hit,
Target-in Neutral Miss, and Target-out Neutral Miss. Therefore,
each attention condition was denoted by three words. The first
word denoted the likely focus of attention/actual target location
(two values: Attend-in/Attend-out or Target-in/Target-out), the
second word denoted the validity of the cue (three values: Valid,
Neutral, or Invalid), and the third word indicated the behavioral
outcome (two values: Hit or Miss).

Second Formulation

This formulation was independent of RF location because elec-
trodes from both hemispheres were used. Therefore, instead
of using Attend-in or Attend-out as used in the previous for-
mulation, we used Attend-left or Attend-right, where left/right
indicated the attended visual hemifield.

Session and Electrode Selection

Data were collected in 26 recording sessions (14 in Monkey
A and 12 in Monkey W). One session was discarded because
of an insufficient number of trials in one attention condition,
yielding 25 sessions (13 and 12 in the two monkeys). Because
LFP power was modulated due to attention whether or not the
electrode picked up any spiking activity, choosing electrodes
with no or unresponsive spiking activity would have reduced
the performance of a spike-based decoder. Therefore, for a fair
comparison between spiking and LFP data, we only considered
electrodes that had neuronal firing rates in the stimulus period
that were >5 spikes/s greater than during the baseline period.
This yielded a total of 756 electrodes (average: 30.2 per session;
min: 8, max: 46). Only sessions for which at least 15 trials were
available for a particular attention condition were used for the
analysis of that condition.

Data Analysis

Spike and LFP data were analyzed in three periods: 1) base-
line: 250-0 ms before stimulus onset, 2) stimulus: 250-500 ms
after the stimulus onset, and 3) pre-target: 500-0 ms before
the stimulus changed to a different orientation (target). Peri-
stimulus time histograms (PSTHs) were obtained by binning
spike counts in 10 ms windows. Power spectral density (PSD)
was calculated using multitaper method (Mitra and Pesaran
1999) with three tapers using the Chronux toolbox in MATLAB
(Bokil et al. 2010). Frequency resolution was 4 Hz in baseline
and stimulus periods and 2 Hz in the pre-target period. Power in
the specific bands was computed by adding the power at each
frequency point in specified range for each electrode and then
averaging across electrodes of all the sessions. The following
bands were used: alpha (8-12 Hz), gamma (42-78 Hz), and high-
gamma (122-198 Hz). The power at the harmonics of 20 Hz
SSVEP was excluded from all these bands. We also studied the
power at the SSVEP frequency (20 Hz). The phase consistency
between 1) spikes and LFPs and 2) LFPs and LFPs was computed
across electrode pairs using pairwise phase consistency (PPC),
which gives an unbiased estimate of the square of the phase
consistency (Vinck et al. 2010, 2012).

Population Projection

The goal of the population projection analysis was to quantify
how discriminable the population neural activity was when
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the monkey paid attention to the left versus the right stimulus
location (i.e., the discriminability in the neural data between
the Attend-left Valid Hit and Attend-right Valid Hit conditions).
These two conditions were chosen because the animals were
most likely to be paying attention to the cued locations when
they detected a target on the validly cued side. Because the
population data were high-dimensional (equal to the number
of electrodes in both hemispheres), we wanted to find a
one-dimensional projection (a weighted sum) of this high-
dimensional data so that the projections were maximally
separated for the two conditions. For this purpose, we used a
linear discriminant analysis (LDA), which is a technique based
on Fisher’s Linear Discriminant (Fisher 1936) that maximizes the
separation between two classes in a lower-dimensional space.
This method works well when the size of the test data (number
of trials in the Attend-in and Attend-out Valid Hit conditions) is
comparable to the dimensionality (number of electrodes), or if
assumptions of common covariance matrix across classes are
not met (Li et al. 2006). More complex classifiers like neural
networks were not considered here because they typically
require a larger training dataset set to prevent overfitting and
they are less interpretable.

We used three projection methods of increasing complex-
ity, progressively building to the LDA because this allowed us
to study the effect of accounting for mean differences across
classes, variances, and covariances separately (see below for
details). Furthermore, we wanted to also compare with a tech-
nique called “Attention Axis” analysis (Cohen and Maunsell
2010; Mayo et al. 2015) (Fig.5), which is a variant of the first
method. All analyses were performed both with and without
5-fold cross-validation to better illustrate the effect of cross-
validation on our results.

Consider two data matrices, D, and Dg, corresponding to
the neural data for the Attend-left Valid Hit and Attend-right
Valid Hit conditions. The sizes of these matrices are N x Ty, and
N x Tr, where N is the total number of electrodes from both
hemispheres, and Ty, and Ty are the number of trials for the left
and right conditions. Our aim is to find an N x 1 weight vector W,
which is used to obtain the projections P=WT'D. Although W is
obtained using Dy, and Dg only, it can be used to project the data
(D) of any attention condition. The three methods are as follows:

1) Mean difference: Here W = (u. — pr), where pr and pgr
represent the mean of the data matrices Dy, and Dg across trials,
respectively, and therefore are N x 1 matrices. Here, we assign
a weight to each electrode that depends on how different its
responses are for the two attention conditions. If the responses
are equal for the two attention conditions, the weight for that
electrode is zero. The first step of the “Attention Axis” projection
is similar to this step. This method does not account for the vari-
ance across trials for individual electrodes or the covariances
across electrodes.

2) Uncorrelated LDA: Here, we divide each weight obtained in
the previous case by the average weighted variance across trials
for the two conditions. For the ith electrode, the weight is given

by

(WLi — WRi)
(T = Do+ (Tr = D ody/ (Tu +Tr — 2))

(Wyncorrelated LDA)i =

where p;/g; is the mean activity for the ith electrode as before,
while o?j;/p; is the variance in neural activity for left/right
condition for the ith electrode, and T, and Tg are the number of
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trials for the left and right conditions as before. In vector form,
Wincorrelatedipa = = +(uL — Kr), Where T is an N x N diagonal
matrix containing the pooled variances of the electrodes along
the diagonals.

