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Control of robotic swarms through control over a leader(s) has become the dominant approach to 
supervisory control over these largely autonomous systems.  Resilience in the face of attrition is one of the 
primary advantages attributed to swarms yet the presence of leader(s) makes them vulnerable to 
decapitation.  Algorithms which allow a swarm to hide its leader are a promising solution.  We present a 
novel approach in which neural networks, NNs, trained in a graph neural network, GNN, replace 
conventional controllers making them more amenable to training.  Swarms and an adversary intent of 
finding the leader were trained and tested in 4 phases: 1-swarm to follow leader, 2-adversary to recognize 
leader, 3-swarm to hide leader from adversary, and 4-swarm and adversary compete to hide and recognize 
the leader.  While the NN adversary was more successful in identifying leaders without deception, humans 
did better in conditions in which the swarm was trained to hide its leader from the NN adversary.  The 
study illustrates difficulties likely to emerge in arms races between machine learners and the potential role 
humans may play in moderating them. 
 
 

INTRODUCTION 
As full scale deployment of robotic swarms for military 

missions as varied as logistics, surveillance, or combat nears, 
it is becoming increasingly important to devise ways to protect 
our own swarms and disrupt or destroy those of our 
adversaries.  Key advantages of military swarms lie in 
minimizing readily detectable long distance communication 
and resilience to attrition and decapitation.  
Swarms  

Coordination among swarm members typically depends 
on some form of consensus algorithm by which swarm 
members exchange values, whether by observation or 
communication, and adjust their own parameters to reflect the 
local consensus.  In flocking (Reynolds, 1987), for example, 
swarm members move away from others in close proximity, 
toward those at greater distances, and align their heading and 
velocity with those at a middle distance.  This results in an 
emergent flocking behavior similar to that of birds or 
schooling fish (Couzin, et al., 2002) in which members move 
as a group albeit with continuing individual adjustments.  
Other emergent behaviors such as rendezvous (members 
converge on consensus location) or dispersion (members move 
away from one another producing an expanding perimeter) 
can be obtained by adjusting the attractive and repulsive 
forces. 

The challenge to supervising/influencing such an 
autonomously coordinating swarm lies in biasing the 
consensus being computed locally across the swarm.  Directly 
influencing all members by a mechanism such as broadcasting 
leads to more rapid convergence (Amraii et al., 2014) but at 
the cost of weakening consensus and potentially isolating 
members from the swarm.  Influencing the swarm through 
leaders who contribute operator-biased parameter values to 
their neighbors provides a consensus preserving path of 
control that additionally benefits from a direct correspondence 
between input (heading and velocity in the case of flocking) 

and desired effect on the swarm.  Herding (Long et al. 2020) 
offers a bio-inspired alternative to leaders based on sheep dog 
behavior and repulsion.  In herding, however, the operator 
cannot conveniently influence the entire swarm and in 
particular, for multiple controlled herders, must account for 
complex interactions to accomplish a desired effect.  In the 
third leading contender, potential fields, artificial potentials 
associated with fixed locations (Kolling et al., 2013) or virtual 
leaders (Kira & Potter, 2009), are used to attract/repel nearby 
swarm members thereby influencing consensus although again 
subject to complex interactions.  Controlling a swarm through 
control of a leader(s) has, so far, been the most widely adopted 
strategy.  Control via one or a small number of leaders has the 
advantage of limiting long distance communication while 
allowing the leaders to propagate commands within the swarm 
and synthesize information from the swarm to return to the 
commander while maintaining consensus and direct 
correspondence between inputs and desired outputs. 
 
Leader Hiding 

Resilience is one of the primary advantages of robotic 
swarms.  While a multi-robot system (MRS) relying on 
hierarchical plans, repairs, etc. can execute far more complex 
plans, these plans may be brittle and disrupted by the loss of 
key players or capabilities.  A swarm by contrast is fully 
robust to loss of robots as the remaining members continue to 
compute and follow their consensus.  This crucial advantage, 
however, is jeopardized when control via leaders is 
introduced.  The swarm is now subject to decapitation and, if 
leaders can be identified, may be even more vulnerable than a 
conventional MRS.  While solutions such as dynamically 
designated leaders (Walker et al., 2014) have been proposed, 
redesigning swarm behavior to hide leader(s) may be the more 
straightforward answer. 

