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The ability to make inferences about other’s mental state is referred to as having a Theory of Mind (ToM).
Such ability is the foundation of many human social interactions such as empathy, teamwork, and commu-
nication. As intelligent agents being involved in diverse human-agent teams, they are also expected to be
socially intelligent to become effective teammates. To provide a feasible baseline for future social intelligent
agents, this paper presents a experimental study on the process of human ToM reference. Human observers’
inferences are compared with participants’ verbally reported mental state in a simulated search and rescue
task. Results show that ToM inference is a challenging task even for experienced human observers.

INTRODUCTION

The Sally–Anne test is a psychological test, used in devel-
opmental psychology to measure a person’s social cognitive de-
velopment. 3-4 year old (Wimmer & Perner, 1983) and autistic
children of all ages (Baron-Cohen, Leslie, & Frith, 1985) al-
most always fail the Sally-Anne test while 6-9 year olds almost
always pass. In the test a child is asked the control question of
recalling the actor’s names (the Naming Question). A short skit
is then enacted; Sally takes a marble and hides it in her basket.
She then "leaves" the room and goes for a walk. While she is
away, Anne takes the marble out of Sally’s basket and puts it
in her own basket. Sally is then reintroduced and the child is
asked the key question, the Belief Question: "Where will Sally
look for her marble?" To pass, the child must recognize that
Sally has not seen Anne move the marble, although the child
herself has, and therefore should predict that Anne will look for
it in the box where Anne left it. This ability to make inferences
about another’s mental state is referred to as having a Theory of
Mind (ToM). While reasoning about false beliefs is the capabil-
ity most commonly associated with ToM, other inferences such
as preference orderings (Baker, Saxe, & Tenenbaum, 2011), or
affect and empathy (Baron-Cohen et al., 1985) have also been
associated with ToM along with other explanatory concepts in-
volving mental states such as desires and intentions (Bratman,
1987) which have been referred to inclusively as Folk Psychol-
ogy (Stich & Ravenscroft, 1992).

A panel (Fiore et al., 2020) at last year’s HFES meeting
introduced ASIST (Artificial Social Intelligence for Successful
Teams), a DARPA program to develop AI agents capable of
employing ToM reasoning. Because ToM is defined through
its role in folk psychology and human commonsense reasoning
the appropriate baseline for guiding development and evaluat-
ing an agent employing ToM would necessarily be the naïve
human observer. However, despite mastery of ToM reasoning
in everyday life, people often fail to employ it, in taking direc-
tions (Samson & Apperly, 2010), for example, or fail in reason-
ing about content of others’ minds due to biases toward their
own perspectives and knowledge (Birch, 2005). Therefore, it
would be useful to collect direct accounts of mental states as
well as attributions of observers.

ToM Inference

In this paper we describe and analyze three types of human
data: think aloud verbal protocols, action prediction, and ex-
planations of action, that were collected to assess our agent’s
ToM. ToM inference involves at least two entities; one pre-
sumed to have mental states which may on occasion lead to
observable actions and an observer who attributes mental states
and transitions between them to be the cause of observed ac-
tions by the first party. One formalized version of folk psychol-
ogy, the Belief-Desire-Intention model (Bratman, 1987), holds
that agents form intentions to act in order to bring about desired
states, with beliefs describing the allowable states and transi-
tions. Because these entities cannot be observed, the observer
must infer them on the basis of very little evidence. Humans
do this readily (Wimmer & Perner, 1983) albeit often in er-
ror (Birch, 2005; Samson & Apperly, 2010).

In an experimental setting, however, it may sometimes be
possible to gain access to mental states by requesting the per-
former to report them. In a small 8 person study reported here,
participants were instructed to ‘think aloud’ as they performed
the search task. Following (A. Ericsson & Simon, 1993)’s ad-
vice for preserving validity reporting was unconstrained, not re-
quiring a distinct format or content. These data while presenting
ground truth, varied widely in specificity and content providing
insight in how the task was being performed but were too in-
complete to fully validate the agent’s ToM inference.

Decision Points

Comparing to a human reference provides a second av-
enue to validating agent performance that hews more closely to
the original objective of replicating human ToM. Because hu-
man observers are well practiced at making such inferences and
make them on the basis of incomplete evidence, human infer-
ences are likely to vary in confidence and accuracy with the am-
biguity of observations. The accuracy of an agent should vary
in a similar way with ambiguity in observations, which makes
the comparisons with human ‘experts’ a good test of inference
capabilities.

