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FINITE ELEMENT METHODS FOR AXISYMMETRIC PDES AND

DIVERGENCE FREE FINITE ELEMENT PAIRS ON PARTICULAR MESH

REFINEMENTS

Ahmed Zytoon, PhD

University of Pittsburgh, 2021

This dissertation discusses the following two main topics.

1. Finite element approximation for Partial Differential Equations (PDEs) defined on ax-

isymmetric domains:

We introduce the Darcy equations on axisymmetric domains and we show the stability of

a low–order Raviart-Thomas element pair. We provide numerical experiments to support

our theoretical results.

Also, we introduce the Stokes equations on axisymmetric domains and show that the

axisymmetric Stokes equations can fit within a commutative de Rham complex.

2. Connection between the grad-div stabilized and divergence-free Stokes finite element

pairs and low–order divergence-free elements on particular mesh refinements:

We introduce the most recent results that connect the grad-div stabilized Taylor–Hood

(TH) finite element pair and divergence-free Scott–Vogelius (SV) finite element pairs,

and we use these results to extend and generalize this connection to other Stokes finite

element pairs.

Finally, we provide numerical examples for low order divergence-free Stokes finite element

pairs defined on particular mesh refinements. This research is focused on the numerical

implementation aspects of these finite element pairs.
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1.0 INTRODUCTION

There are several papers and articles that investigate mixed methods for PDEs on ax-

isymmetric domains that are subsets of R3 [7, 8, 20, 21, 43, 44]. Due to symmetry, the

problems can be reduced from the original three-dimensional domain to a two-dimensional

one. Hence, the computational complexity will be reduced significantly.

This reduction comes with the cost of dealing with weighted function spaces and modified

(singular) differential operators which, in turn, complicates the study of the stability analysis

of finite element pairs.

In [20], it was shown that the Raviart–Thomas (RT) finite element pair is stable under

the axisymmetric variational formulation using a particular mesh discretization elements

called “toroids”. A polynomial degree condition was imposed on the RT element pair to

achieve the stability result in [20]. Also, the same element was used in [43] to show that

the Taylor–Hood finite element is stable for the Stokes problem defined on axisymmetric

domain.

In our work, we generalize the stability result in [20] for any polynomial degree, and

provide numerical examples to support the theoretical results. Also, we show that the

axisymmetric Stokes problem is associated with a de Rham complex using commutative

projections.

Next, we turn our attention to the connection between grad-div stabilized and divergence-

free Stokes finite elements that were studied in [16]. We expand and generalized the results

in [16]. In particular, we show that the results in [16] still hold true for higher degree Taylor–

Hood finite element pairs with less restrictions on mesh construction. Also, we introduce a

low–order divergence-free finite element pair with a particular mesh refinement that uses a

linear Lagrange space for the velocity spaces and piecewise constants for the pressure space.

We provide numerical experiments to support our theoretical results.

Finally, we introduce a low–order divergence-free finite element pair for the three–

dimensional Stokes problem with a particular mesh refinement that uses a linear Lagrange

space for the velocity spaces and piecewise constants for the pressure space. We provide
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stability results for this pair, and we focus on the numerical implementation aspects for the

finite element method.
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2.0 THE AXISYMMETRIC DARCY PROBLEM

In this chapter, we introduce the Darcy problem on an axisymmetric domain and show

that the lowest–order Raviart–Thomas finite element pair is stable and can be used to find

an approximate solution to the Darcy equations.

2.1 Introduction

In this chapter, we study low–order mixed finite element approximations of three–

dimensional Darcy flow in axisymmetric domains and with axisymmetric data. Due to

the symmetry of the problem, the original three–dimensional problem is reduced to a two–

dimensional one, and therefore this reduction offers considerable less computational effort to

approximate the solutions. On the other hand, the axisymmetric formulation necessitates

the use of weighted function spaces and modified (singular) differential operators leading to

theoretical difficulties. This is especially true for mixed finite element methods because their

structure–preserving properties often do not hold in the axisymmetric setting.

Nonetheless, there exists several references that propose and study mixed finite element

methods for axisymmetric problems. These include the Stokes (and Navier–Stokes) problem

(e.g., [43, 7, 8, 44]) and Maxwell equations (e.g., [19, 18, 41, 6]). On the other hand, the

stability and error analysis for the mixed finite element methods for the axisymmetric Darcy

problem is relatively less developed [20, 21]. In [20], both Brezzi–Douglas–Marini (BDM)

and Raviart–Thomas (RT) mixed finite element methods are proposed for the axisymmetric

Darcy problem, and it is shown that these discrete methods are well–posed. Assuming

that an auxiliary problem inherits additional regularity (cf. [20, (3.34)]), optimal order error

estimates for the pressure and velocity solutions are derived [20, Corollary 3.13]. However,

the lowest–order case is noticeably absent from the analysis. Alternatively, one can add

grad–div stabilization to the bilinear form to obtain optimal order estimates in the lowest–

order case ([20, Corollary 3.7]); however, this modification leads to various computational
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issues (e.g., conditioning, error dependence and optimality of grad–div parameter, etc.), and

we show here that grad-div stabilization is unnecessary to guarantee convergence in the

lowest–order case.

In this chapter, we follow the ideas in [51] and derive error estimates of the direct mixed

finite element method using the lowest–order RT elements. The main difficulty in the analysis

is that, in contrast to the Cartesian setting, the axisymmetric divergence operator acting

on the RT space is not surjective onto the space of piecewise constants. Therefore, in this

sense, the method is non-conforming.

The approach we take in the analysis is classical. We simply apply Strang’s second

lemma to obtain abstract error estimates in terms of the approximation properties of the

RT space and the inconsistency (or non-conformity) of the method. We then derive several

estimates of the (local) inconsistency of the method, each tailored for different regions of

the domain. Using a convex combination of these estimates, and by applying a dyadic

decomposition of the domain with respect to the r–variable, we show that the inconsistency

of the method is almost first–order provided that the domain is convex. Strang’s lemma and

the approximation properties of the RT space then imply that pressure and velocity errors

are both (almost) first order.

The organization of the chapter is as follows. After setting up the notation, we state

the Darcy problem and its axisymmetric formulation in Section 4.2. We give the mixed

finite element formulation in Section 4.3 and state some preliminary results. We then derive

two estimates that measure the consistency error, and use these estimates to derive error

estimates for the velocity and pressure solutions. Finally, in Section 4.4 we perform some

numerical experiments which support the theoretical estimates.

2.2 Notation and Preliminaries

Let Ω̌ ⊂ R3 denote a three-dimensional domain obtained by rotating a simply-connected

polygon Ω ⊂ R2 about the z-axis. Namely, we assume that Ω = Ω̌∩{(r, 0, z) : r > 0, z ∈ R},

where (r, θ, z) denote the cylindrical coordinates. Let Γ0 = ∂Ω ∩ {(0, z)} denote the part

4



Figure 1: Axisymmetric domain Ω̌ ⊂ R3 (left), and corresponding 2D domain Ω ⊂ R2 (right).

of the boundary of Ω that intersects the z-axis and Γ = ∂Ω \ Γ0. We assume that Γ0 is

connected. The figure below [44] shows a two dimensional domain Ω and its corresponding

three dimensional axisymmetric domain Ω̌.

The Darcy equations, in Cartesian coordinates defined on Ω̌, is given by the system of

equations

νK−1ǔ+ ∇̌p̌ = f̌ in Ω̌, (1a)

∇̌ · ǔ = ǧ in Ω̌, (1b)

ǔ · ň = 0 on ∂Ω̌, (1c)

where the velocity ǔ = (ǔ1, ǔ2, ǔ3)ᵀ and pressure p̌ are functions of x̌ = (x̌1, x̌2, x̌3)ᵀ, and ∇̌

denotes the gradient operator with respect to x̌. In (1), the matrix K denotes the perme-

ability tensor, and ν is the viscosity. Similar to [20], we assume that ǧ ≡ 0, K = kI3 for

some constant k > 0, and set ν = ν/k. As explained in [20], the assumption that ǧ = 0 is

equivalent to introducing a change of variable ǔ = ǔ0 + ǔp, where ǔp = ∇̌w̌ and w̌ satisfies

∇̌ · ∇̌w̌ = ǧ in Ω̌ and ∂w̌/∂ň = 0 on ∂Ω̌.

For Ǔ ⊂ Rd, let

Lp(Ǔ) := {w̌ : Ǔ 7→ R : ‖w̌‖Lp(Ǔ) := (

∫
Ǔ

|w̌|p dx̌)1/p <∞},

Hm(Ǔ) := {w̌ : Ǔ 7→ R : ‖w̌‖Hm(Ǔ) := (
∑
|β|≤m

‖Ďβw̌‖2
L2(Ǔ)

)1/2 <∞},

5



We denote the analogous vector-valued function space in boldface; for example H1(Ǔ) =

H1(Ǔ)d and L2(Ǔ) = L2(Ǔ)d, d = 2, 3.

Defining

H(div; Ω̌) : = {v̌ ∈ L2(Ω̌) : ‖v̌‖H0(div;Ω̌) := (‖v̌‖L2(Ω̌) + ‖∇̌ · v̌‖L2(Ω̌))
1/2 <∞},

L2(Ω̌) : = {q̌ : Ω̌ 7→ R : ‖q̌‖L2(Ω̌) := (

∫
Ω̌

|q̌|2 dx̌)1/2 <∞},

and their variants

H0(div; Ω̌) : = {v̌ ∈H(div; Ω̌) : v̌ · ň|∂Ω̌ = 0}, (2)

L2
0(Ω̌) : = {q̌ ∈ L2(Ω̌) :

∫
Ω̌

q̌ dx̌ = 0}, (3)

the weak formulation for (1) reads: Find (ǔ, p̌) ∈H0(div; Ω̌)× L2
0(Ω̌) such that

ν

∫
Ω̌

ǔ · v̌ dx̌−
∫

Ω̌

(∇̌ · v̌)p̌ dx̌ =

∫
Ω̌

f̌ · v̌ dx̌ ∀v̌ ∈H0(div; Ω̌), (4a)∫
Ω̌

(∇̌ · ǔ)q̌ dx̌ = 0 ∀q̌ ∈ L2
0(Ω̌). (4b)

Theorem 2.2.1. There exists a unique solution (ǔ, p̌) ∈H0(div; Ω̌)× L2
0(Ω̌) to (4).

Theorem 2.2.1 is well-known [30], but we provide a proof for completeness.

The proof of Theorem 2.2.1 relies on a few technical results. First, we state a general

framework for saddle point problems. Its proof can be found in [30, CH. I,Sect. 4].

Proposition 2.2.2. Let X and Y be two Hilbert spaces, and let ǎ : X × X → R and

b̌ : X × Y → R be bilinear forms. Let

Z = {v̌ ∈X : b̌(v̌, q̌) = 0, ∀q̌ ∈ Y },

and suppose that the following three conditions are satisfied:

1. ǎ(., .) and b̌(., .) are continuous on their domains.

2. ǎ(., .) is symmetric for all v̌ ∈X, and there is a constant α > 0 such that

ǎ(v̌, v̌) ≥ α‖v̌‖2
X ∀v̌ ∈ Z.

6



3. There is β̌ > 0 such that the following inf-sup condition is satisfied

sup
v̌∈X\{0}

b̌(v̌, q̌)

‖v̌‖X
≥ β̌‖q̌‖Y , ∀q̌ ∈ Y. (5)

Then for any F ∈X ′, there exists a unique solution (ǔ, p̌) ∈X × Y such that

ǎ(ǔ, v̌) + b̌(v̌, p̌) = F (v̌) ∀v̌ ∈X,

b̌(ǔ, q̌) = 0 ∀q̌ ∈ Y.

Lemma 2.2.3. The operator ∇̌· : H0(div; Ω̌) → L2
0(Ω̌) is surjective with a bounded right-

inverse, namely, for any q̌ ∈ L2
0(Ω̌), there exists v̌ ∈ H0(div; Ω̌) such that ∇̌ · v̌ = q̌ and

‖v̌‖H0(div;Ω̌) ≤ β̌−1‖q̌‖L2(Ω̌), where β̌ > 0 depends on Ω̌.

Proof. Let q̌ ∈ L2
0(Ω̌). We assume that Ω̌ is smooth, the result is still valid for non-smooth

domains (see [15]).

Consider the following auxiliary problem in Ω̌:

∆̌û = q̃ in Ω̌,

∂û

∂ň
= 0 on ∂Ω̌.

By [49], there holds û ∈ H2(Ω̌) and ‖û‖H2(Ω̌) ≤ C‖q̃‖L2(Ω̌) = C‖q̌‖L2(Ω̌). Now set v̌ = ∇̌û|Ω̌ ∈

H1(Ω̌), so that ∇̌ · v̌ = ∆̌û = q̌ and ‖v̌‖H0(div;Ω̌) ≤ ‖û‖H2(Ω̌) ≤ C‖q̌‖L2(Ω̌). Furthermore, we

have

v̌ · ň = ∇̌û · ň =
∂û

∂ň
= 0 on ∂Ω̌.

Therefore, we conclude that v̌ ∈H0(div; Ω̌) and ∇̌ · v̌ = q̌.

Proof of Theorem 2.2.1. Letting X = H0(div; Ω̌), Y = L2(Ω̌), ǎ(ǔ, v̌) = ν
∫

Ω̌
ǔ · v̌ dx̌,

b̌(v̌, p̌) = −
∫

Ω̌
(∇̌ · v̌)p̌ dx̌ and F (v̌) =

∫
Ω̌
f̌ · v̌ dx̌, problem (4) becomes: Find (ǔ, p̌) ∈

H0(div; Ω̌)× L2
0(Ω̌) such that

ǎ(ǔ, v̌) + b̌(v̌, p̌) = F (v̌), ∀v̌ ∈H0(div; Ω̌),

b̌(ǔ, q̌) = 0, ∀q̌ ∈ L2
0(Ω̌).

Hence, to proceed with the proof, we only need to verify the conditions stated in Proposition

2.2.2 with Z = {v̌ ∈H0(div; Ω̌) : b̌(v̌, q̌) = 0, ∀q̌ ∈ L2(Ω̌)}.
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1. Continuity of the bilinear forms ǎ(., .) and b̌(., .) follow directly from the Cauchy-Schwarz

inequality.

2. Let v̌ ∈ Z, then ∇̌ · v̌ ∈ L2(Ω̌). Since v̌ ∈ Z, then we have that

b̌(v̌, ∇̌ · v̌) = 0 = −
∫

Ω̌

(∇̌ · v̌)(∇̌ · v̌) dx̌ = −‖∇̌ · v̌‖2
L2(Ω̌)

.

Hence, for v̌ ∈ Z we have that ‖v̌‖H0(div;Ω̌) = ‖v̌‖L2(Ω̌). So

ǎ(v̌, v̌) = ν‖v̌‖2
L2(Ω̌)

= ν‖v̌‖2
H0(div;Ω̌)

∀v̌ ∈ Z.

Since ǎ(., .) is clearly symmetric, we conclude that ǎ(., .) satisfies 2 in Proposition 2.2.2.

3. Let q̌ ∈ L2
0(Ω̌) with q̌ 6= 0. Applying Lemma 2.2.3 there exists w̌ ∈H0(div; Ω̌) such that

∇̌ · w̌ = q̌ and ‖w̌‖H0(div;Ω̌) ≤ β̌−1‖q̌‖L2(Ω̌). Consequently,

β̌‖q̌‖L2(Ω̌) =
b̌(w̌, q̌)

β̌−1‖q̌‖L2(Ω̌)

≤ b̌(w̌, q̌)

‖w̌‖H0(div;Ω̌)

≤ sup
v̌∈H0(div;Ω̌)\{0}

b̌(v̌, q̌)

‖v̌‖H0(div;Ω̌)

.

Therefore the inf-sup condition is satisfied.

Since we have confirmed all of the conditions in Proposition 2.2.2, we conclude that there

exists a unique solution to (4).

The solution pair (ǔ, p̌) to (4) enjoys the following regularity [24, 1].

Theorem 2.2.4. There exists ε ∈ (0, 1] depending on the Lipschitz character of Ω̌ such that

the solution to (4) satisfies p̌ ∈ W 1,t(Ω̌) for all 2 ≤ t < 3/(1 − ε) and ǔ ∈ Hs(Ω̌) for some

s > 1/2, provided that f̌ ∈ Lt(Ω̌). If Ω̌ is convex, then the solution satisfies p̌ ∈ W 1,∞(Ω̌)

and ǔ ∈H1(Ω̌) if f̌ ∈H(div; Ω̌).

Remark 2.2.5. We note that if Ω̌ is convex, then so is Ω. However, the converse is not

necessarily true.
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Now, we introduce the cylindrical coordinate system (r, θ, z) with r =
√
x̌2

1 + x̌2
2, θ =

arctan(x̌2/x̌1), and z = x̌3. For a vector field v̌ = (v̌1, v̌2, v̌3)ᵀ, we denote by v̄r, v̄θ, and v̄z

its radial, angular, and axial components, respectively, i.e.,

v̄r = v̌1 cos θ + v̌2 sin θ,

v̄θ = −v̌1 sin θ + v̌2 cos θ,

v̄z = v̌3.

We denote v̄ = v̄(r, θ, z) = (v̄r, v̄θ, v̄z)
ᵀ so that

v̄ = Rθv̌, (6)

where the rotation matrix Rθ is given by (7) (with η = θ(x̌)). Likewise, for a scalar function

q̌ : Ω̌→ R, we set q̄ : Ω̌→ R such that q̌(x̌) = q̄(r, θ, z).

For a fixed η ∈ [−π, π], we define the rotation matrix

Rη =


cos η sin η 0

− sin η cos η 0

0 0 1

 . (7)

Note the trivial identities det(Rη) = 1 and R−η = (Rη)
−1 for any η ∈ [−π, π]. These

properties will be used often.

Definition 2.2.6.

1. A scalar function q̌ : Ω̌→ R is said to be axisymmetric if q̌ ◦Rη = q̌ for all η ∈ [−π, π].

2. A vector field v̌ : Ω̌→ R3 is said to be axisymmetric if v̌ = R−ηv̌ ◦Rη for all η ∈ [−π, π].

Note that definition 2 along with the identity R−η = (Rη)
−1 shows that v̄ = v̌ ◦Rθ if v̌ is

axisymmetric. Since Rθx̌ = (r, 0, z)ᵀ, we conclude that if v̌ is axisymmetric (with respect to

definition 2), then the components v̄r, v̄θ, v̄z are also axisymmetric (with respect to definition

1). Consequently there holds

∂q̄

∂θ
=
∂v̄r
∂θ

=
∂v̄θ
∂θ

=
∂v̄z
∂θ

= 0 (8)

for axisymmetric functions q̌ and v̌.
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If the source function f̌ is axisymmetric, then the solution (ǔ, p̌) is axisymmetric as well

[9]. Let (ūr, ūθ, ūz)
ᵀ and p̄ be the cylindrical coordinate representation of ǔ and p̌, respec-

tively, and set p(r, z) = p̄(r, θ, z), uθ(r, z) = ūθ(r, θ, z), and u(r, z) = (ur(r, z), uz(r, z))ᵀ with

ur(r, z) = ūr(r, θ, z) and ūz(r, θ, z). To state the axisymmetric problem and the correspond-

ing variational formulation, we require some additional function space notation.

For α ∈ R, p ∈ [1,∞), and Lipschitz subdomain D ⊂ Ω, we define the weighted Lp-space

‖v‖p
Lpα(D)

:=

∫
D

rα|v|p dr dz,

and set

Lpα(D) := {v : D → R : ‖v‖Lpα(D) <∞}.

In the case that α = 0, the subscript is omitted. We further define, for a non-negative integer

m and number p ∈ [1,∞), the weighted norms and semi-norms

‖v‖p
Wm,p
α (D)

=
∑
|β|≤m

∫
D

rα
∣∣∣ ∂|β|v

∂β1r∂β2z

∣∣∣p dr dz,
|v|p

Wm,p
α (D)

=
∑
|β|=m

∫
D

rα
∣∣∣ ∂|β|v

∂β1r∂β2z

∣∣∣p dr dz,
and set

Wm,p
α (D) = {v : D → R : ‖v‖Wm,p

α (D) <∞}.

In the case p = 2, we use the notation Hm
α (D) = Wm,2

α (D).

Observe that the divergence of a vector field v̌ = (v̌1, v̌2, v̌3)ᵀ in cylindrical coordinates

is given by

∇̌ · v̌ =
1

r
(
∂(rv̄r)

∂r
+
∂v̄θ
∂θ

) +
∂v̄z
∂z

.

If v̌ is axisymmetric, then ∂v̄θ
∂θ

= 0. Hence, we define the axisymmetric divergence

operator applied to a vector-valued function v = (vr, vz)
ᵀ by

∇rz · v :=
∂vr
∂r

+
∂vz
∂z

+
1

r
vr.
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The two–dimensional gradient operator is defined as

∇aw =
(∂w
∂r
,
∂w

∂z

)ᵀ
,

and note that ∇rz · v = ∇a · v + 1
r
vr. We also have the integration-by-parts formula∫

D

(r∇rz · v)w dr dz =

∫
D

(
r∇a · v + vr

)
w dr dz

=

∫
∂D

r(v · n)w ds−
∫
D

r(v · ∇aw) dr dz

for sufficiently smooth v and w. Here, n denotes the outward unit normal of ∂D.

Define

X1 : = H̊1(div; Ω) := {v ∈ L2
1(Ω) : ∇rz · v ∈ L2

1(Ω), v · n|∂Ω = 0},

Q : = L̊1(Ω) := {q ∈ L2
1(Ω),

∫
Ω

rq dr dz = 0},

with corresponding norms

‖v‖2
X1

: = ‖v‖2
L2
1(Ω) + ‖∇rz · v‖2

L2
1(Ω),

‖q‖Q : = ‖q‖L2
1(Ω).