3) LDA: To also account for covariations in neural data across
electrode pairs, we use the full covariance matrix instead of a
diagonal matrix:

(TL—1)2L+(TR—1)ZR
To+Tr—2

Z = Pooled covariance =

where Xp,r is the Nx N covariance matrix of D;g and Wipa
= 7 Yur — pr) as before. We performed LDA using fitcdiscr
function in MATLAB. This function fits the LDA model to the
input data (Dy, and Dr) by computing the class means and pooled
covariance and estimates the discriminant function (a linear
boundary) to classify the data into different classes. We used this
function to estimate the weights for each dimension to generate
an LDA axis along which the data had maximum separation
between the class means and minimum variance within classes.

Statistical Tests

We compared the medians of two groups using nonparametric
two-sided Wilcoxon rank sum test, which does not assume a
normal distribution of the data. Kruskal-Wallis test was done
when comparing medians of more than two groups simultane-
ously.

Simulations

To study the effects of cross-validation, regularization, and sam-
ple size in LDA analysis, we generated two datasets of 50000
samples, each drawn from two 30-dimensional multivariate
normal distributions with different mean vectors and the same
covariance matrix such that the true d-prime (ratio of the differ-
ence of the means and the pooled variance) of the projection
of data onto the optimal LDA axis was between 0.5 and 1.5.
We then randomly drew samples of different sizes from these
datasets and computed the d-prime of projections onto the LDA
axis estimated with or without 5-fold cross-validation for each
sample size. Finally, we normalized the estimated d-prime by
taking the ratio with the true d-prime. This process was repeated
50 times to compute the standard deviations.

These simulations highlight potential issues with neuro-
physiological datasets in which the number of dimensions
(electrodes, ~30 on average in our case) is not much smaller than
the number of data points. In such cases, not cross validating
leads to severe overfitting, while cross-validation leads to poor
performance because it is difficult to estimate a large covariance
matrix and the means of each class with few data. For example,
we noticed in our simulations that when the number of data
points per class (trials per attention condition) was small (say,
~100 trials), the estimated d-primes normalized relative to the
true d-prime were approximately 1.51 4+ 0.03 (mean + SEM) when
not cross-validated, but only approximately0.6+0.03 when
cross-validated. Only when the number of trials was several
folds (>10 times) larger than the number of dimensions was the
estimated d-prime close to the true d-prime.

If the number of trials is less than the dimensionality, the
covariance matrix is no longer invertible and needs to be “reg-
ularized” (Friedman 1989; Guo et al. 2007). The fitcdiscr function
in MATLAB that was used to perform the LDA analysis applies

some regularization by default, but it can be further modified
by using the cushrink function in MATLAB that can be used to
diagonalize and reduce the dimensions of the covariance matrix.
The modification of the covariance matrix depends on two reg-
ularization parameters, gamma and delta. The parameter gamma,
which ranges from 0 to 1, shrinks the covariance matrix toward a
diagonal matrix. In our simulations, we used 30 different gamma
values and chose the one that minimized the classification error.
The additional parameter delta sets a threshold for choosing the
useful predictors (dimensions) and removes the remaining ones,
essentially shrinking the covariance matrix. However, varying
delta did not give any advantage over varying just gamma in
our data, and varying gamma also did not improve the per-
formance over the default regularization performed by fitcdiscr
(Supplementary Fig. 2). For real data, therefore, we did not do any
specific regularization.

Results
Effect of Neutral Cueing on LFP

Neural recordings were made using two 6 x 8 (48 channels)
arrays implanted bilaterally in visual area V4 of both hemi-
spheres in two rhesus monkeys (M. mulatta). Figure 1A shows
the average PSTH of 756 neurons from 25 recording sessions in
two monkeys, aligned to either the stimulus onset (left vertical
dashed line) or target onset (right vertical dashed line). Here,
attend-in and attend-out conditions are for validly cued stim-
ulus changes that the monkeys correctly detected (Attend-in
Valid Hit and Attend-out Valid Hit; see Materials and Methods for
details), while the neutral condition includes all neutrally cued
trials in which the monkeys detected the target, irrespective of
target location (Target-in Neutral Hit 4+ Target-out Neutral Hit;
see Materials and Methods for details). There was a transient
response after stimulus onset, followed by a 20 Hz SSVEP in the
PSTH due to the 10-Hz counterphase stimulus. Throughout each
trial, attention state had a small effect on spiking, with activity
during the neutral condition (green trace) below attend-in (blue)
and above attend-out (red) conditions, as reported previously
(Mayo and Maunsell 2016).

Figure 1B shows the event-related potential (ERP), obtained by
averaging the raw LFP traces across trials without any baseline
correction, of the same three attention conditions. Like the
PSTH, the ERP had a stimulus onset-related transient and a
prominent 20 Hz SSVEP. Figure 1C shows the PSD of the atten-
tion conditions for baseline, stimulus, and pre-target periods
(indicated as thick horizontal black lines in Fig. 1A). In all con-
ditions, the PSDs showed a typical “1/f” power-law decay. The
PSDs for the baseline condition were largely overlapping. In the
stimulus onset and pre-target conditions, there was a small
separation in the three traces, with the neutral (green) trace
almost always in between the attend-in and attend-out con-
ditions. These PSDs also showed prominent SSVEP bumps at
20 Hz and its harmonics. These SSVEP peaks were best observed
in the pre-target period because of better frequency resolution
(2 Hz, compared to 4 Hz for the other two periods). These plots
show that the effect of attention on PSDs is weak at an absolute
scale.

Figure 1D shows the change in power in the attend-in and
attend-out conditions relative to the neutral attention condition
for the three periods, obtained by subtracting the green trace
from the other traces. Because PSDs are shown on a log scale
in Figure 1C, subtraction on a log scale is simply the log of the
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ratio of power change across conditions (after subtraction, the
log ratio is multiplied by 10 to get units of decibels). Previous
studies have shown that attention suppresses power at low
frequencies and increases power at higher frequencies (Fries
et al. 2001, 2008). Consistent with this, during the pre-target
period (Fig. 1D, bottom row, where the sampled brain activ-
ity presumably reflected the animals’ state of attention most
accurately before the impending, successfully detected, target
change), we observed that the power in lower frequencies was
suppressed for attend-in condition relative to attend-out and
the effect reversed at higher frequencies (>30 Hz), with the neu-
tral condition almost always between the two. We also observed
an increase in power at 20 Hz SSVEP (indicated by a black vertical
dashed line). The increase in power at high frequencies was
broadband and extended up to 200 Hz and beyond, with a slight
peak in the gamma range (30-80 Hz) in the pre-target condition.
An increase of 0.5 dB corresponds to a change in 10°% =1.12, or
12% increase in power, comparable to the size observed in firing
rates in previous spatial attention studies (Boudreau et al. 2006;
Mayo and Maunsell 2016; Snyder, Yu, et al. 2018b). These changes
were highly reliable across electrodes and sessions, yielding very
small standard error of mean (shaded region around the traces).
As shown below, this allowed better discrimination between
different attention conditions using LFP power compared with
spiking activity.

