
Robust Design in Game Theory: Bayesian Optimization Approach to Minimax

Problems with Equilibrium Constraints

by

Jianan Jian

Master of Science, University of Pittsburgh, 2017

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2021



UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Jianan Jian

It was defended on

July 12, 2021

and approved by

Kevin P. Chen, Ph.D., Department of Electrical and Computer Engineering

Ahmed Dallal, Ph.D., Department of Electrical and Computer Engineering

G. Bard Ermentrout, Ph.D., Department of Mathematics

Zhi-Hong Mao, Ph.D., Department of Electrical and Computer Engineering

Mingui Sun, Ph.D., Department of Neurological Surgery

Bo Zeng, Ph.D., Department of Industrial Engineering

Liang Zhan, Ph.D., Department of Electrical and Computer Engineering

Dissertation Advisors: Bo Zeng, Ph.D., Department of Industrial Engineering

Kevin P. Chen, Ph.D., Department of Electrical and Computer Engineering

Zhi-Hong Mao, Ph.D., Department of Electrical and Computer Engineering

ii



Copyright c© by Jianan Jian

2021

iii



Robust Design in Game Theory: Bayesian Optimization Approach to Minimax

Problems with Equilibrium Constraints

Jianan Jian, PhD

University of Pittsburgh, 2021

Modern engineering systems have become increasingly complex due to the integration

of human actors and advanced artificial intelligence, both of which can be interpreted as

intelligent agents. Game theory is a mathematical framework that provides an explanatory

model for systems constituted of those intelligent agents. It postulates that the apparent

behavior of a system is an equilibrium resulting from each agent within the system individ-

ually optimizing their own objectives. Thus, designing an intelligent system is to identify

a configuration such that its equilibrium is desirable with respect to some external criteria.

However, equilibria are often not unique and form sets that lack topological properties on

which optimization heavily relies on, e.g., convexity, connectedness, or even compactness in

some cases. The unsureness nature, i.e., uncertainty, of equilibria also appeals for another

common design criterion: robustness. In this context, a robust design should reach worst-

case optimality to avoid sensitivity to the eventual outcome among all possible equilibria.

In this dissertation, I incorporate both the game theoretical aspect and the robustness

requirement of system design using the formulation of minimax problems with equilibrium

constraints. The complexity of the problem structure and the non-uniqueness of potential

equilibria require a new solution strategy different from traditional gradient based methods.

I propose a Bayesian approach which infers the probabilistic belief of the optimality of a

design given sampled objective function values. Due to the anisotropic natural of systems

of independent agents, I then revisit the original Kushner’s Wiener process prior instead of

radial basis kernel prior despite their popularity for other global optimization applications.

I also derive theoretical results on sample maxima and their locations, develop an effective

method to decompose the search space into independent regions, and design necessary adap-

tations to take into account the equilibrium constraints and minimax objective. Finally, I

discuss a few applications of the proposed design framework.
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1.0 Introduction

Human-in-the-loop systems and artificial intelligent systems have increasing applications

in engineering. The dynamics of individual components in these systems may not be directly

understood or engineered, but their interactions often follow basic principles put forward by

the game theory. Game theory is a mathematical framework which provides an explana-

tory model for systems constituted of multiple intelligent agents. It postulates that the

apparent behavior of a system is an equilibrium resulting from each agent within the system

individually optimizing their own objectives. In this dissertation, I investigate optimal de-

sign problems in this game theoretical framework, which aims at finding the values of game

parameters which fulfill desired criteria.

In the rest of the first chapter, I give a brief history regarding the subjects of interest.

A motivating example is then given to illustrate the problems this dissertation attempts to

solve. The contributions of this dissertation is summarized. In the second chapter, I discuss

some theoretical aspects in optimization, especially the topological properties. The mathe-

matical formulation of the main focus of this dissertation is given and the basic properties

are discussed. In the third chapter, mathematical programming methods based on Bayesian

optimization are developed to effectively solve the design problems. In the fourth chapter, I

show more concrete applications related to the proposed framework of game design.