Making a change of variables in (4), a calculation reveals that

ν

∫
Ω

ru · v dr dz −
∫

Ω

r(∇rz · v)p dr dz =

∫
Ω

r(f · v) dr dz ∀v ∈X1, (9a)∫
Ω

r(∇rz · u)q dr dz = 0 ∀q ∈ Q. (9b)

Remark 2.2.7. The angular component uθ satisfies

ν

∫
Ω

ruθvθ dr dz =

∫
Ω

rfθvθ dr dz ∀vθ ∈ L2
1(Ω),

which is decoupled from the system (9).

Remark 2.2.8. The regularity results stated in Theorem 2.2.4 directly imply that the ax-

isymmetric solution to (9) inherits elliptic regularity. If there holds p̌ ∈ W 1,t(Ω̌), then we

deduce via a change of variables that p ∈ W 1,t
1 (Ω).
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2.3 Finite Element Method and Convergence Analysis

Denote by Th a conforming, shape–regular, quasi-uniform, simplicial triangulation of Ω.

For τ ∈ Th, we denote by hτ = diam(τ) and set h = maxτ∈Th hτ . The local, lowest–order

Raviart–Thomas space is given by

X(τ) :=
{
vh = α+ β(r, z)ᵀ : α ∈ R2, β ∈ R

}
,

and the global version is defined as

Xh :=
{
vh ∈X1 : vh|T ∈X(τ) ∀τ ∈ Th}.

We further set Qh to be the space of piecewise constants with vanishing mean, i.e.,

Qh = {q ∈ Q : q|τ ∈ R ∀τ ∈ Th}.

The mixed finite element method for the axisymmetric Darcy problem (9) reads: Find

(uh, ph) ∈Xh ×Qh such that

ν

∫
Ω

r(uh · vh) dr dz +

∫
Ω

(r∇rz · vh)ph dr dz =

∫
Ω

rf · vh dr dz, ∀vh ∈Xh, (10a)∫
Ω

r(∇rz · uh)qh dr dz = 0, ∀qh ∈ Qh. (10b)

The following theorems concern the well-possedness of (10) and the approximation prop-

erties of the discretely divergence–free space. Their proofs can be found in [20, Corollary

3.6] and [20, Corollary A.6]

Theorem 2.3.1. The inf-sup condition

sup
vh∈Xh\{0}

∫
Ω

(r∇rz · vh)qh dr dz
‖vh‖X

≥ β‖qh‖Q ∀qh ∈ Qh (11)

is satisfied with β > 0 independent of h. Consequently, there exists a unique solution to (10).
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Theorem 2.3.2. Define the space of discretely divergence–free functions:

Vh = {vh ∈Xh :

∫
Ω

r(∇rz · vh)q dr dz = 0 ∀qh ∈ Qh}.

Then for any u ∈H1
1 (Ω) with ∇rz · u = 0, there exists vh ∈ Vh such that

‖u− vh‖L2
1(Ω) ≤ Ch|u|H1

1 (Ω).

Remark 2.3.3. Here and what follows, the letter C denotes a generic, h-independent, positive

constant that may take different values at each occurrence.

Unlike the Cartesian setting, the axisymmetric divergence operator acting on the Raviart-

Thomas space is not surjective onto the space of piecewise constants. As a result, the method

is non-conforming in the sense that Vh 6⊂ V := {v ∈ X1 : ∇rz · v ≡ 0}. We follow the

classical framework of non-conforming methods in order to obtain error estimates of the

discrete approximation. In particular, Strang’s Second Lemma [61] applied to (10) yields

the following result.

Lemma 2.3.4. The velocity error satisfies

ν‖u− uh‖L2
1(Ω) ≤ ν inf

wh∈Vh
‖u−wh‖L2

1(Ω) + sup
vh∈Vh\{0}

∫
Ω
r(∇rz · vh)p dr dz
‖vh‖L2

1(Ω)

, (12)

‖p− ph‖Q ≤ C
(
ν‖u− uh‖L2

1(Ω) + inf
qh∈Qh

‖p− qh‖Q
)
, (13)

where C > 0 depends on the discrete inf–sup constant β > 0 in (11).

Proof. The proof of (12)–(13) is standard, but we provide it here for completeness.

Let ũh ∈ Vh be the projection of u onto Vh with respect to the L2
1(Ω) inner product, i.e.,∫

Ω

rũh · vh dr dz =

∫
Ω

ru · vh dr dz, ∀vh ∈ Vh.

13



We then have ‖u− ũh‖L2
1(Ω) = infwh∈Vh ‖u−wh‖L2

1(Ω). We then find that, for all vh ∈ Vh,

ν

∫
Ω

r(uh − ũh) · vh dr dz =

∫
Ω

r(f − νũh) · vh dr dz

=

∫
Ω

r
(
(νu+∇ap)− νũh

)
· vh dr dz

=

∫
Ω

r∇ap · vh dr dz

= −
∫

Ω

r(∇rz · vh)p dr dz.

We then easy find that

ν‖uh − ũh‖L2
1(Ω) ≤ sup

vh∈Vh\{0}

∫
Ω

(r∇rz · vh)p dr dz
‖vh‖L2

1(Ω)

.

Finally we apply the triangle inequality to get (12).

To obtain (13), we apply (11) to get, for any qh ∈ Qh,

β‖ph − qh‖Q ≤ sup
vh∈Xh\{0}

∫
Ω
r(∇rz · vh)(ph − qh) dr dz

‖vh‖X1

. (14)

Using (10) and (9), we write∫
Ω

r∇rz · vh(ph − qh) dr dz = ν

∫
Ω

ruh · vh dr dz −
∫

Ω

r(f · vh) dr dz

−
∫

Ω

r(∇rz · vh)qh dr dz

= ν

∫
Ω

r(uh − u) · vh dr dz +

∫
Ω

r(∇rz · vh)(p− qh) dr dz

≤ ν‖u− uh‖L2
1(Ω)‖vh‖L2

1(Ω) + ‖∇rz · vh‖L2
1(Ω)‖p− qh‖L2

1(Ω)

≤ C
(
ν‖u− uh‖L2

1(Ω) + ‖p− qh‖L2
1(Ω)

)
‖vh‖X1

for any vh ∈Xh. Applying this estimate to (14) yields

β‖ph − qh‖Q ≤ C
(
ν‖u− uh‖L2

1(Ω) + ‖p− qh‖L2
1(Ω)

)
∀qh ∈ Qh,

and (13) follows from the triangle inequality.

Remark 2.3.5. The error estimate for the velocity (12) shows that the error is bounded by

the approximation properties of the discretely divergence–free space and the inconsistency

of the method. In light of Theorem 2.3.2, one sees that the crux of the analysis is to estimate

the inconsistency of the method, i.e., to estimate the second term in the right-hand side of

(12).
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2.3.1 Preliminary estimates

In this section we derive some identities that will be useful in estimating the inconsistency

error in the error estimate (12). As a first step, we state a well-known identity [39].

Proposition 2.3.6. Suppose that vh ∈ Vh. Then there holds∫
τ

(r∇rz · vh) dr dz = 0 ∀τ ∈ Th. (15)

Proposition 2.3.7. For τ ∈ Th, let rmin,τ ≥ 0 be the largest number such that rmin,τ ≤ r for

all (r, z) ∈ τ . We then have

‖vh‖L2(τ) ≤ C min{h−1/2
τ , r

−1/2
min,τ}‖vh‖L2

1(τ) ∀vh ∈Xh

with the convention that min{h−1/2
τ , r

−1/2
min,τ} = h

−1/2
τ if rmin,τ = 0.

Proof. For τ ∈ Th with dist(∂τ,Γ0) ≥ hτ , we have min{h−1/2
τ , r

−1/2
min,τ} = r

−1/2
min,τ , and the result

is clearly true.

Let τ ∈ Th with dist(∂τ,Γ0) ≤ hτ . Define τ̂ = { 1
hτ

(r, z) : (r, z) ∈ τ}, and set v̂h(r̂, ẑ) =

vh(r, z) with r = hτ r̂ and z = hτ ẑ. By equivalence of norms, and since r̂ > 0 on τ̂ , we have

Cτ = Cτ (hτ ,Ω) such that∫
τ̂

|v̂h(r̂, ẑ)|2 dr̂ dẑ ≤ Cτ

∫
τ̂

r̂|v̂h(r̂, ẑ)|2 dr̂ dẑ.

Since the mesh Th is regular and quasi-uniform, and Ω is bounded, then there is C such that

Cτ ≤ C for all τ ∈ Th, hence we have∫
τ̂

|v̂h(r̂, ẑ)|2 dr̂ dẑ ≤ C

∫
τ̂

r̂|v̂h(r̂, ẑ)|2 dr̂ dẑ.

Therefore, by a change of variables, we obtain

‖vh‖2
L2(τ) = h2

τ

∫
τ̂

|v̂h(r̂, ẑ)|2 dr̂ dẑ

≤ Ch2
τ

∫
τ̂

r̂|v̂h(r̂, ẑ)|2 dr̂ dẑ = Ch−1
τ ‖vh‖2

L2
1(τ).

Taking the square root of this inequality yields the desired result.
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Lemma 2.3.8. For any vh ∈ Vh and q ∈ L1(τ), there holds∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch−2

τ min{h−1/2
τ , r

−1/2
min,τ}‖vh‖L2

1(τ)

∣∣∣ ∫
τ

(r − r̄τ )(q − q̄τ ) dr dz
∣∣∣, (16)

where r̄τ and q̄τ are the averages of r and q on τ , respectively.

Proof. Using the definition of the Raviart-Thomas space, we write

vh
∣∣
τ

= α+ β

r
z


for some α ∈ R2 and β ∈ R. We then have

∇a · vh = 2β, r∇rz · vh = r∇a · vh + v
(1)
h = (2βr) + α(1) + βr = 3βr + α(1).

Thus, if vh ∈ Vh is discretely divergence-free, then

0 =

∫
τ

r(∇rz · vh) dr dz = |τ |α(1) + 3β

∫
τ

r dr dz = |τ |α(1) + 3β|τ |r̄τ .

We conclude that α(1) = −3βr̄τ and (r∇rz ·vh) = 3β(r−r̄τ ). We then have, for any q ∈ L1(τ),∫
τ

(
r∇rz · vh

)
q dr dz = 3β

∫
τ

(r − r̄τ )q dr dz = 3β

∫
τ

(r − r̄τ )(q − q̄τ ) dr dz. (17)

Finally, we apply standard inverse estimates and Proposition 2.3.7 to get

|β| = 1

2
‖∇a · vh‖L∞(τ) ≤ Ch−1

τ ‖vh‖L∞(τ)

≤ Ch−2
τ ‖vh‖L2(τ) ≤ Ch−2

τ min{h−1/2
τ , r

−1/2
min,τ}‖vh‖L2

1(τ).

Combining this last inequality with (17), we obtain (16).
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Remark 2.3.9. Applying the Cauchy-Schwarz inequality to (16) and assuming that q ∈

H1(τ), we have∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch−2

τ min{h−1/2
τ , r

−1/2
min,τ}‖vh‖L2

1(τ)‖r − r̄τ‖L2(τ)‖q − q̄τ‖L2(τ)

≤ C min{h−1/2
τ , r

−1/2
min,τ}‖vh‖L2

1(τ)‖∇ar‖L2(τ)‖∇aq‖L2(τ)

≤ Ch1/2
τ ‖vh‖L2

1(τ)‖∇aq‖L2(τ).

Thus, we conclude from this estimate and from (12), that if the pressure solution has regu-

larity p ∈ H1(Ω), then the L2 error of the velocity is bounded by Ch1/2. However, as far as

we are aware, the pressure function does not generically enjoy such regularity. In what fol-

lows, we derive estimates under the assumption that the pressure solution lies in a weighted

Sobolev space and improve this rate of convergence provided that p is sufficiently regular.

As a first step, we prove an estimate that is useful for τ ∈ Th that is close to the z-axis.

Lemma 2.3.10. For τ ∈ Th, let rmax,τ > 0 denote the smallest number such that r ≤ rmax,τ

for all (r, z) ∈ τ . Suppose that q ∈ W 1,t
1 (τ) for some t ≥ 2, and let vh ∈ Vh. Then there

holds ∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch1/2−2/t

τ r1−1/t
max,τ‖vh‖L2

1(τ)|q|W 1,t
1 (τ). (18)

Remark 2.3.11. There holds W 1,t
1 (τ) ↪→ L1(τ) [40, pg. 15].

Proof. Applying Hölder’s inequality and [52, Corollary 3.2], we have∣∣∣ ∫
τ

(r − r̄τ )(q − q̄τ ) dr dz
∣∣∣ =

∣∣∣ ∫
τ

r(q − q̄τ ) dr dz
∣∣∣

=
∣∣∣ ∫

τ

r1/t′r1/t(q − q̄τ ) dr dz
∣∣∣

≤
(∫

τ

r dr dz
)1/t′(∫

τ

r|q − q̄τ |t dr dz
)1/t

≤ Ch1+2/t′

τ r1/t′

max,τ |q|W 1,t
1 (τ),
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where t′ ∈ [1, 2] is the Hölder conjugate of t. Therefore, by Lemma 2.3.8,∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch−5/2

τ ‖vh‖L2
1(τ)

∣∣∣ ∫
τ

(r − r̄τ )(q − q̄τ ) dr dz
∣∣∣

≤ Ch(−3/2+2/t′)
τ r1/t′

max,τ‖vh‖L2
1(τ)|q|W 1,t

1 (τ)

= Ch(1/2−2/t)
τ r(1−1/t)

max,τ ‖vh‖L2
1(τ)|q|W 1,t

1 (τ).

Remark 2.3.12. Such an estimate is useful for τ near Γ0. Indeed for such τ ∈ Th with

dist{∂τ,Γ0} ≤ Chτ , we have rmax,τ = O(hτ ), and so∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch3/2−3/t‖vh‖L2

1(τ)|q|W 1,t
1 (τ).

However, Lemma 2.3.10 does not yield a meaningful estimate for rmax,τ = O(1). Instead, we

have the following result.

Lemma 2.3.13. Suppose that dist{∂τ,Γ0} ≥ hτ . Then under the same assumptions of

Lemma 2.3.10, we have∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch2−2/t

τ r
−1/2−1/t
min,τ ‖vh‖L2

1(τ)|q|W 1,t
1 (τ). (19)

Proof. We apply Lemma 2.3.8, the Cauchy-Schwarz inequality, standard interpolation esti-

mates, and Hölder’s inequality to get∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch−2

τ ‖vh‖L2(τ)

∣∣∣ ∫
τ

(r − r̄τ )(q − q̄τ ) dr dz
∣∣∣

≤ C‖vh‖L2(τ)‖∇ar‖L2(τ)‖∇aq‖L2(τ)

≤ Chτ‖vh‖L2(τ)‖∇aq‖L2(τ)

≤ Ch2−2/t
τ ‖vh‖L2(τ)‖∇aq‖Lt(τ)

≤ Ch2−2/t
τ r

−1/2−1/t
min,τ ‖vh‖L2

1(τ)|q|W 1,t
1 (τ).
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2.3.2 Error estimates

In this section, we combine the estimates in Lemmas 2.3.10 and 2.3.13 to estimate the

inconsistency error appearing in (12). As alluded to before, the idea is to apply the estimate

(18) for τ ∈ Th with dist{∂τ,Γ0} ≤ Ch, while using the estimate (19) for τ ∈ Th satisfying

dist{∂τ,Γ0} = O(1). For intermediate elements τ ∈ Th, we simply take a convex combination

of the two estimates.

To carry out this methodology, we require a decomposition of Ω. To this end, we define

the subdomains

Ω−1 := {(r, z) ∈ Ω : 0 ≤ r ≤ h},

Ωj := {(r, z) ∈ Ω : 2jh ≤ r ≤ 2j+1h}, j = 0, 1, . . . , J,

where J = O(| log h|) is chosen such that

Ω =
J⋃

j=−1

Ωj.

We also set

T (j)
h := {τ ∈ Th : τ ∩ Ωj 6= ∅}, Ωh

j :=
⋃

τ∈T (j)
h

τ.

Lemma 2.3.14. Suppose that q ∈ W 1,t
1 (Ω) with t ≥ 2 and that vh ∈ Vh. We then have∣∣∣ ∫

Ωhj

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch1−2/t‖vh‖L2

1(Ωhj )|q|W 1,t
1 (Ωhj ).

Proof. Combining Lemmas 2.3.10 and 2.3.13, we conclude that for dist(Γ0, τ) ≥ hτ and for

any α ∈ [0, 1],∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣ ≤ C

(
h(1/2−2/t)r(1−1/t)

max,τ

)1−α(
h(2−2/t)r

(−1/2−1/t)
min,τ

)α‖vh‖L2
1(τ)|q|W 1,t

1 (τ).
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Consider the case j ≥ 0. If τ ∈ T (j)
h , then rmin,τ ≥ 2(j−1)h and rmax,τ ≤ 2(j+2)h. Hence,∣∣∣ ∫

τ

(r∇rz · vh)q dr dz
∣∣∣ (20)

≤ C
(
h(1/2−2/t)(2j+1h)1/t′

)1−α(
h(2−2/t)(2jh)(−1/2−1/t)

)α‖vh‖L2
1(τ)|q|W 1,t

1 (τ)

= C
(
h(1/2−2/t+1/t′)2(j+1)/t′

)1−α(
h(2−2/t−1/2−1/t)2j(−1/2−1/t)

)α‖vh‖L2
1(τ)|q|W 1,t

1 (τ)

= Ch(3/2−3/t)
(
2(j+1)(1−α)/t′

)(
2jα(−1/2−1/t)

)
‖vh‖L2

1(τ)|q|W 1,t
1 (τ)

for all τ ∈ T (j)
h .

Summing the estimate (20) over τ ∈ T (j)
h , and applying Hölder’s inequality results in∑

τ∈T (j)
h

∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣

≤ Ch(3/2−3/t)
(
2(j+1)(1−α)/t′

)(
2jα(−1/2−1/t)

)
‖vh‖L2

1(Ωhj )|q|W 1,t
1 (Ωhj )

( ∑
τ∈T (j)

h

1
)1/2−1/t

.

Since the cardinality of T (j)
h is O(2jh−1), we conclude that∑

τ∈T (j)
h

∣∣∣ ∫
τ

(r∇rz · vh)q dr dz
∣∣∣

≤ Ch(3/2−3/t)
(
2(j+1)(1−α)/t′

)(
2jα(−1/2−1/t)

)(
2jh−1

)1/2−1/t‖vh‖L2
1(Ωhj )|q|W 1,t

1 (Ωhj ).

We choose α such that

1

t′
(j + 1)(1− α) + j(−1

2
− 1

t
)α + j(

1

2
− 1

t
) = 0,

that is,

α =
3jt− 4j + 2t− 2

3jt+ 2t− 2
.

Clearly, we have α ≤ 1. Furthermore, using that t ≥ 2,

α ≥ 6j − 4j + 2(2)− 2

3jt+ 2t− 2
=

2j + 2

3jt+ 2t− 2
≥ 0.

For this choice of α, we get∣∣∣ ∫
Ωhj

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch1−2/t‖vh‖L2

1(Ωhj )|q|W 1,t
1 (Ωhj ), j ≥ 0.
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For the other case j = −1, we have that rmax,τ ≤ 2h. Therefore, by Lemma 2.3.10,∣∣∣ ∫
Ωhj

(r∇rz · vh)q dr dz
∣∣∣ ≤ Ch1/2−2/t

∑
τ∈T (j)

h

r1−1/t
max,τ‖vh‖L2

1(τ)|q|W 1,t
1 (τ)

≤ Ch3/2−3/t‖vh‖L2(Ωhj )|q|W 1,t
1 (Ωhj )

( ∑
τ∈T (j)

h

1
)1/2−1/t

= Ch1−2/t‖vh‖L2(Ωhj )|q|W 1,t
1 (Ωhj ).

Theorem 2.3.15. Suppose that the pressure solution satisfies p ∈ W 1,t
1 (Ω), where t ≥ 2 is

given in Theorem 2.2.4. Then there holds

‖u− uh‖L2
1(Ω) ≤ C

(
inf
vh∈Vh

‖u− vh‖L2
1(Ω) + h1−2/t| log h|1/2−1/t|p|W 1,t

1 (Ω)

)
, (21)

‖p− ph‖L2
1(Ω) ≤ C

(
‖u− uh‖L2

1(Ω) + h|p|H1
1 (Ω)

)
. (22)

If Ω̌ is convex, then there holds

‖u− uh‖L2
1(Ω) + ‖p− ph‖L2

1(Ω) ≤ Ch| log h|1/2. (23)

Proof. Summing the estimate in Lemma 2.3.14 over j, and recalling that J = O(| log h|),

we have ∣∣∣ ∫
Ω

(r∇rz · vh)p dr dz
∣∣∣ ≤ J∑

j=−1

∣∣∣ ∫
Ωhj

(r∇rz · vh)p dr dz
∣∣∣

≤ Ch1−2/t

J∑
j=−1

‖vh‖L2(Ωhj )|p|W 1,t
1 (Ωhj )

≤ Ch1−2/t
( J∑
j=−1

1
)1/2−1/t

‖vh‖L2(Ω)|p|W 1,t
1 (Ω)

≤ Ch1−2/t| log h|1/2−1/t‖vh‖L2(Ω)|p|W 1,t
1 (Ω).

Combining this estimate with Lemma 2.3.4 and Theorem 2.3.2, we obtain the desired result

(21)–(22). The estimate (23) follows from (21), Theorem 2.2.4, and Theorem 2.3.2.
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2.4 Numerical Examples

In this section, we perform some simple numerical experiments and compare the results

with the theoretical ones given in the previous sections. We consider the example such that

the data is taken to be Ω = (0, 1)2, the viscosity is ν = 10−1, and the source function is

chosen such that the exact velocity and pressure solutions are given respectively as

u(r, z) =

 r cos(πr
2

) sin(πz + π
2
)

cos(πz + π
2
)(( 2

π
) cos((πr

2
))− ( r

2
) sin(πr

2
)

 , p = rs − 2

2 + s
(s > 0). (24)

We then find that p ∈ W 1,t
1 (Ω) provided that t(s− 1) > −2. In particular, if s ∈ (0, 1), then

p ∈ W 1,t
1 (Ω) provided that t < 2/(1−s). Consequently, Theorem 2.3.15 shows that the error

is bounded by Chs modulo logarithmic terms.