Previous studies have suggested that phase synchronization
between LFPs from two electrodes as well as between spikes
and LFPs increases in the gamma range with spatial attention
in area V4 (Fries et al. 2008; Fries 2015). We therefore measured
phase consistency across electrode pairs using PPC, an unbi-
ased estimator of the square of the phase coherence. Figure 2A
shows the field-field (LFP-LFP) PPC across all pairs of selected
electrodes within the hemisphere. As before, the neutral con-
dition was between the attend-in and attend-out at almost all
frequencies. Peaks were observed at 20 Hz and its harmonics
because the counterphasing stimulus forced phase consistency
across electrodes. Figure 2B shows the change in PPC from the
neutral condition, obtained by subtracting the green trace from
each of the traces in Figure 2A.In contrast to the change in power
(Fig. 1D), the change in PPC was prominent mainly in the gamma
range (30-80 Hz), with negligible differences at higher frequen-
cies (>120 Hz). This could be because phase synchronization
measures are less sensitive at high frequencies because even
tiny absolute shifts in the time domain correspond to large shifts
in phase, leading to poorer phase consistency in the presence
of small time shifts (Ray 2015). The spike-field (spike-LFP) PPC
(Fig. 2C) showed strong peaks at 20 Hz and harmonics, indicating
that spikes were tightly locked to the SSVEP. The change in PPC
relative to the neutral condition (Fig. 2D) showed similar trends
to that in field-field PPC, but the magnitude of the effect was
far smaller. There was also a reduction in phase coherence with
attention at very low frequencies (<5 Hz) in both field-field and
spike-field coherence, possibly due to the reduction in power at
those frequencies with attention.

We also studied the phase relationship between the LFP sig-
nals across hemispheres and observed peaks at 20 Hz SSVEP and
its harmonics, as in the within-hemisphere case, in both field-
field and spike-field PPC, although the magnitude was reduced
(Supplementary Fig. 1A,C). In this case, the electrodes of each
across-hemisphere pair have RFs in opposite visual hemifields.
So, there were no “attend-in” and “attend-out” conditions; we
instead took the average of attend-left and attend-right con-
ditions and compared them with the neutral condition. The
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difference between attend-left/attend-right and neutral con-
ditions showed inconsistent trends (Supplementary Fig. 1B,D)
with small peaks at 20 Hz SSVEP and harmonics.

Comparison of Different Neural Measures across
Attention Conditions

Our main goal was to compare how well the animals’ behavior
could be predicted using spiking activity versus LFP power. To
see the consistency of effects, we performed this comparison
over 12 different attention conditions (see Methods for details).
We first compared how firing rates and LFP power at different
frequencies varied across different attention conditions. Rather
than using LFP power at individual frequency bins, we computed
LFP power in three popular frequency bands—alpha (8-12 Hz),
gamma (42-78 Hz), and high-gamma (122-198 Hz). Averaging of
power within a frequency range is needed because single-trial
estimates of power at individual frequency bins are noisy (Jarvis
and Mitra 2001; Srinath and Ray 2014; Chandran et al. 2018).
However, because the noise in spectral estimation is largely
independent across frequencies, averaging power within a large
frequency range provides reliable estimates of the actual power
on single trials. The lower limit of high-gamma range was set
at a higher value than usual (122 Hz instead of 82 Hz) because
we wanted a frequency range in which field-field coherence
was close to zero and therefore unlikely to simply reflect the
dynamics of the traditional gamma band. However, choosing
the high-gamma range between 82 and 198 Hz yielded similar
results.

In addition, we also considered the SSVEP power at 20 Hz.
These results should be interpreted with caution; since while
we observed an increase in power at 20 Hz with attention,
there was a general reduction in power around this frequency
(bottom plot in Fig. 1D), suggesting that the overall power at this
frequency depended on two antagonistic mechanisms. Further,
as described above, single-trial estimates of power are noisier
when not averaged over several frequency bins.

Figure 3A shows the average firing rates (top row), as well
as raw power in the high-gamma (second row), gamma (third
row), alpha ranges (fourth row), and SSVEP (bottom row) for 12
different attention conditions. The conditions are grouped based
on cue validity (left column: valid, middle column: neutral, and
right column: invalid), and within each group, conditions are
arranged such that the firing rate was expected to increase going
from left to right, as discussed below.

For the valid conditions (Fig. 3A; left column), firing rates
were lower for Attend-out Valid Hit (first data point) than
Attend-in Valid Hit (fourth data point), as shown previously
(Fig. 1). Similar trends were observed in high-gamma, gamma
power, and SSVEP power, while alpha power showed the
opposite result. For the same attentional conditions, the
monkeys were expected to miss the target if their attention was
deployed on the “wrong” side, and therefore, the corresponding
miss conditions (second and third data points) were expected
to lie between the two hit conditions. This was the case for
firing rate, high-gamma power, gamma power, and alpha power,
barring a few exceptions (Attend-in Valid Miss condition for
firing rates and high-gamma power, and Attend-out Valid Miss
condition for alpha power). Interestingly, the SSVEP results were
different, in which power was lower for both miss conditions
compared with the hit conditions. Potential reasons behind
these differences are discussed later.
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Figure 2. Comparison of intrahemispheric field-field (LFP-LFP) and spike-field (Spike-LFP) phase relationship across attend-in, attend-out, and neutral attention
conditions. (A) Mean field-field PPC, averaged across 6646 electrode pairs of attend-in (blue trace), attend-out (red), and neutral conditions (green). (B) Mean change in
field-field PPC of the three attention conditions, relative to the neutral condition. As before, the neutral condition is trivially zero. (C) Mean spike-field PPC averaged
across 14048 electrode pairs (including spike and LFP from the same electrode) for the three attention conditions. (D) Mean change in spike—field PPC for the three

attention conditions, relative to the neutral condition.

