
Domain Decomposition And Time-Splitting Methods For The Biot System Of

Poroelasticity

by

Manu Jayadharan

BS and MS in Mathematics, Indian Institute of Science Education and Research, Mohali, 2016

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Manu Jayadharan

It was defended on

July 22nd 2021

and approved by

Prof. Ivan Yotov, Dept. of Mathematics, University of Pittsburgh

Prof. Michael Neilan, Dept. of Mathematics, University of Pittsburgh

Prof. Catalin Trenchea, Dept. of Mathematics, University of Pittsburgh

Prof. Martin Vohralík, INRIA, Paris

ii

Domain Decomposition And Time-Splitting Methods For The Biot System Of

Poroelasticity

Manu Jayadharan, PhD

University of Pittsburgh, 2021

In this thesis, we develop e�cient mixed �nite element methods to solve the Biot system of

poroelasticity, which models the �ow of a viscous �uid through a porous medium along with the

deformation of the medium. We study non-overlapping domain decomposition techniques and

sequential splitting methods to reduce the computational complexity of the problem. The solid

deformation is modeled with a mixed three-�eld formulation with weak stress symmetry. The

�uid �ow is modeled with a mixed Darcy formulation.

We introduce displacement and pressure Lagrange multipliers on the subdomain interfaces

to impose weakly the continuity of normal stress and normal velocity, respectively. The global

problem is reduced to an interface problem for the Lagrange multipliers, which is solved by

a Krylov space iterative method. We study both monolithic and split methods. For the

monolithic method, the cases of matching and non-matching subdomain grid interfaces are

analyzed separately. For both cases, a coupled displacement-pressure interface problem is solved,

with each iteration requiring the solution of local Biot problems. For the case of matching

subdomain grids, we show that the resulting interface operator is positive de�nite and analyze

the convergence of the iteration. For the non-matching subdomain grid case, we use a multiscale

mortar mixed �nite element (MMMFE) approach.

We further study drained split and �xed stress Biot splittings, in which case we solve separate

interface problems requiring elasticity and Darcy solves. We analyze the stability of the split

formulations. We also use numerical experiments to illustrate the convergence of the domain

decomposition methods and compare their accuracy and e�ciency in the monolithic and time-

splitting settings.

Finally, we present a novel space-time domain decomposition technique for the mixed �nite

element formulation of a parabolic equation. This method is motivated by the MMMFE method,

where we split the space-time domain into multiple subdomains with space-time grids of di�erent

sizes. Scalar Lagrange multiplier (mortar) functions are introduced to enforce weakly the

iii

continuity of the normal component of the mixed �nite element �ux variable over the space-time

interfaces. We analyze the new method and numerical experiments are developed to illustrate

and con�rm the theoretical results.

Keywords: MFEM, MFE, Biot system, domain decomposition, poroelasticity, space-time

methods, multiscale mortar method, MMMFEM, mortar, split schemes, splitting methods,

partitioning schemes, computational geoscience.

iv

Table of Contents

Preface . xii

1.0 Introduction . 1

1.1 Methodology . 1

1.2 Basic Notation . 6

1.3 Model Problems . 8

1.3.1 Biot system of poroelasticity . 8

1.3.2 Time-dependent parabolic PDE . 9

2.0 Domain Decomposition And Split-scheme Techniques For Biot System Of

Poroelasticity Using Matching Subdomain Grids 10

2.1 Introduction . 10

2.2 MFE Discretization . 11

2.3 Monolithic Domain Decomposition Method . 13

2.3.1 Time discretization . 15

2.3.2 Time-di�erentiated elasticity formulation 16

2.3.3 Reduction to an interface problem . 17

2.3.4 Analysis of the interface problem . 18

2.4 Split Methods . 24

2.4.1 Drained split . 24

2.4.1.1 Stability analysis for drained split 25

2.4.2 Fixed stress . 27

2.4.2.1 Stability analysis for �xed stress 27

2.4.3 Domain decomposition for the split methods 29

2.5 Numerical Results . 30

2.5.1 Example 1: convergence and stability . 31

2.5.2 Example 2: dependence on number of subdomains 32

2.5.3 Example 3: heterogeneous benchmark 34

2.6 Chapter Conclusions . 35

v

3.0 AMultiscale Mortar Domain Decomposition For Biot System Of Poroelasticity

Using Non-matching Subdomain Grids . 43

3.1 Introduction . 43

3.2 Formulation of the Method . 44

3.2.1 Multiscale mortar domain decomposition method 44

3.2.2 Projection and interpolation operators 47

3.2.3 Spaces of weakly continuous stress and velocity 51

3.3 Analysis of the MMMFE Method . 52

3.3.1 Inf-sup stability for the weakly continuous spaces 52

3.3.2 Well-posedness of the semi-discrete MMMFE formulation 55

3.3.3 Stability analysis for MMMFE formulation 60

3.3.4 Error analysis . 65

3.4 Implementation . 78

3.4.1 Time discretization . 78

3.4.2 Reduction to an interface problem . 80

3.4.3 Solving the interface problem . 82

3.4.4 Implementation with multiscale stress-�ux basis (MSB) 83

3.5 Numerical Results . 85

3.5.1 Example 1: testing convergence rates . 86

3.5.2 Example 2: heterogeneous medium . 88

3.6 Chapter Conclusions . 90

4.0 A Multiscale Mortar Space-time Domain Decomposition Technique For

Parabolic Equations . 99

4.1 Introduction . 99

4.2 Model Problem and Space-Time Domain Decomposition Formulation 100

4.2.1 Model problem . 100

4.2.2 Space-time subdomains . 100

4.2.3 Basic notation . 101

4.2.4 Weak formulation . 101

4.2.5 Domain decomposition weak formulation 102

4.3 Space-Time Mixed Finite Element Method . 102

vi

4.3.1 Space-time grids and spaces . 103

4.3.2 Space-time multiscale mortar mixed �nite element method 105

4.4 Well-Posedness Analysis . 106

4.4.1 Space-time interpolants . 106

4.4.2 Assumptions on the mortar grids . 107

4.4.3 Discrete inf�sup conditions . 107

4.4.4 Existence, uniqueness, and stability with respect to data 110

4.5 A Priori Error Analysis . 111

4.5.1 Approximation properties of the space-time interpolants 112

4.5.2 A priori error estimate . 113

4.5.3 Comments . 116

4.6 Reduction To An Interface Problem . 117

4.6.1 Decomposition of the solution . 117

4.6.2 Space-time Steklov�Poincaré operator 118

4.6.3 GMRES convergence through the �eld-of-values estimates 119

4.7 Numerical Results . 120

4.7.1 Example 1: convergence test . 121

4.7.2 Example 2: problem with a boundary layer 125

4.8 Chapter Conclusions . 129

5.0 Conclusions . 130

5.1 Summary of Techniques Developed and Results 130

5.2 Future Work . 131

Appendix. Code Gallery . 133

A.1 Note to the Reader . 133

A.2 Links to Open-source Packages Corresponding to Various Chapters 133

A.3 Implementation of the Space-time Multiscale Mortar Decomposition Method . 134

A.3.1 User interface . 134

A.3.2 Source code . 137

Bibliography . 170

vii

List of Tables

1 Example 1, physical and numerical parameters. 31

2 Example 1, convergence for ∆t = 10−3 and c0 = 1, monolithic scheme (top), drained

split (middle), �xed stress (bottom). 36

3 Example 1, convergence for ∆t = 10−2 and c0 = 1, monolithic scheme (top), drained

split (middle), �xed stress (bottom). 37

4 Example 1, convergence for ∆t = 10−1 and c0 = 1 , monolithic scheme (top), drained

split (middle), �xed stress (bottom). 38

5 Example 1, convergence for ∆t = 10−2 and c0 = 10−3, monolithic scheme (top),

drained split (middle), �xed stress (bottom). 39

6 Example 2, number of GMRES iterations in the monolithic scheme. 40

7 Example 2, number of CG elasticity iterations in the drained split and �xed stress

schemes. 40

8 Example 2, number of CG Darcy iterations in the drained split and �xed stress schemes 40

9 Example 3, parameters (left) and boundary conditions (right) 41

10 Example 3, comparison of the number of interface iterations in the three methods. . 42

11 Degree of polynomials associated with FEM spaces used for numerical experiments. 85

12 Example 1, physical and numerical parameters. 87

13 Example 1, convergence table using linear mortar (m = 1) with H = Ch, ∆t = 10−4

and c0 = 1.0. 91

14 Example 1, convergence table using quadratic mortar (m = 2) with H = C
√
h,

∆t = 10−4 and c0 = 1.0. 91

15 Example 1, convergence table for linear mortar withH = Ch, ∆t = 10−4 and c0 = 10−3. 92

16 Example 1, convergence table for quadratic mortar with H = C
√
h, ∆t = 10−4 and

c0 = 10−3. 92

17 Example 2, parameters (top) and boundary conditions (bottom). 94

18 Example 2, #GMRES iterations and maximum number of subdomain solves. . . . 94

19 Example 1, mesh size and #DoFs . 122

viii

20 Linear mortar convergence . 122

21 Quadratic mortar convergence . 122

22 Example 2, errors for the multiscale and �ne-scale methods. 126

ix

List of Figures

1 Example 1, computed solution at the �nal time step using the monolithic domain

decomposition method with h = 1/64 and ∆t = 10−3, top: stress x (left), stress y

(middle), displacement (right), bottom: rotation (left), velocity (middle), pressure

(right). 33

2 Example 3, porosity, Young's modulus, permeability. 41

3 Example 3, computed solution at the �nal time using the monolithic domain decomposition

scheme, top: pressure (left), velocity (right), middle: displacement (left), stress x

(right), bottom: stress y. 42

4 Example 1, coarsest non matching subdomain grid on (0, 1)2. 86

5 Example 1, computed solution at �nal time step using a linear mortar on non-

matching subdomain grids, top: stress x (left), stress y (middle), displacement

(right), bottom: rotation (left), velocity (middle), pressure (right). Mesh size,

h = 1/32, ∆t = 10−3 and c0 = 1.0. 93

6 Example 2, permeability, porosity, Young's modulus. 95

7 Example 2, pressure (color) and velocity (arrows): �ne scale (left), single linear

mortar per interface (middle), and two linear mortars per interface (right). 95

8 Example 2, pressure (color) and velocity (arrows): single quadratic mortar per

interface (left), and two quadratic mortars per interface (right). 96

9 Example 2, velocity magnitude: �ne scale (left), single linear mortar per interface

(middle), and two linear mortars per interface (right). 96

10 Example 2, velocity magnitude: single quadratic mortar per interface (left), and two

quadratic mortars per interface (right). 97

11 Example 2, displacement vector (arrows) and its magnitude: �ne scale (left), single

linear mortar per interface (middle), and two linear mortars per interface (right). . 97

12 Example 2, displacement vector (arrows) and its magnitude: single quadratic mortar

per interface (left), and two quadratic mortars per interface (right). 98

13 Non-matching space-time subdomain and mortar grids in two spatial dimensions. . 103

x

14 Example 1, pressure computed using linear mortars shown on the space-time grid at

re�nement 2, top: on the whole space-time domain ΩT , bottom: on ΩT
1 ∪ ΩT

4 (left),

on ΩT
2 ∪ ΩT

3 (right). 123

15 Example 1, x−component of velocity computed using linear mortars shown on the

space-time grid at re�nement 2, on ΩT
1 ∪ ΩT

4 (left), on ΩT
2 ∪ ΩT

3 (right). 124

16 Example 1, y−component of velocity computed using linear mortars shown on the

space-time grid at re�nement 2, on ΩT
1 ∪ ΩT

4 (left), on ΩT
2 ∪ ΩT

3 (right). 124

17 Example 2, pressure from the multiscale method, cut along the plane x = 0.25 (top),

velocity magnitude from the multiscale method, cut along the plane x = 0.25 (bottom).126

18 Example 2, left: pressure from the multiscale method, cut along the plane t = 0.35;

right: pressure from the multiscale (top) and �ne-scale (bottom) methods on the

whole domain. 127

19 Example 2, left: velocity magnitude from the multiscale method, cut along the plane

t = 0.35; right: velocity magnitude from the multiscale (top) and �ne-scale (bottom)

methods on the whole domain. 128

xi

Preface

I would like to thank everyone who has helped me through this wonderful journey. I have to

admit that wrapping up my research and completing this thesis during a global pandemic was

more challenging than I initially thought. Not because it had any direct impact on my research,

but because of other factors associated with the pandemic that weighed on me. Consequently,

the successful completion of this thesis is that much more special to me.

I wish to express my most sincere gratitude and appreciation to my advisor Ivan Yotov

for his guidance, patience, and unparalleled role in the completion of my research projects.

I am indebted to him for understanding and working with the many time constraints I had

and also putting up with my inability to �nd mistakes in some manuscripts I wrote and for

correcting them. There was never a time when I was afraid to ask him a question or pitch

ideas which is something I always cherished. I would like to extend my gratitude to professors

Michael Neilan, Catalin Trenchea, and Martin Vohralík for serving on my thesis committee and

providing invaluable feedback which helped greatly in the completion of this thesis.

I would like to thank all my friends and family who have supported me during my time at

Pitt. Especially, I thank Eldar Khattatov for his invaluable help and positive in�uence on my

projects and career. I would also like to express my love and gratitude towards Sruthi for being

a rock and supporting me during stressful times. Last but not least, I would like to express my

gratitude to my parents, Omana and Jayadharan, who never stopped believing in me.

xii

1.0 Introduction

1.1 Methodology

The Biot system of poroelasticity [17] is used to model the �ow of a viscous �uid through

a poroelastic medium along with the deformation of the medium. Such �ow occurs in many

geophysics phenomena like earthquakes, landslides, and �ow of oil inside mineral rocks and

plays a key role in engineering applications such as hydrocarbon extraction through hydraulic or

thermal fracturing. In this thesis we study e�cient computational methods to numerically solve

the classical Biot system of poroelasticity with the quasi-static assumption, which is particularly

relevant in geoscience applications. The model consists of an equilibrium equation for the solid

medium and a mass balance equation for the �ow of the �uid through the medium. The system

is fully coupled, with the �uid pressure contributing to the solid stress and the divergence of the

solid displacement a�ecting the �uid content.

Numerical methods to solve the Biot system have been extensively studied in the literature.

Many formulations have been considered, including two-�eld displacement-pressure formulations

[34,60,69], three-�eld displacement�pressure�Darcy velocity formulations [45,56,65,66,70,79,80,

82], and three-�eld displacement�pressure�total pressure formulations [57, 62]. More recently,

fully-mixed formulations of the Biot system have been studied. In [81], a four-�eld stress-

displacement-pressure-Darcy velocity mixed formulation is developed. A posteriori error estimate

for this formulation are obtained in [2]. In [54], a weakly symmetric stress�displacement�rotation

elasticity formulation is considered, which is coupled with a mixed pressure�Darcy velocity �ow

formulation. Fully-mixed �nite element approximations carry the advantages of local mass

and momentum conservation, direct computation of the �uid velocity and the solid stress, as

well as robustness and locking-free properties with respect to the physical parameters. Mixed

�nite element (MFE) methods can also handle discontinuous full tensor permeabilities and Lamé

coe�cients that are typical in subsurface �ows. In our work we focus on the �ve-�eld weak-stress-

symmetry formulation from [54], since weakly symmetric MFE methods for elasticity allow for

reduced number of degrees of freedom. Moreover, a multipoint stress�multipoint �ux mixed

�nite element approximation for this formulation has been recently developed in [6], which can

1

be reduced to a positive de�nite cell-centered scheme for pressure and displacement only, see also

a related �nite volume method in [61]. While our domain decomposition methods are developed

for the weakly symmetric formulation from [54], the analysis carries over in a straightforward

way to the strongly symmetric formulation from [81].

Discretizations of the Biot system of poroelasticity for practical applications typically result

in large algebraic systems of equations. The e�cient solution of these systems is critical for

the ability of the numerical method to provide the desired resolution. In this work we focus on

non-overlapping domain decomposition methods [67,77]. These methods split the computational

domain into multiple non-overlapping subdomains with algebraic systems of lower complexity

that are easier to solve. A global problem enforcing appropriate interface conditions is solved

iteratively to recover the global solution. This approach naturally leads to scalable parallel

algorithms. Despite the abundance of works on discretizations of the Biot system, there have

been very few results on domain decomposition methods for this problem. In [35], a domain

decomposition method using mortar elements for coupling the poroelastic model with an elastic

model in an adjacent region is presented. In that work, the Biot region is not decomposed into

subdomains. In [30,31], an iterative coupling method is employed for a two-�eld displacement�

pressure formulation, and classical domain decomposition techniques are applied separately for

the elasticity and �ow equations. A monolithic domain decomposition method for the two-�eld

formulation of poroelasticity combining primal and dual variables is developed in [40]. To the

best of our knowledge, domain decomposition methods for mixed formulations of poroelasticity

have not been studied in the literature. In this thesis, we study various e�cient domain

decomposition and split-scheme discretization techniques to e�ciently solve the Biot system

of poroelasticity in a �ve-�eld mixed formulation.

In Chapter 2, we develop a monolithic domain decomposition method for the Biot system

using matching subdomain grids at the interface. We employ a physically heterogeneous Lagrange

multiplier vector consisting of displacement and pressure variables to impose weakly the continuity

of the normal components of stress and velocity, respectively. The algorithm involves solving

at each time step an interface problem for this Lagrange multiplier vector. We show that the

interface operator is positive de�nite, although it is not symmetric in general. As a result, a

Krylov space solver such as GMRES can be employed for the solution of the interface problem.

Each iteration requires solving monolithic Biot subdomain problems with speci�ed Dirichlet

2

data on the interfaces, which can be done in parallel. We establish lower and upper bounds on

the spectrum of the interface operator, which allows us to perform analysis of the convergence

of the GMRES iteration using �eld-of-values estimates. In the second part of Chapter 2, we

study split domain decomposition methods for the Biot system. Split or iterative coupling

methods for poroelasticity have been extensively studied due to their computational e�ciency.

Four widely used sequential methods are drained split, undrained split, �xed stress split, and

�xed strain split. Decoupling methods are prone to stability issues and a detailed stability

analysis of the aforementioned schemes using �nite volume methods can be found in [51, 52],

see also [23] for stability analysis of several split methods using displacement�pressure �nite

element discretizations. Iterative coupling methods are based on similar splittings and involve

iterating between the two sub-systems until convergence. Convergence for non-mixed �nite

element methods is analyzed in [59], while convergence for a four-�eld mixed �nite element

discretization is studied in [83]. An accelerated �xed stress splitting scheme for a generalized non-

linear consolidation of unsaturated porous medium is studied in [21]. Studies of the optimization

and acceleration of the �xed stress decoupling method for the Biot consolidation model, including

techniques such as multirate or adaptive time stepping and parallel-in-time splittings have been

presented in [1, 3, 15, 20, 76]. In our work we consider drained split (DS) and �xed stress (FS)

decoupling methods in conjunction with non-overlapping domain decomposition. In particular,

at each time step we solve sequentially an elasticity and a �ow problem in the case of DS or a

�ow and an elasticity problem in the case of FS splitting. We perform stability analysis for the

two splittings using energy estimates and show that they are both unconditionally stable with

respect to the time step and the physical parameters. We then employ separate non-overlapping

domain decomposition methods for each of the decoupled problems, using the methods developed

in [8, 38] for �ow and [48] for mechanics.

In Chapter 3, we develop and study a multiscale mortar mixed �nite element (MMMFE)

method for the Biot system of poroelasticity. This technique is the generalization of the

monolithic domain decomposition technique presented in the Chapter 2, where non-matching

subdomain grids can be used instead of matching grids at the interface. MMMFE methods

that allow non-matching subdomain grid blocks for second order elliptic problems have been

studied in [8, 90] and a similar method for the problem of linear elasticity with weakly imposed

symmetry has been studied in [48]. To the best of our knowledge, an MMMFE method for any

3

mixed formulations of poroelasticity has not been studied in the literature prior to our study.

We study the adaptation of the non-overlapping domain decomposition technique studied in the

Chapter 2 to enable the use of non-matching multiblock grids. This work is motivated by similar

studies for the second order elliptic problems in [8,90] and for a linear system of elasticity in [48].

Similar to the matching-grid case, we use a physically heterogeneous Lagrange multiplier vector

consisting of displacement and pressure variables to impose weakly the continuity of the normal

components of stress and velocity, respectively. At each time step, we solve an interface problem

for this Lagrange multiplier vector. In contrast to the matching-grid case, here we choose the

Lagrange multiplier vector from a space of mortar �nite elements, see e.g. [8,32,36,43,48�50,63].

This allows the interaction between the subdomain grids at the interface through projections

onto the mortar �nite element space. The mortar space can be chosen to be on a coarser scale,

H (see [33,64,90]), compared to a �ner subdomain grid size, h. We study the well-posedness and

stability of this method under the appropriate condition on the richness of the mortar FE space.

Further, we show a combined a priori error estimate for stress, displacement, rotation, pressure,

and Darcy velocity, as well as how well the mortar function approximates the normal components

of stress and velocity. The well-posedness, stability, and error analysis are motivated by the

techniques discussed in the analysis of the MSMFE-MFMFE (multipoint stress and multipoint

�ux mixed fnite element) formulation for the Biot system studied in [6]. We also propose the

construction and use of a multiscale stress-�ux basis which makes the number of subdomain

solves related to interface problem independent of the number of iterations required for the

interface problem and the number of time steps used. The reuse of the multiscale basis could

gain a signi�cant performance advantage in the case of time-dependent coupled problems. This

basis construction is motivated by the use of multiscale �ux basis studied in [33] and multiscale

stress basis in [48].

In Chapter 4, we introduce a space-time domain decomposition discretization technique

for a model parabolic equation. This method is a generalization of the MMMFE technique

discussed in Chapter 3 for a time-dependent parabolic system, where we allow multiscale mortar

discretization in both space and time. This work is a starting point for developing such multiscale

space-time techniques for the Biot system of poroelasticity, which will be pursued in future

studies. We decompose the global space-time domain into multiple space-time subdomains and

introduce a space-time mortar variable, on an independent interface space-time mesh. This space

4

is then used to couple the space-time subdomain problems and to ensure (a multiscale) weak

continuity of the normal component of the mixed �nite element �ux variable over the space-

time interfaces. This setting allows for high �exibility with individual discretizations of each

space-time subdomain, and in particular for local time stepping, individually in each space-time

subdomain. Moreover, space-time parallelization can be achieved, leading to solution of discrete

problems on individual space-time subdomains, exchanging space-time boundary data through

transmission conditions, in a spirit of space-time domain decomposition as in [106,112,113].These

methods belong to an increasing body of parallel in time methods (see [105] for a review,

or the web page Parallel in Time). Some methods emphasize time parallelism for a rather

general class of problems, such as the celebrated Parareal algorithm [108, 118], or multigrid in

time [103, 107, 124]. Others, including this work, are more tailored towards speci�c classes of

PDES. Multi�rate methods [88, 122] have been used for �ow and for poro-elasticity, as well as

asynchronous methods [85,96], or several variants of space time methods [93,94,97,117,120].

For all the methods presented in this thesis, we also report the results of several numerical

tests designed to verify and compare the convergence, stability, and e�ciency of these techniques.

All numerical schemes are implemented using deal.II �nite element package [91,92]. The mixed

�nite element spaces used for the numerical experiments related to the Biot system are: BDM2
1×

Q2
0 × Q0 [11] for elasticity and BDM1 × Q0 [22] for Darcy on quadrilateral meshes. Here Qk

denotes polynomials of degree k in each variable and BDMk represents Brezzi-Douglas-Marini

spaces containing polynomials of degree k. For the space-time domain decomposition for the

parabolic problem, we have used stable RT 0×Q0 on a quadrilateral mesh, where RT k denotes

the Raviart-Thomas space containing polynomials of degree k. Combining this with the lowest-

order DG (backward Euler) for time discretization on the mesh gives us a space-time mixed

�nite element space on the space-time domain.

As the implementation of novel algorithms are equally important as the theory itself, signi�cant

amount of time and e�ort went into the production of software capable of solving PDEs using

the methods developed in this thesis. These packages are made open-source and are available on

the GitHub page https://github.com/mjayadharan. Links to various code repositories developed

as part of this thesis is given in Appendix A.2 and a brief overview of one of the core libraries

is given in Appendix A.3.

5

https://parallel-in-time.org/
https://github.com/mjayadharan

1.2 Basic Notation

We tried to be consistent with our notation across di�erent chapters in this thesis, but there

were a few occasions where we had to use a slightly di�erent notation for some variables, like the

number of subdomains. Because of this and for the completeness of each chapter, we have de�ned

the notation used within each chapter. Following is some of the notation which is consistent

throughout the thesis.

Let Ω ⊂ Rd, d = 2, 3, denote a simply connected domain. We use the notation M, S and N

for the spaces of d×d matrices, symmetric matrices, and skew-symmetric matrices, respectively,

all over the �eld of real numbers. Let I ∈ S represents the d × d identity matrix. The partial

derivative operator with respect to time, ∂
∂t
, is often abbreviated to ∂t. C denotes a generic

positive constant that is independent of the discretization parameters h and H. Throughout the

thesis, the divergence operator is the usual divergence for vector �elds, which produces vector

�eld when applied to matrix �eld by taking the divergence of each row. The divergence operator

is represented by either ∇· or div.

For a set G ⊂ Rd, the L2(G) inner product and norm are denoted by (·, ·)G and ‖ · ‖G,

respectively, for scalar, vector, or tensor valued functions. For any r ≥ 0, ‖ · ‖r,G denotes the

Hr(G)-norm, with ‖ · ‖0,G = ‖ · ‖G. We omit subscript G if G = Ω. For a section of the domain

or element boundary S ⊂ Rd−1, we write 〈·, ·〉S and ‖ ·‖S for the L2(S) inner product (or duality

pairing) and norm, respectively. For space-time norms we use the standard Bochner notation.

For example, given a spatial norm ‖ · ‖X , with respect with to a space X, we denote, for p > 0,

‖ · ‖Lp(0,T ;X) =

(∫ T

0

‖ · ‖pX
) 1

p

, ‖ · ‖L∞(0,T ;X) = ess sup ‖ · ‖X ,

with the usual extension for ‖ · ‖Wk,p(0,T ;X) and ‖ · ‖Hk(0,T ;X).

We will also use the spaces

H(div; Ω) = {ζ ∈ L2(Ω,Rd) : div ζ ∈ L2(Ω)},

H(div; Ω,M) = {τ ∈ L2(Ω,M) : div τ ∈ L2(Ω,Rd)},

with the norm ‖τ‖div = (‖τ‖2 + ‖ div τ‖2)
1/2
.

6

For an element K in dimension d = 2, let

Pk(K) =
{
p(x1, x2) | p(x1, x2) =

∑
0≤i+j≤k

aijx
i
1x

j
2

}
be the space polynomials of degree less than or equal to k and let

Pk1,k2(K) =
{
p(x1, x2) | p(x1, x2) =

∑
0≤i≤k1,
0≤j≤k2

aijx
i
1x

j
2

}

be the space of polynomials of degree less than or equal to k1 in x1 and less than or equal to k2

in x2 on K. Similarly, for d = 3, we can Pk1,k2,k3(K).

The Raviart-Thomas elements of degree k ≥ 0 on rectangular and cube elements are de�ned

as follows:

RT k(K) :=

Pk+1,k(K)× Pk,k+1(K) for d = 2,

Pk+1,k,k(K)× Pk,k+1,k(K)× Pk,k,k+1(K) for d = 3.

For d = 2 and k ≥ 1, the Brezzi-Douglas-Marini space BDMk on a rectangular element is

de�ned as

BDMk(K) := (Pk(K))2 + span
(
curl x1x

k+1
2 , curl xk+1

1 x2

)
,

where curl (ζ) = (∂ζ
∂x2
,− ∂ζ

∂x1
) for a scalar function ζ(x1, x2). Similarly for d = 3, we de�ne

BDMk(K) := (Pk(K))3 + span
(
curl

{
x2x3(w2(x1, x3)− w3(x1, x2)),

x3x1(w3(x1, x2)− w1(x2, x3)), x1x1(w1(x2, x3)− w2(x1, x3))
})
,

where each wi belongs to Pk(K) and we have used the usual curl operator acting on a 3-

dimensional vector �eld.

7

1.3 Model Problems

1.3.1 Biot system of poroelasticity

Given a vector �eld f representing body forces and a source term g, we consider the quasi-

static Biot system of poroelasticity ([17]):

− div σ(u) = f, in Ω× (0, T], (1.3.1)

K−1z +∇p = 0, in Ω× (0, T], (1.3.2)

∂

∂t
(c0p+ α div u) + div z = g, in Ω× (0, T], (1.3.3)

where u is the displacement, p is the �uid pressure, z is the Darcy velocity, and σ is the poroelastic

stress, de�ned as

σ = σe − αpI. (1.3.4)

Here I is the d× d identity matrix, 0 < α ≤ 1 is the Biot-Willis constant, and σe is the elastic

stress satisfying the stress-strain relationship

Aσe = ε(u), ε(u) :=
1

2

(
∇u+ (∇u)T

)
, (1.3.5)

where A is the compliance tensor, which is a symmetric, bounded and uniformly positive de�nite

linear operator acting from S → S, extendible to M → M. In the special case of homogeneous

and isotropic body, A is given by,

Aσ =
1

2µ

(
σ − λ

2µ+ dλ
tr(σ)I

)
, (1.3.6)

where µ > 0 and λ ≥ 0 are the Lamé coe�cients. In this case, σe(u) = 2µε(u) + λ div u I.

Finally, c0 ≥ 0 is the mass storativity and K stands for the permeability tensor that is spatially-

dependent, uniformly bounded, symmetric, and positive de�nite, i.e, for constants 0 < kmin ≤

kmax <∞,

∀ a.e. x ∈ Ω, kminζ
T ζ ≤ ζTK(x)ζ ≤ kmaxζ

T ζ, ∀ζ ∈ Rd. (1.3.7)

To close the system, we impose the boundary conditions

u = gu on ΓuD × (0, T], σn = 0 on ΓσN × (0, T], (1.3.8)

p = gp on ΓpD × (0, T], z · n = 0 on ΓzN × (0, T], (1.3.9)

8

where ΓuD∪ΓσN = ΓpD∪ΓzN = ∂Ω and n is the outward unit normal vector �eld on ∂Ω, along with

the initial condition p(x, 0) = p0(x) in Ω. Compatible initial data for the rest of the variables

can be obtained from (1.3.1) and (1.3.2) at t = 0. Well posedness analysis for this system can

be found in [72].

1.3.2 Time-dependent parabolic PDE

We consider a parabolic partial di�erential equation in a mixed form, modeling single phase

�ow in porous media. Following the notations de�ned above and using the time interval (0, T]

for T > 0, the model system of equations reads as follows:

u = −K∇p, ∂tp+ divu = q in Ω× (0, T], (1.3.10)

where p is the �uid pressure, u is the Darcy velocity, q is a source term, and K is a tensor

representing the rock permeability divided by the �uid viscosity. We assume for simplicity that

the homogeneous Dirichlet boundary condition

p(x, t) = 0 on ∂Ω× (0, T], (1.3.11)

and assign the initial pressure

p(x, 0) = p0(x) on Ω. (1.3.12)

9

2.0 Domain Decomposition And Split-scheme Techniques For Biot System Of

Poroelasticity Using Matching Subdomain Grids

2.1 Introduction

In this chapter we study several non-overlapping domain decomposition methods for the

Biot system of poroelasticity [17], which models the �ow of a viscous �uid through a poroelastic

medium along with the deformation of the medium.

The numerical solution of the Biot system has been extensively studied in the literature

and various references are given in the introduction chapter. We study both monolithic and

split non-overlapping domain decomposition methods for the �ve-�eld fully mixed formulation

of poroelasticity with weak stress symmetry from [6,54]. Monolithic methods require solving the

fully coupled Biot system, while split methods only require solving elasticity and �ow problems

separately. Both methods have advantages and disadvantages. Monolithic methods involve

solving larger and possibly ill-conditioned algebraic systems, but may be better suitable for

problems with strong coupling between �ow and mechanics, in which case split or iterative

coupling methods may su�er from stability or convergence issues and require su�ciently small

time steps. Our methods are motivated by the non-overlapping domain decomposition methods

for MFE discretizations of Darcy �ow developed in [8, 26, 38] and the non-overlapping domain

decomposition methods for MFE discretizations of elasticity developed recently in [48].

In the �rst part of the chapter we develop a monolithic domain decomposition method.

Physically heterogeneous Lagrange multiplier vector consisting of displacement and pressure

variables to impose weakly the continuity of the normal components of stress and velocity,

respectively. This leads to solving at each time step an interface problem for this Lagrange

multiplier vector. We analyze the interface operator associated with the problem and explains

how a Krylov space solver such as GMRES is suitable for solving the interface problem iteratively.

Each iteration requires solving monolithic Biot subdomain problems with speci�ed Dirichlet data

on the interfaces, which can be done in parallel.

In the second part of this chapter, we study split domain decomposition methods for the Biot

system. Split or iterative coupling methods for poroelasticity have been extensively studied due

10

to their computational e�ciency and various references are given in the introduction chapter.

Here we study the drained split (DS) and the �xed stress (FS) decoupling methods in conjunction

with non-overlapping domain decomposition technique. In particular, at each time step we solve

sequentially an elasticity and a �ow problem in the case of DS or a �ow and an elasticity

problem in the case of FS splitting. We show that the DS and FS methods are unconditionally

stable with respect to the time step and the physical parameters. We show the stability

of these methods using energy estimates. We then employ separate non-overlapping domain

decomposition methods for each of the decoupled problems, using the methods developed in [8,38]

for �ow and [48] for mechanics.

In the numerical section we present several computational experiments designed to verify and

compare the accuracy, stability, and computational e�ciency of the three domain decomposition

methods for the Biot system of poroelasticity. In particular, we study the discretization error

and the number of interface iterations, as well as the e�ect of the number of subdomains. We

also illustrate the performance of the methods for a physically realistic heterogeneous problem

with data taken from the Society of Petroleum Engineers 10th Comparative Solution Project.

The rest of this chapter is organized as follows. In Section 2.2 we introduce the mathematical

model and its MFE discretization. The monolithic domain decomposition method is developed

and analyzed in Section 2.3. In Section 2.4 we perform stability analysis of the DS and FS

decoupling methods and present the DS and FS domain decomposition methods. The numerical

experiments are presented in Section 2.5, followed by conclusions in Section 2.6.

2.2 MFE Discretization

We consider a mixed variational formulation for (1.3.1)�(1.3.9) with weak stress symmetry.

We follow the approach in [54]. The motivation is that MFE elasticity spaces with weakly

symmetric stress tend to have fewer degrees of freedom than strongly symmetric MFE spaces.

Moreover, in a recent work, a multipoint stress�multipoint �ux mixed �nite element method has

been developed for this formulation that reduces to a positive de�nite cell-centered scheme for

pressure and displacement only [6]. Nevertheless, the domain decomposition methods in this

chapter can be employed for strongly symmetric stress formulations, with the analysis carrying

11

over in a straightforward way. We introduce a rotation Lagrange multiplier γ := 1
2

(
∇u−∇uT

)
∈

N, which is used to impose weakly symmetry of the stress tensor σ. We rewrite (1.3.5) as

A (σ + αpI) = ∇u− γ. (2.2.1)

Combining (1.3.5) and (1.3.4) gives div u = tr(ε(u)) = tr(Aσe) = trA(σ + αpI), which can be

used to rewrite (1.3.3) as

∂t(c0p+ α trA (σ + αpI)) + div z = g. (2.2.2)

The combination of (2.2.1), (1.3.1), (1.3.2), and (2.2.2), along with the boundary conditions

(1.3.8)�(1.3.9), leads to the variational formulation: �nd (σ, u, γ, z, p) : [0, T]→ X×V×Q×Z×W

such that p(0) = p0 and for a.e. t ∈ (0, T),

(A(σ + αpI), τ) + (u, div τ) + (γ, τ) = 〈gu, τ n〉ΓuD , ∀τ ∈ X, (2.2.3)

(div σ, v) = − (f, v) , ∀v ∈ V, (2.2.4)

(σ, ξ) = 0, ∀ξ ∈ Q, (2.2.5)(
K−1z, q

)
− (p, div q) = −〈gp, q · n〉ΓpD , ∀q ∈ Z, (2.2.6)

c0 (∂tp, w) + α (∂tA(σ + αpI), wI) + (div z, w) = (g, w) , ∀w ∈ W, (2.2.7)

where

X =
{
τ ∈ H(div; Ω,M) : τ n = 0 on ΓσN

}
, V = L2(Ω,Rd), Q = L2(Ω,N),

Z =
{
q ∈ H(div; Ω) : q · n = 0 on ΓzN

}
, W = L2(Ω).

It was shown in [6] that the system (2.2.3)�(2.2.7) is well posed.

Next, we present the MFE discretization of (2.2.3)�(2.2.7). For simplicity we assume that Ω

is a Lipshicz polygonal domain. Let Th be a shape-regular quasi-uniform �nite element partition

of Ω, consisting of simplices or quadrilaterals, with h = maxE∈Thdiam(E). The MFE method for

12

solving (2.2.3)�(2.2.7) is: �nd (σh, uh, γh, zh, ph) : [0, T] → Xh × Vh × Qh × Zh ×Wh such that,

for a.e. t ∈ (0, T),

(A(σh + αphI), τ) + (uh, div τ) + (γh, τ) = 〈gu, τ n〉ΓuD , ∀τ ∈ Xh, (2.2.8)

(div σh, v) = − (f, v) , ∀v ∈ Vh, (2.2.9)

(σh, ξ) = 0, ∀ξ ∈ Qh, (2.2.10)(
K−1zh, q

)
− (ph, div q) = −〈gp, q · n〉ΓpD , ∀q ∈ Zh, (2.2.11)

c0 (∂tph, w) + α (∂tA(σh + αphI), wI) + (div zh, w) = (g, w) , ∀w ∈ Wh, (2.2.12)

with discrete initial data obtained as the elliptic projection of the continuous initial data. Here

Xh× Vh×Qh×Zh×Wh ⊂ X× V ×Q×Z ×W is a collection of suitable �nite element spaces.

In particular, Xh × Vh × Qh could be chosen from any of the known stable triplets for linear

elasticity with weak stress symmetry, e.g. [5,7,11�13,18,19,25,29,39,55,75], satisfying the inf-sup

condition

∀v ∈ Vh, ξ ∈ Qh, ‖v‖+ ‖ξ‖ ≤ C sup
06=τ∈Xh

(v, div τ) + (ξ, τ)

‖τ‖div
. (2.2.13)

For the �ow part, Zh×Wh could be chosen from any of the known stable velocity-pressure pairs

of MFE spaces such as the Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) spaces,

see [22], satisfying the inf-sup condition

∀w ∈ Wh, ‖w‖ ≤ C sup
06=q∈Zh

(div q, w)

‖q‖div
. (2.2.14)

2.3 Monolithic Domain Decomposition Method

Let Ω = ∪mi=1Ωi be a union of non-overlapping shape-regular polygonal subdomains, where

each subdomain is a union of elements of Th. Let Γi,j = ∂Ωi ∩ ∂Ωj, Γ = ∪mi,j=1Γi,j, and Γi =

∂Ωi∩Γ = ∂Ωi\∂Ω denote the interior subdomain interfaces. Denote the restriction of the spaces

Xh, Vh, Qh, Zh, and Wh to Ωi by Xh,i, Vh,i, Qh,i, Zh,i, and Wh,i, respectively. Let Th,i,j be a �nite

element partition of Γi,j obtained from the trace of Th, and let ni,j be a unit normal vector on Γi,j

with an arbitrarily �xed direction. In the domain decomposition formulation we utilize a vector

Lagrange multiplier λh = (λuh, λ
p
h)
T approximating the displacement and the pressure on the

13

interface and used to impose weakly the continuity of the normal components of the poroelastic

stress tensor σ and the velocity vector z, respectively. We de�ne the Lagrange multiplier space

on Ti,j and ∪i<jTi,j as follows:

Λh,i,j :=

Λu
h,i,j

Λp
h,i,j

 :=

 Xh ni,j

Zh · ni,j

 , Λu
h :=

⊕
1≤i<j≤m

Λu
h,i,j, Λp

h :=
⊕

1≤i<j≤m

Λp
h,i,j, Λh :=

Λu
h

Λp
h

 .

The domain decomposition formulation for the mixed Biot problem in a semi-discrete form reads

as follows: for 1 ≤ i ≤ m, �nd (σh,i, uh,i, γh,i, zh,i, ph,i, λh) : [0, T] → Xh,i × Vh,i × Qh,i × Zh,i ×

Wh,i × Λh such that, for a.e. t ∈ (0, T),

(A(σh,i + αph,iI), τ)Ωi
+ (uh,i, div τ)Ωi

+ (γh,i, τ)Ωi

= 〈gu, τ ni〉∂Ωi∩ΓuD
+ 〈λuh, τ ni〉Γi , ∀τ ∈ Xh,i, (2.3.1)

(div σh,i, v)Ωi
= − (f, v)Ωi

, ∀v ∈ Vh,i, (2.3.2)

(σh,i, ξ)Ωi
= 0, ∀ξ ∈ Qh,i, (2.3.3)(

K−1zh,i, q
)

Ωi
− (ph,i, div q)Ωi

= −〈gp, q · ni〉∂Ωi∩ΓpD
− 〈λph, q · ni〉Γi , ∀q ∈ Zh,i, (2.3.4)

c0 (∂tph,i, w)Ωi
+ α (∂tA(σh,i + αph,iI), wI)Ωi

+ (div zh,i, w)Ωi
= (g, w)Ωi

, ∀w ∈ Wh,i, (2.3.5)
m∑
i=1

〈σh,i ni, µu〉Γi = 0, ∀µu ∈ Λu
h, (2.3.6)

m∑
i=1

〈zh,i · ni, µp〉Γi = 0, ∀µp ∈ Λp
h, (2.3.7)

where ni is the outward unit normal vector �eld on Ωi. We note that both the elasticity and

�ow subdomain problems in the above method are of Dirichlet type. It is easy to check that

(2.3.1)�(2.3.7) is equivalent to the global formulation (2.2.8)�(2.2.12) with (σh, uh, γh, zh, ph)|Ωi =

(σh,i, uh,i, γh,i, zh,i, ph,i).

14

2.3.1 Time discretization

For time discretization we employ the backward Euler method. Let {tn}Nn=0, tn = n∆t, ∆t =

T/N , be a uniform partition of (0, T). The fully discrete problem corresponding to (2.3.1)�(2.3.7)

reads as follows: for 0 ≤ n ≤ N − 1 and 1 ≤ i ≤ m, �nd (σn+1
h,i , u

n+1
h,i , γ

n+1
h,i , z

n+1
h,i , p

n+1
h,i , λ

n+1
h) ∈

Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i × Λh such that:

(
A(σn+1

h,i + αpn+1
h,i I), τ

)
Ωi

+
(
un+1
h,i , div τ

)
Ωi

+
(
γn+1
h,i , τ

)
Ωi

= 〈gn+1
u , τ ni〉∂Ωi∩ΓuD

+ 〈λu,n+1
h , τ ni〉Γi , ∀τ ∈ Xh,i, (2.3.8)(

div σn+1
h,i , v

)
Ωi

= −
(
fn+1, v

)
Ωi
, ∀v ∈ Vh,i, (2.3.9)(

σn+1
h,i , ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i,

(2.3.10)(
K−1zn+1

h,i , q
)

Ωi
−
(
pn+1
h,i , div q

)
Ωi

= −〈gn+1
p , q · ni〉∂Ωi∩ΓpD

− 〈λp,n+1
h , q · ni〉Γi , ∀q ∈ Zh,i,

(2.3.11)

c0

(
pn+1
h,i − pnh,i

∆t
, w

)
Ωi

+ α

(
A
(
σn+1
h,i − σnh,i

)
∆t

, wI

)
Ωi

+ α

(
Aα

pn+1
h,i − pnh,i

∆t
I, wI

)
Ωi

+
(
div zn+1

h,i , w
)

Ωi
=
(
gn+1, w

)
Ωi
, ∀w ∈ Wh,i,

(2.3.12)
m∑
i=1

〈σn+1
h,i ni, µ

u〉Γi = 0, ∀µu ∈ Λu
h,

(2.3.13)
m∑
i=1

〈zn+1
h,i · ni, µ

p〉Γi = 0, ∀µp ∈ Λp
h.

(2.3.14)

Remark 2.3.1. We note that the scheme requires initial data p0
h,i and σ

0
h,i. Such data can be

obtained by taking p0
h,i to be the L2-projection of p0 onto Wh,i and solving a mixed elasticity

domain decomposition problem obtained from (2.3.8)�(2.3.10) and (2.3.13) with n = −1.

15

2.3.2 Time-di�erentiated elasticity formulation

In the monolithic domain decomposition method we will utilize a related formulation in

which the �rst elasticity equation is di�erentiated in time. The reason for this will become clear

in the analysis of the resulting interface problem. We introduce new variables u̇ = ∂tu and

γ̇ = ∂tγ representing the time derivatives of the displacement and the rotation, respectively.

The time-di�erentiated equation (2.2.3) is

(∂tA(σ + αpI), τ) + (u̇, div τ) + (γ̇, τ) = 〈∂tgu, τ n〉ΓuD , ∀ τ ∈ X.

The semi-discrete equation (2.2.8) is replaced by

(∂tA(σh + αphI), τ) + (u̇h, div τ) + (γ̇h, τ) = 〈∂tgu, τ n〉ΓuD ,∀ τ ∈ Xh.

We note that the original variables uh and γh can be recovered easily from the solution of the

time-di�erentiated problem. In particular, given compatible initial data σh,0, uh,0, γh,0 that

satisfy (2.2.8), the expressions

uh(t) = uh,0 +

∫ t

0

u̇h(s) ds, γh(t) = γh,0 +

∫ t

0

γ̇h(s) ds,

provide a solution to (2.2.8) at any t ∈ (0, T].

In the domain decomposition formulation we now consider the Lagrange multiplier λh =

(λu̇h, λ
p
h) ∈ Λh, where λu̇h ∈ Λu

h approximates the trace of u̇ on Γ. Then the semi-discrete domain

decomposition equation (2.3.1) is replaced by

(∂tA(σh,i + αph,iI), τ)Ωi
+ (u̇h,i, div τ)Ωi

+ (γ̇h,i, τ)Ωi
= 〈∂tgu, τ ni〉∂Ωi∩ΓuD

+ 〈λu̇h, τ ni〉Γi ,∀τ ∈ Xh,i.

Finally, the fully discrete equation (2.3.8) is replaced by

(
A(σn+1

h,i + αpn+1
h,i I), τ

)
Ωi

+ ∆t
(
u̇n+1
h,i , div τ

)
Ωi

+ ∆t
(
γ̇n+1
h,i , τ

)
Ωi

= ∆t〈∂tgn+1
u , τ ni〉∂Ωi∩ΓuD

+ ∆t〈λu̇,n+1
h , τ ni〉Γi +

(
A(σnh,i + αpnh,iI), τ

)
Ωi
, ∀τ ∈ Xh,i.

(2.3.15)

The original variables can be recovered from

unh = u0
h + ∆t

n∑
k=1

u̇kh, γnh = γ0
h + ∆t

n∑
k=1

γ̇kh, λu,nh = λu,0h +
n∑
k=1

λu̇,kh . (2.3.16)

16

2.3.3 Reduction to an interface problem

The non-overlapping domain decomposition algorithm for the solution of (2.3.15), (2.3.9)�

(2.3.14) at each time step is based on reducing it to an interface problem for the Lagrange

multiplier λh. To this end, we introduce two sets of complementary subdomain problems. The

�rst set of problems reads as follows: for 1 ≤ i ≤ m, �nd (σ̄n+1
h,i ,

¯̇un+1
h,i ,

¯̇γn+1
h,i , z̄

n+1
h,i , p̄

n+1
h,i) ∈

Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i such that

(
A(σ̄n+1

h,i + αp̄n+1
h,i I), τ

)
Ωi

+ ∆t
(
¯̇un+1
h,i , div τ

)
Ωi

+ ∆t
(
¯̇γn+1
h,i , τ

)
Ωi

= ∆t〈∂tgn+1
u , τ ni〉∂Ωi∩ΓuD

+
(
A(σnh,i + αpnh,iI), τ

)
Ωi
, ∀τ ∈ Xh,i, (2.3.17)(

div σ̄n+1
h,i , v

)
Ωi

= −
(
fn+1, v

)
Ωi
, ∀v ∈ Vh,i, (2.3.18)(

σ̄n+1
h,i , ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i, (2.3.19)(
K−1z̄n+1

h,i , q
)

Ωi
−
(
p̄n+1
h,i , div q

)
Ωi

= −〈gn+1
p , q · ni〉∂Ωi∩ΓpD

, ∀q ∈ Zh,i, (2.3.20)

c0

(
p̄n+1
h,i , w

)
Ωi

+ α
(
A(σ̄n+1

h,i + αp̄n+1
h,i I), wI

)
Ωi

+ ∆t
(
div z̄n+1

h,i , w
)

Ωi

= ∆t
(
gn+1, w

)
Ωi

+ c0

(
pnh,i, w

)
Ωi

+ α
(
A(σnh,i + αpnh,iI), wI

)
Ωi
, ∀w ∈ Wh,i. (2.3.21)

These subdomain problems have zero Dirichlet data on the interfaces and incorporate the true

source terms f and g and outside boundary conditions gu and gp, as well as initial data σnh,i and

pnh,i.