Because a ToM model is expected to evolve over time but
only reveals itself intermittently through observed actions, it
needs to be maintained and updated in order to converge to a
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more accurate model. To choose the decision points for making
these updates, it is necessary to consider whether an action is
taken or not when an opportunity occurs, for example encoun-
tering a door that could be entered, and whether new informa-
tion potentially initiating a current or future action is encoun-
tered, for example sensing an unexpected obstacle. Based on
these decision points, a player’s trajectory through the game
was segmented stopping just before each opportunity for ac-
tion. This segmentation supports two forms of judgments: 1-
prediction of actions player will/will not take and 2-explanation
of why that action will be taken. For predictions, there are three
values to compare: action taken by a human player, action pre-
dicted by an agent, and action predicted by a human observer.
Because so little is known about the human player’s actual men-
tal state, many possible ToM models may predict the same (phe-
notypic) action, making the accuracy of prediction high but not
the accuracy of the ToM. For explanations, there are eight pos-
sible outcomes depending on whether an agent and/or a human
correctly predicts the action and whether or not their explana-
tions agree. The extent to which agents and human observers
predict the same action and attribute to the same cause mea-
sures the extent to which the agent has replicated human ToM
reasoning regardless of the accuracy of the action prediction.

SIMULATED SEARCH AND RESCUE TASK

Task scenario

Task scenario. Since the Kobe earthquake and the twin
towers disaster a few years later, urban search and rescue has
grown to be a signature research area for human-robot interac-
tion (Casper & Murphy, 2003; Nourbakhsh et al., 2005). In the
current study (Fiore et al., 2020) is collecting data from human
participants searching for and triaging victims in a Minecraft
environment reproducing the uncertainties and hazards of a col-
lapsed building. In this paper we describe the analysis of data
collected at the University of Pittsburgh including think aloud
verbal protocols from local participants and action predictions
and explanations at decision points made by Mechanical Turk
workers. The search and rescue map developed for (Fiore et
al., 2020) is shown in Figure 1. The scenario portrays a struc-
turally damaged office building after an unspecified incident.
It contains 26 discrete areas consisting of corridors, rooms, and
elevators. The building layout and connectivity may be changed
by perturbations such as collapses, wall openings, and sporadic
fires. There are 20 injured victims inside the building in need
of rescue. Out of the 20 injured victims, five are high-risk vic-
tims with severe injures (denoted in yellow) and would die if
not treated in time (after 7 minutes). Others are low-risk vic-
tims (denoted in green) and stay alive throughout the mission.
The rescuer needs to search the building and rescue all victims
within 15 minutes. Their performance is measured by the num-
ber of saved victims, they are also encouraged to completed the
task as fast as possible.

Rescuers were given a building map and a victim detec-
tion device to help them with the task. The map on the right
contains the static building layout (e.g. room numbers and con-
nectivity) before the disaster, which might help rescuers plan
their search strategy. Perturbations are not shown on the map,

(a) 3D Minecraft view to the hu-
man participants

(b) 2D map layout of the environ-
ment

Figure 1. Human participants serving as rescuers see the egocentric view in (a).
Human observers viewing replayed segments of the trajectory see both (a) and
the floor plan view of the environment shown in (b).

thus rescuers need to handle unexpected environmental changes
such as blockages and holes. The victim detection device is
capable of detecting victims in a room when the rescuer ap-
proaches its entrance. Participants were assigned to one of three
knowledge conditions: naive, knowledge of scoring, or knowl-
edge of device and scoring mirroring the design of the larger
experiment (Fiore et al., 2020).

Data collection

To gain greater insight into the task, 8 local participants
were recruited for closer scrutiny and assigned to the three
knowledge conditions used in the larger experiment (Fiore et
al., 2020) being conducted at Arizona State University.

Participants were instructed to think aloud as they per-
formed the task. Specifically, they were instructed to “try to
report any thoughts that come to your mind, including what you
are doing, what you are thinking about, and what you are trying
to do next" (K. A. Ericsson & Simon, 1984). After a train-
ing trial on a smaller map to practice the task and verbalization
process, participants completed three trials of up to 15 minutes
followed by a debrief. Three map variants with different pertur-
bations and victim locations were used in the trials.

Our experimental testbed recorded logs of the rescuer’s
in-game behavior, first-person game screen videos and audio
recordings of their think aloud protocols. One subject did not
finish the last trial due to technical issues and 5 trials were re-
moved from analysis due to missing data or low quality record-
ing. In total 18 trials were retained for analysis.

Thinking aloud protocol

Method. Eighteen think aloud videos were analyzed from
8 participants with an average length of 10 minutes 30 seconds.
Two independent raters coded transcriptions auto-generated by
Otter.ai. Recording were assigned 63.95 codes on average. Two
raters first discussed the standards and principles of coding and
then each independently coded half of the recordings. One trial
was coded by both raters to evaluate the inter-rater reliability.
Since the speech-to-text transcription did not generate semanti-
cally meaningful sentence segmentation for oral reports, raters
are allowed to assign multiple codes to a single sentence. Thus
we used the percentage agreement instead of Cohen’s Kappa
to measure the inter-rater reliability (McHugh, 2012). Result
shows that two raters have 64.4% agreement in the 27-category
coding task, which indicates a moderate level of consistency.
Most of the disagreement occur when more codes were assigned



to the same part of the protocol by one coder in addition to the
agreed code both has assigned to.