For the neutral case (Fig. 3A; middle column), the attention
conditions were divided based on the trial outcome and target
location rather than cue location since monkeys were cued to
attend to both locations. Like the changes in firing rate, high-
gamma power and gamma power were lower when monkeys
detected the target that appeared outside the RF than when it
appeared inside the RF, while alpha power showed the opposite
trend. As before, barring a few exceptions (Target-in Neutral Miss
condition for high-gamma, gamma, and alpha power), missed
conditions lay between the hit conditions for the four neural
measures except SSVEP, for which the missed conditions had
lower power than the two hit conditions. Importantly, almost
all the neutral attention conditions lay between validly cued
attend-out and attend-in conditions (marked by solid horizontal
lines for clarity), for all the measures excluding SSVEP.

In the invalid case (Fig. 3A; right column), the target always
appeared at the uncued location. Firing rate, high-gamma, and
gamma power were lowest when attention was directed out-
side the RF and the monkey missed the target, as expected
(first data point). Likewise, these measures were highest when
the monkey attended inside the RF but missed an invalidly
cued stimulus change outside the RF, likely because attention
remained focused on the unchanged stimulus within the RF
(fourth data point). These two miss conditions were comparable
to the Attend-out Valid Hit and Attend-in Valid Hit conditions,
respectively, regarding the focus of attention. As before, alpha
power showed the opposite effect. The hit trials, for which
the monkeys were likely attending to the uncued side where
the target actually appeared, lay between the missed trials for
the invalid condition for all the neural measures except SSVEP,

which showed higher power in hit trials compared with the
miss trials. Overall, unlike the other four measures, SSVEP power
was higher for hit versus miss trials, irrespective of attentional
location.

These results show that both firing rate and LFP power in
different frequency bands vary systematically with the atten-
tional state and therefore could potentially be used to predict the
animals’ behavior. To directly compare the discriminability of
different neural measures, we z-scored all measures separately
for each electrode and attention condition, by subtracting the
mean and dividing by the standard deviation across trials of the
Attend-out Valid Hit condition. The z-scored values therefore
indicated how far a particular attention condition was from the
Attend-out Valid Hit condition, in units of the standard deviation
of Attend-out Valid Hit condition across trials. This condition
was chosen for simplicity: The discriminability remained similar
if we normalized all measures relative to Attend-in Valid Hit con-
dition or used the average standard deviation of the Attend-out
and Attend-in Valid Hit conditions.

Figure 3B shows the mean z-scored values (averaged across
electrodes) for different attention conditions for all five neural
measures, as indicated by line colors. The difference in z-scored
activity between Attend-out Valid Hit (which was zero by defini-
tion) and Attend-in Valid Hit was greatest for gamma power
(z =0.34+£0.0091; mean+ 1 SEM), followed by high-gamma
(0.31+£0.0094), firing rate (0.2+0.0083), alpha (—0.1+0.0051),
and finally SSVEP (0.09+0.009) in terms of magnitude. The
difference in z-scores between gamma and high-gamma
was not significant (P =0.24; Wilcoxon rank sum test), but
the difference was highly significant between high-gamma
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Figure 3. Comparison of firing rate, high-gamma power, gamma power, alpha power, and SSVEP power across 12 attention conditions. (A) First row: mean firing rate
during the pre-target period for the Hit and Miss trials where attention was validly cued out and into the RF (left column), for Hit and Miss trials of neutral condition
where the target appeared out and in the RF (middle column), and for Hit and Miss trials where attention was invalidly cued out and into the RF (right column). The
numbers above the error bars indicate the number of electrodes averaged across for the respective conditions, while the numbers below the error bars indicate the
number of sessions. We only considered sessions that had more than 15 trials for an attention condition. Second, third, fourth, and fifth rows: mean high-gamma,
gamma, alpha, and SSVEP power, respectively. The same number of electrodes and sessions were used for these measures as well. Error bars indicate the SEM. The
validly cued attend-out and attend-in conditions are indicated by horizontal lines for better comparison with the other conditions. (B) Same data as (A), but after
z-scoring the data of each electrode and attention condition by subtracting the mean and dividing by the standard deviation (computed across trials) of the attend-out
valid hit condition. The colored horizontal lines indicate the validly cued attend-in values for each neural measure. The red horizontal dashed line indicates the validly

cued attend-out condition, which is trivially zero.

and firing rate (P =2.3 x 10~2!; Wilcoxon rank sum test) as well
as gamma and firing rate (P =3.84 x 10~%; Wilcoxon rank sum
test). On the other hand, magnitudes of the z-scored values
for alpha power (P =2.68 x 1071%; Wilcoxon rank sum test) and
SSVEP power (P =6.83 x 107%°; Wilcoxon rank sum test) were
significantly less than firing rates. Therefore, if a single electrode
is available for analysis, gamma/high-gamma power allows
superior discrimination of attend-in and attend-out conditions
compared with firing rates.

Previous studies have shown that when firing rates are
recorded from multiple electrodes simultaneously, a suitable
linear combination of these signals can substantially improve
the discriminability across attentional conditions, and this
discriminability further depended on the correlation between
the total number of spikes recorded from two electrodes (“spike-
count” correlation; Cohen and Maunsell 2009). Analogous
correlations between LFP power across electrode pairs have not
been compared, to our knowledge, with spike-count correlations
(but see Snyder et al. 2015 for related work). We found that
the absolute Pearson correlation between power recorded from
two electrodes within the same hemisphere was highest for
alpha power (Attend-out Valid Hit condition: 0.84+0.0015),
progressively decreasing for SSVEP, gamma, and high-gamma
power (0.76 +0.0019, 0.69 & 0.0018, and 0.46 + 0.0019), and lowest
for spike-count correlations (0.22 +0.002). However, the relative
change in correlation from the Attend-out Valid Hit condition,
as shown in Figure 4A, showed similar trends across the

neural measures, except SSVEP. For valid cues (left column),
spike-count correlations decreased from attend-in to attend-
out conditions, consistent with previous studies (Cohen and
Maunsell 2009; Mitchell et al. 2009). Interestingly, we found that
correlation of high-gamma, gamma, and alpha power was also
reduced in Attend-in Valid Hit condition compared with Attend-
out Valid Hit. However, the correlation of SSVEP power increased.
As before, the “missed” cases showed intermediate correlations
between the validly cued hit conditions in most cases.