  To understand how hiding leader identity might be 
possible it is important to consider what is meant by a leader 
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in the context of swarm supervision.  The relation between the 
leader and other members of the swarm is informational.  
Swarm algorithms are agnostic as to whether parameter values 
are exchanged through communication or sensed as 
observations. Leader identification within a flock is difficult 
because the consensus algorithm controlling other members, 
camouflages the small deviations introduced by the leader(s).  
Larger deviations are infeasible because they would lead to 
loss of connectivity and dissolution of the swarm.  The leader 
identification problem, therefore, becomes one of identifying 
the individual(s) that by some small amount, influence their 
fellows to a greater extent than their fellows influence them. 
An observer finds a leader by searching for a swarm member 
whose behavior cannot be completely explained by an 
estimate of its prior state and the values and changes among its 
neighbors.  As this suggests, the leader identification decision 
is difficult and for a human would depend on complex 
judgments based on factors such as the Gestalt principle of 
Common Fate (Sturzel & Spillman, 2004). 

Zheng et al. (2020) published the first evaluation of a 
leader hiding algorithm. They started with a swarm following 
the simple Reynolds (1987) flocking algorithm described 
above in which a leader led the swarm through a sequence of 
waypoints.  Zheng et al. (2020) developed what they called 
privacy preserving flocking using an alternating optimization 
procedure with genetic algorithms in which controller 
parameters were optimized for preserving privacy during 
flocking optimization, while leader identification accuracy 
was optimized in the following discrimination learning phase. 
While the discriminator, termed the adversary, grew 
increasingly more powerful over the course of their 
experiment the privacy preserving flocking algorithm also 
improved and was particularly effective in preserving privacy 
from the discriminator over curvilinear paths. 

In this paper we describe the development of private 
flocking using multi-agent reinforcement learning (MARL) in 
an adversarial framework similar to that of Zheng et al. 
(2020).  Flocking swarm members and their adversary were 
trained in phases: first the swarm to follow the leader to the 
goal, then the adversary to identify that leader, and finally the 
swarm to hide its leader from a learning adversary.  Human 
participants were then tested under the same conditions as the 
adversary to assess their relative performance in detecting the 
identity of hidden leaders. 

METHODS 
Adversarial Training 

Adversarial training pitting two optimizers against one 
another as Zheng et al. (2020) is a standard training method. In 
the case of a literal adversary such as a military opponent 
attempting to ward off an attacking swarm, however, the 
symmetry in training is broken.  Those developing the swarm 
are motivated to train it to avoid leader detection while 
withholding training trajectories from the adversary.  The 
adversary on the other hand is motivated to obtain updated 
trajectories in order to counter these hiding techniques.  In the 
resulting arms race the leader hiding swarm and the adversary 
attempting to identify its leader are actual adversaries.  This 
competitive process between state actors can be simulated by 
conventional adversarial training which is conducted in phases 

such that the adversarial discriminator does not have access to 
the swarm’s training trajectories prior to the onset of hostilities 
but subsequently can train in tandem from observations to 
improve leader identification.  The correspondence between 
adversarial training and the expected course of development of 
leader hiding and refinement of detection countermeasures is 
used in this study to explore potential hazards of weapon 
systems controlled by learning algorithms and potential roles 
for human supervisors in this increasingly automated process. 
 