Coding schema. The coding schema is developed based
upon the search and rescue mission itself and the key prin-
ciples in Belief-Desire-Intention model (Bratman, 1987), and
later optimized through a pilot trial. The coding schema consists
of four categories: Goals, Information, Behaviors, Emotions
which cover the main topics of the participants’ think aloud
protocols. There are 27 detailed codes within those categories
to better capture the content of verbal reports.

1. Goal: rescuer’s reports about future planing.

2. Information: participants reporting new information they
observed about the task.

3. Behavior: participants describing their current actions.

4. Emotion: emotional reports such as the feeling of stress.

In addition, a special type of code, Explanation, was used
when the participant explicitly explained the rationale behind
their behavior. Judgments in this category can then be com-
pared with human observations to reveal differences between
introspective explanations and ToM attributions.

Results. Figure 2 shows the distribution of the top ten codes
among the think aloud protocols. Information and Goals are
the two most popular categories, especially for location-related
information and planning. This shows that the rescuers were
most frequently focused on navigation involving their current
location and plans to move to the next location during the mis-
sion.

Figure 2. Distribution of think aloud transcription coding.

HUMAN OBSERVATION EXPERIMENTS

Because the initial goal of our artificial socially intelligent
agent is to replicate human performance at ToM tasks we have
collected predictions and causal attributions from human ob-
servers to provide a baseline with which to compare agent per-
formance.

Materials

For the 18 rescuer trajectories, depending on the perfor-
mance of the rescuer, the length of each trajectory range from 8

minutes to 15 minutes. Based on the collected human trajecto-
ries, we generated the following materials: game screen video
recordings, dynamic mini-map videos and a static building lay-
out image. Human observers can watch the first person screen
recordings to understand what the rescuers were doing, and re-
fer to the dynamic/static maps to locate the rescuers’ current
location and navigation path. Note, human observers have no
access to rescuers’ think aloud protocols. Video materials were
were segmented by ‘decision points’ at which behaviors occur
such as spotting a victim or leaving a room. The specific types
of the decision points are explained below.

• Triage decision points: When a victim block enters res-
cuer’s field of the view (FOV), the observer is asked
whether the rescuer will triage the victim.

• Navigation decision points: When a room entrance
(door/hole) enters rescuer’s FOV, the observer is asked
whether the rescuer will enter the room?

• General decision points: when the rescuer finishes triag-
ing a victim or leaving a room, the observer will need
to answer three general questions, including predicting
the next location rescuer will go, as well as the rescuer’s
triage strategy and knowledge condition.

At each of the different decision points, human observers
were given different prediction tasks including predicting next
room and triage strategy of the rescuer etc. They were asked
to choose among alternative locations or strategies from menus.
In addition, observers were asked to provide explanations from
a pre-designed list of options.

Video segments were presented in chronological order so
that prior segments can inform judgments. The actual action
taken by the rescuer in the video segments was then presented
at the start of the following sequence providing knowledge of
results. The total number of decision points in one trajectory
is around 300, which is too demanding for human observers
to annotate. Thus we sampled 10 decision points for each type
and generated 30 video segments with corresponding prediction
questions for each trajectory.

Procedure

50 human observers were recruited from Amazon Mechan-
ical Turk. Participant accessed the online survey on their own
computer. Detailed instruction were given to the observers
about the search and rescue environment and the prediction and
explanation tasks they were to complete. Then the observers
were required to pass a quiz about basic knowledge of the ex-
periment in order to proceed to the experimental task. Each
observer was assigned one trajectory from a human rescuer. In
each of the 30 decision points from the trajectory, human ob-
servers were presented a video clip and the corresponding pre-
diction/explanation questions. The length of this human obser-
vation experiment was around 45 minutes.

Results: Prediction

Human observers’ predictions were compared with the
ground truth of rescuers’ behavior to calculate the prediction



Figure 3. Distribution of human observation explanations.

accuracy shown in Table 1. A recent work reports the perfor-
mance of social intelligence agents in similar ToM inference
tasks (Jain et al., 2020). As a reference, agents achieve 98.8%
accuracy in predicting triage strategy and 68.5% in predicting
next location.

