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Mixed formulations for fluid-poroelastic structure interaction
Tongtong Li, PhD

University of Pittsburgh, 2021

This thesis focuses on the development of mixed finite element methods for the coupled
problem arising in the interaction between free fluid flow and flow in a deformable poroe-
lastic medium. We adopt the Stokes or the Navier-Stokes equations to model the free fluid
region, and the Biot system to describe the poroelastic medium. On the interface, mass
conservation, balance of stresses and the slip with friction conditions are imposed via the
Lagrange multiplier method.

We first develop a new mixed elasticity formulation for the Stokes-Biot problem. We
establish the existence and uniqueness of a solution for the continuous weak formulation and
perform stability and error analyses for the semi-discrete continuous-in-time mixed finite
element approximation. We present numerical experiments that verify the theoretical results
and illustrate the robustness of the method with respect to the physical parameters.

We then extend the previous results for the Stokes-Biot problem by considering dual-
mixed formulations in both the fluid and structure regions. Well-posedness and stabil-
ity results are established for the continuous weak formulation, as well as a semi-discrete
continuous-in-time formulation with non-matching grids. In addition, we develop a new
multipoint stress-flux mixed finite element method by involving the vertex quadrature rule.
Well-posedness and error analysis with corresponding rates of convergences for the fully-
discrete scheme are complemented by several numerical experiments.

Next, we propose an augmented fully mixed formulation for the coupled quasi-static
Navier-Stokes — Biot model by introducing a ”nonlinear-pseudostress” tensor linking the
pseudostress tensor with the convective term in the Navier-Stokes equations and augment-
ing the variational formulation with suitable Galerkin redundant terms. We show well-
posedness, derive stability and error analysis results for the associated mixed finite element
approximation and conduct several numerical experiments.

Finally, we derive a fully mixed formulation with weakly symmetric stresses for the

v



Navier-Stokes — Biot model. We develop an extension of the multipoint stress-flux mixed
finite element method that allows for local elimination of the fluid and poroelastic stresses,
vorticity, and rotation, resulting in a positive definite finite volume scheme. A numerical

convergence study is presented for the fully discrete scheme.

Keywords: numerical analysis, mixed finite element methods, FPSI, Stokes-Biot model,
Navier-Stokes — Biot model, multipoint stress-flux, augmented formulation, finite volume

method.
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1.0 Introduction

1.1 Motivation and overview

The interaction of a free fluid with a deformable porous medium, referred to as fluid-
poroelastic structure interaction (FPSI), is a challenging multiphysics problem. There has
been an increased interest in this problem in recent years, due to its wide range of applications
in petroleum engineering, hydrology, environmental sciences, and biomedical engineering,
such as predicting and controlling processes arising in gas and oil extraction from naturally
or hydraulically fractured reservoirs, cleanup of groundwater flow in deformable aquifers,
designing industrial filters, and modeling blood-vessel interactions in blood flows. For this
physical phenomenon, the free fluid region can be modeled by the Stokes or Navier—Stokes
equations, while the flow through the deformable porous medium is modeled by the Biot
system of poroelasticity [19]. In the latter, the volumetric deformation of the elastic porous
matrix is complemented with the Darcy equation that describes the average velocity of
the fluid in the pores. The two regions are coupled via dynamic and kinematic interface
conditions, including balance of forces, continuity of normal flux, continuity of normal stress
and a no slip or slip with friction tangential velocity condition. The FPSI system exhibits
features of both coupled Stokes-Darcy flows [42,43,47,53,62, 71, 78] and fluid-structure
interaction (FSI) [17,29,46,70], both of which have been extensively studied.

To our knowledge, one of the first works in analyzing the Stokes-Biot coupled problem
is [75], where a fully dynamic system is considered and well-posedness is established by
rewriting the problem as a parabolic system and using semigroup methods. One of the
first numerical studies is presented in [16], using the Navier-Stokes equations to model the
free fluid flow. The authors develop a variational multiscale finite element method and
propose both monolithic and iterative partitioned methods for the solution of the coupled
system. A non-iterative operator splitting scheme is developed in [27] for an arterial flow
model that includes a thin elastic membrane separating the two regions, using a non-mixed

pressure formulation for the flow in the poroelastic region. In [38], the fully dynamic coupled



Navier-Stokes/Biot system with a pressure-based Darcy formulation is analyzed. Finite
element methods for mixed Darcy formulations, where the continuity of normal flux condition
becomes essential, are considered in [25,26] using Nitsche’s interior penalty method and
in [9,10] using a pressure Lagrange multiplier formulation. More recently, a nonlinear quasi-
static Stokes—-Biot model for non-Newtonian fluids is studied in [4]. The authors establish
well-posedness of the weak formulation in Banach space setting, along with stability and
convergence of the finite element approximation. Additional works include optimization-
based decoupling method [37], a second order in time split scheme [61], various discretization
methods [18,36,79], dimensionally reduced model for flow through fractures [28], and coupling
with transport [5].

To the best of our knowledge, all of the previous works consider displacement-based
discretizations of the elasticity equation in the Biot system. In this thesis we develop a
mixed finite element discretization of the quasi-static Stokes—Biot system using a mixed
elasticity formulation with a weakly symmetric poroelastic stress. The advantages of mixed
finite element methods for elasticity include locking-free behavior, robustness with respect to
the physical parameters, local momentum conservation, and accurate stress approximations
with continuous normal components across element edges or faces. Here we consider a
three-field stress—displacement-rotation elasticity formulation. This formulation allows for
mixed finite element methods with reduced number of degrees of freedom, see e.g. [11,
13]. It is also the basis for the multipoint stress mixed finite element method [6,7], where
stress and rotation can be locally eliminated, resulting in a positive definite cell-centered
scheme for the displacement. We consider a mixed velocity-pressure Darcy formulation,
resulting in a five-field Biot formulation, which was proposed in [63] and studied further
in [8], where a multipoint stress-flux mixed finite element method is developed. We note that
our analysis can be easily extended to the strongly symmetric mixed elasticity formulation,
which leads to the four-field mixed Biot formulation developed in [82]. Finally, for the Stokes
equations we consider the classical velocity—pressure formulation. The weak formulation
for the resulting Stokes—Biot system has not been studied in the literature. One main
difference from the previous works with displacement-based elasticity formulations [4, 10]

is that the normal component of the poroelastic stress appears explicitly in the interface



terms. Correspondingly, we introduce a Lagrange multiplier with a physical meaning of
structure velocity that is used to impose weakly the balance of force and the BJS condition.
In addition, a Darcy pressure Lagrange multiplier is used to impose weakly the continuity
of normal flux.

Since the weak formulation of the Stokes—Biot system considered in this thesis is new,
we first show that it has a unique solution. This is done by casting it in the form of a
degenerate evolution saddle point system and employing results from classical semigroup
theory for differential equations with monotone operators [74]. We then present a semi-
discrete continuous-in-time formulation, which is based on employing stable mixed finite
element spaces for the Stokes, Darcy, and elasticity equations on grids that may be non-
matching along the interface, as well as suitable choices for the Lagrange multiplier finite
element spaces. Well-posedness of the semi-discrete formulation is established with a similar
argument to the continuous case, using discrete inf-sup conditions for the divergence and
interface bilinear forms. Stability and optimal order error estimates are then derived for all
variables in their natural space-time norms. We emphasize that the estimates hold uniformly
in the limit of the storativity coefficient sy going to zero, which is a locking regime for non-
mixed elasticity discretizations for the Biot system. In addition, our results are robust with
respect to amin, the lower bound for the compliance tensor A, which relates to another
locking phenomena in poroelasticity called Poisson locking [83]. Furthermore, we do not
use Gronwall’s inequality in the stability bound, thus obtaining long-time stability for our
method. We present several computational experiments for a fully discrete finite element
method designed to verify the convergence theory, illustrate the behavior of the method for a
problem modeling an interaction between surface and subsurface hydrological systems, and
study the robustness of the method with respect to the physical parameters. In particular,
the numerical experiments illustrate the locking-free properties of the mixed finite element
method for the Stokes—Biot system.

We discuss the mixed elasticity finite element method in details in Chapter 2, which is
organized as follows. In Section 2.1, we present the model problem and derive its continuous
weak formulation. Well-posedness of the continuous formulation is proved in Section 2.2,

where existence and uniqueness of solution are established. The semi-discrete continuous-



in-time approximation is introduced in Section 2.3. There the well-posedness, as well as its
stability and error analyses are performed. Finally, numerical experiments are presented in
Section 2.4.

Motivated by the advantages of mixed finite element methods for elasticity, we then de-
velop a new fully mixed formulation of the quasi-static Stokes-Biot model, which is based on
dual mixed formulations for all three components - Darcy, elasticity, and Stokes. In particu-
lar, we use a velocity-pressure Darcy formulation, a weakly symmetric stress-displacement-
rotation elasticity formulation, and a weakly symmetric stress-velocity-vorticity Stokes for-
mulation. This formulation exhibits multiple advantages, including local conservation of
mass for the Darcy fluid, local poroelastic and Stokes momentum conservation, and accu-
rate approximations with continuous normal components across element edges or faces for
the Darcy velocity, the poroelastic stress, and the free fluid stress. In addition, dual mixed
formulations are known for their locking-free properties and robustness with respect to the
physical parameters, as discussed previously.

Our five-field dual mixed Biot formulation is the same as the one considered in Chapter 2.
Our three-field dual mixed Stokes formulation is based on the models developed in [50,51]. In
particular, we introduce the stress tensor and subsequently eliminate the pressure unknown,
by utilizing the deviatoric stress. In order to impose the symmetry of the Stokes stress and
poroelastic stress tensors, the vorticity and structure rotation, respectively, are introduced
as additional unknowns. The transmission conditions consisting of mass conservation, con-
servation of momentum, and the Beavers—Joseph—Saffman slip with friction condition are
imposed weakly via the incorporation of additional Lagrange multipliers: the traces of the
fluid velocity, structure velocity and the poroelastic media pressure on the interface. The
resulting variational system of equations is then ordered so that it shows a twofold saddle
point structure. The well-posedness and uniqueness of both the continuous and semidis-
crete continuous-in-time formulations are proved by employing classical results for parabolic
problems [74, 76] and monotone operators, and an abstract theory for twofold saddle point
problems [1,49]. In the discrete problem, for the three components of the model we consider
suitable stable mixed finite element spaces on non-matching grids across the interface, cou-

pled through either conforming or non-conforming Lagrange multiplier discretizations. We



develop stability and error analysis, establishing rates of convergence to the true solution.
The estimates we establish are uniform in the limit of the storativity coefficient going to
ZEro.

Another main contribution related to this formulation is the development of a new mixed
finite element method for the Stokes-Biot model that can be reduced to a positive definite cell-
centered pressure-velocities-traces system. We recall the multipoint flux mixed finite element
(MFMFE) method for Darcy flow developed in [24,57,80,81], where the lowest order Brezzi-
Douglas-Marini BDM; velocity spaces [22,23,66] and piecewise constant pressure are utilized.
An alternative formulation based on a broken Raviart-Thomas velocity space is developed
in [60]. The use of the vertex quadrature rule for the velocity bilinear form localizes the
interaction between velocity degrees of freedom around mesh vertices and leads to a block-
diagonal mass matrix. Consequently, the velocity can be locally eliminated, resulting in a
cell-centered pressure system. In turn, the multipoint stress mixed finite element (MSMFE)
method for elasticity is developed in [6,7]. It utilizes stable weakly symmetric elasticity
finite element triples with BDM]; stress spaces [7,13,15,21,44,64]. Similarly to the MFMFE
method, an application of the vertex quadrature rule for the stress and rotation bilinear
forms allows for local stress and rotation elimination, resulting in a cell-centered displacement
system. We also refer the reader to the related finite volume multipoint stress approximation
(MPSA) method for elasticity [58,67,68]. Recently, combining the MSMFE and MFMFE
methods, a multipoint stress-flux mixed finite element (MSFMFE) method for the Biot
poroelasticity model is developed in [8]. There, the dual mixed finite element system is
reduced to a cell-centered displacement-pressure system. The reduced system is comparable
in cost to the finite volume method developed in [69].

In this thesis we note for the first time that the MSMFE method for elasticity can be
applied to the weakly symmetric stress-velocity-vorticity Stokes formulation from [50, 51]
when BDM;-based stable finite element triples are utilized. With the application of the
vertex quadrature rule, the fluid stress and vorticity can be locally eliminated, resulting in a
positive definite cell-centered velocity system. To the best of our knowledge, this is the first

such scheme for Stokes in the literature.

Finally, we combine the MEFMFE method for Darcy with the MSMFE methods for elas-



ticity and Stokes to develop a multipoint stress-flux mixed finite element for the Stokes-Biot
system. We analyze the stability and convergence of the semidiscrete formulation. We fur-
ther consider the fully discrete system with backward Euler time discretization and show that
the algebraic system on each time step can be reduced to a positive definite cell-centered
pressure-velocities-traces system.

The discussion on the fully mixed formulation of the Stokes-Biot model together with
the multipoint stress-flux mixed finite element method are presented in Chapter 3. In Sec-
tion 3.1, we derive a fully-mixed variational formulation for the Stokes-Biot model, which
is written as a degenerate evolution problem with a twofold saddle point structure. Next,
existence, uniqueness and stability of the solution of the weak formulation are obtained in
Section 3.2. The corresponding semi-discrete continuous-in-time approximation is introduced
and analyzed in Section 3.3, where the discrete analogue of the theory used in the continuous
case is employed to prove its well-posedness. Error estimates and rates of convergence are
also derived there. In Section 3.4, the multipoint stress-flux mixed finite element method is
presented and the corresponding rates of convergence are provided, along with the analysis
of the reduced cell-centered system. Finally, numerical experiments illustrating the accuracy
of our mixed finite element method and its applications to coupling surface and subsurface
flows and flow through poroelastic medium with a cavity are reported in Section 3.5.

While the Stokes model describes the motion of creeping flow, the Navier-Stokes equa-
tions could be used to model fast flows of scientific and engineering interests. The coupled
Navier-Stokes — Biot model is of importance due to its applications to problems such as
blood flow and industrial filters. In [16], the authors design residual-based stabilization
techniques for the Biot system, motivated by the variational multiscale approach, and pro-
pose both a semi-implicit monolithic method and an extension of domain decomposition
techniques for the Navier-Stokes — Biot system, where the main variables are fluid veloc-
ity, fluid pressure, structure velocity, filtration velocity and Darcy pressure. Theoretical
analysis including well-posedness and a priori error estimates for the fully dynamic coupled
Navier-Stokes — Biot model is established in [38] using velocity-pressure Navier-Stokes for-
mulation, a pressure Darcy formulation and a displacement formulation for elasticity. To

the best of our knowledge, dual mixed formulations for Navier-Stokes — Biot model have



not been studied in the literature. Thus another topic of our interest is to extend the work
to study a fully-mixed formulation of the quasi-static Navier-Stokes — Biot model, which is
based on dual mixed formulations for all three components - Darcy, elasticity and Navier
Stokes. The problem becomes much harder since it is nonlinear, due to a convective term
in the Navier-Stokes equations. For this, we consider pseudostress-based formulations for
the Navier-Stokes problems. These kinds of formulations allow for a unified analysis for
Newtonian and non-Newtonian flows. Moreover, they yield direct approximations of several
other quantities of physical interest such as the fluid stress tensor, the fluid pressure and the
fluid vorticity. Here, similarly to [33], we introduce a nonlinear pseudostress tensor linking
the pseudostress tensor with the convective term, which together with the fluid velocity,
yield a pseudostress-velocity Navier-Stokes formulation. Furthermore, in order to relax the
hypotheses on the finite element spaces, we augment the mixed formulation with some re-
dundant Garlerkin-type terms arising from the equilibrium and constitutive equations. Our
five-field dual mixed Biot formulation is still the same as the one considered in Chapter 2.
Also, similar as the fully-mixed formulation for the Stokes-Biot model, the transmission
conditions are imposed weakly through the introduction of three Lagrange multipliers: the
traces of the fluid velocity, structure velocity and the Darcy pressure on the interface.

We present the analysis of the augmented fully-mixed formulation for the quasi-static
Navier-Stokes — Biot model in Chapter 4. We state the model problem, together with its
continuous formulation in Section 4.1. Since the problem is nonlinear, for the well-posedness
we apply a fixed point approach as well as rewrite the problem into a parabolic system
to fit in classical semigroup theory for differential equations with monotone operators [74].
The details are discussed in Section 4.2. We then present a semi-discrete continuous-in-
time formulation based on employing stable mixed finite element spaces for the Navier-
Stokes, Darcy and elasticity equations on non-matching grids along the interface, together
with suitable choices for the Lagrange multiplier finite element spaces in Section 4.3. Well-
posedness and stability analysis results are established using a similar argument to the
continuous case. Also, we develop error analysis and establish rates of convergence for
all variables in their natural norms. Finally in Section 4.4, we present several numerical

experiments for a fully discrete finite element method to validate the theoretical rates of



convergence and illustrate the behavior of the method for modelling blood flow in an artery
bifurcation as well as industrial filters.

For the last part of this thesis, we discuss a fully-mixed formulation for the Navier-Stokes
— Biot model. The problem we consider involves the time derivative of the fluid velocity, to-
gether with suitable Banach spaces for the nonlinear fluid stress tensor and the fluid velocity.
We adopt the nonstandard pseudostress-velocity-vorticity formulation for the Navier-Stokes
equations and the five-field dual mixed formulation for the Biot system including a stress-
displacement-rotation formulation of elasticity with a velocity-pressure formulation for Darcy
flow. Based on the fully-mixed formulation, we present a cell-centered finite volume method,
where the multipoint stress-flux mixed finite element method is employed for the Navier-
Stokes and elasticity equations, and the multipoint flux mixed finite element method is used
for Darcy’s flow. The formulation and the method together with a convergence numerical

test are discussed in Chapter 5.

1.2 Preliminaries

In this section we introduce some definitions and fix some notations. Let M, S and N
denote the sets of n x n matrices, n x n symmetric matrices and n x n skew-symmetric
matrices, respectively. Let O C R", n € {2,3}, denote a domain with Lipschitz boundary.
For s > 0 and p € [1,+00], we denote by LP(O) and W*P(O) the usual Lebesgue and
Sobolev spaces endowed with the norms || - [[Lr(o) and || - [[ws»(0), respectively. Note that

WOP(O) = LP(O). If p = 2 we write H*(Q) in place of W*?(), and denote the corresponding

norm by || - ||us(e). Similar notation is used for a section I' of the boundary of O. By Z and
Z we will denote the corresponding vectorial and tensorial counterparts of a generic scalar
functional space Z. The L?(O) inner product for scalar, vector, or tensor valued functions is
denoted by (-,+)o. The L*(T') inner product or duality pairing is denoted by (-, -);.. For any

vector field v = (v;);=1,, and W = (w;);=1.,, we set the gradient, divergence operators and



tensor product operators, as

ov; ov;
Vv = (axj) L n, div(v Z 61’]] and v ®W = (v;w;)i =1,

For any tensor fields 7 := (7;;); =1, and ¢ := ({ij)ij=1,n, We let div(7) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner

product, and the deviatoric tensor, respectively, as

1
T = (Tji)ij=1; ZT“’ T:(:= Z 7iCj, and T4 =7 — —tr(1)1,

i,j=1

where I is the identity matrix in R™*". In addition, we recall the Hilbert space
H(div; O) := {v € L*(0): div(v) € LQ(O)},

equipped with the norm HVHH div:0) = |Iv]}. o) T lldiv(v )||L2((9 The space of matrix valued
functions whose rows belong to H(div; O) Wlll be denoted by H(div; O) and endowed with
the norm ||7{|34v.0y = I Tl1f2(0) + 1diV(7T)[[F2(0)- Finally, given a separable Banach space
V endowed with the norm || - ||y, we let LP(0,7;V) be the space of classes of functions

f:(0,T) — V that are Bochner measurable and such that || f||veo,r;v) < 00, with

T
1 ey = / IF @I dt, N[ fllLeomvy = esssup || f(t)[|v.
0 te[0,7)

We employ 0 to denote the null vector or tensor, and use C' and ¢, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters,
which may take different values at different places.

We end this section by describing briefly some finite element spaces, including Taylor-
Hood and the MINI elements which are stable Stokes finite element pairs, and the Raviart-
Thomas (RT) and the Brezzi-Douglas-Marini (BDM) elements which are stable Darcy mixed
finite element pairs [23]. In the generalised Taylor-Hood elements, on triangles or tetrahedra,
velocities are approximated by a standard Py element and pressures by a standard continuous
Py_1, where P, denotes the polynomials of total degree k > 1. This choice has an analogue
on rectangles or cubes using a Q; element for velocities and a Qi1 element for pressures,

where Q, stands for polynomials of degree k in each variable. The MINI elements adopts P?,



the space of continuous piecewise linear polynomials enriched elementwise by cubic bubble
functions, for velocities, and Py for pressures. On the other hand, RT space and BDM space
are built for approximations of H(div) to preserve the continuity of the normal traces. In

particular, on triangles or tetrahedra elements F, we have
RT(E) = VI(E) x Wi(E) where V}(E) = Py(E)+xPL(E), W(E) = Pi(E);

BDM,(E) = VI(E) x WH(E) where V}(E) =Py(E), WHE) = Pr_1(E).
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2.0 A mixed elasticity formulation for the Stokes-Biot model

2.1 The model problem and weak formulation

Let Q@ € R", n € {2,3}, be a Lipschitz domain, which is subdivided into two non-
overlapping and possibly non-connected regions: fluid region 2y and poroelastic region €2,,.
Let I'y, = 082y N 012, denote the (nonempty) interface between these regions and let I'y =
0Qp\ Ty, and I'y = 08, \ 'y, denote the external parts on the boundary 0. We denote
by ny and n, the unit normal vectors that point outward from 9€; and 052, respectively,
noting that ny = —n, on I'y,. Let (u4, ps) be the velocity-pressure pair in Q, with x € {f, p},
and let 1, be the displacement in €2,. Let p > 0 be the fluid viscosity, let f, be the body
force terms, and let ¢, be external source or sink terms.

We assume that the flow in €2y is governed by the Stokes equations, which are written

in the following stress-velocity-pressure formulation:
oy = —prIl+2pe(uy), —div(ey) =1fr, div(uy) = ¢ in QpF x(0,7], (2.1.1a)

ur =0 on I'yx(0,7], (2.1.1b)

(Vuy + (Vuy)') stands for the deformation rate

N | —

where o is the stress tensor, e(uy) :=
tensor, and 1" > 0 is the final time.

In turn, let o, and o, be the elastic and poroelastic stress tensors, respectively, satisfying

Ao, =e(n,) and o, :=o0.—a,p, I in Q,x(0,T], (2.1.2)
where 0 < a, <1 is the Biot-Willis constant, and A : S — M is the symmetric and positive

definite compliance tensor, which in the isotropic case has the form, for all tensors 7 € S,

1 A : -
A(T) = o (T — mtr('r) I) , with A7 (1) =2p, 7+ N\ tr(7)I,  (2.1.3)

satisfying

VT e R, apinT: T < AT) T < QuaxT:T VX EQ, (2.1.4)
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with amin = 1/(2max + 7 Amax) and Gmax = 1/2pmin. In this case, o, = A, div(n,)I +
2upe(n,), and 0 < Apin < Ap(x) < Amax and 0 < pimin < pp(X) < fimax are the Lamé
parameters. We extend the definition of A on M such that it is a positive constant multiple
of the identity map on N as in [63]. The poroelasticity region €2, is governed by the quasi-
static Biot system [19]:

—div(e,) =f,, pK'u,+Vp,=0,

0 . . .

pn (sopp + apdiv(n,)) +div(u,) = ¢, in Q, x (0,7, (2.1.5a)
u,-n,=0 on I} x(0,7], p,=0 on I} x (0,7, (2.1.5b)
om,=0 on I'Nx(0,7], n,=0 on IV x (0,7, (2.1.5¢)

where I, = INUTD = I'NUTD, 54 > 0 is a storativity coefficient and K(x) is the symmetric
and uniformly positive definite rock permeability tensor, satisfying, for some constants 0 <

kmin S kmaxv
VweR", kpnw-w < (Kw) w < kpaxw-w Vx e, (2.1.6)

To avoid the issue with restricting the mean value of the pressure, we assume that |FpD| > 0.
We also assume that I'?, FpD, and pr are not adjacent to the interface I'y), i.e., 3 s > 0 such
that dist (I'?,Ty,) > s, dist (ID,Ty,) > s, and dist (2, I'y,) > s. This assumption is used
to simplify the characterization of the normal trace spaces on I'¢,.

Next, we introduce the following transmission conditions on the interface I'y, [10,16,26,

75]:

9
uy-ny+ (%—l—up) ‘n, =0, omy+o,n, =0 on Iy x (0,77, (2.1.7a)

n—1
on
afanr,uozBJsZ \/Kj1{<u - a—tp) ~tf,j} ty; = —pmy on 'y, x (0,77, (2.1.7b)
j=1

where t;;, 1 < j < n — 1, is an orthogonal system of unit tangent vectors on I'y,,
K, = (Kty;) - ty;, and agys > 0 is an experimentally determined friction coefficient. The

equations in (2.1.7a) correspond to mass conservation and conservation of momentum on I'y,,
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respectively, whereas the equation (2.1.7b) can be decomposed into its normal and tangential
components, as follows:

- on
(a'fnf) 'Ilf = — DPp, (O'fnf) 'tﬁj = — WU QOpgs Kjl (llf — a—:) 'tf,j on Ffp X (O,T],

representing balance of normal stress and the Beaver—Joseph—Saffman (BJS) slip with friction
condition, respectively.

Finally, the above system of equations is complemented by the initial condition p,(x,0) =
Dpo(x) in €©,. We stress that, similarly to [65], compatible initial data for the rest of the
variables can be constructed from p,, o in a way that all equations in the system (2.1.1)—(2.1.7),
except for the unsteady conservation of mass equation in the first row of (2.1.5a), hold at
t = 0. This will be established in Lemma 2.2.10 below. We will consider a weak formulation
with a time-differentiated elasticity equation and compatible initial data (o0, ppo)-

We next derive a weak formulation of the Stokes-Biot model given by (2.1.1)—(2.1.7).
Throughout Chapter 2, we define the fluid velocity space and fluid pressure space as the
Hilbert spaces

V= {Vf €H'(Q):vy=0 on Ff}v Wy o= L2(Qy),

respectively, endowed with the corresponding standard norms

[villv, = Vil lwillw, = lwgllLe ;-
For the structure region, we introduce a new variable, the structure velocity u, := 9,
0
using the notation 0; := g We will develop a formulation that uses u, instead of n,,, which

is better suitable for analysis. To impose the symmetry condition on o, weakly, we introduce

1
the rotation operator p, := §(Vnp — Vn;). In the weak formulation we will use its time

1
derivative v, 1= 0;p,, = é(VuS — Vu!). We introduce the Hilbert spaces
V, = {Vp € H(div;,) : v,-n, =0 on FPN}, W, :=L*(,),
X, = {Tp € H(div;€,): 7,n, =0 on pr},

V, =1}Q,), Q= {xp €L (%) x;, = —Xp},
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endowed with the standard norms, respectively,

1Vollv, == IVollu@ive,):  llwpllw, = [[wplliza,),

I 7pllx, = 17pllE(divie) [vsllv, == [[VsllL2@,) 1x,ll0, = IxpllLz(e,)-

We further introduce two Lagrange multipliers:
Ai=—(omy) -n;=p, and O:=u, on [y,

The first one is standard in Stokes-Darcy and Stokes-Biot models with a mixed Darcy
formulation and it is used to impose weakly continuity of flux, cf. the first equation in
(2.1.7a). The second one is needed in the mixed elasticity formulation, since the trace of us
on I'y, is not well defined for u, € L*(€,). It will be used to impose weakly the continuity
of normal stress condition o fny - ny = opn, - n, and the BJS condition, cf. (2.1.7b). For
the Lagrange multiplier spaces we need A, = (V, - n,)" and Ay = (X,n,)". According to
the normal trace theorem, since v, € V, C H(div;),), then v, - n, € H¥/2(9%,). Tt is
shown in [47] that if v, - n, = 0 on 9Q,\I'f,, then v, -n, € HY2(T';,). In our case, since
vp-n, =0 on ') and dist (I}, Ty,) > s > 0, the argument can be modified as follows. For
any £ € HY2(D'y,), let E1€ be a continuous extension to HY2(I'y, UTN) such that E;§ = 0
on 9Ly, UTY), then let Ey(Ei€) € HY2(09) be a continuous extension of E1§ such that
Ey(F1€) =0 on I'). We then have

(vp -y, §>Ffp = (v, -y, E1§>FprFpN = (vp - 1y, EZ(E1§>>BQp
and

vy )y < IV - Dypllisragony) | B2 (Br) lscony) < CllVollmanon €lme,,)- (2.18)

Similarly, for any ¢ € HY/2(T;,),

(o, @)1y, < Clloy[laive,) [Pl (2.1.9)

Thus we can take

Ap = H1/2<Ffp)v A= Hl/Z(Ffp)
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with norms

€], = €]z, [l

As = ”¢HH1/2(Ffp). (2110)

We now proceed with the derivation of the variational formulation of (2.1.1)-(2.1.7).
We test the first equation in (2.1.1a) with an arbitrary vy € Vy, integrate by parts, and
combine with the BJS interface condition in (2.1.7b). We test the third equation in (2.1.5a)
by w, € W, and make use of (2.1.2) and the fact that

div(n,) = tr(e(n,)) = tr(Ao.) = trA(o, + a, p, 1),
as well as tr(7)w = 7 : (wl) V7 € M,w € R. In addition, (2.1.2) gives
A(op + apppl) = Vi, — py,.
In the weak formulation we will use its time differentiated version
0tA(o, + app,I) = Vu, — Vs

which is tested by 7, € X,. Finally, we impose the remaining equations weakly, as well
as the symmetry of o, and the interface conditions (2.1.7), obtaining the following mixed

variational formulation: Given
fr:0,7] = Vs, £,:[0,7] =V, q:0,T] =W}, ¢:[0,T] =W,

and (07,0, Ppo) € Xp x Wy, find (uy, py, 0p, Us, ¥, Up, 0p, A, 6) = [0,T] = Vi x Wy x X, X
V,xQ, xV,xW,xA, x A, such that (6,(0),p,(0)) = (60,Pp0) and, for a.e. t € (0,7")
and for all vy € Vy wy € Wy, 7, € X, vy €V, x, €Qp, vy, €V, w, € Wy, £ € Ay, and
¢ €A,

(2ue(uy),e(vy))a, — (div(vy),prla, + (vi-np A1),

n—1
+ > (panss K (up = 0) -t vy - ts)r,, = (£r.V5)o,, (2.1.11a)

j=1
(div(ug), ws)a, = (g5, wr)ay, (2.1.11b)
(0 A(op + apppl), 7)o, + (div(Ty), us)a, + (T, Vp)a, — (Tpnp, O)r,, =0, (2.1.11c)
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(div(oay), vs)a, = — (£, vs)a,, (2.1.11d)

(@, Xp)a, =0, (2.1.11e)

(WK "y, vy)a, — (div(vy), pp)a, + (Vp -1, M, =0, (2.1.11f)

(Soatpm wp)Qp + ap<8tA(0-p + O‘pppI)a wpI)Qp + (div(up)a wp)Qp = (qu wp)ﬂpa (2-1-11g)

(uf -ny+6-n,+u,-ny,Er,, =0, (2.1.11h)
n—1

<¢ "y, )‘>Ffp - Z </“LaBJS \/ Kj_l(uf - 0) : th’ ¢ ) tf1j>Ffp + <0Pnp7 ¢>Ffp =0. (21111)
j=1

In the above, (2.1.11a)—(2.1.11b) are the Stokes equations, (2.1.11c)—(2.1.11e) are the elas-
ticity equations, (2.1.11f)—(2.1.11g) are the Darcy equations, and (2.1.11h)—(2.1.11i) enforce

weakly the interface conditions.

Remark 2.1.1. The time differentiated equation (2.1.11c) allows us to eliminate the dis-
placement variable m,, and obtain a formulation that uses only u,. As part of the analysis we
will construct suitable initial data such that, by integrating (2.1.11c) in time, we can recover

the original equation

(Aloy + apppl), Tp)o, + (div(Ty),mp)e, + (Tp, pp)e, — (Tpnp, wir, =0, (2.1.12)

where w == n,|r,, .

In order to obtain a structure suitable for analysis, we combine the equations for the
variables with coercive bilinear forms, uy, u,, o,, and p,, together with 8, which is coupled
with them via the continuity of flux and BJS conditions. We further combine the rest of the

equations. Introducing the bilinear forms
af(ug,vy) = (2pe(uy),e(vy))e;,
ap(up, vp) == (MK_lumVp)Qp? ag<ppva) = (50pp7wp)9p7
be(Vi, wy) = —(div(vy), we)a,, * € {fip},  bs(Tp, Vs) := (div(T)), Vs)a,,

bmp (Tpa ¢) = _<Tpnpa ¢>Ffp7 bsk(T;m Xp) = (Tp7 Xp)Qp?
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(O py Pp; Ty Wp) = (Ao, + apppl), T, + apwpI)va

n—1
apss(uy, 05V, @) =Y (poss\ /K (up = 0) -ty (vi— @) - tri)r,,,
j=1
br(Vy, vp, @:8) == (vy ny+ ¢ -n,+v, 1,1,
the system (2.1.11) can be written as follows:
ag(ug, vy) + ap(uy, v,) + agss(uy, 0; vy, @) — by (0, @) + by(vyy, pp) + bp (v, py)
+bs(Tp, W) + b (T, ¥,) + 0r(Vs, Vi, &5 A) + @b (0ipp, wp) + ac(0r0p, Oipp; Ty, wy)
+bn, (75, 0) = bp(uy, wp) = (£f, Vi) + (g, wp)a,,

—by(ug, wy) — bs(0p, vs) = bs(0, X)) — br(uy, vy, 0;8) = (g7, wr)a, + (£, vs).
(2.1.13)

We group the spaces and test functions as:
Q =V xA;xV, xX, xW,, S:=W;xV,;xQ,xA,,
p:=(us,0,u,,0,p,) €Q, r:=(pr,u,v,A\) €S,
q:= (vVy, @, vy, Tp,w,) €Q, s:= (wy,Vs,X,,§) €8,

where the spaces Q and S are endowed with the norms, respectively,

lallq = Ivellv, + |@lla, + [IVpllv, + ITpllx, + [wpllw,,

Islls = llwsllw, + [1vsllv, +lIxplle, + I€]la,-

Hence, we can write (2.1.13) in an operator notation as a degenerate evolution problem in a

mixed form:
oEPH)+Apt) + B r(t)=F() in Q,
(2.1.14)
—Bp(t) =G(t) in S
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The operators A : Q — Q', B : Q — S’ and the functionals F(t) € Q', G(t) € S’ are
defined as follows:
Af "’fjll]ach (Alj;?s)/ B, 0 0 0

Agss Agss 0 0 0 B

0
0
0
0
A= 0 0o 4 0 B | B= ,
0 0 0 Bu 0
0
0

0 —-Br 0 0
B.L By B 0
0 0 —B, 0 0
(2.1.15)
f;
q
0 f
£,
F(t) = 0 ) G(t) = )
0
0
0
dp
where
(Apuy,vy) = ag(ug, vy), (Apuy, vp) = ap(uy, vy),

(Bpuy, wp) = bp(up, wy),  (Brop, @) = —bn, (0, @),
(Afsuys,vs) = apss(uy, 0;v4,0),  (Afigus, @) = apss(uy, 0;0, ),
(Ass0, @) = azs5(0,6;0, 9),

(Brug,wy) = bs(uy,wy), (Bsop,vs) = bs(0p, V),  (Bkop,X;) = bsk(0p, X,),

(Bguﬁg) = bF(uf7070;§)7 (Bi—s\e,f) = bF(Ovove;S)v (Blz')‘ulhé) = bF(O7up’0;§)'

The operator & : Q — Q' is given by:

000 0 0
000 0 0
S=loo0oo0 o 0 ,
000 A  A¥

0 0 0 (AP) A4 A»
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where
(Azo'p, Tp) = ae(am 0; 75, 0)7 (Azpa'pa wp) = ae(a'pa 0;0, wp)a

(APpp, wp) = ac(0,py; 0, wp), (Aippva) = aﬁ(Ppa wy).

2.2  Well-posedness of the weak formulation

2.2.1 Preliminaries

We start with exploring important properties of the operators introduced in the previous

section.

Lemma 2.2.1. The linear operators A and &, are continuous and monotone.

Proof. Continuity follows from the Cauchy-Schwarz inequality and the trace inequalities

(2.1.8)—(2.1.9). In particular,
ag(ug,ve) < 2ullurllv, [vellv,,  ap(uy,vp) < phiallwpllea,) 1Vplleae,).
apss(uy,0; vy, @) < ,UOCBJSk;iln/Q‘uf = Oapss [V — Plasss (2.2.1)
< Clllullvy + 101z, Ivsllvy + @lleawy,).

bn, (Tp, @) < ClTplls, 1 Dllas bp(Vpwp) < [[Vllv, lwpllw,

where, for vy € Vi, ¢ € Ay, |vy— |2 = Z;:ll (Vi—¢) -ty (vi— @) 'tf7j>rfp’ and we

have used the trace inequality, for a domain O and S C 00,
el < Cliellmeoy Ve € H(O). (2.2.2)
Thus we have
(Ap,aq) = as(uy,vy) + ap(u,, v,) + agss(uy, 0; vy, @) — by, (07, ) + b, (T, 0)
+0p(Vp, Pp) — bp(u, wp)

< Cllpllqllallo (2:23)
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and

(1P, q) = (sopp, wp)e, + (Aloy + apppl), Ty + apwpl)a, < C|lpllallalle- (2.2.4)
Therefore A and &; are continuous. The monotonicity of A follows from

ap(vs.vy) = 21lle(v ) [Paga,) > 26C3 Vil -
—1

ap(Vp, V) = KTV a0y 2> ik [Villi2 (), (2.2.5)

aBJS(Vf> ¢7 Vi, ¢) > ,UO‘BJSan}n/f‘Vf - ¢’C2lBJS’

where we used Korn’s inequality [le(vy)|| > Ck||vy[lmi(q,) in the first bound. The mono-

tonicity of & follows from
(&1q,9) = 50”“@”%2(91,) + ||A1/2 (Tp + pwy I)H]I%?(Qp)- (2.2.6)
O

Lemma 2.2.2. The linear operator B is continuous. Furthermore, there exist positive con-

stants P1, P2, and B3 such that

bs<Tp7 Vs) + bsk(Tp7 Xp)

Bi(l[vs]

VS + HX})HQP) S Sup ) vvs E V87 Xp 6 Qpa

TpEXp s.t.Tpnp=0o0nTy, HTPHXp

(2.2.7)

by(vy, wf) + bp(VZH wy) + br(vy, vy, 0; £)

Balllwrllw, + lwpllw, +lI€lla,) < sup

(V§Vp)EV XV ||(Vf7Vp)HVf><Vp ’
Vwr e Wy, wy, € Wy, and & € Ay, (2.2.8)
bn, (T,
Bsl|@lla, < sup : (T ¢), Vo e A, (2.2.9)

TpEXp s.t.div(7Tp)=0 ||TP ||Xp
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Proof. The definition (2.1.15) of B implies

(Bq7 S) = bf(vf7 wf) + bs(pr Vs) + bsk(Tp7 Xp) + bF(Vfa Vo, d)a g)
< || div(ve)llLz@p llwylliz@, + 1div(Tp) Lzl VsllLz@,) + 1Tl XLz @,)
+ Cllvylla @plléllvaw,,) + Clivplla@vollEllmew,,) + [@lluzw,,)lllar,,)

< Clallallsls. (2.2.10)

so B is continuous. Next, inf-sup condition (2.2.7) follows from [50, Section 2.4.3]. We
note that the restriction 7,mn, = 0 on I'j, allows us to eliminate the term by (7,,6) when
applying this inf-sup condition, see (2.2.26) below. Inf-sup condition (2.2.8) follows from a
modification of the argument in Lemmas 3.1 and 3.2 in [43] to account for |T')| > 0. Finally,

(2.2.9) can be proved using the argument in [50, Lemma 4.2]. O

2.2.2 Existence and uniqueness of a solution

We will establish existence of a solution to the weak formulation (2.1.14) using the

following key result.

Theorem 2.2.3. [74, Theorem IV.6.1(b)] Let the linear, symmetric and monotone operator
N be given for the real vector space E to its algebraic dual E*, and let E; be the Hilbert space

which is the dual of E with the seminorm
2], = (Na(x))"/? rek.

Let M C E x Ej be a relation with domain D = {x € E : M(z) # 0}. Assume that M is
monotone and Rg(N + M) = E]. Then, for each ug € D and for each f € WH(0,T; Ej}),

there is a solution u of
%(Nu(t)) + M(u®) 2 f(t) ae 0<t<T, (2.2.11)
with

NucWHe(0,T; E}), u(t)eD, forae 0<t<T, and Nu(0)=Nu.
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We cast (2.1.14) in the form (2.2.11) by setting

E O A B F
E=Qxs, u=|P), ~v=[“ . M= . f=
r 0 0 —-B 0 G
(2.2.12)

The seminorm induced by the operator & is [q|Z, := so[lwp||f2(q,)+ |AY2 (1,4, w, 1) I72(0,):
cf. (2.2.6). Since sy > 0, it is equivalent to ||‘Tp||]%2(9p) + ||wp||iQ(Qp). We denote by X, , and
W2 the closures of the spaces X, and W), respectively, with respect to the norms ||7,|x,, :=
| TpllL2(0,) and ||wyllw,, = [[wpll12,). Then the Hilbert space Ej in Theorem 2.2.3 in our

case 1s
By = Q5 x S5, where Q55:=0x0x0xX ,xW, , 8,;:=0x0x0x0. (2.2.13)

We further define D := {(p,r) € Q x S: M(p,r) € E}}.

Remark 2.2.1. The above definition of the space E; and the corresponding domain D implies
that, in order to apply Theorem 2.2.3 for our problem (2.1.14), we need to restrict £y = 0,
qr =0, and £, = 0. To avoid this restriction we will employ a translation argument [76] to
reduce the ezistence for (2.1.14) to existence for the following initial-value problem: Given
initial data (Po,To) € D and source terms (Gr,, Gw,) : (0,T) — X5 x W, find (p,r) :
0,7] = Q x S such that (6,(0),p,(0)) = (6p.0, Ppo) and, for a.e. t € (0,T),

0, Ep(t) + Ap(t) + B'r(t) =F(t) in Qb

(2.2.14)
—Bp(t)=0 in  Sh,

where f‘(t) =(0,0,0,Gr,,Guw,)"-

In order to apply Theorem 2.2.3 for problem (2.2.14), we need to 1) establish the required
properties of the operators N" and M, 2) prove the range condition Rg(N + M) = Ej, and
3) construct compatible initial data (pg,To) € D. We proceed with a sequence of lemmas

establishing these results.

Lemma 2.2.4. The linear operator N defined in (2.2.12) is continuous, symmetric, and

monotone. The linear operator M defined in (2.2.12) is continuous and monotone.
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Proof. The stated properties follow easily from the properties of the operators &, A, and
B established in Lemma 2.2.1 and Lemma 2.2.2. ]

Next, we establish the range condition Rg(N + M) = Ej, which is done by solving the
related resolvent system. In fact, we will show a stronger result by considering a resolvent
system where all source terms may be non-zero. This stronger result will be used in the
translation argument for proving existence of the original problem (2.1.14). In particular,
consider the following resolvent system: Given gy, € V%, g, € W}, g-, € X 5, gy, € V|,
Ix, € Qs Gv, € Vi, Gu, € Wy, Ge € Ay, and gy € A, find (ug,py, 0, s, ¥y, Wy, Pp, A, 0) €

Vix Wy x X, xVyxQ,xV,xW,xA,x A, such that for all vy € Vi, wy € Wy, 7, € X,
vi €V, X, €Qp, vy €V, w, € Wy, § €A and ¢ € Ay,

ap(uy, vy) + ap(up, vp) + asss(Uy, 0; vy, @) — ba, (0, @) + by(Vp, pp) + by (v, py)
+bs(7-p7 us) + bsk(Tpa Vp) + bF(Vf7 Vp7 ¢7 >\> + ag(ppﬂ wp) + ae(aZJ)pp; Tpa wp)

+bn, (T, 0) — by(u,, wy)

(2.2.15)
= (Gvs: Vi)o, + (Gos D)o, + (Gv,s Vo)o, + (Gr,s To)e, + (Guys Wp)a,,
—bs(ug, wy) — bs(op, vs) — bk(0y, Xp) — br(uy, uy, 6;¢)
= (Guwy)a; + (Gves Vs)a, + (ﬁxp, Xp)a, + (9, 6)a,-
Letting
Q: =V xA; xV, xX,9xW,,,
the resolvent system (2.2.15) can be written in an operator form as
E+Ap+Br=F in Q,
(2.2.16)

where F € Q) and G € §' are the functionals on the right hand side of (2.2.15).
To prove the solvability of this resolvent system, we use a regularization technique,

following the approach in [4,76]. To that end, we introduce operators that will be used to
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regularize the problem. Let Ry, : V, =V, Ry X, = X R, W, - W L, :W; —
Wi, Ly, : Vs = Vi, and Ly :Q,— @, be defined as follows:

(Ru,up, Vi) = ru, (0, vp) := (div(w,), div(vy))a,,

(Ro,0p: Tp) =76, (0, Tp) i= (0, Tp)a, + (div(oy,), div(Ty))e,,

(Bp,Pps wp) = p, (Pps wp) = (Pp: Wp)e,s  (Lyppg,wy) = by (P, wy) == (py, wy)ey,

(Lu,us, vi) = Ly, (05, Vo) = (05, Vi)a,, (L, ¥y Xp) = by, (Vpr Xp) = (Vs Xp) 2, -
The following operator properties follow immediately from the above definitions.

Lemma 2.2.5. The operators Ry,, Ry, Rp,, Ly,, Lu,, and Ly are continuous and mono-

tone.

For the regularization of the Lagrange multipliers, let ¢)(\) € H*(€,) be the weak solution
of

—div(Ve(A)) =0 in Q,,
PY(A)=A on Ty, ViY(A)-n,=0 on T,

Elliptic regularity and the trace inequality (2.2.2) imply that there exist positive constants
c and C' such that

oMo,y < IMew,,) < ClvM)la@,)- (2.2.17)
We define Ly : A, — A as
(LA, €) = (A &) == (V(A), Vi (€))g, - (2.2.18)
Similarly, let ¢(6) € H'(Q,) be the weak solution of
—div(Ve(0)) =0 in Q,,
#(6)=6 on Ty Ve(6) m,=0 on T,

satisfying
el (@0, < 102, < Clle(O) o, (2.2.19)
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Let Ry : A, — A’ be defined as

(RoB, ) = ra(0, ) := (Vep(6), Vo ). (2.2.20)
Lemma 2.2.6. The operators Ly and Rg are continuous and coercive.

Proof. 1t follows from (2.2.17) and (2.2.19) that there exist positive constants ¢ and C' such
that

(Lan6) < ClM sl EadN) 2 M, YAEEA,

(Re0, ) < ClOllwi2ry,) ldllrry,),  (Ro0,0) = cllOlfyyep, ) V6,6 € As.
(2.2.21)

]

Lemma 2.2.7. For every F e Q) and G e S’, there exists a solution of the resolvent system

(2.2.16).

Proof. Define the operators R : Q — Q) and £ : S — S’ such that, for any p =

(uf797up7apapp)7 q= (Vf7¢7vpa‘rp7wp) € Q and r = (pf7u8a7p7/\)7 s = (wf7VS7Xp7€) € S)

(Rp.q) :== <Rupupavp) + (Rcrpo'vap) + (Rppppa wy) + (Re0, @),
(‘Cr’ S) = (Lpfpf7 ’LUf) + (Lusus7vs) + (L"/p’Yp? Xp) + (L)\)\a f)

For ¢ > 0, consider a regularization of (2.2.15): Given F = (Gvs> 9 vy Grpy Gu,) € Qf and

G = (/g\wf7/g\v57§xp7/g\£) € S/7 ﬁnd Pe = (uf,€7 067 up,eu o-p,ﬂpp,e) € Q and re = (pf,ea us7€’,-),p7€’ )\e)
€ S such that

(ER + 51 + A)pe + B,re = ]/;\‘ in Q/27
R (2.2.22)
—Bp.+eLlr,=G in S

Let the operator O : Q x S — Qf x S’ be defined as

q eR+&E+A B q
S -B eL S
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We have

ol ") [ )] =R+ +Apq) + Br.a) - (Bp,s) +elLr.s).

r S

Lemmas 2.2.1-2.2.6 imply that O is continuous. Moreover, using the coercivity and mono-

tonicity bounds (2.2.5), (2.2.6), and (2.2.21), we have

o V). M) =erR+&+Aaq + (eLs.9)

s s
= €Ty, (Vp, vp) + o, (Tp, Tp) +ero(p, @) + €T p, (wy, wp) + ap(Vp, vp)
+ (A(Tp + apwpl), 7, + apwpl) + (sowp, wy) + af(Ve, vy) + agss(Ve, @3 vy, @)
+ el (wy, wy) + €ly, (Vs, vs) + €l7p(xp7 X,) T €lr(§:€)
> C(EHdiV(Vp)Hi?(Qp) + 6||"'p||i2(szp) + E”diV(Tp)H%?(Qp) + €||¢||f{1/2(rfp) + E||wp||i2(np)
+[IVpllEaa,) + I1AY2(T) + cpwpD)l[E2q,) + sollwpllEz,) + le(ve) 2 q,)
Vs = Blags +ellwrllta,) + elVslliei,) + ellxp g, + elélfuee,,),  (22.23)

which implies that O is coercive. Thus, an application of the Lax-Milgram theorem estab-
lishes the existence of a unique solution (p.,r.) € Q x S of (2.2.22). Now, from (2.2.22) and
(2.2.23) we obtain
GHdiV(up,e)H%Z(Qp) + EHdiV(Up,e)H%%Q,,) + EHOeH%{l/z(rfp) + EHUP,GHJ?P(QP) + GHPp,eHi%Qp)
+ [wpcllza,) + 1A (0pc + ppp D) IE2(0,) + sollPpelfzia,) + 0sellfn o,
+lupe = 0, +ellprellfa,) + elluselfzi,) + el VpdlEai,) + ellXellfz,,)
< Clgv, llezoplluselliz,) + [19glltz@)l10cllrz@,) + 1Gv, luz@,)tp.cllre @)

+ [|Gr, L2 [T p.elliz ) + [[Guw, 2@ 1Ppelliz,) + 19w,z 1Prellrz@))

+ 9w,

LQ(QP)||u57€||L2(Qp) + H/g\Xp”LQ(QP)H’Yp,e“]LQ(Qp) + H/g\é-HLz(Qp)||)\€HL2(QP))7 (2224)
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which implies that [[u,cllL2i,), [[473(0pe + apppd)lliz,) and [uscllaiq,) are bounded

independently of €. Next, from (2.2.22) we have
(A(ope + ppl), Tp)a, + €(0pe, Tp)o, + €(div(oy,), div(Ty)e,)
+ bn, (Tp, 0c) + bs (T, Us ) + (T, 'yp’e) = (Gr,, Tp)a,- (2.2.25)

Applying the inf-sup condition (2.2.7) results in

bs (Tp7 us,e) + bsk (Tp7 7p,e>

u 2 —+ 2 <C su
H S7E“L () H’YP’EHL 2 Tp€EXp S.t.TpIE;IOOanp HTpHXp
_C sup (_(A(O'px + bpd), Tp)o, — €(Ope, Tp)e,
TpEXps.t.Tpnp=00nTly, HTPHXp

+ _E(div(o-pye)’ diV(Tp)Qp))Qp - bnp (Tlﬂ 05) + (/g\Tp’ Tp)Qp)
|75llx,
< C([|A(ope + appped) 2 (e,) + ellopelliz,) + elldivi(o,.e) |l q,) + 197, lL2@,)),
(2.2.26)

where the term by, (7p,0.) vanishes due to the restriction 7,n, = 0 on I'y,. Also, applying

the inf-sup condition (2.2.9) and using (2.2.25), we obtain

bn, (T, 0.
O,y <C  sup T8
’ TpEXp s.t. div(7Tp=0) HTP HXp
- C Sup (_A(ap,e + O‘ppp,el)v Tp>Qp - 6(‘7?767 Tp)Qp - bsk<7-pa '7p,e) + (/g\‘rpa Tp)Qp
Tp€Xp s.t. div(Tp=0) HTp HXP
< C([|A(ope + appp. DLz, + ellopelliz,) + [1Vpellz@, + 19, lL2@,))- (2.2.27)

Bounds (2.2.26) and (2.2.27) imply that [luscllr2@,) [Vpelize,). and [[@cllgizr,,) are
bounded independently of €. In addition, (2.2.22) gives

ap(Upe, Vi) + €(div(uy,), diV(Vp))Qp + bp(Vp, Dpe) + (Vp - 1y, )\5>Ffp +ar(Uye, vy)
-+ aBJs(uf,E, HG;Vf, 0) + bf(Vf,pfﬁ) + <Vf o | )\€>pr =0, (2.2.28)

so applying the inf-sup condition (2.2.8), we obtain

IPrellizy + [1Ppelliz@y,) + [Aellmee,,)
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<C sup br(Vi,Dre) + bp(Vp, Dpe) +br (v, vy, 05 A)

(V4 Vp0)EV X VX A (v v, 0)|lv ;s %A,

<_ap(up,ea v,) — e(div(u,), div(vy))
H (Vf> Vps O) va XVpxAg

=C sup
(Vf,Vp,O)GVf XVPXAS

_af(uf,ea Vf) - a'BJS(uf,e7 0.; Vi, 0))
(v, Vp, 0)||fovpr5

< Cllupelliza,) + elldiv(upe)llLz,) + [arellm@p) + e = Oclans)- (2.2.29)
Therefore we have that [[pselliz,), [[Ppelliz(,) and [|Acl[u12r,,) are also bounded indepen-

dently of e.
Since div(X,,) = Vj, by taking v, = div(o,.) in (2.2.22), we have

[div(ep.e)llLz(e,) < €llusellize,) + 19v. lle2@,), (2.2.30)

which implies that [div(e,.)||lL2(,) is bounded independently of e. Since ||AY?(o,. +
appp.d)llL2,)s 1Ppelliz,) and ||div(e,e)|lLz,) are all bounded independently of e, the
same holds for [|oy||maiv,,). Finally, since div(V,) = W, by taking w, = div(u,.) in

(2.2.22), we have

ldiv(uyllizay) < Cllopelliay) + (0 + lppclizon + Gy lizey)s  (22:31)

so ||div(up,c)|[12(,), and therefore ||u, ||y, is bounded independently of €. Thus we conclude
that all the variables are bounded independently of e.

Since Q and S are reflexive Banach spaces, as ¢ — 0 we can extract weakly convergent
subsequences {p.,}n>, and {r.,}>>, such that p.,, - p in Q, r.,, — r in S. Taking the

limit in (2.2.22), we obtain that (p,r) is a solution to (2.2.16). O

Lemma 2.2.8. For N, M and Ej defined in (2.2.12) and (2.2.13), it holds that Rg(N +
M) = Ej, that is, given f € Ej, there exists v € D such that (N + M)v = f.
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Proof.  Given any g,, € X, and g, € W}, 5, according to Lemma 2.2.7, there exist (p,r) €
Q x S such that
(& +Ap+Br=F in Q,

where F = (0,0,0,9r,,Gu,)" € Qy, implying the range condition. ]

We are now ready to establish existence for the auxiliary initial value problem (2.2.14),

assuming compatible initial data.

Theorem 2.2.9. For each compatible initial data (Po,To) € D and each (Gr,,Guw,)
€ WHY(0, 75X ) x WH(0, T3 W1 ), there exists a solution to (2.2.14) with (o,(0),p,(0)) =
(00, Dpo) and (g, pg, 0y, Ug, Y, Uy, Pp, A, 0) 2 [0,T] = Vi x Wy x X, x V, x Q) x V), X
W, x A, x Ay such that (o,,p,) € WH(0,T;L2(,)) x Wh=(0,T; W,).

Proof. Using Lemma 2.2.4 and Lemma 2.2.8, we apply Theorem 2.2.3 with £, N' and M
defined in (2.2.12) to obtain existence of a solution to (2.2.14) with o, € Wh>(0, T; L?(Q,))
and p, € W>°(0,T;W,). O

We will employ Theorem 2.2.9 to obtain existence of a solution to our problem (2.1.13).

To that end, we first construct compatible initial data (pog, ro).

Lemma 2.2.10. Assume that the initial data p,o € W, N H, where

H:= {w, e H'(Q,) : KVw, e H'(Q,), KVw, - n,=0 on I, w,=0 on I}
(2.2.32)

Then, there exist po := (uy,, 00, Wp0, Op0,Ppo) € Q and ro := (pyo, Us0,7Yp0, Xo) € S such

that
.Apo + B,I‘O = FO mn Q/Q,
(2.2.33)
“Bpy=G(0) in S,

where Fy = (££(0),0,0,9r,,9uw,)" € Qy, with suitable gr, € X} 5 and Gy, € W, .
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Proof.  Our approach is to solve a sequence of well-defined subproblems, using the previously
obtained solutions as data to guarantee that we obtain a solution of the coupled problem
(2.2.33). We proceed as follows.

1. Define u, := —u 'KVp,o € H'(Q,), with p,o € W,NH, cf. (2.2.32). It follows that

pK 1,0 = —Vpyo, div(u,g) = —p 'div(KVp,o) in €, u,o-n,=0 on Fg.

