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Relational Machine Learning Algorithms

Alireza Samadianzakaria, PhD

University of Pittsburgh, 2021

The majority of learning tasks faced by data scientists involve relational data, yet most

standard algorithms for standard learning problems are not designed to accept relational

data as input. The standard practice to address this issue is to join the relational data to

create the type of geometric input that standard learning algorithms expect. Unfortunately,

this standard practice has exponential worst-case time and space complexity. This leads

us to consider what we call the Relational Learning Question: “Which standard learning

algorithms can be efficiently implemented on relational data, and for those that cannot, is

there an alternative algorithm that can be efficiently implemented on relational data and

that has similar performance guarantees to the standard algorithm?”

In this dissertation, we address the relational learning question for the well-known prob-

lems of support vector machine (SVM), logistic regression, and k-means clustering. First,

we design an efficient relational algorithm for regularized linear SVM and logistic regression

using sampling methods. We show how to implement a variation of gradient descent that

provides a nearly optimal approximation guarantee for stable instances. For the k-means

problem, we show that the k-means++ algorithm can be efficiently implemented on rela-

tional data, and that a slight variation of adaptive k-means algorithm can be efficiently

implemented on relational data while maintaining a constant approximation guarantee. On

the way to developing these algorithms, we give an efficient approximation algorithm for

certain sum-product queries with additive inequalities that commonly arise.
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1.0 Introduction

Kaggle surveys [1] show that the majority of learning tasks faced by data scientists

involve relational data. Most commonly, the relational data is stored in tables in a relational

database. The data is usually stored in a normalized form to prevent repetition, and it

may have both numerical and categorical values. However, most of the machine learning

algorithms need the data to be in a single table with all columns present. Furthermore,

many machine learning algorithms such as linear regression and linear classifiers need the

data to be numerical.

To use the traditional machine learning algorithms, the first step is a feature extraction

query that consists of joining the tables and converting all columns to numerical values, which

can be done with standard methods such as one-hot encoding [31]. Then the design matrix

will be imported into a standard learning algorithm to train the model. Thus, conceptually,

standard practice transforms a data science query to a query of the following form:

Data Science Query = Standard Learning Algorithm(Design Matrix J = T1 on · · · on Tm)

where the joins are evaluated first, and the learning algorithm is then applied to the result.

Forming the design matrix can increase the size of the join both because of the join

itself and the implicit data. As an example, consider the problem of modeling user interests

for YouTube videos based on comments and likes. For example, a data scientist might be

interested to predict if a user likes a video based on the comments and the profile of the

commenter. In this scenario, there is a table for the likes having the information about the

person who likes the video and the video ID, and there is another table for the comments.

The join of the two tables will have a row for each couple of comments and likes of each

video, which means it will be much larger than the original tables.

As another example, you may consider a sales department that wants to predict the

volume of sales for each item and each branch. In such scenarios, there might be tables for

transactions, customers, items, and branches. The machine learning algorithm needs both

positive cases (items that are sold in a branch to a customer) and negative cases (items that
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are not sold). While the department has the information about the sold items, usually they

do not store the items that they have not sold in each day. This information can be obtained

by joining all other tables and excluding the combinations in the transaction table, and it

can increase the size of the data dramatically.

Note that if each of the m tables in a join has n rows, then the design matrix J can

have as many as nm rows. A worst case example that can make this many rows is a join

of m tables where each table Ti has three columns (c2i−1, c2i, c2i+1) and n rows such that in

all the rows the values of c2i−1 and c2i+1 are 0. Note that this type of join is the same as

having a cross-product join. Thus, independent of the learning task, this standard practice

necessarily has exponential worst-case time and space complexity as the design matrix can

be exponentially larger than the underlying relational tables.

The above examples demonstrate that a relational database can be a highly compact

data representation format. The size of J can be exponentially larger than the input size

of the relational database [17]. Thus extracting J makes the standard practice potentially

inefficient. Theoretically, there is a potential for exponential speed-up by running algorithms

directly on the input tables of a join. However, formally defining what is a “relational”

algorithm is problematic, as for each natural candidate definition there are plausible scenarios

in which that candidate definition is not the “right” definition. However, for the purposes of

this dissertation, it is sufficient to think of a “relational” algorithm as one whose runtime is

polynomially bounded in n, m and d if the join is acyclic. Acyclic joins are defined formally

in Section 2.3; intuitively, as we explain shortly, answering even the simplest questions on

general joins is hard, and acyclicity is a commonly assumed condition that can abstract out

the hardness associated with the structural complexity of the join.

Examples of problems for which there are relational algorithms are some of the aggre-

gation queries, such as counting the number of rows or evaluating JTJ . These queries can

be evaluated using Inside-Out algorithm in polynomial time if the join is acyclic [9, 7]. The

explanation of the Inside-Out algorithm for acyclic joins can be found in Section 2.4.2. The

Inside-Out algorithm is able to evaluate these queries in polynomial time in terms of the size

of the input tables, which is asymptotically faster than the worst-case time complexity of

any algorithm that joins the tables.
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Most of the relational algorithms, including the ones discussed in this dissertation, can be

extended to cyclic joins using the common technique of fractional hypertree decomposition,

which is explained in Section 2.4. Luckily, most of the natural database joins are acyclic or

nearly acyclic. Answering even simple queries on general (cyclic) joins, such as if the join is

empty or not, is NP-Hard [50, 78]. To see this, consider the following reduction from 3-SAT:

for each clause we construct a table having 3 columns, each representing one of the variables

in that clause, and 7 rows that have the satisfying assignments of those variables in them.

Then if the join of these tables has any row, that row would be a satisfying assignment to

all of the clauses in 3-SAT.

For a general join, efficiency is commonly measured in terms of the fractional hypertree

width of the join (denoted by “fhtw”), which measures how close the join is to being acyclic.

Section 2.4 contains a formal definition of fractional hypertree width. This parameter is

1 for acyclic joins and is larger if the join is further from being acyclic. State-of-the-art

algorithms for queries as simple as counting the number of rows in the design matrix have

a linear dependency on nfhtw in their time complexity, where n is the maximum number of

rows in all input tables [9]. Therefore, in our study of relational learning algorithms, running

in time linear in nfhtw is the goal for general joins, as fundamental barriers need to be broken

to be faster. Notice that this is a polynomial time complexity when fhtw is a fixed constant

(i.e. nearly acyclic). The algorithms discussed in this dissertation have linear dependency

on nfhtw, matching the state-of-the-art.

The above definition of relational algorithms naturally leads to the algorithmic ques-

tion of which problems admit relational algorithms. In this dissertation, we try to answer

this question for some standard machine learning problems. More specifically, we consider

linear support vector machine (SVM) and logistic regression, which are two famous linear

classifiers, as well as k-means clustering which is a famous unsupervised machine learning

model. Furthermore, we design a framework that can be used to approximately solve many

problems relationally, such as counting the number of rows satisfying an inequality, and it

can be used as a toolbox for designing other relational algorithms. This framework is also

used in the algorithms we have designed for linear SVM and k-means clustering.

3



T1

f1 f2

1 1

2 1

3 2

4 3

5 4

T2

f2 f3

1 1

1 2

2 3

5 4

5 5

J = T1 on T2

f1 f2 f3

1 1 1

1 1 2

2 1 1

2 1 2

3 2 3

Figure 1: A Path Join With Two Tables.

1.1 An Illustrative Example

To illustrate the intuition behind the relational algorithms, consider the following special

type of joins called Path Joins. One of the good properties of a path join is that it can be

modeled as a layered directed acyclic graph (DAG). A path join J = T1 on · · · on Tm consist of

m tables, and each table Ti has two columns/features (fi, fi+1), therefore the design matrix

J has m+ 1 columns. Furthermore, for simplicity, assume that each table has n rows. Then

the join can be modeled as a layered DAG G in which there is one layer for each feature and

one vertex v in layer i for each entry value that appears in the fi column in either table Ti−1

or table Ti.

Furthermore, in G, there is a directed edge between a vertex v in layer i and a vertex u in

layer i+1 if and only if (v, u) is a row in table Ti. Then there is a one-to-one correspondence

between the full paths in G, which are paths from layer 1 to layer d, and rows in the design

matrix (the outcome of the join). Each node v in G is associated with weight wv which is an

entry of a table where v appears. For simplicity, think of the weights as being nonnegative.

For an illustration of a path join and its analogy with DAGs, see Figure 1 which shows a

specific instance in which m = 2 and n = 5. In particular, Figure 1 shows T1, T2, the design

matrix J , and the resulting layered directed graph G.
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Then in a path join, any query on the design matrix can be translated into a query over

the set of paths in the corresponding DAG. For example, consider the problem of finding

the nearest neighbour point. K-Nearest Neighbour (KNN) is a famous Machine Learning

algorithm that can be used for regression and classification. The input for KNN consists of a

collection of d dimensional points X = (x1, . . . , xN) with associated labels Y = (y1, . . . , yN),

and a query point q. The output is the k closest rows in the design matrix to q = [q1, . . . , qd],

and we measure the closeness in terms of Euclidean distance. For simplicity, in the following

we consider the special case in which k = 1; however, the same algorithm can be generalized

for any arbitrary k. The first step is replacing the values in layer i by the squared distance

of them to qi. Then 1NN query can be evaluated in two ways: (1) enumerating all paths in

the DAG and find the shortest full path. (2) Use of Dijkstra’s algorithm. The first solution

is the same as forming the design matrix; whereas the second solution can be implemented

as a relational algorithm that does not form the design matrix, and whose time complexity

does not directly depend on the number of paths.

Another simple example is counting the number of rows in the design matrix. This can

be done by a dynamic programming algorithm similar to Dijkstra’s algorithm. We start

from the left most layer and for each layer we count the number of incoming paths to each

vertex. For each layer i the number of incoming path to a vertex v is the summation of the

number of incoming path to all vertices u in layer i− 1 for which there is an edge (u, v).

1.2 The Relational Learning Question

The research question that we try to answer is the following, which we call the relational

learning question:

A. Which standard learning algorithms can be implemented as relational algorithms, which

informally are algorithms that are efficient when the input is in relational form?

B. And for those standard algorithms that are not implementable by a relational algorithms,

is there an alternative relational algorithm that has the same performance guarantee as

the standard algorithm?

5



C. And if we can’t find an alternative relational algorithm that has the same performance

guarantees to the standard algorithm, is there an alternative relational algorithm that

has some reasonable performance guarantee (ideally similar to the performance guarantee

for the standard algorithm)?

We address the relational learning question in the context of commonly used machine

learning models. The models that we consider in this thesis are linear SVM, logistic re-

gression, and k-means clustering. In general, one can study the relational machine learning

question in the context of any machine learning algorithm that accepts geometric data or

tabular data, and it can be further extended to any combinatorial problem with geometric

input.

For any machine learning problem, the first question that we need to ask is whether any

of the standard algorithms for this problem can be implemented relationally. An algorithm

X is a relational implementation of another algorithm Y if X is a relational algorithm and

on all inputs X produces the same output as does Y . On the other hand, one can show

that plan A is not going to work by showing that relational implementations of the standard

algorithms are not possible, or are unlikely to be possible. For example, one could show that

a relational implementation would have unexpected complexity theoretic ramifications, e.g.,

P=NP.

When plan A fails for a problem, we look for an alternative relational algorithm that

achieves a theoretical guarantee that is comparable to the theoretical guarantee achievable

by the standard algorithm. If this is achieved, then to the extent that one accepts the

standard algorithm because of this theoretical guarantee, one should accept the relational

implementation to the same extent. Let us take as an example the case where the theoretical

justification of the standard algorithm is a constant approximation guarantee; then a positive

result for plan B would be a relational algorithm that outputs a different result which still

has a constant approximation guarantee. An example of a problem for which plan B works is

k-Means clustering. Our algorithm outputs differently than the standard adaptive k-Means

algorithm, but it still provides a constant approximation. One can show that plan B is

not going to work by showing that relational achieving this theoretical guarantee are not

possible, or are unlikely to be possible.

6



If plan B fails, our final hope is to find a relational algorithm with some nonstandard

theoretical guarantee. For example, if the standard algorithm achieves a constant approxi-

mation, a positive result for plan C might be be an algorithm that achieves a polylogarithmic

approximation result, or achieves a constant approximation guarantee for some class of nat-

ural input instances. An example of a problem that we address, for which we adopt plan C,

is a relational gradient-descent algorithm for linear SVM. The nonstandard theoretical guar-

antee supporting the algorithm is that it is guaranteed to converge only on stable instances,

instead of on all instances.

In the following, we explain some of the related works done on relational machine learning,

and then we explain our research question.

1.3 Related Works

The prior works can be divided into four subcategories: (1) designing theoretical frame-

works that can be used as a toolbox for relational machine learning algorithms, (2) relational

machine learning algorithms, (3) query processing systems, and (4) experimental results.

1.3.1 Theoretical Frameworks

One of the main frameworks that many relational algorithms use is SumProduct func-

tional aggregation queries. This class of queries includes counting the number of rows in the

design matrix, finding the closest point (or k closest points) to a specific point, and summing

the values of one column in the design matrix. We have provided the formal definition in

Section 2.4, and conceptually, in all of these queries, there is an outer operator called sum-

mation which is taken over the rows of the design matrix, and there is an inner operator

called multiplication which is taken over the columns. The Inside-Out algorithm [9] can

evaluate a SumProd query in time O(md2nh log n), where m is the number of tables, d is the

number of columns, and h is the fractional hypertree width [51] of the query. Note that h = 1

for the acyclic joins, and thus Inside-Out is a polynomial-time algorithm for acyclic joins.
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Using the SumProd queries and the Inside-Out algorithm, it is trivial to develop a relational

K-Nearest Neighbour algorithm. The Inside-Out algorithm builds on several earlier papers,

including [13, 41, 65, 51].

Functional aggregation query with additive inequalities (FAQ-AI) was first studied in

[2]. This class of queries is similar to SumProd and SumSum queries, but the summation

is taken over the rows of the design matrix that are satisfying a set of additive inequalities.

For example, while counting the number of rows can be formulated as a SumProd query,

counting the number of rows on one side of a hyperplane can be formulated as FAQ-AI. It

is easy to formulate the computations necessary for training linear SVM or Lloyd’s algo-

rithm for K-means as FAQ-AI queries. [2] gave an algorithm to compute FAQ-AI in time

O(md2nh
′
log(n)) where h′ is a relaxed hypertree width. The relaxed hypertree width h′ is

always greater than or equal to the hypertree width of the join query without the inequal-

ities. However, note that one can consider any inequality condition as an infinite size table

in the join. Then, h′ is smaller than the hypertree width of the join query with the inequal-

ities as input tables. The proposed algorithm for FAQ-AI has a worst-case time complexity

O(md2nm/2 log n) for a cross-product query. Therefore, this time complexity is better than

the standard practice of forming the design matrix, which has worst-case time complexity

Ω(dnm); however, it is slower than Inside-Out which takes O(md2n log n) for a cross-product

query. Different flavors of queries with inequalities were also studied [64, 66, 8].

Many approximate algorithms for machine learning use sampling as part of their sub-

routine. Uniform sampling of rows from the design matrix without performing the join is

considered [103]. The algorithm relies on counting the number of rows grouped by one of

the input tables, which can be performed fast using SumProd queries. It is fast for the case

of acyclic joins; however, it is similar to performing the join when the query is cyclic. This

means for a cyclic query, the time to sample a row is the same as Ω(A) where A is the AGM

bound of the query (See Section 2.3). Later, an algorithm for sampling from cyclic queries

and join size estimation is introduced in [35]. After a linear time preprocessing, this algo-

rithm can sample each row in the expected time of O(A/O) where A is the AGM bound of

the query and O is the number of rows in the design matrix. The work in [3] also introduces

an algorithm for sampling from a join with a different time complexity guarantee; in partic-
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ular, they consider instance optimality analysis in which they measure the time complexity

of their algorithm with respect to the size of the certificate on the input tables instead of

the size of the input tables.

1.3.2 Relational Machine learning

It has been shown that using repeated patterns in the design matrix, linear regression and

factorization machines can be implemented more efficiently [89]. Later, [69] showed how to

push linear regression learning through key foreign-key joins and they have experimentally

shown speedup for synthetic data; however, they concluded that in some scenarios, the

algorithm may not create any speedup. Furthermore, a system based on the algorithm in [69]

and a relational algorithm for Naive Bayes was developed and tested in [68]. SystemF [93] is

capable of pushing linear regression through arbitrary joins of multiple tables. Furthermore,

[93] showed SystemF has a better performance compared to MADlib, Python, StatsModels,

and R. Later [6] improved SystemF by utilizing functional dependencies between columns

and experimentally evaluated the proposed algorithm against other methods such as SystemF

and materializing the design matrix using Postgres over real datasets.

Using SumProd queries, the authors in [7] have introduced a unified framework for a

class of problems including relational linear regression, polynomial regression, and singular

value decomposition using SumProd queries. Conceptually, to solve linear regression, all

we need is calculate JTJ relationally and then use the resulting d by d resulting matrix

explicitly. The proposed algorithm in [7] calculates JTJ in time O(d4mnh log n) when all

columns are numerical. They have furthermore, used sparse tensor operators to handle

categorical features more efficiently since a design matrix with categorical features can be

seen as a sparse representation of a larger matrix where categorical features are converted

to numerical values using one-hot encoding. The work in [7] builds on several earlier papers,

including [69, 70, 43, 93] that all had theoretically and experimentally considered different

aspects of relational linear regression. The work in [63], have further improved the time

complexity of linear regression for 2 table joins using sketching and subspace embedding

techniques, which provides an approximate solution for linear regression.
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Relational machine learning is also considered in unsupervised models such as SVD,

Gaussian Mixture Models, and K-means clustering. Let J = UΣV T be the Singular Value

Decomposition of J , then JTJ can be calculated using the algorithm proposed in [7], and

using JTJ it is possible to obtain Σ and V . Note that U will be present implicitly, since the

i-th row of U is Ui = JiV Σ−1.

In the case of polynomial regression, calculating the pairwise interaction of the features

relationally can be time-consuming. MorpheusFI [72] makes this process faster and rewrites

some of the common linear algebra operators when one of the operands is the design matrix

with nonlinear (quadratic) features. This rewriting makes it possible to postpone the eval-

uation of nonlinear features, until the execution of the linear algebra operator and by doing

them together relationally, MorpheusFI achieves speed-up.

Rk-means [38] was the first paper to give a nontrivial k-means algorithm that works on

relational inputs. The paper gives an O(1)-approximation. The algorithm’s running time

has a superlinear dependency on kd when the tables are acyclic and thus is not polynomial.

Here k is the number of cluster centers and d is the dimension (a.k.a number of features) of

the points; this is equivalently the number of distinct columns in the relational database.

Relational support vector machines with Gaussian kernels are studied in [102]. The

algorithm utilizes Pegasos [97] which in each iteration samples a point uniformly and finds

the gradient of SVM objective for that point; the algorithm in [102] finds the gradient

relationally. While finding the gradient for a single point without a kernel can be done in

O(d), in the presence of a kernel function, this step can take O(Nd); as a result, there is

a speedup by implementing this step relationally. However, the number of iterations still

should be proportional to the size of the design matrix, since in Pegasos every iteration

samples only one row of the design matrix.

In [36], a relational algorithm is introduced for Independent Gaussian Mixture Mod-

els. Gaussian Mixture Models can be used for kernel density estimation by estimating the

underlying distribution as a weighted average of k Gaussian distributions. In the case of In-

dependent Gaussian Mixture Models, different dimensions are independent of each other and

each Gaussian function can be written as the product of a set of functions, each depending on

one column. Therefore, the whole probability function can be written as a SumProd query
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and can be optimized relationally. [36] has also shown experimentally that this method will

be faster than materializing the design matrix.

1.3.3 Query Processing and Distributed Systems

Another aspect of relational learning is designing systems and declarative languages for

data analytic tasks over relational data. MADlib [59] is an open-source system that can

perform various machine learning tasks inside a database, including some supervised and

unsupervised learning models. Similarly, SQL4ml [75] is a system with SQL interface and

it allows expressing machine learning queries in SQL. However, both MADlib and SQL4ml

perform some of the machine learning optimization after doing the join, and therefore, neither

is considered a relational machine learning algorithm based on our definition. A survey of

declarative languages for data analysis, in general, can be found in [76].

LMFAO, introduced in [92], is a layered optimization scheme to optimize and execute

multiple aggregation queries together. It has three groups of layers: converting the appli-

cation to aggregation queries, logical optimization, and code optimization. The suggested

optimizations in LMFAO can be applied to the existing relational algorithms for linear re-

gression and polynomial regression. Furthermore, [92] has shown how to relationally solve

problems such as training classification trees, regression trees, and obtaining mutual infor-

mation of pairwise variables used for learning the structure of Bayesian networks.

A distributed version of SumProd queries for the special case of Boolean semiring is

also studied in [71], and a bound on the number of rounds of communication needed for

evaluating a SumProd query is presented. It has also been shown that minor changes in

distributed/parallel relational database systems can make them capable of performing linear

algebra operations in parallel [73].

1.3.4 Experimental

Some of the previously mentioned papers have also performed experiments on real

datasets, and here we are going to enumerate some of their findings.
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The experiments in [93] have compared the performance of System F which is a relational

algorithm with the performance of MADlib [59], Python SStatModel,and R while performing

linear regression on a retailer dataset, LastFM [33], and MovieLens [57]. For Python and R,

they used PostgreSQL to join the tables before passing them to the library. They showed

that System F is 3 to 200 times faster than the other libraries.

Later, the algorithm in [6] utilizes functional dependencies between columns, and it

handles the categorical features and one hot encoding more efficiently. Therefore, it achieves a

better run time on the retail dataset, compared to SystemF. The experiments have compared

the algorithm in [6] MADlib, R, Tensorflow, and System F, and it has shown 3 to 729 time

speedup for linear regression. Furthermore, they have compared their polynomial regression

and factorization machine algorithm with MADlib and libFM, and their algorithm achieves

more than 80 time speedup.

The performance of Rk-means [38] has also been experimentally compared with the

performance of mlpack combined with postgreSQL on 3 different datasets and different

values of k. They showed up to 100 times speed up while their relative error to mlpack

solution was below 3 in all the datasets and values of k.

1.4 Our Results

While there are known relational algorithms for some standard machine learning prob-

lems such as training linear regression [7], there are many standard machine learning prob-

lems where relational algorithms are not known. In this thesis, we address the relational

learning question for classic machine learning problems of linear SVM, logistic regression,

and k-means. We now summarize these results.

1.4.1 Functional Aggregation Queries under Additive Inequality

To design an algorithm for linear SVM and k-means algorithm, we first introduce a more

general framework for approximating some of the aggregate queries that are hard to com-
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pute exactly. More specifically, we consider Functional Aggregation Queries under Additive

Inequalities (FAQ-AI). Such queries/problems, with a smallish number of inequalities, arise

naturally as subproblems in many standard learning algorithms. Before formally defining an

FAQ-AI query, let us start with some examples. The first collection of examples are related

to the classic Support Vector Machine problem (SVM), in which points are classified based

on the side of a hyperplane that the point lies on [31, 95]. Each of the following examples

can be reduced to FAQ-AI queries with one additive inequality:

• Counting the number of points correctly (or incorrectly) classified by a hyperplane.

• Finding the minimum distance of a correctly classified point to the boundary of a given

hyperplane.

• Computing the gradient of the SVM objective function at a particular point.

And now we give some examples of problems related to the classic k-means clustering

problem [95], in which the goal is to find locations for k centers so as to minimize the

aggregate 2-norm squared distance from each point to its closest center. Each of the following

examples can be reduced to FAQ-AI queries with k − 1 inequalities:

• Evaluating the k-means objective value for a particular collection of k centers.

• Computing the new centers in one iteration of the commonly used Lloyd’s algorithm.

• Computing the furthest point in each cluster from the center of that cluster.

All of these problems are readily solvable in nearly linear time in the size of the input if

the input is the design matrix. Our goal is to determine whether relational algorithms exist

for such FAQ-AI problems when the input is in a relational form.

In Chapter 3, we develop a framework for solving Functional Aggregation Queries with

one Additive Inequality. We first show that solving FAQ-AI in general is #P -Hard even

for simple examples such as counting the number of rows in a cross-product join that lie on

one side of a hyperplane. We also prove FAQ-AI with two or more additive inequalities are

#P -Hard to approximate up to any constant value.

Thus, we turn to approximately computing FAQ-AI queries. An ideal result would

be what we call a Relational Approximation Scheme (RAS), which is a collection {Aε} of

relational algorithms, one for each real ε > 0, such that each Aε is outputs a solution that
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has relative error at most ε. Our main result is a RAS for FAQ-AI(1) (an FAQ-AI query

with only one additive inequality), that has certain natural properties defined in Chapter 3.

Using the proposed RAS, it is possible to get a 1± ε approximation for queries such as

• Counting the number of points in a join lying on one side of a hyperplane, or lying inside

a hypersphere.

• Finding the closest point to a given point q among the points lying on one side of a

hyperplane.

• Summation of the distances of the points in a hypersphere from the center of the hyper-

sphere (or any other given point)

1.4.2 RML Coresets

One of the main optimization algorithms for training machine learning models is gradient

descent (See Chapter 2 for the definition). Unfortunately, as we show in Section 5.1, it is

#P -Hard to approximate the gradient of linear SVM up to any constant factor, and a

similar proof can be applied for logistic regression. In fact, it can be shown that some

simpler problems such as counting the number of points lying on one side of a hyperplane

are also #P -Hard. Therefore, instead of trying to directly find a relational implementation

of gradient descent, we have investigated two different approaches:

A. Extracting a manageably small (potentially weighted) sample from the data set, and

then directly solving (a weighted version of) the problem on the (weighted) sample.

B. Introducing a relational algorithm for those instances of SVM that have some stability

properties.

In our first approach explained in Chapter 4, we consider a more general problem. Both

logistic regression and linear SVM are special subclasses of Regularized Loss Minimization

(RLM) problem [96] which can be defined as follow. The input consists of a collection

X = {x1, x2, . . . , xn} of points in <d, and a collection Y = {y1, y2, . . . , yn} of associated labels

from {−1, 1}. Intuitively, the goal is to find a hypothesis β ∈ <d that is the best “linear”

explanation for the labels. More formally, the objective is to minimize a function F (β) that

is a linear combination of a nonnegative nondecreasing loss function ` that measures the
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goodness of the hypothesis, and a nonnegative regularization function r that measures the

complexity of the hypothesis. That is

F (β) =
n∑
i=1

`(−yiβ · xi) + λ r(Rβ). (1)

In the case of logistic Regression, the loss function is `(z) = log(1+exp(z)), and in the context

of soft margin support vector machines (SVM), the loss function is `(z) = max(0, 1 + z).

We try to extract a small sample from the data set and then directly solve the RLM

problem on the weighted sample. The aspiration is that the optimal solution on the sample

will be a good approximation to the optimal solution on the original data set. To achieve

this aspiration, the probability that a particular point is sampled (and the weight that it is

given) may need to be carefully computed as some points may be more important than other

points. However, if the probability distribution is too complicated, it may not be efficiently

implementable as a relational algorithm. A particularly strong condition on the sample that

is sufficient for achieving this aspiration is that the sample is a coreset ; intuitively, a sample

is a coreset if for all possible hypotheses β, the objective value of β on the sample is very

close to the objective value of β on the whole data set.

There has been work on constructing coresets for special cases of the RLM problem. In

particular, sublinear coresets exist for unregularized logistic regression (i.e λ = 0) by making

assumptions on the input. The exact assumption is technical, but intuitively the coresets

are small when there is no hypothesis that is a good explanation of the labels. The work of

[99] gave coresets for regularized soft-margin SVM assuming the 2-norm of the optimal β is

small. Unfortunately, both of these works do not apply to general input instances. One may

wonder if small coresets exist for general data sets. The work of [84] shows that there is no

coreset of size Ω( n
logn

) for unregularized logistic regression.

This lower bound is discouraging, suggesting that small coresets are not possible for

arbitrary inputs even for the special case of the logistic regression problem. However, the

lower bound is for unregularized logistic regression. In practice, regularization is almost

always used, as emphasized in the following quotes. From Chapter 5. Basic Practice of [32]:

“Regularization is the most widely used approach to prevent overfitting.” Quoting Maya

Gupta, head of the Glassbox Machine Learning team at Google from her online course on
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machine learning, “The key ingredient to making machine learning work great... is regular-

ization” [52].

Therefore, we show that if the regularizer’s effect does not become negligible as the

norm of the hypothesis scales, then a uniform sample of size Θ(n1−κ∆) points is with high

probability a coreset where we assume λ = nκ. Here, ∆ is the VC-dimension of the loss

function. Thus, coresets exists for general input instances for the RLM problem, showing

regularization allows us to break through the lower bounds shown in prior work! Formally,

this scaling condition says that if `(−‖β‖) = 0 then r(β) must be a constant fraction of

`(‖β‖2). We show that this scaling condition holds when the loss function is either logistic

regression or SVM, and the regularizer is the 1-norm, the 2-norm, or 2-norm squared. For

example, in the recommended case that κ = 1/2, the scaling condition ensures that a uniform

sample of Θ̃(d
√
n) points is with high probability a coreset when the regularizer is one of

the standard ones, and the loss function is either logistic regression and SVM, as they have

VC-dimension O(d). Note also that uniform sampling can be reasonably implemented in all

of the popular restricted access models. As a consequence, this yields a reasonable algorithm

for all of the restricted access models under the assumption that a data set of size Θ̃(d
√
n)

can be stored, and reasonably solved in the main memory of one computer.

