15th INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

NUMERICALLY RESOLVED RADIATION VIEW FACTORS VIA MULTI-GPU
ACCELERATED RAY TRACING

Katie E. Richmond, Asher J. Hancock, Shervin Sammak and Matthew M. Barry*
* Author for correspondence
Department of Mechanical Engineering and Materials Science,
University of Pittsburgh,
Pittsburgh, Pennsylvania
United States of America,
E-mail: matthew.michael.barry @pitt.edu

ABSTRACT

A robust computational framework is presented to directly
solve for the radiation view factors (F;;) of participatory sur-
faces within complex three-dimensional geometries. This frame-
work exploits the embarrassingly-parallel nature of the formu-
lation and solution of F;; through a multiple graphics process-
ing units (GPU)-accelerated ray tracing scheme. The presented
computational methodology was developed in Java and incorpo-
rated Aparapi for OpenCL compatibility. The surfaces of the
geometries of interest are constructed via the creation of stere-
olithography (STL) files, which represent surfaces as tessella-
tions. The shadow effect, where cast rays are obstructed by
non-participatory surfaces, is handled via the Moller-Trumbore
(MT) ray-triangle intersection algorithm. To ensure generality
and robustness, a self-intersection algorithm is implemented for
both planar and non-planar surfaces via the MT algorithm with
back-face culling enabled. Validation of the algorithm was per-
formed for a variety of three-dimensional geometries. The pro-
posed multi-GPU framework was benchmarked to a conventional
computer processing unit (CPU)-based version of the code and
exhibited substantial decreases in computational time. Results
indicate that near-linear speed-up is achievable with increasing
numbers of GPUs. Additionally, a converging solution is ob-
tained with increasing tessellation and GPU count, indicating no
perceivable discrepancy in solutions in comparison to CPU and
single-GPU based solutions.

INTRODUCTION

Ray tracing (RT) refers to the trajectory tracking of a path,
as initiated by an emitter, and is an indispensable numerical tool
in fields as disparate as animation and aerospace engineering.
Recently, RT methodologies have attracted the interests of re-
searchers and engineers as a means to calculate the radiation
view factor (Fj;). The radiation view factor is a geometrical
parameter that describes the proportion of radiation exchanged
between two bodies. It is an important parameter when quanti-
fying the radiative heat transfer rate, and many works exist that
have attempted to calculate it in a tractable manner. For exam-

NOMENCLATURE
A [mz] Surface area or Point
Fj o [-] Radiation view factor
H [mm] Height
K [-] Number of GPUs
W [-] Unit normal vector
o [W] Radiation heat transfer rate
7%‘ [-] Radiative ray vector
t [mm] Thickness
T [K] Temperature
w [mm] Width

Special characters
€ [-] Emissivity
G 5.670x1073 [Wm 2K %] Stefan-Boltzmann constant
0 [degrees] Polar angle
¢ Packing density

Subscripts
i Emitting surface
int Interconnector
Jj Receiving surface

Acronyms

CPU Computer processing unit

GPU Graphics processing unit

MT Moller-Trumbore

RT Ray-tracing

STL Stereolithography

TEG Thermoelectric generator
ple, Walker et al. [1] presented a Monte Carlo governed ray-
tracing method to estimate F;; within an operational fiber draw-
ing furnace. Yet, it was noted that large computational runtimes
hampered its feasibility as an analysis tool. Likewise, Vilchez
et al. [2] constructed an RT algorithm to calculate F;; between
a target and a spherical fireball with an obstructive surface in-
between. While decent results were reported, this work was not
robust enough to encompass other analytical cases.