Next, define A\g = ppo|r,, € A,. Testing the first two equations above with v, € V,, and
w, € Wy, respectively, we obtain

ap(Up0, Vi) + bp(Vp, Ppo) + (Vp - 1y, )\0>Ffp =0, Vv,€eV,,
(2.2.34)

—bp(p0, wp) = —p~ H(div(KVppo), wp)a, , YVw, € W,.

2. Define (uyso,pro) € Vy x Wy such that

ag(uso,vy) +bs(vye,pro)

n—1
== (nosss\ /K 0ty vy tri)r,, — (Veong dodry, + (Fr(0),ve)a,, Vv € Vy,

j=1
—bs(uro, wy) = (q7(0), wy), Vuw; € Wy

(2.2.35)

This is a well-posed problem, since it corresponds to the weak solution of the Stokes system

with mixed boundary conditions on I'¢,. Note that A\g and u, o are data for this problem.
3. Define (0,,0,M,.0, Ppo, wo) € X, X Vi X Q, x A, such that

(Ao, Tp)Qp + bs(Tp, T’p,O) + bk (T, pp,O) + bn, (Tp, wo) = —(Aapppol, Tp)ﬂpa V1, €X,,

n—1

—bn, (000, @) = Z<NQBJS\/ K‘;lup’o by, P tf,j>1“fp — (¢ - n,, )\0>pr, Vo e A,
j=1

—bs(07p0,Vs) = (fp(0)7vs)ﬂpa Vv, € Vg,

_bsk(o'p,m Xp) = 07 vXp € @zr

(2.2.36)
This is a well-posed problem corresponding to the weak solution of the mixed elasticity

system with mixed boundary conditions on I'y,. Note that p, o, u,o and A\ are data for this
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problem. Here n,, p, o, and wq are auxiliary variables that are not part of the constructed
initial data. However, they can be used to recover the variables n,,, p,, and w that satisfy

the non-differentiated equation (2.1.12).

4. Define 8y € A, as
0p=uso—u,o on Iy, (2.2.37)

where uyo and u,( are data obtained in the previous steps. Note that (2.2.37) implies
that the BJS terms in (2.2.35) and (2.2.36) can be rewritten with u,q - t;; replaced by
(ufp — 6y) - ty; and that (2.1.11h) holds for the initial data.

5. Define (0,0, Us0,7,0) € X, X V, x Q, such that
(Aa'p,(b Tp)Qp + bs(Tp, Us0) + bsk('rpa 'Yp,()) = —bn, (Tzn 0o), VT,€X,
—bs(p0,vs) =0, Vv, € V,, (2.2.38)

—bs (G50, X,) = 0, Vx, € Q,.
This is a well-posed problem, since it corresponds to the weak solution of the mixed elasticity
system with Dirichlet data 6y on I'y,. We note that &, is an auxiliary variable not used in
the initial data.
Combining (2.2.34)-(2.2.38), we obtain (uy,, 8o, up,0, 40, Pp0) € Q and (py0, Us0, Y0,
Xo) € S satisfying (2.2.33) with

(:Cl\rp,Tp)Qp = _(A(a'p,ﬂ)?Tp)Qp? (@\wpv wp)Qp = _bp(upﬁ’wp)'

The above equations imply
197, l2 () + 19, [l2(2,) < CUlITpo0llLa(y,) + [1div(apo)lli2e,)),
hence (gr,, Gu,) € X}, 5 X W7 ,, completing the proof. O

p

We are now ready to prove the main result of this section.
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Theorem 2.2.11. For each compatible initial data (po,ro) € D constructed in Lemma 2.2.10

and each
f; € Wl’l(O,T; V}), f, € Wl’l(O, T; V;), qr € Wl’l((), T; W}), qp € Wl’l(O, T; W;),

there exists a unique solution of (2.1.11) (Wy, py, 0y, Us, ¥y, Uy, Pp; A, 0) 1 [0, T] = Vi x Wy x
X, x Vi x Q, x V, x W, x A, x A, such that (@, p,) € W(0, T;L2(,)) x WH(0, T; W)

and (0,(0),,(0)) = (6p.0, Ppo)-

Proof. For each fixed time t € [0, T], Lemma 2.2.7 implies that there exists a solution to the
resolvent system (2.2.16) with F = F(t) and G = G(t) defined in (2.1.14). In other words,
there exist (p(t),r(¢)) such that

(&1 +A)p(t) + B'T(t) =F(t) in Q,
(2.2.39)

—-Bp(t)=G(t) in S.
We look for a solution to (2.1.14) in the form p(t) = p(¢t)+p(t), r(t) = ¥(t)+r(t). Subtracting
(2.2.39) from (2.1.14) leads to the reduced evolution problem

0 E1p(t) + ADB(t) + B'T(t) = & p(t) — 8: E1p(t) in Qi
(2.2.40)

—Bp(t) =0 in Sj,,
with initial condition p(0) = pp — p(0) and T(0) = ry — r(0). Subtracting (2.2.39) at t =0
from (2.2.33) gives

AB(0) + B'F0) = Ep(0) + Fo —F(0) in Qb

_Bﬁ<0) =0 in Sl2,07

We emphasize that in the above, Fy — F(0) = (0,0, 0,Grp» Gu, — 4(0))" € Qb . Therefore,
p(0

M p(0) € Ej, i.e., (p(0),7(0)) € D. Thus, the reduced evolution problem (2.2.40) is
r(0)

in the form of (2.2.14). According to Theorem 2.2.9, it has a solution, which establishes

the existence of a solution to (2.1.11) with the stated regularity satisfying (o,(0),p,(0)) =

(UP,O ) ppvo) .
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We next show that the solution is unique. Since the problem is linear, it is sufficient to
prove that the problem with zero data has only the zero solution. Taking F = G = 0 in
(2.1.14) and testing it with the solution (p,r) yields

1
50 (1420, + aypy DliEz(a, + s0llmylEoco, )
+ ap(ap, up) + agp(uy, uy) + apss(uy, O;uy,0) = 0.

Integrating in time from 0 to ¢ € (0,7] and using that the initial data is zero, as well as
the coercivity of a, and a; and monotonicity of agss, cf. (2.2.5), we conclude that o, = 0,
pp =0, u, =0, and uy = 0. Then the inf-sup conditions (2.2.7)-(2.2.9) imply that u, = 0,
v, =0,0 =0, p; =0, and A = 0, using arguments similar to (2.2.26)—(2.2.29). Therefore
the solution of (2.1.13) is unique. O

Corollary 2.2.12. The solution of (2.1.13) satisfies ur(0) = uyso, ps(0) = pro, u,(0) = u,p,
)\(O) == )\0, and 0(0) = 00.

Proof. Let uy := us(0) — uyp, with a similar definition and notation for the rest of the
variables. Since Theorem 2.2.3 implies that M(u) € L>(0,T; E}), we can take ¢ — 0% in all
equations without time derivatives in (2.1.13) and using that the initial data (po, ro) satisfies

the same equations at ¢t = 0, cf. (2.2.33), and that &, = 0 and p, = 0, we obtain

(2pe(Ty), e(ve))a, — (div(vy), Bya, + (Vs 0p, N,

—_

n—

+ <,UOéB‘]s\ / Kj_l(ﬁf - 5) : tf’j, \Z tf7j>rfp = 0, (2241&)
j=1
(div(ay), wy)a, =0, (2.2.41b)
(WK™, v,)a, + (v, -1, N)r,, = 0, (2.2.41¢)
(Wf-np+6-n,+1, n,Er, =0, (2.2.41d)
n—1
(@-m,, Nr,, — Y (posss\/K; (U — 0) 75,0 550, =0. (2.2.41¢)
j=1
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Taking (vy, wg, vy, &, @) = (ﬁf,ﬁf,ﬁp,x, 6) and combining the equations results in

||ﬁf||%{1(szf) + 10, 1 F2 0, + 0 — 812, <0,

asJjs

which implies Uy = 0, u, = 0 and 8-t;,; = 0. Then (2.2.41d) implies that (8-n,, &)r, = 0 for
all ¢ € HY/2(';,). We note that n, may be discontinuous on I',, resulting in @-n, € L2(T},).
However, since HY/2(T';,) is dense in L2(T's,), we obtain € - n, = 0, thus 8 = 0. Using the
inf-sup condition (2.2.8), together with (2.2.41a) and (2.2.41c), we conclude that p; = 0 and

A=0. [l

Remark 2.2.2. As we noted in Remark 2.1.1, the time differentiated equation (2.1.11c) can
be used to recover the non-differentiated equation (2.1.12). In particular, recalling the initial

data construction (2.2.36), let

t t t

Vte[0,T], n,(t)= np’0+/ u,(s) ds, p,(t) = pp70+/ v,(8)ds, w(t) = wo—l—/ 0(s) ds.
0 0 0

Then (2.1.12) follows from integrating (2.1.11c) from 0 to t € (0,T] and using the first

equation in (2.2.36).

2.3 Semi-discrete formulation

2.3.1 Semi-discrete continuous-in-time formulation

In this section we introduce the semi-discrete continuous-in-time approximation of
(2.1.14). We assume for simplicity that Q; and , are polygonal domains. Let 7;Lf and
T? be shape-regular [39] affine finite element partitions of 2y and €, respectively, which
may be non-matching along the interface I's,. Here h is the maximum element diameter. Let
(Vin, Wer) C (Vy, Wg) be any stable Stokes finite element pair, such as Taylor-Hood or the
MINTI elements [23], and let (Vn, Wpi) C (V,, W,) be any stable Darcy mixed finite element
pair, such as the Raviart-Thomas (RT) or the Brezzi-Douglas-Marini (BDM) elements [23].
Let (Xpn, Vs, Qpn) C (X, Vi, Q,) by any stable finite element triple for mixed elasticity
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with weak stress symmetry, such as the spaces developed in [11,13,20]. We note that these
spaces satisfy

diV(Vph> = th, diV(Xph) = Vsh- (231)
For the Lagrange multipliers, we choose non-conforming approximations:

Aph = Vph -1y, |Ffp7 Ash = Xphnp |Ffp (232)

with norms [[§[|a,, = [[€llLzw,,)s  @lla., = @l

The semi-discrete continuous-in-time problem is: Given f; : [0, 7] — \4S [0,T] — V.,
qr [0, T] = W, g, : [0, T] = W, and (0,0, Ppno) € Xpn X Wopn, find (Wpn, psny T ph, W, Yphs
Wphs Dphs Ay On) 2 [0, T] = Vi X W X X X Vg X Qpp X Vi X W, X Ay X Ay, such that
(o1 (0),ppn(0)) = (0 ph0, Ppro) and, for a.e. t € (0,7) and for all vp, € Vi, wp, € Wiy,

Toh € Xphs Vsn € Van, Xpn € Qphs Vpu € Vi, wpn € Wyp, & € App, and @y, € Ay,

(2pe(usm),e(vin))a, — (div(ven), pra)a, + (Vin - 1p, An)ry,

n—1
+ Y (panss /K (g = 08) -ty v - tg)r,, = (£ Vi), (2.3.3a)

j=1
(div(usn), wen)a, = (a5, wen)a,, (2.3.3b)

(e A(opn + cppprl), Tph)Qp + (div(Tpn), u5h>Qp + (Tpn, 'th)Qp — (T pa11y, 9h>Ffp =0,

(2.3.3¢)
(div(opn), Van)a, = —(fp, Ver)a,, (2.3.3d)
(o phs Xpn), =0, (2.3.3¢)
(,uK_luph,Vph)Qp — (div(vpn), Ppn)a, + (Vpn - Dy, An)r,, = 0, (2.3.3f)

(308tpph> wph)Qp + Ofp(atA(o'ph + appphI)a wphI)Qp + (div(uph)a wph)Qp = (qpa wph)Qpa

(2.3.3g)
<ufh ‘g + Oh -1y, + Upp * np,§h>1"fp = 0, (233h)
n—1
<¢h -1y, )\h>rfp - Z <:U’O‘BJS \/ Kfl(ufh - gh) ’ th? ¢h ’ tf7j>Ffp + <a-phnpv ¢h>Ffp =0.
j=1
(2.3.3i)
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Remark 2.3.1. We note that, since H/%(T'y,) is dense in L2(T'y,), the continuous varia-
tional equations (2.1.11h) and (2.1.11i) hold for test functions in L*(Ty,), assuming that the

solution is smooth enough. In particular, they hold for &, € A,y and @), € Ay, respectively.
The formulation (2.3.3) can be equivalently written as
ay(sn, Vin) + ap(Wpn, Vpn) + asss(Wypn, On; Vin, @4) — bn, (0, @) + bp(Vph, Ppn)
b7 (Vins Dn) + bs(Tph, Wsh) + b (Tph, Ypr) + 00 (Vs Viph, @i An) + @b (Oipph, wpn)
+c (010 phy OePphs Tphs Wph) + bny, (T On) — byp(Wpn, wpn) = (£, v yn) + (@p, wpn)ay,,
b (s, wen) = bs(Tph, Vsn) = bs(Tpns Xpn) — br(Wsn, Wpn, O1; En)

= (Qfawfh)Qf + (fp7Vsh)Qp-
(2.3.4)

We group the spaces and test functions as in the continuous case:
Qrn =V X Agpy x Vi, X X X Wy, Spi= Wy, X Vg X Qpp X App,
Pr = (s, On, Upn, Opi, Pon) € Quy Th = (Dfn, Ushy Ypus An) € Sh,
an = (Vin, Dns Vo, Tph, Wpn) € Qn,  Shi= (Wen, Vs Xpn> En) € Sh,

where the spaces Q and S;, are endowed with the norms, respectively,

lanllq, = IVinllv, + IDnllag, + IVerllv, + 17pnllx, + llwpnllw,,

Isulls, = llwenllw, + [IVenllv, + IXpnlla, + 1€allA,-

Hence, we can write (2.3.4) in an operator notation as a degenerate evolution problem in a

mixed form:

& pu(t) + Apn(t) + B'rp(t) =F(t) in Qj,
(2.3.5)
—Bpu(t) =G(t) in S,

Next, we state the discrete inf-sup conditions.
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Lemma 2.3.1. There exist positive constants By 1, Br2, and B3 independent of h such that

bs (Tph> Vsh) + bsk (Tpha Xph)

Bra([[vsnl

Tph€Xpp 8.t Tprnp=0 on I'f), ||Tph||Xp ’

vVsh S Vsh) X € Qphu (236)

Bra(llwsnllw, + llwpnllw, + 1€nlla,.)

by (V s, Wen) 4 bp(Vpn, Wpn) + b (Vpn, Vipn, 05 €x)

< sup ,
(VinsVph)EV i XV H(th7 Vph)HVfXVp
wah S th, Wpp € th, & € Aph, (237)
bn (T h ¢ )
BrsllPnlla,, < sup S PV TRL L Yy, € A, (2.3.8)

Tph€Xpp s.t. div(Tp)=0 HTPhHXp

Proof. Inequality (2.3.6) can be shown using the argument in [6, Theorem 4.1]. Inequality
(2.3.7) is proved in [4, Theorem 5.2]. Inequality (2.3.8) can be derived as in [4, Lemma
5.1]. O

We next discuss the construction of compatible discrete initial data (pp0,rs0) based on
a modification of the step-by-step procedure for the continuous initial data.

1. Let P,fs : Ay — Ay, be the L:-projection operator, satisfying, for all ¢ € L*(T'y,),

(@ — B, dpr, =0 Vo € Ag,. (2.3.9)
Define
01,0 = PP 6. (2.3.10)

2. Define (Ufh’o,pfhp) € th X th and (uph’o,pph’o, )\h,(]) c Vph X th X Aph by SOlViIlg
a coupled Stokes-Darcy problem: for all vy, € Vi, wp, € Wy, v, € Vi, wpn, € W,
fh € Aph7

n—1
ap(Upno, Vin) + 0p(Vin, Drno) + Z(MQBJS\/ Kj_l(ufh,o —040) - tr Vin -ty
j=1
+ (Vin - 0p, Ano)ry,
n—1
= ay(so,vn) + 0 (Vinpro) + > (pomssy /K (upo — 6) - trj, v tridr,,
j=1
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+ (Vs -myp, Ao)ry, = (£(0), vin)ay,
= by(usno, wen) = =bs(ugo, wn) = (qr(0), wyn),
ap(Wpn,05 Vph) + Op(Vph, Ppno) + (Vph * Dy, Ano)1y,
= ap(Up0, Vph) + bp(Vphs Ppo) + (Vpn - p, Ao)ry, =0,
— bp (W0, Wpn) = —bp (W0, wpn) = —p~ H(div(KVpp0), wpn ),

— (W0 My + Uppo -0+ Oho -0y, )y, = — (U0 -0y + Uy -0+ 60 -1y, Ephr,, = 0.

(2.3.11)

This is a well-posed problem due to the inf-sup condition (2.3.8), using the theory of saddle
point problems [23], see [43,62].
3. Define (0 pn.0, Mpn.0s Ppn.o> Who) € Xpn X Vi X Qpr X Ay such that, for all 7, € Xy,

Vsh € Vi, Xph € Qpny @1, € A,
(Ao 0, Tpr)e, + bs(Tphs Mpn0) + Osc(Tpns Py o) + bny (Tphs who) + (Acyppnol, Tpn)e,

= (Adp0, Tpn)a, + bs(Tpns M) + b (Tphs Pyo) + by (Tpn, wo) + (Aaypy oL, Tpn)a, = 0,
—bs(Oph0, Vi) = —bs(0p0, Visn) = (£,(0), Van)a,,

- bsk(o-ph,m Xph) = _bsk(o-p,m Xph) = Oa

—_

n—

— b, (G0, 1) — D _{1mss\ /K5 (Wpno = Ono) - trj, dp - trjry, + (@) 1y, Ano)ry,

1

.
Il
_

n—

= —bnp(ap,o, o) — <M04BJS\/ Kj_l(uf,o —6o) -ty @y tf,j>Ffp + (¢, - 1y, /\0>Ffp =0.

1

<.
Il

(2.3.12)

It can be shown that the above problem is well-posed using the finite element theory for
elasticity with weak stress symmetry [11,13] and the inf-sup condition (2.3.8) for the Lagrange
multiplier wy, o.

4. Define (& pn,0, Wsn0,Vpno) € Xp X Vi x Q, such that, for all 7,, € Xy, v € Vg,

Xph € Qpha

(Aa'ph,Oa Tph)Qp + bs(Tpiu ush,[)) + bsk(Tph7 7ph,0) = _bnp (Tpiu 9h70)7
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- bs(aph,m Vsh) = 07

— bsk(a'phyo, Xph) =0. (2313)

This is a well posed discrete mixed elasticity problem [11,13].
We then define pno = (Ufn,0, Or,0, Up,0, Oph,0; Pp,o) a0 Tho = (Pfn,0, Wsh,05 Ypho0> Ahjo)- This
construction guarantees that the discrete initial data is compatible in the sense of Lemma

2.2.10:

Apno + Bro=F, in Q),
(2.3.14)
—Bpro = G(0) in S},

where Fy = (£7(0),0,0,9, ,9,,)" € Qp, with suitable g, € X, and g, € W, Fur-
thermore, it provides compatible initial data for the non-differentiated elasticity variables
(Mph.05 Ppo» Who) in the sense of the first equation in (2.2.36).

The well-posedness of the problem (2.3.5) follows from similar arguments to the proof of

Theorem 2.2.11.

Theorem 2.3.2. For each fy € WHY(0,T; V%), f, € WH(0,T;VY), ¢ € WHY(0,T; W),
and g, € WH(0, T; W), and initial data (ppo,Tho) satisfying (2.3.14), there exists a unique
solution of (2.3.3) (Wrn, Dyhs T ph, Wshiy Yphs Uphs Pphs An, On) 2 [0, T] — Vg X W X X X Vg
X Qun X Vi X Wopn X App X Mg, such that (o, ppr) € WH(0,T;1L2(Q,)) x WH(0,T; W)
and (g (0),psa(0), 0pn(0), upn(0), ppr(0), An(0), 01(0)) = (Wrn0, Psh0s O ph,0: Uph,0, Pphos An.o,
010).

Proof. With the discrete inf-sup conditions (2.3.6)—(2.3.8) and the discrete initial data con-
struction described in (2.3.9)—(2.3.12), the proof is similar to the proofs of Theorem 2.2.11
and Corollary 2.2.12, with two differences due to non-conforming choices of the Lagrange
multiplier spaces equipped with L?-norms. The first is in the continuity of the bilinear forms
bn, (Tpn, @p,), cf. (2.2.1), and br(Vn, Vpn, @4;€n), cf. (2.2.10). In particular, using the discrete

trace-inverse inequality for piecewise polynomial functions, ||¢||z2r,,) < Ch™?[l¢|12(q,), we

Tsp

have

bay (Tphs 1) < Ch V21 llz o) | @nlleer,,)
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and

br(V sy Vons @13 &) < CUIVpnlle ey + b7 Vonllea,) + lldnlleae ) €n e ,,)-

Therefore these bilinear forms are continuous for any given mesh. Second, the operators L,
and Ry from Lemma 2.2.6 are now defined as Ly : Ay — Al (La Ay &n) = (An, En)ry,

and Rg : Ay, — AL, (Re O, ),) = <0h,¢h>1"fp. The fact that L) and Rg are continu-

ous and coercive follows immediately from their definitions, since (L) &g, &) = [|€ HIZXM and

(Re o) ¢h> = H¢h‘

case due to the choice of the discrete initial data as the elliptic projection of the continuous

initial data, cf. (2.3.11) and (2.3.12). O

ish. We note that the proof of Corollary 2.2.12 works in the discrete

Remark 2.3.2. As in the continuous case, we can recover the non-differentiated elasticity

variables with

t
WeMH,nszmw+/uM$w
0

t t
pMﬂ=%m+/%MWM %@:wm+/m@Ms
0 0

Then (2.1.12) holds discretely, which follows from integrating the third equation in (2.3.3)
from 0 tot € (0,T] and using the discrete version of the first equation in (2.2.36).

2.3.2 Stability analysis

In this section we establish a stability bound for the solution of semi-discrete continuous-
in-time formulation (2.3.5). We emphasize that the stability constant is independent of s,
and ap;,, indicating robustness of the method in the limits of small storativity and almost
incompressible media, which are known to cause locking in numerical methods for the Biot
system [83]. Furthermore, since we do not utilize Gronwall’s inequality, we obtain long-time

stability for our method.
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Theorem 2.3.3. Assuming sufficient reqularity of the data, for the solution to the semi-

discrete problem (2.3.3), there exists a constant C' independent of h, so and am, such that

[usnlle v,y + asnllizorv,) + [ — Onlie o riass) + [Wrn — OnlL2(0,Tiase)
+ ||pfh”L°°(07T;Wf) + ||pfh||L2(0,T;Wf) + ||A1/2Uph||L°°(0,T;]L2(Qp)) + ||diV(Uph)||Loo(o,T;L2(Qp))
+ | A28, (0 pn + pppn D)2 01202, + 1AV (0pn) lL2(0,7:02(0,)) + [10shllLzo.r:v)
+ [vpnllzore,) + Iwpnllieorz@,) + [[Wnllizorv,) + [1PewllLeomw,) + [Penllizorw,)
+ V50l Oppnllrzomw,) + [AnllLe©mia,,) + I Anllizora,m + [10kllt20ra0)
< C<||ffHH1(o,T;L2(Qf)) + 1ol 12 0,712 (02,)) + HQf||H1(o,T;L2(Qf)) + ||l 1 0,7502(0,)

+ Ippollime, + 14V (KVp,0) iz, ) (2.3.15)

Proof. By taking (thawfh;Tphvvsh7Xph7Vphawph7€hv o) = (ufhvpfhao-phaush77ph7uph>pph7

An, @) in (2.3.3) and adding up all the equations, we get
ap(Wpp, upp) + agss(Upn, Op; Upn, On) + ae(010 phy OrDph O phs Dph) + Gp(Uph, Upp)
+ ap(Oppn, ppn) = (£r, upn)a; + (a5, Ppn)e; + (£, sn), + (4p, Ppr) o, - (2.3.16)

Using the algebraic identity [, v 0w = %8t||v||%2( 5); and employing the coercivity properties

of ay and a,, and the semi-positive definiteness of agys, cf. (2.2.5), we obtain
_ 1
2uCk g3y, + possskal g — 042, + §3t||141/2(0ph + apppn]) [[f2(0,)
_ 1
+ ik 120, + 5803t||19ph||%vp < (fr,upn)a, + (45, prn)o, + (£ Wsn)a, + (@ps Ppn), -

Integrating from 0 to any ¢ € (0,7 and applying the Cauchy-Schwarz and Young’s inequal-

ities, we get
t
2 2 ~1/2 2 ~1 2
/ (2MCK||ufh||Vf + MQBJSkma)/( |11fh - OhlaBJS + MkmaXHuPhHLQ(Qp))dS
0
1 1
+ §||A1/2(Uph + appp D) (O)[1220,) — §||A1/2(Uph + appp 1) (0)[1£2(q,)
1 2 1 2
+ 550llppn (B[R, — 5 50llppn(0) Iy,

2 2
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t
€
< 5/0 (lasnllfzg,) + oenlldy, + Inllzz,) + 1P, ) ds
1 [t ) , ) 2
! 2_6/0 (s lleziop + llasliz@p + olliz,) + lllizq,) ds- (2.3.17)

From the discrete inf-sup conditions (2.3.6)—(2.3.8) and (2.3.3a), (2.3.3¢), and (2.3.3f), we

have

Ipsrllw, + lPpnllw, + [ Anlla,,

br(Vn, en) + bp(Vph, Ppr) + b0 (Ven, Vipn, 05 Ap)

<C sup

(th,Vph)EthXVph ||(th, Vph)HVfXVp
—C Sup —ay(Usn, Vin) — apss(Wsn, On; Vin, 0) + (ff,vfh)Qf — ap(Wpn, Vi)

(Vr,Vpr)EV X Vi Hthva + HVthVp
< Clllugnllv, + [upn = Onlagss + Ifrllzey) + lupnllLae,), (2.3.18)

bs(Tphs W) + bsic(Tphs Ypi)
”ushHVS + ||7ph||(@p S C Sup S ph S S phy ph
Tph€Xpp 8.t Tppnp=0 on 'y, ||Tph||Xp
=C sup _(A@t(a-ph + QPpPhI)? Tph) - bnp (Tph, eh)
Tph€Xpp s.t. Tppnp=0o0n I'y, ||Tph||Xp

< C|AY20,(apn + apppnD) |12 (2.3.19)

p)’

b, (T,,.0
O, <0 sp w8
Tph€Xpp s.t. div(Ty,)=0 HTthXp

_(Aat(o'ph + appphI)a 7-ph) - bsk(Tpfu '7ph> - bs (Tpha ush)
=C sup

Tph€Xpp s.t. div(Tp,)=0 HTthXp

< C(|AY20i (o pn + apppnI) 20, + 1Yol )- (2.3.20)

Combining (2.3.17) with (2.3.18)—(2.3.20), and choosing € small enough, results in
t
/O <||ufh||%ff + [upn = Onla, + osnlliy, + wally, + 1vnllg, + lnlia,) + Py,
+ IR, + ||9h|!3\sh>ds + | AY2 (g pn + apppnd) ()2, + sollpen(®) IRy,

t
< C(/O (1A 20,(0pn + aPpPhI)||I2L,2(Qp) + ||ff||i2(szf) + ||Qf||i2(ﬂf) + ||fp||i2(9,,)
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+laplita,))ds + 1A (gpn + apppnd) (0)[F2(q,) + Soprh(O)Hizmp)> : (2.3.21)

To get a bound for ||AY20,(a,, + ozppphI)Hi%O,t;Lz(Qp)), we differentiate in time (2.3.3a),
(233(1), (2336)7 (233f)7 and (2331), take (th7 Wrhy Tphy Vsh, Xph7 Vph, Wph, gh, ¢h) = (Ufh,
OiPshs OeO ph, Wshiy Y phs Uph, OsDph, O An, 0) in (2.3.3), and add all equations, to obtain

1 1
éﬁtaf(ufh, uy) + §ataBJs(ufh> On; usn, Oy) + | AV20,(0pn + %pphI)”JzP(Qp)
+ 5 0ap(Upn, ) + 50| 0:ppn Iiv,
= (Ofy, upn)a; + (a7, Oppn)a; + (Oefp, wsn)a, + (@p, Oeppr)ay, - (2.3.22)

We next integrate (2.3.22) in time from 0 to an arbitrary ¢ € (0,7] and use integration by
parts in time for the last two terms:

t

t t ’
/(Qf7atpfh)9fd3+/(qpaatpph)ﬂpdsz(Qfapfh)Qf‘O_/ (04, Pyn)a, ds
0 0 0

t t
- / (8tQp7pph)Qp ds.
0 0

+ (quph)ﬂp

Making use of the continuity of as, a, and agzs, cf. (2.2.1), the coercivity of ay and a,
the and semi-positive definiteness of agsg, cf. (2.2.5), and the Cauchy-Schwarz and Young’s

inequalities, we get

1 _ I
ORI (IR, + SHossshinal’| (wm = 00) (D] + Sihmaduon (B2 o,

t
+ / (1A 200y + apppn)1F2(c,) + 50l10cppnl IRy, ) ds
0

t
€
< 5 ([l + losliy, + Il + i, ds + o (@I, + o 1Ry,
0
1 ! 2 2 2 2 2
+ 2—6</0 NokrllL2 0,y + [10wsllL2 () + 10812, + 101l T2(q,)) ds + llar (D)L )

1 —_1/2 1
a0 2g0,)) + plsn O, + rosshattlm — 0O, + 5o O,

1 1 1 1
+ i [ () Iz20,) + 5 1Pon (O, + 51197 (0)[E2(a,) + 5119 (0)IEaq,)- (2:3.23)
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We note that the terms on the first four terms in the first line on the right hand side are
controlled in (2.3.21), while the terms ||ps1,(t)||w, and ||p,n(t)||w, are controlled in the inf-sup
bound (2.3.18). Thus, combining (2.3.18), (2.3.21) and (2.3.23), and taking e small enough,

we obtain

t
[ (1l + g = 84, + o, + 1420k + D e +

HllvpnllG, + nllEeq,) + 1Ponll, + sol0wenlRv, + IAnlI3,, + [164] ish>d8

+ g, + 1(gm = 00O, + IRy, + 1A (@n + pppnd) ()12,

+ ()52, + lpn (D) [y, + MO,
t

< O(/ (||ff||i2(9f) + ||fp||%2(n,,) + HQinz’(Qf) + ||Qp||i2(9p))d3 + ||ff(t)||i2(nf)

0

t
2 2 2 2

+/0 Ok r L2,y + 10812 (,) + 100ar T2,y + 101]lT2(q,)) ds
a2, + a2, + 1m0, + (s — 04)(0)]7,,, + [2s(0) [y,

+ {1420 54(0) [ 2, + [10pn(0) 12, + 125 (O)y, + lar (O)[F2qe,) + qu(O)Hiz(gp))
(2.3.24)

We remark that in the above bound we have obtained control on ||py;(t)|/12(q,) independent

P

of sp. To bound the initial data terms above, we recall that (us,(0), psn(0), 0pr(0), u,n(0),
Ppr(0), An(0),04(0)) = (Wsn0, Pfr,0s O ph,0s Uph,0s Ppho> Ano, Ono) and the construction of the
discrete initial data (2.3.11)—(2.3.12). Combining the two systems and using the steady-

state version of the arguments presented in (2.3.16)—(2.3.18), we obtain

lasa () lv, + Ipm(O)llw, + [A20,(0) li2(0,) + [pn(0) L2,
+ 12on (0)lw, + [(pn = 01)(0)]asss

< C(ldiv(KVpyo)llL2(,) + I (0) ey + llar (02 + 1(0)]lL2,).  (2.3.25)

We complete the argument by deriving bounds for ||div(up)||i2,) and [|div(epm)|lL2@,)-

Due to (2.3.1), we can choose w,, = div(u,,) in (2.3.3g), obtaining
[[div(upn)l[F2 (0,
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= —(A0i(oph + appprl), div(uph))ﬂp — (500:Pph; diV(uph))Qp + (qp, diV(uph))Qp
< (a2 JAY2 0y (o + apppnD) iz, + 50llOwpnllzce,) + apllLz,)) 1div(apm) [|r2e,),

therefore

t t
/0 v () 220, ds < C / (1420, (0 + oD o + 501081226, + a2 ).
(2.3.26)

Similarly, the choice of v, = div(op,) in (2.3.3d) gives

t t
Idiv(o sz, < e, and [ vl ds < [ 150, (2320

Combining (2.3.24)—(2.3.27), we conclude (2.3.15), where we also use

A2 () L2,y < CUIAY? (o + cpppn) () llLz(,) + [Pon () lL2(0,))-

2.3.3 Error analysis

In this section we derive a priori error estimate for the semi-discrete formulation (2.3.3).
We assume that the finite element spaces contain polynomials of degrees sy, and s,,, for Vg,
and Wyy, sy, and s, for Vi, and Wy, s4,, sy,, and Sy, for Xpn, Ve, and Qpp, se and sy
for A, and Ayy,. Next, we define interpolation operators into the finite elements spaces that
will be used in the error analysis.

We recall that P,fs : Ay — Ay, is the L%-projection operator, cf. (2.3.9), and define PhAP :
A, = A, as the L2-projection operator, satisfying, for any £ € L*(T',), <§—P,f”f, )y, =0
V&, € App. Since the discrete Lagrange multiplier spaces are chosen as Ay, = X, ny|p 5, and

Apn = Xy - 1plr,,, Tespectively, we have

(@ — PN mounyr, =0, V7 €Xpn, (€= P& vpn - np)r, =0, Y € Vi
(2.3.28)
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These operators have approximation properties [39],

lp = P @lieae,,) < Che*t ¢

A s
Heo+t(Tg,) ||§ - Ph prL?(Ffp) <Ch Ale||f| HoATL(Dy,)-

(2.3.29)

Similarly, we introduce P;Nf Wy = Wy, P;N” W, = Wy, P}ys : V, = V,, and
Pg” : Q, = Qpp as L%-projection operators, satisfying
W W,
(wy — P, wy,wpn)a, =0, Vwpy € Wy, (wy — Py Pwy, wpn)a, =0,  Vwy, € W,

(Vs - P;ysVs, Vsh)Qp =0, Vv € Vin, (Xp - ngva Xph)Qp =0, \V/Xph € Qpha
(2.3.30)

with approximation properties [39],

W
lwy — Py Twylliai,) < Ch5 Jwg| oy +1

Q)
W s
lwy = By, "wpllrze,) < Ch | HoPp T1(Q,))
(2.3.31)
||VS - P}YSVSHL?(QP) S Ch5“5+1||vsl Hsus+1(Qp),
Qp s
X, = P " X llizc,) < CR X e+ g -

Next, we consider a Stokes-like projection operator I}Yf : Vi — Vyy,, defined by solving

the problem: find ],vaf and py, € Wy, such that

Vv ~
ag(L, vy, vin) = 0f(Vin, Dpn) = ap(Vi,vin), Vv € Vi,

v (2.3.32)
b(Ly vy wen) = by (v, wen), Vwsn € Wi
The operator [}Yf satisfies the approximation property [45]:
Vv Su
||Vf — [h foHHl(Qf) < Ch™r ||VfHHsuf+l(Qf). (2333)

Let I ,Y ” be the mixed finite element interpolant onto V,;,, which satisfies for all v, € V,,N

H'(4,),

(diV(]}Ypr), wph)gp = (diV(Vp), wph)gp, vah € th,
(2.3.34)

Vp J—
(I, "vp -y, Vi np>Ffp = <Vp *1p, Vph np>rfp7 VVph € Vi,
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and

Vv
HVP — [h pr HLQ(QP) S Chsup+1H Vp‘ HSup+1(QP),

v (2.3.35)
[ div(vy — I,"Vy) [l2(,) < Chor ™ div(v,)]

B ()
For X,,, we consider the weakly symmetric elliptic projection introduced in [14] and ex-

tended in [59] to the case of Neumann boundary condition: given o, € X, N H'(£,), find
(O phs N> Pp1) € Xph X Vg X Qpp, such that

(O Tpn) + (M AIV(Tp0)) + (Pprs Tpn) = (07, Tpn), VT € Xgh,
(div(opn), ver) = (div(ey), Van), YV € Va,

(2.3.36)
(&p}prh) = (UP7Xph)7 V)(ph S prh
<5'phnpv7'phnp>1“fp = <0'pnpa7'phnp>l“fpa VT € X;F;}{pa

where Xgh = {7 € Xpp : Tppn, = 0 on I'yy}, and X;,{p is the complement of Xgh in X,

which spans the degrees of freedoms on I'y,. We define Iffp o, = O, which satisfies

loy — L oplliai,) < hort oyl i ),
' e (2.3.37)
. X Sor .
[div(oy, — 1,7 0p)[lzo,) < CRP7r T |div(oy,)|lgeop+i(q,)-

We now establish the main result of this section.

Theorem 2.3.4. Assuming sufficient reqularity of the solution to the continuous problem
(2.1.11), for the solution of the semi-discrete problem (2.3.3), there exists a constant C

independent of h, sg, and ayi, such that

|uy —upnllLeorv,) + luy — wpnllzorv,) + [(ay — 0) = (upn — 0n) |~ (0,10s)
+[(uy = 0) — (Wpn — On)|r2(0.1i00s) + 17 — Dol rwy) + lPf — Prallizorw))
+ ||A1/2(0'p — o) Lo, (0,)) + 1div(e, — opn)|lLe0.rL20,))
+ [|div(ey, — opn)llL207:20,)) + [1A?0u((0 + apppl) = (07pn + pppr])) 2 0,7:22(0,))
+ |Jug — ushHLQ(O,T;VS) + H’)’p - ’7thL2(o,T;QP) + [lu, — uthLm(O,T;LQ(Qp))

+ [Jup, = wpnllrzo,rv,) + 1Pp = PprllLeo.w,) + [1Pp — PonllLzo.rw,)
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+ V501025 = P z0raw,) + 1A = Anllooziag + IA = Allizorin,
+ 10 = Onlli20,7:A.,)
< CVep(T) (B 1 s areos iy, + 17 105 s s )
+ hscrp+l(”a-p"Hl(O,T;HS°p+1(Qp)) T Hdiv(ap)HLoo(o,T;HSf’p“(ﬂp)))
+ e sl o 1) T BT Il o re )
+ hs“”+1(||up||H1(0,T;HSUp+1(Qp)) + Hdiv(up)||L2(0,T;HS“P+1(Qp))) + hsppHprHHl(O,T;HS"pH(QP))

Hs—yp+1(Qp)> .
(2.3.38)

+ hS/\JrlH)‘HHl(O,T;Hs)\-‘—I(Ffp)) T hSeHHOHHl(o,T;Hsﬂ“(Ffp)) +h* p, (0)]

Proof.  We introduce the error terms as the differences of the solutions to (2.1.11) and (2.3.3)
and decompose them into approximation and discretization errors using the interpolation

operators:

A\ A\
e, =y —up, = (uy — I ug) 4+ (I, Tup —up) = ey + e,

W W
€ps = DPf —Pfn = (pf - P, fpf) + (Ph fpf _pfh) = eZIDf +€Zf’

I

=, — Uy = (U, — [,Ypup) + ([,Ypup — ) 1= €u, T eﬁp7

W W
€pp = Pp — Pph = (Pp — Py, "pp) + (B "pp — Dpn) = eglap + 6227

X X
€oy, = 0p — Opn = (0 — 1},70y) + ([0 — o) 1= eip + egp,
Cu, 1= Us — Uy, = (Ug — P}ysus) + (Plysus —Uyp) = 61[15 + eﬁs,

Q Q
e‘Yp = ’yp - ’th = (7}) - Ph p’Yp) + (Ph p7p - ’yph) = eip + 62177

eg::0—0h:(H—Pffse)—l—(P,fSO—Hh):Ieg—l—ez,

exi=A— A= (A= PMN) + (PMA— ) = el + el (2.3.39)

We also define the approximation errors for non-differentiated variables:

I _ o _ pVs r _ o _ p® I _ ,_ pAs
enp_np Ph T’p? 6pp_pp Ph pp7 € =W Ph w.
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We form the error equations by subtracting the semi-discrete equations (2.3.3) from the

continuous equations (2.1.11):

ag(eus, Vin) + bp(Vin, €p;) + br(Vin, 0,05 ex) + agss(eu;, €9; Vin, 0) = 0, (2.3.40a)
—by(eu;, wpn) =0, (2.3.40b)
ae(Oreq,, Orp,; Tpns 0) + bs(Tpn, €u,) + b (Tpns €4,) + b, (Tpn, €0) = 0, (2.3.40c¢)
—bs(€q,, Van) = 0, (2.3.40d)
— be(€o,, Xpn) = 0, (2.3.40e)
ap(€u,s Vo) + bp(Vphs €p,) + 0r(0, vy, 05ey) = 0, (2.3.40f)
ab(Osep,, Wyn) + ae(Oses,, Orep,; 0, wpn) — by(ew,, wyn) = 0, (2.3.40g)
— bp(euf, eu,;€0;&n) = 0, (2.3.40h)
br(0,0, @y,; ex) + apss(u;, €050, Py) — bn, (6o, Pp,) = 0. (2.3.401)

- _ Lh _ _h h _ Jh _ _h _ _h _ _h _
Setting vy, = Cups Wih = €y Tph = €g,y Vsh = €y Xpn = €, Vph = Gy Wph = €p,rSh =

el @), = eh, and summing the equations, we obtain

af<€{1f7 Uf) _'_ a ( Uf7 ) + aBJS(e{lJU eg’ eﬁf7 ez) _'_ G/Bjs(eﬁf? 637 eﬁf’ 62>

+ac (Ol Diey sen en )+ ac(Oeh Dy en el )+ aylen en )+ ap(en en )

up’ “up

+ ab (e}, + ab(Opel — bn, (el ,eg) +by(el el ) +bs(el e )

Pp? pp> Pp? pp)

+ bS(et};p? 6{13) + bsk(t?’;p, e*Iyp) + br(eﬁju eﬁpv ega 6§\> + bnp(eﬁ'pv eé) - bp<e{1p7 ezp)

— bf( uy pf) —-b ( ﬁs) — bsk(eép, 6,};1)) - br(@{lf,e{lp’eg; eh) = 0.

Due to (2.3.1) and the properties of the projection operators (2.3.28), (2.3.30), (2.3.32),
(2.3.34) and (2.3.36), we have

bnp(e]; 7e§) 0 <€ﬁp 1y, e{\>Ffp = 07

ap@tep 7€Zp)9 =0, byleh el )y=0, by(e el )=0,
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be(el ety =0, bsk(ef,p,eh ) =0, bnp(el ep) =0.

op? Tug Yp o

With the use of the algebraic identity [ vdw = %@HUH%Q(S), the error equation (2.3.3)

becomes

af(eﬁf, ﬁf>+aBJS( ﬁfueZa uf’€0)+ a||A1/2(60. +aP€ZpI>||H2~2(QP)

1
+aylel e )+ 5303t||€;}§p||%vp

= _af(eflp 6ﬁf) - aBJS(eII.lf’ 6(19; eﬁp 63) o af:(at €o at €pp ap’ BZP) B ap(efxp’ eﬁp)

_bf( Cuj> glaf) bsk(el;pae-lyp) - bF( ufaO 6076)\> +bF( uf70 eeaei) (2'3'41>

We proceed by integrating (2.3.41) from 0 to ¢t € (0,7, applying the coercivity properties of
afs and a,, the semi-positive definiteness of agss (2.2.5), the Cauchy-Schwarz inequality, the

trace inequality (2.2.2), and Young’s inequality, to get
||€ﬁf||32(o,t;vf) + |€ﬁf - €Z|i2(0,t;am) + ||A1/2(€Zp + apel;pD(t)”]%z’(Qp)
+ lle 12200200,y + sollen (t)[l3y,
€<H€ﬁf\|i2(o,t;vf) + |€ﬁf — g iQ(O,t;aBJs) + HA”2<€Z,, + ap eﬁp I)Hi?(o,t;w@p))
+ ||A1/2€Zp||i2(o,t;m2(np)) + ||6ﬁ,,||i2(o,t;vp) + ||€’i||i2(o,t;/\ph) + ||€Z||i2(o,t;Ash)>
= (lleh, IEasivy) + ety = elE2@name) + lep, 2w,y
+ | A0, (€] o, T ap )HL2 (0,12(2,)) T He—lypHi?(o,t;Qp) + HelllpHi?(o,t;vp)

a0ty + 18I0 ) + 1A (€L, + el DO, + solleh, (0)
(2.3.42)

Here we also used that the extension of A from S to Ml can be chosen as the identity operator,
therefore, cf. [63], there exists ¢ > 0 such that

1 1 anle
bsk(eh eI ) — E(GZP,AG,IYP)QP = E(Al/QeZp,Al/Zef;p)Qp < %HAI/QQZP||L2(QP)H€’IYP||QP'

Tp? " Yp
(2.3.43)
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On the other hand, from the discrete inf-sup condition (2.3.6), and using (2.3.40a) and

(2.3.40f), we have

lep, tw, + llep, lw,, + llexlla,,

by (v s, ezf) + by (Vph, e’;p) + br(Vin, Vi, 0 €4)

1V in Vi) [V v,

<C sup
(Vi Vph)EV sR X Vi,

=C sup

(VirsVpr)EV fn X Vpp

—@f(eﬁf7 Vin) — aBJS(eﬁf, €4i Vin, 0) — @f(eﬂf, Vin)
Vsnllvy + Vorllv,

—aggs(ey,, €53 Vin 0) — apled, . vin) — apleq,, Vin) = by (Vins€p,) = br(vyn, 0,05 )
[vVinllvy + [[Verllv,
< C(lleg, lIv, +lew, = plass + llew, lv, + lew, = €plass + llet, Iz, + llew, L2,

e, lw, + llela)- (2.3.44)

where we also used (2.3.1), (2.3.28) and (2.3.30). Similarly, the inf-sup condition (2.3.7) and

(2.3.40c) give

bs (Tpha eﬁs) + bsk (Tpha 6’}}/;,)

h h
e llv. + |le <C sup
|| e ° ” Tr ||Qp ‘rphEXph s.t. Tppnp=0 on l"fp HTthXp
_o “up —ae(ate’;p, Gtegp; Tph, 0) — b, (Tpn, €5)
Tph€Xpp 8.t. Tppnp=0 on Ffp ||Tph||Xp

N —ac(Orel , Ovey, s Tpny 0) — Vo (T pns efyp))

7 I,

< O(|A20,(ey, + apepy DLz, + [A20:(eh, + apep Dliiz,) + €] lla,)s  (2:3.45)

o

where we also used (2.3.1) and (2.3.30). Finally, using the inf-sup condition (2.3.8) and

(2.3.40c), we obtain

b T eh
HQZHAS;L < C sup M
Tph€Xpp s.t. div(Ty,)=0 ||Tph||Xp

<_ae(atelg-p7 atezp; T phs O) - bs(Tpha eﬁs) - bsk(Tph7 6,};?)

=C sup

Tph€Xpp s.t. div(Tp,)=0 HTthXp
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+

—ac(Ohel, ,0ie) s Tpn, 0) = bac(Tph, eép))

|7 pn I,

C([A204(el, + anely Dz, + 1€ llo, + [1A720:(el, + apep Dz, + 1€ lla,),
(2.3.46)

where we also used (2.3.28).
We next derive bounds for ||div(eﬁp)||L2(Qp) and ||diV(6Zp)||L2(Qp). Due to (2.3.1), we can

choose w,, = div(eﬁp) in (2.3.40g), obtaining
div(eq,)2(,)
—(soﬁteﬁp,div(eﬁp))gp — (A, (eh €o, T e, I) div(eh Da, — (AD,(e! €q, T e, I) div(e” ),
< (sollowel llw, + alZ || AY20u(el + el )L2q,)
+ a4 20 (€5, + apey, Dllizo,) 1diviey,)lliz,)- (2.3.47)
Similarly, the choice of vy, = div(e(h,p) in (2.3.40d) gives
Hdiv(eﬁp)(t)HLz(Qp) =0 and ||diV(6Zp)||L2(0’t;L2(Qp)) = 0. (2.3.48)

Combining (2.3.42) with (2.3.44)—(2.3.48) and choosing € small enough, results in

et IE20.00v) F 1€, = €8lE2(0,pams) T len, 20w,y + 11472 (e5, + aen, D)2,

+ HdiV@I;p)H%2(o,t;L2(Qp)) + ||diV(€Z,,)<t>Hi2(Qp) + llex, iQ(O,t;VS) + ||€-f;p||i2(o,t;@p)
+ llew, IE2v,) + lep, [E2nw,) + sollen, (DI, + 1eXlIF2.6a,,) + €8]z 06,
< C(HAI/Q(@Z,, + apezp1)||i2(o,t;m2(9p)) + | A2y (el o, T Qp€y )||L2 (0,6:L2(22,))
+ SOHOteZpH%?(O,t;Wp) + ||€{1f||i2(o,t;vf) + |€{1f - €§|i2(o,t;am) + ||€g€f||i2(o,t;wf)
+ [|AV20,(e] €y, T e, )HL2 (0,6L2(2)) T led HL2 040, T HeupHm 04V, T He/\Hm(omph)
+[leglfz(on, + 1A (eh, + apep D(0)[Z2(q,) + solleg, (0)[1F2(q,)): (2.3.49)
where we also used

412, ez < CUIAYel, + e, Doz +llep, lizoew,).  (2:3.50)
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In order to bound ||A1/20t(egp +apel T)liz0412(0,)) and solldse) [lL20.4w,), we differentiate in
time (2.1.11a), (2.1.11d), (2.1.11e), (2.1.11f), and (2.1.11i) in the continuous equations and
(2.3.3a), (2.3.3d), (2.3.3¢), (2.3.3f), and (2.3.31) in the semi-discrete equations, subtract the
two systems, take (Vyn, Wrn, Tph, Vi Xphy Vphs Wphs Eny @5) = (€ uf,atepf,ate us,ef;p,eﬁp

atezp, d,eh, eh), and add all the equations together to obtain, in a way similar to (2.3.41),
1 ho ok 1 ho ho b b 1/2
§5taf(€ufa€uf) + EataBJs(equeO;euf?eG) + [ AYV20,(ey, + apep DF2 ()

1
+ S0y (e, e+ solldnely I,

= —le(ateuf, ﬁf) - aBJs(ateuf,ﬁtee, ﬁf,eg) (@e (9te£p;8tegp,atez ) - ap(ﬁte ﬁp)
—by(en,, diey,) — ba(Diel e )—bp( en;r 0, eg; 03 + br(ey,, 0, ¢g; dyeh). (2.3.51)

Using integration by parts in time, we obtain

! ' h I

. /0 bsx (€, (‘9te,yp)ds,

! N h

. —/0 ((9teuf 1y, 6)\>1"fpd87
t

/0 <8te§ 1y, e§>pfpds.

t
/ bk(ateo-p7 Yp )dS — bsk( »'Iyp)
0

t
/0 (el np, Qetyr, ds = (e, np, e,

t t
| (el m0rie, s = (e m i, | -
0

We integrate (2.3.51) over (0,¢) and apply the coercivity properties of a; and a,, the semi-
positive definiteness of agys (2.2.5), the Cauchy-Schwarz inequality, the trace inequality
(2.2.2), and Young’s inequality, to obtain

lew, (D113, + 1(en, = €6)()]ae + [1A720:(el, + apey D 2120,
+ e, (DlIEz(q,) + sollOep, [1E20.6mw,)

< €<Heﬁin2(o,t;vf) + ‘eﬁf - eg’i%o,t;am) + | A0, (el €o, T ap )”L?(Ot]L?(Q D)
+ A2 (eh, + apey DllF 2z, + 1472 (), + apep DO)F2q,) + llew, IF20.0v,)
+ ey, 200w, + llep, O, + X, + lexlizoea,.) + Hez“%ﬂ(o,t;Ash))

C
+ ?(Hateﬂfui?(o,t;vf) + |at(€l 69)|L2 (0,tiass) T ||8te HL2 (0,4;W )
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+ HAl/Qat(@frp + Oépezgp)Hi%o,t;M(Qp)) + Hateipﬂi%o,w@p) + Hef,p (t)H%@p

+10e, 1T204v,) + 10 F20n,) + 19eolIEain,, + lew, OIF, + Heé(t)His)
+lew, (O, + (e, = e6)(0)2, + 1A%l (0)[F20,) + llet, (072, + X (0)]1R,
+lleg, (O, + lles, (013, + leg(0)I.,. (2.3.52)

where we also used bg (e 8te ) < C’|]A1/2e';pHLQ(QP)Hate,IypHQP, cf. (2.3.43), and
|AY2el ()l|L2(@,) < C(IAY2 (el + apep D)2, + ek ()llw,)-

In addition, the choice of vy, = div(ateﬁp) in the time differentiated version of (2.3.40) gives

Hdiv(@tegp)(t)ﬂp(gp) =0 and Hdiv(@teﬁp)||L2(07t;L2(Qp)) =0. (2353)

Thus, combining (2.3.52) with (2.3.44), (2.3.49) and (2.3.53), and taking e small enough, we

obtain

h|2

leb 2o,y + ek, @I1Z, + el — eb 6

LQ(O,t;aBJs) + |(eﬁf - 60)( ) agJjs + He ||L2 Oth)
+ ey, O llw, + [div(es )220, + 1div(el )OIz, + 1div(diel Tz,
+ HdiV(atezp)(t)||12L2(Qp) + HAl/Q(egp + Ofpeﬁpl)(t)”i?(gp) + | A2, (e w4 el D)7 (0,6L2(2))

+ |lek,

t20uv.) T ey, 1200, T lew, 1E20v,) + llen, (DT, + lep, [E20.5w,)
+llep, (D11, + solloeep, 120w,y + lEXIE20 a0 + X E)la,n + lealEzopa,,)

< O(IlA2(eq, + apep, D20 en2(0,) + len, [F20uv) + 10eh, E20uv,) + llew, @I,

+ |€{lf - eél%JQ(O,t;aB_]s) + |at<€{lf - €§)|i2(0,t;aBJS) + |(€{lf - 6é)(zt:)|‘1BJS + ||€£f||%42(0,t;Wf)
100y, E2w ) + lep, OIRy, + 14205, + apey, DEa.rzc,) + €, E20u0,)

+10es, [E20.0,) + lles, (DG, + llew, L2y, + 10y, [E20.0v,) + ey, B)v,

+llexlE2a, T 10eallE 06, + leA®la,, + leallEz0na,,) + 10eallE20 .,

+lea®a,, + llew, )%, + (el — e6)(0)l,,, + 14 (5, + apep, D(0)IF2(,)
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+ sollep, (0)l[E2(a,) + 14" %¢5, (0)[E2(q,) + llek, (0)lIE2(q,) + lX(O)IIR,, + lled, (015,
+le3, (05, + llea(0)]l4,,)- (2.3.54)

We remark that in the above bound we have obtained control on Hegp (t)|lw, independent of
So.

We next establish a bound on the initial data terms above. We recall that (uz(0), ps(0),
0,(0),1,(0),p,(0),A(0),0(0)) = (ur0,P0,0p0, Upo,Ppos Ao, o), cf.  Corollary 2.2.12,

and (ufh(o)vpfh(o)ﬂaph(o)vuph<0)upph(0)a)‘h(o);eh<0)) = (ufh,Oupfh,07aph,07uph,Oapph,OaAh,Oa
010), cf. Theorem 2.3.2. We first note that, since 85, = P,fs 0,

eh(0) = 0. (2.3.55)
Next, similarly to (2.3.25), we obtain
lex, ()Y, + (e, = €6)(0) [y, + 1425 (0)[1E2(a,) + llex, (0)IE2(o,)
+lep, ()1, + €X (013,
< O(lleg, (0)lv, + leg, (0) = ea(0) 2,5 + llep, (0)lw, + lleg, (0)lx, + lle, (0)ll,

asjs

+ llew, (0)llv, + lleg, (0)llw, + llex(0)la, + lleg(0)]

Ash)' (2.3.56)

Combining (2.3.54)-(2.3.56), using Gronwall’s inequality for ||Al/2(ef;p +ozpezp1) ||i2(0,t;L2(Qp))v
the triangle inequality, and the approximation properties (2.3.29), (2.3.31), (2.3.33), and
(2.3.35), we obtain (2.3.38). O
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2.4 Numerical results

In this section we present the results from a series of numerical tests illustrating the
performance of the proposed method. We employ the backward Euler method for the time
discretization. Let At =T'/N be the time step, t, = nAt, n=20,--- ,N. Let dyu™ := (u" —
u™ 1) /At, where u™ := u(t,). The fully discrete method reads: given (p), %) = (px(0),r4(0))
satisfying (2.3.14), find (p}},r}}) € Qn xSy, n =1,---, N, such that for all (qs,sn) € Qn xS,

di &1 (p)(an) + A (Pp)(an) + B (r})(an) = F(an),

—B (p;)(sn) = G(sn).

Our implementation is on triangular grids and it is based on the FreeFem++ finite element

(2.4.1)

package [55]. For spatial discretization we use the MINT elements P¢ — Py for the Stokes
spaces (V, Wyp,), where P? stands for the space of continuous piecewise linear polynomials
enhanced elementwise by cubic bubbles, the lowest order Raviart-Thomas elements RTy—Py
for the Darcy spaces (Vpn, Wpy), and the BDM; — Py — P elements [20] for the elasticity
spaces (Xpn, Van, Qpn). According to (2.3.2), for the Lagrange multiplier spaces we choose
piecewise constants for A,, and discontinuous piecewise linears for Agy,. We present two
examples. Example 1 is used to corroborate the rates of convergence. In Example 2 we
present simulations of the coupling of surface and subsurface hydrological systems, focusing

on the qualitative behavior of the solution.