For the neutral conditions (middle column), previous study
(Mayo and Maunsell 2016) showed that spike-count correlations
were intermediate between attend-in and attend-out. However,
in their data, the correlations were computed for all correct
trials, irrespective of the target position (in other words, Target-
out Neutral Hit and Target-in Neutral Hit conditions were
pooled, as done in Figs 1 and 2 here as well). However, when
we computed the correlation separately for these two Hit
conditions, we found that spike-count correlations for Target-
out Neutral Hit (0.218 £0.002) were comparable to Attend-out
Valid Hit (0.22 +0.002), although the difference was significant
(P =0.007; Wilcoxon rank sum test). Similarly, Target-in Neutral
Hit (0.189 £ 0.002) was similar to Attend-in Valid Hit (0.19 £+ 0.002,
P =0.64; Wilcoxon rank sum test). The Miss conditions were
again intermediate between the two Hit conditions in most
cases. Finally, the invalid conditions (right column) showed
predictable trends for firing rates, but variable results for the LFP
power, especially correlations in gamma power that increased
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Figure 4. Intrahemispheric change in Pearson correlation of firing rate, high-gamma, gamma, alpha, and SSVEP power. Mean change in correlations between
intrahemispheric electrode pairs for the five neural measures relative to attend-out valid hit condition (same format as Fig. 3B). Numbers above the error bars of
the blue line indicate the total number of electrode pairs (N) and sessions (S) considered for each condition. As in Figure 3B, the colored horizontal lines indicate the
validly cued attend-in values for each neural measure. The black horizontal dashed line indicates the validly cued attend-out condition, which is trivially zero.

between Attend-out Invalid Miss versus Attend-in Invalid Miss.
Potential reasons for this surprising effect are addressed in the
Discussion. Interhemispheric correlations were relatively weak
(absolute correlation values for the valid hit condition were
0.273+0.0018, 0.235+0.0015, 0.167 £ 0.0014, 0.104 +0.0015, and
0.044+0.0012 for alpha power, SSVEP power, gamma power,
high-gamma power, and firing rate, respectively) and difficult to
interpret (data not shown).

Discriminability between Attention Conditions Using
Population Activity

Although the analysis shown in Figure 3 suggests that high-
frequency LFP power is more discriminable than firing rates, this
analysis only reflects the average discriminability computed
from individual electrodes. Previous studies have shown that
while single-channel LFPs outperform single-channel spikes,
decoding based on multichannel spikes is often superior to mul-
tichannel LFPs (Hwang and Andersen 2013) (see Discussion for
details). This is because spiking activity is more dissimilar across
electrodes as compared with LFP power (spikes have lower abso-
lute correlations, as seen in our dataset as well), and conse-
quently, discriminability between different attentional states
is more variable across electrodes for firing rates than LFP
power. Therefore, a weighting strategy that gave more weight
to the more discriminable electrodes could improve the overall
discriminability of the pooled signal (Jazayeri and Movshon
2006; Graf et al. 2011), and improve the overall population dis-
criminability of firing rates compared with LFP power. This
can also be explained from an information theoretic viewpoint
since higher variability in firing rates compared with LFP power

implies higher system entropy and consequently higher infor-
mation capacity. The optimum weights for a linear decoder
can be obtained using LDA. We used three pooling strategies
(see Materials and Methods) to illustrate three factors (mean,
variance, and covariance) that are used in LDA analysis. We
show these results first without any cross-validation since the
effect size is larger in that case (Fig. 5A). The results after 5-fold
cross-validation are shown in Figure 5B.

In the first pooling strategy (Fig. 5A), we assigned a weight
to each electrode that was equal to the difference in neural
activity between the Attend-left Valid Hit and Attend-right Valid
Hit conditions. The weighted average of all electrodes was then
taken to obtain the projections for individual trials. The weights
were defined such that attention to the left side led to larger
projections than attention to the right side. The “Attention Axis”
approach, which involves taking an inner product of the data
vector with a vector created by connecting the mean of the data
points for the Attend-left Valid Hit and Attend-right Valid Hit
conditions, essentially performs the same operation (Cohen and
Maunsell 2010). To facilitate unbiased comparisons in discrim-
inability across our five neural measures, we normalized all the
projections by subtracting the mean value of the projections for
the Attend-right Valid Hit condition and dividing by the standard
deviation of the same condition (essentially z-scoring, as done in
Fig. 3B as well). Therefore, the mean projections for the Attend-
right Valid Hit case were zero by definition, while these values
were positive for Attend-left Valid Hit conditions, with larger
values corresponding to better population discriminability.

Figure 5A (first row) shows the projections for all 12 attention
conditions. Note that the computation of the weights was done
using only 2 of these 12 conditions, the first and fourth data
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Figure 5. Comparison of projections onto mean difference, uncorrelated LDA, and LDA weight vectors for different attention conditions. (A) Mean z-scored projections
of firing rate (red trace), high-gamma power (cyan), gamma power (blue), alpha power (green), and SSVEP power (magenta) of trials of each attention conditions using
non-cross-validated weight vectors computed using mean difference (top row), uncorrelated LDA (middle row), and LDA (bottom row) methods (see text for details).
The horizontal lines indicate the mean z-scored projections of the attend-left valid condition of the five neural measures (represented by their respective colors). The
horizontal red dashed line indicates the z-scored projection of attend-right valid hit condition, which is trivially zero since z-scoring is done relative to that condition
(see Materials and Methods). The numbers on top of the data points in the top row indicate the number of sessions as before. Error bars indicate the SEM. (B) Same as

that of (A) but with 5-fold cross-validation.