The resulting rates of convergence of the numerical experiments are listed in Tables 1

and 2 for the cases s = 1/2 and s = 1/4, respectively. While the exact (asymptotic) rates of

convergence of the velocity are not clear from the tests, the observed rates are close to the

theoretical results stated in Theorem 2.3.15. For example, the average rate of convergence for

the velocity error for the three finest meshes are 0.245 for the case s = 1/4 and 0.501 for the

case s = 1/2. On the other hand, we see from Tables 1–2 that the pressure approximation

converges with order one in both cases. These results indicate that the pressure estimate

given in (22)–(23) may not be sharp.

22



Table 1: Errors and rates of convergence for example (84) with s = 1/2.

h ‖u− uh‖L2
1(Ω) rate ‖p− ph‖L2

1(Ω) rate

2−2 4.99E-01 – 3.68E-01 –

2−3 5.50E-02 3.182 1.25E-02 4.877

2−4 4.49E-02 0.291 6.50E-03 0.947

2−5 2.79E-02 0.689 3.24E-03 1.004

2−6 1.70E-02 0.709 1.64E-03 0.984

2−7 1.23E-02 0.465 8.21E-04 0.998

2−8 8.82E-03 0.486 4.12E-04 0.996

2−9 6.00E-03 0.555 2.06E-04 0.998

Table 2: Errors and rates of convergence for example (84) with s = 1/4.

h ‖u− uh‖L2
1(Ω) rate ‖p− ph‖L2

1(Ω) rate

2−2 4.79E-01 2.60E-01

2−3 5.34E-02 3.165 8.34E-03 4.962

2−4 4.96E-02 0.105 4.37E-03 0.932

2−5 3.66E-02 0.438 2.21E-03 0.983

2−6 2.68E-02 0.452 1.13E-03 0.968

2−7 2.31E-02 0.213 5.71E-04 0.986

2−8 1.98E-02 0.222 2.87E-04 0.992

2−9 1.61E-02 0.300 1.44E-04 0.993
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3.0 THE AXISYMMETRIC STOKES PROBLEM AND THE DE RHAM

COMPLEX

In this chapter, we introduce the Stokes problem on an axisymmetric domain and show

how the axisymmetric Stokes problem fits within a commutative de Rham complex. We also

prove the stability of various Stokes finite element pairs under the axisymmetric variational

formulation.

3.1 The Stokes Problem

We consider the Stokes problem on a three-dimensional domain

−ν∆̌ǔ+ ∇̌p̌ = f̌ in Ω̌, (25a)

∇̌ · ǔ = 0 in Ω̌, (25b)

ǔ = 0 on ∂Ω̌, (25c)

where ǔ = ǔ(x̌) = (ǔ1(x̌), ǔ2(x̌), ǔ3(x̌))ᵀ denote the velocity, p̌ = p̌(x̌) denotes the pressure,

and f̌ = f̌(x̌) = (f̌1(x̌), f̌2(x̌), f̌3(x̌))ᵀ is the (given) source function. As in the previous

chapter, we use hats over the differential operators to indicate derivatives with respect to

the x̌ = (x̌1, x̌2, x̌3)ᵀ variable. For simplicity, we assume that the viscosity ν > 0 is constant.

We assume that Ω̌ ⊂ R3 is open, bounded, simply connected, and is obtained by rotating

a two dimensional polygon Ω in the (r, z)-plane around the z-axis. We say that Ω is the

meridian domain. We further assume that if an endpoint of two segments of Ω is in the

z-axis, then at least one of the segments lies entirely in the z-axis. This excludes the case

where ∂Ω meets with the z-axis at one point.
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3.1.1 Variational formulation

In this section we state the variational problem of (25) and show that the problem is well-

posed. These results are standard (see, e.g., [30]), but we include the proofs for completeness.

We start by defining the following function space on Ω̌:

Hm
0 (Ω̌) := {w̌ ∈ Hm(Ω̌) : Dβw|∂Ω̌ = 0,∀β : |β| ≤ m− 1}.

Suppose for the moment that there is a sufficiently regular pair (ǔ, p̌) satisfying (25). Taking

the dot product of (25a) with a function v̌ ∈H1
0 (Ω̌) and integrating over Ω̌ yields

−
∫

Ω̌

ν∆̌ǔ · v̌ dx̌+

∫
Ω̌

∇̌p̌ · v̌ dx̌ =

∫
Ω̌

f̌ · v̌ dx̌. (26)

Integrating the left hand side of (26) by parts, we get

−
∫

Ω̌

ν∆̌ǔ · v̌ dx̌ = −ν
∫
∂Ω̌

(∇̌ǔv̌) · ň dš+ ν

∫
Ω̌

∇̌ǔ : ∇̌v̌ dx̌,

and ∫
Ω̌

∇̌p̌ · v̌ dx̌ =

∫
∂Ω̌

p̌(v̌ · ň) dš−
∫

Ω̌

p̌∇̌ · v̌ dx̌,

where ň is the outward normal vector to ∂Ω̌, and “ : ” is the Frobenius inner product.

Because v̌ vanishes on ∂Ω̌, we have

−
∫

Ω̌

ν∆̌ǔ · v̌ dx̌ = ν

∫
Ω̌

∇̌ǔ : ∇̌v̌ dx̌, (27a)

and ∫
Ω̌

∇̌p̌ · v̌ dx̌ = −
∫

Ω̌

p̌∇̌ · v̌ dx̌. (27b)

We use equations (27) to define the bilinear forms ǎ(., .) and b̌(., .) on H1
0 (Ω̌)×H1

0 (Ω̌) and

H1
0 (Ω̌)× L2

0(Ω̌) respectively:

ǎ(ǔ, v̌) : = ν

∫
Ω̌

∇̌ǔ : ∇̌v̌ dx̌, (28)

b̌(v̌, q̌) : = −
∫

Ω̌

q̌∇̌ · v̌ dx̌. (29)

The weak formulation for problem (25) reads: Find (ǔ, p̌) ∈ H1
0 (Ω̌) × L2

0(Ω̌) such that, for

all (v̌, q̌) ∈H1
0 (Ω̌)× L2

0(Ω̌), we have

ǎ(ǔ, v̌) + b̌(v̌, p̌) =

∫
Ω̌

f̌ · v̌ dx̌, (30a)

b̌(ǔ, q̌) = 0. (30b)
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Theorem 3.1.1. There exists a unique solution (ǔ, p̌) ∈H1
0 (Ω̌)× L2

0(Ω̌) to (30).

Theorem 3.1.1 is well-known [30], but we provide a proof for completeness.

The proof of Theorem 3.1.1 is very similar to the proof of Theorem 2.2.1. We will show

that the bilinear forms defined in (28) and (29) satisfy the hypotheses in Theorem 2.2.2 with

X = H1
0 (Ω̌) and Y = L2

0(Ω̌).

Lemma 3.1.2. The operator ∇̌· : H1
0 (Ω̌) → L2

0(Ω̌) is surjective with a bounded right-

inverse, namely, for any q̌ ∈ L2
0(Ω̌), there exists v̌ ∈ H1

0 (Ω̌) such that ∇̌ · v̌ = q̌ and

‖v̌‖H1(Ω̌) ≤ β̌−1‖q̌‖L2(Ω̌), where β̌ > 0 depends on Ω̌.

Proof. Let q̌ ∈ L2
0(Ω̌). Since Ω̌ is bounded, there exist an open bounded set Ǔ ⊂ R3 such

that Ǔ has smooth boundary and Ω̌ ⊂⊂ Ǔ . Define q̃ on Ǔ such that q̃|Ω̌ = q̌ and q̃ = 0 in

Ǔ \ Ω̌. Then q̃ ∈ L2(Ǔ).

Consider the following auxiliary problem in Ǔ :

∆̌û = q̃ in Ǔ ,

û = 0 on ∂Ǔ.

By [22, Sect. 6.3, Theorem 1], there holds û ∈ H2(Ǔ) and ‖û‖H2(Ǔ) ≤ C‖q̃‖L2(Ǔ) =

C‖q̌‖L2(Ω̌). Now set v̌1 = ∇̌û|Ω̌ ∈ H1(Ω̌), so that ∇̌ · v̌1 = ∆̌û = q̌ and ‖v̌1‖H1(Ω̌) ≤

‖û‖H2(Ω̌) ≤ C‖q̂‖L2(Ω̌). Furthermore, we have∫
∂Ω̌

v̌1 · ň dš =

∫
Ω̌

∇̌ · v̌1 dx̌ =

∫
Ω̌

q̌ dx̌ = 0.

Therefore, we conclude from [30, Theorem 3.5] that there exits w̌1 ∈ H1(Ω̌) such that

w̌1|∂Ω̌ = v̌1|∂Ω̌ and ∇̌ · w̌1 = 0. Setting v̌ = v̌1− w̌1, we have v̌ ∈H1
0 (Ω̌) and ∇̌ · v̌ = q̌.

Proof of Theorem 3.1.1. We verify the conditions stated in Proposition 2.2.2 with X =

H1
0 (Ω̌) and Y = L2

0(Ω̌).

1. Continuity of the bilinear forms ǎ(., .) and b̌(., .) follow directly from the Cauchy-Schwarz

inequality.

26



2. Denote by Cp = Cp(Ω̌) > 0 the Poincare-Friedrichs’ inequality constant, i.e., ‖v̌‖L2(Ω̌) ≤

Cp‖∇̌v̌‖L2(Ω̌) for all v̌ ∈H1
0 (Ω̌). We then have ‖v̌‖2

H1(Ω̌)
≤ (1 + C2

p)‖∇̌v̌‖2
L2(Ω̌)

, and so

ǎ(v̌, v̌) = ν‖∇̌v̌‖2
L2(Ω̌)

≥ ν(1 + C2
p)−1‖∇̌v̌‖2

L2(Ω̌)
.

Letting α = ν(1 + C2
p)−1 we get

ǎ(v̌, v̌) ≥ α‖v̌‖2
H1(Ω̌)

∀v̌ ∈H1
0 (Ω̌).

Since ǎ(., .) is clearly symmetric, we conclude that ǎ(., .) satisfies 2 in Proposition 2.2.2.

3. Let q̌ ∈ L2
0(Ω̌) with q̌ 6= 0. Applying Lemma 3.1.2 there exists w̌ ∈ H1

0 (Ω̌) such that

∇̌ · w̌ = q̌ and ‖w̌‖H1(Ω̌) ≤ β̌−1‖q̌‖L2(Ω̌). Consequently,

β̌‖q̌‖L2(Ω̌) =
b̌(w̌, q̌)

β̌−1‖q̌‖L2(Ω̌)

≤ b̌(w̌, q̌)

‖w̌‖H1(Ω̌)

≤ sup
v̌∈H1

0 (Ω̌)\{0}

b̌(v̌, q̌)

‖v̌‖H1(Ω̌)

.

Therefore the inf-sup condition is satisfied.

Since we have confirmed all of the conditions in Proposition 2.2.2, we conclude that there

exists a unique solution to (30).

3.2 The Axisymmetric Stokes Problem

In this section we derive the formulation of the Stokes problem on axisymmetric functions

and show that the resulting problem is well-posed.

We introduce the Hilbert spaces

Ĥ1
0 (Ω̌) := {v̌ ∈H1

0 (Ω̌) : v̌ is axisymmetric},

L̂2
0(Ω̌) := {q̌ ∈ L2

0(Ω̌) : q̌ is axisymmetric},

and consider the following problem: Find (ǔ, p̌) ∈ Ĥ1
0 (Ω̌)× L̂2

0(Ω̌) such that

ǎ(ǔ, v̌) + b̌(v̌, p̌) =

∫
Ω̌

f̌ · v̌ dx̌ ∀v̌ ∈ Ĥ1
0 (Ω̌), (31a)

b̌(ǔ, q̌) = 0 ∀q̌ ∈ L̂2
0(Ω̌). (31b)

Note that this problem is nearly identical to (30); the only difference being that the functions

in the formulation are assumed to be axisymmetric.
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Proposition 3.2.1 (Theorem 2.1 in [43]). Given q̌ ∈ L̂2
0(Ω̌), there exists v̌ ∈ Ĥ1

0 (Ω̌) such

that ∇̌ · v̌ = q̌ and ‖v̌‖H1(Ω̌) ≤ β̌−1‖q̌‖L2(Ω̌).

Proof. We repeat the arguments given in [43] for completeness.

Let q̌ ∈ L̂2
0(Ω̌). By Proposition 3.1.2, there is ṽ ∈ H1

0 (Ω̌) such that ∇̌ · ṽ = q̌ and

‖ṽ‖H1(Ω) ≤ β̌−1‖q̌‖L2(Ω̌).

We then define v̌ as follows:

v̌ =
1

2π

∫ π

−π
R−ηṽ ◦Rη dη.

By definition, v̌ is axisymmetric. By the chain rule we have

∇̌ ·
(
R−ηṽ ◦Rη

)
= (∇̌ · ṽ) ◦Rη = q̌ ◦Rη,

and therefore

∇̌ · v̌ =
1

2π

∫ π

−π
q̌ ◦Rη dη = q̌.

Theorem 3.2.2 (Proposition I.2.7 in [9]). There exists a unique (ǔ, p̌) ∈ Ĥ1
0 (Ω̌) × L̂2

0(Ω̌)

satisfying (31). Moreover, if f̌ is axisymmetric, then (ǔ, p̌) coincides with the solution to

(30).

Proof. Proposition 3.2.1 implies that the inf-sup condition on axisymmetric functions

sup
v̌∈Ĥ1

0 (Ω̌)\{0}

b̌(v̌, q̌)

‖v̌‖H1(Ω̌)

≥ β̌‖q̌‖L2(Ω̌) ∀q̌ ∈ L̂2
0(Ω̌)

is satisfied. Therefore the existence and and uniqueness of (31) follows from the general

theory of saddle point problems (see Proposition 2.2.2 and the proof of Theorem 3.1.1). It

suffices to show that if the data vector field f̌ is axisymmetric, then so is the solution pair

(ǔ, p̌).
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Let v̌ ∈H1
0 (Ω̌) and fix η ∈ [−π, π]. Assume that the pair (ǔ, p̌) solve (30), and the data

vector field f̌ is axisymmetric. Observe that the vector field Rηv̌ ◦R−η ∈H1
0 (Ω̌), so we have

ǎ(ǔ, Rηv̌ ◦R−η) + b̌(Rηv̌ ◦R−η, p̌) =

∫
Ω̌

f̌ ·Rηv̌ ◦R−η dx̌ ∀v̌ ∈H1
0 (Ω̌), (32a)

b̌(ǔ, q̌) = 0 ∀q̌ ∈ L2
0(Ω̌). (32b)

Let A,B and C be any square matrices. Observe that A : (BC) = (BᵀA) : C, and so we

have

ǎ(ǔ, Rηv̌) = ǎ(R−ηǔ, v̌) ∀ǔ, v̌ ∈H1
0 (Ω̌).

The proof of Proposition 3.2.1 shows that ∇̌ · (Rηv̌ ◦R−η) = (∇̌ · v̌)◦R−η and so we have

b̌(Rηv̌ ◦R−η, p̂) = b̌(v̌ ◦R−η, p̌).

Hence, using the change of variables y̌ = R−ηx̌, and the fact that f̌ ·Rηv̌ = R−ηf̌ · v̌ and

f̌ is axisymmetric, we get that∫
Ω̌

f̌ ·Rηv̌ ◦R−η dx̌ =

∫
Ω̌

R−ηf̌ ◦Rη · v̌ dŷ =

∫
Ω̌

f̌ · v̌ dx̌, ∀v̌ ∈H1
0 (Ω̌).

Hence, the system (32) becomes

ǎ(R−ηǔ ◦Rη, v̌) + b̌(v̌, p̌ ◦Rη) =

∫
Ω̌

f̌ · v̌ dx̌, ∀v̌ ∈H1
0 (Ω̌), (33a)

b̌(R−ηǔ ◦Rη, q̌) = 0, ∀q̌ ∈ L2
0(Ω̌). (33b)

Since (30) has a unique solution and η ∈ [−π, π] was taken arbitrary, we conclude that

(ǔ, p̌) = (R−ηǔ ◦Rη, p̌ ◦Rη), hence (ǔ, p̌) ∈ Ĥ1
0 (Ω̌)× L̂2

0(Ω̌) and solves (31). This completes

the proof.
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3.3 The Axisymmetric Stokes Problem in Cylindrical Coordinates

In this section we formulate the axisymmetric Stokes problem and its variational for-

mulation in cylindrical coordinates. To this end, we recall some notation from the previous

chapter.

We take into consideration the cylindrical coordinate system (r, θ, z) with r =
√
x̌2

1 + x̌2
2,

θ = arctan(x̌2/x̌1), and z = x̌3. For a vector field v̌ = (v̌1, v̌2, v̌3)ᵀ, we denote by v̄r, v̄θ, and

v̄z its radial, angular, and axial components, respectively, i.e.,

v̄r = v̌1 cos θ + v̌2 sin θ,

v̄θ = −v̌1 sin θ + v̌2 cos θ,

v̄z = v̌3.

We denote v̄ = v̄(r, θ, z) = (v̄r, v̄θ, v̄z)
ᵀ so that

v̄ = Rθv̌, (34)

where the rotation matrix Rθ is given by (7) (with η = θ(x̌)). Likewise, for a scalar function

q̌ : Ω̌→ R, we set q̄ : Ω̌→ R such that q̌(x̌) = q̄(r, θ, z).

Proposition 3.3.1. Let v̌, v̄ : Ω̌ → R3 and q̌, q̄ : Ω̌ → R be related via v̄(r, θ, z) = Rθv̌(x̂)

and q̄(r, θ, z) = q̌(x̌). Then there holds

∇̌q̌ = R−θ


∂q̄
∂r

1
r
∂q̄
∂θ

∂q̄
∂z

 ,

∇̌v̌ = R−θ


∂v̄r
∂r

1
r
∂v̄r
∂θ

∂v̄r
∂z

∂v̄θ
∂r

1
r
∂v̄θ
∂θ

∂v̄θ
∂z

∂v̄z
∂r

1
r
∂v̄z
∂θ

∂v̄z
∂z

Rθ + Iθ(v̄ ⊗ ∇̌θ),

∆̌v̌ = R−θ

(∂2v̄

∂r2
+

1

r

∂v̄

∂r
+

1

r2

∂2v̄

∂θ2
+
∂2v̄

∂z2

)
+

1

r2

( d2

dθ2
R−θ

)
v̄,

∇̂ × v̂ = R−θ

(1

r

∂v̄z
∂θ
− ∂v̄θ

∂z
,
∂v̄r
∂z
− ∂v̄z

∂r
,
1

r

(∂(rv̄θ)

∂r
− ∂v̄r

∂θ

))ᵀ
,
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where

Iθ :=
d

dθ
R−θ =


− sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

 , ∇̌θ =
1

r


− sin θ

cos θ

0

 .

Proof. The identities readily follow from the chain rule and the identities ∂r
∂x̌j

= (Rθ)1,j,

∂θ
∂x̌j

= 1
r
(Rθ)2,j, and ∂z

∂x̌j
= (Rθ)3,j.

3.3.1 Cylindrical strong form derivation

Throughout this section, we assume that the source function f̌ is axisymmetric so that

the solution to the Stokes problem is axisymmetric (cf. Theorem 3.2.2), i.e., ǔ ∈ Ĥ1
0 (Ω̌) and

p̌ ∈ L̂2
0(Ω̌). In this case we conclude from Proposition 3.3.1 and (8) that

∇̌p̌ = R−θ


∂p̄
∂r

0

∂p̄
∂z

 ,

∇̌ǔ = R−θ


∂ūr
∂r

0 ∂ūr
∂z

∂ūθ
∂r

0 ∂ūθ
∂z

∂ūz
∂r

0 ∂ūz
∂z

Rθ + Iθ(ū⊗ ∇̌θ), (35)

∆̌ǔ = R−θ

(∂2ū

∂r2
+

1

r

∂ū

∂r
+
∂2ū

∂z2

)
+

1

r2

( d2

dθ2
R−θ

)
ū

= R−θ

(
∂2ū

∂r2
+

1

r

∂ū

∂r
+
∂2ū

∂z2
− 1

r2


ūr

ūθ

0


)
.

Consequently, the momentum equations of the Stokes problem (25a) reduce to

f̄ = Rθf̌ = Rθ

(
− ν∆̌ǔ+ ∇̌p̌

)
(36)

= −ν
(∂2ū

∂r2
+

1

r

∂ū

∂r
+
∂2ū

∂z2
− 1

r2


ūr

ūθ

0

)+


∂p̄
∂r

0

∂p̄
∂z

 .
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For the divergence constraint ∇̌ · ǔ = 0, we compute the trace of ∇̌ǔ in (35) to get

∇̌ · ǔ =
∂ūr
∂r

+
∂ūz
∂z

+ tr
(
Iθ(ū⊗ ∇̌θ)

)
(37)

=
∂ūr
∂r

+
∂ūz
∂z

+
1

r
ūr =: ∇rz · ū.