2.4.1 Example 1: convergence test

For the convergence study we consider a test case with domain € = (0,1) x (—1,1) and
a known analytical solution. We associate the upper half with the Stokes flow, while the
lower half represents the flow in the poroelastic structure governed by the Biot system. The
physical parameters are K =1, p =1, o, = 1, agzs = 1, 5o = 1, A\, = 1, and p, = 1. The
solution in the Stokes region is
—3z + cos(y)

uy = mcos(mt) , py=e'sin(nz) cos(%y) + 27 cos(mt).
y+1

o6



The Biot solution is chosen accordingly to satisfy the interface conditions at y = 0:

Ty
— cos(mx) 003(7) Ty —3x + cos(y)
u, = e’ 1 . , pp = €'sin(mz) 008(7), 7, = sin(7t)
3 sin(mx) sin(%/) y+1

The right hand side functions f, g¢, f,, and ¢, are computed using the above solution. The
model problem is complemented with Dirichlet boundary conditions and initial data obtained
from the true solution. The total simulation time for this test case is T' = 0.01 and the time
step is At = 1073, The time step is sufficiently small, so that the time discretization error
does not affect the spatial convergence rates.

In Table 2.4.1, we report errors on a sequence of refined meshes, which are matching
along the interface. We use the notation || - |[;c(vy and || - ||;2(vy to denote the time-discrete
space-time errors. For all errors we report the || - ||;2(vy norms with the exception of the error
€o,, for which we have a bound only in [* in time. We observe at least O(h) convergence
for all norms, which is consistent with the theoretical results stated in Theorem 2.3.4. The
observed O(h?) convergence for |leg, |[i=12(,)), €y, ll2@,)ll, and [leolliz(a,,) corresponds to
the second order of approximation in the spaces X5, Qp, and Ay, respectively, and indicates
that the convergence rates for these variables are not affected by the lower rate for the rest
of the variables. Next, noting that the analysis in Theorem 2.3.4 is not restricted to the
case of matching grids, we provide the convergence results obtained with non-matching grids

along the interface. The results in Table 2.4.2 are obtained by setting the ratio between
5

the characteristic mesh sizes to be hgiokes = éhBiot. The results in Table 2.4.3 are with
5 ) :
hBiot = ghsmkes. The convergence rates in both tables agree with the statement of Theorem

2.3.4.
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n | lewllieev, | rate | [lep,llizqw,) | rate | [leq, i@z, | rate
8 7.731e-03 | 0.0 | 2.601e-03 | 0.0 7.454e-02 0.0
16 | 3.860e-03 | 1.0 | 8.319e-04 | 1.6 2.572e-02 1.5
32 | 1.929¢-03 | 1.0 | 2.759e-04 | 1.6 8.775e-03 1.6
64 | 9.640e-04 | 1.0 | 9.419e-05 | 1.6 2.784e-03 1.7
128 | 4.819e-04 | 1.0 | 3.270e-05 | 1.5 8.224e-04 1.8
0| lledivioylle@e@y | rate | llewllzev,) | rate | fley, 2w, | rate | [lew, [2@e@,) | rate
8 1.032e-01 0.0 | 7.141e-02 | 0.0 | 1.926e-01 | 0.0 1.046e-01 0.0
16 5.169e-02 1.0 | 3.550e-02 | 1.0 | 5.171e-02 | 1.9 5.224e-02 1.0
32 2.586e-02 1.0 | 1.773e-02 | 1.0 | 1.372e-02 | 1.9 2.612e-02 1.0
64 1.293e-02 1.0 | 8.862¢-03 | 1.0 | 3.633e-03 | 1.9 1.306e-02 1.0
128 6.465e-03 1.0 | 4.431e-03 | 1.0 | 9.497e-04 | 1.9 6.532¢e-03 1.0
n | [ledivio) llz@e,) | rate | [lep,llzmw,) | rate | [exlliz,,) | rate | [lealliza,,) | rate
8 1.223e-01 0.0 | 1.033e-01 | 0.0 | 1.140e-01 | 0.0 | 3.232¢-02 | 0.0
16 5.457e-02 1.2 | 5.172e-02 | 1.0 | 5.675e-02 | 1.0 | 6.446e-03 | 2.3
32 2.693e-02 1.0 | 2.587e-02 | 1.0 | 2.835e-02 | 1.0 | 1.238e-03 | 2.4
64 1.442e-02 0.9 | 1.294e-02 | 1.0 | 1.417e-02 | 1.0 | 2.328e-04 | 2.4
128 9.001e-03 0.7 | 6.468e-03 | 1.0 | 7.085e-03 | 1.0 | 4.442e-05 | 2.4

Table 2.4.1: EXAMPLE 1, Mesh sizes, errors and rates of convergences in matching grids.
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n | lewllieev, | rate | [lep,llizqw,) | rate | [leq, i@z, | rate
8 1.171e-02 | 0.0 | 8.326e-03 | 0.0 8.800e-02 0.0
16 | 5.725e-03 | 1.0 | 2.616e-03 | 1.7 3.220e-02 1.5
32 | 2.835e-03 | 1.0 | 9.239e-04 | 1.5 1.084e-02 1.6
64 | 1.411e-03 | 1.0 | 3.256e-04 | 1.5 3.262e-03 1.7
128 | 7.037e-04 | 1.0 | 1.152e-04 | 1.5 9.161e-04 1.8

0| lledivioylle@e@y | rate | llewllzev,) | rate | fley, 2w, | rate | [lew, [2@e@,) | rate
8 1.032e-01 0.0 | 7.632e-02 | 0.0 | 2.255e-01 | 0.0 1.049e-01 0.0
16 5.170e-02 1.0 | 3.810e-02 | 1.0 | 6.617e-02 | 1.8 5.226e-02 1.0
32 2.587e-02 1.0 | 1.905e-02 | 1.0 | 1.955e-02 | 1.8 2.613e-02 1.0
64 1.293e-02 1.0 | 9.524e-03 | 1.0 | 5.773e-03 | 1.8 1.306e-02 1.0
128 6.467e-03 1.0 | 4.762¢-03 | 1.0 | 1.638e-03 | 1.8 6.532e-03 1.0
n | [ledivio) llz@e,) | rate | [lep,llzmw,) | rate | [exlliz,,) | rate | [lealliza,,) | rate
8 1.323e-01 0.0 | 1.033e-01 | 0.0 | 1.141e-01 | 0.0 | 3.272e-02 | 0.0
16 5.742e-02 1.2 | 5.172e-02 | 1.0 | 5.675e-02 | 1.0 | 6.733e-03 | 2.3
32 2.738e-02 1.1 | 2.587e-02 | 1.0 | 2.835e-02 | 1.0 | 1.314e-03 | 2.4
64 1.448e-02 0.9 | 1.294e-02 | 1.0 | 1.417e-02 | 1.0 | 2.502e-04 | 2.4
128 9.007e-03 0.7 | 6.468e-03 | 1.0 | 7.085e-03 | 1.0 | 4.820e-05 | 2.4

Table 2.4.2: EXAMPLE 1, Mesh sizes, errors and rates of convergences in nonmatching grids.
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n | lewllieev, | rate | [lep,llizqw,) | rate | [leq, i@z, | rate
8 7.203e-03 | 0.0 | 5.066e-03 | 0.0 1.661e-01 0.0
16 | 3.561e-03 | 1.0 | 1.404e-03 | 1.9 6.387e-02 14
32 1.768e-03 | 1.0 | 4.843e-04 | 1.5 2.298e-02 1.5
64 | 8807e-04 | 1.0 | 1.697e-04 | 1.5 7.441e-03 1.6
128 | 4.396e-04 | 1.0 | 5.977e-05 | 1.5 2.178e-03 1.8
0| lledivioylle@e@y | rate | llewllzev,) | rate | fley, 2w, | rate | [lew, [2@e@,) | rate
8 1.644e-01 0.0 | 1.230e-01 | 0.0 | 4.521e-01 | 0.0 1.698e-01 0.0
16 8.264e-02 1.0 | 6.100e-02 | 1.0 | 1.504e-01 | 1.6 8.374e-02 1.0
32 4.137e-02 1.0 | 3.048e-02 | 1.0 | 4.373e-02 | 1.8 4.180e-02 1.0
64 2.069e-02 1.0 | 1.524e-02 | 1.0 | 1.293e-02 | 1.8 2.090e-02 1.0
128 1.035e-02 1.0 | 7.619e-03 | 1.0 | 3.798e-03 | 1.8 1.045e-02 1.0
n | [ledivio) llz@e,) | rate | [lep,llzmw,) | rate | [exlliz,,) | rate | [lealliza,,) | rate
8 2.430e-01 0.0 | 1.649e-01 | 0.0 | 1.849e-01 | 0.0 | 9.021e-02 | 0.0
16 1.004e-01 1.3 | 8270e-02 | 1.0 | 9.101e-02 | 1.0 | 1.977e-02 | 2.2
32 4.474e-02 1.2 | 4.138e-02 | 1.0 | 4.538e-02 | 1.0 | 3.990e-03 | 2.3
64 2.203e-02 1.0 | 2.070e-02 | 1.0 | 2.268e-02 | 1.0 | 7.683e-04 | 2.4
128 1.215e-02 0.9 | 1.035e-02 | 1.0 | 1.134e-02 | 1.0 | 1.461e-04 | 2.4

Table 2.4.3: EXAMPLE 1, Mesh sizes, errors and rates of convergences in nonmatching grids.

2.4.2 Example 2: coupling of surface and subsurface hydrological systems

In this example, we illustrate the behavior of the method for a problem motivated by the

coupling of surface and subsurface hydrological systems and test its robustness with respect

to physical parameters. On the domain Q = (0,2) x (—1,1), we associate the upper half

with surface flow, such as lake or river, modeled by the Stokes equations while the lower

half represents subsurface flow in a poroelastic aquifer, governed by the Biot system. The

60



appropriate interface conditions are enforced along the interface y = 0. We consider three

cases with different values of K, sy, A\, and p,, as described in Table 2.4.4, while we set the

K S0 | Ap | Hp
Case 1 I 1 1 1
Case2 | 1074 x I | 1074|105 | 1
Case 3 | 1074 x I | 1074 | 106 | 108

Table 2.4.4: Set of parameters for the sensitivity analysis

rest of the physical parameters to be p = 1, a, = 1, and ag;s = 1. In the discussion we
will also refer to the Young’s modulus E and the Poisson’s ratio v, which are related to the

Lamé coefficients via
Ap <3>‘p + Qﬂp)ﬂp

V= ——————,
2(Ap + ) Ap + ip
The body forces and external source are zero, as well as the initial conditions. The flow

is driven by a parabolic fluid velocity on the left boundary of fluid region. The boundary

conditions are as follows:

u; = (—40y(y —1) 0)* on Tfier, up=0 on Tyiop UL rignt,
pp=0 and om,=0 on T',pottoms

u,-n,=0 and u;=0 on I[piex UL igne,

The simulation is run for a total time 7' = 3 with a time step At = 0.06.

For each case, we present the plots of computed velocities, first and second columns of
stresses (top plots), first column components of poroelastic stress (middle plots), displace-
ment and Darcy pressure (bottom plots) at final time 7" = 3.

Case 1 focuses on the qualitative behavior of the solution. The computed solution at
the final time 7' = 3 is shown in Figure 2.4.1. On the top left, the arrows represent the
velocity vectors uy and u, + d;m, in the two regions, while the color shows the vertical

components of these vectors. The other two plots on the top show the computed stress. The
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arrows in both plots represent the second columns of the negative stresses —(o 712, 0 f22)"
and —(op 12, 0p22)". The colors show —o 15 and —o7p 12 in the middle plot and —o f29 and
—0, 22 in the right plot. Since the Stokes stress is much larger than the poroelastic stress, the
arrows in the fluid region are scaled by a factor 1/5 for visualization purpose and the color
scale is more suitable for the Stokes region. The poroelastic stresses are presented separately
in the middle row with their own color range. The bottom plots show the displacement
vector and its magnitude on the left and the poroelastic pressure on the right.

From the velocity plot we observe that the fluid is driven into the poroelastic medium
due to zero pressure at the bottom, which simulates gravity. The mass conservation uy -
n; + (0m, +1,) - n, = 0 on the interface with n, = (0,1)" indicates continuity of second
components of these two velocity vectors, which is observed from the color plot of the velocity.
In addition, the conservation of momentum o ny + o,n, = 0 implies that —o 412 = —07p12
and —o j92 = —0, 22 on the interface. These conditions are verified from the two stress color
plots on the top row. We observe large fluid stress near the top boundary, which is due to
the no slip condition there, as well as large fluid stress along the interface, which is due to
the slip with friction interface condition. A singularity in the left lower corner appears due to
the mismatch in inflow boundary conditions between the fluid and poroelastic regions. The
bottom plots show that the infiltration of fluid from the Stokes region into the poroelastic
region causes deformation of the medium and larger Darcy pressure. Furthermore, comparing
the right middle and bottom plots, we note the match along the interface between —o 22
and p,, which is consistent with the balance of force and momentum conservation conditions
—(oyny) -ny =p, and ony + o,n, = 0, respectively.

In Case 2 we test the model for a problem that exhibits both locking regimes for poroe-
lasticity: 1) small permeability and storativity and 2) almost incompressible material [83].
In particular, we take K = 107* x I and so = 10™*. Furthermore, the choice \, = 10°, p, = 1
results in Poisson’s ratio v = 0.4999995. The computed solution does not exhibit locking or
oscillations. The behavior is qualitatively similar to Case 1, with larger fluid and poroelastic
stresses and a Darcy pressure gradient.

In Case 3, the Lamé coefficient p,, is increased from 1 to 10°, resulting in a much stiffer

poroelastic medium, which is typical in subsurface flow applications. The solution is again
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Figure 2.4.1: Example 2, Case 1.

K=1I s=1, A\, =1, n, = 1. Computed solution at final time 7" = 3. Top left: velocities
u; and u, + 0;m, (arrows), uyo and u,s + 91,5 (color). Top middle and right: stresses
—(0f12,092)" and —(0,12,02)" (arrows); top middle: —o 12 and —o, 12 (color); top
right: —o ;90 and —op, 22 (color). Middle: poroelastic stress —(o, 12, 092)" (arrows); middle
left: —op,12 (color); middle right: —a, 25 (color). Bottom left: displacement 5, (arrows),

In,| (color). Bottom right: Darcy pressure p,.

free of locking effects or oscillations, but it differs significantly from Case 2, including three
orders of magnitude larger stresses and Darcy pressure, as well as smaller displacement and

Darcy velocity.
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Figure 2.4.2: Example 2, Case 2.

K=10"*x1, 50 =10"% X\, = 10° u, = 1. Computed solution at final time 7" = 3. Top left:
velocities uy and w, + dim,, (arrows), us, and u,9 + 9yn, 5 (color). Top middle and right:
stresses —(0 712, 0 £.20)" and — (07,12, 0p22)" (arrows); top middle: —o 12 and —op 12 (color);
top right: —o 92 and —o 92 (color). Middle: poroelastic stress —(o,12,0,2)" (arrows);
middle left: —o, 15 (color); middle right: —o,9> (color). Bottom left: displacement n,

(arrows), |n,| (color). Bottom right: Darcy pressure p,.
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Figure 2.4.3: Example 2, Case 3.

K=10"*x1I, sp = 107* X, = 10%, u, = 10°. Computed solution at final time 7" = 3. Top
left: velocities uy and u,+9;n, (arrows), uy» and u,+09;m, , (color). Top middle and right:
stresses —(0 112, 0 f.22)" and —(07p 12, 0p22)" (arrows); top middle: —o 12 and —op 12 (color);
top right: —o 92 and —op, 90 (color). Middle: poroelastic stress —(o, 12, 0p22)" (arrows);
middle left: —o, 12 (color); middle right: —o,9> (color). Bottom left: displacement n,

(arrows), |n,| (color). Bottom right: Darcy pressure p,.
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3.0 A multipoint stress-flux mixed finite element method for the Stokes-Biot

model

3.1 The model problem and weak formulation

The model problem we study in this Chapter is similar to the Stokes-Biot model in
Chapter 2. The only difference lies in the fluid region, where we consider a dual mixed
formulation. In particular, the flow in €y is governed by the Stokes equations, which are
written in the following stress-velocity-pressure formulation:

or = —prl+2pe(uy), —div(iey) =y, div(uy) = ¢ in Qp x (0,77,

(3.1.1)

om; =0 on IFx(0,T], uf =0 on I} x(0,T]
where I'y =T I}I U F]]?. Since we would like to derive a dual-mixed formulation for the Stokes-
Biot model, we adopt the approach from [1,50], and include as a new variable the vorticity

tensor 7y,
1
vr = 5 (Vuy = (Vuy)').
In this way, owing to the fact that tr(e(uy)) = div(us) = ¢y, we find that (3.1.1) can be
rewritten, equivalently, as the set of equations with unknowns o, and uy, given by
—ajle:Vuf—'yf—ﬁqu, —diV(O'f):ff n QfX(O,T],

1 .
of =0y, pr= - (tr(oy) —2ugqs) in Qp x (0,7, (3.1.2)

om; =0 on I'Yx(0,T], uf=0 on I'?x(0,T].

Notice that the fourth equation in (3.1.2) has allowed us to eliminate the pressure py from the
system and provides a formula for its approximation through a post-processing procedure.
For simplicity we assume that |F1}I| > 0, which will allow us to control o by o"}. The case
T = 0 can be handled as in [50-52] by introducing an additional variable corresponding

to the mean value of tr(oy).
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The Biot system and the interface conditions are exactly the same as the one in Sec-

tion 2.1 of Chapter 2. We present them here for completeness.

—div(o,) =f,, pK'u,+Vp,=0,

0 : .
g (sopp + apdiv(n,)) +div(u,) = ¢, in Q, x (0,7, (3.1.3a)
u,-n,=0 on FpN x (0,T], p,=0 on F]]? x (0,71, (3.1.3b)
o,n, =0 on f‘pN x (0,T], mn,=0 on fll? x (0,77, (3.1.3c)
0
u;-ng+ <# + up> n, =0, oms+o,n, =0 on Iy x (0,7, (3.1.3d)

Finally, the above system of equations is complemented by the initial condition p,(x,0) =
Ppo(x) in €©,. We stress that, similarly to [65], compatible initial data for the rest of the
variables can be constructed from p,( in a way that all equations in the Stokes-Biot system,
except for the unsteady conservation of mass equation in the second row of (3.1.3a), hold at
t = 0. This will be established in Lemma 3.2.8 below. We will consider a weak formulation
with a time-differentiated elasticity equation and compatible initial data (67,0, Pp0)-

We then proceed analogously to [4, Section 3] (see also [50]) and derive a weak formulation
of the coupled Stokes-Biot problem. For the stress tensor, velocity, and vorticity in the Stokes

region, we use the Hilbert spaces, respectively,
Xs = {Tf € H(div; Q) : 7/mny =0 on F?},
Vf = Lz(Qf), Qf = {XfE]LQ(Qf) ZX}I—Xf},
endowed with the corresponding norms
Il = I sllaans 1vrllv, = I¥sllenn, Ixlloy = Islee

In the Biot region, we introduce the structure velocity u, := 9;n, € V, satisfying u, = 0

- 1
on I') x (0,T] and the rotation operator p, := §(V17p — Vn,). Notice that in the weak
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formulation we will use its time derivative, that is, the structure rotation velocity =, :=

op, = 5 (Vu, — (Vu,)"). We introduce the Hilbert spaces:
X, = {Tp € H(div;,) : 7pn, =0 on pr},
Vo= L9, Q= {x, € LAY X = — Xy -
vV, = {Vp € H(div;Q,) : v, n,=0 on FPN}, W, = L2(Qp),

endowed with the standard norms

7ol = [Tolla@ivia,),  [Vsllv, = lIvsllez@,),  Ixolle, = Ixpllez@,),

Vollv, == IVpllm@ivie,),  llwpllw, = llwpll2@,).

Finally, analogously to [4, 10,47, 50, 65] we need to introduce three Lagrange multipli-
ers modeling the Stokes velocity, structure velocity and Darcy pressure on the interface,

respectively,
¢ = uylr,, €Ay, 0 :=usp,, €A, and A = pylr,, €A,

The reason for introducing these Lagrange multipliers is twofold. First, uy, u,, and p,
are all modeled in the L? space, thus they do not have sufficient regularity for their traces
on I'y, to be well defined. Second, the Lagrange multipliers are utilized to impose weakly
the transmission conditions (3.1.3d)—(3.1.3e). For the Lagrange multiplier spaces we need
Ay = (Vyp-mylr,), Ay = (Xpnylp, ), and A, = (X, n,|r,, ). According to the normal
trace theorem, it holds that

<Vp : np7€>rfp < C||Vp||H(diV;Qp)||£||H1/2(Ffp)7 vvp € Vp7 5 € H1/2<Ffp)7 (314)
and
<7'* n*7'¢>Ffp < OHT*HH(div;Q*)H¢||H1/2(Ffp)7 Vr,eX, e H1/2(Ffp>v * € {f7p}' (315)

Therefore we can take A, := HY2(T'y,), A; := HY?(T'y,), and A, := HY%(T';,), endowed

with the norms

1€lla, = N€llrzw,,y,  ¥la, = l$lawem,), and (@), = |Slmec,). (3.1.6)
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We now proceed with the derivation of our Lagrange multiplier variational formulation
for the coupling of the Stokes — Biot problems. We adopt the same derivation process in
Section 2.1 for the Biot system. Then, similarly to [4,10,50,51], we test the first equation of
(3.1.2) with arbitrary 7y € Xp, integrate by parts, utilize the fact that ¢ : 7 = o¢ : 7¢,
impose the remaining equations weakly, and utilize the transmission conditions in (3.1.3d)—

(3.1.3e) to obtain the variational problem,

1

— (0%, 7F)a, + (uy, div(T))e, + (v5, 7)o, — (Tmy, @) =

2 Cyp _ﬁ (qu’Tf>Qf7

— (vy,div(oy))a, = (£, vy)a,,

- (Uf’Xf)Qf =0,

(O Aloy + appp 1), Tp)a, + (us, div(Ty))a, + (7, Tp)a, — (Tp1y, 0>Ffp =0,

= (vs,div(ey))e, = (£, Vi)a,,

= (5, X,)0, =0,

Ky, )0, — (s div(vy))e, + (¥ -1y Ny, =0, (3.1.7)

(50 Oy Pp; wp)ﬂp + oy (O A(Up + QpPp I), Wp I)Qp + (wp> diV(up))Qp = (%a wp)ﬂpa

- <Lp nf+ (0+up) 'np7§>f‘fp = 07

n—1

<0'fnf7'¢)>Ffp + [ Omgs Z < \/ Kj_l (QO - 0) ’ tf1j7¢ ’ tf,j> + <¢ “ny, )\>Ffp =0,
j=1 Lrp
n—1

<0'pnp7 ¢>Ffp — K QBJs Z < \/ Kj_l (90 - 0) ’ th’ ¢ ’ tf,j> + <¢ My )\>Ffp = 0.
j=1 Lyp

The last three equations impose weakly the transmission conditions (3.1.3d)-(3.1.3e). In
particular, the equation with test function & imposes the mass conservation, the equation
with 1 imposes (3.1.3e), which is a combination of balance of normal stress and the BJS
condition, while the equation with ¢ imposes the conservation of momentum. We emphasize
that this is a new formulation. To our knowledge, this is the first fully dual-mixed formulation

for the Stokes-Biot problem.

Remark 3.1.1. The time differentiated equation in the fourth row of (3.1.7) allows us to

eliminate the displacement variable m,, and obtain a formulation that uses only u,. As part
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of the analysis we will construct suitable initial data such that, by integrating in time the

fourth equation of (3.1.7), we can recover the original equation

(Alop + appp 1), Tp)a, + (1, div(Ty))e, + (P, Tp)e, — <Tpnp’w>rfp =0, (3.1.8)

where w = n,|r,, -

To simplify the notation, we set the following bilinear forms:

1
ag(oy,Ty) = ﬂ(a(}77§)9w ap(up, vp) = M(K_lumvp)ﬂpv

ae(Op, Dp; Tp, wp) = (Ao + appI), Tp + o w, Ig,
b(Tr,vy) == (div(Ty), vi)a,, bs(Tp,vs) = (div(Ty),Vvs)a,, (3.1.9)
bp(vp’wp) = _(diV(Vp)va)Qpa bF(vaf) = <Vp'np75>rfpv
bk (Tos X)) = (Toy X b, (To, ) 1= — <T*n*,¢>Ffp, with x € {f,p},
and
n—1
cas(p, 0; 1, @) 1= pomss Z <\/ Kf(‘P —0) ty;, (Y —9)- tf,j> )

j=1 rp (3.1.10)

cr(,$:6) = (-0 &+ (P-m )y,

There are many different ways of ordering the variables in (3.1.7). For the sake of the
subsequent analysis, we proceed as in [50] and [4], and adopt one leading to an evolution
problem in a doubly-mixed form. Hence, the variational formulation for the system (3.1.7)

reads: Given
fr:[0,7] = Vi, £,:00,T] = Vi, q5 : [0,T] = X}, q,: [0,T] = W), ppo€W,, op0€X,,

find (a-f7up7ap7pp7cp707)‘7uf7u877f77p) : [O)T] — Xf X Vp X Xp X Wp X A—f X As X Ap X
Vi x Vi xQf x Q,, such that p,(0) = p,0, 0,(0) = 0,0 and for a.e. t € (0,7):

af(op, Tp) + ap(p, vy) + ac(0; 0y, 0y pp; Tp, wp) + (80 0 Py, wp)ﬂp

+ bp(Vp, pp) — by, wy) + bnf (Tr,p) + bn,, (T, 6) + br(vp, A)
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1
- ﬁ (Qf I> Tf)Qf + (qp7 wp)Qpa

+ bf(va uf) + bS(Tpa US) + bsk,f(7f7 '7f) + bsk,p(Tpa 7p) =
- bnf (O'f, ¢) - bnp<a-p7 ¢) - br(llp, 5) + CBJS(QD, 01 "pa ¢> + Cl_‘(":ba ¢a >‘) - CF(QOa Ba 5) = Oa

— bf(O'f,Vf) — bs(a'p,vs) — bSk,f(o-f7Xf> — bsk,p(apaxp> = (ff,Vf)Qf + (fp,VS)Qp, (3111)

VrreXyv, eV, e Xpw, € Wyp € Ap,p € Ay, € Ay, vy € Vy vy € Vi x; €
@f?Xp 6 Qp'
Now, we group the spaces and test functions as follows:

X=Xy xV,xX, xW,, Y :=AsxA;xAy,, Z:=VyxV;xQsxQp,

o = (of,uy,0,p) €X, ¢ = (p,0,)) €Y, u:= (us,u,7,7,) €Z,

T = (Tfavpanawp) € Xa '(,b = (T:b?(ﬁaf) € Ya Vv = (Vf7VS7Xf7Xp) € Z7

where the spaces X,Y and Z are endowed with the norms, respectively,

Izllx = lI7rll, + IVollv, +I7pllx, + llwpllw,,  lI¥lly = [llla, + [ Plla, + lI€]la,,

I¥llz = [[vellv, + Ivsllv, + lIx;llo, + I1x,ll0,-

Hence, we can write (3.1.11) in an operator notation as a degenerate evolution problem in a

doubly-mixed form:

% E(a(t)) + Ale(t) + Bi(e(t) + B'(u(t)) = F() in X,
—Bi(a(t)) + Cle(t)) =0 in Y, (3.1.12)
—B(a(t)) = G(t) in Z,

where, according to (3.1.9)—(3.1.10), the operators A: X - X' B, : X =Y . C:Y - Y/,
and B : X — Z/, are defined by

Alg)(T) = ap(os, 7)) + ap(uy, vp) + 0p(Vp, pp) — by, wy),
Bl(z)(%) = bnf (va @b) + bnp(Tm ¢) + bF(Vpa 5)7 (3~1~13>
Clp)(¥) = s, 0:9,0) + cr (¥, : A) — cr(p, 0:),
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and
B(r)(v) = bp(Ts,vy) + bs(Tp, Vs) + ba s (T, Xf) + siep (T Xp)’ (3.1.14)

whereas the operator £ : X — X’ is given by

E(@)(T) = ac(Tp, Pp; Tp, Wwp) + (S0 Pp, Wp)a,, (3.1.15)

and the functionals F € X', G € Z’ are defined as

1
F(r) := (s Lts)a; + (@p,wp)a, and G(v) = (fr,vi)a, + (£, Vi), (3.1.16)

n

3.2 Well-posedness of the weak formulation

In this section we establish the solvability of (3.1.12) (equivalently (3.1.11)). To that

end we first collect some previous results that will be used in the forthcoming analysis.

3.2.1 Preliminaries

We begin by recalling the key result 2.2.3 given in [74, Theorem IV.6.1(b)] that will
be used to establish the existence of a solution to (3.1.12). In addition, in order to show
the range condition of Theorem 2.2.3 in our context, we will require the following theorem
whose proof can be derived similarly to [49, Theorem 2.2] (see also [1, Theorem 3.13] for a

generalized nonlinear Banach version).

Theorem 3.2.1. Let XY, and Z be Hilbert spaces, and let X',Y', Z" be their respective
duals. Let A: X — X', S:Y =Y B : X =Y, and B : X — Z' be linear bounded
operators. We also let By : Y — X' and B’ : Z — X' be the corresponding adjoints. Finally,
we let V' be the kernel of B, that is

Vo= {’TEX: B(t)(v) =0 VVEZ}.
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Assume that

(i) Aly -V — V' is elliptic, that is, there exists a constant a > 0 such that
AT)(T) > a|T|}x VYTeV
(ii) S is positive semi-definite on'Y', that is,

S()(¢) >0 VeV

(11i) By satisfies an inf-sup condition on V' x Y, that is, there exists 31 > 0 such that
Bi(7)(¥)
|

|7 llx

> Mlllly Vepev

sup
0#£T€EV

(iv) B satisfies an inf-sup condition on X x Z, that is, there exists § > 0 such that

p BOW)

> 8lvly Vvez
ozrex ||Tlx

Then, for each (Fy, Fy,G) € X' XY’ x Z' there exists a unique (o,p,u) € X XY X Z, such

that
A(o)(T)+ Bi(p)(T) + B'(u)(t) = Fi(t) VTeX,

Bi(o)() — S(e) () = Rh(y) Vyey,
B(o)(v) = G(v) VveZz

Moreover, there exists C > 0, depending only on o, By, B, || A, ||S||, and || Bi|| such that

I(@, 0. W) xxyxz < C{I1Blx + I Baly + Gl }.

At this point we recall, for later use, that there exist positive constants ¢, (€2f) and c2(Qy),

such that (see, [23, Proposition IV.3.1] and [48, Lemma 2.5], respectively)
a@p)ITrollz e, < IT5lEe0) +IdV(T) T, V75 =Tro+ (T € H(div; Q) (3.2.1)

and

Q) sk, < llTrollk, Y7r=Tro+lIeX;, (3.2.2)

where 779 € Hoy(div;Qy) := {Tf € H(div; Q) :  (tr(7y), 1), = O} and { € R. We
emphasize that (3.2.2) holds since each 7 € Xy satisfies the boundary condition 7/n; = 0

on I'f with |T}] > 0.
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3.2.2 The resolvent system

Now, we proceed to analyze the solvability of (3.1.12) (equivalently (3.1.11)). First,
recalling the definition of the operators A, By, B,C, and & (cf. (3.1.13), (3.1.14) and (3.1.15)),
we note that problem (3.1.12) can be written in the form of (2.2.11) with

o E 00
E=XxYXZ, u=| ¢ |, N=|o0 00 |,
u 000
(3.2.3)
A B B F
-B 0 O G
In addition, the norm induced by the operator £ is |T|% = s ||wp|]iQ(Qp) + ||AY2 (T, +

ap wp D) [[2(q,), Which is equivalent to [|7,[[f2, ) + [wpllfz(q,) since so > 0. We denote by
X, 2 and W, 5 the closures of the spaces X, and W, respectively, with respect to the norms
7ol = [ Tpll2(e,) and [Jwpllw, ., = [[wpllL2(q,). Note that X7 , = L2(2,) and W, =W,

Next, denoting X5, :=0 x 0 x X 5 x W ,, Y5,:=0x0x0, and Z5, :=0x 0 x 0 x 0,

the Hilbert space E; and domain D in Theorem 2.2.3 for our context are
By = Xbo x Yho x Zho, Di= {(g,g,g) EXXYxZ: Mo, pu)e E,’,}. (3.2.4)

Remark 3.2.1. The above definition of the space E; and the corresponding domain D implies
that, in order to apply Theorem 2.2.3 for our problem (3.1.12), we need to restrict fy =
0,q¢f = 0, and £, = 0. To avoid this restriction we will employ a translation argument
[76] to reduce the existence for (3.1.12) to existence for the following initial-value problem:
Given initial data (@, P,,Uy) € D and source terms (/fp,@,) 2 [0,T] = X5 x W, find

(o,p,1u) € [0,T] = X XY xZ such that (7,(0),p,(0)) = (G0, Ppo) and, for a.e. t € (0,T),

9 £6(1) + AB(1) + BI@() + BGW) = F() i X,
~ B8 (1) +C(@(1) — 0w oYy, (3.25)
_B<§<t)) =0 in Z,2,07

where F = (0, O,/f\p, @)
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In order to apply Theorem 2.2.3 for problem (3.2.5), we need to: (1) establish the required
properties of the operators N and M, (2) prove the range condition Rg(N + M) = Ej, and
(3) construct compatible initial data (o, $,,Uy) € D. We proceed with a sequence of

lemmas establishing these results.

Lemma 3.2.2. The linear operators N and M defined in (3.2.3) are continuous and mono-

tone. In addition, N is symmetric.

Proof. First, from the definition of the operators £, A, By,C and B (cf. (3.1.13), (3.1.14),
(3.1.15)) it is clear that both A/ and M (cf. (3.2.3)) are linear and continuous, using the
trace inequalities (3.1.4)—(3.1.5) for the continuity of B;. In turn, A is symmetric since £

is. Finally, using (2.1.6), we have

E(r)(T) = SOH@U;DHi?(Qp) + ||A1/2(Tp + apwp:[)”i?((zpy

X (3.2.6)
AlT)() = o 175120 + # ke Vallieq,) YT EX,
and recalling the definition of the operator C (cf. (3.1.10), (3.1.13)), we obtain
n—1
[er— pa
C(ﬂ)(%) = [ QpJs Z < Kj 1(1,b - ¢) ’ tﬁja (¢ - ¢) 'tf,j> > \/kBi |’¢ - ¢|§JS7
j=1 Tsp max
(3.2.7)

for all ¥ — (1, ,€) € Y, where [1h — ¢f2s == 370 (@ — @) - tll2sr, - Thus, com-
bining (3.2.6) and (3.2.7), and the fact that the operators £, .4, C are linear, we deduce the

monotonicity of the operators N’ and M completing the proof. n

Next, we establish the range condition Rg(N + M) = E;, which is done by solving the
related resolvent system. In fact, we will show a stronger result by considering a resolvent
system where all source terms in F and G may be non-zero. This stronger result will be
used in the translation argument for proving existence of the original problem (3.1.12). More

precisely, let

Xo =X XV, xX,0xW,5,DX
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and note that X5 = X, x V) x X[, x W], , C X'. We consider the following resolvent system:

(E+A)(e)+Bi(p)+Bu) = F in X,

—Bi(a) +C(p) =0 in Y, (3.2.8)

o)

- B(a) = in 7,

where F € X/, and G € Z' are such that

A~ o~ o~ o~

F(1) = (fo,,71)a, + (fu,, Vp)a, + (B, Tp)a, + (G, wp)a,

o~ ~ ~

G(v) = (fuf7vf)Qf + (fus7V5)Qp + (f“/f7 Xf)Qf + (f—ypa Xp)Qp .
We next focus on proving that the resolvent system (3.2.8) is well-posed. We start with the

following preliminary lemma.

Lemma 3.2.3. Let (o, ¢,u) € X x Y X Z be a solution to (3.2.8). Then, for any positive

constant K, it satisfies

(E+A)(g)+Bi(¢)+Bu) = F in Xy,
Bi(o) - C(e) = 0 in Y, (3.2.9)
B(o) = -G in 7,

where

Al)(x) = Ala)(m)+n { (div(w,), div(v,))o, + (50 by +0t tr( Aoy +, 5, 1) div(v,)) ).
(3.2.10)

and

F(1) := F(1) + (G, div(vy)), -

Conversely, if (a,¢,u) € X XY x Z is a solution to (3.2.9), then it is also a solution to
(3.2.8).

Proof. Let (a,p,u) € X xY xZ be a solution to (3.2.8). Using that div'V,, = W,, we take
T = (0,w,) = (0,div(v,)) € X in the first row of (3.2.8), multiply by a positive constant x
and add that term to (3.2.8), to obtain (3.2.9). Conversely, if (g, ¢, u) € X XY x Z satisfies

(3.2.9) we employ similar arguments, but now subtracting, to recover (3.2.8). O
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Problem (3.2.9) has the same structure as the one in Theorem 3.2.1. Therefore, in what
follows we apply this result to establish the well-posedness of (3.2.9). To that end, we first
observe that the kernel of the operator B, cf. (3.1.14), can be written as

V = {zEX: B(t)(v) =0 VVEZ} = Xy xV, x X, x W, (3.2.11)

where

X, := {T*GX*Z 7,=7. and div(T,)=0 in Q*}, * € {f,p}.

We next verify the hypotheses of Theorem 3.2.1. We begin by noting that the operators
.Z, Bi,C,B, and £ are linear and continuous. Next, we proceed with the ellipticity of the
operator £ + AonV.

Lemma 3.2.4. Assume that

K € (0, 2 min {51, —2}) with 01 € <O, —) and 0y € (0, H (1 % 51>) :
oy, 50 n oy, 2

Then, the operator € + A is elliptic on V.

Proof. From the definition of A, cf. (3.2.10), and considering T € V we get

1 _
€+ A)(T)(z) = o 17513200,y + £IK Yy 3200, + 50 [lwpl[Ry,
+ ||A1/2(Tpap Wp I)”%}(Qp) +kK “diV(Vp)Hi?(Qp) + S0 £ (wp, diV(Vp))Qp

+ ap K (Al/Q(Tp + a,w, 1), Al/Q(div(vp) I))q,.

P

Hence, using the Cauchy—Schwarz and Young’s inequalities, (2.1.6), (2.1.4), and (3.2.1)-
(3.2.2), we obtain

(€ +A)(x)(T)

@) _ So no )
> Sl kbl + 0 ((1-501) = 122280 ) (v

Qa K
b (1= ) 1 0y Dl 0 (1 55 ) ol
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where Cy := C1(2¢) C2(€25). Then, using the stipulated hypotheses on d;, 2 and &, we can

define the positive constants

C : _ s na
ai(Qy) = —d a3(2,) := min {,uk:mix,/{ <<1 — 5051> I é 52)},

a(Q,) = % (1 - 2—’21) . ay(9,) == min { <1 = ;‘—g; m) ,ag(Qp)}

which allow us to obtain

(E+A)(T)(T) = ar(Q) 741l + () [IVol13, + as() [wplli,
(3.2.12)

+ as() (I1472(r, + apw, D2z, + sl )
In turn, from (2.1.4) and using the triangle inequality, we deduce
ol < (2 tmas + 1 Ama) (14207 + @ w0, DllEage, + 114" 2(0y w, Dz, )

< Gy (I14Y2(mp + apw, D, + Il )
(3.2.13)
where C} := (2 fimax + 7 Amax) max{l naj } A combination of (3.2.12) and (3.2.13), and

’ 2/u‘min

the fact that div(7,) = 0 in €, implies
(E+A1)(1) > a2, ) |7k VT EV,

with a(Qy, Q) == min {1 (), @2(Qp), a3(2), a(€2,)/Cp }, hence E+Aisellipticon V. O

Remark 3.2.2. To mazimize the ellipticity constant a(Qy¢,$2,), we can choose explicitly the
parameter k by taking the parameters 61 and do as the middle points of their feasible ranges.
More precisely, we can simply take

1 min . 1 min
0 =—, 52:'u—, m:mm{—ﬂ }

50 naoy, 50’ na’

We continue with the verification of the hypotheses of Theorem 3.2.1.
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Lemma 3.2.5. There exist positive constants 1 and 3, such that

Bi(z)(¢)

—— > B |[Ylly Ve, (3.2.14)
ozrev  |IT|Ix

and

sup > Bllvllz VveZ. (3.2.15)

ozrex  [Tllx
Proof. We begin with the proof of (3.2.14). Due the diagonal character of operator B,
cf. (3.1.13), we need to show individual inf-sup conditions for by, by,, and br. The inf-sup
condition for br follows from a slight adaptation of the argument in [43, Lemma 3.2] to
account for the presence of Dirichlet boundary F}?, using that dist (FE, I'yy) > s> 0. The
inf-sup conditions for by, and by, follow in a similar way. Since the kernel space V consists
of symmetric and divergence-free tensors, the argument in [43, Lemma 3.2] must be modified

to account for that. For example, in {2y we solve a problem
div(e(vyf)) =0 in Qf, e(vy)ny=§ on FprFF, vy =0 on FJI?, (3.2.16)

for given data & € H'/?(T'y, UTY) such that £ = 0 on I'}. We recall that '} is adjacent
to I',. Furthermore, |FJI?| > (0, which guarantees the solvability of the problem. We refer
to [43, Lemma 3.2] for further details.

Finally, proceeding as above, using the diagonal character of operator B, cf. (3.1.14),
and employing the theory developed in [48, Section 2.4.3] to our context, we can deduce

(3.2.15). 0

Now, we are in a position to establish that the resolvent system associated to (3.2.5) is

well-posed.

Lemma 3.2.6. For N'; M and Ej defined in (3.2.3)~(3.2.4), it holds that Rg(N + M) = E},
that is, given f € E}, there exists v € D such that (N + M)(v) = f.

Proof. Let us consider F = (0,0,1;,@)t and G = 0 in (3.2.8)-(3.2.9) and ~ as in
Lemma 3.2.4. The well-posedness of (3.2.9) follows from (3.2.7), Lemmas 3.2.4 and 3.2.5,
and a straightforward application of Theorem 3.2.1 with A = & + .,Z(, By = B;,S =C, and
B = B. Then, employing Lemma 3.2.3 we conclude that there exists a unique solution of

the resolvent system of (3.2.5), implying the range condition. O
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We are now ready to establish existence for the auxiliary initial value problem (3.2.5),

assuming compatible initial data.

A~
~

Lemma 3.2.7. For each compatible initial data (Qo,fo,ﬁo) € D and each (£f,,q,) €
WEH0, T3 X ,) x WHY0,T5 W), ,), the problem (3.2.5) has a solution (&,@,1) : [0,T] —
X x Y x Z such that (G,,p,) € Wh>(0,T;1L*(Q,)) x Wh°(0,T; W,) and (a,(0),p,(0)) =
(05,0 Ppo)-

Proof. The assertion of the lemma follows by applying Theorem 2.2.3 with E, N/, M defined
in (3.2.3), using Lemmas 3.2.2 and 3.2.6. O

We will employ Lemma 3.2.7 to obtain existence of a solution to our problem (3.1.12).
To that end, we first construct compatible initial data (o, Py u).
Lemma 3.2.8. Assume that the initial data p,o € W, N H, where
H = {wp e H'Y(Q,): KVw,cH(Q,), KVw, -n,=0 on FPN, w, =0 on I’E}.
(3.2.17)
Then, there ezist oy = (010, Up0, Tpo,Ppo) € X, P, = (¢0,00,N0) € Y, and u, :=
(Uy0, Ws 0, Y05 Ypo) € Z such that
Algy) +Bi(g,) +B,) = Fo  in X,
—Bi(gy) +C(g,) =0 in Y (3.2.18)
— B (o) = G(0) in Z,

where Fo = (qr(0), 0,/f\p,0, Gpo)" € XY, with suitable (/f\pg,@,’o) €X) oy x W ,.

Proof. Following the approach from [4, Lemma 4.15], the initial data is constructed by
solving a sequence of well-defined subproblems. We take the following steps.
1
1. Define u, o := —— KVp, o, with p,o € H, cf. (3.2.17). It follows that u, o € H(div;$2,)
1

and

1
,uK_lupp = —Vppo, div(u,o) = —; div(KVp,o) in €, u,0-n,=0 on Fg.
(3.2.19)

80



Next, defining Ao := ppolr,, € Ay, (3.2.19) implies
ap(p.0, Vp) + bp(Vp, Ppo) + br(vp, o) =0 Vv, € V. (3.2.20)

2. Define (010,99, ur0,7s0) € Xy X Ay X V; x Qy as the unique solution of the problem

1
ap(0 50, Ts) + bn, (T5,00) +0p(T5,050) + baic (T, Y 10) = - (qr(0) I, 7¢)q,,
n—1
—bl'lf (o-f707 ¢) - _,LL QBJS Z <’\ / K;lup70 . tf,j? ’(p . tf’-7>F — <’[7b . nf? )\O>Fjp , (3221)
Jj=1 fp

—bp (050, Vs) = b (050, X)) = (££(0), Vi),

for all (77,7, vy, x;) € Xp X Ay x Vy x Q. Note that (3.2.21) is well-posed, since it
corresponds to the weak solution of the Stokes problem in a mixed formulation and its
solvability can be shown using classical Babuska-Brezzi theory. Note also that u,, and A
are data for this problem.

3. Define (07,0, wo0,M,0, Ppo) € Xp X Ay XV x Q,, as the unique solution of the problem

(A(op0), Tp)ﬂp + bn, (Tp, wo) + bs(Tp, np,o) + bekp (T, pp,o) = —(A(apppo ), Tp)ﬂp

n—1

—bn, (0'p,o, @) = pag;s Z <\/ Kj_lup,O by, @ tf,j> — (¢~ Ny, )‘0>Ffp

j=1 Csp

_bs(ap,07 Vs) - bsk,p(ap,07 Xp) - (fp(o)v Vs)Qpa
(3.2.22)

for all (7,,®,vs,x,) € X, X Ay x V, x Q,. Problem (3.2.22) corresponds to the weak
solution of the elasticity problem in a mixed formulation and its solvability can be shown
using classical Babuska-Brezzi theory. Note that p,, 1,0, and A\ are data for this problem.
Here 7,4, p, 0, and wq are auxiliary variables that are not part of the constructed initial
data. However, they can be used to recover the variables n,, p,, and w that satisty the
non-differentiated equation (3.1.8).
4. Define 6y € A, as
0y = ¢y —u,g on Iy, (3.2.23)
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where ¢, and u,( are data obtained in the previous steps. Note that (3.2.23) implies that
the BJS terms in (3.2.21) and (3.2.22) can be rewritten with u,o-ts; = (¢, — 09) - ts; and
that the ninth equation in (3.1.7) holds for the initial data, that is,

— (o ny+ (00 +1,0) 0y, {1 =0 VEEA,. (3.2.24)

!

5. Finally, define (&),0, us0,7,,0) € X, X V4 x Q,, as the unique solution of the problem

(A(ap,0)7 Tp)Qp + bS(Tpv US,O) + bsk,p(Tpa '7p,0) = _bnp (Tpv o)
(3.2.25)

_bs(&pp; Vs) - bsk,p(ap,m Xp) = 07

for all (7,,vs,x,) € X, x V, x Q,. Problem (3.2.25) corresponds to the weak solution of
the elasticity problem in 2, with Dirichlet datum 8¢ on I'¢,.

Combining (3.2.20), (3.2.21), the second and third equations in (3.2.22), (3.2.24), and
the first equation in (3.2.25), we obtain (g, ¢, uy) € X x Y x Z satisfying (3.2.18) with

~

(fp,Ova)Qp = _(A(a'p,O)an>Qp and (E]\p,Oawp)Qp = _bp(up,Oawp)- (3.2.26)

The above equations imply
1£0llL20,) + l@polliz@,) < C (1Fp0lli2i,) + [1div(upo)lz@,))

-~

hence (f,0,3p0) € X[, X W, 5, completing the proof. O
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3.2.3 The main result

We are now ready to prove the main result of this section.

Theorem 3.2.9. For each compatible initial data (go,fo,go) constructed in Lemma 3.2.8

and each
f; e WH'(0,T;V)), f,e WH(0,T3VY), qr € WHH(0,T5X)), g, € WHH(0,T;W)),

there exists a unique solution of (3.1.12), (a, ¢, 1) : [0,T] = X xY X Z, such that (o, p,) €
WE2(0, T3 1L2(Q)) x Whe(0, T W) and (a5(0), pp(0)) = (0750, Ppo)-

Proof. For each fixed time t € [0, T], Lemma 3.2.6 implies that there exists a solution to the
resolvent system (3.2.8) with F = F(t) and G = G(t) defined in (3.1.16). More precisely,

there exist (a(t), p(t),u(t)) such that
(E+A)(a(t) +Bi(e(t) +B @) = F() in X,
—Bi(a(t) + C(P(t)) =0 in Y/, (3.2.27)
—B(a(t)) = G(t) in Z.

We look for a solution to (3.1.12) in the form o (t) = a(t) + a(t), ¢(t) = @(t) + p(t), and

u(t) = u(t)+u(t). Subtracting (3.2.27) from (3.1.12) leads to the reduced evolution problem

0.&(a(t)) + Al@(t) + Bi(e(t) + B'u() = £(a(t) —ac(at) n Xi,

—Bi(a(t)) +C(e(t)) =0 i Y
—B(a()) =0 in - Zj,
(3.2.28)

with initial condition &(0) = a,—a(0), @(0) = ¢

@,—¢(0), and u(0) = u,—u(0). Subtracting
(3.2.27) at t = 0 from (3.2.18) gives

A(E(0)) + B(2(0) + B(1@(0)) = £(&(0)) +Fo—F(0) in X,
— Bi(3(0)) + C(§(0)) -0 in Y}, (3.2.29)

—~B(&(0)) =0 in o Zj.
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We emphasize that in (3.2.29), Fy — F(0) = (0, 0,/1'\1,70,(/]})70 —qy(0))" € X4 . Thus, M(a(0),
©(0),u(0)) € Ej, ie., (6(0),%(0),u(0)) € D (cf. (3.2.4)). Thus, the reduced evolution
problem (3.2.28) is in the form of (3.2.5). According to Lemma 3.2.7, it has a solution,
which establishes the existence of a solution to (3.1.12) with the stated regularity satisfying
(65(0),25(0)) = (05,0, Pp0)-

We next show that the solution of (3.1.12) is unique. Since the problem is linear, it
is sufficient to prove that the problem with zero data has only the zero solution. Taking

F =G =0 in (3.1.12) and testing it with the solution (g, ¢, 1) yields

1
500 (1472 (0, + 4y 1220, + 50 2oy, )

1
iy loflE2(o,) + an(up, uy) +Cl@) () = 0,

which together with (3.2.13), (2.1.6) to bound a, (cf. (3.1.9)), the semi-definite positive

property of C (cf. (3.2.7)), integrating in time from 0 to t € (0,77, and using that the initial

data is zero, implies

t
o220, + Ipollis, + / (o220 + Iy 2, ) ds <0. (3.2:30)

It follows from (3.2.30) that o(t) = 0,u,(t) = 0,0,(t) = 0, and p,(t) = 0 for all t € (0,T7].
Now, taking 7 € V (cf. (3.2.11)) in the first equation of (3.1.12) and employing the
inf-sup condition of By (cf. (3.2.14)), with ¥ = ¢ = (¢,0,)) € Y, yields

~ B
Blely < sup B o @A)
ozrev  |ITllx 04TEV |lT|lx

Thus, ¢(t) = 0,0(t) = 0, and A(t) = 0 for all £ € (0,77]. In turn, from the inf-sup condition
of B (cf. (3.2.15)), with v = u = (uy, u,,v;,7,) € Z, we get

" wy Bo@ @€+ A))(T) + BiT)(e) _
Pllalz < sup i = o, = 0

Therefore, uy(t) = 0,u,(t) = 0,7,(t) = 0, and v, (t) = 0 for all t € (0,77]. Finally, from the
third row in (3.1.11), we have the identity

bf(O'f,Vf) =0 VVf S Vf.
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Taking vy = div(os) € V¢, we deduce that div(of(t)) = 0 for all t € (0, T'], which combined
with the fact that o$(t) = 0 for all ¢ € (0, 7], and estimates (3.2.1)-(3.2.2) yields o(t) = 0
for all t € (0,7]. Then, (3.1.12) has a unique solution. O

Corollary 3.2.10. The solution of (3.1.12) satisfies o5(0) = 00, us(0) = usp,v;(0) =
’Yf,OJ up(o) = Uyp 0, (P(O) = Po; )\(0) = )‘07 and 9(0) = 00'

Proof. Let ¢ := o;(0) — 09, with a similar definition and notation for the rest of the
variables. Since Theorem 2.2.3 implies that M(u) € L>(0,7"; E}), we can take ¢ — 0 in all
equations without time derivatives in (3.2.28), and therefore also in (3.1.12). Using that the
initial data (@, ¢, u,) satisfies the same equations at ¢ = 0 (cf. (3.2.18)), and that o, = 0

and p, = 0, we obtain

1

ﬂ (E(}v T?)Qf + (ﬁfv diV<Tf))Qf + (7)‘7 Tf)ﬂf - <Tfnf7¢>1‘fp =0,

1 (K_lﬁp, Vp>Qp + <Vp . np,x>rfp =0,

- (VfadiV(Ef))Qf =0,
- (Ef7Xf)Qf = Oa

— (7 n;+(0+1,) - np7£>pfp =0, (3.2.31)

n—1

@y P)r,, + posss D <\/ K" (@—6) -t 1Jf,j> (¥ ny Ay, =0,

j=1 Lsp

n—1

s 3 (VI @ -0) b oty) (@m0

j=1 Typ

Taking (77, vp, vy, X1 &0, @) = (Ef,ﬁp,ﬁf,ﬁf,x, ®, 0) and combining the equations results
in

1551120,y + 1Tlli2(q,) + @ — O <O, (3.2.32)
implying E% =0,u, =0, and (® — 0) - t;; = 0. The inf-sup conditions (3.2.14)(3.2.15),
together with (3.2.31), imply that u; = 0,5, = 0, = 0, and A = 0. Then (3.2.32) yields
6 -t;; = 0. In turn, the fifth equation in (3.2.31) implies that <§-np,§>rfp = 0 for all
¢ € HY2(T'y,). Note that n, may be discontinuous on I'y,, thus @ - n, € L?(I'y,). Since
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HY2(T'4,) is dense in L%(I'y,), then 8 - n, = 0, and we conclude that 8 = 0. In addition,
taking vy = div(os) € V; in the third equation of (3.2.31) we deduce that div(ey) = 0,
which, combined with (3.2.1)-(3.2.2), yields & = 0, completing the proof. ]

Remark 3.2.3. As we noted in Remark 3.1.1, the fourth equation in (3.1.7) can be used
to recover the non-differentiated equation (3.1.8). In particular, recalling the initial data
construction (3.2.22), let

t

t t
Vte[0,T], n,(t)= np70—|—/ u,(s)ds, p,(t) = pp70+/ v,(8)ds, w(t) = w0+/ 0(s)ds.
0 0 0
Then (3.1.8) follows from integrating the fourth equation in (3.1.7) from 0 to t € (0,T] and
using the first equation in (3.2.22).
We end this section with a stability bound for the solution of (3.1.12). We will use the

inf-sup condition

b Vp, P + b A% 7A
Ippllw, + [[Alla, < ¢ sup p (Vi Dp) + br(vp, A)
0#£vpEV, ||Vp||Vp

, (3.2.33)

which follows from a slight adaptation of [52, Lemma 3.3].