The second problem set reads as follows: given λh ∈ Λh, for 1 ≤ i ≤ m, �nd
(
σ∗,n+1
h,i (λh),

u̇∗,n+1
h,i (λh), γ̇

∗,n+1
h,i (λh), z

∗,n+1
h,i (λh), p

∗,n+1
h,i (λh)

)
∈ Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i such that:

(
A
(
σ∗,n+1
h,i (λh) + αp∗,n+1

h,i (λh)I
)
, τ
)

Ωi
+ ∆t

(
u̇∗,n+1
h,i (λh), div τ

)
Ωi

+ ∆t
(
γ̇∗,n+1
h,i (λh), τ

)
Ωi

= ∆t〈λu̇h, τ ni〉Γi , ∀τ ∈ Xh,i, (2.3.22)(
div σ∗,n+1

h,i (λh), v
)

Ωi
= 0, ∀v ∈ Vh,i, (2.3.23)(

σ∗,n+1
h,i (λh), ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i, (2.3.24)(
K−1z∗,n+1

h,i (λh), q
)

Ωi
−
(
p∗,n+1
h,i (λh), div q

)
Ωi

= −〈λph, q · ni〉Γi , ∀q ∈ Zh,i, (2.3.25)

c0

(
p∗,n+1
h,i (λh), w

)
Ωi

+ α
(
A
(
σ∗,n+1
h,i (λh) + αp∗,n+1

h,i (λh)I
)
, wI

)
Ωi

+ ∆t
(
div z∗,n+1

h,i (λh), w
)

Ωi
= 0, ∀w ∈ Wh,i. (2.3.26)

17

These problems have λh as Dirichlet interface data, along with zero source terms, zero outside

boundary conditions, and zero data from the previous time step.

De�ne the bilinear forms an+1
i : Λh × Λh → R, 1 ≤ i ≤ m, an+1 : Λh × Λh → R, and the

linear functional gn+1 : Λh → R for all 0 ≤ n ≤ N − 1 by

an+1
i (λh, µ) = 〈σ∗,n+1

h,i (λh)ni, µ
u〉Γi − 〈z

∗,n+1
h,i (λh) · ni, µp〉Γi , an+1(λh, µ) =

m∑
i=1

an+1
i (λh, µ),

(2.3.27)

gn+1(µ) =
m∑
i=1

(
−〈σ̄n+1

h,i ni, µ
u〉Γi + 〈z̄n+1

h,i · ni, µ
p〉Γi
)
. (2.3.28)

It follows from (2.3.13)�(2.3.14) that, for each 0 ≤ n ≤ N−1, the solution to the global problem

(2.3.15), (2.3.9)�(2.3.14) is equivalent to solving the interface problem for λn+1
h ∈ Λh:

an+1(λn+1
h , µ) = gn+1(µ), ∀µ ∈ Λh, (2.3.29)

and setting

σn+1
h,i = σ∗,n+1

h,i (λn+1
h) + σ̄n+1

h,i , u̇n+1
h,i = u̇∗,n+1

h,i (λn+1
h) + ¯̇un+1

h,i , γ̇n+1
h,i = γ̇∗,n+1

h,i (λn+1
h) + ¯̇γn+1

h,i ,

zn+1
h,i = z∗,n+1

h,i (λn+1
h) + z̄n+1

h,i , pn+1
h,i = p∗,n+1

h,i (λn+1
h) + p̄n+1

h,i .

2.3.4 Analysis of the interface problem

We next show that the interface bilinear form an+1(·, ·) is positive de�nite, which implies

that the interface problem (2.3.29) is well-posed and can be solved using a suitable Krylov space

method such as GMRES. We further obtain bounds on the spectrum of an+1(·, ·) and establish

rate of convergence for GMRES. We start by obtaining an expression for an+1(·, ·) in terms of

the subdomain bilinear forms.

Proposition 2.3.1. For λh, µ ∈ Λh, the interface bilinear form can be expressed as

an+1(λh, µ) =
1

∆t

m∑
i=1

[(
Aσ∗,n+1

h,i (µ), σ∗,n+1
h,i (λh)

)
+ 2

(
Aαp∗,n+1

h,i (µ)I, σ∗,n+1
h,i (λh)

)
Ωi

+
(
Aαp∗,n+1

h,i (µ)I, αp∗,n+1
h,i (λh)I

)
Ωi

+ c0

(
p∗,n+1
h,i (µ), p∗,n+1

h,i (λh)
)

Ωi

+ ∆t
(
K−1z∗,n+1

h,i (µ), z∗,n+1
h,i (λh)

)]
. (2.3.30)

18

Proof. To see this, consider the second set of complementary equations (2.3.22−2.3.26) with

data µ, use the test functions: σ∗,n+1
h,i (λh) in (2.3.22) and z∗,n+1

h,i (λh) in equation (2.3.25) .

Remark 2.3.2. The non-di�erentiated formulation results in a missing scaling of 1
∆t

in the term(
A
(
σ∗,n+1
h,i (λh) + αp∗,n+1

h,i (λh)I
)
, τ
)

Ωi
in (2.3.22) compared to the similar term in (2.3.26). Hence

the two terms cannot be combined, resulting in a non-coercive expression for an+1(·, ·).

Recalling the properties of A and K, there exist constants 0 < amin ≤ amax < ∞ and

0 < kmin ≤ kmax <∞ such that

amin‖τ‖2 ≤ (Aτ, τ) ≤ amax‖τ‖2, ∀ τ ∈ X, (2.3.31)

kmin‖q‖2 ≤ (Kq, q) ≤ kmax‖q‖2, ∀ q ∈ Z. (2.3.32)

We will also utilize suitable mixed interpolants in the �nite element spaces Xh,i and Zh,i. It is

shown in [48] that there exists an interpolant Π̃i : Hε(Ωi,M)∩Xi → Xh,i for any ε > 0 such that

for all σ ∈ Hε(Ωi,M) ∩ Xi, τ ∈ Xh,i, v ∈ Vh,i, and ξ ∈ Qh,i,

(div(Π̃iσ − σ), v)Ωi = 0, (Π̃iσ − σ, ξ)Ωi = 0, 〈(Π̃iσ − σ)ni, τ ni〉∂Ωi = 0, (2.3.33)

and

‖Π̃iσ‖Ωi ≤ C(‖σ‖ε,Ωi + ‖ div σ‖Ωi). (2.3.34)

For the Darcy problem we use the canonical mixed interpolant [22], Π : Hε(Ωi,Rd) ∩ Zi → Zh,i

such that for all z ∈ Hε(Ωi,Rd) ∩ Zi, q ∈ Zh,i, and w ∈ Wh,i,

(div(Πiz − z), w)Ωi = 0, 〈(Πiz − z) · ni, q · ni〉∂Ωi = 0, (2.3.35)

and

‖Πiz‖Ωi ≤ C(‖z‖ε,Ωi + ‖ div z‖Ωi). (2.3.36)

Lemma 2.3.2. The interface bilinear form an+1(·, ·) is positive de�nite over Λh.

19

Proof. Using the representation of the interface bilinear form (2.3.30), we get

an+1(λh, λh) =
1

∆t

m∑
i=1

[(
A(ψσ(λh) + αp∗,n+1

h,i (λh)I), σ∗,n+1
h,i (λh) + αp∗,n+1

h,i (λh)I
)

Ωi

+ c0

(
p∗,n+1
h,i (λh), p

∗,n+1
h,i (λh)

)
Ωi

+ ∆t
(
K−1z∗,n+1

h,i (λh), z
∗,n+1
h,i (λh)

)
Ωi

]
, (2.3.37)

which, combined with (2.3.31)�(2.3.32), gives an+1(λh, λh) ≥ 0, and hence an+1(·, ·) is positive

semide�nite. We next show that a(λh, λh) = 0 implies λh = 0. We use a two-part argument to

control separately λu̇h and λ
p
h. Let Ωi be a domain adjacent to ΓuD such that |∂Ωi ∩ ΓuD| > 0 and

let (ψu̇, φu̇) be the solution of the auxiliary elasticity problem

Aψu̇i = ε(φu̇i), divψu̇i = 0 in Ωi,

φu̇i = 0 on ∂Ωi ∩ ΓuD,

ψu̇i ni =

0 on ∂Ωi ∩ ΓσN

λu̇h on Γi.

Elliptic regularity [27] implies that ψu̇i ∈ Hε(Ωi,M)∩Xi for some ε > 0, and therefore the mixed

interpolant Π̃iψ
u̇
i is well de�ned. Taking τ = Π̃iψ

u̇
i in (2.3.22) and using (2.3.33) and (2.3.34)

gives

‖λu̇h‖2
Γi

= 〈λu̇h, ψu̇i ni〉Γi = 〈λu̇h, Π̃ψu̇i ni〉Γi

=
1

∆t

(
A(σ∗,n+1

h,i (λh) + αp∗,n+1
h,i (λh)I), Π̃ψu̇i

)
Ωi

+
(
u̇∗,n+1
h,i (λh), div Π̃ψu̇i

)
Ωi

+
(
γ̇∗,n+1
h,i (λh), Π̃ψ

u̇
i

)
Ωi

=
1

∆t

(
A1/2(σ∗,n+1

h,i (λh) + αp∗,n+1
h,i (λh)I), A1/2Π̃ψu̇i

)
Ωi

≤ C

∆t
‖A1/2(σ∗,n+1

h,i (λh) + αp∗,n+1
h,i (λh)I)‖Ωi‖ψu̇i ‖ε,Ωi

≤ C

∆t
‖A1/2(σ∗,n+1

h,i (λh) + αp∗,n+1
h,i (λh)I)‖Ωi‖λu̇h‖Γi , (2.3.38)

where in the last inequality we used the elliptic regularity bound [27]

‖ψu̇i ‖ε,Ωi ≤ C‖λh‖ε−1/2,Γi . (2.3.39)

20

Using the representation of the interface bilinear form (2.3.30), we obtain

‖λu̇h‖2
Γi
≤ C

∆t
an+1
i (λh, λh) ∀λh ∈ Λh. (2.3.40)

Next, consider an adjacent subdomain Ωj such that |Γij| > 0. Let (ψu̇j , φ
u̇
j) be the solution to

Aψu̇j = ε(φu̇j), divψu̇j = 0 in Ωj,

φu̇i = 0 on Γij,

ψu̇i ni =

0 on ∂Ωj ∩ ∂Ω

λu̇h on Γj \ Γij.

Taking τ = Π̃jψ
u̇
j in (2.3.22) and using (2.3.33) gives

‖λu̇h‖2
Γj\Γij =

1

∆t

(
A(σ∗,n+1

h,j (λh) + αp∗,n+1
h,j (λh)I), Π̃ψu̇j

)
Ωj
− 〈λu̇h, ψu̇j nj〉Γij

≤ C

(
1

∆t
‖A1/2(σ∗,n+1

h,j (λh) + αp∗,n+1
h,j (λh)I)‖Ωj + ‖λu̇h‖Γij

)
‖ψu̇j ‖ε,Ωj

≤ C√
∆t

(
an+1
j (λh, λh)

1/2 + an+1
i (λh, λh)

1/2
)
‖λu̇h‖Γj\Γij ,

where in the �rst inequality we used (2.3.34) and the trace inequality [58]

〈τ nj, µ〉Γij ≤ C(‖τ‖ε,Ωj + ‖ div τ‖Ωj)‖µ‖Γij , ∀ τ ∈ Hε(Ωj,M) ∩ Xj, µ ∈ L2(Γij,Rd),

and for the second inequality we used the representation (2.3.30) and the bound from Ωi (2.3.40),

along with the elliptic regularity bound (2.3.39). Iterating over all subdomains in a similar

fashion results in

‖λu̇h‖2
Γ ≤

C

∆t
an+1(λh, λh) ∀λh ∈ Λh. (2.3.41)

The argument for λph is similar. We start with a subdomain Ωi adjacent to ΓpD such that

|∂Ωi ∩ ΓpD| > 0 and let (ψp, φp) be the solution of the auxiliary �ow problem

K−1ψpi = ∇φpi , ∇ · ψpi = 0 in Ωi, (2.3.42)

φpi = 0 on ∂Ωi ∩ ΓpD, (2.3.43)

ψpi · ni =

0 on ∂Ωi ∩ ΓzN ,

λph on Γi.

(2.3.44)

21

Taking q = Πiψ
p
i in (2.3.25) and using (2.3.35), (2.3.36), and elliptic regularity similar to (2.3.39)

gives

‖λph‖
2
Γi

= 〈λph, ψ
p
i · ni〉Γi = 〈λph,Πiψ

p
i · ni〉Γi = (K−1z∗,n+1

h,i (λh),Πiψ
p
i)Ωi

≤ C‖K−1/2z∗,n+1
h,i (λh)‖Ωi‖ψ

p
i ‖ε,Ωi ≤ C‖K−1/2z∗,n+1

h,i (λh)‖Ωi‖λ
p
h‖Γi ,

which, together with (2.3.30) implies

‖λph‖
2
Γi
≤ Can+1

i (λh, λh).

Iterating over all subdomains in a way similar to the argument for λu̇h, we obtain

‖λph‖
2
Γ ≤ Can+1(λh, λh) ∀λh ∈ Λh. (2.3.45)

A combination of (2.3.41) and (2.3.45) implies that an+1(·, ·) is positive de�nite on Λh.

Theorem 2.3.3. There exist positive constants C0 and C1 independent of h and ∆t such that

∀λh ∈ Λh, C0(∆t‖λu̇h‖2
Γ + ‖λph‖

2
Γ) ≤ an+1(λh, λh) ≤ C1h

−1(∆t‖λu̇h‖2
Γ + ‖λph‖

2
Γ). (2.3.46)

In addition, there exist positive constants C̃0 and C̃1 independent of h, ∆t, and c0 such that

∀λh ∈ Λh, C̃0(∆t‖λu̇h‖2
Γ + ‖λph‖

2
Γ) ≤ an+1(λh, λh) ≤ C̃1h

−1∆t−1(∆t‖λu̇h‖2
Γ + ‖λph‖

2
Γ).

(2.3.47)

Proof. The left inequality in (2.3.46) and (2.3.47) follows from (2.3.41) and (2.3.45). To prove

the right inequality, we use the de�nition of the interface operator (2.3.27) to obtain

an+1
i (λh, λh) = 〈σ∗,n+1

h,i (λh)ni, λ
u̇
h〉Γi − 〈z

∗,n+1
h,i (λh) · ni, λph〉Γi

≤ ‖σ∗,n+1
h,i (λh)ni‖Γi‖λu̇h‖Γi + ‖z∗,n+1

h,i (λh) · ni‖Γi‖λ
p
h‖Γi

≤ Ch−1/2
(
‖σ∗,n+1

h,i (λh)‖Ωi‖λu̇h‖Γi + ‖z∗,n+1
h,i (λh)‖Ωi‖λ

p
h‖Γi

)
≤ Ch−1/2(

(
‖σ∗,n+1

h,i (λh) + αp∗,n+1
h,i (λh)I‖Ωi + ‖αp∗,n+1

h,i (λh)I‖
)
‖λu̇h‖Γi

+ ‖z∗,n+1
h,i (λh)‖Ωi‖λ

p
h‖Γi) ≤ Ch−1/2an+1

i (λh, λh)
1/2
(
∆t1/2‖λu̇h‖Γi + ‖λph‖Γi

)
, (2.3.48)

where for the second inequality we used the discrete trace inequality for �nite element functions

ϕ,

‖ϕ‖Γi ≤ Ch−1/2‖ϕ‖Ωi , (2.3.49)

22

and the last inequality follows from (2.3.37). We note that the constant in the last inequality

depends on c0. This implies the right inequality in (2.3.46).

To obtain the right inequality in (2.3.47) with a constant independent of c0, we use the

inf-sup condition (2.2.14) and (2.3.25):

‖p∗,n+1
h,i (λh)‖Ωi ≤ C sup

06=q∈Zh,i

〈div q, p∗,n+1
h,i (λh)〉Ωi
‖q‖div,Ωi

= C sup
06=q∈Zh,i

(K−1z∗,n+1
h,i (λh), q)Ωi + 〈λph, q · ni〉Γi

‖q‖div,Ωi

≤ C
(
‖z∗,n+1

h,i (λh)‖Ωi + h−1/2‖λph‖Γi

)
, (2.3.50)

where the last inequality uses (2.3.49). Combining (2.3.50) with the next to last inequality in

(2.3.48) and using (2.3.37), we get:

an+1
i (λh, λh)

≤ Ch−1/2
((

∆t1/2ai(λh, λh)
1/2 + ai(λh, λh)

1/2 + h−1/2‖λph‖Γi

)
‖λu̇h‖Γi + ai(λh, λh)

1/2‖λph‖Γi

)
≤ C

(
εan+1
i (λh, λh) +

1

ε
h−1∆t−1(∆t‖λu̇h‖2

Γi
+ ‖λph‖Γi)

)
,

using Young's inequality in the last inequality. Taking ε su�ciently small implies the right

inequality in (2.3.47).

Theorem 2.3.3 provides upper and lower bounds on the �eld of values of the interface

operator, which can be used to estimate the convergence of the interface GMRES solver. In

particular, let rk = (ru̇k , r
p
k) be the k-th residual of the GMRES iteration for solving the interface

problem (2.3.29). De�ne |rk|2? = ∆t|ru̇k|2 + |rpk|2, where | · | denotes the Euclidean vector norm.

The following corollary to Theorem 2.3.3 follows from the �eld-of-values analysis in [125].

Corollary 2.3.4. For the k-th GMRES residual for solving (2.3.29), it holds that

|rk|? ≤
(√

1− (C0/C1)2h2
)k
|r0|? (2.3.51)

and

|rk|? ≤
(√

1− (C̃0/C̃1)2h2∆t2
)k
|r0|?. (2.3.52)

Remark 2.3.3. Bounds (2.3.51) and (2.3.52) imply the convergence of the interface GMRES

iteration that is independent of either ∆t or c0, but not both. In Section 2.5 we present numerical

results showing that the GMRES convergence is robust with respect to both c0 and ∆t.

23

2.4 Split Methods

In this section, we consider two popular splitting methods to decouple the fully coupled

poroelastic problem, namely the drained split (DS) and �xed stress (FS) methods [51, 52]. We

show, using energy bounds, that these two methods are unconditionally stable in our MFE

formulation. We then de�ne, at each time step, a domain decomposition algorithm for the �ow

and mechanics equations separately. Domain decomposition techniques for the �ow [38] and

mechanics [48] components have already been studied in previous works.

2.4.1 Drained split

The DS method consists of solving the mechanics problem �rst, with the value of pressure

from the previous time step. Afterward, the �ow problem is solved using the new values of

the stress tensor. The DS method for the classical Biot formulation of poroelasticity is known

to require certain conditions on the parameters for stability [51]. In the setting of our mixed

formulation, we show that this is not necessary and the method is unconditionally stable, see

also [83]. For simplicity, we do the analysis with zero source terms.This method results in the

problem: for n = −1, 0, . . . , N − 1, �nd (σn+1
h , un+1

h , γn+1
h , zn+1

h , pn+1
h) ∈ Xh× Vh×Qh×Zh×Wh

such that(
Aσn+1

h , τ
)

+
(
un+1
h , div τ

)
+
(
γn+1
h , τ

)
= − (AαpnhI, τ) , ∀τ ∈ Xh, (2.4.1)(

div σn+1
h , v

)
= 0, ∀v ∈ Vh, (2.4.2)(

σn+1
h , ξ

)
= 0, ∀ξ ∈ Qh, (2.4.3)

and (
K−1zn+1

h , q
)
−
(
pn+1
h , div q

)
= 0, ∀q ∈ Zh, (2.4.4)

c0

(
pn+1
h − pnh

∆t
, w

)
+ α

(
Aα

pn+1
h − pnh

∆t
I, wI

)
+
(
div zn+1

h , w
)

= −α
(
A
σn+1
h − σnh

∆t
, wI

)
, ∀w ∈ Wh, (2.4.5)

where (2.4.1)�(2.4.4) hold for n = −1, 0, . . . , N − 1 with p−1
h := p0

h, and (2.4.5) holds for n =

0, . . . , N − 1. We note that solving (2.4.1)�(2.4.4) for n = −1 provides initial data σ0
h, u

0
h, γ

0
h,

and z0
h.

24

2.4.1.1 Stability analysis for drained split

The following theorem shows that the drained split scheme is unconditionally stable.

Theorem 2.4.1. For the solution (σn+1
h , un+1

h , γn+1
h , zn+1

h , pn+1
h)0≤n≤N−1 of the system (2.4.1)�

(2.4.5), there exists a constant C independent of h, and ∆t, c0, and amin such that

N−1∑
n=0

c0

∆t
‖pn+1

h − pnh‖2 + max
0≤n≤N−1

(
‖zn+1

h ‖2 + ‖pn+1
h ‖2 + ‖A1/2σn+1

h ‖2 + ‖un+1
h ‖2 + ‖γn+1

h ‖2
)

≤ C
(
‖p0

h‖2 + ‖z0
h‖2
)
.

Proof. We subtract two successive time steps for equations (2.4.1)�(2.4.4), obtaining, for n =

0, . . . , N − 1,

(
A(σn+1

h − σnh), τ
)

+
(
un+1
h − unh, div τ

)
+
(
γn+1
h − γnh , τ

)
= −

(
Aα(pnh − pn−1

h)I, τ
)
, ∀ τ ∈ Xh, (2.4.6)(

div(σn+1
h − σnh), v

)
= 0, ∀ v ∈ Vh, (2.4.7)(

σn+1
h − σnh , ξ

)
= 0, ∀ ξ ∈ Qh, (2.4.8)(

K−1(zn+1
h − znh), q

)
−
(
pn+1
h − pnh, div q

)
= 0, ∀ q ∈ Zh. (2.4.9)

Taking τ = σn+1
h − σnh , v = un+1

h − unh and ξ = γn+1
h − γnh in (2.4.6)�(2.4.8) and summing gives

(
A(σn+1

h − σnh), σn+1
h − σnh

)
= −

(
Aα(pnh − pn−1

h)I, σn+1
h − σnh

)
,

implying

‖A
1
2 (σn+1

h − σnh)‖ ≤ α‖A
1
2 (pnh − pn−1

h)I‖. (2.4.10)

Taking q = zn+1
h in (2.4.9) and w = pn+1

h − pnh in (2.4.5) and summing results in

c0

(
pn+1
h − pnh

∆t
, pn+1

h − pnh
)

+ α

(
Aα

pn+1
h − pnh

∆t
I, (pn+1

h − pnh)I

)
+
(
K−1(zn+1

h − znh), zn+1
h

)
= α

(
A
σn+1
h − σnh

∆t
, (pn+1

h − pnh)I

)
≤ 1

2∆t
‖A

1
2 (σn+1

h − σnh)‖2 +
α2

2∆t
‖A

1
2 (pn+1

h − pnh)I‖2,

which, combined with (2.4.10), implies

c0

∆t
‖pn+1

h − pnh‖2 +
α2

2∆t
‖A

1
2 (pn+1

h − pnh)I‖2 +
1

2
(‖K−

1
2 (zn+1

h − znh)‖2 + ‖K−
1
2 zn+1
h ‖2

− ‖K−
1
2 znh‖2) ≤ α2

2∆t
‖A

1
2 (pnh − pn−1

h)I‖2.

25

Summing over n from 0 to k − 1 for any k = 1, . . . , N and using that p−1
h = p0

h gives

k−1∑
n=0

2c0

∆t
‖pn+1

h − pnh‖2 +
α2

∆t
‖A

1
2 (pkh − pk−1

h)I‖2 + ‖K−
1
2 zkh‖2 +

k−1∑
n=0

‖K−
1
2 (zn+1

h − znh)‖2

≤ ‖K−
1
2 z0
h‖2.

We note that the second and fourth terms are suboptimal with respect to ∆t. Neglecting these

terms and using (2.3.32), we obtain

k−1∑
n=0

c0

∆t
‖pn+1

h − pnh‖2 + ‖zkh‖2 ≤ C‖z0
h‖2, k = 1, . . . , N. (2.4.11)

To obtain control on ph independent of c0, we use the inf-sup condition (2.2.14) and (2.4.4):

‖pn+1
h ‖ ≤ C sup

06=q∈Zh

(div q, pn+1
h)

‖q‖div
= C sup

06=q∈Zh

(K−1zn+1
h , q)

‖q‖div
≤ C‖zn+1

h ‖, n = 0, . . . , N − 1.

(2.4.12)

Taking τ = σn+1
h , v = un+1

h , and ξ = γn+1
h in (2.4.1)�(2.4.3) gives

‖A1/2σn+1
h ‖ ≤ C‖pnh‖, n = 0, . . . , N − 1. (2.4.13)

For the stability of uh and γh, the inf-sup condition (2.2.13) combined with (2.4.1) gives:

‖un+1
h ‖+ ‖γn+1

h ‖ ≤ C sup
06=τ∈Xh

(
un+1
h , div τ

)
+
(
γn+1
h , τ

)
‖τ‖div

= −C sup
06=τ∈Xh

(
Aσn+1

h , τ
)

+ (AαpnhI, τ)

‖τ‖div

≤ C
(
‖A

1
2σn+1

h ‖+ ‖pnh‖
)
, n = 0, . . . , N − 1. (2.4.14)

A combination of bounds (2.4.11)�(2.4.14) completes the proof of the theorem.

26

2.4.2 Fixed stress

The FS decoupling method solves the �ow problem �rst, with the value of σ �xed from the

previous time step. After that, the mechanics problem is solved using the new values of the

pressure as data [52]. We again assume in the analysis zero source terms for simplicity. The

method is: for n = −1, 0, . . . , N−1, �nd (σn+1
h , un+1

h , γn+1
h , zn+1

h , pn+1
h) ∈ Xh×Vh×Qh×Zh×Wh

such that

(
K−1zn+1

h , q
)
−
(
pn+1
h , div q

)
= 0, ∀q ∈ Zh, (2.4.15)

c0

(
pn+1
h − pnh

∆t
, w

)
+ α

(
Aα

pn+1
h − pnh

∆t
I, wI

)
+
(
div zn+1

h , w
)

= −α
(
A
σnh − σn−1

h

∆t
, wI

)
, ∀w ∈ Wh, (2.4.16)

and

(
Aσn+1

h , τ
)

+
(
un+1
h , div τ

)
+
(
γn+1
h , τ

)
= −

(
Aαpn+1

h I, τ
)
, ∀τ ∈ Xh, (2.4.17)(

div σn+1
h , v

)
= 0, ∀v ∈ Vh, (2.4.18)(

σn+1
h , ξ

)
= 0, ∀ξ ∈ Qh, (2.4.19)

where the equations (2.4.15) and (2.4.17)�(2.4.19) hold for n = −1, 0, . . . , N − 1 and (2.4.16)

holds for n = 0, . . . , N − 1 with σ−1
h := σ0

h. Solving (2.4.15) and (2.4.17)�(2.4.19) for n = −1

provides initial data σ0
h, u

0
h, γ

0
h, and z

0
h.

2.4.2.1 Stability analysis for �xed stress

The following theorem shows that the �xed stress scheme is unconditionally stable.

Theorem 2.4.2. For the solution (σn+1
h , un+1

h , γn+1
h , zn+1

h , pn+1
h)0≤n≤N−1 of the system (2.4.15)�

(2.4.19), there exists a constant C independent of h, and ∆t, c0, and amin such that

N−1∑
n=0

c0

∆t
‖pn+1

h − pnh‖2 + max
0≤n≤N−1

(
‖zn+1

h ‖2 + ‖pn+1
h ‖2 + ‖A1/2σn+1

h ‖2 + ‖un+1
h ‖2 + ‖γn+1

h ‖2
)

≤ C‖z0
h‖2.

27

Proof. The proof is similar to that of the drained split scheme. Taking the di�erence of two

successive time steps for equations (2.4.17)�(2.4.19) and (2.4.15), we obtain, for n = 0, . . . , N−1,(
A(σn+1

h − σnh), τ
)

+
(
un+1
h − unh, div τ

)
+
(
γn+1
h − γnh , τ

)
+
(
Aα(pn+1

h − pnh)I, τ
)

= 0, ∀τ ∈ Xh, (2.4.20)(
div(σn+1

h − σnh), v
)

= 0, ∀v ∈ Vh, (2.4.21)(
σn+1
h − σnh , ξ

)
= 0, ∀ξ ∈ Qh, (2.4.22)(

K−1(zn+1
h − znh), q

)
−
(
pn+1
h − pnh, div q

)
= 0, ∀q ∈ Zh, (2.4.23)

Taking τ = σn+1
h − σnh , v = un+1

h − unh and ξ = γn+1
h − γnh in (2.4.20)�(2.4.22) and adding the

equations results in

‖A
1
2 (σn+1

h − σnh)‖ ≤ α‖A
1
2 (pn+1

h − pnh)I‖. (2.4.24)

Taking test functions q = zn+1
h in (2.4.23) and w = pn+1

h −pnh in (2.4.16) and adding the equations

gives

c0

(
pn+1
h − pnh

∆t
, pn+1

h − pnh
)

+ α

(
Aα

pn+1
h − pnh

∆t
I, (pn+1

h − pnh)I

)
+
(
K−1(zn+1

h − znh), zn+1
h

)
= α

(
A
σnh − σn−1

h

∆t
, (pn+1

h − pnh)I

)
≤ 1

2∆t
‖A

1
2 (σnh − σn−1

h)‖2 +
α2

2∆t
‖A

1
2 (pn+1

h − pnh)I‖2,

which, combined with (2.4.24), implies, for n = 0, . . . , N − 1,

c0

∆t
‖pn+1

h − pnh‖2 +
α2

2∆t
‖A

1
2 (pn+1

h − pnh)I‖2 +
1

2

(
‖K−

1
2 (zn+1

h − znh)‖2 + ‖K−
1
2 zn+1
h ‖2

− ‖K−
1
2 znh‖2

)
≤ α2

2∆t
‖A

1
2 (pnh − pn−1

h)I‖2,

where for n = 0 we have set p−1
h := p0

h. Summing over n from 0 to k − 1 for any k = 1, . . . , N

gives
k−1∑
n=0

c0

∆t
‖pn+1

h − pnh‖2 + ‖zkh‖2 ≤ C‖z0
h‖2, k = 1, . . . , N. (2.4.25)

Next, similarly to the arguments in Theorem 2.4.1, we obtain

‖pn+1
h ‖ ≤ C‖zn+1

h ‖, n = 0, . . . , N − 1, (2.4.26)

‖A1/2σn+1
h ‖ ≤ C‖pn+1

h ‖, n = 0, . . . , N − 1. (2.4.27)

and

‖un+1
h ‖+ ‖γn+1

h ‖ ≤ C
(
‖A

1
2σn+1

h ‖+ ‖pn+1
h ‖

)
, n = 0, . . . , N − 1. (2.4.28)

The proof is completed by combining (2.4.25)�(2.4.28).

28

2.4.3 Domain decomposition for the split methods

In this subsection, we present a non-overlapping domain decomposition method for the

drained split decoupled formulation discussed in subsection 2.4.1, with non-zero source terms.

The domain decomposition algorithm for the �xed stress decoupled formulation is similar; it can

be obtained by modifying the order of the coupling terms accordingly. We omit the details.

Following the notation used in Section 2.3 for the monolithic domain decomposition method,

the domain decomposition method for the DS formulation with non-zero source terms reads as

follows: for 1 ≤ i ≤ m and n = 0, . . . , N−1, �nd (σn+1
h,i , u

n+1
h,i , γ

n+1
h,i , λ

u,n+1
h) ∈ Xh,i×Vh,i×Qh,i×Λu

h

and (zn+1
h,i , p

n+1
h,i , λ

p,n+1
h) ∈ Zh,i ×Wh,i × Λp

h such that:

(
Aσn+1

h,i , τ
)

Ωi
+
(
un+1
h,i , div τ

)
Ωi

+
(
γn+1
h,i , τ

)
Ωi

=
(
Aαpnh,iI, τ

)
Ωi

+ 〈gn+1
u , τ ni〉∂Ωi∩ΓuD

+ 〈λu,n+1
h , τ ni〉Γi , ∀τ ∈ Xh,i, (2.4.29)(

div σn+1
h,i , v

)
Ωi

= −
(
fn+1, v

)
Ωi
, ∀v ∈ Vh,i, (2.4.30)(

σn+1
h,i , ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i, (2.4.31)
m∑
i=1

(
σn+1
h,i ni, µ

u
)

Γi
= 0, ∀µu ∈ Λu

h, (2.4.32)

and(
K−1zn+1

h,i , q
)

Ωi
−
(
pn+1
h,i , div q

)
Ωi

= −〈gn+1
p , q · ni〉∂Ωi∩ΓpD

− 〈λp,n+1
h , q · ni〉Γi , ∀q ∈ Zh,i,

c0

(
pn+1
h,i − pnh,i

∆t
, w

)
Ωi

+ α

(
Aα

pn+1
h,i − pnh,i

∆t
I, wI

)
Ωi

+
(
div zn+1

h,i , w
)

Ωi

= −α

(
A
(
σn+1
h,i − σnh,i

)
∆t

, wI

)
Ωi

+
(
gn+1, w

)
Ωi
, ∀w ∈ Wh,i,

m∑
i=1

(
zn+1
h,i · ni, µ

p
)

Γi
= 0, ∀µp ∈ Λp

h.

The above split domain decomposition formulation consists of separate domain decomposition

methods for mechanics and �ow at each time step. Such methods have been studied in detail for

the �ow [38] and mechanics [48] components. It is shown that in both cases the global problem

can be reduced to an interface problem with a symmetric and positive de�nite operator with

condition number O(h−1). Therefore, we employ the conjugate gradient (CG) method for the

solution of the interface problem in each case.

29

2.5 Numerical Results

In this section we report the results of several numerical tests designed to verify and compare

the convergence, stability, and e�ciency of the three domain decomposition methods developed

in the previous sections. The numerical schemes are implemented using deal.II �nite element

package [91,92].

In all examples the computational domain is the unit square (0, 1)2 and the mixed �nite

element spaces are Xh × Vh × Qh = BDM2
1 × Q2

0 × Q0 [11] for elasticity and Zh × Wh =

BDM1×Q0 [22] for Darcy on quadrilateral meshes. Here Qk denotes polynomials of degree k in

each variable. For solving the interface problem in the monolithic scheme we use non-restarted

unpreconditioned GMRES and in the sequential decoupled methods we use unpreconditioned

CG for the �ow and mechanics parts separately. We use a tolerance on the relative residual
rk
r0

as the stopping criteria for both iterative solvers. For Examples 1 and 2, the tolerance is

taken to be 10−12. For Example 3, the tolerance is taken to be 10−6 due to relatively smaller

initial residual r0. For the monolithic method, Theorem 2.3.3 implies that that the spectral

ratio λmax

λmin
= O(h−1), where λmin and λmax are the smallest and largest real eigenvalues of the

interface operator, respectively. Depending on the deviation of the operator from a normal

matrix [115,116], the growth rate for the number of iterations required for GMRES to converge

could be bounded. In particular, if the interface operator is normal, then the expected growth

rate of the number of GMRES iterations is O
(√

λmax
λmin

)
[116], which in our case is O(h−0.5). On

the other hand, the interface operators in the decoupled mechanics and �ow systems in the DS

and FS schemes are symmetric and positive de�nite [38,48]. A well known result [116] is that the

number of CG iterations required for convergence is O(
√
κ), where κ is the condition number

for the interface operator. Furthermore, it is shown in [48,78] that the condition numbers κmech

and κflow for the interface operators corresponding to the mechanics and �ow parts respectively

are O(h−1) as well and hence the expected growth rate for the number of CG iterations is also

O(h−0.5).

30

2.5.1 Example 1: convergence and stability

In this example we test the convergence and stability of the three domain decomposition

schemes. We consider the analytical solution

p = exp(t)(sin(πx) cos(πy) + 10), u = exp(t)

 x3y4 + x2 + sin((1− x)(1− y)) cos(1− y)

(1− x)4(1− y)3 + (1− y)2 + cos(xy) sin(x)

 .

The physical and numerical parameters are given in Table 1. Using this information, we derive

the right hand side and boundary and initial conditions for the system (1.3.1)�(1.3.9). The

Table 1: Example 1, physical and numerical parameters.

Parameter Value

Permeability tensor (K) I

Lame coe�cient (µ) 100.0

Lame coe�cient (λ) 100.0

Mass storativity (c0) 1.0, 10−3

Biot-Willis constant (α) 1.0

Time step (∆t) 10−3, 10−2, 10−1

Number of time steps 100

global mesh is divided into 2 × 2 square subdomains. We run a sequence of re�nements from

h = 1/4 to h = 1/64. The initial grids in the bottom left and top right subdomains are perturbed

randomly, resulting in general quadrilateral elements. The computed solution for the monolithic

scheme with h = 1/64 and ∆t = 10−3 on the �nal time step is given in Figure 1.

To study and compare the convergence and stability of the three methods, we run tests with

time steps ∆t = 10−3, 10−2 and 10−1. The results with c0 = 1 are presented in Tables 2�4. We

report the average number of iterations over 100 time steps. The numerical errors are relative

to the corresponding norms of the exact solution. We use standard Bochner space notation to

denote the space-time norms. Convergence results for the case with c0 = 0.001 and ∆t = 0.01

are given in Table 5.

31

The main observation is that all three methods exhibit growth in the number of interface

iterations at the rate of O(h−0.5). This is consistent with the theoretical bounds on the spectrum

of the interface operator, cf. the discussion at the beginning of Section 2.5. This behavior is

robust with respect to both ∆t and c0. We further note that in both split schemes, the Darcy

interface solver requires fewer number of iterations than the elasticity solver. We attribute this

to the fact that the Darcy formulation involves a contribution to the diagonal from the time

derivative term, resulting in a smaller condition number of the interface operator.

Another important conclusion from the tables is that two split schemes are stable uniformly

in ∆t and c0, in accordance with Theorem 2.4.1 and Theorem 2.4.2.

In terms of accuracy, all three methods yield O(h) convergence for all variables in their

natural norms, which is optimal convergence for the approximation of the Biot system with

the chosen �nite element spaces, cf. [6, 54]. In some cases, especially for larger ∆t, we observe

reduction in the convergence rate for certain variables due to the e�ect of the time discretization

and/or splitting errors, most notably for the Darcy velocity in the �xed stress scheme. The

accuracy of the three methods is comparable for smaller ∆t.

In terms of e�ciency, the split schemes have a clear advantage, due to the smaller total

number of interface iterations, the more e�cient CG interface solver

compared to GMRES for the monolithic scheme, as well as the less costly subdomain

problems - individual physics solves versus the coupled Biot solves in the monolithic scheme.

2.5.2 Example 2: dependence on number of subdomains

The objective of this example is to study how the number of GMRES and CG iterations

required for the di�erent schemes depend on the number (and diameter) of subdomains used in

the domain decomposition. For this example, we use the same test case as in Example 1. We

solve the system using 4 (2× 2), 16 (4× 4), and 64 (8× 8) square subdomains of identical size.

The physical parameters are as in Example 1, with c0 = 1, ∆t = 10−3, and T = 100×∆t. The

average number and growth rate of iterations in the three methods are reported in Tables 6�8,

where A denotes the subdomain diameter. We note that the number of iterations for the drained

split and �xed stress schemes are identical, so we give one table for both methods. For a �xed

A, the growth rate with respect to h is averaged over all mesh re�nements. For a �xed mesh

32

Figure 1: Example 1, computed solution at the �nal time step using the monolithic domain

decomposition method with h = 1/64 and ∆t = 10−3, top: stress x (left), stress y (middle),

displacement (right), bottom: rotation (left), velocity (middle), pressure (right).

size h, the growth rate with respect to A is averaged over the di�erent domain decompositions.

For all three methods, we observe that for a �xed number of subdomains, the growth rate in the

number of iterations with respect to mesh re�nement is approximately O(h−0.5), being slightly

better for the Darcy solver in the split schemes. As this is the same as the growth rate in

Example 1, the conclusion from Example 1 that the growth rate is consistent with the theory

extends to domain decompositions with varying number of subdomains, see also the discussion

at the beginning of Section 2.5. We further observe that for a �xed mesh size, the growth

rate in number of iterations with respect to subdomain diameter A is approximately O(A−0.5),

again being somewhat better for the Darcy solves. This is consistent with theoretical results

bounding the spectral ratio of the unpreconditioned interface operator as O
(
(hA)−1) [77]. The

dependence on A can be eliminated with the use of a coarse solve preconditioner [77,78].

33

2.5.3 Example 3: heterogeneous benchmark

This example illustrates the performance of the methods for highly heterogeneous media. We

use porosity and permeability �elds from the Society of Petroleum Engineers 10th Comparative

Solution Project (SPE10)1. The computational domain is Ω = (0, 1)2, which is partitioned into a

128×128 square grid. We decompose the domain into 4×4 square subdomains. From the porosity

�eld data, the Young's modulus is obtained using the relation E = 102
(
1− φ

c

)2.1
, where c = 0.5,

refers to the porosity at which the Young's modulus vanishes, see [53] for details. The porosity,

Young's modulus and permeability �elds are given in Figure 2. The parameters and boundary

conditions are given in Table 9. The source terms are taken to be zero. These conditions describe

�ow from left to right, driven by a pressure gradient. Since in this example analytical solution is

not available, we need to prescribe suitable initial data. The initial condition for the pressure is

taken to be p0 = 1− x, which is compatible with the prescribed boundary conditions. We then

follow the procedure described in Remark 2.3.1 to obtain discrete initial data. In particular, we

set p0
h to be the L

2-projection of p0 onto Wh and solve a mixed elasticity domain decomposition

problem at t = 0 to obtain σ0
h. We note that this solve also gives u0

h, γ
0
h, and λ

u,0
h . In the case

of the monolithic scheme where the time-di�erentiated elasticity equation (2.3.8) is solved, the

computed initial data is used to recover unh, γ
n
h , and λ

u,n
h using (2.3.16). The computed solution

using the monolithic domain decomposition scheme is given in Figure 3. The solutions from the

two split methods look similar.

In Table 10, we compare the average number of interface iterations per time step in the

three methods. All three methods converge for this highly heterogeneous problem with realistic

physical parameters. While the three methods provide similar solutions, the split methods are

more e�cient than the monolithic method, as they require smaller number of interface iterations.

We further note that in the split methods the Darcy solve is more expensive, which is likely due

to the fact that the permeability varies over seven orders of magnitude, a�ecting the condition

number of the interface operator.

1https://www.spe.org/web/csp/datasets/set02.htm

34

2.6 Chapter Conclusions

We presented three non-overlapping domain decomposition methods for the Biot system of

poroelasticity in a �ve-�eld fully mixed formulation. The monolithic method involves solving

an interface problem for a composite displacement-pressure Lagrange multiplier, which requires

coupled Biot subdomain solves at each iteration. The two split methods are based on the

drained split and �xed stress splittings. They involve two separate elasticity and Darcy interface

iterations requiring single-physics subdomain solves. We analyze the spectrum of the monolithic

interface operator and show unconditional stability for the split methods. A series of numerical

experiments illustrate the e�ciency, accuracy, and robustness of the three methods. Our main

conclusion is that the split methods provide accuracy comparable to the monolithic method,

while being more computationally e�cient in terms of smaller number of interface iterations and

simpler subdomain solves.

35

Table 2: Example 1, convergence for ∆t = 10−3 and c0 = 1, monolithic scheme (top), drained

split (middle), �xed stress (bottom).

h #GMRES ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 24 rate 2.13e+00 rate 7.05e-02 rate 6.95e-01 rate 6.88e-01 rate

1/8 33 -0.46 1.13e+00 0.92 3.56e-02 0.98 3.57e-01 0.96 3.48e-01 0.98

1/16 44 -0.42 4.84e-01 1.22 1.79e-02 1.00 1.79e-01 0.99 1.75e-01 1.00

1/32 62 -0.49 2.01e-01 1.27 8.94e-03 1.00 8.99e-02 1.00 8.74e-02 1.00

1/64 87 -0.49 9.15e-02 1.14 4.47e-03 1.00 4.50e-02 1.00 4.37e-02 1.00

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 10 rate 2.00e+00 rate 7.07e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 10 0.00 1.11e+00 0.85 3.57e-02 0.99 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 11 -0.14 4.89e-01 1.18 1.79e-02 1.00 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 15 -0.45 2.06e-01 1.25 8.94e-03 1.00 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 20 -0.42 9.29e-02 1.15 4.47e-03 1.00 4.53e-02 1.00 4.37e-02 1.00

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 10 rate 1.93e+00 rate 7.06e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 10 0.00 1.05e+00 0.88 3.56e-02 0.99 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 11 -0.14 4.46e-01 1.23 1.79e-02 1.00 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 15 -0.45 2.63e-01 0.76 8.95e-03 1.00 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 20 -0.42 2.17e-01 0.28 4.49e-03 0.99 4.53e-02 1.00 4.37e-02 1.00

36

Table 3: Example 1, convergence for ∆t = 10−2 and c0 = 1, monolithic scheme (top), drained

split (middle), �xed stress (bottom).

h #GMRES ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 18 rate 1.58e+00 rate 6.98e-02 rate 6.97e-01 rate 6.88e-01 rate

1/8 23 -0.35 7.47e-01 1.08 3.55e-02 0.97 3.58e-01 0.96 3.48e-01 0.98

1/16 32 -0.48 3.58e-01 1.06 1.79e-02 0.99 1.80e-01 0.99 1.75e-01 0.99

1/32 44 -0.46 1.77e-01 1.02 8.97e-03 0.99 9.02e-02 1.00 8.88e-02 0.98

1/64 63 -0.52 8.98e-02 0.98 4.54e-03 0.98 4.53e-02 1.00 4.66e-02 0.93

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 10 rate 1.57e+00 rate 6.98e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 12 -0.26 7.46e-01 1.07 3.55e-02 0.97 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 16 -0.42 3.58e-01 1.06 1.79e-02 0.99 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 23 -0.52 1.77e-01 1.02 8.97e-03 0.99 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 32 -0.48 8.96e-02 0.98 4.53e-03 0.98 4.53e-02 1.00 4.37e-02 1.00

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 10 rate 1.48e+00 rate 6.97e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 12 -0.26 7.64e-01 0.96 3.56e-02 0.97 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 16 -0.42 4.88e-01 0.65 1.81e-02 0.98 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 23 -0.52 3.80e-01 0.36 9.37e-03 0.95 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 32 -0.48 3.44e-01 0.14 5.26e-03 0.83 4.53e-02 1.00 4.37e-02 1.00

37

Table 4: Example 1, convergence for ∆t = 10−1 and c0 = 1 , monolithic scheme (top), drained

split (middle), �xed stress (bottom).

h #GMRES ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 40 rate 1.38e+00 rate 6.99e-02 rate 7.04e-01 rate 7.17e-01 rate

1/8 59 -0.56 7.20e-01 0.94 3.63e-02 0.94 3.65e-01 0.95 4.26e-01 0.75

1/16 88 -0.58 3.97e-01 0.86 1.94e-02 0.90 1.92e-01 0.93 3.09e-01 0.46

1/32 128 -0.54 2.57e-01 0.63 1.17e-02 0.72 1.09e-01 0.81 2.72e-01 0.19

1/64 180 -0.49 2.08e-01 0.31 8.84e-03 0.41 7.40e-02 0.56 2.62e-01 0.06

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 11 rate 1.38e+00 rate 6.99e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 14 -0.35 7.17e-01 0.94 3.62e-02 0.95 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 20 -0.51 3.92e-01 0.87 1.92e-02 0.91 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 28 -0.49 2.50e-01 0.65 1.15e-02 0.75 9.07e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 38 -0.44 1.99e-01 0.33 8.48e-03 0.44 4.56e-02 0.99 4.37e-02 1.00

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 11 rate 1.42e+00 rate 7.00e-02 rate 7.00e-01 rate 6.88e-01 rate

1/8 23 -0.28 14 -0.35 8.38e-01 0.76 3.63e-02 0.95 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 20 -0.51 5.83e-01 0.52 1.93e-02 0.91 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 28 -0.49 4.87e-01 0.26 1.15e-02 0.74 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 38 -0.44 4.56e-01 0.09 8.53e-03 0.44 4.53e-02 1.00 4.37e-02 1.00

38

Table 5: Example 1, convergence for ∆t = 10−2 and c0 = 10−3, monolithic scheme (top),

drained split (middle), �xed stress (bottom).

h #GMRES ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

h/4 21 rate 1.86e+00 rate 7.12e-02 rate 6.97e-01 rate 6.88e-01 rate

h/8 28 -0.42 7.87e-01 1.24 3.57e-02 1.00 3.58e-01 0.96 3.48e-01 0.98

h/16 38 -0.44 3.63e-01 1.12 1.79e-02 1.00 1.80e-01 0.99 1.75e-01 0.99

h/32 53 -0.48 1.77e-01 1.04 8.94e-03 1.00 9.02e-02 1.00 8.88e-02 0.98

h/64 73 -0.46 8.78e-02 1.01 4.47e-03 1.00 4.53e-02 1.00 4.66e-02 0.93

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 11 rate 1.90e+00 rate 7.16e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 15 -0.45 7.91e-01 1.26 3.58e-02 1.00 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 20 -0.42 3.64e-01 1.12 1.79e-02 1.00 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 28 -0.49 1.78e-01 1.03 8.98e-03 1.00 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 41 -0.55 9.01e-02 0.98 4.55e-03 0.98 4.53e-02 1.00 4.37e-02 1.00

h #CGElast #CGDarcy ‖z − zh‖L∞(Hdiv) ‖p− ph‖L∞(L2) ‖σ − σh‖L∞(Hdiv) ‖u− uh‖L∞(L2)

1/4 19 rate 11 rate 1.88e+00 rate 7.16e-02 rate 7.01e-01 rate 6.88e-01 rate

1/8 23 -0.28 15 -0.45 8.84e-01 1.09 3.72e-02 0.94 3.59e-01 0.96 3.48e-01 0.98

1/16 34 -0.56 20 -0.42 6.43e-01 0.46 2.08e-02 0.84 1.81e-01 0.99 1.75e-01 1.00

1/32 47 -0.47 28 -0.49 5.60e-01 0.20 1.36e-02 0.61 9.06e-02 1.00 8.74e-02 1.00

1/64 65 -0.47 41 -0.55 5.36e-01 0.06 1.10e-02 0.31 4.53e-02 1.00 4.37e-02 1.00

39

Table 6: Example 2, number of GMRES iterations in the monolithic scheme.

h 2× 2 4× 4 8× 8 Rate

1/8 33 53 76 O(A−0.60)

1/16 45 68 97 O(A−0.55)

1/32 63 93 126 O(A−0.50)

1/64 88 125 164 O(A−0.45)

Rate O(h−0.47) O(h−0.41) O(h−0.36)

Table 7: Example 2, number of CG elasticity iterations in the drained split and �xed stress

schemes.

h 2× 2 4× 4 8× 8 Rate
1/8 23 40 60 O(A−0.69)
1/16 34 51 73 O(A−0.55)
1/32 47 68 95 O(A−0.51)
1/64 65 95 124 O(A−0.46)
Rate O(h−0.50) O(h−0.42) O(h−0.35)

Table 8: Example 2, number of CG Darcy iterations in the drained split and �xed stress schemes

h 2× 2 4× 4 8× 8 Rate

1/8 10 11 14 O(A−0.24)

1/16 11 12 14 O(A−0.17)

1/32 15 16 18 O(A−0.13)

1/64 20 23 24 O(A−0.13)

Rate O(h−0.34) O(h−0.36) O(h−0.25)

40

Figure 2: Example 3, porosity, Young's modulus, permeability.