From (36)–(37), we conclude that, assuming ǔ and p̌ are axisymmetric, the Stokes prob-

lem (25) in cylindrical coordinates reduces to the following system:

−ν(
∂2ūr
∂r2

+
1

r

∂ūr
∂r

+
∂2ūr
∂z2

− 1

r2
ūr) +

∂p̄

∂r
= f̄r, (38a)

−ν(
∂2ūθ
∂r2

+
1

r

∂ūθ
∂r

+
∂2ūθ
∂z2

− 1

r2
ūθ) = f̄θ, (38b)

−ν(
∂2ūz
∂r2

+
1

r

∂ūz
∂r

+
∂2ūz
∂z2

) +
∂p̄

∂z
= f̄z, (38c)

∇rz · ū =
∂ūr
∂r

+
ūr
r

+
∂ūz
∂z

= 0. (38d)

Similar to (25), this system involves four unknowns on a three-dimensional domain. However,

since uθ does not appear in the divergence constraint, it is decoupled from the system.

Furthermore, if fθ = 0 then uθ = 0 (see [7, 9]). Finally since p̄ and ū do not depend on θ

(cf. (8)), the problem can be posed on the two-dimensional domain Ω. This feature will be

explored in subsequent sections.

3.3.2 Bilinear forms in cylindrical coordinates

In this section we derive expressions of the bilinear forms ǎ(., .) and b̌(., .) in cylindrical

coordinates. While this can be done based on the system (38), we instead make a change of

variables in (28)–(29) and apply the identities (8).

Without loss of generality we assume that f̄θ ≡ 0 so that the angular component of ǔ

vanishes. In this case, Proposition 3.3.1 shows that

∇̌ǔ = R−θ∇rzūRθ + Iθ(ū⊗ ∇̌θ),
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where ∇rzū :=


∂rūr 0 ∂rūz

0 0 0

∂zūr 0 ∂zūz

. Let v̌ be an axisymmetric function with zero angular

component. We then compute

∇̌ǔ : ∇̌v̌ =
(
R−θ∇rzūRθ + Iθ(ū⊗ ∇̌θ)

)
:
(
R−θ∇rzv̄Rθ + Iθ(v̄ ⊗ ∇̌θ)

)
(39)

=
(
R−θ∇rzūRθ

)
:
(
R−θ∇rzv̄Rθ

)
+
(
Iθ(ū⊗ ∇̌θ)

)
:
(
Iθ(v̄ ⊗ ∇̌θ)

)
+
(
R−θ∇rzūRθ

)
:
(
Iθ(v̄ × ∇̌θ)

)
.

Using the property A : B = tr(AB) for matrices A and B, we easily find that

(
R−θ∇rzūRθ

)
:
(
R−θ∇rzv̄Rθ

)
= tr

(
R−θ∇rzū∇rzv̄Rθ

)
(40)

= tr(∇rzū∇rzv̄) = ∇rzū : ∇rzv̄.

Next we write

(
R−θ∇rzūRθ

)
:
(
Iθ(v̄ ⊗ ∇̌θ)

)
= tr

(
R−θ∇rzūRθIθ(v̄ ⊗ ∇̌θ)

)
= tr

(
R−θ

(
(∇rzūRθIθv̄

)
⊗ ∇̌θ

))
.

A calculation shows that

RθIθ =


0 −1 0

1 0 0

0 0 0

 =⇒ RθIθv̄ =


0

v̄r

0

 .

Because the second column of ∇rzū is the zero vector, we conclude that ∇rzūRθIθv̄ = 0 and

(
R−θ∇rzūRθ

)
:
(
Iθ(v̄ ⊗ ∇̌θ)

)
= 0. (41)

Finally, another calculation shows that

(
Iθ(ū⊗ ∇̌θ)

)
:
(
Iθ(v̄ ⊗ ∇̌θ)

)
= (Iθū) · (Iθv̄)|∇̌θ|2 =

1

r2
ūrv̄r. (42)

Applying the identities (40)–(42) to (39) gives us

∇̌ǔ : ∇̌v̌ = ∇rzū : ∇rzv̄ +
1

r2
ūrv̄r.
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We now apply this identity and the identity (37) in the definition of the bilinear forms

ǎ(., .), b̌(., .) and make a change of variables to conclude that the bilinear forms in cylindrical

coordinates reduce to

ǎ(ǔ, v̌) =

∫ 2π

0

∫
Ω

(∇rzū : ∇rzv̄ +
ūrv̄r
r2

)r dr dz dθ, (43a)

b̌(ǔ, q̌) = −
∫ 2π

0

∫
Ω

(∇rz · ū)q̄r dr dz dθ. (43b)

3.4 Dimension Reduction

For an axisymmetric function v̌ we set v : Ω→ R2 as

v(r, z) = (vr(r, z), vz(r, z))ᵀ = (v̄r(r, 0, z), v̄z(r, 0, z))
ᵀ, (44)

where we recall that (v̄r, v̄θ, v̄z)
ᵀ is the cylindrical representation of v̌. Likewise, for an

axisymmetric function q̌, we set q : Ω→ R as

q(r, z) = q̄(r, θ, z). (45)

We then define the following bilinear forms on Ω:

a(u,v) =

∫
Ω

(
∇rzu : ∇rzv +

urvr
r2

)
r dr dz, (46a)

b(v, q) = −
∫

Ω

(∇rz · v)qr dr dz. (46b)

Since the cylindrical components of an axisymmetric function does not depend on the variable

θ, we conclude from (43) that

ǎ(ǔ, v̌) = 2πa(u,v), b̌(v̌, q̌) = 2πb(v, q) (47)

for all q̌ ∈ L̂2
0(Ω̌) and ǔ, v̌ ∈ Ĥ1

0 (Ω̌) with zero angular component.

Due to a change of variables into cylindrical coordinates, the measure dx̌1dx̌2dx̌3 is

transformed into rdrdθdz, and therefore it is natural to seek solutions in weighted Sobolev
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spaces on Ω associated with the measure rdrdz [43]. To this end, we define the following

variants of the spaces L2
α(Ω) and Hm

α (Ω):

V 1
1 (Ω) = {w : w ∈ L2

−1(Ω) ∩H1
1 (Ω)},

V 1
1,0(Ω) = {w ∈ H1

−1(Ω) : w|Γ = 0},

H1
1,0(Ω) = {w : w ∈ H1

1 (Ω), w|Γ = 0},

where Γ is the part of ∂Ω that does not intersect with the z-axis.

We define the norm on V 1
1 (Ω) by ‖w‖V 1

1 (Ω) = (‖w‖2
L2
−1(Ω)

+ |w|2
H 1

1 (Ω)
)1/2, where |w|Hm

α (Ω) =

(
∑
|β|=m ‖Dβw‖2

L2
α(Ω))

1/2. Finally we set

V (Ω) := V 1
1,0(Ω)×H1

1,0(Ω), Q(Ω) := {q ∈ L2
1(Ω) :

∫
Ω

qr dr dz = 0}. (48)

Proposition 3.4.1 (Proposition 1 in [7]).

1. The space {v̌ ∈ Ĥ1
0 (Ω̌) : v̄θ = 0} is isomorphic to V (Ω) via the mapping v̌ → v given

by (44).

2. The space L̂2
0(Ω̌) is isomorphic to Q(Ω) via the mapping q̌ → q given by (45).

This result immediately gives us the following theorem.

Theorem 3.4.2. There exists a unique (u, p) ∈ V (Ω)×Q(Ω) satisfying

a(u,v) + b(v, p) =

∫
Ω

rf · v dr dz ∀v ∈ V (Ω), (49a)

b(u, q) = 0 ∀q ∈ Q(Ω). (49b)

Moreover, the pair (ǔ, p̌) given by the (inverse) mappings u→ ǔ and p→ p̌ solve the system

(31) provided that f̄θ = 0.

Proof. We verify the conditions stated in Proposition 2.2.2 with X = V (Ω) and Y = Q(Ω).

1. Proposition 3.4.1 shows that the continuity of the bilinear forms a(., .) and b(., .) follow

directly from (47) and the continuity of ǎ(., .) and b̌(., .).

2. Proposition 3.4.1 shows that the coercivity of the bilinear form a(., .) follows directly

from (47) and the coercivity of the bilinear form ǎ(., .).
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3. Let v̌ ∈ Ĥ1
0 (Ω̌) and q̌ ∈ L̂2

0(Ω̌). Let v ∈ V (Ω) and q ∈ Q(Ω) be the images of v̌ and q̌

under the mapping defined in(44) and (45) respectively. Recall that the following inf-sup

condition

sup
v̌∈Ĥ1

0 (Ω̌)\{0}

b̌(v̌, q̌)

‖v̌‖H1(Ω̌)

≥ β‖q̌‖L2(Ω̌) ∀q̌ ∈ L̂2
0(Ω̌)

holds. Since ∇̌ · v̌ = ∇rz · v and ‖v‖V (Ω) ≤ ‖v̌ ◦Rθ‖H1(Ω̌) = ‖v̌‖H1(Ω̌), we have

sup
v∈V (Ω)\{0}

2πb(v, q)

‖v‖V (Ω)

≥ sup
v̌∈Ĥ1

0 (Ω̌)\{0}

b̌(v̌, q̌)

‖v̌‖H1(Ω̌)

∀q̌ ∈ L̂2
0(Ω̌).

Consequently, there is C > 0 so that ∀q ∈ Q(Ω) we have

2πC‖q‖Q(Ω) = C‖q̌‖L2(Ω̌) ≤ sup
v̌∈Ĥ1

0 (Ω̌)\{0}

b̌(v̌, q̌)

‖v̌‖H1(Ω̌)

≤ sup
v∈V (Ω)\{0}

b(v, q)

‖v‖V (Ω)

.

Therefore the inf-sup condition is satisfied.

Since we have confirmed all of the conditions in Proposition 2.2.2, we conclude that there

exists a unique solution to (49). We consider the following problem: Find (ǔ, p̌) ∈ {v̌ ∈

Ĥ1
0 (Ω̂) : v̄θ = 0} × L̂2

0(Ω̌) such that

ǎ(ǔ, v̌) + b̌(v̌, p̌) =

∫
Ω̌

f̌ · v̌ dx̌ ∀v̌ ∈ {v̌ ∈ Ĥ1
0 (Ω̌) : v̄θ = 0}, (50a)

b̌(ǔ, q̌) = 0 ∀q̌ ∈ L̂2
0(Ω̌). (50b)

Recall that f̄θ = 0 implies ūθ = 0, so we narrow our search to be in the space {v̌ ∈ Ĥ1
0 (Ω̌) :

v̄θ = 0}. Hence, the system (31) becomes equivalent to (50). It is easy to check (by going

backwards in cylindrical coordinates change of variables) that the image of the solution to

(49) under the inverse mapping (ǔ, p̌) solves (50). This completes the proof.
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3.5 A Commutative Diagram

In this section we expand the results of the previous sections, and show how the axisym-

metric Stokes problem fits within a commutative de Rham complexes in both the two and

three dimensional domains. In addition we draw connections between these complexes via

commutative projections.

Recall the space H0(div; Ω̌) defined in (2) and define the auxiliary function space

H0(curl; Ω̌) := {v̌ ∈ L2(Ω̌) : ∇̌ × v̌ ∈ L2(Ω̌), v̌ × ň|∂Ω̌ = 0}.

The three dimensional de Rham complex with minimal L2-smoothness is given by [23]

0 H1
0 (Ω̌) H0(curl; Ω̌) H1

0 (Ω̌) L2
0(Ω̌) 0.∇̌ ∇̌× ∇̌· (51)

If the domain Ω̌ is contractible then the sequence is exact, i.e., the image of each map is the

kernel of the succeeding map [23]. In more detail, the exactness property gives

1. Functions v̌ ∈ H1
0 (Ω̌) with vanishing gradient are identically zero;

2. If v̌ ∈H0(curl; Ω̌) is curl–free, then there exists a unique w̌ ∈ H1
0 (Ω̌) such that ∇̌w̌ = v̌;

3. If v̌ ∈ H0(div; Ω̌) is divergence-free, then there exists w̌ ∈ H0(curl; Ω̌), unique up to a

gradient, such that v̌ = ∇̌ × w̌;

4. The divergence operator ∇̌· : H0(div; Ω̌)→ L2
0(Ω̌) is surjective.

Here we study a three-dimensional de Rham complex with additional smoothness so that it

is suitable for the Stokes problem (25). To this end, we define

H0(curl; Ω̌) := {v ∈H0(curl; Ω̌) : ∇̌ × v ∈H1
0 (Ω̌)},

and consider the sequence of mappings (see [23])

0 H1
0 (Ω̌) H0(curl; Ω̌) H1

0 (Ω̌) L2
0(Ω̌) 0.∇̌ ∇̌× ∇̌· (52)

Proposition 3.5.1. If Ω̌ is contractible, the sequence (52) is exact.
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Proof. Lemma 3.1.2 establishes that ∇̌· : H1
0 (Ω̌) → L2

0(Ω̌) is surjective. Moreover, it is

clear that if v̌ ∈ H1
0 (Ω̌) satisfies ∇̌v̌ = 0, then v = 0.

Now suppose that v̌ ∈ H0(curl; Ω̌) is curl–free. By the exactness of (51) and since

H0(curl; Ω̌) ⊂H0(curl; Ω̌), there exists a unique w̌ ∈ H1
0 (Ω̌) such that v̌ = ∇̌w̌.

Now suppose that v̌ ∈ H1
0 (Ω̌) ⊂ H0(div; Ω̌) is divergence-free. Then again, by the

exactness of (51) there exists w̌ ∈ H0(curl; Ω̌) such that v̌ = ∇̌ × w̌. This implies that

∇̌ × w̌ ∈H1
0 (Ω̌), and so w̌ ∈H0(curl; Ω̌). This completes the proof.

To draw connections between the three-dimensional complex (52) and a two-dimensional

one defined on Ω, we first discuss an intermediary complex consisting of axisymmetric func-

tions. In particular, we shall construct an analogous complex of (52) with axisymmetric

function spaces. Motivated by Proposition 3.2.1, this will be done using “averaged pullback

operators” defined as follows.

Definition 3.5.2.

1. We define φ : L2(Ω̌)→ L̂2(Ω̌) such that

φ(v̌) =
1

2π

∫ π

−π
R−ηv̌ ◦Rη dη.

2. We define φ : L2(Ω̌)→ L̂2(Ω̌) such that

φ(q̌) =
1

2π

∫ π

−π
q̌ ◦Rη dη.

Remark 3.5.3. It is clear from their definitions that φ(v̌) and φ(q̌) are axisymmetric, and if

v̌ and q̌ are axisymmetric, then φ(v̌) = v̌ and φ(q̌) = q̌.

Lemma 3.5.4. The operators φ,φ are idempotent. Moreover, there holds

1. ∇̌φ(q̌) = φ(∇̌q̌).

2. ∇̌ × φ(w̌) = φ(∇̌ × w̌).

3. ∇̌ · φ(v̌) = φ(∇̌ · v̌).

Proof. We assume that the functions q̌, w̌, and v̌ are smooth. The general setting may

then be obtained by a standard density argument.
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1. The chain rule shows that, for a fixed η ∈ [−π, π],

∇̌
(
q̌ ◦Rη) = Rᵀ

η∇̌q̌ ◦Rη = R−η∇̌q̌ ◦Rη,

and therefore

∇̌φ(q̌) =
1

2π

∫ π

−π
R−η∇̌q̌ ◦Rη dη = φ(∇̌q̌).

2. The chain rule shows that (cf. [50])

∇̌ ×
(
R−ηw̌ ◦Rη) = ∇̌ × (Rᵀ

ηw̌ ◦Rη) = det(Rη)R
−1
η (∇̌ × w̌) ◦Rη

= R−η(∇̌ × w̌) ◦Rη,

and it readily follows that ∇̌ × φ(w̌) = φ(∇̌ × w̌).

3. Let v̌ ∈ L2(Ω̌). By [Lemma 3.59 in [50]], we conclude that

∇̌ · (R−ηv̌ ◦Rη) = (∇̌ · v̌) ◦Rη,

hence the result follows.

Theorem 3.5.5. The diagram

0 H1
0 (Ω̌) H0(curl; Ω̌) H1

0 (Ω̌) L2
0(Ω̌) 0

0 Ĥ1
0 (Ω̌) Ĥ0(curl; Ω̌) Ĥ1

0 (Ω̌) L̂2
0(Ω̌) 0

∇̌

φ

∇̌×

φ

∇̌·

φ φ

∇̌ ∇̌× ∇̌·

(53)

commutes. If Ω̌ is contractible, then each horizontal sequence is exact.

Proof. The commutative property is established in Lemma 3.5.4.

If Ω̌ is contractible, then the first horizontal sequence is exact (cf. Proposition 3.5.1). To

prove exactness of the second sequence we show:

1. If q̌ ∈ Ĥ1
0 (Ω̌) satisfies ∇̌q̌ = 0, then q̌ = 0;

2. If w̌ ∈ Ĥ0(curl; Ω̌) is curl-free, then w̌ = ∇̌q̌ for some q̌ ∈ Ĥ1
0 (Ω̌).

3. If v̌ ∈ Ĥ1
0 (Ω̌) is divergence-free, then v̌ = ∇̌ × w̌ for some w̌ ∈ Ĥ0(curl; Ω̌).

4. The divergence operator ∇̌· : Ĥ1
0 (Ω̌)→ L̂2

0(Ω̌) is surjective.
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Property 1 is obvious. Moreover, 4 is shown in Proposition 3.4.1.

Now suppose that w̌ ∈ Ĥ0(curl; Ω̌) ⊂H0(curl; Ω̌) satisfies ∇̌×w̌ = 0. By the exactness

of the first sequence, there exists q̌ ∈ H1
0 (Ω̌), not necessarily axisymmetric, such that w̌ =

∇̌q̌. We then have φ(q̌) ∈ Ĥ1
0 (Ω̌) and

∇̌φ(q̌) = φ(∇̌q̌) = φ(w̌) = w̌.

This establishes 2.

Likewise, suppose that suppose v̌ ∈ Ĥ1
0 (Ω̌) with ∇̌ · v̌ = 0. Then the exactness of the

first horizontal row in (53) implies the existence of w̌ ∈H0(curl; Ω̌) such that v̌ = ∇̌ × w̌.

We then have φ(w̌) ∈ Ĥ0(curl; Ω̌) and

∇̌ × φ(w̌) = φ(∇̌ × w̌) = φ(v̌) = v̌.

Thus, we have shown 3, and the proof is complete.

3.5.1 Reduction operators

We define the following function space

W (Ω) = {w ∈ L2
1(Ω) :

∂w

∂z
,
1

r

∂(rw)

∂r
∈ H1

1,0(Ω), w|Γ = 0},

with norm

‖w‖W (Ω) = (‖w‖2
L2
1(Ω) + ‖∂w

∂z
‖2
H1

1 (Ω) + ‖1

r

∂(rw)

∂r
‖2
H1

1 (Ω))
1/2.

Observe that the spaceW (Ω) is defined so that it is isomorphic to the subspace of Ĥ0(curl; Ω̌)

consisting of vector fields with zero radial and axial components. Indeed, if w̌ ∈ Ĥ0(curl; Ω̌)

with w̄ = (0, w̄θ, 0)ᵀ then we have that

∇̌ × w̌ = (
1

r

∂w̄z
∂θ
− ∂w̄θ

∂z
,
∂w̄r
∂z
− ∂w̄z

∂r
,
1

r
(
∂(rw̄θ)

∂r
− ∂w̄r

∂θ
))ᵀ,

= (−∂w̄θ
∂z

, 0,
1

r

∂(rw̄θ)

∂r
)ᵀ.

Since w̌× ň = 0 and ∇̌× w̌ ∈H1
0 (Ω̌), we conclude that w̄θ ∈ L2

1(Ω) with w̄θ|Γ = 0, and

∂w̄θ
∂z
, 1
r
∂(rw̄θ)
∂r
∈ H1

1,0(Ω).

Now, we inroduce some definitions. In what follows, V (Ω) and Q(Ω) are given by (48).
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Definition 3.5.6. Define

1. T1 : Ĥ0(curl; Ω̌)→ W (Ω) such that

(T1w̌)(r, z) = w̄θ(r, 0, z)

2. T2 : Ĥ1
0 (Ω̌)→ V (Ω) such that

(T2v̌)(r, z) = (v̄r(r, 0, z), v̄z(r, 0, z))
ᵀ.

3. T3 : L̂2
0(Ω̌)→ Q(Ω) such that

(T3q̌)(r, z) = q̄(r, 0, z).

In addition, we define

∇rz × w =

 −∂w
∂z

1
r
∂(rw)
∂r

 .

Lemma 3.5.7. There holds

1. ∇rz × T1(w̌) = T2(∇̌ × w̌) for all w̌ ∈ Ĥ0(curl; Ω̌);

2. ∇rz · T2(v̌) = T3(∇̌ · v̌) for all v̌ ∈ Ĥ1
0 (Ω̌).

Proof. By Proposition 3.3.1 we have

Rθ∇̌ × w̌ =
(1

r

∂w̄z
∂θ
− ∂w̄θ

∂z
,
∂w̄r
∂z
− ∂w̄z

∂r
,
1

r

(∂(rw̄θ)

∂r
− ∂w̄r

∂θ

))ᵀ
=
(
− ∂w̄θ

∂z
,
∂w̄r
∂z
− ∂w̄z

∂r
,
1

r

∂(rw̄θ)

∂r

)ᵀ
for all w̌ ∈ Ĥ0(curl; Ω̌). It then follows from the definition of T2, T1, and ∇rz× that

T2(∇̌ × w̌) = =
(
− ∂w̄θ

∂z
,
1

r

∂(rw̄θ)

∂r

)ᵀ
= ∇rz × T1(w̌).

Finally, by (37) we have

∇̌ · v̌ =
∂v̄r
∂r

+
∂v̄z
∂z

+
1

r
v̄r,

and it readily follows that T3(∇̌ · v̌) = ∇rz · T2(v̌).
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Theorem 3.5.8. The following diagram is commutative. If Ω̌ is contractible, then each

horizontal sequence is exact.