Other uses of RT for calculating F;; are seen in the environ-
mental engineering sector. Wang et al. [3] developed a Monte
Carlo RT procedure to determine F;; and analyzed the transmit-
tance of radiative thermal energy in urban environments, namely
the interaction between trees and ambient buildings. S6nmez et
al. [4] proposed a hybrid RT-Fibonacci lattice technique to esti-
mate the sky view factor (SVF) via LiDAR data in a simulated

Page 1724 of 2339

15th INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

TU Delft campus. While fast results were achieved in this robust
method, the authors note an average error of 3.82%, which may
be too large in some circumstances. As demonstrated, there is an
intrinsic tradeoff between computational runtime and numerical
accuracy when utilizing RT to calculate the view factor. How-
ever, for RT methods to feasibly determine F;;, both runtime and
accuracy tradeoffs needs to be rectified.

All methods herein mentioned have been executed on the
computer processing unit (CPU), but the current rise of the
graphics processing unit (GPU) in scientific computing has
shown promise in providing substantially better runtimes in cer-
tain problems, such as RT. Given the state of current RT and F;;
methodologies, it is clear that a fast, robust, and accurate numeri-
cal methodology is needed. In this paper, the work of Hancock et
al. [5] was extended to capitalize on the embarrassingly parallel
view factor problem and implement the method across multiple
GPUs to achieve further runtime gains. The method proposed
herein considers two analytical test cases — aligned parallel rect-
angles, and concentric spheres — to validate the method. Then,
an analysis of the radiative heat transfer within a single-junction
thermoelectric generator is presented to investigate the runtime
improvements when sub-dividing the problem across two GPUs
(in contrast to executing a single device).

BASIC PROBLEM SETUP

The radiation view factor is a geometrical parameter that rep-
resents the proportion of radiation exchanged between two sur-
faces, A; and A, and is related to the radiation heat transfer rate,
Q;, between the two participating surfaces by

Qi = ecAF (T} — T}) (1

where € represents the emitting surface’s emissivity, G represents
the Stefan-Boltzmann constant, and T represents the temperature
of the emitting and receiving surfaces, respectively. F;; is calcu-
lated as

/ / cos(6;)cos(0;)dA dA, @
SR S o

where the numeric resolution of F;; between two participating
surfaces is accomplished through discretizing the total area of
both surfaces into N; and N; triangular differential areas. The

radiative ray vector, ﬁ, J, 1 cast from the centroid of an emit-
ting tessellation, dA;, to the centroid of the receiving tessellation,
dA, and its magnitude is calculated by the Euclidean norm of the
difference in centroidal coordinates. The polar angles, 6; and 6,
between the tessellations’ unit normal vectors, 7 and 7 are
calculated as

—

R
0;; =cos ! (%) 3)
1775 lI[|R:j |

Figure 1. Depiction of the relevant variables within the calcu-
lation of F;; between two parallel plates.

To depict the problem, Figure 1 shows the relevant variables
used to calculate F;; between two aligned parallel rectangles. In
this work, the geometrical parameterization was accomplished
via converting the models obtained from a modified mesh gen-
erator [6] into stereolithography (STL) files. In this manner, the
necessary geometrical properties, such as edge lengths and cen-
troidal locations, are easily determined through simple arithmetic
operations. Additionally, STL files are readily exportable from
most computer aided design software, making this methodology
robust to a variety of use cases.

By discretizing the domain, the continuous formulation of
Equation 2 is now computed as a summation across the discrete
domain by accounting for each differential view factor, dF;;, by

Ni cos(8;)cos(; Ni N
E‘jZXiZZ—(%#dAidAJ——lZZdEJ

im1j=1 m|Rj|? =1

RAY-TRIANGLE INTERSECTION

In the event that there exists an obstructive geometry in-
between the two surfaces undergoing radiative transfer, it be-
comes necessary to determine whether the cast ray is blocked be-
fore reaching its target; this phenomenon, known as the shadow
effect, is an important facet to resolve when calculating F;; be-
tween two bodies. Otherwise, said view factor will portray a
value larger than its actual. An example of the shadow effect
is demonstrated in the thermoelectric generator (TEG) model of
Figure 4, as depicted by the dashed portion of the cast ray which
intersects with the non-participatory inner geometry of the TEG.
To rectify the shadow effect in a felicitous manner with the previ-
ously described problem setup, the renowned Moller—Trumbore
(MT) ray-triangle intersection algorithm was utilized. The MT
algorithm is an efficient intersection algorithm that alleviates the
precomputation of the plane equation intrinsic of similar meth-
ods [8].