Theorem 3.2.11. For the solution of (3.1.12), assuming sufficient reqularity of the data,

there exists a positive constant C' independent of sy such that
ol + lofllieorx,) + [upllieo iz, + llzory,) + 1Y — Ol<orss)
+ | = Olr20.rp3s) + ML~ 0r:,) + [l@llL20.1v) + allz,r2) + |’A1/2(0-p)||L°°(0,T;]L2(Qp))
+ [[div(ey) L= o.r:12(0,)) + I1div(ey)llLzorez@,) + IPplleorw,) + IPpllizo.r:w,)
+ (|0, AV (e, + apppD)llL20.r2(@,)) + V/50l101 ppllLz 01w, (3.2.34)
<C (“ffHHl(O,T;V}) + 1 llnro,15vy) + Nlagllm o) + llap e o,mwr)

+ (L + Vs0)lppollw, + ||KVPP70||H1<QP>>‘
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Proof. 'We begin by choosing (7,%,v) = (&, ¢, u) in (3.1.11) to get

1 1
2 0 (1472, + ay Dl + 0 Il ) + 5 o e
+ ap(up, up) + cais(, 0, 0)

1

= _E (qf Iv a-f)ﬂf + (Q}?7pp)9p + (ffa uf)Qf + (fpa us)QP' (3235)

Next, we integrate (3.2.35) from 0 to ¢ € (0,7, use the coercivity bounds (3.2.6)—(3.2.7),

and apply the Cauchy—Schwarz and Young’s inequalities, to find

t
IA"2(@, + 0y 2y DO gy + sllpo, + [ (10 + o, + oo = Ols) s

t
<c ( | (st + 1
0

t
+ 0 pr(O)H%vp> + 5/0 (HUfH?gf + pollw, + [yl + ol

v+ llarllz, + qu!l%v;> ds + [|AY*(e,(0) + 0 pp (0D [[E2 (e,

3,) ds, (3.2.36)

where 6 > 0 will be suitably chosen. In addition, (3.2.33) and the first equation in (3.1.11),

yields

byp(Vp, Dp) + br (v, A a,(u,, v
o llw, +l[Alla, < ¢ sup p(Vp: Pp) + br(Vp, A) — —¢ sup p(Up, V)
OprEVp HVPHVP OprEVp HVpHVp

< Oz,

(3.2.37)
Taking 7 € V (cf. (3.2.11)) in the first equation of (3.1.12), using the continuity of the
operators £ and A in Lemma 3.2.2, and the inf-sup condition of B; for ¢ € Y (cf. (3.2.14)),

we deduce

Billelly < sup M — — sup (0 €+ A)(a)(T) - F(1)
srrev izl opzev Izl

(3.2.38)
< C(losllx, + Iwpllv, + 118: A2 (0, + apppD) [l12(0,)

+v/50ll0pollw, + llarllx;, + llapllwy ).
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In turn, from the first equation in (3.1.12), applying the inf-sup condition of B (cf. (3.2.15))
for u = (uy,u,,v;,7,) € Z, and (3.2.38), we obtain

Sluly < sup BOW _ o @€+ AN +Biz)le) — F(

T T)
ozrex  ||TlIx 0£rEX [lest[P%

(3.2.39)
< C(losllx, + lupllv, + [18: A2 (0 + apppD) [l12(0,)

+v/50ll0: ppllw, + larllx, + llgpllw, )-

In addition, taking w, = div(u,), vy = div(o), and v, = div(o,) in the first and third
equations of (3.1.11), we get

[div(e )z < Iffllvy,  lldiv(ey)llee,) < Iflv;,

(3.2.40)
Idiv(uy) 2,y < C (10, AY* (0 + apppD iz, + V/5ollO ppllw, + llgpllwy) -

Then, combining (3.2.36)—(3.2.40), using (3.2.1)—(3.2.2), and choosing ¢ small enough, we

obtain

1A (0 + appp) (1) 1F2 () + 0l (8) 1,

t
[ I, + i, + 14iv(@,) Exy + iRy, + 1o~ s + il + i) ds
0

t
<c ( | (1t + 15
0

t
+ 50 Iy (), + / (11 AY2(e, + D) E2(a,) + s0ll oy, ) ds>.

v+ llarllz, + qull%v;) ds + [|[AY*(e,(0) + 0 pp(0)D) [E2 e,

(3.2.41)
Finally, in order to bound the last two terms in (3.2.41), we test (3.1.11) with 7 = (0; o, up,
010p,0ipy) €X, 9 = (9,0,0,\) €Y, v = (uy,u,,v;,7,) €Z and differentiate in time the
rows in (3.1.11) associated to v,, ¥, ¢, v, Vs, X and X, to deduce

1 1

2 O <ﬂ HU(}”IQL?(Qf) + ap(up, uy,) + cass(p, 0; @, 9)) + |9 Al/Q("p + Qp Py I)||12L2(Qp)
1

+50 [0 polliv, = - (¢r L0y o), + (ap, O pp)a, + (Oifr up)a; + (0i 5, us)q,,
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which together with the identities

t

t t
/(qu@th)Qf —(quUf)Qf‘O—/ (Orqr L op)a;,
0 0

t ' t
/0 <QPaatpp)Qp = (Q;pr)ﬂp 0 _/0 (at QP7pp)Qp7

and the positive semi-definite property of C (cf. (3.2.7)), yields

lo§(1E20,) + (D) 1E2q,) + () — O(t) s

t
+/O <”atA1/2(‘7p + OépppI)”H%?(Qp) + 30||8tpp||%vp> ds
t
<c| [ (1R, + a5

+ s 0%, + g (0)v, + lo s (0)11%, + I (0) 20, + 126 (0) 1, + l(0) — 9(0)|§Js>

v, 10 asllEz ;) + 1100 qu%v;,) ds + [lgs ()%, + lap(®)l3v,

t
+ 80 (o s O, +Ipa,) + 62 [ (losaay + ol + sl + R, ) ds.
0

(3.2.42)

Using (3.2.37) and the first two inequalities in (3.2.40), and choosing d; small enough, we
derive from (3.2.42) and (3.2.1)—(3.2.2) that

lo s (D11, + s (0) 220,y + [div(e,()lILa,) + () — O() s + [Ipp() Ry, + IADIIE,

t
[ (1047, + 0Dl + soldinliy, ) ds

t
<c ( | (1o, +12:5,
0

+ llarOli%, + llap ), + lar )%, + lgp(0) v, + lo s (O)1%, + I (0)[ L2,

v, 10 asllz ) + ||atf]p”%v;,> ds +[Ifr (), + 150,

t
+ Iy O)fa, +10(0) - 0<o>|§m> w00 [ (sl + I, + sl + i) ds.

(3.2.43)
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We next bound the initial data terms in (3.2.41) and (3.2.43). Recalling from Corollary 3.2.10
that (a(0),¢(0),0(0)) = (o, ¥y, Bo), using the stability of the continuous initial data prob-
lems (3.2.19)-(3.2.22) and the steady-state version of the arguments leading to (3.2.41), we

obtain

o ()2, + I15(0) 20, + 14"2(0p(0)) 2,y + I2o(0) Iy, + 1(0) — 6(0) s
(3.2.44)
< C (IIpnolldy, + 1Kol q,) + IEO) I, + I£0)13, + las O, )

Therefore, combining (3.2.41) with (3.2.43) and (3.2.44), choosing 0, small enough, and using
the estimate (cf. (3.2.13)):

|4 (@, (D)o, < C (1420 + ap 0, DOz, + 1201w, (3:245)

and the Sobolev embedding of H'(0,T) into L>°(0,T"), we conclude (3.2.34). O

3.3 Semi-discrete formulation

In this section we introduce and analyze the semidiscrete continuous-in-time approxima-
tion of (3.1.12). We analyze its solvability by employing the strategy developed in Section 3.2.

In addition, we derive error estimates with rates of convergence.

3.3.1 Semi-discrete continuous-in-time formulation

Let 7;Lf and 7} be shape-regular and quasi-uniform affine finite element partitions of €2;
and €, respectively. The two partitions may be non-matching along the interface I'y,. For

the discretization, we consider the following conforming finite element spaces:
thXthXthCXfXVfXQf, XphXVShXQphCXpXVSXQp, VphXthCVpXWp.

We take (X¢p, Vi, Qpp) and (X, Vn, Qpp) to be any stable finite element spaces for mixed
elasticity with weakly imposed stress symmetry, such as the Amara-Thomas [3], PEERS
[12], Stenberg [77], Arnold-Falk-Winther [13,15], or Cockburn—Gopalakrishnan-Guzman
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[40] families of spaces. We choose (V,,, W,y,) to be any stable mixed finite element Darcy
spaces, such as the Raviart-Thomas or Brezzi-Douglas-Marini spaces [23]. For the Lagrange
multipliers (A gy, Agp, Apy) we consider the following two options of discrete spaces.

(S1) Conforming spaces:
Afh C Af, A, C AS, Aph C Ap, (331)

equipped with H'?-norms as in (3.1.6). If the normal traces of the spaces Xsp, Xpp, or
V,, contain piecewise polynomials in Pj; on simplices or Q; on cubes with k& > 1, where
P} denotes polynomials of total degree k and Q) stands for polynomials of degree k in each
variable, we take the Lagrange multiplier spaces to be continuous piecewise polynomials in
P, or Qi on the traces of the corresponding subdomain grids. In the case of k = 0, we take
the Lagrange multiplier spaces to be continuous piecewise polynomials in P; or 3; on grids
obtained by coarsening by two the traces of the subdomain grids.

(S2) Non-conforming spaces:
Afh = thnfh‘fp, Ash = Xphnp|rfp, Aph = Vph : Ilp|pfp s (332)

which consist of discontinuous piecewise polynomials and are equipped with L2-norms.
It is also possible to mix conforming and non-conforming choices, but we will focus on

(S1) and (S2) for simplicity of the presentation.

Remark 3.3.1. We note that, since HY/*(I'y,) is dense in L2(T'y,), the last three equations
in the continuous weak formulation (3.1.7) hold for test functions in L?(T'y,), assuming that
the solution is smooth enough. In particular, these equations hold for &, € Ay, ¥, € Ag,

and ¢y, € Agp, in both the conforming case (S1) and the non-conforming case (S2).

Now, we group the spaces similarly to the continuous case:

Xh = th X Vph X Xph X th, Yh = Afh X Ash X Apha Zh = th X Vsh X @fh X Qph7

0, = (O fhs Uph, Opis Ppi) € Xy @, = (@1, Ony An) € Y, Wy = (Wpn, Wy Y yns Vpn) € Zins

Ty, = (Tfhvvph77-phawph) S Xha %h = ('l,bh, ¢h7€h) S Yha v, = (th7vsh>thaXph) € Zh-
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The spaces X;, and Zj, are endowed with the same norms as their continuous counterparts.

For Y}, we consider the norm (|9, ||v,, := [[¥plla, + | @nlla., + [[Ealla,,, where

|€n ]|, for conforming subspaces (S1) (cf. (3.1.6)),
1€nlla,, = (3.3.3)
[€nllL2(r,,) for non-conforming subspaces (S2).

Analogous notation is used for ||} ||, and [|@, | a,,-
The continuity of all operators in the discrete case follows from their continuity in the
continuous case (cf. Lemma 3.2.2), with the exception of B (cf. (3.1.13)) in the case of non-

conforming Lagrange multipliers (S2). In this case it follows for each fixed h from the dis-

crete trace-inverse inequality for piecewise polynomial functions, |¢|lr2r) < Ch™V2(|¢l|r20),
where I' C 00. In particular,
bu, (75, 9) < CllTsllize,) ¥z, < Ch*l/z”ﬁ”h?(ﬂf)H’¢HL2(Ffp)a (3.3.4)

with similar bounds for by, (7,, @) and bp(vy, &).
We next discuss the discrete inf-sup conditions that are satisfied by the finite element

spaces. Let
ih = {Ih €eXp: Tmpny;=0 and T,n,=0 on Ffp}. (3.3.5)
In addition, define the discrete kernel of the operator B as
V), = {Ih €Xp: B(r,)(v,) =0 Yv,e Zh} = X %X Vo x Ko x Won,  (3.3.6)

where

X, = {T*h € Xt (Tam€)a, =0 V&, €Qy and div(t,,) =0 in Q}

for x € {f,p}. In the above, div(7,;) = 0 follows from div(X;,) = Vy, and div(X,;,) = V4,

which is true for all stable elasticity spaces.
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Lemma 3.3.1. There exist positive constants 5 and 51 such that

B(t,)(v})

sup > Bllv,llz Vv, € Zn, (3.3.7)
I P
Bl(Ih)(’P ) ~
sup —— 1 > [ 19, v, YV, €Y. (3.3.8)
o£r,evi,  ||ITallx

Proof. We begin with the proof of (3.3.7). We recall that the space X}, consists of stresses
and velocities with zero normal traces on the Neumann boundaries, while the space ih in-
volves further restriction on I'f,. The inf-sup condition (3.3.7) without restricting the normal
stress or velocity on the subdomain boundary follows from the stability of the elasticity and
Darcy finite element spaces. The restricted inf-sup condition (3.3.7) can be shown using the
argument in [6, Theorem 4.2].

We continue with the proof of (3.3.8). Similarly to the continuous case, due the diagonal
character of operator By (cf. (3.1.13)), we need to show individual inf-sup conditions for by,
bn,, and bp. We first focus on bp. For the conforming case (S1) (cf. (3.3.1)), the proof of
(3.3.8) can be derived from a slight adaptation of [43, Lemma 4.4] (see also [50, Section 5.3]
for the case k = 0), whereas from [4, Section 5.1] we obtain the proof for the non-conforming
version (S2) (cf. (3.3.2)). We next consider the inf-sup condition (3.3.8) for by,, with
argument for by, being similar. The proof utilizes a suitable interpolant of 7y := e(vy), the
solution to the auxiliary problem (3.2.16). Due to the stability of the spaces (X, Vn, Qfp)
(cf. (3.3.7)), there exists an interpolant IT] : H'(Q;) — Xy, satisfying

b (s —75vi) =0 Vv € Vi, bay (s — 77, x0) =0 Vg € Qpa,

<(H{1Tf - Tf)nfanhnf>1"pr1"}V =0 \V/Tfh & th.
(3.3.9)

The interpolant ﬂ{LT 7 is defined as the elliptic projection of 7 satisfying Neumann boundary
condition on I'y, UTY [59, (3.11)~(3.15)]. Due to (3.3.9), it holds that r; e th. With
this interpolant, the proof of (3.3.8) for br discussed above can be easily modified for by,
see [43, Lemma 4.4] and [50, Section 5.3] for (S1) and [4, Section 5.1] for (S2). O
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Remark 3.3.2. The stability analysis requires only a discrete inf-sup condition for B in
Xy X Zy,. The more restrictive inf-sup condition (3.3.7) is used in the error analysis in order
to simplify the proof.

Finally, we will utilize the following inf-sup condition: there exists a constant ¢ > 0 such

that

ol + Pallay, < ¢ sup by (Vph, Ppn) + br (Vpn, An) (3.3.10)
AV, EV Vonllv,

whose proof for the conforming case (3.3.1) follows from a slight adaptation of the one

in [52, Lemma 5.1, whereas the non-conforming case (3.3.2) can be found in [4, Section 5.1].

The semidiscrete continuous-in-time approximation to (3.1.12) reads: find (g, ¢, . 1) :

[0,T] — X}, X Y}, X Zy, such that for all (Ih,gh,yh) € X, XY}, X Zy, and for a.e. t € (0,7,

%g(gh)(zh) + Alay,)(T),) + Bl(Ih)(fh) + B(z1),)(u,) = F(z,),
= Bi(g,)(®,) +Cle,)(@,) = 0, (3.3.11)
—B(a;)(v;) = G(v,).

We next discuss the choice of compatible discrete initial data (g, g, fh,o’uhﬁ)’ whose
construction is based on a modification of the step-by-step procedure for the continuous

initial data.

1. Define 0}, := P,f‘s(eo), where P,fs : Ay — Ay, is the classical L2-projection operator,

satisfying, for all ¢ € L2(Ffp),
(¢ = F(@),dn)p, =0 Yy € A

2. Define (0 4,0, @0 Wrno, Y ino) € Xpn X App X Vi X Qpp and (Upn0, Pph,o, Ano) €

Von X Wy, X Ay by solving a coupled Stokes-Darcy problem:

ag(0 tn0, Tsn) + b (T n, Pro) + 05 (T fry Wrno) + baic f (T 115 Y 10)

1
= ap(0 50, Tsn) + b (Tsn, Po) + (T snsWs0) + bsk (T r, Y 0) = - (qr(0) L, T51)qy,,
n—1
— bn, (0 00, 9)) + 11 azss Z <\/ Kj_l(Soh,o —Ono) -ty tf,j> + (¥, - ny, )‘h,0>rfp
j=1 Tp
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n—1
= —bn, (00, %) + pOmss Y < K (g — 00) tr, 9, tf,j> + (¥ np Ao)p,

j=1 Lsp

— 0,
= bp(0fn0, Vin) = ba (0 rn0, Xpn) = =0 (010, Vin) = bacf(0 50, Xpn) = (££(0), Vin)ay,
ap(Upn,0, Vph) + byp(Vph, Ppno) + br (Vpn, Ano) = ap(Wp0, Vin) + by(Vpn, Ppo) + br(Vpn, Ao) =0,
— by (Wpn 05 Wpn) = —bp (W0, wpn) = =~ (div(KVpy0), wpn)a,
—{@po -0y + (B0 + o) - np>§h>Ffp = — (o -0y + (0o +upo) - np,ﬁh)rfp =0, (3.3.12)
for all (7 pn, ¥, Vin, Xpn) € Xpn X Ay X Vi X Qg and (Vipn, Wpn, €n) € Vipn X Wpp X App.

Note that (3.3.12) is well-posed as a direct application of Theorem 3.2.1. Note also that 8}, ¢
is data for this problem.

3. Define (apn,0, Wh,0, Mpn.o> Ppio) € Xpn X Agn X Vg X Qpp, as the unique solution of the

problem

(A(opho), Tph)ﬂp + bn, (Tph, Who) + bs(Tpn, T’ph,()) + bsie p (T phs pph,o) + (Al ppno 1), Tph)Qp

= (A(Up,0)> Tph>ﬂp + bnp (Tp/w wo) + bS<Tph> 77p,0> + bsk,p(Tpha pp,O) + (A(O‘ppp,o I), Tph)ﬂp

=0,
n—1
— bn, (07 pn0, 1) + 1 mss Z <\/ Kfl(éoh,o = Ono) -ty by tf,j> + (&, - 1y, )‘h,0>rfp
j=1 Cp
n—1
= —bn, (040, @p) + [ Omss Z < \/ Kj_l(‘PO —6o) -ty Py tf,j> + (&, - 1y, >‘0>Ffp =0,
j=1 Cyp
- bs(a-ph,Oavsh) - bsk,p(o'ph,o, Xph) = _bs<ap,07Vsh) - bsk,p(o-p,Oa Xph) = (fp(o)vvsh)Qpa

(3.3.13)

for all (7pn, @4, Vs Xpn) € Xpn X Agn X Vg, X Qpp,. Note that the well-posedness of (3.3.13)
follows from the classical Babuska-Brezzi theory. Note also that pyn.0, @5 0, On0, and Ay o are

data for this problem.
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4. Finally, define (& pn,0, Wsn,0, Vpno) € Xpn X Visn X Qpp, as the unique solution of the

problem

(A(Gpn0), Ton)o, + 0s(Tpn, Wsh0) + bsicp(Tpns Ypno) = —bn, (Tpn, Onp)
(3.3.14)

_bs(&ph,m Vsh) - bsk,p<6-ph,07 Xph) = 0 )

for all (7pn, Van, Xpn) € Xpn X Vg X Qpy. Problem (3.3.14) is well-posed as a direct application

of the classical Babuska-Brezzi theory. Note that 8}, is data for this problem.

We then define O50 = (U'fh,Oa Uph,0, o'ph,Oapph,O) € Xh,£h0 = (‘Ph,()a 0h,07 >\h,0) € Yy, and
W, o = (Wsn0, Ush0,Y fh0s Ypho) € Zn- This construction guarantees that the discrete initial

data is compatible in the sense of Lemma 3.2.8:
Al@y0)(T;) + Bi(1,) (@, ) + BT (W) = Fiolr,) V1, € X,
= Bi(a,0)(%,) +Cle, ) (®,) =0 Vi, €Yy, (3.3.15)
—B(a0)(vh) = Go(v,) Vv, €Zy,

where Fro = (g7(0),0, 0, Gpno)t € Xb and Go = G(0) € Z', with fho € X/, and
Gpno € W, 5 suitable data. Furthermore, it provides compatible initial data for the non-

differentiated elasticity variables (1, o, Ppn.0, Wh,o) in the sense of the first equation in (3.2.22)
(cf. (3.3.13)).
3.3.2 Existence and uniqueness of a solution

Now, we establish the well-posedness of problem (3.3.11) and the corresponding stability
bound.

Theorem 3.3.2. For each compatible initial data (g, ¢, ., Uno) satisfying (3.3.15) and
f; e WH'(0,T;V)), £,€e WH'(0,T;V)), qr e WH'(0,T3X)), g, € WH(0,T;W))

there exists a unique solution of (3.3.11), (g, ¢,.1,) @ [0,T] — Xp x Yj, X Zy such
that (o-phupph> € WI’OO(O7T§Xph) X Wl’oo(()?T;W’Ph); and (gh(0)7£h<0)7ufh(o)”)/fh(())) =
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(gh,o’fhp’ Urno,Y no)- Moreover, assuming sufficient reqularity of the data, there erxists a

positive constant C' independent of h and sqg, such that

HUthLoo(o,T;xf) + HO'thLQ(o,T;Xf) + HuthLOO(O,T;LQ(Qp)) + HuthLQ(O,T;Vp)

+ |n — Onlr=,rm3s) + [ — Onlrzorsis) + [ Anllie o, + 1@, lL20.1:v,)

+ | llezo,riz) + A2 (00) e o,r1200,)) + 1div(omm) e oLz @,)

+ [[div(opmn) L2 0,722 0)) + 1PprllLee0.1w,) + [1Pprllzo,m:w,)

+ |9 Al/z(a'ph + appprl)[[L20,7:02(0,)) + V501l Ok PpnllL20.7:w,) (3.3.16)
<cC <HffHH1(0,T;V’f) + ([l omvey + llaglli o) + llaplla omwy)

+ 1+ Vlpnollw, + 1KV ppollune))

Proof. From the fact that X, C X, Z; C Z, and div(Xy,) = Vg, div(X,,) = Vg,
div(Vpn) = Wy, considering (gh’0,£h70,9h70) satisfying (3.3.15), and employing the conti-
nuity and monotonicity properties of the operators ' and M (cf. Lemma 3.2.2 and (3.3.4)),
as well as the discrete inf-sup conditions (3.3.7), (3.3.8), and (3.3.10), the proof is identical
to the proofs of Theorems 3.2.9 and 3.2.11, and Corollary 3.2.10. We note that the proof of
Corollary 3.2.10 works in the discrete case due to the choice of the discrete initial data as

the elliptic projection of the continuous initial data (cf. (3.3.12)—(3.3.14)). O

Remark 3.3.3. As in the continuous case, we can recover the non-differentiated elasticity
variables

t

t t
M) = o+ [ 0 ds. o) = pot [ Hulshds, wnlt) =wnat [ 6u(s)ds.
0 0 0

for each t € [0,T]. Then (3.1.8) holds discretely, which follows from integrating the equation
associated to Ty, in (3.3.11) from 0 to t € (0,7 and using the first equation in (3.3.13) (cf.
(3.2.22) ).
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3.3.3 Error analysis

We proceed with establishing rates of convergence. To that end, let us set V € {Wp, Vi,
V,, Qy, @p}, A e {Af, A, Ap} and let V;,, Ay, be the discrete counterparts. Let PY : V. — V),
and P»: A — A, be the L2-projection operators, satisfying

(u— P}Y(u),vh)g* =0 VYo, € Vy,
(3.3.17)

(o= PMp),tn)r, =0 Vb, € Ay,

where x € {f,p}, u € {pp,uf,us,'yf,'yp}, NS {cp,@,)\}, and vy, 1, are the corresponding
discrete test functions. We have the approximation properties [39]:
lu — P (W2, < Ch g .,

(3.3.18)
lo = Pt(@)llan < Ch¥* o

HSW+1(Ffp)7

where s, € {spp,suf, Suy, S s.,p} and s, € {sq,, S0, SA} are the degrees of polynomials in
the spaces Vj, and Ay, respectively, and (cf. (3.3.3)),
lellerr2r,,), with r =1/2in (3.3.18) for conforming spaces (51),
lella, =
lellLz(r;,), with 7 =11in (3.3.18) for non-conforming spaces (S2).
Next, denote X € {Xf, Xp,Vp}, o€ {af, Op, up} € X and let X;, and 73, be their discrete
counterparts. For the case (S2) when the discrete Lagrange multiplier spaces are chosen as

in (3.3.2), (3.3.17) implies
{p— P,?((p),rhn*ﬁfp =0 Vm, €Xy, (3.3.19)

where x € {f,p}. We note that (3.3.19) does not hold for the case (S1).
Let I : XNHY(€Q,) — X}, be the mixed finite element projection operator [23] satisfying

(le([Zf(O’)), 'l,Uh)Q* = (diV(O’), wh)g* Yuwy, € Wh,
(3.3.20)

<]ff(0)n*,7'hn*>rfp = {on,mn)yp, - V1 € Xy,
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and

o = I (0) 2@y < Ch*H|o]laseria,),

(3.3.21)
[div(o — I3 (o) li2.) < C R Hdiv(o)|lneo+iq.),

where wy, € {th,vsh,wph}, W, € {Vf,VS,Wp}, and s, € {saf,sap,sup} — the degrees of
polynomials in the spaces Xj.

Now, let (o s, 0y, 0, pp, 0,0, X, 0y, 0,7, 7,) and (O fr, Uph, T ph, Dphs Py Ony A, Upn, U,
Y n>Ypn) be the solutions of (3.1.12) and (3.3.11), respectively. We introduce the error
terms as the differences of these two solutions and decompose them into approximation and

discretization errors using the interpolation operators:
ee = 0—0o, = (60— I,?f(a)) + (I,Pf(a) —op) = eff + eg, ocE {a'f,ap,up},
ep = 0 —on = (9= F(9) + (P (0) — o) = e, e, pe{p, 0,7},

ey = u—u, = (u—PY(u))+ (PY(u) —up) == e +e", ue {pp,uf,us,'yf,'yp}.
(3.3.22)

Then, we set the errors

€o - — (ea'f76up7eﬂ'p7epp)7 Cp = <€<P7€076/\)7 and ey = (e“f’e‘lS’e"/ﬁe'Yp)’

We next form the error system by subtracting the discrete problem (3.3.11) from the con-

tinuous one (3.1.12). Using that X, C X and Z; C Z, as well as Remark 3.3.1, we obtain

(0:€ + A)(ea)(Th) + Bi(zh)(ep) + B(zy)(ew) = 0 YV, € Xy,
—Bi(eg)(9,) +Cleg) () = 0 Vi, €Y, (3.3.23)

— Bleg)(vy) = 0 Vv, €Z.

We now establish the main result of this section.

Theorem 3.3.3. For the solutions of the continuous and discrete problems (3.1.12) and
(3.3.11), respectively, assuming sufficient reqularity of the true solution according to (3.3.18)
and (3.3.21), there exists a positive constant C' independent of h and sy, such that

Heaf HLoo(o,T;Xf) + Heaf HL2(0,T;Xf) + ”eupHLOO(O,T;LQ(Qp)) + HeupHm(o,T;vp) + |ep — €o|re(0,7:835)
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+ lep — eolrz(0,rm1s) + llexllLeo.ria,m) + lleellizory,) + lleullizorz)
+ A2 (eq,) L=z, + [1div(es,)ll=orizz,) + [1divies,)liz0r29,)
+ llep, L o.rw,) + llep, lLzomaw,) + 1100 AV (64, + apep, DLz 0.r2(0,)
+ V50|90 ep, [lr20,mw,.)
< O \/oxp(T) (h%“ 4 Rt 4 hsﬁl), (3.3.24)

where s; = mMin{sy ., Su,, 5o, 5p, }» Sp = min{se, se, S}, Su = mln{suf,sus,s,,f,s.yp}, and r

is defined in (3.3.18).

Proof. We present in detail the proof for the conforming case (S1). The proof in the non-
conforming case (S2) is simpler, since several error terms are zero. We explain the differences
at the end of the proof.

We proceed as in Theorem 3.2.11. Taking (7,,9,,v,) = (eZ,ef;, el) in (3.3.23), we

obtain

1

5@ (ae(eﬁp,ezp; enen )+ so ey, en )a ) +ag(el €q ;s Uf) +ap(el el ) + csel,, egs el ep)
(el et ) — aplel, eh) — au(hel, Duel seh et ) — CleL)(eh)

- bnf (eZ-fv 6;) - bnp (egpv 6(19) - bf(eﬁpv 6&) + bnf (eé-fa 6]‘;) + bnp (eézﬂ ez) + bF<€{1p’ 6?)

— bsk,f(eﬁf, 6,‘€,f) — bsk,p<€z- ) + ek f( o "/f) + bsk,p( 6,};;0), (3.3.25)

where, the right-hand side of (3.3.25) has been simplified, since the projection properties
(3.3.17) and (3.3.20), and the fact that div(e}; ) € Wy, div(ep ;) € Vyn, and div(el ) € Vi,

imply that the following terms are zero:

(éke bp(eﬁp,el ), bp(e{lp,eh ), bp(el cel ), bp(el Jel ) bo(el el ), by(el el ).

O'f’ ur 0‘f7 ur Op? "Us/? Op) “Us

(3.3.26)

Pp)
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In turn, from the equations in (3.3.23) corresponding to test functions vy, Ve, and wpyy,

using the projection properties (3.3.20), we find that
b(es, ,vin) =0 Vv € Vin, bleh van) =0 Vv, € Vi,
bp(et ,wpn) = ac(Or e, Dpel ;0,wpm) + ac(drel  Ore) 30, wy)
+(s0 0 ey ,wpn)a, Y wpn € Wy,
Therefore div (el ) = 0 in Q,, with » € {f,p}, and using (3.2.1)—(3.2.2) we deduce
I(€h, Y20y > Ol I, lldiv(el lnsa, = 0.
||div(eﬁp)||Lz(Qp) <C (||@t Al/Z(ef,p + ay ef,pI)HLz(Qp) (3.3.27)

10 AV (el + el T, + V5o 1€l I, )

Then, applying the ellipticity and continuity bounds of the bilinear forms involved in (3.3.25)

(cf. Lemma 3.2.2) and the Cauchy-Schwarz and Young’s inequalities, in combination with

(3.3.27), we get
0 (I1AY2(eh, + e, D,y + sollel, I3, ) + llek, 1%, + llek, I3,
+ldiveh, Iz, + el — chlius
< C (llek, I, + ek, I, + llek, I, + lef, — chliss + lebli%, + ek, I3, + lieh, I3,
+ 1100 A2 (el + apef, D, + 1472 (b, + ap el DllEaga,)
+ 110, AY2 (b, + ap e DliEaga, + sollovel, Iy, )
31 (b, 1%, + lleh, I, + 1l — hliss)
+ 85 (lleh, 120, + eI, + lleh I3, + llet 113, ),

where for the bound on by, (e ,ep) we used the trace inequality (3.1.5) and the fact that
div(e ) = 0. Next, integrating from 0 to ¢ € (0,7}, using (3.2.13) to control the term

e’ 112, . \, and choosing &; small enough, we find that
opllL2(Qp)
1AY2(e5, + apey, D (D) 1E2a,) + solleg, (),
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+

_|_
o\c\ /\N

(MH&+MQM+Wm1)ﬁme%—%&Q%

||eaf||xf+|| R, + leg — ealsss + ey, + lles, G, + lles, 15, + llea ||xp> 5

O

+ ua A2 (el 4+ apel Dllfaq,) + 1AV (b + ap el T)|F2q )ds

(100 A2 (€ + e Dl + soldh el I, ) ds + 1AV2(el, + e, DO)Exe
t
+amwme+@A(Mma+wma+wm@+ww@%w (3.3.28)

On the other hand, taking 7, = (7 4, Vpn, Tpn, 0) € Vi, (cf. (3.3.6)) in the first equation
of (3.3.23), we obtain

Bi(Ty)(eg) = — (0 € + A)lea)(Th) — Bi(Ty)(ey)

In the above, thanks to the projection properties (3.3.17), the following terms are zero:
bp(vph,eép), bf(Tfh,elIlf), and by(Tpn, el). Then the discrete inf-sup condition of By (cf.
(3.3.8)) for e; = (el e, €}) € Y, gives
legllv, < C(Hffﬁf\le +lleg, v, + lleglly, + lley I3, + lled 115,
+ 118 A2 (eg, + apey Dz, + lleg, [lx, + e, v, + lleh 113,
+ [led 113, + 110 AV (€5, + ap ey Dlliza,) + e pr>- (3.3.29)

In turn, to bound |lef||z, we test (3.3.23) with 7, = (74,0, 7,,0) € X, (cf. (3.3.5)), to
find that

B(,)(eh) = = (ar(ea,s Tin) + acl0 e, e, Ty, 0) + Bz, )(eh) ).

In the above, the terms b (7 s, e{lf) and by (T, €l ) are zero, due to the projection property

(3.3.17). Then, the discrete inf-sup condition of B (cf. (3.3.7)) for el € Z, yields
lehllz < € (el Iz, + 10 AV (€L, + iyl Dleacay + el oy + 1, o,

(3.3.30)
el s, + 196 AY2 (el + ap el Do, ) -
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Finally, to bound [} |lw,, we test (3.3.23) with T, = (7 fn, Vpn, Tpn, 0) € X, to get

b (Vpha Pp ) + b0 (Vpn, eli) = - <ap(€upvvph) + bp(Vph, eép) + br (Vpn, eﬁ)).
Note that b,(vp, e]{p) = 0 due to the projection property (3.3.17), thus the discrete inf-sup
condition (3.3.10) gives
e, v, + lleklla, < C(lled, e, + ledlia, + lleh, lxz,)- (3.3.31)

Combining (3.3.28) with (3.3.29), (3.3.30), and (3.3.31), choosmg o small enough and
employing the Gronwall’s inequality to deal with the term / |AY2 (el ,taye p )||L2 ) s,

we obtain
t
2( h h 2 h 2 h 2 h 12

A2 (el + o el T)()|IE2q,) + 5o llep ()], + /0 (Healf\\xlf + llew, Iv,

+ |ldiv(es )2, + llep, I3, + g — eolas + g3, + ||€ﬁ||2z> ds

t
< C exp(T) ( [ Qe+ Neb B, + ek + et = el
t
I I h
1A e, + apel, Dl ) ds-+ [ (10047 e, +ayel Dl

+ 50[l9; eﬁp|l%vp> ds + || AV (eq,, + ap e D(0)F2(q,) + solle,, (0 )Il%vp) (3.3.32)

t
Now, in order to bound / <||8 AV (e S tope p )||L2 @) +80||8t ||%vp> ds on the right-
hand side of (3.3.32), we test (3.3.23) with 7, = (ateof, u ,8te , Osel )., = (el e5, Dieh),
and v, = (eﬁf, et ,ef;f, 'y ), differentiate in time the rows in (3. 3 23) associated to vy, ¥,

®ns Vins Vshy X pn Xpns and employ the projections properties (3.3.17)—(3.3.20) to eliminate
some of the terms (cf. (3.3.26)), obtaining

1, /1
2005 1, ) W) + (el ) + cass(ely iy b))

+ 0.4 (eq, +apey, D2, + sollorey, Iy,
= —ag(e ,,f,ate ) — a,(0; el, ,u)—ae(ﬁtegp,ateép;ﬁtezp,ﬁtezp)

h h 1

— cp3s(0y eé, Oy eb; €y eh) + cr(eg, eh: 0, el) — cr(ey, eh; Oy el)

103



— bn (at €osr € ) bnp<at €Zp,€§) - bF(‘eﬁpaat 6{\) + bn (at eaf7 )
np<at ea' 760) + bF( u ’at 6)\> - bsk f(at ea'f7 'ny) - Sk,p(at egp7e—]y )

+ bSkf(at €o.f, "/f) +bskp(at g'p7 »7 ) (3333)

Then, integrating (3.3.33) from 0 to ¢t € (0,7, using the identities
t ¢ t
/0 ( a-fvate ) = af<€£-f7egf>‘o_/0 (ateo-fv o-f)dsa
t t
R T R e

t t
—/bskx Bl )ds,
0 0

t t
/0 <e£ -1y, 0 e§>rfp ds = (el -y, e§>rfp . /0 (O, el -y, e§>rfp ds, o€ {p,0,u,},
(3.3.34)

t
/ b (D¢, €Y ds = bu.(ch, )
0

t
/ bsi + (O e];*,e_ly*)ds = bsk,*(e';*,e,[y*)
0

and applying the ellipticity and continuity bounds of the bilinear forms involved (cf.
Lemma 3.2.2), the Cauchy-Schwarz and Young’s inequalities, and the fact that div(el ) =0
in Q, with x € {f,p} (cf. (3.3.27)), we obtain

leg, ()%, + lew, ()12, + Idiv(eg, (1)lIE2q,) + |(eg — e6)(t)[5ss

t
[ (10 (e, e DR, + sollonely Iy, ) s

<dC (IIeif (OllEz(0y) + llew, DI, + lea, (OllE2q,) + lea IR, + lea®IlA,, + e, Blig,

t
+ lles, (D1, +/0 (H@t eo I, + 10 e, Iy, +10: (e, — eq)lass + llealla,, + 10: gy,

00el 1B, + 10ueh I3, + 10 AY2 (e], + oyl DliZaca,, + 190eh I,) ds
+ ek, (0) ey + lleh, O, + €SO, + IebOI,, + Heif<o>uaf)
t
h h h|2
b e, (012, + b, (Ol + 1ROIR,, + [ (1ek, 12, + el I, +1eh = cblss) s

t
[ (e, + 1l ds) 5 [ 104 e, + oy Dl
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+C (He’;f(o)H?gf + e, OEz,) + lles, (0%, + (e — eg)(0)[55s + Hei(O)HiM) :
(3.3.35)

We note that [l (¢)[72,) + lleX(¢)]X,, can be bounded by using (3.2.13) and (3.3.31),
whereas all the other terms with d3 can be bounded by the left hand side of (3.3.32). Thus,
combining (3.3.32) with (3.3.31) and (3.3.35), using algebraic manipulations, and choosing

03 small enough, we get
leg, (1%, + llew, O[22, + (g — )l + XD, + 4725, + ap ey, DE)|E2q,)
t
+ldiv(es, (t))lIE2,) + llep, (D1, + /0 (He';fH%.f +lle, IV, + leg — ealzss + llegly,
+llenllz + 1divies 1Tz, + ey, Ry, + 18 A2 (e5, + e, Dz, + 50l €Zp|\%vp> ds
< C exp(T) (H@ﬁf(t)llisz) + e, 1%, + les, Oz, + lea®lA,, + lea(®)lA.,
t
I I I I I I I I
+lles, (O, + lley, g, + /0 (Ilegllgc +lleglly, +llewllz + leg, — epless + 110 €ZH§<) ds

t
+ / (100 eL %, + 19k (el — eg)lias + 100 eh I3, + 110ved, 13, ) ds + llek, ()l

+[lew, (0115, + leg (014, + lleg(0)]
!

A T 165, (), + lleg, ()1, + llew, (0)[22o,)
+ lleg, (0%, + (1+ s0)llep, (0) Ry, + (eq — €8)(0)[55s + He’i(O)HiPh> : (3.3.36)

Finally, we establish a bound on the initial data terms above. In fact, proceeding as in
(2.3.25), recalling from Corollary 3.2.10 and Theorem 3.3.2 that (a(0), ¢(0)) = (g, ¢,) and

(@,(0),¢,(0)) = (g0 9, ), using similar arguments to (3.3.32) in combination with the
error system derived from (3.3.12)—(3.3.13), we deduce

e, (0)11%, + llew, (0113, + 1A (g, (0))1E2(a,) + Idiv(eq, (0)lT2,) + llep, (),

+ I(ely = ) (O + IO, < C (llek, 1% + ek, I, + llek, 1)
(3.3.37)
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where Oy = (Uf,Oaup,an-p,Oapp,O)v go = (9007(*)07)\0) and ﬁo = (uf,Oanp,Ov'Yf,O)pp,O)a and

I ] I . . . . .
o0 €5, €, denote their corresponding approximation errors. Thus, using the error de-

composition (3.3.22) in combination with (3.3.36)—(3.3.37), the triangle inequality, (3.2.13)

(&

and the approximation properties (3.3.18) and (3.3.21), we obtain (3.3.24) with a positive
constant C' depending on parameters [, A, ftp, Op, Emin, Fmax, Osss, and the extra regularity
assumptions for @, ¢, and u whose expressions are obtained from the right-hands side of

(3.3.18) and (3.3.21). This completes the proof in the conforming case (S1).
The proof in the non-conforming case (S2) follows by using similar arguments. We
exploit the projection property (3.3.19) to conclude that some terms in (3.3.25) are zero,
I

namely bnf(ef;f, €y); bn, (e

h

. el), and bp(eﬁp, e}), as well as terms appearing in the operator

C (cf. (3.1.10)): <ef}o . nf,e§>rfp, <e{p . nf,e§>rfp, <e$ . np,e§>rfp, and <e§ . np,e§>rfp. In
addition, in the non-conforming version of (3.3.29) the terms |[ef||s,,. lleLlla,,, and |leglla,,
do not appear, since the bilinear forms br (v, 1), by (T 11 eé), and by, (T, €4) are zero by

a direct application of the projection property (3.3.19). ]

3.4 A multipoint stress-flux mixed finite element method

In this section, inspired by previous works on the multipoint flux mixed finite element
method for Darcy flow [24,57,80,81] and the multipoint stress mixed finite element method
for elasticity [6-8], we present a vertex quadrature rule that allows for local elimination of
the stresses, rotations, and Darcy fluxes, leading to a positive-definite cell-centered pressure-
velocities-traces system. We emphasize that, to the best of our knowledge, this is the first
time such method is developed for the Stokes equations. To that end, the finite element
spaces to be considered for both (X¢, V1, Q) and (X4, Vi, Qpp) are the triple BDM; —
Py — P, which have been shown to be stable for mixed elasticity with weak stress symmetry
in [20, 21, 44], whereas (V,n, Wp,) is chosen to be BDM; — Py [22], and the Lagrange
multiplier spaces (A 5, Agn, Apn) are either Py — Py — Py or P — P — P satisfying (S1) or
(S2) (cf. (3.3.1), (3.3.2)), respectively, where P{¢ denotes the piecewise linear discontinuous

finite element space and P9 is its corresponding vector version.
1
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3.4.1 A quadrature rule setting

Let S, denote the space of elementwise continuous functions on 7,*. For any pair of tensor
or vector valued functions ¢ and ¢ with elements in S,, we define the vertex quadrature rule

as in [81] (see also [6,8]):

(0. ¥)go. = Y (e ¥)or = Y. @Z p(r;) - P(rs), (3.4.1)

EeTy EeTy
where x € {f,p}, s = 3 on triangles and s = 4 on tetrahedra, r;, i = 1,..., s, are the vertices
of the element F, and - denotes the inner product for both vectors and tensors.

We will apply the quadrature rule for the bilinear forms ay, a,, a. and by ,, which will
be denoted by a?, a;f, a® and bglg*, respectively. These bilinear forms involve the stress
spaces Xy, and X, the vorticity space Q¢ and rotation space Qy;,, and the Darcy velocity
space V,,. The BDM,; spaces have for degrees of freedom s — 1 normal components on
each element edge (face), which can be associated with the vertices of the edge (face). At
any element vertex r;, the value of a tensor or vector function is uniquely determined by
its normal components at the associated two edges or three faces. Also, the vorticity space
Qyn, and the rotation space Q,, are vertex-based. Therefore the application of the vertex
quadrature rule (3.4.1) for the bilinear forms involving the above spaces results in coupling
only the degrees of freedom associated with a mesh vertex, which allows for local elimination
of these variables. Next, we state a preliminary lemma to be used later on, which has been

proved in [8, Lemma 3.1] and [6, Lemma 2.2].

Lemma 3.4.1. There exist positive constants Cy and C independent of h, such that for any

linear uniformly bounded and positive-definite operator L, there hold

(L(QO>7§0)Q,Q* > CO ||<10||?2*7 (L(Sp)al/})Q,Q* < Cl H90||Q*||¢HQ*7 VQO,l/J € S*? * € {fap}'

Consequently, the bilinear form (L(p), 9)g.q, is an inner product in L2(%) and (L(p), 90)22/,?2*

is a norm equivalent to ||¢||q, -
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The semidiscrete coupled multipoint stress-flux mixed finite element method for (3.1.12)
reads: Find (gh,fh,gh) : 10, T] — X x Y}, xZy, such that for all (zh,gh,yh) € X, xYxZy,
and for a.e. t € (0,7),

9 Ealon)(m,) + M) (m) + Bilr)(e,) + Bulr)(w) = F(r,)
~Bi(e,)(®,) + Cle,)(®,) -0 3.42)
= Bu(a)(vh) = G(v),

where
Aule)22) = (o) W Vi) by (Vs o) — by ),
En(a)(Th) = al(Tpn, Py Toh: Wpn) + (S0 Poh» Wpn ),

Bi(T4) (V) = bp(T s Vin) + bs(Tpns V) + b (7 sn X ) + Ui o (Tons Xpn)-

We next discuss the discrete inf-sup conditions. We recall the space X, defined in (3.3.5).

We also define the discrete kernel of the operator B, as
\Afh = {Ih - Xh : Bh(zh)(zh) =0 \V/Vh < Zh} = th X Vph X Xph X th, (343)

where

A~

X*h = {T*h c X*h : (T*h>€*h)Q,Q* =0 VE*h € @*h and diV(T*h) =0 1in Q*},

for » € {f,p}, emphasizing the difference from the discrete kernel of B defined in (3.3.6).

Lemma 3.4.2. There exist positive constants B and Bl, such that

sup M > B\HXh”Z Vv, € Zy, (3.4.4)
B PN
Bi(T ~
sup M > Bl llv., Vi, € Yh (3.4.5)
B PR Byl Ve
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Proof. The proof of (3.4.4) follows from a slight adaptation of the argument in [6, The-
orem 4.2]. The proof of (3.4.5) is similar to the proof of (3.3.8). The main difference is
replacing the interpolant satisfying (3.3.9) by an interpolant ﬁfl : HY(Qf) — Xy, satisfying

by =75, vn) =0 Vv € Vi, Wi, (rr =75 x0) =0 Vxp, € Qpa,
(s — 7y, Tng)rgury =0 V1 € Xpp,
whose existence follows from the inf-sup condition for B, (3.4.4). O

We can establish the following well-posedness result.

Theorem 3.4.3. For each compatible initial data (Eh,mfhovﬂh,o) satisfying (3.3.15) and
f; e WH'(0,T;VY), £,e WH'(0,T;V)), qr e WH'(0,T:X)), ¢, € WHH(0,T; W)),

there exists a unique solution of (3.4.2), (ay,¢,,u,) : [0,T] — X3 X Yy X Zy, such
that (o'phapph> € W1700(07T§Xph) X Wl’oo(ovT;WPh)f and (gh<0)7£h<0)7ufh(0>77fh<0)) -
(gh,07£h0aufh,077fh,0)' Moreover, assuming sufficient reqularity of the data, a stability

bound as in (3.3.16) also holds.

Proof. The theorem follows from similar arguments to the proof of Theorem 3.3.2, in con-

junction with Lemmas 3.4.1 and 3.4.2. ]

3.4.2 Error analysis

Now, we obtain the error estimates and theoretical rates of convergence for the multipoint
stress-flux mixed scheme (3.4.2). To that end, for each o s, T € Xypn, Wpn, Vpr € Vpn, Opn,

Tph € Xph, Dphs Wph € Wpn, Xgp € Q¢n, and Xph € Qph, we denote the quadrature errors by

0p(ajns Tyn) = ap(Osn, Tyn) — af(0 pn, T 1),
Op(Wph, V) = ap(Wpn, Vipn) — aZ(uP}UVPh)?
(3.4.6)

6e(o-ph7pph; T ph, wph) = ae(Upha Pph; T ph, wph) - G,Z(O'ph, Pph; T ph, wph)a

5Sk7*(X*h7 T*h> = bSk,*(X*h? T*h) - b?k,*(X*h? T*h)7 * € {f> p}'
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Next, for the operator A (cf. (2.1.3)) we will say that A € W#ﬁo if A e Whe(E) for all

h
E € T} and || A|lw1.(g) is uniformly bounded independently of h. Similar notation holds for
K~!. In the next lemma we establish bounds on the quadrature errors. The proof follows

from a slight adaptation of [6, Lemma 5.2] to our context (see also [8,81]).

Lemma 3.4.4. [fK ! ¢ Wngo and A € W}r’poo, then there is a constant C' > 0 independent
h h
of h such that

1550 pns Tl < C Y hllogmlle e |7 mlle).
EeTy

160 (W, vin)| < C > B IK T ooy 1l ) [1Von L2 e
EeTy

162(0pn, Do Tons wpn)| < C > 1| Allwwroo () (0 Po) i 2y <1208 | (T s won ) L2 () 12y
EeT?

[Ba s (T Xoan) | < C Y hllTanllo e IXanlli ey, * € {f,p},

EeT;

[Bsex (Tans X))l < C Y hllTanlline) Ixanllzey, * € {f,p},
EeT,

Jor all o yn, T € Xy, Wpn, Vpu € Von, Opn, Tpn € X, Pphs Wph € Won, Xpn € Qpny Xpn €
Qph-

We are ready to establish the convergence of the multipoint stress-flux mixed finite

element method.

Theorem 3.4.5. For the solutions of the continuous and semidiscrete problems (3.1.12) and
(3.4.2), respectively, assuming sufficient reqularity of the true solution according to (3.3.18)
and (3.3.21), there exists a positive constant C' independent of h and sy, such that

Heaf ||L°°(0,T;Xf) + Hea'f HL2(07T;Xf) + ”eupHLDO(O,T;LQ(Qp)) + HeupHIﬂ(mT;vp) + |€<p - eB’LOO(O,T;BJS)
+ |6<p - €0|L2(0,T;BJS) + ||€A”L°°(07T;Aph) + ||€£||L2(O,T;Yh) + ||€gHL2(0,T;Z)
+ [|AY2(eq,) L0220, + [1div(ea, ) L0120, + lep, L ©7:w,)
+ldiv(es, )20z, + lep, lizomw,) + 18 A2 (eq, + apep, D202,
+v/50ll0 e, 1201w, < C (h + hl”) , (3.4.7)

where 1 is defined in (3.3.18).
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Proof. To obtain the error equations, we subtract the multipoint stress-flux mixed finite
element formulation (3.4.2) from the continuous one (3.1.12). Using the error decomposition

(3.3.22) and applying some algebraic manipulations, we obtain the error system:
(00 En + An) (eg)(T3) + Bi(zy)(eg) + Bu(T)) ()

- _(at €+ A)(Q{!) (Th) — B (Ih)(elg) - B(Ih)@i) = 0sep(In(a), Pr())(Ty),
(3.4.8)

—Bi(eg) () +Cleg)(¥,) = Bi(eg)(¥,) — Cleg) ()

— Bu(eg)(vy) = Bleg)(vh) + 85p(In(@))(v) .

for all (Ih,gh,zh) € X, x Yy, X Zy,, where
X P .
8 pep(In(@), Pu(w)(1y) = = 07(1," (o), T 1) = 6e (1,7 (04), Py T win)

Vp Q p
= G137 (), Vo) = G (T g P (7)) = (T B ()
and
X
8sp(In(@))(¥) 1= Gas (I (04), X 2) + Gsien (17 (@) Xyn) -
Notice that the error system (3.4.8) is similar to (3.3.23), except for the additional quadrature
error terms. The rest of the proof follows from the arguments in the proof of (3.3.24),
using Lemmas 3.4.1, 3.4.2 and 3.4.4, and utilizing the continuity bounds of the interpolation
operators I7* I P¥* [6, Lemma 5.1]:
HIEL&*(T*h)HHl(E) <C HT*hH]Hll(E) VT € Hl(E)> * € {f,p},
1B ) () < Clixnllae  Vxn, € HY(E),
VP
11y Vo)l sy < Cllvpnlli e ¥ ven € HY(E).

We omit further details, and refer to [6,8,81] for more details on the error analysis of the

multipoint flux and multipoint stress mixed finite element methods on simplicial grids. [
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3.4.3 Reduction to a cell-centered pressure-velocities-traces system

In this section we focus on the fully discrete problem associated to (3.4.2) (cf. (3.1.12),
(3.3.11)), and describe how to obtain a reduced cell-centered system for the algebraic problem
at each time step. For the time discretization we employ the backward Euler method. Let
At be the time step, T = M At, t,, = mAt, m = 0,..., M. Let dyu™ := (At)"'(u™ —
u™ 1) be the first order (backward) discrete time derivative, where u™ := u(t,,). Then
the fully discrete model reads: given (ay, ¢}, up) = (@109}, ¢ o) satistying (3.3.15), find
(ghm,f’:,g’,?f) € Xy xYy,xZy, m=1,...,M, such that for all (Ih,gh,yh) e X, xY,xZy,

di En(ap')(Ty) + Anlay’)(Ty) + Bl(Ih)(fhm) + Bu(Ty)(uy) = F(z,),
—Bi(a;)(¥,) +C(e,")(¥,) = 0, (3.4.9)

— Bu(ay')(vy) = G(v,).
Remark 3.4.1. The well-posedness and error estimate associated to the fully discrete prob-
lem (3.4.9) can be derived employing similar arqguments to Theorems 3.4.8 and 3.4.5 in
combination with the theory developed in [10, Sections 6 and 9]. In particular, we note that
at each time step the well-posedness of the fully discrete problem (3.4.9), withm =1,..., M,

follows from similar arguments to the proof of Lemma 3.2.6.

Notice that the first row in (3.4.9) can be rewritten equivalently as

(A& + An) (@) (zy) + Bu(z))(@)) + Bu(zy) (i) = F(z),) + (A) ™ Enlay ™) (zh) -
(3.4.10)
Let us associate with the operators in (3.4.9)—(3.4.10) matrices denoted in the same way.

We then have

Agso; 0 0 0 Agpa, 000
0 Auu, 0 AL 0 0 Ay, O
((At)_l En + .Ah) = , By, = ,
0 0 Ago, A, Agpy, 000
0 - Auppp Aa'ppp APPPP 0 0 AUP’Yp 0
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Aa'fcp 0 0 0 A‘P‘P AEPG ASPA
Bl = 0 0 Aa-pe 0 ) C= A<p9 Agg Atg)\ )
0 Ayy 0 0 —Agy —Agy O

with

Aa'fa'f ~ CL?(', '>7 Aupup ~ ag('a ')7 Aapap ~ (At>_1 (IZ(',O; ’70)7 Ao'ppp ~ (At)_lag('70;07 .)7
Apppp ~ (At)_la];(()’ g 07 ) + (At)_l(SO ) ')Qp7 Allppp ~ bp<'7 ')7 Aa'fnp ~ bnf('7 ')a

Aup/\ ~ bF('a ')7 AO'pe ~ bnp('7 ')7 Acpcp ~ CBJS('70; '70)7 Acp@ ~ CBJS('a 07 07 ')7

Ago ~ CBJS(()) 50, ')7 Atpz\ ~ cF('a 0; ')7 Agx ~ CF(07 g ')a Ao'fuf ~ bf(7 ')7

~ b

A dgf(3'>7 fqopus ~ bS(H')7 f4ap7p ~ bggp(%')a

9y

where the notation A ~ a means that the matrix A is associated with the bilinear form a.
Denoting the algebraic vectors corresponding to the variables o}, e, and u}’ in the same

way, we can then write the system (3.4.9) in a matrix-vector form as

ADL &+ A B B\ [ o F o+ (A& (a )
-B, c 0 e | = 0 . (3.4.11)
—B), 0 0 uy' G

As we noted in Section 3.4.1, due to the the use of the vertex quadrature rule, the degrees
of freedom (DOFs) of the Stokes stress o'fy,, Darcy velocity ug;, and poroelastic stress tensor
o, associated with a mesh vertex become decoupled from the rest of the DOFs. As a result,
the assembled mass matrices have a block-diagonal structure with one block per mesh vertex.
The dimension of each block equals the number of DOF's associated with the vertex. These
matrices can then be easily inverted with local computations. Inverting each local block in
Ay,u, allows for expressing the Darcy velocity DOF's associated with a vertex in terms of
the Darcy pressure p;; at the centers of the elements that share the vertex, as well as the
trace unknown A}* on neighboring edges (faces) for vertices on I'y,. Similarly, inverting each
local block in Ag s, allows for expressing the Stokes stress DOF's associated with a vertex

in terms of neighboring Stokes velocity uf,, vorticity v}, and trace ¢j'. Finally, inverting
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each local block in A, ,, allows for expressing the poroelastic stress DOF's associated with a

vertex in terms of neighboring Darcy pressure py; , structure velocity uf;,, structure rotation

Yphs and trace 83", Then we have

m -1 t m -1 t m

u, = — AupupAuppp Ppp — AupupAup)\ h
m -1 t m -1 t m -1 t m

Ufh - _Aofa'fAO'fcp Phn _AafcrfAcrfuf ufh_AO'fO'on'f’Yf 7fhﬂ (3412>
m o -1 t m -1 t m -1 t m -1 t m

Oph — — Aa'pa'pAappp Ppn — Aa'papAape Oh - Aa'pa'pAa'pus Uy, — Acrpa'pAa'pvp Yph-

The reduced matrix associated to (3.4.11) in terms of (pJ;, 5, 03", AR, Wy, ul, Y, Yor,) i

given by
Appappp + Appuppp 0 _Appo'pe AppupA 0 _Appa'pus 0 _App‘fp’Yp
0 ApptApore AL ALy Aoy 0 Ayose O
Aoy Ago  AsetAso,e Apy 0 Auoe 0 Ay o
A;)pup)\ —AW\ —Apg A,\up)\ 0 0 0 0
0 Aflfﬂﬂp 0 0 Aufafuf 0 Auf,,f,yf 0
AL 0 Aipe 0 0 Awopne 0 Ao
0 AEYfo‘P 0 0 Aflfaf_yf 0 A.,faf.yf 0
A 0 Ao 0 0 Ay, 0 A
(3.4.13)
where
Apptfppp = Apppp - AcrpppA;iapAztfpppv Appuppp = AupppAl_xplupAtxpppv Appcrpe = AapppA;iapAztrpev
Appup)\ = AupppA;plupAflp)\? Appo'pus = AUPPPA;iUpAgpuS7 Appo'p')’p = AUPPPA;;UP ¢t7'p‘7p’
Aporo = AaypAglg, AL oy Agop = Ag AL, AL o
A/\up/\ = AupAA;plupAflpAa Aufafcp = Ao'f‘PA;;O'fAETfo7 AUfouf - AUf“fA;;Uf ETfuf’

_ -1 t _ -1 t _ -1 t
AUfO'f’Yf - AO’fllng'fg'ng'fﬂyf’ Ausapﬂ - AO’peAg'pa'pAa'pusﬂ Ausapus - AO’pusAg'po'pAo'pusv

o -1 t _ -1 t
Aoy, = AcpuAgls A Ay o, = Aapy Agly Al A

TpYp’ opopiiopy,r Yponf

— A, 0A7l A

OpOp” "OpYyp’
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_ —1 _ —1
A = Ay, Agta A L Ao e = Ag AN, AL L (3.4.14)

Yo 5 TfOf oY)

Furthermore, due to the vertex quadrature rule, the vorticity and structure rotation DOF's
corresponding to each vertex of the grid become decoupled from the rest of the DOFs, leading
to block-diagonal matrices A, 5.4, and A, 5~ . Recalling the matrix definitions in (3.4.14),
each block is symmetric and positive definite and thus locally invertible, due the positive
and AJ!

definiteness of A! , and the inf-sup condition (3.3.7). We then have

m _ _ A-—1 m _ A—1 t m
Tin = A‘Yfﬂf“/fA'Yf"f"’ #h A'Yf"'f'YfA“fo"/f s
(3.4.15)
m . _ A—1 t m _ A—1 m _ A—1 t m
7Ph o YpTpYVp Appa'p'Yp pph A’Ypo'p"/p A7PUP6 Oh A’Ypa'p’Yp Ausa'p’Yp Waps

and using some algebraic manipulation, we obtain the reduced problem Ap}* = F‘, with

vector solution By’ := (pj, 5, 05, A\i, ufy,, ul;) and matrix

AVPP”PPP + App Uppp 0 - ‘pr opt App upA 0 - Appo'plls
0 AporotAep Ao Aoy Aujose 0

A NZPUPG A‘Pe geapg—i‘Aeg At@)\ 0 Zusa'pe
Ap —Apa — A Adup 0 0
0 AE‘f".f‘P 0 0 Au;opuy 0

A;pa'pus 0 Atl;lsdpe 0 0 Ausa'pus

(3.4. 16)
where

N _ -1 t _ B -1 t
APP"PPP - Appa'ppp + APPUP'YPA’Yp"'p’YpAppGp’Yp’ App"'po - Appa'pe Apdp9A7p0p7pA7p0p97

A—l At

A _ . -1 t e _ i
APP"P“S_APP"’P“S APP"’P’VPA’YP%‘YP UsOpYp’ A<P‘7f‘P_A‘PUf<P A’Yf"’f%o YFO Y TV FOFP)

Aufa'fcp =

-1 t A _ . -1 t
‘ny'f(pA»yfg-f»yfAufa-f’yf7 ABO'pe - Aedpe A‘ypGT_,oA’ypo-p»ypA'ypo'p97

A A

urosp

A _ o -1 t e _ . -1 t
Auso,0 = Au,o,0 A’Yp”peAvap‘ypAusapvpv Ausopuy = Ausopu; AUfo’VfA'yfam upo Y

A = AL At (3.4.17)

Usopus UsOpUs usap'yp fypg-p'yp uso'pfypﬂ
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and the right hand side vector F has been obtained by transforming the right-hand side
in (3.4.9) accordingly to the procedure above. Note that, after solving the problem with
matrix (3.4.16), we can recover uy;, ', o, and 4’7, v, through the formulae (3.4.12) and

(3.4.15), respectively, thus obtaining the full solution to (3.4.9).
Lemma 3.4.6. The cell-centered finite difference system for the pressure-velocities-traces

problem (3.4.16) is positive definite.