We complement our upper bound with two lower bounds on the size of coresets. Our

lower bounds assume the 2-norm squared as the regularizer, since intuitively this is the

standard regularizer for which it should be easiest to attain small coresets. We first show

that our analysis is asymptotically tight for uniform sampling. That is, we show that for

both logistic regression and SVM, a uniform sample of size O(n1−κ−ε) may not result in a

coreset. We then show for both logistic regression and SVM there are instances in which

every core set is of size Ω(n(1−κ)/5−ε). Therefore, more sophisticated sampling methods must

still have core sets whose size is in the same ballpark as is needed for uniform sampling. One

might arguably summarize our results as saying that the simplest possible sampling method

is nearly optimal for obtaining a coreset.
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1.4.3 Training Linear SVM Using Relational Gradient Descent

In our second approach for training linear SVM, we design a relational gradient descent

algorithm for a class of instances of linear SVM that we call stable instances. Unfortunately,

the framework designed for approximating FAQ-AI(1) problem cannot be directly applied

for training linear SVM due to a technical issue that we call subtraction problem. To show

this, we start Chapter 5 by stating a discouraging fact that the gradient of SVM objective

is NP-Hard to approximate up to any constant factor, and in fact it is hard to overcome

this problem in general. However, using this framework, we still design a gradient descent

algorithm for training linear SVM on the input data that are stable. More specifically, if

β∗ is the optimal hypothesis for SVM objective, our algorithm returns a hypothesis βA such

that its objective on a small perturbation of the points is at most 1+ε factor of the objective

of β∗ on another perturbation of the points. Then we show that if the instance has some

stability condition, this is sufficient to be 1 + ε factor of the optimal when the points are not

perturbed.

Stability is defined formally in Chapter 5; conceptually, a data set is stable if the hypoth-

esis explaining the dataset does not change dramatically by small movements of the data

points. Some discussion of the stability of SVM instances can be found in [25].

1.4.4 Relational K-Means Clustering

One of the most famous algorithms for K-Means Clustering is the Lloyd’s Algorithm in

which we initialize K centers by picking some of the points using some random distribution

,and then iteratively move the centers to the center of mass of the points assigned to them.

We show that calculating the center of mass for the points assigned to a center is NP-Hard

and as a result it is unlikely for us to implement Lloyd’s algorithm relationally.

Fortunately, there are multiple ways of constructing constant approximation coresets

for k-means clustering. One of the famous methods is adaptive k-means sampling [12] in

which the algorithm samples k log(N) centers using k-means++ distribution and gives a

weight to each center that equals to the number of points assigned to that center. Then

it can be proved that this weighted subset is a constant approximation coreset. In chapter
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6, first we show how to use the rejection sampling technique [34] to implement k-means++

sampling relationally. Then we show that it is NP-Hard to approximate the weights used in

adaptive k-means sampling relationally; however, we propose another weight function that

can be computed relationally and has provable constant approximation guarantee similar to

adaptive k-means sampling.
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2.0 Preliminary

2.1 Machine Learning

Here we briefly explain the machine learning problems and techniques that are referred

to in the proposal. The machine learning techniques and problems are explained thoroughly

in [31] and [27].

In general, machine learning problems can be divided into two categories of supervised

and unsupervised. In supervised learning, the input is a labeled data and the goal is to train

a model that can predict the label for unseen data sampled from the same distribution. The

supervised learning problems can be further classified into two subcategories of regression and

classification, where in regression problems the labels are scalar values and in classification

problems the labels are categories. An example of a regression problem is predicting house

price based on the specification of the house, and an example of a classification problem is

predicting if a customer is willing to buy an item or not.

Then the training problem in machine learning is optimizing a given model subject to a

loss function. After training, the prediction for a new point can be done using the optimized

parameters. The followings are the training problems of a few well-known machine learning

models that are referred to in the proposal.

Training Linear Regression: The input is a set of d dimensional points X = {x1, . . . , xn}

with associated scalar values Y = {y1, . . . , yn}. The output is a d dimensional hypothesis β

that minimizes

L(β) =
n∑
i=1

‖β · xi − y‖22 .

The following is a closed form solution for this problem:

β∗ = (ATA)−1AT b

where A is a matrix with rows x1, . . . , xn and b is a vector with entries y1, . . . , yn.
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Figure 2: Logistic Regression Loss Function

Training Logistic Regression: The input is a set of d dimensional pointsX = {x1, . . . , xn}

with associated labels Y = {y1, . . . , yn} where yi ∈ {−1,+1}. Logistic regression is a linear

classifier meaning it will find a hyperplane with the norm β and classifies all points on one

side positive and all points on the other side negative. The goal is finding a d dimensional

hypothesis β that minimizes

F (β) =
1

N

n∑
i=1

log (1 + exp(−yiβ · xi)) + λR(β).

where λ is the regularizer coefficient and R(β) is the regularization function most often set

to ‖β‖22 or ‖β‖1. Figure 2 shows the loss function of the logistic regression model. The loss

function goes up linearly as an incorrectly classified point gets further from the hyperplane,

and it goes down exponentially as a correctly classified point gets further from the hyperplane.

Training Linear SVM: The input is a set of d dimensional points X = {x1, . . . , xn} with

associated labels Y = {y1, . . . , yn} where yi ∈ {−1,+1}. Similar to logistic regression, linear

SVM is a linear classifier meaning it will find a hyperplane with the norm β and classifies

all points on one side positive and all points on the other side negative. In L1-Linear SVM
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Figure 3: Hinge Loss Function

or SVM with “hinge” loss function, the goal is finding a d dimensional hypothesis β that

minimizes

F (β) =
1

N

n∑
i=1

max(0, 1− yiβ · xi) + λR(β).

where λ is the regularizer coefficient and R(β) is the regularization function most often set

to ‖β‖22. In L2-Linear SVM or SVM with quadratic loss function the goal is finding a d

dimensional hypothesis β that minimizes

L(β) =
1

N

n∑
i=1

max(0, 1− yiβ · xi)2 + λR(β).

Figure 3 plots the hinge loss function. Note that the loss function is very similar to the

logistic Regression’s loss function.

K-Nearest Neighbor Problem: In K-Nearest Neighbor problem, the input is a set of d

dimensional points X = {x1, . . . , xn} and a point q. The goal is finding the K nearest points

to q in X subject to a distance function. Most often the distance function is L2 distance.

When the points in X are labeled, the K nearest points can be used to predict the label of

the given point q.
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2.1.1 Gradient Descent

Gradient descent is a first-order iterative optimization method for finding an approximate

minimum of a convex function F : Rd → R, perhaps subject to a constraint the solution

lies in some convex body K. In the gradient descent algorithm, at each descent step t the

current candidate solution β(t) is updated according to the following rule:

β(t) ← β(t−1) − ηtG(β(t−1)) (2)

where ηt is the step size. In the projected gradient descent algorithm, the current candidate

solution β(t) is updated according to the following rule:

β(t) ← ΠK
(
β(t−1) − ηtG(β(t−1))

)
(3)

where ΠK(α) = argminβ∈K ‖α− β‖2 is the projection of the point α to the closest point to α

in K. In (projected) gradient descent, G is ∇F (β(t)), the gradient of F at β(t). There are lots

of variations of gradient descent, including variations on the step size, and variations, like

stochastic gradient descent[98], in which the gradient is only approximated from a uniform

sample of the data at each point.

Theorem 1 and Corollary 2 give bounds on the number of iterations on projected gra-

dient descent to reach solutions with bounded absolute error and bounded relative error,

respectively.

Theorem 1. [24, 58] Let K be a convex body and F be a function such that ‖∇F (β)‖2 ≤ G

for β ∈ K. Let β∗ = argminβ∈K F (β) be the optimal solution. Let D be an upper bound on∥∥β(0) − β∗
∥∥
2
, the 2-norm distance from the initial candidate solution to the optimal solution.

Let β̂s = 1
s

∑s−1
t=0 β

(t). Let ηt = D
G
√
t
. Then after T −1 iterations of projected gradient descent,

it must be the case that

F (β̂T )− F (β∗) ≤ 2DG√
T

Corollary 2. Adopting the assumptions from Theorem 1, if T ≥
(

4DG

εF (β̂T )

)2
then

F (β̂T ) ≤ (1 + ε)F (β∗)

That is, the projected gradient descent achieves relative error ε.
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The gradient of SVM objective F is

∇F = 2λβ − 1

N
yi
∑
i∈L

xi (4)

where L is the collection {i | βxi ≤ 1} of indices i where xi is currently contributing

to the objective. Note that in this hinge loss function, the gradient of the points on the

hyperplane 1− βx = 0 does not exist, since the gradient is not continuous at this point. In

our formulation we have used the subgradient for the points on 1 − βx = 0, meaning for a

β on the hyperplane 1 − βx = 0, we have used the limit of the gradient of the points that

1− β′x > 0 when β′ goes to β. For all points that 1− β′x > 0, the gradient is x; therefore,

the limit is also x.

Assume β(0) is the origin and adopt the assumptions of Theorem 1. Then ∇F (β∗) = 0

implies for any dimension j

∣∣β∗j ∣∣ =

∣∣∣∣∣ 1

2Nλ

∑
i∈L

xij

∣∣∣∣∣ ≤ 1

2λ
(5)

where the additional subscript of j refers to dimension j. And thus

∥∥β(0) − β∗
∥∥
2
≤ ‖β∗‖2 ≤

√
dmax
j∈[d]

∣∣β∗j ∣∣ ≤ √d2λ
(6)

Thus, let us define our convex body K to be the hypersphere with radius
√
d

2λ
centered at the

origin. Thus for β ∈ K,

‖∇F (β)‖2 =

√√√√∑
j∈[d]

(
2λβj −

1

N

∑
i∈L

xij

)2

≤

√√√√∑
j∈[d]

4(λβj)2 + 2

(
1

N

∑
i∈L

xij

)2

Since (a− b)2 ≤ 2a2 + 2b2

≤ 2λ
∑
j∈[d]

|βj|+
√

2
1

N

∣∣∣∣∣∑
i∈L

xij

∣∣∣∣∣ Since

√∑
i

a2i ≤
∑
i

|ai|

≤ 2d+
√

2d

≤ 4d.
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Theorem 3. Let the convex body K be the hypersphere with radius
√
d

2λ
centered at the origin.

Let F (β) be the SVM objective function. Let β∗ = argminβ F (β) be the optimal solution. Let

β̂s = 1
s

∑s−1
t=0 β

(t). Let ηt = 1
8λ
√
dt

. Then after T − 1 iterations of projected gradient descent,

it must be the case that

F (β̂T )− F (β∗) ≤ 4d3/2

λ
√
T

Theorem 4 then follows by a straightforward application of Theorem 3.

Theorem 4. Let F (β) be the SVM objective function. Let β∗ = argminβ F (β) be the optimal

solution. Let β̂s = 1
s

∑s−1
t=0 β

(t). Let ηt = 1
8λ
√
dt

. Then if T ≥
(

4d3/2

ελF (β̂T )

)2
then the projected

gradient descent guarantees that

F (β̂T ) ≤ (1 + ε)F (β∗)

Thus, if the algorithm returns β̂ at the first time t where t ≥
(

4d3/2

ελF (β̂t)

)2
, then it achieves

relative error at most ε.

2.2 Coresets

In this section, we define some of the concepts related to coresets. The following definition

of coreset can be used for regularized and unregularized machine learning problems. Given

a dataset X = (x1, . . . , xn) (possibly with associated labels Y = (y1, . . . , yn)) and let F (β) =∑
xi∈X fi(β) be an objective function where fi(β) depends only on the hypothesis β and

the point xi (and yi). Note that in the context of regularized loss minimization, fi(β) =

`(−yiβ · xi) + λr(Rβ)/n is the contribution of point i to the objective F (β). The following

is the definition of a coreset:

Definition 5 (Coreset). For ε > 0, an ε-coreset (C,U) consists of a subcollection C of [1, n],

and associated nonnegative weights U = {ui | i ∈ C}, such that

∀β H(β) :=

∣∣∑n
i=1 fi(β)−

∑
i∈C uifi(β)

∣∣∑n
i=1 fi(β)

≤ ε (7)
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Conceptually, one should think of ui as a multiplicity, that is that xi is representing ui

points from the original data set. Thus, one would expect that
∑

i∈C ui = n; and although

this is not strictly required, it is easy to observe that in the context of RLM,
∑

i∈C ui must

be close to n (See Section 2.2).

Furthermore, the following is the definition of sensitivity which is often used in coreset

construction algorithms.

Definition 6 (sensitivity). The sensitivity of point i is then si = supβ fi(β)/F (β), and the

total sensitivity is S =
∑n

i=1 si.

A collection X of data points is shatterable by a loss function ` if for every possible set of

assignments of labels, there is a hypothesis β and a threshold t, such that for the positively

labeled points xi ∈ X it is the case the `(β · xi) ≥ t, and for the negatively labeled points xi

it is the case that `(β · xi) < t. The VC-dimension of a loss function is then the maximum

cardinality of a shatterable set. It is well known that if the loci of points x ∈ <d where

`(β · x) = t is a hyperplane then the VC-dimension is at most d + 1 [101]. It is obvious

that this property holds if the loss function is SVM, and [83] show that it holds if the loss

function is logistic regression. The regularizer does not affect the VC-dimension of a RLM

problem.

Definition 7 ((σ, τ)-scaling). A loss function ` and a regularizer r satisfy the (σ, τ)-scaling

condition if `(−σ) > 0, and if ‖β‖2 ≥ σ then r(β) ≥ τ `(‖β‖2).

Intuitively, this condition ensures that the objective value of any correctly classified point

that is near the separating hyperplane must be bounded away from zero, that is either the

loss function or the regularizer must be bounded away from zero.

Theorem 8 ([45, 28]). Let (n,X, Y, `, r, λ,R, κ) be an instance of the RLM problem where

the loss function has VC-dimension at most ∆. Let s′i be an upper bound on the sensitivity

si, let S ′ =
∑n

i=1 s
′
i. Let ε, δ ∈ (0, 1) be arbitrary. Let C be a random sample of at least

10S′

ε2
(∆ logS ′ + log(1

δ
))) points sampled in an i.i.d fashion, where the probability that point

i ∈ [1, n] is selected each time is s′i/S
′. Let the associated weight ui for each point xi ∈ C be

S′

s′i |C|
. Then C and U = {ui | xi ∈ C} is an ε-coreset with probability at least (1− δ).
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2.3 Joins

Here we define some of the terms and explain some of the previous results from database

literature and relational algorithms. Before explaining the definition of the join, we define a

table/relation T to be a set of tuples (x1, . . . , xd) where xi is a member of Di, the domain of

column/feature i. Therefore, we use the notation x ∈ T for a tuple x and table T to denote

the membership of x in T . Furthermore, we use Ci to denote the set of columns/features of

table Ti.

Let T be a table with set of columns C and let C ′ ⊆ C, then for a tuple x ∈ T we define

the projection of x onto C ′ denoted by ΠC′(x) to be a tuple consisting only those elements

of x that are in C ′. For example, let T be a table with columns (a, b, c) and let (1, 2, 3) be a

tuple/row in T . If C ′ = a, c, then ΠC′(x) = (1, 3).

Definition 9 (Join). For a set of input tables T1, . . . , Tm, with columns C1, . . . , Cm the join

of them is defined as a table J = T1 on · · · on Tm with columns C =
⋃
iCi such that x ∈ J if

and only if ΠCi(x) ∈ Ti for all i ∈ [m]

It is possible to model the structure of a join by a hypergraph H = (V,E) such that each

column of the join is vertex in V and each input table Ti is a hyperedge in E. Using such a

hypergraph and the size of the input tables, [17] has introduced the following upper bound

for the size of the join.

Definition 10 (Fractional edge cover number ρ∗). Let H = (V , E) be a hypergraph (of some

query Q). Let B ⊆ V be any subset of vertices. A fractional edge cover of B using edges in

H is a feasible solution ~λ = (λS)S∈E to the following linear program:

min
∑
S∈E

λS

s.t.
∑
S:v∈S

λS ≥ 1, ∀v ∈ B

λS ≥ 0, ∀S ∈ E .

The optimal objective value of the above linear program is called the fractional edge cover

number of B in H and is denoted by ρ∗H(B). When H is clear from the context, we drop the

subscript H and use ρ∗(B).
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Given a join query Q, the fractional edge cover number of Q is ρ∗H(V) where H = (V , E)

is the hypergraph of Q.

Theorem 11 (AGM-bound [17, 51]). Given a join query Q over a relational database in-

stance I, the output size is bounded by

|Q(I)| ≤ nρ
∗
,

where ρ∗ is the fractional edge cover number of Q.

Theorem 12 (AGM-bound is tight [17, 51]). Given a join query Q and a non-negative

number n, there exists a database instance I whose relation sizes are upper-bounded by n and

satisfies

|Q(I)| = Θ(nρ
∗
).

[86] has introduced a worst-case optimal algorithm for joining tables that can perform

a join in time O(mdA + d2
∑

i ni) where A is the AGM bound of the query and ni is the

cardinality of table Ti.

Relational algorithms often assume that the join query is acyclic since for a general join,

even finding out if the join is empty can be NP-Hard. The followings are the definitions of

acyclicity and hypertree decomposition of a join query.

Definition 13 (Hypertree decomposition). Let H = (V , E) be a hypergraph. A tree decom-

position of H is a pair (T, χ) where T = (V (T ), E(T )) is a tree and χ : V (T )→ 2V assigns

to each node of the tree T a subset of vertices of H. The sets χ(t), t ∈ V (T ), are called the

bags of the tree decomposition. There are two properties the bags must satisfy

(a) For any hyperedge F ∈ E, there is a bag χ(t), t ∈ V (T ), such that F ⊆ χ(t).

(b) For any vertex v ∈ V, the set {t | t ∈ V (T ), v ∈ χ(t)} is not empty and forms a connected

subtree of T .

Definition 14 (Acyclicity). A join query J = T1 on · · · on Tm is acyclic if there exists a tree

G = (V,E), called the hypertree decomposition of J , such that:

• The set of vertices are V = {v1, . . . , vm}, and
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• for every feature c ∈ C, the set of vertices {vi|c ∈ Ci} is a connected component of G.

In Section 2.4.2, the algorithm to test if a query is acyclic is explained. The same

algorithm can return a hypertree decomposition of the acyclic query.

For non-acyclic queries, we often need a measure of how “close” a query is to being

acyclic. To that end, we use width notions of a query.

Definition 15 (g-width of a hypergraph: a generic width notion [11]). Let H = (V , E) be

a hypergraph, and g : 2V → R+ be a function that assigns a non-negative real number to

each subset of V. The g-width of a tree decomposition (T, χ) of H is maxt∈V (T ) g(χ(t)). The

g-width of H is the minimum g-width over all tree decompositions of H. (Note that the

g-width of a hypergraph is a Minimax function.)

Definition 16 (Treewidth and fractional hypertree width are special cases of g-width). Let s

be the following function: s(B) = |B| − 1, ∀V ⊆ V. Then the treewidth of a hypergraph H,

denoted by tw(H), is exactly its s-width, and the fractional hypertree width of a hypergraph

H, denoted by fhtw(H), is the ρ∗-width of H.

From the above definitions, fhtw(H) ≥ 1 for any hypergraph H. Moreover, fhtw(H) = 1

if and only if H is acyclic.

2.4 Functional Aggregation Queries

In this section, we define SumProd and SumSum queries which are two types of Func-

tional Aggregation Queries. Our definitions are a little different than the definitions in [9];

however, they can be seen as special cases of the definition in [9].

Given a collection of relational tables T1, . . . Tm with real-valued entries. Let J = T1 on

T2 on · · · on Tm be the design matrix that arises from the inner join of the tables. Let n be

an upper bound on the number of rows in any table Ti, let N be the number of rows in J ,

and let d be the number of columns/features in J .
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An FAQ query Q(J) that is either a SumProd query or a SumSum query. We define a

SumSum query to be a query of the form:

Q(J) =
⊕
x∈J

d⊕
i=1

Fi(xi)

where (R,⊕, I0) is a commutative monoid over the arbitrary set R with identity I0. We

define a SumProd query to be a query of the form:

Q(J) =
⊕
x∈J

d⊗
i=1

Fi(xi)

where (R,⊕,⊗, I0, I1) is a commutative semiring over the arbitrary set R with additive

identity I0 and multiplicative identity I1. In each case, x is a row in the design matrix J , xi

is the entry in column/feature i of x, and each Fi is an arbitrary (easy to compute) function

with range R.

SumProd queries and SumSum queries can be also defined grouped by one of the input

tables. The result of a SumProd query grouped by table Ti is a vector with |Tj| elements,

such that for every row r ∈ Tj there is a corresponding element in the result with the

following value:

Qr(J) =
⊕
x∈Jonr

d⊗
i=1

Fi(xi)

Note that J on r is all the rows in the design matrix whose projection on the columns of Ti

is r.

The followings are the definitions of commutative monoids and semirings.

Definition 17. Fix a set S and let ⊕ be a binary operator S × S → S. The set S with ⊕ is

a monoid if (1) the operator satisfies associativity; that is, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) for all

a, b, c ∈ S and (2) there is identity element e ∈ S such that for all a ∈ S, it is the case that

e⊕a = a⊕e = e. A commutative monoid is a monoid where the operator ⊕ is commutative.

That is a⊕ b = b⊕ a for all a, b ∈ S.
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Definition 18. A semiring is a tuple (R,⊕,⊗, I0, I1). The ⊕ operator is referred to as

addition and the ⊗ is referred to as multiplication. The elements I0 and I1 are referred as 0

element and 1 element and both are included in R. The tuple (R,⊕,⊗, I0, I1) is a semiring

if

A. it is the case that R and ⊕ are a commutative monoid with I0 as the identity.

B. R and ⊗ is a monoid with identity I1.

C. the multiplication distributes over addition. That is for all a, b, c ∈ R it is the case that

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

D. the I0 element annihilates R. That is, a⊗ I0 = I0 and I0 ⊗ a = I0 for all a ∈ R.

A commutative semiring is a semiring where the multiplication is commutative. That is,

a⊗ b = b⊗ a for all a, b ∈ S.

Inside-Out algorithm introduced in [9], can efficiently evaluate simple SumProd queries

as well as SumProd queries grouped by one of the input tables. Assuming ⊕ and ⊗ can

be calculated in constant time, the time complexity of Inside-Out for evaluating SumProd

queries is O(md2nfhtw log(n)) where m is the number of tables in the join, d is the number

of columns, n is the cardinality of the largest input table (the number of rows), and fhtw

is the fractional hypertree width of the query. For general SumSum queries, it is possi-

ble to use m different SumProd queries [2] and as a result they can be computed in time

O(m2d2nfhtw log(n)). In the following theorem, we prove that the SumSum queries involving

arithmetic summations can be computed using one SumProd query. Note that the SumSum

query in the following theorem can be grouped by an input table as well.

Theorem 19. Let Qf be a function from domain of column f in J to R, then the following

SumSum query can be computed using a SumProd query grouped by Ti.

G(J) =
∑

X∈ronJ

∑
f

Fi(xf )

Proof. Let S = {(a, b) | a ∈ R, b ∈ I}, and for any two pairs of (a, b), (c, d) ∈ S we define:

(a, b)⊕ (c, d) = (a+ c, b+ d)
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and

(a, b)⊗ (c, d) = (ad+ cb, bd).

Then the theorem can be proven by using the following two claims:

A. (S,⊕,⊗) forms a commutative semiring with identity zero I0 = (0, 0) and identity one

I1 = (0, 1).

B. The query ⊕X∈J ⊗f (Qf (xf ), 1) is a SumProd FAQ where the first entry of the result is∑
X∈J

∑
f Qf (xf ) and the second entry is the number of rows in J .

Proof of the first claim: Since arithmetic summation is commutative and associative, it

is easy to see ⊕ is also commutative and associative. Furthermore, based on the definition

of ⊕ we have (a, b)⊕ I0 = (a+ 0, b+ 0) = (a, b).

The operator ⊗ is also commutative since arithmetic multiplication is commutative, the

associativity of ⊗ can be proved by

(a1, b1)⊗ ((a2, b2)⊗ (a3, b3)) = (a1, b1)⊗ (a2b3 + a3b2, b2b3)

= (a1b2b3 + b1a2b3 + b1b2a3, b1b2b3)

= (a1b2 + b1a2, b1b2)⊗ (a3, b3)

= ((a1, b1)⊗ (a2, b2))⊗ (a3, b3)

Moreover, note that based on the definition of ⊗, (a, b)⊗ I0 = I0 and (a, b)⊗ I1 = (a, b).

The only remaining property that we need to prove is the distribution of ⊗ over ⊕:

(a, b)⊗ ((c1, d1)⊕ (c2, d2)) = (a, b)⊗ (c1 + c2, d1 + d2)

= (a, b)⊗ (c1 + c2, d1 + d2)

= (c1b+ c2b+ ad1 + ad2, bd1 + bd2)

= (c1b+ ad1, bd1)⊕ (c2b+ ad2, bd2)

= ((a, b)⊗ (c1, d1))⊕ ((a, b)⊗ (c2, d2))
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Now we can prove the second claim: To prove the second claim, since we have already

shown the semiring properties of (S,⊕,⊗) we only need to show what is the result of ⊕X∈J⊗f
(Qf (xf ), 1). We have ⊗f (Qi(xf ), 1) = (

∑
f Qi(xf ), 1), therefore

⊕X∈J ⊗f (Qi(xf ), 1) = ⊕X∈J(
∑
f

Qf (xf ), 1) = (
∑
X∈J

∑
f

Qf (xf ),
∑
X∈J

1)

where the first entry is the result of the SumSum query and the second entry is the number

of rows in J .

2.4.1 FAQ-AI

Unfortunately, the formal definition of FAQ-AI is rather cumbersome and notation heavy.

To aid the reader, after the formal definitions, we give some examples of how to model some

of the particular learning problems discussed earlier as FAQ-AI problems.

The input to FAQ-AI problem consists of three components:

• A collection of relational tables T1, . . . Tm with real-valued entries. Let J = T1 on T2 on

· · · on Tm be the design matrix that arises from the inner join of the tables. Let n be an

upper bound on the number of rows in any table Ti, let N be the number of rows in J ,

and let d be the number of columns/features in J .

• An FAQ query Q(J) that is either a SumProd query or a SumSum query.

• A collection L = {(G1, L1), . . . (Gb, Lb)} of additive inequalities, where Gi is a collection

{gi,1, gi,2, . . . gi,d} of d (easy to compute) functions that map the column domains to the

reals, and each Li is a real number. A row x ∈ J satsifies the additive inequalities in L

if for all i ∈ [1, b], it is the case that
∑d

j=1 gi,j(xj) ≤ Li.

FAQ-AI(k) is a special case of FAQ-AI when the cardinality of L is at most k.

The output for the FAQ-AI problem is the result of the query on the subset of the design

matrix that satisfies the additive inequalities. That is, the output for the FAQ-AI instance

with a SumSum query is:

Q(L(J)) =
⊕
x∈L(J)

d⊕
i=1

Fi(xi) (8)
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And the output for the FAQ-AI instance with a SumProd query is:

Q(L(J)) =
⊕
x∈L(J)

d⊗
i=1

Fi(xi) (9)

Here L(J) is the set of x ∈ J that satisfy the additive inequalities in L. To aid the reader

in appreciating these definitions, we now illustrate how some of the SVM related problems

in the introduction can be reduced to FAQ-AI(1).

Counting the number of negatively labeled points correctly classified by a

linear separator: Here each row x of the design matrix J conceptually consists of a point

in Rd−1, whose coordinates are specified by the first d−1 columns in J , and a label in {1,−1}

in column d. Let the linear separator be defined by β ∈ Rd−1. A negatively labeled point

x is correctly classified if
∑d−1

i=1 βixi ≤ 0. The number of such points can be counted using

SumProd query with one additive inequality as follows: ⊕ is addition, ⊗ is multiplication,

Fi(xi) = 1 for all i ∈ [d−1], Fd(xd) = 1 if xd = −1, and Fd(xd) = 0 otherwise, g1,j(xj) = βjxj

for j ∈ [d− 1], g1,d(xd) = 0, and L1 = 0.

Finding the minimum distance to the linear separator of a correctly classified

negatively labeled point: This distance can be computed using a SumProd query with one

additive inequality as follows: ⊕ is the binary minimum operator, ⊗ is addition, Fi(xi) = βixi

for all i ∈ [d − 1], Fd(xd) = 1 if xd = −1, and Fd(xd) = 0 otherwise, g1,j(xj) = βjxj for

j ∈ [d− 1], g1,d(xd) = 0, and L1 = 0.

2.4.2 The Inside-Out Algorithm for Acyclic SumProd Queries

In this section, we explain how to obtain a hypertree decomposition of an acyclic join,

and then explain (a variation of) the Inside-Out algorithm from [9] for evaluating a SumProd

query Q(J) = ⊕x∈J ⊗di=1 Fi(xi) over a commutative semiring (R,⊕,⊗, I0, I1) for acyclic join

J = T1 on · · · on Tm. A call to Inside-Out may optionally include a root table Tr.

Let Ci denote the set of features in Ti and let C =
⋃
iCi. Furthermore, given a set of

features Ci and a tuple x, let ΠCi(x) be the projection of x onto Ci.

Algorithm to Compute Hypertree Decomposition:

A. Initialize graph G = (V, ∅) where V = {v1, . . . , vm}.
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B. Repeat the following steps until |T | = 1:

a. Find Ti and Tj in T such that every feature of Ti is either not in any other table of

T or is in Tj. If there exists no Ti and Tj with this property, then the query is cyclic.

b. Remove Ti from T and add the edge (vi, vj) to G.

Inside-Out Algorithm:

A. Compute the hypertree decomposition G = (V,E) of J .

B. Assign each feature c in J to an arbitrary table Ti such that c ∈ Ci. Let Ai denote the

features assigned to Ti in this step.

C. For each table Ti, add a new column/feature Qi. For all the tuples x ∈ Ti, initialize the

value of column Qi in row x to Qx
i =

⊗
j∈Ai Fj(xj). Note that if Ai = ∅ then Qx

i = I1.

D. Repeat until G has only one vertex

a. Pick an arbitrary edge (vi, vj) in G such that vi is a leaf and i 6= r.

b. Let Cij = Ci ∩ Cj be the shared features between Ti and Tj.

c. Construct a temporary table Tij that has the features Cij ∪ {Qij}.

d. If Cij = ∅, then table Tij only has the column/feature Qij and one row, and its lone

entry is set to ⊕x∈TiQx
i . Otherwise, iterate through the y such that there exists an

x ∈ Ti for which ΠCi(x) = y, and add the row (y,Qy
ij) to table Tij where: Qy

ij is set

to the sum, over all rows x ∈ Ti such that Cij(x) = y, of Qx
i .

e. For all the tuples (x,Qx
j ) ∈ Tj, let y = ΠCij(x), and update Qx

j by

Qx
j ← Qx

j ⊗Q
y
ij.

If (y,Qy
ij) /∈ Tij, set Qx

j = I0.

f. Remove vertex vi and edge (vi, vj) from G.