In this methodology, all the tessellations of obstructive sur-
faces in a given problem are labeled in separate STL files from
the emitting and receiving surfaces. Then, during the RT pro-
cedure, every cast ray is computed against every triangle within
the blocking geometry. If no intersection is detected, the emitted

Page 1725 of 2339

15th INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

ray reaches its receiver tessellation; otherwise, an intersection
exists. In practical terms, if a cast ray is intercepted by a non-
participatory surface, the ray will not contribute to the overall
view factor calculation of Equation 4.

However, in some non-convex surfaces, it is possible for the
emitted ray of one differential area to “self-intersect” with a dif-
ferent region of the emitter’s body; an example of such a situ-
ation is apparent in Figure 3 where a ray could be intercepted
by the opposing side of the inner sphere before reaching its tar-
get. Therefore, a more rigorous treatment of “blocking” surfaces
within this RT procedure is required. The approach taken in
this work was to consider all differential areas in the emitter not
currently participating in the RT procedure and logically con-
sider them as obstructive. This way, any “self-intersecting” ge-
ometries will be considered and the correct F;; will be returned.
Furthermore, to decrease computation time and increase fidelity
when considering participation between curved surfaces, back-
face culling was implemented such that erroneous intersections
could be minimized [5].

GPU-ACCELERATED COMPUTING

GPUs are processing units that consist of hundreds of cores,
which can operate thousands of threads, to parallelize com-
putation and drastically improve computational performance.
With their unique architecture, GPUs are best suited for high-
throughput applications, making them attractive solutions for al-
gebraically intensive procedures such as RT. In this procedure,
both F;; and the MT algorithm are independently performed on
each element in the computational domain, i.e., each calculation
does not depend on the state of its neighboring elements. This
embarrassing parallel scheme is ideal for GPU-acceleration and
is a solution to alleviate the cumbersome runtimes intrinsic of
traditionally calculating the view factor.

In practice, a suite of Java classes were created to provide the
numerical framework for analyzing different geometrical setups
and harnessing GPU-acceleration for calculating F;;. Aparapi,
the open-source API used for converting the Java byte code to a
GPU kernel during runtime, was heavily utilized [9]. However, it
is noted that since not all programmatical operations were avail-
able for calling on the GPU, problem logistics, such as STL file
reading and geometry precomputation, were completed on the
CPU to alleviate any parallel execution errors. The flowchart
represented in Figure 2 demonstrates the execution order of this
view factor methodology and the sections of the program com-
puted on different hardware are shaded light gray.

Previously, Hancock et al. [5] utilized a single GPU to calcu-
late the view factor in a variety of setups, but the authors noted
that even with GPU-accelerated programming, some large com-
putational domains or complex surfaces remained infeasible to
calculate. Therefore, this work aims to address some of the limi-
tations in the previous study by extending the numerical method-
ology to work across multiple devices. In this manner, it was hy-
pothesized that runtimes could be decreased by simultaneously
utilizing multiple GPUs. The general framework involves creat-
ing different sets of kernels at runtime, which operate on specific

Read Geometry Files

Partition Geometry

Intersection
Detected?

Figure 2. Flow chart for computational algorithm.

locations of the surface under consideration. In order to preserve
Equation 4, the problem was subdivided such that the emitting
surface was broken up into equal components corresponding to
the number of GPUs available, denoted as K in Figure 2. There-
fore, each GPU receives 1/K as many emitting tessellations, and
each casts a proportionally fewer number of rays during the RT
procedure.

RESULTS AND DISCUSSION

Within the following section, two separate validation cases
are presented where the numerically calculated F;; values ob-
tained on a single, and on dual-GPUs, are compared to analytic
solutions for varying tessellation count (represented as number
of rays cast). Thereafter, the algorithm is demonstrated on a
single-junction thermoelectric generator. The algorithm was im-
plemented in IntelliJ] IDEA, a Java IDE, and was executed on an
Intel i7-8700K CPU with dual Nvidia GTX 1080Ti GPUs.