Table 9: Example 3, parameters (left) and boundary conditions (right) .

Parameter Value

Mass storativity (c0) 1.0

Biot-Willis constant (α) 1.0

Time step (∆t) 10−2

Total time (T) 1.0

Boundary σ u p z

Left σn = −αpn - 1 -

Bottom σn = 0 - - z · n = 0

Right − 0 0 -

Top σn = 0 - - z · n = 0

41

Figure 3: Example 3, computed solution at the �nal time using the monolithic domain

decomposition scheme, top: pressure (left), velocity (right), middle: displacement (left), stress

x (right), bottom: stress y.

Table 10: Example 3, comparison of the number of interface iterations in the three methods.

Monolithic Drained Split Fixed Stress

h #GMRES #CGElast #CGDarcy #CGElast #CGDarcy

1/128 565 297 464 297 464

42

3.0 A Multiscale Mortar Domain Decomposition For Biot System Of

Poroelasticity Using Non-matching Subdomain Grids

3.1 Introduction

In this chapter we develop and study a multiscale mortar mixed �nite element (MMMFE)

method for the Biot system of poroelasticity [17]. This technique is the generalization of the

non-overlapping domain decomposition technique discussed in the previous chapter, where non-

matching subdomain grids can be used instead of matching grids at the interface.

The MFE domain decomposition methods discussed in the previous chapter required the

subdomain grids to match at the interface, which may not be the ideal setting for problems where

it is advantageous to use a computational domain consisting of multiple blocks of multiscale

subdomain grids. In this chapter, we study the adaptation of these methods to enable the use

of non-matching multiblock grids. This work is motivated by similar studies for the second

order elliptic problems in [8, 90] and for a linear system of elasticity in [48]. Following the

ideas from the previous chapter, we use a physically heterogeneous Lagrange multiplier vector

consisting of displacement and pressure variables to impose weakly the continuity of the normal

components of stress and velocity, respectively. At each time step, we solve an interface problem

for this Lagrange multiplier vector. In contrast to the previous chapter, we choose the Lagrange

multiplier vector from a space of mortar �nite elements, see e.g. [8, 32, 36, 43, 48�50, 63]. This

allows for the interaction between multiscale subdomain grids at the interface through projections

onto the mortar �nite element space. This allows for the mortar space to be on a coarser scale,

H (see [33, 64, 90]), compared to a �ner subdomain grid size, h. The multiscale capability adds

an extra layer of �exibility over the monolithic DD method discussed in the previous chapter.

We study the well-posedness and stability of the method under the appropriate condition on the

richness of the mortar FE space. We also show a combined a priori error estimate for stress,

displacement, rotation, pressure, and Darcy velocity, as well as how well the mortar function

approximates the normal components of stress and velocity. We further propose the construction

and use of a multiscale stress-�ux basis which makes the number of subdomain solves related

to interface problem independent of the number of iterations required for the interface problem

43

and the number of time steps used. The reuse of the multiscale basis could gain a signi�cant

performance advantage in the case of time-dependent coupled problems. Finally, we report the

results of several numerical tests designed to verify and compare the well-posedness, stability, and

convergence of the multiscale domain decomposition method we have developed. We compare

the computational e�ciency in di�erent cases using matching and non-matching grids on the

subdomain interfaces and also, discuss the advantages of using a multiscale basis.

The rest of the chapter is organized as follows. Section 3.2 introduces the mathematical

model, its MFE formulation and the domain decomposition formulation. Analysis of well-

posedness, stability, and error bounds for the DD formulation is discussed in Section 3.3. In

Section 3.4, we discuss the implementation details of the method along with the construction of

the multiscale stress-�ux basis. Numerical results are reported in Section 3.5.

3.2 Formulation of the Method

In this section, we develop the framework for the multiscale mortar mixed �nite element

(MMMFE) domain decomposition method based on the MFE formulation introduced in Section

2.2 of Chapter 2. Projection operators critical in the analysis of the method and various bounds

associated with them are introduced. Finally, we introduce the weakly continuous spaces of

stress, Xh,0, and velocity, Zh,0, and reformulate the MMMFE method in terms of these spaces.

Note that some of the notations and formulations that will be introduced in this section have

already been covered in the previous chapters, nevertheless, we present them here for the sake

of completeness and self-containment of the chapter.

3.2.1 Multiscale mortar domain decomposition method

Let Ω = ∪Ni=1Ωi be a union of non-overlapping shape regular polygonal subdomains, where

each subdomain is a union of elements of �nite element partition Th. Let Γi,j = ∂Ωi ∩ ∂Ωj, Γ =

∪Ni,j=1Γi,j, and Γi = ∂Ωi ∩ Γ = ∂Ωi \ ∂Ω denote the interior subdomain interfaces. The domain

discretization technique we develop in this section is the generalization of the monolithic non-

overlapping domain decomposition technique developed in the previous chapter, where the sub-

44

domains are allowed to have multiscale non-matching grids at their interfaces. Let hi be the

diameter of the maximal element in the mesh on Ωi and de�ne h = maxi hi. For 1 ≤ i ≤ N ,

let Xh,i × Vh,i × Qh,i × Zh,i × Wh,i be a family of stable mixed �nite elements de�ned on the

subdomain Ωi. These spaces could be chosen from any of the stable family of spaces discussed

in the previous chapter. Let the �nite element spaces Xh,i, Vh,i, Qh,i, Zh,i, and Wh,i contain

polynomials of degree less than or equal to k ≥ 1, l ≥ 0, j ≥ 0, r ≥ 0, and s ≥ 0, respectively.

We de�ne the global FE spaces, de�ned on Ω, as follows:

Xh =
⊕

1≤i≤N

Xh,i, Vh =
⊕

1≤i≤N

Vh,i, Qh =
⊕

1≤i≤N

Qh,i, Zh =
⊕

1≤i≤N

Zh,i, Wh =
⊕

1≤i≤N

Wh,i,

with norms ‖ ‖Xh :=
(∑N

i=1 ‖ ‖2
Xi

) 1
2
, ‖ ‖Vh :=

(∑N
i=1 ‖ ‖2

Vi

) 1
2
, ‖ ‖Qh :=

(∑N
i=1 ‖ ‖2

Qi

) 1
2
,

‖ ‖Zh :=
(∑N

i=1 ‖ ‖2
Zi

) 1
2
, and ‖ ‖Wh

:=
(∑N

i=1 ‖ ‖2
Wi

) 1
2
, respectively, where Xi = X|Ωi with

similar de�nitions for other spaces.

Note that the de�nitions of the global spaces Xh and Zh do not impose continuity of

normal components of the stress tensor or velocity vector across the sub-domain interfaces,

though these normal components are continuous across element interfaces within a subdomain.

This discontinuity is addressed using Lagrange multipliers de�ned on suitable mortar spaces on

the interface Γ. We use relatively coarser mortar �nite elements satisfying certain coarseness

conditions (which will be discussed in the later sections) to approximate the traces of the

displacement vector and the pressure at the interfaces. Let T H,i,j be a shape regular quasi-

uniform �nite element partition of Γi,j constructed using a simplicial or quadrilateral mesh in

d−1 dimensions with maximal element diameter H. De�ne the global mortar �ne element spaces

on the union of sub-domain interfaces, Γ, to be,

ΛH =
⊕

1≤i<j≤N

Λu
H,i,j

Λp
H,i,j

 , Λu
H =

⊕
1≤i<j≤N

Λu
H,i,j, and Λp

H =
⊕

1≤i<j≤N

Λp
H,i,j,

where Λu
H,i,j ⊂ (L2(Γi,j))

d and Λp
H,i,j ⊂ L2(Γi,j) are mortar �nite element spaces on Γi,j representing

the displacement and pressure Lagrange multipliers, respectively. We assume that these mortar

spaces contain either continuous or discontinuous polynomials of degree up tom ≥ 0. Conditions

on the degree and richness of the mortar spaces in order to get a well-posed and stable method

will be discussed in the later sections.

45

The multiscale mortar domain decomposition formulation for the mixed Biot problem in a

semi-discrete form reads as follows: for 1 ≤ i ≤ N , �nd (σh,i, uh,i, γh,i, zh,i, ph,i, λH) : [0, T] →

Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i × ΛH such that ph,i(0) = ph,0|Ωi and for a.e. t ∈ (0, T),

(A (σh,i + αph,iI) , τ)Ωi
+ (uh,i, div τ)Ωi

+ (γh,i, τ)Ωi

= 〈gu, τ ni〉∂Ωi∩ΓuD
+ 〈λuH , τ ni〉Γi , ∀τ ∈ Xh,i, (3.2.1)

(div σh,i, v)Ωi
= − (f, v)Ωi

, ∀v ∈ Vh,i, (3.2.2)

(σh,i, ξ)Ωi
= 0, ∀ξ ∈ Qh,i, (3.2.3)(

K−1zh,i, ζ
)

Ωi
− (ph,i, div ζ)Ωi

= −〈gp, ζ · ni〉∂Ωi∩ΓpD
− 〈λpH , ζ · ni〉Γi , ∀ζ ∈ Zh,i, (3.2.4)

c0 (∂tph,i, w)Ωi
+ α (∂tA (σh,i + αph,iI) , wI)Ωi

+ (div zh,i, w)Ωi
= (g, w)Ωi

, ∀w ∈ Wh,i, (3.2.5)

N∑
i=1

〈σh,i ni, µu〉Γi = 0, ∀µu ∈ Λu
H , (3.2.6)

N∑
i=1

〈zh,i · ni, µp〉Γi = 0, ∀µp ∈ Λp
H , (3.2.7)

where ni is the outward unit normal vector �eld on Ωi. Note that equations (3.2.6)−(3.2.7)

enforces a notion of weak continuity of normal components of the stress tensor and velocity

vector across the interface Γ and that both the �ow and the elasticity problems are of Dirichlet

type.

For simplicity of the analysis, we assume that ΓuD = ΓpD = ∂Ω and gu = gp = 0, to get the

following reformulation of (3.2.1)−(3.2.7): �nd (σh, uh, γh, zh, ph, λH) : [0, T]→ Xh × Vh ×Qh ×

46

Zh ×Wh × ΛH such that ph,i(0) = ph,0|Ωi and for a.e. t ∈ (0, T),

(A (σh + αphI) , τ) +
N∑
i=1

(uh, div τ)Ωi
+ (γh, τ) =

N∑
i=1

〈λuH , τ ni〉Γi , ∀τ ∈ Xh, (3.2.8)

N∑
i=1

(div σh, v)Ωi
= − (f, v) , ∀v ∈ Vh, (3.2.9)

(σh, ξ) = 0, ∀ξ ∈ Qh, (3.2.10)

(
K−1zh, ζ

)
−

N∑
i=1

(ph, div ζ)Ωi
=

N∑
i=1

−〈λpH , ζ · ni〉Γi , ∀ζ ∈ Zh, (3.2.11)

c0

(
∂ph
∂t

, w

)
+ α

(
∂

∂t
A (σh + αphI) , wI

)
+

N∑
i=1

(div zh, w)Ωi
= (g, w) , ∀w ∈ Wh, (3.2.12)

N∑
i=1

〈σh ni, µu〉Γi = 0, ∀µu ∈ Λu
H , (3.2.13)

N∑
i=1

〈zh · ni, µp〉Γi = 0, ∀µp ∈ Λp
H . (3.2.14)

3.2.2 Projection and interpolation operators

In this subsection, we discuss various interpolation and projection operators useful in the

analysis of the method.

Let Quh,i : (L2(∂Ωi))
d → Xh,ini and Qph,i : L2(∂Ωi)→ Zh,i ·ni be projection operators onto the

trace of the normal components of Xh,i and Zh,i, respectively such that for any φu ∈ (L2(∂Ωi))
d

and φp ∈ L2(∂Ωi),

〈
φu −Quh,iφu, τni

〉
∂Ωi

= 0, ∀τ ∈ Xh,i, (3.2.15)〈
φp −Qph,iφp, ζ · ni

〉
∂Ωi

= 0, ∀ζ ∈ Zh,i. (3.2.16)

We de�ne Qh,i : (L2(∂Ωi))
d × L2(∂Ωi)→ Xh,ini × Zh,i · ni as

Qh,i =

Quh,i
Qph,i

 . (3.2.17)

47

For any inf-sup stable pair of �nite element spaces, Xh,i × Vh,i, with divXh,i = Vh,i, there exists

a mixed canonical interpolant [22], Πσ
i : Hε(Ωi,M)∩Xi → Xh,i, for any ε > 0, such that for any

τ ∈ Hε(Ωi,M) ∩ Xh,i,

(div (Πσ
i τ − τ), v)Ωi

= 0, ∀v ∈ Vh,i, (3.2.18)

〈(Πσ
i τ − τ)ni, τ̂ni〉Γi = 0, ∀τ̂ ∈ Xh,i, (3.2.19)

‖Πσ
i τ‖Ωi ≤ C

(
‖τ‖Lε(Ωi) + ‖ div τ‖Ωi

)
. (3.2.20)

Similarly for any inf-sup stable pair, Zh,i × Wh,i, with div Zh,i = Wh,i, there exists a mixed

canonical interpolant Πz
i : (Hε(Ωi))

d ∩ Zi → Zh,i such that for any ζ ∈ (Hε(Ωi))
d ∩ Zi, the

following holds

(div (Πz
i ζ − ζ), w)Ωi

= 0, ∀w ∈ Wh,i, (3.2.21)〈
(Πz

i ζ − ζ) · n, ζ̂ · n
〉

Γi
= 0, ∀ζ̂ ∈ Zh,i, (3.2.22)

‖Πz
i ζ‖Zi ≤ C

(
‖ζ‖Hε(Ωi) + ‖ div ζ‖Ωi

)
. (3.2.23)

Let Pph,i denote the L2 orthogonal projection, Pph,i : L2(Ωi)→ Wh,i, such that for any w ∈ L2(Ωi),(
Pph,iw − w, ŵ

)
Ωi

= 0, ∀ŵ ∈ Wh,i. (3.2.24)

Let Puh,i denote the L2 orthogonal projection, Puh,i : (L2(Ωi))
d → Vh,i, such that for any

v ∈ (L2(Ωi))
d
,

(
Puh,iv − v, v̂

)
Ωi

= 0, ∀v̂ ∈ Vh,i. (3.2.25)

We also use Rh,i to denote the orthogonal projection, Rh,i : L2(Ωi,N) → Qh,i such that for

any ξ ∈ L2(Ωi,N) , (
Rh,iξ − ξ, ξ̂

)
Ωi

= 0, ∀ξ̂ ∈ Qh,i. (3.2.26)

For the analysis of the method, we will use an elliptic projection operator, Π̂σ
i onto Xh,i as

de�ned in [48]. De�ne Π̂σ
i : Hε(Ωi,M)∩Xi → Xh,i as the operator that takes σ ∈ Hε(Ωi,M)∩Xi to

48

the �nite element approximation, σ̂, of the following Neumann problem: for any σ ∈ Hε(Ωi,M),

�nd (σ̂, û, γ̂) ∈ Xh,i × Vh,i ×Qh,i such that

(σ̂, τ)Ωi
+ (û, div τ)Ωi

+ (γ̂, τ)Ωi
= (σ, τ)Ωi

, ∀τ ∈ Xh,i,

(div σ̂, v)Ωi
= (div σ, v)Ωi

, ∀v ∈ Vh,i,

(σ̂, ξ)Ωi
= (σ, ξ)Ωi

, ∀ξ ∈ Qh,i,

σ̂ni = (Πσ
i σ)ni on ∂Ωi.

More details on the well-posedness and properties of Π̂σ
i can be found in [48]. In particular, the

following bounds hold

‖σ − Π̂σ
i σ‖Ωi ≤ C‖σ − Πiσ‖Ωi , σ ∈ H1 (Ωi,M) ,

‖Π̂σ
i σ‖Ωi ≤ C

(
‖σ‖Hε(Ωi) + ‖ div σ‖Ωi

)
. σ ∈ Hε(Ωi,M) ∩ Xi, 0 < ε ≤ 1.

We also use ICH to denote the Scott-Zhang interpolation operator (see [123]) into ΛC
H , the

subset of the mortar space ΛH that contains continuous functions. Note that ICH =

 IC,uH

IC,pH

,
where IC,uH and IC,pH denote projections onto Λu

H and Λp
H , respectively. The operators de�ned

above satisfy the following approximation bounds:

49

‖ψ − ICHψ‖t,Γi,j ≤ CHm̂−t‖ψ‖m̂,Γi,j , 0 ≤ m̂ ≤ m+ 1, 0 ≤ t ≤ 1, (3.2.27)

‖v − Puh,iv‖Ωi ≤ Chl̂‖v‖l̂,Ωi , 0 ≤ l̂ ≤ l + 1, (3.2.28)

‖ζ − Pph,iζ‖Ωi ≤ Chŝ‖ζ‖ŝ,Ωi , 0 ≤ ŝ ≤ s+ 1, (3.2.29)

‖ξ −Rh,iξ‖Ωi ≤ Chĵ‖ξ‖ĵ,Ωi , 0 ≤ ĵ ≤ j + 1, (3.2.30)

‖ψ −Quh,iψ‖−t,Γi,j ≤ Chk̂+t‖ψ‖k̂,Γi,j , 0 ≤ k̂ ≤ k + 1, 0 ≤ t ≤ k + 1, (3.2.31)

‖ψ −Qph,iψ‖−t,Γi,j ≤ Chr̂+t‖ψ‖r̂,Γi,j , 0 ≤ r̂ ≤ r + 1, 0 ≤ t ≤ r + 1, (3.2.32)

‖τ − Π̂σ
i τ‖Ωi ≤ Chk̂‖τ‖k̂,Ωi , 0 ≤ k̂ ≤ k + 1, (3.2.33)

‖ζ − Πz
i ζ‖Ωi ≤ Chr̂‖ζ‖r̂,Ωi , 0 ≤ r̂ ≤ r + 1, (3.2.34)

‖div (τ − Π̂σ
i τ)‖Ωi ≤ Chl̂‖div τ‖l̂,Ωi , 0 ≤ l̂ ≤ l + 1, (3.2.35)

‖div (ζ − Πz
i ζ)‖Ωi ≤ Chŝ‖div τ‖ŝ,Ωi , 0 ≤ ŝ ≤ s+ 1, (3.2.36)

‖(τ − Π̂σ
i τ)ni‖−t,Γi,j ≤ Chk̂+t‖τ‖k̂,Γi,j , 0 ≤ k̂ ≤ k + 1, 0 ≤ t ≤ k + 1, (3.2.37)

‖(ζ − Πz
i ζ) · ni‖−t,Γi,j ≤ Chr̂+t‖ζ‖r̂,Γi,j , 0 ≤ r̂ ≤ r + 1, 0 ≤ t ≤ r + 1, (3.2.38)

where the functions ψ, v, ζ, τ, and ξ are taken from the domains of appropriate operators acting

on them. Bound (3.2.27) can be found in [123], bounds (3.2.28)−(3.2.32) and (3.2.35)−(3.2.38)

can be found in [24], and bounds (3.2.33)−(3.2.34) can be found in [18,48,68].

We will also use the following trace inequalities in the analysis of the method

‖ψ‖t,Γi,j ≤ C‖ψ‖t+ 1
2
,Ωi
, t > 0, (3.2.39)

〈ψ, τn〉∂Ωi
≤ C‖ψ‖ 1

2
,∂Ωi
‖τ‖H(div;Ωi), (3.2.40)

which can be found in [111] and [18,68], respectively.

Finally, de�ne the projection operators Π̂E, Πz, Pph, Puh , Rh on respective spaces de�ned in

global domain, Ω, to be the piece-wise application of Π̂σ
i , Πz

i , P
p
h,i, P

p
h,i, Rh,i, respectively on

subdomains Ωi for i = 1, . . . , N .

50

3.2.3 Spaces of weakly continuous stress and velocity

In this section, we introduce the spaces of weakly continuous stress tensors and velocity

vectors, which are de�ned as follows:

Xh,0 =

{
τ ∈ Xh :

N∑
i=1

〈τni, µu〉Γi = 0, ∀µu ∈ Λu
H

}

and

Zh,0 =

{
ζ ∈ Zh :

N∑
i=1

〈ζ · ni, µp〉Γi = 0, ∀µp ∈ Λp
H

}
.

In order to �nd a priori error estimates for the method (3.2.8)−(3.2.14) using techniques developed

for single domain system (2.2.8)−(2.2.12) in [6], we restate (3.2.8)−(3.2.14) in terms of Xh,0 and

Zh,0 as follows: �nd (σh, uh, γh, zh, ph) : [0, T] → (Xh,0, Vh,Qh, Zh,0,Wh) such that ph(0) = ph,0

and

(A (σh + αphI) , τ) +
N∑
i=1

(uh, div τ)Ωi
+ (γh, τ) = 0, ∀τ ∈ Xh,0, (3.2.41)

N∑
i=1

(div σh, v)Ωi
= − (f, v) , ∀v ∈ Vh, (3.2.42)

(σh, ξ) = 0, ∀ξ ∈ Qh, (3.2.43)

(
K−1zh, ζ

)
−

N∑
i=1

(ph, div ζ)Ωi
= 0, ∀ζ ∈ Zh,0, (3.2.44)

c0 (∂tph, w) + α (∂tA (σh + αphI) , wI) +
N∑
i=1

(div zh, w) Ωi = (g, w) , ∀w ∈ Wh. (3.2.45)

Note that constructing basis functions for function spaces, Xh,0 and Zh,0, is di�cult and we use

the above formulation only for the sake of error analysis. In the later sections, we will present

a reduction to interface problem approach to design the numerical algorithm using any of the

popular sub-domain spaces Xh,i and Zh,i discussed earlier.

51

3.3 Analysis of the MMMFE Method

In this section, we present well-posedness and error analysis of the DD formulation developed

in the previous section. We start out by proving inf-sup stability bounds for weakly continuous

stress, Xh,0, and velocity, Zh,0, spaces under appropriate conditions on the mortar space, ΛH .

Under the same conditions, we show that the multiscale mortar DD method is well-posed and

stable. We �nish the section by proving a combined a priori error bound for all the variables in

the formulation.

3.3.1 Inf-sup stability for the weakly continuous spaces

In this subsection, we give inf-sup stability bounds for the weakly continuous stress, Xh,0,

and velocity, Zh,0, spaces under appropriate conditions on the mortar space, ΛH .

Assumption 1. The mortar space ΛH is chosen so that there exists a positive constant C

independent of H and h such that the following inequality holds:

‖µ‖Γi,j ≤ C
(
‖Qh,iµ‖Γi,j + ‖Qh,jµ‖Γi,j

)
, ∀µ ∈ ΛH , 1 ≤ i < j ≤ n. (3.3.1)

Remark 3.3.1. Note that assumption (3.3.1) implies that the space ΛH cannot be too rich

compared to subdomain stress-velocity FE spaces (similar approach to [9]) in the sense that Λu
H

and Λp
H are well controlled by their projections on to the normal traces of stress and velocity

sub-domain spaces respectively. In practice, this condition can be easily obtained by taking a

coarser mortar mesh satisfying h < H ≤ 1(see [8,9, 63]).

Lemma 3.3.1. Under the assumption (3.3.1), there exists a constant βD > 0, independent of h

and H such that for any µp ∈ Λp
H , the following holds:

‖µp‖Γ ≤ βD sup
06=ζ∈Zh

∑N
i=1〈ζ · ni, µp〉Γi
‖ζ‖Zh

. (3.3.2)

Proof. We start with any µp ∈ Λp
H and extend it by zero on ∂Ω. Let φi be the solution to the

following auxiliary problem

div∇φi = Qph,iµp, in Ωi, (3.3.3)

∇φi · ni = Qph,iµ
p, on ∂Ωi, (3.3.4)

52

where Qph,iµp denotes the mean value of Qph,iµp on ∂Ωi. The above problem can be reformulated

in the mixed form by de�ning ψi = ∇φi. The aforementioned elliptic problem is well-posed and

the elliptic regularity (see [111]) gives

‖ψi‖1/2,Ωi + ‖ divψ‖Ωi ≤ C‖Qph,iµ
p‖∂Ωi . (3.3.5)

Take ζh,i = Πzψi ∈ Zh,i and (3.2.22) combined with (3.3.4) implies that ζh,i · ni = Qph,iµ on ∂Ωi.

This equality along with the de�nition of Qph,i imply

N∑
i=1

〈ζh,i · ni, µp〉Γi =
N∑
i=1

〈Πzψi · ni, µp〉∂Ωi =
N∑
i=1

〈Πzψi · ni,Qph,iµ
p〉∂Ωi

=
N∑
i=1

〈Qph,iµ
p,Qph,iµ

p〉∂Ωi ≥ C

N∑
i=1

‖µ‖Γi , (3.3.6)

where we have used the mortar coarseness assumption (3.3.1).

Next, we note that

‖ζh,i‖Zi ≤ C
N∑
i=1

‖µ‖Γi , (3.3.7)

which follows from the stability of the canonical projection Πz
i , (3.2.23), with ε = 1/2, (3.3.5)

and the stability of Qph,i.

Finally, (3.3.7) combined with (3.3.6) and de�ning ζ := ζh,i on Ωi completes the proof.

Lemma 3.3.2. Under the assumption (3.3.1), there exists a constant βE > 0, independent of h

and H such that for any µu ∈ Λu
H , the following bound holds

‖µu‖Γ ≤ βE sup
06=τ∈Xh

∑N
i=1〈τni, µu〉Γi
‖τ‖Xh

. (3.3.8)

Proof. The proof follows similar arguments as in the proof of the previous lemma, starting with

any µu ∈ Λu
H and using elliptic regularity of corresponding elliptic problem and stability of the

projections Πσ
i and Quh,i.

53

Lemma 3.3.3. Under the assumption (3.3.1), there exists a linear operator Πσ
0 : H

1
2

+ε(Ω,M)∩

X→ Xh,0 for any ε > 0, such that for any 1 ≤ i ≤ N and τ ∈ H 1
2

+ε(Ω,M) ∩ X,

N∑
i=1

(div (Πσ
0τ − τ) , v)Ωi

= 0, ∀v ∈ Vh,i, (3.3.9)

(Πσ
0τ − τ, ξ) = 0, ∀ξ ∈ Qh, (3.3.10)

‖Πσ
0τ‖ ≤ C

(
‖τ‖ 1

2
+ε + ‖div τ‖

)
, (3.3.11)

‖Πσ
0τ − τ‖ ≤ C

(
ht̃‖τ‖t̃ + hk̃H

1
2‖τ‖k̃+ 1

2

)
, 0 ≤ t̃ ≤ k + 1, 0 < k̃ ≤ k + 1. (3.3.12)

Proof. The proof is based on a construction, Πσ
0 |∂Ωi = Π̂i (τ + δτi), where the correction δτi

is designed to generate weak continuity of the normal components. A complete proof is given

in [48, Lemma 4.6].

Lemma 3.3.4. Under the assumption (3.3.1), there exists a linear operator Πz
0 :
(
H

1
2

+ε(Ω)
)d
∩

Z → Zh,0 such that for any 1 ≤ i ≤ N and ζ ∈
(
H

1
2

+ε(Ω)
)d
∩ Z,

N∑
i=1

(div (Πz
0ζ − ζ) , w)Ωi

= 0, ∀w ∈ Wh, (3.3.13)

‖Πz
0ζ‖Zh ≤ C

(
‖ζ‖ 1

2
+ε + ‖ div ζ‖

)
, (3.3.14)

‖Πz
0ζ − ζ‖ ≤ C

N∑
i=1

(
hr̃‖ζ‖r̃,Ωi + hr̃H

1
2‖ζ‖r̃+ 1

2
,Ωi

)
, 1 ≤ r̃ ≤ r + 1. (3.3.15)

(3.3.16)

Proof. A detailed proof of the lemma can be found in [8] and [9, Section 3].

Lemma 3.3.3 and Lemma 3.3.4 along with a simple variant of Fortin's Lemma [18, 37] gives

the following theorem, which essentially gives inf-sup stability bounds with respect to the weakly

continuous spaces of stress and velocity.

Lemma 3.3.5. Under the assumption (3.3.1), there exists positive constants CE and CD ind-

ependent of the discretization parameters h and H such that for any v ∈ Vh and ξ ∈ Qh,

‖v‖+ ‖ξ‖ ≤ CE sup
06=τ∈Xh,0

∑N
i=1 (v, div τ)Ωi

+ (ξ, τ)

‖τ‖Xh
, (3.3.17)

54

‖w‖ ≤ CD sup
06=ζ∈Zh,0

∑N
i=1 (div ζ, w)Ωi

‖ζ‖Zh
, (3.3.18)

for any w ∈ Wh.

3.3.2 Well-posedness of the semi-discrete MMMFE formulation

In this subsection, we show the existence of a unique solution to the system of equations

(3.2.8)−(3.2.14) under the assumption (3.3.1). We follow closely the proof for the well-posedness

of the multipoint �ux method for the Biot system given in [6]. We base our proof on the theory

for showing the existence of solution to a degenerate parabolic system [73]. In particular, we

use [73, IV, Theorem 6.1(b)] which is stated as follows:

Theorem 3.3.6. Let the linear, symmetric, and monotone operator N be given for the real

vector space E to its algebraic dual E∗, and let E
′

b be the Hilbert space which is the dual of E

with the seminorm |x|b =
√
Nx(x) for x ∈ E. Let M ⊂ E × E ′b be a relation with the domain

D = {x ∈ E :M(x) 6= ∅} . Assume that M is monotone and Range(N +M) = E
′

b. Then for

each x0 ∈ D and for each F ∈ W 1,1
(
0, T ;E

′

b

)
, there is a solution x of

d

dt
(Nx(t) +M (x(t))) 3 F(t), a.e. 0 < t < T,

with

Nx ∈ W 1,∞
(

0, T ;E
′

b

)
, x(t) ∈ D, for all 0 ≤ t ≤ T, and Nx(0) = Nx0.

Using the above theorem, we now prove that the semi-discrete system (3.2.8)−(3.2.14) is

well-posed.

Theorem 3.3.7. For each (f, g) ∈ W 1,∞
(

0, T ; (L2(Ω))
d
)
×W 1,∞ (0, T ;L2(Ω)) and compatible

initial data (σh,0, uh,0, γh,0, zh,o, ph,0, λH,0), the system of equations (3.2.8)−(3.2.14) has a unique

solution (σh, uh, γh, zh, ph, λH) provided that the assumption (3.3.1) holds.

55

Proof. We start by reformulating (3.2.8)−(3.2.14) to �t the setting of Theorem 3.3.6. For this

purpose, we de�ne operators

(Aσσσh, τ) = (Aσh, τ) , (Aσpσh, w) = α (Aσh, wI) , (Aσuσh, v) =
N∑
i=1

(divσh,i, v) ,

(Aσγσh, ξ) = (σh, ξ) , (Aσλσh, µ
u) =

N∑
i=1

〈σhni, µu〉Γi , (Azzzh, ζ) =
(
K−1zh, ζ

)
,

(Azpzh, w) = −
N∑
i=1

(div zh,i, w) , (Azλzh, µ
p) =

N∑
i=1

〈zh · ni, µp〉Γi ,

(Appph, w) = c0 (ph, w) + α2 (AphI, wI) .

Let us introduce the new variables u̇h, γ̇h, and λ̇uH representing ∂tuh, ∂tγh, and ∂tλ
u
H ,

respectively. We di�erentiate equation (3.2.8) in time to get

(∂tA (σh + αphI) , τ) +
N∑
i=1

(u̇h, div τ)Ωi
+ (γ̇h, τ) =

N∑
i=1

(
λ̇uH , τni

)
Γi
, ∀τ ∈ Xh. (3.3.19)

Using the above de�nitions of operators and using (3.3.19) instead of equation (3.2.8), we can

reformulate the problem as a system of linear equations

d

dt
(N ẋ(t) +M (ẋ(t))) = F(t) 0 < t < T, (3.3.20)

56

where

ẋ =



σh

u̇h

γ̇h

zh

ph

λ̇uH

λpH


, N =



Aσσ 0 0 0 ATσp 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Aσp 0 0 0 App 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

M =



0 ATσu ATσγ 0 0 −ATσλ 0

−Aσu 0 0 0 0 0 0

−Aσγ 0 0 0 0 0 0

0 0 0 Azz ATzp 0 ATzλ

0 0 0 −Azp 0 0 0

Aσλ 0 0 0 0 0 0

0 0 0 Azλ 0 0 0


, F =



0

−f

0

0

g

0

0


.

The dual space E
′

b is given by L2(Ω,M) × 0 × 0 × 0 × L2(Ω) × 0 × 0 and the condition

F ∈ W 1,1
(
0, T ;E

′

b

)
implies that non-zero source terms can appear only in equations with time

derivatives. This means we have to take f = 0 in our case. We can �x this issue by considering

an auxiliary problem that, for each t ∈ (0, T], solves the system
Aσσ ATσu ATσγ −ATσλ
−Aσu 0 0 0

−Aσγ 0 0 0

Aσλ 0 0 0




σfh

∂tu
f
h

∂tγ
f
h

∂tλ
u,f
H

 =


0

−f

0

0

 . (3.3.21)

Such an auxiliary system (3.3.21) is well-posed and the proof can be found in [48]. Now we can

subtract the solution to (3.3.21) from the original system of equations (3.2.8)−(3.2.14) to obtain

the modi�ed RHS F =
(
Aσσ

(
σfh − ∂tσ

f
h

)
, 0, 0, 0, q − Aσp∂tσfh , 0, 0

)T
.

57

Next we show that Range(N +M) = E
′

b. This can be established by showing that the

following square linear homogeneous system has only the trivial solution: (σ̂h, ûh, γ̂h, ẑh, p̂h, λ̂H) ∈

Xh × Vh ×Qh × Zh ×Wh × ΛH such that

(A (σ̂h + αp̂hI) , τ) +
N∑
i=1

(ûh, div τ)Ωi
+ (γ̂h, τ)−

N∑
i=1

〈λ̂uH , τ ni〉Γi = 0, ∀τ ∈ Xh, (3.3.22)

N∑
i=1

(div σ̂h, v)Ωi
= 0, ∀v ∈ Vh,

(σ̂h, ξ) = 0, ∀ξ ∈ Qh,(
K−1ẑh, ζ

)
−

N∑
i=1

(p̂h, div ζ)Ωi
+

N∑
i=1

〈λ̂pH , ζ · ni〉Γi = 0, ∀ζ ∈ Zh, (3.3.23)

c0 (∂tp̂h, w) + α (A (σ̂h + αp̂hI) , wI) +
N∑
i=1

(div ẑh, w) Ωi = 0, ∀w ∈ Wh,

N∑
i=1

〈σ̂hni, µu〉Γi = 0, ∀µu ∈ Λu
H ,

N∑
i=1

〈ẑh · ni, µp〉Γi = 0, ∀µp ∈ Λp
H .

Taking appropriate test functions (τ, v, ξ, ζ, w, µu, µp) = (σ̂h, ûh, γ̂h, ẑh, p̂h, λ̂
u
H , λ̂

p
H) in the above

system and adding the equations together gives ‖A 1
2 (σ̂h + αp̂hI) ‖2 + c0‖p̂h‖2 + ‖K− 1

2 ẑh‖2 = 0.

The coercivity of A, (2.3.31), and K, (2.3.32), give σ̂h + αp̂hI = 0 and ẑh = 0 respectively.

Further, the inf-sup condition with respect to the weakly continuous space Zh,0, (3.3.18), implies

p̂h = 0 and hence we also have σ̂h = 0. Inf-sup condition with respect to the weakly continuous

space Xh,0, (3.3.17), implies ûh = 0 and γ̂h = 0. Finally, (3.3.2) combined with (3.3.22) implies

λ̂uH = 0, and (3.3.8) combined with (3.3.23) implies λ̂pH = 0. Similar arguments can be used to

show that N andM are non-negative and therefore due to linearity, monotone.

Now to completely satisfy the hypothesis of Theorem 3.3.6, we need compatible initial data

ẋ0 ∈ D which impliesMẋ0 ∈ E
′

b. We �rst construct compatible initial data to the continuous

system (2.2.3)-(2.2.7), (σ0, u0, γ0, z0, p0)T , from continuous initial condition, p0, as follows:

1. Solve equations (2.2.3)−(2.2.5) using p = p0 as given initial data to get σ0, u0, γ0.

2. Set z0 = −K∇po and it is easy to show using integration by parts that this choice satis�es

equation (2.2.6) with p = p0.

58

De�ne x̃0 = (σ0, u0, γ0, z0, p0, λ
u
H,0, λ

p
H,0)T , where λuH,0 = u0|Γ and λpH,0 = p0|Γ. Take the initial

data to the system (3.2.8)−(3.2.7), x0, to be the elliptic projection of x̃0. With the reduction of

the problem to the case with f = 0, we have (N +M) x̃0 ∈ E
′

b. We also have

(N +M)x0 = (N +M) x̃0, (3.3.24)

which implies Mx0 = (N +M) x̃0 − Nx0 ∈ E
′

b . Now for the modi�ed system (3.3.20), we

take the initial data, ẋ0 to be (σh,0, 0, 0, zh,0, ph,0, 0, 0), which also satis�esMẋ0 ∈ E
′

b. Note that

initial data uh,0 , γh,0 and λuH,0 are not needed to solve (3.3.20), but will be used later to recover

solution to the original problem.

Now we can apply Theorem 3.3.6 to prove the existence of a unique solution

ẋ = (σh, u̇h, γ̇h, zh, ph, λH),

such that σh(0) = σh,0 and ph(0) = ph,0. It is also easy to see that zh(0) = zh,0 by taking t → 0

in (3.2.44) and using the fact that zh,0 and ph,0 satisfy (3.2.44). Finally for each t ∈ [0, T], we

de�ne uh , γh, and λuH as follows:

uh(t) = uh,0 +

∫ t

0

u̇h(s)ds,

γh(t) = γh,0 +

∫ t

0

γ̇h(s)ds,

and

λuH(t) = λuH,0 +

∫ t

0

λ̇uH(s)ds.

It is easy to show that uh(t), γh(t) and λuH(t) satisfy equation (3.2.8). We can indeed

verify this by integrating the di�erentiated version of this equation namely equation (3.3.19)

with respect to time from 0 to any t ∈ (0, T] and using the fact that σh,0, uh,0, γh,0, and

λuH,0 satisfy equation (3.2.8). This completes the proof that (3.2.18)−(3.2.7) has a solution

(σh, uh, γh, zh, ph, λH). Uniqueness of the above constructed solution follows from the stability

bound for the solution variables which will be discussed in the next section.

59

3.3.3 Stability analysis for MMMFE formulation

In this subsection, we give a stability bound for the system (3.2.8)−(3.2.14).

Theorem 3.3.8. Under the assumption (3.3.1), there exists a constant C > 0, independent of

discretization parameters h and H, and c0 such that the following stability bound holds for the

solution of (3.2.8)−(3.2.14):

‖σh‖L∞(0,T ;Xh) + ‖uh‖L∞(0,T ;L2(Ω)) + ‖γh‖L∞(0,T ;L2(Ω)) + ‖zh‖L∞(0,T ;L2(Ω)) + ‖ph‖L∞(0,T ;L2(Ω))

+ ‖λuH‖L∞(0,T ;L2(Γ)) + ‖λpH‖L∞(0,T ;L2(Γ)) + ‖σh‖L2(0,T ;Xh) + ‖uh‖L2(0,T ;L2(Ω)) + ‖γh‖L2(0,T ;L2(Ω))

+ ‖zh‖L2(0,T ;Zh) + ‖ph‖L2(0,T ;L2(Ω)) + ‖λuH‖L2(0,T ;L2(Γ)) + ‖λpH‖L2(0,T ;L2(Γ))

≤ C
(
‖f‖H1(0,T ;L2(Ω)) + ‖g‖H1(0,T ;L2(Ω)) + ‖p0‖H1(Ω) + ‖∇Kp0‖H(div,Ω)

)
.

Proof. We start out by choosing the test functions

(τ, v, ξ, ζ, w, µu, µp) = (σh, ∂tuh, ∂tγh, zh, ph, ∂tλ
u
H , λ

p
H),

in equations (3.3.19) and (3.2.9)−(3.2.14) and combining them to get

(∂tA (σh + αphI) , σh + αphI) + c0 (∂tph, ph) +
(
K−1zh, zh

)
= (f, ∂tuh) + (q, ph) .

The above equation can be rewritten as

1

2
∂t

(
‖A

1
2 (σh + αphI) ‖2 + c0‖ph‖2

)
+ ‖K−

1
2 zh‖2 = ∂t (f, uh)− (∂tf, uh) + (g, ph) . (3.3.25)

For any t ∈ (0, T], we integrate equation (3.3.25) with respect to time from 0 to t to get

1

2

(
‖A

1
2 (σh + αphI) (t)‖2 + c0‖ph(t)‖2

)
+

∫ t

0

‖K−
1
2 zh‖2ds

=
1

2

(
‖A

1
2 (σh + αphI) (0)‖2 + c0‖ph(0)‖2

)
+

∫ t

0

((g, ph)− (∂tf, uh)) ds+ (f, uh) (t)− (f, uh) (0).

On applications of the Cauchy-Schwartz and Young's inequalities, we get

‖A
1
2 (σh + αphI) (t)‖2 + c0‖ph(t)‖2 + 2

∫ t

0

‖K−
1
2 zh‖2ds

≤ ‖A
1
2 (σh + αphI) (0)‖2 + c0‖ph(0)‖2 + ε1

(∫ t

0

(
‖ph‖2 + ‖uh‖2

)
ds+ ‖uh(t)‖2

)
(3.3.26)

+
1

ε1

(∫ t

0

(
‖g‖2 + ‖∂tf‖2

)
ds+ ‖f(t)‖2

)
+ ‖f(0)‖2 + ‖uh(0)‖2.

60

Bounds for ‖uh‖ and ‖γh‖ follow from the inf-sup condition (3.3.17) as follows:

‖uh‖+ ‖γh‖ ≤ CE sup
06=τ∈Xh,0

∑N
i=1 (uh, div τ)Ωi

+ (γh, τ)

‖τ‖Xh
.

We combine the above equation along with (3.2.8) and the Cauchy-Schwartz inequality to obtain

the bound

‖uh‖+ ‖γh‖ ≤ CE sup
0 6=τ∈Xh,0

(
A

1
2 (σh + αphI) , A

1
2 τ
)

‖τ‖Xh
≤ C‖A

1
2 (σh + αphI) ‖. (3.3.27)

Equation (3.3.27) also gives,∫ t

0

(
‖uh‖2 + ‖γh‖2

)
ds ≤ C

∫ t

0

(
‖σh‖2 + ‖ph‖2

)
ds. (3.3.28)

Further, choose test functions (τ, v, ξ, µu) = (σh, uh, γh, λ
u
H) in (3.2.8)−(3.2.10), (3.2.13) and

combine the equations along with Cauchy-Schwartz inequality to get

‖σh‖2 ≤ C

(
‖p2

h‖+ ε2‖uh‖2 +
1

ε2
‖f‖2

)
.

Combining the above inequality with inequality (3.3.28) yields the following bound∫ t

0

(
‖uh‖2 + ‖γh‖2

)
ds ≤ C

∫ t

0

(
‖p2

h‖+ ε2‖uh‖2 +
1

ε2
‖f‖2

)
ds. (3.3.29)

Bound for ‖ph‖ can be obtained from the inf-sup condition (3.3.18) and equation (3.2.11) as

follows:

||ph|| ≤ CD sup
0 6=ζh∈Zh,0

∑N
i=1 (div ζh, ph)Ωi

||ζh||Zh
= CD sup

06=ζh∈Zh,0

(K−1zh, ζh)

||ζh||Zh
≤ C‖K−1zh‖, (3.3.30)

where the last inequality follows from the Cauchy-Schwartz inequality.

Further, taking test function v|Ωi = div σh|Ωi in (3.2.9) and using Cauchy-Schwartz inequality

yields
N∑
i=1

‖div σh‖2
Ωi
≤ ‖f‖2. (3.3.31)

61

Finally, combining inequalities (3.3.26)−(3.3.27) and (3.3.29)−(3.3.31) and taking ε1 and ε2

small enough give the following bound

N∑
i=1

(
‖A

1
2 (σh + αphI) (t)‖2

Ωi
+ ‖div σh(t)‖2

Ωi

)
+ ‖uh(t)‖2 + ‖γh(t)‖2 + c0‖ph(t)‖2

+
N∑
i=1

∫ t

0

(
‖σh‖2

Ωi
+ ‖div σh‖2

Ωi

)
ds+

∫ t

0

(
‖uh‖2 + ‖γh‖2 + ‖K−

1
2 zh‖2 + ‖ph‖2

)
ds

≤ C
(∫ t

0

(
‖g(s)‖2 + ‖∂tf(s)‖2 + ‖f(s)‖2

)
ds+ ‖f(t)‖2 + ‖σh(0)‖2

+ ‖uh(0)‖2 + ‖ph(0)‖2 + ‖f(0)‖2
)
. (3.3.32)

Next we give bounds for ‖div zh‖, ‖K−
1
2 zh(t)‖ and ‖ph(t)‖ for all t ∈ (0, t], which are independent

of c0.

We start by choosing test function w = div zh in (3.2.12) and apply Cauchy-Schwartz

inequality to obtain

N∑
i=1

‖div zh‖Ωi ≤ C
(
c0‖∂tph‖+ ‖∂tA

1
2 (σh + αphI) (t)‖+ ‖q‖

)
. (3.3.33)

To bound the right hand side of (3.3.33), di�erentiate equations (3.2.8)−(3.2.11), and (3.2.13)-

−(3.2.14) with respect to time and take appropriate test functions, namely

(τ, v, ξ, ζ, w, µu, µp) = (∂tσh, ∂tuh, ∂tγh, zh, ∂tph, ∂tλ
u
H , λ

p
H),

in the di�erentiated equations and equation (3.2.12). Further, combining the resulting equations

and integrating in time from 0 to t ∈ (0, T] similar to what we did for equations (3.3.25)−(3.3.26)

previously, we obtain

2

∫ t

0

(
‖∂tA

1
2 (σh + αphI) ‖2 + c0∂t‖ph‖2

)
ds+ ‖K−

1
2 zh(t)‖2

≤ ε3

(∫ t

0

‖∂tuh‖2ds+ ‖ph(t)‖2

)
+

1

ε3

(∫ t

0

‖∂tf‖2ds+ ‖g(t)‖2

)
+

∫ t

0

(
‖ph‖2 + ‖∂tg‖2

)
ds+ ‖K−

1
2 zh(0)‖2 + ‖ph(0)‖2 + ‖g(0)‖2. (3.3.34)

To bound ‖∂tuh‖ and ‖∂tγh‖, we use the inf-sup condition (3.3.17) and equation (3.2.8) as before,

but now in their time di�erentiated forms to obtain

‖∂tuh‖+ ‖∂tγh‖ ≤ C‖∂tA
1
2 (σh + αphI) ‖. (3.3.35)

62

Combining inequalities (3.3.30), (3.3.34), and (3.3.34), and using small enough ε3 give∫ t

0

(
‖∂tA

1
2 (σh + αphI) ‖2 + c0‖∂tph‖2 + ‖∂tuh‖2 + ‖∂tγh‖2

)
ds+ ‖K−

1
2 zh(t)‖2 + ‖ph(t)‖2

≤ C

(∫ t

0

(
‖∂tf‖2 + ‖ph‖2 + ‖∂tg‖2

)
ds+ ‖g(t)‖2 + ‖ph(0)‖2 + ‖g(0)‖2 + ‖zh(0)‖2

)
.

(3.3.36)

Integrating inequality (3.3.33) with respect to time from 0 to t ∈ (0, T] and combining the

resulting integral inequality with inequalities (3.3.30) and (3.3.36) give

‖ph(t)‖2 + ‖K−
1
2 zh(t)‖2 +

N∑
i=1

∫ t

0

‖div zh‖2
Ωi
ds ≤ C

(∫ t

0

(
‖f(s)‖2 + ‖∂tf(s)‖2 + ‖g(s)‖2

+ ‖∂tq(s)‖2
)
ds+ ‖f(t)‖2 + ‖g(t)‖2 + ‖σh(0)‖2 + ‖ph(0)‖2 + ‖zh(0)‖2 + ‖f(0)‖2 + ‖g(0)‖2

)
.