Multi-agent Reinforcement Learning (MARL) 

While conventional swarms employ controllers using 
local control laws, in this study we replace controllers with 
neural networks performing the same function in order to 
provide a framework more conducive to learning to hide the 
leader. This formulation is task agnostic, allows for additional 
consideration of adversarial component, and eliminates the 
requirement of hand-crafted swarm controllers, tuning of 
parameters, or expert knowledge for any given primary 
objective of the multi-agent system. MARL algorithms that 
use centralized training with decentralized execution are used 
for our problem as it is reasonable to remove computational 
and communication restrictions at training time and these 
algorithms still let all the agents act independently at test time 
(Lowe et al., 2017, Rashid et al., 2020). We use Graph Neural 
Networks (GNNs) to model the multi-agent architecture with 
agents modeled as nodes in a graph and inter-agent 
interactions modeled by the graph edges (Deka & Sycara, 
2020).  We extend the GNN framework to incorporate the 
leader-follower constraints of our problem. Our privacy-aware 
MARL framework follows the paradigm of centralized 
training with decentralized execution.  This means that each 
agent maintains a separate copy of their respective parameters 
at test time so that it can perform its computations 
independently.  The number of learn-able parameters in both 
the swarm and the adversary are independent of the number of 
agents or the time duration. As a result, these models are 
adaptable both temporally and in the number of agents. These 
are appealing properties for real world applications, e.g., 
depending on the task at hand we might wish to use fewer or 
more agents for the mission or some of the robot agents might 
get damaged during the mission. Swarm and adversary were 
trained using a multi-stage training process incorporating on-
policy model-free reinforcement learning and supervised 
learning to train the swarm and the adversary respectively.   
Training Phases 
Swarms and Adversaries were trained and tested in a four 
phase sequence shown in table 1. 
Phase 1: In the first phase swarms were trained in their novel 
MARL architecture to successfully follow a leader to a goal.  
Without conventional controllers, swarm members needed to 
learn from scratch relations between one another and their 
leader based on rewards obtained from reaching the goal.  
While the resultant behavior is not an exact replication of 
leader based on rewards obtained from reaching the goal.  
While the resultant behavior is not an exact replication of 
conventional (Reynolds, 1987) flocking, it reflects the 
distinction between a leader with knowledge of goal and 
followers who must base their behavior on observable aspects 



of the leader’s behavior.  The swarm at this phase corresponds 
to one trained for a task but not concealment.  
Phase 2: In the second phase an adversary was trained to 
identify the leader for swarms trained in Phase 1.  Swarm 
behavior was fixed and the adversary allowed to train to  
 
 
1 

Table 1. Training Phases 

    
 
recognize leaders until an asymptote was reached.  The 
adversary at this phase corresponds to a NN trained, in 
isolation from an opponent, to identify a leader for which no 
effort has been made for concealment. 
Phase 3: In the third phase the naïve adversary was fixed and 
the swarm trained to hide its leader until no further 
improvement was obtainable.  The swarm at this phase 
corresponds to a swarm trained in isolation from its opponent 
to conceal its leader, prior to exposure in an observable 
conflict. 
Phase 4: In the fourth phase the swarm and adversary were 
jointly trained in alternating trials to detect and conceal the 
leader.  Performance at this phase reflects an arms race after 
both sides reveal observable data in which concealment and 
detection co-evolve. Because of the sensitivity of NNs to 
hyperparameters we report 3 of the most favorable selections.  

Human participants were later asked to identify leaders 
for the same trajectories judged by the adversaries to provide a 
direct comparison between NN and human leader 
identification performance under adversarial conditions. 
Participants 

We recruited 81 participants from Amazon Mechanical 
Turk (Buhrmester, Kwang & Gosling, 2011) who were paid 1 
USD for participating in a 30-minute online study. Data from 
one participant was lost.  The remaining participants were 
randomly assigned to three groups to view swarm trajectories 
from either Phase 2 (24 participants), 3 (27 participants) , or 4 
(4.1-12, 4.2-8, and 4.3-9 participants). 
Simulation 

Swarm trajectories were visualized in the Multi-Agent 
Particle Environment, MAPE (Lowe et al. 2017), a light 
weight multiagent simulation environment made available 
through OpenAI, a nonprofit organization providing tools and 
environments promoting the development of Artificial 
                                                           
1 We encourage the reader to try to identify the leader through an 
interactive web interface available at http://34.86.108.119/ (requires 
mouse and keyboard, tested on Chrome and Firefox browsers). This 
will not only show how we collected the data but also make the 
submission interactive. 