0 H1
0 (Ω̌) H0(curl; Ω̌) H1

0 (Ω̌) L2
0(Ω̌) 0

0 Ĥ1
0 (Ω̌) Ĥ0(curl; Ω̌) Ĥ1

0 (Ω̌) L̂2
0(Ω̌) 0

0 0 W (Ω) V (Ω) Q(Ω) 0

∇̌

φ

∇̌×

φ

∇̌·

φ φ

∇̌ ∇̌×

T1

∇̌·

T2 T3

∇rz× ∇rz ·

Proof. The commutative property follows from Lemmas 3.5.4 and 3.5.7. The exactness of

the first two horizontal sequences follow from Theorem 3.5.5.

Suppose that w ∈ W (Ω) is smooth enough with ∇rz × w = 0. Observe that the rect-

angular vector representation of w is w̌ = (w̌1, w̌2, 0)ᵀ with w = w̄θ = w̌2 cos(θ) − w̌1 sin(θ)

and 0 = w̄r = w̌1 cos(θ) + w̌2 sin(θ). The equation 0 = w̄r yields w̌1 = − tan(θ)w̌2. Also, the

normal vector reads ň = (n̂1, 0, n̂3)ᵀ on Γ with n̂2
1 + n̂2

3 = 1. Hence, the condition w̌× ň = 0

gives us (w̌2n̂3,−w̌1n̂3,−w̌2n̂1) = (0, 0, 0). Hence, we conclude that either w̌1 = 0 or w̌2 = 0,

and hence by the fact that w̌1 = − tan(θ)w̌2 we have that w|Γ = 0.

By the definition of ∇rz×, we conclude that ∂w
∂z

= 0 and hence w(r, z) = w(r). Moreover,

we have that 1
r
∂(rw)
∂r

= 0 and hence w = c
r

for some constant c. But w|Γ = 0, hence

w(r0) = c
r0

= 0 for some r0 > 0. Hence, we conclude that c = 0 and we have that w = 0.

Now suppose that v ∈ V (Ω) with ∇rz ·v = 0. Define v̌ ∈ Ĥ1
0 (Ω̌) such that its cylindrical

representation is v̄(r, θ, z) = (vr(r, z), 0, vz(r, z))ᵀ, and note that T2(v̌) = v. We also have

∇̌ · v̌ = 0 (cf. (37)), and so v̌ = ∇̌ × w̌ for some w̌ ∈ Ĥ0(curl; Ω). Let w = T1(w̌). Then

Lemma 3.5.7 shows that

∇rz × w = ∇rz × (T1(w̌)) = T2(∇̌ × w̌) = T2(v̌) = v.

Finally, suppose that q ∈ Q(Ω), then there is q̌ ∈ L̂2
0(Ω̌) with T3(q̌) = q. Proposition

3.4.1 shows that there is v̌ ∈ Ĥ1
0 (Ω̂) with ∇̌ · v̌ = q̌. Let v = T2(v̌). Then Lemma 3.5.7

shows that

∇rz · v = ∇rz · (T2(v̌)) = T3(∇̌ · v̌) = T3(q̌) = q.

This completes the proof.
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4.0 CONNECTION BETWEEN GRAD-DIV STABILIZED STOKES FINITE

ELEMENTS AND DIVERGENCE-FREE STOKES FINITE ELEMENTS

In this chapter, we use recently developed theories of divergence–free finite element

schemes to analyze methods for the Stokes problem with grad-div stabilization. For example,

we show that, if the polynomial degree is sufficiently large, the solutions of the Taylor–Hood

finite element scheme with a grad-div stabilization term converges to an optimal convergence

exactly divergence–free solution as the grad-div parameter tends to infinity. In addition, we

introduce and analyze a stable first-order scheme that does not exhibit locking phenomenon

for large grad-div parameters

4.1 Introduction

grad-div stabilization is a well-known and simple stabilization technique in numerical

discretizations to improve mass conservation in simulations of incompressible flow. In its

simplest form, the methodology adds the consistent term (written in strong form)

−γ∇(∇ · u)

to the momentum equations of the (Navier-)Stokes equations. Here, γ > 0 is a user-defined

constant, which is referred to as the grad-div parameter. In addition to improving conserva-

tion of mass of the scheme, this stabilization technique may also improve the coupling errors

of the velocity and pressure solutions. This can be advantageous for situations with large

pressure gradients, e.g., in natural convection problems.

While enjoying many benefits, the use of grad-div stabilization comes with several prac-

tical disadvantages. These include a deterioration of the condition number and reduced

sparsity of the algebraic system. Another disadvantage is the possible emergence of ‘locking’

for large grad-div parameters. Indeed, simply energy arguments show the discrete velocity
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solution satisfies ‖∇ · uh‖ = O(γ−1), and therefore, in the limiting case, the discrete solu-

tion is divergence–free. If the discrete divergence–free subspace does not have rich enough

approximation properties, then grad-div stabilization, while improving mass conservation,

may lead to poor approximations.

The stability and convergence analysis for grad-div stabilization for incompressible flow

have been explored in, e.g., [54, 27, 28, 38, 2]. These estimates, together with numerical

simulations, provide a guide to choose optimal γ-values. For example, references [53, 48,

54, 13] suggests γ = O(1) as the optimal value. On the other hand, numerical experiments

in [29] and the analysis in [38, 2] suggest that the optimal choice may be much larger and

depend on the finite element spaces, the mesh, and/or the viscosity of the model.

In another direction, and the path taken in this chapter, is to identify and characterize

the limiting solution as the grad-div parameter tends to infinity. For example, in [16, 46], it

is shown that the Taylor–Hood finite element scheme on special (Clough-Tocher) triangula-

tions, no locking occurs in the limiting case γ →∞, and the Taylor–Hood grad-div solution

converges to the analogous (divergence–free) Scott–Vogelius solution.

The purpose of this chapter is to extend and generalize the results in [16] by incorporating

the recent theories of divergence–free finite element Stokes pairs. In this regard, we make two

main contributions. First we show the absence of locking for the two-dimensional Taylor–

Hood pair for a general class of meshes. In particular, we show that high–order Taylor–Hood

pairs are generally locking-free. In addition, we show that the limiting (Taylor-Hood) so-

lutions converge to the solution of the divergence–free Scott-Vogelius scheme, defined on

general triangulations. The second contribution of the chapter is the introduction and anal-

ysis of a new low–order and stable finite element pair that is locking–free. The velocity

space is simply the linear Lagrange finite element space, and the pressure space consists of

piecewise constants with respect to an auxiliary coarsened mesh.

The chapter is organized as follows. In the next section, we introduce the notation and

a framework for the grad-div finite element method for the Stokes problem. We show that

the discrete solutions converge to a solution of a divergence–free method with rate O(γ−1).

In Section 4.3, we apply this framework to the two-dimensional Taylor–Hood elements. The

general theme of the results is that additional mesh constraints are imposed for lower degree
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polynomial spaces. In Section 4.4, we define a stable first-order scheme for the Stokes

problem, and show that the solutions converge to a divergence–free method as γ → ∞.

Finally, in Section 4.5 we provide some numerical experiments.

4.2 Notation and Framework

The Stokes equations defined on a polytope domain Ω ⊂ R2 with Lipschitz continuous

boundary ∂Ω is given by the system of equations

−ν∆u+∇p = f in Ω, (54a)

∇ · u = 0 in Ω, (54b)

u = 0 on ∂Ω, (54c)

where the u is the velocity, p the pressure, and ∇, ∆ denote the gradient operator and vector

Laplacian operators, respectively. In (54a), ν is the viscosity.

We define the following function spaces on Ω:

L2(Ω) := {w : Ω 7→ R : ‖w‖L2(Ω) := (

∫
Ω

|w|2 dx)1/2 <∞},

Hm(Ω) := {w : Ω 7→ R : ‖w‖Hm(Ω) := (
∑
|β|≤m

‖Dβw‖2
L2(Ω))

1/2 <∞},

and set (·, ·) denote the inner product on L2(Ω) and set ‖ · ‖ = ‖ · ‖L2(Ω). The analogous

spaces with boundary conditions are given by

L2
0(Ω) := {w ∈ L2(Ω) :

∫
Ω

w dx = 0},

Hm
0 (Ω) := {w ∈ Hm(Ω) : Dβw|∂Ω = 0,∀β : |β| ≤ m− 1}.

We denote the analogous vector-valued function spaces in boldface; for example H1(Ω) =

H1(Ω)2 and L2(Ω) = L2(Ω)2. We also define the space of H1
0 (Ω) divergence–free vector

fields

V := {v ∈H1
0 (Ω) : (∇ · v, q) = 0,∀q ∈ L2

0(Ω)}.
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The weak formulation for (54) reads: Find (u, p) ∈ H1
0 (Ω)× L2

0(Ω) such that ∀(v, q) ∈

H1
0 (Ω)× L2

0(Ω) we have

ν(∇u,∇v)− (∇ · v, p) = (f ,v), (55a)

(∇ · u, q) = 0. (55b)

It was shown in the previous chapter that problem (55) has a unique solution [30].

Let Xh×Yh ⊂H1
0 (Ω)×L2

0(Ω) be a conforming finite element pair with respect to mesh

parameter h > 0. For each such a pair, we define the space of discretely divergence–free

vector fields as follows

Vh := {v ∈Xh : (∇ · v, qh) = 0,∀qh ∈ Yh}.

We note, for many finite element pairs, there holds the non–inclusion Vh 6⊂ V .

The discrete Stokes problem corresponding to the pair Xh × Yh reads: Find (uh, ph) ∈

Xh × Yh such that ∀(v, q) ∈Xh × Yh we have

ν(∇uh,∇v)− (∇ · v, ph) = (f ,v), (56a)

(∇ · uh, q) = 0. (56b)

Problem (56) has a unique solution provided that the pair Xh × Yh satisfies the inf-sup

condition, that is, there exists a constant β > 0 independent of the mesh parameter h such

that

sup
v∈Xh\{0}

(∇ · v, q)
‖∇v‖

≥ β‖q‖ ∀q ∈ Yh. (57)

We introduce the corresponding grad-div stabilized problem, which reads: For given

γ ∈ R with γ > 0, find (uγh, p
γ
h) ∈Xh × Yh such that ∀(v, q) ∈Xh × Yh we have

ν(∇uγh,∇v) + γ(∇ · uγh,∇ · v)− (∇ · v, pγh) = (f ,v), (58a)

(∇ · uγh, q) = 0. (58b)

Again, standard arguments show that (58) is well-posed provided the inf-sup condition (57)

is satisfied. Adding the term γ(∇ · uγh,∇ · vh) improves mass conservation and can reduce

the effect of the pressure error on the velocity approximation. The limiting case γ → ∞ is

studied in the following two theorems.
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Theorem 4.2.1. Let Xh × Yh be a conforming finite element pair satisfying the inf-sup

condition. Let {γi}∞i=1 ⊂ R with γi →∞, and let (ui, pi) ∈Xh × Yh be the solution for (58)

corresponding to γi. Then the sequence {ui}∞i=1 ⊂ Xh converges to some wh ∈ Xh ∩ V .

Moreover,

‖∇(u−wh)‖ = inf
v∈Xh∩V

‖∇(u− v)‖. (59)

Proof. We follow the ideas in [16, Theorem 3.1] and begin with an a priori bound which is

obtained by taking v = ui and q = pi in (58):

ν‖∇ui‖2 + γi‖∇ · ui‖2 = |(f ,ui)|. (60)

Thus, we have the following inequality

ν‖∇ui‖ ≤ ‖f‖∗,h ∀i ∈ N,

where ‖f‖∗,h = supv∈Xh\{0}
|(f ,v)|
‖∇v‖ . The above inequality shows that the sequence {ui}∞i=1

is a uniformly bounded sequence in the finite dimensional space Xh. Hence, {ui}∞i=1 has a

convergent subsequence {uij}j that converges to some wh ∈Xh.

To show wh ∈ V , i.e., ∇ · wh = 0, we use (60) and the Cauchy-Schwarz inequality to

obtain

‖∇ · uij‖ ≤
1√

2νγij
‖f‖∗,h ∀j ∈ N. (61)

Because ‖∇ · v‖ ≤
√

2‖∇v‖ for all v ∈H1
0 (Ω) and uij → wh, it follows that

‖∇ ·wh‖ = ‖∇ · (wh − uij + uij)‖

≤ ‖∇ · (wh − uij)‖+ ‖∇ · uij‖

≤
√

2‖∇(wh − uij)‖+
1√

2νγij
‖f‖∗,h → 0 as j →∞.

Hence, we conclude that ‖∇ ·wh‖ = 0, and so wh ∈ V .
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To show the estimate (59) and the uniqueness of wh, we observe that for v ∈ Xh ∩ V

we have

ν(∇wh,∇v)− (f ,v) = lim
j→∞

ν(∇uij ,∇v) + lim
j→∞

γij(∇ · uij ,∇ · v)− (f ,v)

= lim
j→∞

(ν(∇uij ,∇v) + γij(∇ · uij ,∇ · v)− (f ,v))

= 0.

Hence, wh satisfies

ν(∇wh,∇v) = (f ,v) ∀v ∈Xh ∩ V , (62)

and (59) immediately follows by Cea’s lemma.

By the Lax-Milgram theorem, problem (62) has a unique solution. If {uik}k is another

convergent subsequence of {ui}∞i=1 that converges to some zh ∈Xh, then zh is a solution to

the problem (62). Since the problem (62) has a unique solution, we conclude that wh = zh,

which means any convergent subsequence of {ui}∞i=1 converges to the same element in Xh.

Hence the entire sequence {ui}∞i=1 converges to wh.

Theorem 4.2.2. Suppose that the conditions of Theorem 4.2.1 are satisfied. Set

Qh := ∇ ·Xh = {∇ · v : v ∈Xh},

and suppose that Yh ⊂ Qh and Xh ×Qh is an inf-sup stable pair, i.e.,

sup
v∈Xh\{0}

(∇ · v, q)
‖∇v‖

≥ βQ‖q‖ ∀q ∈ Qh, ∃βQ > 0. (63)

Then the sequence {(ui, pi−γi∇·ui)}∞i=1 ⊂Xh×Qh converges to (wh, ph) ∈ (Xh∩V )×Qh

satisfying

ν(∇wh,∇v)− (∇ · v, ph) = (f ,v) ∀v ∈Xh, (64a)

(∇ ·wh, q) = 0 ∀q ∈ Qh. (64b)

There also holds

β2
Qν
−1‖ph − (pi − γi∇ · ui)‖ ≤ βQ‖∇(wh − ui)‖ (65)

≤ ‖∇ · ui‖ ≤ min{2β−1
Q γ−1

i , (2νγi)
−1/2}‖f‖∗,h.
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Proof. The convergence ui → wh for some wh ∈ Xh ∩ V is established in Theorem 4.2.1.

Since wh is divergence–free, it clearly satisfies (64b).

To show the convergence of the modified pressure sequence, we first use with the inf-sup

condition for the pair Xh ×Qh (63) and the inclusion Yh ⊂ Qh to obtain

βQ‖pi − γi∇ · ui‖ ≤ sup
v∈Xh\{0}

−(∇ · v, pi) + γi(∇ · ui,∇ · v)

‖∇v‖

=
(f ,v)− ν(∇ui,∇v)

‖∇v‖
≤ ‖f‖∗,h + ν‖∇ui‖.

Thus, {pi−γi∇·ui}∞i=1 ⊂ Qh is a bounded sequence, and thus has a convergent subsequence:

pij − γij∇ · uij → ph for some ph ∈ Qh. We then find that, for any v ∈Xh,

(∇wh,∇v)− (∇ · v, ph) = lim
j→∞

(
(∇uij ,∇v)− (pij ,∇ · v) + γij(∇ · uij ,∇ · v)

)
= (f ,v).

We conclude that (wh, ph) ∈Xh×Qh satisfies (64). The convergence of the entire sequence

{(ui, pi − γi∇ · ui)}∞i=1 follows directly from the arguments in Theorem 4.2.1.

Next we establish the rate of convergence given in (65). As a first step, we first note that

‖∇wh‖ ≤ ν−1‖f‖∗,h. Consequently, by the inf–sup condition (63),

βQ‖ph‖ ≤ sup
v∈Xh\{0}

(∇ · v, ph)
‖∇v‖

= sup
v∈Xh\{0}

(f ,v)− ν(∇wh,∇v)

‖∇v‖
≤ 2‖f‖∗,h. (66)

Write ei = wh − ui ∈ Vh and note that

ν(∇ei,∇v)− (ph − pi,∇ · v) + γi(∇ · ei,∇ · v) = 0 ∀v ∈Xh. (67)

Consequently, by setting v = ei and using ∇ ·wh = 0, we find

ν‖∇ei‖2 + γi‖∇ · ui‖2 = (∇ · ei, ph − pi) = (∇ · ei, ph) ≤ ‖∇ · ui‖‖ph‖.

Therefore by (66),

‖∇ · ui‖ ≤
2

γiβQ
‖f‖∗,h.

Combined with (61), this establishes the last inequality in (65).

49



To derive a convergence rate for ‖∇ei‖ with respect to γi, we introduce the space

Rh = (Xh ∩ V )⊥ = {v ∈Xh : (∇v,∇w) = 0 ∀w ∈Xh ∩ V }.

Because Xh ∩ V = {v ∈ Xh : (∇ · v, q) = 0,∀q ∈ Qh}, and Xh × Yh is assumed to be

inf-sup stable, there holds [45]

‖∇v‖ ≤ β−1
Q ‖∇ · v‖ ∀v ∈ Rh. (68)

Write ei = e0
i +eRi with e0

i ∈Xh∩V and eRi ∈ Rh. Because ‖∇ei‖2 = ‖∇e0
i ‖2 +‖∇eR‖2

and ∇ · e0
i = 0, there holds by (68)

‖∇eRi ‖ ≤ β−1
Q ‖∇ · e

R
i ‖ = β−1

Q ‖∇ · ei‖ = β−1
Q ‖∇ · ui‖.

On the other hand, by taking v = e0
i ∈Xh ∩ V in (67), we get

0 = ν(∇ei,∇e0
i )− (ph − pi,∇ · e0

i ) + γi(∇ · ei,∇ · e0
i )

= ν(∇eRi ,∇e0
i ) + ν‖∇e0

i ‖2 = ν‖∇e0
i ‖2.

Thus e0
i ≡ 0, and therefore

‖∇ei‖ = ‖∇eRi ‖ ≤ β−1
Q ‖∇ · ui‖.

Finally, we use the inf-sup condition on Xh × Qh to derive the convergence rate of the

modified pressure equation as follows:

βQ‖ph − (pi − γi∇ · ui)‖ ≤ sup
v∈Xh\{0}

(∇ · v, ph)− (∇ · v, pi) + γi(∇ · ui,∇ · v)

‖∇v‖

= sup
v∈Xh\{0}

−ν(∇ei,∇v)

‖∇v‖
≤ ν‖∇ei‖.
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Remark 4.2.3. Since wh ∈Xh ∩ V , the error ‖∇(u− ui)‖ can be decomposed as follows

‖∇(u− ui)‖ = ‖∇(u−wh +wh − ui)‖

≤ ‖∇(u−wh)‖+ ‖∇ei‖

≤ inf
v∈V ∩Xh

‖∇(u− v)‖+
2

β2
Qγi
‖f‖∗,h.

Since the pairXh×Qh is inf-sup stable, we have by [15, Theorem 12.5.17] to get the estimate

‖∇(u− ui)‖ ≤
(

1 +
C

βQ

)
inf
v∈Xh

‖∇(u− v)‖+
2

β2
Qγi
‖f‖∗,h, (69)

where C > 0 is a constant independent of h, βQ and γi.

For comparison, the following estimate for grad-div stabilized finite element methods for

the Stokes problem was derived in [38]:

‖∇(u− ui)‖2 ≤ inf
v∈Vh

(
4‖∇(u− v)‖2 + 2

γi
ν
‖∇ · v‖2

)
+

2

νγi
inf
qh∈Yh

‖ph − qh‖2, (70)

Note that

inf
v∈Vh

(
4‖∇(u− v)‖2 + 2

γi
ν
‖∇ · v‖2

)
≤ inf
v∈Xh∩V

(
4‖∇(u− v)‖2 + 2

γi
ν
‖∇ · v‖2

)
≤
(

1 +
C

βQ

)
inf
v∈Xh

‖∇(u− v)‖

for a generally different constant C > 0. Thus, we see that the first term in the right-hand

side of (70) is sharper than the analogous term in (69). On the other hand, unlike estimate

(70), the bound (69) does not depend on ν. Thus, we conclude that the estimate (69) can

be sharper than the estimate (70) for small values of ν.
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4.3 Application I: Taylor–Hood Pairs

In this section, we apply Theorem 4.2.2 to the two–dimensional Taylor–Hood pair and

show, under assumptions of the mesh and the polynomial degree, the Taylor–Hood finite

element method with grad-div stabilization does not experience locking in the limit γ →∞.

To proceed, we require some additional notation.

Denote by Th a conforming, shape–regular, simplicial triangulation of Ω ⊂ R2. For

τ ∈ Th, we denote by hτ = diam(τ) and set h = maxτ∈Th hτ . Let VIh and VBh denote the sets

of interior and boundary vertices of Th, respectively, and set Vh = VIh ∪ VBh .

Let Pk(S) denote the space of polynomials of degree ≤ k with domain S; the analogous

vector-valued space is denoted by Pk(S) := [Pk(S)]2. We define the piecewise polynomials

with respect to the mesh Th as

Pk(Th) :=
∏
τ∈Th

Pk(τ).

For an integer k ≥ 2, the Taylor–Hood pair is given as

XTH
h = Pk(Th) ∩H1

0 (Ω),

Y TH
h = Pk−1(Th) ∩H1(Ω) ∩ L2

0(Ω).

We also define the image of the divergence acting on the Taylor–Hood velocity space:

QTH
h := ∇ ·XTH

h = {∇ · v : v ∈XTH
h }. (71)

It is well known that the pair XTH × Y TH
h is inf–sup stable provided that each τ ∈ Th has

at most one boundary edge [10]. We assume this mild condition is satisfied throughout this

section.