Validation: Aligned Parallel Rectangles

To validate the proposed F;; formulation, the program was
subjected to various geometrical problems with analytical solu-
tions from [7]. The canonical example of aligned parallel rect-
angles was firstly considered. The geometrical setup for this test
case is depicted in Figure 1 where X /L and Y /L equated to unity.
To verify the subdivision of the RT procedure across multiple
GPUs, an absolute difference of the view factor between single-
and double-GPU executions are presented in Table 1. As seen,
the differences are on the order of double-precision, and for an
increasing number of cast rays, the calculated view factor began
converging to the analytical solution.

Validation: Concentric Spheres

The final validation case presented in this work is the case of
concentric spheres [10]. This geometrical setup, as seen in Fig-
ure 3, was chosen since the numerical resolution of F;; requires
use of the MT algorithm, back-face culling, and consideration of
possible self-intersection.

The analytic solution yields a value of unity for F;; via the
summation rule, and the numerically determined values for
varying tessellation count are reported in Table 2. As before,

Page 1726 of 2339

15th INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

Table 1. F;; values for aligned parallel rectangles with X /L=1
and Y/L=1 with increasing mesh density. Absolute differ-
ences are between single- and multi-GPU implementations. Per-
cent error is between multi-GPU and analytical solutions (F;; =
0.199824895698387).

Rays Cast | F;; (1 GPU) | F;; (2GPUs) | Abs. Diff | Error [%]
6.87e+10 | 0.199825202 | 0.199825202 | 2.00E-15 1.53e-4
2.75e+11 | 0.199825049 | 0.199825049 | 2.00e-15 7.67e-5
1.10e+12 | 0.199824972 | 0.199824972 | 6.00e-15 3.83e-5
4.40e+12 | 0.199824934 | 0.199824934 | 7.99e-15 1.92e-5
1.76e+13 | 0.199824915 | 0.199824915 | 3.40e-14 9.58e-6

Figure 3. STLs representing concentric spheres with the inner
sphere having a radius r; and the outer sphere has a radius r;.

an absolute difference of the view factor between single- and
dual-GPU executions are presented to showcase this solution
algorithm’s consistency. Likewise, monotonic convergence of
the numerical view factor to the analytical was observed. This
further indicates robustness of the MT ray-triangle intersection
algorithm and back-face culling methods when applied to curved
surfaces.

Table 2. F;; values of concentric spheres for | /r,=0.5 with in-
creasing mesh density. Absolute differences are between single-
and multi-GPU implementations. Percent error is between the
multi-GPU’s output and the analytical solution (F;;=1).

Rays Cast | F;; (1 GPU) | F;; (2GPUs) | Abs. Diff | Error [%]
2.00e+7 | 1.001156764 | 1.001156764 0 1.16e-1
1.37e+8 | 1.000421924 | 1.000421924 0 4.22e-2
4.19e+9 | 1.000069948 | 1.000069948 0 6.99¢-3
7.40e+9 | 1.000063232 | 1.000063232 | 2.02e-14 6.32e-3

Test: Single-Junction Thermoelectric Generator

Once the proposed methodology was validated across mul-
tiple GPUs, an analysis into decreases in computation time for
ascertaining the view factor across thermoelectric generators
(TEGs) was conducted. TEGs are steady-state power-generation
devices that develop a voltage potential as a result of an applied
temperature gradient across a unicouple. The most basic unicou-
ple is comprised of two semiconductor legs connected by metal-
lic interconnectors, as shown in Figure 4. Analysis of the ra-
diative transfer across the TEG’s hot- and cold-sides is impera-
tive in determining device performance [11; 12; 13]. Parasitic
heat losses, such as radiative heat transfer between the hot- and
cold-sides diminish the temperature difference across the device,
reducing the device’s power output and thermal conversion effi-
ciency. Determining F;; values is not a trivial matter due to the
inclusion of blocking geometry (thermoelectric element legs and
interconnectors) within the device, as shown in Figure 4 where
a leg is blocking a ray cast from A; to A}, as denoted by the red