Proof. Consider a vector ' = (wh, ¥}, ¢}, &, Vi Vi) # 0. Employing the matrices in

(3.4.14) and (3.4.17) and some algebraic manipulations, we obtain

qAq = w, (Ap,py — Aopp, A Af,ppp)wph + wy, A Azt At

opop PpOpYp " YpOpYp ppap'ypwph

A Al ()
t 0 h
(Al wWoh + Ar 60) A, (A, o + Ay &) + (1 1) | 77 7
Age  Ase ?y,
Z o gu o ’(ph EHUPO A’Ziusape q,)h
+ (4}, Vi) N:O e e + (¢, Vi) ~ _
AUfa'fcp Aufo'fo th Ausa'po Auso'pus Vsh
(3.4.18)
Now, we focus on analyzing the six terms in the right-hand side of (3.4.18). The first term is
non-negative due to [56, Theorem 7.7.6] and the fact that the matrix A, , —Ao.pppA;;apAf,ppp

is a Schur complement of the matrix

t
OpOp O pPp

ovrs Apppy
which is positive semi-definite as a consequence of the ellipticity property of the operator
ae (cf. (3.1.9) and (3.2.6)). The second term is nonnegative, since the matrix A, 5, is
positive definite, as noted in (3.4.15). The third term is positive for (wy, &) # 0, due to
the positive-definiteness of A.', ~and the inf-sup condition (3.3.10). The fourth term is
non-negative since the operator C (cf. (3.2.7)) is positive semi-definite. The matrices in the

last two terms are Schur complements of the matrices

Acpafcp AUfa'fcp A'yfo'fcp AGGPG Ausa'pe A‘ypapﬂ
- t . t
Af : Aufa'fcp Aufﬂ'fuf Aufaf’yf and Ap . Ausape Ausapus Ausap’yp )
t t t t
Avfafcp Aufa'f’Vf A’Vf"f’Yf A‘Ypﬂpe AUsap’Yp YpTrTp
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respectively, which are positive definite. In particular, for v = () Vi Xin) # 0 and

¥ = (@} vl xin) # 0, we have

=t = t t t t -1 t t t
VfAfvf - (Acrfcp ¢h + Aofuf Vin + Acrf'yf th) Aofaf (Aofgo Ttbh + Aa'fuf Vih + Aof'yf th)

> 0,

. = t o
V;APV}? = (A;DJ'I,O ¢h + Af)'pus Vsh + Afj'p—yp Xph) Aaia’p (Aztj'pﬂ ¢h + Attfpus Vsh + Agp’)’p Xph) > 07

due to the positive-definiteness of A-!  and A*;

oro; . along with the combined inf-sup con-

dition for By(7,)(v,) + Bi(7,,)(¢, ). The latter follows from the inf-sup conditions (3.4.4)
and (3.4.5), using that (3.4.5) holds in the kernel of B;,. Then, applying again [56, Theo-
rem 7.7.6], we conclude that the last two terms in (3.4.18) are positive for (e}, vi,) # 0 and
(¢ v',) # 0. Therefore Gt A q > 0 for all  # 0, implying that the matrix A from (3.4.16)

is positive definite. n

Remark 3.4.2. The solution of the reduced system with the matriz A from (3.4.16) results
in significant computational savings compared to the original system (3.4.11). In particular,
five of the eleven variables have been eliminated. Three of the remaining variables are La-
grange multipliers that appear only on the interface I'y,. The other three are the cell-centered
velocities and Darcy pressure, with only n DOFs per element in the Stokes region and n + 1
DOFs per element in the Biot region, which are the smallest possible number of DOFs for the
sub-problems. Furthermore, since the reduced system is positive definite, efficient iterative

solvers such as GMRES can be utilized for its solution.

3.5 Numerical results

In this section we present numerical results that illustrate the behavior of the fully
discrete multipoint stress-flux mixed finite element method (3.4.9). Our implementation is
in two dimensions and it is based on FreeFem++ [55], in conjunction with the direct linear
solver UMFPACK [41]. For spatial discretization, we use the (BDM; — Py — P;) spaces for
Stokes, the (BDM; — Py —P,) — (BDM, — Py) spaces for Biot, and either (P, —P; —Py) or
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Pdc — Pdc — P{¢ for the Lagrange multipliers. We present three examples. Example 1 is used
to corroborate the rates of convergence. Example 2 is a simulation of the coupling of surface
and subsurface hydrological systems, focusing on the qualitative behavior of the solution.
Example 3 illustrates an application to flow in a poroelastic medium with an irregularly

shaped cavity, using physically realistic parameters.

3.5.1 Example 1: convergence test

In this test we study the convergence rates for the space discretization using an analytical
solution. The domain is Q = Q;UQ,, where Q; = (0,1) x (0,1) and , = (0,1) x (=1,0). In
particular, the upper half is associated with the Stokes flow, while the lower half represents
the flow in the poroelastic structure governed by the Biot system, see Figure 3.5.1 (left).
The interface conditions are enforced along the interface I'y,. The parameters and analytical
solution are given in Figure 3.5.1 (right). The solution is designed to satisfy the interface
conditions (3.1.3d)—(3.1.3e). The right hand side functions ff, ¢, f, and ¢, are computed
from (3.1.1)—(3.1.3) using the true solution. The model problem is then complemented with
the appropriate boundary conditions, which are described in Figure 3.5.1 (left), and initial
data. Notice that the boundary conditions for oy, uy,u,, o, and i, (cf. (3.1.2) and (3.1.3))
are not homogeneous and therefore the right-hand side of the resulting system must be
modified accordingly. The total simulation time for this example is 7' = 0.01 and the time
step is At = 1073, The time step is sufficiently small, so that the time discretization error
does not affect the convergence rates.

Tables 3.5.1 and 4.4.1 show the convergence history for a sequence of quasi-uniform
mesh refinements with non-matching grids along the interface employing conforming and
non-conforming spaces for the Lagrange multipliers (cf. (3.3.1)—(3.3.2)), respectively. In the
tables, hy and h, denote the mesh sizes in €2y and (2, respectively, while the mesh sizes
for their traces on I'y, are his and hyy,, satisfying h, = ghtp. We note that the Stokes
pressure and the displacement at time t,, are recovered by the post-processed formulae
Py o= —=(tr(of) — 2pqf) (cf. (3.1.2)) and 07" = 0! + Atul" (cf. Remark 3.3.3),

p

respectively. The results illustrate that spatial rates of convergence O(h), as provided by
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p=1 a,=1 N=1 p,=1,

So = 17 K= I) Opjs = ]-a

uy =7 cos(mt) :

py = exp(t) sin(mz) cos <%y> + 27 cos(mt),

pp = exp(t) sin(m x) cos (%) :

1 —3x + cos
u, =—-—KVp, n,=sin(rt) (@)
H y+1

Figure 3.5.1: Example 1, domain and coarsest mesh level (left), parameters and analytical

solution (right).

Theorem 3.4.5, are attained for all subdomain variables in their natural norms. The Lagrange
multiplier variables, which are approximated in P; — P; — Py and P$¢ — P{¢ — P¥, exhibit
rates of convergence O(h*?) and O(h?) in the H/2? and L%norms on T'f,, respectively, which

is consistent with the order of approximation.

3.5.2 Example 2: coupled surface and subsurface flows

In this example, we simulate coupling of surface and subsurface flows, which could be
used to describe the interaction between a river and an aquifer. We consider the domain
Q= (0,2) x (—1,1). We associate the upper half with the river flow modeled by Stokes
equations, while the lower half represents the flow in the aquifer governed by the Biot system.
The appropriate interface conditions are enforced along the interface y = 0. In this example

we focus on the qualitative behavior of the solution and use unit physical parameters:

=1 op=1 XN=1 p,=1 so=1 K=I aps=1
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The body forces terms and external source are set to zero, as well as the initial conditions.
The flow is driven through a parabolic fluid velocity on the left boundary of the fluid region

with boundary conditions specified as follows:

uy = (—40y(y —1) 0)°  on Tpuep,

ur=0 on I'fiop,
om;=0 on I'frignt,

pp=0 and o,n,=0 on I poom,

u, - n,=0 and u;,=0 on I'pjp UL, ight

The simulation is run for a total time T = 3 with a time step At = 0.06. The computed
solution is presented in Figure 3.5.2. From the velocity plot (top left), we see that the
flow in the Stokes region is moving primarily from left to right, driven by the parabolic
inflow condition, with some of the fluid percolating downward into the poroelastic medium
due to the zero pressure at the bottom, which simulates gravity. The mass conservation
us -0y + (9, +u,) -n, = 0 on the interface with n, = (0,1)" indicates the continuity
of the second components of the fluid velocity and Darcy velocity when the displacement
becomes steady, which is observed from the color plot of the vertical velocity. The stress
plots (top middle and right) illustrate the ability of our fully mixed formulation to compute
accurate H(div) stresses in both the fluid and poroelastic regions, without the need for
numerical differentiation. In addition, the conservation of momentum osn; + o,n, = 0
and balance of normal stress (o fny) - ny = —p, imply that o120 = 0,12, 22 = 0,22 and
—0 922 = pp on the interface. These conditions are verified from the top middle and right
color plots, as well as the bottom left plot. Furthermore, the arrows in the stress plots are
formed by the second columns of the stresses, whose traces on the interface are o yn; and
—o,n, respectively. For visualization purpose, the Stokes stress is scaled by a factor of 1/5
compared to the poroelastic stress, due to large difference in their magnitudes away from
the interface. Nevertheless, the continuity of the vector field across the interface is evident,
consistent with the conservation of momentum condition oy + o,n, = 0. The overall

qualitative behavior of the computed stresses is consistent with the specified boundary and
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interface conditions. In particular, we observe large fluid stress along the top boundary due
to the no slip condition, as well as along the interface due to the slip with friction condition.
The singularity near the lower left corner of the Stokes region is due to the mismatch in
boundary conditions between the fluid and poroelastic regions. Finally, the last plot shows

that the inflow from the Stokes region causes deformation of the poroelastic medium.

3.5.3 Example 3: irregularly shaped fluid-filled cavity

This example features highly irregularly shaped cavity motivated by modeling flow
through vuggy or naturally fractured reservoirs or aquifers. It uses physical units and realistic

parameter values taken from the reservoir engineering literature [54]:
p=10"%kPas, a,=1, M\, =5/18x10" kPa, p,=15/12 x 10" kPa,

so=0689x102kPat, K=10%xIm? ogs=1.

We emphasize that the problem features very small permeability and storativity, as well as
large Lamé parameters. These are parameter regimes that are known to lead locking in
modeling of the Biot system of poroelasticity [63,83]. The domain is © = (0,1) x (0,1),
with a large fluid-filled cavity in the interior. The body forces and external sources are set
to zero. The flow is driven from left to right via a pressure drop of 1 kPa, with boundary

conditions specified as follows:
Oy Ny = 1000, Uy - tf =0 on Ff,righta
pp = 1001 on I'yjep, pp = 1000 on I'prigne and u,-m, =0 on I'yiop UL bortom,

opn, = —appp, on I'pep UL gy and us =0 on L'y iop UL portom-

The total simulation time is 7' = 10s with a time step of size At = 0.05s. To avoid
inconsistency between the initial and boundary conditions for p,, we start with p, = 1000
on I'y ¢+ and gradually increase it to reach p, = 1001 at ¢t = 0.5s. Similar adjustment is
done for o,n,,.

The simulation results at the final time 7' = 10s are shown in Figure 3.5.3. In the top

plots, we present the Darcy pressure and Darcy velocity vector, the displacement vector
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with its magnitude, and the first row of the poroelastic stress with its magnitude. Since
the pressure variation is small relative to its value, for visualization purpose we plot its
difference from the reference pressure, p, — 1000. The Darcy velocity and the pressure drop
are largest in the region between the left inflow boundary and the cavity. The displacement
is largest around the cavity, due to the large fluid velocity within the cavity and the slip
with friction interface condition. The poroelastic stress exhibits singularities near some
of the sharp tips of the cavity. The bottom plots show the fluid pressure and velocity
vector, the velocity vector with its magnitude, and the first row of the fluid stress with its
magnitude. Similarly to the Darcy pressure, we plot py — 1000. A channel-like flow profile
is clearly visible within the cavity, with the largest velocity along a central path away from
the cavity walls. The fluid pressure is decreasing from left to right along the central path
of the cavity. Consistent with the poroelastic stress, the fluid stress near the tips of the
cavity is relatively larger. We emphasize that, despite the locking regime of the parameters,
the computed solution is free of locking and spurious oscillations. This example illustrates
the ability of our method to handle computationally challenging problems with physically

realistic parameters in poroelastic locking regimes.
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Table 3.5.1: Example 1, errors and convergence rates with piecewise linear Lagrange

multipliers.
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leoslleors,) | llealleorvy | ey, leoran | e lleorize)
hy error  rate error  rate | error  rate error rate
0.1964 | 2.2E-02 - | 2.7E-02 - | 24E-03 — |6.1E-03 -
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lea, =013, | lewlleorvy | ey, lleorae,) | lewleorv,) | e, leorw,)
hy error  rate | error rate | error rate | error rate | error rate
0.2828 || 2.7E-01 - |4.3E-02 - |34E-02 - |10E-01 - |75E-02 -

0.1646 || 1.4E-01 1.27 | 2.2E-02 1.23 | 94E-03 2.39 | 5.2E-02 1.26 | 3.8E-02 1.25
0.0779 || 6.7E-02 0.97 | 1.1E-02 0.96 | 2.2E-03 1.96 | 2.5E-02 1.00 | 1.9E-02 0.93
0.0434 || 3.4E-02 1.17 | 54E-03 1.19 | 5.8E-04 2.25 | 1.2E-02 1.24 | 94E-03 1.22
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len, llezo.rie20,) leglleo i,y leslleoriawy,y | lexleoriaw,)
error rate i error rate Tty error rate error rate
2.7TE-04 - 1/8 || 4.1E-04 - 1/5 || 7.9E-03 - 1.1E-03 -

1.4E-04  1.23 1/16 | 2.0E-04  1.04 1/10 || 2.9E-03 146 |3.1E-04 1.87
6.7E-05  0.96 1/32 || 2.4E-05  3.07 1/20 || 5.7E-04 2.34 | 7.7E-05 2.01
3.4E-05  1.19 1/64 || 6.4E-06  1.89 1/40 || 1.5E-04 1.89 | 1.9E-05 2.00
1.7TE-05 1.07 | 1/128 || 1.6E-06  1.97 1/80 || 3.8E-05 2.01 |4.9E-06 1.98
8.4E-06  1.15 1/256 || 4.0E-07  2.02 1/160 || 9.0E-06  2.09 | 1.2E-06  2.09

Table 3.5.2: Example 1, errors and convergence rates with discontinuous piecewise linear

Lagrange multipliers.
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Figure 3.5.2: Example 2, computed solution at T = 3.

Top left: velocities uy, and u,, (arrows), uy, 2 and w2 (color). Top middle and right: neg-
ative stresses — (o fn12, 0 n22)" and —(0pp12, Opno2)' (arrows); middle: —o pp10 and —opp 12
(color); right: —o 90 and —o,p 20 (color). Bottom left: negative Stokes stress —o fp, 90 and

Darcy pressure p,,. Bottom right: displacement 7, (arrows) and its magnitude (color).
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Figure 3.5.3: Example 3, computed solution at T = 10 s.

Top left: Darcy velocity (arrows) and pressure (color). Top middle: displacement (arrows)
and its magnitude (color). Top right: first row of the poroelastic stress tensor (arrows) and
its magnitude (color). Bottom left: Stokes velocity (arrows) and pressure (color). Bottom
middle: Stokes velocity (arrows) and its magnitude (color). Bottom right: first row of the

Stokes stress (arrows) and its magnitude (color).
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4.0 An augmented fully-mixed formulation for the quasi-static Navier-Stokes

— Biot model

4.1 The model problem and weak formulation

We consider the same Lipschitz domain consisted of fluid region {2; and poroelastic region
2,. Let ps be the density, with other terms defined as in Section 2.1. We assume that the

flow in € is governed by the Navier-Stokes equations:

pr(Vup)uy —div(oys) =1, div(uy) =¢r in Qp x (0,7, (4.1.1a)

(0;—prup@uy))ny =0 on I x(0,7], ur=0 on I?x(0,7], (4.1.1b)

where I'y = I‘l}I U F]]?, e(uy) and o denote the deformation and the stress tensors, respec-
tively:

e(uy) := % (Vus + (Vuy)'), op:=—prI+2pe(uy).
While the standard strong Navier—Stokes equations are presented above to describe the
behaviour of the fluid in Qy, in this thesis we make use of an equivalent version of (4.1.1)
based on the introduction of a pseudostress tensor relating the stress tensor o with the
convective term. More precisely, analogously to [30, 32, 34], we introduce the nonlinear-

pseudostress tensor
Tr:=os;—pr(ur®@uy) = —prl+2pe(uy) —ps(ur®@uy) in Qp x (0,77,

In this way, owing to the fact that tr(e(uy)) = div(us) = ¢, we find that (4.1.1) can be

rewritten, equivalently, as the set of equations with unknowns Ty and uy, given by

1 p 1 )

ET‘}:Vuf—'yf(uf)—ﬁ(uf®uf)d—ﬁqf1 in Qp x (0,77, (4.1.2a)
—pPrqruy — le(Tf) = ff, Tf = Tsc in Qf X (O,T], (412b)
Timy;=0 on I} x(0,7], uy=0 on I'{ x(0,7], (4.1.2¢)
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1 .
pr=—— (tx(Ty) + ppr(uy @ug) =2pgp) in QL x (0,7, (4.1.2d)

where v, (uy) := % (Vuy — (Vuy)") is the vorticity (or skew-symmetric part of the velocity
gradient tensor Vuy). Notice that (4.1.2d) allows us to eliminate the pressure py from the
system (which anyway can be approximated later on through a post-processing procedure).
For simplicity we assume that [T’} > 0, which will allow us to control Ty by T¢. The case
|F¥| = 0 can be handled as in [50-52] by introducing an additional variable corresponding
to the mean value of tr(Ty).

The Biot system is similar as in Section 2.1, but with different boundary conditions for

simplicity:
—div(e,) =f, in Q,x (0,7, pK'u,+Vp,=0 in €, x (0,7, (4.1.3a)
0 : : :
e (sopp + apdiv(n,)) +div(u,) = ¢, in @, x (0,77, (4.1.3b)
u,-n,=0 on I} x(0,7], p,=0 on I')x(0,7T], n,=0 on I,x(0,7].
(4.1.3¢c)

The transmission conditions are the same as the one in Section 2.1 of Chapter 2. We

present them here for completeness.

0
us-ny+ ( (92 +up) ‘n, =0 on Iy x (0,7, (4.1.4a)
oms+om, =0 on I'y x(0,7], (4.1.4Db)

afnf+uamz VEK; {( ) tf]} t;; = —pyny on g, x (0,7]. (4.1.4c)

We remark here that (4.1.4b)—(4.1.4c) can be rewritten in terms of tensor T as follows:
Ty + pp(up@upng +opn, =0 on Tp x (0,77,

Tny + py (uy @ uy)ny (4.1.5)

:—uaBJSZ\/ {(u ——) tfj}tf’j_ppnf on Iy, x (0,77,
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Finally, the above system of equations is complemented by the initial condition p,(x,0) =
Ppo(x) in Q,. We stress that, similarly to [65], compatible initial data for the rest of the
variables can be constructed from p, o in a way that all equations in the system (4.1.2), (4.1.3),
(4.1.4a) and (4.1.5), except for the unsteady conservation of mass equation (4.1.3b), hold at
t = 0. This will be established in Lemma 4.2.10 below. We will consider a weak formulation
with a time-differentiated elasticity equation and compatible initial data (67,0, Ppo)-

We then proceed analogously to [4, Section 3] (see also [34,50]) and derive a weak
formulation of the coupled problem given by (4.1.2), (4.1.3), (4.1.4a) and (4.1.5). Similarly
to [32,34], in the sequel we will employ the following Hilbert spaces to deal with the nonlinear

pseudostress tensor and velocity of the Navier—Stokes equation, respectively, that is
Xpi= {Ry € H(diviQ) : Rmy;=0 on I}},
Vf = {VfGHl(Qf) . Vf:O on F?},

endowed with the corresponding norms

IRz, = [Ryllaivey,  IVellv, = IVillae)-

For the Biot region, we begin by introducing the structure velocity u, := d; m,, € V, satisfying

1
u, = 0 on I, cf. (4.1.3c), the rotation operator p, := §(Vnp —Vmn,) and its time derivative,
1
that is, the structure rotation operator v, := d;p, = 3 (Vu, — (Vuy)") which will be used
in the weak formulation. In turn, we set the spaces X, := H(div;Q,), V, = L?(Q,),

W, := L?(Q,) and introduce the following subspaces of L?(£2,,) and H(div;(2,), respectively
Q= {x% e L) 1 X =%},
V, = {vp € H(div;€,) : v,-n,=0 on FPN},

endowed with the standard norms. In addition, we need to introduce two Lagrange multi-
pliers which has a meaning of the structure velocity and Darcy pressure on the interface,
respectively,

0 =u,lr,, €A, and A:=pylr,, €A,
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together with their spaces A, := (V,, - n,) and A, := (X, n,)’. We take A, := H/%(T';,) as
in Section 2.1 and recall that it holds that

(V- np>f>rfp < Clvplla@ive,) [€llmzw,,),  ¥vp € Vp, €€ HY2(T ). (4.1.6)

Now for Ag, observe that, if Eg, : H/2(I'y,) — L?(9),) is the extension operator defined
by
(ﬁ on Ffp

Eo,(¢) := Vo c H/(Ty,),
0 on Fp

then it holds that V7, € X,, ¢ € HYZ(Ty,),

p,0
(Tp1y, ¢>rfp = (7 npaEO,p((ﬁ»an < CHTPHH(diV§Qp)HE07P<¢)HH1/2(8QP)7 (4.1.7)

where
H;I),/OQ(Ffp) = {V|rfp: veH(Q,) and v=0 on Fp}

= {¢ e HY2(Ty,) :  Eou(o) € H1/z(an)}.

Thus analogously to [34,50] we take Ay := H;{OQ(F p)- In this way, the spaces A, and A, are

endowed with the norms

I€lla, = €llrzry,)  and  [lla, = [Eop(@)lm2(00,)-

We now proceed with the derivation of our Lagrange multiplier variational formulation
for the coupling of the Navier—Stokes — Biot problems. Similarly to [4,34], we test (4.1.2a)
with arbitrary Ry € Xp, integrate by parts and utilize the fact that T¢ : Ry = T¢ : RS.
We apply the same derivation process as in Section 2.1 for the Biot model, then impose the
remaining equations weakly, as well as the symmetry of T; and o,, and the transmission

conditions in (4.1.4a) and (4.1.5) to obtain the variational problem,

1 .
Z(va, R)q, + (uy,div(Ry))a, — Ry up)p  + (v,(us), Ry)e,
p 1
+ i((uf @up), Ry)o, = = (s LRy)a,. (4.1.8a)
—pr(qrug,vi)a, — (v, div(Ty))o, = (fr,vys)a,, (4.1.8b)
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= (Tp v (vp))e, =0,

(0, Al + ap 1), T, + (Vs Ty + (1, div(T,))a, — (71 ), =0,
— (vg,div(oy))a, = (£, Vs)a,,

— (om0, xp)0, =0,

WKy, vp)a, — (Bp, div(vy))e, + (Vo 1y, A)p . =0,

50 (Or pp, wp)Qp + (0 A(oy + appp 1), apwy I)Qp + (wp, diV(up))Qp = (qp, wp)ﬂp’

—(uy-n;+ (0 +u,) - np,£>rfp =0,
n—1
(¢ 1y hr, = pramss ) < K ' (up— )ty ¢- tf,j> + (opmy, d)yp,
j=1 Ffp
n—1
<Tfnf, Vf>Ffp + M Qggs Z <1 /K]_l (Uf — 0) . th,Vf . tf7]>
j=1 Tsp

=0.

+pr (up-npup v+ (veeng A =

(4.1.8c¢)
(4.1.8d)
(4.1.8¢)
(4.1.8f)
(4.1.8g)
(4.1.8h)

(4.1.81)

=0, (4.18))

(4.1.8K)

In the above, (4.1.8a)-(4.1.8c) are the Navier-Stokes equations, (4.1.8d)—(4.1.8f) are the

elasticity equations, (4.1.8g)—(4.1.8h) are the Darcy equations, and (4.1.81)—(4.1.8k) enforce

weakly the interface conditions. Notice that, similarly to [2, eq. (3.5)] and since {'yf(vf) :

vy € Hl(Qf)} is a proper-subspace of the skew-symmetric tensor space, (4.1.8¢) imposes

the symmetry of T, in an ultra-weak sense. Notice also that the fifth term in (4.1.8a)

and the third term in (4.1.8k) require u; to live in a smaller space than L*(Q;). In fact,

by applying the Cauchy-Schwarz and Holder inequalities, the continuous injection i. of

H!(;) into L*(Q) and ir of HY2(9€;) into L*(9€;), and the continuous trace operator

70 : HY(Qy) — L%(0€2), we find that there holds

[(uy @ wp) Ry)a,| < gl WrllLieIRyllz;)

< il las s @ 1wyl @) R ¢l

(4.1.9)

[(wy-npap v, | < el olllwlla @ (T wp) lov TRy, v llxev,
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for all uy, vy, wy € H(Qy) and Ty, Ry € X;. According to this, we propose to look for the
unknown uy in Vy and to restrict the set of corresponding test functions vy to the same
space. Finally, we augment the resulting system through the incorporation of the following

redundant Galerkin-type terms:
K1 (pf qgruy + div(Tf), le(Rf))Qf = —K (ff, le(Rf))Qf VRf S Xf, (4110&)

p 1 .
Ko (e(uf) — ﬁ (uy ®up)? — 5 T;ic,e(vf)) <Qf,d1V(Vf))Qf Vvye Vy,

2

Qf n
(4.1.10b)

where k1 and ko are positive parameters to be specified later. Notice that the foregoing
terms are nothing but consistent expressions, arising from the equilibrium and constitutive
equations. It is easy to see that each solution of the original system is also a solution of

the resulting augmented one, and hence by solving the latter we find all the solutions of the

former.

Remark 4.1.1. The time differentiated equation (4.1.8d) allows us to eliminate the dis-
placement variable m,, and obtain a formulation that uses only u,. As part of the analysis we
will construct suitable initial data such that, by integrating (4.1.8d) in time, we can recover

the original equation

(Aloy + appl), 7)o, + (P, Tp)a, + (M, div(Ty))a, — (Tpn,,w)r,, =0, (4.1.11)

where w = n,|r,, -

Now, it is clear that there are many different way of ordering the Lagrange multiplier
formulation described above, but for the sake of the subsequent analysis, we proceed as in [4],
and adopt one leading to an evolution problem in a mixed form. For this purpose, given

w; € V¢, we set the following bilinear forms:

1 . .
ar(Tyup Ry, vy) = 2 (T%, R$)q, + 1 (div(Ty),div(Ry))o,

+py (qrup, k1 div(Ry) — vy)a, + (uy, div(Ry))o, — (v, div(Ty))q,

+(vp(up), Ry, = (Trvp(ve)a, +(Tmy,vyp)p — (Rymyp,up)p
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1
+ Ko (e(uf) — ﬂ T‘},e(vf)) ,
Qy

P
oy (T g Ry, vp) o= o ((uy @ wi) L Ry — ko e(vy))a, +pp (Wyonpup vy
e(Tp, Dp; Tp, Wp) = (A(op + auppl), T, + apwpI)va
ap(uy, vp) 1= M(K_lupvvp)ﬂpw bnp(Tpv¢) = <Tpnpv¢>rfpv

bp(ijvp) = (wpadiv(vp))ﬁpa bS<stTp) = (VSadiV(Tp))Qpa bSk(Xp7Tp) = (Xp?Tp)Qp7

and the interface terms

n—1

aBJS(ufa 0; Vi, ¢) ‘= M OpJs Z < K;1<uf - 0) ., (Vf - ¢) 'tf,j> )

j=1 Tsp
bF(Vp>Vf7 d)?g) = <Vf ' nf + (d) + Vp) : np7€>1‘fp 9
Hence, the Lagrange variational formulation for the system (4.1.8) and (4.1.10), reads: Given,
fr:00,7] =V, £,:[0,T] =V, ¢ :[0,T] =X} ¢,:[0,T] =W,

and (0,,0,pp0) € X, x Wy, find (07, pp,up, Ty, up, 6,\u,,7,) : [0,T] = X, x W, x V,, x
XX Vix Agx Ay x Vg x Q,, such that (6,(0),p,(0)) = (67p0, Ppo), for a.e. t € (0,T) and
for all 7, € X,,w, € W, v, € V), Ry € Xy, vy € Vi, 0 € A, £ €Ay, v, € Vi, X, € Q,,

50 (O Pp, Wy, + (0 0y, O pp; T, wy) + ap(uy, vi) + ay(Ty,up; Ry, vy)
+ fu, (Troup; Ry, vy) + agss(uy, 0, vy, @) + by(py, vip) — by(wy, uyp)
+ bn, (0, @) = bn, (Tp, 0) + bs(us, 7)) + bk (v, Tp) + br(Vp, v, 5 A)
= = (£ div(Ry) = Voo, = 1 (4 L Rp)a, + 2 (a7, dv(vp))a, + (4 0o,

- bs(V87 Up) - bSk(Xp? o-p) - bF(“p) Uy, 07 5) = (fp7 Vs)Q;;a
(4.1.12)
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Now, we group the spaces, unknowns and test functions as follows:

Q =X, xW,xV, xXyxVyxA; S:=AxV;xQ,,

P = (a-papp7up7vauf70) € Q> ri= (>\7u37’7p> € S7

q:= (Tp7wpavp7Rf7Vf7¢) € Q7 S = (£7VS7Xp) € 87

where the spaces Q and S are respectively endowed with the norms

lalle = lITollx, + llwpllw, +IVollv, +R¢llx, + lIvellv, +[l@lla.,

Islls = lI€lla, + [1Vsllv, + lIx,lla,-

Hence, we can write (4.1.12) in an operator notation as a degenerate evolution problem in a

mixed form: 5
—Ep(t) + (A+Ky,)p(t) +B'r(t) =F(t) in Q,
ot (4.1.13)

—Bp(t)=G(t) in S,
where, the operators A : Q — Q', Ky, : Q — Q', B : Q — S', and the functionals
F € Q, G € S are defined as follows:

0 0 0 0 0 By
0 0 B 0 0 0
e 0 -B, A, 0 0 0
0 0 0 AS+A4} B + A} 0
0 0 0 —By+Ap AlyAn Al (Al
_Bnp 0 0 A]J;?S AIJ;JS
0000 0 0
0000 0 0
0 0 BX 0 Bl B
0000 0 0
Kw, = , B=|1 B, 0 0 0 0 0 [,
0000 K 0
Bee 0.0 0 0 0
0000 Kj,+K, 0
0000 0 0
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0

dp
0 0
= ]. =
F ——qrtr — ki £y -div |7’ G B
n
0

R2 .
—qgrdiv+f
n af f

0

where

. 1
(Apuy, vp) = ap(uy, vy), (Af T Ry) = 5

TR, (4 wsv) = oy (g,

(A7 T, Ry) = k1 (div(Ty),div(Ry))e,, (AF up, Ry) = k1 py (¢ uy, div(Ry))a;,

1

(A:‘S Tf? Vf) = —hke ﬁ (T(Jiﬁ e(Vf>)Qf ) (A? upy, Vf) = RQ(e(uf>7 e<Vf))Qf

(Abssus, vy) = apss(uy, 05v5,0),  (Afjsuy, @) = apss(uy, 0;0, ),
(A3 6, @) = azs5(0,0:0,9),
(By Pps Vi) = =bp(Pp; Vp),  (Bn, 0p, @) = —bn, (0, @),
(By Ty, vy) = (vp, div(Ty))a, + (Tr, v (ve))a, = (Tpng, vy,

e P P
(K, up,Ry) = ﬁ (up@wp), Ry)a,, (K4, up,vy) = —ko ﬁ ((uy @ wyp), e(vy))a,,

(K, up,vy) = pp (Wpnpup-vy)p o (Bovs,0p) = by(Vs, 0p),
(BSk Xp7 Up) = bsk(Xpa Up): (B{Z up, g) = br(upa 07 Oa g)a

(Bl uy,€) = br(0,up,0:6), (B26,€) =0br(0,0,6;¢).
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The operator £ : Q — Q' is given by:

As A® 0 00 0
(AP) A2+ AP 0 0 0 O
0 0 00 0O
g: )
0 0 0000
0 0 00 0O
0 0 00 0O

where
(Ao, 7)) = ac(0),0;7,,0), (AP0, w,) =a(op,0;0,w,),

(Agppa wp) = ae(0>pp; 07 wp)a (Ag Dp, wp) = (30 Pp; wp)Qp-

4.2 'Well-posedness of the weak formulation

4.2.1 Stability properties

We start by establishing the stability properties of the operators A, Ky, B and £. In
the sequel, we make use of the following well-known estimates: there exist positive constants

c1(2f) and ¢2(€2f), such that (see, [23, Proposition IV.3.1] and [48, Lemma 2.5], respectively)

(@) [RyolPa,) < IR Zxq,) + 1div(Ry) 22, YRy = Ryo + (1 € H(divi Q)
(4.2.1)
and
() IRsll%, < IRfollk, YRf=Rpo+lIeXy, (4.2.2)
where Ry € Hy(div; Q) := {Rf € H(div;Qy) :  (tr(Ry), 1), = o} and { € R. We
emphasize that (4.2.2) holds since each R; € X satisfies the boundary condition Rym; = 0
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on Fl}l with ]F1}1| > (. In addition, we recall Korn inequality, that is there exists positive

constants c3(£2¢) such that

es(Q)IVi @y < lle(vpllLzwy < Vellin@,) Vvr € HI () (4.2.3)

and also notice that

v (V)2 < IV, Yvy € HY(Qy) (4.2.4)

Lemma 4.2.1. Given q; € L*(Q) and w; € Vy, the operators A, Kw;, B and € are linear
and bounded as follows,

A(p)(a) < Callpllelldlle,  Kw,(P)(a) < Ckllwyllv,[pllelldalle 2s)
4.2.5

B(a)(s) < Cglldllallslls.  £(P)(a) < Celpllallalla.
where Cy, Cx, Cp and Cg are positive constants depending on p, K, ps, asss, qf, So, k1 and

R9o.

Proof. We begin noting that the operators A, B and £ are clearly linear and bounded,
using the trace inequalities (4.1.6)—(4.1.7) for continuity of br and by,. As for Ky, we make
use of (4.2.3), combining with the continuity of the embedding i. : H'(Q) — L*(Q;) and
ir : HY2(08;) — L*(0), and the continuity of the trace operator vo : H'(Qf) — L2(99;),

to deduce that given ¢; € L*(Q;) and w; € V4, Ky, ; 18 linear and bounded. In particular,

we have
pf d R
EK(W ®@wy)% Ry — kae(vy))a,|
P 1
< 04ﬁ||1c\|2HWfHH1(Qf)H(Tf,uf)HXfxfo(RfaVf)foxvf,

prliwynp v Vel < prlelPolllw sl @) 1T ap) s ov | (R, vl v,y

where ¢4 = max{1, kz}, and Ry, ve)lE, v, = IRy, + IVl 50 indeed we have that

Prf s .
Crc = max {esf il oy e Pl =

Next, we establish the monotonicity of the operators A + Ky, and &, respectively.
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Lemma 4.2.2. Assume k1 >0, 0 < kg < 2pc3(82f),

. RQCg(Qf)
sl < min {1, — 3 (4.2.6)
Ti@ Apyl[ic]2(1+ rapy/2)

and ||Wf||Hl(Qf) <1y, where

« . . 1 K1 K1 /1263(9 )
ro = ﬁ, ay :mln{cl(Qf) mm{@’Z}’Z’Tf}’ (4.2.7)
then A+ Ky, and & are monotone as follows,
(A+Kwp)(@)(a) = aucllally,  E(a)(a) > acllallg, (4.2.8)

where auax s a positive constant depending on p, K, agys, K1, ko, c1(Qy) and c3(Sf), and

ag 18 a nonnegative constant depending on so. In particular,
. 2
ar(Ryp, vy Ry, vy) = apl[(Ry, vi)llx, v,

(0%
ar(Ry, Vi Ry, ve) + i, Ry Vi Ry, vp) 2 LRy VAl v, (4.2.9)

ap(Vp, V) = 1 IVl i 2(0,); ap3s(Vy, @; Vi, @) > cass|Ve — Plass

Proof. From the definition of the operator A (c.f. (2.1.3)), using triangle inequality, we
deduce that

Il < 2 +n) (I14Y2(my + 0w, D 2xga,) + 1472 (0w, D))
< Gy (I14"2(r, + apw, DliZz(a,y + Il )
where C}, := 2 max {2 tp + 1Ay, ag}. Thus combining with the definition of £, we get
(E)@)(@) = sollwplZza,, + 1472 (7 + apw, 1 2x(a,)
> ZllwylEzq,) + (@) (1472 () + apw, DllEage,) + [wpllEz(a,)

> ag(Q) ([wpllw, + I7pllL20,)):

with a;(£2,) = min{s/2, 1} and ag(£2,) = a1 (€2,).
In turn, utilizing Young’s inequality, (4.1.9) and (4.2.3), we have

. R1 . K1 .
k1 pf (qr vy, div(Ry))g,| < 3lldlv(Rf)||isz) + gpfe el llar s Vel e,
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07 (a5 vy vi)ag | < pr liclPllarllvaen 1Vl @),

1

1 1
d 2 2 2
‘ﬂ’@(Rfae(Vf))Qf‘ < @“RfHL%Qf) + @’{2 HVfHHl(Qf)>

ka2 (e(vy),e(vy))a, = k2 cs(Q) vy liEn o),
thus we could get that

1 K1 4.
ap(Ry, vy Ry, vy) > @HR(}“i%Qf) + E”dw(Rf)HiQ(Qf)

1

. R
Fmales(2) = o) = prllclPllaslsey (1+ 5 prllarlisen) vl

> ol Ry %, + aslvilly, = arll(Ry vl v,

: : Kacs(§y)
if ke < 2pc3(Qyp), and ||qrl|pay < mm{l, - }, where ay, =
o o 1o Tl (1 + rap s 12)
min {cl(Qf) min{z,%},%}, az = roc3(2p)/4, and oy = min{as, as}. Furthermore,
L

there holds

ap(Rp, vis Ry, vi) + hw, (Rp, v Ry, ve) > ap(Ry, vis Ry, vi) — ke, (Ry, v Ry, vy)|

Q@
> (o — Cielwillm@) Ry, v IZ v, = LN Ry VAR v,
(4.2.10)
where we used ||[wy||g1(q,) < Y i the last inequality.
! 2Cxk
Finally, from the definition of a, and ag;s, we have
ap(Vp, Vp) = Nk;ﬁixHVpHi?(pr
n—1
aBJS(Vf7 ¢7Vf7 ¢) = VQpgs Z < \/ K]_l(vf - ¢) : tfyj, (Vf - ¢) : tf7]> > CBJS|Vf — ¢|§JS7
j=1 Cpp
(4.2.11)

where cpjg is a positive constant that only depends on p, ap;s and K, and we define for

vy € Vy, e Ay,
n—1
Vi — Bl = Z [(vy— &) ‘tf,j||52(rfp)-
j=1

The monotonicity of A + Ky, follows from (4.2.10) and (4.2.11). O
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Next we define

~ A~

X, = {‘Tp €X,: div(r,) =0 in Qp}, X, = {Tp €eX,: 7T,n,=0 on Ffp},

then the inf-sup conditions are given by the following lemma.
Lemma 4.2.3. There exist constants (1, B2, B3 > 0 such that

bs (Tp7 Vs) + bsk(T]n Xp)

Bi(llvsliv, + Ix,lle,) < sup , Vv, € Vi x, €Q, (4.2.12)
0£7yeR, 17l
b,(v,, w,) + br(0,v,, 0;
Ba(llwpllw, + [I€lla,) < sup (Vs ) 1000, v, 5), Yuw, € W,, & € A,, (4.2.13)
0#vpEV) “VPHVp
O (T, @)

Bsl|@lla, < sup ;
orpek, ITrl%,

Vo € A,. (4.2.14)

Proof. The inf-sup condition (4.2.12) is a result from [13], and inf-sup condition (4.2.13)
follows from a modification of the argument in Lemmas 3.1 and 3.2 in [43] to account for

]Ff\ > 0. Finally, (4.2.14) can be proved from using the argument in [50, Lemma 4.2]. O

We now establish the well-posedness of (4.1.13) (equivalently (4.1.12)). We start with

some preliminary results that will serve for the forthcoming analysis.

4.2.2 Well-posedness analysis

We begin by recalling Theorem 2.2.3 to establish the existence of a solution to (4.1.13)
(see [74, Theorem IV.6.1(b)] for details).

Remark 4.2.1. The problem (4.1.13) is a degenerate evolution problem in a mized form,
which fits the structure of the problem studied in the theorem above. However, note that in
the theorem, f is restricted in the space WH(0,T; E}) arising from N'. If we would like
u(t) in the theorem to cover for all the variables in our case, we will have to restrict data
as fy = £, = 0 and qy = 0. To avoid this restriction, we will reformulate the problem as a

parabolic problem for o, and p, as in [4].

140



We denote by the E, the closure of the space E := X, x W, with respect to the norm
and inner product induced by the operator &, that is,

(75, wp) [, := ((Tp, wp), (Tpva))]lg/ja
(4.2.15)

((T17 'U)l), (TQa w?))EQ = ae(Tlv Wi; T2, w2) + (80w17 w2)ﬂp-
From the definition of the operator A, cf. (2.1.3), and the fact that sy > 0, we could see that

the norm || - |g, in (4.2.15) is equivalent to the standard product norm

)!? (4.2.16)

||(Tp’wp)||]§2 = (HTPH%P(QP) + ||wp||%vp ;

which implies that E; = L?(Q,) x W, D X, x W,,. Now let us set Qs = L?*(,) x W, x V,, X
Xy x Vi x Ay, then Q) = L*(,) x W, x V) x X x V} x AL C Q. Next, we define the
domain associated to the resolvent system of (4.1.12) similar to [4, Section 4.1],

D := {(Jp,pp) € X, x Wy, for given (qy,ff,£,) € X x V) x V,
there exists ((u,, Ty, uy,0), (N, uy,7,)) € (V, x Xy x Vy x A,) x S such that V(q,s) €

QxS:
So (ppa wp)Qp + ae(a'papp§ Tp, wp) + ap(up7 Vp) + CLf(va Uy, Rfv Vf)
+ ffuf(Tf, Uy; Rf,Vf) + aBJS(ufu 0;vy, @) + bp(pp, vp) — bp(wy, uy)

+ bnp (UZH d)) - bnp (TZH 0) + bs(u57 Tp) + bsk(7p7 Tp) + bF(Vp7 Vf7 ¢7 )\)
1

n

) K .
= — (fy, k1 div(Ry) — vy)q, (s LRf)a, + f (7, div(vy))a,

o~

+ (fp, Tp)ﬂp + (quwp)Qp’

—by(vs,0,) — bsk(xp, op) — br(u,,uy, 0;8) = (£,vs)q,,
(4.2.17)

and for some (/fp, ¢y) € Ej satisfying
1o llL2 (2, + 1 Bll2i,) < Cop(IfrllLzp) + I1fllie,) + larlliz@)) + llaplliee,))  (42.18)

for some constant @p}c Es.
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Note that the resolvent system (4.2.17) can be written in an operator form as

(E+A+Ky)p+Br=F in Q,
(4.2.19)
—-Bp=G in Y,

where F € Q' is the functional on the right hand side of (4.2.17).

Note that there may be more than one (f,, g,) € E) that generate the same (o, p,) € D.

In view of this, we introduce the multivalued operator M(-) with domain D defined by

A~ ~

(5 @)~ E(00.my) : (1) satisfies (4.217) for (£,G,) € LA(2,) x W |,
(4.2.20)
where & is the top left 2x2 block of €. Associated with M (+) we have the relation M C ExE}
with domain D, where [v,f] € M if v € D and f € M(v).
Next we consider the following parabolic problem: Given (hg,, hy,) € WH(0,T;1L%(€,))
x WHH(0, T W), find (o7p, pp) € D satisfying

M(op.py) = {

dg 7»(1) + M 7s(1) > s (1) . ae te(0,T) (4.2.21)

b\ p(t) py(t) hy, (t)

Using Theorem 2.2.3, we can show that the problem (4.1.13) is well-posed. To that end, we

proceed in the following manner.

Step 1. Introduce a fixed-point J associated to problem (4.2.17).

Step 2. Prove J is a contraction mapping and conclude that the domain D, cf. (4.2.17), is
nonempty.

Step 3. Show the solvability of the parabolic problem (4.2.21).

Step 4. Show that the original problem (4.1.13) is a special case of problem (4.2.21).
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4.2.2.1 Step 1: A fixed-point approach

We begin the solvability analysis of (4.2.17) or equivalently that the domain D is
nonempty by defining the operator J : V; — V by

j(Wf) = uy VWf S Vf, (4.2.22)

where p := (0,,pp, u,, Ty, uy,0) € Q is the first component of the unique solution (to be
confirmed below) of the problem: Find (p,r) € Q x S, such that

(E+A+Kw)p+Br=F in Q)
(4.2.23)

—Bp=G in S

Thus it is not hard to see that (p,r) € Q x S is a solution of (4.2.17) if and only if uy € Vy
is a fixed-point of 7, that is,
J(uy) = uy. (4.2.24)

In this way, in what follows we focus on proving that J possesses a unique fixed-point.

However, we remark in advance that the definition of 7 will make sense only in a closed ball
of Vf.

Before continuing with the solvability analysis of (4.2.24), we provided the hypotheses
under which J is well-defined. To that end, we introduce operators that will be used to
regularize the problem (4.2.23). Let Ry, : X, — X, R, : W, — W, R, :V, = V|
Ly, : Vg — V. and Ly :Qp— Q, be defined as follows:

(Ro,0p, Tp) = T0,(0p, Tp) := (0, Tp)a, + (div(ey,),div(Ty))e,,
(B, pp, Wp) = T, (Pps Wp) := (Pp, Wp)e,,

(Bu,up, vpp) = T, (1, vpp) := (div(wy), div(vy))e,,

(Lusu57vs) - lus (usa Vs) = (us>Vs)Qpa

(L‘Yp7p7 XP) = l‘Yp (71)7 Xp) = (7})7 Xp)ﬂp'

The following operator properties follow immediately from the above definitions.
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Lemma 4.2.4. The operators Ry, R,,, Ry, Ly,, and L, are bounded, continuous, coercive

and monotone.

It was shown in [43] that there is a bounded extension of A from HY2(T;,) to H/2(9Q,)
defined as EpA := y19()), where ; : HY(€,) — HY2(9,) is the trace operator and 1()\) €
H'(Q,) is the weak solution of

—div(Vy(A)) =0 in €,
»(A) =X on Ty VY(A)-n,=0 on I, ¢(A)=0 on I7}.

In addition, according to [4], there exists generic constants ¢4, c5 > 0 such that
calvMllave,) < MMy, < esllvM)]aq,)-
Then we define Ly : A, — A} as
(LA, §) = (A €)== (V(A), VI (§))g, - (4.2.25)

Similarly, there is a bounded extension of 8 from HY2(T;,) to HY/2(9€),) defined as
Er0 := y,(0), where v, : HY(,) — HY2(95),) is defined similarly as before and ¢(8) €
H'(Q,) is the weak solution of

—div (Ve(0)) =0 in Q,,

p(@)=0 on Iy, @) =0 on I,

Elliptic regularity and trace inequality imply that ||6|/g1/>(r,,) and [|¢ ()]l o, are equiv-

alent norms, so Ry : A, — A is defined as

(RoB, p) = 16(0,8) := (Vp(0), Vo (o)), (4.2.26)

Lemma 4.2.5. The operators Ly and Rg are bounded, continuous, coercive and monotone.
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Proof. The result can be obtained similarly as the proof of Lemma 4.2.4, using the equiv-
alence of norms mentioned before. In particular, there exists generic constants cr and Cr

such that

(LA €) < CellAl i,y (DAY 2 el Mz, YAEEA,
(Ro8,9) < CrllOllwze, |z, (Rob. &) > crllOlineg, . V8.6 € A..

]

Theorem 4.2.6. Let r € (0,79) with ro given by (4.2.7) and let f; € L*(Qy), £, € L*(,),
qr € L*(Qy), and g, € L*(Q,). Assume conditions in Lemma 4.2.2, then for each w; such
that [|wil|le (o, < r and for each (fp,f];,) satisfying (4.2.18), there exists a unique solution
of the resolvent system (4.2.23). Moreover, there exists a constant C'z > 0, independent of

w; and the data f;, £,, q;, and q,, such that

17w )llv, < llP.D)llaxs < Co(IfllLaey + I llea,) + llarlle@) + gl ,) - (4227)

Proof. For p = (0y,pp, W, Ty, uy,0), q = (T, wp, vy, Ry, vy, ) € Q and v = (A, us,7,),
s = (£,vs,X,) €8, define the operators R : Q — Q" and £L:S — S’ as

(Rpa q) = (Rcrpo'pa Tp) + (Rppppa wp) + (Rupupa Vp) + (Rge, ¢)7

(Lr;8) 1= (InA &) + (Lu,us, Vi) + (L, Y, Xp)-

(4.2.28)

For ¢ > 0, consider a regularization of (4.2.23) defined by: Given F € Q) and G € §, find
Pe = (O'p,eapp,m Upe, Tf,ea Uy, 06) € Q and re = (>\€7 us,savp,e) € S such that

(R+E+A+Kw,)p+Br. =F in Qb
(4.2.29)
—Bp.+eLr, =G in S

Let the operator O : Q x S — Q' x S’ be defined as

q R+E+A+Ky, B q
S -B eL S
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Note that

ol P ). (1 = (((R+E+A+Kw,)p.q) + (B'r,q) — (Bp,s) +¢(Lr,s),

r S

thus we could conclude that O is bounded and continuous from Lemma 4.2.1 and Lemma
4.2.4-4.2.5. Moreover, using coercivity bounds from Lemma 4.2.2 and Lemma 4.2.4-4.2.5,

we also have

@ : =((R+E+A+Kw;)q,q) + (eLs,s)

= €rg, (Tp, Tp) + €rp, (Wp, wy) + €1y, (Vp, V) + €79(@, @) + (Sowp, wy) + Ge(Tp, Wp; Ty, W)
+ap(vp, vp) +ap(Ry, v Ry, vy) + hiw, (R, v Ry, vy) + apss(vy, @3 vy, @)
+eln(§,6) + elu, (Vs vs) +ely (X Xp)

> C(ellpll%, + ellwplly, + elldiv(vp)l[fzq,) + €ll@lla, + sollwslliy,

+ 1AV (7 + D)2, + [VollEa,) + 1RSI, + IveIIY,

+ v = Blags +ell€lli, + ellvilly, + ellx, [3,) (4.2.30)

which implies that O is coercive. Thus, an application of the Lax-Milgram theorem estab-
lishes the existence of a solution (p,r.) € QxS of (4.2.29). Now, from (4.2.29) and (4.2.30),

we have

clopellz, + ellppeliv, + eldiv(w,e)llfzq,) + €llOcla, + sollppellv,

+ A2 (@ + appp Dty + 10p.clTo,) + ITrell, + lluzel,

+[upe = Oclgys + el AR, +eluselly, + ellv,. g,

< C(lIgr,ll2@pllopellie,) + 1w, 2@y IPrell@,) + 1R, 2@ I Trellze))

+ [l9v, 2 @p lurelle@,y + v, ez selle@,)) (4.2.31)
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which implies that ||Al/2(o'p6 + appp,EI)||]%‘2(Qp)7 |up.ell2(@,); ||Tf75||xf and ||Uf,5||vf are
bounded independently of €. Next, we apply the inf-sup conditions in Lemma 4.2.3 and
using (4.2.29) to get

[uselv, + 1Vpelle, < C([A(Gpe + appp.Dlleaa,) + elloplliza,)
+elldiv(ey,.o) Lz, + 197, l2@,)
[Dp.ellw, + [[Aclla, < C(lupellrzi,) + elldiv(ue) iz ,))
0c]a, < O(HA(Up,e + appp.d)lL2,) + €llopellz,) + 17y llz,) + ||§Irp||L2(Qp))> (4.2.32)

which implies that |us|

Vo Vpellay, IPpellw,, [[Aclla, and [|@c||a, are bounded indepen-
dently of e.

Since div(X,,) = V, by taking v, = div(o, ) in (4.2.29), we have
[div(ey.e)llize,) < €lluselliz,) + 1gv. le2@,), (4.2.33)

which implies that ||div(o,)|r2(,) is bounded independently of e. Since ||AY?(o,. +
&pppﬁI)HHQJQ(QP), |Pp.ellw, and [|div(o,.e)||lL2(o,) are all bounded independently of €, the same
holds for ||op||x,. Finally, since div(V,) = W, by taking w, = div(u,,) in (4.2.29), we

have

ldiv(uyd) iz, < Clloplia,) + (s0+ lppclizy) + ldulizwy),  (4:2:34)

so ||div(uy,)||L2(0,), and therefore ||u,||v, is bounded independently of e. Therefore, we
conclude that all the variables are bounded independently of €. In addition, from (4.2.31)-
(4.2.34) with (4.2.18), we conclude there exists C'; > 0 independent of €, such that

[(Pe; t)llaxs < Cr (Ifrllai,) + Iz, + llarllze,) + laplle@,))- (4.2.35)

Since Q and S are reflexive Banach spaces, and &, A, Ky, B, F and G are continuous,
as € — 0 we can extract weakly convergent subsequences {p.,}°>; and {r.,}>>; such that
Pen > PinQ, r.,, — rin S, and (p,r) is a solution to (4.2.23). Moreover, proceeding

analogously to (4.2.35) we derive (4.2.27).
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Finally, we prove that the solution is unique. Let (p,r) and (p,r) be two solutions
corresponding to the same data, we deduce that for all (q,s) € Q x S:

(E+A+Kw,)(p—D)(a) +B(r-T)(q) =0,
(4.2.36)

—B(p-p)(s) =0
Taking (4.2.36) with ¢ = p—p and s = r—T, combining with the monotonicity and coercivity

results in Lemma 4.2.2 yields

@E(Qp)(npp - ﬁp”%}vp + |lop — &pH]?P(Qp)) + Mk;ixHup - ﬁp”%ﬁ(ﬁp)

(4.2.37)

(Ty = Tyuy = Uy)[%, v, <0,

+enss] (W) = ) = (& = D)os +

so it follows that p, = p,, 0, = 0), U, =1, Ty = Tf, and uy = uy. Next, employing the

inf-sup conditions in Lemma 4.2.3, one can deduce easily that the rest variables are unique

too. L]

4.2.2.2 Step 2: The domain D is nonempty

In this section we proceed analogously to [34] by means of the well-known Banach fixed-

point theorem to show that D, cf. (4.2.17), is nonempty.
Lemma 4.2.7. Let r € (0,ry) with ro given by (4.2.7) and let W, be the closed ball defined
by

W, = {w; e V;: ||lwsllv, <7}, (4.2.38)

and assume conditions in Lemma 4.2.2 are satisfied. Then, for all wy, wy € W, there holds

Cy

1T (wy) = T (wy)llv, < T—O(Ilff||L2<Qf) +lflle,) + larlizy) + laple@) Wy — Wyllv,.