Intelligence including the widely used OpenAI Gym.  MAPE 
provides a simple simulated physics in a discrete action, 
continuous observation space.  Leader hiding methods 
described in this paper are currently being ported to cuSwarm 
(Walker, 2017), a larger scale parallelized swarm simulator 
developed to support research in human-swarm interaction. 
Experimental Task                                                               
The NN adversaries and human participants observe the 
trajectory of a swarm portrayed as a collection of moving 
circless (figure 1) to the human and a sequence of (x,y) 
locations to the adversary as the simulated robots move from 
locations near the bottom of the screen to a randomly 
positioned goal near the top of the screen.  Trajectory times 
ranged between 10-13 seconds. 

 into Figure 1 Display-goal is darkened circle 

 
Figure 2 Leader correctly identified only for red portion of trajectory 
 

The adversary made continuously revised estimates of the 
probability that each of the robots was the leader.  The first 
four of these estimates were recorded at 2 second intervals 
while the final estimate was recorded at the conclusion of the 
trial.  At any point the robot having the highest probability 
was considered to be the adversary’s choice for leader.  Figure 



2 shows a typical trajectory from Phase 4 in which the 
adversary misidentifies the leader at the start, makes correct 
identifications during the middle (shown in red), then lapses 

back into misidentification near the end of the trajectory.  For 
purposes of analysis we identify the correctness of the 

 

 
Training Phase 

Figure 3.  Percent correct identification, NN Adversary-red, Human Observer-blue 
 

adversary’s identification to be the proportion of the trajectory 
for which it made a correct identification.   

Human participants were instructed to push a button to 
stop the simulation as soon as they were able to identify the 
robot.they believed to be the leader from a menu, rated their 
confidence using a slider, then submitted their selection.  
Performance feedback was provided on the following screen 
from which the participant pressed a button to begin the next 
trial.  

Swarms were fully trained before testing in each of the 
phases.  For Phase 2 they were rewarded only for the 
navigation task in Phase 1.  For Phase 3 they were rewarded 
both for the navigation task (going to the goal) and for hiding 
the leader (deceiving the adversary).  In Phase 4 they were 
again rewarded for joint objectives but required to continue to 
evolve to avoid revealing their leader to an improving 
adversary.  Human participants, after completing 3 practice 
trials, judged 50 trajectories from a single phase that were also 
used for testing the corresponding NN adversary. 

Leader identification for humans was computed as the 
average of the correct identifications within their Phase group 
for comparisons between groups and with the adversary.  
Correlations of correct judgements between humans and the 
NN adversary were based on average value of human 
judgments and that of the adversary for each of the 50 
trajectories. 

RESULTS 
A two-way ANOVA found main effects for correct 

identifications for phases (F4,4249 =36.255, p < .001), between 
human and NN adversaries (F4,4249 =36.255, p < .001) and for 
their interaction ((F4,4249 =11.361, p < .001).  As shown in 

Figure 3 both human and NN adversaries did best in 
identifying leaders in Phase 2 where there was no training in 
concealment, worst in Phase 3 where swarm was trained to 
conceal without allowing training of adversaries, and 
intermediate in Phase 4 where both swarm and adversaries 
were allowed to train. Reported post hoc comparisons all 
employ Scheffѐ adjustment.  All post hoc comparisons 
between phases were significant at the p < .001 level except 
Phase 4.1 which did not differ significantly from phases 3 or 
4.3 which also did not differ significantly from Phase 2. 

 
These differences were reflected in the effects of phase 

on human adversaries (F4,3999 =70.422, p < .001) with post hoc 
comparisons showing differences at the p <.001 level between 
Phase 2 (M=.60), Phase 4.1 (M=.55) and Phase 4.3 (M=.58) 
with phases 3 (M=.33) and 4.2 (M=.31).  The effects of 
adversary type and the interaction between adversary and 
phase reflect a prominent pattern in the results in which the 
NN adversary (M=.86) outperformed humans (M=.598) in 
Phase 2 (F1,1249 =14.187, p < .001) for swarms without 
concealment but underperformed human adversaries in phases 
where concealment was present: Phase 3 (M=.127, M=.330, 
F1,1399 = 9.203, p = .002), Phase 4.1 (M=.21, M=.552, F1,649 = 
23.16, p < .001), Phase 4.2 (M=.157, M=.293, F1,449 = 5.338, p 
= .021), and Phase 4.3 (M=.355, M= .576, F1,499 = 9.694, p = 
.002). 