To apply Theorem 4.2.2 to the Taylor–Hood pair, we split the results into three cases,

depending on the polynomial degree: k ≥ 4, k = 3, and k = 2. The general theme is that

additional mesh conditions are introduced for lower degree polynomial spaces.
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4.3.1 High order pairs: k ≥ 4

To apply Theorem 4.2.2 on the Taylor–Hood pair for k ≥ 4, we need to establish the

inf–sup stability of the pair XTH
h ×QTH

h . To do so, following the notation introduced in [37],

we introduce the concept of a singular vertex and the vertex singularity of a mesh.

For z ∈ Vh, let Tz ⊂ Th denote the set of triangles that have z as a vertex. We assume

that Tz = {τ1, . . . , τN}, enumerating such that τj and τj+1 share an edge for j = 1, . . . , N−1,

and if z is an interior vertex, then τ1 and τN share an edge. Letting θj denote the angle

between the angle between the edges of τj originating from z, we define

Θz :=

 max{| sin(θ1 + θ2)|, . . . , | sin(θN−1 + θN)|, | sin(θ1 + θN)|} if z ∈ VIh,

max{| sin(θ1 + θ2)|, . . . , | sin(θN−1 + θN)|} if z ∈ VBh .

Definition 4.3.1.

1. We say that a vertex z is singular if Θz = 0; otherwise we say that z is non–singular.

2. The measure of vertex singularity of the mesh is given by the positive number

Θ∗ := min
z∈Vh
Θz 6=0

Θz > 0.

Remark 4.3.2. An interior vertex is singular if and only if exactly two straight lines emanating

from the vertex (and hence N = 4 in this case). A non–corner boundary vertex z is singular

if exactly two triangles have z as a vertex. Finally, a corner (boundary) vertex z is singular

if only one triangle in Th has z as a vertex. Note that, because we assumed that each τ ∈ Th
has at most one boundary edge, there exists no corner singular vertices.

The quantity Θz gives an indication on “how close” a non–singular vertex z is from

being singular. Essentially, if Θ∗ is small, then there exists a vertex in Th that is a small

perturbation of a singular vertex. Note that if the cardinality of Tz is greater than 4 for all

z ∈ VIh, and greater than 2 for all z ∈ VBh , then Θ∗ is uniformly bounded from below.
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Let

Sh = {z ∈ Vh : Θz = 0}

denote the set of singular vertices in the mesh Th. A characterization of the divergence

operator acting on the Taylor–Hood velocity space is given in the next lemma for high–order

pairs. Its proof is found in [37, 58].

Lemma 4.3.3. Suppose that k ≥ 4. Then there holds

Y TH
h ⊂ QTH

h := ∇ ·XTH
h = {q ∈ Pk−1(Th) ∩ L2

0(Ω) :
N∑
`=1

(−1)`q|τ`(z) = 0 ∀z ∈ Sh}.

Moreover, XTH
h ×QTH

h represents an inf-sup stable pair with inf-sup constant βQ independent

of size of the triangles in Th. Rather, βQ = CΘ∗ for some h-independent constant C > 0.

Combining Lemma 4.3.3 with Theorem 4.2.2 then yields the convergence of the (high–

order) grad-div stabilized Taylor–Hood pair.

Theorem 4.3.4. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XTH
h × Y TH

h be the solution

of the grad-div stabilized Stokes problem (58) corresponding to γi using the Taylor–Hood pair

with k ≥ 4. Then ui → wh and pi − γi∇ · ui → ph as i → ∞ for some wh ∈ XTH
h ∩ V

and ph ∈ QTH
h with (wh, ph) being the solution for (64) with Xh × Qh = XTH

h × QTH
h . In

particular,

Θ∗ν
−1‖ph − (pi − γi∇ · ui)‖ ≤ ‖∇(wh − ui)‖ ≤ CΘ−1

∗ min{Θ−1
∗ γ

−1
i , (νγi)

−1/2}, (72)

where C > 0 is independent of h, ν, and Θ∗.

If u ∈Hs(Ω) for some s ≥ 1, then the divergence–free function wh satisfies

‖∇(u−wh)‖ ≤ Ch`−1‖u‖H`(Ω), (73)

where ` = min{k + 1, s} and C > 0 is independent of h, γ, ν and Θ∗.
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Remark 4.3.5. For fixed ν, Theorem 4.3.4 implies that the convergence for the sequence

{(ui, pi − γi∇ · ui)}∞i=1 to (wh, ph) is O(γ−1
i ) provided γi & Θ−2

∗ ν. Otherwise, for smaller

grad-div parameters the theorem predicts O(γ
−1/2
i ) convergence.

Remark 4.3.6. Theorem 4.3.4 states that {ui}∞i=1 converges to an exactly divergence–free

solution with optimal order properties as i → ∞; this is true on meshes with singular

vertices or “nearly singular” vertices.

Proof. The convergence and convergence rates for the sequence {(ui, pi − γi∇ · ui)}∞i=1

directly follow from Lemma 4.3.3 with Theorem 4.2.2.

To prove (73), we first use the estimate (59):

‖∇(u−wh)‖ ≤ inf
v∈V ∩Xh

‖∇(u− v)‖.

Following [25], we introduce the modified H2-conforming Argyris (TUBA) finite element

space [4]

Σh = {s ∈ H2
0 (Ω) ∩ Pk+1(Th) : s is C2 at all non-corner vertices of Th}.

We then have [25]

∇× Σh := {∇ × s : s ∈ Σh} ⊂ V ∩Xh,

where ∇ × s = (∂s/∂x2,−∂s/∂x1)ᵀ is the two–dimensional curl operator. Therefore, by

writing u in terms of its stream function u = ∇ × ψ for some ψ ∈ H2
0 (Ω) ∩ Hs+1(Ω), we

have

inf
v∈V ∩Xh

‖∇(u− v)‖ ≤ inf
v∈∇×Σh

‖∇(u− v)‖

= inf
s∈Σh
‖D2(ψ − s)‖ ≤ Ch`−1‖ψ‖H`−1(Ω) ≤ Ch`−1‖u‖H`(Ω).
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4.3.2 The cubic–quadratic Taylor–Hood pair

To apply Theorem 4.2.2 to the cubic-quadratic Taylor–Hood pair, we incorporate the

recent stability results of the cubic-quadratic Scott–Vogelius pair in [36]. In particular, a

characterization of the space QTH
h (cf. (71)) was explicitly given and inf–sup stability results

were shown. To explain these results further, we introduce the concept of an interpolating

vertex.

Recall that for a vertex z ∈ Vh, Tz = {τ1, . . . , τN} denotes the set of triangles that have

z as vertex. Set

Wz := {a ∈ RN :
N∑
j=1

(−1)jaj = 0}.

Set

Ωz = int
(
∪τ∈Tz T̄

)
,

and define

Xz ={v ∈XTH
h : suppv ⊂ Ωz :

∫
τ

∇ · v dx = 0 ∀τ ∈ Th, (∇ · v)(σ) = 0

∀σ ∈ Vh\{z}}.

Definition 4.3.7. We say that z ∈ Vh is an interpolating vertex if, for all a ∈ Wz, there

exists v ∈Xz such that (∇ · v)|τj(z) = aj for all j ∈ {1, 2, . . . , N}. We denote the set of all

interpolating vertices in Vh by Lh.

Remark 4.3.8. examples are given in [36], where the local interpolating vertex property in

Definition 4.3.7 is satisfied by all interior vertices. Examples include

1. Criss-crossed mesh

2. Every mesh Th such that |Tz| = N is odd for all z ∈ VIh.

It is also shown in [36] that not every interior vertex in a type–I triangulation (cf. Figure 1)

is an interpolating vertex.

Now, we state the following lemma which gives a stability result of the cubic Scott-

Vogelius pair. We refer to [36] for a detailed proof.
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Figure 2: Type–I triangulation on (0, 1)2 on which each interior vertex is not an interpolating

vertex.

Lemma 4.3.9. Suppose that k = 3 and VIh ⊂ Lh. Then there holds

Y TH
h ⊂ QTH

h := ∇ ·XTH
h = {q ∈ Pk−1(Th) ∩ L2

0(Ω) :
M∑
`=1

(−1)`q|τ`(z) = 0 ∀z ∈ Sh}.

Moreover, XTH
h × QTH

h represents an inf-sup stable pair with βQ independent of size of the

triangles in Th. Rather, βQ = CΘ∗ for some h-independent constant C > 0.

Combining Lemma 4.3.9 with Theorem 4.2.2 then yields the convergence of the grad-div

stabilized Taylor–Hood pair.

Theorem 4.3.10. Let {γi}∞i=1 ⊂ R with γi →∞ and (ui, pi) ∈XTH
h × Y TH

h be the solution

of the grad-div stabilized Stokes problem (58) corresponding to γi using the Taylor–Hood pair

with k = 3. Assume VIh ⊂ Lh, i.e., all interior vertices in Th are interpolating vertices. Then

ui → wh and pi − γi∇ · ui → ph as i → ∞ for some wh ∈ XTH
h ∩ V and ph ∈ QTH

h with

(wh, ph) being the solution for (64) with Xh ×Qh = XTH
h ×QTH

h . The rate of convergence

of (ui, pi − γi∇ · ui) satisfies (72).
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4.3.3 The quadratic-linear Taylor–Hood pair on Clough-Tocher splits

The case quadratic–linear Taylor–Hood pair on Clough-Tocher splits was discussed and

studied in detail in [16]; here, we state these results for completeness.

A Clough–Tocher split (or refinement) of a shape–regular triangulation Th is obtained

connecting the vertices of each triangle τ ∈ Th to its barycenter. Thus, each triangle is split

into three sub-triangles. Denote by T CTh the Clough-Tocher split of Th, and, with an abuse

of notation, define the quadratic–linear Taylor–Hood pair on T CTh :

XTH
h = P2(T CTh ) ∩H1

0 (Ω), (74a)

Y TH
h = P1(T CTh ) ∩H1(Ω) ∩ L2

0(Ω). (74b)

The following lemma gives a characterization of the divergence acting on XTH
h and states

that the quadratic-linear Scott–Vogelius pair is stable on Clough–Tocher splits. Its proof

can be found in [5, 35].

Lemma 4.3.11. Let XTH
h × Y TH

h be defined by (74). Then there holds

Y TH
h ⊂ QTH

h := ∇ ·XTH
h = P1(T CTh ) ∩ L2

0(Ω).

Moreover, XTH
h ×QTH

h represents an inf-sup stable pair with inf-sup constant βQ independent

of size of the triangles in Th.

Combining Lemma 4.3.11 with Theorem 4.2.2 then yields the convergence of the (low–

order) grad-div stabilized Taylor–Hood pair.

Theorem 4.3.12. Let XTH
h × Y TH

h be defined by (74), and let {γi}∞i=1 ⊂ R with γi → ∞.

Let (ui, pi) ∈ XTH
h × Y TH

h be the solution of the grad-div stabilized Stokes problem (58)

corresponding to γi. Then ui → wh and pi − γi∇ · ui → ph as i→∞ with rate O(γ−1
i ) for

some wh ∈XTH
h ∩ V and ph ∈ QTH

h with (wh, ph) being the solution to (64). If u ∈Hs(Ω)

for some s ≥ 1, then the divergence–free function wh satisfies

‖∇(u−wh)‖ ≤ Ch`−1‖u‖H`(Ω), (75)

where ` = min{3, s} and C > 0 is independent of h, γ, ν and βQ.
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Proof. The convergence and convergence rates for the sequence {(ui, pi − γi∇ · ui)}∞i=1

directly follow from Lemma 4.3.3 with Theorem 4.2.2 (see also [16]).

To prove (75), and to show that the constant C > 0 is independent of βQ, we first use

the estimate (59):

‖∇(u−wh)‖ ≤ inf
v∈V ∩Xh

‖∇(u− v)‖.

Following the ideas in Theorem 4.3.4, we introduce the modified H2-conforming Hsieh–

Clough–Tocher finite element space [39]

ΣCT
h = H2

0 (Ω) ∩ P3(T CTh ).

We then have [39]

∇× ΣCT
h := {∇ × s : s ∈ ΣCT

h } ⊂ V ∩Xh.

Writing u = ∇× ψ for some ψ ∈ H2
0 (Ω) ∩Hs+1(Ω), we have

inf
v∈V ∩Xh

‖∇(u− v)‖ ≤ inf
v∈∇×ΣCTh

‖∇(u− v)‖

= inf
s∈ΣCTh

‖D2(ψ − s)‖ ≤ Ch`−1‖ψ‖H`−1(Ω) ≤ Ch`−1‖u‖H`(Ω).

4.4 Application II: The P1 × P0 Pair on Powell-Sabin Splits

In the previous section, we considered the Taylor–Hood pair with grad-div stabilization

for various polynomial degrees. The general theme in the arguments is to use the stability

of the Scott–Vogelius pair to prove convergence and the absence of locking in the limiting

case γ →∞. In this section, we show that the grad-div connection discussed in the previous

sections can be generalized to a low–order P1×P0 pair defined on a Powell-Sabin split mesh

by incorporating the recently developed divergence–free methods in [32, 17].

As before, we start with a shape–regular simplicial triangulation Th of Ω. We then

construct the Powell–Sabin split of Th as follows [55, 42]. Let τ ∈ Th be a triangle with

vertices z1, z2 and z3 labelled counterclockwise, and let z0 be the incenter of τ . Denote the
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z1

z2

z3

z4
z5

z6

z0

τ1 τ2

τ3

τ4τ5

τ6

Figure 3: A Powell-Sabin local split of a triangle. Note that the vertices z4, z5, and z6 are

singular vertices in global mesh.

edges of τ by {ei}3
i=1, labelled such that zi is not a vertex of ei. Let z3+i be the interior

point of the edge of ei that is the intersection of the line segment connecting the incenters

of the triangles τ and its neighboring triangle that has ei as an edge. We then construct the

triangulation τPS = {τ1, ..., τ6} by connecting each zi to z0 for 1 ≤ i ≤ 6; see Figures 3 and

4.

Let T PSh =
⋃
κ∈Th

⋃
τ∈κPS

τ be the global triangulation of Ω, and VPSh be the set of vertices of

T PSh . Let SPSh ⊂ VPSh be the set of all singular vertices in T PSh . Let SIh = {z ∈ SPSh : z 6∈ ∂Ω}

be the set of interior singular vertices, and SBh = {z ∈ SPSh : z ∈ ∂Ω} be the set of boundary

singular vertices. Observe that each z ∈ SIh is attached to exactly four triangles, and each

z ∈ SBh is attached to exactly two triangles. By construction, the cardinality of SPSh is

exactly the number of edges in Th.

Definition 4.4.1. Let p ∈ P0(T PSh ) = {q ∈ L2(Ω) : q|τ ∈ P0(τ),∀τ ∈ T PSh }. We say that p

satisfies the weak continuity property on T PSh if for any z ∈ SIh and {τ1, ..., τ4} = Tz ⊂ T PSh

we have that

p|τ1 − p|τ2 + p|τ3 − p|τ4 = 0,
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and for any z ∈ SBh and {τ1, τ2} = Tz ⊂ T PSh we have that

p|τ1 = p|τ2 .

We introduce the finite element pairXPS
h ×QPS

h defined on the Powell-Sabin triangulation

T PSh proposed in [32]:

XPS
h = P1(T PSh ) ∩H1

0 (Ω), (76a)

QPS
h = {q ∈ P0(T PSh ) ∩ L2

0(Ω) : q satisfies the weak continuity property}. (76b)

Now, we state the following lemma concerning the image of the divergence operator

acting on XPS
h and the inf-sup stability of XPS

h ×QPS
h . We refer to [32] for a detailed proof.

Lemma 4.4.2. There holds

∇ ·XPS
h = QPS

h

with bounded right-inverse. Therefore, XPS
h × QPS

h is inf-sup stable, with inf-sup constant

βQ independent of h.

We propose a smaller and simpler pressure space that conforms to the framework in the

previous sections. To this end, we let

KPSh = {
⋃
τ∈Tz

τ : z ∈ SPSh }

be the mesh obtained by taking the union of the triangles associated with each singular

vertex. Thus, KPSh is a set consisting of quadrilaterals (in the case that z is an interior

singular vertex) and triangles (in the case that z is a boundary singular vertex); see Figure

4.

We define the auxiliary pressure space

Y PS
h = {q ∈ L2

0(Ω) : q|K ∈ P0(K), ∀K ∈ KPSh }. (77)

Remark 4.4.3. It was shown that the pair XPS
h ×QPS

h is inf-sup stable when defined on the

mesh T PSh . Since Y PS
h ⊂ QPS

h , the pair XPS
h × Y PS

h is stable. Hence, we can incorporate

Theorem 4.2.2 to conclude the following theorem.
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Figure 4: A triangulation Th of the unit square (left), its Powell–Sabin refinement T PSh

(middle), and the mesh KPSh (right).

Theorem 4.4.4. Let {γi}∞i=1 ⊂ R with γi → ∞ and (ui, pi) ∈ XPS
h × Y PS

h be the solution

of the grad-div stabilized Stokes problem (58) correspondes to γi using the pair XPS
h × Y PS

h .

Then ui → wh and pi − γi∇ ·ui → ph as i→∞ with rate O(γ−1
i ) for some wh ∈XPS

h ∩V

and ph ∈ QPS
h with (wh, ph) being the solution for (64) with Xh ×Qh = XPS

h ×QPS
h .

4.5 Numerical Examples

In this section, we perform some simple numerical experiments and compare the results

with the theoretical ones given in the previous sections. In all tests, we take the domain to

be the unit square Ω = (0, 1)2, and choose the source function such that the exact velocity

and pressure solutions are given respectively as

u =

 π sin2(πx) sin(2πy)

−π sin2(πy) sin(2πx)

 , p = cos(πx) cos(πy). (78)

4.5.1 The P1 × P0 pair on Powell–Sabin splits

In this section, we report and discuss the numerical results for the P1 × P0 pair on

Powell–Sabin splits.
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‖ph − pri‖

Figure 5: Numerical results on Powell-Sabin splits using the P1×P0 pairs for fixed h = 1/32

and viscosity ν = 1. The plot shows O(γ−1
i ) convergence for all three quantities.

Let Th be a quasi–uniform Delaunay triangulation of Ω with h = 1/32, and let T PSh be

the corresponding Powell-Sabin global triangulation (cf. Section 4.4). We compute problem

(64) with Xh×Qh = XPS
h ×QPS

h defined by (76), and denote the solution pair by (wh, ph).

We also compute problem (58) withXh×Yh = XPS
h ×Y PS

h (cf. (77)), and denote the solution

pair corresponding to γi by (ui, pi). The grad-div parameters are taken to be γi = 10i for

i = 1, . . . , 6.

4.5.1.1 The P1 × P0 pair on Powell-Sabin splits with fixed viscosity ν = 1

In Figure 5, we plot the quantities ‖∇(wh − ui)‖,‖∇ · ui‖ and ‖ph − pri‖ versus γi for

fixed h = 1/32 and fixed viscosity ν = 1, where pri = pi − γi∇ · ui. The plot clearly shows

linear convergence with respect to γ−1
i for all three quantities, which is in exact agreement

with Theorem 4.4.4.
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4.5.1.2 The P1 × P0 pair on Powell-Sabin splits with varying viscosity

In these series of tests, we compute the same problem as the previous section, but for

different viscosity values: ν = 10−j for j = 1, 2, 3, 4. We report the differences ‖∇(wh −

ui)‖,‖∇ · ui‖ and ‖ph − pri‖ versus the grad-div parameter in Figure 6.

Again, we observe that all three quantities converge with rate O(γ−1
i ) for each value of

ν, at least for moderately sized values of γi. On the other hand, we see that, for small values

of ν, the differences ‖ph − pri‖L2(Ω) and ‖∇(wh − ui)‖L2(Ω) increase (with rate = O(γi)) as

γi →∞. This behavior is due to round-off error as we now explain.

Observe that (67) reads

ν(∇ei,∇v)− (ph − pi,∇ · v) + γi(∇ · ei,∇ · v) = 0 ∀v ∈Xh,

where ei = wh−ui. Consequently, by setting v = ei and using ∇ ·wh = 0, and dividing by

ν and rearrange terms, we find

‖∇(wh − ui)‖2
L2(Ω) = ‖∇ei‖2 =

1

ν
(ph − pri,∇ · ui).

We computed the term (ph − pri,∇ · ui), and we observed that as soon as this term is

less than machine epsilon, both quantities ‖∇(wh − ui)‖ and ‖ph − pri‖ grow as γi →∞.

4.5.2 Taylor–Hood finite elements

In this section we report and discuss the numerical results for Taylor–Hood finite element

with polynomial degrees k = 4, 3, 2, and compare the results with the theoretical ones

established in Section 4.3. We compute problem (64) with Xh×Qh = XTH
h ×QTH

h , and we

denote the solution pair by (wh, ph). Also, we consider the problem (58) with Xh × Yh =

XTH
h × Y TH

h and we denote the solution pair by (ui, pi) that corresponding to γi.
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Figure 6: Numerical experiments using the P1 × P0 pairs on Powell–Sabin splits with fixed

h = 1/32 and varying viscosity ν. The plot shows O(γ−1
i ) convergence for all three quantities.

The increase in the first and third plots for large values of γi is due to round–off error.
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4.5.2.1 Grad-div Taylor–Hood methods on perturbed criss–cross meshes with

fixed viscosity

Recall from Lemmas 4.3.3 and 4.3.9 that the stability of Scott–Vogelius pair depends

on the vertex singularity of the mesh Θ∗ given in Definition 4.3.1. This in turn affects the

convergence behavior of the grad-div solution (ui, pi) to the divergence–free solution (wh, ph);

see Theorems 4.3.4 and 4.3.10. The purpose of the tests presented in this section is to gauge

the affect of the vertex singularity of the mesh, and to compare the numerical results with

the theoretical ones derived in Section 4.3.