(4.2.39)

where C 7 is the constant given by (4.2.27).
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Proof. Given wy, wy € W,, we let uy := J(wy) and uy := J(Wy). According to the
definition of J, cf. (4.2.22)-(4.2.23), it follows that

(E+A+Kw,)p+Br =F in Q,
—-Bp =G in S
and
(E+A+Ks,)p+B'r =F in Qy,
-Bp =G in S.

Subtracting the second rows of both problems, we obtain that
-B(p—-p)=0 in S,

which implies that (p — p) € ker(B). So we then subtract the first rows of both problems
and test with @ = p — p, we obtain

(€+A+Kw,)(p—P)(P—P) = —Kw,;—w,(P)(P — D),

which together with the continuity of Ky, with wy € W, cf. Lemma 4.2.1, and the

monotonicity of A + Ky, and &, cf. Lemma 4.2.2, implies that
Oéf ~ ~ ~
- s =tyllv, < Ckllagllv, lwy = wellv,.

Therefore, combining with the definition of 7, cf. (4.2.7), and the bound of |[uy|v,, cf.
(4.2.27), we get

- 2CKk .
Ju—1uylv, < CJa—f(||ff||L2(Qf) + Iflle2,) + llarlliz,) + laplliz@,)) 1w — Wellv,

_ Gy

= T—O(Hfme(Qf) + 1 llL2,) + llarlleze,) + lapllz@,)) 1wy — Wellv,.

We are now in position of establishing the main result of this section.
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Theorem 4.2.8. Given r € (0,19), with vy given by (4.2.7), we let W, be as in (4.2.38),

assume conditions in Lemma 4.2.2, and in addition, assume that the data satisfy

Cy (IIffllLz,) + Il + larlz@,) + laplliaw,)) < r (4.2.40)

Then, the problem (4.2.19) has a unique solution (p,r) € Q x S with uy € W,, and there
holds

(P, t)llaxs < Co (IIffllLeiy + fllea,) + llarlle@)) + lapllz,))- (4.2.41)
In addition, for M defined by (4.2.20) we have Rg(€ + M) = EJ.

Proof. We start by noticing that (4.2.40) implies that J : W, — W, is well-defined.
Combining the result (4.2.39) and assumption (4.2.40), we have that

1T (ws) = T(Fp)llv, < :—Ouwf — Wl (4.2.42)

so J is a contraction mapping. Thus by the classical Banach fixed-point theorem, we con-
clude that J has a unique fixed-point uy € W, or equivalently, (4.2.19) is well-posed and
then the domain D, cf. (4.2.17), is nonempty. And (4.2.41) follows directly from (4.2.27).
On the other hand, to show Rg(€ + M) = Ej, we need to show that for f € E,
there is a v € D such that £ € (€ + M)(v). In fact, given (/fp,qu) € E}, Theorem 4.2.6
with w; = uy implies that there exists (&,,p,) € D such that (4.2.19) is satisfied. Hence
(£,,3) — £(Gp, D) € M(G,,D,) and therefore it follows that (£,,3,) € (€ + M)(Gp,D,). O
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4.2.2.3 Step 3: Solvability of the parabolic problem

In this section we establish the existence of a solution to (4.2.21). We begin by showing
that M defined by (4.2.20) is a monotone operator.

Lemma 4.2.9. Let r € (0,19) with ro defined by (4.2.7), assume conditions in Lemma
4.2.2, and assume that the data satisfy (4.2.40). Then, the operator M defined by (4.2.20)

18 monotone.

Proof. To show that M is monotone, we need to show for f € M(v), fe M(V) that
(f—f,v=Y)o, > 0. For (0, p,) € D, (£,,3,) —E(0,p,) € M(a, p,) with (£,,G,) satisfying
condition in (4.2.17), and (7,,w,) € E, we have

~

((/fp’ @p) — E(0p, Dp) (T, wp))(zp

A~

= (£, Tp)ﬂp + (@ wp)ﬂp — (Alop +appp 1), Tp + 0wy I)Qp — (S0 Pp; wp)ﬂp (4.2.43)

= —by(wy, 1) — by, (T, 0) + bs(us, Tp) + b (¥, Tp)-

Also from (4.2.17), ((uy, Ty, uy, ), A, u,, 7, satisfy
50 (Pps Wp)ey, + (0, Pp; Tp, wp) + ap(Wp, Vi) + ay(Ty,up; Ry, vip) + kuy (Trup; Ry, vy)
+ apss(uy, 0; vy, @) + by(pp, Vi) = bp(wp, W) + b (0, @) — b, (7, 0) + bs (s, 7p)
+ bsc(Vps Tp) + br(Vp, vy, @3 A)

) 1 K )
= — (fr,rdiv(Ry) — vy)a, (s LRyp)a, + f (g7, div(vy))a,

n

+ (fIH TP>Qp + (/q\py wp)pr
—bs(vs,0,) — bsk(xp,o'p) —br(up,uy,0:€) = (£, vs)o,-
(4.2.44)
Similarly, for (o, p,) € D, (?p, dp) — EA(&p,ﬁp) € M(o,,Dp,) with (E,, qp) satisfying condi-
tion in (4.2.17), and (7, w,) € E,

((fzn ap) - g(a'wﬁp% (Tpv wp))gp = _bp<wp’ ﬁp) - bnp(Tpv 5) + bs (1, Tp) + bSk(:};p’ Tp)a
(4.2.45)
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and the corresponding ((u,, 'f‘f, uy, 5), X, u,,7,) satisfy

50 (Pps Wp)ay, + ae(Tp, Pp; Tp, Wy) + ap (W, vp) + ap (T, up; Ry, vy) + w, (T, up; Ry, vy)

+ aBJS(ﬁf> 63 Vi, @) + bp(Dp, V) — bp(wy, 1,) + bn, (Op, @) — bn, (15, 0) + bs(u,, 7))
+ bsk(%;pu Tp) + bF (Vp7 Vf7 ¢7 X)

) 1 K )
= — (fr, mdiv(Ry) — vy)a, — - (s LRy)a, + f (7, div(vy))a,

+ (fp7 Tp>Qp + (&;77 wp)Qp7

—by(ve,5p) = ba (X, Tp) — br (W, Uy, 0:€) = (£, vi)a,
(4.2.46)
With the association v = (o,,p,), V = (0,,0p), f = (E,,,E]\p) — é\(ap,pp), and f =

~

@n ¢y) — E(0p, pp), we deduce that

(f —fv- V)a, = —bp(pp — Pp,up — W) — b, (0 — G5, 0 — 5) + bs(us —uy, 04 — 0)

+bsk(7p - %p’ Op — &P)
(4.2.47)

Testing the first equation in (4.2.44) with (7,,w,, v,, Ry, vy, @) = (0,0,u, —u,, Ty —
’i‘f,uf —uy, 0 — 5) and the second equation in (4.2.44) and (4.2.46) with (&, vy, x,) =

(A, ug,7,), we obtain
ap(Up, W, — Tp) + ag(Ty,ug; Ty — Ty, 0y — Uy) + ki, (T, 0y Ty — Ty up — )
+apss(uy, @;u; — Uy, 0 — 0) + by(py, u, — U,) + by (07,0 — 6)
—bs(uy, 05 — ) = b (7)), 0 — 0)

. ~ ~ 1 ~ K ) -
= —(ff, 1div(T; — Ty) — (uy — uy))a, (s L, Ty —Tp)a, + f (qr,div(uy —uy))a,-

n
(4.2.48)
Repeating the same argument for the problem of ((u,, Tf, uy, 5), N, u,,7,) , we deduce

a similar identity as (4.2.48). Subtracting these two identities to get an expression for the
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right hand side of (4.2.47), and then replace back into (4.2.47), we have
(f = £,v =)o, = ap(u, — Wy, w, — W) + ag(T; = Tpyuy — 0y Ty — Tpouy — 0y)
+ fuy (T up; Ty — Tyyup = Uy) — kg, (Tp, U3 Ty = Ty up — )
+apss(uy — Up,0 — G;up — Uy, 60 — 6)
= ap(w, = Uy, w, = W,) + ag (T — Tp,uy — U Ty — Tpyuy — Uy)
+#uya, (Tpup; Ty — Typoup = Ug) + kg, (Ty — Tpyup — U Ty — Ty, up — Gy)
+apss(uy — Uy, 0 — O;up — Uy, 0 — 6)

> (o — Cx(I(Ty up)llsyxv, + 1(Tr p)lsxv, ) [(Ty = Tpouy — 8p) 1%, v,
(4.2.49)

where we have employed the monotonicity of a,, ay and agss, cf. Lemma 4.2.2, and the
continuity of ky,, cf. Lemma 4.2.1. Finally, recalling that both [|(Ty,vy)|x,xv, and
||('Tf,Vf)||Xvaf are bounded by data, cf. (4.2.41), with the assumption on data (4.2.40),

we obtain
(f—£.v =)o, > (af — 21 Cio)[[(Ty — Ty, uy — 0p)[%, v, =0, (4.2.50)
which implies the monotonicity of M and conclude the proof. m

Next, in order to prove that (4.2.21) has a solution in D, we need to show that (o0, pp.0)

live in D.

Lemma 4.2.10. Let (q;(0),£;(0),£,(0)) € X} x Vi x Vi. Assume the initial condition
Ppo € W, N H, where

H = {wpeHl(Qp): KVw, e H(Q,), KVw, - n,=0 on FpN, w,=0 on I‘E}.
(4.2.51)

In addition, assume £(0), q7(0) and p,o satisfy a small data condition

CaolllEr(0)llez@y) + g (0)llez ) + [1Ppolla @) < 7ro (4.2.52)
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where Cyo and rpo are defined in a similar manner as in (4.2.40). Then, there exists
Po = (00, Pp,0, Upo, Tyo,ur0,00) € Q, and ro := (Ao, Us07,,) € S such that (4.2.17) holds

~

for suitable (f,0,qp0) € Ej.

Proof. We proceed as in [4, Lemma 4.10]. In fact, we solve a sequence of well-defined sub-
problems, using the previously obtained solutions as data to guarantee that we obtain a
solution of the coupled problem. We take the following steps.

1
1. Define u, o := —— KVp, o, with p,o € W, N H, cf. (4.2.51), it follows that
1

_ : .. .
pK 0= —Vp,o, div(u,g) = 2 div(KVp,o) in €, uy-n,=0 on I).
(4.2.53)
Next, defining Ao := pyolr,, € A, integrating by parts the first equation in (4.2.53) and

impose in a weak sense the second equation of (4.2.53), we obtain

ap(Wp0,Vp) + by(Vp, Ppo) + br(vp, 0,0, X) =0, Vv, €V,

) (4.2.54)
—b,(up 0, wy) = 2 (div(KVpp0), wp)a, Vw, € Wy,
2. Define (T, uro) € Xy x Vy associated to the problem
ap(Tro.up0i Ry, ve) + Kupo(Tro.up0i Ry, vy)
= —apss(Up,0; vy, 0) — (vy-nyp, Ao)r,, — (££(0), k1 div(Ry) — vy)a, (4.2.55)

1 K )
- (7r(0) L, Ry)a, + f (q7(0),div(vy))a,,  V(Ry,vy) € Xy X Vy.

Notice that (4.2.55) is well-posed, since it corresponds to the weak solution of the augmented
mixed formulation for the Navier-Stokes problem with mixed boundary conditions. We would
like to point out that to show the well-posedness, a fixed point approach needs to be adopted
with a small data assumption (4.2.52). We refer to [33] for more details. Notice also that

u,o and )¢ are data for this problem.
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3. Define (0,0,M,.0; Ppos ¥o) € X, X V, x Q, X A, such that

(Ao'p,Oa Tp)Qp + bs ("7p,o, Tp) + bsk(pp,0> Tp) - bnp (1;007 Tp) = _(Aapp,OIa Tp)Qpa vTp € va

bnp (o-p,07 ¢> = _aBJS(up,07 07 07 ¢) - <¢ : np7 >\0>Ffp7 v¢ S A87

_bS(a'p,mVS) = (fp<0)avs)§2pa Vv, € Vg,

_bsk(o'p,07 Xp) - 07 vXp € @p-
(4.2.56)

This is a well-posed problem corresponding to the weak solution of the mixed elasticity
system with mixed boundary conditions on I'y,. Note that p,, u,o and A\ are data for this
problem. Here 1, p, o, and 1, are auxiliary variables that are not part of the constructed
initial data. However, they can be used to recover the variables n,,, p,, and 1 that satisfy
the non-differentiated equation (2.1.12).

4. Define 6, € A as

O0p=usg—u,p on Iy, (4.2.57)

where uyo and u,( are data obtained in the previous steps. Note that (4.2.57) implies that
the BJS terms in (4.2.55) and (4.2.56) can be rewritten with u,o-ts; = (uzo—6o) -ty ; and
that (4.1.81) holds for the initial data.

5. Define (0,0, Us0,7,,0) € X, X V, x Q, such that

(Aa'p,Ov Tp)Qp + bs(usp, Tp) + bsk(Vp,Oa Tp) = bnp(OOa Tp)7 V1, €X,,
—bs(Tp0, V) =0, Vv, €V, (4.2.58)

_bsk(ap,(b Xp) = 07 vXp € Qp'

This is a well-posed problem, since it corresponds to the weak solution of the mixed elasticity
system with Dirichlet data 6y on I'y,. We note that &, is an auxilliary variable not used

in the initial data.
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Combining (4.2.53)—(4.2.58), we obtain (6,0, Pp.0, Upo, Tro,r0,00) € Q and (Ag, usp,
Yp0) € S satisfying (4.2.17) with /fpp and g, such that

o~

(£5.0, Tp)Qp = 0c(0p,0, Pp0; Tp, 0) — (A(a'p,())va)Qw
(4.2.59)

(Z]\p,m wp)Qp - (SO Pp,0, wp)Qp + ae(ap,07 Pp.o; 07 wp) - bp(up,07 U)p),

resulting in

Ifp0llz(e,) + lapollizi,) < Cllppollw, + llopoll@,) + FpollLa(,) + lIdiv(upo)lliz ),
(4.2.60)
thus (/f'\p70,q7)70) € Ej. Then, from the construction of the initial data (4.2.53)—(4.2.58), we

could deduce that there exists a constant @p such that

1p.0ll2(2,) + 1@p0llL2(2,)

< Cop ([I££(0) L2y + 11£2(0) Iz, + Nlar (0) L2y + lap(0) L2, + 1div(Kpyo)lli2(@,)) -
(4.2.61)

completing the proof. O

Theorem 4.2.11. For each (hg,, hy,) € WHH(0, T;1L2(€,)) x WHH0, T; W), and (0,0, pp,o)
satisfying Lemma 4.2.10, there exists a solution to (4.2.21) with

(a'papp) S Wl’OO(OaT? L2<Qp)) X Wl’oo(07T5Wp) and (ap(0)7pp<0)) = (o'p707pp,0>‘

Proof. Applying Theorem 2.2.3 with NN =&, M =M, E=E = X, x W, and E; = E}, =
L2(€2,) x W, and using Theorem 4.2.8 and Lemma 4.2.9, we obtain the existence of a so-
lution to (4.2.21), with (o, p,) € WH=(0, T;L2(Q,)) x WH(0,T; W,) and (6,(0),p,(0)) =

(a'p,Oa pp,O) . L]
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4.2.2.4  Step 4: The original problem is a special case

Finally, we establish the existence of a solution to (4.1.12) as a direct consequence of

Theorem 4.2.11.

Lemma 4.2.12. If (0,(t),p,(t)) € D solves (4.2.21) for
(hcrp>hpp) = (07%) € Wlm(OvT; LQ(Qp)) X Wl’oo<0>T§Wp)>
then it also solves (4.1.12).

Proof. Let (op(t),pp(t)) € D solves (4.2.21) for (hs,, hy,) = (0, q,). Note that the resolvent
system (4.2.17) from the definition of the domain D directly implies (4.1.12) when both are
tested with g = (0,0,v,, Ry, vy, @) and s = ({,vs,x,). Thus it remains to show (4.1.12)
with q = (7, w,,0,0,0,0).

Since (o7,(t), pp(t)) solves (4.2.21) for (hy,, hy,) = (0, qp), there exists (/fp, Q) € L?(Q,) x

A~ ~

W, such that (f,,q,) — E(op, py) € M(0p, pp) satisfies

d ~| o f ~[ o 0
€ P+l P -El T | = . (4.2.62)
Py qp Pp dp
Then, for all (1,,w,) € X, x W, there holds
d ~| o T f ~| O T
%5 P y P + j —¢ : ’ 8 - (qpva)Qp'
Dp Wp Q, dp Dp Wp Q,
(4.2.63)

Notice from the first row of (4.2.17) with q = (7, w,,0,0,0,0) € Q, we deduce

f ~[ o T
P p P
_£ :
dp Pp Wp

Qp

o~

= (fm Tp)Qp + (quv wp)ﬂp - ae(a'papp3 Tp, Wp) — (S0 Pp; wP)Qp

= = bp(up7 U)p) - bl‘lp (Tp7 0) + bs(Tp7 us) + bsk(7pa Tp)a
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which together with (4.2.63), yields
ac(0r 0y, Oy Dp; Tp, wp) + (S0 Ot Pp: W), — bp(Wp, wp)

- bnp(TmO) + bs(Tp, 1) + bsk(')’pa"'p) = (QPawp)Qp Y (Tp, wp) € X, x W,

completing the proof. O

We end this section establishing the main result.

Theorem 4.2.13. For each compatible initial data (po,ro) € D constructed in Lemma 4.2.10

and
f; e WH'(0,T;VY), £,€e WH'(0,T3V)), qr € WH'(0,T:X)), g, € WHH(0, T W))

satisfying (4.2.40), there exists a unique solution of (4.1.12), (p,r) : [0,T] — Q x S with
us(t) « [0,7] = Wy, (04,p,) € WH2(0,T;L%(9,)) x WH(0,T:W,) and (a,(0), p,(0)) =

(UP,O ) ppvo) .

Proof. Existence of a solution of (4.1.12) follows from Theorem 4.2.11 and Lemma 4.2.12. In
addition, from Lemma 4.2.11 we have that (o,,p,) € W-*°(0,T;L*(Q,)) x Wh=(0,T; W,,).

Now, assume that the solution of (4.1.12) is not unique. Let (p,r) and (p,T) be two
solutions corresponding the same data and denote p = p — p with similar notations for the

rest of variables, we deduce that

€ (P)(a) +AP) (a) + Ky, (P) (a) + Kg, (P) (a) + B'(¥) (@) =0 VqeQ,
—-B({P)(s) =0 VseS.

(4.2.64)

Taking (4.2.64) with q = p and s = T, making use of continuity of Ky, in Lemme 4.2.1 and
coercivity of A+ Ky, and £ in Lemma 4.2.2, we deduce that

1 _ _ _
50 (142 @, + 0, B, DliEz(a, + 50 7,11, )
+(af = Ce(I(T g ap) s, xv, + 11Ty, ﬁf)||xfxvf)) (T, )3, v, (4.2.65)

+u kl;;lleﬁpHiQ(Qp) + cas[Uy — Blass <0
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Integrating in time from 0 to ¢ € (0,77, using 7,(0) = 0 and p,(0) = 0, we obtain
1 1/2 (= — T2 — 2
5 (1423, + a5, DllEaqa, + 50117, 1, )
t t
o= (12 . ——
#2Cilro =) [ TG ey ds [ bl s < 0.
0 0

Therefore, it follows from (4.2.66) that AY%(&, + a,5,I)(t) = 0,T;(t) = 0,u(t) = 0,
u,(t) =0 for all t € (0, 7.
On the other hand, from the first row of (4.2.64), employing the inf-sup conditions of B

in Lemma 4.2.3 for v, = Uy, X, = 7,, Wp =P, §{ = X, ¢ = 0, we obtain

BH (ﬁsa ip?ppﬂ X> a)| Vs XxQpxWpXApxAs

bs("'p’ﬁS) + bsk('rpvﬁp) + bP(VZ”]_?p) + br(0, vy, 0?X> + bﬁ(ﬂwa)

< sup (4.2.67)
(Tp:vp)EXpX V) “(Tp? Vp)HXpXVp

— sup (Ady(o, + Qp Py I),7p)e, + (1 K™! Uy, Vp)o, = 0.
(Tp,vp)EXpxVp ||(TP7 VP)”XpXVp

Therefore, u,(t) = 0, 7,(t) = 0, p,(t) = 0, A(t) = 0, 8(t) = 0 for all t € (0,77, which implies
o,(t) =0 for all t € (0,77, so then we can conclude that (4.1.12) has a unique solution. [

Corollary 4.2.14. Assuming [[usolm ;) < ro, the solution of (4.1.12) satisfies u,(0) =
Uy 0, Tf(O) = Tf70, llf(O) = Uy, 9(0) = 00 and )\(0) = )\0.

Proof. We let Uy := us(0) —uy,, and use similar definitions and notations for the rest of the
variables. Since Theorem 2.2.3 implies that M(u) € L>(0,T; E}), we can take ¢ — 0% in all
equations without time derivatives in (4.1.12). Using that the initial data (pg,ro) satisfies

4.2.17) at t =0, and that o, = 0 and p, = 0, we obtain
p P

1 —a _ e ) L. _
ﬂ(Tfa R$)a, + k1 (py qp Uy + div(Ty), le(Rf))Qf + (U, div(Ry))o, — (Rymp, Up)p
_ p _ Pr
+ (v¢(Uy), Ry)a, + i((uf(m 1), Ry)a, + ﬁ((uf ®upo), Ry)o, =0, (4.2.68a)

N L i 1 —a
=y (a5 Ty ), — (v, div(T))a, + o (e<uf> - 5T e<vf>)
Qy

p . o B
— Ky (ﬁ (ur(0) ®uy) ,e(Vf))Qf — Ky (ﬁ (uy ® uf,o)d7e(vf)) . 0,  (4.2.68b)
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—(Tp,74(vi))o, =0, (4.2.68¢)

w(K 1, Vp)a, + (Vp - np,X)pfp =0, (4.2.68d)
—(W; n;+6-n,+10, -0, &, =0, (4.2.68e)
n—1
<¢ ‘1, )\>I‘fp — M OBJs Z <\/ K;1 (ﬁf — 9) : th, qb : tf7j> = 0, (4.2.68f)
j=1 Tp
n—1
<Tfnf, Vf>Ffp + M Oggs Z <\ / Kj_l (ﬁf — 0) . tfyj,Vf . tf7j>
j=1 Lsp

+ Pf <11f(0) : Ilf,ﬁf . Vf>1"fp + py <ﬁf ‘g, Ugp - Vf>1"fp + <Vf : nf’X>Ffp =0. (4.2.68g)

Taking (v,, Ry, vy, ¢, &) = (0, Tf, Uy, 0, \) and combining the equations results in

220,y + (0 = CiellI(T£(0), 1w (0) s sev, + Ipollem @) Ty, el v,

‘Hﬁf - g‘ng < 07

implying W, =0, Ty =0, Uy = 0 and 0 - t;; = 0 since ||[(T;(0),ur(0))||x,xv, are bounded
by data, cf. (4.2.41). Then (4.2.68¢) implies that (8 - n,,&)r,, = 0 for all £ € HY2(I'y,).
Combining with the fact that H/2(I';,) is dense in L2(T'y,), we get 8 - n, = 0, thus 6 = 0.
The inf-sup condition (2.2.7), together with (4.2.68d) imply that A = 0. O

Remark 4.2.2. As we noted in Remark 4.1.1, the time differentiated equation (4.1.8d) can
be used to recover the non-differentiated equation (2.1.12). In particular, recalling the initial
data construction (4.2.56), let

t

Vte[0,T], n,(t)= np70—|—/0 u,(s)ds, p,(t) = pp70+/0 v,(8)ds, w(t) = wo—f—/o 0(s) ds.

Then (2.1.12) follows from integrating (4.1.8d) from 0 to t € (0,T] and using the first
equation in (4.2.56).

We end this section with a stability bound for the solution of (4.1.12).
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Theorem 4.2.15. For the solution of (4.1.12), assuming sufficient regularity of the data,

there exists a positive constant C' such that

1AY2(0, + cpppl) e 0,020, + 1diV(0) e 072200, + 1428: (0 + apppD) iz r12(0,))
+ [ldiv(ep)llizorez@,) + Vool lPoll= 0w, + Ippllezorw,) + [[upllizor:v,)
+ I Tslleeorix,y + llugllezorvy) + [uy — Bleersis) + 1020140 + IMlL20,7:0,)
+ lusllezorv,) + 17llez07.0,)

< C(Iflle oz + larllieoraz@y + lgpllieoriz @) + [flueoree,)
T
+ (L4 Vs0)Ippollw, +/ 19e @y |1 0051202, @t + |div(KVpy0)ll12(e,))- (4.2.69)
0

Proof. We begin by choosing (7, wy, vy, Ry, vy, @,8, Vs, X,) = (0, 0p, 0, Tyup, 0,7, ug,
7,) in (4.1.12) to get

1
5615 (SOHPZJH%V,, + ||A1/2(Up + O‘pppI)H]i?(Qp)) + ap(up, up) + ap(Ty,up; Trouy)
+ ku, (Typ,up; Tyyup) + agss(uy, 05uy,0)

) 1 K .
= —(ff, k1 div(Ty) —uy)o, — - (s L, Ts)a, + f (qr,div(uy))a, + (gp, Pp)a, + (fp, us)a, -
(4.2.70)

Next, we integrate (4.2.70) from 0 to ¢t € (0,77, use coercivity bounds (4.2.9) in Lemma
4.2.2, in combination with u(t) : [0,7] — W,, cf. (4.2.38), the Cauchy-Schwarz and

Young’s inequalities, to get
sollpp(8) Iy, + 1472(, + ) (82,
t
+AQM%WWWﬂ%ﬁWW%ﬂﬁH—%@%
t
SC(A(Mwamuwwmmﬂ+MAa%wwm&@Qw+%MMW@p

t
HIAYa, + DOl ) +6 [ (TR, + IR, + Il +

%S)ds.
(4.2.71)
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Applying inf-sup conditions (4.2.12)—(4.2.14) in Lemma 4.2.3, and using (4.1.8d) and (4.1.8g),

we get

bs(T;n us) + bsk<7—p7 7p)

Hus, v, T H’YPHQP <C SupA HT H
0£T,EX, plIXp
_ae(a o 7ap T 70 +bn T a¢)
=(C sup 7y, 0000 T, 0) T < O(HAl/Qat(o'p+O‘ppp:[)||lL2(Qp))’
0£7,€X, I7pllx,
(4.2.72)
by(Vy, pp) + 0r(0,v,,0; \)
Ippliw, + X, < € sup 2l £ 000
0#£v,EV, ||Vp||Vp
_ 0 s U V) Cllu 2o, (4.2.73)

0£v,ev,  Vallv,

bP —e(0; 0, 0y Pp; T, 0) — by (T, Us) — bg (T,
10]ja, < C sup —’|‘|(T’|’|’ ¢) =C sup (9 0, 01 Pp3 Tp, 0) (7p, us) k(Tp; 7p)
0£7,eX, ITplIXp 0£71,€X, [75llx,
< C(1A20(ap + app) 120y + [plla,)- (4.2.74)

Combining (4.2.71) with (4.2.72)—(4.2.74), and choosing § small enough lead to
t
soll(OlFs, + 147, + ) Ol + [ (I, + Nl + ITol, + sl
0
+ luy = O+ 16113, + INZ, + lusli?, + 1,3, ) ds
t
< c( / (1E7122(0,) + s Bacay) + lapliEaca,) + 16 1E2ca,) ) ds + lppO)Iy,

t
+ ||A1/20'p(0)||]%2(gp) + / ||A1/28t(ap -+ O{pppI>||i2(Qp)d8) . (4275)
0

t
Now, in order to bound the term / |AY20,(o, +apppI)|\E2(Qp)ds in (4.2.75), we refer to [74,
0

Theorem IV.4.1(4.3)] applied to problem (4.2.21) with M(o,,p,) = {(£,, %) — E(0p, 1)}
(c.f. (4.2.20)) and (hg,, hy,) = (0,¢,) (c.f. Lemma 4.2.12), to obtain

||A1/2at(a.p + Oéppp]:)H]%Q(Qp) + SOHthpH%vP
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t 2
< M@0, Pro) + by (0) + oy, (O] + ( [ 0a, 1+ Hf?shpp!l)ds) .

~

Using Lemma 2.2.10, M (00, Ppo) = {(£5.0, @p.0) — g(apyo,ppjo)}, where ?p,O and g, are given
n (4.2.59), we obtain

HAl/zﬁt(o’p + appyl) HJ?P(Q,,)
< C(If0lRa,) + lGnollEe,) + lopol2,) + IProll3
> pollL2(Q,) dp,ollL2(0,) pollL2(Q,) Ppoliw,

a0+ ([ 10.00,85)") (1276

To bound the initial data terms showed up in (4.2.75) and (4.2.76), we recall that (o,(0),
pp(0),1,(0), T¢(0),ur(0),0(0), A(0)) = (67p.05 Pp.0s Up0, T 0, Us0, 8o, Ao) and the construction
of the initial data (4.2.53)—(4.2.56). Combining the three systems and using the steady-state
version of the arguments presented in (4.2.70)—(4.2.71), (2.2.7) and (4.2.61), we obtain

1420, (0) 120,y + [P (0)llw, + 1050y, + [ur(O)]]v,
C’((l + \/S_o)pr,o”Wp + HdiV(KVpp,o)HL2(Qp) + Hff(0)||L2(Qf)

+ g (0) 2o,y + I16:(0)[IL2(@,)) (4.2.77)

Finally, we derive bounds for ||div(e,)||r2,) and |div(u,)|i2(,). In order to do this,

we choose vy = div(e,) in (4.1.8¢) and w, = div(u,) in (4.1.8h) respectively, and apply
Cauchy-Schwarz inequality, to get

Idiv(o,) w0, < 6 ez,
(4.2.78)

Idiv(uy)llr2@,) < Cllapllia,) + [AY20(0, + appD) 2, + sollowpllw,)-

Then combining (4.2.75)—(4.2.78), we are able to conclude (4.2.69) and complete the proof.
[

163



4.3 Semi-discrete formulation

In this section we introduce the semidiscrete continuous-in-time approximation of
(4.1.13). We state the well-posedness and stability results which can be proved similarly
as in Section 4, and we focus on derivation of error estimates with rates of convergence.

Let 7,/ and 7 be shape-regular [39] and quasi-uniform affine finite element partitions of
2¢ and €2, respectively, where h is the maximum element diameter. The two partitions may
be non-matching along the interface I'y,. For the discretization, we consider the following

conforming finite element spaces:
th Xth CXf XVf, Xph X Vg XQphCXpXVs XQp, Vph Xth CVpXWp.

We choose (X, Vn, Qpn) to be any stable pair for mixed elasticity with weakly imposed
stress symmetry, such as the Amara—Thomas [3], PEERS [12], Stenberg [77], Arnold-Falk—
Winther [13,15], or Cockburn—Gopalakrishnan—Guzman [40] families of spaces. And we take
(Vpn, Wpp) to be any stable mixed finite element Darcy spaces, such as the Raviart-Thomas

(RT) or Brezzi-Douglas-Marini (BDM) spaces [23]. We note that these spaces satisfy
diV(Xph) = Vsh; diV(Vph) = th. (431)

We also notice that we don’t have further requirements for the pair (X, V). We could take
Raviart-Thomas spaces or Brezzi-Douglas-Marini spaces as an example. For the Lagrange

multipliers, we choose non-conforming approximations
Aph = Vph : np‘Ffpa Ash = Xphnp’Ffp7

which consist of discontinuous piecewise polynomials and are equipped with L2-norms.

Remark 4.3.1. We note that, since HY/2(T';,) is dense in L2(T's,), the continuous variational
equations (4.1.81) and (4.1.8]) hold for test functions in L*(T'y,), assuming that the solution

is smooth enough. In particular, then hold for &, € A, and ¢y, € Ay, respectively.
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Now, we group the spaces, unknowns and test functions similarly to the continuous case:

Qh = Xph X th X Vph X th X th X Ash; Sh = Aph X Vsh X Qph;

Ph = (O phs Pph Uph, Ty Upn, 04) € Quy 1= (An, Ushy Ypn) € S,

A 2= (Tph, Wph, Vph, Rpn, Vin, @) € Quy 8= (s Vons Xpn) € Sh,

where the spaces Q and S are respectively endowed with the norms

lanlle, = l17pnllx, + llwpnllw, + 1Venllv, + IR mllx, + [[venllv, + 1 @lla..,
Isnllsn = [1€nlla,n + 1Vsnllv, + Xl
with ||@|a,, = |Pllrz2r,,) and [|§alla,, = [I§allLer;,)- Hence, the semidiscrete continuous-in-

time approximation to (4.1.13) is: find (py,rp) : [0,7] — Qp xSy, such that (o,4(0), pyr(0)) =
(Uph70,pph70) and for a.e. t € (O,T),

%Sph(tH(A+/cufh)ph(t)+3,rh(t) -
(4.3.2)

“Bput)  =G(t) i S,

We next state the discrete inf-sup conditions that are satisfied by the finite element

spaces. To do that, we first introduce the space

Xph = {Tph € Xph . diV(’Tph) =0 in Qp},

~

Xph = {‘Tph € Xph D Tppy = 0 on Ffp}.
Lemma 4.3.1. There exists constants By1, Br2, Brs > 0 such that
bs (Tpha Vsh) + bsk(Tph7 Xph)

Bri(lvsnllv, + lIxpnlle,) < sup YWV € Vi, Xn € Qu,
07£Tph efiph ||Tph ||Xp

(4.3.3)

by (Vipn, Wyr) + br(0, vy, O;
Bra(llwpmllw, + lEnlla,) < sup  2el¥om o) & 0r(0 Vi, 0:6)
0£vonEVn Vonllv,

. Vwp, € Wi, & € App,
(4.3.4)

bn T )
Ash S Sup~ p< ph ¢p)

o Tl

Pnsll Pl

s qu)h € Ay, (435)
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Proof. The first inequality can be shown using the argument in [6, Theorem 4.1]. The
second one can be proved similarly as [47]. And the third one can be proved from a slight

adaption on [50, Section 5.3]. ]

We next discuss the construction of compatible discrete initial data (pp.o,rn0)-

Lemma 4.3.2. Assume ££(0), ¢;(0) and p, o satisfy the small data condition (4.2.52). Then,
there exist discrete initial data Ppo = (O ph0, Pph,0s Uph0, T fh0, Usno, Ono) € Qn and rpo =

(Ah,05 Wsh,0, Ypho) € Si which are compatible in the sense of Lemma 2.2.10:
50 (Pph,0s Wph)Q, F @e(T ph,0, Pph,05 Tphs Wph) + @p(Wph,0, Vpr) + ap(T pho, Weno; Ryn, Vien)
+ Kugpo(Trn0s Wpno; Rpn, Vin) + asss(Wsn0, Ono; Vin, @1) + 0p(Ppno, Vpr) — bp(Wph, Upn o)
+ bn, (G p1,05 B1,) — bn, (Tpns On0) + bs(Wsn05 Tpn) + bskc(Vpho» Tph) + 00 (Vph, Vin, @ps Ano)

. 1 K .
= —(fr, s div(Ryn) — vin)a, — ﬁ(qfl’ Ryn)o, + f(Qf,le(th))Qf

o~

+(fph,0, Tph)Qp + (a\ph,Oa wph)ﬂ,,;
- bs(vsh7 Uph,o) - bsk(Xph7 O'ph,o) - bF(uph,Oa Ush0, 9h,0; fh) = (fp7 Vsh)Qpa
(4.3.6)

FEquivalently,

(E4+ A+ Kupo)Pro+ Briog=Fo in Qj,
(4.3.7)
—Bpro = G(0) in S},

where Fy is the functional on the right hand side of (4.3.6).

Proof. The construction is based on a modification of the step-by-step procedure for the
continuous initial data.
1. Define
01,0 = P 6y, (4.3.8)

where P : A, — Ay, is the L2-projection operator, satisfying, for all ¢ € L2(T )

(p— P, dp)r, =0 Vo, € Ag,. (4.3.9)
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2. Define (Tfh,Oa llfhy()) S th X th and (uphp,pphp, /\h,O) S Vph X th X Aph by SOlViIlg a
coupled Navier Stokes-Darcy problem: for all Ry, € Xgp, vin € Vin, vpr € Vi, w, € Wy,
En € Apn,

ar((Tsno, apno); Ripns Vin)) + Kupy o (T rnos Wino), (Rpn, Vin))

n—1
+ poss Z(\/ Kj_l(ufh,o —O0n0) tyj Vin - tyir,, + (Vin o ng, Ano)ry,
=1

= a;((Tro,ur0), (Rsn, Vin)) + Ko ((Tro,up0), (Ryn, Vin))

n—1

+ pogys Y (VK (apo — 60) -ty Vs by, + (Vin o 1p, Aodr,
J f

Jj=1

= —(£;(0), kadiv(Ryn) — Vyn)o, ! (¢7(0) L, Ryn)a, + %(qf(o% div(vya))a,,

T
ap(Wph,0, V) + bp(Pph.0s Vpr) + (Vph - p, Ano)ry,

= ap(upvov Vph) + bp(pp,Ov Vph) + <Vph "y, /\0>Ffp =0,

1, ..
- bp(wph7 uph,O) - _bp(wph7 up,O) - —p(le(KVpp,()), wph)Qpa

— (Wpno -0+ (Ono + Upno) -0y, Ep)r,, = —(Upo - ny + (6o +1p0) -0y, &), = 0.
(4.3.10)

This is a well-posed problem using fixed point theorem for augmented Navier—Stokes/Darcy
coupled problem with small data condition (4.2.52), see [34].
3. Define (0 pn.0, Mphn.05 Ppn.o> Wno) € Xpn X Vi X Qpr X Ay such that, for all 7, € Xy,

Vsh € Vsh7 Xph € @plu ¢h S Ash7

(Ao'ph,Oa Tph)ﬂp + bS(nph,07 Tph> + bsk(ﬂph,Ov Tph) - bnp (Tphv wh,O) + (A<O‘p Pph,0 I), Tph)ﬂp
= (Ao p0, Tpn)a, + bs(Mp0, Tpn) + bsk(Py 0 Tpn) — by (Tph, wo) + (Al ppo 1), Tpn)a, = 0,
- bs(vsha Uph,O) = _bs<vshy Up,O) = (fp(0)7 Vsh)ﬂpa

- bsk(xpha Tph0) = _bSk(Xph’ 0p0) =0,

n—1
b, (T ph0, Pp,) — [10g3s Z<\/ Kjl(ufh,o —040) - tsj Dn o trg)r,, T (P Ny, Ano)r,,
=1
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n—1

= bn, (050, b1) — powss D (VK (g0 — 00) - trj, by - trjdr,, + (dy -1y, Aoy, = 0.

j=1
(4.3.11)
It can be shown that the above problem is well-posed using the finite element theory for
elasticity with weak stress symmetry [11,13] and the inf-sup condition (4.3.5) for the Lagrange
multiplier ¥, .
4. Define (& pn,0, Wsn,0, Ypno) € Xpn X Ve X Qpp such that, for all 7,, € Xy, ven € Vi,

Xph € Qpha

(Aa-ph,m Tph)Qp + bs(Tph; ush,O) + bsk (Tpha 7ph,0) = bl‘lp (Tphv eh,o)’
- bs(aph,m Vsh) = Oa

— bsk(&php, Xph) =0. (4312)

This is a well posed discrete mixed elasticity problem [11,13].

We then define pro = (01,0, Pph,0s W0, Tpn0, Upno, Ono) and ro = (Ano, W0, Yphoo)-
According to (4.3.10)—(2.3.13), pno and r, satisty (4.3.6) with /fphp € X5 and Gpno € Wi o
such that

~

(fph,Oa Tph)Qp = afe(o-ph,(hpph,(); T ph, O) - (A(a‘ph,o)7 Tph)va
(4.3.13)

(quh,o, wph)Qp = (So Pph,0, wph,)ﬂp + ae(aph,07pph,0; 0, wph) - bp(uph,07 wph)7

Furthermore, the construction provides compatible initial data for the non-differentiated

elasticity variables (1, o, Ppr.0, Pho) in the sense of the first equation in (4.2.56). O
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4.3.1 Existence and uniqueness of a solution

The well-posedness of problem (4.3.2) follows from similar arguments as in the continuous

case.

Theorem 4.3.3. For each compatible initial data (pn(0),r,(0)) satisfying (4.3.7) and
f; e WH'(0,T;VY)), £,€e WH'(0,T3V)), qr e WH'(0,T:X)), g, € WH(0,T;W))

satisfying (4.2.40), there exists a unique solution of (4.3.2), (pn,rn) : [0,T] — Qp x
Si with up(t) : [0,7] = W,, (opn,ppn) € WH2(0,T51L%(,)) x WH(0,T;W,) and
(O-ph<0)a pph(0)7 uph(0>7 Tfh(0)7 ufh(0)7 Hh(O), >\h<0)) = (Gph,07pph,07 Uph 0, Tfh,Oa Usn.0, ah,Oa

Ano). Moreover, assuming sufficient reqularity of the data, there exists a positive constant

C such that

1A (0 + apppn ) lLe 0,120, + [div(opn) Lo riz@,)
+ HAl/Qat(O'ph + OéppphI)Hm(o,T;L?(Qp)) + Hdiv(aph)HL2(0,T;L2(Qp)
+ VsollppnllLeeomw,) + 1PenllL20,1w,) + [Wpnllizo,r;v,)
+ I Tsnllezorx,) + Inlleeorv,) + [0 — Onlizoressy + 10nllLz0.7:a.0)
+ A llez0,m,m) + 10snllLzorve + 1VpnllLz07:0,)

< O(IIffllioe o2 (p)) + Nagliieorz ) + gpllieorez@,) + Il oz @,))

T
1 vlnaliw, + [ 10zt + VKT plz,): (1319
0

Proof. With the discrete inf-sup conditions (4.3.3)—(4.3.5) and the discrete initial data con-
struction described in (4.3.9)—(4.3.11), the proof is similar to the proofs of Theorem 4.2.13,
Corollary 4.2.14 and Theorem 4.2.15, with two differences due to non-conforming choices
of the Lagrange multiplier spaces equipped with L2-norms. The first is in the continuity
of the bilinear forms by, (Tpn, @) and bp(Vin, Vo, @35 &), cf. (4.2.5). In particular, us-
ing the discrete trace-inverse inequality for piecewise polynomial functions, |¢lrz2r,,) <

Ch™2||¢| 12(q,), We have
bnp(Tpha ¢h) S Ch_1/2||Tph||L2(Qp)||¢h||L2(Ffp)
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and

br (Vs Viphs @i En) < CUIVnllm e,y + B2 Venlliz,) + @nlltea,)) 1€ lliaw,,)-

Therefore these bilinear forms are continuous for any given mesh. Second, the operators L

and Ry from Lemma 4.2.5 are now defined as Ly : Ay — ALy, (LaAn, &) = (A, &n)ry,

ph>

and Rg : Ay, — AL, (Rg O, ),) = (On, @dy)r,,- The fact that Ly and Re are continu-
ous and coercive follows immediately from their definitions, since (Ly &g, &n) = ||€ ||,2\ph and
(Ro b, &1) = ll@nlla.,- We note that the proof of Corollary 4.2.14 works in the discrete
case due to the choice of the discrete initial data as the elliptic projection of the continuous

initial data, cf. (4.3.10) and (4.3.11). O

Remark 4.3.2. As in the continuous case, we can recover the non-differentiated elasticity

variables with

t
VEEDT) () = mg+ [ wals)ds
0

t t
pMﬂ=%m+/7M$®,w@=wm+/&$M&
0 0

Then (2.1.12) holds discretely, which follows from integrating the equation associated to T,

in (4.3.2) from 0 to t € (0,T] and using the discrete version of the first equation in (4.3.11).

4.3.2 Error analysis

4.3.2.1 Preliminaries

We proceed with establishing rates of convergence. To that end, let us set V.€ {W,, Vg,
Q,}, A € {A,,A,} and let Vi, Ay, be the discrete counterparts. Let PY : V — V; and

PA: A — Ay, be the L2-projection operators, satisfying

(u— PYu,vp)a, = 0 Yo, € Vy, (0 — P2, dp)p, =0 Vou €Ay, (4.3.15)

Typ

where u € {pp, u,,7,}, 0 € {0,\}, and vy, ¢, are the corresponding discrete test functions.

We have the approximation properties [39]:

lu— Pyullia,) < Ch™* lul

ey, 10— Ppflla, < Cho6)]

H59+1(Ffp), (4316)
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where s, € {sp,, Su,, s,yp} and sy € {sg, s»} are the degrees of polynomials in the spaces V,
and Ay, respectively.
Since the discrete Lagrange multiplier spaces are chosen as Ay, = Xp,pn,|r o and Ay, =

Vopn - ylr,,, respectively, we have

0 —PMO0, T, =0 V7m €Xpn, A= P\ v -mydr, = 0 Vv, € Vi
(4.3.17)
Next, denote X € {X;,X,,V,}, 0 € {Ty,0,,u,} € X and let X;, 7, be their discrete
counterparts. Let I5X : XNH(Q,) — X}, be the mixed finite element projection operator [23]
satisfying V1, € Xp,,

(div(IXo),wy) = (div(e),ws) Yw, € Wy, <I,)f(0)n*,7hn*>rfp = <0n*,7hn*)rfp ,
(4.3.18)
and
lo = ¥ (0)|le2 < C P ooy,
(4.3.19)

||div(c — [}}L((O-))”LQ(Q*) < Ch¥H|div(o) |luse+1@.),
where x € {f,p}, wy, € {th,vsh,wph}, W, € {Vf,VS,Wp}, and s, € {sTf,sup,s,,p} — the
degrees of polynomials in the spaces Xj,.

Finally, let S,Yf be the Scott-Zhang interpolation operators onto V s, satisfying [73]

\% Sy
Vi =S (Vo) < CR™ vyl

Hsvf+1(Qf)’ (4320)

where sy, is the degree of polynomials in the space V.
NOWa let (o-pvp]n up, Tf7 uy, 07 )‘a U, 7p) and (aphyppha Upp, Tfha Ush, Oha )‘h7 Ush, ’th) be

solutions of (4.1.13) and (4.3.2), respectively. We introduce the error terms as the difference
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of these two solutions and decompose them into approximation and discretization errors

using the interpolation operators:

. _ Xp Xp NN § h
€o, =0y — Oy, = (0 — [;70,) + ([0, — o) 1= €o, T €o,

€pp = Pp — Pph = (pp — Piyvppp) + (Piyvppp — Pph) = eép + ezpv

Cuy = Uy — Uy = (W, = ,70y) + (170, — wy) = el +el

ex, =Ty =Ty = (Tp = I, Ty) + (I, Ty = Tpy) = ek, + elp,,

eu, =1y — g = (uy — S up) + () uy —up) =el + el (4.3.21)
co:=0—0,=(0—P0)+ (P*0—0,) :=e)+eh

ex =A== (A= BN 4+ (PN = \y) = el + e,

=us — Uy, = (us — P}ysus) + (P}ysus — Uyp) = 6{15 + 6?15,

€u,

Q Q
Cry =Yy = Ypn = (Vp = By ") + (B vy = Ypn) =€)+

Then, we set the global errors endowed with above decomposition,

ep = (€0, €pys Cuyr €T Cuy, €0), € = (eA,euS,e,yp).

We form the error equation by subtracting the discrete equations (4.3.2) from the con-

tinuous one (4.1.13):
0 € (ep)(an) + (A+ Kuy,) (ep)(an) + B (ex)(an) = —Ku;—up(P)an)  Van € Qu,

-B (6p)(Sh) =0 Vs, € Sy.
(4.3.22)
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4.3.2.2 A parabolic problem

Before we continue the analysis based on the error equation (4.3.22), we would like to
introduce a parabolic problem equivalent to the error equation, which is necessary for the

upcoming analysis. The parabolic problem is:

d o e, () eq, () 0
7 —£ ? + M. ? 3 , a.e. te(0,T]. (4.3.23)
ezp(t) ezp(t) 0

where the domain D, is defined as

D, = {(eh hY € X X W

Op) ])

there exists ((eg, , e, en,:€g),el) € (Vpn x Xpp x Vi X Agp) X Sy, such that ¥ (qn, sn) €
Qh X Sh .

50 (€, Woh)e, + ae(€q,, €5 Tons wpn) + ap(ey,, Vi) + ag(er,, €y s Ryn, vin)
+ ey (Tpupi Ryn, Vin) + kg (e, eu s Rn, vin) = kg (en, 4, Rpn, vin)
— ke, (e, €upi Ryns vin) = Fey (€, eq s Ryn, Vin) + aeas(en, » €63 Vin, d,)
+ 0y(€p Vpn) = bp(wpn, €,) + bn, (€q,, @1) = bu, (Tpn, €g) + bs(ey  Tpn)

+ bac(el  Tpn) + br(Von, Vin, dpi€})
= —{so (ef)p, Wyn)o, + ae(e{,p, e]ﬁp; T phs Wph) + ap(eflp,vph) + CLf(@ITf, eflf; Rn, vin)
+ ey, (Tpupi Ryn, Vin) + kg (e eq i Ryn Vin) = ey (e, 4 R Vin)
+ apss(e uf,eg,th,Qbh) +bp(ey, V) = bp(wpn, €3, ) + bu, (€5, D1) — bu, (Tpns €p)
t bslel,, Ton) + ba(€d  on) + br(Von, Vi By )} + s Ton)o, + (s won o,
— bs(Vons €5,) = bac(Xpn: €5r,) — brley, e, €4; En)

= b (VS]'M a' ) + bsk(Xpiw ) + bF( 76{1f7 egvfh) (4324)

and for some (fpe, Op.e) € Ej satisfying
£5ellz20,) + Npellizio,) < Cepe(lleplla + lleclls + 1Ty up)llx,xv,) (4.3.25)
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for some constant @p,e} C E,
and the multivalued operator M.(-) with domain D, is defined by

~

M6<€Z_p’ eZp) = {(fp,€7 a\pre) - é\(egp7 elgp) :

R (4.3.26)
(ch el ) satisfies (4.3.24) for (B, Gpe) € L2(2,) X w;}.
Note that the resolvent system (4.3.24) can be written in an operator form as
(E+ A+ Ky )ep+Bel =F. in Q.
(4.3.27)

—Be® =G, in 9,

P

where F, € Q' and G, € S’ are the functionals on the right hand side of (4.3.24), and
Alep)(a) = Alep)(@) + fey (Tp,up; Ry, vy) + fug (€, €45 Ry, vy)

_fielllf(efrff, uf,Rf,Vf) eﬁf(eéf, uf,Rf,Vf)

ICef,ﬁ,f (eg)(Q) = _He\]}\,f (6’%}(, ufaRf7Vf)

In addition, we present a stability result in the following lemma.
Lemma 4.3.4. Assume the conditions in Lemma 4.2.2, together with |[(Tys, uy)|lx,xv, <

T0,e5 ||(€%rf>€{1f)||xfxvf < 1., and ||6ffvf||H1(Qf) < rg., where

oy
L= 4.3.28
Toe = 50 ( )
then
ap(Rp, vis Ry, vie) + kv, (Troup Ry, vi) + ku, (Ry, vis Ry, vy)
=ty Ry, v Ry, vy) = kv (en, e i Ry, vy) = kg, (Ry, v Ry, vy) (4.3.29)

ay
2 FH(R]L‘? Vf)HXfXVf
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Proof. Since ay is coercive and Ky, is continuous, we have

ar(Ry, v Ry, vy) + fv, (Troup Ry, vyp) 4 ki (R, vis Ry, vy)
— el (Ry,vi; Ry, vy) — /fvf(erlrf,e{lf; Ry, vy) — Fie,, (Ry, v Ry, vy)
> ay(Ry, v Ry, vy) = v, (Troups Ry, vy)| = |6, (Ry, vy Ry, vy )|
= Ireg, Ry, vy Ry, vp)| = [, (e, eu s Ry Vo)l = ey, (R, vis Ry, vi)|

> (ap = Cx (T s, up) |l xv, + 2ll(en, s eu) iz v, + lew, @Dl (Rs v, <v,

(67
> LRV ev, (4.3.30)

where we used the assumptions [[(Ty, uys)|lx,xv, < 7Toe, ||(eéf,e{1f)||xfxvf < rpe, and

HegfoHl(Qf) < rp. in the last inequality. 0

We note that combined with Lemma 4.2.2, we obtain the ellipticity of A and Ize& K which
is used in the upcoming analysis.

We will start by showing that the multivalued operator M.(+) is well defined, or equiva-
lently that the domain D, is nonempty, using a fixed-point approach similarly as in Section
4.2.2. To do so, we introduce a fixed-point J. : V), — Vy, associated to problem (4.3.24)
by

je(efvf) = eﬁf Veiﬁ,f € Vg, (4.3.31)
where eﬁf is unique solution (to be confirmed below) of the problem: Find (e, e}') € Qp, xS,
such that

€+ A+ ’EEC@f) eg +Be =F, in Q,
(4.3.32)
—Be" =G, in S.

p

Thus it is not hard to see that (ef,ef) € Qp x Sy, is a solution of (4.3.27) if and only if

eﬁf € Vy, is a fixed-point of J¢, that is,

Je(en,) = eq,. (4.3.33)
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In this way, in what follows we focus on proving that 7, possesses a unique fixed-point.
However, we remark in advance that the definition of 7. will make sense only in a closed
ball of V.

We first show the solvability of the resolvent system (4.3.24) using a regularization tech-

nique similarly as in Theorem 4.2.6. We present the result without proof.

Theorem 4.3.5. Let r. € (0,rg.) with ro. given by (4.3.28). Assume conditions in Lemma

~

4.8.4, then for each eﬁvf such that ||eiﬁ,f (0, < 1e and for each (£, Gpc) satisfying (4.3.25),

there exists a unique solution of the resolvent system (4.3.24). Moreover, there exists a

r’

constant C' 7. > 0, independent of ei}vf and the data e{,, el, and (Ty,uy), such that

1T vy < llep et)llaxs < Caelllepllq + lexlls + (T s, wp)llx, v, )- (4.3.34)

We then claim that 7, is a contraction mapping according to the lemma as follows.

Lemma 4.3.6. Let r. € (0,79.) with ro. given by (4.3.28) and let W, be the closed ball
defined by
W, = {e’vf,f €EVy: Hei’foVf <1}, (4.3.35)

and assume conditions in Lemma 4.5.4. Then, for all ei}vf, e",lvf € W, . there holds

Cre
1Te(ew,) = Telegs v, < K(H‘EII)HQ +lleclls + (T r gl v, ) e, — e, llv,, (4.3.36)

where Cz is the constant given by (4.3.34).

We are now in position of establishing the fact that the domain D,, cf. (4.3.24), is

nonempty by means of the well known Banach fixed-point theorem.

Theorem 4.3.7. Given r. € (0,7¢.), with ro. given by (4.3.28), we let W, . be as in
(4.3.35), and assume that the data satisfy

Crelllepliq + llexlls + (T up)llx,xov,) < 7e. (4.3.37)

In addition, assume conditions in Lemma 4.5.4, then the problem (4.3.27) has a unique

solution, (el e}) € Q x S with eﬁf € W,.., and there holds

I(eps ex)llaxs < Crellleplla + lleclls + 1T s up)llx v, )- (4.3.38)
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Therefore, the multivalued operator M, is well defined. We end this section by stating

M. is monotone, whose proof is similar as the one in Lemma 4.2.9.

Lemma 4.3.8. Letr. € (0,7¢,) withro. defined by (4.3.28), and assume that the data satisfy
(4.3.37). In addition, assume conditions in Lemma 4.53.4, then the operator M. defined by
(4.3.26) is monotone.