points in the left column, and subsequent z-scoring was done
relative to the first data point. For the Attend-left Valid Hit
condition, firing rates showed the largest value (0.87 +0.06),
followed by high-gamma (0.76 4 0.05; but the difference between
the two was not statistically significant, P =0.16, Wilcoxon rank
sum test), gamma (0.57 +0.05, significantly smaller than firing
rates, P =1.67 x 10~* and high-gamma, P = 0.003, Wilcoxon rank
sum test), SSVEP (0.38£0.04; significantly smaller than firing
rate: P =8.29 x 1077, high-gamma: P =1.16 x 107°, and gamma:
P =0.005; Wilcoxon rank sum test), and alpha power (0.28 +0.03,
significantly smaller than firing rates: P =3.21 x 1078, high-
gamma: P =1.06 x 1077, gamma: P = 8.1 x 10~°; not significantly
different from SSVEP power: P =0.11; Wilcoxon rank sum test).
The Valid Miss conditions (second and third data points in the
left column) were intermediate between the two Valid Hit condi-
tions in all cases (including SSVEPs), as were the projections for
all the Neutral conditions (middle column). Invalid conditions
(right column) showed similar results as the Valid (with the Miss
and Hit labels flipped, as in Figs 3B and 4).

The results were similar when we scaled individual weights
by their variances (second row). However, when we also
accounted for the covariances in the computation of weights
(as done in LDA), we observed a large increase in the projection
values for gamma, SSVEP, and alpha power for which the
absolute correlation was high (third row). The projections of the
Attend-left Valid Hit for firing rate (1.29 +0.07) and high-gamma
(1.3 +£0.08) were not significantly different (P = 1; Wilcoxon rank
sum test), as before. Surprisingly, the projections for gamma
power (1.18+0.08) were now statistically indistinguishable to

high-gamma (P =0.26; Wilcoxon rank sum test) and firing rates
(P =0.3; Wilcoxon rank sum test). The projections for SSVEP
(1.06 £ 0.06) were comparable to that of gamma power (P =0.32;
Wilcoxon rank sum test) but were significantly smaller than
firing rate (P =0.03; Wilcoxon rank sum test) and high-gamma
power (P =0.04; Wilcoxon rank sum test). Comparable changes
in discriminability across neural measures were also observed
for the Invalid conditions (right column), while the Neutral
conditions had intermediate projections (middle column).

The results in Figure SA were obtained without any cross-
validation, which tends to inflate the discriminability (Sub-
ramanian and Simon 2013) because the training and testing
data are the same, which leads to overfitting. Figure 5B shows
the same results using 5-fold cross-validation in which data
were divided into five equal parts, out of which the weight
vector was obtained using four parts (training data) and the
projections were computed for the trials in the remaining part
(testing data). This was repeated over by considering different
testing set exhaustively among those five parts and then
averaging across them. The results were similar to Figure 5A,
although now there was not much difference between the
three methods. For example, the mean projection values for
Attend-left Valid Hit condition for firing rates were 0.48 +0.06,
0.57 +0.06 and 0.55 £ 0.05 (P = 0.45, Kruskal-Wallis test) for mean
difference, uncorrelated LDA, and LDA, respectively. We show
using simulations that this reduction in the LDA projection
values was because the number of trials was not substantially
larger than the number of dimensions (electrodes), especially
after cross-validation for which the number of training trials
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was 80% of the total (Supplementary Fig. 2). Despite this problem
that led to lower projection values, the overall trends remained
similar, with firing rate projections for the Attend-left Valid
Hit (0.55+0.05) not significantly different from high-gamma
(0.52+0.06; P =0.79; Wilcoxon rank sum test) and gamma
(0.44 +0.06; P =0.42; Wilcoxon rank sum test) but were higher
compared with SSVEP (0.32+0.06; P =0.003; Wilcoxon rank
sum test). The SSVEP projection remained comparable to
that of gamma (P =0.09; Wilcoxon rank sum test). Perhaps
because alpha power showed the weakest effects without cross-
validation, it showed severely limited discriminability after
cross-validation. This suggests that using high-frequency LFP is
equally useful in discriminating between attention conditions
as firing rates, even after using population data from several
microelectrodes. As before, the invalid condition (right column)
yielded similar results as valid (left column), while neutral
condition (middle column) yielded intermediate values.

Performance of Spikes versus LFP in Decoding
Attentional State

Finally, we studied how discriminability varied with the number
of available electrodes. Figure 6 shows the z-score values of
the Attend-left valid hit condition with cross-validation as a
function of the number of electrodes, obtained by first selecting
a subset of electrodes without replacement and performing the
full LDA analysis (third pooling strategy) as before on this subset.
When the number of electrodes was small, high-gamma and
gamma power performed significantly better than the firing
rate, SSVEP, and alpha power (similar trends as in Fig. 3B). As
the number of electrodes increased to approximately 12, the
discriminability of firing rate became comparable to gamma and
high-gamma power. The discriminability reached an asymp-
tote after approximately 15 electrodes, but this could be due
to poorer performance of LDA with increasing dimensional-
ity (Supplementary Fig. 2). Discriminability also increased for
SSVEP power and alpha power for up to a few electrodes before
reaching an asymptote but remained much lower than the other
three measures. Overall, these results show that high-frequency
LFP power is more useful than spiking activity when few elec-
trodes (roughly 10-12 electrodes) are available and equally useful
as firing rate with higher number of electrodes. The results
were qualitatively similar without cross-validation, although the
absolute values were larger (Supplementary Fig. 3).

Discussion

We show that nearly every measure of neural activity, including
PSD, phase consistency, noise correlations, and discriminability,
during neutral cueing is intermediate to those in the cued and
uncued conditions, consistent with the effects observed earlier
in spiking activity and behavior (Mayo and Maunsell 2016). For
single-electrode analysis, the discriminability between attention
conditions was higher for both gamma (42-78 Hz) and high-
gamma (122-198 Hz) power compared with spiking. When multi-
ple electrodes were used, population projections obtained using
weights proportional to the difference in mean activity between
correctly detected attend-left and attend-right conditions (as
done in the “Attention Axis” analysis) were equally discrim-
inable with spikes and high-gamma but poorer with gamma and
alpha. However, once the full covariance matrix was incorpo-
rated using LDA analysis, the discriminability of high-frequency
LFP power (both gamma and high-gamma) was comparable to

spiking activity. These results were largely consistent across a
wide range of attention conditions, including valid, invalid, and
neutral cues.