Table 1. Prediction accuracy of human observers

Prediction task Task type Human accuracy

Triage action Binary 56.0%
Door entering action Binary 31.2%

Next location Multi-class 58.2%
Triage strategy Three-class 65.5%

Knowledge condition (Beep) Binary 46.2%
Knowledge condition (Victim) Binary 74.0%

From these results it is evident that the ToM inference task
is challenging even for human observers. The prediction accu-
racy in most tasks is around random guess levels except for next
location prediction. This might be explained by the system-
atic searching routes the rescuers were likely to adopt such as
checking adjunct rooms one by one. Such searching patterns are
relatively noticeable for human observers to capture, and thus
could be leveraged in their inference. This also aligns with our
finding in think aloud protocols that rescuers’ current location
and next intended location are the two highest frequency codes
which contribute to 26.2% of the reports. On the other hand,
behaviors depending on rescuer’s current mental state (belief)
such as whether to enter a room are harder for human observers
to predict because the rescuer’s current mental state may not
always be inferable by the observer. For instance, the rescuer
might revisit an explored room by mistake because he holds a
false belief about his search history in which he has forgotten
that he has already been to the room. Because evidence of this
false belief is not available to the observer prior to the revisit,
the observer can not predict the revisit.

Additionally, if we plot the prediction accuracy over time
as in Figure 4, we can see that navigation and triage predic-
tion accuracy slightly decreases over the progress of experi-
ment. This is counter intuitive considering human observers
are continuously learning by watching episodes from the res-

cuer’s trajectory. This might be due to the fact that as rescuers
explore more rooms, their memory load may increase leading to
increased forgetting and more false beliefs. Based on evidence
provided by a trajectory human observers under most conditions
can not correctly predict probable rescuer errors such as re-
visiting cleared rooms or missing victims in their field of view
because these actions run counter to those commonly taken.

This argument can be supported by the pattern we observed
in rescuers’ thinking aloud reports. By comparing the reports in
first and second half of the task, we found that the frequency of
protocols that might contain false beliefs (i.e. player location,
search history, capability) increases from 17.0% to 34.8%. A
typical quote from a rescuer is as follows: “I don’t remember if
there were any in 207. So I’m gonna have to run by and check
just to be safe. So now I believe I have cleared all the rooms or
maybe not Janitor’s room." This happened when the participant
had already searched all rooms but forgot where were the last
few untreated victims. So he had to re-enter multiple rooms
to verify if his memory was correct. Such situations are chal-
lenging for either humans or agents to infer without privileged
knowledge about player’s mental state.

Figure 4. Prediction accuracy of triage and navigation decision points over time.

Results: Explanation

We summarized the explanations provided by human ob-
servers for each types of decision points. The distribution of hu-
man observation explanation is shown in Figure 3. Another per-



(a) Triage prediction
(b) Door entering prediction (c) Next room prediction

Figure 5. Human observation explanation conditioned on prediction correctness.

spective to evaluate human observation explanation is to con-
dition it on the prediction correctness as shown in Figure 5.
Since observers gave their prediction and explanation at the
same time, those who correctly predicted the rescuer’s behav-
iors can be presumed to show greater insight into the rescuer’s
mental state.

For triage decisions, most of the explanations fall on the
cost/benefit trade-off between two kinds of victims. There are
a few considerations when deciding whether to rescue a victim
in front of you. One is the fact that high-risk victims take a
longer time to triage (i.e. time trade-off), but also are worth
more points (i.e. value trade-off). The other concern is that all
high-risk victims will die if not get treated by 7 minutes (i.e.
death trade-off). Those trade-offs plus the overall task objective
of saving all victims cause the rescuer to take different triage
strategies. One typical strategy is to prioritize high-risk victims
first while ignoring low-risk victims until all high-risk victims
are either saved or expired. Another strategy is to save any vic-
tims encountered without considering the type. These strategies
as well as mixture of them were observed in the human trajec-
tories. To better understand if human observers had the correct
insights when giving those explanations, we plot the distribu-
tion conditioned on prediction correctness as in Figure 5(a). It
shows that observers who made correct predictions on victim
triage decisions focus more on the time trade-off and current
task time. While incorrect predictions were influenced more by
the value trade-off. Similar reports are found in rescuers’ think
aloud records about the ratio between time spent on locating
victims by exploring rooms and the time spent on rescuing vic-
tims, as well as the efficiency of the different strategies.

Figure 5(c) shows an example pattern of relative percent-
ages of explanations in the next-location decision points. When
asked about which room the player will go next, observers who
made correct predictions focus more on players’ current loca-
tion and map area coverage so far. This aligns with our find-
ing in the think aloud protocols that rescuers’ current location
and next intended location are the most frequent factors which
contribute to 26.2% of the reports, while incorrect predictions
were influenced more by other factors, like beliefs about vic-
tim location or mission time. Human observers could have a
wrong assumption about a rescuer’s belief about those factors.

For example, the rescuers might not remember the victim loca-
tion that the observer thought they would have remembered, a
typical failure in ToM inference.
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