4.3.2.3 A priori error estimates

We start the analysis by adding up the equations in (4.3.22), then taking (7,n, Wpn, Vph,

_(oh b oh b oh b b Lk
th,vfh,¢h,£h,vsh,xph)—(eap,epp,eup €T, €y, €8s €x, Cu, s '7) to obtain

35000 (el o, + 50 teleh, eyl )+ aplel )+ ap(eh b il el
+ /iufh(e}{ﬂf,eﬁf,ef_‘rf, uf) + Ken (Tf,uf,e'r}f, )+ aBJS(eﬁf,eZ;eﬁf,eZ)
= —ac(Oreq, Oy, €)= apley, eq) — agler ,en s ex s ey))
- “ufh(elTp@{lf%@ifrf,@ﬁf) Rel, (Tf>uf3€}%fa€ﬁf) - GBJS(eﬂf&g;@ﬁf’@Z)
—bacle s ep,) Fbalel Jeg ) —{en, -npel)r, — (ep - nyel)ry,
+ <eif 1y, eﬁ)rm + (e} - n,, ef{)Ffp, (4.3.39)

where, the following terms vanish due to the projection properties (4.3.15), (4.3.17), (4.3.18),
and the fact that div(X,,) = Vg, div(Vyn) = Wy, cf. (4.3.1),
50(0y el,ljpy ezp)ﬂw bp(ezlapa eﬁp)a bp(ezpa eﬂp)a bn,, (eclrpv 6(}3)’ bn, (echrpa eé)?
b8(6{157 eg;)? bS(eﬁy e{cp)> <eﬁp * Ny, e§\>rfp7 <€{1p s Ny, 6§>F.fp'

Then, applying ellipticity properties of ay + kw, and a,, the semi-positive definiteness of
agys, c.f. (4.2.9) and (4.2.10), continuity bounds of the bilinear forms in Lemma 4.2.1, in
combination with uy(t),us,(t) : [0,7] = W,, cf. (4.2.38), the Cauchy-Schwarz and Young’s

inequalities, we get

1 1
530815H61}7Lp||%\/p + éatHAl/Q(ea + OCPG )HLQ lu“kmaxHe ||L2 Qp)
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r
+ af(l - T_[))H(el%f? eﬁf)H%ifXVf + CBJS‘eﬁf - ezngS

< C(lleg, E2q,) + 10:A 2 (€5, + apey, Dz, + llew, [Tz, + I(er,, eq, )3

= CopllL2(0,) t €op ap L2(,) T 1€, llL2(,) €1 Cup)lIXpxvy

+ ||ufh||%/f||(e!_[‘f7e{lf)||§§f><Vf + ||€{lf||%/f||(Tf7uf)HgngVf + ||6if||%/f + |e{1f - e£|§JS

1L, 13,

S5, ) + 01 (Nl Baca,) + (e, b E, v, + el I3,
+leh, — ehlzs) + 2 (I14Y2(eh, + apel, DllEaa, + 114726k I,y + Nl I3,
+llegliz,, + 1€kl ). (43.40)

where we also used

1 1
bk (€, ,e];p) = —(Ael el )g, = E(Al/Qe,Iyp,Al/QeZp)Qp < CHe,IypHQpHAl/QengLz(Qp) (4.3.41)

c ‘Yp ) TOop

by the definition of A due to the extension from S to M as in [63]. Next, we choose d§; small
enough, take integration from 0 to ¢ € (0,77, and use the stability results of (T, uy) in
Theorem 4.2.15 and uy, in Theorem 4.3.3, we find

e (D, + 1412(el, + e, D®Es(a,
t
+A(wum%+ww@+wrm+ﬁywmgw

t
< C</O <||€£—p|’]%2(ﬂp) + H&Alﬂ(ea +apey Dz, + et iz, + Hefo||§§f + ||€{1f||%zf

+ |6{1f colass + llegll

t
m+nmA+wa%Qw)+@/(MWwa+% D,
0

+llep, v, + lleslla,, + lleX, . + ||6-’§p|lép)d8+ lep, (0113,
+ A2 (eg, + apey D(0)E2(q,), (4.3.42)

where we also used

HAl/%ZpHLQ(Qp) SC(HAUQ(EZ +04€ Dz, +H€ w,)- (4.3.43)
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On the other hand, from discrete inf-sup conditions (4.3.3)—(4.3.5) in Lemma 4.3.1, we have

bs (T ph, eﬁs ) + bsic(Tpn, ezlyp )

ek lIv, +llet llo, <€ sup

05£Tph€§§ph HTthXp

—ac(Ohel, ,Oe) s Tpn, 0) — ac(Osels , Orel s Tpn, 0) + b, (Tpn, ) — bsk(ef/p, Toh)

=C sup
O#Tphegph HTthXp
C(10A2(eh, + el Dllaiay) + [9AT2(eh, + agel Dllizan + 1] o), (4:3.44)

b, (Von, + br(0, vy, 0;e
He HWP‘{’HG,\HAM <C sup ( ph p) F( ph )\)

07ﬁvph EVph ”Vph va

_ap<€{1p’ Vph) — ap(eﬁpa Vph)

=C sup C(llel e, + llek lle,)),  (4.3.45)
0#£VpR €V [Vrllv,
b T 76h
leblla, <C sup CulTr)
0757'ph€§~§ph ||Tph||Xp
=C sup (0 €5, 01 €y, Ty, 0) — ae(Dr g, Or ey, Ty, 0) — bsk(efly,,, Tph)

O#Tphegiph ”TthXp

_bsk( —y 7Tph) b (Tphueﬁs))

17 pnllx,

< C(10:A2 (el + apey, Dlliza,) + 10:A2 (el + apep Dlliz,) + e llo, + 1€ lla,)-
(4.3.46)

We next derive bounds for ||div(eﬁp)||L2(Qp) and ||div(eZp)||L2(Qp). Due to (4.3.1), we can

choose wy;, = div(el, ) in (4.3.22), obtaining

Hdiv(eﬁp)Hiz(Qp) = —(soﬁte’;p, div(eﬁp))gp — (Aat(e’;p + oze;’pl),div(eﬁp))ﬂp
_ (Aat(e{'p + aep{pl), div(eﬁp))gp

< (sollOrey, llw, + ayZllAY*0u(eq, + aey Dllize,)

+ a2 A0, (el + ae) Dlleai,)) IV - ek lli2,)- (4.3.47)

max
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Similarly, the choice of vy, = div(eﬁp) in (4.3.22) gives
||diV(€Z_p)<t>||L2(Qp) =0 and ||div(egp)||L2(07t;L2(Qp)) =0. (4.3.48)

Combining (4.3.42) with (4.3.44)—(4.3.48), choosing 0o small enough, and employing the
t

Gronwall’s inequality for / HAl/z(eZ + ape; )HLQ yds, we obtain
0

leg, (DR, + 1412 (eq, + apep, D(E)IE2(o,) + [divieq, (E) Lz,

t
+/ <||epp||w,,+ Idiv(eg, ) lLa,) + llew, IS, + lex, [k, + ey, Iy,
0

h

+lew, — €lass » R, +lles I, + ||65p||6p>d8

t
SOWMH(/(wgﬁmw+wﬁmwg+%¢ﬁﬁmm+w;ﬁmw
0

+llek I, + llek, 1%, + led, — eliss + leblis,, + ekl + lled 13,
10,42, + el Dl )ds + lleh, (0) 3,
P AL, + e, DO, ). (4.3.49)

In order to bound the term ||, A"?(el + apey 1|[f2(q,), We note that the error equation

(4.3.22) is equivalent to the parabolic problem (4.3.23). Therefore by referring to [74, The-
orem IV.4.1(4.3)] applied to problem (4.3.23) with M, (el e} ) = {( e Qpe) — fj’(egp, er )}
(c.f. (4.3.26)), we obtain

18, AY2 (el + apey D2, + solldiey, 3y, < M€l s em o)l
USll’lg M ( U ,00 Zp O) - {<f£,e7z]\2,e) g( p,07 p 0)} with
(fg())w Tph)Qp = ae(ea'p707 epp,O; T ph, 0) - (A(a-p,() - a\-ph,O)a Tph)Qpa

(ag,ea wph)ﬂp = (50 epp,Oa wph)ﬂp + ae<€ap,07 epp,O; 07 wph) - bp(eup,Oa wph)a

according to (4.2.59) and (4.3.13), we get

10, A (el + apeft D[22,
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h 1

< C(Hezp,ouimzp) + H@Zp,0| \2/\/,, + Heup,oH%%Qp) + Heap,oH?LZ(Qp)

+lleg, olly, + llew, ollT2@,) + 150 = Fpnolliza,))- (4.3.50)

To bound the initial data terms above, we recall that (,(0), p,(0),u,(0), T(0),us(0),8(0),
A0)) = (6.0, Ppo, Upo, Tro,ur0,00, X), c.f. Corollary 4.2.14, and (o p4(0), ppr(0), ups(0),
Tfh(O), llfh(()), Bh(O), )\h(O)) = (Gphp, pph70, uph,o, Tfh70, ufh,07 Oh,Oa )\h,O)a C.f. Theorem 433
Similarly to (4.3.49), we obtain

1AY2e;, (0)[E2(q,) + ey, (O) Ry, + lleg, ol E2,) + llep,olliy, + e, ollE2,)

+ Ha'p,o - aph,OH]i?(Qp)

< C(Heép,o”Xp + ||6£p,0||Wp + ||€ip,o||Vp + ||€{rf,0||Xf + ||3{1f,0||Vf + |€{1f,0 - 6{0,0|§Js

+llegolla, + lexolla, + lleyollv. + llep, olla,)- (4.3.51)

Combining (4.3.49)—(4.3.51), and making use of triangle inequality and the approximation
properties (4.3.16), (4.3.19), and (4.3.20) results in the following theorem.

Theorem 4.3.9. For the solutions of the continuous and discrete problems (4.1.13) and
(4.3.2), respectively, assuming sufficient reqularity of the data which satisfy (4.2.40) and

compatible initial data (pr(0),ry(0)), then there ezists a positive constant C' independent of

h, such that

1AY2 (a7 + apppl) = (T + cpppnl)) L0, m12(0,)) + 1diV(0 = o) [0 7:22(0,)
+ HdiV(O'p - o'ph) HLQ(O,T;LQ(Qp)) + HatAlm((o'p + apppl) - (Uph + appphI)) HLQ(O,T;LQ(QP))
+ 1Py = Ponlliecoriw,) + Py = Pprllzomw,) + 1wy — WpnllL2omv,)
+|Ty — Tfh||L2(o,T;xf) + [Juy — 11fh||L2‘(o,T;vf) + [(uy — 0) — (us, — 0h)|L2(O,T;BJS)
+ 110 = OnllLz0.758.) + 1A = AnllLzo.ria,,) + s — wallizorve + 17, — Yonllizo7:0,)

< O (Rt 4+ poett 4 prett 4 gt (4.3.52)

where s, = min {s,,, Su,, S, }, S¢ = min {se, sx, }, and s, = min{st;, su,, o, }-
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4.4 Numerical results

For the fully discrete method, we employ the backward Euler method for the time
discretization. Let At be the time step, T" = NAt, t, = nAt, n = 0,---,N. Let
diu™ = (At)"}(u" — u"!) be the first order (backward) discrete time derivative, where
u™ := u(t,). Then the fully discrete model reads: Given (p9,r%) = (px(0),r,(0)) satisfying
(4.3.7), find (p},r}) € Qn x Sp, n=1,---, N, such that for all (qn,sn) € Qn X Sp,

i € (Py)(an) + (A + Kup,) (Pp)(an) + B (r3)(an) = F"(an)

—B (py)(sn) = G"(sn)- (4.4.1)

In this section we present numerical results that illustrate the behavior of the fully discrete
method (4.4.1). To solve this non-linear problem, we use a Newton-Rhapson method. Our
implementation is based on a FreeFem++ code [55], in conjunction with the direct linear
solver UMFPACK [41]. For spatial discretization we use the (BDM; — P;) — (BDM; — Py —
P;) — (BDM; — Pg) — (P$¢ — P{¢) approximation for the Navier-Stokes — Biot model.

The examples considered in this section are described next. Example 1 is used to cor-
roborate the rate of convergence in a two dimensional domain. In Example 2 we present a

simulation of blood flow in an artery bifurcation.

4.4.1 Convergence test

In this test we study the convergence for the space discretization using an analytical
solution. The domain is 2 = Qr Uy, UQ,, where Qf = (0,1) x (0,1),I's, = (0,1) x {0},
and ©, = (0,1) x (—1,0). We associate the upper half with the Stokes flow, while the
lower half represents the flow in the poroelastic structure governed by the Biot system. The
appropriate interface conditions are enforced along the interface I'y,. The solution in the
Navier—Stokes region is

sin(m x) cos(my)

u; =e , py=e'sin(nz) cos(%y) + 27 cos(7t).
— sin(m y) cos(m x)

182



The Biot solution is chosen accordingly to satisfy the interface conditions:

Ty
— cos(mx) 003(7) Ty —3x + cos(y)
u, = e’ 1 . , pp = €'sin(mz) 008(7), 7, = sin(7t)
3 sin(mx) sin(%/) y+1

The right hand side functions fy, ¢r,f, and ¢, are computed from (4.1.1) and (4.1.3)
using the above solution. The model problem is then complemented with the appropri-
ate mixed boundary conditions and initial data. Notice that the boundary conditions
for oy, us,uy, 0, and n,, cf. (4.1.1) and (4.1.3) are not homogeneous and therefore the
right-hand side of the resulting system must be modified accordingly. Tables 4.4.1 show
the convergence history for a sequence of quasi-uniform mesh refinements in no-matching
grids. In the tables, hy and h, denote the mesh sizes in 2y and €2, respectively, while the
mesh sizes for their traces on I'y, are hyy and hy,, satisfying hyy = %htp. We note that the
Navier—Stokes pressure and displacement at ¢, are recovered by the post-processed formu-
lae py = —% (tr(T’}) + pytr(uf @ u}) — 2uq}‘) and i, = Atuy + 17;_1, respectively. The
results illustrate that at least the optimal spatial rates of convergence O(h) provided by The-
orem 4.3.9 are attained for all subdomain variables in their natural norms. The Lagrange
multiplier variables, which are approximated in P — P¢¢  exhibit a rates of convergence

O(h?) in the L2-norm on I'f,, which is consistent with the order of approximation.
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||eTf||é2(0,T;Xf) ||euf||42(0,T;Vf) ||epf||e2(0,T;L2(Qf))
hy error rate error rate error rate
0.1964 | 1.79E-01 - 4.57E-02 - 3.16E-03 -
0.0997 | 9.11E-02 0.9958 | 2.33E-02 0.9961 | 1.22E-03 1.4058
0.0487 || 4.43E-02 1.0056 | 1.18E-02 0.9451 | 5.28E-04 1.1652
0.0250 | 2.23E-02 1.0295 | 5.89E-03 1.0418 | 2.38E-04 1.1915
0.0136 || 1.11E-02 1.1422 | 2.93E-03 1.1452 | 1.15E-04 1.1893
0.0072 | 5.50E-03 1.1061 | 1.46E-03 1.0981 | 4.87E-05 1.3567
lea, lle=(0,7:%,) l€p, [le= 0.1:w,) g, lleorv,) lew.llersve)
hy error rate error rate error rate error rate
0.2828 | 2.73E-01 - 7.54E-02 - 1.04E-01 - 4.31E-02 -
0.1646 | 1.37E-01 1.2731 | 3.84E-02 1.2480 | 5.01E-02 1.3516 | 2.22E-02 1.2250
0.0779 | 6.67E-02 0.9650 | 1.91E-02 0.9328 | 2.39E-02 0.9887 | 1.08E-02 0.9616
0.0434 | 3.37E-02 1.1690 | 9.39E-03 1.2150 | 1.16E-02 1.2359 | 5.41E-03 1.1865
0.0227 | 1.69E-02 1.0634 | 4.70E-03 1.0658 | 5.79E-03 1.0738 | 2.71E-03 1.0667
0.0124 | 8.43E-03 1.1462 | 2.35E-03 1.1429 | 2.89E-03 1.1452 | 1.35E-03 1.1456
ey, leora, | llen, lleoriae,) leollerizwry,) | llealleoriae,,)
€error rate error rate htp error rate error rate iter
5.03E-02 - 2.67E-04 - 0.2000 || 6.81E-03 - 1.07E-03 -
1.41E-02 2.3537 | 1.38E-04 1.2235 || 0.1000 || 2.41E-03 1.5016 | 2.68E-04 2.0005 || 2.2
3.00E-03 2.0649 | 6.72E-05 0.9613 || 0.0500 || 5.77E-04 2.0587 | 6.71E-05 2.0004 | 2.2
T727TE-04 2.4264 | 3.36E-05 1.1864 || 0.0250 || 1.45E-04 1.9912 | 1.68E-05 1.9939 | 2.2
1.80E-04 2.1524 | 1.68E-05 1.0667 || 0.0125 || 3.62E-05 2.0051 | 4.26E-06 1.9829 || 2.2
4.80E-05 2.1814 | 8.40E-06 1.1456 || 0.0063 || 9.21E-06 1.9743 | 1.09E-06 1.9629 | 2.2

Table 4.4.1: EXAMPLE 1, Mesh sizes, errors, rates of convergences and average Newton

iterations for the fully discrete system in no-matching grids.
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4.4.2 A blood flow example in an artery bifurcation

In this example, we study numerically a simulation of blood flow in an artery bifurcation.
We use the fully dynamic Navier-Stokes — Biot model for a better numerical performance.

In particular, the Navier-Stokes momentum equation in the fluid region is
ps Oy — pr(Vug)uy —div(oy) = fy,
and the linear elasticity equation in the Biot system is
Pp 815277;; - Bn, —div(o,) =1,

The additional term 3 n, comes from the axially symmetric formulation, accounting for the
recoil due to the circumferential strain [26]. The physical parameters are chosen based on [26]

and fall within the range of physiological values for blood flow:
p=0.035g/cm-s, pr=1 g/cmg, so=>5x10"% em?/dyn, K =10"" x I cm?,
pp =11 g/em® \, = 4.28 x 10° dyn/cm®, 1, = 1.07 x 10° dyn/cm?,
B =5x10" dyn/cm4, a=1, agyg=1.

The body force terms and external source are set to be zero, as well as the initial conditions.

The flow is driven by the time-dependent pressure data

(1 — COoS (;m

max

Pmax

0, if ¢ > Thaxs

) if t S Tmax;
)> (4.4.2)

where P, = 13,334 dyn/cm? and Tp. = 0.003 s. We specify the boundary conditions as

follows,

orny = —p;; Ny oOn 1“3;" and oyn;=0 on D%

o n out _ ext
u;, =0 on I['UIY" and on, =0 on I7,

u,-n,=0 on F;" U Fg“t and p,=0 on F;“,
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Figure 4.4.1: Simulation domain.

The red area is fluid region {2yand the grey areas are structure regions €2,,.

where the boundaries are shown in the figure below.

The total simulation time is 7'= 0.006 s with a time step of size At = 0.0001 s. The final
time T'is chosen so that the pressure wave could barely reach the outflow section.

We present the computed velocity and pressure waves along the channel at time ¢ = 1.8,
3.6, 5.4 ms in Figure 4.4.2. On the top, the arrows represent the velocity vectors uyj, and u,, in
the fluid and structure regions, while the color shows the magnitudes of these vectors. The
bottom plots presents the fluid pressure py, and Darcy pressure pp, in the corresponding
regions. From the plots, we could clearly see a wave propagates from left to right. As the flow
in the fluid region moves to the outflow region, some are penetrating into the structure region,
causing relatively larger pressure along the wave. We also observe singularity of |uy,| near the
splitting point of the fluid region at ¢t = 5.4 ms, which is typical for bifurcation geometry. In
addition, the magnitudes of pressure match the order of that for inflow pressure, indicating

the accuracy of our finite element method.

4.4.3 An industrial filter example

In this example, we study the flow of air through an industrial filter numerically, which is
similar to the one that has been presented in [72]. We consider a two-dimensional rectangular
channel with length 0.75 m and width 0.25 m, which in the bottom center is partially blocked

by a rectangular porous medium of length 0.25 m and width 0.2 m. The parameters are set
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Figure 4.4.2: Computed solution at time t=1.8 ms, t=3.6 ms and t=5.4 ms.

Top: velocities uy, and u,y, (arrows), |uys,| and |uy,| (color); bottom: pressures py, and ppy,

(color).

as

p=181x10"%kPas, p;=1225x10"Mg/m* s5=7x10"2kPa",

K = [0.505, +0.495; 0.495, 0.505] x 107° m?  agjs = 1.0, «a = 1.0.

Notice that p and py are chosen to feature the compressible fluid air, and the permeability
tensor K in the porous medium is considered in two cases to study the influence of the
anisotropy on the total mass fluxes based on rotation angle to be —45° and 45° respectively.

The top and bottom of the domain are considered as rigid, impermeable walls with
velocity v = 0 (including the wall part below the porous box). Flow is driven by a pressure
difference between the left and right boundary which is set to Ap = 1072 kPa. The body
force terms and external source are set to be zero. The following boundary conditions are

imposed,

Tyn; = —pypny on . Tin; = —peyn; on I

u;=0 on F’}Op U Do,
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u,=0 and u,-n,=0 on FZ"“OT”.

where

Pin = Dref + 10_9 kPa, Pout = Pref = 100 kPa.

For the initial condition, we consider
Ppo = 100 kPa, o,0=—a,pp0l, upo=0m/s.

The total simulation time is T = 80 s with At =1 s.

We first consider the hard material in the poroelastic region with parameters
A\ =1x10° kPa, p, =1 x 10* kPa.
We then consider the soft material with parameters
A =1x10° kPa, p, =1 x 10* kPa.

We present the computed solutions all at the final time 7" = 80 s. The plots on the left are
corresponding to rotation angle 45° and the plots are the right are for rotation angle —45°.
Since the pressure variation is small relative to its value, for visualization purpose we plot
its difference from the reference pressure, p; — 100 and p, — 100 in the corresponding region.
We do the same thing for stress tensors, that is, we present o + ap,.fI and o, + ap,cfl
respectively.

From the velocity plots, we could see that most of the air passes the porous block through
the constricted section above the block due to the flow resistance imposed by the porous
medium, thus leading to relatively higher flow velocities there. The effect of anisotropy is
clearly visible as the flow follows the inclined principal direction of the permeability tensor.
In particular, the rotation angle affects the structure velocities while exhibiting no such dif-
ference on the displacement. Furthermore, changing the material parameters has a significant
effect on most of the computed solutions, including velocities, stress tensors, displacement
and structure velocities. We note that the material parameters make a difference not only
on the magnitude of the displacement, but also on the flow outside of the structure. When

the material of the obstacle is softer, we observe recirculation zone formed on the right side
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of the block. In addition, in the hard material, the structure velocity has larger magnitude
on the left plot, while for the soft material, it is larger on the right plot. This is related to
the larger vortex being formed behind the obstacle for the soft material with the rotation
angle —45°. Thus we conclude that using a poroelastic model would contribute on capturing

important flow characteristics compared with Navier-Stokes — Darcy model as in [72].

uh Magnitude uh Magnitude
0.0e+00 Tle-5 2e-5 3e-5 4e-5 5.0e-05 0.0e+00 1le-5 2e-5 3e-5 4e-5 5.0e-05
- O or— | R L e
ph ph
0.0e+00 2e-10 4e-10 6e-10 8e-10 1.0e-09 0.0e+00 2e-10 4e-10 6e-10 8e-10 1.0e-09
- L — - L o—

Figure 4.4.3: Computed velocities and pressures (left with angle 45 and right with angle
-45) for the hard material at time T=80 s.

Top: velocities (arrows) and their magnitudes (color); bottom: pressures (color).
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stress1 Magnitude stress1 Magnitude
0.0e+00 0.5 1 1.5 2 2.5 3.0e+00 0.0e+00 0.5 1 1.5 2 2.5 3.0e+00

s | oo e

stress2 Magnitude stress2 Magnitude
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[ i oo

Figure 4.4.4: Computed stress tensors (left with angle 45 and right with angle -45) for the

hard material at time T=R&0 s.

Top: first row of the stress tensors (arrows) and their magnitudes (color); bottom: second

row of the stress tensors (arrows) and their magnitudes (color).
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Figure 4.4.5: Computed displacement and structure velocities (left with angle 45 and right
with angle -45) for the hard material at time T=80 s.

Top: displacement (arrows) and their magnitudes (color); bottom: structure velocities (ar-

rows) and their magnitudes (color).
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Figure 4.4.6: Computed velocities and pressures (left with angle 45 and right with angle
-45) for the soft material at time T=80 s.

Top: velocities (arrows) and their magnitudes (color); bottom: pressures (color).
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Figure 4.4.7: Computed stress tensors (left with angle 45 and right with angle -45) for the

soft material at time T=80 s.

Top: first row of the stress tensors (arrows) and their magnitudes (color); bottom: second

row of the stress tensors (arrows) and their magnitudes (color).
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Figure 4.4.8: Computed displacement and structure velocities (left with angle 45 and right
with angle -45) for the soft material at time T=80 s.

Top: displacement (arrows) and their magnitudes (color); bottom: structure velocities (ar-

rows) and their magnitudes (color).
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5.0 A cell-centered finite volume method for the Navier-Stokes — Biot model

5.1 The model problem and weak formulation

We consider the same domain and set up for terms as in Section 4.1. We assume that the
flow in € is governed by the Navier-Stokes equations with constant density and viscosity,
which are written in the following nonstandard pseudostress-velocity-pressure formulation:

Ty = —prl+2pe(uy) —pp(up@uy),  div(uy) = ¢p in Q< (0,77,
(5.1.1)
0 Uy . .

pf (W + (Vllf) llf) — le( —pr + 2,ue(uf)) = ff mn Qf X (O,T],
with boundary conditions Tyny = 0 on I'} x (0,T], uy = 0 on I'}? x (0,T], where T is the
nonlinear pseudostress tensor, e(uy) := (Vuy + (Vuy)') /2 stands for the deformation rate
tensor, I'y = 7 UTY, and T' > 0 is the final time.

As in [31], we first observe that, due to tr e(uy) = div(us) = ¢y, there hold

div(us ®uy) = (Vug)ug +qpuy, t(Ty) = —nps+2pqr — prtr(uy @uy). (5.1.2)
In particular, the pressure ps can be written in terms of uy, Ty and ¢y as

L (6r(T) + py tr(uy @ up) — 2p00) (5.13)

pf:_ﬁ

and hence, eliminating the pressure py, which can be recovered by (5.1.3), and employing

the identities (5.1.2), problem (5.1.1) can be rewritten as

2 .
T = 2pe(uy) — py (up @ up) = =g, T in 2 x (0,7),
" (5.1.4)

Py a—tf —pragup —div(Ty) = £ in £y x (0, 7T].

Next, in order to impose weakly the symmetry of Ty, we introduce

1
Vr = g (Vuy — (Vuy)'),
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which represents the vorticity (or skew-symmetric part of the velocity gradient). Instead of

5.1.4), in the sequel we consider the problem with unknowns T, v, and uy,
0 f

1

P 1 .
ET(} = Vuf—'yf——f(uf®uf)d—gqfl in Qf x (0,77,

2p (5.1.5)

Tf = O'Sc, pfa_tf_pquuf_div(Tf> = ff n Qf X (O,T]

The Biot system is the same as the one in Section 4.1. We present them here for

completeness.
—div(e,) =f, in Q,x(0,7], puK'u,+Vp,=0 in €, x (0,7, (5.1.6a)
0
! (sopp + apdiv(n,)) +div(w,) = ¢, in Q, x (0,77, (5.1.6b)

w,-n,=0 on I)x(0,7], p,=0 on I}x(0,7], n,=0 on I,x(0,7].
(5.1.6¢)

Next, we introduce the transmission conditions on the interface I'y, x (0,77 [4,10]:

0
Uy -1y + (%"‘up) 'n, =0, Tymy+opn, =0,

- on
(Tynyg) -ny = —p,, (Tyny) -ty = —pogss /K (uf - a—tp) b1

where t;;, 1 < j < n — 1, is an orthogonal system of unit tangent vectors on I'y,, K; =

(5.1.7)

(Ktys,;)-ty;, and agys > 0 is an experimentally determined friction coefficient. Finally, the
above system of equations is complemented by the initial conditions uy(x,0) = us(x) in
Qy and p,(x,0) = pyo(x) in Q.

We then proceed analogously to [4, Section 3] (see also [50]) and derive a weak formulation
of the coupled problem given by (5.1.5), (5.1.6), and (5.1.7). Similarly to [31], we employ
suitable Banach spaces to deal with the nonlinear stress tensor and velocity of the Navier-
Stokes equation, together with the subspace of skew-symmetric tensors of L*(Qy) for the

vorticity:
X; = {Rf eL*(Qy) :  div(R;) e L*Y*(Q;) and Rym; =0 on ry},

V= LRy, Q= {x € L@ 0 Xy = —xg )
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In turn, we introduce the structure velocity u, := 9;n, € V, in the Biot system, and take

the Hilbert spaces:
X, = H(divi), Vo=L*Q,), Q:={x LX) x,=—-%X]
V, = {vp € H(div;Q,): v,-n=0 on Fg}, W, = L*(€,).
Finally, as in [4,10,50], we introduce three Lagrange multipliers
¢ = uslr,, €Ay, 0 :=u,r,, €A, and X := pyfr, €A,

with the spaces of traces A, := HY2(T';,), A; := HY2(T'},), and A, := H}}*(T,) = {v|pfp :
v e (HY(2,))",v=0on Fp}.

Then, similarly to [4, 10, 50], we obtain the following variational problem. Find (T, uy,
Vi Py Opy Us, Yy, 0,0y, 9, A) [0, 1] 5 Xy x Vi xQp x Ay x X, x Vi x Qp x Agx V), x W), X A,
such that for all (Ry, vy, X%, Tp, Vs, Xps @5 Vi, Wy, §),

1 .
ﬂ (T(}, R(})Qf — <(p, anf>Ffp + (I,If, div Rf)Qf

1

P
= (@ up)" Rp)a, + (v Rp)a, = ——

Ny

(qf7 tr(Rf))Qf7

pr (Ovug,vi)a, — prlaruy, vy)a, — (div Ty vi)a, = (fr, vy)a,,
(Ty.xr)o, =0,

(0 Alop + appp 1), Tp)a, = (0, Tpp)p + (U5, div T)a, + (7, Tp)a, =0,
(diveo,,vs)o, = (£, Vs)a,.

(05, Xp)o, =0,

i (K_lup,vp)gp — (pp, div vy, + (A, v, - np)rfp =0,

(50 0s pp, wp)ﬂp +ay (0y Aoy + appp 1), wy I>Qp + (wy, div up)ﬂp = (g, wp)ﬂp’

(- ny+(0+u,)- npaé)l“fp =0,
n—1

(opny, ¢>Ffp — K Qs Z <\/ Kj_l (p—0) -ty - tf,j> +(\ ¢ -my, >Ffp =0,
j=1 Tsp
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n—1

(Tmyg, )y, +nass <\/ Ki'(p—0) tr;- tf,j> + Ay np)p, =0 (51.8)
j=1 Cp
For the well posedness of the problem, compatible initial data is needed for all variables. It

can be obtained from uy and p, using that the equations without time derivatives hold at

t =0, see [4,35].

5.2 Numerical methods

We employ a mixed finite element approximation of the weak formulation (5.1.8). Let
7;Zf and T;” be affine finite element partitions of Q and Q,, respectively, which may be non-
matching along the interface I'y,. For the spatial discretization, we consider the conforming
finite element spaces X, X Vi, X Qyp, = BDM; — Py —Py, X5, X Vg, X Qp, = BDM,; — Py —Py,
and V,;, x W,;,, = BDM,; — P, where BDM,; denotes the first order Brezzi-Douglas-Marini
space [22]. For the Lagrange multiplier spaces on I'f, we take Ay, = X nyp, Ay, = X, 1y,
and Ay, = V-1, resulting in Ay, x Agy X Ay, = Pdc—P{c—Pe. For the time discretization
we employ the backward Euler method. The straightforward application of the MFE method
results, on each time step, in a large 11-field saddle point problem. In order to reduce the
computational cost, we employ the vertex quadrature rule for some of the terms in (5.1.8),
which allows for local elimination of certain variables. For a pair of tensor or vector valued

functions (¢, 1) and a linear operator L, define the quadrature rule

(L) Van. = 3 (Le)tlar = Y0 20D Lplw)) vl

EeTy EeT;

where x € {f,p}, s = 3 on triangles, s = 4 on tetrahedra or rectangles, and r; are the vertices

of E. The quadrature rule is applied to the terms

(Td,R?)Qf, (7f7Rf)Qf7 (Tf7Xf)Qf7 (atA(aP+aPpPI)7TP+anPI)Qp’

(’va Tp)Qp7 (o-p7 Xp)Qp7 (K_lup7 VP)Qp'
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Since the BDM; degrees of freedom on each edge of face can be associated with the vertices,
the quadrature rule results in block-diagonal stress and Darcy velocity matrices with one
block per vertex. Therefore Ty, o, and u, can be easily eliminated. The resulting matrices
for the vorticity v, and the rotation «, are also block-diagonal, due the quadrature rule
and the vertex degrees of freedom of these variables. They can also be eliminated, resulting
in a cell-centered positive definite system for uy, u,, and p,, coupled through the Lagrange
multipliers ¢, 8, and A. After solving this system, the rest of the variables are recovered from
their elimination expressions. We refer to [35] for further details. The numerical method for
the Stokes-Biot model is analyzed in [35], where first order convergence for all variables in
their natural norms is shown. The analysis of the method presented in this thesis for the

nonlinear Navier-Stokes/Biot model will be developed in future work.

5.3 Numerical results

In this section we study numerically the convergence in space, using unstructured trian-
gular grids. The total simulation time is 7' = 0.01s and the time step is At = 1073 s, which
is sufficiently small, so that the time discretization error does not affect the convergence
rates. The domain is Q = Q; Uy, U Q,, where Qf = (0,1) x (0,1),I's, = (0,1) x {0}, and
Q, = (0,1) x (=1,0). We take I'Y = (0,1) x {1} and ') = (0,1) x {=1}. The solution in

the Navier-Stokes region is

—3x + cos
uy =7 cos(mt) ) . pf =exp(t) sin(rx) cos (%) + 27 cos(mt).
y+1

The Biot solution is chosen accordingly to satisfy the interface conditions (5.1.7):

1 —3x + cos
pp = exp(t) sin(m x) cos (%) , u,=——KVp,, n,=sin(rt) )
K y+1

We run a sequence of mesh refinements with non-matching grids along I'y,. The results are
reported on Table 5.3.1. We note that the displacement at t, is recovered by the formula

n, = At u?+ng’1. As expected, we observe at least first order convergence for all subdomain
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variables in their natural norms. The Lagrange multiplier variables, which are approximated
in P{¢—P{c—P{° exhibit second order convergence in the L?-norm on I';,, which is consistent

with the order of approximation.
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HeTf||e2(o,T;xf) ||euf\|e2(o,T;vf) ||euf||é°Q(O,T;L2(Qf)) Henyﬂ(o,T;Qf) ||epf||€2(O,T;L2(Qf))

hy error rate error rate error rate error rate error rate

0.1964 || 5.1E-01 - 3.4E-02 - 2.7E-01 - 3.2E-02 - 1.7E-01 -

0.0997 || 2.4E-01 1.1136 | 1.7E-02 0.9965 | 1.4E-01 1.0044 | 1.0E-02 1.6752 | 8.2E-02 1.0411
0.0487 || 1.2E-01 1.0327 | 8.5E-03 0.9978 | 6.8E-02 0.9943 | 4.2E-03 1.2504 | 3.9E-02 1.0249
0.0250 || 5.6E-02 1.0665 | 4.2E-03 1.0420 | 3.4E-02 1.0436 | 1.5E-03 1.4745 | 2.0E-02 1.0111
0.0136 || 2.8E-02 1.1521 | 2.1E-03 1.1458 | 1.7E-02 1.1449 | 6.5E-04 1.4287 | 1.0E-02 1.1489
0.0072 || 1.4E-02 1.0895 | 1.0E-03 1.1040 | 8.4E-03 1.0971 | 2.8E-04 1.3025 | 4.8E-03 1.1392

||ea'p ||[oo (07T§Xp) ||eus

£2(0,T;Vs) ||e’7p £2(0,75Qp) He“p HW(O,T;VZ,) ||epp £22(0,T5Wp)
hy error rate error rate error rate error rate error rate
0.2828 || 2.7E-01 - 4.3E-02 - 3.6E-02 - 1.0E-01 - 7.5E-02 -

0.1646 || 1.4E-01 1.2737 | 2.2E-02 1.2289 | 9.9E-03 2.3678 | 5.2E-02 1.2576 | 3.8E-02 1.2486
0.0779 || 6.7E-02 0.9651 | 1.1E-02 0.9623 | 2.3E-03 1.9774 | 2.5E-02 1.0003 | 1.9E-02 0.9335
0.0434 || 3.4E-02 1.1690 | 5.4E-03 1.1865 | 6.2E-04 2.1958 | 1.2E-02 1.2373 | 9.4E-03 1.2151
0.0227 || 1.7E-02 1.0635 | 2.7E-03 1.0668 | 2.0E-04 1.7255 | 5.9E-03 1.0816 | 4.7E-03 1.0659
0.0124 || 8.4E-03 1.1462 | 1.4E-03 1.1456 | 8.2E-05 1.5042 | 2.9E-03 1.1486 | 2.4E-03 1.1429

len, lleoriL2@,) leglleo.rizewy,) leollzo.rezwy,y | llexleorize,,)
error rate hy f error rate htp error rate error rate iter
2.7E-04 - 1/8 8.4E-03 — 1/5 1.0E-02 - 1.2E-03 - 4

1.4E-04 1.2275 | 1/16 | 2.1E-03 2.0195 || 1/10 | 3.3E-03 1.6431 | 3.2E-04 1.8656
6.7E-05 0.9623 || 1/32 || 4.7E-04 2.1340 || 1/20 || 6.1E-04 2.4481 | 7.7E-05 2.0334
3.4E-05 1.1865 || 1/64 || 1.2E-04 1.9659 || 1/40 || 1.7E-04 1.8741 | 1.9E-05 2.0006
1.7E-05 1.0668 | 1/128 | 2.8E-05 2.1140 || 1/80 | 3.9E-05 2.0897 | 4.9E-06 1.9817
8.4E-06 1.1456 || 1/256 || 7.7E-06 1.8636 || 1/160 || 9.0E-06 2.1194 | 1.2E-06 2.0796

S S

Table 5.3.1: EXAMPLE 1, Mesh sizes, errors, rates of convergences, and average number of

Newton iterations.

201



6.0 Conclusions

In this thesis we have studied mixed finite element methods for the coupled Stokes or
Navier-Stokes — Biot problems arising in the interaction between free fluid flow and flow
in deformable poroelastic medium, motivated by a wide range of applications. We have
developed various formulations and conducted theoretical analysis such as well-posedness,
stability and error analysis for the formulations. We also proposed finite element methods for
their numerical solutions focusing on accuracy, physical fidelity, and computational efficiency.
We finally implemented the methods using finite element packages and conducted a series of
numerical experiments to validate our convergence results and benchmark the performance
of the methods in applications to geosciences and bioengineering.

First, we developed and analyzed a new mixed elasticity formulation for the Stokes—Biot
problem, as well as its mixed finite element approximation. We consider a five-field Biot for-
mulation based on a weakly symmetric stress—displacement—rotation elasticity formulation
and a mixed velocity—pressure Darcy formulation. The classical velocity—pressure formula-
tion is used for the Stokes system. Suitable Lagrange multipliers are introduced to enforce
weakly the balance of force, slip with friction, and continuity of normal flux on the interface.
The advantages of the resulting mixed finite element method, compared to previous works,
include local momentum conservation, accurate stress with continuous normal component,
and robustness with respect to the physical parameters. In particular, the numerical results
indicate locking-free and oscillation-free behavior in the regimes of small storativity and
permeability, as well as for almost incompressible media.

Second, we presented and analyzed the first, to the best of our knowledge, fully dual
mixed formulation of the quasi-static Stokes-Biot model, and its mixed finite element approx-
imation, using a weakly symmetric stress-velocity-vorticity Stokes formulation, a velocity-
pressure Darcy formulation, and a weakly symmetric stress-displacement-rotation elasticity
formulation. Essential-type interface conditions are imposed via suitable Lagrange multipli-
ers. The numerical method features accurate stresses and Darcy velocity with local mass

and momentum conservation. Furthermore, a new multipoint stress-flux mixed finite ele-
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ment method is developed that allows for local elimination of the Darcy velocity, the fluid
and poroelastic stresses, the vorticity, and the rotation, resulting in a reduced positive defi-
nite cell-centered pressure-velocities-traces system. The theoretical results are complemented
by a series of numerical experiments that illustrate the convergence rates for all variables in
their natural norms, as well as the ability of the method to simulate physically realistic prob-
lems motivated by applications to coupled surface-subsurface flows and flows in fractured
poroelastic media with parameter values in locking regimes.

We then introduce and analyze an augmented fully-mixed finite element method for the
quasi-static Navier-Stokes — Biot model, together with its mixed finite element approxima-
tion. We adopt a pesudostress-velocity formulation for the Navier-Stokes equations and
a five-field Biot formulation, with interface conditions being imposed through suitable La-
grange multipliers. We further augment the resulting formulation by redundant Garlerkin-
type types to relax the hypotheses of the corresponding discrete subspaces. The numeri-
cal experiments indicates the ability of our method to handle computationally challenging
problems involving fast flows of scientific and engineering interests such as blood flow and
industrial filters.

Finally, we derived a fully mixed formulation for the Navier-Stokes — Biot model. Fo-
cusing on the efficiency of the solution of this problem, we proposed a cell-centered finite
volume method based on the multipoint stress-flux mixed finite element method for the
Stokes-Biot model we derived earlier. We implemented the method and verified numerically
its convergence in space. The theoretical analysis of the method will be developed in future
work.

Another direction for the future work is on coupling FPSI with transport, as these
are fundamental processes arising in many applications such as tracking and cleaning up
groundwater contaminants, modeling drug delivery, and transport of low-density lipoprotein.
In particular, a time-dependent Navier-Stokes — Biot system coupled with transport model,
to the best of our knowledge, has not been studied in the literature. It is worth studying

the model as it is more suitable, for example, to describe blood flow in an aorta.
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Appendix FREEFEM++ CODE

We first present FreeFem++ code for convergence test with matching grids with the

mixed elasticity formulation.

load ”Element_Mixte”
load ”iovtk”

load ”medit”

load "MUMPS’

load ”Element_P3”

// MACRO:

macro div(ax,ay) (dx(ax)+dy(ay)) //

macro cdot (ax,ay,bx,by) (axsbxtayxby) // dot product of two given wvectors

macro tgx(ax,ay) (ax—cdot(ax,ay,N.x,N.y)«N.x) //

macro tgy(ax,ay) (ay—cdot(ax,ay ,N.x,N.y)«N.y) //x and y coordinate of tangent
component

// tangential component is computed by the formula tang(v)=v—(v dot n)n;

// where (v dot n)n is the normal component of v

// TIME:

real T=0.01; //total time T=0.01;

real delt=0.001; //delta t=0.001;

real t=0; //initialize t

func NN=T/delt ; //number of time interval
int pr=1; // for wtk. files

// Flags:

bool converg=1; // true for convergence test
bool plotflag=false; // true for making .vtk files

int cm,cn, cl;

if (converg){
cm=128;
cl=8;

} else{
cm=24;
cl=cm;

}

int number = log(real(cm/cl))/log(2.0) + 1;
cout << ”"Number_.of_.steps:.” << number << endl;

int nMeshes = number;
int count=0;

real [int] errorl(nMeshes); errorl = 0; // L inf Hl for u_f fluid velovity

real [int] error2(nMeshes); error2 = 0; // L2 Hl for wu_f fluid wvelocity
real [int] error3 (nMeshes); error3 = 0; // L2 L2 for u-p darcy wvelocity
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real [int] error4 (nMeshes); errord = 0; // L2 L2 for wu_-s structure wvelocity
real [int] error5(nMeshes); errord = 0; // L2 Hdiv sigma-p for elasticity
real [int] error6 (nMeshes); error6 = 0; // L2 L2 for p_f fluid pressure
real [int] error7(nMeshes); error7 = 0; // L2 L2 for p_p darcy pressure
real [int] error8 (nMeshes); error8 = 0; // L2 L2 for sigma_pdiv elasticity
real [int] error9(nMeshes); error9 = 0; // L2 L2 gamma_p

real [int] errorl0(nMeshes); errorl0 = 0; // L inf L2 for sigma_p

real [int] errorll(nMeshes); errorll = 0; // L2 L2 for lambda

real [int] errorl2(nMeshes); errorl2 = 0; // L2 L2 for theta

real [int] errorl3(nMeshes); errorl3 = 0; // L2 L2 for div up

real [int] errorql (nMeshes); errorql = 0;

real [int] errorq2(nMeshes); errorq2 = 0;

real [int] errorltmp (NN); errorltmp=0;

real [int] abs2(nMeshes); abs2 = 0;

real [int] abs3(nMeshes); abs3 = 0;

real [int] abs4(nMeshes); abs4d = 0;

real [int] absb(nMeshes); absb = 0;

real [int] abs6(nMeshes); abs6 = 0;

real [int] abs7(nMeshes); abs7 = 0;

real [int] abs8(nMeshes); abs8 = 0;

real [int] abs9(nMeshes); abs9 = 0;

real [int] errorlOtmp (NN); errorlOtmp=0;

real [int] absll(nMeshes); absll = 0;

real [int] absl2(nMeshes); absl2 = 0;

real [int] absl3(nMeshes); absl3 = 0;

real [int] absql (nMeshes); absql = 0;

real [int] absq2(nMeshes); absq2 = 0;

// convergence test loop:
for (int cn=cl; cn<=cm; cnx=2){

t=0;
cout<<"n.is.’<<cn<<endl;

mesh ThF = square(cn,cn, flags=3);

mesh ThS1 = square(cn,cn, flags=3); // the structure region
ThS1 = movemesh (ThS1, [x,y—1]);

mesh ThL = emptymesh(ThS1);

// FINITE ELEMENT SPACES:

// fluid :

fespace VFh(ThF,[Plb, Plb, P1]); // fluid wvelocity (x, y) and pressure

// structure:

fespace VMIh(ThS1,[RT0, P0O]); // poroelastic wvelocity (xz, y) and pressure
// displacement

fespace VS1h(ThS1,[P0,P0]); // eta (xz, y) —> structure wvelocity (z, y)
// elasticity

fespace VELIh(ThS1,[BDM1,BDM1]); // elasticity tensor

// lagrange (rotation operator)

fespace LL1h(ThS1, P1); // lagrange: rotation operator

fespace LL2h(ThL, [P1, P1, PO]); // lagrange: trace

205



// VARIABLES:
VFh [uFx,uFy,pF], [vFx,vFy,wF], [uFoldx,uFoldy,pFold];
VMih [uPlx,uPly,pP1l], [vPlx,vPly,wP1], [uPloldx,uPloldy,pPlold];
VS1h [uSlx,uSly],[vSlx,vSly],[uSloldx,uSloldy];
VElh [sigmaplxx, sigmaplxy, sigmaplyx, sigmaplyy], [tauplxx, tauplxy, tauplyx,
tauplyy],
[sigmaploldxx, sigmaploldxy, sigmaploldyx, sigmaploldyy ];
LL1h gamma, theta, gammaold;
LL2h [phix,phiy,lambda],[psix ,psiy ,mu],[phioldx ,phioldy ,lambdaold];

// DATA
func lambdaS = 1.0; //lame coefficient lambda_p
func muS = 1.0; // lame coefficient miu_p

// alpha = inv (K) = 1 in the solution
real alpha = 1.0; // Biot—Willis constant alpha

real s0=1.0; // mass storativity

real muF = 1.0; // fluid wviscosity mu

real Kxx=1.0;

real Kyy=1.0; // symmetric and uniformly positive definite rock permeability
tensor

real kappaxx=muF/Kxx;

real kappayy=muF/Kyy; // muK"(—1)

real alfabjs=1.0; //BJS coefficient, experimentally determined friction
coefficient
real bjs=muFxalfabjsxsqrt(2)/sqrt (Kxx+Kyy) ;

// TRUE SOLUTION
func ufx0 = pixcos(pixt)*(—3xx+cos(y));
func ufy0 = pixcos(pixt)*(y+1); // fluid wvelocity

func dxufx0 = pixcos(pixt)x(—3);

func dyufx0 = pixcos(pixt)*(—sin(y));
func dxufy0 = 0;

func dyufy0 = pixcos(pixt);

func pf0 = exp(t)#*sin(pixx)xcos(pixy/2) + 2kpikxcos(pi*t); // fluid pressure
func upx0 = —exp(t)*pi*cos(pi*x)xcos(pixy/2);
func upy0 = exp(t)*pi/2xsin (pi*x)*sin(pixy/2); // poroelastic wvelocity

func dxupx0 = exp(t)*pi 2xsin(pi*x)*cos(pixy/2);
func dyupy0 = (1./4)xexp(t)*pi 2xsin(pixx)*cos(pi*xy/2);

func updiv0 = (5./4)*pi " 2*sin(pixx)*cos((pi/2.)*y);
func pp0 = exp(t)*sin(pixx)*cos(pixy/2); // poroelastic pressure

func etal0x = sin(pixt)*(—3*x+cos(y));
func etaly = sin(pi*t)=*(y+1); // displacement
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func uSO0x = pixcos(pixt)*(—3*x+cos(y));
func uS0y = pixcos(pixt)*(y+1);

func sigmapOxx = —8*sin (pixt)—exp(t)*sin(pixx)*xcos ((pixy)/2);

func sigmapOxy = —sin (pixt)*sin(y);

func sigmapOyx = —sin(pixt)*sin(y);

func sigmapOyy = —exp(t)xsin(pixx)*cos ((pixy)/2); // poroelastic stress
tensor

func gamma0=—0.5+sin (pixt)*sin(y); //rotation operator or lagrange multiplier

func phiOx = pixcos(pixt)*(—3xx+cos(y));
func phi0y = pixcos(pixt)*(y+1); // lagrange multiplier for wu_s
func lambda0 = exp(t)xsin(pixx)*cos(pixy/2); // lagrange multiplier for p_p

// solve right hand side
func ffx = pixexp(t)*cos(pi*x)*cos((pixy)/2) + pi*cos(pixt)*cos(y);
func ffy = —(pi/2)*exp(t)xsin(pixx)*sin ((pixy)/2);

func qf = —2xpixcos(pixt);

func fpx = sin(pixt)*cos(y) + pikexp(t)=*cos(pixx)=*cos((pixy)/2);
func fpy = —(pixexp(t)*sin(pi*x)*sin ((pix*xy)/2))/2;

func qp = exp(t)*cos((pixy)/2)*sin(pi*x) — 2«pixcos(pixt) + (5*xpi 2xexp(t)=*cos
((pixy)/2)*sin(pixx))/4;

N aaada

//Matriz formulation

?////////////////////////////////// )

varf AFsum ([uFx,uFy,pF]|,[vFx,vFy,wF], init=1)=

int2d (ThF) ( 2.0*muF*( dx(uFx)*dx(vFx) + dy(uFy)x*dy(vFy) ) )

+int2d (ThF) ( muF*( dy(uFx)4+dx(uFy) )*( dy(vFx)+dx(vFy) ) ) + int2d(ThF)(1.e
—8xpF+wF)+ on(2,3,4 ,uFx=ufx0, uFy=ufy0);

matrix AF=AFsum(VFh, VFh) ;

varf BPFTsum ([uFx,uFy,pF],[vFx,vFy ,wF],init=1)=
—int2d (ThF) (pFxdiv (vFx,vFy));
matrix BPFT=BPFTsum(VFh, VFh) ;

varf BGAMlsum ([ phix , phiy ,lambda] ,[vFx,vFy,wF],init=1)=

—int1d (ThL,3) (lambda*cdot (vFx,vFy ,N.x,N.y) ) ;

matrix BGAMI=BGAMIlsum (LL2h,VFh) ;

varf ABJSlsum ([uFx,uFy,pF]|,[vFx,vFy,wF],init=1)=

intld (ThF,1) (bjsxcdot (tgx (uFx,uFy) ,tgy (uFx,uFy) ,tgx (vFx,vFy) ,tgy (vFx,vFy)));
matrix ABJS1=ABJSlsum(VFh,VFh) ;

varf ABJS2sum ([phix , phiy,lambda] ,[vFx,vFy,wF] init=1)=
—int1d (ThF,1) (bjsxcdot (tgx (phix , phiy) ,tgy (phix, phiy) , tgx (vFx,vFy) ,tgy (vFx,vFy)

)
matrix ABJS2=ABJS2sum (LL2h,VFh) ;
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K AR A A A KA K KA A AK KKK K KKK KA KKK K]
varf BPFsum ([uFx,uFy,pF]|,[vFx,vFy,wF],init=1)=
int2d (ThF) (wFxdiv (uFx,uFy));

matrix BPF=BPFsum(VFh, VFh) ;

/*****************************************/
varf BESTsum ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[vSlx,vSly],init=1)=
—int2d (ThS1) (cdot (div (sigmaplxx ,sigmaplxy) ,div (sigmaplyx,sigmaplyy),vSlx,vSly)

)
matrix BEST=BESTsum(VE1lh,VS1h);

R R i i I I I I I IV,

varf AQlsum ([uPlx,uPly,pP1],[vPlx,vPly ,wP1l],init=1)=

int2d (ThS1) (cdot (kappaxx*uPlx, kappayy*uPly ,vP1x,vPly)) + int2d (ThS1) (1.e—8%pP1
*wP1) ;

matrix AQI=AQlsum (VMlh,VMI1h) ;

varf BPQTlsum ([uPlx,uPly,pP1],[vPlx,vPly ,wP1],init=1)=
—int2d (ThS1) (1xpPlxdiv (vP1x,vPly));
matrix BPQT1=BPQT1sum(VM1lh,VMIh) ;

varf BGAM2sum ([ phix , phiy ,lambda] ,[vPlx,vPly ,wP1l],init=1)=
intld (ThL,3) (lambda*cdot (vP1x,vPly ,N.x,N.y));
matrix BGAM2=BGAM2sum (LL2h ,VMIh) ;

/*>I<>l<>/<>/<>/<>/<>I<>/<>/<*>/<>I<>I<>/<>/~'************************>/</

varf MASSPlsum ([uPlx,uPly,pP1l],[vPlx,vPly ,wPl],init=1)=
int2d (ThS1) ((s0/delt ) *(wP1lxpP1));

matrix MASSPI=MASSPIsum (VM1h,VMI1h) ;

varf AAEPsum ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[vPlx,vPly ,wPl], init=1)

int2d (ThS1) ((alpha/(2+«+muS+2xlambdaS) ) *(1/delt ) *(sigmaplxx+sigmaplyy)*wP1);
matrix AAEP=AAEPsum(VE1lh,VMIlh) ;

varf APPlsum ([uPlx,uPly,pP1l],[vPlx,vPly ,wPl],init=1)=
int2d (ThS1) ((alpha "2/ (muS+lambdaS) ) *(1/delt ) *xpPl*xwP1) ;
matrix APPI=APPlsum(VM1lh, VMIlh) ;

varf BPQlsum ([uPlx,uPly,pP1],[vPlx,vPly ,wP1],init=1)=
int2d (ThS1) (wPlxdiv (uP1lx,uPly));
matrix BPQI=BPQlsum(VM1lh,VMih) ;

KK AR KKK KKK KKK )
varf AFEsum ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[tauplxx,tauplxy ,tauplyx,
tauplyy],init=1)=
int2d (ThS1) ((1.0/(2+muS) ) *(1/delt) *((sigmaplxx—(lambdaS /(2*xmuS+2+«lambdaS) ) *(
sigmaplxx+sigmaplyy))«tauplxx
+sigmaplxy*xtauplxy
+sigmaplyx*xtauplyx
+(sigmaplyy —(lambda$S / (2*muS+2*xlambdaS) ) *(sigmaplxx
+sigmaplyy))*tauplyy));
matrix AE=AEsum(VElh,VElh) ;
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varf AAEPTsum([uPlx,uPly,pPl],[tauplxx,tauplxy,tauplyx,tauplyy],init=1)=
int2d (ThS1) ((alpha /(2*muS+2+lambdaS) ) *(1.0/ delt )*pPl*(tauplxx+tauplyy));
matrix AAEPT=AAEPTsum(VMlh, VElh) ;

varf ALEsum ([gamma] ,[tauplxx,tauplxy ,tauplyx,tauplyy],init=1)=
int2d (ThS1) ((tauplxy—tauplyx)*gammasx(1.0/delt));
matrix ALE=ALEsum(LL1h,VElh);

varf BESsum ([uSlx,uSly],[tauplxx,tauplxy,tauplyx,tauplyy],init=1)=
int2d (ThS1) (cdot (div (tauplxx ,tauplxy) ,div(tauplyx,tauplyy) ,uSlx,uSly));
matrix BES=BESsum(VSlh,VElh);

varf BLAGsum ([phix , phiy,lambda] ,[tauplxx,tauplxy,tauplyx,tauplyy],init=1)=
—int1d (ThL,3) (cdot ( phix , phiy , (tauplxx*N.x+tauplxy*N.y) ,(tauplyx*N.x+tauplyy*N.

y)));
matrix BLAG=BLAGsum(LL2h,VElh) ;

Vi 1 i i It I I IIIITIIIII Y

varf ALETsum ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[theta],init=1)=
—int2d (ThS1) ((sigmaplxy—sigmaplyx)x«theta);

matrix ALET=ALETsum(VE1lh,LL1h);

KKK AR K KA KA KK

varf BGAMITsum ([uFx,uFy,pF]|,[psix,psiy ,mu],init=1)=
int1d (ThL,3) (muxcdot (uFx,uFy ,N.x,N.y));

matrix BGAMIT=BGAMI1Tsum (VFh,LL2h) ;

varf BGAM3Tsum ([ phix , phiy ,lambda] ,[psix , psiy ,mu],init=1)=
—int1ld (ThL,3) (muxcdot ( phix , phiy ,N.x,N.y));
matrix BGAM3ST=BGAM3Tsum(LL2h,LL2h) ;

varf BGAM2Tsum ([uPlx,uPly,wP1] [ psix ,psiy ,mu],init=1)=
—int1d (ThL,3) (muxcdot (uPlx,uPly ,N.x,N.y));
matrix BGAM2T=BGAM2Tsum(VM1h,LL2h) ;