1.1 Background

Modern game theory was established by John von Neumann with his 1928 paper [34],

in which he proved the existence of mixed-strategy equilibria in two-person zero-sum finite

games using Brouwer’s fixed-point theorem. John Nash [23] proposed a solution concept

to games with multiple players, generalizing the work of von Neumann. Game theory at-
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tracted considerable development since 1950s and found phenomenal achievements especially

in mathematical economics. Nobel Memorial Prize in Economic Sciences was rewarded to

game theorists in numerous years.

Way before the modern game theory was conceived, in the 17th century mathematicians

started to study a different aspect of games. In the letter exchange between Blaise Pascal and

Pierre Fermat, they discussed the problem of division of the stakes, consisting in designing

a game of chance which is fair to the players. To define fairness, they established the

concept of expected values. Their foundational discussion is now considered as the birth of

the probability theory [30]. In the 18th century, Thomas Bayes and Pierre-Simon Laplace

proved a powerful theorem for data analysis, known as Bayes’ theorem today. This theorem

was developed into Bayesian inference, which revolutionized the study of probability and

statistics. Today, Bayesian methods empowers numerous algorithms in machine learning for

classification and regression.

Game theory has benefit from recent rapid development of machine learning. Reinforce-

ment learning is a branch of machine learning inspired by the mathematical theory of optimal

control and the biological function of dopamine in nervous system. Using the concept of re-

ward, reinforcement learning can solve complex problems in game theory [26]. On the other

hand, game theoretical framework also inspired powerful machine learning algorithm such

as generative adversarial networks [13]. Inverse reinforcement learning consists in recovering

the unknown reward structure guiding the behavior of an agent from the external observa-

tion of the agent’s behavior. It is an active and fruitful field of research [1, 25] and gave rise

to generalizations to multi-agent system [14, 24].

The existing literature on the design problems in game theory [5, 2, 36] almost exclusively

focuses on local solutions using gradient-based methods. The existence of multiple equilibria,

a significant feature of games, is often overlooked. This dissertation tries to fill up this gap

by providing a global point of view with the introduction of the concept of robustness and

a Bayesian solution approach.
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1.2 Example

To illustrate the type of engineering problems interested in this dissertation, I propose

the following example.

Example 1. In a country with the geography X = [0, 1]2, let there be N cities located

respectively at (xi, yi) ∈ X , each having a potential air traffic market of size zi, and M

airline hubs located respectively at (uj, vj) ∈ X , each having the control over their service

radius rj for a cost g(r2
j ) = g0 exp(αr2

j ) where α ≥ 0. If a city falls in the service area of

multiple hubs, then the air traffic market of that city is equally shared among those hubs.

Suppose all the hubs aim at maximizing their profits and their service radii reach a Nash

equilibrium, which solves the following optimization problems.

(r∗j , s
∗
j) ∈ arg max

rj ,sj

(
−g(r2

j ) +
N∑
i=1

zisij∑M
k=1 sik + (1− sij)

)
∀j

s.t. sij(r
2
j − d2

ij) ≥ 0 ∀i, j

0 ≤ sij ≤ 1 ∀i, j

0 ≤ rj ≤ 1 ∀j

The constant d2
ij = (xi − uj)2 + (yi − vj)2 is the squared distance between city i and airport

j, the variable sij represents whether city i is served by airport j. A best response (r∗j , s
∗
j) of

airport j always satisfies r∗j ∈ {dij}, s∗ij ∈ {0, 1}. As a result, the action space of each player

is effectively finite with cardinality N , the equilibria of the game can be obtained through

iterated elimination of strictly dominated strategies. As we will be interested in the variables

M and α, denote the set of equilibria by Φ(M,α).