[T

X

)
)\
N

o
X

N
W

N
v
p

N
N
VY
‘V
VQ(

WY
N

)

il
XV

N

N)

%

\/
yow
Ty

A
o

0
W
UV

tintii
\ Z
N

Figure 4. Schematic of a unit-cell TEG used within the RT
algorithm. Geometrical parameters are as follows: H/W=4,
tim=0.25, 0=0.9

TRENDS AND RESULTS

Table 3 shows the average calculated F;; values for CPU, sin-
gle and dual-GPU execution on the unicouple TEG geometry.
It is noted the reported computation times for the CPU, single
and dual-GPU execution were repeatable, and the calculated F;;
values had on average an absolute difference of le-19, indicat-
ing no loss of fidelity when executed on single and dual-GPUs
in comparison to values obtained via CPU-only execution. It is
seen that the calculated F;; values are monotonically converging
toward the numeric solution of 5.754540651e-4 taken at 677,544

Page 1727 of 2339

15th INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

average tessellations per surface [5].

Table 3. F;; values of unicopule TEG for various average tes-
sellation counts.

Time [s]
Avg. Tess. Fj CPU | 1GPU | 2GPU
2,527 5.759450587e-4 | 5.505 | 0.955 1.350
11,015 5.751577438e-4 | 16.13 | 2.764 1.881
71,586 5.754201918e-4 | 113.5 | 62.69 | 33.25
165,291 5.754852079%e-4 | 472.8 | 274.7 151.8
491,186 | 5.7545765976e-4 | 4,160 | 2,387 1,372

The average runtime improvements of utilizing single and
dual-GPU execution, in comparison to CPU-only execution, are
a function of tessellation count. For single and dual-GPU execu-
tion, as the tessellation count increases, the CPU-computation
time far exceeds the GPU-computation times, which is com-
prised of pre-computations, such as STL file reading, geomet-
ric computations, and data transfer. After a cut-in tessellation
count, consistent decrements in runtimes are achievable when
utilizing single and dual-GPU execution in comparison to CPU-
only execution. Thus, considering the last three average tessella-
tion counts within the series, the use of a single GPU allowed for
an average attainable decrease in runtime of 1.76-times, while
through the use of dual-GPUs, an average decrease in runtime of
3.19-times was achieved. These average speed-up values are less
than those reported in [5], albeit different hardware was utilized
in this study, as will be further elaborated upon in the following.

Figure 5 depicts the ratio of runtimes for single per dual-GPU
cases for varying tessellation counts within the aforementioned
unicouple TEG model. A runtime ratio greater than unity in-
dicates that improved runtimes are achievable with the use the
multiple GPUs, in comparison to executing the algorithm on a
single GPU, as indicated by the green shaded region in Figure 5.
When the average emitting and receiving tessellation count ex-
ceeds 2,527 per surface, the runtime ratio exceeds unity. With
increasing tessellation count, the ratio in runtimes monotonically
increases and approaches a maximal value of 1.89. When 71,586
tessellations were used to represent the emitting and receiving
surfaces each, the runtime of the dual-GPU execution was near-
ing one-half the single-GPU execution, and near-linear runtime
improvements were achieved. However, increasing surface fi-
delity by introducing further tessellations resulted in a monotonic
decrement of the runtime ratio. This behavior can possibly be ex-
plained by the data transfers between the CPU and GPU during
runtime.