To this end, we start by constructing criss–cross triangulation of Ω with h = 1/20 which

has O(h−2) singular vertices. Then for each singular vertex of the triangulation, we add its

coordinates by (r1, r2)hα+1, where ri ∈ {−2,−1, 1, 2} is chosen randomly, and with exponent

α ∈ {0, 1, 2, 3}; see Figure 7. The resulting perturbed mesh has no singular vertices, but

simple trigonometric arguments show the vertex singularity of the mesh is Θ∗ ≈ hα.

We report the quantities quantities ‖∇ · ui‖, ‖∇(wh − ui)‖, and ‖ph − (pi − γi∇ · ui)‖

using the Pk × Pk−1 (k = 3, 4) Taylor–Hood and Scott–Vogelius elements with ν = 1 in

Figure 7. For comparison, the convergence estimate for the Taylor–Hood element stated in

Theorems 4.3.4 and 4.3.10 read

hα‖ph − (pi − γi∇ · ui)‖ ≤ ‖∇(wh − ui)‖ ≤ Ch−α min{h−αγ−1
i , γ

−1/2
i },

which suggests a deterioration of the “errors” for large perturbation exponents α. Indeed,

Figure 7 shows pre-asymptotic O(γ
−1/2
i ) convergence rates for α = 0 before achieving O(γ−1

i )

rates for large values of γi. On the other hand, for larger α-values (e.g., α = 2, 3), we see

pre-asymptotic convergence (k = 4) or no convergence (k = 3). The deterioration of the

errors for large α-values is most evident for the modified pressure, where Figure 7 shows

no convergence with respect to γi for α ∈ {2, 3}. Therefore we conclude from these results

that the quantity Θ∗ stated in Theorem 4.3.4 does influence the convergence of the grad-div

solution.

On the other hand, Figure 7 shows ‖∇ · ui‖ = O(γ−1
i ) for any value α. Consequently,

the convergence estimate of this quantity stated in Theorem 4.3.4 may not be sharp for this

quantity.
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Figure 7: Results of the grad-div stabilized Pk×Pk−1 Taylor–Hood pair onO(hα+1) perturbed

criss-cross meshes with h = 1/20 and ν = 1. Left: k = 4. Right: k = 3.

67



4.5.2.2 Grad-div Taylor–Hood methods with varying viscosity

In this series of tests we compute the grad-div Taylor–Hood method with k = 3, 4 and

vary the viscosity ν = 10−j j = 1, 2, 3, 4 on a perturbed criss cross mesh with h = 1/20 and

α = 0. In this setting, vertex singularity of the mesh is Θ∗ = O(1). The estimates stated in

Theorems 4.3.4 and 4.3.10 read

ν−1‖ph − pri‖ ≤ ‖∇(wh − ui)‖ ≤ C min{γ−1
i , (νγi)

−1/2}.

We report the quantities ‖∇(w−ui)‖, ‖∇·ui‖ and ‖ph−pri‖ for γi = 10i and k ∈ {3, 4}

in Figure 8. We observe that the estimate ‖∇ ·ui‖ converges with rate O(γ−1
i ) regardless of

the value of ν. The errors ‖ph− pri‖ and ‖∇(wh−ui)‖ initially converge with rates O(γ−1
i )

but quickly increase for large γi-values with rate O(γi) due to the round-off error (cf. Section

4.5.1.2).

4.5.3 Grad-div Taylor–Hood methods on type–I triangulations

In the final set of numerical experiments, we compute the grad-div Taylor–Hood pair on

type–I triangulations with h = 1/24 (cf. Figure 2). Recall from Remark 4.3.8 that on this

mesh, not all interior vertices are interpolating vertices, and therefore the cubic–quadratic

Scott–Vogelius pair is not stable on this mesh.

Similar to the previous sections, we compute the grad-div stabilized finite element method

using the Pk×Pk−1 pair with k = 3, 4 and fixed viscosity ν = 1. As the Scott–Vogelius pair

(wh, ph) is unavailable on this mesh, we instead compute the errors ‖∇(u− ui)‖, ‖∇ · ui‖,

and ‖p− pri‖, where (u, p) are given by (84).

We report these quantities in Figure 9. We observe a clear convergence of the divergence

of the computed solution with ‖∇ · ui‖ = O(γ−1
i ) (asymptotically) in both cases k = 3, 4.

On the other hand, the errors for the quartic–cubic pair perform much better for large values

of the grad-div parameter γi. Indeed, in this case the errors stabilize relatively quickly at

γi = 102. On the other hand, for the cubic-quadratic case, we see that the errors ‖∇(u−ui)‖

and especially ‖p − pri‖ increase for large γi-values. This behavior may be due to the
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Figure 8: Pk × Pk−1 grad-div sequences errors for O(h) perturbed mesh with different vis-

cosities. Left: k = 4. Right: k = 3.
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Figure 9: Errors of grad-div finite element method using the Taylor-Hood pair Pk×Pk−1 on

type–I triangulation with k = 4 (left) and k = 3 (right).

instability of the Scott-Vogelius pair and the lack of a discrete divergence–free subspace with

optimal approximation properties.
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5.0 LOW-ORDER DIVERGENCE-FREE APPROXIMATIONS FOR THE

STOKES PROBLEM ON WORSEY-FARIN AND POWELL SABIN SPLITS

In this chapter we derive low-order, inf-sup stable and divergence-free finite element

approximations for the Stokes problem using Worsey-Farin splits in three dimensions and

Powell-Sabin splits in two dimensions. The velocity space simply consists of continuous,

piecewise linear polynomials, where as the pressure space is a subspace of piecewise constants

with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss

implementation aspects that arise when coding the pressure space, and in particular, show

that the pressure constraints can be enforced at an algebraic level.

5.1 Introduction

The 4th-order SV finite element pair introduced in [59] was the first known finite element

pair to yield a divergence-free solutions for incompressible flow models on simplicial trian-

gulations. Afterward, several articles study the stability of lower order finite element pairs

that yield divergence-free approximations [56, 57, 5, 62, 63, 64, 34, 35, 65]. The main scheme

in these articles is that the stability of lower order finite element pairs can be achieved on

certain refinements of simplicial meshes.

In this chapter, we show that the lowest (possible) polynomial order velocity space can be

defined for the Stokes problem is inf-sup stable and yields divergence free solutions provided

that it is coupled with a piecewise constant pressure space that satisfies a certain weak

continuity property, and a certain mesh refinement is used; in particular, Worsey-Farin

splits for (3D) domains, and Powell-Sabin splits for (2D) domains.

Although the discrete pressure space we use is not available on computational software

packages due to its weak continuity property, we still can use the saddle-point approach to

find the approximated solutions by enforcing the weak continuity property at the algebraic

level. We provide Algorithms that show how to implement this method on standard finite
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element software packages (e.g., FEniCS).

Also, we provide numerical experiments that support our theoretical results.

The chapter is organized as follows. In the next section we give notation that will be

used in the rest of the chapter. In Section 5.3 we prove stability of the analogous three-

dimensional pair on Worsey-Farin splits. In Section 5.4 we discuss implementation aspects

on Powell-Sabin splits and in Section 5.5 we do the same for Worsey-Farin splits. Finally, in

Section 5.6 we provide numerical experiments.

5.2 Preliminaries

In this section we develop basic notation that we use throughout the chapter. We provide

this in the following list:

• Th is a shape-regular, simplicial triangulation of a contractible polytope Ω ⊂ Rd (d =

2, 3).

• hτ = diam(τ) for all τ ∈ Th and h = maxτ∈Th hτ .

• For an n-dimensional simplex S (n ≤ d) and m ∈ {0, . . . n}, denote by ∆m(S) the set of

m-dimensional simplices of S.

• For a simplicial triangulation Qh of Ω we define the spaces of piecewise polynomials

Pk(Qh) =
∏
τ∈Qh

Pk(τ), Pk(Qh) =
∏
K∈Qh

Pk(τ),

P̊k(Qh) = Pk(Qh) ∩ L2
0(Ω), P̊

c

k(Qh) = Pk(Qh) ∩H1
0 (Ω).

Thus P̊k(Qh) consists of piecewise polynomials of degree ≤ k with respect to the triangu-

lation Qh with mean zero, and P̊
c

k(Qh) is the space of continuous, piecewise polynomials

of degree ≤ k with vanishing trace (i.e., the kth degree vector-valued Lagrange finite

element space).

• The constant C denotes a generic positive constant, independent of the mesh parameter

h.
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5.3 Inf-sup Stability on Worsey-Farin Splits

Let Th be a simplicial triangulation of a polyhedral domain Ω ⊂ R3. The Worsey-Farin

triangulation T WF
h is obtained by splitting each tetrahedron into twelve sub-tetrahedra by

the following procedure. Similar to the Powell–Sabin case, for each τ ∈ Th, we connect

the incenter of τ to its vertices. Next, the incenters of neighboring pairs of tetrahedra are

connected with an edge. This creates a face split point (a vertex) on each face of τ . If τ has

a boundary face, then we connect the incenter of τ to the barycenter of the face by a line.

Finally, the face split points are connected to the vertices of the face. For each τ ∈ Th, we

denote by τWF the triangulation resulting from local Worsey-Farin refinement of τ , i.e.,

τWF = {κ ∈ T WF
h : κ ⊂ τ̄}.

Definition 5.3.1. An edge in a 3D simplicial triangulation is called singular if the faces

meeting at the edge fall on exactly two planes.

By construction, the Worsey-Farin triangulation contains many singular edges; for each

face in the unrefined triangulation Th, there are three associated singular edges in T WF
h .

Let ESh denote the set of singular edges in T WF
h , and let ES,Ih and ES,Bh denote the sets of

interior and boundary singular edges, respectively. For each e ∈ ESh , let Te = {τ (1)
e , . . . , τ

(ne)
e }

denote the set of tetrahedra that have e as an edge. Here, ne = 4 if e is an interior edge,

and ne = 2 if e is a boundary edge. We assume the tetrahedra are labeled such that τ
(j)
e and

τ
(j+1)
e share a common face.

5.3.1 Finite element spaces on Worsey–Farin triangulations

Similar to the two-dimensional case, the divergence operator acting on the Lagrange

finite element space has weak continuity properties on singular edges (cf. [33]).

Lemma 5.3.2. For e ∈ ESh , and a piecewise smooth function q, define

θe(q) =

 q
(1)
e |e − q(2)

e |e + q
(3)
e |e − q(4)

e |e e ∈ ES,Ih ,

q
(1)
e |e − q(2)

e |e e ∈ ES,Bh ,

where q
(j)
e = q|

τ
(j)
e

. Then there holds θe(divv) = 0 for all v ∈ P̊
c

k(T WF
h ).
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Analogous to the Powell–Sabin case, we define the finite element spaces to discretize

the Stokes problem on Worsey-Farin splits. We first define the spaces without boundary

conditions

V WF
h = Pc

1(T WF
h ),

Y WF
h = {q ∈ P̊0(T WF

h ) : θe(q) = 0 ∀e ∈ ES,Ih }.

Then, we define an intermediate pressure space

Ŷ WF
h = {q ∈ P̊0(T WF

h ) : θe(q) = 0 ∀e ∈ ESh }.

We now define the spaces with boundary conditions

V̊ WF
h = V WF

h ∩H1
0 (Ω),

Y̊ WF
h = Ŷ WF

h ∩ L2
0(Ω).

5.3.2 Stability of V̊ WF
h × Y̊ WF

h

In this section, we show that the pair V̊ WF
h × Y̊ WF

h is inf-sup stable. First we introduce

some notation.

Let τ ∈ Th, and let τA denote the local triangulation of τ consisting of four tetrahedra,

obtained by connecting the vertices of τ with its incenter, i.e., τA denotes the Alfeld split

of τ . For a face F ⊂ τ , denote by FCT the set of three triangles formed from F by the

Worsey-Farin refinement, i.e., FCT is the Clough-Tocher refinement of F . We denote by

∆I
1(FCT) the set of three interior edges in FCT, and let eF ∈ ∆I

1(FCT) denote an arbitrary,

fixed interior edge of FCT.

Definition 5.3.3. Consider the triangulation FCT of a face F ∈ ∆2(τ), and let the three

triangles of FCT be labeled Q1, Q2, Q3. Let e = ∂Q1 ∩ ∂Q2 be an internal edge, let t be

the unit vector tangent to e pointing away from the split point mF , and let s be the unit

vector orthogonal to t such that s×nF = t. Then the jump of a piecewise smooth function

p across e is defined as

[[p]]e =
(
p|Q1 − p|Q2

)
s.
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We now state the degrees of freedom for the spaces V̊ WF
h and Y̊ WF

h . The proofs of the

following two lemmas are given in [33, Lemmas 5.11–5.12].

Lemma 5.3.4. A function v ∈ V WF
h is uniquely determined by the values

v(a) ∀a ∈ ∆0(τ),∫
F

(v · nF ) ∀F ∈ ∆2(τ),∫
e

[[divv]]e ∀e ∈ ∆I
1(FCT)\{eF}, ∀F ∈ ∆2(τ),∫

τ

(divv)p ∀p ∈ V̊0(τ) := P0(τA) ∩ L2
0(τ).

for each T ∈ Th.

Lemma 5.3.5. A function q ∈ Y WF
h is uniquely determined by∫

e

[[q]]e ∀e ∈ ∆I
1(FCT)\{eF}, ∀F ∈ ∆2(τ),∫

τ

qp ∀p ∈ P0(τA).

for all τ ∈ Th.

If we restrict ourselves to Ŷ WF
h then we only take interior faces F in the first set of degrees

of freedom.

Proposition 5.3.6. Let v ∈ V WF
h and τ ∈ Th. For m = 0, 1, there holds

|v|Hm(τ) ≤ Ch−1−2m
τ

(
h4
τ

∑
a∈∆0(τ)

|v(a)|2 +
∑

F∈∆2(τ)

∣∣∣ ∫
F

v · nF
∣∣∣2 + h3

τ‖divv‖2
L2(τ)

)
.

Proof. Let τ̂ be the reference tetrahedron, and let Fτ : τ̂ → τ be an affine bijection with

Fτ (x̂) = Aτ x̂+bτ with Aτ ∈ R3×3 and bτ ∈ R3. We define v̂ : τ̂ → R3 via the Piola transform

v(x) =
Aτ v̂(x̂)

det(Aτ )
, x = Fτ (x̂).

Let τ̂WF be the split of τ̂ induced by τWF and the mapping F−1
τ , i.e.,

τ̂WF = {F−1
τ (K) : K ∈ τWF}.
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Then v̂ is a continuous piecewise linear polynomial with respect to τ̂WF, and therefore by

equivalence of norms, and Lemma 5.3.4,

|v̂|2Hm(τ̂) ≤ C
( ∑
â∈∆0(τ̂)

|v̂(â)|2 +
∑

F̂∈∆2(τ̂)

∣∣∣ ∫
F̂

v̂ · n̂F̂
∣∣∣2

+
∑

F̂∈∆2(τ̂)

∑
ê∈∆I

1(F̂CT)\{êF̂ }

∣∣∣ ∫
ê

[[
d̂ivv̂

]]
ê

∣∣∣2 + sup
p̂∈V̊0(τ̂)

‖p̂‖L2(τ̂)=1

∣∣∣ ∫
τ̂

(d̂ivv̂)p̂
∣∣∣2).

By well-known properties of the Piola transform, we have

divv(x) =
1

det(Aτ )
d̂ivv̂(x̂),

∫
F

v · nF =

∫
F̂

v̂ · n̂F̂ .

Thus, we have

|v̂|2Hm(τ̂) ≤ C
( ∑
a∈∆0(τ)

| det(Aτ )A
−1
τ v(a)|2 +

∑
F∈∆2(τ)

∣∣∣ ∫
F

v · nF
∣∣∣2

+ | det(Aτ )|2
∑

F∈∆2(τ)

∑
e∈∆1(F )\{eF }

∣∣∣ |ê||e|
∫
e

[[divv]]e

∣∣∣2 + sup
p̂∈V̊0(τ̂)

‖p̂‖L2(τ̂)=1

∣∣∣ ∫
τ̂

(d̂ivv̂)p̂
∣∣∣2).

Next, for p̂ ∈ V̊0(τ̂) with ‖p̂‖L2(τ̂) = 1, let p : τ → R be given by p(x) = p̂(x̂). Then

p ∈ V̊0(τ), ‖p‖L2(τ) =
√

6|τ |, and ∫
τ̂

(d̂ivv̂)p̂ =

∫
τ

(divv)p.

We conclude

sup
p̂∈V̊0(τ̂)

‖p̂‖L2(τ̂)=1

∣∣∣ ∫
τ̂

(d̂ivv̂)p̂
∣∣∣2 ≤ sup

p∈V̊0(τ)

‖p‖L2(τ)=
√

6|τ |

∣∣∣ ∫
τ

(divv)p
∣∣∣2 ≤ Ch3

τ‖divv‖2
L2(τ).

Finally, we use ‖A−1
τ ‖ ≤ Ch−1

τ and | det(Aτ )| = 6|τ | ≤ Ch3
τ to get

|v̂|2Hm(τ̂) ≤ C
(
h4
τ

∑
a∈∆0(τ)

|v(a)|2 +
∑

F∈∆2(τ)

∣∣∣ ∫
F

v · nF
∣∣∣2

+ h4
τ

∑
F∈∆2(τ)

∑
e∈∆I

1(FCT)\{eF }

∣∣∣ ∫
e

[[divv]]e

∣∣∣2 + h3
τ‖divv‖2

L2(τ)

)
,

76



and therefore

|v|2Hm(τ̂) ≤ Ch−1−2m
τ |v̂|2Hm(τ̂) ≤ Ch−1−2m

τ

(
h4
τ

∑
a∈∆0(τ)

|v(a)|2 +
∑

F∈∆2(τ)

∣∣∣ ∫
F

v · nF
∣∣∣2

+ h4
τ

∑
F∈∆2(τ)

∑
e∈∆1(F )\{eF }

∣∣∣ ∫
e

[[divv]]e

∣∣∣2
+ h3

τ‖divv‖2
L2(τ)

)
≤ Ch−1−2m

τ

(
h4
τ

∑
a∈∆0(τ)

|v(a)|2

+
∑

F∈∆2(τ)

∣∣∣ ∫
F

v · nF
∣∣∣2 + h3

τ‖divv‖2
L2(τ)

)
,

where the last inequality comes from standard trace and inverse inequalities.

Theorem 5.3.7. The pair V̊ WF
h × Y̊ WF

h is inf-sup stable.

Proof. Fix a q ∈ Y̊ WF
h , and let w ∈ H1

0 (Ω) satisfy divw = q and ‖∇w‖L2(Ω) ≤ C‖q‖L2(Ω).

Let wh ∈ P̊1(Th) be the Scott-Zhang interpolant of w with respect to Th. Define v ∈

P̊1(T WF
h ) such that

v(a) = wh(a) ∀a ∈ ∆0(τ),∫
F

(v · nF ) =

∫
F

(w · nF ) ∀F ∈ ∆2(τ),∫
e

[[divv]]e =

∫
e

[[q]]e ∀e ∈ ∆I
1(FCT)\{eF}, ∀F ∈ ∆2(τ),∫

τ

(divv)p =

∫
τ

qp ∀p ∈ V̊0(τ).

Noting (divv − q) ∈ Y WF
h , and∫

e

[[divv − q]]e = 0 ∀e ∈ ∆I
1(FCT)\{eF}, ∀F ∈ ∆2(τ),∫

τ

(divv − q)p ∀p ∈ P0(τA)

for all τ ∈ Th (by the divergence theorem), we conclude divv = q by Lemma 5.3.5.
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We apply Proposition 5.3.6 to (v −wh) with m = 1:

‖∇(v −wh)‖2
L2(τ) ≤ Ch−3

τ

(
h4
τ

∑
a∈∆0(τ)

|(v −wh)(a)|2 +
∑

F∈∆2(τ)

∣∣∣ ∫
F

(v −wh) · nF
∣∣∣2

+ h3
τ‖div(v −wh)‖2

L2(τ)

)
= Ch−3

τ

( ∑
F∈∆2(τ)

∣∣∣ ∫
F

(w −wh) · nF
∣∣∣2 + h3

τ‖q − divwh‖2
L2(τ)

)
≤ Ch−3

τ

(
h2
τ

∑
F∈∆2(τ)

‖w −wh‖2
L2(F ) + h3

τ‖q − divwh‖2
L2(τ)

)
≤ C

(
‖q‖2

L2(τ) + h−2
τ ‖w −wh‖2

L2(τ) + ‖∇(w −wh)‖2
L2(τ) + ‖∇wh‖2

L2(τ)

)
.

We then sum over τ ∈ Th and apply stability and approximation properties of the Scott-

Zhang interpolant to conclude ‖∇v‖L2(Ω) ≤ C‖q‖L2(Ω).

5.4 Implementation Aspects for Powell-Sabin Splits

The only tricky part to implement these finite elements is the pressure spaces since they

have non-standard constraints in their definitions. In this section and the subsequent one,

we give details to form the algebraic system for the Stokes problem.

5.4.1 A basis for the weak continuity pressure space and the construction of

the algebraic system

Recall the pair XPS
h × QPS

h defined on the Powell-Sabin triangulation T PSh in equation

(76).

Clearly, the space QPS
h is a non-standard space, and in particular the space is not ex-

plicitly found in current finite element software packages. Nonetheless, in this section, we

identify a basis of the space QPS
h , and as a byproduct show that the weak continuity property

θz(q) = 0 can be imposed purely at the algebraic level.

To be consistent with the notation introduced in section 5.2, let V̊ PS
h ×Y̊ PS

h = XPS
h ×QPS

h .
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As a first step, we note that, by definition of the Powell–Sabin triangulation,

T PS
h = {K(j)

z : K(j)
z ∈ Tz, z ∈ Sh}.