E. At the end, when there is one vertex vr left in G, return the value⊕
(x,Qxr )∈Tr

Qx
r
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When we use the Inside-Out algorithm in the context of an approximation algorithm in

Chapter 3, it is important that the sum Qy
ij computed in step d is computed using a balanced

binary tree, so that if k items are being summed, the depth of the expression tree is at most

dlog ke.

One way to think about step 4 of the algorithm is that it is updating the Qj values to

what they would be if, what good old CLRS [37] calls a relaxation in the description of the

Bellman-Ford shortest path algorithm, was applied to every edge in a particular bipartite

graph Gi,j. In Gi,j one side of the vertices are the rows in Ti, and the other side are the

rows in Tj, and there a directed edge (x, y) from a vertex/row in Ti to a vertex/row in Tj

if they have equal projections onto Ci,j. The length P y
j of edge (x, y) is the original value

of Qy
j before the execution of step 4. A relaxation step on a directed edge (x, y) is then

Qy
j = (P y

j ⊗Qx
i )⊕Q

y
j . Therefore, the result of step 4 of Inside-Out is the same as relaxing

every edge in Gi,j. Although Inside-Out does not explicitly relax every edge. Inside-Out

exploits the structure of Gi,j, by grouping together rows in Ti that have the same projection

onto Ci,j, to be more efficient.

Note that as it is mentioned in [9], we can slightly modify the same algorithm and apply

it to cyclic joins as well. To do so, we need to find the hypertree decomposition of the join

(or an approximation to it) and for each vertex in the hypertree decomposition of the join,

we create a table that is the join of the original input tables assigned to that vertex. Then we

use these tables and the Inside-Out algorithm for acyclic queries to compute the SumProd

query.
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3.0 Functional Aggregation Queries Under Additive Constraint

In this section, we consider the problem of evaluating Functional Aggregate Queries

(FAQ’s) subject to additive constraints. We start by showing in Section 3.1 that the FAQ-

AI(1) problem is #P -hard, even for the problem of counting the number of rows in the design

matrix for a cross-product join. Therefore, a relational algorithm for FAQ-AI(1) queries is

extraordinarily unlikely as it would imply P = #P .

Thus, we turn to approximately computing FAQ-AI queries. An ideal result would

be what we call a Relational Approximation Scheme (RAS), which is a collection {Aε} of

relational algorithms, one for each real ε > 0, such that each Aε is outputs a solution that

has relative error at most ε. Our main result is a RAS for FAQ-AI(1) queries that have

certain natural properties, which we now define.

Definition 20.

• An operator � has bounded error if it is the case that when x/(1+δ1) ≤ x′ ≤ (1+δ1)x and

y/(1+δ2) ≤ y′ ≤ (1+δ2)y then (x�y)/((1+δ1)(1+δ2)) ≤ x′�y′ ≤ (1+δ1)(1+δ2)(x�y).

• An operator introduces no error if it is the case that when x/(1+δ1) ≤ x′ ≤ (1+δ1)x and

y/(1+δ2) ≤ y′ ≤ (1+δ2)y then (x�y)/(1+max(δ1, δ2)) ≤ x′�y′ ≤ (1+max(δ1, δ2))(x�

y)..

• An operator � is repeatable if for any two non-negative integers k and j and any non-

negative real δ such that k/(1 + δ) ≤ j ≤ (1 + δ)k, it is the case that for every x ∈ R,

(
⊙k x)/(1 + δ) ≤

⊙j x ≤ (1 + δ)
⊙k x.

• An operator � is monotone if it is either monotone increasing or monotone decreasing.

The operator � is monotone increasing if x�y ≥ max(x, y). The operator � is monotone

decreasing if x� y ≤ min(x, y).

Theorem 21. There is a RAS to compute a SumSum FAQ-AI(1) query over a commutative

monoid (R,⊕, I0) if:

• The domain R is a subset of reals R.

• The operators ⊕ and ⊗ can be computed in polynomial time.
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• ⊕ introduces no error.

• ⊕ is repeatable.

Theorem 22. There is a RAS to compute a SumProd FAQ-AI(1) query over a commutative

semiring (R,⊕,⊗, I0, I1) if:

• The domain R is R+ ∪ {I0} ∪ {I1}.

• I0, I1 ∈ R+ ∪ {+∞} ∪ {−∞}

• The operators ⊕ and ⊗ can be computed in polynomial time.

• ⊕ introduces no error.

• ⊗ has bounded error.

• ⊕ is monotone. An operator � is monotone if it is either monotone increasing or mono-

tone decreasing.

• The log of the aspect ratio of the query is polynomially bounded. The aspect ratio is the

ratio of the maximum, over every possible submatrix of the design matrix, of the value of

the query on that submatrix, to the minimum, over every possible submatrix of the design

matrix, of the value of the query on that submatrix.

In Section 2.4.2 we review the Inside-Out algorithm for SumProd queries over acyclic

joins, as our algorithms will use the Inside-Out algorithm.

In Section 3.2, we explain how to obtain a RAS for a special type of FAQ-AI(1) query, an

Inequality Row Counting Query, that counts the number of rows in the design matrix that

satisfy a given additive inequality. A even more special case of an Inequality Row Counting

query is counting the number of points that lie on a given side of a given hyperplane.

Our algorithm for Inequality Row Counting can be viewed as a reduction to the problem

of evaluating a general SumProd query (without any additive inequalities), over a more

complicated type of semiring, that we call a dynamic programming semiring. In a dynamic

programming semiring the base elements can be thought of as arrays, and the summation

and product operations are designed so that the SumProd query computes a desired dynamic

program. In the case of Inequality Row Counting, our SumProd query essentially ends up

implementing the dynamic program for Knapsack Counting from [42]. Given the widespread

utility of dynamic programming as an algorithm design technique, it seems to us likely that

37



the use of dynamic programming semirings will be useful in designing relational algorithms

for other problems. Connections between semirings and dynamic programming have certainly

been observed in the past. Nevertheless, the references we could find mostly observed that

some algorithms can be generalized to work over semirings, for example, Dijkstra’s algorithm

is known to work over certain types of semirings [81]. We couldn’t find references in the

literature that designed semirings to compute particular dynamic programs (although it

would hardly be shocking if such references were existed, and we welcome pointers if reviewers

know of any such references).

The time complexity of our algorithm for Inequality Row Counting is at mostO
(
m6 log4 n

ε2

)
times the time complexity of the algorithm in [9] for evaluating an SumProd query without

additive inequalities, which is O(d2mn log n) if the join is acyclic. Thus, for acyclic joins,

the running time of our algorithm is O
(
m7d2n log5 n

ε2

)
. Note that in most natural instances of

interest, n is orders of magnitude larger than d or m. Thus, it is important to note that the

running time of our algorithm is nearly linear in the dominant parameter n. Finally, we end

Section 3.2 by showing how we use this Inequality Row Counting RAS to obtain a RAS for

SumSum FAQ-AI(1) queries covered by Theorem 21.

In Section 3.3 we explain how to generalize our RAS for SumProd FAQ-AI(1) queries

covered by Theorem 22.

In Section 3.4 we show several applications of our main results to obtain RAS for several

natural problems. And we give a few examples where our main result does not apply.

In Section 3.5 we show that the problem of obtaining O(1)-approximation for a row

counting query with two additive inequalities is NP-hard, even for acyclic joins. This shows

that our result for FAQ-AI(1) cannot be extended to FAQ-AI(2), and that a relational

algorithm with bounded relative error for row counting with two additive inequalities is

quite unlikely, as such an algorithm would imply P = NP.
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3.1 NP-Hardness of FAQ-AI(1)

Theorem 23. The problem of evaluating a FAQ-AI(1) query is #P -Hard.

Proof. We prove the #-hardness by a reduction from the #P -hard Knapsack Counting

problem. An instance of Knapsack consists of a collection W = {w1, . . . , wd} of nonnegative

integer weights, and a nonnegative integer weight C. The output should be the number of

subsets of W with aggregate weight at most C.

We construct the instance of FAQ-AI as follows. We creating d tables. Each table Ti

has one column and two rows, with entries 0 and wi. Then J = T1 on T2 on · · · on Td is the

cross product join of the tables. We define β to be the d dimensional vector with 1’s in all

dimensions, and the additive inequality to β · x ≤ C. Then note that there is then a natural

bijection between the rows in J that satisfy this inequality the subsets of W with aggregate

weight at most C.

3.2 Algorithm for Inequality Row Counting

The Inequality Row Counting is a special case of SumProd FAQ-AI(1) in which the

SumProd query Q(L(J)) =
∑

x∈J
∏d

i=1 1 counts the number of rows in the design matrix

that satisfy the constraints L, which consists of one additive constraint
∑

i gi(xi) ≤ L, over

a join J = T1 on T2 on · · · on Tm. In Section 3.2.1, we design a SumProd query over a

dynamic programming semiring that computes Q(L(J)) exactly in exponential time. Then

in Section 3.2.2 we explain how to apply standard sketching techniques to obtain a RAS. We

finish in Section 3.2.3 by explaining how to use our algorithm for Inequality Row Counting

to obtain to obtain a RAS SumSum query covered by Theorem 21.

3.2.1 An Exact Algorithm

We first define a commutative semiring (S,t,u, E0, E1) as follows:
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• The elements of the base set S are finite multisets of real numbers. Let #A(e) denote

the frequency of the real value e in the multiset A and let it be 0 if e is not in A. Thus,

one can also think of A as a set of pairs of the form (e,#A(e)).

• The additive identity E0 is the empty set ∅.

• The addition operator t is the union of the two multisets; that is A = B tC if and only

if for all real values e, #A(e) = #B(e) + #C(e).

• The multiplicative identity is E1 = {0}.

• The multiplication operator u contains the pairwise sums from the two input multisets;

that is, A = B uC if and only if for all real values e, #A(e) =
∑

i∈R(#B(e− i) ·#C(i)).

Note that this summation is well-defined because there is a finite number of values for i

such that B(e− i) and C(i) are non-zero.

Lemma 24. (S,t,u, E0, E1) is a commutative semiring.

Proof. To prove the lemma, we prove the following claims in the order in which they appear.

A. A tB = B t A

B. A t (B t C) = (A tB) t C

C. A t E0 = A

D. A uB = B u A

E. A u (B u C) = (A uB) u C

F. A u E0 = E0

G. A u E1 = A

H. A u (B t C) = (A uB) t (A u C)

First, we show t is commutative and associative and A t E0 = A. By definition of t,

C = AtB if and only if for all e ∈ C we have #C(e) = #A(e)+#B(e). Since the summation

is commutative and associative, t would be commutative and associative as well. Moreover,

note that if B = E0 = ∅ then #B(e) = 0 for all values of e and as a result #C(e) = #A(e)

which means C = A.

Now we can show that u is commutative and associative. By the definition of u, C =

AuB if and only if for all values of e, #C(e) =
∑

i∈R(#A(e− i) ·#B(i)), since we are taking
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the summation over all values:

#C(e) =
∑
i∈R

(#A(e− i) ·#B(i))

=
∑
i∈R

(#A(i) ·#B(e− i))

The last line is due to the definition of B u A, which means u is commutative.

To show claim (5), let D = A u (B u C) and D′ = (A uB) u C:

#D(e) =
∑
i∈R

#A(e− i) ·
(∑
j∈R

#B(i− j) ·#C(j)
)

=
∑
i,j∈R

#A(e− i) ·#B(i− j) ·#C(j)

By setting i′ = e− j and j′ = e− i, we obtain:

#D(e) =
∑
i′,j′∈R

#A(j′) ·#B(i′ − j′) ·#C(e− i′)

=
∑
i′∈R

(∑
j′∈R

#A(j′) ·#B(i′ − j′)
)
·#C(e− i′) = #D′(e),

which means u is associative, as desired.

Now we prove AuE0 = E0 and AuE1 = A. The claim (6) is easy to show since for all e,

#E0(e) = 0 then for all real values e
∑

i∈dist(A)(#A(i)·#E0(e−i)) = 0; therefore, AuE0 = E0.

For claim (7), we have
∑

i∈dist(E1)
(#E1(i)·#A(e−i)) = (#E1(0)·#A(e)) = #A(e); therefore,

A u E1 = A.

At the end, all we need to show is the distributive law, which means we need to show

A u (B t C) = (A u B) t (A u C). Let D = A u (B t C) and D′ = (A u B) t (A u C). We

have,

#D(e) =
∑
i∈R

#A(e− i) · (#B(i) + #C(i))

=
∑
i∈R

(#A(e− i) ·#B(i)) + (#A(e− i) ·#C(i))

=
∑
i∈R

(#A(e− i) ·#B(i)) +
∑
j∈R

(#A(e− j) ·#C(j)) = #D′(e)
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Lemma 25. The SumProd query Q̂(J) = tx∈Judi=1Fi(xi), where Fi(xi) = {gi(xi)}, evaluates

to the multiset {
∑

i gi(xi) | x ∈ J} the aggregate of the gi functions over the rows of J .

Proof. Based on the definition of u we have,

udi=1Fi(xi) = udi=1{gi(xi)} =

{
d∑
i=1

gi(xi)

}

Then we can conclude:

tx∈J udi=1 Fi(xi) = tx∈J

{
d∑
i=1

gi(xi)

}
=

{
d∑
i=1

gi(xi) | x ∈ J

}

Thus, the inequality row count is the number of elements in the multiset returned by

Q̂(J) that are at most L.

3.2.2 Applying Sketching

For a multiset A, let 4A(t) denote the number of elements in A that are less than or

equal to t. Then the ε-sketch Sε(A) of a multiset A is a multiset formed in the following

manner: For each integer k ∈ [1, blog1+ε |A|c] there are b(1 + ε)kc− b(1 + ε)k−1c copies of the

b(1 + ε)kc smallest element xk ∈ A; that is, xk = 4A(b(1 + ε)kc). Note that |Sε(A)| may

be less that |A| as the maximum value of k is blog1+ε |A|c. We will show in Lemma 26 that

sketching preserves 4A(t) within (1 + ε) factor.

Lemma 26. For all t ∈ R, we have (1− ε)4A(t) ≤ 4Sε(A)(t) ≤ 4A(t).

Proof. Let A′ = Sε(A). Note that since we are always rounding the weights up, every item

in A that is larger than t will be larger in A′ as well. Therefore, 4A′(t) ≤ 4A(t). We now

show the lower bound. Recall that in the sketch, every item in the sorted array A with an

index in the interval ((1+ε)i, (1+ε)i+1] (or equivalently ((1+ε)i, b(1+ε)i+1c) will be rounded

to A[b(1 + ε)i+1c]. Let i be the integer such that (1 + ε)i < 4A(t) ≤ (1 + ε)i+1, then the only
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items that are smaller or equal to t in A and are rounded to have a weight greater than t in

A′ are the ones with index between (1 + ε)i and j = 4A(t). Therefore,

4A(t)−4A′(t) ≤j − (1 + ε)i ≤ (1 + ε)i+1 − (1 + ε)i

=ε(1 + ε)i ≤ ε4A(t),

which shows the lower bound of #4A(t) as claimed.

Then our algorithm runs the Inside-Out algorithm, with the operation t replaced by an

operation ©, defined by A© B = Sα(A t B), and with the operation u replaced by an

operation �, defined by A�B = Sα(AuB), where α = Θ( ε
m2 log(n)

). That is, the operations

© and � are the sketched versions of t and u. That is, Inside-Out is run on the query

Q̃(J) =©x∈J �di=1 Fi(xi), where Fi(xi) = {gi(xi)}.

Because © and � do not necessarily form a semiring, Inside-Outside may not return

Q̃(J). However, Lemma 27 bounds the error introduced by each application of © and �.

This makes it possible in Theorem 28 to bound the error of Inside-Out’s output.

Lemma 27. Let A′ = Sβ(A), B′ = Sγ(B), C = A t B, C ′ = A′ t B′, D = A u B, and

D′ = A′ uB′. For all t ∈ R, we have:

A. (1−max(β, γ))4C(t) ≤ 4C ′(t) ≤ 4C(t)

B. (1− β − γ)4D(t) ≤ 4D′(t) ≤ 4D(t)

Proof. By the definition of t, we know #C ′(t) = #A′(t) + #B′(t); Thus, we have:

4C ′(t) =
∑
τ≤t

#C ′(τ) =
∑
τ≤t

#A′(τ) +
∑
τ≤t

#B′(τ)

= 4A′(t) +4B′(t)

Similarly, we have 4C(t) = 4A(t) +4B(t). Then by Lemma 26 we immediately have the

first claim.

Let D′′ = A uB′, Based on the definition of u we have:

4D′′(t) =
∑
τ≤t

#D′′(t) =
∑
τ≤t

∑
v∈R

(#A(v) ·#B′(τ − v))

=
∑
v∈R

∑
τ≤t

(#A(v) ·#B′(τ − v)) =
∑
v∈R

(#A(v) · 4B′(t− v))
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Therefore, using Lemma 26 we have: (1 − γ)4D(t) ≤ 4D′′(t) ≤ (1 + γ)4D(t). We can

similarly replace A to A′ in D′′ and get (1 − β)4D′′(t) ≤ 4D′(t) ≤ (1 + β)4D′′(t) which

proves the second claim.

Theorem 28. Our algorithm achieves an (1+ε)-approximation to the Row Count Inequality

query Q(L(J)) in time O( 1
ε2

(m3 log2(n))2(d2mnh log(n))).

Proof. We first consider the approximation ratio. Inside-Out on the query Q̃(J) performs

the same semiring operations as does on the query Q̂(J), but it additionally applies the

α-Sketching operation over each partial results, meaning the algorithm applies α-Sketching

after steps d,e, and 5. Lets look at each iteration of applying steps d and e. Each value

produced in the steps d and 5 is the result of applying © over at most nm different values

(for acyclic queries it is at most n). Using Lemma 27 and the fact that the algorithm applies

© first on each pair and then recursively on each pair of the results, the total accumulated

error produced by each execution of steps d and 5 is m log(n)α. Then, since the steps d and

e will be applied once for each table, and e accumulates the errors produced for all tables,

the result of the query will be (m2 log(n) +m)α-Sketch of Q̂(J).

We now turn to bounding the running time of our algorithm. The time complexity of

Inside-Out is O(md2nfhtw log n) when the summation and product operators take a constant

time [9]. Since each multiset in a partial result has at most mn members in it, an α-sketch of

the partial results will have at most O(m logn
α

) values, and we compute each of © and � in

time O
((

m logn
α

)2)
. Therefore, our algorithm runs in time O( 1

ε2
(m3 log2(n))2(d2mnh log(n))).

3.2.3 SumSum FAQ-AI(1)

In this section, we prove Theorem 21, that there is a RAS for SumSum FAQ-AI(1)

queries covered by the theorem. Our algorithm for SumSum queries uses our algorithm for

Inequality Row Counting. Consider the SumSum Q(L(J)) = ⊕x∈L(J) ⊕di=1 Fi(xi), where L

consists of one additive constraint
∑

i gi(xi) ≤ L, over a join J = T1 on T2 on · · · on Tm.

SumSum Algorithm: For each table Tj, we run our Inside-Out on the Inequality Row

Counting query Q̃(J), with the root table being Tj, and let T̃j be the resulting table just
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before step 5 of Inside-Out is executed. From the resulting tables, one can compute, for every

feature i ∈ [d] and for each possible value of xi for x ∈ J , a (1 + ε)-approximation U(xi) to

the number of rows in the design matrix that contain value xi in column i, by aggregating

over the row counts in any table T̃j that contains feature i. Then one can evaluate Q(L(J))

by

d⊕
i=1

⊕
xi∈D(i)

U(xi)⊕
j=1

Fi(xi)

where D(i) is the domain of feature i.

Note that ⊕ operator is assumed to be repeatable, meaning if we have a (1 ± ε) ap-

proximation of U(xi) then the approximation error of
⊕U(xi)

j=1 Fi(xi) is also (1 ± ε). There-

fore, our SumSum algorithm is a (1 + ε)-approximation algorithm because the only error

introduced is caused by our Inequality Row Counting algorithm. The running time is

O( 1
ε2

(m3 log2(n))2(d2m2nh log(n))) because we run m Inequality Row Counting algorithm

m times.

3.3 SumProd FAQ-AI(1)

In this section, we prove Theorem 22, that there is a RAS for SumProd FAQ-AI(1) queries

covered by the theorem. Our RAS for such queries generalizes our RAS for Inequality Row

Counting. Consider the SumProd query Q(L(J)) = ⊕x∈L(J)⊗di=1 Fi(xi). where L consists of

the single additive constraint
∑d

i=1 gi(xi) ≤ L. We again first give an exact algorithm that

can be viewed as a reduction to a SumProd query over a dynamic programming semiring,

and then apply sketching.

3.3.1 An Exact Algorithm

We first define a structured commutative semiring (S,t,u, E0, E1) derived from the

(R,⊕,⊗, I0, I1) as follows:
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• The base set S are finite subsets A of R× (R − {I0}) with the property that (e, v) ∈ A

and (e, u) ∈ A implies v = u; so there is only one tuple in A of the form (e, ∗). One can

can interpret the value of v in a tuple (e, v) ∈ A as a (perhaps fractional) multiplicity of

e.

• The additive identity E0 is the empty set ∅.

• The multiplicative identity E1 is {(0, I1)}.

• For all e ∈ R, define #A(e) to be v if (e, v) ∈ A and I0 otherwise.

• The addition operator t is defined by A t B = C if and only if for all e ∈ R, it is the

case that #C(e) = #A(e)⊕#B(e).

• The multiplication operator u is defined by A u B = C if and only if for all e ∈ R, it is

the case that #C(e) =
⊕

i∈R #A(e− i)⊗#B(i).

Lemma 29. If (R,⊕,⊗, I0, I1), is a commutative semiring then (S,t,u, E0, E1) is a com-

mutative semiring.

Proof. We prove the following claims respectively:

A. A tB = B t A

B. A t (B t C) = (A tB) t C

C. A t E0 = A

D. A uB = B u A

E. A u (B u C) = (A uB) u C

F. A u E0 = E0

G. A u E1 = A

H. A u (B t C) = (A uB) t (A u C)

Based on the definition, C = A t B if and only if #C(e) = #A(e) ⊕#B(e); since ⊕ is

commutative and associative, t will be commutative and associative as well. Furthermore,

#A(e)⊕#E0(e) = #A(e)⊕ I0 = #A(e); therefore, A t E0 = A.
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Let C = A u B, using the commutative property of ⊗ and change of variables, we can

prove the fourth claim:

#C(e) =
⊕
i∈R

#A(e− i)⊗#B(i)

=
⊕
i∈R

#B(i)⊗#A(e− i)

=
⊕
j∈R

#B(e− j)⊗#A(j)

Similarly, using the change of variables j′ = i− j and i′ = j, and semiring properties of

the ⊗ and ⊕, we have: ⊕
i∈R

#A(e− i)⊗ (
⊕
j∈R

#B(i− j)⊗#C(j))

=
⊕
i∈R

⊕
j∈R

(#A(e− i)⊗#B(i− j))⊗#C(j)

=
⊕
i′∈R

(
⊕
j′∈R

#A(e− i′ − j′)⊗#B(j′))⊗#C(i′)

Therefore, A u (B u C) = (A uB) u C.

The claim A u E0 = E0 can be proved by the fact that #E0(i) = I0 for all the elements

and #A(e− i)⊗ I0 = I0. In addition, we have
⊕

i∈R #A(e− i)⊗#E1(i) = #A(e) because,

#E1(i) = I0 for all nonzero values of i and it is I1 for e = 0; therefore, A u E1 = A.

Let D = A u (B t C), the last claim can be proved by the following:

#D(e) =
⊕
i∈R

#A(e− i)⊗ (#B(i)⊕#C(i))

=
⊕
i∈R

(
(#A(e− i)⊗#B(i))⊕ (#A(e− i)⊗#C(i))

)
=
(⊕
i∈R

(#A(e− i)⊗#B(i))
)
⊕
(⊕
i∈R

(#A(e− i)⊗#C(i))
)

where the last line is the definition of (A uB) t (A u C).
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For each column i ∈ [d], we define the function Fi to be {(gi(xi), Fi(xi))} if Fi(xi) 6= I0

and the empty set otherwise. Our algorithm for computing Q(L(J)) runs the Inside-Out

algorithm on the SumProd query:

Q̂ = tx∈J udi=1 Fi(xi)

and returns
⊕

e≤L #Q̂(e).

Lemma 30. This algorithm correctly computes Q(L(J)).

Proof. We can rewrite the generated FAQ as follows:

Q̂ = tx∈J udi=1 Fi(xi)

= tx∈J udi=1 {(gi(xi), Fi(xi))}

= tx∈J

{(
d∑
i=1

gi(xi),
d⊗
i=1

Fi(xi)

)}

Then the operator t returns a set of pairs (e, v) such that for each value e, v = #Q̂(e) is

the aggregation using ⊕ operator over the rows of J where
∑d

i=1 gi(xi) = e. More formally,

#Q̂(e) =
⊕

x∈J,
∑
i gi(xi)=e

(
d⊗
i=1

Fi(xi)

)

Therefore, the value returned by the algorithm is

⊕
e≤L

#Q̂(e) =
⊕
e≤L

⊕
x∈J,

∑
i gi(xi)=e

(
d⊗
i=1

Fi(xi)

)

=
⊕
x∈L(J)

d⊗
i=1

Fi(xi)

48



3.3.2 Applying Sketching

For a set A ∈ S define 4A(`) to be ⊕e≤`#A(e). Note that 4A(`) will be monotonically

increasing if ⊕ is monotonically increasing, and it will be monotonically decreasing if ⊕ is

monotonically decreasing.

Conceptually an ε-sketch Sε(A) of an element A ∈ S rounds all multiplicities up to an

integer power of (1 + ε). Formally the ε-sketch Sε(A) of A is the element A′ of S satisfying

#A′(e) =


⊕

Lk<e≤Uk #A(e) if ∃k e = Uk

I0 otherwise

where

L0 = min{e ∈ R| 4A(e) ≤ 0}

and for k 6= 0

Lk = min{e ∈ R| ρ(1 + ε)k−1 ≤ 4A(e) ≤ ρ(1 + ε)k}

and where

U0 = max{e ∈ R| 4A(e) ≤ 0}

and for k 6= 0

Uk = max{e ∈ R| ρ(1 + ε)k−1 ≤ 4A(e) ≤ ρ(1 + ε)k}

where ρ = min{#A(e) |#e ∈ R and #A(e) > 0}. For the special case that #A(e) ≤ 0 for

all e ∈ R, we only have L0 and U0. Note that the only elements of R that can be zero or

negative are I0 and I1; therefore, in this special case, #A(e) for all the elements e is either

I0 or I1.

Lemma 31. For all A ∈ S, for all e ∈ R+, if A′ = Sε(A) then

4A(e)/(1 + ε) ≤ 4A′(e) ≤ (1 + ε)4A(e)

Proof. Since 4A(e) is monotone, the intervals [Lk, Uk] do not have any overlap except over

the points Lk and Uk, and if the 4A(e) is monotonically increasing, then Lk = Uk+1; and if

4A(e) is monotonically decreasing, then Lk = Uk−1.
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For any integer j we have:

4A(Uj) =
⊕
i≤Uj

#A(i) =
⊕
k≤j

⊕
Lk<i≤Uk

#A(i) =
⊕
k≤j

#A′(Uk)

=
⊕
i≤Uj

#A′(i) = 4A′(Uj)
(10)

Now, first we assume 4A(e) is monotonically increasing and prove the lemma. After

that, we do the same for the monotonically decreasing case. Given a real value e, let k be

the integer such that e ∈ (Lk, Uk]. Then using the definition of Uk and Equality (10) we

have:

4A(e)/(1 + ε) ≤ 4A(Uk)/(1 + ε) = 4A(Uk−1) = 4A′(Uk−1)

≤ 4A′(e) ≤ 4A′(Uk) = 4A(Uk)

= (1 + ε)4A(Uk−1) ≤ (1 + ε)4A(e)

Note that in the above inequalities, for the special case of k = 0, we can use Lk instead of

Uk−1. Similarly, for a monotonically decreasing case we have:

4A(e)/(1 + ε) ≤ 4A(Uk−1)/(1 + ε) = 4A(Uk) = 4A′(Uk)

≤ 4A′(e) ≤ 4A′(Uk−1) = 4A(Uk−1)

= (1 + ε)4A(Uk) ≤ (1 + ε)4A(e)

Then our algorithm runs the Inside-Out algorithm, with the operation t replaced by an

operation ©, defined by A© B = Sα(A t B), and with the operation u replaced by an

operation �, defined by A�B = Sα(A uB), where α = ε
m2 log(n)+m

. That is, the operations

© and � are the sketched versions of t and u. Our algorithm returns4A(L) = ⊕e≤L#A(e).

Because © and � do not necessarily form a semiring, Inside-Outside may not return

©x∈J �mi=1 Fi(xi). However, Lemma 32 bounds the error introduced by each application of

© and �. This makes it possible in Theorem 22 to bound the error of Inside-Out’s output.

Lemma 32. Let A′ = Sβ(A), B′ = Sγ(B), C = A t B, C ′ = A′ t B′, D = A u B, and

D′ = A′ uB′. Then, for all e ∈ R we have:
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A. 4C(e)
1+max(β,γ)

≤ 4C ′(e) ≤ (1 + max(β, γ))4C(e)

B. 4D(e)
(1+β)(1+γ)

≤ 4D′(e) ≤ (1 + β)(1 + γ)4D(e)

Proof. The first claim follows from the assumption that ⊕ does not introduce any error and

it can be proved by the following:

(4A(e)⊕4B(e))/(1 + max(β, γ))

≤#C(e) = 4A′(e)⊕4B′(e)

≤(1 + max(β, γ))(4A(e)⊕4B(e))

The second claim can be also proved similarly; based on definition of u , we have

4D(e) =
⊕
j≤e

⊕
i∈R

(#A(j − i)⊗#B(i))

=
⊕
i∈R

⊕
j≤e

(#A(j − i)⊗#B(i))

=
⊕
i∈R

(#B(i)⊗
⊕
j≤e

#A(j − i))

=
⊕
i∈R

(#B(i)⊗4A(e− i))

Let D′′ = A′ u B, then based on the approximation guarantee of 4A′(e) and the error

properties of ⊗ and ⊕, we have

4D(e)/(1 + β) ≤ 4D′′(e) ≤ (1 + β)4D(e)

Then the second claim follows by replacing B with B′ in D′′ and repeating the above step.