As per the decrement in runtime improvements, as depicted
in the flow chart of the computational algorithm in Figure 2, the
differential view factor for every emitting tessellation is retrieved
and stored for each receiving tessellation. Thus, as the program
iterates through each receiver area in the domain, an array trans-
fer of size proportional to the average number of tessellations is

2.2

2.0 1

1.8 1

Ratio
~
1

10 10* 10° 10
Average Number of Tessellations

Figure 5. Single per dual-GPU execution runtimes vs. average
tessellation count for select cases.

executed from the GPU back to the CPU. Data transfer across de-
vices are expensive operations, and their effect is demonstrated
when comparing runtimes between multiple GPU tests. In the
single GPU execution, each GPU kernel executes sequentially,
with the data transfer occurring sequentially as well. In the dou-
ble GPU execution, two GPU kernels execute in parallel of the
same size as the single GPU execution. However, in this sce-
nario, the CPU must simultaneously compute and transfer data
twice as large. In smaller tessellation scenarios, this transfer
is tractable, and large runtime gains are seen once the compu-
tation time greatly exceeds pre-computation and data transfer
times (see runtime ratio of approximately 0.7 for an average tes-
sellation count of 2,527). However, as the problem size grows,
i.e. the tessellation count increases, the CPU’s processing ca-
pabilities are insufficient and a data bottleneck occurs. This re-
sults in slow-downs and a lessened GPU execution as the devices
await new instructions from the CPU. Therefore, while runtime
improvements were observed through the implementation of a
multi-GPU method for sub-million tessellation scenarios, a con-
sistent run-time improvement was not seen over a range of aver-
age tessellation counts. Rather, after reaching maximal run-time
improvement, said improvements degrade as the problem size
grew, which is plausibly related to the performance of the com-
puter’s CPU.

It is also noted, as shown in Figure 5 but not reported in Ta-
ble 3, that a situation arose where near-linear speed-up was seen,
i.e. dual-GPU execution was almost one-half of the single-GPU
execution. This is shown as the maximal data point with dashed
lines between preceding and proceeding points. Based on the
summation conventions used within Equation 4, the computa-
tion time should be quadratic with respect to the average num-
ber of tessellations representing the emitting and receiving sur-
faces. This trend is evident, although to a lesser value in the
exponent, with the computation times for all cases, except the
situation where the average number of tessellations was equal to

Page 1728 of 2339

15th INTERNATIONAL CONFERENCE ON HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

28,361, which is the situation where near linear speed-up was
seen. In this situation, the computation time repeatedly, but with
consistency, exceeded the proceeding case, indicating this data
point was an outlier. A possible explanation for this behavior is
the ordering of edges of the STLs used within the blocking ge-
ometry for the MT algorithm. For every ray cast, said ray has to
be compared against every STL representing blocking surfaces.
If ray-triangle intersection occurs early in the algorithm, e.g. one
of the first logical checks for intersection fails, minimal time is
spent within the MT algorithm. If, however, the ray-triangle in-
tersection occurs near the end of the STL blocking geometry list,
a maximal amount of time is spent within the MT algorithm per-
formance. Thus, ordering of the STLs representing the blocking
and emitting geometries play a role in the algorithm’s perfor-
mance.

It is seen herein that a robust computational algorithm was
developed and implemented to resolve radiation view factors
quickly, and more importantly, accurately. Although near-linear
speed-up was demonstrated only for limited test cases, it remains
plausible in possible future work to achieve consistent, near lin-
ear speed-up. Specific run-time improvements for various ge-
ometries is not only contingent on the number of tessellations
used within the emitting and receiving surfaces, but also on the
hardware, namely the CPUs and GPUs used to execute the al-
gorithm. Thus, performance benchmarking should be rigorously
pursued on a variety of hardware configurations. It is hypoth-
esized that in a situation where the CPU throughput is suffi-
cient, linear speed-up could be achievable over a range of av-
erage tessellation values. Furthermore, runtime benchmarking
should be pursued such that reported values are based on a set
of averages, with the uncertainty reported to some confidence in-
terval. Additionally, methods to optimize the determination of
ray-triangle intersections, such as adaptive re-ordering of block-
ing STLs based on a real-time heuristic, projection methods, or
data-driven modeling, could further reduce runtimes.