Now the government is planning an infrastructure project that will entirely determine

the cost parameter α. Suppose the government wants to avoid a game of multiple equilibria,

which causes market uncertainty. Then the parameter α needs to solve the following problem.

min
α

max
s,s′

∑
ij

|sij − s′ij|

s.t. (r, s) ∈ Φ(M,α)

(r′, s′) ∈ Φ(M,α)
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Suppose, in a different scenario, the government wants to maximize the total air traffic

coverage and at the same time to hedge against a potential recession that only M ′ hubs

will survive. The hedging objective is to reduce the worst-case loss of previously established

coverage during the recession. Then this problem can be formulated as follows.

max
α

min
s,s′

(
1

M

∑
ij

sij − µ
∑
ij

(sij − s′ij)+

)
(1.1)

s.t. (r, s) ∈ Φ(M,α)

(r′, s′) ∈ Φ(M ′, α)

Figure 1: Performance (1.1) of the equilibria given the parameter α. Multiple points with the

same abscissa result from different Nash equilibria attained at that value of α. The optimal

worst-case performance is reached at any value of α in [0.300, 0.303] or in [0.325, 0.356].

(N = 20,M = 5,M ′ = 3, g0 = 2, µ = 0.4)

4



The design problems I illustrate here are examples of MPEC (mathematical programming

with equilibrium constraints). Specifically, they look for optimal designs which relate two

or more versions of a game by posing optimization problems with their Nash equilibria as

the constraints. At the same time, the upper level of these problems are minimax problems.

Due to the possibility of multiple equilibria in a game, a robust design should take into

consideration the worst-case scenario and aims at achieving optimality in this case.

1.3 Contributions

This dissertation examines minimax problems with equilibrium constraints and proposes

a solution based on Bayesian optimization. Although minimax problems and equilibrium

constraints have been long studied as separate subjects, they have received little attention

as a combined problem due to the complexity. In this dissertation, I highlight with ex-

amples the importance of this formulation in designing multi-agent systems. Instead of

the traditional optimization techniques focused on gradient-based methods, a novel solution

methodology is proposed to treat this type of problems. I make a few adaptations of the

existing Bayesian optimization specifically to incorporate equilibrium constraints and mini-

max objective. Among others, I show the Wiener process prior proposed by Kushner does

not provide a uniform prior on the maximizers and I propose a simple method to obtain

a uniform prior. I propose a generalization of the Wiener process to higher dimensions for

the purpose of finding game equilibria. This generalization is different from traditional high

dimensional Bayesian optimization which prefers the isotropy of search space. The lack of

isotropy in my generalization is justified by the anisotropic nature of systems of indepen-

dent agents. I show how this generalization decomposes the search space into independent

regions given sampled objective function values. Theoretical results on sample maxima can

be applied on each of the regions, and be combined to obtain the probabilistic belief of the

optimality of a design. This novel solution approach can also be generalized and applied to

related problems such as other multilevel optimization problems.
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2.0 Theoretical Models of Optimization and Games

In this section, I first review some standard optimization problems and state compactness

results of their solutions. Then I continue the same discussion for games. These are the

theoretical basis upon which we can further build design problems.

Optimization theory makes use heavily of the theory of correspondences. A correspon-

dence from the set X to the set Y is a function from the set X to the power set 2Y . It

can also be characterized by a binary relation between X and Y , or equivalently the graph

of the relation. The use of correspondences instead of functions reflect the key property of

optimization that a problem can have zero, one, or multiple optimizers.

Optimization problems are characterized by the mathematical structures they are en-

dowed with, notably their topological property. In consequence, different notions of con-

tinuity of correspondences [6] play a major role in providing topological properties to the

optimizers of a problem.

2.1 Single-Agent Optimization

The input-output relation of complex systems demonstrates the property of agency. Such

systems are called agents. Optimization problems are a mathematical model of agents.

Definition 1 (Optimization problem). An optimization problem P constitutes of a set X

called the state space, a set Y called the action space, a function f : X × Y → R called the

payoff function, and a correspondence C : X ⇒ Y called the constraint. The correspondence

F : X ⇒ Y given by F (x) = arg max{f(x, y) | y ∈ C(x)} is called the solution. A selector

of F is called a strategy.