Now we can prove the existence of an algorithm for approximating SumProd FAQ-AI(1)

queries.
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Proof of Theorem 22. We first consider the approximation ratio. Inside-Out on the query

Q̃(J) performs the same semiring operations as does on the query Q̂(J), but it additionally

applies the α-Sketching operation over each partial results, meaning the algorithm applies

α-Sketching after steps d,e, and 5. Lets look at each iteration of steps d and e. Each value

produced in the steps d and 5 is the result of applying © over at most nm different values

(for acyclic queries it is at most n). Using Lemma 27 and the fact that the algorithm applies

© first on each pair and then recursively on each pair of the results, the total accumulated

error produced by each execution of steps d and 5 is m log(n)α. Then, since the steps d and

e will be applied once for each table, and e accumulates the errors produced for all tables,

the result of the query will be (m2 log(n) +m)α-Sketch of Q̂(J).

We now turn to bounding the running time of our algorithm. The time complexity of

Inside-Out is O(md2nfhtw log n) when the summation and product operators take a constant

time [9]. The size of each partial result set A ∈ S, after applying α-sketching, will depend

on the smallest positive value of 4A(e) and the largest value of 4A(e). Let β and γ be the

minimum and maximum positive real value of SumProd query over all possible sub-matrices

of the design matrix, the smallest and largest value of 4A(e) for all partial results A would

be β and γ respectively; therefore, the size of the partial results after applying α-Sketching

is at most O( log(γ/β)
α

). As a result, we compute each of © and � in time O

((
log(γ/β)

α

)2)
.

Therefore, our algorithm runs in time O( 1
ε2

(m2 log(n) log( γ
β
))2(d2mnh log(n))) and the claim

follows by the assumption that the log of the aspect ratio, log( γ
β
), is polynomially bounded.

3.4 Example Applications

In this section, we give example applications of our results.

Inequality Row Counting: Some example problems for which we can use our Inequal-

ity Row Counting to obtain a RAS in a straightforward manner:

• Counting the number of points on one side of a hyperplane, say the points x satisfy

β · x ≤ L.
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• Counting the number of points within a hypersphere of radius r centered at a point y.

The additive constraint is
∑d

i=1(xi − yi)2 ≤ r2.

• Counting the number of points in an axis parallel ellipsoid, say the points x such that∑d
i=1

x2i
α2
i

for some d dimensional vector α.

SumSum FAQ-AI(1) Queries Some examples of problems that can be reduced to

SumSum FAQ-AI(1) queries and an application of Theorem 21 gives a RAS:

• Sum of 1-norm distances from a point y to points on one side of a hyperplane. The

SumSum query is
∑

x∈J
∑d

i=1 |xi−yi|. One can easily verify that the addition introduces

no error and is repeatable.

• Sum of 2-norm squared of points in a axis-parallel ellipsoid. The SumSum query is∑
x∈J
∑d

i=1 x
2
i .

• Number of nonzero entries of points on one side of a hyperplane. The SumSum query is∑
x∈J
∑d

i=1 1xi 6=0.

SumProd FAQ-AI(1) Queries Some examples of problems that can be reduced to

SumProd FAQ-AI(1) queries and an application of Theorem 22 gives a RAS:

• Finding the minimum 1-norm of any point in a hypersphere H of radius r centered at a

point y. The SumProd query is minx∈J
∑d

i=1 |xi|. Note (R+∪{0}∪{+∞},min,+,+∞, 0)

is a commutative semiring. The multiplication operator in this semiring, which is ad-

dition, has bounded error. The addition operator, which is minimum, introduces no error

and is monotone. The aspect ratio is at most (maxx∈J
∑d

i=1 |xi|)/(minx∈J mini∈[d]|xi 6=0 |xi|),

and thus the log of the aspect ratio is polynomially bounded.

• Finding the point on the specified side of a hyperplane H that has the maximum 2-

norm distance from a point y. The SumProd query is maxx∈J
∑d

i=1(yi − xi)
2. Note

that this computes the point with the maximum 2-norm squared distance. One cannot

directly write a SumProd query to compute the point with the 2-norm distance; we need

to appeal to the fact that the closest point is the same under both distance metrics.

Note (R+ ∪ {0} ∪ {−∞},max,+,−∞, 0) is a commutative semiring. The multiplication

operator in this semiring, which is addition, has bounded error. The addition opera-

tor, which is maximum, introduces no error and is monotone. The aspect ratio is at
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most (maxx∈J
∑d

i=1 |xi|)/(minx∈J mini∈[d]|xi 6=0 |xi|), and thus the log of the aspect ratio is

polynomially bounded.

Snake Eyes: Some examples of problems for which our results apparently do not apply:

• Finding the minimum distance of any point on a specified side of a specified hyperplane

H to H. For instance, consider the problem of finding a point x where β · x ≥ L and

x ·β. The natural SumProd query is minx∈J
∑d

i=1 xiβi. Note that some of the xiβi terms

may be negative, so this does not fulfill the condition that the domain has to be over the

positive reals. And this appears to be a nontrivial issue because a good approximation

of s and t does not in general allow one to compute a good approximation of s− t. We

have been call this the subtraction problem. Using a variation of the proof of Theorem

33 one can show that approximating this query within O(1) factor is NP-hard.

• Sum of entries of the points lying on one side of a hyperplane. The natural SumSum

query is
∑

x∈J
∑d

i=1 xi. Again, as some of the xi terms may be be negative, we run into

the subtraction problem again.

• Aggregate 2-norms of the rows in the design matrix. The natural query is
∑

x∈J

(∑d
i=1 x

2
i

)1/2
,

which is neither a SumSum or a SumProd query.

3.5 NP-hardness of FAQ-AI(2) Approximation

Theorem 33. For all c ≥ 1, it is NP-hard to c-approximate the number of rows in the

design matrix (even for a cross-product join) that satisfy two (linear) additive inequalities.

Therefore, it is NP -hard to c-approximate FAQ-AI(2).

Proof. We reduce from the Partition problem, where the input is a collectionW = {w1, w2, ..., wm}

of positive integers, and the question is whether one can partition W into two parts with

equal aggregate sums. From this instance, we create m tables, T1, T2, . . . , Tm, where each Ti

has a single columns and has two rows with entries wi and −wi. Let J be the cross product

of these tables. Note that J has exactly 2m rows and each row x ∈ J contains either wi or

−wi for every i, which can be naturally interpreted as a partitioning that places each item i
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in one part or the other, depending on the sign of wi. The two (linear) additive inequalities

are (1, 1, . . . , 1) ·x ≥ 0 and (−1,−1, . . . ,−1) ·x ≥ 0. Then the solution to the Row Counting

SumProd query subject to these two constraints is the number of ways to partition W into

two parts of equal aggregate sum.
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4.0 Coresets for Regularized Loss Minimization

In this section, we consider the design and mathematical analysis of sampling-based al-

gorithms for regularized loss minimization (RLM) problems on large data sets [96]. Common

regularizers are 1-norm, 2-norm, and 2-norm squared [30]. The parameter λ ∈ < is ideally

set to balance the risks of overfitting and underfitting. We will assume that λ is proportional

to nκ for some 0 < κ < 1, capturing the range of the most commonly suggested regularizers.

In particular, it is commonly recommended to set λ to be proportional to Θ(
√
n) [96, 85].

For this choice of λ, if there was a true underlying distribution from which the data was

drawn in an i.i.d. manner, then there is a guarantee that the computed β will likely have

vanishing relative error with respect to the ground truth [96, Corollary 13.9] [85, Corollary

3]. The parameter R is the maximum 2-norm of any point in X. Note that the regularizer

must scale with R if it is to avoid having a vanishing effect as the point set X scales.1

One popular method to deal with large data sets is to extract a manageably small

(potentially weighted) sample from the data set, and then directly solve the (weighted version

of) RLM problem on the (weighted) sample. Thus, the research question of fundamental

importance is if small coresets exist for RLM problems in general, and for regularized logistic

regression and regularized SVM – further, if they can be efficiently computed within the

common restricted access models.

Our main result is that if the regularizer’s effect does not become negligible as the norm of

the hypothesis scales then a uniform sample of size Θ(n1−κ∆) points is with high probability

a coreset. Here, ∆ is the VC-dimension of the loss function. Thus, coresets exists for general

input instances for the RLM problem, showing regularization allows us to break through the

lower bounds shown in prior work! Formally, this scaling condition says that if `(−‖β‖) = 0

then r(β) must be a constant fraction of `(‖β‖2). We show that this scaling condition holds

when the loss function is either logistic regression or SVM, and the regularizer is the 1-norm,

the 2-norm, or 2-norm squared. For example, in the recommended case that κ = 1/2, the

1To see this note that if we multiplied each coordinate of each point xi by a factor of c, the optimal
hypothesis β would decrease by a factor of c, Thus, decreasing the value of all of the standard regularizers.

56



scaling condition ensures that a uniform sample of Θ̃(d
√
n) points is with high probability a

coreset when the regularizer is one of the standard ones, and the loss function is either logistic

regression and SVM, as they have VC-dimension O(d). Note also that uniform sampling can

be reasonably implemented in all of the popular restricted access models. Therefore, this

yields a reasonable algorithm for all of the restricted access models under the assumption

that a data set of size Θ̃(d
√
n) can be stored, and reasonably solved in the main memory of

one computer.

We complement our upper bound with two lower bounds on the size of coresets. Our

lower bounds assume the 2-norm squared as the regularizer, since intuitively this is the

standard regularizer for which it should be easiest to attain small coresets. We first show

that our analysis is asymptotically tight for uniform sampling. That is, we show that for both

logistic regression and SVM, a uniform sample of size O(n1−κ−ε) may not result in a coreset.

We then show for both logistic regression and SVM there are instances in which every core

set is of size Ω(n(1−κ)/5−ε). This means that more sophisticated sampling methods must still

have core sets whose size is in the same ballpark as is needed for uniform sampling. One

might arguably summarize our results as saying that the simplest possible sampling method

is nearly optimal for obtaining a coreset.

Related Work on Coresets: The most closely related prior work is probably [84], who

considered coresets for unregularized logistic regression; i.e, the regularization parameter

λ = 0. [84] showed that are data sets for which there do not exist coresets of sublinear size,

and then introduced a parameter µ of the instances that intuitively is small when there is

no hypothesis that is a good explanation of the labels, and showed that a coreset of size

roughly linear in µ can be obtain by sampling each point with a uniform probability plus

a probability proportional to its `22 leverage score (which can be computed from a singular

value decomposition of the points). This result yields an algorithm, for the promise problem

in which µ is known a priori to be small (but it is not clear how to reasonably compute µ),

and it is reasonably implementable in the MPC model, and with two passes over the data in

the streaming model. It seems unlikely that this algorithm is implementable in the relational

model due to the complex nature of the required sampling probabilities. Contemporaneously

with our research, [99] obtained results similar in flavor to those of [84]. [99] also showed
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that small coresets exist for certain types of RLM instances; in this case, those in which

the norm of the optimal hypothesis is small. Therefore, for normalized logistic rregression,

[99] shows that when the 2-norm of the optimal β is bound by µ, coresets of size Õ(µ2n1−κ)

can be obtained by sampling a point with probability proportional to its norm divided by

its ordinal position in the sorted order of norms. Therefore, again this yields an algorithm

for the promise problem in which µ is known a priori to be small (and again it is not clear

how to reasonably compute µ). Due to the complex nature of the probabilities, it is not

clear that this algorithm is reasonably implementable in any of the restricted access models

that we consider. Thus, from our perspective, there are three key differences between the

results of [84] and [99] and our positive result: (1) our result applies to all data sets (2) we

use uniform sampling, and thus (3) our sampling algorithm is implementable in all of the

restricted access models that we consider.

Surveys of the use of coresets in algorithmic design can be found in [83] and in [55, Chap-

ter 23]. The knowledge that sampling with a probability at least proportional to sensitivity

yields a coreset has been used for at least a decade as it is used by [40]. Coresets were used

for partitioned clustering problems, such as k-means [54, 79, 19]. Coresets for hard margin

SVM are known [56]. These coresets have an approximation guarantee on the quality of

the margin to the hyperplane. Unfortunately, these ideas are not applicable to soft-margin

SVM.

Coresets have been used the Minimum Enclosing Ball (MEB) problem [55]. Coresets

for MEB are the basis for the Core Vector Machine approach to unregularized kernelized

SVM [100]. Several strong coresets for computing balls are known [29, 20]. We note that while

there is a reduction from the kernelized SVM to MEB, the reduction is not approximation

preserving, and thus the existence of coresets for MEB does not imply the existence of

coresets for SVM.

Coresets have also been used for submodular optimization [80], clustering [21], Baysian

Logistic Regression [61] and in the design of streaming algorithms (e.g. [87]), as well as

distributed algorithms (e.g. [77]).
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4.1 Upper Bound for Uniform Sampling

In this section, we show that uniform sampling can be used to construct a coreset for

regularized loss minimization.

Theorem 34. Let (n,X, Y, `, r, λ,R, κ) be an instance of the RLM problem where ` and r

satisfy the (σ, τ)-scaling condition and the loss function has VC-dimension at most ∆. Let

S ′ = n
τλ

+ `(σ)
`(−σ) + 1. A uniform sample of q = 10S′

ε2
(∆ logS ′ + log(1

δ
)) points, each with an

associated weight of u = n/q, is an ε-coreset with probability at least 1− δ.

Proof. With an aim towards applying Theorem 8 we start by upper bounding the sensitivity

of an arbitrary point. To this end, consider an arbitrary i ∈ [1, n] and an arbitrary hypothesis

β. First, consider the case that R ‖β‖2 ≥ σ. In this case:

fi(β)

F (β)
=

`(−yiβ · xi) + λ
n
r(Rβ)∑

j `(−yjβ · xj)) + λ r(Rβ)

≤
`(|β · xi|) + λ

n
r(Rβ)∑

j `(−yjβ · xj) + λ r(Rβ)
[As the loss function is nondecreasing]

≤
`(|β · xi|) + λ

n
r(Rβ)

λ r(Rβ)
[As the loss function is nonnegative]

≤
`(|β · β| R

‖β‖2
) + λ

n
r(Rβ)

λ r(Rβ)
[As maximum is when xi = β

R

‖β‖2
]

≤ `(R ‖β‖2)
λ r(Rβ)

+
1

n

≤ `(R ‖β‖2)
λ τ `(R ‖β‖2)

+
1

n
[By (σ, τ) scaling assumption and

the assumption R ‖β‖2 ≥ σ]

≤ 1

τλ
+

1

n
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Next, consider the case that R ‖β‖2 < σ. In this case:

fi(β)

F (β)
=

`(−yiβ · xi) + λ
n
r(Rβ)∑

j `(−yjβ · xj) + λ r(Rβ)

≤
`(|β · xi|) + λ

n
r(Rβ)∑

j `(−|β · xj|) + λr(Rβ)
[As the loss function is nondecreasing]

≤
`(|β · β| R

‖β‖2
) + λ

n
r(Rβ)∑

j `(−|β · β|
R
‖β‖2

) + λ r(Rβ)
[As maximum is when xi = β

R

‖β‖2
]

≤
`(R ‖β‖2) + λ

n
r(Rβ)∑

j `(−R ‖β‖2) + λ r(Rβ)

≤ `(R ‖β‖2)∑
j `(−R ‖β‖2)

+
1

n
[As a, b, c, d ≥ 0 implies

a+ b

c+ d
≤ a

c
+
b

d
]

≤ `(σ)∑
j `(−σ)

+
1

n
[By assumption R ‖β‖2 < σ]

≤ `(σ)

n `(−σ)
+

1

n

Thus, the sensitivity of every point is at most 1
τλ

+ `(σ)
n `(−σ) + 1

n
, and the total sensitivity

S is at most n
τλ

+ `(σ)
`(−σ) + 1. The claim follows by Theorem 8.

Corollary 35. Let (n,X, Y, `, r, λ,R, κ) be an instance of the RLM problem where the loss

function ` is logistic regression or SVM, and the regularizer r is one of the 1-norm, 2-

norm, or 2-norm squared. Let S ′ = 12n
λ

+ 6 = 12n1−κ + 6. A uniform sample of q =

10S′

ε2
((d + 1) logS ′ + log(1

δ
))) points, each with an associate weight of u = n

q
, is an ε-coreset

with probability at least 1− δ.

Proof. Since the VC-dimension of logistic regression and SVM is at most d+ 1, it is enough

to show that the scaling condition holds in each case. First, consider logistic regression. Let

σ = 1. Then we have l(−1) = log(1 + exp(−1)) 6= 0. In the case that r(β) = ‖β‖2 it is

sufficient to take τ = 1
2

as `(z) = log(1 + exp(z)) ≤ 2z when z ≥ 1. Similarly its sufficient

to take τ = 1
2

when the regularizer is the 2-norm squared, as `(z) = log(1 + exp(z)) ≤ 2z2

when z ≥ 1. As ‖β‖1 ≥ ‖β‖2 it is also sufficient to take τ = 1
2

when the regularizer is the

1-norm. Therefore, total sensitivity is bounded by 2n
λ

+ 6 in all of these cases.
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Now consider SVM. Let σ = 1/2. Then l(−1/2) = 1/2 6= 0. In the case that r(β) = ‖β‖2
it is sufficient to take τ = 1

3
as `(z) = 1 + z ≤ 3z when z ≥ 1

2
; τ = 1

3
will be also sufficient

when the regularizer is the 1-norm since ‖β‖1 ≥ ‖β‖2.

Furthermore, if ‖β‖2 ≥ 1, then ‖β‖22 ≥ 4 ‖β‖2; therefore, in the case that r(β) = ‖β‖22,

it is sufficient to take τ = 1
12

. Therefore, total sensitivity is bounded by 12n
λ

+ 4.

The implementation of uniform sampling and the computation of R in the streaming

and MPC models are trivial. Uniform sampling and the computation of R in the relational

model can be implemented without joins because both can be done using.

We note that in several other papers (e.g. [83]) coreset construction can be applied

recursively to obtain very small coresets. We cannot apply the previous theorem recursively

because after sampling and re-weighting, the regularizer stays the same; however, the number

of points is less and the weight of loss function for each point is scaled. To see that it is

not possible to resample the new instance, it is enough to divide the new error function by

the weight of each sample and get an unweighted instance such that its regularizer has a

small coefficient; now, having a coreset for the weighted sample is similar to having a coreset

for this unweighted sample with a small regularizer. Of course, it can also be seen that the

theorem cannot be applied recursively because it would contradict our lower bound in the

next section as well.

4.2 Uniform Sampling Lower Bound

In this section we show in Theorem 37 that our analysis of uniform sampling is tight up to

poly-logarithmic factors. Before stating the lower bound, we make the following observation

about the total weight of any possible coreset.

Observation 36. Assume that `(0) 6= 0, as is the case for logistic regression and SVM. If

(C,U) is an ε-coreset then (1− ε)n ≤
∑

i∈C ui ≤ (1 + ε)n.

Proof. Applying the definition of coreset in the case that β is the hypothesis with all 0 com-

ponents, it must be the case that
∣∣∑n

i=1 `(0)−
∑

i∈C ui`(0)
∣∣ ≤ ε

∑n
i=1 `(0), or equivalently∣∣n−∑i∈C ui

∣∣ ≤ εn.
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Note that in the special case that each ui is equal to a common value u, as will be the

case for uniform sampling, setting each ui = 1 and scaling λ down by a factor of u, would

result in the same optimal hypothesis β.

Theorem 37. Assume that the loss function is either logistic regression or SVM, and the

regularizer is 2-norm squared. Let ε, γ ∈ (0, 1) be arbitrary. For all sufficiently large n, there

exists an instance In of n points such that with probability at least 1 − 1/nγ/2 it will be the

case that for a uniform sample C of c = n1−γ/λ = n1−κ−γ points, there is no weighting U

that will result in an ε-coreset.

Proof. The instance In consists of points located on the real line, so the dimension d = 1.

A collection A of n − (λnγ/2) points is located at +1, and the remaining λnγ/2 points are

located at −1; call this collection of points B. All points are labeled +1. Note R = 1.

Let C be the random sample of c points, and U an arbitrary weighting of the points

in C. Note that U may depend on the instantiation of C. Our goal is to show that with

high probability, (C,U) is not an ε-coreset. Our proof strategy is to first show that because

almost all of the points are in A, it is likely that C contains only points from A. Then

we want to show that, conditioned on C ⊆ A, that C cannot be a coreset for any possible

weighting. We accomplish this by showing that limn→∞H(β) = 1 when β = nγ/4.

We now show that one can use a standard union bound to establish that it is likely that

C ⊆ A. To accomplish this, let Ei be the probability that the the ith point selected to be in

C is not in A.

Pr[C ⊆ A] = 1− Pr
[
∨i∈C Ei

]
≥ 1− |C| |B|

n

= 1− n1−γ

λ

λnγ/2

n
= 1− 1

nγ/2

Now we show if C ⊆ A and n is large enough, then (C,U) cannot be an ε-coreset for any

collection U of weights. To accomplish this, consider the the hypothesis β0 = nγ/4. From

the definition of coreset, it is sufficient to show that H(β0), defined as

H(β0) =
|
∑

i∈P fi(β0)−
∑

i∈C uifi(β0)|∑
i∈P fi(β0)

(11)
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is greater than ε. We accomplish this by showing that the limit as n goes to infinity of H(β0)

is 1. Applying Observation 36 we can conclude that

H(β0) ≥
|
∑

i∈P `i(β0)−
∑

i∈C ui`i(β0)| − ελ ‖β0‖
2
2∑

i∈P `i(β0) + λ ‖β0‖22
(12)

Then, using the fact that A and B is a partition of the points and C ⊆ A we can conclude
that

H(β0) ≥
|
∑

i∈A `i(β0) +
∑

i∈B `i(β0)−
∑

i∈C ui`i(β0)| − ελ ‖β0‖
2
2∑

i∈A `i(β0) +
∑

i∈B `i(β0) + λ ‖β0‖22

=

∣∣∣∑i∈A `i(β0)∑
i∈B `i(β0)

+ 1−
∑
i∈C ui`i(β0)∑
i∈B `i(β0)

∣∣∣− ελ‖β0‖22∑
i∈B `i(β0)∑

i∈A `i(β0)∑
i∈B `i(β0)

+ 1 +
λ‖β0‖22∑
i∈B `i(β0)

(13)

We now need to bound various terms in equation (13). Let us first consider logistic

regression. Note that∑
i∈B

`i(β0) = |B| log(1 + exp(nγ/4)) ≥ |B|nγ/4 = λn3γ/4 (14)

Therefore,

lim
n→∞

λ ‖β0‖22∑
i∈B `i(β0)

≤ lim
n→∞

λnγ/2

λn3γ/4
= 0 (15)

Moreover, note that

lim
n→∞

∑
i∈A

`i(β0) (16)

= lim
n→∞

|A| log(1 + exp(−nγ/4)) (17)

≤ lim
n→∞

n exp(−nγ/4) = 0 (18)

Finally, by Observation 36, we have,

lim
n→∞

∑
i∈C

ui`i(β0) ≤ lim
n→∞

(1 + ε)n exp(−nγ/4) = 0 (19)
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Combining equations (14), (15), (16), and (19), we the expression in equation (13) con-

verges to 1 as n → ∞. Thus, for sufficiently large n, H(β0) > εand thus (C,U) is not an

ε-coreset.

We now need to bound various terms in equation (13) for SVM. First note that∑
i∈B

`i(β0) = |B|(1 + nγ/4) ≥ |B|nγ/4 = λn3γ/4 (20)

Therefore,

lim
n→∞

λ ‖β0‖22∑
i∈B `i(β0)

≤ lim
n→∞

λnγ/2

λn3γ/4
= 0 (21)

Moreover, note that

lim
n→∞

∑
i∈A

`i(β0) = lim
n→∞

|A|max(0, 1− nγ/4) = 0 (22)

Finally, by Observation 36, we have that:

lim
n→∞

∑
i∈C

ui`i(β0) ≤ lim
n→∞

(1 + ε)nmax(0, 1− nγ/4) = 0 (23)

Combining equations (20), (21), (22), and (23), we the expression in equation (13) converges

to 1 as n → ∞. Thus, for sufficiently large n, H(β0) > εand thus (C,U) is not an ε-

coreset.

4.3 General Lower Bound on Coreset Size

This section is devoted to proving the following theorem:

Theorem 38. Assume that the loss function is either logistic regression or SVM, and the

regularizer is 2-norm squared. Let ε, γ ∈ (0, 1) be arbitrary. For all sufficiently large n, there

exists an instance In of n points such that In does not have an ε-coreset of size O(n(1−κ)/5−γ)
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4.3.1 Logistic Regression

The goal of this subsection is to prove Theorem 38 when the loss function is logistic

regression. The lower bound instance In consists of a collection of n positively-labeled

points in <3 uniformly spaced around a circle of radius 1 centered at (0, 0, 1) in the plane

z = 1. Note that R =
√

2. However, for convenience, we will project In down into a

collection X of points in the plane z = 0. Therefore, the resulting instance, which we call

the circle instance, consists of n points uniformly spread around the unit circle in <2, and

for a hypothesis β = (βx, βy, βz), F (β) is now
∑

xi∈X `(−yi((βx, βy) ·xi+βz))+2λ ‖β‖22. This

means βz can be thought of as an offset or bias term, that allows hypotheses in <2 that do

not pass through the origin.

Fix a constant c > 0 and a subset C of X that has size k = cn
1/5−γ

λ1/5
= cn(1−κ)/5−γ as a

candidate coreset. Let U be an arbitrary collection of associated weights. Toward finding

a hypothesis that violates equation (7), define a chunk A to be a collection of n
4k

points in

the middle of n
2k

consecutive points on the circle that are all not in C. That is, no point

in the chunk A is in C, and no point in the next n
8k

points in either direction around the

circle are in C. Its easy to observe that, by the pigeon principle, a chunk A must exist.

Now let βA = (βx, βy, βz) be the hypothesis where (βx, βy) · xi + βz = 0 for the two points

xi ∈ X \ A that are adjacent to the chunk A, that predicts A incorrectly (and thus that

predicts the points X \ A correctly), and where ‖βA‖2 =
√

n1−γ

kλ
. To establish Theorem 38

we want to show that equation (7) is not satisfied for the hypothesis βA. By Observation 36

it is sufficient to show that the limit as n→∞ of:∣∣∣∣ ∑
xi∈X

`i(βA)−
∑
xi∈C

ui`i(βA)

∣∣∣∣− 2ελ ‖βA‖22∑
xi∈X

`i(βA) + λ ‖βA‖22
=

∣∣∣∣∣1−
∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)

∣∣∣∣∣− 2ελ‖βA‖22∑
xi∈X

`i(βA)

1 +
λ‖βA‖22∑

xi∈X
`i(βA)

is 1. To accomplish this, it is sufficient to show that the limits of the ratios in the second

expression approach 0, which we do in the next two lemmas.

Lemma 39. lim
n→∞

λ‖βA‖22∑
xi∈X

`i(βA)
= 0.
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Proof. As the n
4k

points in A have been incorrectly classified by βA, we know that `i(βA) ≥

log 2 for xi ∈ A. Thus:

lim
n→∞

λ ‖βA‖22∑
xi∈X

`i(βA)
≤ lim

n→∞

λn
1−γ

kλ
n
4k

log 2
= lim

n→∞

4

nγ log 2
= 0

Let di be the distance between xi and the line that passes through the first and last

points in the chunk A. Let θi be the angle formed by the the ray from the origin through xi

and the ray from the origin to them middle point in A. Let θ = maxi∈A θi = 2π
n

n
8k

= π
4k

. We

then make two algebraic observations.

Observation 40. For all xi ∈ X, di ‖βA‖2 /2 ≤ |(βx, βy) · xi + βz| ≤ di ‖βA‖2.

Proof. It is well known that

di =
|(βx, βy) · xi + βz|√

β2
x + β2

y

Therefore,

|(βx, βy) · xi + βz| = di

√
β2
x + β2

y ≤ ‖βA‖ di

Now we need to show ‖βA‖ di/2 ≤ |(βx, βy) · xi + βz|. Note that there are two points (points

adjacent to A) xj = (a′, b′) for which (βx, βy) · xj + βz = 0. Consider one of them. We have:

0 = βxa
′ + βyb

′ + βz

≥ βz − |βxa′ + βyb
′|

≥ βz −
√
β2
x + β2

y

√
a′2 + b′2

Since the points are over a circle of size 1 we have
√
a′2 + b′2 = 1. Therefore,

β2
x + β2

y ≥ β2
z

Thus, we can conclude:

|(βx, βy) · xi + βz| = di

√
β2
x + β2

y ≥
di√

2
‖βA‖ ≥

di
2
‖βA‖

66



Observation 41. For all xi ∈ X, di = | cos(θi)− cos(θ)|.

Lemma 42. lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
= 0.