/*****************************************/

varf BGAM3sum ([ phix ,phiy ,lambda] ,[psix, psiy ,mu],init=1)=
int1d (ThL,3) (lambdaxcdot ( psix , psiy ,N.x,N.y));

matrix BGAM3=BGAM3sum(LL2h,LL2h) ;

varf ABJS3sum ([uFx,uFy,pF] ,[psix ,psiy ,mu],init=1)=

—intld (ThF,1) (bjs*cdot (tgx (uFx,uFy) ,tgy (uFx,uFy) ,tgx (psix , psiy) ,tgy (psix , psiy)
)) s

matrix ABJS3=ABJS3sum (VFh,LL2h) ;

varf ABJS4sum ([ phix ,phiy ,lambda] ,[psix , psiy ,mu],init=1)=

int1d (ThF,1) (bjs*cdot (tgx (phix , phiy) ,tgy (phix , phiy) ,tgx(psix , psiy),tgy (psix,
psiy)));

matrix ABJS4=ABJS4sum (LL2h,LL2h) ;

varf BLAGTsum ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[psix,psiy ,mu],init=1)
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int1d (ThL,3) (cdot ((sigmaplxx*N.x+sigmaplxy*N.y) ,(sigmaplyx*N.x+sigmaplyy*N.y),

psix , psiy));
matrix BLAGT=BLAGTsum(VE1lh,LL2h) ;

Ve 2 1 i i i I I I I Iy,

varf stabetasum ([uSlx,uSly],[vSlx,vSly],init=1)=
int2d (ThS1) ( 0x1.e—8x(uSlx*vSlx4+uSly*vSly));
matrix stabeta=stabetasum (VSlh,VS1lh);

varf stabgamsum ([gamma] ,[theta],init=1)=
int2d (ThS1) ( 0x1.e—8*gammaxtheta );
matrix stabgam=stabgamsum (LL1h,LL1h);

varf stabsigsum ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[tauplxx,tauplxy,
tauplyx ,tauplyy],init=1)=

int2d (ThS1)( 1.e—10x(sigmaplxx*tauplxx+sigmaplxy=*tauplxy+sigmaplyxstauplyx+
sigmaplyy*tauplyy));

matrix stabsig=stabsigsum (VElh,VElh);

varf stablagsum ([phix,phiy,lambda] ,[psix,psiy ,mu],init=1)=

int2d (ThS1) ( 1.e—16*(phix*psix+phiy*psiy+lambda*mu)) ;

//varf stablagsum ([phiz , phiy,lambda],[psiz,psiy,muf, init=1)=

//intalledges (ThL) (1. e—13«xlambda*mu)+intl1d (ThL,2,1,4) (1.e—13xlambda*mu)+int2d (
ThS1) (1.e—13%(phiz*psix+phiy*psiy));

matrix stablag=stablagsum (LL2h,LL2h);

/*>I<>l<*************************************>/</
matrix FFlmono=AF+ABJSI+BPFT4BPF;
matrix LF1lmono=ABJS2+BGAMI;

matrix MMImono=AQI+BPQTI4+BPQI+APP1+MASSP1;
matrix EMIlmono=AAEP;
matrix LMImono=BGAM2;

matrix MEImono=AAEPT;
matrix EElmono=AFE+stabsig;
matrix LElmono=BLAG;

matrix FL1mono=ABJS3+BGAMIT;
matrix MLImono=BGAM2T;
matrix LL2mono=ABJS4+BGAM3BGAM3T+stablag ;

matrix mono=

[FF1lmono, O, 0, 0, 0, LF1lmono |,
[0, MM1mono, 0, AAEP, 0, BGAM2 ],
[0, 0, stabeta , BEST, 0, 0 ],
0, AAEPT, BES, EElmono, ALE, BLAG |,
[0, 0, 0, ALET, stabgam , 0 ],
[FL1mono, BGAMZT, 0, BLAGT, 0, LL2mono |

IE

//ofstream matout (”matmono. txt”);
//matout << mono<<endl;
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Y s
//OLD matriz formulation

e

varf MASSPlsumold ([uPloldx ,uPloldy ,pPlold],[vPlx,vPly,wPl], init=1)=
int2d (ThS1) ((s0/delt )« (wPlxpPlold));

matrix MASSPlold=MASSP1lsumold (VM1h,VM1h) ;

varf AAEPsumold ([sigmaploldxx ,sigmaploldxy ,sigmaploldyx ,sigmaploldyy],[vP1x,
vPly ,wP1l] ,init=1)=

int2d (ThS1) ((alpha/(2+muS+2«lambdaS) ) *(1/delt ) *(sigmaploldxx+sigmaploldyy )«wP1
)

matrix AAEPold=AAEPsumold (VElh,VMI1h) ;

varf APPlsumold ([uPloldx ,uPloldy ,pPlold],[vPlx,vPly,wP1l],init=1)=
int2d (ThS1) ((alpha "2/ (muS+lambdaS) ) *(1/delt )*xpPlold*wP1) ;
matrix APPlold=APPlsumold (VM1h, VMI1h) ;

varf AEsumold ([sigmaploldxx ,sigmaploldxy ,sigmaploldyx ,sigmaploldyy],[tauplxx,
tauplxy ,tauplyx,tauplyy],init=1)=
int2d (ThS1) ((1.0/(2+muS) ) *(1.0/ delt) *((sigmaploldxx —(lambdaS /(2*muS+2+lambdaS)
)x(sigmaploldxx+sigmaploldyy))*tauplxx
+sigmaploldxyxtauplxy
+sigmaploldyxxtauplyx
+(sigmaploldyy —(lambdaS /(2+muS+2«lambdaS) ) x(
sigmaploldxx+sigmaploldyy))*tauplyy));
matrix AEold=AEsumold (VElh,VElh) ;

varf AAEPTsumold ([uPloldx ,uPloldy,pPlold],[tauplxx,tauplxy,tauplyx,tauplyy],
init=1)=

int2d (ThS1) ((alpha /(2*muS+2+lambdaS) ) *(1.0/ delt )*pPlold *(tauplxx+tauplyy));

matrix AAEPTold=AAEPTsumold (VM1h, VE1h) ;

varf ALEsumold ([gammaold] ,[tauplxx ,tauplxy ,tauplyx,tauplyy]|,init=1)=

int2d (ThS1) ((tauplxy—tauplyx)*gammaold*(1.0/delt));

matrix ALEold=ALEsumold (LL1h,VElh) ;

matrix MMIlmonoold=APP1lold+MASSP1old;

matrix tmpl = 0xFFlmono;
matrix tmp2 = Oxstabeta;
matrix tmp3 = Oxstabgam;
matrix tmp4 = 0xLL2mono;

matrix monoold=

[

[tmpl, 0, 0, 0, 0, 0 |,
[0, MM 1monoold, 0, AAEPold, 0, 0 |,
[0, 0, tmp?2 , 0, 0, 0 ],
[0, AAEPToId, 0, AEold, ALEold, 0 ],
[0, 0, 0, 0, tmp3, 0 ],
[0, 0, 0, 0, 0, tmp4 ]
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//ofstream matoutold (”matmonoold. tzt”);
//matoutold << monoold<<endl;

varf BCinSuf ([uFx,uFy,pF]|,[vFx,vFy,wF], init=1)=
int2d (ThF) (ffx*vFx + ffy«vFy) 4+ int2d (ThF) (qf*wF) + on(2,3,4 ,uFx=ufx0, uFy=
ufy0) ;

varf BCinSup ([uPlx,uPly,pP1],[vPlx,vPly ,wP1],init=1)=
int2d (ThS1) (qp*wP1) — int1d (ThS1,1,2,4) ( ppOx*(vP1x*«N.x+vPly«N.y));

varf BCinSus ([uSlx,uSly]|,[vSlx,vSly],init=1)=
int2d (ThS1) (cdot (fpx, fpy ,vSlx,vSly));

varf BCinSsigma ([sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy],[tauplxx,tauplxy,
tauplyx ,tauplyy],init=1)=
int1d (ThS1,1,2,4) ( uSOx*(tauplxx*N.x + tauplxy*N.y) 4+ uSOyx(tauplyx*N.x +
tauplyy*N.y) );
// + on(1,2,4,sigmaplzz=sigmapOzz, sigmaplzy=sigmap0zy , sigmaplyz=sigmaplyzc,
sigmaplyy=sigmap0yy ) ;

// wvector of RHS

real [int] xxf(FFlmono.n), xxfold (FFlmono.n), xxfmono(FFlmono.n);
real [int] xxm(MMImono.n), xxmold (MMlmono.n) , xxmmono(MMImono.n) ;
real [int] xxu(stabeta.n), xxuold(stabeta.n), xxumono(stabeta.n);
real [int] xxs(EElmono.n), xxsold (EElmono.n), xxsmono(EElmono.n);
real [int] xxl1(stabgam.n), xxllold (stabgam.n), xxllmono (stabgam.n);
real [int] xx12(LL2mono.n), xxl120ld (LL2mono.n), xx12mono (LL2mono.n);
real [int] pfakel (stabgam.n);

real [int] pfake2(LL2mono.n);

pfakel=0;

pfake2=0;

varf 11 (unused, VFh) = BCinSuf;

varf 12 (unused, VMlh) = BCinSup;

varf 13 (unused, VSlh) = BCinSus;

varf 14 (unused, VElh) = BCinSsigma;

// set the initialized wvalue:

// [uFz,uFy,pF|=[ufz0 , ufy0,pfo];

[uP1x,uPly,pP1l]=[upx0,upy0,pp0];

//[uSlz,uSly] = [uS0z,uS0y]/;

[sigmaplxx ,sigmaplxy ,sigmaplyx,sigmaplyy]=[sigmap0Oxx ,sigmapOxy ,sigmapOyx ,
sigmapOyy | ;

//gamma = gamma0;

//[phiz , phiy ,lambda] = [phiOz ,phiOy ,lambdal];

xxf=0; xxm=0; xxu=0; xxs=0; xx11=0; xx12=0;

xxfmono=0; xxmmono=0; xxumono=0; xxsmono=0; xxllmono=0; xxI2mono=0;
xxfold=uFx[];
xxmold=uP1x [];
xxuold=uSlx [];

)
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xxsold=sigmaplxx [];
xxllold=gamma ] ;
xx120ld=phix [];

real [int] xx=[xx{, xxm, xxu, xxs, xxll, xx12];
real [int] xxold=[xxfold, xxmold, xxuold, xxsold, xxllold, xxl2o0ld];

int br=1; // for wvtk. files

for (int k=1;k<=NN;++k){
t=t+delt ;
J/cout<<” xxx t oxxx <<t<<endl;

// RHS data (change in time)

real [int] BCinl=11(0, VFh);

real [int] BCin2=12 (0, VMilh);

real [int] BCin3=13 (0, VSih);

real [int] BCin4=14 (0, VE1lh);

real [int] b=[BCinl, BCin2, BCin3, BCin4, pfakel 6 pfake2];
b+=(monoold ) *xxxold ;

set (mono, solver=sparsesolver);
xx=mono " (—1)xb;

xxold=xx;
[xxfmono, xxmmono,xxumono ,xxsmono ,xxllmono ,xx12mono|=xx;

// split solution

uFx[]=xxfmono;

uP1x[] =xxmmono;
uSlx[]=xxumono;
sigmaplxx []=xxsmono;
gamma | =xx11mono;
phix [|=xx12mono;

// compute errors
// error: fluid wvelocity L inf in time L2 in space

errorltmp [k—1] = (int2d (ThF))( ((uFx — ufx0)"2 + (uFy — ufyO) 2 + (dx(uFx)
— dxufx0) "2 + (dy(uFx) — dyufx0)"2 + (dx(uFy) — dxufy0) 2 + (dy(uFy)
— dyufy0)"2 )/( ufx0"2+ufy0"2+dxufx0°2 + dyufx0"2 + dxufy0"2 + dyufy0

2 ));

// error: fluid wvelocity L2 in time HI in space

error2 [count] += int2d (ThF)( (uFx — ufx0)"2 + (uFy — ufy0)"2 + (dx(uFx) —
dxufx0)"2 + (dy(uFx) — dyufx0)"2 + (dx(uFy) — dxufy0)"2 + (dy(uFy) —
dyufy0)"2 );

abs2[count] 4= int2d (ThF)( ufx0°2 4+ ufy0°2 + dxufx0°2 + dxufy0"2 + dyufx0
"2 4+ dyufy0°2 );

// error: darcy wvelocity L2 in time H div in space

//error8 [count] += int2d (ThS1)( (uPlz — upz0)’2 + (uPly — upy0) 2 + (dz(
uPlz)+dy (uPly) — updiv0) "2);

//abs3 [count] += int2d (ThS1)( upz0°2 + upy0 2 + updivd "2);
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// error: darcy wvelocity L2 in time L2 in space
error3 [count] += int2d (ThS1)( (uPlx — upx0)"2 + (uPly — upy0)~2 );
abs3[count] += int2d (ThS1)( upx0°2 4+ upy0°2);

// error: structure wvelocity L2 in time L2 in space
errord [count] += int2d (ThS1) ((uSlx—uS0x)"2+(uSly—uS0y) "2);
abs4 [count] += int2d (ThS1) (uS0x"24+uS0y"2);

// error: elasticity L2 in time H div in space
//errors += int2d (ThS1) ((sigmaplez—sigmapOzx) "2+ (sigmaplzy—sigmapOzy) "2+
sigmaplyr—sigmap0yz) "2+ (sigmaplyy—sigmapOyy) "2

// + (dx(sigmaplzz) + dy(sigmaplyy) + fpx) 2 + (dz(
sigmaplyz )+ dy(sigmaplyy) +fpy) 2 );
//abss = int2d (ThS1) (sigmapO0zz "2+ sigmapOzy "2+sigmapOyz "2+sigmapOyy "2 +

frz 2 + fpy"2);

// error: elasticity L2 in time L2 in space

errorb [count] += int2d (ThS1) ((sigmaplxx—sigmapOxx ) 2+ (sigmaplxy—sigmapOxy)
"2+ (sigmaplyx—sigmap0Oyx) "2+ (sigmaplyy—sigmapOyy) "2) ;

absh [count | += int2d (ThS1) (sigmap0xx"2+sigmap0xy "24+sigmap0yx " 2+sigmapOyy
"2);

// error: fluid pressure L2 in time L2 in space
error6 [count] += int2d (ThF) ( (pF — pf0)"2);
abs6 [count] += int2d (ThF) ( pf0°2);

// error: darcy pressure L2 in time L2 in space
error7 [count] += int2d (ThS1) ( (pPl — pp0)"2);
abs7 [count]| += int2d (ThS1) ( pp0°2);

// error: div sigma_p L2 in time L2 in space

error8 [count] += int2d (ThS1)( (dx(sigmaplxx) + dy(sigmaplxy) + fpx) 2 + (
dx(sigmaplyx )+ dy(sigmaplyy) +fpy)~ 2 );

abs8[count] 4= int2d (ThS1)( fpx"2 4+ fpy"2);

// error: gamma L2 in time L2 in space
error9 [count] += int2d (ThS1) ((gamma—gamma0) "2) ;
abs9[count| += int2d (ThS1) (gammal~2);

// error: elasticy L inf in time L2 in space

errorl0tmp [k—1] = (int2d (ThS1))( ((sigmaplxx—sigmapOxx) 24 (sigmaplxy—
sigmapOxy ) "2+ (sigmaplyx—sigmapOyx) "2+ (sigmaplyy—sigmapOyy) "2) /(
sigmap0xx“2+sigmap0xy "2+sigmapOyx"2+sigmapOyy “2) ) ;

// error: lambda L2 L2

errorll [count] 4= intld (ThL,3) ((lambda—lambda0) "2);

absll[count] 4= intld (ThL,3) (lambda0"2);

// error: theta L2 L2

error12 [count] += intld (ThL,3) (( phix — phiOx)"2+ (phiy — phiOy) "2);
absl2[count]| += intld (ThL,3) ( phi0x"2 + phiOy"2);

// error: div darcy wvelocity L2 in time L2 in space
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errorl3 [count] 4= int2d (ThS1)( (dx(uPlx)+dy(uPly) — updiv0)”"2 );

absl3[count |

+= int2d (ThS1) ( updiv0"2);

// error: structure wvelocity

errorql [count] 4+= int2d (ThS1, qft=qflpT)
absql [count]

/.

error:

((uS1x—uS0x) "2+(uSly—uS0y) "2);
+= int2d (ThS1, qft=qf1pT) (uS0x"24+uS0y"2);

darcy pressure

errorq2 [count] 4+= int2d (ThS1, qft=qflpT) ( (pPl — pp0)"2);

absq2 [count |

int [int |
int [int ]

+= int2d (ThS1, qft=qf1pT) ( pp0~2);

forder
sorder

[1,0];
[1,0,1];

if (K%pr==0 && plotflag)

savevtk (" paraview_convergence/Fluid_"+4string (br)+”.vtk”, ThF,
7quaO] ’pFa
order=forder ,dataname=" Velocity .Pressure”);
savevtk (" paraview_convergence/Structure_"+string (br)+”.vtk”, ThSI,
[uP1x,uPly,0], pPl, [uSlx, uSly, 0],
order=sorder ,dataname=" Velocity .Pressure._Displacement”);

[uFx

br=br+1;

}
}
errorl [count]= errorltmp .max;
errorl0 [count]= errorlOtmp .max;
count +=1;
}
real [int] errl(nMeshes); errl=0;
real [int] err2(nMeshes); err2=0;
real [int] err3 (nMeshes); err3=0;
real [int] err4 (nMeshes); errd=0;
real [int] errb5(nMeshes); err5=0;
real [int] err6 (nMeshes); err6=0;
real [int] err7(nMeshes); err7=0;
real [int] err8(nMeshes); err8=0;
real [int] err9(nMeshes); err9=0;
real [int] errl10(nMeshes); err10=0;
real [int] errll(nMeshes); errll=0;
real [int] errl2(nMeshes); errl2=0;
real [int] errl3(nMeshes); errl3=0;
real [int] errql (nMeshes); errql=0;
real [int] errq2(nMeshes); errq2=0;
real [int] ratel (nMeshes); ratel=0;
real [int] rate2(nMeshes); rate2=0;
real [int] rate3 (nMeshes); rate3=0;
real [int] rated (nMeshes); rated=0;
real [int] rate5(nMeshes); rateb=0;
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rate7 (k) = log(err7(k—1)/err7(k))/log(2.0);
rate8 (k) = log(err8(k—1)/err8(k))/log(2.0);
rate9 (k) = log(err9(k—1)/err9(k))/log(2.0);
ratel0 (k) = log(err1l0(k—1)/err10(k))/log(2.0);
ratell (k) = log(errll(k—1)/errll(k))/log(2.0);
ratel2 (k) = log(errl2(k—1)/err12(k))/log(2.0);
ratel3 (k) = log(errl3(k—1)/err13(k))/log(2.0);
rateql (k) = log(errql (k—1)/errql(k))/log(2.0);
rateq2 (k) = log(errq2(k—1)/errq2(k))/log(2.0);
}
}
// OUTPUT ERRORS:
/xif (converg){
matriz errors=[[(errl), (ratel), (err2), (rate2), (err3), (rate3), (errj),
(rated ), (err5), (rateb), (err6), (rate6),(err?), (rate7),(err8), (
rate8) ,(err9), (rate9),(err10), (ratel0),(erril), (rateil),(err1i2), (
ratel2) ,(errql), (rateql),(errq2), (rateq2) ]];
{
ofstream errOut(” errorsrates.txt”);
errOut<<errors;
}
matriz errorsl =[[(errorl), (error2), (error3), (error4), (error5), (error6
), (error?7), (error8), (error9),(errori0),(erroril), (errori2), (
errorql), (errorq2)]];
{
ofstream errout(”errors. txt”);
errout << errorsl;
}
b/
// Print results
cout << ” 7 <<
endl;

cout << "Errors_and_rates” << endl;
cout << 7 |u_f(H1)|” << ".oorateool”

<< 7 ]u_f(12H1)|” << 7.oorateool”
<< 7]up(L2)|” << "ooorateool”
<< 7luws(L2) |7 << Poliratenll”
<< "|e.p(L2)|” << "__.rate..l”
<<endl;

for (int i=0; i<errl.n; i++){

// Stokes welocity
cout.precision (3);

cout.scientific << errl[i] << 7...7;
cout.precision (1);

cout . fixed << ratel [i] << 7.ool”;
// Stokes pressure
cout.precision (3);

cout.scientific << err2[i] << 7...7;
cout.precision (1);

cout . fixed << rate2[i] << 7.o.l7;
// Darcy wvelocity
cout.precision (3);
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cout .
cout .
cout .

scientific << err3[i] << 7._.7;
precision (1);
fixed << rated[i] << 7oool7;

// Darcy pressure

cout .
cout .
cout .
fixed << rated [i] << 7ooll7;

cout

precision (3);
scientific << errd[i] << 7.ol7;
precision (1);

// Displacement

cout .
cout .
cout .
fixed << rateb[i] << 7ooll7;

cout

precision (3);
scientific << err5[i] << ".ol7;
precision (1);

cout << endl;

}

cout << ”

<<
<<

<< 2

<<

<< ”

<<
for (int

|p_f(L2)|” << "oooratenol”

|p-p(L2)|” << ?___.rateool”
7|diveep(L2)|” << 7 __rate..”

|gam_p(L2)|” << ”__rate._.”
Tluss (qft)]” << ”uuurateuuu”

Ip-p(qft)]|” << ?.ooratecc”
endl;

i=0; i<errl.n; i++){

// Darcy pressure

cout .
cout .
cout .
fixed << rate6[i] << 7oLl

cout

precision (3);
scientific << err6[i] << 7...7;
precision (1);

// Displacement

cout .
cout .
cout .
fixed << rate7[i] << 7oLl

cout

//

cout .
cout .
cout .
fixed << rate8[i] << 7oLl

cout

//

cout .
cout .
cout .
ixed << rate9[i] << 7ooll”;

cout

//

cout .
cout .
cout .
cout .

//

cout .
cout .
cout .
cout .

precision (3);
scientific << err7[i] << 7...7;
precision (1);

precision (3);
scientific << err8[i] << 7...7;
precision (1);

precision (3);
scientific << err9[i] << 7...7;
precision (1);

precision (3);

scientific << errql[i] << 7__.7;
precision (1);

fixed << rateql[i] << 7oool”;

precision (3);

scientific << errq2[i] << 7.7
precision (1);

fixed << rateq2[i] << 7oool”;

cout << endl;
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cout <<
<<
<<
<<
<<
for (int

//

cout .
cout .

cout

cout .

//

cout .
cout .
cout .
cout .

//

cout .
cout .
cout .
cout .

//

cout

cout .

cout

cout .

cout << endl;

}

cout <<

endl;

|sigma_p (linfL2)|” << "___rate...”
7 |lambda_p (L2) |” << 7.__rate...”
7| theta (L2)]” << ?_.orateol”
"|diveup (L2) |7 << 7 ooratecnl”
endl;

i=0; i<errl.n; i++){

precision (3);

scientific << errl0[i] << 7.ol7;
.precision (1);

fixed << ratelO[i] << 7ool”;

precision (3);

scientific << errll[i] << 7.ol7;

precision (1);

fixed << ratell[i] << 7ooll”;

precision (3);

scientific << errl2[i] << 7...7;

precision (1);

fixed << ratel2[i] << 7oool”;
.precision (3);

scientific << errl3[i] << 7...7;
.precision (1);

fixed << ratel3[i] << 7oool”;

» <<

We then present FreeFem++ code for convergence test with the multipoint stress-flux

mixed finite element method, writing in a different structure.

/!

// This code solves a multipoint stress—flux mixed finite element method
// for the Stokes—Biot model

//

// authors: Sergio Caucao, Tongtong Li,
//

// Global information

load "iovtk”;

load 7"UMFPACK64” ; // UMFPACK solver
load ”Element_Mixte”; // for using BDMI
//

// Initial parameters

//

J/— Global parameters

int nref = 5;

Ivan Yotov

// for saving data in paraview format
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real mvphil;

real mvphi2;

real mthetal;

real mtheta2;

real mlaml;

real mlam2;

real t;

real T = 0.01; //total time T=0.01;

real dt = 0.001; //delta t=0.001;

real NN = T/dt; //number of time interval

//—— Stokes

real [int] Hdivsigf(nref);
real [int] L2uf(nref);

real [int] L2gamf(nref);
real [int] L2pf(nref);

real [int] hF(nref);

real [int] DOFf(nref);
J/— Biot

real [int] Hdivsigp (nref);
real [int] eauxsigp (NN);
real [int] Hdivup(nref);
real [int] L2pp(nref);

real [int] eauxpp (NN);

real [int] L2us(nref);

real [int] L2gamp(nref);
real [int] hP(nref);

real [int] DOFp(nref);
J/— Interface

real [int] vphierrorl(nref);
real [int] vphierror2(nref);
real [int] thetaerrorl(nref);
real [int] thetaerror2(nref);
real [int] lamerrorl(nref);
real [int] lamerror2(nref);
real [int] htf(nref);

real [int] htp(nref);
J/— rate of convergence
real [int] sigfrate(nref—1);
real [int] ufrate (nref—1);
real [int] gamfrate(nref—1);
real [int] pfrate(nref—1);
real [int] sigprate(nref—1);

[int]
real [int] uprate(nref—1);
real [int] pprate(nref—1);
real [int] usrate(nref—1);
real [int] gamprate(nref—1);

real [int] vphiratel (nref—1);
real [int] vphirate2 (nref—1);
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real [int] thetaratel (nref—1);
real [int] thetarate2 (nref—1);
real [int] lamratel (nref—1);

[int]

real [int] lamrate2(nref—1);

//

// Global data

//

//—— Stokes

real mu = 1.;

func pf = (2.xpi)xcos(pixt) 4+ exp(t)*sin(pi*xx)*xcos((pi/2.)*y);
func pfx = pixexp(t)*cos(pi*x)*cos((pi/2.)x*y);
func pfy = —(pi/2.)*exp(t)*sin(pixx)*sin ((pi/2.)x*y);
func ufl = pixcos(pixt)*(—3.xx + cos(y));
func uf2 = pixcos(pixt)x(y + 1.);

func uflx = —(3.xpi)*cos(pix*t);

func ufly = —pixcos(pi*t)*sin(y);

func uf2x = 0.;

func uf2y = pixcos(pixt);

func uflxx = 0.;

func uflxy = 0.;

func uflyy = —pi*cos(pixt)*cos(y);

func uf2xx = 0.;

func uf2xy = 0.;

func uf2yy = 0.;

func gamf = (ufly — uf2x) /2

func sigfl = 2.xmuxuflx — pf;
func sigf2 = mux(ufly + uf2x);
func sigf3 = sigf2;

func sigf4d = 2.xmuxuf2y — pf;

func gf = uflx + uf2y;
func ffl = —mux(2.xuflxx + uflyy + uf2xy) + pfx;
func ff2 = —mux(uflxy + uf2xx + 2.xuf2yy) + pfy;

J/— Biot

real k1 = 1.; // matrix K=[[kl,k2],[k2,k3]]
real k2 = 0.;

real k3 = 1.;

real s0 = 1.;

real omi = 1.;

real mup = 1.;

real lamp = 1.;

real trAl = (1./(muptlamp));
real lamup = lamp/(2.%(muptlamp)) ;
real alphap = 1.;

func pp exp(t)*sin(pixx)*cos((pi/2.)*y);
func ppx = pixexp(t)*cos(pixx)*cos((pi/2.)x*y);
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func ppy = —(pi/2.)*exp(t)x*sin(pixx)*sin ((pi/2.)x*y);

func ppt = exp(t)=*sin(pixx)*cos((pi/2.)*y);

func upl = —(klsppx)/mu;

func up2 = —(k3x*ppy) /mu;

func uplx = ((klxpi”~2)/mu)*exp(t)x*sin(pixx)xcos((pi/2.)xy);

func up2y = ((k3%pi~2)/(4.+mu))*exp(t)*sin(pi*x)*cos((pi/2.)x*y);

func etapl = sin(pi*t)*(—3.xx + cos(y));

func etap2 = sin(pixt)*x(y + 1.);

func etaplx = —3.xsin(pixt);

func etaply = —sin(pi*t)xsin(y);

func etap2x = 0.;

func etap2y = sin(pixt);

func etaplxx = 0.;

func etaplxy = 0.;

func etaplyy = —sin(pi*xt)xcos(y);

func etap2xx = 0.;

func etap2xy = 0.;

func etap2yy = 0.;

func usl = pixcos(pi*t)*(—3.xx + cos(y));

func us2 = pixcos(pixt)*(y + 1.);

func uslx = —(3.xpi)xcos(pixt);

func usly = —pixcos(pixt)xsin(y);

func us2x = 0.;

func us2y = pixcos(pi*t);

func gamp = (usly — us2x)/2.;

func sigpl = (lamp+2.xmup)=*etaplx + lamp*etap2y — alphapxpp;

func sigp2 = mupx*(etaply + etap2x);

func sigp3 = sigp2;

func sigp4 = lampxetaplx + (lamp-+2.xmup)*etap2y — alphapxpp;

func divetapt = —(2.xpi)xcos(pi*t);

func divup = uplx + up2y;

func gp = sOxppt + alphapxdivetapt + divup;

func fpl = —((lamp+2.*mup)=etaplxx + (lamp+mup)=etap2xy + mupketaplyy) +
alphap*ppx;

func fp2 = —((lamp+2.xmup)*etap2yy + (lamp+mup)s*etaplxy + mupxetap2xx) +
alphap*ppy;

//—— Global macros

macro uf [ufl, uf2] //

macro up [upl,up2] //

macro us [usl,us2] //

macro gpp [ppx,ppy] //

macro Gufl [uflx,ufly] //

macro Guf2 [uf2x,uf2y] //

macro Gusl [uslx,usly] //

macro Gus2 [us2x,us2y] //

macro sigf [sigfl , sigf2 ,sigf3 ,sigfd] //

macro sigp [sigpl,sigp2,sigp3,sigpd] //
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macro Ff [ffl,ff2] //

macro Fp [fpl,fp2] //

macro Ki [[k3/(kl+k3-k2°2),~k2/(kl«k3-k2°2)],[~k2/(kl%k3-k2"2) k1/(kl+k3 k2"2)
117/

macro sigfh [sigfhl  sigfh2 ,sigfh3  sigfh4] //
macro taufh [taufhl, taufh2,taufh3, taufh4] //

macro sigph [sigphl,sigph2,sigph3,sigph4] //
macro tauph [tauphl,tauph2,tauph3,tauph4] //
macro sigphold [sigpholdl ,sigphold2 ,sigphold3 ,sigphold4] //

macro ufh [ufhl,ufh2] //
macro vfh [vfhl,vfh2] //

macro uph [uphl,uph2] //
macro vph [vphl,vph2] //

macro ush [ushl, ush2] //
macro vsh [vshl, vsh2] //

macro vphih [vphihl,vphih2] //
macro psih [psihl  psih2] //

macro auxfh [auxfhl, auxth2] //
macro xaufh [xaufhl , xaufh2] //

macro thetah [thetahl thetah2] //
macro phih [phihl,phih2] //

macro norm [N.x,N.y] //
macro tgt [-N.y,N.x] //

macro div(vph) (dx(vph[0]) + dy(vph([1])) //

macro grad(xih) [dx(xih),dy(xih)] //

macro Grad(vfh) [dx(vfh[0]) ,dy(vfh[0]) ,dx(vth[1]) ,dy(vth([1])] //

macro tr(taufh) (taufh[0] + taufh[3]) //

macro trA (tauph) (tr(tauph) /(2.%(muptlamp))) //

macro dev(taufh) [0.5%(taufh[0] — taufh[3]) ,taufh[1],taufh[2],0.5%(taufh[3] —

tauth [0])] //
macro Div(taufh) [dx(taufh[0]) + dy(taufth[1]) ,dx(taufh[2]) + dy(taufh[3])] //
(

macro A(tauph) [(tauph[0]—lamup=tr (tauph))/(2.«mup),tauph[1]/(2.+*mup),tauph
[2]/(2.*mup) ,(tauph[3] —lamupxtr (tauph)) /(2.xmup)] //
macro pfh(tauth,gf) (—0.5%tr (taufh) + muxgf ) //

//

// Defining the domain
//

for (int n = 0; n < nref; n++){

int sizef = 2°(n + 3);
int sizep = (5./8.)*sizef;

int gammafp = 1;
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int gammafD = 21;
int gammafN = 22;
int gammapD = 31;
int gammapN = 32;

//——— Omegaf

border Gammafl (t
border Gammaf2(t
border Gammaf3(t

0,1){x=1; y=t; label gammafN; } ;
1,0){x=t; y=1; label = gammafD;};
1,0){x=0; y=t; label = gammafN;};

//——— Interface
border Gammafp(t=0,1){x=t; y=0; label = gammalfp;};

— Omegap
border Gammapl(t=0,—1){x=0; y=t; label = gammapN;};
border Gammap2(t=0,1){x=t; y=—1; label = gammapD;};
border Gammap3(t=—1,0){x=1; y=t; label = gammapN;};

/— Meshes

mesh Thf = buildmesh (Gammafl(sizef) + Gammaf2(sizef) + Gammaf3(sizef) +
Gammafp (sizef));

mesh Thp = buildmesh (Gammapl(sizep) + Gammap2(sizep) + Gammap3(sizep) +
Gammafp(—sizep));

mesh Shf = emptymesh (Thf);
mesh Shp = emptymesh (Thp) ;

// Gammaf"D

// Gammaf"N Omegaf Gammaf"N

|
|
|
|
|
1

Gammafp

|
|
|
I
// 0|
|
// GammapANI
|

|
|

Omegap | Gammap "N
|

// h Gammap "D

//plot (Thf, Thp, wait=true) ;
//
// Finite element spaces
//
fespace Qhsigf(Thf, [BDMI1,BDM1]) ;
fespace Qhup(Thp,BDM1) ;

fespace Qhsigp (Thp, [BDMI1,BDM1]) ;
fespace Qhpp(Thp,P0);

fespace Shuf(Thf,[P0,P0]

) ;
fespace Shus(Thp,[PO0,P0])

)
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fespace Shgamf(Thf,P1);
fespace Shgamp(Thp,P1);

fespace Lhf(Shf,[P1,P1]);
fespace Lhs(Shp,[P1,P1]);
fespace Lhp(Shp,P1);
fespace Auxf(Shf,[P1,P1]);
fespace Auxp(Shp,P1);

fespace Phf(Thf,P1);
fespace Php(Thp,P1);

// Defining the bilinear forms

Qhsigf sigfh;

Qhup uph;

Qhpp pph, pphold;
Qhsigp sigph, sigphold;
Shuf ufh;

Shus ush;

Shgamf gamfh;

Shgamp gamph;

Lhf vphih;

Lhs thetah;

Lhp lamh;

real eps = 1l.e—12;
real epsl = 1.e—12;
J/— bilinear forms

varf al(sigfh ,taufh) = int2d (Thf, qft=qflpTlump) ( (dev(sigfh) ’«dev(taufh))/(2.x
mu) .—.eps*(tr(sigfh)*tr(taufth)).);

varf._a2(uph,vph).oooo =.int2d (Thp, qft=qflpTlump) (omux ((Kixuph) >«vph) );

varf a3 ([pph],vph) = int2d (Thp)( —(pphxdiv(vph)) );

varf a4 (uph,[qph]) = int2d (Thp) ( gphxdiv (uph) );

varf ab(sigph,tauph) = int2d (Thp, qft=qflpTlump) ( (A(sigph) ’'«tauph)/dt.);

varf.a6 ([pph],tauph).=_int2d (Thp) (.(alphap/dt) «(pph*trA (tauph)).);

varf_a7(sigph ,[qph]) _=cint2d (Thp) (. (alphap/dt)*(trA (sigph)=*qph).);

Thp) (- ((s0-+-(alphap "2)*trAl)/dt)*(pphxqph) _—_eps

NN N N N

varf_a8 (pph,qph) ... =_int2d
*(pph*qgph) ) ;

varf_bl(vphih,taufh)_.=_intld (Thf,gammafp) (.—(vphih’ «([[taufh [0] ,taufh [1]],]
taufh [2], taufh [3]]]*norm)) );

varf b2(thetah ,tauph) = intld (Thp,gammafp)( —(thetah’«([[tauph[0],tauph|[1]],]
tauph [2] , tauph [3]]]*norm)).);

varf_b3 ([lamh],vph)_._._=_int1d (Thp,gammafp) (_lamhx(vph’snorm) );

varf c¢l(vphih,psih) = intld(Shf,gammafp)( —omix(vphih’«xtgt)=«(psih’ ' xtgt) ) +
int1ld (Shf)( epsI*(vphih’xpsih).);

varf_c2(thetah ,psih)_=_int1ld (Shf,gammafp) (- (thetah «tgt)*(psih 'xtgt)_);

varf.ec3 ([lamh], psih)._=_int1d (Shf,gammafp) (.—lamhx(psih >«norm) );

varf c4(vphih,phih) = intld(Shp,gammafp)( (vphih’stgt)*(phih’ ' xtgt) );

varf c¢5(thetah ,phih) = intld (Shp,gammafp)( —omix(thetah ' «xtgt)«(phih’ ' xtgt) ) +
int1d (Shp) ( epsI*(thetah ’xphih).);
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varf_c6 ([lamh], phih)_=_int1ld (Shp,gammafp) (.—lamh*(phih >s«norm) );

varf c¢7(vphih,[xih]) = intld (Shp,gammafp)( —xih*(vphih’ «norm).);

varf_c8(thetah ,[xih])=_int1ld (Shp,gammafp) (_xih*(thetah «norm) );

varf penlI(lamh,xih) = intld(Shp)( epsIx(lamhxxih) );

varf Bl(ufh,taufh) = int2d (Thf) ( ufh’+Div(taufh).);

varf_.B2(ush,tauph)_ ... =_int2d (Thp) (-ush’«Div(tauph) );

varf B3([gamfh],taufh) = int2d (Thf, qft=qflpTlump) ( gamfh*(taufh [1] — taufh[2])
) ;

varf B4 ([gamph],tauph) = int2d (Thp, qft=qflpTlump) ( gamphx*(tauph[1l] — tauph[2])
)5

varf B5(auxfh,taufh) = intld (Thf,gammafN)( —(auxfth’x([[taufh[0],taufh[1]],]
taufh [2], taufh [3]]]*norm)).);

varf_B6 ([auxph],vph)._._.=_int1d (Thp,gammapN) ( .auxph*(vph snorm) );

(T
varf faux(auxfth,xaufh) = intld (Shf)( epsIx(auxfh’sxxaufh).);
varf_paux (auxph,xauph)._=.int1d (Shp) (.epsl*(auxph*xauph).);

/RS
varf_rhsl (sigfh ,taufh)_=_int2d (Thf, qft=qflpTlump) (- —0.5*(gf*tr (taufh)).) _+_
intld (Thf,gammafD) (~uf’ «([[taufh [0] ,taufh [1]] ,[taufh [2],taufh [3]]]*norm) )

varf rhs2 (uph,vph) = intld (Thp,gammapD) ( —(ppx*(vph’*«norm)).);

varf._rhs3 (sigph ,tauph)._=_int2d (Thp, qft=qflpTlump) (-(alphap/dt) «(ppholdx*trA (
tauph)).+-(A(sigphold) '«tauph)/dt ) + intld (Thp,gammapD,gammapN) ( us’ * (][]
tauph [0] ,tauph [1]] ,[tauph[2],tauph [3]]]*norm).);

varf.rhs4 (pph,qph).ccce=.int2d (Thp) (= (gp-t- ((s0.+.(alphap "2)*trAl)/dt)*pphold.
+.(alphap/dt)*trA (sigphold))*qph.);

varforhs5 (ufh,vfh)_._.___ =_int2d (Thf) (.—(Ff’ *vfh) );

varf rhs6 (ush,vsh) = int2d (Thp) ( —(Fp’xvsh).);

varf_bjsl (vphih,psih)_._.=_int1d (Shf)(_epsI«(uf’*«psih) );

varf bjs2(thetah ,phih) = intld (Shp)( epsIx(us’sphih).);

varf.lpen (lamh, xih)_....=.int1d (Shp) (.epsI*(ppxxih).);

varf_lauxf (auxfh ,xauth)_=_.int1ld (Thf,gammafN) (.—(xauth '« ([[sigf [0],sigf[1]],]
sigf[2],sigf[3]]]*norm)) ) + intld (Shf)( epsIx(uf’«xxaufh).);

varf_lauxp (auxph,xauph)._=_int1d (Thp,gammapN) (.xauph*(up '*norm) ) + intld (Shp) (
epsl«*(pp*xauph) );

//
// Stiff matrix

//

matrix aal =

al(Qhsigf, Qhsigf);
a2 (Qhup, Qhup) ;

a3 (Qhpp, Qhup) ;

a4 (Qhup, Qhpp) ;

a5 (Qhsigp , Qhsigp) ;
a6 (

a’ (

a8 (

matrix aa?2
matrix aad
matrix aa4
matrix aad
matrix aab

Qhpp, Qhsigp) ;
Qhsigp , Qhpp) ;
Qhpp, Qhpp) ;

matrix aa’7
matrix aa8 =

matrix bbl = bl(Lhf, Qhsigf);
matrix bb2 = b2(Lhs, Qhsigp);
matrix bb3 = b3 (Lhp,Qhup) ;

matrix ccl = c¢l1(Lhf,Lhf);
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matrix cc2 = Lhs, Lhf
matrix cc3d =
matrix ccd =

c2 ;
c3
c4d
matrix cch = cb
c6
c7
c8

( )i
(Lhp, Lhf) ;
(Lhf, Lhs)
(Lhs,Lhs) ;
(Lhp, Lhs) ;
( )
( )
e L

b

matrix cc6 =
matrix cc7 = Lhf,Lhp
matrix cc8 = Lhs,Lhp) ;

matrix PENI = penI(Lhp,Lhp);

)

matrix BBl = B1(Shuf, Qhsigf);
matrix BB2 = B2(Shus, Qhsigp);
matrix BB3 = B3(Shgamf, Qhsigf);
B4(
B5(

matrix BB4 Shgamp , Qhsigp) ;
matrix BB5 = Auxf, Qhsigf);
matrix BB6 = B6(Auxp,Qhup) ;
matrix PAF = faux (Auxf, Auxf);
matrix PAP = paux(Auxp,Auxp);

matrix M;{
M= [[ aal, 0, 0, 0,
[ 0, aa2, 0,
BB6] ,
[ 0,
0],
0, aad,

bbl, 0,
aad , 0, 0,
0, aab,

aab , 0, bb2,

aa7, aal8, 0, 0, 0,

)
bbl’,...0,000.0,.0.0,00ccl,.cc2,0ce3,02.0,0..0,...0,.0.0,...0,...0],

cewe0,00020,0bb27 0, ccd, cch, cc6,

_BB1’, 0, 0, o0, 0, o0, 0,
uuuuu _BB3", 0, 0, o0, 0, o0, 0,
_____ _BB5’ , 0, 0, o0, 0, o0, 0,

15}

//——Initial _condition

t.=.0.;

pphold .=_pp;

sigphold .=_[sigpl ,sigp2,sigp3 ,sigp4];

0, BBI,
bb3,

0,

0,
0,
0,
0,

0,

0, BB3,

0,

0,
0,
0,
0,

0,

0,

0, BB2,

0,
0,
0,
0,

0,

0, BB5,
0, o0,

0, BB4,
0, o0,
0, o0,
0, o0,
0, o0,

0, PAF,

0],

0,
0,
0

0

0, bb37, . 0,...0,._ccT,.ce8, PENI, .0, 0,.020,00_0,...0,._.0

0

0, BB2", 00, eec0,ecc0,y 0,0y ee0y 0,0, o0, .22 0],

0

0, 0, BB4" ,ei0,yeeec0,eei0y 0, 0,0y een0yeen0,een0, o 0],

0

0, BB6,oeee0,ei0, a0, o0, a0, o0, eei0, o0, 2.0, _..0,_PAP

real [int].soll (Qhsigf.ndof),.so0l2(Qhup.ndof),.so0l3 (Qhsigp.ndof) ,_sol4 (Qhpp.

ndof) ;

real [int]_sol5 (Lhf.ndof),_sol6 (Lhs.ndof),_sol7 (Lhp.ndof);

)

)

)

)

)

real [int]._sol8 (Shuf.ndof),_s0l9 (Shus.ndof),_s0l10 (Shgamf.ndof),_.solll (Shgamp.

ndof) ,.s0l12 (Auxf.ndof),_.s0l13 (Auxp.ndof);

for (int . k.=.0; k. <.NN;_k++){..//-loop.in_the_number_of_time.interval

cecoto=ctotodt;

J/— RHS_data._change.in_time
ceooreal [int | LRHS1.=_1hs1 (0, Qhsigf);
coooreal [int | LRHS2.=_1hs2 (0,Qhup) ;
eoooreal [int | LRHS3.=_1rhs3 (0, Qhsigp) ;
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weooreal [int ] .RHS4.=_rhs4 (0,Qhpp) ;
ceooreal [int ] .BJS1_=_bjs1 (0,Lhf);
ceecreal [int ] uBJS2.=_.bjs2 (0,Lhs);
eeooreal [int | .LLPEN_=_lpen (0,Lhp) ;
coooreal [int | LRHS5.=.1hs5 (0, Shuf);
eoooreal [int | .LRHS6.=_1hs6 (0, Shus);
ceooreal [int].ZZ1(Shgamf.ndof);_Z2Z21.=.0.;
eeecreal [int | 2ZZ2(Shgamp . ndof) ; .ZZ2_=_0.;
ceooreal [int | LLAUXF.=_lauxf (0, Auxf) ;
ceooreal [int | LLAUXP.=_lauxp (0,Auxp) ;

weooreal [int ] .L.—_[RHS1,RHS2, RHS3, RHS4, BJS1, BJS2 ,LPEN, RHS5, RHS6, Z71 , 272 , LAUXF,
LAUXP|;

coooset (M, solver .=_.sparsesolver);
ceooreal [int]osolt =M —1xL;
ceoo[soll ;so0l2 [sol3 ,sold [ solb ,so0l6 ,so0l7 ,s0l8 ;sol9 ,s0l10 ,so0lll  soll2,soll3].=.

solt;
J/— ~Approximation.of_the_solution
cooosigfhl [] .=osoll;
ceoouphl []coc=uso0l2;
—eoosigphl [] .=_s013;
ceeepph[] coeo=_s014;

eooovphihl [] c=_s015;
cooothetahl[]=_5016;

cooolamh [] coo=Cs017
weooufhl []ooo=_5018;
weocushl []ooo=_s019;
ceecgamfh [] oo=_s0110;

cooogamph [] oo=os0l11;

//————_calculating _the_errors
ceeoHdivsigf [n] A=_int2d (Thf) (_(sigf _—_sigfh) ’«(sigf — sigfh) + (Ff + Div(
sigfh)) ’*(Ff_+.Div(sigfh)).);

coooL2uf[n] ooooy +=_int2d (Thf) (- (ufo—vufh) ’«(uf — ufh) );
L2gamf[n] 4= int2d (Thf)( 2.xsquare(gamf — gamfth) );
L2pf[n] += int2d (Thf) ( square(pf — pfh(sigfh,gf)) );

eauxsigp [k] = sqrt(int2d (Thp)( (sigp — sigph) ’*(sigp._—_sigph)_+_(Fp_+_Div(
sigph)) "#(Fp + Div(sigph)) ));
Hdivup [n] 4= int2d (Thp)( (up — uph)’*(up.—.uph)._+_square(divup.—.div (uph)

) )
ceoceauxpp [k] ooo=_sqrt (int2d (Thp) (~square (pp-—-pph).));
ceecL2us[n] oo A=_int2d (Thp) (~(us-—_ush) "« (us — ush) );

L2gamp[n] += int2d (Thp)( 2.xsquare(gamp — gamph) );

mvphil = sqrt( intld (Shf,gammafp)( (uf — vphih) «(uf.—_vphih).).);
ceoomvphi2 =_sqrt (cmvphil "2 +_int1d (Shf, gammalfp) (_.square (( Gufl —_grad (vphih
[0])) xtgt)*(tgt *«tgt) _+_square ((Guf2_.—_grad (vphih [1])) *tgt)«(tgt '*tgt)._)
eooovphierrorl [n] A=_mvphil*mvphi2;
ceoovphierror2 [n] A=_intld (Shf,gammafp) (- (uf.—_vphih) «(uf — vphih) );
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mthetal = sqrt( intld (Shp,gammafp)( (us — thetah)’s(us_.—_thetah)._)._);

——-.mtheta2_=_sqrt (_mthetal "2 _4+_int1d (Shp,gammafp) (_square (( Gusl_—_grad (thetah

)[0%) ) xtgt)x(tgt 'xtgt) +-square ((Gus2_—_grad (thetah [1]) ) «tgt)*(tgt '*«tgt).

ceoothetaerrorl [n] A=_.mthetal*xmtheta2;
wooothetaerror2 [n] 4=_intld (Shp,gammafp) (- (us.—_thetah) «(us — thetah) );

mlaml = sqrt( intld (Shp,gammafp)( square(pp — lamh) ) );

mlam2 = sqrt( mlaml"2 + intld (Shp,gammafp)( square ((gpp — grad(lamh)) ' xtgt
)x(tgt 'xtgt) ) )

lamerrorl [n] += mlaml*mlam2;

lamerror2 [n] 4+= intld (Shp,gammafp)( square(pp — lamh) );

J/— updating RHS

pphold = pph;

sigphold = [sigphl ,sigph2 ,sigph3 ,sigph4];
}
Hdivsigf[n] = sqrt(dtxHdivsigf[n]);
L2uf[n] = sqrt(dt*L2uf[n]) ;
L2gamf[n] = sqrt(dtxL2gamf[n]) ;
L2pf[n] = sqrt(dt*L2pf[n]) ;
Hdivsigp [n] = eauxsigp .max;
Hdivup [n] = sqrt(dtxHdivup[n]) ;
L2pp[n] = eauxpp.max;
L2us[n] = sqrt(dtxL2us[n]);
L2gamp [n] = sqrt (dt*L2gamp([n]) ;

lamerrorl [n

= sqrt (dt+*lamerrorl [n]

vphierrorl [n] = sqrt(dtxvphierrorl[n]);
vphierror2 [n] = sqrt(dtxvphierror2[n]);
thetaerrorl [n] = sqrt(dtxthetaerrorl[n]);
thetaerror2 [n] = sqrt(dtxthetaerror2[n]);
] ) ;
] );

lamerror2 [n

= sqrt (dtxlamerror2 [n]

b

//——— for the meshsize in Omega
Phf hf = hTriangle;
hF[n] = hf[].max;

Php hp = hTriangle;

hP[n] = hp|[].max;
htf[n] = 1.0 / sizef;
htp[n] = 1.0 / sizep;

DOFf[n] = Qhsigf.ndof + Shuf.ndof + Shgamf.ndof + Lhf.ndof;
DOFp[n] = Qhsigp.ndof 4+ Qhup.ndof + Qhpp.ndof + Shus.ndof + Shgamp.ndof + Lhs.

ndof + Lhp.ndof;

———— exporting to Praraview

// savevtk (”Data_Paraview_2D/Stokes_aprox”4n+”.vtk” ,Thf, [sigfhl ,sigfh2 ,0],]

sigfh3 ,sigfh4 ,0] ,[ufhl,ufh2,0],gamfh, pfh(sigfh ,gf),dataname="sigfhl _sigfh2
cufh.gamfh_pfh”);
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// savevtk (”Data_Paraview_2D/Biot_approx”4n+” .vtk” ,Thp,[sigphl ,sigph2 ,0],]
sigph3 ,sigph4 ,0] ,[uphl,uph2,0] ,[ushl,ush2,0],gamph,pph,dataname="sigphl._
sigph2 _uph._ush._gamph._pph” ) ;

// savevtk (?”Data_Paraview_2D/Stokes_exact”4nt” .vtk” ,Thf,[sigfl ,sigf2 ,0] ,[sigf3
,sigfd ;0] ,[ufl ,uf2,0],gamf, pf,dataname="sigfl . sigf2 _uf_gamf_ pf”);

// savevtk (”Data_Paraview_2D/Biot_exact”4n+" . vtk” ,Thp,[sigpl ,sigp2,0],[sigp3,
sigp4 ,0] ,[upl,up2,0] ,[usl,us2,0],gamp,pp,dataname="sigpl._sigp2._up._us._gamp.

pp”);
}
//
// showing the tables
//
cout << "._sigferror_=." << Hdivsigf <<endl;

for (int n = 1; n < nref; n++)
sigfrate [n—1] = log(Hdivsigf[n—1]/Hdivsigf[n]) / log(hF[n—1]/hF[n]);
cout <<”._convergence.rate_sigf._=."<< sigfrate <<endl;

cout << 7_uferror._=." << L2uf <<endl;

for (int n = 1; n < nref; n++)

ufrate [n—1] = log(L2uf[n—1]/L2uf[n]) / log(hF[n—1]/hF[n]);
cout << ”_convergence._rate_uf_=." << ufrate <<endl;

cout << 7_gamferror_=."7 << L2gamf <<endl;

for (int n = 1; n < nref; n++)

gamfrate [n—1] = log(L2gamf[n—1]/L2gamf[n]) / log(hF[n—1]/hF[n]);
cout << ”_convergence._rate_gamf_.=_" << gamfrate <<endl;

cout << 7._pferror._=." << L2pf <<endl;
for (int n = 1; n < nref; n++)
pfrate [n—1] = log(L2pf[n—1]/L2pf[n]) / log(hF[n—1]/hF[n]);

cout << ”._convergence.rate_.pf.=.” << pfrate <<endl;
cout << ”7.sigperror.=."” << Hdivsigp <<endl;

for (int n = 1; n < nref; n++)
sigprate [n—1] = log (Hdivsigp [n—1]/Hdivsigp[n]) / log(hP[n—1]/hP[n]);
cout << ”._convergence.rate.sigp.=."” << sigprate <<endl;

cout << ”_userror.=." << L2us <<endl;

for(int n = 1; n < nref; n++)

usrate [n—1] = log(L2us[n—1]/L2us[n]) / log(hP[n—1]/hP[n]);
cout << ”._.convergence.rate._.us.=." << usrate <<endl;

cout << ”._gamperror.=." << L2gamp <<endl;

for (int n = 1; n < nref; n++)

gamprate [n—1] = log (L2gamp [n—1]/L2gamp[n]) / log(hP[n—1]/hP[n]) ;
cout << ”._convergence.rate._gamp.=."” << gamprate <<endl;

cout << ”_uperror._=."” << Hdivup <<endl;

for (int n = 1; n < nref; n++)

uprate [n—1] = log (Hdivup [n—1]/Hdivup[n]) / log (hP[n—1]/hP[n]) ;
cout << ”.convergence.rate._up_.=." << uprate <<endl;

”

cout << ”_pperror._=." << L2pp <<endl;
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for (int n = 1; n < nref; n++)

pprate [n—1] = log (L2pp[n—1]/L2pp[n]) / log(hP[n—1]/hP[n]);
cout << ”._convergence._rate._pp.=."” << pprate <<endl;

cout << ”_vphierror_.in . H"1/2.=." << vphierrorl <<endl;

for (int n = 1; n < nref; n++)

vphiratel [n—1] = log(vphierrorl [n—1]/vphierrorl[n]) / log(htf[n—1]/htf[n]);
cout << ”._convergence._rate_vphi_.in_ .H"1/2_=.7 << vphiratel <<endl;

” ”

cout << ”_vphierror.in.L2.=." << vphierror2 <<endl;
for (int n = 1; n < nref; n++)
vphirate2 [n—1] = log(vphierror2[n—1]/vphierror2[n]) / log(htf[n—1]/htf[n]);

cout << ”._convergence.rate_vphi_.in.L2.=." << vphirate2 <<endl;

cout << 7._thetaerror.in.H"1/2_=.” << thetaerrorl <<endl;

for (int n = 1; n < nref; n++)

thetaratel [n—1] = log(thetaerrorl [n—1]/thetaerrorl [n]) / log(htp[n—1]/htp[n]);
cout << ”_convergence._rate_theta_.in_ .H"1/2_=_" << thetaratel <<endl;

cout << ”._thetaerror.in.L2.=." << thetaerror2 <<endl;

for (int n = 1; n < nref; n++)

thetarate2 [n—1] = log(thetaerror2[n—1]/thetaerror2[n]) / log(htp[n—1]/htp[n]);
cout << ”._convergence.rate_theta_.in_.L2.=." << thetarate2 <<endl;

cout << ”.lamerror_.in.H"1/2.=." << lamerrorl <<endl;

for (int n = 1; n < nref; n++)

lamratel [n—1] = log(lamerrorl [n—1]/lamerrorl[n]) / log(htp[n—1]/htp[n]);
cout << ”_convergence.rate._.lam.in H"1/2_=." << lamratel <<endl;

cout << ”_lamerror.in._L2.=." << lamerror2 <<endl;

for (int n = 1; n < nref; n++)

lamrate2 [n—1] = log(lamerror2[n—1]/lamerror2[n]) / log(htp[n—1]/htp[n]);
cout << ”_convergence.rate_lam._in_L2.=." << lamrate2 <<endl;

cout << ”._mesh._size _Of_ =." << hF <<endl;
cout << ”.mesh.size _Op.=.” << hP <<endl;
cout << ”._mesh.size Gammafp.in._Of.=.” << htf <<endl;

cout << ”_mesh_.size Gammafp_.in _Op_.=.” << htp <<endl;
cout << ”._degrees_of_freedom_Of_=_" << DOFf <<endl;
cout << ”._degrees._of_freedom._Op_.=." << DOFp <<endl;
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