The following proposition gives conditions which guarantee the existence of a strategy

to P .
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Proposition 1. If Y is a topological space, f is upper semicontinuous in y, and C has

nonempty and compact values, then P admits a nonempty and compact set of strategies.

Proof. By [6, Theorem 2.43], F (x) are nonempty and compact. Hence, the set of strategies

is nonempty by the axiom of choice and compact by Tychonoff’s theorem.

An additional property of agents, which may affect their outputs, is the information

available to them. The information structure of an agent is modeled by a σ-algebra on X so

that a strategy is compatible with the information structure if and only if it is measurable.

The following proposition gives additional conditions which guarantee the existence of a

measurable strategy.

Proposition 2. If X is a measurable space, Y is a separable metrizable space, f is measur-

able in x and continuous in y, and C is measurable and has nonempty and compact values,

then P admits a nonempty and compact set of measurable strategies.

Proof. By [6, Theorem 18.19], F admits a measurable selector. As Y is metrizable, the

space of measurable functions from X to Y is closed. By Proposition 1, the set of selectors

is compact. The set of measurable selectors, being the intersection of a closed subset and

a compact subset within the Hausdorff space Y X equipped with the product topology, is

compact.

When X is a measure space and Y is a Banach space, we can discuss the compactness

of the set of strategies in Lp(X, Y ).

Proposition 3. Suppose X is a perfect probability space and Y is a bounded subset of a

Banach space. The set of measurable strategies is nonempty and compact in Lp(X, Y ).

Proof. Let N : Y → R be the norm on Y . Consider the map ϕ1 : Y X → RX given

by f 7→ N ◦ f . First prove that ϕ1 is continuous with respect to the product topologies.

The set of all subsets V := {g : X → R | g(x0) ∈ U}, where x0 ∈ X and U ⊆ R is

an open set, is a subbase of the product topology on RX . The preimage of V by ϕ1 is

{f : X → Y | N(f(x0)) ∈ U} = {f : X → Y | f(x0) ∈ N−1(U)}. As the norm N is

continuous, N−1(U) is open in Y and ϕ−1
1 (V ) is open in the product topology of Y X .
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Let K be the compact set of measurable strategies X → Y . As ϕ1 is continuous, the

image ϕ1(K) is compact in RX . By [12], pointwise compactness implies L0-compactness.

By the Vitali convergence theorem, L0-compactness implies Lp-compactness given uniformly

integrability. Therefore, ϕ1(K) is nonempty and compact in Lp(X,R).

The boundedness of Y ensures K ⊆ Lp(X, Y ). Consider the map ϕ2 : K → Lp(X,R)

given by f 7→ N ◦ f . Prove that ϕ2 is continuous with respect to the Lp-norms. Let ε > 0

and δ = ε > 0, then whenever ‖fn−f‖ =
∫
X

(N ◦(fn−f))pdµ < δ, by the triangle inequality,

‖N ◦ fn−N ◦ f‖ =
∫
X
|N ◦ fn−N ◦ f |pdµ ≤

∫
X

(N ◦ (fn− f))pdµ < δ = ε. As a continuous

map from a compact space to a Hausdorff space, ϕ2 is proper. Therefore K is compact in

Lp(X, Y ).

An agent has partial information when the state space is (X,Σ) but f is not Σ-measurable

in x. Expected utility theory postulates that, provided with a belief structure modeled by

a probability space (X,F , µ) on X such that σ(f) ⊆ F and Σ ⊆ F , the agent follows a

strategy given in the following proposition.

Proposition 4. Let Y ⊆ Rd be a Euclidean domain. Suppose C is Σ-measurable and has

nonempty and compact values. Let fy : X → R be the F-measurable function x 7→ f(x, y).

If y 7→ fy is an α-Hölder continuous function Y → Lp(X,F , µ) where p ≥ 1 and αp > d,

then there is a conditional expectation of fy with respect to Σ, denoted by gy, such that

the correspondence G : X ⇒ Y given by G(x) = arg max{gy(x) | y ∈ C(x)} admits a Σ-

measurable selector. The set of all such Σ-measurable selectors is compact in the quotient

topology under almost-sureness.