Proof. We have:

lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)

= lim
n→∞

∑
xi∈C

ui log
(
1 + exp(−((βx, βy) · xi + βz))

)
∑
xi∈X

`i(βA)

≤ lim
n→∞

∑
xi∈C

ui log
(
1 + exp(−di‖βA‖2

2
)
)

∑
xi∈A

`i(βA)
By Observation 40

≤ lim
n→∞

∑
xi∈C

ui log
(
1 + exp(−‖βA‖2

2
(cos θ − cos θi))

)
∑
xi∈A

`i(βA)
By Observation 41

≤ lim
n→∞

∑
xi∈C

ui exp(−‖βA‖2
2

(cos θ − cos θi))∑
xi∈A

`i(βA)
Since log(1 + x) ≤ x

≤ lim
n→∞

∑
xi∈C

ui exp(−‖βA‖2
2

(cos π
4k
− cos π

2k
))∑

xi∈A
`i(βA)

Since maximizer is when θi =
π

2k

Using the Taylor expansion of cos(x) =
∞∑
i=0

(−1)i x
2i

(2i)!
= 1 − x2

2!
+ x4

4!
− . . . , we have

cos( π
4k

)− cos( π
2k

) ≥ 1
2

(
( π
2k

)2 − ( π
4k

)2
)
−O( 1

k4
) = ( 3π2

32k2
)−O( 1

k4
). Plugging this inequality, we

derive ∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)
≤

∑
xi∈C

ui exp(−‖βA‖
2

(( 3π2

32k2
)−O( 1

k4
)))∑

xi∈A
`i(βA)

=

∑
xi∈C

ui exp(− n2/5

2
√
cλ2/5

( 3π2λ2/5

32c2n2/5−2γ −O( λ4/5

n4/5−4γ )))∑
xi∈A

`i(βA)

=

∑
xi∈C

ui exp(−αn2γ +O( λ2/5

n2/5−4γ ))∑
xi∈A

`i(βA)
,
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where α > 0 is a constant. Since all points in A are miss-classified, we have `i(βA) ≥ log 2

for all of them. Using this fact and Observation 36, we have:∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)
≤

(1 + ε)n exp(−αn2γ +O( λ2/5

n2/5−4γ ))
n
4k

log 2

Finally, using the fact that k = cn
1/5−γ

λ1/5
and taking the limit, we conclude:

lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)
≤ lim

n→∞

4k(1 + ε) exp(−αn2γ +O( λ2/5

n2/5−4γ ))

log 2
= 0

4.3.2 SVM

The goal of this subsection is to prove Theorem 38 when the loss function is SVM. For the

sake of contradiction, suppose an ε-coreset (C, u) of size k exists for the circle instance. We

fix A to be a chunk. Similar to logistic regression, we set βA as the parameters of the linear

SVM that separates A from P/A such that the model predicts A incorrectly and predicts

the points P/A as positive correctly and ‖βA‖2 =
√

n1−γ

kλ
= n2/5
√
cλ2/5

.

Our goal is to show Eqn. (7) tends to 1 as n grows to infinity. We can break the cost

function of linear SVM into two parts:

FP,1(βA) :=
∑
xi∈P

`i(βA) + 2λ ‖βA‖22

where `i(βA) = max(1 − βAxiyi, 0) = max(1 − ((βx, βy) · xi + βz)yi, 0). Then, we determine

the limit of the following quantities as n grows to infinity.

Lemma 43. For the circle instance P , if (C, u) is an ε-coreset of P with size k = cn
1/5−γ

λ1/5

for linear SVM, and A is a chunk, then we have,

A. lim
n→∞

λ‖βA‖22∑
xi∈P

`i(βA)
= 0;

B. lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)
= 0.
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Using this lemma, which we will prove soon, we can prove Theorem 38 for the linear

SVM: The definition of coreset allows us to choose any β, so we can set β = βA for a chunk

A. Then, by Observation 36, Eqn. (7) simplifies to:

|
∑

xi∈X fi(βA)−
∑

xi∈C uifi(βA)|∑
xi∈X fi(βA)

≥
|
∑

xi∈X `i(βA)−
∑

xi∈C ui`i(βA)| − 2ελ ‖βA‖22∑
xi∈X `i(βA) + λ ‖βA‖22

=
|1−

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
| − 2ελ‖βA‖22∑

xi∈X
`i(βA)

1 +
λ‖βA‖22∑
xi∈X

`i(βA)

,

which tends to 1 as n→∞ by Lemma 43. This implies that (C, u) is not an ε-coreset for the

circle instance, which is a contradiction. This completes the proof of Theorem 38 for SVM.

4.3.3 Proof of Lemma 43

The remainder of this section is devoted to proving Lemma 43. The proof is very similar

to the proof of Lemma 39 and 42.

Proof. of Claim 1 in Lemma 43 We know for all points in A, `i(βA) ≥ 1 this is because

all of them have been incorrectly classified. We also know that since A is a chunk, |A| = n
4k

.

Therefore, we have
∑
xi∈A

`i(βA) ≥ n
4k
. We also know ‖βA‖2 =

√
n1−γ

kλ
, so we can conclude

λ ‖βA‖22∑
xi∈X

`i(βA)
≤ λ ‖βA‖22∑

xi∈A
`i(βA)

≤ λ ‖βA‖22
n
4k

=
λn

1−γ

kλ
n
4k

=
4

nγ
.

The lemma follows by taking the limit of the above inequality.

Proof. of Claim 2 in Lemma 43. Using Observation 40 and the fact that all points in

the coreset are predicted correctly by βA we have:∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖di

2

)
∑
xi∈A

`i(βA)

Then, by Observation 41 we have∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖

2
(cos θ − cos θi)

)
∑
xi∈A

`i(βA)
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By definition of chunk, we know all the points in C are at least n
4k

away from the center

of A, which means the closest point in C to chunk A is at least n
8k

points away, we have

θi ≥ θ + 2π
n

n
8k

= π
2k

. Therefore,∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖

2
(cos π

4k
− cos π

2k
)
)

∑
xi∈A

`i(βA)

Using the Taylor expansion of cos(x) =
∞∑
i=0

(−1)i x
2i

(2i)!
= 1− x2

2!
+ x4

4!
− . . . , we have,

cos(
π

4k
)− cos(

π

2k
) ≥ 1

2

(
(
π

2k
)2 − (

π

4k
)2
)
−O(

1

k4
) = (

3π2

32k2
)−O(

1

k4
)

Therefore, we derive,∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖

2
(( 3π2

32k2
)−O( 1

k4
))
)

∑
xi∈A

`i(βA)

=

∑
xi∈C

ui max
(
0, 1− n2/5

2cλ2/5
( 3π2λ2/5

32cn2/5−2γ −O( λ4/5

n4/5−4γ ))
)

∑
xi∈A

`i(βA)

=

∑
xi∈C

ui max
(
0, 1− αn2γ +O( λ2/5

n2/5−4γ )
)

∑
xi∈A

`i(βA)

For large enough n, we have max
(
0, 1 − αn2γ + O( λ2/5

n2/5−4γ )
)

= 0. Therefore, by taking the

limit we have:

lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
≤ lim

n→∞

∑
xi∈C

ui max
(
0, 1− αn2γ +O( λ2/5

n2/5−4γ )
)

∑
xi∈A

`i(βA)
= 0
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5.0 Relational Gradient Descent Algorithm For Support Vector Machine

Training

In this section, we address the relational learning question within the context of gradi-

ent descent algorithms for the classic (soft-margin linear) Support Vector Machine (SVM)

training problem. SVM is identified as one of the five most important learning problems in

[31], and is covered in almost all introductory machine learning textbooks. Gradient descent

is probably the most commonly used computational technique for solving convex learning

optimization problems [98]. So plan A is to find a relational implementation of gradient

descent for the SVM objective. And if plan A fails, plan B is to find a relational descent

algorithm that has the same performance guarantee as gradient descent. And finally, if both

plan A fail and plan B fail, plan C is to find a relational algorithm that has some other

reasonable performance guarantee.

We start by making some observations about the gradient

∇F = 2λβ − 1

N

∑
i∈L

yixi (24)

of the SVM objective function F . First note the term 2λβ is trivial to compute, so let us

focus on the term G = 1
N

∑
i∈L yixi. Firstly, only those points xi that satisfy the additive

constraint L contribute to the gradient. Now let us focus on a particular dimension, and

use xik to refer to the value of point xi in dimension k. Let L−k = {i | i ∈ L and yixik < 0}

denote those points that satisfy L and whose the gradient in the kth coordinate has a negative

sign. Conceptually, each point in L−k pushes the gradient in dimension k up with “force”

proportional to its value in dimension k. Let L+
k = {i | xi ∈ L and yixik > 0} denote

those points that satisfy L and whose the gradient in the kth coordinate has positive sign.

And conceptually, each point in L+
k pushes the gradient in dimension k down with “force”

proportional to its value in dimension k.

Next, we note that G = 1
N

∑
i∈L yixi is a FAQ-AI(1) query for which we have given a

relational approximation scheme (RAS). The results in Chapter 3 can be applied to obtain a

RAS to compute a (1+ε) approximation Ĝ+
k to G+

k = 1
N

∑
i∈L+

k
yixik, and a RAS to compute
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a (1 + ε) approximation Ĝ−k to G−k = 1
N

∑
i∈L−k

yixik. However, the results in Chapter 3

cannot be applied to get a RAS for computing a (1 + ε)-approximation to G = G−k + G+
k ,

as it suffers from the subtraction problem. Conceptually, the subtraction problem is the

fact that good approximations of scalars a and b are generally insufficient to deduce a good

approximation of a− b.

Thus, an additional reason for our interest in relational algorithms to compute the (per-

haps approximate) gradient of the SVM objective function is that we want to use it as test

case to see if there is some way that we can surmount/circumvent the subtraction problem,

and obtain a relational algorithm with a reasonable performance guarantee, ideally using

techniques that are applicable to other problems in which this subtraction problem arises.

We start with a discouraging negative result that shows that we cannot surmount the

subtraction problem in the context of computing the gradient of the SVM objective problem.

In particular, we show in Section 5.1 that computing an O(1) approximation to the partial

derivative in a specified specified dimension is #P -hard, even for acyclic joins. This hardness

result kills the plan A as a relational algorithm to compute the gradient would imply P = #P .

This also makes it hard to imagine plan B working out since, assuming P 6= #P , a relational

algorithm cannot even be sure that it is even approximately headed in the direction of

the optimal solution, and thus its not reasonable to expect that we could find a relational

algorithm to compute some sort of “pseudo-gradient” that would guarantee convergence on

all instances.

Thus, it seems we have no choice but to fall back to plan C. That is, we have to try to

circumvent (not surmount) the subtraction problem. After some reflection, one reasonable

interpretation of our #P -hardness proof is that it shows that computing the gradient is hard

on unstable instances. In this context, intuitively, an instance is stable if a nearly optimal

solution remains nearly optimal if the points are perturbed slightly. Intuitively, one would

expect real world instances, where there is a hypothesis β that explains the labels reasonably

well, to be relatively stable (some discussion of the stability of SVM instances can be found

in [25]). And for instances where there isn’t a hypothesis that explains the labels reasonably

well, it probably doesn’t matter what hypothesis the algorithm returns, as it will likely be

discarded by the data scientist anyways. Thus, our plan C will be to seek a gradient descent
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algorithm that has a similar convergence guarantee to gradient descent on stable instances.

Long story short, the main result of this chapter is that this plan C works out. That is, we

give a relational algorithm that computes a “pseudo-gradient” that guarantees convergence

for stable instances at a rate comparable to that achieved by using the actual gradient.

Stability analysis, similar in spirit to our results for linear SVM, has been considered

before in clustering problems [90, 26, 74, 10, 22, 39, 67, 88, 14, 18, 23]. [26, 74] shows that

instances of the Max Cut, in which a multiplicative perturbation of the edge weights does

not change the optimal answer, are easier to solve. Furthermore, the NP -hard k-means, k-

medians and k-centers clustering problems are polynomially solvable for instances in which

changing the distances of the points by a multiplicative factor of at most 2 does not change

the optimal solution [14, 18, 23]

The algorithm design can be found in Section 5.2, and the algorithm analysis can be

found in Section 5.3. Postponing for the moment our formal definition of stability, we state

our main result in Theorem 44. The reader should compare Theorem 44 to the analysis of

gradient descent in Theorem 4.

Theorem 44. Let X be an (α, δ, γ)-stable SVM instance formed by an acyclic join. Let

β∗ = argminβ F (β) be the optimal solution. Then there is a relational algorithm that can

compute a pseudo-gradient in time O(m
ε2

(m3 log2(n))2(d2mn log(n))), where ε = min( δ
8
, α).

After T =
(

256d3/2

λδF (βa,Xa)

)2
iterations of projected descent using this pseudo-gradient there is a

relational algorithm that can compute in time O( 1
ε2

(m3 log2(n))2(d2mn log(n))) a hypothesis

β̂ such that:

F (β̂, X) ≤ (1 + γ)F (β∗, X)

Our main takeaway point is that in a broader context, we believe that our results suggest

that this sort of stability analysis would likely yield useful insights in the context of designing

relational algorithms for other learning problems in which the subtraction problem arises.
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5.1 Hardness of Gradient Approximation

Lemma 45. It #P hard to O(1)-approximate the partial derivative of the SVM objective

function in a specified dimension.

Proof. We reduce the decision version of the counting knapsack problem to the problem of

approximating the gradient of SVM. The input to the decision counting knapsack problem

is a set of weights W = {w1, w2, . . . , wm}, a knapsack size L, and an integer k. The output

of the problem is whether there are k different combinations of the items that fit into the

knapsack.

We create m + 1 tables, each with two columns. The columns of the first m table are

(Key, Ei) for Ti and the rows are

Ti = {(1, 0), (1, wi/L), (0, 0)}.

The last table has two columns (Key,Value), and it has two rows (1, 1), (0,−k). Note that if

we take the join of these tables, there will be m+ 2 columns: (Key,Value, E1, E2, . . . , Em).

Let β = (0, 0, 1, 1, . . . , 1) and λ = 0, so β is 0 on the columns Key and Value and 1

everywhere else. Then we claim, if the gradient of F on the second dimension (Value) is

nonnegative, then the answer to the original counting knapsack is true, otherwise, it is false.

To see the reason, consider the rows in J : there are 2m rows in the design matrix that

have (1, 1) in the first two dimensions and all possible combinations of the knapsack items in

the other dimensions. More precisely, the concatenation of (1, 1) and wS for every S ∈ [m]

where wS is the vector that has wi/L in the i-th entry if item i is in S or 0 otherwise.

Furthermore, J has a single special row with values (0,−k, 0, 0, . . . , 0). Letting G2 be the

gradient of SVM on the second dimension (column Value), we have,

G2 =
∑

x∈J :1−βx≥0

x2
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For the row with Key = 1 for each S ∈ [m], we have 1− βx = 1−
∑

i∈S wi/L ≥ 0 if and

only if the items in S fits into the knapsack and x2 = 1. For the single row with Key = 0,

we have 1− βx = 1, and its value on the second dimension is x2 = k. Therefore,

G2 = CL(w1, . . . , wm)− k

where CL is the number of subsets of items fitting into the knapsack of size L. This means if

we could approximate the gradient up to any constant factor, we would be able to determine

if G2 is positive or negative, and as a result we would be able to answer the (decision version

of) counting knapsack problem, which is #P -hard.

5.2 Algorithm Design

5.2.1 Review of Row Counting with a Single Additive Constraint

We now summarize the algorithmic results from Section 3.2 for two different problems,

that we will use as a black box.

In the first problem the input is a collection T1, . . . , Tm of tables, a label ` ∈ {−1,+1},

and an additive inequality L of the form
∑

j∈[d] gj(xj) ≥ R, where each function gj can be

computed in constant time. The output consists of, for each j ∈ [d] and e ∈ D(j), where

D(j) is the domain of column/feature j, the number C`
j,v of rows in the design matrix J =

T1 on . . . on Tm that satisfy constraint L, that have label `, and that have value v in column

j. The Row Counting Algorithm introduced in Section 3.2 computes a (1+ε)-approximation

for each such Ĉ`
j,v to each C`

j,v, and that runs in time O(m
ε2

(m3 log2(n))2(d2mnh log(n)))

In the second problem the input is a collection T1, . . . , Tm of tables, a label ` ∈ {−1,+1},

and an expression in the form of
∑

j∈[d] gj(xj), where the gj functions can be computed

in constant time. The output consists of, for each k ∈ [0, log1+εN ], maximum value of

Hk such that the number of points in the design matrix J = T1 on . . . on Tm with label

` ∈ {−1, 1} satisfying the additive inequality
∑

j∈[d] gj(xj) ≥ Hk is at least b(1 + ε)kc. Then

Section 3.2, gives an algorithm for this problem, which we will call the Generalized Row
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Counting Algorithm. The algorithm runs in time O( 1
ε2

(m3 log2(n))2(d2mnh log(n))). Using

the result of the algorithm, for any scalar distance H, it is possible to obtain a row count

N̂(H) such that N(H)/(1 + ε) ≤ N̂(H) ≤ N(H), where N(H) is the number of points in

the design matrix with label ` satisfying the inequality
∑

j∈[d] gj(xj) ≥ Hk.

5.2.2 Overview of Our Approach

Recall from the introduction that the difficulty arises when a Ĝ+
k is approximately equal

to −Ĝ−k . In this case, it would seem that by appropriately perturbing one of L−1 or L+
1 by a

relatively small amount one could force G = Ĝ− + Ĝ+ for this perturbed instance. In which

case, if we used 2λβ(t)+(Ĝ−+Ĝ+) as the pseudo-gradient, then it would be the true gradient

for a slightly perturbed instance. However, this is not quite right, as there is an additional

issue. If we perturb a point xi, then the sign of 1−yiβxi may change, which means this point’s

contribution to the gradient may discontinuously switch between 0 and −yixi. To address

this issue, when computing the pseudo-gradient, we use a new instance X ′ that excludes

points that are “close” to the separating hyperplane 1 − yiβxi = 0. That is, X ′ excludes

every point that can change sides of the hyperplane in an ε-perturbation of each coordinate.

This will allow us to formally conclude that if we used 2λβ(t)+(Ĝ−+Ĝ+), where Ĝ− and Ĝ+

are defined on X ′, as the pseudo-gradient, then it would be the true gradient for a slightly

perturbed instance. After the last descent step, we choose the final hypothesis to be the ε-

perturbation of any computed hypothesis β(t), t ∈ [0, T ] that minimizes the SVM objective.

In the analysis, we interpret the sequence β(0), β(1), . . . , β(T ) as solving an online convex

optimization problem, and apply known techniques from this area.

5.2.3 Pseudo-gradient Descent Algorithm

Firstly, in linear time it is straight-forward to determine if the points in X lie in [−1, 1],

and if not, to rescale so that they do; this can be accomplished by, for each feature, dividing

all the values of that feature in all input tables by the maximum absolute value of that

feature. The initial hypothesis β(0) is the origin. For any vector v, let u = |v| be a vector

such that its entries are the absolute values of v, meaning for all j uj = |vj|.

76



Algorithm to Compute the Pseudo-gradient:

A. Run the Row Counting Algorithm to compute, for each j ∈ [d] and v ∈ D(j), a (1 + ε)

approximation Ĉ−j,v to C−j,v, which is the number of rows in x ∈ J with negative label,

satisfying 1 + β(t) · x ≥ ε
∣∣β(t)

∣∣ · |x|.
B. Run the Row Counting Algorithm to compute, for each j ∈ [d] and v ∈ D(j), a (1 + ε)

approximation Ĉ+
j,v to C+

j,v, which is the number of rows in x ∈ J with positive label,

satisfying 1− β(t) · x ≥ ε
∣∣β(t)

∣∣ · |x|.
C. For all k ∈ [d], compute Ĝ−k =

∑
v∈D(k):v<0 v Ĉ

−
k,v −

∑
v∈D(k):v≥0 v Ĉ

+
k,v .

D. For all k ∈ [d], compute Ĝ+
k =

∑
v∈D(k):v≥0 v Ĉ

−
k,v −

∑
v∈D(k):v<0 v Ĉ

+
k,v.

E. The pseudo-gradient is then

Ĝ =
Ĝ− + Ĝ+

N
+ λβ(t)

Algorithm for a Single Descent Step: The next hypothesis β(t+1) is

β(t+1) = ΠK(β(t) − ηt+1Ĝ)

Here ηt = 1
λ
√
dt

and ΠK(β) is the projection of β onto a hypersphere K centered at the origin

with radius
√
d

2λ
. Note that ΠK(β) is β if ‖β‖2 ≤

√
d

2λ
and

√
d

2λ‖β‖2
β otherwise.

Algorithm to Compute the Final Hypothesis: After T −1 descent steps, the algorithm

calls the Generalized Row Counting twice for each t ∈ [0, T − 1], with the following inputs:

• ` = 1 and additive expression 1− β(t) · xi − ε|β(t)| · |xi|

• ` = −1 and additive expression 1 + β(t) · xi − ε|β(t)| · |xi|

Note that both of these expressions are equivalent to 1 − yiβ(t) · xi − ε|β(t)| · |xi|. Let the

array H+ be the output for the first call and H− be the output for the second call. Note

that H+ and H− are monotonically decreasing by the the definition of the Generalized Row

Counting algorithm. Let L+ be the largest k such that H+
k ≥ 0 and L− be the largest k such

that H−k ≥ 0.
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The algorithm then returns as its final hypothesis β̂, the hypothesis β(t̂) where t̂ is defined

by:

t̂ = argmin
t∈[T ]

F̂ (β(t), X) (25)

where

F̂ (β(t), X) =
1

N

(
L+−1∑
k=0

(1 + ε)k(H+
k −H

+
k+1) + (1 + ε)L

+

H+
L+

)

+
1

N

(
L−−1∑
k=0

(1 + ε)k(H−k −H
−
k+1) + (1 + ε)L

−
H−L−

)
+ λ

∥∥β(t)
∥∥2
2

(26)

Note that the values L−, L+, H+ and H− in the definition of F̂ , in equation (26), all depend

upon t, which we suppressed to make the notation somewhat less ugly.

5.3 Algorithm Analysis

In Section 5.3.1 we prove Theorem 47 which bounds the convergence of our project

pseudo-gradient descent algorithm in a rather nonstandard way by applying known results

on online convex optimization [24, 58]. In Section 5.3.2 we introduce our definition of stability

and then prove Theorem 44.

5.3.1 Perturbation Analysis

Before stating Theorem 47 we need some definitions.

Definition 46.

• A point p is an ε-perturbation of point q if every component of p is within (1 + ε) factor

of the corresponding component of q. Meaning in each dimension j we have (1 − ε)q ≤

p ≤ (1 + ε)q

• A point set Xa is an ε-perturbation of a point set Xb if there is a bijection between Xa

and Xb such that every point in Xa is an ε-perturbation of its corresponding point in Xb.

• Let β∗ = argminβ F (β,X) to be the optimal solution at X.
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• For any ε-perturbation Xa of X, define β∗a = argminβ F (β,Xa) to be the optimal solution

at Xa.

• For a given hypothesis β, we call a point x with label y close if there is some ε-perturbation

x′ of x such that 1− yβx′ < 0; otherwise it is called far. In other words, a point x with

label y is close if 1− yβ · x < ε |β| · |x|

Theorem 47. Assume our projected pseudo-gradient descent algorithm ran for T−1 descent

steps. Then for all hypotheses β ∈ Rd there exist ε-perturbations Xa and Xb of X such that

F (β̂, Xa) ≤ (1 + ε)F (β,Xb) +
32d3/2

λ
√
T

To prove Theorem 47, our main tool is a result from the online convex optimization

literature [24, 58].

Theorem 48. [24, 58] Let g1, g2, ..., gT : Rn → R be G-Lipschitz functions over a convex

region K, i.e., ||∇gt(β)|| ≤ G for all β ∈ K and all t. Then, starting at point β(0) ∈ Rn and

using the update rule of β(t) ← ΠK
(
β(t−1) − ηt∇gt−1(β(t−1))

)
, with η = D

G
√
t

for T − 1 steps,

we have

1

T

T−1∑
t=0

gt(β
(t)) ≤ 1

T

T−1∑
t=0

gt(β
∗) +

2DG√
T

(27)

for all β∗ with ||β(0) − β∗|| ≤ D.

To apply this Theorem 48, we set gt = F (β(t), X(t), Y ), where X(t) is an ε-perturbation

of X, such that the pseudo-gradient at X is equal to the true gradient at X(t). We establish

the existence of X(t) in Lemma 49. Thus, our projected pseudo-gradient descent algorithm

updates the hypothesis exactly the same as stated in Theorem 47 (assuming that we use the

same upper bounds on D and G). Then in definition 50 we identify the ε-permutation Z

that minimizes F (β, Z), and then in Lemma 51 bound the relative error between F̂ (β,X)

and F (β, Z). Finally, this will allow use in Lemma 52 and Lemma 53 we show the existence

of Xb and Xa, respectively, that will allow us to conclude the proof of Theorem 47.

Lemma 49. In every descent step t, the computed pseudo-gradient Ĝ is the exact gradient

of F (β(t), X(t)) for some point set X(t) that is an ε-perturbation of X.
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Proof. To prove the claim, we show how to find a desired X(t) – this is only for the sake

of the proof and the algorithm doesn’t need to know X(t). We call any point x with label y

“far” if it satisfies the inequality

1− yβ(t) · x ≥ ε
∣∣β(t)

∣∣ · |x| (28)

, otherwise we call the point “close”. Note that for a far point there is no ε-perturbation

to make the derivative of the loss function 0. That is, for any point x with label y, if

1−yβ ·x ≥ ε
∑

j∈[d] |βj| |xj|, then we have 1−yβx′ ≥ 0 for any x′ that is ε-perturbation of x.

To see this, note that we have 1− yβx′ = 1−
∑d

k=1 βkx
′
k ≥ 1−

∑d
k=1 (βkxk + |βk| |xk|) ≥ 0

because of x′ being ε-perturbation of x. On the other hand, for all the close points there

exists a perturbation x′ such that 1− yβ(t) · x′ < 0. We first perturb all of the close points

such that they do not have any effect on the gradient.

Next, we need to show a perturbation of the far points for which the Ĝ is the gradient of

the loss function. Let X+
f and X−f be the set of far points with positive and negative labels.

Let Xf = X+
f ∪X

−
f . We show the perturbation for each dimension k separately. Based on

definition of Ĝ+
k and Ĝ−k we have:

Ĝ+
k + Ĝ−k =

∑
v∈D(k)

v Ĉ−k,v −
∑

v∈D(k)

v Ĉ+
k,v

=
∑

v∈D(k)

v (1± ε)C−k,v −
∑

v∈D(k)

v (1± ε)C+
k,v

Note that C+
k,v is the number of points in X+

f with value v in dimension k. Therefore,

Ĝ+
k + Ĝ−k =

∑
v∈D(k)

v (1± ε)C−k,v −
∑

v∈D(k)

v (1± ε)C+
k,v

=
∑
xi∈X−f

(1± ε)xi,k −
∑
xi∈X+

f

(1± ε)xi,k

= −
∑
xi∈Xf

(1± ε)yixi,k

where the last term is N ∂L(β(t),X(t))

∂β
(t)
k

where X(t) an ε-perturbation of X.
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Definition 50. Let Z(t) be an ε-perturbation of X such that for all zi ∈ Z(t) and for all

dimensions k

zi,k =

(1− ε)xi,k yiβ
(t)
k ≥ 0

(1 + ε)xi,k yiβ
(t)
k < 0

Note that this ε-perturbation minimizes F (β(t), Z(t)).

Lemma 51. 1
1+ε

F (β(t), Z(t)) ≤ F̂ (β(t), X) ≤ F (β(t), Z(t)).

Proof. Consider a value t and letN+(τ) =
∣∣{xi | yi = +1 and 1− β(t) · xi − ε

∣∣β(t)
∣∣ · |xi| ≥ τ}

∣∣,
and N−(τ) =

∣∣{xi | yi = −1 and 1 + β(t) · xi − ε
∣∣β(t)

∣∣ · |xi| ≥ τ}
∣∣.

Before proving the lemma, we prove the following claim: F (β(t), Z(t)) = 1
N

∫∞
τ=0

N+(τ)dτ+

1
N

∫∞
τ=0

N−(τ)dτ + λ
∥∥β(t)

∥∥2.
Note that based on the definition of Z(t) it is the case that 1 − yiβ(t) · zi = 1 − yiβ(t) ·

xi − ε
∣∣β(t)

∣∣ · |xi|; therefore, N+(τ) =
∣∣{yi = +1 ∈ Z(t) and 1− yiβ(t) · zi ≥ τ}

∣∣ and N−(τ) =∣∣{yi = −1 ∈ Z(t) and 1− yiβ(t) · zi ≥ τ}
∣∣. Hence,

L(β(t), Z(t)) =
1

N

∑
i

max(0, 1− yiβ · zi) =
1

N

∑
i:1−yiβ·zi≥0

1− yiβ · zi

=
1

N

∑
i:1−yiβ·zi≥0

∫ 1−yiβ·zi

τ=0

dτ =
1

N

∫ ∞
τ=0

∑
i:1−yiβ·zi≥τ

dτ

=
1

N

∫ ∞
τ=0

(N+(τ) +N−(τ))dτ

Therefore,

F (β(t), Z(t)) =
1

N

∫ ∞
τ=0

N+(τ)dτ +
1

N

∫ ∞
τ=0

N−(τ)dτ + λ
∥∥β(t)

∥∥2 (29)

The number of points with label ` satisfying 1 − `β(t) · xi − ε
∣∣β(t)

∣∣ · |xi| ≥ τ for any τ ∈

[H`
k, H

`
k+1) is in the range [b(1+ε)kc, b(1+ε)(k+1)c). Therefore, the claim follows by replacing

N+(τ) in Equation (29) with (1+ε)k for all the values of τ ∈ [H+
k , H

+
k+1) and replacing N−(τ)

in (29) with (1 + ε)k for all the values of τ ∈ [H−k , H
−
k+1).

Lemma 52. For all hypothesis β, there exists an ε-perturbation Xb of X such that

min
s
F (β(s), Z(s)) ≤ F (β,Xb) +

2DG√
T
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Proof. By Theorem 48

1

T

T−1∑
t=0

F (β(t), X(t)) ≤ 1

T

T−1∑
t=0

F (β,X(t)) +
2DG√
T

(30)

Then

min
s
F (β(s), Z(s)) ≤ 1

T

T−1∑
t=0

F (β(t), Z(t)) ≤ 1

T

T−1∑
t=0

F (β(t), X(t)). (31)

The first inequality follows since the minimum is less than the average, and the second

inequality follows from the definition of Z(t). Let u = argmaxt F (β,X(t)), and Xb = X(u).

Then

1

T

T−1∑
t=0

F (β,X(t)) ≤ max
t
F (β,X(t)) = F (β,Xb) (32)

Thus, combining lines (30), (31) and (32) we can conclude that:

min
s
F (β(s), Z(s)) ≤ F (β,Xb) +

2DG√
T

(33)

Lemma 53. There exists an ε-perturbation Xa of X such that

F (β̂, Xa) ≤ (1 + ε) min
s
F (β(s), Z(s))

Proof. Let Xa = Z(t̂) where

F (β̂, Xa) ≤ (1 + ε)F̂ (β̂, X) By Lemma 51

= (1 + ε) min
s
F̂ (β(s), X) By definition of β̂

≤ (1 + ε) min
s
F (β(s), Z(s)) By Lemma 51
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5.3.2 Stability Analysis

Our formal definition of stability, which we give in Definition 54 while not unnatural, is

surely not the first natural formalization that one would think of. Our formal definition is

more or less forced on us, which leads to the type of non-traditional approximation achieved

in Theorem 47.