Relation to Previous Studies

LFPs have been previously used to decode stimulus informa-
tion (Belitski et al. 2008; Kanth and Ray 2020), saccade location
(Pesaran et al. 2002), allocation of attention (Tremblay et al.
2015), motor movements (Bansal et al. 2012), and in brain-
machine interfacing (BMI) applications (Hwang and Andersen
2013; Andersen et al. 2014). Consistent with our findings, many
of these studies showed high decodability using high-frequency
(>40 Hz) LFP. Similarly, BMI studies have shown that while
single-channel LFPs offer better decoding of reach targets than
single-channel spikes, decoders using multichannel LFPs per-
formed worse than multichannel spikes because of larger noise
correlations in LFPs than spikes, with comparable spike and LFP
performance with approximately eight electrodes (Hwang and
Andersen 2013).

A recent study analyzed neuronal responses in macaque
primary visual cortex (V1) during attend-in, attend-out, and
attend-both (neutral) conditions to test whether spike-count
correlations show a graded response as a function of the focus
of attention (Denfield et al. 2018). They showed that the effect of
attention on spike-count correlations depended on the duration
over which analysis is performed. For short durations (100-
200 ms), attention decreased spike-count correlations and neu-
tral cueing produced intermediate correlations (see their Fig. 5C).
However, for longer analysis intervals, correlations for attend-
in and attend-out were comparable, and attend-both produced
the largest correlations. They suggested that the increase in
correlation could be due to a switch in the focus of attention in
the attend-both condition when observed over long time scales,
which has also been reported in other studies (Landau and
Fries 2012; Landau 2018; Fiebelkorn and Kastner 2019). However,
here we performed all analyses over 500 ms (mainly to improve
the frequency resolution for spectral analysis of the LFP) and
found that neutral cueing produced intermediate correlations
when averaged over the two target locations (although, when
separated based on the target location, correlations for target-
in and target-out neutral hits were comparable to attend-out
and attention-in valid hit conditions; Fig. 4). We also found
no evidence of attention switching, which could have led to
negative spike-count correlations for interhemispheric pairs of
electrodes. Instead, we found interhemispheric spike-count cor-
relations to be small (0.044 +0.0012), consistent with previous
reports where this analysis was done over short (200 ms) periods
(Cohen and Maunsell 2010; Mayo and Maunsell 2016). Likewise,
correlations in the LFP power at different frequencies were also
not negative. The results remained similar when we used a 250-
ms analysis window. We note that non-negative correlations do
not necessarily rule out attentional switching, because it is pos-
sible that there is some other source of covariation with greater
magnitude than attention shifts, such as a global “slow drift” of
neural activity (Cowley et al. 2020). Denfield et al. (2018) could not
quantify the attentional switch using interhemispheric spike-
count correlations because they did not record from both hemi-
spheres simultaneously. It is possible that attentional switching
is difficult to capture using interhemispheric spike-count cor-
relations and may need more sensitive methods (Landau 2018;
Fiebelkorn and Kastner 2019). The discrepancy between studies
could also be due to differences in experimental design (e.g.,
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Figure 6. Discriminability as a function of the number of electrodes. Mean z-score of 5-fold cross-validated LDA projection of firing rate (red), high-gamma (cyan),
gamma (blue), alpha power (green), and SSVEP power (magenta) of attend-left valid hit condition relative to attend-right valid hit condition as a function of the
number of electrodes (dimensions) used to calculate the projections. This analysis is done for electrode numbers for which at least 15 sessions were available, as
indicated by the number on top of the error bar. The data point at the right end represents the projection calculated using all the electrodes of a session, which is also

plotted in Figure 5.

Denfield et al. (2018) had 100% validity and no catch trials in the
non-neutral condition, in order to minimize attention switching)
that could have encouraged different attention strategies on the
part of their animals.

Effect of Attention on Gamma Oscillations

Previous studies have suggested a potentially important role
of the phase synchronization of gamma oscillations in com-
munication (Fries et al. 2001; Fries 2015). Even when gamma
oscillations are not strong enough to be visible as a distinct
bump in the PSD, measures such as field-field and spike-field
coherence often show such a bump, suggesting a potentially
important role of phase synchronization (Fries et al. 2008). We
found similar results in our data; while power increased over a
wide range of frequencies between approximately 40 and 200 Hz
and beyond with attention, the increase in phase synchroniza-
tion was localized to a narrower range with a clear peak between
40 and 80 Hz. However, this does not necessarily imply the pres-
ence of narrow-band phase synchronization, because measures
of phase synchronization could themselves be less sensitive at
higher frequencies. For example, small offsets in time corre-
spond to larger fluctuations in phase at higher frequencies (Ray
2015). Indeed, in spite of negligible coherence, the discriminabil-
ity of high-gamma (>122 Hz) was comparable (using LDA) or
higher (other methods) than gamma (42-78 Hz) that showed
higher phase synchronization. Further, spikes were not locked
to the phase of gamma rhythm but instead to the stimulus
that was counterphasing at 10 Hz. Therefore, even though we
observed increased field-field synchronization with attention
in the gamma range, whether this synchronization has a func-
tional role is unclear (Ray and Maunsell 2015).

While correlations in power across electrodes showed sim-
ilar trends as spiking activity during valid and neutral cueing,
the trends were different during invalid cueing, especially for

gamma oscillations (Fig. 4). We interpret these results with cau-
tion since the number of invalid trials was smaller than valid
and neutral trials. Nonetheless, the striking difference in the cor-
relation trends for gamma versus other measures could provide
clues about switching of attention in invalid trials. Attention has
been divided into several “subcomponents” such as orienting,
target detection, and vigilance, which may be carried out by
distinct brain areas (for a review, see Posner and Petersen 1990).
Even orientation of attention involves disengagement from the
present location, shifting, and finally redeployment to another
location, which may involve the interaction of many brain areas
(Posner and Petersen 1990). Importantly, to detect an invalid
target, a potentially large shift of attention may be required (see
Fig. 3 of (Mayo and Maunsell 2016). Since gamma oscillations
have been linked to a variety of neural mechanisms such as
normalization (Ray et al. 2013) and gain control (Ni et al. 2016)
that could be involved in attentional switching, the modulation
of gamma could be different from other measures in the invalid
case. More detailed experiments in which various subcompo-
nents of attention are manipulated independently are needed
to test these predictions.