CONCLUSION

A multiple-graphics processing unit (GPU) ray-tracing algo-
rithm was developed to determine radiation view factors F;; for
complex, three-dimensional geometries. The robust numerical
framework handled emitting and participating surfaces as stere-
olithography (STL) files and considered the shadow effect via
the incorporation of the Moller-Trumbore (MT) ray-triangle in-
tersection algorithm. The multi-GPU ray tracing algorithm was
validated on two canonical geometries, aligned parallel plates
and concentric spheres, and was shown to yield results converg-
ing to analytic with increasing tessellation count. Additionally,
the absolute difference in numeric solutions between single and
multi-GPU executions were on the order of le-14 to le-15, in-
dicating no loss of accuracy. Quantification of attainable run-
time decrements were demonstrated on a unicouple thermoelec-
tric generator (TEG). It was found that runtime improvement ra-
tios for single per dual-GPU executions were often greater than
unity for the range of average tessellation cases studied. Runtime

improvements were attainable once a sufficient number of aver-
age tessellations were used, and said improvements increased to
a maximum ratio of 1.89, indicating near-linear speed-up, with
the possibility of linear speed-up being achievable. After max-
imal speed-up was achieved, run-time improvements decreased
with increasing tessellation count. There is much future work
to be conducted, such as reducing data bottle-necking and dy-
namic STL ordering to minimize the runtime while resolving the
shadow effect.

ACKNOWLEDGMENT

The authors would like to thank the Center for Research
Computing at the University of Pittsburgh for providing compu-
tational resources.

REFERENCES

[1] T. Walker, S.-C. Xue, and G. Barton. Numerical determination of
radiative view factors using ray tracing. Journal of Heat Transfer
2010; 132(7).

[2] J. A. Vilchez, M. Mufioz, J. M. Bonilla, and E. Planas. Configura-
tion factors for ground level fireballs with shadowing. Journal of
Loss Prevention in the Process Industries 2018; 51: 169-177.

[3] C. Wang, Z.-H. Wang, Y.-H. Ryu, A single-layer urban canopy
model with transmissive radiation exchange between trees and
street canyons, Building and Environment, Vol. 191, 2001, pp.
107593.

[4] E FE Sonmez, H. Ziar, O. Isabella, and M. Zeman. Fast and accu-
rate ray-casting-based view factor estimation method for complex
geometries. Solar Energy Materials and Solar Cells 2019; 200:
109934.

[5] A.J. Hancock, L. B. Fulton, J. Ying, C. E. Clifford, S. Sammak
and M. M. Barry, A GPU-Accelerated Ray-Tracing Method for
Determining Radiation View Factors in Multi-Junction Thermo-
electric Generators, Energy, 2021.

[6] P-O. Persson and G. Strang. A simple mesh generator in MAT-
LAB. SIAM Review 2004; 46(2): 329-345.

[7] T. L. Bergman, F. P. Incropera, D. P. DeWitt and A. S. Lavine,
Fundamentals of heat and mass transfer, 2011, John Wiley &
Sons.

[8] T.Moller and B. Trumbore. Fast, minimum storage ray-triangle
inter-section. Journal of Graphics Tools 1997; 2(1): 21-28.

[9] Aparapi Team. Official AMD Aparapi Repository. https://
github.com/aparapi/aparapi, 2021.

[10] J.R.Howell, M. P. Menguc and R. Siegel, Thermal radiation heat
transfer, 2010, CRC press.

[11] E. Meng, L. Chen and F. Sun, A numerical model and com-
parative investigation of a thermoelectric generator with multi-
irreversibilities, Energy 2011, 36(5): 3513-3522.

[12] M. M. Barry, K. Agbim, P. Rao, C. E. Clifford, B.V.K. Reddy
and M. K. Chyu, Geometric optimization of thermoelectric ele-
ments for maximum efficiency and power output, Energy 2016,
112: 388-407.

[13] M. M. Barry, J. Ying, M. J. Durka, C. E. Clifford, B.V.K. Reddy
and M. K. Chyu, Numerical solution of radiation view factors
within a thermoelectric device, Energy 2016, 102: 427-435

Page 1729 of 2339