Definition 54. An SVM instance X is (α, δ, γ)-stable for δ ≤ 1 if for all Xa and Xb that

are α-perturbations of X it is the case that:

• β∗a is a (1 + δ) approximation to the optimal objective value at Xb, that is, F (β∗a, Xb) ≤

(1 + δ) minβ F (β,Xb).

• If βa is (1 + 2δ) approximation to the optimal SVM objective value at Xa then βa is a

(1 + γ) approximation to the optimal SVM objective value at Xb. That is if F (βa, Xa) ≤

(1 + 2δ) minβ F (β,Xa) then F (βa, Xb) ≤ (1 + γ) minβ F (β,Xb)

Proof of Theorem 44. Let ε ≤ min(δ/8, α).

F (β̂, Xa) ≤ (1 + ε)F (β∗a, Xb) +
32d3/2

λ
√
T

Xa and Xb come from Theorem 47

= (1 + ε)(1 + δ)F (β∗a, Xa) +
32d3/2

λ
√
T

By definition of stability

= (1 + ε)(1 + δ)F (β∗a, Xa) +
δ

8
F (β̂, Xa) By definition of T

≤ (1 + δ)(1 + ε)

1− δ/8
F (β∗a, Xa) By algebra

≤ (1 + 2δ)F (β∗a, Xa) by definition of ε

Finally since β̂ is (1 + 2δ) approximate solution at Xa, by the definition of stability, β̂ is a

(1 + γ) approximate solution at X.
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6.0 Relational Algorithms for K-Means Clustering

In this chapter, we design a relational algorithm for k-means clustering. It has a poly-

nomial time complexity for acyclic joins which can be generalized to general joins with a

linear dependency on nfhtw. Recall that state-of-the-art algorithms for queries as simple as

counting the number of rows in the design matrix have linear dependency on nfhtw; therefore,

running in time linear in nfhtw is the goal, as fundamental barriers need to be broken to be

faster. Notice that this is polynomial time when fhtw is a fixed constant (i.e., nearly acyclic).

The input to the k-means problem consists of a collection S of points in a Euclidean

space and a positive integer k. A feasible output is k points c1, . . . , ck, which we call centers.

The objective is to choose the centers to minimize the aggregate squared distance from

each original point to its nearest center. Recall extracting all data points could take time

exponential in the size of a relational database. Thus, the problem is to find the cluster

centers without fully realizing all data points the relational data represents.

Although there are algorithms for k-means clustering that can accept relational input [38],

there is no algorithm with polynomial time complexity. Therefore, it remains unanswered

whether there is a relational algorithm for k-means and what algorithmic techniques we can

use for this problem.

Overview of Results: The main result of this chapter is the following.

Theorem 55. Given an acyclic join query J = T1 on T2 on · · · on Tm where the design matrix

J has N rows and d columns. Let n be the maximum number of rows in any table. Then

there is a randomized algorithm running in time polynomial in d, n and k that computes an

O(1) approximate k-means clustering solution with high probability.

For cyclic joins, we have the same theorem, however, the time complexity has a linear

dependence on nfhtw. To illustrate the challenges for finding such an algorithm as described

in the prior theorem, consider the following theorem.

Theorem 56. Given an acyclic join query J = T1 on T2 on · · · on Tm where the design matrix

J has N rows and d columns. Given k centers c1, . . . , ck, let Ji be the set of points in J
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that are closest to ci for i ∈ [k]. It is #P -Hard to compute |Ji| for k ≥ 2 and NP -Hard to

approximate |Ji| to any factor for k ≥ 3.

The proof of this theorem can be found in Section 6.1.1. We show it by reducing a NP -

Hard problem to the problem of determining if Ji is empty or not. Counting the points closest

to a center is a fundamental building block in almost all k-means algorithms. Moreover, as

we show in Theorem 57, even performing one iteration of the classic Lloyd’s algorithm is #P -

Hard. Together this necessitates the design of new techniques to address the main theorem,

shows that seemingly trivial algorithms are difficult relationally, and suggests computing a

coreset is the right approach for the problem as it is difficult to cluster the data directly.

Theorem 57. Given an acyclic join and two centers, it is #P-hard to compute the center

of mass for the points assigned to each center.

Proof. We prove the theorem using a reduction from a decision version of the counting

knapsack problem. The input to the counting knapsack problem consists of a the set W =

{w1, . . . , wn} of positive integer weights, a knapsack size L, and a count D. The problem

is to determine whether there are at least D subsets of W with aggregate weight at most

L. The points in our instance of k-means will be given relationally. We construct a join

query with n + 1 columns/attributes, and n tables. All tables have one column in common

and each has an additional distinct column. More specifically, the i-th table has 2 columns

(di, dn+1) and three rows {(wi,−1), (0,−1), (0, D)}. Note that the join has 2n rows with −1

in dimension n+ 1, and one row with values (0, 0, . . . , 0, D). The rows with −1 in dimension

d+ 1 have all the subsets of {w1, . . . , wn} in their first n dimensions. Let the two centers for

k-means problem be any two centers c1 and c2 such that a point x is closer to c1 if it satisfies∑n
d=1 xd < L and closer to c2 if it satisfies

∑n
d=1 xd > L. Note that the row (0, 0, . . . , 0, D)

is closer to c1. Therefore, the value of dimension n + 1 of the center of mass for the tuples

that are closer to c1 is Y = (D − C)/C where C is the actual number of subsets of W with

aggregate weight at most L. If Y is negative, then the number of solutions to the counting

knapsack instance is at least D.
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Overview of Techniques: We first compute a coreset of all points in J . That is, a

collection of points with weights such that if we run an O(1) approximation algorithm on

this weighted set, we will get a O(1) approximate solution for all of J . To do so, we sample

points according to the principle in k-means++ algorithm and assign weights to the points

sampled. The number of points chosen will be Θ(k logN). Any O(1)-approximate weighted

k-means algorithm can be used on the coreset to give Theorem 55.

k-means++: k-means++ is a well-known k-means algorithm [15, 12]. The algorithm

iteratively chooses centers c1, c2, . . .. The first center c1 is picked uniformly from J . Given

that c1, . . . , ci−1 are picked, a point x is picked as ci with probability P (x) = L(x)
Y

where

L(x) = minj∈[i−1](‖x− cj‖22) and Y =
∑

x∈J L(x). Here [i− 1] denotes {1, 2, . . . , i− 1}.

Say we sample Θ(k logN) centers according to this distribution, which we call the k-

means++ distribution. It was shown in [12] that if we cluster the points by assigning

them to their closest centers, the total squared distance between points and their cluster

centers is at most O(1) times the optimal k-means cost with high probability. Note that this

is not a feasible k-means solution because more than k centers are used. However, leveraging

this, the work showed that we can construct a coreset by weighting these centers according

to the number of points in their corresponding clusters.

We seek to mimic this approach with a relational algorithm. Let us focus on one itera-

tion where we want to sample the center ci given c1, . . . , ci−1 according to the k-means++

distribution. Consider the assignment of every point to its closest center in c1, . . . , ci−1.

Notice that the k-means++ probability is determined by this assignment. Indeed, the prob-

ability of a point being sampled is the cost of assigning this point to its closest center

(minj∈[i−1] ‖x− cj‖22) normalized by Y . Y is the summation of this cost over all points.

The relational format makes this distribution difficult to compute without the design

matrix J . It is hard to efficiently characterize which points are closest to which centers. The

assignment partitions the data points according to their closest centers, where each partition

may not be easily represented by a compact relational database (unlike J).

A Relational k-means++ Implementation: Our approach will sample every point ac-

cording to the k-means++ distribution without computing this distribution directly. Instead,
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we use rejection sampling [34], which allows one to sample from a “hard” distribution P

using an “easy” distribution Q. Rejection sampling works by sampling from Q first, then

reject the sample with another probability used to bridge the gap between Q and P . The

process is repeated until a sample is accepted. In our setting, P is the k-means++ distri-

bution, and we need to find a Q which could be sampled from efficiently with a relational

algorithm (without computing J). Rejection sampling theory shows that for the sampling

to be efficient, Q should be close to P point-wise to avoid high rejection frequency. In the

end, we will perfectly simulate the k-means++ algorithm.

We now describe the intuition for designing such a Q. Recall that P is determined by

the assignment of points to their closest centers. We will approximate this assignment up

to a factor of O(i2d) when sampling the ith center ci, where d is the number of columns in

J . Intuitively, the approximate assignment makes things easier since for any center we can

easily find the points assigned to it using an efficient relational algorithm. Then Q is found

by normalizing the squared distance between each point and its assigned center.

The approximate assignment is designed as follows. Consider the d-dimensional Eu-

clidean space where the data points in J are located. The algorithm divides space into a

laminar collection of hyper-rectangles1 (i.e., {x ∈ Rd : vj ≤ xj ≤ wj, j = 1, . . . , d}, here

xj is the value for feature fj). We assign each hyper-rectangle to a center. A point assigns

itself to the center that corresponds to the smallest hyper-rectangle containing that point.

The key property of hyper-rectangles that benefits our relational algorithm is: we can

efficiently represent all points from J inside any hyper-rectangle by removing some entries

in each table from the original database and taking the join of all tables. For example,

if a hyper-rectangle has constraint vj ≤ xj ≤ wj, we just remove all the rows with value

outside of range [vj, wj] for column fj from the tables containing column fj. The set of

points assigned to a given center can be found by adding and subtracting a laminar set of

hyper-rectangles, where each hyper-rectangle can be represented by a relational database.

Weighting the Centers: We have sampled a good set of cluster centers. To get a coreset,

we need to assign weights to them. As we have already mentioned, assuming P 6= #P ,

1A laminar set of hyper-rectangles means any two hyper-rectangles from the set either have no intersection,
or one of them contains the other.
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the weights cannot be computed relationally. In fact, they cannot be approximated up to

any factor in polynomial time unless P = NP . Rather, we design an alternative relational

algorithm for computing the weights. Each weight will not be an approximate individually,

but we prove that the weighted centers form an O(1)-approximate coreset in aggregate.

The main algorithmic idea is that for each center ci we generate a collection of hyper-

spheres around ci containing geometrically increasing numbers of points. The space is then

partitioned into these hyperspheres where each partition contains a portion of points in J .

Using the algorithm from Chapter 3, we then sample a polylog sized collection of points from

each partition, and use this subsample to estimate the fraction of the points in this parti-

tion which are closer to ci than any other center. The estimated weight of ci is aggregated

accordingly.

Chapter Organization: We begin with some special cases which help the reader build

intuition. In Section 6.1 we give a warm-up by showing how to implement 1-means++

and 2-means++ (i.e. initialization steps of k-means++). In this section, we also prove

Theorem 56 as an example of the limits of relational algorithms. In Section 6.2 we give the

k-means++ algorithm via rejection sampling. Section 6.3 shows an algorithm to construct

the weights and then analyze this algorithm. Many of the technical proofs appear in the

appendix due to space.

6.1 Warm-up: Efficiently Implementing 1-means++ and 2-means++

This section is a warm-up to understand the combinatorial structure of relational data.

We will show how to do k-means++ for k ∈ {1, 2} (referred to as 1- and 2-means++) on a

simple join structure. We will also show the proof of Theorem 56 which states that counting

the number of points in a cluster is a hard problem on relational data.

First, let us consider relationally implementing 1-means++ and 2-means++. For better

illustration, we consider a path join which is a special case of acyclic join. The relational

algorithm used will be generalized to work on more general join structures when we move to

the full algorithm in Section 6.2.
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Recall from Section 1.1 that in a path join, each table Ti has two features/columns fi, and

fi+1. Tables Ti and Ti+1 then share a common column fi+1. Assume for simplicity that each

table Ti contains n rows. The design matrix J = T1 on T2 on . . . on Tm has d = m+1 features,

one for each feature (i.e. column) in the input tables. See Figure 1 for an illustration of a

path join as a layered DAG.

Even with this simple structure, the size of the design matrix J could still be exponential

in the size of database - J could contain up to nm/2 rows , and dnm/2 entries. Thus, the

standard practice could require time and space Ω(mnm/2) in the worst case.

A Relational Implementation of 1-means++: Implementing the 1-means++ algorithm

is equivalent to generating a full path uniformly at random from a DAG G as illustrated in

Section 1.1. We generate this path by iteratively picking a row from table T1, . . . , Tm, corre-

sponding to picking an arc pointing from layer f1 to f2, f2 to f3, ..., such that concatenating

all picked rows (arcs) will give a point in J (full path in G).

To sample a row from T1, for every row r ∈ T1, consider r on J , which is all rows in J

whose values in columns (f1, f2) are equivalent to r. Let the function F1(r) denote the total

number of rows in r on J . This is also the number of full paths passing the arc r. Then, every

r ∈ T1 is sampled with probability F1(r)∑
r′∈T1

F1(r′)
, notice

∑
r′∈T1 F1(r

′) is the total number of

full paths. Let the picked row be r1.

After sampling r1, we can conceptually throw away all other rows in T1 and focus only

on the rows in J that uses r1 to concatenate with rows from other tables (i.e., r1 on J).

For any row r ∈ T2, let the function F2(r) denote the number of rows in r on r1 on J , also

equivalent to the total number of full paths passing arc r1 and r. We sample every r with

probability F2(r)∑
r′∈T2

F2(r′)
. Notice that

∑
r′∈T2 F2(r

′) = F1(r1), the number of full paths passing

arc r1. Repeat this procedure until we have sampled a row in the last table Tm: for table

Ti and r ∈ Ti, assuming we have sampled r1, . . . , ri−1 from T1, . . . , Ti−1 respectively, throw

away all the other rows in previous tables and focus on r1 on . . . on ri−1 on J . Fi(r) is the

number of rows in r on r1 on . . . on ri−1 on J and r is sampled with probability proportional

to Fi(r). It is easy to verify that every full path is sampled uniformly.
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For every table Ti we need to find the function Fi(·) which is defined on all its rows. There

are m such functions. For each Fi(·), we can find all Fi(r) values for r ∈ Ti using a one-pass

dynamic programming and then sample according to the values. Repeating this procedure

m rounds completes the sampling process. This gives a polynomial time algorithm.

A Relational Implementation for 2-means++: Assume x = (x1, . . . , xd) is the first

sampled center and now we want to sample the second center. By k-means++ principles,

any row r ∈ J is sampled with probability ‖r−x‖2∑
r′∈J ‖r′−x‖2

. For a full path in G corresponding

to a row r ∈ J we refer to ‖r − x‖2 as the aggregated cost over all d nodes/features.

Similar to 1-means++, we pick one row in each table from T1 to Tm and putting all the

rows together gives us the sampled point. Assume we have sampled the rows r1, r2, . . . , ri−1

from the first i − 1 tables and we focus on all full paths passing r1, . . . , ri−1 (i.e., the new

design matrix r1 on . . . on ri−1 on J). In 1-means++, we compute Fi(r) which is the total

number of full paths passing arc r1, . . . , ri−1, r (i.e., r on r1 on . . . on ri−1 on J .) and sample

r ∈ Ti from a distribution normalized using Fi(r) values. In 2-means++, we define Fi(r) to

be the summation of aggregated costs over all full paths which pass arcs r1, . . . , ri−1, r. We

sample r ∈ Ti from a distribution normalized using Fi(r) values.

It is easy to verify the correctness. Again, each Fi(·) could be computed using a one-pass

dynamic programming which gives the values for all rows in Ti when we sample from Ti.

This would involve m rounds of such computations and give a polynomial algorithm.

6.1.1 Hardness of Relationally Computing the Weights

Here we prove Theorem 56. We focus on showing that given a set of centers, counting

the number of points in J that is closest to any of them is #P -hard. Then we also prove that

it is NP-hard to approximate the center weights for three centers. We prove #P -Hardness

by a reduction from the well known #P -hard Knapsack Counting problem. The input to

the Knapsack Counting problem consists of a set W = {w1, . . . , wh} of nonnegative integer

weights, and a nonnegative integer L. The output is the number of subsets of W with

aggregate weight at most L. To construct the relational instance, for each i ∈ [h], we define

the tables T2i−1 and T2i as follows:
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T2i−1

f2i−1 f2i

0 0

0 wi

T2i

f2i f2i+1

0 0

wi 0

Let centers c1 and c2 be arbitrary points such that points closer to c1 than c2 are those

points p for which
∑d

i=1 pi ≤ L. Then there are 2h rows in J , since wi can either be selected

or not selected in feature 2i. The weight of c1 is the number of points in J closer to c1 than

c2, which is in turn exactly the number of subsets of W with total weight at most L.

Now we prove the second part of Theorem 56 that given an acyclic database and a set

of centers c1, . . . , ck, it is NP-Hard to approximate the number of points assigned to each

center when k ≥ 3. We prove it by reduction from Subset Sum. In Subset Sum problem, the

input is a set of integers A = w1, . . . , wm and an integer L, the output is true if there is a

subset of A such that its summation is L. We create the following acyclic schema. There are

m tables. Each table Ti has a single unique column xi with two rows wi, 0. Then the join

of the tables has 2m rows, and it is a cross product of the rows in different tables in which

each row represents one subset of A.

Then consider the following three centers: c1 = (L−1
m
, L−1
m
, . . . , L−1

m
), c2 = ( L

m
, . . . , L

m
), and

c1 = (L+1
m
, L+1
m
, . . . , L+1

m
). The Voronoi diagram that separates the points assigned to each

of these centers consists of two parallel hyperplanes:
∑

i xi = L− 1/2 and
∑

i xi = L+ 1/2

where the points between the two hyperplanes are the points assigned to c2. Since all the

points in the design matrix have integer coordinates, the only points that are between these

two hyperplanes are those points for which
∑

i xi = L. Therefore, the approximation for the

number of points assigned to c2 is nonzero if and only if the answer to Subset Sum is true.
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6.2 The k-means++ Algorithm

In this section, we describe a relational implementation of the k-means++ algorithm.

It is sufficient to explain how the center ci is picked given the previous centers c1, . . . , ci−1.

Recall that the k-means++ algorithm picks a point x to be ci with probability P (x) = L(x)
Y

where L(x) = minj∈[i−1] ‖x− cj‖22 and Y =
∑

x∈J L(x) is a normalizing constant.

The implementation consists of two parts. The first part, described in Section 6.2.2.1,

shows how to partition the d-dimensional Euclidean space into a laminar set of hyper-

rectangles (referred to as boxes hereafter) that are generated around the previous centers.

The second part, described in Section 6.2.2.2, samples according to the “hard” distribution

P using rejection sampling and an “easy” distribution Q.

Conceptually, we assign every point in the design matrix J to an approximately nearest

center among c1, . . . , ci−1. This is done by assigning every point in J to one of the centers

contained in the smallest box this point belongs to. Then Q is derived using the squared

distance between the points in J and their assigned centers.

For illustration, we first show the special case of when k = 3, and then we proceed to

the general case.

6.2.1 Relational Implementation of 3-means++

Recall that the 3-means++ algorithm picks a point x to be the third center c3 with

probability P (x) = L(x)
Y

where L(x) = min(‖x− c1‖22 , ‖x− c2‖
2
2) and Y =

∑
x∈J L(x) is a

normalizing constant. Conceptually, think of P as being a ‘hard” distribution to sample

from.

Description of the Implementation: The implementation first constructs two iden-

tically sized axis-parallel hypercubes/boxes b1 and b2 centered around c1 and c2 that are as

large as possible subject to the constraints that the side lengths have to be non-negative

integral powers of 2, and that b1 and b2 cannot intersect. Such side lengths could be found

since we may assume c1 and c2 have integer coordinates or they are sufficiently far away

from each other that we can scale them and increase their distance. Conceptually, the
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Figure 4: Boxes Used For Sampling Third Center.

implementation also considers a box b3 that is the whole Euclidean space.

To define our “easy” distribution Q, for each point x define R(x) to be

R(x) =


‖x− c1‖22 x ∈ b1

‖x− c2‖22 x ∈ b2

‖x− c1‖22 x ∈ b3 and x /∈ b1 and x /∈ b2

In the above definition, note that when x /∈ b1 and x /∈ b2, the distance of x to both

centers are relatively similar; therefore, we can assign x to either of the centers – here we have

assigned it to c1. Then Q(x) is defined to be R(x)
Z

, where Z =
∑

x∈J R(x) is a normalizing

constant. The implementation then repeatedly samples a point x with probability Q(x).

After sampling x, the implementation can either (A) reject x, and then resample or (B)

accept x, which means setting the third center c3 to be x. The probability that x is accepted

after it is sampled is L(x)
R(x)

, and as a result, the probability that x is rejected is 1− L(x)
R(x)

.

It is straightforward to see how to compute b1 and b2 (note that b1 and b2 can be computed

without any relational operations), and how to compute L(x) and R(x) for a particular point

x. Thus, the only non-straight-forward part is the sampling of a point x with probability

Q(x). Before explaining this step, we need to explain a simple lemma that describes a

subroutine used by the sampling algorithm.
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Lemma 58. Given a point y ∈ Rd and a hyper-rectangle b = {x ∈ Rd : vi ≤ xi ≤ wi, i =

1, . . . , d} where v and w are constant vectors, we let J ∩ b denote the data points represented

by rows of J that also fall into b. It is possible to compute the summation of the squared

distance of the points in J ∩ b from y grouped by the table Tj in time O(md2nfhtw log(n)).

Proof. We can use a SumSum query grouped by table Ti. First, note that J ∩ b can be

represented by a join query. Let b(Ti) be all the rows in Ti that are located inside the

projection of b onto the columns of Ti. Then, as b is an axis-parallel hyper-rectangle, we

have J ∩ b = b(T1) on · on b(Tm). Therefore, any SumSum query on J ∩ b can be computed

using Inside-Out algorithm on b(T1) on · on b(Tm). Then the following SumSum query is the

summation of the squared distance of the points in J ∩ b from y:

∑
p∈J∩b

‖p− y‖22 =
∑
p∈J∩b

d∑
i=1

(pi − yi)2.

Based on Theorem 19, we can compute this query in time O(md2nfhtw log(n)).

Using the above axis-parallel boxes and the subroutine explained in Lemma 58, we can

explain the sampling algorithm:

• The implementation uses a SumProd query to compute the aggregate 2-norm squared

distance from c1 constrained to points in b3 (all the points) and grouped by table T1

using Lemma 58. Let the resulting vector be C. Therefore, Cr is the aggregate 2-norm

squared distance from c1 of all rows in the design matrix that are extensions of row r in

T1.

• Then the implementation uses a SumProd query to compute the aggregated 2-norm

squared distance from c2, constrained to points in b2, and grouped by T1. Let the

resulting vector be D. Notice that an axis-parallel box constraint can be expressed as a

collection of axis-parallel hyperplane constraints, and for every axis-parallel constraint,

it is easy to remove the points not satisfying it from the join by filtering one of the input

tables having that dimension/feature. Then the sum product query is the same as the

sum product query in the previous step.
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• Then the implementation uses a SumProd query to compute the aggregated 2-norm

squared distance from c1, constrained to points in b2, and grouped by T1 Let the resulting

vector be E.

• Then pick a row r of T1 with probability proportional to Cr − Er +Dr.

• The implementation then replaces T1 by a table consisting only of the picked row r.

• The implementation then repeats this process on table T2, then table T3 etc.

• At the end, J will consist of one point/row x, where the probability that a particular

point x ends up as this final row is Q(x). To see this, note that in the iteration performed

for Ti, C − E is the aggregate 2-norm squared distances to c1 for all points not in b2

grouped by Ti, and D is the aggregated squared distances of the points in b2 to c2 grouped

by Ti.

We now claim that this implementation guarantees that c3 = x with probability P (x).

We can see this using the standard rejection sampling calculation. At each iteration of

sampling from Q, let S(x) be the event that point x is sampled and A(x) be the event that

x is accepted. Then,

Pr[S(x) and A(x)] = Pr[A(x)] | S(x)] ·Pr[S(x)] =
L(x)

R(x)
Q(x) =

L(x)

Z

Thus, x is accepted with probability proportional to L(x), as desired.

As the number of times that the implementation has to sample from Q is geometrically

distributed, the expected number of times that it will have to sample is the inverse of

the probability of success, which is maxx
R(x)
L(x)

. It is not too difficult to see (we prove it

formally in Lemma 61) that maxx
R(x)
L(x)

= O(d). It takes 3m SumProd queries to sample

from Q. Therefore, the expected running time of our implementation of 3-means++ is

O(mdΨ(n, d,m)) where Ψ(n, d,m) = md2nfhtw log(n) is the time required for computing a

single SumProd query.
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6.2.2 General Algorithm

6.2.2.1 Box Construction

Here we explain the algorithm for constructing a set of laminar boxes given the centers

sampled previously. The construction is completely combinatorial. It only uses the given

centers and we do not need any relational operation for the construction.

Algorithm Description: Assume we want to sample the ith point in k-means++. The

algorithm maintains two collections Gi and Bi of tuples. Each tuple consists of a box and a

point in that box, called the representative of the box. This point is one of the previously

sampled centers. One can think of the tuples in Gi as “active” ones that are subject to

changes and those in Bi as “frozen” ones that are finalized, thus removed from Gi and added

to Bi. When the algorithm terminates, Gi will be empty, and the boxes in Bi will be a

laminar collection of boxes that we use to define the “easy” probability distribution Q.

The initial tuples in Gi consist of one unit hyper-cube (side length is 1) centered at each

previous center cj, j ∈ [i − 1], with its representative point cj. Up to scaling of initial unit

hyper-cubes, we can assume that initially no pair of boxes in Gi intersect. This property of Gi
is maintained throughout the process. Initially Bi is empty. Over time, the implementation

keeps growing the boxes in Gi in size and moves tuples from Gi to Bi.

The algorithm repeats the following steps in rounds. At the beginning of each round,

there is no intersection between any two boxes in Gi. The algorithm performs a doubling step

where it doubles every box in Gi. Doubling a box means each of its d−1 dimensional face is

moved twice as far away from its representative. Mathematically, a box whose representative

point is y ∈ Rd may be written as {x ∈ Rd : yi− vi ≤ xi ≤ yi +wi, i = 1, . . . , d} (vi, wi > 0).

This box becomes {x ∈ Rd : yi − 2vi ≤ xi ≤ yi + 2wi, i = 1, . . . , d} after doubling.

After doubling, the algorithm performs the following operations on intersecting boxes

until there are none. The algorithm iteratively picks two arbitrary intersecting boxes from

Gi. Say the boxes are b1 with representative y1 and b2 with representative y2. The algorithm

executes a melding step on (b1, y1) and (b2, y2), which has the following procedures:

• Compute the smallest box b3 in the Euclidean space that contains both b1 and b2.
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• Add (b3, y1) to Gi and delete (b1, y1) and (b2, y2) from Gi.

• Check if b1 (or b2) is a box created by the doubling step at the beginning of the current

round and has not been melded with other boxes ever since. If so, the algorithm computes

a box b′1 (resp. b′2) from b1 (resp. b2) by halving it. That is, each d − 1 dimensional

face is moved so that its distance to the box’s representative is halved. Mathematically,

a box {x ∈ Rd : yi − vi ≤ xi ≤ yi + wi, i = 1, . . . , d} (vi, wi > 0), where vector y is its

representative, becomes {x ∈ Rd : yi − 1
2
vi ≤ xi ≤ yi + 1

2
wi, i = 1, . . . , d} after halving.

Then (b′1, y1) (or (b′2, y2)) is added to Bi. Otherwise do nothing.

Notice that melding decreases the size of Gi.

The algorithm terminates when there is one tuple (b0, y0) left in Gi, at which point the

algorithm adds a box that contains the whole space with representative y0 to Bi. Note that

during each round of doubling and melding, the boxes which are added to Bi are the ones

that after doubling were melded with other boxes, and they are added with their shapes

before the doubling step.A pseudocode of this algorithm can be found in the appendix.

Lemma 59. The collection of boxes in Bi constructed by the above algorithm is laminar.

Proof. Note that right before each doubling step, the boxes in Gi are disjoint and that is

because the algorithm in the previous iteration melds all the boxes that have intersection

with each other. We prove by induction that at all times, for every box b in Bi there exist a

box b′ in Gi such that b ⊆ b′. Since the boxes added to Bi in each iteration are a subset of

the boxes in Gi before the doubling step and they do not intersect each other, laminarity of

Bi is a straight-forward consequence.

Initially Bi is empty and therefore the claim holds. Assume in some arbitrary iteration

` this claim holds right before the doubling step, then after the doubling step since every

box in Gi still covers all of the area it was covering before getting doubled, the claim holds.

Furthermore, in the melding step, every box b3 that is resulted from melding of two boxes

b1 and b2 covers both b1 and b2; therefore, b3 will cover b1 and b2 if they are added to Bi, and

if a box in Bi was covered by either of b1 or b2, it will be still covered by b3.

The collection of boxes in Bi can be thought of as a tree where every node corresponds

to a box. The root node is the entire space. In this tree, for any box b′, among all boxes
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included by b′, we pick the inclusion-wise maximal boxes and let them be the children of

b′. Thus, the number of boxes in Bi is O(i) since the tree has i leaves, one for each center.

6.2.2.2 Sampling

To define our easy distribution Q, for any point x ∈ J , let b(x) be the minimal box

in Bi that contains x and y(x) be the representative of b(x). Define R(x) = ‖x− y(x)‖22,

and Q(x) = R(X)
Z

where Z =
∑

x∈J R(x) normalizes the distribution. We call R(x) the

assignment cost for x. We will show how to sample from the target distribution P (·) using

Q(·) and rejection sampling, and how to implement this designed sampling step relationally.

Rejection Sampling: The algorithm repeatedly samples a point x with probability Q(x),

then either (A) rejects x and resamples, or (B) accepts x as the next center ci and finishes the

sampling process. After sampling x, the probability of accepting x is L(x)
R(x)

, and that of reject-

ing x is 1− L(x)
R(x)

. Notice that here L(x)
R(x)
≤ 1 since R(x) = ‖x− y(x)‖22 ≥ minj∈[i−1] ‖x− cj‖22.