Correlations were also modulated differently for firing rates
versus LFP power when comparing hits versus misses in some
cases (Fig. 4). These differences could be related to the variety
of different reasons behind a miss, including focused attention
at the incorrect location, a unique momentary distraction, or a
reduction in global attention at both locations. Power at alpha
and gamma frequency bands, which could be influenced by
global synchronization (Buzsaki 2006) and could be modulated
differently for these conditions.

Effect of Attention on Alpha Power

While EEG studies in humans have shown a marked effect of
attention on alpha power (Klimesch et al. 1998; Thut et al. 2006),
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we did not observe a comparable effect in our study. There are
several possible reasons for this. First, EEG signals reflect a more
global population than LFP, and the changes in alpha power
could be more prominent in spatially broader areas that could
be captured in the EEG but not the LFP (Snyder, Issar, et al. 2018a).
Second, we used very short analysis windows (250 or 500 ms
duration, which correspond to only 2 or 3 data points within
the alpha range) that may not have been long enough to capture
alpha power reliably. Finally, we used a 10-Hz counterphasing
stimulus. Although the most salient change was observed at
twice the fundamental frequency (20 Hz), it is possible that a
small fundamental at 10 Hz was also present, which interfered
with the endogenous alpha rhythm.

Effect of Attention on SSVEP Power

The SSVEP power (Fig. 3A, bottom row) showed a stronger vari-
ation with behavioral outcome (hits versus misses; compare
first with second and third with fourth data point of all the
columns) than focus of attention (compare first with fourth
data point of all the columns). As discussed earlier, overall LFP
power was modulated by two antagonistic effects: a suppression
in the low frequency range and an increase near the SSVEP
frequency. It has been shown previously in EEG that attention
modulates SSVEP power differently depending on its frequency
(Gulbinaite et al. 2019). For example, attention reduces SSVEP
power when its frequency is in the alpha range but increases
when the SSVEP frequency is in the gamma range. In gen-
eral, there are some important differences between a standard
SSVEP paradigm used in EEG studies and our design (which
was not specifically tailored to study SSVEPs) that makes a
direct comparison of our SSVEP results with previous results
difficult. In EEG studies, different stimuli are tagged at different
frequencies, but in our case both stimuli were counterphasing
at 10 Hz. Further, SSVEP responses are typically analyzed over
long durations to obtain sufficient spectral resolution (typically
at least a second or more), but we only analyzed segments of
250-500 ms. A more comparable SSVEP experimental design
with multiple SSVEP frequencies that span a wider range is
needed to test whether SSVEPs are able to capture some aspect
of attentional mechanisms that are not captured by power in
standard frequency bands.

Spatial Extent of Selective Attention

A surprising finding of this study is that discriminability of
high-gamma remains comparable to spiking activity even when
many electrodes are used (Fig. 6), unlike other studies in which
multichannel spikes outperform multichannel LFPs (Hwang and
Andersen 2013; Tremblay et al. 2015). This is reminiscent of
the finding that electrocorticogram, which has a much larger
spatial spread than LFPs (Dubey and Ray 2019), nonetheless
show better decodability of natural images than LFPs or spikes
(Kanth and Ray 2020). The optimal level of neural integration for
decodability of a particular stimulus or behavioral state depends
on the spatial extent over which neural assemblies remain
coherent under that stimulus/state. For example, if spatial atten-
tion is mediated through circuits involved in normalization,
as suggested recently (Reynolds and Heeger 2009; Verhoef and
Maunsell 2017), the spatial extent of normalization could deter-
mine the spatial resolution of attention. Since such divisive
normalization mechanisms incorporate an inhibitory network
thatis involved in generating gamma oscillations (Carandini and

Heeger 2011; Ray et al. 2013), the spatial resolution of attention
could be related to the spatial spread over which gamma oscil-
lations are coherent. We and others have previously shown that
the spatial spread of LFP is local (radius of ~0.5 mm; Xing et al.
2009; Dubey and Ray 2016), with a slightly larger spread in the
high-gamma range (Dubey and Ray 2016, 2019). If this spread
matches the spatial extent of selective attention (which could
be dependent on the constraints of the task), decodability is
likely to be best using high-gamma power. Our results therefore
provide an indirect measure of the spatial scale over which
attention might be operating.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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Supplementary figures
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Supplementary figure 1: Inter-hemispheric electrode pairs phase relationship

(A) Mean field-field pairwise phase consistency (PPC) averaged across 5725 electrode pairs of
25 sessions of the attend-right/left (average of attend-left valid hit and attend-right valid hit
condition; blue trace) and neutral (target-right neutral hit and target-in neutral hit combined;

green trace) condition.

(B) Mean change in field-field PPC of the attend-left/right condition (blue) relative to the

neutral condition.

(C) Mean spike-field pairwise phase consistency (PPC) averaged across 11450 electrode pairs

(including spike and LFP of the same electrode) for the same attention conditions as above.

(D) Mean change in spike-field PPC relative to the neutral condition.
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Supplementary figure 2: Effect of the number of data points per class/category on the
estimation of d-prime between two populations using LDA and explicit regularization of

LDA, with no cross-validation and 5-fold cross-validation.

Estimated mean d-prime normalized relative to true d-prime between the projections of the
populations as a function of the number of data points chosen per class to estimate the linear
discriminant analysis (LDA) axis. The cases with no regularization with no cross-validation
(red trace) and 5-fold cross-validation (magenta), regularized LDA with no cross-validation
(blue) and 5-fold cross-validation (cyan) are compared. N (=30) is the number of dimensions
used, which is close to the average number of electrodes per session in our dataset. The black
vertical dashed line indicates the case when the data points are equal to the number of
dimensions. The magenta and red vertical dashed lines indicate the average number of data

points in our dataset with and without cross-validation, respectively.
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Supplementary figure 3: Discriminability as a function of the number of electrodes

without cross-validation

Same as Figure 6 but without any cross-validation. Note that unlike the cross-validated case,
values do not asymptote here, likely due to an increase in the degree of over-fitting for larger

dimensionality.
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