Also, the coercivity of A and K given in inequalities (2.3.31) and (2.3.32), respectively gives

‖zh‖ ≤ C‖K−
1
2 zh‖, (3.3.37)

‖σh‖ ≤ C
(
‖A

1
2 (σh + αphI) (t)‖+ ‖ph‖

)
. (3.3.38)

Next, we give a bound for ‖λuH‖. Combining (3.3.8) and (3.2.8) gives

‖λuH‖Γ ≤ C sup
06=τ∈Xh

∑N
i=1〈τni, λuH〉Γi
‖τ‖Xh

= C sup
06=τ∈Xh

1

‖τ‖Xh

(
(A (σh + αphI) , τ) +

N∑
i=1

(uh, div τ)Ωi
+ (γh, τ)

)
≤ C

(
‖A

1
2 (σh + αphI) ‖+ ‖uh‖+ ‖γh‖

)
.

Squaring the above inequality and integrating from time 0 to t, we get the following set of

inequalities

‖λuH‖2
Γ ≤ C

(
‖A

1
2 (σh + αphI) ‖2 + ‖uh‖2 + ‖γh‖2

)
, (3.3.39)∫ t

0

‖λuH(s)‖2
Γds ≤ C

∫ t

0

(
‖A

1
2 (σh + αphI) ‖2 + ‖uh‖2 + ‖γh‖2

)
ds. (3.3.40)

63

Similarly, we can bound ‖λpH‖ combining (3.3.2) and (3.2.11) to obtain

‖λpH‖Γ ≤ C sup
0 6=ζ∈Zh

∑N
i=1〈ζ · ni, λ

p
H〉Γi

‖ζ‖Zh

= C sup
06=ζ∈Zh

1

‖ζ‖Zh

(
−
(
K−1zh, ζ

)
+ (ph, div ζ)

)
≤ C

(
‖K−

1
2 zh‖+ ‖ph‖

)
,

and using the above inequality to obtain

‖λpH‖
2
Γ ≤ C

(
‖K−

1
2 zh‖2 + ‖ph‖2

)
, (3.3.41)∫ t

0

‖λpH‖
2
Γds ≤ C

∫ t

0

(
‖K−

1
2 zh‖2 + ‖ph‖2

)
ds. (3.3.42)

In order to bound the initial data, σh(0), uh(0), zh(0), and ph(0), note that we obtain the

discrete initial data by taking elliptic projection of the continuous initial data (σ0, u0, γ0, z0, p0)

to the continuous problem (2.2.3)−(2.2.7), see (3.3.24). Further note that the continuous initial

data is constructed using the original pressure initial data p0 ∈ H1(Ω) using the procedure

mentioned in Section 3.2. Following the arguments used in the proof so far for the steady-state

version with t = 0 gives

‖σh(0)‖+ ‖uh(0)‖+ ‖γh(0)‖+ ‖zh(0)‖+ ‖ph(0)‖ ≤ C (‖σ0‖+ ‖u0‖+ ‖γ0‖+ ‖z0‖+ ‖p0‖)

≤ C
(
‖p0‖H1(Ω) + ‖K∇p0‖H(div;Ω)

)
. (3.3.43)

Finally, we combine inequalities (3.3.32), (3.3.37)−(3.3.43) along with the fact that all the

results derived so far hold for a general t ∈ (0, T], to arrive at the stability bound in the

theorem.

64

3.3.4 Error analysis

In this subsection, we will establish a combined a priori error estimate for all the unknowns

in the formulation.

Theorem 3.3.9. Let (σh(t), uh(t), γh(t), zh(t), ph(t), λH) ∈ Xh×Vh×Qh×Zh×Wh×ΛH be the

solution to the system of equations (3.2.8)−(3.2.14) under the assumption (3.3.1) for t ∈ [0, T],

and suppose the solution of (2.2.3)−(2.2.7) is su�ciently smooth, then there exists a positive

constant C, independent of h, H and c0 such that the following holds:

‖σ − σh‖L∞(0,T ;Xh) + ‖u− uh‖L∞(0,T ;L2(Ω)) + ‖γ − γh‖L∞(0,T ;L2(Ω)) + ‖z − zh‖L∞(0,T ;L2(Ω))

+ ‖p− ph‖L∞(0,T ;L2(Ω)) + ‖u− λuH‖L∞(0,T ;L2(Γ)) + ‖p− λpH‖L∞(0,T ;L2(Γ)) + ‖σ − σh‖L2(0,T ;Xh)

+ ‖u− uh‖L2(0,T ;L2(Ω)) + ‖γ − γh‖L2(0,T ;L2(Ω)) + ‖z − zh‖L2(0,T ;Zh) + ‖p− ph‖L2(0,T ;L2(Ω))

+ ‖u− λuH‖L2(0,T ;L2(Γ)) + ‖u− λpH‖L2(0,T ;L2(Γ)) ≤ C
(
hk1‖σ‖H1(0,T ;Hk1 (Ω))

+ hk2H
1
2‖σ‖

H1
(

0,T ;Hk2+ 1
2 (Ω)

) + hl1‖ div σ‖L∞(0,T ;Hl1 (Ω)) + hl2‖ div σ‖L2(0,T ;Hl2 (Ω))

+ hl3‖u‖L2(0,T ;Hl3 (Ω)) + hl4‖u‖L∞(0,T ;Hl4 (Ω)) + hj1‖γ‖H1(0,T ;Hj1 (Ω))

+ hr1‖z‖H1(0,T ;Hr1 (Ω)) + hr2H
1
2‖z‖

H1
(

0,T ;Hr2+ 1
2 (Ω)

) + hs1‖ div z‖L2(0,T ;Hs1 (Ω))

+ hs2‖p‖H1(0,T ;Hs2 (Ω)) +Hm1− 1
2‖u‖

H2
(

0,T ;Hm1+ 1
2 (Ω)

) +Hm2− 1
2‖p‖

H1
(

0,T ;Hm2+ 1
2 (Ω)

)),
1 ≤ k1 ≤ k + 1, 0 ≤ k2 ≤ k + 1, 0 ≤ l1, l2, l3, l4 ≤ l + 1, 0 ≤ j1 ≤ j + 1,

1 ≤ r1, r2 ≤ r + 1, 0 ≤ s1, s2 ≤ s+ 1, 0 ≤ m1,m2 ≤ m+ 1.

Proof. First, note that the solution to (2.2.3)−(2.2.7) satis�es for 1 ≤ i ≤ N ,

(A(σ + αpI), τ)Ωi
+ (u, div τ)Ωi

+ (γ, τ)Ωi
− 〈u, τ ni〉Γi = 0, ∀τ ∈ Xi, (3.3.44)

(div σ, v)Ωi
= − (f, v)Ωi

, ∀v ∈ Vi, (3.3.45)

(σ, ξ)Ωi
= 0, ∀ξ ∈ Qi, (3.3.46)(

K−1z, ζ
)

Ωi
− (p, div ζ)Ωi

+ 〈p, ζ · ni〉Γi = 0, ∀ζ ∈ Zi, (3.3.47)

c0 (∂tp, w)Ωi
+ α (∂tA(σ + αpI), wI)Ωi

+ (div z, w)Ωi
= (g, w)Ωi

, ∀w ∈ Wi, (3.3.48)

65

Subtracting (3.2.41)−(3.2.45) from (3.3.44)−(3.3.48) gives

(A ((σ − σh) + α (p− ph) I) , τ) +
N∑
i=1

((u− uh) , div τ)Ωi

+ ((γ − γh) , τ) =
N∑
i=1

〈u, τni〉Γi , ∀τ ∈ Xh,0, (3.3.49)

N∑
i=1

(div (σ − σh), v)Ωi
= 0, ∀v ∈ Vh, (3.3.50)

((σ − σh) , ξ) = 0, ∀ξ ∈ Qh, (3.3.51)

(
K−1 (z − zh) , ζ

)
−

N∑
i=1

((p− ph) , div ζ)Ωi
= −

N∑
i=1

〈p, ζ · ni〉Γi , ∀ζ ∈ Zh,0, (3.3.52)

c0 (∂t(p− ph), w) + α (∂tA ((σ − σh) + α (p− ph) I) , wI)

+
N∑
i=1

(div (z − zh), w) Ωi = 0, ∀w ∈ Wh. (3.3.53)

Next, rewrite the above error equations in terms of the approximation errors ψ? and discretization

errors φ?, for ? ∈ {σ, u, γ, z, p} as follows:

σ − σh = (σ − Πσ
0σ) + (Πσ

0σ − σh) := ψσ + φσ,

u− uh = (u− Puhu) + (Puhu− uh) := ψu + φu,

γ − γh = (γ −Rhγ) + (Rhγ − γh) := ψγ + φγ,

z − zh = (z − Πz
0z) + (Πz

0z − zh) := ψz + φz,

p− ph = (p− Pphp) + (Pphp− ph) := ψp + φp,

u− λuH = (u−Quhu) + (Quhu− λuH) := ψλu + φλu ,

p− λpH = (p−Qphp) + (Qphp− λ
p
H) := ψλp + φλp .

Note that combining equations (3.3.50) an (3.3.9) gives

divφσ = 0, in Ωi, (3.3.54)

and (3.3.51) combined with (3.3.10) gives

(φσ, ξ) = 0, for ξ ∈ Qh. (3.3.55)

We rewrite error equation (3.3.49) as

66

(A (φσ + αφpI) , τ) +
N∑
i=1

(φu, div τ)Ωi
+ (φγ, τ) = − (A (ψσ + αψpI) , τ)− (ψγ, τ)

+
N∑
i=1

〈u− IC,uH u, τni〉Γi , (3.3.56)

where we have used
N∑
i=1

〈IC,uH u, τni〉Γi = 0, (3.3.57)

for any τ ∈ Xh,0. Di�erentiating the above equation with respect to time, t gives

(∂tA (φσ + αφpI) , τ) +
N∑
i=1

(∂tφu, div τ)Ωi
+ (φγ, τ)

= − (∂tA (ψσ + αψpI) , τ)− (∂tψγ, τ) +
N∑
i=1

〈∂t
(
u− IC,uH u

)
, τni〉Γi . (3.3.58)

Taking τ = φσ in (3.3.58) and using (3.3.54) and (3.3.55) gives

(∂tA (φσ + αφpI) , φσ) = − (∂tA (ψσ + αψpI) , φσ)− (∂tψγ, φσ) +
N∑
i=1

(
∂t

(
u− IC,uH u

)
, φσni

)
Γi
.

(3.3.59)

Error equation (3.3.53) can be written as

c0 (∂tφp, w) + α (∂tA (φσ + αφpI) , wI) +
N∑
i=1

(div φz, w) Ωi = −c0 (∂tψp, w)

− α (∂tA (ψσ + αψpI) , wI)−
N∑
i=1

(divψz, w) Ωi .

Using the de�nition of the L2 projection Pph and Πz
0 (see (3.3.13)), we can further simplify the

above equation to

c0 (∂tφp, w) + α (∂tA (φσ + αφpI) , wI) +
N∑
i=1

(div φz, w) Ωi = −α (∂tA (ψσ + αψpI) , wI)

−
N∑
i=1

(div φz, w) Ωi . (3.3.60)

67

Taking w = φp in (3.3.60) and combining the resulting equation with (3.3.59) give

1

2
∂t

(
‖A

1
2 (φσ + αφpI) ‖2 + c0‖φp‖2

)
+

N∑
i=1

(div φz, φp) Ωi = − (∂tA (ψσ + αψpI) , φσ + αφpI)

− (∂tψγ, φσ) +
N∑
i=1

〈∂t
(
u− IC,uH u

)
, φσni〉Γi . (3.3.61)

Finally error equation (3.3.52) can be written as

(
K−1φz, ζ

)
−

N∑
i=1

(φp, div ζ)Ωi
= −

(
K−1ψz, ζ

)
+

N∑
i=1

〈IC,pH p− p, ζ · ni〉Γi , (3.3.62)

where we have used for ζ ∈ Zh,0,

N∑
i=1

〈IC,pH p, ζ · ni〉Γi = 0, (3.3.63)

and the de�nition of the L2(Ω)-projection, Pph onto space Wh.

Taking test function ζ = φz in equation (3.3.62) and combining the resulting equation with

(3.3.61) gives

1

2
∂t

(
‖A

1
2 (φσ + αφpI) ‖2 + c0‖φp‖2

)
+ ‖K−

1
2φz‖2 = − (∂tA (ψσ + αψpI) , φσ + αφpI)

− (∂tψγ, φσ)−
(
K−1ψz, φz

)
+ (ψσ, ∂tφγ)−

N∑
i=1

〈∂t
(
IC,uH u− u

)
, φσni〉Γi

+
N∑
i=1

〈IC,pH p− p, φz · ni〉Γi , (3.3.64)

where we have used (3.3.55) to conclude that (φσ, ∂tφγ) = 0.

Next, we bound the �rst three terms on the right hand side of (3.3.64).

− (∂tA (ψσ + αψpI) , φσ + αφpI)− (∂tψγ, φσ)−
(
K−1ψz, φz

)
≤ ‖∂tA (ψσ + αψpI) ‖‖φσ + αφpI‖+ ‖∂tψγ‖‖φσ‖+ ‖K−1ψz‖‖φz‖

≤ C

ε1

(
‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖ψz‖2

)
+ ε1

(
‖φσ‖2 + ‖φp‖2 + ‖φz‖2

)
, (3.3.65)

where we have used the operator bounds (2.3.31) and (2.3.32) along with Young's inequality for

a positive constant ε1 > 0.

68

Next, we give a bound on the last two boundary terms in the right hand side of equation

(3.3.64). For this, we note that the following bounds hold for any (τ, v) ∈ Xh,0× V and (ζ, w) ∈

Zh ×W ,

〈IC,uH v − v, τni〉Γi = 〈Ei
(
IC,uH v − v

)
, τni〉∂Ωi ≤ C‖Ei

(
IC,uH v − v

)
‖ 1

2
,∂Ωi
‖τ‖H(div;Ωi)

≤ C‖IC,uH v − v‖ 1
2
,Γi
‖τ‖H(div;Ωi), (3.3.66)

〈IC,pH w − w, ζ · ni〉Γi = 〈Ei
(
IC,pH ζ − ζ

)
, ζ · ni〉∂Ωi ≤ C‖Ei

(
IC,pH ζ − ζ

)
‖ 1

2
,∂Ωi
‖ζ‖H(div;Ωi)

≤ C‖IC,pH ζ − ζ‖ 1
2
,Γi
‖ζ‖H(div;Ωi), (3.3.67)

where Ei
(
IC,uH v − v

)
and Ei

(
IC,pH w − w

)
denote the continuous extension by zero to the entire

subdomain boundary ∂Ωi and we have used the trace inequality (3.2.40) in order to get the

bounds on the right hand side of the above inequalities.

Combining inequalities (3.3.64)−(3.3.65) and taking (τ, v) = (φσ, ∂tu) and (ζ, w) = (φz, p)

in (3.3.66) and (3.3.67), respectively and integrating with respect to time from 0 to t ∈ (0, T]

gives

‖A
1
2 (φσ + αφpI) (t)‖2 + c0‖φp(t)‖2 +

∫ t

0

‖K−1φz‖2 ≤

C

∫ t

0

(‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖ψz‖2 +
N∑
i=1

‖IC,uH ∂tu− ∂tu‖2
1
2
,Γi

+
N∑
i=1

‖IC,pH p− p‖2
1
2
,Γi

)ds+ ε1

∫ t

0

(
‖φσ‖2 + ‖φp‖2 + ‖φz‖2

)
ds+ C

∫ t

0

N∑
i=1

‖divφz‖2
Ωi
ds

+
∣∣∣ ∫ t

0

(ψσ, ∂tφγ) ds
∣∣∣+ ‖A

1
2 (φσ + αφpI) (0)‖2 + c0‖φp(0)‖2, (3.3.68)

where we also used (3.3.54).

To bound the term
∫ t

0
(ψσ, ∂tφγ) ds, we use integration by parts as follows:∫ t

0

(ψσ, ∂tφγ) ds = (ψσ(t), φγ(t))− (ψσ(0), φγ(0))−
∫ t

0

(∂tψσ, φγ) ds

≤ C

ε2

(∫ t

0

‖∂tψσ‖2ds+ ‖ψσ(t)‖2

)
+ ε2

(∫ t

0

‖φγ‖2ds+ ‖φγ(t)‖2

)
+ C

(
‖ψσ(0)‖2 + ‖φγ(0)‖2

)
,

(3.3.69)

where we have used the Cauchy-Schwartz and Young's inequality for ε2 > 0.

Next, we bound the discrete errors of the form φ? for ? ∈ {σ, γ, u, z, p}.

69

Using the inf-sup condition (3.3.17) and the error equation (3.3.54) gives

‖φu‖+ ‖φγ‖ ≤ C sup
0 6=τ∈Xh,0

∑N
i=1 (φu, div τ)Ωi

+ (φγ, τ)

‖τ‖Xh

≤ C sup
06=τ∈Xh,0

1

‖τ‖Xh

∣∣∣ (A (φσ + αφpI) , τ) + (A (ψσ + αψpI) , τ) + (ψγ, τ)

−
N∑
i=1

((
IC,uH u− u

)
, τni

)
Γi

∣∣∣
≤ C

(
‖A

1
2 (φσ + αφpI) ‖+ ‖ψσ‖+ ‖ψγ‖+ ‖ψp‖+

N∑
i=1

‖IC,uH u− u‖ 1
2
,Γi

)
, (3.3.70)

where we have used Cauchy-Schwartz inequality, (3.3.54) and (3.3.66) with v = u to get last

inequality. Integrating (3.3.70) with respect to time from 0 to t ∈ (0, T] gives∫ t

0

(
‖φu‖2 + ‖φγ‖2

)
ds ≤ C

∫ t

0

(
‖φσ‖2 + α‖φpI‖2

)
ds

+ C

∫ t

0

(
‖ψσ‖2 + ‖ψγ‖2 + ‖ψp‖2 +

N∑
i=1

‖IC,uH u− u‖2
1
2
,Γi

)
ds. (3.3.71)

To bound ‖φp‖, we use the inf-sup stability condition (3.3.18) to get

‖φp‖ ≤ C sup
06=ζ∈Zh,0

∑N
i=1 (div ζ, φp)Ωi

‖ζ‖Zh

≤ C sup
06=ζ∈Zh,0

(K−1φz, ζ) + (K−1ψz, ζ)−
∑N

i=1〈I
C,p
H p− p, ζ · ni〉Γi

||ζ||Zh

≤ C

(
‖ψz‖+ ‖K−

1
2φz‖+

N∑
i=1

‖IC,pH p− p‖ 1
2
,Γi

)
, (3.3.72)

where we have used (3.3.62) and (3.3.63) to obtain second inequality and (3.3.67) with w = p

to obtain the last one. Integrating (3.3.72) in time from 0 to t ∈ (0, T] yields∫ t

0

‖φp‖2ds ≤ C

∫ t

0

(
‖ψz‖2 + ‖K−

1
2φz‖2 +

N∑
i=1

‖IC,pH p− p‖2
1
2
,Γi

)
ds. (3.3.73)

70

To bound the term
∫ t

0
‖φσ‖2ds, we take τ = φσ in (3.3.56) and ξ = φγ in (3.3.51), and use

(3.3.54)−(3.3.55) to get, for ε3 > 0,

‖A
1
2φσ‖2 = −

(
A

1
2αφpI, φσ

)
− (A (ψσ + αψpI) , φσ)− (ψγ, φσ)−

N∑
i=1

〈IC,uH u− u, φσni〉Γi

+ (ψσ, φγ) ≤ C
((
‖φp‖+ ‖ψσ‖+ ‖ψp‖+ ‖ψγ‖

)
‖φσ‖+

N∑
i=1

‖IC,uH u− u‖ 1
2
,Γi
‖φσ‖H(div;Ωi)

+ ‖ψσ‖‖φγ‖
)
≤ C

ε3

(
‖ψσ‖2 + ‖ψp‖2 + ‖ψγ‖2 +

N∑
i=1

‖IC,uH u− u‖2
1
2
,Γi

+ ‖φp‖2

)
+ ε3

(
‖φσ‖2 + ‖φγ‖2

)
, (3.3.74)

where we have used (3.3.66) with (τ, v) = (φσ, u) to arrive at the �rst inequality and (2.3.31)

with Young's inequality to justify the last inequality. Now again using (2.3.31), integrating

(3.3.74) with respect to time from 0 to t ∈ (0, T], and taking ε3 small enough, we get∫ t

0

‖φσ‖2ds ≤ C
(∫ t

0

(
‖ψσ‖2 + ‖ψp‖2 + ‖ψγ‖2 +

N∑
i=1

‖IC,uH u− u‖2
1
2
,Γi

+ ‖φp‖2
)
ds
)

+ ε3

∫ t

0

‖φγ‖2ds. (3.3.75)

Combining (3.3.68)−(3.3.75), using (3.3.54), and taking ε1, ε2, and ε3 small enough gives

‖A
1
2 (φσ + αφpI) ‖2 + ‖φu‖2 + ‖φγ‖2 + ‖c

1
2
0 φp‖2 + ‖ div φσ‖2

+

∫ t

0

(
‖φσ‖2 + ‖φu‖2 + ‖φγ‖2 + ‖K−

1
2φz‖2 + ‖φp‖2 + ‖ div φσ‖2

)
≤ C

∫ t

0

(
‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖ψσ‖2 + ‖ψp‖2 + ‖ψγ‖2 + ‖ψz‖2

)
ds+ C(‖ψσ‖2

+ ‖ψp‖2 + ‖ψγ‖2) + C

∫ t

0

N∑
i=1

‖divφz‖2
Ωi
ds+ C

N∑
i=1

(
IC,uH u− u(t)‖2

1
2
,Γi

+ ‖IC,pH p− p(t)‖2
1
2
,Γi

)
+ C

N∑
i=1

∫ t

0

(
‖IC,uH ∂tu− ∂tu‖2

1
2
,Γi

+ ‖IC,uH u− u‖2
1
2
,Γi

+ ‖IC,pH p− p‖2
1
2
,Γi

)
ds

+ C
(
‖φσ(0)‖2 + ‖φp(0)‖2 + ‖φγ(0)‖2

)
. (3.3.76)

Bound on
∑N

i=1 ‖ div φz‖Ωi.

71

Take w = φz in (3.3.53) to get, for i = 1, 2, . . . , N,

‖ div φz‖2
Ωi

= − (c0∂tφp, div φz)Ωi
− (c0∂tφp, div φz)Ωi

− α (∂tA (φσ + αφpI) , div φzI)Ωi

− α (∂tA (ψσ + αψpI) , div φzI)Ωi
+ (ψz, div φz) Ωi = − (c0∂tφp, div φz)Ωi

− α (∂tA (φσ + αφpI) , div φzI)Ωi
− α (∂tA (ψσ + αψpI) , div φzI)Ωi

,

where the last equality follows from (3.2.24) and (3.3.13). Finally, summing the above equation

over all the subdomain indices and using (2.3.31), we get, for i = 1, 2, . . . , N,

‖ div φz‖Ωi ≤ C
(
‖c

1
2
0 ∂tφp‖Ωi + ‖∂tA

1
2 (φσ + αφpI) ‖Ωi + ‖ψp‖Ωi + ‖ψσ‖Ωi

)
. (3.3.77)

Squaring the above equation and summing over all the subdomain indices give

N∑
i=1

‖ div φz‖2
Ωi
≤ C

(
‖c

1
2
0 ∂tφp‖2 + ‖∂tA

1
2 (φσ + αφpI) ‖2 + ‖ψp‖2 + ‖ψσ‖2

)
. (3.3.78)

In order to bound ‖c
1
2
0 ∂tφp‖2 and ‖∂tA

1
2 (φσ + αφpI) ‖2, we use arguments similar to the ones

used in the stability analysis for the method. Di�erentiate (3.3.54), (3.3.55), and (3.3.62) in

time, combine them with (3.3.58), and take test functions τ = ∂tφσ, ξ = ∂tφγ, q = φz, and

w = ∂tφp to get the following time di�erentiated version of (3.3.64):

‖∂tA
1
2 (φσ + αφpI) ‖2 + ‖c

1
2
0 ∂tφp‖2 +

1

2
∂t‖K−

1
2φz‖2 = − (∂tA (ψσ + αψpI) , ∂t (φσ + αφpI))

− (∂tψγ, ∂t (φσ + αφpI))−
(
∂tK

−1ψz, φz
)

+ (∂tψσ, ∂tφγ)−
N∑
i=1

〈∂t
(
IC,uH u− u

)
, ∂tφσni〉Γi

+
N∑
i=1

〈IC,pH ∂tp− ∂tp, φz · ni〉Γi , (3.3.79)

where we have used the fact that (∂tψγ, ∂tαφpI) = 0 to write

(∂tψγ, ∂tφσ) = (∂tψγ, ∂t (φσ + αφpI)) .

72

To bound
∑N

i=1〈∂t
(
IC,uH u− u

)
, ∂tφσni〉Γi , we use integration by parts to rewrite

N∑
i=1

〈∂t
(
IC,uH u− u

)
, ∂tφσni〉Γi =

∂

∂t

(
N∑
i=1

〈∂t
(
IC,uH u− u

)
, φσni〉Γi

)

−
N∑
i=1

〈∂2
t

(
IC,uH u− u

)
, φσni〉Γi . (3.3.80)

To bound the last term on the right hand side of the above equation, we take (τ, v) = (φσ, ∂
2
t u)

in (3.3.66) to get

∣∣∣ N∑
i=1

〈∂2
t

(
IC,uH u− u

)
, φσni〉Γi

∣∣∣ ≤ C
N∑
i=1

‖IC,uH ∂2
t u− ∂2

t u‖ 1
2
,Γi
‖φσ‖H(div;Ωi). (3.3.81)

To bound
∑N

i=1〈I
C,p
H ∂tp− ∂tp, ∂tφz · ni〉Γi , we take (ζ, w) = (φz, ∂tp) in (3.3.67), to get

∣∣∣ N∑
i=1

〈IC,pH ∂tp− ∂tp, φz · ni〉Γi
∣∣∣ ≤ C

N∑
i=1

‖IC,pH ∂tp− ∂tp‖ 1
2
,Γi
‖φz‖H(div;Ωi). (3.3.82)

Combining (3.3.79)−(3.3.82), using (2.3.31)−(2.3.32) and integrating with respect to time

from 0 to t ∈ (0, T], we get

‖K−
1
2φz‖2 +

∫ t

0

(
‖∂tA

1
2 (φσ + αφpI) ‖2 + ‖c

1
2
0 ∂tφp‖2

)
ds

≤ C

∫ t

0

(‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖∂tψz‖2 +
N∑
i=1

‖IC,uH ∂2
t u− ∂2

t u‖2
1
2
,Γi

+
N∑
i=1

‖IC,pH ∂tp− ∂tp‖2
1
2
,Γi

)ds+ C
N∑
i=1

‖IC,uH ∂tu− ∂tu(t)‖2
1
2
,Γi

+ ε

(∫ t

0

(
‖φσ‖2 + ‖∂tφγ‖2 + ‖φz‖2 +

N∑
i=1

‖ div φz‖2
Ωi

)
ds+ ‖φσ(t)‖2

)

+ C

(
‖K−

1
2φz(0)‖2 + ‖φσ(0)‖2 +

N∑
i=1

‖IC,uH ∂tu− ∂tu(0)‖2
1
2
,Γi

)
, (3.3.83)

where we have used Young's inequality for ε > 0 and (3.3.66) with (τ, v) = (φσ, ∂tu).

73

Using the inf-sup condition (3.3.17) with v = ∂tφu, ξ = ∂tφγ, the time-di�erentiated (3.3.56),

and following the steps similar to the ones used to arrive at (3.3.71), we get∫ t

0

(
‖∂tφu‖2 + ‖∂tφγ‖2

)
ds ≤ C

(∫ t

0

‖∂tA
1
2 (φσ + αφpI) ‖2ds

+

∫ t

0

(
‖∂tψσ‖2 + ‖∂tψγ‖2 + ‖∂tψp‖2 +

N∑
i=1

‖IC,uH ∂tu− ∂tu(t)‖2
1
2
,Γi

)
ds
)
. (3.3.84)

Combining (3.3.83)−(3.3.84), taking ε small enough, and using (3.3.72) implies

‖K−
1
2φz(t)‖2 + ‖φp(t)‖2 +

∫ t

0

(
‖∂tA

1
2 (φσ + αφpI) ‖2 + ‖c

1
2
0 ∂tφp‖2

)
ds

≤ C

∫ t

0

(‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖∂tψz‖2 +
N∑
i=1

‖IC,uH ∂2
t u− ∂2

t u‖2
1
2
,Γi

+
N∑
i=1

‖IC,pH ∂tp− ∂tp‖2
1
2
,Ωi

)ds+ C
N∑
i=1

(‖IC,uH ∂tu− ∂tu(t)‖2
1
2
,Γi

+ ‖IC,pH p− p(t)‖2
1
2
,Γi

) + ε

(∫ t

0

(
‖φσ‖2 + ‖φz‖2 +

N∑
i=1

‖ div φz‖2
Ωi

)
ds

)
+ ε
(
‖φσ(t)‖2

)
+ C

(
‖ψz(t)‖2 + ‖K−

1
2φz(0)‖2 + ‖φσ(0)‖2

)
+ C

(
N∑
i=1

‖IC,uH ∂tu− ∂tu(0)‖2
1
2
,Γi

)
. (3.3.85)

Combining (3.3.78) and (3.3.85) gives

‖K−
1
2φz(t)‖2 + ‖φp(t)‖2 +

∫ t

0

N∑
i=1

‖ div φz‖2
Ωi
ds

≤ C

∫ t

0

(‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖∂tψz‖2 +
N∑
i=1

‖IC,uH ∂2
t u− ∂2

t u‖2
1
2
,Γi

+
N∑
i=1

‖IC,pH ∂tp− ∂tp‖2
1
2
,Γi

)ds+ C
N∑
i=1

(
‖IC,uH ∂tu− ∂tu‖2

1
2
,Γi

+ ‖IC,pH p− p(t)‖2
1
2
,Γi

)
+ ε3

(∫ t

0

(
‖φσ‖2 + ‖φz‖2 +

N∑
i=1

‖ div φz‖2
Ωi

)
ds+ ‖φσ(t)‖2

)
+ C

(
‖ψz(t)‖2 + ‖K−

1
2φz(0)‖2 + ‖φσ(0)‖2 +

N∑
i=1

‖IC,uH ∂tu− ∂tu(0)‖2
1
2
,Γi

)
. (3.3.86)

Coercivity of A, (2.3.31), also implies

‖φσ‖ ≤ C
(
‖A

1
2 (φσ + αφpI) ‖+ ‖φp‖

)
. (3.3.87)

74

Bound on ‖λuH‖Γ and ‖λpH‖Γ.

In order to bound ‖λuH‖Γ, we take the di�erence between equations (2.2.3) and (3.2.8) to get

(A ((σ − σh) + α (p− ph) I) , τ) +
N∑
i=1

((u− uh) , div τ)Ωi
+ ((γ − γh) , τ)

−
N∑
i=1

(u, τni)Γi
=

N∑
i=1

〈u− λuH , τ ni〉Γi , ∀τ ∈ Xh.

We can split the error terms in the above equation and use (3.2.15) to rewrite the above equation

as

N∑
i=1

〈φλu , τ ni〉Γi = (A (φσ + αφp) , τ) + (A (ψσ + αψp) , τ) +
N∑
i=1

(φu, div τ)Ωi

+
N∑
i=1

(ψu, div τ)Ωi
+ (φγ, τ) + (ψγ, τ) +

N∑
i=1

〈IC,uH u− u, τni〉Γi , ∀τ ∈ Xh.

(3.3.88)

Inf-sup stability bound (3.3.8) combined with (3.3.88) implies

‖φλu‖Γ ≤ C sup
06=τ∈Xh

∑N
i=1〈τni, φλu〉Γi
‖τ‖Xh

= C sup
06=τ∈Xh

((A (φσ + αφp) , τ) + (A (ψσ + αψp) , τ)

‖τ‖Xh

+

∑N
i=1 (φu, div τ)Ωi

+
∑N

i=1 (ψu, div τ)Ωi
+ (φγ, τ) + (ψγ, τ) +

∑N
i=1〈I

C,u
H u− u, τni〉Γi

‖τ‖Xh

)
≤ C

(
‖A

1
2 (φσ + αφpI) ‖+ ‖φu‖+ ‖φγ‖

)
+ C

(
‖ψσ‖+ ‖ψp‖+ ‖ψu‖+ ‖ψγ‖

+
N∑
i=1

‖IC,uH u− u‖ 1
2
,Γi

)
,

where in the last inequality, we have used (2.3.31) and (3.3.66) with v = u. Squaring the above

inequality and then integrating with respect to time from 0 to t yields the following two bounds

‖φλu‖2
Γ ≤ C

(
‖A

1
2 (φσ + αφpI) ‖2 + ‖φu‖2 + ‖φγ‖2

)
+ C

(
‖ψσ‖2 + ‖ψp‖2 + ‖ψu‖2 + ‖ψγ‖2 +

N∑
i=1

‖IC,uH u− u‖2
1
2
,Γi

)
, (3.3.89)∫ t

0

‖φλu‖2
Γds ≤ C

∫ t

0

(
‖A

1
2 (φσ + αφpI) ‖2 + ‖φu‖2 + ‖φγ‖2

)
ds

+ C

∫ t

0

(
‖ψσ‖2 + ‖ψp‖2 + ‖ψu‖2 + ‖ψγ‖2 +

N∑
i=1

‖IC,uH u− u‖2
1
2
,Γi

)
ds. (3.3.90)

75

Following similar arguments, we can bound ‖λpH‖Γ as well. To achieve this, take the di�erence

between equations (3.3.47) and (3.2.11) to get the following error equation

(
K−1φz, ζ

)
+
(
K−1ψz, ζ

)
−

N∑
i=1

(φp, div ζ)Ωi
−

N∑
i=1

(ψp, div ζ)Ωi

−
N∑
i=1

〈IC,pH p− p, ζ · ni〉Γi =
N∑
i=1

−〈λpH , ζ · ni〉Γi =
N∑
i=1

−〈φλp , ζ · ni〉Γi , ∀ζ ∈ Zh, (3.3.91)

where the last equality follows from (3.2.16). Inf-sup stability bound (3.3.2) combined with

(3.3.91) implies

‖φλp‖Γ ≤ C sup
06=ζ∈Zh

∑N
i=1〈ζ · ni, φλp〉Γi
‖ζ‖Zh

= C sup
06=ζ∈Zh

(
(K−1φz, ζ) + (K−1ψz, ζ)−

∑N
i=1 (φp, div ζ)Ωi

−
∑N

i=1 (ψp, div ζ)Ωi

‖ζ‖Zh

+
−
∑N

i=1〈I
C,p
H p− p, ζ · ni〉Γi
‖ζ‖Zh

) ≤ C
(
‖K−

1
2φz‖+ ‖φp‖+ ‖ψz‖+ ‖ψp‖

+
N∑
i=1

‖IC,pH p− p‖ 1
2
,Γi

)
, (3.3.92)

where we have used (2.3.32) and (3.3.67) with w = p. Squaring the above bound and then

integrating with respect to time from 0 to t give the following

‖φλp‖2
Γ ≤ C

(
‖K−

1
2φz‖2 + ‖φp‖2

)
+ C

(
‖ψz‖2 + ‖ψp‖2 +

N∑
i=1

‖IC,pH p− p‖2
1
2
,Γi

)
, (3.3.93)∫ t

0

‖φλp‖2
Γds ≤ C

∫ t

0

(
‖K−

1
2φz‖2 + ‖φp‖2

)
ds

+ C

∫ t

0

(
‖ψz‖2 + ‖ψp‖2 +

N∑
i=1

‖IC,pH p− p‖2
1
2
,Γi

)
ds. (3.3.94)

76

Finally, combining (3.3.76), (3.3.86)−(3.3.87), (3.3.89)−(3.3.90) and (3.3.93)−(3.3.94), and

taking ε small enough, we get

‖A
1
2 (φσ + αφpI) (t)‖2 + ‖φσ(t)‖2 + ‖φu(t)‖2 + ‖φγ(t)‖2 + ‖K−

1
2φz(t)‖2 + ‖φp(t)‖2

+ ‖φλu(t)‖2
Γ + ‖φλp(t)‖2

L2(Γ +

∫ t

0

(‖φσ‖2
Xh + ‖φu‖2 + ‖φγ‖2 + ‖K−

1
2φz‖2 +

N∑
i=1

‖ div φz‖2
Ωi

+ ‖φp‖2 + ‖φλu‖2
Γ + ‖φλp‖2

Γ)ds ≤ C

∫ t

0

(‖∂tψσ‖2 + ‖∂tψp‖2 + ‖∂tψγ‖2 + ‖∂tψz‖2 + ‖ψσ‖2

+ ‖ψp‖2 + ‖ψγ‖2 + ‖ψz‖2)ds+ C

N∑
i=1

∫ t

0

(‖IC,pH u− u‖2
1
2
,Γi

+ ‖IC,uH ∂tu− ∂tu‖2
1
2
,Γi

+ ‖IC,uH ∂2
t u− ∂2

t u‖2
1
2
,Γi

+ ‖IC,pH p− p‖2
1
2
,Γi

+ ‖IC,pH ∂tp− ∂tp‖2
1
2
,Γi

)ds

+ C
(
‖ψσ(t)‖2 + ‖ψp(t)‖2 + ‖ψγ(t)‖2 + ‖ψz(t)‖2

)
+ C

N∑
i=1

(‖IC,uH u− u(t)‖2
1
2
,Γi

+ ‖IC,uH ∂tu− ∂tu(t)‖2
1
2
,Γi

+ ‖IC,pH p− p(t)‖2
1
2
,Γi

)

+ C

(
‖φσ(0)‖2 + ‖φp(0)‖2 + ‖φγ(0)‖2 + ‖φz(0)‖2 +

N∑
i=1

‖IC,uH ∂tu− ∂tu(0)‖2
1
2
,Γi

)
. (3.3.95)

To bound terms of the form
∑N

i=1 ‖I
C,u
H v−v]‖ 1

2
,Γi

and
∑N

i=1 ‖I
C,p
H w−w‖ 1

2
,Γi

, we use (3.2.27)

and (3.2.39) to obtain

N∑
i=1

‖IC,uH v − v]‖ 1
2
,Γi
≤ CHm̂− 1

2‖v‖m̂+ 1
2
,Ωi
, 0 ≤ m̂ ≤ m+ 1, ∀v ∈ V, (3.3.96)

N∑
i=1

‖IC,pH w − w]‖ 1
2
,Γi
≤ CHm̂− 1

2‖w‖m̂+ 1
2
,Ωi
, 0 ≤ m̂ ≤ m+ 1, ∀w ∈ W. (3.3.97)

In order to bound the initial errors, ‖φσ(0)‖, ‖φp(0)‖, ‖φγ(0)‖, and ‖φz(0)‖, we recall that

we obtain the discrete initial data from the elliptic projection of the continuous initial data (see

(3.3.24)). Following the arguments similar to the ones used to arrive at (3.3.43), we get

‖φσ(0)‖+‖φp(0)‖+‖φγ(0)‖+‖φz(0)‖ ≤ C (‖ψσ(0)‖+ ‖ψp(0)‖+ ‖ψγ(0)‖+ ‖ψz(0)‖+ ‖ψu(0)‖) .

(3.3.98)

Finally, error bounds (3.3.95)−(3.3.98) combined with the approximation results (3.2.27)-

−(3.2.34), (3.3.12) and (3.3.15), as well as (3.3.62) completes the proof.

77

Remark 3.3.2. The above theorem implies that for su�ciently smooth solution variables, the

error in using our method is of O
(
hk+1 + hl+1 + hj+1 + hr+1 + hs+1 +Hm+ 1

2

)
. Assuming we

use inf-sup stable pairs of FE spaces containing polynomials of degree l = j = s, and k = r,

and l ≤ k, we could choose H = O
(
h

l+1
m+1/2

)
to get a total error bound of order O

(
hl+1

)
. For

example, for the choice of l = 0 and m = 1, we could choose H = O
(
h

2
3

)
and for l = 0

and m = 2, we could choose H = O
(
h

2
5

)
to obtain a total convergence rate of O(h). We will

demonstrate the results for di�erent choices of H(h) in the numerical results section.

3.4 Implementation

In this section, we discuss the implementation of the multiscale mortar domain decomposition

technique discussed in this chapter. First, we provide a fully discrete version of the system

(3.2.8)−(3.2.14) using backward Euler time discretization. We use a related formulation where

a time di�erentiated elasticity equation (2.2.3) is used. The reason for such a reformulation

was discussed in the previous chapter. The fully discrete formulation of the technique is then

reduced to an interface problem which can then be solved using an iterative solver like GMRES.

Finally, we discuss the possibility of computing and storing a multiscale basis which will help in

increasing the e�ciency of the method.

3.4.1 Time discretization

For time discretization, we use the backward Euler method. Let {tn}NTn=0, tn = n∆t,

∆t = T/NT , be a uniform partition of (0, T). With these choices, the fully discrete problem

corresponding to (3.2.8)−(3.2.14) reads as follows: for 0 ≤ n ≤ NT − 1 and 1 ≤ i ≤ N , �nd

78

(σn+1
h,i , u

n+1
h,i , γ

n+1
h,i , z

n+1
h,i , p

n+1
h,i , λ

n+1
H) ∈ Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i × ΛH such that:

(
A
(
σn+1
h,i + αpn+1

h,i I
)
, τ
)

Ωi
+
(
un+1
h,i , div τ

)
Ωi

+
(
γn+1
h,i , τ

)
Ωi

= 〈gn+1
u , τ ni〉∂Ωi∩ΓuD

+ 〈λu,n+1
H , τ ni〉Γi , ∀τ ∈ Xh,i, (3.4.1)(

div σn+1
h,i , v

)
Ωi

= −
(
fn+1, v

)
Ωi
, ∀v ∈ Vh,i, (3.4.2)(

σn+1
h,i , ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i, (3.4.3)(
K−1zn+1

h,i , ζ
)

Ωi
−
(
pn+1
h,i , div ζ

)
Ωi

= −〈gn+1
p , ζ · ni〉∂Ωi∩ΓpD

− 〈λp,n+1
H , ζ · ni〉Γi , ∀ζ ∈ Zh,i, (3.4.4)

c0

(
pn+1
h,i − pnh,i

∆t
, w

)
Ωi

+ α

(
A
(
σn+1
h,i − σnh,i

)
∆t

, wI

)
Ωi

+ α

(
Aα

pn+1
h,i − pnh,i

∆t
I, wI

)
Ωi

+
(
div zn+1

h,i , w
)

Ωi
=
(
gn+1, w

)
Ωi
, ∀w ∈ Wh,i,

(3.4.5)

N∑
i=1

〈σn+1
h,i ni, µ

u〉Γi = 0, ∀µu ∈ Λu
H ,

(3.4.6)

N∑
i=1

〈zn+1
h,i · ni, µ

p〉Γi = 0, ∀µp ∈ Λp
H .

(3.4.7)

Note that similarly to the matching grid case in the previous chapter, the non-matching multiscale

grid method also requires initial data p0
h,i and σ0

h,i. Such data can be obtained by taking

p0
h,i to be the L2-projection of p0 onto Wh,i and solving a mixed elasticity non-matching grid

non-overlapping domain decomposition problem obtained from (3.4.1)−(3.4.3) and (3.4.6) with

n = −1 (see [48]). Also, following the case of the matching grid domain decomposition method,

we will utilize a related formulation in which the elasticity equation, (2.2.3), is di�erentiated in

time. The reason for this was discussed in the analysis of the resulting interface problem in the

previous chapter. We introduce new variables u̇ = ∂tu, γ̇ = ∂tγ, and λu̇H = ∂tλ
u
H representing the

time derivatives of the displacement, rotation, and displacement-Lagrange multiplier function,

respectively. Using time-di�erentiated equation (2.2.3) and backward Euler (see the subsection

on time discretization in the previous chapter for details), we get

79

(
A(σn+1

h,i + αpn+1
h,i I), τ

)
Ωi

+ ∆t
(
u̇n+1
h,i , div τ

)
Ωi

+ ∆t
(
γ̇n+1
h,i , τ

)
Ωi

= ∆t〈∂tgn+1
u , τ ni〉∂Ωi∩ΓuD

+ ∆t〈λu̇,n+1
H , τ ni〉Γi +

(
A(σnh,i + αpnh,iI), τ

)
Ωi
, ∀τ ∈ Xh,i.

(3.4.8)

The original variables can be recovered using

unh = u0
h + ∆t

n∑
k=1

u̇kh, γnh = γ0
h + ∆t

n∑
k=1

γ̇kh, λu,nH = λu,0H +
n∑
k=1

λ̇u,kH . (3.4.9)

3.4.2 Reduction to an interface problem

Similar to the non-overlapping matching grid domain decomposition algorithm discussed in

the previous chapter, we solve the system resulting from (3.4.8), (3.4.2)−(3.4.7) at each time

step by reducing it to an interface problem for the Lagrange multiplier function λH . Following

similar arguments as in the previous chapter, we introduce two sets of complementary subdomain

problems.

The �rst set of problems reads as follows: for 1 ≤ i ≤ N , �nd

(σ̄n+1
h,i ,

¯̇un+1
h,i ,

¯̇γn+1
h,i , z̄

n+1
h,i , p̄

n+1
h,i) ∈ Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i such that

(
A(σ̄n+1

h,i + αp̄n+1
h,i I), τ

)
Ωi

+ ∆t
(
¯̇un+1
h,i , div τ

)
Ωi

+ ∆t
(
¯̇γn+1
h,i , τ

)
Ωi

= ∆t〈gn+1
u , τ ni〉∂Ωi∩ΓuD

+
(
A(σnh,i + αpnh,iI), τ

)
Ωi
, ∀τ ∈ Xh,i, (3.4.10)(

div σ̄n+1
h,i , v

)
Ωi

= −
(
fn+1, v

)
Ωi
, ∀v ∈ Vh,i, (3.4.11)(

σ̄n+1
h,i , ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i, (3.4.12)(
K−1z̄n+1

h,i , ζ
)

Ωi
−
(
p̄n+1
h,i , div ζ

)
Ωi

= −〈gn+1
p , ζ · ni〉∂Ωi∩ΓpD

, ∀ζ ∈ Zh,i, (3.4.13)

c0

(
p̄n+1
h,i , w

)
Ωi

+ α
(
A(σ̄n+1

h,i + αp̄n+1
h,i I), wI

)
Ωi

+ ∆t
(
div z̄n+1

h,i , w
)

Ωi

= ∆t
(
gn+1, w

)
Ωi

+ c0

(
pnh,i, w

)
Ωi

+ α
(
A(σnh,i + αpnh,iI), wI

)
Ωi
, ∀w ∈ Wh,i. (3.4.14)

Note that these subdomain problems have zero Dirichlet data at the subdomain interface, the

true source terms f and g, outside boundary conditions gu and gp, and initial data σnh,i and p
n
h,i.

80

The second set of equations reads as follows: given λH ∈ ΛH , for 1 ≤ i ≤ N , �nd (σ∗,n+1
h,i (λH),

u̇∗,n+1
h,i (λH), γ̇∗,n+1

h,i (λH), z∗,n+1
h,i (λH), p∗,n+1

h,i (λH))∈ Xh,i × Vh,i ×Qh,i × Zh,i ×Wh,i such that:

(
A
(
σ∗,n+1
h,i (λH) + αp∗,n+1

h,i (λH)I
)
, τ
)

Ωi
+ ∆t

(
u̇∗,n+1
h,i (λH), div τ

)
Ωi

+ ∆t
(
γ̇∗,n+1
h,i (λH), τ

)
Ωi

= ∆t
〈
λu̇H , τ ni

〉
Γi
, ∀τ ∈ Xh,i, (3.4.15)(

div σ∗,n+1
h,i (λH), v

)
Ωi

= 0, ∀v ∈ Vh,i, (3.4.16)(
σ∗,n+1
h,i (λH), ξ

)
Ωi

= 0, ∀ξ ∈ Qh,i, (3.4.17)(
K−1z∗,n+1

h,i (λH), ζ
)

Ωi
−
(
p∗,n+1
h,i (λH), div ζ

)
Ωi

= −〈λp,n+1
H , ζ · ni〉Γi , ∀ζ ∈ Zh,i, (3.4.18)

c0

(
p∗,n+1
h,i (λH), w

)
+ α

(
A
(
σ∗,n+1
h,i (λH) + αp∗,n+1

h,i (λH)I
)
, wI

)
Ωi

+ ∆t
(
div z∗,n+1

h,i (λH)
)

= 0, ∀w ∈ Wh,i. (3.4.19)

Note that this set of problems has λH as the Dirichlet boundary data on the interface Γ, compared

to λh in the matching grid case. This system also has zero source terms, zero boundary data on

part of the outside boundary ∂Ω, and zero data from the previous time step.