If S(x) is the the event of initially sampling x from distribution Q, and A(x) is the event

of subsequently accepting x, the probability of choosing x to be ci in one given round is:

Pr[S(x) and A(x)] = Pr[A(x) | S(x)] Pr[S(x)] =
L(x)

R(x)
Q(x) =

L(x)

Z

Thus, the probability of x being the accepted sample is proportional to L(x), as desired.

We would like Q(·) to be close to P (·) point-wise so that the algorithm is efficient.

Otherwise, the acceptance probability L(x)
R(x)

is low and it might keep rejecting samples.

Relational Implementation of Sampling: We now explain how to relationally sample

a point x with probability Q(x). The implementation heavily leverages Lemma 58, which

states for a given box b∗ with representative y∗, the cost of assigning all points in r on J ∩ b∗

to y∗ for each row r ∈ Ti can be computed in polynomial time using a SumProd query

grouped by Ti. Recall that we assign all points in J to the representative of the smallest box

they belong to. We show that the total assignment cost is computed by evaluating SumProd

queries on the boxes and then adding/subtracting the query values for different boxes.

Following the intuition provided in Section 6.1, the implementation generates a single

row from table T1, T2, . . . , Tm sequentially. The concatenation of these rows (or the join of
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them) gives the sampled point x. It is sufficient to explain assuming that we have sampled

r1, . . . , r`−1 from the first `−1 tables, how to implement the generation of a row from the next

table T`. Just like 1- and 2-means++ in Section 6.1, the algorithm evaluates a function F`(·)

defined on rows in T` using SumProd queries, and samples r with probability F`(r)∑
r′∈T`

F`(r′)
.

Again, we focus on r1 on . . . on r`−1 on J , denoting the points in J that uses the previously

sampled rows. The value of F`(r) is determined by points in r on r1 on . . . on r`−1 on J .

To ensure that we generate a row according to the correct distribution Q, we define the

function F`(·) as follows. Let F`(r) be the total assignment cost of all points in r on r1 on

. . . on r`−1 on J . That is, F`(r) =
∑

x∈ronr1on...onr`−1onJ R(x). Notice that the definition of the

function F`(·) is very similar to 2-means++ apart from that each point is no longer assigned

to a given center, but the representative of the smallest box containing it.

Let G(r, b∗, y∗) denote the cost of assigning all points from r on r1 on . . . on r`−1 on J that

lies in box b∗ to a center y∗. By replacing J in Lemma 58 by r1 on . . . on r`−1 on J , we can

compute all G(r, b∗, y∗) values in polynomial time using one SumProd query grouped by T`.

The value F`(r) can be expanded into subtraction and addition of G(r, b∗, y∗) terms. The

expansion is recursive. For a box b0, let H(r, b0) =
∑

x∈ronr1on...onr`−1onJ∩b0 R(x). Notice that

F`(r) = H(r, b0) if b0 is the entire Euclidean space. Pick any row r ∈ T`. Assume we want

to compute H(r, b0) for some tuple (b0, y0) ∈ Bi.

Recall that the set of boxes in Bi forms a tree structure. If b0 has no children this is

the base case - H(r, b0) = G(r, b0, y0) by definition since all points in b0 must be assigned

to y0. Otherwise, let (b1, y1), . . . , (bq, yq) be the tuples in Bi where b1, . . . , bq are children of

b0. Notice that, by definition, all points in b0 \ (
⋃
j∈[q] bj) are assigned to y0. Then, one can

check that the following equation holds for any r:

H(r, b0) = G(r, b0, y0)−
∑
j∈[q]

G(r, bj, y0) +
∑
j∈[q]

H(r, bj)

Starting with setting b0 as the entire Euclidean space, the equation above could be used

to recursively expand H(·, b0) = F`(·) into addition and subtraction of O(|Bi|) number of

G(·, ·, ·) terms, where each term could be computed with one SumProd query by Lemma 58.
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Runtime Analysis of the Sampling: We now discuss the running time of the sampling

algorithm simulating k-means++. These lemmas show how close the probability distribution

we compute is compared to the k-means++ distribution. This will help bound the running

time.

Lemma 60. Consider the box construction algorithm when sampling the ith point in the

k-means++ simulation. Consider the end of the jth round where all melding is finished but

the boxes have not been doubled yet. Let b be an arbitrary box in Gi and h(b) be the number

of centers in b at this time. Let ca be an arbitrary one of these h(b) centers. Then:

A. The distance from ca to any d− 1 dimensional face of b is at least 2j.

B. The length of each side of b is at most h(b) · 2j+1.

Proof. The first statement is a direct consequence of the definition of doubling and melding

since at any point of time the distance of all centers in a box is at least 2j. To prove the

second statement, we define the assignment of the centers to the boxes as following. Consider

the centers inside each box b right before the doubling step. We call these centers the centers

assigned to b and denote the number of them by h′(b). When two boxes b1 and b2 are melding

into box b3, we assign their assigned centers to b3.

We prove that each side length of b is at most h′(b)2j+1 by induction on the number j

of executed doubling steps. Since h′(b) = h(b) right before each doubling, this will prove

the second statement. The statement is obvious in the base case, j = 0. The statement

also clearly holds by induction after a doubling step as j is incremented and the side lengths

double and the number of assigned boxes do not change. It also holds during every meld step

because each side length of the newly created larger box is at most the aggregate maximum

side length of the smaller boxes that are moved to Bi, and the number of assigned centers

in the newly created larger box is the aggregate of the assigned centers in the two smaller

boxes that are moved to Bi. Note that since for any box b all the assigned centers to b are

inside b at all times, h′(b) is the number of centers inside b before the next doubling.

This lemma bounds the difference of the two probability distributions.
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Lemma 61. Consider the box generation algorithm when sampling the ith point in the k-

means++ simulation. For all points x, R(x) ≤ O(i2d) · L(x).

Proof. Consider an arbitrary point x. Let c`, ` ∈ [i − 1], be the center that is closest to x

under the 2-norm distance. Assume j is minimal such that just before the (j+1)-th doubling

round, x is contained in a box b in Gi. We argue about the state of the algorithm at two

times, the time s just before doubling round j and the time t just before doubling round j+1.

Let b be a minimal box in Gi that contains x at time t, and let y be the representative for

box b. Notice that we assign x to the representative of the smallest box in Bi that contains

it, so x will be assigned to y. Indeed, none of the boxes added into Bi before time t contains

x by the minimality of j, and when box b gets added into Bi (potentially after a few more

doubling rounds) it still has the same representative y. By Lemma 60 the squared distance

from from x to r is at most (i−1)2d22j+2. Therefore, it is sufficient to show that the squared

distance from x to c` is Ω(2j).

Let b′ be the box in Gi that contains c` at time s. Note that x could not have been inside

b′ at time s by the definition of t and s. Then by Lemma 60 the distance from c` to the edge

of b′ at time t is at least 22j−2, and hence the distance from c` to x is also at least 22j−2 as

x is outside of b′.

The following theorem bounds the running time.

Theorem 62. The expected time complexity for running k′ iterations of this implementation

of k-means++ is O(k′4dmΨ(n, d,m)) where Ψ(n, d,m) = md2nfhtw log(n).

Proof. When picking center ci, a point x can be sampled with probability Q(x) in time

O(miΨ(n,m, d)). This is because the implementation samples one row from each of the m

tables. To sample one row, we evaluate O(|Bi|) SumProd queries, each in O(Ψ(n,m, d)) time.

As mentioned earlier, Bi can be thought of as a tree of boxes with i−1 leaves, so |Bi| = O(i).

By Lemma 61, the probability of accepting any sampled x is L(x)
R(x)

= 1
O(i2d)

. The expected

number of sampling from Q until getting accepted is O(i2d). Thus, the expected time of

finding ci is O(i3dmΨ(n,m, d)). Summing over i ∈ [k′], we get O(k′4dmΨ(n,m, d)).
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6.3 Weighting the Centers

Our algorithm samples a collection C of k′ = Θ(k logN) centers using the k-means++

sampling described in the prior section. We give weights to the centers to get a coreset.

Ideally, we would compute the weights in the standard way. That is, let wi denote the

number of points that are closest to point ci among all centers in C. These pairs of centers

and weights (ci, wi) are known to form a coreset. Unfortunately, as stated in Theorem 56,

computing such wi’s even approximately is NP hard. Instead, we will find a different set of

weights which still form a coreset and are computable.

Next, we describe a relational algorithm to compute a collection W ′ of weights, one

weight w′i ∈ W ′ for each center ci ∈ C. The proof that the centers with these alternative

weights (ci, w
′
i) also form a coreset is postponed until the appendix.

Algorithm for Computing Alternative Weights: Initialize the weight w′i for each center

ci ∈ C to zero. In the d-dimensional Euclidean space, for each center ci ∈ C, we generate a

collection of hyperspheres (also named balls) {Bi,j}j∈[lgN ], where Bi,j contains approximately

2j points from J . The space is then partitioned into {Bi,0, Bi,1 − Bi,0, Bi,2 − Bi,1, . . .}. For

each partition, we will sample a small number of points and use this sample to estimate

the number of points in this partition that are closer to ci than any other centers, and thus

aggregating w′i by adding up the numbers. Fix small constants ε, δ > 0. The following steps

are repeated for j ∈ [lgN ]:

• Let Bi,j be a ball of radius ri,j centered at ci. Find a ri,j such that the number of points

in J ∩Bi,j lies in the range [(1−δ)2j, (1+δ)2j]. This step can be done using Theorem 28.

• Let τ be a constant that is at least 30. A collection Ti,j of τ
ε2
k′2 log2N “test” points are

independently sampled following the same approximately uniform distribution with

replacement from every ball Bi,j. Here an “approximately uniform” distribution means

one where every point p in Bi,j is sampled with a probability γp,i,j ∈ [(1− δ)/|Bi,j|, (1 +

δ)/|Bi,j|] on each draw. This can be accomplished efficiently similar to the techniques

used in Theorem 28. Further elaboration is given in the Section 6.3.1.

• Among all sampled points Ti,j, find Si,j, the set of points that lie in the “donut” Di,j =
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Bi,j −Bi,j−1. Then the cardinality si,j = |Si,j| is computed.

• Find ti,j, the number of points in Si,j that are closer to ci than any other center in C.

• Compute the ratio f ′i,j =
ti,j
si,j

(if si,j = ti,j = 0 then f ′i,j = 0).

• If f ′i,j ≥ 1
2k′2 logN

then w′i is incremented by f ′i,j · 2j−1, else w′i stays the same.

At first glance, the algorithm appears naive: w′i can be significantly underestimated if in

some donuts only a small portion of points are closest to ci, making the estimation inaccurate

based on sampling. However, in Section 6.4, we prove the following theorem which shows

that the alternative weights computed by our algorithm actually form a coreset.

Theorem 63. The set of centers C, along with the computed weights W ′, form an O(1)-

approximate coreset with high probability.

The running time of a naive implementation of this algorithm would be dominated by

the sampling of the test points. Sampling a single test point can be accomplished with m

applications of the algorithm in Section 3.2 and setting the approximation error to δ = ε/m.

Recall the running time of the algorithm from Section 3.2 is O
(
m6 log4 n

δ2
Ψ(n, d,m)

)
where

Ψ(n, d,m) = md2nfhtw log(n). Thus, the time to sample all test points isO
(
k′2m9 log6 n

ε4
Ψ(n, d,m)

)
.

Substituting for k′, and noting that N ≤ nm, we obtain a total time for a naive implemen-

tation of O
(
k2m11 log8 n

ε4
Ψ(n, d,m)

)
.

6.3.1 Uniform Sampling From a Hypersphere

To uniformly sample a point from inside a ball, it is enough to show how we can count

the number of points located inside a ball grouped by a table Ti. Because, if we can count

the number of points grouped by the input tables, then we can use a similar technique to the

one used in Section 6.2 to sample. Unfortunately, similar to the proof of Theorem 23, we can

show that it is #P -Hard to count the number of points inside a ball; however, it is possible

to obtain a 1±δ approximation of the number of points as we showed in Theorem 28. Below

we briefly explain how to use the algorithm in Section 3.2 for counting the number of points

inside a hypersphere.

Given a center c and a radius R, the goal is approximating the number of tuples x ∈ J for

which
∑

i(c
i − xi)2 ≤ R. Note that

∑
i(c

i − xi)2 ≤ R is an additive inequality and therefore
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the problem we are considering is an inequality row counting instance. Recall that the

algorithm in Section 3.2 uses some real number multisets and it defines two operators of ⊕

and ⊗ that form a semiring with multisets. Then it runs Inside-Out [9] algorithm combined

with some sketching techniques to reduce the size of the partial results. At the end, the

algorithm in Section 3.2 returns an array where in j-th entry it has the smallest value r for

which there are (1 + δ)j tuples x ∈ J satisfying the additive inequality ‖x− c‖22 ≤ r2.

The query can also be executed grouped by one of the input tables since Inside-Out

itself can execute SumProd queries grouped by one of the input tables. Therefore, using this

polynomial approximation scheme, we can calculate the conditioned marginalized probability

distribution with multiplicative (1± δ). Therefore, using m queries, it is possible to sample

a tuple from a ball with probability distribution 1
n
(1±mδ) where n is the number of points

inside the ball. In order to get a sample with probability 1
n
(1 ± ε), all we need is to set

δ = ε/m; hence, the time complexity for sampling each tuple will be O
(
m9 log4(n)

ε2
Ψ(n, d,m)

)

6.4 Analysis of the Weighting Algorithm

The goal of this subsection is to prove Theorem 63 which states that the alternative

weights form an O(1)-approximate coreset with high probability. Throughout our analysis,

“with high probability” means that for any constant ρ > 0 the probability of the state-

ment not being true can be made less than 1
Nρ asymptotically by appropriately setting the

constants in the algorithm.

Intuitively, if a decent fraction of the points in each donut are closer to center ci than

any other center, then Theorem 63 can be proven by using a straight-forward application

of Chernoff bounds to show that each alternate weight w′i is likely close to the true weight

wi. The conceptual difficultly is if only a very small portion of points in a donut Di,j are

closer to ci than any other points, in which case the estimated f ′i,j <
1

2k′2 logN
and thus the

“uncounted” points in Di,j would contribute no weight to the computed weight w′i. We

call this the undersampled case. If many docuts around a center i are undersampled, the

computed weight w′i may well poorly approximate the actual weight wi.
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To address this, we need to prove that omitting the weight from these uncounted points

does not have a significant impact on the objective value. We break our proof into four

parts. The first part, described in Section 6.4.1, involves conceptually defining a fractional

weight wfi for each center ci ∈ C. Each point has a weight of 1, and instead of giving all

this weight to its closest center, we allow fractionally assigning the weight to various “near”

centers. wfi is then the aggregated weight over all points for ci. The second part, described

in Section 6.4.2, establishes various properties of the fractional weight that we will need.

The third part, described in subsubsection 6.4.3, shows that each fractional weight wfi is

likely to be closely approximated the computed weight w′i. The fourth part, described in

Section 6.4.4, shows that the fractional weights of the centers in C form a O(1)-approximate

coreset. Section 6.4.4 also contains the proof of Theorem 63.

6.4.1 Defining the Fractional Weights

To define the fractional weights we first define an auxiliary directed acyclic graph G =

(S,E) where there is one node in S corresponding to each row in J . For the rest of this

section, with a little abuse of notation, we use S to denote both the nodes in graph G, and the

set of d-dimensional data points in the design matrix. Let p be an arbitrary point in S −C.

Let α(p) denote the subscript of the center closest to p, i.e., if ci ∈ C is closest to p then

α(p) = i. Let Di,j be the donut around ci that contains p. If Di,j is not undersampled then

p will have one outgoing edge (p, ci). Hence, let us now assume that Di,j is undersampled.

Defining the outgoing edges from p in this case is a bit more complicated.

Let Ai,j be the points q ∈ Di,j that are closer to ci than any other center in C (i.e.,

α(q) = i). If j = 1 then Di,1 contains only the point p, and the only outgoing edge from

p goes to ci. As a result, let us assume the remaining case of j > 1. Let ch the center

that is closest to the most points in Di,j−1, the next donut in toward ci from Di,j. That is

ch = argmaxcj∈C
∑

q∈Di,j−1
1α(q)=cj . Let Mi,j−1 be points in Di,j−1 that are closer to ch than

any other center. That is, Mi,j−1 is the collection of q ∈ Di,j−1 such that α(q) = h. Then

there is a directed edge from p to each point in Mi,j−1.
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Before defining how to derive the fractional weights from G, let us take a detour to note

that G is acyclic. The proof of the following lemma can be found in the appendix.

Lemma 64. G is acyclic.

Proof. Consider a directed edge (p, q) ∈ E, and ci be the center in C that p is closest to,

and Di,j the donut around ci that contains p. Then, since p ∈ Di,j it must be the case

that ‖p− ci‖22 > ri,j−1. Since q ∈ Bi,j−1 it must be the case that ‖q − ci‖22 ≤ ri,j−1. Thus,

‖p− ci‖22 > ‖q − ci‖
2
2. Therefore, the closest center to q must be closer to q than the closest

center to p is to p. For this reason, as one travels along a directed path in G, although identify

of the closest center can change, the distance to the closest center must be monotonically

decreasing. Thus, G must be acyclic.

We explain how to compute a fractional weight wfp for each point p ∈ S using the network

G. Initially, each wfp is set to 1. Then conceptually these weights flow toward the sinks in

G, splitting evenly over all outgoing edges at each vertex. More formally, the following flow

step is repeated until is no longer possible to do so:

Flow Step: Let p ∈ S be an arbitrary point that currently has positive fractional weight

and that has positive outdegree h in G. Then for each directed edge (p, q) in G increment

wfq by wfp/h. Finally, set wfp to zero.

As the sinks in G are exactly the centers in C, the centers in C will be the only points that

end up with positive fractional weight. Thus, we use wfi to refer to the resulting fractional

weight on center ci ∈ C.

6.4.2 Properties of the Fractional Weights

Let fi,j be the fraction of points that are closest to ci among all centers in C in this

donut Di,j = Bi,j−Bi,j−1. We show in Lemma 65 and Lemma 67 that with high probability,

either the estimated ratio is a good approximation of fi,j, or the real ratio fi,j is very small.

We show in Lemma 69 that the maximum flow through any node is bounded by 1+ε when

N is big enough. This follows by induction because each point has Ω(k′ logN) neighbors

106



and every point can have in degree from one set of nodes per center. We further know every

point that is not uncounted actually contributes to their centers’ weight.

Lemma 65. With high probability, either |fi,j − f ′i,j| ≤ εfi,j or f ′i,j ≤ 1
2k′2 logN

.

To prove Lemma 65, we use the following Chernoff Bound.

Lemma 66. Consider Bernoulli trials Xi, . . . , Xn. Let X =
∑n

i=1Xi and µ = E[X]. Then,

for any λ > 0:

Pr[X ≥ µ+ λ] ≤ exp

(
− λ2

2µ+ λ

)
Upper Chernoff Bound

Pr[X ≤ µ− λ] ≤ exp

(
−λ

2

3µ

)
Lower Chernoff Bound

Proof. Proof of Lemma 65: Fix any center ci ∈ C and j ∈ [logN ]. By applying the low

Chernoff bound from Lemma 66 it is straight forward to conclude that τ is large then with

high probability at least a third of the test points in each Ti,j are in the donut Di,j. That

is, with high probability si,j ≥ τ
3ε2
k′2 log2N . Therefore, let us consider a particular Ti,j

and condition si,j having some fixed value that is at least 1
3ε2
k′2 log2N . As a result, si,j is

conditioned on being large.

Recall ti,j =
∑

p∈Wi,j
(1p∈Ti,j)(1α(p)=i), and the indicator random variables 1p∈Ti,j are

Bernoulli trials. Further note by the definition of γp,i,j it is the case that E[ti,j] =
∑

p∈Wi,j
γp,i,j(1α(p)=i).

Further note that as the sampling of test points is nearly uniform that fi,j(1−δ)si,j ≤ E[ti,j] ≤

fi,j(1 + δ)si,j. For notational convenience, let µ = E[ti,j]. We now break the proof into three

cases, that cover the ways in which the statement of this lemma would not be true. For each

case, we show with high probability the case does not occur.

Case 1: f ′i,j ≥ 1
2k′2 logN

and fi,j >
1−ε

2k′2 logN
and f ′i,j ≥ (1 + ε)fi,j. We are going to prove

that the probability of this case happening is very low. If we set λ = εµ, then using Chernoff

bound, we have
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Pr[ti,j ≥ (1 + ε)µ] ≤ exp

(
− (εµ)2

2µ+ εµ

)
[Upper Chernoff Bound]

≤ exp

(
−ε

2(1− δ)fi,jsi,j
2 + ε

)
[µ ≥ (1− δ)fi,jsi,j]

≤ exp

(
−ε

2(1− δ)(1− ε)si,j
3(2k′2 logN)

)
[fi,j >

1− ε
2k′2 logN

]

≤ exp

(
−ε

2(1− δ)(1− ε)τk′2 log2N

3(2k′2 logN)(3ε2)

)
[si,j ≥

τ

3ε2
k′

2
logN ]

= exp

(
−(1− δ)(1− ε)τ logN

18

)
Therefore, for δ ≤ ε/2 ≤ 1/10 and τ ≥ 30 this case cannot happen with high probability.

Case 2: f ′i,j ≥ 1
2k′2 logN

and fi,j >
1−ε

2k′2 logN
and f ′i,j < (1 − ε)fi,j. We can use Lower

Chernoff Bound with λ = εµ to prove the probability of this event is very small.

Pr[ti,j ≤ (1− ε)µ] ≤ exp

(
−(εµ)2

3µ

)
≤ exp

(
−ε

2(1− δ)fi,jsi,j
3

)
[µ ≥ (1− δ)fi,jsi,j]

≤ exp

(
−ε

2(1− δ)(1− ε)si,j
3(2k′2 logN)

)
[fi,j >

1− ε
2k′2 logN

]

≤ exp

(
−ε

2(1− δ)(1− ε)τk′2 log2N

3(2k′2 logN)(3ε2)

)
[si,j ≥

τ

3ε2
k′

2
logN ]

= exp

(
−(1− δ)(1− ε)τ logN

18

)
Therefore, for δ ≤ ε/2 ≤ 1/10 and τ ≥ 30 this case cannot happen with high probability.

Case 3: f ′i,j ≥
1

2k′2 logN
and fi,j ≤ 1−ε

2k′2 logN
: Since f ′i,j =

ti,j
si,j

, in this case:

ti,j ≥
si,

2k′2 logN
(34)

Since µ ≤ fi,j(1 + δ)si,j, in this case:

µ ≤ 1− ε
2k′2 logN

(1 + δ)si,j (35)

Thus, subtracting line 34 from line 35 we conclude that:

ti,j ≥ µ+
(ε− δ + εδ)si,j

2k′2 logN
(36)
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Let λ =
(ε−δ+εδ)si,j
2k′2 logN

. We can conclude that

Pr[ti,j ≥ µ+ λ] ≤ exp

(
− λ2

2µ+ λ

)
Upper Chernoff Bound

≤ exp

(
−λ2

1−ε
2k′2 logN

(1 + δ)si,j + λ

)
Using line 35

= exp

 −
(

(ε−δ+εδ)si,j
2k′2 logN

)2
1−ε

2k′2 logN
(1 + δ)si,j +

(ε−δ+εδ)si,j
2k′2 logN


= exp

 −
(

(ε−δ+εδ)2si,j
k′2 logN

)
2(1− ε)(1 + δ) + 2(ε− δ + εδ)


≤ exp

(
−(ε− δ + εδ)2si,j

12k′2 logN

)
= exp

(
−(ε− δ + εδ)2τ logN

12ε2

)
Substituting our lower bound on si,j

Therefore, for δ ≤ ε/2 ≤ 1/10 and τ ≥ 30 this case cannot happen with high probability.

The next case proves how large f ′i,j is when we know that fi,j is large.

Lemma 67. If fi,j >
1+ε

2k′2 logN
then with high probability f ′i,j ≥ 1

2k′2 logN
.

Proof. We can prove that the probability of f ′i,j <
1

2k′2 logN
and fi,j ≥ 1+ε

2k′2 logN
is small.

Multiplying the conditions for this case by si,j we can conclude that tij <
si,j

2k′2 logN
and

µ ≥ (1 − δ)
(1+ε)si,j
2k′2 logN

. As a consequence, ti,j ≤ µ − λ where λ =
(ε−δ−εδ)si,j
2k′2 logN

. Then we can

conclude that:

Pr[ti,j ≤ µ− λ] ≤ exp

(
−λ

2

3µ

)
[Lower Chernoff Bound]

= exp

−
(

(ε−δ−εδ)si,j
2k′2 logN

)2
3µ


≤ exp

−
(

(ε−δ−εδ)si,j
2k′2 logN

)2
3 1−ε
2k′2 logN

(1 + δ)si,j
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= exp

−
(

(ε−δ−εδ)2si,j
2k′2 logN

)
3(1− ε)(1 + δ)


≤ exp

(
−(ε− δ − εδ)2si,j

12k′2 logN

)
[δ < ε ≤ 1]

≤ exp

(
−(ε− δ − εδ)2( τ

3ε2
k′2 log2N)

12k′2 logN

)
[Using our lower bound on si,j]

Therefore, for δ ≤ ε/2 ≤ 1/10 and τ ≥ 30 this case cannot happen with high probability.

We now seek to bound the fractional weights computed by the algorithm. Let ∆i(p)

denote the total weight received by a point p ∈ S \C from other nodes (including the initial

weight one on p). Furthermore, let ∆o(p) denote the total weight sent by p to all other

nodes. Notice that in the flow step, ∆o(p) = ∆i(p) for all p in S \ C.

Lemma 68. Let ∆i(p) denote the total weight received by a point p ∈ S \C from other nodes

(including the initial weight one on p). Furthermore, let ∆o(p) denote the total weight sent by

p to all other nodes. With high probability, for all q ∈ S, ∆i(q) ≤ 1+ 1+2ε
logN

maxp:(p,q)∈E ∆o(p).

Proof. Fix the point q that redirects its weight (has outgoing arcs in G). Consider its direct

predecessor P (q) = {p : (p, q) ∈ E}. Partition P (q) as follows: P (q) =
⋃
i=1,...,k′ Pci(q),

where Pci(q) is the set of points that have flowed their weights into q, but ci is actually their

closest center in C. Observe the following. The point q can only belong to one donut around

ci. Due to this, Pci(q) is either empty or contains a set of points in a single donut around ci

that redirect weight to q.

Fix Pci(q) for some ci. If this set is nonempty, suppose this set is in the j-th donut around

ci. Conditioned on the events stated in Lemmas 65 and 67, since the points in Pci(q) are

undersampled, we have |Pci(q)| ≤
(1+ε)2j−1

2k′2 logN
. Consider any p ∈ Pci(q). Let βi be the number

of points that p charges its weight to (this is the same for all such points p). It is the case

that βi is at least (1−δ)2j−1

2k′
since p flows its weights to the points that are assigned to the

center that has the most number of points assigned to it from ci’s (j − 1)th donut.
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Thus, q receives weight from |Pci(q)| ≤
(1+ε)2j−1

2k′2 logN
points and each such point gives its

weight to at least (1−δ)2j−1

2k′
points with equal split. The total weight that q receives from

points in Pci(q) is at most the following.

2k′

(1− δ)2j−1
∑

p∈Pci (q)

∆o(p)

≤ 2k′

(1− δ)2j−1
∑

p∈Pci (q)

max
p∈Pci (q)

∆o(p)

≤ 2k′

(1− δ)2j−1
· (1 + ε) · 2j−1

2k′2 logN
max

p∈Pci (q)
∆o(p) [|Pci(q)| ≤

(1+2ε)2j−1

2k′2 logN
]

≤ 1 + 2ε

k′ logN
max

p∈Pci (q)
∆o(p) [δ ≤ ε

2
≤ 1

10
]

Switching the max to maxp:(p,q)∈E ∆o(p), summing over all centers ci ∈ C and adding the

original unit weight on q gives the lemma.

The following crucial lemma bounds the maximum weight that a point can receive.

Lemma 69. Fix η to be a constant smaller than log(N)
10

and ε < 1. Say that for all q ∈ S \C

it is the case that ∆o(q) = η∆i(q). Then, with high probability for any p ∈ S \ C it is the

case that ∆i(p) ≤ 1 + 2η
logN

.

Proof. We can easily prove this by induction on nodes. The lemma is true for all nodes that

have no incoming edges in G. Now assume it is true for all nodes for which the longest path

that reaches them in G has length t− 1. Now we prove it for nodes for which the length of

the longest path that reaches them in G is t. Fix such a node q. For any node p such that

(p, q) ∈ E, by induction we have ∆i(p) ≤ 1 + 2η
logN

, so ∆o(p) ≤ 2(1 + 2η
logN

). By Lemma 68,

∆i(q) ≤ 1+ 1+2ε
logN

maxp:(p,q)∈E ∆o(p) ≤ 1+
(
η(1+2ε)
logN

)(
1 + 2η

logN

)
= 1+ η

logN
+ η

logN
· 2(1+2ε)η+2ε

logN
≤

1 + 2η
logN

.
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6.4.3 Comparing Alternative Weights to Fractional Weights

It only remains to bound the cost of mapping points to the centers they contribute weight

to. This can be done by iteratively charging the total cost of reassigning each node to the

flow. In particular, each point will only pass its weight to nodes that are closer to their

center. We can charge the flow through each node to the assignment cost of that node to its

closest center, and argue that the cumulative reassignment cost bounds the real fractional

assignment cost. Furthermore, each node only has 1 + ε flow going through it. This will be

sufficient to bound the overall cost in Lemma 71.

Lemma 70. With high probability, for every center ci, it is the case that the estimated weight

w′i computed by the weighting algorithm is (1± 2ε)wfi where wfi is the fractional weight of i.

Proof. Apply the union bound to Lemma 65 and 67 over all i and j.

Fix a center ci. Consider all points that are closest to ci and are not undersampled. Let

wsi denote the number of these points. All incoming edges to ci in G, are coming from these

points; therefore based on Lemma 69, wsi ≤ wfi ≤ wsi (1 + 2
log(N)

). On the other hand, w′i is

(1± ε) approximation of wsi . Therefore, 1−ε
1+ 2

log(N)

wfi ≤ w′i ≤ (1 + ε)wfi . Assuming that logN

is sufficiently larger than ε, the lemma follows.