 
Effects favoring Phase 2 were found for confidence 

judgments (F1,3999 = 28.908, p < .001) with all post hoc 
comparisons other than that between phases 3 and 4.1 
significant at p < .023 or lower levels.  Loss of confidence in 



identification of the adversarially trained leaders of Phase 4 
were 3 (Phase 4.2) to 4 (Phase 4.3) times lower than the loss 
of confidence between Phase 2 and 3.  A minor effect was 
found for latency (F1,3999 = 4.214, p = .002), however, the only 
significant differences between phases were found between 
4.2 with 4.1 and 4.3.  We collected confidence and latency 
data in support of an evidence accumulation model (Evans & 
Wagenmakers, 2019) according to which later decisions 
should have greater confidence and greater accuracy due to the 
accumulation of evidence.  Our data do not support this model 
as we did not find a significant correlation between confidence 
and latency.  There were, however, small correlations between 
confidence (r=.119, p < .001) and latency (r= -.11, p < .001) 
with correct identifications. 

To consider overlap in judgment between human and NN 
adversaries we examined the correlation of correct 
identifications between them on trajectories each had judged, 
finding an overall correlation of r=.253 (p < .001).  The 
correlations within phases, however, tell a different story.  In 
Phase 2 (r=.419, p = .002) and Phase 3 (r=.444, p=.001) where 
the NN adversary was not allowed to learn, the correlation 
between NN and humans was relatively high.  In the three 
instances from Phase 4 where the adversary learned in tandem 
with the swarm the correlations were either nominally 
negative Phase 4.2 (r= -.091), Phase 4.3 (r= -.018) or 
significantly so Phase 4.1 (r= -.355, p= .011). 

DISCUSSION 
NNs are commonly perceived to be substantially more 

accurate than humans at difficult classification tasks such as 
our leader identification task.  This is borne out by results for 
Phase 2 where there is no attempt at concealment.  In the 
phases where concealment was employed, however, human 
observers delivered consistently superior performance.  This 
should come as no surprise in that the adversarially trained 
swarm was explicitly trained to deceive the NN adversary and 
not a human observer.  Vulnerability of NNs to adversarial 
noise, edge cases which are misclassified by the NN while 
readily apparent to a human, is an active research area in 
machine learning.  A canonical problem from driverless car 
research involves the unrecognized stop sign in which small 
adversarial changes in appearance, usually determined from 
the NN’s loss function, can be shown to disrupt recognition.  
A recent study by Evtimov et al. (2019) takes this 
phenomenon out of the lab by demonstrating that slight 
strategic alterations such as placing small advertising stickers 
on a physical stop sign can replicate this effect for real stimuli.  
Anomalies in learning such as biased training in which a 
classifier learns to distinguish wolves from huskies based on 
snow in the background (Ribeiro, Singh & Guestrin, 2016) are 
another common problem. 

As critical functions in medicine, finance, and security 
come to rely on NN technologies it is especially important to 
understand and resolve such errors.  For functions such as 
cyber security or military defense in which there is an 
inherently adversarial relationship, the problem is 
compounded because both parties have incentives to continue 
to learn in order to gain the upper hand.  The machine learning 
arms race modeled in Phase 4 of our study provides a glimpse 
of what is likely to come.  Some form of human-NN 

cooperation appears inevitable in attempting to meet this 
challenge.  In phases 2 and 3 where learning was halted 
humans and the NN adversary made highly correlated 
judgments suggesting reliance on similar features.  In 
adversarial Phase 4, by contrast, this correlation vanishes 
suggesting that when NNs were pitted against one another, 
humans and NN came to identify leaders in qualitatively 
different ways.   Finding methods to exploit this divergence to 
produce synthesized classifications more accurate than either 
individually is a promising research approach. 
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