De�ne the bilinear form an+1
H,i : λH × λH → R, 1 ≤ i ≤ N , an+1

H : λH × λH → R, and the

linear functional gn+1
H : λH → R for all 0 ≤ n ≤ NT − 1 by

an+1
H,i (λH , µ) = 〈σ∗,n+1

h,i (λH)ni, µ
u〉Γi − 〈z

∗,n+1
h,i (λH) · ni, µp〉Γi , an+1

H (λH , µ) =
N∑
i=1

an+1
H,i (λH , µ),

(3.4.20)

gn+1
H (µ) =

N∑
i=1

(
−〈σ̄n+1

h,i ni, µ
u〉Γi + 〈z̄n+1

h,i · ni, µ
p〉Γi
)
. (3.4.21)

It follows from (3.4.6)−(3.4.7) that for each 0 ≤ n ≤ NT − 1, the solution to the global problem

(3.4.8), (3.4.2)−(3.4.7) is equivalent to solving the interface problem for λn+1
H ∈ ΛH :

an+1
H (λn+1

H , µ) = gn+1
H (µ), ∀µ ∈ ΛH , (3.4.22)

and setting

σn+1
h,i = σ∗,n+1

h,i (λn+1
H) + σ̄n+1

h,i , u̇n+1
h,i = u̇∗,n+1

h,i (λn+1
H) + ¯̇un+1

h,i , γ̇n+1
h,i = γ̇∗,n+1

h,i (λn+1
H) + ¯̇γn+1

h,i ,

zn+1
h,i = z∗,n+1

h,i (λn+1
H) + z̄n+1

h,i , pn+1
h,i = p∗,n+1

h,i (λn+1
H) + p̄n+1

h,i .

81

3.4.3 Solving the interface problem

In order to solve the interface problem (3.4.22), we introduce linear operators An+1
H,i : ΛH,i →

ΛH,i, for 1 ≤ i ≤ N and An+1
H : ΛH → ΛH such that for any λH ∈ ΛH ,

〈An+1
H,i λH,i, µ〉Γi = 〈σ∗,n+1

h,i (λH)ni, µ
u〉Γi − 〈z

∗,n+1
h,i (λH) · ni, µp〉Γi , ∀µ ∈ ΛH,i, (3.4.23)

An+1
H λH =

N∑
i=1

An+1
H,i λH,i, (3.4.24)

where λH,i and ΛH,i denote the restrictions of λH and ΛH to Γi, respectively. We also de�ne the

vector Gn+1
H ∈ ΛH as

〈Gn+1
H , µ〉Γ =

N∑
i=1

(
−〈σ̄n+1

h,i ni, µ
u〉Γi + 〈z̄n+1

h,i · ni, µ
p〉Γi
)
, ∀µ ∈ ΛH,i. (3.4.25)

Interface problem (3.4.22) can now be reformulated as �nding λH ∈ ΛH such that

An+1
H λH = Gn+1

H . (3.4.26)

Consider the L2 orthogonal projections, Qu,Th,i : Xh,ini → Λu
H and Qp,Th,i : Zh,i · ni :→ Λp

H such

that for any τ ∈ Xh,i and ζ ∈ Zh,i,

〈Qu,Th,i (τ ni)− τ ni, µu〉Γi = 0, ∀µu ∈ Λu
H ,

〈Qp,Th,i (ζ · ni)− ζ · ni, µp〉Γi = 0, ∀µp ∈ Λp
H .

where ni is the unit outward normal to ∂Ωi. De�ne QTh,i : Xh,ini×Zh,i ·ni → Λu
H ×Λp

H such that

for any τ ∈ Xh,i and ζ ∈ Zh,i

QTh,i

 τ ni

ζ · ni

 =

Qu,Th,i τ ni
Qp,Th,i ζ · ni

 . (3.4.27)

Using the above notations, we note that

An+1
H,i λH,i = QTh,i

 σ∗,n+1
h,i (λH)ni

−z∗,n+1
h,i (λH) · ni

 , Gn+1
H =

∑N
i=1−Q

u,T
h,i σ̄

n+1
h,i ni∑N

i=1Q
p,T
h,i z̄

n+1
h,i · ni

 , (3.4.28)

for i = 1, 2, . . . N.

82

To solve the interface problem (3.4.26), we use an iterative method like GMRES with an

initial guess λH,0 ∈ ΛH at each time step, tn = n∆t. A detailed description is given in Algorithm

1 (also see [33]).

Algorithm 1 Solving interface problem using GMRES algorithm.

1. Solve the �rst set of complementary equations, (3.4.10)−(3.4.14), and compute Gn+1
H using

(3.4.28).

2. Pick an initial guess λH,0 ∈ ΛH .

3. Project the mortar function onto the subdomain boundaries, λH,0,i −→ Qh,i (λH,0,i).

4. Solve the second set of complementary equations, (3.4.15)−(3.4.19), using the projected

function Qh,i (λH,0,i) as Dirichlet boundary data to obtain σ∗,n+1
h,i (λH,0) and z∗,n+1

h,i (λH,0).

5. Project the solution variables to the mortar space, σ∗,n+1
h,i (λH,0)ni −→ Qu,Th,i σ

∗,n+1
h,i (λH,0)ni

and z∗,n+1
h,i (λH,0) · ni −→ Qp,Th,i z

∗,n+1
h,i (λH,0) · ni.

6. Compute the action An+1
H λH,0 using (3.4.28).

7. Update λH using An+1
H λH,0 in the GMRES algorithm.

8. Repeat steps 3− 7, with updated values of λH , until the residual for the GMRES algorithm

goes below a predetermined tolerance.

This method has the performance advantage over the similar method for matching grids

discussed in the previous chapter that a coarse mortar mesh could be used to obtain a smaller

interface problem due to the reduction in the mortar degrees of freedom. We implement this

algorithm and study various test cases in the numerical results section.

3.4.4 Implementation with multiscale stress-�ux basis (MSB)

A coarser mortar mesh can lead to a smaller interface problem, but even in that case, the

number of subdomain solves of the type (3.4.15)−(3.4.19) is directly proportional to both the

number of mortar space degrees of freedom and the number of time steps used. We propose

the construction and use of a multiscale stress-�ux basis (MSB) which makes the number of

subdomain solves independent of the number of iterations required for the interface problem

and the number of time steps used.

83

Let
{
βkH,i

}NH
k=0

be a basis for ΛH,i, where NH denotes the number of degrees of freedom

associated with the �nite element space ΛH,i. We calculate and store the action of the interface

operator of the form

AH,iβkH,i = QTh,i

 σ∗h,i(β
k
H,i)ni

−z∗h,i(βkH,i) · ni

 , (3.4.29)

for k = 1, 2, . . . NH , where we obtain σ∗h,i(β
k
H,i) and z

∗
h,i(β

k
H,i) by solving (3.4.15)−(3.4.19) with

βkH,i as the Dirichlet boundary data. A detailed description of the construction of the multiscale

sbasis elements
{
φkH,i

}NH
k=0

, where φkH,i = AH,iβkH,i is given in Algorithm 2, (also see [33, 48] for

similar constructions).

Algorithm 2 Construction of multiscale stress-�ux basis
for k = 1, . . . , NH :

1. Project βkH,i onto the subdomain boundary, βkH,i −→ Qh,i
(
βkH,i

)
.

2. Solve the system (3.4.15)−(3.4.19) using the projected function Qh,i
(
βkH,i

)
as the Dirichlet

boundary data, to obtain σ∗h,i(β
k
H,i) and z

∗
h,i(β

k
H,i).

3. Project the solution variables to the mortar space to obtain φkH,i =

 Qu,Th,i σ∗h,i(βkH,i)ni
−Qp,Th,i z∗h,i(βkH,i) · ni

.
end for

For any µ ∈ ΛH,i, consider the mortar basis decomposition, µ =
∑NH

k=0 µiβ
k
H,i. We can

calculate the action of the interface operator on µ as follows:

AH,iµ =

NH∑
k=0

µiφ
k
H,i. (3.4.30)

We can use the multiscale basis to replace steps 3 − 6 in Algorithm 1, by taking linear

combinations of the form (3.4.30). Note that the multiscale stress-�ux basis is computed and

saved once and can be reused over all time steps, which gains a signi�cant performance advantage

in the case of time-dependent parabolic problems like the one we are studying.

We further discuss and compare the e�ciency of using the multiscale stress-�ux basis with

other methods in Example 2 in the numerical section of this chapter.

84

3.5 Numerical Results

In this section, we report the results of various numerical tests designed to verify and compare

the well-posedness, stability, and convergence of the multiscale mortar non-overlapping domain

decomposition method for the Biot system of poroelasticity that we have developed in this

chapter. We compare the computational e�ciency in di�erent cases, including the matching and

non-matching grids on the subdomains, and also discuss the advantages of using a multiscale

basis. The numerical schemes are implemented using deal.II �nite element package [91,92].

In all the examples, we have used the FE triplet Xh × Vh ×Qh = BDM2
1 ×Q2

0 ×Q0 ([11])

for elasticity and the FE pair Zh×Wh = BDM1×Q0 ([22]) for Darcy on quadrilateral meshes.

Here Qk denotes polynomials of degree k in each variable. For the mortar spaces, λuH is taken to

be DQ2
m, and λ

p
H is taken to be DQm with m = 1 or 2, where DQk represents the discontinuous

�nite element spaces containing polynomials of degree k, which lives on the subdomain interface.

The degrees of FEM spaces used in this section is given in Table 11. For solving the interface

problem, we use non-restarted unpreconditioned GMRES with a tolerance on the relative residual
rk
r0

as the stopping criteria. For all the examples, this tolerance is taken to be 10−6.

Table 11: Degree of polynomials associated with FEM spaces used for numerical experiments.

ΛH : m Xh : k Vh : l Qh : j Zh : r Wh : s

1 (linear) 1 0 0 1 0

2 (quadratic) 1 0 0 1 0

In Example 1, we test and compare the convergence, stability, and e�ciency of the multiscale

mortar DD method using linear (m = 1) and quadratic (m = 2) mortar spaces. We do this by

solving a system of equations with a known solution on successively re�ned meshes.

In Example 2, we apply the multiscale DD method to solve a more practical problem, using

a highly heterogeneous medium. We compare the e�ciency of the multiscale versus �ne scale

methods and study the computational advantage of constructing a multiscale stress-�ux basis

(MSB) discussed in Section 3.4.4 of this chapter.

In Example 1, we solve the system of PDEs on a checkerboard global mesh, which consists

of non-matching grids on all subdomain interfaces. In particular, the coarsest multiscale mesh

85

in all examples follows a subdomain mesh size ratio 1
4

: 1
6

: 1
6

: 1
4
as shown in Figure 4. The

corresponding coarsest mortar-interface mesh consists of two elements with mesh size 1
2
.

Figure 4: Example 1, coarsest non matching subdomain grid on (0, 1)2.

3.5.1 Example 1: testing convergence rates

In this example, we test the well-posedness, convergence, and stability of the multiscale

mortar DD method using linear (m = 1) and quadratic (m = 2) mortar spaces. The global

computational domain Ω is taken to be the unit square (0, 1)2. We consider the following

analytical solution

p = exp(t)(sin(πx) cos(πy) + 10), u = exp(t)

 x3y4 + x2 + sin((1− x)(1− y)) cos(1− y)

(1− x)4(1− y)3 + (1− y)2 + cos(xy) sin(x)

 .

The physical and numerical parameters are given in Table 12. Using this information, we derive

the right hand side and initial conditions essential to solve the system (1.3.1)−(1.3.9). We

partition Ω into four square subdomains with non-matching grids as shown in Figure 4.

We consider two di�erent cases, with linear and quadratic mortar spaces, where the former

contains polynomials of degree 1 and the latter contains polynomials of degree 2. To test

the convergence and verify the theoretical apriori error estimates, we successively re�ne the

subdomain and mortar meshes. In the linear mortar case, we maintain a subdomain to mortar

86

mesh ratio such that H = Ch, and in the quadratic mortar case, we maintain the ratio such

that H = C
√
h.

The convergence tables for the cases with linear and quadratic mortar spaces with ∆t = 10−4

and c0 = 1.0 are given in Tables 13 and 14, respectively. Tables 15−16 present the convergence

table in the case of linear mortar and quadratic mortar spaces, respectively with ∆t = 10−4, and

c0 = 10−3. We present the number of interface iterations, relative errors, and their convergence

rates in these tables. Solution plots in the case of linear mortar with an intermediate level of

re�nement, h = 1/32, ∆t = 10−3 and c0 = 1.0 is given in Figure 5 in order to compare with the

plots obtained in the previous chapter using monolithic domain decomposition technique using

matching grids on subdomain interfaces. Note that plots in the case of quadratic mortar space

look similar.

Table 12: Example 1, physical and numerical parameters.

Parameter Value

Permeability tensor (K) I

Lame coe�cient (µ) 100.0

Lame coe�cient (λ) 100.0

Mass storativity (c0) 1.0, 10−3

Biot-Willis constant (α) 1.0

Time step (∆t) 10−3, 10−4

Number of time steps 100

The numerical results that we observe are consistent with the theoretical results from the

previous sections. In particular, we demonstrate the stability of the method over a 100 time

steps, and Tables 13 and 14 con�rm convergence rates that follow from Theorem 3.3.9 and Table

11. With linear mortar m = 1 and H = Ch, the interface error is O
(
h

3
2

)
. With quadratic

mortar m = 2 and H =
√
h, the interface error is O

(
h

5
4

)
. In both the cases, it is dominated

by the subdomain error, which is O(h). As a result, we expect at least O (h) convergence in

both cases, which is what we observe. Comparison of the number of interface iterations required

in the case of linear and quadratic mortars in Tables 13 and 14, respectively shows that both

mortar degrees result in similar accuracy for the same level of subdomain mesh re�nement. This

87

is despite the fact that the quadratic mortar case requires smaller number of interface iterations

compared to the linear mortar case with the same level of subdomain mesh re�nement. This is

due to the choice of a coarser mortar mesh in the case of quadratic mortar case. This points

towards a way to decrease the number of interface iterations by using a coarser mesh and higher

mortar space degree, without any loss in accuracy. Tables 15−16 con�rm that the stability and

error bounds proved in previous sections are not a�ected by smaller values of c0. Further, Figure

5 demonstrates the e�cacy of the method in enforcing continuity of solution variables across

subdomain interfaces, weakly using coarse mortar spaces. In fact, the solution looks almost

identical to the ones obtained using matching-subdomain grids in the previous chapter, with

a smaller number of interface iterations for same level of �nest subdomain mesh re�nement.

This demonstrates the advantage of using the multiscale technique we have developed over the

completely matching case that was discussed in the previous chapter.

3.5.2 Example 2: heterogeneous medium

In this example, we demonstrate the performance of our method in a practical application

with highly heterogeneous medium. First, we compare the e�ciency of our multiscale mortar

method, where H > h, with a �ne scale method, where H = h. We expect the former to be

more e�cient than the latter because of weaker enforcement of continuity across subdomain

interfaces using a coarser mortar space in the case of the multiscale method. We then study the

computational advantage of using a multiscale stress-�ux basis (MSB) over not using an MSB.

In the case of no-MSB, the number of subdomain solves is total #GMRES iterations across all

time steps + 2×number of time steps, where the last term comes from two extra solves required

to solve the system (3.4.10)−(3.4.19) initially and recovering the �nal solution once the GMRES

converges. Similarly, in the case of using MSB, total number of subdomain solves equals the

dim(ΛH)+2×number of time steps. Note that the �rst term in the number of solves in the case

of no-MSB is directly proportional to the number of time steps used in time discretization, while

the same in the case of MSB method is independent of the number of time steps used. This leads

to MSB method being far more e�cient than the no-MSB method with any choice of mortar,

as long as enough number of time steps are used.

To obtain the desired level of heterogeneity in the medium, we use the porosity and the

88

permeability data from the Society of Petroleum Engineers 10th Comparative Solution Project

(SPE10)1. The porosity and permeability �elds are given on a 60 × 220 grid and we use the

rectangular region (0, 60) × (0, 220) as the computational domain. We decompose the global

domain into 3× 5 subdomains consisting of identical rectangular blocks. The Young's modulus

is obtained from the porosity �eld data using the relation E = 102
(
1− φ

c

)2.1
, where c = 0.5,

refers to the porosity at which the Young's modulus vanishes, see [53] for details. These input

�elds are presented in Figure 6. We use parameters and boundary conditions as mentioned in

Table 17, along with zero source terms. These conditions describe a �ow from left to right, driven

by the gradient in the pressure. We use a compatible initial condition for pressure, p0 = 1− x.

To obtain the essential discrete initial data, we take the elliptic projection of the continuous

initial data, see (3.3.24). In particular, we set p0
h to be the L

2-projection of p0 ontoWh and solve

a mixed elasticity domain decomposition problem at t = 0 to obtain σ0
h. We also obtain u0

h, γ
0
h,

and λu,0H from this solve.

We use a global 60×220 grid and solve the problem using both �ne scale (H = h) and coarse

(H > h) mortar spaces. For the coarse mortar case, we use both linear (m = 1) and quadratic

mortars (m = 2) with one and two mortars per subdomain interface. The comparison of the

computed solution using di�erent choices of mortars is given in Figures 7−12. Comparison of

the number of solves required for di�erent choices of mortar, both in the no-MSB and MSB

cases are given in Table 18. We report the number of subdomain solves which dominates the

computational complexity of the method.

Table 18 clearly shows that using the multiscale mortar method requires fewer number of

solves compared to �ne scale method and hence the former is computationally less expensive than

the latter. Comparison of the computed solution for various choices of mortars in Figures 7−12

shows that we retain good amount of accuracy even in the case of the coarsest mortar case with

one linear mortar per interface. We also note that using a single quadratic mortar per interface

yields almost identical results as the �ne scale solution which emphasizes our observation from

the previous example that a coarse mortar can be compensated by choosing a higher degree for

mortar space ΛH . Table 18 also demonstrates the superiority of using MSB for a time-dependent

multiscale problem like the one in our case. The number of solves in the case of no MSB is at

least an order of magnitude bigger than the MSB case which implies that the construction of

1https://www.spe.org/web/csp/datasets/set02.htm

89

MSB is an excellent tool to make our multiscale mortar method even more e�cient than it

already is compared to the �ne scale methods discussed in the previous chapter.

3.6 Chapter Conclusions

In this chapter we presented a multiscale mortar mixed �nite element technique (MMMFE)

for the Biot system of poroelasticity in a �ve-�led fully mixed formulation. This method is

the generalization of the monolithic domain decomposition technique discussed in the previous

chapter, with the extra capability to use non-matching subdomain grids at the interface. This

capability is obtained by using composite multiscale mortar Lagrange multiplier spaces that

approximates displacement and pressure on a coarse mortar grid at the interface. The global

problem can be reduced into a series of parallel Dirichlet type problems and an interface problem

for the composite displacement-pressure Lagrange multiplier spaces which requires subdomain

solves at each iteration. We showed the well-posedness and stability of the method under proper

assumptions. We have also carried out an extensive error analysis of the method to get a

combined a priori error estimate for all the unknowns in the formulation. To complete the

analysis, we have done a series of numerical experiments to put the theory into test. We

observed stability and convergence results as predicted by the theory and also demonstrated

the application of the method to a highly heterogeneous medium. We noted that in practice, a

coarser mesh with higher mortar space degree can be used to get a smaller interface problem and

hence faster convergence without compromising the accuracy of the method. We conclude the

chapter by recalling the e�ectiveness of the construction and use of a pre-computed multiscale

stress-�ux basis (MSB), which makes the MMMFE method far more superior than the �ne scale

monolithic methods, especially when a coarse mortar mesh is used.

90

Table 13: Example 1, convergence table using linear mortar (m = 1) with H = Ch, ∆t = 10−4

and c0 = 1.0.

h # gmres ‖σ − σh‖L∞(L2) ‖ div (σ − σh)‖L∞(L2) ‖γ − γh‖L∞(L2) ‖u− uh‖L∞(L2)

1/4 16 rate 1.23e-01 rate 6.09e-01 rate 1.39e+00 rate 5.78e-01 rate

1/8 28 -0.81 3.24e-02 1.92 3.11e-01 0.97 7.07e-01 0.97 2.92e-01 0.99

1/16 46 -0.72 8.20e-03 1.98 1.56e-01 0.99 3.55e-01 0.99 1.46e-01 1.00

1/32 73 -0.67 2.08e-03 1.98 7.82e-02 1.00 1.78e-01 1.00 7.31e-02 1.00

1/64 122 -0.74 5.39e-04 1.94 3.91e-02 1.00 8.89e-02 1.00 3.65e-02 1.00

h ‖z − zh‖L∞(L2) ‖ div (z − zh)‖L2(L2) ‖p− ph‖L∞(L2) ‖u− λuH‖L∞(L2) ‖p− λpH‖L∞(L2)

1/4 1.04e+00 rate 4.15e-01 rate 5.91e-02 rate 7.50e-01 rate 2.06e-01 rate

1/8 3.72e-01 1.48 1.89e-01 1.14 2.96e-02 1.00 1.90e-01 1.98 5.30e-02 1.96

1/16 1.19e-01 1.64 8.50e-02 1.15 1.48e-02 1.00 4.76e-02 1.99 1.33e-02 2.00

1/32 3.56e-02 1.74 3.97e-02 1.10 7.39e-03 1.00 1.19e-02 2.00 3.33e-03 2.00

1/64 1.08e-02 1.72 1.92e-02 1.05 3.70e-03 1.00 3.04e-03 1.97 8.37e-04 1.99

Table 14: Example 1, convergence table using quadratic mortar (m = 2) with H = C
√
h,

∆t = 10−4 and c0 = 1.0.

h # gmres ‖σ − σh‖L∞(L2) ‖ div (σ − σh)‖L∞(L2) ‖γ − γh‖L∞(L2) ‖u− uh‖L∞(L2)

1/4 22 rate 1.26e-01 rate 6.09e-01 rate 1.39e+00 rate 5.79e-01 rate

1/16 40 -0.43 8.25e-03 1.97 1.56e-01 0.98 3.55e-01 0.99 1.46e-01 0.99

1/64 65 -0.35 5.62e-04 1.93 3.91e-02 1.00 8.89e-02 1.00 3.65e-02 1.00

h ‖z − zh‖L∞(L2) ‖ div (z − zh)‖L2(L2) ‖p− ph‖L∞(L2) ‖u− λuH‖L∞(L2) ‖p− λpH‖L∞(L2)

1/4 6.72e-01 rate 3.92e-01 rate 5.92e-02 rate 7.55e-01 rate 9.70e-02 rate

1/16 8.20e-02 1.52 8.36e-02 1.11 1.48e-02 1.00 4.82e-02 1.99 6.83e-03 1.91

1/64 7.03e-03 1.77 1.92e-02 1.06 3.70e-03 1.00 3.31e-03 1.93 5.91e-04 1.77

91

Table 15: Example 1, convergence table for linear mortar with H = Ch, ∆t = 10−4 and

c0 = 10−3.

h # gmres ‖σ − σh‖L∞(L2) ‖ div (σ − σh)‖L∞(L2) ‖γ − γh‖L∞(L2) ‖u− uh‖L∞(L2)

1/4 16 rate 1.25e-01 rate 6.09e-01 rate 1.39e+00 rate 5.78e-01 rate

1/8 29 -0.86 3.30e-02 1.92 3.11e-01 0.97 7.07e-01 0.97 2.92e-01 0.99

1/16 50 -0.79 8.34e-03 1.98 1.56e-01 0.99 3.55e-01 0.99 1.46e-01 1.00

1/32 87 -0.80 2.09e-03 1.99 7.82e-02 1.00 1.78e-01 1.00 7.31e-02 1.00

1/64 157 -0.85 5.38e-04 1.96 3.91e-02 1.00 8.89e-02 1.00 3.65e-02 1.00

h ‖z − zh‖L∞(L2) ‖ div (z − zh)‖L2(L2) ‖p− ph‖L∞(L2) ‖u− λuH‖L∞(L2) ‖p− λpH‖L∞(L2)

1/4 4.18e+01 rate 2.31e+00 rate 8.81e-01 rate 7.52e-01 rate 8.48e+00 rate

1/8 9.68e+00 2.11 7.14e-01 1.69 2.33e-01 1.92 1.90e-01 1.98 2.11e+00 2.00

1/16 2.31e+00 2.07 2.00e-01 1.84 5.93e-02 1.98 4.77e-02 1.99 5.08e-01 2.06

1/32 5.68e-01 2.02 6.02e-02 1.73 1.62e-02 1.87 1.19e-02 2.00 1.25e-01 2.02

1/64 1.42e-01 2.00 2.22e-02 1.44 5.22e-03 1.64 2.98e-03 2.00 3.12e-02 2.00

Table 16: Example 1, convergence table for quadratic mortar with H = C
√
h, ∆t = 10−4 and

c0 = 10−3.

h # gmres ‖σ − σh‖L∞(L2) ‖ div (σ − σh)‖L∞(L2) ‖γ − γh‖L∞(L2) ‖u− uh‖L∞(L2)

1/4 23 rate 1.28e-01 rate 6.09e-01 rate 1.39e+00 rate 5.79e-01 rate

1/16 41 -0.41 8.39e-03 1.97 1.56e-01 0.98 3.55e-01 0.96 1.46e-01 0.99

1/64 72 -0.41 5.61e-04 1.95 3.91e-02 1.00 8.89e-02 1.00 3.65e-02 1.00

h ‖z − zh‖L∞(L2) ‖ div (z − zh)‖L2(L2) ‖p− ph‖L∞(L2) ‖u− λuH‖L∞(L2) ‖p− λpH‖L∞(L2)

1/4 4.24e+01 rate 2.42e+00 rate 9.97e-01 rate 7.57e-01 rate 1.07e+01 rate

1/16 2.33e+00 2.01 2.01e-01 1.79 6.01e-02 2.06 4.83e-02 1.98 5.17e-01 2.19

1/64 1.50e-01 1.97 2.25e-02 1.58 5.40e-03 1.74 3.26e-03 1.95 3.38e-02 1.97

92

Figure 5: Example 1, computed solution at �nal time step using a linear mortar on

non-matching subdomain grids, top: stress x (left), stress y (middle), displacement (right),

bottom: rotation (left), velocity (middle), pressure (right). Mesh size, h = 1/32, ∆t = 10−3

and c0 = 1.0.

93

Table 17: Example 2, parameters (top) and boundary conditions (bottom).

Parameter Value

Mass storativity (c0) 1.0

Biot-Willis constant (α) 1.0

Time step (∆t) 10−3

Total time (T) 0.1

Boundary σ u p z

Left σn = −αpn - 1 -

Bottom σn = 0 - - z · n = 0

Right − 0 0 -

Top σn = 0 - - z · n = 0

Table 18: Example 2, #GMRES iterations and maximum number of subdomain solves.

mortar Average #GMRES Total #GMRES Total #Solves

No MSB MSB

linear �ne scale 343 34375 34575 968

1 linear per interface 41 4149 4349 224

1 quadratic per interface 61 6184 6384 236

2 linear per interface 80 8010 8210 248

2 quadratic per interface 123 12302 12502 272

94

Figure 6: Example 2, permeability, porosity, Young's modulus.

Figure 7: Example 2, pressure (color) and velocity (arrows): �ne scale (left), single linear

mortar per interface (middle), and two linear mortars per interface (right).

95

Figure 8: Example 2, pressure (color) and velocity (arrows): single quadratic mortar per

interface (left), and two quadratic mortars per interface (right).

Figure 9: Example 2, velocity magnitude: �ne scale (left), single linear mortar per interface

(middle), and two linear mortars per interface (right).

96

Figure 10: Example 2, velocity magnitude: single quadratic mortar per interface (left), and

two quadratic mortars per interface (right).

Figure 11: Example 2, displacement vector (arrows) and its magnitude: �ne scale (left), single

linear mortar per interface (middle), and two linear mortars per interface (right).

97

Figure 12: Example 2, displacement vector (arrows) and its magnitude: single quadratic

mortar per interface (left), and two quadratic mortars per interface (right).

98

4.0 A Multiscale Mortar Space-time Domain Decomposition Technique For

Parabolic Equations

4.1 Introduction

In this chapter, we study a more general version of multiscale mortar mixed �nite element

(MMMFE) technique discussed in Chapter 3, where we allow multiscale discretization in both

time and space.

As usual, we divide the global domain Ω into a union of non-overlapping subdomains Ωi.

For each subdomain Ωi, our approach considers an individual space mesh of Ωi along with

individual time steps on (0, T]. On each space-time subdomain Ωi × (0, T], any standard mixed

�nite element scheme is combined with the discontinuous Galerkin time discretization. Then a

stand-alone mortar variable is introduced, on an independent interface space-time mesh which

is typically coarse and where possibly higher polynomial degrees are used. This is then used to

couple the space-time subdomain problems and to ensure (a multiscale) weak continuity of the

normal component of the mixed �nite element �ux variable over the space-time interfaces. This

setting allows for high �exibility with individual discretizations of each space-time subdomain

Ωi × (0, T], and in particular for local time stepping, individually in each space-time subdomain

Ωi × (0, T]. Moreover, space-time parallelization can be achieved, leading to solution of discrete

problems on individual space-time subdomains Ωi×(0, T], exchanging space-time boundary data

through transmission conditions.

Remaining part of the chapter is organized as follows. In Section 4.2, we describe the

model problem and basic notation. Our space-time multiscale mortar discretization is introduced

in Section 4.3, and we prove its existence, uniqueness, and stability with respect to data in

Section 4.4. Section 4.5 then derives a priori error estimates. We rewrite equivalently our method

under a form of a space-time interface problem for the mortar variable in Section 4.6, which in

particular allows for the space-time parallelization. We �nally present numerical illustrations in

Section 4.7. Future works may include as well as deriving a posteriori error estimates, possibly

building upon the ideas from [86,87,102].

99

4.2 Model Problem and Space-Time Domain Decomposition Formulation

4.2.1 Model problem

We consider a parabolic partial di�erential equation in a mixed form, modeling single phase

�ow in porous media. Let Ω ⊂ Rd, d = 2, 3, be a spatial polytopal domain with Lipschitz

boundary and let (0, T] be a time interval. The governing equations are

u = −K∇p, ∂p

∂t
+∇ · u = q in Ω× (0, T], (4.2.1a)

where p is the �uid pressure, u is the Darcy velocity, q is a source term, and K is a tensor

representing the rock permeability divided by the �uid viscosity. We assume for simplicity the

homogeneous Dirichlet boundary condition

p(x, t) = 0 on ∂Ω× (0, T] (4.2.1b)

and assign the initial pressure

p(x, 0) = p0(x) on Ω. (4.2.1c)

We assume that q ∈ L2(0, T ;L2(Ω)), p0 ∈ H1
0 (Ω), ∇ ·K∇p0 ∈ L2(Ω), and that K is spatially-

dependent, uniformly bounded, symmetric, and positive de�nite tensor, i.e., for constants 0 <

kmin ≤ kmax <∞,

∀ a.e. x ∈ Ω, kminζ
T ζ ≤ ζTK(x)ζ ≤ kmaxζ

T ζ ∀ζ ∈ Rd. (4.2.2)

Moreover, suppose a scaling such that the diameter of Ω and the �nal time T are of order one.

4.2.2 Space-time subdomains

Let Ω be a union of non-overlapping polytopal subdomains with Lipschitz boundary, Ω =

∪Ωi. Let Γi = ∂Ωi \ ∂Ω be the interior boundary of Ωi, let Γij = Γi ∩ Γj be the interface

between two adjacent subdomains Ωi and Ωj, and let Γ = ∪Γij be the union of all subdomain

interfaces. We also introduce the space-time counterparts ΩT = Ω × (0, T), ΩT
i = Ωi × (0, T),

ΓTi = Γi × (0, T), and ΓTij = Γij × (0, T). We will introduce space-time domain decomposition

discretizations based on ΩT
i .

100

4.2.3 Basic notation

We will utilize the following notation. For a domain O ⊂ Rd, the L2(O) inner product and

norm for scalar and vector-valued functions are denoted by (·, ·)O and ‖ · ‖O, respectively. The

norms and seminorms of the Sobolev spaces W k,p(O), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,O and

| · |k,p,O, respectively. The norms and seminorms of the Hilbert spaces Hk(O) are denoted by

‖ · ‖k,O and | · |k,O, respectively. For a section of a subdomain boundary S ⊂ Rd−1 we write 〈·, ·〉S
and ‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively. By M we

denote the vectorial counterpart of a generic scalar space M .

The above notation is extended to space-time domains as follows. For OT = O× (0, T) and

ST = S× (0, T), let (·, ·)OT =
∫ T

0
(·, ·)O and 〈·, ·〉ST =

∫ T
0
〈·, ·〉S. For space-time norms we use the

standard Bochner notation. For example, given a spatial norm ‖ · ‖V , we denote, for p > 0,

‖ · ‖Lp(0,T ;V) =

(∫ T

0

‖ · ‖pV
) 1

p

, ‖ · ‖L∞(0,T ;V) = ess sup ‖ · ‖V ,

with the usual extension for ‖ · ‖Wk,p(0,T ;V) and ‖ · ‖Hk(0,T ;V). We will also use the notation

‖ · ‖ST = ‖ · ‖L2(0,T ;L2(S)). Finally, we will use the space

H(div;O) =
{
v ∈ L2(O) : ∇ · v ∈ L2(O)

}
,

equipped with the norm

‖v‖div;O =
(
‖v‖2

O + ‖∇ · v‖2
O
) 1

2 .

4.2.4 Weak formulation

The weak formulation of problem (4.2.1) reads: �nd (u, p) : [0, T] 7→ H(div; Ω)×L2(Ω) such

that p(x, 0) = p0 and for a.e. t ∈ (0, T),

(K−1u,v)Ω − (p,∇ · v)Ω = 0 ∀v ∈ H(div; Ω), (4.2.3a)

(∂tp, w)Ω + (∇ · u, w)Ω = (q, w)Ω ∀w ∈ L2(Ω). (4.2.3b)

The following well-posedness result is rather standard and presented in, e.g., [112, Theorem 2.1].

Theorem 4.2.1 (Well-posedness). Problem (4.2.3) has a unique solution u ∈ L2(0, T ;H(div; Ω))∩

L∞(0, T ;L2(Ω)), p ∈ H1(0, T ;H1
0 (Ω)).

We note that in particular the inclusion p ∈ H1(0, T ;H1
0 (Ω)) follows from (4.2.3a), which

implies that for a.e. t ∈ (0, T), ∇p = −K−1u in a sense of distributions.

101

4.2.5 Domain decomposition weak formulation

We now give a domain decomposition weak formulation of (4.2.3). Introduce the subdomain

velocity and pressure spaces

Vi = H(div; Ωi), V =
⊕

Vi, Wi = L2(Ωi), W =
⊕

Wi = L2(Ω),

endowed with the norms

‖v‖Vi
= ‖v‖div;Ωi , ‖v‖V =

(∑
i

‖v‖2
Vi

) 1
2

, ‖w‖W = ‖w‖Ω.

We also introduce the following spatial bilinear forms, which will turn useful below:

ai(u,v) = (K−1u,v)Ωi , a(u,v) =
∑
i

ai(u,v), (4.2.4a)

bi(v, w) = −(∇ · v, w)Ωi , b(v, w) =
∑
i

bi(v, w), (4.2.4b)

bΓ(v, µ) =
∑
i

〈v · ni, µ〉Γi , (4.2.4c)

In addition, for any spatial bilinear form s(·, ·), let sT (·, ·) =

∫ T

0

s(·, ·).

Now, since p ∈ H1(0, T ;H1
0 (Ω)), we can consider the trace of the pressure p on the interfaces,

λ = p|Γ. Thus, integrating in time, it is easy to see that the solution (u, p) of (4.2.3) satis�es

aT (u,v) + bT (v, p) + bTΓ(v, λ) = 0 ∀v ∈ L2(0, T ;V), (4.2.5a)

(∂tp, w)ΩT − bT (u, w) = (q, w)ΩT ∀w ∈ L2(0, T ;W). (4.2.5b)

4.3 Space-Time Mixed Finite Element Method

We consider a space-time discretization of (4.2.5), motivated by [112]. It employs mortar

�nite elements to approximate the pressure trace λ from (4.2.5) and uses it as a Lagrange

multiplier to impose weakly the continuity of �ux across space-time interfaces.

102

⌦
j

t x1 x2 ⌦i ⌦j

1

t x1 x2 ⌦i ⌦j �ij

1

t x

t x1

x2

Figure 13: Non-matching space-time subdomain and mortar grids in two spatial dimensions.

4.3.1 Space-time grids and spaces

Let Th,i be a shape-regular partition of the subdomain Ωi into parallelepipeds or simplices

in the sense of [99]. We stress that this allows for grids that do not match along the interfaces

Γij between subdomains Ωi and Ωj. Similarly, let T ∆t
i : 0 = t0i < t1i < · · · < tNii = T be a

partition of the time interval (0, T) corresponding to subdomain Ωi; this means that we consider

di�erent time discretizations on di�erent subdomains. Let h = maxi maxE∈Th,i diamE and

∆t = maxi max1≤k≤Ni |tki − tk−1
i | be respectively the space and time mesh sizes. Composing Th,i

and T ∆t
i by tensor product results in a space-time partition

T ∆t
h,i = Th,i × T ∆t

i

of the space-time subdomain ΩT
i . An illustration is given in Figure 13, where yet a di�erent,

mortar space-time grid, is also shown in the middle.

For discretization in space, we consider any of the inf�sup stable mixed �nite element

spaces Vh,i × Wh,i ⊂ Vi × Wi such as the Raviart�Thomas (RT) or the Brezzi�Douglas�

Marini (BDM) spaces, see, e.g., [98]. For discretization in time, we will in turn utilize the

discontinuous Galerkin (DG) method, cf. [126], which is based on a discontinuous piecewise

polynomial approximation of the solution on the mesh T ∆t
i . Denote by V∆t

i = [W∆t
i]d and W∆t

i

the subdomain time discretizations of the velocity and pressure, respectively. Composing the

space and time discretizations

V∆t
h,i = Vh,i ×V∆t

i , W∆t
h,i = Wh,i ×W∆t

i

103

results in the space-time mixed �nite element spaces V∆t
h,i ×W∆t

h,i in each space-time subdomain

ΩT
i . We will also need the spatial variable only space

Wh =
⊕

Wh,i.

Let TH,ij be a �nite element partition of Γij, where H = maxi,j maxe∈TH,ij diam e, see

Figure 13, middle. The use of index H indicates a possibly coarser interface grid compared

to the subdomain grids, resulting in a multiscale approximation. Let T ∆T
ij : 0 = t0ij < t1ij <

· · · < t
Nij
ij = T be a partition of (0, T) corresponding to Γij, which may be di�erent from

(and again possibly coarser than) the time-partitions for the neighboring subdomains. Let

∆T = maxi,j max1≤k≤Nij |tkij − tk−1
ij |. Composing TH,ij and T ∆T

ij by tensor product gives a space-

time partition

T ∆T
H,ij = TH,ij × T∆T

ij

of the space-time interface ΓTij. Finally, let

Λ∆T
H,ij = ΛH,ij × Λ∆T

ij

be a space-time mortar �nite element space on T ∆T
H,ij consisting of continuous or discontinuous

piecewise polynomials in space and in time. We will also need the spatial variable only space

ΛH =
⊕

ΛH,ij.

Finally, the global space-time �nite element spaces are de�ned as

V∆t
h =

⊕
V∆t
h,i, W∆t

h =
⊕

W∆t
h,i , Λ∆T

H =
⊕

Λ∆T
H,ij. (4.3.1)

In particular, the Lagrange multiplier will be sought for in the mortar space Λ∆T
H . For the

purpose of the analysis, we also de�ne the space of velocities with space-time weakly continuous

normal components

V∆t
h,0 =

{
v ∈ V∆t

h : bΓ(v, µ) = 0 ∀µ ∈ Λ∆T
H

}
. (4.3.2)

The discrete velocity and pressure spaces inherit the norms ‖ · ‖V and ‖ · ‖W , respectively. The

mortar space is equipped with the spatial norm ‖µ‖ΛH = ‖µ‖L2(Γ).

104

4.3.2 Space-time multiscale mortar mixed �nite element method

For the DG time discretization, we introduce the notation for p∆t
h , w ∈ W∆t

h , see [126],∫ T

0

(∂̃tp
∆t
h , w)Ωi =

Ni∑
k=1

∫ tki

tk−1
i

(∂tp
∆t
h , w)Ωi +

Ni∑
k=1

([p∆t
h]k−1, w

+
k−1)Ωi

≡
∫ T

0

(∂̂tp
∆t
h , w)Ωi +

Ni∑
k=1

([p∆t
h]k−1, w

+
k−1)Ωi ,

(4.3.3)

where ∂̂t denotes the step-wise time derivative and [w]k = w+
k −w

−
k , with w

+
k = limt→tk,+i

w and

w−k = limt→tk,−i
w. We note that the last term for k = 1 is

(
(p∆t
h)+

0 − (p∆t
h)−0 , w

+
0

)
Ωi
. Here, (p∆t

h)+
0

is computed by the method, while (p∆t
h)−0 is determined by the initial condition. More precisely,

we will take as initial data (p∆t
h)−0 = Php0, where Ph is the L2-orthogonal projection onto Wh.

Remark 4.3.1 (Initial value). In what follows, we will tacitly assume that a function w ∈ W∆t
h

has an associated initial value w−0 , which will be de�ned if it is explicitly used.

The space-time multiscale mortar mixed �nite element method for approximating (4.2.5) is:

�nd u∆t
h ∈ V∆t

h , p∆t
h ∈ W∆t

h , and λ∆T
H ∈ Λ∆T

H such that (p∆t
h)−0 = Php0 and

a(u∆t
h ,v) + b(v, p∆t

h) + bΓ(v, λ∆T
H) = 0 ∀v ∈ V∆t

h , (4.3.4a)

(∂̃tp
∆t
h , w)ΩT − b(u∆t

h , w) = (q, w)ΩT ∀w ∈ W∆t
h , (4.3.4b)

bΓ(u∆t
h , µ) = 0 ∀µ ∈ Λ∆T

H , (4.3.4c)

where the obvious notation (∂̃tp
∆t
h , w)ΩT =

∑
i(∂̃tp

∆t
h , w)ΩTi

has been used.

The above method provides a highly general and �exible framework, allowing for di�erent

spatial and temporal discretizations in di�erent subdomains. We note that according to (4.3.4c),

continuity of the �ux is imposed weakly on the space-time interfaces ΓTij, requiring that the

jump in �ux is orthogonal to the space-time mortar space Λ∆T
H,ij. This formulation results in a

correct notion of mass conservation across interfaces for time-dependent domain decomposition

problems with non-matching grids in both space and time. In the case of discontinuous mortars,

(4.3.4c) implies that the total �ux across any space-time interface cell e × (tk−1
ij , tkij), e ∈ TH,ij,

is continuous.

105

4.4 Well-Posedness Analysis

In this section we analyze the existence, uniqueness, and stability of the solution to (4.3.4).

4.4.1 Space-time interpolants

We will make use of several space-time interpolants. Let Ph,i be the L2-orthogonal projection

onto Wh,i and let P∆t
i be the L2-orthogonal projection onto W∆t

i . We then de�ne the L2-

orthogonal projection in space and time on subdomain Ωi by

P∆t
h,i = Ph,i × P∆t

i : L2(0, T ;L2(Ωi))→ W∆t
h,i

and globally by

P∆t
h : L2(0, T ;L2(Ω))→ W∆t

h , P∆t
h |Ωi = P∆t

h,i .

Setting P∆t|Ωi = P∆t
i , we will also write P∆t

h = Ph×P∆t. Since ∇ ·Vh,i = Wh,i, we have, for all

ϕ ∈ L2(0, T ;L2(Ωi)),

(P∆t
h ϕ− ϕ,∇ · v)ΩTi

= 0 ∀v ∈ V∆t
h,i. (4.4.1)

For ε > 0, denote Hε(div; Ωi) := Hε(Ωi) ∩ H(div; Ωi). Let Πh,i : Hε(div; Ωi) → Vh,i be the

canonical mixed interpolant [98] and let

Π∆t
h,i = Πh,i × P∆t

i : L2(0, T ;Hε(div; Ωi))→ V∆t
h,i.

In particular, this space-time interpolant satis�es, for all ψ ∈ L2(0, T ;Hε(div; Ωi)),

(∇ · (Π∆t
h,iψ −ψ), w)ΩTi

= 0 ∀w ∈ W∆t
h,i , (4.4.2a)

〈(Π∆t
h,iψ −ψ) · ni,v · ni〉∂ΩTi

= 0 ∀v ∈ V∆t
h,i, (4.4.2b)

‖Π∆t
h,iψ‖L2(0,T ;Vi) ≤ C(‖ψ‖L2(0,T ;Hε(Ωi)) + ‖∇ ·ψ‖L2(0,T ;L2(Ωi))). (4.4.2c)

Let Qh,i : L2(∂Ωi)→ Vh,i · ni be the L2-orthogonal projection and let

Q∆t
h,i = Qh,i × P∆t

i : L2(0, T ;L2(∂Ωi))→ V∆t
h,i · ni. (4.4.3)

Finally, let PH,Γij : L2(Γij)→ ΛH,ij and P∆T
ij : L2(0, T)→ Λ∆T

ij be the L2-orthogonal projections

and let

P∆T
H,Γij

= PH,Γij × P∆T
ij : L2(0, T ;L2(Γij))→ Λ∆T

H,ij, P∆T
H,Γ|Γij = P∆T

H,Γij
(4.4.4)

be the mortar space-time L2-orthogonal projection.

106

4.4.2 Assumptions on the mortar grids

We make the following assumptions on the mortar grids, which are needed to guarantee that

the method (4.3.4) is well posed: there exists a positive constant C independent of the spatial

mesh sizes h and H such that

∀µ ∈ ΛH , ∀ i, j, ‖µ‖Γij ≤ C(‖Qh,i µ‖Γij + ‖Qh,j µ‖Γij), (4.4.5a)

∀ i, j, Λ∆T
ij ⊂ W∆t

i ∩W∆t
j . (4.4.5b)

The spatial mortar assumption (4.4.5a) is the same as the assumption made in [89,90]. Note

that it is in particular satis�ed with C = 1
2
when TH,ij is a coarsening of both Th,i and Th,j on the

interface Γij and the space ΛH,ij consists of discontinuous piecewise polynomials contained in

Vh,i ·ni and Vh,j ·nj on Γij. In general, it requires that the mortar space ΛH is su�ciently coarse,

so that it is controlled by the normal traces of the neighboring subdomain velocity spaces.

The temporal mortar assumption (4.4.5b) similarly provides control of the mortar time

discretization by the subdomain time discretizations. It requires that each subdomain time

discretization be a re�nement of the mortar time discretization. We also note that (4.4.5a)

and (4.4.5b) imply

∀µ ∈ Λ∆T
H ,∀ i, j, ‖µ‖L2(0,T ;L2(Γij)) ≤ C(‖Q∆t

h,i µ‖L2(0,T ;L2(Γij)) + ‖Q∆t
h,j µ‖L2(0,T ;L2(Γij))) (4.4.6)

for a constant C independent of h, H, ∆t, and ∆T .

4.4.3 Discrete inf�sup conditions

Recall the form b(·, ·) from (4.2.4b). Under the above assumptions on the mortar grids, the

weakly continuous velocity space V∆t
h,0 of (4.3.2) satis�es the following inf�sup condition.

Lemma 4.4.1 (Discrete divergence inf�sup condition on V∆t
h,0). Let (4.4.5) hold. Then there

exists a constant β > 0, independent of h, H, ∆t, and ∆T , such that

∀w ∈ W∆t
h , sup

0 6=v∈V∆t
h,0

b(v, w)

‖v‖L2(0,T ;V)

≥ β‖w‖L2(0,T ;L2(Ω)). (4.4.7)

107

Proof. Let Vh,0 = {v ∈ Vh :
∑

i〈v · ni, µ〉Γi = 0 ∀µ ∈ ΛH}. It is shown in [89, 90] that if

(4.4.5a) holds, then there is an interpolant Πh,0 : H
1
2

+ε(div; Ω) → Vh,0 such that, for all ψ ∈

H
1
2

+ε(div; Ω), ∑
i

(∇ · (Πh,0ψ −ψ), w)Ωi = 0 ∀w ∈ Wh, (4.4.8a)

‖Πh,0ψ‖V ≤ C(‖ψ‖
H

1
2 +ε(Ω)

+ ‖∇ ·ψ‖L2(Ω)), (4.4.8b)

for a constant C independent of h and H. De�ne

Π∆t
h,0 = Πh,0 × P∆t.

We claim that Π∆t
h,0 : L2(0, T ;H

1
2

+ε(div; Ω)) → V∆t
h,0. To see this, note that, for all functions

ψ ∈ L2(0, T ;H
1
2

+ε(div; Ω)), clearly Π∆t
h,0ψ ∈ V∆t

h . Thus (4.4.5b) implies

bΓ(Π∆t
h,0ψ, µ) =

∑
i

∫ T

0

〈Π∆t
h,0ψ · ni, µ〉Γi =

∑
i

∫ T

0

〈Πh,0ψ · ni, µ〉Γi = 0 ∀µ ∈ Λ∆T
H ,

i.e., indeed Π∆t
h,0ψ ∈ V∆t

h,0 by virtue of (4.3.2). Moreover, (4.4.8a) and (4.4.8b) imply∑
i

(∇ · (Π∆t
h,0ψ −ψ), w)ΩTi

= 0 ∀w ∈ W∆t
h , (4.4.9a)

‖Π∆t
h,0ψ‖L2(0,T ;V) ≤ C(‖ψ‖

L2(0,T ;H
1
2 +ε(Ω))

+ ‖∇ ·ψ‖L2(0,T ;L2(Ω))). (4.4.9b)

The inf�sup condition (4.4.7) then follows from the classical continuous inf�sup condition for

b(·, ·), the existence of the interpolant Π∆t
h,0, and Fortin's lemma [98].

To control the mortar variable, we need the following mortar inf�sup condition.