6.4.4 Comparing Fractional Weights to Optimal

Next, we bound the total cost of the fractional assignment defined by the flow. According

to the graph G, any point p ∈ S and ci ∈ C, we let ω(p, ci) be the fraction of weights that

got transferred from p to ci. Naturally, we have
∑

ci∈C ω(p, ci) = 1 for any p ∈ S and the

fractional weights wfi =
∑

p∈S ω(p, ci) for any ci ∈ C.

Lemma 71. Let φopt be the optimal k-means cost on the original set S. With high probability,

it is the case that: ∑
p∈S

∑
ci∈C

ω(p, ci)‖p− ci‖2 ≤ 160(1 + ε)φopt

Proof. Let φ∗ =
∑

p∈S ‖p− cα(p)‖2. Consider any p ∈ S and center ci such that ω(p, ci) > 0.

Let P be any path from p to ci in G. If node p’s only outgoing arc is to its closest center
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cα(p) = ci, then P = p → ci, we have
∑

c∈C ω(p, c)‖p − c‖2 = ‖p − cα(p)‖2. Otherwise

assume P = p → q1 → q2 → . . . → q` → ci. Note that the closest center to q` is ci.

Let ∆(P ) be the fraction of the original weight of 1 on p that is given to ci along this

path according to the flow of weights. As we observed in the proof of Lemma 64, we have

‖p− cα(p)‖ > ‖q1 − cα(p)‖ ≥ ‖q1 − cα(q1)‖ > ‖q2 − cα(q1)‖ ≥ ‖q2 − cα(q2)‖ > . . . > ‖q` − cα(q`)‖.

This follows because for any arc (u, v) in the graph, v is in a donut closer to cα(u) than the

donut u is in, and v is closer to cα(v) than cα(u).

We use the relaxed triangle inequality for squared `2 norms. For any three points x, y, z,

we have ‖x− z‖2 ≤ 2(‖x− y‖2 + ‖y − z‖2). Thus, we bound ‖p− ci‖2 by

‖p− ci‖2 = ‖p− cα(p) + cα(p) − q1 + q1 − ci‖2

≤ 2‖p− cα(p) + cα(p) − q1‖2 + 2‖q1 − ci‖2 [relaxed triangle inequality]

≤ 2(‖p− cα(p)‖+ ‖cα(p) − q1‖)2 + 2‖q1 − ci‖2 [triangle inequality]

≤ 8‖p− cα(p)‖2 + 2‖q1 − ci‖2 [‖p− cα(p)‖ ≥ ‖cα(p) − q1‖].

Applying the prior steps to each qi gives the following.

‖p− ci‖2 ≤ 8(‖p− cα(p)‖2 +
∑̀
j=1

2j‖qj − cα(qj)‖2)

Let Pq(j) be the set of all paths P that reach point q using j edges. If j = 0, it means P

starts with point q. We seek to bound
∑∞

j=0 2j
∑

P∈Pq(j) ∆(P )‖q − cα(qj)‖2. This will bound

the charge on point q above over all path P that contains it.

Define a weight function ∆′(p) for each node p ∈ S \ C. This will be a new flow of

weights like ∆, except now the weight increases at each node. In particular, give each node

initially a weight of 1. Let ∆′o(p) be the total weight leaving p. This will be evenly divided

among the nodes that have outgoing edges from p. Define ∆′i(p) to be the weight incoming

to p from all other nodes plus one, the initial weight of p. Set ∆′o(p) to be 2∆′i(p), twice the

incoming weight.

Lemma 69 implies that the maximum weight of any point p is ∆′i(p) ≤ 1 + 4
logN

. Further

notice that for any q it is the case that ∆′i(q) =
∑∞

j=0 2j
∑

P∈Pq(j) ∆(P ). Letting P(p, ci) be

the set of all paths that start at p to center ci. Notice such paths correspond to how p’s unit
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weight goes to ci. We have ω(p, ci) =
∑

P∈P(p,ci) ∆(P ). Let P denote the set of all paths,

`(P ) denote the length of path P (number of edges on P ) , and let P (j) denote the jth node

on path P . Thus, we have the following.

∑
p∈S

∑
ci∈C

ω(p, ci)‖p− ci‖2

=
∑
p∈S

∑
ci∈C

∑
P∈P(p,ci)

∆(P )‖p− ci‖2

≤ 8
∑
p∈S

∑
ci∈C

∑
P∈P(p,ci)

∆(P )(

`(p)−1∑
j=0

2j‖P (j)− cα(P (j))‖2)

= 8
∑
P∈P

∆(P )(

`(p)−1∑
j=0

2j‖P (j)− cα(P (j))‖2)

= 8
∑
q∈S

+∞∑
j=0

∑
P∈Pq(j)

2j∆(P )‖q − cα(q)‖2

= 8
∑
q∈S

∆′i(q)‖q − cα(q)‖2

≤
∑
q∈S

8(1 +
4

logN
)‖q − cα(q)‖2 = 8(1 +

4

logN
)φ∗

Lemma 71 follows because if k′ ≥ 1067k logN , φ∗ ≤ 20φopt with high probability by Theo-

rem 1 in [12].

Finally, we prove that finding any O(1)-approximation solution for optimal weighted

k-means on the set (C,W ′) gives a constant approximation for optimal k-means for the

original set S. Let W f = {wf1 , . . . , w
f
k′} be the fractional weights for centers in C. Let φ∗

W f

denote the optimal weighted k-means cost on (C,W f ), and φ∗W ′ denote the optimal weighted

k-means cost on (C,W ′). We first prove that φ∗
W f = O(1)φOPT, where φOPT denote the

optimal k-means cost on set S.

Lemma 72. Let (C,W f ) be the set of points sampled and the weights collected by fractional

assignment ω. With high probability, we have φ∗
W f = O(1)φOPT.
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Proof. Consider the cost of the fractional assignment we have designed. For ci ∈ C, the

weight is wfi =
∑

p∈S ω(p, ci). Denote the k-means cost of ω by φω =
∑

p∈S
∑

c∈C ω(p, c)‖p−

c‖2. By Lemma 71, we have that φω ≤ 160(1 + ε)φOPT.

Intuitively, in the following we show φ∗
W f is close to φω. As always, we let COPT denote the

optimal centers for k-means on set S. For a set of points X with weights Y : X → R+ and a

set of centers Z, we let φ(X,Y )(Z) =
∑

x∈X Y (x) minz∈Z ‖x− z‖2 denote the cost of assigning

the weighted points in X to their closest centers in Z. Note that φ∗
W f ≤ φ(C,W f )(COPT) since

COPT is chosen with respect to S.

φ∗W f ≤ φ(C,W f )(COPT)

=
∑
ci∈C

(
∑
p∈S

ω(p, ci)) min
c∈COPT

‖ci − c‖2 [wfi =
∑

p∈S ω(p, ci)]

=
∑
ci∈C

∑
p∈S

min
c∈COPT

ω(p, ci)‖ci − c‖2

≤
∑
ci∈C

∑
p∈S

min
c∈COPT

ω(p, ci) · 2(‖p− ci‖2 + ‖p− c‖2) [relaxed triangle inequality]

= 2φω + 2φOPT ≤ 322(1 + ε)φOPT

Using the mentioned lemmas, we can prove the final approximation guarantee.

Proof of Theorem 63. Using Lemma 70, we know w′i = (1± 2ε)wfi for any center ci. Let C ′k

be k centers for (C,W ′) that is a γ-approximate for optimal weighted k-means. Let Cf
OPT be

the optimal k centers for (C,W f ), and C ′OPT optimal for (C,W ′). We have φ(C,W f )(C
′
k) ≤

(1 + 2ε)φ(C,W ′)(C
′
k) for the reason that the contribution of each point grows by at most

(1+2ε) due to weight approximation. Using the same analysis, φ(C,W ′)(C
f
OPT) ≤ (1+2ε)φ∗

W f .

Combining the two inequalities, we have

φ(C,W f )(C
′
k) ≤ (1 + 2ε)2φ(C,W ′)(C

′
k) ≤ (1 + 2ε)2γφ∗W ′

≤ (1 + 2ε)2γφ(C,W ′)(C
f
OPT) [by optimality of φ∗W ′ ]

≤ (1 + 2ε)3γφ∗W f ≤ 322γ(1 + 2ε)4φOPT [using Lemma 72]

(37)
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Let φS(C ′k) =
∑

p∈S minc∈C′k ‖p− c‖
2. For every point p ∈ S, to bound its cost minc∈C′k ‖p−

c‖2, we use multiple relaxed triangle inequalities for every center ci ∈ C , and take the

weighted average of them using ω(p, ci).

φS(C ′k) =
∑
p∈S

min
c∈C′k
‖p− c‖2

=
∑
p∈S

∑
ci∈C

ω(p, ci) min
c∈C′k
‖p− c‖2 [

∑
ci∈C ω(p, ci) = 1]

≤
∑
p∈S

∑
ci∈C

ω(p, ci) min
c∈C′k

2(‖p− ci‖2 + ‖ci − c‖2) [relaxed triangle inequality]

= 2φω + 2φ(C,W f )(C
′
k) [

∑
p∈S ω(p, ci) = wfi ]

≤ 2φω + 2 · 322γ(1 + 2ε)4φOPT [inequality (37)]

≤ 2 · 160(1 + ε)φOPT + 2 · 322γ(1 + 2ε)4φOPT [Lemma 71]

= O(γ)φOPT
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7.0 Conclusion and Future Work

In summary, we designed relational algorithms for machine learning problems such as

training logistic regression, training linear SVM, and k-means clustering. One common as-

pect of most of these problems is that the exact relational implementation of the conventional

algorithms is hard, and as a result, we designed alternative approximation algorithms. In

our journey to design the aforementioned relational algorithms, we also designed a relational

approximation scheme for evaluating a class of SumProd queries under additive inequali-

ties. This relational approximation scheme was used as a building block in designing the

algorithms for training linear SVM and k-means clustering. The algorithms designed in

this dissertation can be beneficial to commercially used databases, as companies such as

RelationalAI and Google are developing databases capable of evaluating machine learning

queries.

For linear SVM, we suggested two approaches which one of them can be applied to regu-

larized instances and the other one is suitable for stable instance. For regularized instances,

we extract a small subset of data points that we call coreset using uniform sampling and then

change the regularizer coefficient and train the model on the uniformly sampled instance.

We also show that the size of any other coreset is in the same ballpark as the uniform

sampling. Moreover, the same method is applicable to regularized logistic regression. For

stable instances of linear SVM, in which a small change of the data points does not change

the hypothesis by a lot, we designed a variation of gradient descent algorithm that can be

implemented relationally. However, neither of the algorithms is generalizable to all instances

of linear SVM, and the problem of training those instances that are not stable and have a

small regularizer coefficient remains open.

In addition to linear SVM, we provided a relational approximation algorithm for k-

means clustering. Our algorithm samples a small subset of the points using a relational

implementation of k-means++ sampling that has a polynomial expected time complexity,

and then weights these small sets of points using a randomized relational algorithm. We

proved that with high probability this weighted subset of points is a constant approximation
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coreset of the original dataset. Prior to this work, there has been no k-means clustering

algorithm with polynomial time complexity that can work on relational data.

Besides the positive results, we also proved some hardness results which can broaden our

understanding of the limitations of the relational algorithms. We proved some fundamental

problems such as counting the number of points in an acyclic join satisfying two linear

inequalities is NP-hard to approximate. For linear SVM, we used a similar technique to

prove that calculating the gradient of linear SVM is #P -hard when the data is relational,

and for k-means clustering, we showed the hardness result for finding the center of mass

of the points assigned to a center. These hardness results are suggesting that it is unlikely

for us to be able to relationally implement conventional algorithms such as gradient descent

and Lloyd’s algorithm. Prior to this work, most of the hardness results emphasize on the

hardness of evaluating queries on cyclic joins; we believe the techniques used for proving the

hardness results in this dissertation provide the foundation for a new way of separating the

complexity of the aggregation queries and the structure of the join.

This study provides a springboard for relational approximation algorithms with an em-

phasize on machine learning applications. In this dissertation, we proved theoretical guaran-

tees for the proposed relational machine learning algorithms; however, more research should

investigate the limitation of these algorithms on real datasets using experiments. Future

research may also focus on other implementation aspects of our proposed algorithms such

as making them cache efficient or suitable for distributed computing. Moreover, there are

numerous machine learning problems for which there are no efficient relational algorithms,

and there are many other combinatorial use cases with geometric input data that may ben-

efit from a relational algorithm. In the following, we explain what questions can be asked

for future work and we explain a few machine learning problems that can benefit from a

relational algorithm.
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7.1 Experimental Future Work

There are two aspects of the algorithms introduced in this dissertation that can be com-

pared experimentally with other available systems: the runtime and the approximation error.

In particular, the algorithms for FAQ-AI, linear SVM, and k-means can be experimentally

compared with naive solutions.

In order to achieve the best runtime in practice, there are multiple aspects that one should

consider, such as the cache efficiency of the algorithm and many special guarantees that

some join queries provide. For example, in practice, many datasets have enough functional

dependencies that can prevent the exponential growth of the size of the join. As a result,

one may consider a looser definition for relational algorithms that can be used for different

machine learning problems and perform well on those datasets.

For the same reason, many of the approximation guarantees that were provided in this

dissertation might be pessimistic in practice and the algorithms may achieve better approx-

imation error in practice. For example, if functional dependencies provide a one to one

correspondence between the rows of the design matrix and the rows of an input table Ti,

then our algorithm for FAQ-AI can produce an exact solution if we group the result by

Ti. This phenomenon can be also seen in some of the prior works such as Rk-means [38],

in which the approximation error in their experiments is much lower than their theoretical

approximation guarantee.

Another implementation aspect that should be addressed is handling the categorical fea-

tures and working efficiently with compression algorithms. Often data stored in databases

have categorical features and they are stored in a compressed format. However, in all algo-

rithms in this dissertation, we have assumed that the categorical columns are already encoded

as numerical values. This can potentially be problematic for datasets with lots of categorical

data as it is shown in [6]. One may see categorical data as a sparse representation of their one

hot encoding. Therefore, it can be more efficient to handle the categorical data and computa-

tions related to them using sparse computation and adapt our relational algorithms accord-

ingly. Furthermore, for compressed data, the algorithm can be more memory efficient if it

can return the aggregation results of the compressed data without decompressing them first.
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7.2 Boosting Decision Trees

Boosting is often used with limited decision trees and it may provide great accuracy

for tabular data. The motivation for boosting is combining the output of multiple weak

regressors and it can utilize limited depth decision tree as a weak classifier and train multiple

of them on the data. In the following, we explain the decision tree model, the greedy

algorithm for training a decision tree, and AdaBoost algorithm which is one of the famous

boosting algorithms. Then we explain the open problem of training a relational decision

tree.

Decision Trees: Decision trees are a famous model for classification. A decision tree is a

binary tree with a fixed depth. Each internal node v has a dimension dv and a threshold αv

assigned to it, and the leaves have a prediction label. To predict the label of a data point

x using a decision tree, the algorithm starts from the root r and checks if xdr ≤ αr. If that

condition is true, the algorithm recursively repeats the same procedure for the left child of

r and otherwise it goes to the right child of r. At the end, after reaching to a leaf node, the

algorithm returns the prediction value of that leaf as the prediction for the label of x.

A famous algorithm for training decision trees is the greedy algorithm. The input to the

greedy algorithm is a set of d dimensional points X = {x1, . . . , xn} with associated labels

Y = {y1, . . . , yn} and a depth L. The algorithm for training the decision tree is a recursive

algorithm that starts from the root to assign a dimension and a threshold to the root, and

then it divides the data points using the assigned dimension. The algorithm passes the

points that are less than the threshold to the left branch and the rest to the right branch

and trains each subtree independently using the same recursive algorithm and the data points

assigned to them. To find the best dimension and threshold, the greedy algorithm considers

all possible dimensions of i{1, . . . , d}, and for every choice of the dimension it considers

all possible thresholds of that dimension. It chooses the combination that minimizes the

impurity of the points assigned to the left branch and the right branch. The leaves of the

tree will have a prediction label instead of a dimension and threshold. The prediction label of

a leaf is the label with the most number of data points among the points assigned to that leaf.
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More formally, given a dimension i, and a threshold α, let XL be {x |x ∈ X and xi ≤ α}

and YL be the label of these points. Furthermore, let XR = X \XL with the labels YR. Then

the algorithm chooses the combination (i, α) that minimizes

|XL|I(YL) + |XR|I(YR)

where I(Y ) is the impurity of the labels. Let Z be the set of all possible labels, and given

a collection of data points’ labels Y , let k(Y ) be the majority label in Y and ni(Y ) be the

number of occurance of some label i in Y . Then, some common choices of measuring the

impurity are the following functions [47]:

• Misclasification error: 1
|Y |
∑

i∈Z:i 6=k(Y ) ni(Y )

• Gini index: 1
|Y |2
∑

i 6=j ni(Y )nj(Y )

• Cross-entropy or deviance: −
∑

i∈Z
ni(Y ))
|Y | log(ni(Y )

|Y | )

AdaBoost: One of the famous boosting algorithms is AdaBoost. It utilizes a series of

weak classifiers and weight them in order to get a stronger classifier with a better accuracy.

The weak classifiers should be able to generate a better than 50 percent accuracy on the

weighted set of data points with binary labels. AdaBoost starts with uniform weight of 1
|X|

on data points. It then trains the first weak classifier and after assigning the weight α1 to

the classifier itself, it changes the weight of the data points based on the prediction of this

classifier and trains the second classifier on the data points using the new weights, and it

repeats the same process. At the end, the prediction will be the weighted majority of the

predictions of the weak classifiers [46].

More formally, let wij be the weight of point (xj, yj) after training the i-th classifier, note

that w0
j = 1

|X| for all j. Let fi(xj) be the prediction of the classifier i on xj, and let ai be the

weighted error of the i-th classifier on the data points using the previous weights; that is

ai =
∑

j : f(xj)6=yj

wi−1j .

Then, the algorithm performs the following steps for i = 1, . . . , T :

A. Train the classifier fi using the weights wi−11 , . . . , wi−1n .

B. Set αi = 1
2

log(1−ai
ai

).
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C. Set βi = 2
√
ai(1− ai).

D. For all points j that fi(xj) = yj, set wij =
wi−1
j e−αi

βi
.

E. For all points j that fi(xj) 6= yj, set wij =
wi−1
j eαi

βi
.

Then the final prediction for a point is F (xj) = sign(
∑

i αifi(xj)), and we have the

following theorem on the accuracy of F on the original dataset.

Theorem 73 ([46]). Let γi = 1− ai, then the training error of the final hypothesis F on the

dataset is at most exp(−2
∑

i γ
2
i ).

Relational boosting decision trees: It is possible to have a relational algorithm for

training a decision tree using SumProd queries. That is because given a set of axis-parallel

constraints, as we saw in Chapter 6, we can count the number of rows satisfying those

constraints grouped by an input table. However, it is not clear how to train boosted regression

trees without having an exponential dependence on the number of trees. The hardest part

is measuring the impurity of a node using the weights obtained by the previous trees. Note

that, unlike the conventional setting, in a relational setting we cannot store the weight of

the points because it will take the time proportionate to the size of the design matrix.

An open question is whether it is possible to have a relational boosting decision tree

algorithm using AdaBoost. If not, the next question would be if it is possible to have some

other boosting algorithm with a similar guarantee.

7.3 Euclidean K-Centers Problem

The input to the euclidean K-Centers problem is a set of d dimensional points X =

{x1, . . . , xn} and the output is a set C of K points, called the centers, such that C minimizes

the following objective

F (C) = max
xi∈X

min
ci∈C
‖ci − xi‖2

Note that if we assign each point in X to its closest center in C, then F (C) is the furthest

distance that any point has to its center. In the relational context, the set of points X is the

design matrix that can be obtained by joining m input tables.
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It can be shown that Euclidean K-centers problem is NP-Hard to solve or approximate

up to any constant less than 1.82 [44]. Also it can be shown K-centers problem in general

metric space is NP-Hard to approximate up to any constant less than 2 by a gap reduction

from dominant set [60]. The common approximation algorithm for k-center is the following

greedy algorithm that will produce a 2-approximate solution:

• Pick an arbitrary point from X as c1

• Repeatedly pick the j-th center as the point cj = argmaxx∈X mini∈[k−1] ‖ci − x‖2

The bad news is that the following theorem shows that finding the point that has the

furthest distance to its center is NP-Hard. However, finding the furthest point up to any

constant factor is also sufficient for a constant approximation algorithm for K-centers.

Theorem 74. Given an acyclic join J with d columns, and two d dimensional centers c1, c2,

it is NP-hard to find the point x in J that maximizes mini∈1,2 ‖ci − x‖2.

Proof. We can prove this theorem by a reduction from the partition problem which is

a famous NP-Complete problem. In the partition problem, the input is a set of weights

w1, . . . , wm and the output is true if we can divide the weights into two disjoint subsets such

that their summation is the same.

We perform the reduction by creating m tables such that table Ti has one column ci

and two rows with values 0 and
√

(wi). And, we use the following centers: c1 = (0, . . . , 0)

and c2 = (
√

(w1), . . . ,
√

(wm)). The claim is if mini∈1,2 ‖ci − x‖2 =
√

(
∑

iw
2
i /2), then the

output of the partition problem is true. To see the claim, note that the design matrix has

2m rows, and each row has a subset of square roots of the weights. That means the squared

distance of a row to c1 represents the total weight of a subset of weights and its squared

distance to c2 is the total weight of the complement of that subset. Therefore, if there is any

row with distance
√

(
∑

iw
2
i /2) to one of the centers, its distance to the other center is also

the same and the answer to the partition problem is true.
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7.4 DBSCAN Algorithm

Density-based spacial clustering of applications with noise (DBSCAN) is a famous clus-

tering algorithm which is usually used when the clusters have long and skinny shapes. Unlike

k-means or k-centers, DBSCAN is not a problem and it is rather an algorithm. The algo-

rithm assumes a distance function and performs the clustering based on that. The input to

the algorithm is a set of points X = {x1, . . . , xn}, parameters ε and M . The following is the

abstract description of the algorithm [94]:

A. Find all the core points. A core point is a point which has M other points within ε

distance of it.

B. Assign all the core points that are in ε distance of each other to the same cluster.

C. Find all border points and assign it to the same cluster as the closest core point to it. A

border point is a point that has a core point in ε distance of it.

D. Remove all the noise points. A noise point is a point which does not have any core point

within its ε distance.

The algorithm only needs to return the core points; then, using core points, it is possible

to find the assigned cluster of any given point. The runtime of the algorithm depends on

how fast one can perform neighbourhood queries (counting the number of points within some

distance of a given point) and the complexity of the distance function. If the neighborhood

query is done by a linear scan of the data and the distance function is Euclidean distance,

then the runtime of the algorithm is O(N2d) when the data is explicitly present. There are

data structures that can improve the runtime in practice, such as R-Trees [53], k-d-trees [16],

and locality sensitive hashing [62, 49]. However, there are no good theoretical guarantees

for these data structures, and it is proven that any data structure that can return the

neighborhood query in time less than Ω(n1/3) needs Ω(n4/3) construction time [48] unless

Hopcroft problem can be solved in o(n4/3).

While there are relational algorithms for clustering algorithms such as K-means, there is

no relational algorithm for DBSCAN. Therefore, an interesting research question would be

whether there is an efficient implementation of DBSCAN that accepts relational input.
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Appendix Pseudocodes for Section 6.2.

Algorithm 1 Algorithm For Creating Axis-Parallel Hyperrectangles

1: procedure Construct Boxes(Ci−1)

2: Input: Current centers Ci−1 = {c1, . . . , ci−1}

3: Output: Bi, a set of boxes and their centers

4: Bi ← ∅

5: Gi ← {(b∗j , cj) | b∗j is a unit size hyper-cube around cj, j ∈ [i− 1]} . We assume there

is no intersection between the boxes in G initially, up to scaling

6: while |Gi| > 1 do

7: Double all boxes in Gi.

8: G ′i = ∅ . Keeps the boxes created in this iteration of doubling

9: while ∃(b1, y1), (b2, y2) ∈ Gi that intersect with each other do

10: b← the smallest box in Euclidean space containing both b1 and b2.

11: Gi ← (Gi \ {(b1, y1), (b2, y2)}) ∪ {(b, y1)}

12: G ′i ← (G ′i ∪ {(b, y1)}

13: if (b1, y1) /∈ G ′i then . Check if box b1 hasn’t been merged with other boxes

in the current round

14: b′1 ← halved b1, add (b′1, y1) to Bi

15: if (b2, y2) /∈ G ′i then . Check if box b2 hasn’t been merged with other boxes

in the current round

16: b′2 ← halved b2, add (b′2, y2) to Bi

17: There is only one box and its representative remaining in Gi, replace this box with

the whole Euclidean space.

18: Bi ← Bi ∪ Gi.

19: Return Bi.
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Algorithm 2 Algorithm for sampling the next center

1: procedure KMeans++Sample(Ci−1, T1, . . . , Tm)

2: Let p(b) be the box that is the parent of b in the tree structure of all boxes in Bi.

3: ci ← ∅

4: Bi ← Construct Boxes(Ci−1)

5: Let (b0, y0) be the tuple where b0 is the entire Euclidean space in Bi.

6: while ci = ∅ do

7: for 1 ≤ ` ≤ m do . Sample one row from each table.

8: Let H be a vector having an entry Hr for each r ∈ T`.

9: J ′ ← r1 on . . . on r`−1 on J . . Focus on only the rows in J that uses all

previously sampled rows from T1, . . . , T`−1 in the concatenation.

10: ∀r ∈ T` evaluate Hr ←
∑

x∈ronJ ′∩b0 ‖x− y0‖
2
2

11: for (b, y) ∈ Bi \ {(b0, y0)} do

12: Let (b′, y′) ∈ Bi be the tuple where b′ = p(b).

13: ∀r ∈ T` use SumProd query to evaluate two values:
∑

x∈ronJ ′∩b ‖x− y‖
2
2

and
∑

x∈ronJ ′∩b ‖x− y′‖
2
2.

14: Hr ← Hr −
∑

x∈ronJ ′∩b ‖x− y′‖
2
2 +

∑
x∈ronJ ′∩b ‖x− y‖

2
2

15: Sample a row r` ∈ T` with probability proportional to Hr.

16: x← r1 on · · · on rm.

17: Let (b∗, y∗) be the tuple where b∗ is the smallest box in Bi containing x.

18: ci ← x with probability
minc∈Ci−1

‖x−c‖22
‖x−y∗‖22

. . Rejection sampling.

19: return ci.
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[59] Joe Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun
Li, et al. The madlib analytics library or mad skills, the sql. arXiv preprint
arXiv:1208.4165, 2012.

[60] Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algo-
rithms for bottleneck problems. Journal of the ACM (JACM), 33(3):533–550, 1986.

[61] Jonathan H. Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable
bayesian logistic regression. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16, pages 4087–4095, 2016.

[62] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing
the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 604–613, 1998.

[63] Rajesh Jayaram, Alireza Samadian, David Woodruff, and Peng Ye. In-database re-
gression in input sparsity time. In International Conference on Machine Learning,
pages 4797–4806. PMLR, 2021.

[64] Anthony Klug. On conjunctive queries containing inequalities. J. ACM, 35(1):146–
160, January 1988.

[65] J. Kohlas and N. Wilson. Semiring induced valuation algebras: Exact and approxi-
mate local computation algorithms. Artif. Intell., 172(11):1360–1399, 2008.

[66] Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. Answering conjunctive
queries with inequalities. Theory of Computing Systems, 61(1):2–30, Jul 2017.

[67] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-
means algorithm. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 299–308. IEEE, 2010.

132



[68] Arun Kumar, Mona Jalal, Boqun Yan, Jeffrey Naughton, and Jignesh M Patel.
Demonstration of santoku: optimizing machine learning over normalized data. Pro-
ceedings of the VLDB Endowment, 8(12):1864–1867, 2015.

[69] Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. Learning generalized linear
models over normalized data. In ACM SIGMOD International Conference on Man-
agement of Data, pages 1969–1984, 2015.

[70] Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. To join or not to
join?: Thinking twice about joins before feature selection. In International Conference
on Management of Data, pages 19–34, 2016.

[71] Michael Langberg, Shi Li, Sai Vikneshwar Mani Jayaraman, and Atri Rudra. Topology
dependent bounds for faqs. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 432–449. ACM, 2019.

[72] Side Li, Lingjiao Chen, and Arun Kumar. Enabling and optimizing non-linear feature
interactions in factorized linear algebra. In Proceedings of the 2019 International
Conference on Management of Data, pages 1571–1588, 2019.

[73] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher Jer-
maine. Scalable linear algebra on a relational database system. IEEE Transactions
on Knowledge and Data Engineering, 31(7):1224–1238, 2018.

[74] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu–
linial stable instances of max cut and minimum multiway cut. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 890–906.
SIAM, 2014.

[75] Nantia Makrynioti, Ruy Ley-Wild, and Vasilis Vassalos. sql4ml a declarative end-to-
end workflow for machine learning. arXiv preprint arXiv:1907.12415, 2019.

[76] Nantia Makrynioti and Vasilis Vassalos. Declarative data analytics: a survey. IEEE
Transactions on Knowledge and Data Engineering, 2019.

[77] Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, and Ben-
jamin Moseley. Fast distributed k-center clustering with outliers on massive data. In
NeuralPS, 2015.

133



[78] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and con-
junctive queries. Journal of the ACM (JACM), 60(6):42, 2013.

[79] Adam Meyerson, Liadan O’Callaghan, and Serge A. Plotkin. A k -median algorithm
with running time independent of data size. Machine Learning, 56(1-3):61–87, 2004.

[80] Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets
for distributed submodular maximization. In ACM Symposium on the Theory of
Computing, 2015.

[81] Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

[82] Benjamin Moseley, Kirk Pruhs, Alireza Samadian, and Yuyan Wang. Relational al-
gorithms for k-means clustering. arXiv preprint arXiv:2008.00358, 2021.

[83] Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A
theoreticians design pattern for approximation and streaming algorithms. KI -
Künstliche Intelligenz, 32(1):37–53, Feb 2018.

[84] Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff.
On coresets for logistic regression. In NeurIPS, 2018.

[85] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A
unified framework for high-dimensional analysis of m-estimators with decomposable
regularizers. In Neural Information Processing Systems, pages 1348–1356, 2009.

[86] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
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