With this (implicit) labeling of the triangles in T PS
h , we can write the canonical basis of

P0(T PS
h ) as the set {ϕ(j)

z } ⊂ P0(T PS
h ) with

ϕ(j)
z |K(i)

v
= δv,zδi,j ∀z, v ∈ Sh, i = 1, . . . , nv, j = 1, . . . , nz.

The next proposition shows that a basis of Y̊ PS
h is easily extracted from the basis of

P0(T PS
h ) (see Figure 10).

Proposition 5.4.1. For each z ∈ Sh and j ∈ {2, . . . , nz}, define

ψ(j)
z = ϕ(j)

z + (−1)jϕ(1)
z .

Then {ψ(j)
z : z ∈ Sh, j = 2, . . . , nz} forms a basis of Ŷ PS

h .

Proof. Note that the number of functions {ψ(j)
z } given is

∑
z∈Sh(nz − 1), and

dimY PS
h = dimP0(T PS

h )− |Sh| =
∑
z∈Sh

nz − |Sh| =
∑
z∈Sh

(nz − 1).

Because ψ
(j)
z ∈ Y̊ PS

h , and they are clearly linear independent, we conclude that {ψ(j)
z } form

a basis of Y̊ PS
h .

We now explain how Proposition 5.4.1 provides a simple way to construct the stiffness

matrix for the Stokes problem using the V̊ PS
h × Y̊ PS

h pair. To explain the procedure, we

require some notation.

Let A be the matrix associated with the bilinear form

(v,w)→
∫

Ω

ν∇v : ∇w dx over v,w ∈ V̊ PS
h ,

and let B̃ is the matrix associated with the bilinear form

(v, q)→ −
∫

Ω

(divv)q dx over v ∈ V̊ PS
h , q ∈ P0(T PS

h ).
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Figure 10: Local mesh Tz with z ∈ SIh. Top row: Values of canonical basis functions of

piecewise constants {ϕ(j)
z }nzj=1. Bottom row: Values of basis functions of piecewise constants

with weak continuity constraint {ψ(j)
z }nzj=2.
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The stiffness matrix for the Stokes problem based on the (unstable) V̊ PS
h × P0(T PS

h ) pair is

given by  A B̃

B̃ᵀ 0

 .

We emphasize that this system can be easily constructed using standard finite element

software packages.

Let {φ(i)}Nk=1 denote a basis of V̊ PS
h with N = dim V̊ PS

h so that

Ai,j = ν

∫
Ω

∇φ(j) : ∇φ(i) dx.

Let M = dimP0(T PS
h ), the number of triangles in T PS

h , and introduce the local-to-global

label mapping σ : S × {1, . . . , nz} → {1, 2, . . . ,M} such that

B̃i,σ(z,j) = −
∫

Ω

(divφ(i))ϕ(j)
z dx.

Then by Proposition 5.4.1, we have for z ∈ Sh and j = 2, . . . , nz,

−
∫

Ω

(divφ(i))ψ(j)
z dx = −

∫
Ω

(divφ(i))ϕ(j)
z dx− (−1)j

∫
Ω

(divφ(i))ϕ(1)
z dx

= B̃i,σ(z,j) + (−1)jB̃i,σ(z,1).

This identity leads to the following algorithm.

1. Construct Powell–Sabin triangulation T PS
h

2. Construct B̃ ∈ RN×M based on the V̊ PS
h × P0(T PS

h ) pair.

3. Set B = B̃.

4. For each z ∈ Sh and for each j ∈ {2, . . . , nz}, do the elementary column operation

B:,σ(z,j) = B:,σ(z,j) + (−1)jB:,σ(z,1).

5. Delete column B:,σ(z,1) for each z ∈ Sh.

The stiffness matrix for the Stokes problem based on the V̊ PS
h × Ŷ PS

h pair is then given

by  A B

Bᵀ 0

 . (79)
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5.5 Implemenation Aspects for Worsey Farin Splits

5.5.1 A basis for Ŷ WF
h and the construction of the algebraic system

Notice that the collection of local triangulations Te (with e ∈ ESh ) do not form a disjoint

partition of the global triangulation T WF
h . In particular, there exists K ∈ T WF

h such that

K ∈ Te and K ∈ Ts with e, s ∈ ESh and e 6= s. As a result, the methodology used in the

previous section for Powell–Sabin meshes is not directly applicable.

Instead, we consider a geometric decomposition of the mesh based on the face split points

in T WF
h . To this end, we denote by SIh and SBh the sets of interior and boundary face split

points, respectively, and set Sh = SIh∪SBh . For z ∈ Sh, let Tz := {K(1)
z , . . . , K

(nz)
z } denote the

set of tetrahedra in T WF
h that have z as a vertex. Here, nz = 6 if z is an interior vertex, and

nz = 3 if z is a boundary vertex. For an interior face split point z, we assume the simplices

in Tz are labeled such that

K(1)
z , K(2)

z , K(3)
z ⊂ τ (1), K(4)

z , K(5)
z , K(6)

z ⊂ τ (2)

for some τ (1), τ (2) ∈ Th, and that K
(j)
z and K

(j+3)
z share a common face for j ∈ {1, 2, 3}. For

a boundary split point z, the set Tz = {K(1)
z , K

(2)
z , K

(3)
z } is labeled arbitrarily.

We clearly have

T WF
h = {K(j)

z : z ∈ Sh, j = 1, . . . , nz}, (80)

and the map (z, j) → K
(j)
z is injective. Furthermore, each local partition Tz contains three

singular edges.

Proposition 5.5.1. There holds

dim Ŷ WF
h = 4|SIh|+ |SBh |.

Proof. By Proposition 5.3.5, we have

dim Ŷ WF
h = 4|Th|+ 2|F Ih |,

where |F Ih | is the number of interior faces in Th. From (80), we have

12|Th| = |T WF
h | = 6|SIh|+ 3|SBh |,
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and by construction of the Worsey-Farin split, there holds

|Fh| = |SIh|.

Therefore,

dim Ŷ WF
h = 4|Th|+ 2|F Ih | =

1

3

(
6|SIh|+ 3|SBh |

)
+ 2|SIh| = 4|SIh|+ |SBh |.

For an interior split point z, and for a piecewise constant function q on Tz, the three

constraints θe(q) = 0 read

q1 − q2 + q5 − q4 = 0,

q2 − q3 + q6 − q5 = 0,

q3 − q1 + q4 − q6 = 0,

where qj = q|
K

(j)
z

We write this as a 3× 6 linear system

C~q :=


1 −1 0 −1 1 0

0 1 −1 0 −1 1

−1 0 1 1 0 −1





q1

q2

q3

q4

q5

q6


= 0.

We clearly see that this matrix has rank 2 (e.g., adding the first and third rows gets the

negation of the second row). We find that the nullspace of C is given by

null(C) = span





1

1

1

0

0

0


,



1

0

0

1

0

0


,



0

1

0

0

1

0


,



−1

−1

0

0

0

1




.

These four vectors implicitly give us a basis for Ŷ WF
h . In particular, we have
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Proposition 5.5.2. For z ∈ Sh and j ∈ {1, 2, . . . , nz}, let ϕ
(j)
z be the piecewise constant

function

ϕ(j)
z |K(i)

v
= δv,zδi,j ∀v, z ∈ Sh, i = 1, . . . , nv, j = 1, . . . , nz.

For an interior face split point z, define

ψ(3)
z = ϕ(3)

z + ϕ(1)
z + ϕ(2)

z ,

ψ(4)
z = ϕ(4)

z + ϕ(1)
z ,

ψ(5)
z = ϕ(5)

z + ϕ(2)
z ,

ψ(6)
z = ϕ(6)

z − ϕ(1)
z − ϕ(2)

z .

For a boundary face split point z, define

ψ(3)
z = ϕ(3)

z + ϕ(1)
z + ϕ(2)

z .

Then {ψ(j)
z } is a basis of Ŷ WF

h .

Proof. The proof essentially follows from the same arguments as Proposition 5.4.1, noting

that the number of given ψ
(j)
z is

4|SIh|+ |SBh | = dim Ŷ WF
h

by Proposition 5.5.1.

As in the two-dimensional case, Proposition 5.5.2 give an algorithm to construct the

stiffness matrix for the Stokes problem using the V̊ WF
h × Ŷ WF

h pair. First, we construct the

stiffness matrix based on the V̊ WF
h × P0(T WF

h ) pair: A B̃

B̃ᵀ 0

 ,

and then perform elementary column operations on the B̃.

Let {φ(k)}Nk=1 denote a basis of V̊ WF
h with N = dim V̊ WF

h and let M = dimP0(T WF
h )

be the number of tetrahedra in T WF
h , and introduce the local-to-global label mapping σ :

Sh × {1, . . . , nz} → {1, 2, . . . ,M} such that

B̃k,σ(z,j) = −
∫

Ω

(divφ(k))ϕ(j)
z .

Proposition 5.5.2 leads to the following algorithm.
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1. Construct Worsey-Farin triangulation T WF
h

2. Construct B̃ ∈ RN×M based on the V̊ WF
h × P0(T WF

h ) pair.

3. Set B = B̃.

4. For each interior face split point z ∈ Sh do the elementary column operations

B:,σ(z,3) = B:,σ(z,3) +B:,σ(z,1) +B:,σ(z,2),

B:,σ(z,4) = B:,σ(z,4) +B:,σ(z,1),

B:,σ(z,5) = B:,σ(z,5) +B:,σ(z,2),

B:,σ(z,6) = B:,σ(z,6) −B:,σ(z,1) −B:,σ(z,2).

5. For each boundary face split point z ∈ Sh do the elementary column operation

B:,σ(z,3) = B:,σ(z,3) +B:,σ(z,1) +B:,σ(z,2).

6. Delete columns B:,σ(z,1) and B:,σ(z,2) for each z ∈ Sh.

The stiffness matrix for the Stokes problem based on the V̊ WF
h × Ŷ WF

h pair is then given

by  A B

Bᵀ 0

 . (81)

5.6 Numerical Experiments

In this section, we perform some simple numerical experiments for the Stokes problem

on Powell–Sabin and Worsey–Farin splits. We note standard theory shows that the velocity

and pressure errors satisfy

|u− uh|H1(Ω) ≤ (1 + β−1) inf
vh∈Vh

|vh − u|H1(Ω), (82)

‖p− ph‖L2(Ω) ≤ inf
q∈Yh
‖p− q‖L2(Ω) +

ν

β
|u− uh|H1(Ω), (83)

where either Vh × Yh = V PS
h × Y̊ PS

h or Vh × Yh = V̊ WF
h × Y̊ WF

h , ν > 0 is the viscosity, and β

is the inf-sup constant for the finite element pair Vh × Yh.

85



Table 3: Errors and rates of convergence for example (84) with ν = 1.

h ‖u− uh‖L2(Ω) rate ‖p− ph‖L2(Ω) rate ‖∇ · uh‖L2(Ω) β

2−2 1.70E-01 – 5.26E 00 – 2.70E-14 1.56E-01

2−3 5.66E-02 1.587 3.77E 00 0.480 6.65E-14 1.38E-01

2−4 1.35E-02 2.068 1.68E 00 1.166 2.38E-13 1.07E-01

2−5 3.35E-03 2.011 8.28E-01 1.021 8.38E-12 1.06E-01

2−6 8.77E-04 1.934 4.25E-01 0.962 4.05E-10 9.34E-02

5.6.1 The Stokes pair on Powell-Sabin splits

We consider the example such that the data is taken to be Ω = (0, 1)2, and the source

function is chosen such that the exact velocity and pressure solutions for (54) are given

respectively as

u =

 π sin2(πx1) sin(2πx2)

−π sin2(πx2) sin(2πx1)

 , p = cos(πx1) cos(πx2). (84)

Let Th be a Delaunay triangulation of Ω and T PSh the corresponding Powell-Sabin global

triangulation.

The resulting errors, rates of convergence, and inf-sup constants are listed in Tables 3 and

4 for viscosities ν = 1 and ν = 10−2, respectively. The results show that the L2 pressure error

and the H1 velocity error converge with linear rate, the discrete velocity solution (and error)

are independent of the viscosity ν, and the pressure error improves for small viscosity. The

experiments also show that the inf-sup constant does not deteriorate as the mesh is refined

with β ≈ 0.1. These results are in agreement with the theoretical estimates (82)–(83)

In Tables 5 and 6, we compute the right-hand side of (83) and (82), respectively, and

compare the data with the computed errors ‖p − ph‖L2(Ω) and |u − uh|H1(Ω). Again, the

results are consistent with (82)–(83), and they suggest that the term |u − uh|H1(Ω) is the

dominant term in the pressure error (83).
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Table 4: Errors and rates of convergence for example (84) with ν = 10−2.

h ‖u− uh‖L2(Ω) rate ‖p− ph‖L2(Ω) rate ‖∇ · uh‖L2(Ω)

2−2 1.70E-01 – 1.02E-01 – 2.43E-14

2−3 5.66E-02 1.587 5.79E-02 0.816 5.88E-14

2−4 1.35E-02 2.068 2.76E-02 1.069 2.36E-13

2−5 3.35E-03 2.011 1.37E-02 1.010 8.39E-12

2−6 8.77E-04 1.934 6.96E-03 0.977 4.05E-10

Table 5: Errors for example (84) with ν = 10−2 and the RHS of (83) .

h ‖p− ph‖L2(Ω) |u− uh|H1(Ω) βh infq∈Y̊ PS
h
‖p− q‖L2(Ω) RHS of (83)

2−2 1.02E-01 3.77E 00 1.56E-01 6.08E-02 3.02E-01

2−3 5.79E-02 2.17E 00 1.38E-01 2.77E-02 1.84E-01

2−4 2.76E-02 1.07E 00 1.07E-01 1.35E-02 1.13E-01

2−5 1.37E-02 5.32E-01 1.06E-01 6.61E-03 5.67E-02

2−6 6.96E-03 2.72E-01 9.34E-02 3.28E-03 3.24E-02

Table 6: Errors for example (84) with ν = 10−2 and the RHS of (82) .

h |u− uh|H1(Ω) βh infvh∈V PS
h
|vh − u|H1(Ω) RHS of (82)

2−2 3.77E 00 1.56E-01 3.08E 00 2.28E+01

2−3 2.17E 00 1.38E-01 1.63E 00 1.34E+01

2−4 1.07E 00 1.07E-01 8.04E-01 8.31E 00

2−5 5.32E-01 1.06E-01 4.06E-01 4.23E 00

2−6 2.72E-01 9.34E-02 2.05E-01 2.39E 00

87



5.6.2 The Stokes pair on Worsey-Farin splits

We consider the example such that the data is taken to be Ω = (0, 1)3, and the source

function is chosen such that the exact velocity and pressure solutions for (54) are given

respectively as

u =


π sin2(πx1) sin(2πx2)

−π sin2(πx2) sin(2πx1)

0

 , p = cos(πx1) cos(πx2) cos(πx3). (85)

Let Th be a Delaunay triangulation of Ω and T WF
h be the corresponding Worsey-Farin

global triangulation.

The resulting rates of convergence of the numerical experiments for viscosities ν = 1

and ν = 10−3 are listed in Tables 7 and 8, respectively. We also state the computed inf-sup

constant on these meshes, and the results show that that it stays uniformly bounded from

below with β ≈ 0.13 on all meshes. The stated errors, especially those in Table 7, indicate

that the rates of convergence are still in the preasymptotic regime. On the other hand, for

small viscosity value ν = 10−3, Table 8 shows that the pressure error converges with linear

rate. This behavior suggests that the velocity error is the dominating term in (83).

To verify this claim, we explicitly compute the right-hand side of (83) and (82) and report

the results in Tables 9 and 10, respectively. The results show that indeed |u − uh|H1(Ω) is

the dominating term in the pressure error (83).

5.6.3 Iterated penalty method for (P1,P0) pair on Worsey-Farin splits

We consider the example such that the data is taken to be Ω = (0, 1)3, and the source

function is chosen such that the exact velocity and pressure solutions for (54) are given

respectively as

u(x, y, z) = ∇×


0

g

g

 , p =
1

9

∂2g

∂x∂y
, (86)
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Table 7: Errors and rates of convergence for example (85) with ν = 1.

h ‖u− uh‖L2(Ω) rate ‖p− ph‖L2(Ω) rate ‖∇ · uh‖L2(Ω) β

1/2 1.29E 00 – 9.81E 00 – 5.07E-14 1.31E-01

1/4 8.58E-01 0.588 19.4E 00 -0.98 5.20E-13 1.31E-01

1/8 3.93E-01 1.286 16.6E 00 0.414 2.68E-12 1.32E-01

1/16 1.32E-01 1.573 10.5E 00 0.667 4.10E-12 1.32E-01

1/32 3.69E-02 1.839 5.75E 00 0.872 4.32E-12 1.32E-01

1/48 1.68E-02 1.941 3.93E 00 0.936 6.07E-12 1.32E-01

Table 8: Errors and rates of convergence for example (85) with ν = 10−3.

h ‖u− uh‖L2(Ω) rate ‖p− ph‖L2(Ω) rate ‖∇ · uh‖L2(Ω)

1/2 1.29E 00 – 1.33E-01 – 1.28E-15

1/4 8.58E-01 0.588 6.97E-02 0.932 3.43E-14

1/8 3.93E-01 1.286 3.70E-02 0.911 3.22E-13

1/16 1.32E-01 1.574 1.91E-02 0.953 6.40E-13

1/32 3.69E-02 1.838 9.68E-03 0.980 9.52E-13

1/48 9.63E-03 1.940 4.89E-03 0.983 1.03E-12
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Table 9: Errors for example (85) with ν = 10−3 and the RHS of (83) .

h ‖p− ph‖L2(Ω) |u− uh|H1(Ω) βh infq∈Y̊WF
h
‖p− q‖L2(Ω) RHS of (83)

1/2 1.33E-01 1.07E+01 1.31E-01 5.00E-01 5.81E-01

1/4 6.97E-02 8.50E 00 1.31E-01 6.70E-02 1.31E-01

1/6 4.81E-02 6.82E 00 1.32E-01 4.43E-02 9.59E-02

1/8 3.70E-02 5.60E 00 1.32E-01 3.30E-02 7.54E-02

1/10 3.02E-02 4.71E 00 1.32E-01 2.63E-02 6.19E-02

1/12 2.55E-02 4.06E 00 1.32E-01 2.19E-02 5.26E-02

Table 10: Errors for example (85) with ν = 10−3 and the RHS of (82) .

h |u− uh|H1(Ω) βh infvh∈V̊WF
h
|vh − u|H1(Ω) RHS of (82)

1/2 1.07E+01 1.31E-01 9.99E 00 8.62E+01

1/4 8.50E 00 1.31E-01 5.85E 00 5.05E+01

1/6 6.82E 00 1.32E-01 4.08E 00 3.49E+01

1/8 5.60E 00 1.32E-01 3.10E 00 2.65E+01

1/10 4.71E 00 1.32E-01 2.49E 00 2.13E+01

1/12 4.06E 00 1.32E-01 2.08E 00 1.78E+01
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Table 11: Errors and rates of convergence for example (86) with ν = 1.

h ‖u− unh‖L2(Ω) rate |u− unh|H1(Ω) rate ‖p− pnh‖L2(Ω) rate

2−2 1.11768 - 11.55063 - 25.32256 -

2−3 0.48896 1.19273 7.53829 0.61566 22.35349 0.17992

2−4 0.15482 1.65908 4.15598 0.85905 13.67635 0.70882

2−5 0.04176 1.89040 2.13224 0.96282 7.24129 0.91736

1/48 0.01881 1.96680 1.42643 0.99145 4.88909 0.96875

where

g = g(x, y, z) = 212(x− x2)2(y − y2)2(z − z2)2.

Similar to the previous section, we let Th be a delaunay triangulation of Ω and T WF
h be the

corresponding Worsey-Farin global triangulation.

The iterated penalty method [15] applied to the Stokes equations with V̊h = V̊ WF
h reads:

Let u0
h = 0 and ρ, γ > 0 be parameters. For n ≥ 1, unh is recursively defined to be the

solution to the variational formulation

ν(∇unh,∇v) + γ(∇ · v,∇ · unh) = (f ,v)− (
n−1∑
i=0

ρ∇ · uih,∇ · v), ∀v ∈ V̊ WF
h . (87)

It was shown in [15] that limn→∞ u
n
h = uh and limn→∞

∑n
i=0 ρ∇ · uih = ph. Also, [15]

suggests to use ‖∇·unh‖L2(Ω) as a stopping criterion since the difference error between unh,uh

is given by

‖unh − uh‖L2(Ω) ≤ C‖∇ · unh‖L2(Ω).

The resulting rates of convergence of the numerical experiment are listed in Tables 11.

The errors ‖u − unh‖L2(Ω) and ‖p − pnh‖L2(Ω) are computed with ‖∇ · unh‖L2(Ω) ≤ 10−7 and

γ = ρ = 100.
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6.0 CONCLUSIONS

In this chapter, we make some conclusions regarding the work introduced in the previous

chapters and future plans.

While we were successful proving the stability for the lowest order RT finite element pair

for the axisymmetric Darcy problem, we still have to investigate other Darcy finite element

pairs like lowest order BDM.

It was shown in [43] that the TH finite element pairs is stable under the axisymmetric

variational formulation. We tried to prove the stability of Stokes div-free finite element pairs

(e.g. SV), but the analysis was vague. We ran some numerical experiments and the results

were hinting towards the stability of such elements.

While the theoretical results in chapter 4 suggest that the approximated solution of the

grad-div stabilized variational formulation converges to the divergence-free solution of the

non grad-div stabilized variational formulation as γ → ∞, the numerical experiments show

that the error increases as γ → ∞ due to round-off error. We still have to investigate the

optimal γ to use in numerical experiments.

In the near future (as a part of my new job at Iowa State University), I will be inves-

tigating the use of variational formulation methods for solving Fluid-Structure interaction

equations (FSI).
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