Lemma 4.4.2 (Discrete mortar inf�sup condition on V∆t
h,0). Let (4.4.6) hold. Then there exists

a constant βΓ > 0, independent of h, H, ∆t, and ∆T , such that

∀µ ∈ Λ∆T
H , sup

06=v∈V∆t
h

bΓ(v, µ)

‖v‖L2(0,T ;V)

≥ βΓ‖µ‖L2(0,T ;L2(Γ)). (4.4.10)

108

Proof. Let µ ∈ Λ∆T
H be given. In the following we assume that µ is extended by zero on ∂Ω. We

consider a set of auxiliary subdomain problems. Let ϕi(x, t) be the solution for each t ∈ (0, T]

of the problem

∇ · ∇ϕi(·, t) = (Q∆t
h,i µ)(·, t) in Ωi, (4.4.11a)

∇ϕi(·, t) · ni = (Q∆t
h,i µ)(·, t) on ∂Ωi, (4.4.11b)

whereQ∆t
h,i µ denotes the mean value ofQ∆t

h,i µ on ∂Ωi. Let ψi = ∇ϕi. Elliptic regularity [111,119]

implies that for all t ∈ (0, T],

‖ψi‖ 1
2
,Ωi

+ ‖∇ ·ψi‖Ωi ≤ C‖Q∆t
h,i µ‖∂Ωi . (4.4.12)

Let vi = Π∆t
h,iψi ∈ V∆t

h,i. Note that (4.4.2b) together with (4.4.3) and (4.4.11b) imply that

vi · ni = Q∆t
h,i µ on ∂Ωi. Thus, using de�nition (4.2.4c) of bΓ, the fact that µ is extended by zero

on ∂Ωi \ Γi, and de�nition (4.4.3) of the projection Q∆t
h,i, we have

bΓ(v, µ) =
∑
i

〈Π∆t
h,iψi · ni, µ〉ΓTi =

∑
i

〈Π∆t
h,iψi · ni, µ〉∂ΩTi

=
∑
i

〈Π∆t
h,iψi · ni,Q∆t

h,i µ〉∂ΩTi

=
∑
i

‖Q∆t
h,i µ‖2

L2(0,T ;L2(∂Ωi))
≥ C

∑
i

‖µ‖2
L2(0,T ;L2(Γi))

,
(4.4.13)

where we used (4.4.6) in the inequality. On the other hand, (4.4.2c) with ε = 1
2
and (4.4.12),

along with the stabilty of L2-orthogonal projection Q∆t
h,i, imply

‖vi‖L2(0,T ;Vi) ≤ C‖µ‖L2(0,T ;L2(Γi)). (4.4.14)

The assertion of the lemma follows from combining (4.4.13) and (4.4.14).

109

4.4.4 Existence, uniqueness, and stability with respect to data

In the analysis we will utilize the following auxiliary result.

Lemma 4.4.3 (Summation in time). For any w ∈ W∆t
h and for all Ωi, there holds∫ T

0

(∂̃tw,w)Ωi =
1

2

(
‖w−Ni‖

2
Ωi
− ‖w−0 ‖2

Ωi

)
+

1

2

Ni∑
k=1

‖[w]k−1‖2
Ωi
. (4.4.15)

Proof. Using the de�nition (4.3.3) of ∂̃tw, we have∫ T

0

(∂̃tw,w)Ωi =

Ni∑
k=1

∫ tki

tk−1
i

1

2

∂

∂t
‖w‖2

Ωi
+

Ni∑
k=1

([w]k−1, w
+
k−1)Ωi

=
1

2

Ni∑
k=1

(
‖w−k ‖

2
Ωi
− ‖w+

k−1‖
2
Ωi

+ ‖w+
k−1‖

2
Ωi
− ‖w−k−1‖

2
Ωi

+ ‖w+
k−1 − w

−
k−1‖

2
Ωi

)
=

1

2

(
‖w−Ni‖

2
Ωi
− ‖w−0 ‖2

Ωi

)
+

1

2

Ni∑
k=1

‖w+
k−1 − w

−
k−1‖

2
Ωi
.

To simplify the presentation, we introduce the notation

‖ϕ‖2
DG =

∑
i

(
‖ϕ−Ni‖

2
Ωi

+

Ni∑
k=1

‖[ϕ]k−1‖2
Ωi

)
. (4.4.16)

Theorem 4.4.1 (Existence and uniqueness of the discrete solution, stability with respect to

data). Assume that conditions (4.4.5) hold. Then the space-time mortar method (4.3.4) has a

unique solution. Moreover, for some constant C > 0 independent of h, H, ∆t, and ∆T ,

‖p∆t
h ‖DG + ‖u∆t

h ‖L2(0,T ;L2(Ω)) + ‖p∆t
h ‖L2(0,T ;L2(Ω)) + ‖λ∆T

H ‖L2(0,T ;L2(Γ)) ≤ C(‖q‖L2(0,T ;L2(Ω)) + ‖p0‖Ω).

(4.4.17)

110

Proof. We begin with establishing the stability bound (4.4.17). Taking v = u∆t
h , w = p∆t

h ,

and µ = λ∆T
H in (4.3.4) and combining the equations, we obtain, using (4.4.15) and Young's

inequality,

1

2

∑
i

(
‖(p∆t

h)−Ni‖
2
Ωi

+

Ni∑
k=1

‖[p∆t
h]k−1‖2

Ωi

)
+ ‖K−

1
2u∆t

h ‖2
L2(0,T ;L2(Ω))

≤ ε

2
‖p∆t

h ‖2
L2(0,T ;L2(Ω)) +

1

2ε
‖q‖2

L2(0,T ;L2(Ω)) +
1

2
‖Php0‖2.

The inf�sup condition for the weakly continuous velocity (4.4.7) and (4.3.4a) imply

‖p∆t
h ‖L2(0,T ;L2(Ω)) ≤ C‖K−

1
2u∆t

h ‖L2(0,T ;L2(Ω)).

Furthermore, the mortar inf�sup condition (4.4.10) and (4.3.4a) imply

‖λ∆T
H ‖L2(0,T ;L2(Γ)) ≤ C(‖K−

1
2u∆t

h ‖L2(0,T ;L2(Ω)) + ‖p∆t
h ‖L2(0,T ;L2(Ω))).

Combining above three inequalities, taking ε su�ciently small, and using equation (4.2.2), we

obtain (4.4.17). The existence and uniqueness of a solution follows from (4.4.17) by taking q = 0

and p0 = 0.

Remark 4.4.1 (Control of divergence). Control on ‖∇ · u∆t
h ‖L2(0,T ;L2(Ωi)) could be obtained

following the approach in [94, Lemma 4.4]. It requires �rst obtaining bound on ‖∂̂tp∆t
h ‖L2(0,T ;L2(Ω))

by taking w = ∂̂tp
∆t
h in (4.3.4b) and using a time-di�erentiated version of (4.3.4a). Then a bound

on ‖∇ · u∆t
h ‖L2(0,T ;L2(Ωi)) would follow from (4.3.4b) by taking w|Ωi = ∇ · u∆t

h |Ωi. For sake of

space, we do not pursue this here.

4.5 A Priori Error Analysis

In this section we derive a priori error estimates for the solution of the space-time mortar

MFE method (4.3.4).

111

4.5.1 Approximation properties of the space-time interpolants

Assume that the spaces V∆t
h and W∆t

h from (4.3.1) contain respectively on each space-time

element polynomials of degree k and l in space and polynomials of degree q in time. Let Λ∆T
H

contain on each space-time mortar element polynomials of degree m in space and polynomials of

degree s in time. We have the following approximation properties for the space-time interpolants

P∆t
h and P∆T

H,Γ of Section 4.4.1 and Π∆t
h,0 of the proof of Lemma 4.4.1:

‖ψ − Π∆t
h,0ψ‖ΩT ≤ C

∑
i

‖ψ‖Hrq (0,T ;Hrk (Ωi))(h
rk + ∆trq)

+ C‖ψ‖
Hrq (0,T ;Hr̃k+ 1

2 (Ω))
(hr̃kH

1
2 + ∆trq),

0 < rk ≤ k + 1, 0 < r̃k ≤ k + 1, 0 ≤ rq ≤ q + 1, (4.5.1a)

‖ϕ− P∆t
h ϕ‖ΩTi

≤ C‖ϕ‖Hrq (0,T ;Hrl (Ωi))(h
rl + ∆trq), 0 ≤ rl ≤ l + 1, 0 ≤ rq ≤ q + 1, (4.5.1b)

‖ϕ− P∆T
H,Γ‖ΓTij

≤ C‖ϕ‖Hrs (0,T ;Hrm (Γij))(H
rm + ∆T rs), 0 ≤ rm ≤ m+ 1, 0 ≤ rs ≤ s+ 1.

(4.5.1c)

Bound (4.5.1a) follows from the approximation properties of Πh,0 obtained in [89, 90]. Bounds

(4.5.1b) and (4.5.1c) are standard approximation properties of the L2 projection [99].

In the analysis we will also use the following approximation property, which follows from the

stability of the L2 projection in L∞ [100]:

‖ϕ− P∆t
h ϕ‖L∞(0,T ;L2(Ωi)) ≤ C‖ϕ‖W rq,∞(0,T ;Hrl (Ωi))(h

rl + ∆trq), 0 ≤ rl ≤ l + 1, 0 ≤ rq ≤ q + 1.

(4.5.2)

We also recall the well-known discrete trace inequality, for all v ∈ Vh,i, ‖v · ni‖Γi ≤

Ch−
1
2‖v‖Ωi , which implies

∀v ∈ V∆t
h,i, ‖v · ni‖ΓTi

≤ Ch−
1
2‖v‖ΩTi

. (4.5.3)

112

4.5.2 A priori error estimate

We proceed with the error estimate for the space-time mortar MFE method (4.3.4).

Theorem 4.5.1 (A priori error estimate). Assume that conditions (4.4.5) hold and that the

solution to (4.2.5) is su�ciently smooth. Then there exists a constant C > 0 independent

of the mesh sizes h, H, ∆t, and ∆T , such that the solution to the space-time mortar MFE

method (4.3.4) satis�es

‖p− p∆t
h ‖DG + ‖u− u∆t

h ‖ΩT + ‖p− p∆t
h ‖ΩT + ‖λ− λ∆T

H ‖ΓT

≤ C
(∑

i

‖u‖Hrq (0,T ;Hrk (Ωi))(h
rk + ∆trq) + ‖u‖

Hrq (0,T ;Hr̃k+ 1
2 (Ω))

(hr̃kH
1
2 + ∆trq)

+
∑
i

‖p‖W rq,∞(0,T ;Hrl (Ωi))∆t
− 1

2 (hrl + ∆trq) +
∑
i,j

‖λ‖Hrs (0,T ;Hrm (Γij))h
− 1

2 (Hrm + ∆T rs)
)
,

0 < rk ≤ k + 1, 0 < r̃k ≤ k + 1, 0 ≤ rq ≤ q + 1, 0 ≤ rl ≤ l + 1,

0 ≤ rm ≤ m+ 1, 0 ≤ rs ≤ s+ 1.

(4.5.4)

Proof. For the purpose of the analysis, we consider the following equivalent formulation of (4.3.4)

in the space of weakly continuous velocitiesV∆t
h,0 given by (4.3.2): �nd u∆t

h,0 ∈ V∆t
h,0 and p

∆t
h ∈ W∆t

h

such that (p∆t
h,0)− = Php0 and

a(u∆t
h ,v) + b(v, p∆t

h) = 0 ∀v ∈ V∆t
h,0, (4.5.5a)

(∂̃tp
∆t
h , w)ΩT − b(u∆t

h , w) = (q, w)ΩT ∀w ∈ W∆t
h . (4.5.5b)

The fact that P∆T
H,Γ de�ned in (4.4.4) maps to Λ∆T

H and de�nition (4.3.2) imply that bΓ(v,P∆T
H,Γλ) =

0 for all v ∈ V∆t
h,0, where λ = p|Γ is the pressure trace from (4.2.5). Then, subtracting (4.5.5a)�

(4.5.5b) from (4.2.5a)�(4.2.5b), we obtain the error equations

a(u− u∆t
h ,v) + b(v,P∆t

h p− p∆t
h) + bΓ(v, λ− P∆T

H,Γλ) = 0 ∀v ∈ V∆t
h,0, (4.5.6a)(

∂tp− ∂̃tp∆t
h , w

)
ΩT
− b(Π∆t

h,0u− u∆t
h , w) = 0 ∀w ∈ W∆t

h , (4.5.6b)

where we have also used (4.4.1) and (4.4.9a) to incorporate the interpolants P∆t
h and Π∆t

h,0. We

take v = Π∆t
h,0u− u∆t

h and w = P∆t
h p− p∆t

h and sum the two equations, resulting in

a(Π∆t
h,0u− u∆t

h ,Π
∆t
h,0u− u∆t

h) +
(
∂tp− ∂̃tp∆t

h ,P∆t
h p− p∆t

h

)
ΩT

= a(Π∆t
h,0u− u,Π∆t

h,0u− u∆t
h)− bΓ(Π∆t

h,0u− u∆t
h , λ− P∆T

H,Γλ).

(4.5.7)

113

For the second term on the left of (4.5.7), restricted to a subdomain, we write, using (4.3.3),

∫ T

0

(
∂tp− ∂̃tp∆t

h ,P∆t
h p− p∆t

h

)
Ωi

=

Ni∑
k=1

∫ tki

tk−1
i

(
∂t(p− p∆t

h),P∆t
h p− p∆t

h

)
Ωi
−

Ni∑
k=1

(
[p∆t
h]k−1, (P∆t

h p− p∆t
h)+

k−1

)
Ωi

=: I1 + I2.

(4.5.8)

For the �rst term, we develop

I1 = −
Ni∑
k=1

∫ tki

tk−1
i

(
p− p∆t

h , ∂t(P∆t
h p− p∆t

h)
)

Ωi
+

Ni∑
k=1

(p− p∆t
h ,P∆t

h p− p∆t
h)Ωi

∣∣∣tki
tk−1
i

= −
Ni∑
k=1

∫ tki

tk−1
i

(
P∆t
h p− p∆t

h , ∂t(P∆t
h p− p∆t

h)
)

Ωi
+

Ni∑
k=1

(p− p∆t
h ,P∆t

h p− p∆t
h)Ωi

∣∣∣tki
tk−1
i

=

Ni∑
k=1

∫ tki

tk−1
i

(
∂t(P∆t

h p− p∆t
h),P∆t

h p− p∆t
h

)
Ωi

+

Ni∑
k=1

(p− P∆t
h p,P∆t

h p− p∆t
h)Ωi

∣∣∣tki
tk−1
i

=: I1,1 + I1,2,

where we used integration by parts in the �rst and third equalities and the orthogonality property

of P∆t
h in the second equality. The term I1,2 will be combined with I2. To this end, we use the

following algebraic manipulations, for sequences {α±k } and {β
±
k }:

Ni∑
k=1

αβ
∣∣∣tki
tk−1
i

=

Ni∑
k=1

(α−k β
−
k − α

+
k−1β

+
k−1) =

Ni∑
k=1

(α−k β
−
k − [α]k−1β

+
k−1 − α

−
k−1β

+
k−1)

=

Ni∑
k=1

(α−k β
−
k − [α]k−1β

+
k−1 − α

−
k−1[β]k−1 − α−k−1β

−
k−1)

= α−Niβ
−
Ni
−

Ni∑
k=1

([α]k−1β
+
k−1 + α−k−1[β]k−1)− α−0 β−0 .

In order to apply this formula for I1,2, we need to make sure that the quantities α−0 and β−0 are

de�ned. Recall that (p∆t
h)−0 = Php0. We set p−0 = p0 and (P∆t

h p)−0 = Php0. Then, we have

I1,2 = ((p− P∆t
h p)−Ni , (P

∆t
h p− p∆t

h)−Ni)Ωi −
Ni∑
k=1

([p− P∆t
h p]k−1, (P∆t

h p− p∆t
h)+

k−1)Ωi

−
Ni∑
k=1

((p− P∆t
h p)−k−1, [P

∆t
h p− p∆t

h]k−1)Ωi .

(4.5.9)

114

Combining (4.5.8)�(4.5.9), and using that [p]k−1 = 0, we obtain∫ T

0

(
∂tp− ∂̃tp∆t

h ,P∆t
h p− p∆t

h

)
Ωi

=

Ni∑
k=1

∫ tki

tk−1
i

(
∂t(P∆t

h p− p∆t
h),P∆t

h p− p∆t
h

)
Ωi

+

Ni∑
k=1

([P∆t
h p− p∆t

h]k−1, (P∆t
h p− p∆t

h)+
k−1)Ωi

+ ((p− P∆t
h p)−Ni , (P

∆t
h p− p∆t

h)−Ni)Ωi −
Ni∑
k=1

((p− P∆t
h p)−k−1, [P

∆t
h p− p∆t

h]k−1)Ωi

=
1

2
‖(P∆t

h p− p∆t
h)−Ni‖

2
Ωi

+
1

2

Ni∑
k=1

‖[P∆t
h p− p∆t

h]k−1‖2
Ωi

+ ((p− P∆t
h p)−Ni , (P

∆t
h p− p∆t

h)−Ni)Ωi −
Ni∑
k=1

((p− P∆t
h p)−k−1, [P

∆t
h p− p∆t

h]k−1)Ωi ,

(4.5.10)

where, recalling notation (4.3.3), we have used (4.4.15) for the second equality.

Now, combining (4.5.7) and (4.5.10), and using notation (4.4.16) together with the Cauchy�

Schwarz and Young's inequalities, we obtain,

‖K−
1
2 (Π∆t

h,0u− u∆t
h)‖2

ΩT +
1

2
‖P∆t

h p− p∆t
h ‖2

DG

≤ ‖K−
1
2 (Π∆t

h,0u− u)‖ΩT ‖K−
1
2 (Π∆t

h,0u− u∆t
h)‖ΩT +

∑
i

‖(Π∆t
h,0u− u∆t

h) · ni‖ΓTi
‖λ− P∆T

H,Γλ‖ΓTi

+
∑
i

(
‖(p− P∆t

h p)−Ni‖Ωi‖(P∆t
h p− p∆t

h)−Ni‖Ωi +

Ni∑
k=1

‖(p− P∆t
h p)−k−1‖Ωi‖[P∆t

h p− p∆t
h]k−1‖Ωi

)
≤ ε

(
‖Π∆t

h,0u− u∆t
h ‖2

ΩT + ‖P∆t
h p− p∆t

h ‖2
DG

)
+ Cε

(
‖Π∆t

h,0u− u‖2
ΩT + h−1‖λ− P∆T

H,Γλ‖2
ΓT +

∑
i

Ni∑
k=1

‖(p− P∆t
h p)−k−1‖

2
Ωi

)
,

where we used the trace inequality (4.5.3) in the last estimate. Taking ε su�ciently small and

using (4.2.2) gives

‖Π∆t
h,0u− u∆t

h ‖ΩT + ‖P∆t
h p− p∆t

h ‖DG

≤ C

(
‖Π∆t

h,0u− u‖ΩT + h−
1
2‖λ− P∆T

H,Γλ‖ΓT + ∆t−
1
2

∑
i

‖p− P∆t
h p‖L∞(0,T ;L2(Ωi))

)
.

(4.5.11)

115

Next, the inf�sup condition for the weakly continuous velocity (4.4.7) and (4.5.6a) imply,

using (4.5.3),

‖P∆t
h p− p∆t

h ‖ΩT ≤ C
(
‖u− u∆t

h ‖ΩT + h−
1
2‖λ− P∆T

H,Γλ‖ΓT

)
. (4.5.12)

Finally, to obtain a bound on λ∆T
H , we subtract (4.3.4a) from (4.2.5a), to obtain the error equation

a(u− u∆t
h ,v) + b(v, p− p∆t

h) + bΓ(v,P∆T
H,Γλ− λ∆T

H) = bΓ(v,P∆T
H,Γλ− λ) ∀v ∈ V∆t

h . (4.5.13)

The mortar inf�sup condition (4.4.10) and (4.5.13) imply, using (4.5.3),

‖P∆T
H,Γλ− λ∆T

H ‖ΓT ≤ C
(
‖u− u∆t

h ‖ΩT + ‖p− p∆t
h ‖ΩT + h−

1
2‖λ− P∆T

H,Γλ‖ΓT

)
. (4.5.14)

The assertion of the theorem follows from combining (4.5.11), (4.5.12), and (4.5.14) and using

the triangle inequality and the approximation bounds (4.5.1)�(4.5.2).

4.5.3 Comments

Remark 4.5.1 (The factor h−
1
2 and appropriate choice of the polynomial degrees m and

s). The term h−
1
2 (Hrm + ∆T rs) in the error bound appears due the use of the discrete trace

inequality (4.5.3) to control the consistency error bΓ(Π∆t
h,0u− u∆t

h , λ−P∆T
H,Γλ). This term can be

made comparable to the other error terms in (4.5.4) by choosing m and s su�ciently large.

Alternatively, this term can be improved if a bound on ‖∇ · (u − u∆t
h)‖ΩTi

is available. In

particular, using a suitable interpolant P̃∆T
H,Γ in the continuous subspace of Λ∆T

H that can be

extended continuously by zero to ∂Ω, we have for a.e. t ∈ (0, T),

〈(Π∆t
h,0u− u∆t

h) · ni, λ− P̃∆T
H,Γλ〉∂Ωi ≤ ‖(Π∆t

h,0u− u∆t
h) · ni‖H− 1

2 (∂Ωi)
‖λ− P̃∆T

H,Γλ‖H 1
2 (∂Ωi)

≤ C‖Π∆t
h,0u− u∆t

h ‖div;Ωi‖λ− P̃∆T
H,Γλ‖H 1

2 (∂Ωi)
,

thus avoiding the h−
1
2 factor. We refer the reader to [90] for further details. Since we do not

bound ‖∇ · (u− u∆t
h)‖ΩTi

, we do not pursue this approach.

116

4.6 Reduction To An Interface Problem

In this section we combine the time-dependent Steklov�Poincaré operator approach from [112]

with the mortar domain decomposition algorithm from [89,90] to reduce the global problem (4.3.4)

to a space-time interface problem.

4.6.1 Decomposition of the solution

Consider a decomposition of the solution to (4.3.4) in the form

u∆t
h = u∆t,∗

h (λ∆T
H) + u∆t

h , p∆t
h = p∆t,∗

h (λ∆T
H) + p∆t

h . (4.6.1)

Here, u∆t
h ∈ V∆t

h , p∆t
h ∈ W∆t

h are such that for each ΩT
i , (u∆t

h |ΩTi ∈ V∆t
h,i, p

∆t
h |ΩTi ∈ W∆t

h,i) is

the solution to the space-time subdomain problem in ΩT
i with zero Dirichlet data on the space-

time interfaces and the prescribed source term, initial data, and boundary data on the external

boundary:

ai(u
∆t
h ,v) + bi(v, p

∆t
h) = 0 ∀v ∈ V∆t

h,i (4.6.2a)

(∂̃tp
∆t
h , w)ΩTi

− bi(u∆t
h , w) = (q, w)ΩTi

∀w ∈ W∆t
h,i . (4.6.2b)

Furthermore, for a given µ ∈ Λ∆T
H , u∆t,∗

h (µ) ∈ V∆t
h , p∆t,∗

h (µ) ∈ W∆t
h are such that for each ΩT

i ,

(u∆t,∗
h (µ)|ΩTi ∈ V∆t

h,i, p
∆t,∗
h (µ)|ΩTi ∈ W

∆t
h,i) is the solution to the space-time subdomain problem in

ΩT
i with Dirichlet data µ on the space-time interfaces and zero source term, initial data, and

boundary data on the external boundary:

ai(u
∆t,∗
h (µ),v) + bi(v, p

∆t,∗
h (µ)) = −〈v · ni, µ〉ΓTi ∀v ∈ V∆t

h,i, (4.6.3a)

(∂̃tp
∆t,∗
h (µ), w)ΩTi

− bi(u∆t,∗
h (µ), w) = 0 ∀w ∈ W∆t

h,i . (4.6.3b)

Note that both (4.6.2) and (4.6.3) are posed in the individual space-time subdomains ΩT
i and can

thus be solved in parallel (on the entire space-time subdomains ΩT
i , without any synchronization

on time steps). It is easy to check that (4.3.4) is equivalent to solving the space-time interface

problem: �nd λ∆T
H ∈ Λ∆T

H such that

−bΓ(u∆t,∗
h (λ∆T

H), µ) = bΓ(u∆t
h , µ) ∀µ ∈ Λ∆T

H , (4.6.4)

and obtaining u∆t
h and p∆t

h from (4.6.1)�(4.6.3).

117

4.6.2 Space-time Steklov�Poincaré operator

The above problem can be written in an operator form: �nd λ∆T
H ∈ Λ∆T

H such that

S λ∆T
H = g, (4.6.5)

where S : Λ∆T
H → Λ∆T

H is the space-time Steklov�Poincaré operator de�ned as

〈Sλ, µ〉ΓT =
∑
i

〈Siλ, µ〉ΓTi , 〈Siλ, µ〉ΓTi = −〈u∆t,∗
h (λ) · ni, µ〉ΓTi ∀λ, µ ∈ Λ∆T

H , (4.6.6)

and g ∈ Λ∆T
H is de�ned as 〈g, µ〉ΓT = bΓ(u∆t

h , µ)∀µ ∈ Λ∆T
H .

Lemma 4.6.1 (Space-time Steklov�Poincaré operator). Assume that conditions (4.4.5) hold.

Then the operator S de�ned in (4.6.6) is positive de�nite.

Proof. For λ, µ ∈ Λ∆T
H , consider (4.6.3a) with data µ and test function v = u∆t,∗

h (λ). This

implies, using (4.6.6),

〈Sλ, µ〉ΓT = a(u∆t,∗
h (µ),u∆t,∗

h (λ)) + b(u∆t,∗
h (λ), p∆t,∗

h (µ))

= a(u∆t,∗
h (µ),u∆t,∗

h (λ)) + (∂̃tp
∆t,∗
h (λ), p∆t,∗

h (µ))ΩT ,
(4.6.7)

where we have used (4.6.3b) with data λ and test function p∆t,∗
h (µ) in the second equality.

Lemma 4.4.3 together with p∆t,∗
h (µ)(x, 0) = 0 (recall that zero initial data is supposed in (4.6.3))

imply that 〈Sµ, µ〉ΓT ≥ 0 for all µ ∈ Λ∆T
H . Moreover, assume that 〈Sµ, µ〉ΓT = 0. Then

u∆t,∗
h (µ) = 0. The inf�sup condition for the weakly continuous velocity (4.4.7) and (4.6.3a)

imply p∆t,∗
h (µ) = 0. Then the mortar inf�sup condition (4.4.10) and (4.6.3a) imply µ = 0.

Due to Lemma 4.6.1, GMRES can be employed to solve the interface problem (4.6.5). On

each GMRES iteration, the dominant computational cost is the evaluation of the action of

S, which requires solving space-time problems with prescribed Dirichlet interface data in each

individual space-time subdomain Ωi × (0, T]. The following result can be used to provide a

bound on the number of GMRES iterations.

Theorem 4.6.1 (Spectral bound). Assume that conditions (4.4.5) hold. Then there exist

positive constants C0 and C1 independent of the mesh sizes h, H, ∆t, and ∆T , such that

∀µ ∈ Λ∆T
H , C0‖µ‖2

ΓT ≤ 〈Sµ, µ〉ΓT ≤ C1h
−1‖µ‖2

ΓT . (4.6.8)

118

Proof. Using (4.6.6), the Cauchy�Schwarz inequality, and (4.5.3), we obtain

〈Siµ, µ〉ΓTi ≤ ‖u
∆t,∗
h (µ) · ni‖ΓTi

‖µ‖ΓTi
≤ Ch−

1
2‖u∆t,∗

h (µ)‖ΩTi
‖µ‖ΓTi

≤ Ch−
1
2 〈Siµ, µ〉

1
2

ΓTi
‖µ‖ΓTi

,

where we used (4.6.7), also valid on each ΩT
i , in the last inequality. This implies the upper

bound in (4.6.8).

To prove the lower bound in (4.6.8), we consider the set of auxiliary subdomain problems

(4.4.11) with data µ. Let vi = Π∆t
h,iψi and recall that vi ·ni = Q∆t

h,i µ. Using (4.4.6) and (4.6.3a),

we have

‖µ‖2
ΓT ≤ C

∑
i

〈Q∆t
h,i µ,Q∆t

h,i µ〉ΓTi = C
∑
i

〈Q∆t
h,i µ, µ〉ΓTi = C

∑
i

〈vi · ni, µ〉ΓTi ,

= −C
∑
i

(
ai(u

∆t,∗
h (µ),vi) + bi(vi, p

∆t,∗
h (µ))

)
≤ C

∑
i

(
‖u∆t,∗

h (µ)‖2
ΩTi

+ ‖p∆t,∗
h (µ)‖2

ΩTi

) 1
2 ‖vi‖L2(0,T ;Vi)

≤ C

{∑
i

‖u∆t,∗
h (µ)‖2

ΩTi

} 1
2
{∑

i

‖µ‖2
ΓTi

} 1
2

≤ C〈Sµ, µ〉
1
2

ΓT
‖µ‖ΓT .

In the next to last inequality above, we used the Cauchy�Schwarz inequality together with the

inf�sup condition (4.4.7) and (4.6.3a) to bound ‖p∆t,∗
h (µ)‖ΩT and the elliptic regularity (4.4.14)

to bound ‖vi‖L2(0,T ;Vi). In the last inequality we used (4.6.7). This concludes the proof.

4.6.3 GMRES convergence through the �eld-of-values estimates

Theorem 4.6.1 leads to convergence estimates for solving the interface problem (4.6.5) with

GMRES. In [101, Theorem 3.3], a bound is shown for the k-th residual rk of the generalized

conjugate residual method for solving a system with a positive de�nite matrix S ∈ Rn×n, which

also applies to GMRES. It can be stated in terms of angle β ∈ [0, π/2), see [95]:

‖rk‖ ≤ sink(β)‖r0‖, where cos(β) =
λmin((S + ST)/2)

‖S‖
, (4.6.9)

119

where ‖ · ‖ denotes the Euclidean vector norm and the induced matrix norm. The quantities

in (4.6.9) can be interpreted in terms of the �eld-of-values of S, de�ned as

W (S) = {ζTS ζ : ζ ∈ Cn, ‖ζ‖ = 1}.

It is known (see [114, Chapter 15]) that W (S) is a compact and convex set in the complex

plane that contains (but is usually much larger than) the eigenvalues of S. Because S is positive

de�nite, 0 6∈ W (S), and because S is real, the smallest eigenvalue of the symmetric part of

S is actually the distance from 0 to W (S), so that the angle β can be improved to, see [95]

or [110, Theorem 2.2.2],

cos(β) =
dist(0,W (S))

‖S‖
.

The above bound, together with inequalities (4.6.8) obtained in Theorem 4.6.1, imply that the

reduction in the k-th GMRES residual for solving the interface problem (4.6.5) is bounded by

‖rk‖ ≤
(√

1− (C0/C1)2h2
)k
‖r0‖. (4.6.10)

A similar inequality, allowing for an explicit preconditioning matrix, has been obtained in [125].

4.7 Numerical Results

In this section, we present several numerical results obtained from implementation of the

space-time mortar method developed in Section 4.3.2, con�rming the convergence rate and

illustrating other theoretical results obtained in the previous sections.

In all the examples, we take the mixed �nite element spaces Vh,i × Wh,i on the space

subdomain Ωi to be the stable RT 0 ×Q0 (i.e., k = l = 0) on a quadrilateral mesh, as discussed

in [98]. Combining this with the lowest-order DG (backward Euler, q = 0) for time discretization

on the mesh T ∆t
i gives us a space-time mixed �nite element space V∆t

h,i×W∆t
h,i in ΩT

i as detailed in

Section 4.3.1. Depending on the mortar space-polynomial degree m, we have implemented two

di�erent mortar �nite element spaces on the space-time interface mesh T ∆T
H,ij, with ∆T suitably

chosen as a function of ∆t. These are linear mortars Λ∆T
H,ij,1(m = s = 1) and quadratic mortars

Λ∆t
H,ij,2(m = s = 2) which are Q1 and Q2 respectively.

120

For solving the interface problem identi�ed in Section 4.6.2, we have implemented the

GMRES algorithm with identity preconditioner. Adding a preconditioner to the iterative solver

which could signi�cantly reduce the number of iterations and its theoretical analysis could be

included in a future project.

All the numerical examples are implemented using the deal.II �nite element package [91,92].

4.7.1 Example 1: convergence test

In this example, we solve the parabolic problem (4.2.1) in two spatial dimensions with a

known solution to verify the accuracy of the space-time mortar method. We also observe how

the number of iterations required for the convergence of GMRES solver is in accordance with the

theory discussed. In addition, we also compare the accuracy and computational cost of using

discontinuous linear vs quadratic mortar spaces. Finally, we present the computed solutions

as 3-dimensional space-time plots to visualize how the weak continuity is enforced across the

subdomain interfaces and how continuity is preserved in all three directions. Note that the

z−axis corresponds to direction in time, t.

We use the known pressure function p(x, y, t) = sin(8t) sin(11x) cos(11y − π
4
) along with

permeability K = I2×2 to manufacture the right-hand side q in (4.2.1) and impose a natural

Dirichlet boundary condition on a unit square domain Ω = (0, 1)2. The problem is solved over

the time interval (0, 0.5] which gives ΩT = (0, 1)2 × (0, 0.5].

We partition the space domain, Ω, into four identical squares Ωi and correspondingly ΩT into

four space-time subdomains ΩT
i , i = 1, 2, 3, 4.We start with an initial grid for each ΩT

i and ΓT and

re�ne it successively 4 times to test the convergence rate of the solutions with respect to the actual

known solution. The subdomains ΩT
i maintain a checkerboard non-matching mesh structure with

1
h1

: 1
h2

: 1
h3

: 1
h4

= 1
t1

: 1
t2

: 1
t3

: 1
t4

= 3 : 2 : 4 : 3 throughout the re�nement cycles (see Table 19).

In the case of linear mortars, we employ H = 2h and ∆T = 2∆t and halve the mesh sizes on

each re�nement cycle. For quadratic mortars, we start with H : h = ∆T : ∆t = 2 : 1 and re�ne

the mortar mesh only every other time to maintain H =
√

2h and ∆T =
√

2∆t. We expect the

coarser mesh for ΓT in the quadratic mortar case to be compensated by the higher degree of

quadratic mortar space, Λ∆t
H,ij,2. More details on the mesh re�nement and number of degrees of

freedom of spaces RT 0 ×Q0 on Ωi and ΓT is given in Table 19.

121

Table 19: Example 1, mesh size and #DoFs

Ref. ΩT
1 ΩT

2 ΩT
3 ΩT

4 ΓT (m = 1) ΓT (m = 2)

No. 1
h1

1
∆t1

#DoF
1
h2

1
∆t2

#DoF
1
h3

1
∆t3

#DoF
1
h4

1
∆t4

#DoF
1
H

1
∆T

#DoF
1
H

1
∆T

#DoF

0 3 6 33 2 4 16 4 8 56 3 6 33 1 2 8 1 2 18

1 6 12 120 4 8 56 8 16 208 6 12 120 2 4 32

2 12 24 456 8 16 208 16 32 800 12 24 456 4 8 128 2 4 72

3 24 48 1776 16 32 800 32 64 3136 24 48 1776 8 16 512

4 48 96 7008 32 64 3136 64 128 12416 48 96 7008 16 32 2048 4 8 288

Table 20: Linear mortar convergence

Ref. # GMRES ‖u− u∆t
h ‖L2(0,T ;L2(Ω)) ‖p− p∆t

h ‖DG ‖p− p∆t
h ‖L2(0,T ;W) ‖λ− λ∆T

H ‖L2(0,T ;ΛH)

0 11 Rate 6.50e-01 Rate 1.21e+00 Rate 7.91e-01 Rate 7.98e-01 Rate

1 23 -1.06 3.63e-01 0.84 7.21e-01 0.75 4.76e-01 0.73 5.11e-01 0.64

2 39 -0.76 1.74e-01 1.06 3.19e-01 1.18 2.46e-01 0.95 2.34e-01 1.13

3 59 -0.60 8.63e-02 1.02 1.46e-01 1.13 1.25e-01 0.98 1.20e-01 0.96

4 86 -0.54 4.29e-02 1.01 6.93e-02 1.08 6.25e-02 1.00 6.11e-02 0.97

Table 21: Quadratic mortar convergence

Ref. # GMRES ‖u− u∆t
h ‖L2(0,T ;L2(Ω)) ‖p− p∆t

h ‖DG ‖p− p∆t
h ‖L2(0,T ;W) ‖λ− λ∆T

H ‖L2(0,T ;ΛH)

0 18 Rate 6.81e-01 Rate 1.35e+00 Rate 8.39e-01 Rate 2.13e+00 Rate

2 34 -0.46 1.70e-01 1.00 3.51e-01 0.97 2.51e-01 0.87 2.82e-01 1.46

4 57 -0.37 4.48e-02 0.96 8.59e-02 1.02 6.59e-02 0.96 9.20e-02 0.81

122

Figure 14: Example 1, pressure computed using linear mortars shown on the space-time grid at

re�nement 2, top: on the whole space-time domain ΩT , bottom: on ΩT
1 ∪ΩT

4 (left), on ΩT
2 ∪ΩT

3

(right).

123

Figure 15: Example 1, x−component of velocity computed using linear mortars shown on the

space-time grid at re�nement 2, on ΩT
1 ∪ ΩT

4 (left), on ΩT
2 ∪ ΩT

3 (right).

Figure 16: Example 1, y−component of velocity computed using linear mortars shown on the

space-time grid at re�nement 2, on ΩT
1 ∪ ΩT

4 (left), on ΩT
2 ∪ ΩT

3 (right).

124

All the errors reported in Tables 20 and 21 are relative with respective to the norm of

the true solution. Also note that the rate of convergence reported are with respect to the

orders of h and ∆t. We observe optimal rate of convergence of the method with respect to

the RT 0 × Q0 �nite element spaces using both linear and quadratic mortars. Theorem 4.6.1

bounds the spectral ratio of the interface operator, S, by O(h−1) and depending on the deviation

of this operator from a normal matrix [115, 116], the growth rate for the number of GMRES

iterations required for converge could be bounded by the square root of the spectral ratio, i.e.

of O(h−0.5) in our case. This is close to what we observe in the case of linear and quadratic

mortars from Tables 20 and 21, respectively. Figures 14�16 clearly show the local conservation of

mass (imposition of continuity of the normal �ux in the weak multiscale sense) across di�erent

subdomain interfaces. Even though quadratic mortar space, Λ∆t
H,ij,2 has far fewer degrees of

freedom compared to linear mortar space Λ∆T
H,ij,1 at the same re�nement level for subdomains,

we see very comparable errors for these two cases. Also the former results in less number of

GMRES iterations (see Tables 20�21). Thus, from a computational point of view, higher mortar

degrees m, s will give a computationally less intense and e�cient method compared to using

smaller m, s. Also the extra h−
1
2 loss in convergence rate that we see in the convergence result

is not observed in the numerical results.

4.7.2 Example 2: problem with a boundary layer

In this example, we demonstrate the advantages of using our multiscale space-time domain

decomposition method to a problem where the solution variables, pressure and velocity, vary on

di�erent scales across the space-time domain. For this, we use the known solution, p(x, y, t) =

1000xyte−10(x2+y2+ 1
4
t2) along with permeability K = I2×2 to manufacture the right-hand side q

in (4.2.1) and impose a natural Dirichlet boundary condition on a unit square domain Ω = (0, 1)2.

The problem is solved over the time interval (0, 0.5] which gives ΩT = (0, 1)2 × (0, 0.5]. By

construction, p(x, y, t) varies rapidly along the lower-left corner of ΩT , with almost zero pressure

on majority of other corners. This calls for an e�cient multiscale method which would take

advantage of the multiscale nature of the problem and gives more resolution around the lower-

left corner compared to the rest of ΩT .

125

Table 22: Example 2, errors for the multiscale and �ne-scale methods.

Method # GMRES ‖u− u∆t
h ‖L2(0,T ;L2(Ω)) ‖p− p∆t

h ‖DG ‖p− p∆t
h ‖L2(0,T ;W) ‖λ− λ∆T

H ‖L2(0,T ;ΛH)

multiscale 102 5.657e-02 8.425e-02 6.319e-02 5.796e-02

�ne-scale 140 1.524e-02 2.234e-02 2.154e-02 3.016e-02

Figure 17: Example 2, pressure from the multiscale method, cut along the plane x = 0.25

(top), velocity magnitude from the multiscale method, cut along the plane x = 0.25 (bottom).

We partition ΩT into 4 × 4 identical square space-time subdomain blocks ΩT
i . From the

knowledge about variation of the true pressure, we use a multiscale space-time grid on ΩT ,

where re�nement of the grid on each ΩT
i is proportional to the amount of pressure variation.

126

Figure 18: Example 2, left: pressure from the multiscale method, cut along the plane t = 0.35;

right: pressure from the multiscale (top) and �ne-scale (bottom) methods on the whole domain.

The �nest mesh on ΩT
i has hfine = 1/128 and ∆tfine = 1/64, and the coarsest mesh on ΩT

i

has hcoarse = 1/8 and ∆tcoarse = 1/8, see Figures 17�18 for the mesh re�nement. The coarser

meshes on the majority of the space-time subdomains bring down the computational complexity

arising from the subdomain solves associated with them. We use a linear mortar (m = s = 1)

on the subdomain interfaces. The mortar mesh sizes in space are chosen as follows. For vertical

interfaces (�xed x) between subdomains on the bottom row, the one along the boundary layer,

we set H = 1/32. For the next row of subdomains we set H = 1/16, and for the other two rows,

H = 1/8. Similarly, for the horizontal interfaces (�xed y) between subdomains on the left column

we set H = 1/32, for the second column, H = 1/16, and for the other two columns, H = 1/8. We

127

Figure 19: Example 2, left: velocity magnitude from the multiscale method, cut along the

plane t = 0.35; right: velocity magnitude from the multiscale (top) and �ne-scale (bottom)

methods on the whole domain.

choose ∆T = 1/8 on all interfaces. These choices guarantee that the mortar assumption (4.4.6)

is satis�ed and that the dimension of the interface problem is reduced, while at the same time

provide suitable resolution to enforce weakly �ux continuity across the space-time subdomain

interfaces.

For comparison, we solve the problem using a uniformly �ne and matching subdomain mesh

with h = H = 1/128 and ∆t = ∆T = 1/64. A comparison of the number of GMRES iterations

and the relative errors from the multiscale and the �ne-scale methods is given in Table 22. A

detailed demonstration of the enforcement of continuity of pressure and velocity computed using

128

the multiscale method is given in Figures 17�19. Side to side comparison of the multiscale and

�ne-scale solutions are given on the right sides in Figure 18 and Figure 19.

Table 22 shows that both the multiscale and the �ne-scale solution attains comparable

accuracy with the former being computationally far less expensive than the latter. We observe

smaller relative error in the case of �ne-scale solution method because of the matching grids and

higher resolution throughout the space-time domain, ΩT . Slightly higher error for the multiscale

method is compensated with cheaper subdomain solves and smaller interface problem which

converges faster compared to the �ne-scale method. Figures 17�19 show good enforcement of

continuity across various space and time interfaces for the multiscale method. The comparisons

in Figure 18 and Figure 19 show that the multiscale method provides good resolution where it

matters and once again con�rm that the less expensive multiscale method provides comparable

accuracy to the more expensive �ne-scale method.

4.8 Chapter Conclusions

In this chapter, we presented a multiscale space-time discretization technique for e�ciently

solving a model parabolic problem. This method is the generalization of the multiscale mortar

mixed �nite element (MMMFE) technique introduced in Chapter 3 for a time-dependent parabolic

system, where we allow multiscale discretization in both space and time. We decompose the

global space-time domain into multiple space-time subdomains and introduce a space-time

mortar variable, on an independent interface space-time mesh. This method involves solving an

interface problem to ensure (a multiscale) weak continuity of the normal component of the mixed

�nite element �ux variable over the space-time interfaces. We have shown the well-posedness

and stability of the technique along with a combined a priori error estimate. Various numerical

experiments were conducted to con�rm the theoretical results and demonstrate the advantage

of using a multiscale space-time domain decomposition method. We conclude that methods like

this o�er a high level of �exibility in choosing the level of discretization in both space and time

dimensions. This �exibility can be exploited to our advantage while developing a numerical

method to solve multiphysics problems where the solution varies on extremely di�erent scales

across the spatio-temporal domain, as demonstrated in the numerical results section.

129

5.0 Conclusions

5.1 Summary of Techniques Developed and Results

In this thesis, we have developed various numerical techniques to e�ciently solve the Biot

system of poroelasticity in the setting of the mixed �nite element (MFE) methods. We have also

developed a novel space-time domain decomposition technique for the time-dependent second-

order parabolic equation, which can be extended to the setting of the monolithic Biot system of

poroelasticity in future studies.

In Chapter 2, we have presented three non-overlapping domain decomposition methods for

the Biot system of poroelasticity in a �ve-�eld fully mixed formulation using matching subdomain

grids at the interface. The monolithic method involves solving an interface problem for a

composite displacement-pressure Lagrange multiplier, which requires coupled Biot subdomain

solves at each iteration. The two split methods are based on the drained split and �xed stress

splittings. They involve two separate elasticity and Darcy interface iterations requiring single-

physics subdomain solves. We analyze the spectrum of the monolithic interface operator and

show unconditional stability for the split methods. A series of numerical experiments illustrate

the e�ciency, accuracy, and robustness of the three methods. Our main conclusion from this

chapter is that the split methods provide accuracy comparable to the monolithic method while

being more computationally e�cient in terms of the smaller number of interface iterations and

simpler subdomain solves.

In Chapter 3, we presented a multiscale mortar mixed �nite element technique (MMMFE)

for the Biot system of poroelasticity in a �ve-�led fully mixed formulation. This method is

the generalization of the monolithic domain decomposition technique discussed in the previous

chapter, with the extra capability to use non-matching subdomain grids at the interface. This

is achieved by using composite multiscale mortar Lagrange multiplier spaces approximating

displacement and pressure on a coarse mortar grid at the interface. The global problem can

be reduced into a series of parallel Dirichlet type problems and an interface problem for the

composite displacement-pressure Lagrange multiplier spaces which requires subdomain solves

at each iteration. We showed the well-posedness and stability of the method under proper

130

assumptions. We have also carried out an extensive error analysis of the method to get a

combined a priori error estimate for all the unknowns in the formulation. To complete the

analysis, we have done a series of numerical experiments to put the theory to test. We observed

stability and convergence results as predicted by the theory and also demonstrated the application

of the method to a highly heterogeneous medium. We noted that in practice, a coarser mesh

with a higher mortar space degree can be used to get a smaller interface problem and hence faster

convergence without compromising the accuracy of the method. We conclude the chapter by

recalling the e�ectiveness of the construction and use of a pre-saved multiscale stress-�ux basis

(MSB), which makes the MMMFE method far more superior than the �ne-scale monolithic

methods, especially when a coarse mortar mesh is used.

In Chapter 4, we developed a multiscale space-time discretization technique for e�ciently

solving a model parabolic equation. This method is the generalization of the multiscale mortar

mixed �nite element (MMMFE) technique introduced in Chapter 3 for a time-dependent parabolic

system, where we allow multiscale discretization in both space and time. We decompose the

global space-time domain into multiple space-time subdomains and introduce a space-time

mortar variable, on an independent interface space-time mesh. This method involves solving an

interface problem to ensure (a multiscale) weak continuity of the normal component of the mixed

�nite element �ux variable over the space-time interfaces. We have shown the well-posedness

and stability of the technique along with a combined a priori error estimate. Various numerical

experiments were conducted to con�rm the theoretical results and demonstrate the advantage

of using a multiscale space-time domain decomposition method. We conclude that methods like

this o�er a high level of �exibility in choosing the level of discretization in both space and time

dimensions. This �exibility can be exploited to our advantage while developing a numerical

method to solve multiphysics problems where the solution varies on extremely di�erent scales

across the spatio-temporal domain, as demonstrated in the numerical results section.

5.2 Future Work

Techniques developed in Chapter 4 for the parabolic equation paves the way for future works

on developing a space-time discretization technique for the Biot system of poroelastic equations.

131

While the Biot system of equations is certainly more challenging and complex than the parabolic

system, we believe the techniques developed to mathematically analyze the latter will prove to

be crucial in the analysis of the former.

Other possible works include analyzing the condition number for the interface operator

developed in Chapter 3. It will be also interesting to study how the condition number for

the interface operators for all the techniques developed in this thesis depends on the subdomain

size or in the case of multiscale methods, the mortar element size H. The use of a coarse solve

preconditioner to speed up the convergence of the interface iterations is also worth pursuing.

We are currently engaged in the study of employing machine learning (ML) techniques in

our multiscale domain decomposition algorithms for improved computational e�ciency. We

are speci�cally interested in the recently developed physics-informed neural networks (PINNs)

which incorporate PDE information into the loss function of a neural network. After training,

these methods provide fast PDE solvers that can be used as an alternative to �nite element

solvers. Despite the growing evidence in the scienti�c literature of the robustness and e�ciency

of PINNs, there is still an incomplete understanding of their accuracy as PDE solvers, as well

as the sense in which the computed solution satis�es fundamental physical laws such as mass

conservation. We plan to investigate these issues in the context of PINNs based on mixed formu-

lations of the underlying PDEs. We believe that the PINNs in it's mixed form could tackle

the issue of vanishing/ exploding gradients which allows the use of a more robust activation

function like the recti�ed linear unit (ReLU) function. We have recently developed an open-

source software package FluidLearn (see Appendix A.2), designed to solve PDEs using supervised

deep learning techniques, and speci�cally feed-forward PINNs in the mixed form. We plan to

employ the package as a subdomain solver as part of our space-time domain decomposition

algorithm. Another possible path of study is to explore the use of transfer learning techniques

to improve the training e�ciency of the subdomain PINNs by reusing previously trained neural

nets.

132

Appendix Code Gallery

A.1 Note to the Reader

As it is with the development of any software based on novel algorithms, a signi�cant amount

of time and e�ort went into the production of software capable of solving PDEs using the methods

developed in this thesis. All the packages are written in C++ using deal.II �nite element

package [91, 92]. These packages are made open-source and are available on the GitHub page

https://github.com/mjayadharan. All the numerical results presented in this thesis are generated

using simulators published as open-source repositories on the aforementioned web page. Anyone

who is interested in using or do development based on these packages is encouraged to do so

with citation to this thesis wherever relevant. Details on installation and usage of these packages

can be found through the README �le in the appropriate repositories (e.g. see this link).

As it is an impossible task to list the thousands of lines of code written to implement our

methods, we give hyperlinks to some of the core packages and we also give a stripped-down

version of the main algorithm implementation for the multiscale mortar space-time domain

decomposition method (see Chapter 4). The reason for presenting this particular implementation

in the thesis is that the multiscale space-time domain decomposition method implementation is

the most generic method we have developed in this thesis and incorporates techniques used in

the other methods.

A.2 Links to Open-source Packages Corresponding to Various Chapters

1. Chapter 2: A base-repository that implements the non-overlapping domain decomposition

technique for the Biot system of poroelasticity using matching subdomain grids, with the

option to use sequential splitting.

2. Chapter 3: Package to solve the Biot system of poroelasticity using non-overlapping domain

decomposition method that is also capable of using multiscale non-matching subdomain

grids, with the option to use sequential splitting. Note that this package is inherited from

133

https://github.com/mjayadharan
https://github.com/mjayadharan/MMMFE-ST-DD/blob/master/README.md
https://github.com/mjayadharan/BiotDD
https://github.com/mjayadharan/BiotDD
https://github.com/mjayadharan/BiotDD
https://github.com/mjayadharan/BiotDDMortar
https://github.com/mjayadharan/BiotDDMortar
https://github.com/mjayadharan/BiotDDMortar

the above base-repository.

3. Chapter 4: Package implementing the multiscale space-time mortar domain decomposition

method for a time-dependent parabolic model.

4. Ongoing work: FluidLearn: software package with python interface, capable of solving

non-linear �uid �ow problems using supervised deep learning (DL) techniques.

A.3 Implementation of the Space-time Multiscale Mortar Decomposition Method

Here we give a stripped-down version of the implementation of the space-time multiscale

mortar decomposition technique for the time-dependent parabolic problem (1.3.10). A complete

version of the package can be found on GitHUB. Detailed user instructions are given in the

README �le.

A.3.1 User interface

Once the package is compiled using the instructions given in the README �le, the user can

use an interface .txt �le to interact with the simulator. The implementation details are hidden

from the user. An example of a user interaction �le is given below.

/*

* User input file

*--------------------------------

*/

c0: 1.0

alpha: 2.0

coe_a: 0.5

space_degree: 0

mortar_degree: 1

num_refinement: 1

final_time: 1.0

tolerence: 1.e-6

134

https://github.com/mjayadharan/MMMFE-ST-DD
https://github.com/mjayadharan/MMMFE-ST-DD
https://pypi.org/project/fluidlearn/
https://pypi.org/project/fluidlearn/
https://github.com/mjayadharan/MMMFE-ST-DD
https://github.com/mjayadharan/MMMFE-ST-DD/blob/master/README.md
https://github.com/mjayadharan/MMMFE-ST-DD/blob/master/README.md

max_iteration: 500

need_plot_at_each_time_step(bool): 0

left_bc: D 0.0

bottom_bc: N 0.0

right_bc: D 0.0

top_bc: N 1.0

is_manufact_soln(bool): 0

mesh_pattern_sub_d0: 8 8 16

mesh_pattern_sub_d1: 12 12 24

mesh_pattern_sub_d2: 12 12 24

mesh_pattern_sub_d3: 8 8 16

mesh_pattern_mortar: 2 2 2

mesh_pattern_sub_d0: 8 8 16

mesh_pattern_sub_d1: 8 8 16

mesh_pattern_sub_d2: 8 8 16

mesh_pattern_sub_d3: 8 8 16

mesh_pattern_mortar: 8 8 16

We use the following main function to drive the simulator.

// Utilities, data, etc.

#include "../inc/darcy_vtdd.h"

#include "../inc/filecheck_utility.h"

#include <fstream>

#include <string>

#include <cassert>

int main (int argc, char *argv[])

{

try

{

using namespace dealii;

using namespace vt_darcy;

MultithreadInfo::set_thread_limit(4);

Utilities::MPI::MPI_InitFinalize mpi_initialization(argc, argv, 1);

double c_0, alpha, coe_a, final_time, tolerence;

int space_degree, mortar_degree, num_refinement, max_iteration;

//declaring mesh refinement structure for space-time mortar

std::vector<int> zeros_vector(3,0);

std::vector<std::vector<int>> mesh_m3d, mesh_m3d_mortar;

135

//boundary condition vector. 'D':Dirichlet, 'N': Neumann

std::vector<char> bc_con(4,'D');

std::vector<double> nm_bc_con_funcs(4,0.0);

bool is_manufact_solution, need_each_time_step_plot;

std::string dummy_string;

/*

* Block for pulling in parameters and other desired program features from a

parameter file

*/

{

MPI_Comm mpi_communicator_1(MPI_COMM_WORLD);

MPI_Status mpi_status_1;

int mpi_send_bool(0), mpi__rec_bool(0);

const unsigned int this_mpi =

Utilities::MPI::this_mpi_process(mpi_communicator_1);

const unsigned int n_processes =

Utilities::MPI::n_mpi_processes(mpi_communicator_1);

mesh_m3d.resize(n_processes+1, zeros_vector);

mesh_m3d_mortar.resize(n_processes+1, zeros_vector);

if(this_mpi!=0)

{

MPI_Recv(&mpi__rec_bool, 1, MPI_INT, this_mpi-1, this_mpi-1,

mpi_communicator_1, &mpi_status_1);

}

parameter_pull_in (c_0, alpha, coe_a, space_degree, mortar_degree,

num_refinement,

final_time, tolerence, max_iteration, need_each_time_step_plot,

bc_con, nm_bc_con_funcs, is_manufact_solution, mesh_m3d,

mesh_m3d_mortar, n_processes, "parameter.txt");

if(this_mpi!=n_processes-1)

{

MPI_Send(&mpi_send_bool, 1, MPI_INT, this_mpi+1, this_mpi,

mpi_communicator_1);

}

}

BiotParameters bparam (1.0, 1, final_time, c_0, alpha, coe_a);

//Instantiating the class

DarcyVTProblem<2> problem_2d(space_degree, bparam, 1, mortar_degree, bc_con,

nm_bc_con_funcs, is_manufact_solution, need_each_time_step_plot);

136

//Solving the problem

problem_2d.run(num_refinement, mesh_m3d, mesh_m3d_mortar,

tolerence, max_iteration, mortar_degree+1);

}

catch (std::exception &exc)

{

"..catching exceptions.."

}

}

A.3.2 Source code

Here we present the source code for the DarcyVTProblem class which encapsulates all the

data structures and algorithms needed to implement the method. Note that this class depends

on various other utility and data �les which can be found in the code repository. Also, here we

omit the implementation of various class methods, like the one for error calculations, that are

not part of the core algorithm.

/* ---

* Importing dependencies

* ---

*/

#include <deal.II/base/quadrature_lib.h>

#include <deal.II/base/logstream.h>

#include <deal.II/lac/block_vector.h>

#include <deal.II/lac/full_matrix.h>

#include <deal.II/base/function.h>

#include <deal.II/lac/block_sparse_matrix.h>

#include <deal.II/lac/solver_cg.h>

#include <deal.II/lac/sparse_direct.h>

#include <deal.II/lac/precondition.h>

#include <deal.II/grid/tria.h>

#include <deal.II/grid/grid_generator.h>

#include <deal.II/grid/tria_accessor.h>

#include <deal.II/grid/tria_iterator.h>

#include <deal.II/grid/grid_in.h>

#include <deal.II/grid/grid_tools.h>

#include <deal.II/dofs/dof_handler.h>

#include <deal.II/dofs/dof_renumbering.h>

#include <deal.II/dofs/dof_accessor.h>

#include <deal.II/dofs/dof_tools.h>

#include <deal.II/fe/fe_dgq.h>

#include <deal.II/fe/fe_dgp.h>

137

https://github.com/mjayadharan/MMMFE-ST-DD

#include <deal.II/fe/fe_face.h>

#include <deal.II/fe/fe_raviart_thomas.h>

#include <deal.II/fe/fe_bdm.h>

#include <deal.II/fe/fe_nothing.h>

#include <deal.II/numerics/vector_tools.h>

#include <deal.II/numerics/matrix_tools.h>

#include <deal.II/numerics/data_out.h>

// Extra for MPI and mortars

#include <deal.II/numerics/fe_field_function.h>

#include <deal.II/base/timer.h>

// C++

#include <fstream>

#include <iostream>

#include <random>

// Utilities, data, etc.

#include "../inc/darcy_vtdd.h"

#include "../inc/utilities.h"

#include "../inc/data.h"

/* ---

* Declaration of the DarcyVTProblem class

* ---

*/

template<int dim = 2>

class DarcyVTProblem {

public:

DarcyVTProblem(const unsigned int degree, const BiotParameters& bprm,

const unsigned int mortar_flag = 0,

const unsigned int mortar_degree = 0,

std::vector<char> bc_condition_vect = { 'D', 'D', 'D', 'D' },

std::vector<double> bc_const_functs = { 0., 0., 0., 0. },

const bool is_manufact_soln = true,

const bool need_each_time_step_plot = false);

void run(const unsigned int refine,

const std::vector<std::vector<int>> &reps_st,

const std::vector<std::vector<int>> &reps_st_mortar, double tol,

unsigned int maxiter, unsigned int quad_degree = 3);

private:

MPI_Comm mpi_communicator;

MPI_Status mpi_status;

Projector::Projector<dim + 1> P_coarse2fine;

Projector::Projector<dim + 1> P_fine2coarse;

void make_grid_and_dofs();

void assemble_system();

void get_interface_dofs();

void get_interface_dofs_st();

138

void assemble_rhs_bar();

void assemble_rhs_star();

void solve_bar();

void solve_star();

void solve_timestep(int star_bar_flag, unsigned int time_level);

void solve_darcy_vt(unsigned int maxiter);

void compute_multiscale_basis();

std::vector<double> compute_interface_error_dh();

double compute_interface_error_l2();

double compute_jump_error();

void compute_errors(const unsigned int refinement_index,

unsigned int time_level);

void output_results(const unsigned int cycle, const unsigned int refine,

const unsigned int time_level);

void set_current_errors_to_zero();

void reset_mortars();

//For implementing GMRES

void

givens_rotation(double v1, double v2, double &cs, double &sn);

void

apply_givens_rotation(std::vector<double> &h, std::vector<double> &cs,

std::vector<double> &sn, unsigned int k_iteration);

void

back_solve(std::vector<std::vector<double>> H, std::vector<double> beta,

std::vector<double> &y, unsigned int k_iteration);

void

local_gmres(const unsigned int maxiter);

double vect_norm(std::vector<double> v);

//distribute solution vectors between 2-d space and 3-d space-time subdomain

meshes.

void st_to_subdom_distribute(BlockVector<double> &vector_st,

BlockVector<double> &vector_subdom, unsigned int &time_level,

double scale_factor);

void subdom_to_st_distribute(BlockVector<double> &vector_st,

BlockVector<double> &vector_subdom, unsigned int &time_level,

double scale_factor);

//distribute local to global solution.

void final_solution_transfer(BlockVector<double> &solution_st,

BlockVector<double> &solution_subdom, unsigned int &time_level,

double scale_factor);

// Number of subdomains in the computational domain

std::vector<unsigned int> n_domains;

// Physical parameters

BiotParameters prm;

BiotErrors err;

std::vector<char> bc_condition_vect;

std::vector<double> bc_const_functs;

const bool is_manufact_solution;

139

const bool need_each_time_step_plot;

std::vector<int> dir_bc_ids, nm_bc_ids;

// FE degree and DD parameters

const unsigned int degree;

const unsigned int mortar_degree;

const unsigned int mortar_flag;

unsigned int gmres_iteration;

double grid_diameter;

unsigned int cg_iteration;

unsigned int max_cg_iteration;

double tolerance;

unsigned int qdegree;

unsigned int refinement_index;

unsigned int total_refinements;

// Neighbors and interface information

std::vector<int> neighbors;

std::vector<unsigned int> faces_on_interface;

std::vector<unsigned int> faces_on_interface_mortar;

std::vector<unsigned int> faces_on_interface_st;

std::vector<std::vector<unsigned int>> interface_dofs;

std::vector<std::vector<unsigned int>> interface_dofs_subd;

std::vector<std::vector<unsigned int>> interface_dofs_st;

std::vector<std::vector<unsigned int>> face_dofs_st;

std::vector<std::vector<unsigned int>> face_dofs_subdom;

unsigned long n_flux;

unsigned long n_pressure;

unsigned long n_flux_st;

unsigned long n_pressure_st;

// Subdomain coordinates

Point<dim> p1;

Point<dim> p2;

// space-time grid diagonal coordinates

Point<dim + 1> p1_st;

Point<dim + 1> p2_st;

// Fine triangulation

Triangulation<dim> triangulation;

FESystem<dim> fe;

DoFHandler<dim> dof_handler;

//3d Space time triangulation for subdomain.

Triangulation<dim + 1> triangulation_st;

FESystem<dim + 1> fe_st;

DoFHandler<dim + 1> dof_handler_st;

// Mortar triangulation

Triangulation<dim + 1> triangulation_mortar;

140

FESystem<dim + 1> fe_mortar;

DoFHandler<dim + 1> dof_handler_mortar;

// Star and bar problem data structures

BlockSparsityPattern sparsity_pattern;

BlockSparseMatrix<double> system_matrix;

SparseDirectUMFPACK A_direct;

BlockVector<double> solution_bar;

BlockVector<double> solution_star;

BlockVector<double> solution;

BlockVector<double> solution_st;

BlockVector<double> old_solution;

BlockVector<double> old_solution_for_jump;

BlockVector<double> initialc_solution;

BlockVector<double> pressure_projection;

BlockVector<double> old_pressure_projection;

BlockVector<double> system_rhs_bar;

BlockVector<double> system_rhs_bar_bc;

BlockVector<double> system_rhs_star;

BlockVector<double> interface_fe_function_subdom;

AffineConstraints<double> constraint_bc;

// Mortar data structures

BlockVector<double> interface_fe_function_mortar;

BlockVector<double> solution_bar_mortar;

BlockVector<double> solution_star_mortar;

std::vector<BlockVector<double>> multiscale_basis;

// 3d Space-time data structures

BlockVector<double> interface_fe_function_st;

BlockVector<double> solution_bar_st;

BlockVector<double> solution_star_st;

std::vector<BlockVector<double>> solution_bar_collection;

// Output extra

ConditionalOStream pcout;

ConvergenceTable convergence_table;

TimerOutput computing_timer;

};

}

#endif

/*

* ---

141

* Definition of class methods

* ---

*/

namespace vt_darcy {

using namespace dealii;

// DarcyVTProblem class constructor

template<int dim>

DarcyVTProblem<dim>::DarcyVTProblem(

const unsigned int degree,

const BiotParameters &bprm,

const unsigned int mortar_flag,

const unsigned int mortar_degree,

std::vector<char> bc_condition_vect,

std::vector<double> bc_const_functs,

const bool is_manufact_soln,

const bool need_each_time_step_plot,

mpi_communicator(MPI_COMM_WORLD),

P_coarse2fine(false),

P_fine2coarse(false),

n_domains(dim, 0),

prm(bprm), bc_condition_vect(

bc_condition_vect),

bc_const_functs(bc_const_functs),

is_manufact_solution(

is_manufact_soln),

need_each_time_step_plot(

need_each_time_step_plot),

degree(degree), mortar_degree(mortar_degree),

mortar_flag(mortar_flag),

gmres_iteration(0),

grid_diameter(0),

cg_iteration(0),

max_cg_iteration(0),

qdegree(11),

fe(FE_RaviartThomas<dim>(degree), 1, FE_DGQ<dim>(degree), 1),

dof_handler(triangulation),

fe_st(FE_RaviartThomas<dim + 1>(degree), 1,FE_DGQ<dim + 1>(degree), 1),

dof_handler_st(triangulation_st),

fe_mortar(FE_RaviartThomas<dim + 1>(mortar_degree), 1, FE_Nothing<dim + 1>(), 1),

dof_handler_mortar(triangulation_mortar),

pcout(std::cout, (Utilities::MPI::this_mpi_process(mpi_communicator) == 0)),

computing_timer(mpi_communicator, pcout, TimerOutput::summary,

TimerOutput::wall_times)

{}

//Method to make grids and DOFs

template<int dim>

142

void DarcyVTProblem<dim>::make_grid_and_dofs() {

TimerOutput::Scope t(computing_timer, "Make grid and DoFs");

system_matrix.clear();

const unsigned int this_mpi = Utilities::MPI::this_mpi_process(

mpi_communicator);

// Find neighbors

neighbors.resize(GeometryInfo<dim>::faces_per_cell, 0);

find_neighbors(dim, this_mpi, n_domains, neighbors);

// Make interface data structures

faces_on_interface.resize(GeometryInfo<dim>::faces_per_cell, 0);

faces_on_interface_mortar.resize(GeometryInfo<dim>::faces_per_cell, 0);

faces_on_interface_st.resize(GeometryInfo<dim>::faces_per_cell, 0);

mark_interface_faces(triangulation, neighbors, p1, p2, faces_on_interface);

if (mortar_flag) {

mark_interface_faces_space_time(triangulation_mortar, neighbors, p1, p2,

faces_on_interface_mortar);

mark_interface_faces_space_time(triangulation_st, neighbors, p1, p2,

faces_on_interface_st);

}

dof_handler.distribute_dofs(fe);

DoFRenumbering::component_wise(dof_handler);

if (mortar_flag) {

dof_handler_mortar.distribute_dofs(fe_mortar);

DoFRenumbering::component_wise(dof_handler_mortar);

dof_handler_st.distribute_dofs(fe_st);

DoFRenumbering::component_wise(dof_handler_st);

}

std::vector<types::global_dof_index> dofs_per_component(dim + 1);

DoFTools::count_dofs_per_component(dof_handler, dofs_per_component);

unsigned int n_z = dofs_per_component[0];

unsigned int n_p = dofs_per_component[dim];

n_flux = n_z;

n_pressure = n_p;

//Adding essential Neumann BC

{

constraint_bc.clear();

if (!is_manufact_solution) {

for (unsigned int i = 0; i < bc_condition_vect.size(); ++i) {

if (bc_condition_vect[i] == 'D')

dir_bc_ids.push_back(100 + i + 1);

else if (bc_condition_vect[i] == 'N')

nm_bc_ids.push_back(100 + i + 1);

std::map<types::boundary_id, const Function<dim> *> velocity_bc;

std::map<types::global_dof_index, double> boundary_values_velocity;

std::vector<double> zero_std_vect(3, 0.);

143

Vector<double> zero_dealii_vect(zero_std_vect.begin(),

zero_std_vect.end());

std::vector<Vector<double>> const_funct_base(4,

zero_dealii_vect);

const_funct_base[0][0] = -1.0 * bc_const_functs[0];

const_funct_base[1][1] = -1.0 * bc_const_functs[1];

const_funct_base[2][0] = 1.0 * bc_const_functs[2];

const_funct_base[3][1] = 1.0 * bc_const_functs[3];

Functions::ConstantFunction<dim> const_fun_left(

const_funct_base[0]), const_fun_bottom(

const_funct_base[1]);

Functions::ConstantFunction<dim> const_fun_right(

const_funct_base[2]), const_fun_top(

const_funct_base[3]);

std::vector<Functions::ConstantFunction<dim>> velocity_const_funcs(

4, const_fun_left);

velocity_const_funcs[0] = const_fun_left;

velocity_const_funcs[1] = const_fun_bottom;

velocity_const_funcs[2] = const_fun_right;

velocity_const_funcs[3] = const_fun_top;

//Feeding the Neumann boundary values into the constraint matrix

Functions::ZeroFunction<dim> velocity_bc_func(dim + 1);

for (unsigned int i = 0; i < nm_bc_ids.size(); ++i)

velocity_bc[nm_bc_ids[i]] =

&velocity_const_funcs[nm_bc_ids[i] - 101];

VectorTools::project_boundary_values(dof_handler, velocity_bc,

QGauss<dim - 1>(degree + 3), boundary_values_velocity);

typename std::map<types::global_dof_index, double>::const_iterator

boundary_value_vel =

boundary_values_velocity.begin();

for (; boundary_value_vel != boundary_values_velocity.end();

++boundary_value_vel) {

if (!constraint_bc.is_constrained(

boundary_value_vel->first)) {

constraint_bc.add_line(boundary_value_vel->first);

constraint_bc.set_inhomogeneity(

boundary_value_vel->first,

boundary_value_vel->second);

}

}

}

else

for (int i = 0; i < 4;

++i

)

dir_bc_ids.push_back(101 + i);

144

}

constraint_bc.close();

BlockDynamicSparsityPattern dsp(2, 2);

dsp.block(0, 0).reinit(n_z, n_z);

dsp.block(1, 0).reinit(n_p, n_z);

dsp.block(0, 1).reinit(n_z, n_p);

dsp.block(1, 1).reinit(n_p, n_p);

dsp.collect_sizes();

DoFTools::make_sparsity_pattern(dof_handler, dsp, constraint_bc,

false);

// Initialize system matrix

sparsity_pattern.copy_from(dsp);

system_matrix.reinit(sparsity_pattern);

// Reinit solution and RHS vectors

solution_bar.reinit(2);

solution_bar.block(0).reinit(n_z);

solution_bar.block(1).reinit(n_p);

solution_bar.collect_sizes();

solution_bar = 0;

// Reinit solution and RHS vectors

solution_star.reinit(2);

solution_star.block(0).reinit(n_z);

solution_star.block(1).reinit(n_p);

solution_star.collect_sizes();

solution_star = 0;

system_rhs_bar.reinit(2);

;

system_rhs_bar.block(0).reinit(n_z);

system_rhs_bar.block(1).reinit(n_p);

system_rhs_bar.collect_sizes();

system_rhs_bar = 0;

// Required for essential(Neumann bc)

system_rhs_bar_bc.reinit(2);

system_rhs_bar_bc.block(0).reinit(n_z);

system_rhs_bar_bc.block(1).reinit(n_p);

system_rhs_bar_bc.collect_sizes();

system_rhs_bar_bc = 0;

system_rhs_star.reinit(2);

system_rhs_star.block(0).reinit(n_z);

system_rhs_star.block(1).reinit(n_p);

system_rhs_star.collect_sizes();

system_rhs_star = 0;

145

//adding vectors required for storing mortar and space-time subdomain

solutions.

if (mortar_flag) {

//Mortar part.

std::vector<types::global_dof_index> dofs_per_component_mortar(

dim + 1 + 1);

DoFTools::count_dofs_per_component(dof_handler_mortar,

dofs_per_component_mortar);

unsigned int n_z_mortar = dofs_per_component_mortar[0]; //For RT mortar

space

unsigned int n_p_mortar = dofs_per_component_mortar[dim + 1];

solution_bar_mortar.reinit(2);

solution_bar_mortar.block(0).reinit(n_z_mortar);

solution_bar_mortar.block(1).reinit(n_p_mortar);

solution_bar_mortar.collect_sizes();

solution_bar_mortar = 0;

solution_star_mortar.reinit(2);

solution_star_mortar.block(0).reinit(n_z_mortar);

solution_star_mortar.block(1).reinit(n_p_mortar);

solution_star_mortar.collect_sizes();

solution_star_mortar = 0;

//Space-time part.

std::vector<types::global_dof_index> dofs_per_component_st(

dim + 1 + 1);

DoFTools::count_dofs_per_component(dof_handler_st,

dofs_per_component_st);

n_flux_st = dofs_per_component_st[0];

n_pressure_st = dofs_per_component_st[dim + 1];

solution_bar_st.reinit(2);

solution_bar_st.block(0).reinit(n_flux_st);

solution_bar_st.block(1).reinit(n_pressure_st);

solution_bar_st.collect_sizes();

solution_bar_st = 0;

solution_star_st.reinit(2);

solution_star_st.block(0).reinit(n_flux_st);

solution_star_st.block(1).reinit(n_pressure_st);

solution_star_st.collect_sizes();

solution_star_st = 0;

solution_st.reinit(solution_bar_st);

solution_st.collect_sizes();

solution_st = 0;

solution_bar_collection.resize(prm.num_time_steps, solution_bar);

}

solution.reinit(2);

solution.block(0).reinit(n_z);

146

solution.block(1).reinit(n_p);

solution.collect_sizes();

solution = 0;

old_solution.reinit(solution);

initialc_solution.reinit(solution);

old_solution_for_jump.reinit(solution);

pressure_projection.reinit(solution);

old_pressure_projection.reinit(solution);

initialc_solution = 0;

old_solution_for_jump = 0;

pressure_projection = 0;

old_pressure_projection = 0;

}

//Assembing the main system

template<int dim>

void DarcyVTProblem<dim>::assemble_system() {

TimerOutput::Scope t(computing_timer, "Assemble system");

system_matrix = 0;

system_rhs_bar_bc = 0;

QGauss<dim> quadrature_formula(degree + 2);

FEValues<dim> fe_values(fe, quadrature_formula,

update_values | update_gradients | update_quadrature_points

| update_JxW_values);

const unsigned int dofs_per_cell = fe.dofs_per_cell;

const unsigned int n_q_points = quadrature_formula.size();

FullMatrix<double> local_matrix(dofs_per_cell, dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

const KInverse<dim> k_inverse;

std::vector<Tensor<2, dim>> k_inverse_values(n_q_points);

// Velocity and Pressure DoFs

const FEValuesExtractors::Vector velocity(0);

const FEValuesExtractors::Scalar pressure(dim);

typename DoFHandler<dim>::active_cell_iterator cell =

dof_handler.begin_active(), endc = dof_handler.end();

for (; cell != endc; ++cell) {

fe_values.reinit(cell);

local_matrix = 0;

k_inverse.value_list(fe_values.get_quadrature_points(),

k_inverse_values);

// Velocity and pressure

std::vector<Tensor<1, dim>> phi_u(dofs_per_cell);

std::vector<double> div_phi_u(dofs_per_cell);

std::vector<double> phi_p(dofs_per_cell);

for (unsigned int q = 0; q < n_q_points; ++q) {

for (unsigned int k = 0; k < dofs_per_cell; ++k) {

// Evaluate test functions

phi_u[k] = fe_values[velocity].value(k, q);

147

phi_p[k] = fe_values[pressure].value(k, q);

div_phi_u[k] = fe_values[velocity].divergence(k, q);

}

for (unsigned int i = 0; i < dofs_per_cell; ++i) {

for (unsigned int j = 0; j < dofs_per_cell; ++j) {

local_matrix(i, j) += (phi_u[i] * k_inverse_values[q]

* phi_u[j] - phi_p[j] * div_phi_u[i]

+ prm.time_step * div_phi_u[j] * phi_p[i]

+ prm.c_0 * phi_p[i] * phi_p[j]) * fe_values.JxW(q);

}

}

}

cell->get_dof_indices(local_dof_indices);

Vector<double> local_rhs(dofs_per_cell);

local_rhs = 0;

constraint_bc.distribute_local_to_global(local_matrix, local_rhs,

local_dof_indices, system_matrix, system_rhs_bar_bc);

}

pcout << " ...factorized..." << "\n";

A_direct.initialize(system_matrix);

}

template<int dim>

void DarcyVTProblem<dim>::get_interface_dofs() {

TimerOutput::Scope t(computing_timer, "Get interface DoFs");

{

interface_dofs.resize(GeometryInfo<dim>::faces_per_cell,

std::vector<types::global_dof_index>());

std::vector<types::global_dof_index> local_face_dof_indices;

if (mortar_flag == 0) {

typename DoFHandler<dim>::active_cell_iterator cell, endc;

cell = dof_handler.begin_active(), endc = dof_handler.end();

local_face_dof_indices.resize(fe.dofs_per_face);

for (; cell != endc; ++cell) {

for (unsigned int face_n = 0;

face_n < GeometryInfo<dim>::faces_per_cell; ++face_n)

if (cell->at_boundary(face_n)

&& cell->face(face_n)->boundary_id() < 100) {

cell->face(face_n)->get_dof_indices(

local_face_dof_indices, 0);

for (auto el : local_face_dof_indices)

interface_dofs[cell->face(face_n)->boundary_id() - 1].push_back(

el);

}

}

} else {

typename DoFHandler<dim + 1>::active_cell_iterator cell, endc;

cell = dof_handler_mortar.begin_active(), endc =

dof_handler_mortar.end();

local_face_dof_indices.resize(fe_mortar.dofs_per_face);

148

for (; cell != endc; ++cell) {

for (unsigned int face_n = 0;

face_n < GeometryInfo<dim>::faces_per_cell; ++face_n)

if (cell->at_boundary(face_n)

&& cell->face(face_n)->boundary_id() < 100) {

cell->face(face_n)->get_dof_indices(

local_face_dof_indices, 0);

for (auto el : local_face_dof_indices)

interface_dofs[cell->face(face_n)->boundary_id() - 1].push_back(

el);

}

}

}

}

if (mortar_flag) {

interface_dofs_subd.resize(GeometryInfo<dim>::faces_per_cell,

std::vector<types::global_dof_index>());

face_dofs_subdom.resize(GeometryInfo<dim>::faces_per_cell,

std::vector<types::global_dof_index>());

std::vector<types::global_dof_index> local_face_dof_indices;

typename DoFHandler<dim>::active_cell_iterator cell, endc;

cell = dof_handler.begin_active(), endc = dof_handler.end();

local_face_dof_indices.resize(fe.dofs_per_face);

for (; cell != endc; ++cell) {

for (unsigned int face_n = 0;

face_n < GeometryInfo<dim>::faces_per_cell; ++face_n) {

//start of getting face dofs.

cell->face(face_n)->get_dof_indices(local_face_dof_indices, 0);

for (auto el : local_face_dof_indices) {

face_dofs_subdom[face_n].push_back(el);

}

if (cell->at_boundary(face_n)

&& cell->face(face_n)->boundary_id() < 100) {

for (auto el : local_face_dof_indices)

interface_dofs_subd[cell->face(face_n)->boundary_id()

- 1].push_back(el);

}

}

}

}

}

//collecting interface DoFs

template<int dim>

void DarcyVTProblem<dim>::get_interface_dofs_st() {

TimerOutput::Scope t(computing_timer, "Get interface DoFs S-T");

unsigned int n_faces = GeometryInfo<dim>::faces_per_cell;

interface_dofs_st.resize(GeometryInfo<dim>::faces_per_cell,

std::vector<types::global_dof_index>());

149

face_dofs_st.resize(GeometryInfo<dim>::faces_per_cell,

std::vector<types::global_dof_index>());

std::vector<types::global_dof_index> local_face_dof_indices;

typename DoFHandler<dim + 1>::active_cell_iterator cell, endc;

cell = dof_handler_st.begin_active(), endc = dof_handler_st.end();

local_face_dof_indices.resize(fe_st.dofs_per_face);

for (; cell != endc; ++cell) {

for (unsigned int face_n = 0; face_n < n_faces; ++face_n) {

cell->face(face_n)->get_dof_indices(local_face_dof_indices, 0);

for (auto el : local_face_dof_indices) {

face_dofs_st[face_n].push_back(el);

}

if (cell->at_boundary(face_n)

&& cell->face(face_n)->boundary_id() < 100) {

for (auto el : local_face_dof_indices) {

interface_dofs_st[cell->face(face_n)->boundary_id() - 1].push_back(

el);

}

}

}

}

}

//Assembling RHS for bar problem

template<int dim>

void DarcyVTProblem<dim>::assemble_rhs_bar() {

system_rhs_bar = 0;

QGauss<dim> quadrature_formula(degree + 2);

QGauss<dim - 1> face_quadrature_formula(qdegree);

FEValues<dim> fe_values(fe, quadrature_formula,

update_values | update_gradients | update_quadrature_points

| update_JxW_values);

FEFaceValues<dim> fe_face_values(fe, face_quadrature_formula,

update_values | update_normal_vectors | update_quadrature_points

| update_JxW_values);

const unsigned int dofs_per_cell = fe.dofs_per_cell;

const unsigned int n_q_points = fe_values.get_quadrature().size();

const unsigned int n_face_q_points = fe_face_values.get_quadrature().size();

Vector<double> local_rhs(dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

//Pressure value for Dirichlet (natural) bc in case of manufactured solution

PressureBoundaryValues<dim> pressure_boundary_values(prm.coe_a);

pressure_boundary_values.set_time(prm.time);

//Dirichlet bc picked up from parameter files. For real applicatins.

std::vector<Functions::ConstantFunction<dim>> dirichlet_boundary_values_vect;

150

//adding dirichlet bc corresponding to each side

//left boundary

Functions::ConstantFunction<dim> dirichlet_boundary_values_left(

bc_const_functs[0]);

dirichlet_boundary_values_vect.push_back(dirichlet_boundary_values_left);

//bottom boundary

Functions::ConstantFunction<dim> dirichlet_boundary_values_bottom(

bc_const_functs[1]);

dirichlet_boundary_values_vect.push_back(dirichlet_boundary_values_bottom);

//right boundary

Functions::ConstantFunction<dim> dirichlet_boundary_values_right(

bc_const_functs[2]);

dirichlet_boundary_values_vect.push_back(dirichlet_boundary_values_right);

//top boundary

Functions::ConstantFunction<dim> dirichlet_boundary_values_top(

bc_const_functs[1]);

dirichlet_boundary_values_vect.push_back(dirichlet_boundary_values_top);

std::vector<double> boundary_values_flow(n_face_q_points);

RightHandSidePressure<dim> right_hand_side_pressure(prm.c_0, prm.alpha,

prm.coe_a);

right_hand_side_pressure.set_time(prm.time);

std::vector<double> rhs_values_flow(n_q_points);

typename DoFHandler<dim>::active_cell_iterator cell =

dof_handler.begin_active(), endc = dof_handler.end();

for (; cell != endc; ++cell) {

local_rhs = 0;

fe_values.reinit(cell);

right_hand_side_pressure.value_list(fe_values.get_quadrature_points(),

rhs_values_flow);

// Velocity and Pressure DoFs

const FEValuesExtractors::Vector velocity(0);

const FEValuesExtractors::Scalar pressure(dim);

std::vector<double> phi_p(dofs_per_cell);

std::vector<double> old_pressure_values(n_q_points);

if (std::fabs(prm.time - prm.time_step) < 1.0e-10)

fe_values[pressure].get_function_values(initialc_solution,

old_pressure_values);

else

fe_values[pressure].get_function_values(old_solution,

old_pressure_values);

for (unsigned int q = 0; q < n_q_points; ++q) {

for (unsigned int k = 0; k < dofs_per_cell; ++k) {

// Evaluate test functions

phi_p[k] = fe_values[pressure].value(k, q);

151

}

for (unsigned int i = 0; i < dofs_per_cell; ++i) {

local_rhs(i) += (prm.time_step * phi_p[i] * rhs_values_flow[q]

+ prm.c_0 * old_pressure_values[q] * phi_p[i])

* fe_values.JxW(q);

}

}

Tensor<2, dim> sigma;

Tensor<1, dim> sigma_n;

for (unsigned int face_no = 0;

face_no < GeometryInfo<dim>::faces_per_cell; ++face_no) {

if (cell->at_boundary(face_no)) {

bool at_dir_boundary;

at_dir_boundary = is_inside<int>(dir_bc_ids,

cell->face(face_no)->boundary_id());

if (at_dir_boundary)/

{

fe_face_values.reinit(cell, face_no);

if (is_manufact_solution)

pressure_boundary_values.value_list(

fe_face_values.get_quadrature_points(),

boundary_values_flow);

else if (!is_manufact_solution)

dirichlet_boundary_values_vect[cell->face(face_no)->boundary_id()

- 101].value_list(

fe_face_values.get_quadrature_points(),

boundary_values_flow);

for (unsigned int q = 0; q < n_face_q_points; ++q)

for (unsigned int i = 0; i < dofs_per_cell; ++i) {

local_rhs(i) += -(fe_face_values[velocity].value(i,

q) * fe_face_values.normal_vector(q)

* boundary_values_flow[q]

* fe_face_values.JxW(q));

}

}

}

}

cell->get_dof_indices(local_dof_indices);

FullMatrix<double> local_matrix(dofs_per_cell);

local_matrix = 0;

constraint_bc.distribute_local_to_global(local_matrix, local_rhs,

local_dof_indices, system_matrix, system_rhs_bar);

}

}

//Assembling RHS for star problem

template<int dim>

void DarcyVTProblem<dim>::assemble_rhs_star() {

152

system_rhs_star = 0;

QGauss<dim> quadrature_formula(degree + 2);

QGauss<dim - 1> face_quadrature_formula(qdegree);

FEValues<dim> fe_values(fe, quadrature_formula,

update_values | update_quadrature_points | update_JxW_values);

FEFaceValues<dim> fe_face_values(fe, face_quadrature_formula,

update_values | update_normal_vectors | update_quadrature_points

| update_JxW_values);

const unsigned int dofs_per_cell = fe.dofs_per_cell;

const unsigned int n_q_points = fe_values.get_quadrature().size();

const unsigned int n_face_q_points = fe_face_values.get_quadrature().size();

Vector<double> local_rhs(dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

const FEValuesExtractors::Vector velocity(0);

const FEValuesExtractors::Scalar pressure(dim);

std::vector<Tensor<1, dim>> interface_values_flux(n_face_q_points);

typename DoFHandler<dim>::active_cell_iterator cell =

dof_handler.begin_active(), endc = dof_handler.end();

for (; cell != endc; ++cell) {

local_rhs = 0;

fe_values.reinit(cell);

std::vector<double> phi_p(dofs_per_cell);

std::vector<double> old_pressure_values(n_q_points);

if (std::fabs(prm.time - prm.time_step) > 1.0e-10) {

fe_values[pressure].get_function_values(old_solution,

old_pressure_values);

for (unsigned int q = 0; q < n_q_points; ++q) {

for (unsigned int k = 0; k < dofs_per_cell; ++k) {

// Evaluate test functions

phi_p[k] = fe_values[pressure].value(k, q);

}

for (unsigned int i = 0; i < dofs_per_cell; ++i)

local_rhs(i) +=

(prm.c_0 * old_pressure_values[q] * phi_p[i])

* fe_values.JxW(q);

}

}

for (unsigned int face_n = 0;

face_n < GeometryInfo<dim>::faces_per_cell; ++face_n)

if (cell->at_boundary(face_n)

&& cell->face(face_n)->boundary_id() < 100) {

fe_face_values.reinit(cell, face_n);

fe_face_values[velocity].get_function_values(

interface_fe_function_subdom, interface_values_flux);

for (unsigned int q = 0; q < n_face_q_points; ++q)

for (unsigned int i = 0; i < dofs_per_cell; ++i) {

153

local_rhs(i) += -(fe_face_values[velocity].value(i, q)

* fe_face_values.normal_vector(q)

* interface_values_flux[q]

* get_normal_direction(

cell->face(face_n)->boundary_id() - 1)

* fe_face_values.normal_vector(q)

* fe_face_values.JxW(q));

}

}

cell->get_dof_indices(local_dof_indices);

FullMatrix<double> local_matrix(dofs_per_cell);

local_matrix = 0;

constraint_bc.distribute_local_to_global(local_matrix, local_rhs,

local_dof_indices, system_matrix, system_rhs_star);

}

}

//Solving bar problem

template<int dim>

void DarcyVTProblem<dim>::solve_bar() {

system_rhs_bar.sadd(1.0, system_rhs_bar_bc);

A_direct.vmult(solution_bar, system_rhs_bar);

constraint_bc.distribute(solution_bar);

}

//Solving star problem

template<int dim>

void DarcyVTProblem<dim>::solve_star() {

A_direct.vmult(solution_star, system_rhs_star);

}

//Method to drive the solver over all time steps

template<int dim>

void DarcyVTProblem<dim>::solve_darcy_vt(unsigned int maxiter) {

prm.time = 0.0;

for (unsigned int time_level = 0; time_level < prm.num_time_steps;

time_level++) {

prm.time += prm.time_step;

solve_timestep(0, time_level);

}

prm.time = 0.0;

pcout << "\nStarting GMRES iterations.........\n";

if (Utilities::MPI::n_mpi_processes(mpi_communicator) != 1)

local_gmres(maxiter);

}

//Methods to sovle for each tiem step

template<int dim>

void DarcyVTProblem<dim>::solve_timestep(int star_bar_flag,

unsigned int time_level) {

switch (star_bar_flag) {

154

case 0:

assemble_rhs_bar();

solve_bar();

if (Utilities::MPI::n_mpi_processes(mpi_communicator) == 1) {

solution = solution_bar;

if (is_manufact_solution)

compute_errors(refinement_index, time_level);

output_results(refinement_index, total_refinements, time_level + 1);

}

old_solution = solution_bar;

system_rhs_bar = 0;

if (mortar_flag) {

solution_bar_collection[time_level] = solution_bar;

subdom_to_st_distribute(solution_bar_st, solution_bar, time_level,

prm.time_step);

solution_bar = 0;

}

break;

case 1:

st_to_subdom_distribute(interface_fe_function_st,

interface_fe_function_subdom, time_level, prm.time_step);

assemble_rhs_star();

solve_star();

interface_fe_function_subdom = 0;

old_solution = solution_star;

subdom_to_st_distribute(solution_star_st, solution_star, time_level,

prm.time_step);

solution_star = 0;

break;

case 2:

st_to_subdom_distribute(interface_fe_function_st,

interface_fe_function_subdom, time_level, prm.time_step);

assemble_rhs_star();

solve_star();

interface_fe_function_subdom = 0;

old_solution = solution_star;

solution = 0;

solution.sadd(1.0, solution_star);

solution.sadd(1.0, solution_bar_collection[time_level]);

final_solution_transfer(solution_st, solution, time_level,

prm.time_step);

if (is_manufact_solution)

155

compute_errors(refinement_index, time_level);

output_results(refinement_index, total_refinements, time_level + 1);

old_solution_for_jump = solution;

break;

}

}

// Methods to distribute DoFs from space-time subdomain mesh to 2d sub-domain space

mesh

template<int dim>

void DarcyVTProblem<dim>::st_to_subdom_distribute(

BlockVector<double> &vector_st, BlockVector<double> &vector_subdom,

unsigned int &time_level, double scale_factor) {

for (unsigned int side = 0; side < GeometryInfo<dim>::faces_per_cell;

++side)

if (neighbors[side] >= 0) {

int interface_dofs_side_size = interface_dofs_subd[side].size();

for (int i = 0; i < interface_dofs_side_size; i++)

vector_subdom[interface_dofs_subd[side][i]] =

(1 / scale_factor)

* vector_st[interface_dofs_st[side][interface_dofs_side_size

* time_level + i]];

}

}

//Methods to distribute DoFs from 2-d subdomain space meshes to 3-d subdomain

space-time meshes

template<int dim>

void DarcyVTProblem<dim>::subdom_to_st_distribute(

BlockVector<double> &vector_st, BlockVector<double> &vector_subdom,

unsigned int &time_level, double scale_factor) {

for (unsigned int side = 0; side < GeometryInfo<dim>::faces_per_cell;

++side)

if (neighbors[side] >= 0) {

int interface_dofs_side_size = interface_dofs_subd[side].size();

for (int i = 0; i < interface_dofs_side_size; i++)

vector_st[interface_dofs_st[side][interface_dofs_side_size

* time_level + i]] = scale_factor

* vector_subdom[interface_dofs_subd[side][i]];

}

}

//Method to transfer solution from 2d to space-time 3d mesh

template<int dim>

void DarcyVTProblem<dim>::final_solution_transfer(

BlockVector<double> &solution_st, BlockVector<double> &solution_subdom,

unsigned int &time_level, double scale_factor) {

Assert(n_pressure_st == prm.num_time_steps*n_pressure,

ExcDimensionMismatch(n_pressure_st, prm.num_time_steps*n_pressure));

for (unsigned int i = 0; i < n_pressure; i++) {

156

solution_st.block(1)[(time_level * n_pressure) + i] =

solution_subdom.block(1)[i];

}

for (unsigned int side = 0; side < GeometryInfo<dim>::faces_per_cell;

++side) {

int face_dofs_side_size = face_dofs_subdom[side].size();

for (int i = 0; i < face_dofs_side_size; i++)

solution_st[face_dofs_st[side][face_dofs_side_size * time_level + i]] =

scale_factor * solution_subdom[face_dofs_subdom[side][i]];

}

}

//Auxilliary methods used in the GMRES algorithm

template<int dim>

void DarcyVTProblem<dim>::givens_rotation(double v1, double v2, double &cs,

double &sn) {

if (fabs(v1) < 1e-15) {

cs = 0;

sn = 1;

} else {

double t = sqrt(v1 * v1 + v2 * v2);

cs = fabs(v1) / t;

sn = cs * v2 / v1;

}

}

template<int dim>

void DarcyVTProblem<dim>::apply_givens_rotation(std::vector<double> &h,

std::vector<double> &cs, std::vector<double> &sn,

unsigned int k_iteration) {

unsigned int k = k_iteration;

AssertThrow(h.size() > k + 1, ExcDimensionMismatch(h.size(), k + 2));

double temp;

for (unsigned int i = 0; i < k; ++i) {

temp = cs[i] * h[i] + sn[i] * h[i + 1];

h[i + 1] = -sn[i] * h[i] + cs[i] * h[i + 1];

h[i] = temp;

}

AssertThrow(h.size() == k + 2, ExcDimensionMismatch(h.size(), k + 2));

double cs_k = 0, sn_k = 0;

givens_rotation(h[k], h[k + 1], cs_k, sn_k);

h[k] = cs_k * h[k] + sn_k * h[k + 1];

h[k + 1] = 0.0;

cs[k] = cs_k;

sn[k] = sn_k;

}

template<int dim>

void DarcyVTProblem<dim>::back_solve(std::vector<std::vector<double>> H,

std::vector<double> beta, std::vector<double> &y,

unsigned int k_iteration) {

157

int k = k_iteration;

AssertThrow(y.size() == k_iteration + 1,

ExcDimensionMismatch(y.size(), k_iteration + 1));

for (unsigned int i = 0; i < k_iteration; i++)

y[i] = 0;

for (int i = k - 1; i >= 0; i--) {

y[i] = beta[i] / H[i][i];

for (int j = i + 1; j <= k - 1; j++) {

y[i] -= H[j][i] * y[j] / H[i][i];

}

}

}

//GMRES to solve interface problem, working across different processors

template<int dim>

void DarcyVTProblem<dim>::local_gmres(const unsigned int maxiter) {

const unsigned int this_mpi = Utilities::MPI::this_mpi_process(

mpi_communicator);

const unsigned int n_faces_per_cell = GeometryInfo<dim>::faces_per_cell;

std::vector<std::vector<double>> interface_data_receive(n_faces_per_cell);

std::vector<std::vector<double>> interface_data_send(n_faces_per_cell);

std::vector<std::vector<double>> interface_data(n_faces_per_cell);

std::vector<std::vector<double>> lambda(n_faces_per_cell);

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0) {

interface_data_receive[side].resize(interface_dofs[side].size(), 0);

interface_data_send[side].resize(interface_dofs[side].size(), 0);

interface_data[side].resize(interface_dofs[side].size(), 0);

}

Quadrature<dim> quad;

quad = QGauss<dim>(qdegree);

Quadrature<dim> quad_project;

quad_project = QGauss<dim>(qdegree);

AffineConstraints<double> constraints;

constraints.clear();

constraints.close();

unsigned int temp_array_size = maxiter / 4;

//GMRES structures and parameters

std::vector<double> sn(temp_array_size);

std::vector<double> cs(temp_array_size);

std::vector<double> Beta(temp_array_size);

std::vector<std::vector<double>> H(temp_array_size, Beta);

std::vector<double> e_all_iter(temp_array_size + 1);

double combined_error_iter = 0;

std::vector<std::vector<double>> r(n_faces_per_cell);

std::vector<double> r_norm_side(n_faces_per_cell, 0);

std::vector<std::vector<std::vector<double>>> Q_side(n_faces_per_cell);

std::vector<std::vector<double>> Ap(n_faces_per_cell);

std::vector<std::vector<double>> q(n_faces_per_cell);

158

interface_fe_function_st.reinit(solution_bar_st);

interface_fe_function_subdom.reinit(solution_bar);

if (mortar_flag == 1) {

interface_fe_function_mortar.reinit(solution_bar_mortar);

interface_fe_function_mortar = 0;

project_mortar<dim>(P_fine2coarse, dof_handler_st, solution_bar_st,

quad_project, constraints, neighbors, dof_handler_mortar,

solution_bar_mortar);

}

for (unsigned side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0) {

Ap[side].resize(interface_dofs[side].size(), 0);

lambda[side].resize(interface_dofs[side].size(), 0);

q[side].resize(interface_dofs[side].size());

r[side].resize(interface_dofs[side].size(), 0);

std::vector<double> r_receive_buffer(r[side].size());

Q_side[side].resize(temp_array_size + 1, q[side]);

if (mortar_flag)

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i) {

r[side][i] = get_normal_direction(side)

* solution_bar_mortar[interface_dofs[side][i]];

}

else

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i)

r[side][i] = get_normal_direction(side)

* solution_bar[interface_dofs[side][i]];

MPI_Sendrecv(&r[side][0], r[side].size(), MPI_DOUBLE,

neighbors[side], this_mpi,

&r_receive_buffer[0], r_receive_buffer.size(), MPI_DOUBLE,

neighbors[side], neighbors[side], mpi_communicator,

&mpi_status);

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i) {

r[side][i] += r_receive_buffer[i];

}

r_norm_side[side] = vect_norm(r[side]);

}

double r_norm = 0;

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0)

r_norm += r_norm_side[side] * r_norm_side[side];

double r_norm_buffer = 0;

MPI_Allreduce(&r_norm, &r_norm_buffer, 1, MPI_DOUBLE, MPI_SUM,

mpi_communicator);

r_norm = sqrt(r_norm_buffer);

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0) {

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i)

q[side][i] = r[side][i] / r_norm;

Q_side[side][0] = q[side];

159

}

e_all_iter[0] = 1;

pcout << "\n\n r_norm is " << r_norm << " target is " << r_norm * tolerance

<< "\n\n";

Beta[0] = r_norm;

unsigned int k_counter = 0;

while (k_counter < maxiter) {

if (temp_array_size < k_counter + 2) {

temp_array_size *= 2;

cs.resize(temp_array_size);

sn.resize(temp_array_size);

e_all_iter.resize(temp_array_size);

Beta.resize(temp_array_size);

H.resize(temp_array_size, Beta);

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0) {

std::vector<double> tmp_vector(interface_dofs[side].size());

Q_side[side].resize(temp_array_size + 1, tmp_vector);

}

}

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0)

interface_data[side] = Q_side[side][k_counter];

if (mortar_flag == 1) {

interface_fe_function_mortar = 0;

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i)

interface_fe_function_mortar[interface_dofs[side][i]] =

interface_data[side][i];

project_mortar(P_coarse2fine, dof_handler_mortar,

interface_fe_function_mortar, quad_project, constraints,

neighbors, dof_handler_st, interface_fe_function_st);

prm.time = 0.0;

for (unsigned int time_level = 0; time_level < prm.num_time_steps;

time_level++)

{

prm.time += prm.time_step;

solve_timestep(1, time_level);

}

prm.time = 0.0;

}

else {

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i)

interface_fe_function_subdom[interface_dofs[side][i]] =

interface_data[side][i];

assemble_rhs_star();

solve_star();

160

}

cg_iteration++;

if (mortar_flag == 1) {

project_mortar<2>(P_fine2coarse, dof_handler_st, solution_star_st,

quad_project, constraints, neighbors, dof_handler_mortar,

solution_star_mortar);

}

std::vector<double> h(k_counter + 2, 0);

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0) {

if (mortar_flag)

for (unsigned int i = 0; i < interface_dofs[side].size();

++i)

interface_data_send[side][i] = get_normal_direction(

side)

* solution_star_mortar[interface_dofs[side][i]];

else

for (unsigned int i = 0; i < interface_dofs[side].size();

++i)

interface_data_send[side][i] = get_normal_direction(

side) * solution_star[interface_dofs[side][i]];

MPI_Sendrecv(&interface_data_send[side][0],

interface_dofs[side].size(), MPI_DOUBLE,

neighbors[side], this_mpi,

&interface_data_receive[side][0],

interface_dofs[side].size(), MPI_DOUBLE,

neighbors[side], neighbors[side], mpi_communicator,

&mpi_status);

// Compute Ap and with it compute alpha

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i) {

Ap[side][i] = -(interface_data_send[side][i]

+ interface_data_receive[side][i]);

}

q[side].resize(Ap[side].size(), 0);

AssertThrow(Ap[side].size() == Q_side[side][k_counter].size(),

ExcDimensionMismatch(Ap[side].size(),

Q_side[side][k_counter].size()));

q[side] = Ap[side];

for (unsigned int i = 0; i <= k_counter; ++i) {

for (unsigned int j = 0; j < q[side].size(); ++j) {

h[i] += q[side][j] * Q_side[side][i][j];

}

}

}

std::vector<double> h_buffer(k_counter + 2, 0);

MPI_Allreduce(&h[0], &h_buffer[0], k_counter + 2, MPI_DOUBLE, MPI_SUM,

mpi_communicator);

h = h_buffer;

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

161

if (neighbors[side] >= 0)

for (unsigned int i = 0; i <= k_counter; ++i)

for (unsigned int j = 0; j < q[side].size(); ++j) {

q[side][j] -= h[i] * Q_side[side][i][j];

}

double h_dummy = 0;

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0)

h_dummy += vect_norm(q[side]) * vect_norm(q[side]);

double h_k_buffer = 0;

MPI_Allreduce(&h_dummy, &h_k_buffer, 1, MPI_DOUBLE, MPI_SUM,

mpi_communicator);

h[k_counter + 1] = sqrt(h_k_buffer);

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

if (neighbors[side] >= 0) {

for (unsigned int i = 0; i < q[side].size(); ++i)

q[side][i] /= h[k_counter + 1];

Q_side[side][k_counter + 1] = q[side];

}

H[k_counter] = h;

apply_givens_rotation(H[k_counter], cs, sn, k_counter);

Beta[k_counter + 1] = -sn[k_counter] * Beta[k_counter];

Beta[k_counter] *= cs[k_counter];

combined_error_iter = fabs(Beta[k_counter + 1]) / r_norm;

e_all_iter[k_counter + 1] = (combined_error_iter);

<< " iterations completed, (relative residual = "

<< combined_error_iter << ")..." << std::flush;

// Exit criterion

if (combined_error_iter < tolerance) {

<< "\n GMRES converges in " << cg_iteration

<< " iterations!\n and residual is "

<< e_all_iter[k_counter + 1] * r_norm << "\n";

break;

} else if (k_counter > maxiter - 2)

pcout << "\n GMRES doesn't converge after " << k_counter

<< " iterations!\n";

for (unsigned int side = 0; side < n_faces_per_cell; ++side) {

for (unsigned int i = 0; i < interface_data_send[side].size();

i++) {

interface_data_receive[side][i] = 0;

interface_data_send[side][i] = 0;

}

}

Ap.resize(n_faces_per_cell);

k_counter++;

}

std::vector<double> y(k_counter + 1, 0);

back_solve(H, Beta, y, k_counter);

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

162

if (neighbors[side] >= 0)

for (unsigned int i = 0; i < interface_data[side].size(); ++i)

for (unsigned int j = 0; j <= k_counter; ++j)

lambda[side][i] += Q_side[side][j][i] * y[j];

if (mortar_flag) {

interface_data = lambda;

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i)

interface_fe_function_mortar[interface_dofs[side][i]] =

interface_data[side][i];

project_mortar(P_coarse2fine, dof_handler_mortar,

interface_fe_function_mortar, quad_project, constraints,

neighbors, dof_handler_st, interface_fe_function_st);

}

else {

interface_data = lambda;

for (unsigned int side = 0; side < n_faces_per_cell; ++side)

for (unsigned int i = 0; i < interface_dofs[side].size(); ++i)

interface_fe_function_subdom[interface_dofs[side][i]] =

interface_data[side][i];

}

//Finally solving star problems.

max_cg_iteration = cg_iteration;

for (unsigned int time_level = 0; time_level < prm.num_time_steps;

time_level++) {

prm.time += prm.time_step;

solve_timestep(2, time_level);

}

prm.time = 0.0;

}

//Method to output the soluton for visualization and other purposes.

//This method is capable of producing 3-D space-time plots.

template<int dim>

void DarcyVTProblem<dim>::output_results(const unsigned int cycle,

const unsigned int refine, const unsigned int time_level) {

unsigned int n_processes = Utilities::MPI::n_mpi_processes(

mpi_communicator);

unsigned int this_mpi = Utilities::MPI::this_mpi_process(mpi_communicator);

if (cycle == total_refinements - 1) {

std::vector<std::string> solution_names;

switch (dim) {

case 2:

solution_names.push_back("u1");

solution_names.push_back("u2");

solution_names.push_back("p");

break;

case 3:

solution_names.push_back("u1");

solution_names.push_back("u2");

163

solution_names.push_back("u3");

solution_names.push_back("p");

break;

default:

AssertThrow(false, ExcNotImplemented());

}

if (need_each_time_step_plot) {

std::vector<DataComponentInterpretation::DataComponentInterpretation>

data_component_interpretation(

dim,

DataComponentInterpretation::component_is_part_of_vector);

data_component_interpretation.push_back(

DataComponentInterpretation::component_is_scalar);

DataOut<dim> data_out;

data_out.attach_dof_handler(dof_handler);

data_out.add_data_vector(solution, solution_names,

DataOut<dim>::type_dof_data, data_component_interpretation);

data_out.build_patches();

std::ofstream output(

"time-step-plots/solution_d" + Utilities::to_string(dim)

+ "_p" + Utilities::to_string(this_mpi, 4) + "-"

+ std::to_string(time_level) + ".vtu");

data_out.write_vtu(output);

if (this_mpi == 0) {

std::vector<std::string> filenames;

for (unsigned int i = 0; i < n_processes; ++i)

filenames.push_back(

"solution_d" + Utilities::to_string(dim) + "_p"

+ Utilities::to_string(i, 4) + "-"

+ std::to_string(time_level) + ".vtu");

std::ofstream master_output(

("time-step-plots/solution_d"

+ Utilities::to_string(dim) + "-"

+ std::to_string(time_level) + ".pvtu").c_str());

data_out.write_pvtu_record(master_output, filenames);

}

}

if (std::fabs(prm.time - prm.final_time) < 1.0e-12) {

std::vector<std::string> solution_names_st;

switch (dim) {

case 2:

solution_names_st.push_back("u1");

solution_names_st.push_back("u2");

solution_names_st.push_back("u3");

solution_names_st.push_back("p");

break;

default:

AssertThrow(false, ExcNotImplemented())

;

164

}

std::vector<DataComponentInterpretation::DataComponentInterpretation>

data_component_interpretation_st(

dim + 1,

DataComponentInterpretation::component_is_part_of_vector);

data_component_interpretation_st.push_back(

DataComponentInterpretation::component_is_scalar);

DataOut<dim + 1> data_out_2;

data_out_2.attach_dof_handler(dof_handler_st);

data_out_2.add_data_vector(solution_st, solution_names_st,

DataOut<dim + 1>::type_dof_data,

data_component_interpretation_st);

data_out_2.build_patches();

std::ofstream output_st(

"space-time-plots/st_solution_d"

+ Utilities::to_string(dim + 1) + "_p"

+ Utilities::to_string(this_mpi, 4) + ".vtu");

data_out_2.write_vtu(output_st);

if (this_mpi == 0) {

std::vector<std::string> filenames_st;

for (unsigned int i = 0;

i < Utilities::MPI::n_mpi_processes(mpi_communicator);

++i)

filenames_st.push_back(

"st_solution_d" + Utilities::to_string(dim + 1)

+ "_p" + Utilities::to_string(i, 4)

+ ".vtu");

std::ofstream master_output_st(

("space-time-plots/st_solution_d"

+ Utilities::to_string(dim + 1) + ".pvtu").c_str());

data_out_2.write_pvtu_record(master_output_st, filenames_st);

}

}

\\Resetting mortars in case of multiple levels of refinement

template<int dim>

void DarcyVTProblem<dim>::reset_mortars() {

triangulation.clear();

dof_handler.clear();

convergence_table.clear();

faces_on_interface.clear();

faces_on_interface_mortar.clear();

interface_dofs.clear();

interface_dofs_st.clear();

interface_dofs_subd.clear();

face_dofs_subdom.clear();

face_dofs_st.clear();

interface_fe_function_subdom = 0;

interface_fe_function_st = 0;

165

if (mortar_flag) {

triangulation_mortar.clear();

triangulation_st.clear();

}

dof_handler_mortar.clear();

dof_handler_st.clear();

}

//Run method: public member of the class which calls other methods in appropriate

order

template<int dim>

void DarcyVTProblem<dim>::run(const unsigned int refine,

const std::vector<std::vector<int>> &reps_st,

const std::vector<std::vector<int>> &reps_st_mortar, double tol,

unsigned int maxiter, unsigned int quad_degree) {

tolerance = tol;

qdegree = quad_degree;

total_refinements = refine;

const unsigned int this_mpi = Utilities::MPI::this_mpi_process(

mpi_communicator);

const unsigned int n_processes = Utilities::MPI::n_mpi_processes(

mpi_communicator);

pcout << "\n\n Total number of processes is " << n_processes << "\n\n";

AssertThrow(reps_st[0].size() == dim + 1,

ExcDimensionMismatch(reps_st[0].size(), dim));

std::vector<std::vector<unsigned int>> reps_local(reps_st.size()),

reps_st_local(reps_st.size()), reps_st_local_mortar(reps_st.size());

for (unsigned int i = 0; i < reps_st_local.size(); i++) {

reps_local[i].resize(2);

reps_st_local[i].resize(3);

reps_st_local_mortar[i].resize(3);

reps_st_local[i][0] = reps_st[i][0];

reps_st_local[i][1] = reps_st[i][1];

reps_st_local[i][2] = reps_st[i][2];

reps_st_local_mortar[i][0] = reps_st_mortar[i][0];

reps_st_local_mortar[i][1] = reps_st_mortar[i][1];

reps_st_local_mortar[i][2] = reps_st_mortar[i][2];

reps_local[i][0] = reps_st_local[i][0];

reps_local[i][1] = reps_st_local[i][1];

}

if (mortar_flag) {

pcout << "number of processors is " << n_processes << std::endl;

AssertThrow(n_processes > 1,

ExcMessage("Mortar MFEM is impossible with 1 subdomain"));

AssertThrow(reps_st.size() >= n_processes + 1,

ExcMessage("Some of the mesh parameters were not provided"));

}

for (refinement_index = 0; refinement_index < total_refinements;

++refinement_index) {

cg_iteration = 0;

166

interface_dofs.clear();

interface_dofs_st.clear();

interface_dofs_subd.clear();

face_dofs_subdom.clear();

face_dofs_st.clear();

if (refinement_index == 0) {

prm.num_time_steps = reps_st_local[this_mpi][2];

prm.time_step = prm.final_time / double(prm.num_time_steps);

pcout << "Final time= " << prm.final_time << "\n";

// Partitioning into subdomains (simple bricks)

find_divisors<dim>(n_processes, n_domains);

// Dimensions of the domain (unit hypercube)

std::vector<double> subdomain_dimensions(dim);

for (unsigned int d = 0; d < dim; ++d)

subdomain_dimensions[d] = 1.0 / double(n_domains[d]);

get_subdomain_coordinates(this_mpi, n_domains, subdomain_dimensions,

p1, p2);

//corners of the space time sub-domain.

p1_st = {p1[0],p1[1],0}, p2_st= {p2[0],p2[1],prm.final_time};

if (mortar_flag) {

GridGenerator::subdivided_hyper_rectangle(triangulation,

reps_local[this_mpi], p1, p2);

GridGenerator::subdivided_hyper_rectangle(triangulation_st,

reps_st_local[this_mpi], p1_st, p2_st);

GridGenerator::subdivided_hyper_rectangle(triangulation_mortar,

reps_st_local_mortar[this_mpi], p1_st, p2_st);

pcout << "Mortar mesh has "

<< triangulation_mortar.n_active_cells() << " cells"

<< std::endl;

} else {

GridGenerator::subdivided_hyper_rectangle(triangulation,

reps_local[0], p1, p2);

if (this_mpi == 0 || this_mpi == 3)

GridTools::distort_random(0.1 * (1 + this_mpi),

triangulation, true);

}

}

else {

if (mortar_flag == 0)

triangulation.refine_global(1);

else

{

triangulation.clear();

triangulation_st.clear();

triangulation_mortar.clear();

for (unsigned int dum_i = 0; dum_i < reps_st_local.size() - 1;

dum_i++) {

reps_st_local[dum_i][0] *= 2;

reps_st_local[dum_i][1] *= 2;

167

reps_st_local[dum_i][2] *= 2;

if (mortar_degree == 1) {

reps_st_local_mortar[dum_i][0] *= 2;

reps_st_local_mortar[dum_i][1] *= 2;

reps_st_local_mortar[dum_i][2] *= 2;

} else if (refinement_index != 0

&& refinement_index % 2 == 0) {

reps_st_local_mortar[dum_i][0] *= 2;

reps_st_local_mortar[dum_i][1] *= 2;

reps_st_local_mortar[dum_i][2] *= 2;

}

}

//refining mortar mesh

if (mortar_degree == 1) {

reps_st_local[reps_st_local.size() - 1][0] *= 2;

reps_st_local[reps_st_local.size() - 1][1] *= 2;

reps_st_local[reps_st_local.size() - 1][2] *= 2;

} else if (refinement_index != 0 && refinement_index % 2 == 0)

{

reps_st_local[reps_st_local.size() - 1][0] *= 2;

reps_st_local[reps_st_local.size() - 1][1] *= 2;

reps_st_local[reps_st_local.size() - 1][2] *= 2;

}

for (unsigned int dum_i = 0; dum_i < reps_local.size();

dum_i++) {

reps_local[dum_i][0] = reps_st_local[dum_i][0];

reps_local[dum_i][1] = reps_st_local[dum_i][1];

}

prm.num_time_steps = reps_st_local[this_mpi][2];

prm.time_step = prm.final_time / double(prm.num_time_steps);

pcout << "Final time= " << prm.final_time << "\n";

pcout << "number of time_steps for subdomain is: "

<< prm.num_time_steps << "\n";

GridGenerator::subdivided_hyper_rectangle(triangulation,

reps_local[this_mpi], p1, p2);

GridGenerator::subdivided_hyper_rectangle(triangulation_st,

reps_st_local[this_mpi], p1_st, p2_st);

GridGenerator::subdivided_hyper_rectangle(triangulation_mortar,

reps_st_local_mortar[this_mpi], p1_st, p2_st);

pcout << "Mortar mesh has "

<< triangulation_mortar.n_active_cells() << " cells"

<< std::endl;

}

}

pcout << "Making grid and DOFs...\n";

make_grid_and_dofs();

pcout << "Projecting the initial conditions...\n";

{

InitialCondition<dim> ic(prm.coe_a);

168

AffineConstraints<double> constraints;

constraints.clear();

constraints.close();

VectorTools::project(dof_handler, constraints,

QGauss<dim>(degree + 5), ic, initialc_solution);

solution = initialc_solution;

unsigned int time_level = 0;

output_results(refinement_index, refine, time_level);

}

pcout << "Assembling system..." << "\n";

assemble_system();

if (Utilities::MPI::n_mpi_processes(mpi_communicator) != 1) {

get_interface_dofs();

get_interface_dofs_st();

}

solve_darcy_vt(maxiter);

max_cg_iteration = 0;

set_current_errors_to_zero();

prm.time = 0.0;

computing_timer.print_summary();

computing_timer.reset();

}

reset_mortars();

}

169

Bibliography

[1] Elyes Ahmed, Jan Martin Nordbotten, and Florin Adrian Radu. Adaptive asynchronous
time-stepping, stopping criteria, and a posteriori error estimates for �xed-stress iterative
schemes for coupled poromechanics problems. J. Comput. Appl. Math., 364:112312, 25,
2020.

[2] Elyes Ahmed, Florin Adrian Radu, and Jan Martin Nordbotten. Adaptive poromechanics
computations based on a posteriori error estimates for fully mixed formulations of Biot's
consolidation model. Comput. Methods Appl. Mech. Engrg., 347:264�294, 2019.

[3] T. Almani, K. Kumar, A. Dogru, G. Singh, and M. F. Wheeler. Convergence analysis of
multirate �xed-stress split iterative schemes for coupling �ow with geomechanics. Comput.
Methods Appl. Mech. Engrg., 311:180�207, 2016.

[4] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller,
T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin,
and D. Wells. The deal.II library, version 9.0. Journal of Numerical Mathematics,
26(4):173�183, 2018.

[5] M. Amara and J. M. Thomas. Equilibrium �nite elements for the linear elastic problem.
Numer. Math., 33(4):367�383, 1979.

[6] I. Ambartsumyan, E. Khattatov, and I. Yotov. A coupled multipoint stress - multipoint
�ux mixed �nite element method for the Biot system of poroelasticity. Comput. Methods
Appl. Mech. Engrg., 372:113407, 2020.

[7] Ilona Ambartsumyan, Eldar Khattatov, Jan M. Nordbotten, and Ivan Yotov. A multipoint
stress mixed �nite element method for elasticity on quadrilateral grids. Numer. Methods
Partial Di�erential Equations, https://doi.org/10.1002/num.22624, 2020.

[8] Todd Arbogast, Lawrence C. Cowsar, Mary F. Wheeler, and Ivan Yotov. Mixed �nite
element methods on nonmatching multiblock grids. SIAM J. Numer. Anal., 37(4):1295�
1315, 2000.

[9] Todd Arbogast, Gergina Pencheva, Mary Wheeler, and Ivan Yotov. A multiscale mortar
mixed �nite element method. Multiscale Modeling and Simulation, 6, 01 2007.

170

[10] Todd Arbogast, Gergina Pencheva, Mary F. Wheeler, and Ivan Yotov. A multiscale
mortar mixed �nite element method. Multiscale Model. Simul., 6(1):319�346, 2007.

[11] Douglas N. Arnold, Gerard Awanou, and Weifeng Qiu. Mixed �nite elements for elasticity
on quadrilateral meshes. Adv. Comput. Math., 41(3):553�572, 2015.

[12] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Mixed �nite element methods
for linear elasticity with weakly imposed symmetry. Math. Comp., 76(260):1699�1723,
2007.

[13] Gerard Awanou. Rectangular mixed elements for elasticity with weakly imposed symmetry
condition. Adv. Comput. Math., 38(2):351�367, 2013.

[14] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II � a general purpose object oriented
�nite element library. ACM Trans. Math. Softw., 33(4):24/1�24/27, 2007.

[15] M. Bause, F.A. Radu, and U. Kocher. Space-time �nite element approximation of the
Biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech. Engrg.,
320:745�768, 2017.

[16] B. Beckermann, S. A. Goreinov, and E. E. Tyrtyshnikov. Some remarks on the Elman
estimate for GMRES. SIAM J. Matrix Anal. Appl., 27(3):772�778, 2005.

[17] Maurice A Biot. General theory of three-dimensional consolidation. J. Appl. Phys.,
12(2):155�164, 1941.

[18] Daniele Bo�, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk,
and Michel Fortin. Mixed �nite elements, compatibility conditions, and applications,
volume 1939 of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione
C.I.M.E., Florence, 2008.

[19] Daniele Bo�, Franco Brezzi, and Michel Fortin. Reduced symmetry elements in linear
elasticity. Commun. Pure Appl. Anal., 8(1):95�121, 2009.

[20] Manuel Borregales, Kundan Kumar, Florin Adrian Radu, Carmen Rodrigo, and
Francisco Jose Gaspar. A partially parallel-in-time �xed-stress splitting method for Biot's
consolidation model. Comput. Math. Appl., 77(6):1466�1478, 2019.

171

[21] Jakub Wiktor Both, Kundan Kumar, Jan Martin Nordbotten, and Florin Adrian Radu.
Anderson accelerated �xed-stress splitting schemes for consolidation of unsaturated
porous media. Comput. Math. Appl., 77(6):1479�1502, 2019.

[22] Franco Brezzi and Michel Fortin. Mixed and hybrid �nite element methods, volume 15 of
Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.

[23] Martina Bukac, William Layton, Marina Moraiti, Hoang Tran, and Catalin Trenchea.
Analysis of partitioned methods for the Biot system. Numer. Methods Partial Di�erential
Equations, 31(6):1769�1813, 2015.

[24] Philippe G. Ciarlet. The �nite element method for elliptic problems, volume 40 of Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2002.

[25] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Johnny Guzmán. A new elasticity
element made for enforcing weak stress symmetry. Math. Comp., 79(271):1331�1349,
2010.

[26] Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler. Balancing domain
decomposition for mixed �nite elements. Math. Comp., 64(211):989�1015, 1995.

[27] Monique Dauge. Elliptic boundary value problems on corner domains, volume 1341 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.

[28] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational iterative
methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20(2):345�
357, 1983.

[29] Mohamed Farhloul and Michel Fortin. Dual hybrid methods for the elasticity and the
Stokes problems: a uni�ed approach. Numer. Math., 76(4):419�440, 1997.

[30] Horacio Florez. About revisiting domain decomposition methods for poroelasticity.
Mathematics, 6(10):187, 2018.

[31] Horacio Florez and Mary Wheeler. A mortar method based on NURBS for curved
interfaces. Comput. Methods Appl. Mech. Engrg., 310:535�566, 2016.

[32] A. Fritz, S. Hüeber, and B. I. Wohlmuth. A comparison of mortar and Nitsche techniques
for linear elasticity. Calcolo, 41(3):115�137, 2004.

172

[33] Benjamin Ganis and Ivan Yotov. Implementation of a mortar mixed �nite element method
using a multiscale �ux basis. Comput. Methods Appl. Mech. Engrg., 198(49-52):3989�3998,
2009.

[34] F. J. Gaspar, F. J. Lisbona, and P. N. Vabishchevich. A �nite di�erence analysis of Biot's
consolidation model. Appl. Numer. Math., 44(4):487�506, 2003.

[35] V Girault, G Pencheva, Mary F Wheeler, and T Wildey. Domain decomposition for
poroelasticity and elasticity with DG jumps and mortars. Math. Mod. Meth. Appl. S.,
21(01):169�213, 2011.

[36] Vivette Girault, Gergina V. Pencheva, Mary F. Wheeler, and Tim M. Wildey. Domain
decomposition for linear elasticity with DG jumps and mortars. Comput. Methods Appl.
Mech. Engrg., 198(21-26):1751�1765, 2009.

[37] Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for Navier-Stokes
equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 1986. Theory and algorithms.

[38] Roland Glowinski and Mary F Wheeler. Domain decomposition and mixed �nite element
methods for elliptic problems. In First international symposium on domain decomposition
methods for partial di�erential equations, pages 144�172, 1988.

[39] J. Gopalakrishnan and J. Guzmán. A second elasticity element using the matrix bubble.
IMA J. Numer. Anal., 32(1):352�372, 2012.

[40] Pierre Gosselet, Vincent Chiaruttini, Christian Rey, and Frederic Feyel. A monolithic
strategy based on an hybrid domain decomposition method for multiphysic problems.
Application to poroelasticity. Revue Europeenne des Elements Finis, 13:523�534, 2012.

[41] Anne Greenbaum. Iterative methods for solving linear systems, volume 17 of Frontiers
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

[42] Pierre Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2011.

[43] Patrice Hauret and Patrick Le Tallec. A discontinuous stabilized mortar method for
general 3D elastic problems. Comput. Methods Appl. Mech. Engrg., 196(49-52):4881�
4900, 2007.

173

[44] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge University
Press, Cambridge, 1994. Corrected reprint of the 1991 original.

[45] Xiaozhe Hu, Carmen Rodrigo, Francisco J. Gaspar, and Ludmil T. Zikatanov. A
nonconforming �nite element method for the Biot's consolidation model in poroelasticity.
J. Comput. Appl. Math., 310:143�154, 2017.

[46] I. C. F. Ipsen. Expressions and bounds for the GMRES residual. BIT Numerical
Mathematics, 40(3):524�535, 2000.

[47] C. T. Kelley. Iterative methods for linear and nonlinear equations, volume 16 of Frontiers
in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia,
1995.

[48] Eldar Khattatov and Ivan Yotov. Domain decomposition and multiscale mortar mixed
�nite element methods for linear elasticity with weak stress symmetry. ESAIM Math.
Model. Numer. Anal., 53(6):2081�2108, 2019.

[49] Hyea Hyun Kim. A BDDC algorithm for mortar discretization of elasticity problems.
SIAM J. Numer. Anal., 46(4):2090�2111, 2008.

[50] Hyea Hyun Kim. A FETI-DP formulation of three dimensional elasticity problems with
mortar discretization. SIAM J. Numer. Anal., 46(5):2346�2370, 2008.

[51] Jihoon Kim, Hamdi Tchelepi, and R Juanes. Stability and convergence of sequential
methods for coupled �ow and geomechanics: Drained and undrained splits. Comput.
Methods Appl. Mech. Engrg., 200:2094�2116, 2011.

[52] Jihoon Kim, Hamdi Tchelepi, and R Juanes. Stability and convergence of sequential
methods for coupled �ow and geomechanics: Fixed-stress and �xed-strain splits. Comput.
Methods Appl. Mech. Engrg., 200:1591�1606, 2011.

[53] J. Kovacik. Correlation between Young's modulus and porosity in porous materials. J.
Mater. Sci. Lett., 18(13):1007�1010, 1999.

[54] Jeonghun J. Lee. Robust error analysis of coupled mixed methods for Biot's consolidation
model. J. Sci. Comput., 69(2):610�632, 2016.

[55] Jeonghun J. Lee. Towards a uni�ed analysis of mixed methods for elasticity with weakly
symmetric stress. Adv. Comput. Math., 42(2):361�376, 2016.

174

[56] Jeonghun J. Lee. Robust three-�eld �nite element methods for Biot's consolidation model
in poroelasticity. BIT, 58(2):347�372, 2018.

[57] Jeonghun J. Lee, Kent-Andre Mardal, and Ragnar Winther. Parameter-robust
discretization and preconditioning of Biot's consolidation model. SIAM J. Sci. Comput.,
39(1):A1�A24, 2017.

[58] T. P. Mathew. Domain decomposition and iterative re�nement methods for mixed �nite
element discretizations of elliptic problems. PhD thesis, Courant Institute of Mathematical
Sciences, New York University, 1989. Tech. Rep. 463.

[59] Andro Mikeli¢ and Mary F. Wheeler. Convergence of iterative coupling for coupled �ow
and geomechanics. Comput. Geosci., 17(3):455�461, 2013.

[60] Márcio A. Murad and Abimael F. D. Loula. Improved accuracy in �nite element analysis
of Biot's consolidation problem. Comput. Methods Appl. Mech. Engrg., 95(3):359�382,
1992.

[61] Jan Martin Nordbotten. Stable cell-centered �nite volume discretization for Biot
equations. SIAM J. Numer. Anal., 54(2):942�968, 2016.

[62] Ricardo Oyarzúa and Ricardo Ruiz-Baier. Locking-free �nite element methods for
poroelasticity. SIAM J. Numer. Anal., 54(5):2951�2973, 2016.

[63] Gergina Pencheva and Ivan Yotov. Balancing domain decomposition for mortar mixed
�nite element methods. Numer. Linear Algebra Appl., 10(1-2):159�180, 2003.

[64] Malgorzata Peszynska, Mary F. Wheeler, and Ivan Yotov. Mortar upscaling for multiphase
�ow in porous media. Comput. Geosci., 6(1):73�100, 2002.

[65] P. J. Phillips and M. F. Wheeler. A coupling of mixed and discontinuous Galerkin �nite-
element methods for poroelasticity. Comput. Geosci., 12(4):417�435, 2008.

[66] Phillip Joseph Phillips and Mary F. Wheeler. A coupling of mixed and continuous Galerkin
�nite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci.,
11(2):131�144, 2007.

[67] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Di�erential
equations. Clarendon Press, Oxford, 1999.

175

[68] J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In Handbook of numerical
analysis, Vol. II, Handb. Numer. Anal., II, pages 523�639. North-Holland, Amsterdam,
1991.

[69] C. Rodrigo, F. J. Gaspar, X. Hu, and L. T. Zikatanov. Stability and monotonicity for
some discretizations of the Biot's consolidation model. Comput. Methods Appl. Mech.
Engrg., 298:183�204, 2016.

[70] C. Rodrigo, X. Hu, P. Ohm, J. H. Adler, F. J. Gaspar, and L. T. Zikatanov. New stabilized
discretizations for poroelasticity and the Stokes' equations. Comput. Methods Appl. Mech.
Engrg., 341:467�484, 2018.

[71] L. Ridgway Scott and Shangyou Zhang. Finite element interpolation of nonsmooth
functions satisfying boundary conditions. Math. Comput., 54(190):483�493, 1990.

[72] R. E. Showalter. Di�usion in poro-elastic media. J. Math. Anal. Appl., 251(1):310 � 340,
2000.

[73] R. E. Showalter. Monotone operators in banach space and nonlinear partial di�erential
equations. 2013.

[74] Gerhard Starke. Field-of-values analysis of preconditioned iterative methods for
nonsymmetric elliptic problems. Numer. Math., 78(1):103�117, 1997.

[75] Rolf Stenberg. A family of mixed �nite elements for the elasticity problem. Numer. Math.,
53(5):513�538, 1988.

[76] Erlend Storvik, Jakub W. Both, Kundan Kumar, Jan M. Nordbotten, and Florin A.
Radu. On the optimization of the �xed-stress splitting for Biot's equations. Int. J.
Numer. Methods. Eng., 120(2):179�194, 2019.

[77] Andrea Toselli and Olof Widlund. Domain decomposition methods�algorithms and
theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 2005.

[78] Danail Vassilev, Changqing Wang, and Ivan Yotov. Domain decomposition for coupled
Stokes and Darcy �ows. Comput. Methods. Appl. Mech. Eng., 268:264�283, 2014.

176

[79] Mary F. Wheeler, Guangri Xue, and Ivan Yotov. Coupling multipoint �ux mixed �nite
element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci.,
18(1):57�75, 2014.

[80] Son-Young Yi. A coupling of nonconforming and mixed �nite element methods for Biot's
consolidation model. Numer. Meth. Partial. Di�er. Equ., 29(5):1749�1777, 2013.

[81] Son-Young Yi. Convergence analysis of a new mixed �nite element method for Biot's
consolidation model. Numer. Meth. Partial. Di�er. Equ., 30(4):1189�1210, 2014.

[82] Son-Young Yi. A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal.,
55(4):1915�1936, 2017.

[83] Son-Young Yi and Maranda Bean. Iteratively coupled solution strategies for a four-�eld
mixed �nite element method for poroelasticity. Int. J. Numer. Anal. Meth. Geomech.,
2016.

[84] E. Abreu, P. Ferraz, A. M. E. Santo, F. Pereira, L. G. C. Santos, and F. S. Sousa.
Recursive formulation and parallel implementation of multiscale mixed methods, 2020.
arXiv:2009.07965.

[85] E. Ahmed, J. M. Nordbotten, and F. A. Radu. Adaptive asynchronous time-stepping,
stopping criteria, and a posteriori error estimates for �xed-stress iterative schemes for
coupled poromechanics problems. Journal of Computational and Applied Mathematics,
364:112312, 2020.

[86] S. Ali Hassan, C. Japhet, M. Kern, and M. Vohralík. A posteriori stopping criteria for
optimized Schwarz domain decomposition algorithms in mixed formulations. Comput.
Methods Appl. Math., 18(3):495�519, 2018.

[87] S. Ali Hassan, C. Japhet, and M. Vohralík. A posteriori stopping criteria for space-time
domain decomposition for the heat equation in mixed formulations. Electron. Trans.
Numer. Anal., 49:151�181, 2018.

[88] T. Almani, K. Kumar, A. Dogru, G. Singh, and M. Wheeler. Convergence analysis
of multirate �xed-stress split iterative schemes for coupling �ow with geomechanics.
Computer Methods in Applied Mechanics and Engineering, 311:180�207, 2016.

[89] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed �nite element methods
on nonmatching multiblock grids. SIAM J. Numer. Anal., 37(4):1295�1315, 2000.

177

[90] T. Arbogast, G. Pencheva, M. F. Wheeler, and I. Yotov. A multiscale mortar mixed �nite
element method. Multiscale Model. Simul., 6(1):319�346, 2007.

[91] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II�a general-purpose object-oriented
�nite element library. ACM Trans. Math. Software, 33(4):Art. 24, 27, 2007.

[92] W. Bangerth, G. Kanschat, T. Heister, and M. Maier. deal.II.

[93] M. Bause, F. Radu, and U. Köcher. Space-time �nite element approximation of the Biot
poroelasticity system with iterative coupling. Computer Methods in Applied Mechanics
and Engineering, 320:745�768, 2017.

[94] M. Bause, F. A. Radu, and U. Köcher. Error analysis for discretizations of parabolic
problems using continuous �nite elements in time and mixed �nite elements in space.
Numer. Math., 137(4):773�818, 2017.

[95] B. Beckermann, S. A. Goreinov, and E. E. Tyrtyshnikov. Some remarks on the Elman
estimate for GMRES. SIAM J. Matrix Anal. Appl., 27(3):772�778, 2005.

[96] M. BenerA½, A. Nekvinda, and M. K. Yadav. Multi-time-step domain decomposition
method with non-matching grids for parabolic problems. Applied Mathematics and
Computation, 267:571�582, 2015. The Fourth European Seminar on Computing (ESCO
2014).

[97] M. Borregales, K. Kumar, F. A. Radu, C. Rodrigo, and F. J. Gaspar. A partially
parallel-in-time �xed-stress splitting method for Biot's consolidation model. Computers
& Mathematics with Applications, 77(6):1466�1478, 2019. 7th International Conference
on Advanced Computational Methods in Engineering (ACOMEN 2017).

[98] F. Brezzi and M. Fortin. Mixed and hybrid �nite element methods. Springer-Verlag, New
York, 1991.

[99] P. G. Ciarlet. The �nite element method for elliptic problems. North-Holland Publishing
Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications,
Vol. 4.

[100] M. Crouzeix and V. Thomée. The stability in Lp and W 1
p of the L2-projection onto �nite

element function spaces. Math. Comp., 48(178):521�532, 1987.

178

[101] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for
nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20(2):345�357, 1983.

[102] A. Ern, I. Smears, and M. Vohralík. Guaranteed, locally space-time e�cient, and
polynomial-degree robust a posteriori error estimates for high-order discretizations of
parabolic problems. SIAM J. Numer. Anal., 55(6):2811�2834, 2017.

[103] R. D. Falgout, S. Friedho�, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder. Parallel
time integration with multigrid. SIAM Journal on Scienti�c Computing, 36(6):C635�
C661, 2014.

[104] V. Faucher and A. Combescure. A time and space mortar method for coupling linear
modal subdomains and non-linear subdomains in explicit structural dynamics. Computer
Methods in Applied Mechanics and Engineering, 192(5):509�533, 2003.

[105] M. J. Gander. 50 years of time parallel time integration. In Multiple shooting and time
domain decomposition methods. MuS-TDD, Heidelberg, Germany, May 6�8, 2013, pages
69�113. Cham: Springer, 2015.

[106] M. J. Gander, F. Kwok, and B. C. Mandal. Dirichlet-Neumann and Neumann-Neumann
waveform relaxation algorithms for parabolic problems. ETNA, Electron. Trans. Numer.
Anal., 45:424�456, 2016.

[107] M. J. Gander and M. Neumüller. Analysis of a new space-time parallel multigrid algorithm
for parabolic problems. SIAM J. Sci. Comput., 38(4):a2173�a2208, 2016.

[108] M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration
method. SIAM J. Sci. Comput., 29(2):556�578, 2007.

[109] B. Ganis and I. Yotov. Implementation of a mortar mixed �nite element method using
a multiscale �ux basis. Computer Methods in Applied Mechanics and Engineering,
198(49):3989�3998, 2009.

[110] A. Greenbaum. Iterative methods for solving linear systems, volume 17 of Frontiers
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

[111] P. Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2011.

179

[112] T.-T.-P. Hoang, J. Ja�ré, C. Japhet, M. Kern, and J. E. Roberts. Space-time domain
decomposition methods for di�usion problems in mixed formulations. SIAM J. Numer.
Anal., 51(6):3532�3559, 2013.

[113] T.-T.-P. Hoang, C. Japhet, M. Kern, and J. E. Roberts. Space-time domain decomposition
for reduced fracture models in mixed formulation. SIAM J. Numer. Anal., 54(1):288�316,
2016.

[114] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press,
Cambridge, 1994. Corrected reprint of the 1991 original.

[115] I. C. F. Ipsen. Expressions and bounds for the GMRES residual. BIT Numerical
Mathematics, 40(3):524�535, 2000.

[116] C. T. Kelley. Iterative methods for linear and nonlinear equations, volume 16 of Frontiers
in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia,
1995.

[117] D. Krause and R. Krause. Enabling local time stepping in the parallel implicit solution of
reaction-di�usion equations via space-time �nite elements on shallow tree meshes. Applied
Mathematics and Computation, 277:164�179, 2016.

[118] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d'EDP par un schéma en temps
�pararéel�. C. R. Acad. Sci., Paris, Sér. I, Math., 332(7):661�668, 2001.

[119] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications.
Vol. I. Springer-Verlag, New York-Heidelberg, 1972.

[120] M. NeumÃ×ller and I. Smears. Time-parallel iterative solvers for parabolic evolution
equations. SIAM Journal on Scienti�c Computing, 41(1):C28�C51, 2019.

[121] M. A. Puscas, G. Enchéry, and S. Desroziers. Application of the mixed multiscale �nite
element method to parallel simulations of two-phase �ows in porous media. Oil Gas Sci.
Technol. - Rev. IFP Energies nouvelles, 73:38, 2018.

[122] V. Savcenco, W. Hundsdorfer, and J. Verwer. A multirate time stepping strategy for
parabolic PDE. Modelling, Analysis and Simulation report E 0516, Centrum voor
Wiskunde en Informatica, 2005.

180

[123] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math. Comput., 54(190):483�493, 1990.

[124] R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, and R. Krause. A multi-level
spectral deferred correction method. BIT, 55(3):843�867, 2015.

[125] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric
elliptic problems. Numer. Math., 78(1):103�117, 1997.

[126] V. Thomée. Galerkin �nite element methods for parabolic problems, volume 25 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[127] H. Yu. A local space-time adaptive scheme in solving two-dimensional parabolic problems
based on domain decomposition methods. SIAM Journal on Scienti�c Computing,
23(1):304�322, 2001.

181

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. Example 1, physical and numerical parameters.
	2. Example 1, convergence for t=10-3 and c0 = 1, monolithic scheme (top), drained split (middle), fixed stress (bottom).
	3. Example 1, convergence for t=10-2 and c0 = 1, monolithic scheme (top), drained split (middle), fixed stress (bottom).
	4. Example 1, convergence for t=10-1 and c0 = 1 , monolithic scheme (top), drained split (middle), fixed stress (bottom).
	5. Example 1, convergence for t=10-2 and c0=10-3, monolithic scheme (top), drained split (middle), fixed stress (bottom).
	6. Example 2, number of GMRES iterations in the monolithic scheme.
	7. Example 2, number of CG elasticity iterations in the drained split and fixed stress schemes.
	8. Example 2, number of CG Darcy iterations in the drained split and fixed stress schemes
	9. Example 3, parameters (left) and boundary conditions (right) .
	10. Example 3, comparison of the number of interface iterations in the three methods.
	11. Degree of polynomials associated with FEM spaces used for numerical experiments.
	12. Example 1, physical and numerical parameters.
	13. Example 1, convergence table using linear mortar (m=1) with H=Ch, t=10-4 and c0=1.0.
	14. Example 1, convergence table using quadratic mortar (m=2) with H=Ch, t=10-4 and c0=1.0.
	15. Example 1, convergence table for linear mortar with H=Ch, t=10-4 and c0=10-3.
	16. Example 1, convergence table for quadratic mortar with H=Ch, t=10-4 and c0=10-3.
	17. Example 2, parameters (top) and boundary conditions (bottom).
	18. Example 2, #GMRES iterations and maximum number of subdomain solves.
	19. Example 1, mesh size and #DoFs
	20. Linear mortar convergence
	21. Quadratic mortar convergence
	22. Example 2, errors for the multiscale and fine-scale methods.

	List of Figures
	1. Example 1, computed solution at the final time step using the monolithic domain decomposition method with h = 1/64 and t=10-3, top: stress x (left), stress y (middle), displacement (right), bottom: rotation (left), velocity (middle), pressure (right).
	2. Example 3, porosity, Young's modulus, permeability.
	3. Example 3, computed solution at the final time using the monolithic domain decomposition scheme, top: pressure (left), velocity (right), middle: displacement (left), stress x (right), bottom: stress y.
	4. Example 1, coarsest non matching subdomain grid on (0,1)2.
	5. Example 1, computed solution at final time step using a linear mortar on non-matching subdomain grids, top: stress x (left), stress y (middle), displacement (right), bottom: rotation (left), velocity (middle), pressure (right). Mesh size, h=1/32, t=10-3 and c0=1.0.
	6. Example 2, permeability, porosity, Young's modulus.
	7. Example 2, pressure (color) and velocity (arrows): fine scale (left), single linear mortar per interface (middle), and two linear mortars per interface (right).
	8. Example 2, pressure (color) and velocity (arrows): single quadratic mortar per interface (left), and two quadratic mortars per interface (right).
	9. Example 2, velocity magnitude: fine scale (left), single linear mortar per interface (middle), and two linear mortars per interface (right).
	10. Example 2, velocity magnitude: single quadratic mortar per interface (left), and two quadratic mortars per interface (right).
	11. Example 2, displacement vector (arrows) and its magnitude: fine scale (left), single linear mortar per interface (middle), and two linear mortars per interface (right).
	12. Example 2, displacement vector (arrows) and its magnitude: single quadratic mortar per interface (left), and two quadratic mortars per interface (right).
	13. Non-matching space-time subdomain and mortar grids in two spatial dimensions.
	14. Example 1, pressure computed using linear mortars shown on the space-time grid at refinement 2, top: on the whole space-time domain T, bottom: on 1T4T (left), on 2T3T (right).
	15. Example 1, x-component of velocity computed using linear mortars shown on the space-time grid at refinement 2, on 1T4T (left), on 2T3T (right).
	16. Example 1, y-component of velocity computed using linear mortars shown on the space-time grid at refinement 2, on 1T4T (left), on 2T3T (right).
	17. Example 2, pressure from the multiscale method, cut along the plane x=0.25 (top), velocity magnitude from the multiscale method, cut along the plane x=0.25 (bottom).
	18. Example 2, left: pressure from the multiscale method, cut along the plane t=0.35; right: pressure from the multiscale (top) and fine-scale (bottom) methods on the whole domain.
	19. Example 2, left: velocity magnitude from the multiscale method, cut along the plane t=0.35; right: velocity magnitude from the multiscale (top) and fine-scale (bottom) methods on the whole domain.

	Preface
	1.0 Introduction
	1.1 Methodology
	1.2 Basic Notation
	1.3 Model Problems
	1.3.1 Biot system of poroelasticity
	1.3.2 Time-dependent parabolic PDE

	2.0 Domain Decomposition And Split-scheme Techniques For Biot System Of Poroelasticity Using Matching Subdomain Grids
	2.1 Introduction
	2.2 MFE Discretization
	2.3 Monolithic Domain Decomposition Method
	2.3.1 Time discretization
	2.3.2 Time-differentiated elasticity formulation
	2.3.3 Reduction to an interface problem
	2.3.4 Analysis of the interface problem

	2.4 Split Methods
	2.4.1 Drained split
	2.4.1.1 Stability analysis for drained split

	2.4.2 Fixed stress
	2.4.2.1 Stability analysis for fixed stress

	2.4.3 Domain decomposition for the split methods

	2.5 Numerical Results
	2.5.1 Example 1: convergence and stability
	2.5.2 Example 2: dependence on number of subdomains
	2.5.3 Example 3: heterogeneous benchmark

	2.6 Chapter Conclusions

	3.0 A Multiscale Mortar Domain Decomposition For Biot System Of Poroelasticity Using Non-matching Subdomain Grids
	3.1 Introduction
	3.2 Formulation of the Method
	3.2.1 Multiscale mortar domain decomposition method
	3.2.2 Projection and interpolation operators
	3.2.3 Spaces of weakly continuous stress and velocity

	3.3 Analysis of the MMMFE Method
	3.3.1 Inf-sup stability for the weakly continuous spaces
	3.3.2 Well-posedness of the semi-discrete MMMFE formulation
	3.3.3 Stability analysis for MMMFE formulation
	3.3.4 Error analysis

	3.4 Implementation
	3.4.1 Time discretization
	3.4.2 Reduction to an interface problem
	3.4.3 Solving the interface problem
	3.4.4 Implementation with multiscale stress-flux basis (MSB)

	3.5 Numerical Results
	3.5.1 Example 1: testing convergence rates
	3.5.2 Example 2: heterogeneous medium

	3.6 Chapter Conclusions

	4.0 A Multiscale Mortar Space-time Domain Decomposition Technique For Parabolic Equations
	4.1 Introduction
	4.2 Model Problem and Space-Time Domain Decomposition Formulation
	4.2.1 Model problem
	4.2.2 Space-time subdomains
	4.2.3 Basic notation
	4.2.4 Weak formulation
	4.2.5 Domain decomposition weak formulation

	4.3 Space-Time Mixed Finite Element Method
	4.3.1 Space-time grids and spaces
	4.3.2 Space-time multiscale mortar mixed finite element method

	4.4 Well-Posedness Analysis
	4.4.1 Space-time interpolants
	4.4.2 Assumptions on the mortar grids
	4.4.3 Discrete inf–sup conditions
	4.4.4 Existence, uniqueness, and stability with respect to data

	4.5 A Priori Error Analysis
	4.5.1 Approximation properties of the space-time interpolants
	4.5.2 A priori error estimate
	4.5.3 Comments

	4.6 Reduction To An Interface Problem
	4.6.1 Decomposition of the solution
	4.6.2 Space-time Steklov–Poincaré operator
	4.6.3 GMRES convergence through the field-of-values estimates

	4.7 Numerical Results
	4.7.1 Example 1: convergence test
	4.7.2 Example 2: problem with a boundary layer

	4.8 Chapter Conclusions

	5.0 Conclusions
	5.1 Summary of Techniques Developed and Results
	5.2 Future Work

	Appendix. Code Gallery
	A.1 Note to the Reader
	A.2 Links to Open-source Packages Corresponding to Various Chapters
	A.3 Implementation of the Space-time Multiscale Mortar Decomposition Method
	A.3.1 User interface
	A.3.2 Source code

	Bibliography