Proof. Let hy be a conditional expectation of fy with respect to Σ. By the conditional

Jensen’s inequality [37], y 7→ hy is an α-Hölder continuous function Y → Lp(X,Σ, µ|Σ).

By the Kolmogorov continuity theorem [22, Theorem 2.1], y 7→ hy admits a Σ-measurable

continuous modification y 7→ gy. By Proposition 2, G admits a nonempty and compact set

of Σ-measurable selectors.

Two conditional expectations only differ on a null set, so any strategies associated to

them only differ on a null set. On the other hand, if a Σ-measurable function ψ : X → Y
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differs from a strategy associated to gy on a null set N , then let hy(x) = gy(x) for all x 6∈ N ,

let hy(x) = 0 for all x ∈ N and y 6= ψ(x), and let hy(x) = 1 for all x ∈ N and y = ψ(x), so

that hy is a conditional expectation of fy and ψ(x) ∈ arg max{hx(x) | y ∈ C(x)}, i.e. ψ is

also a strategy given by a conditional expectation. Therefore, in the quotient space, the set

of all Σ-measurable strategies associated to any conditional expectations is identified with

the compact set of Σ-measurable strategies associated to a single conditional expectations

gy.

Remark 1. A generalization of the Kolomogorov continuity theorem to dyadically separable

metric spaces is given by [27].

2.2 Multi-Agent Games

Non-cooperative games are a mathematical model of systems constituted of multiple

agents, in which the behavior of the agents are commonly modeled with Nash equilibria.

Definition 2 (Normal-form game). A normal-form game G constitutes of a set A whose

elements are called agents, a set X called the state space, and, for each agent a ∈ A, a set

Ya called the action space, a correspondence Ca : X × Y ⇒ Ya called the constraint, and a

function fa : X × Y → R called the payoff function, where Y :=
∏

a∈A Ya.

For each agent a ∈ A, an optimization problem Pa is associated to G, of which the

state space is X × Y , the action space is Ya, the constraint is Ca, and the payoff function

is ψa := fa ◦ (idX ×ra), where the substitution function ra : Y × Ya → Y is given by

proja(ra(y, ŷa)) = ŷa and projb(ra(y, ŷa)) = projb(y) for all b ∈ A\{a}. Let Fa : X×Y ⇒ Ya

be the solution to Pa.
Let Ψx : Y ⇒ Y be the correspondence given by Ψx(y) =

∏
a∈A Fa(x, y). Denote the set

of fixed point of Ψx by Φx. The correspondence Φ : X ⇒ Y given by Φ(x) = Φx is called

the solution to G. A selector of Φ is called a Nash equilibrium of G.

Proposition 5. Let Ya be nonempty compact convex subsets of locally convex Hausdorff

spaces. Suppose Ca are continuous and have nonempty, compact, and convex values. Suppose
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fa is continuous in y and quasiconcave in ya. Then G has a nonempty and compact set of

Nash equilibria. In addition, Φ is upper hemicontinuous if X is Hausdorff.

Proof. By the maximum theorem [33, Theorem 9.17], Fa is upper hemicontinuous with

nonempty, compact, and convex values. By Kakutani fixed point theorem, Φx is nonempty

and compact. The upper hemicontinuity of Φ is given in [11, Proposition 3.5].

Games with non-trivial information structure are defined in [35] and [9].

Definition 3 (Extensive-form game). The state space (X,X ) is a measurable space. The

action space (Ya,Ya) of each agent a ∈ A is a measurable space. The information structure

Σa of each agent a is a sub-σ-algebra of Σ := X ⊗
(⊗

a∈A Ya
)
. The strategy of each agent

is a (Σa,Ya)-measurable function. A player is a subset of agents p ⊆ A such that the set

of players is a partition of the set of agents. Each player has a (Σ,BR)-measurable payoff

function fp and a belief µp on (X,X ). The best response of player p is the correspondence

Fp which maps a strategy profile λ := (λa)a∈A to the set of optimal strategies λ∗p := (λ∗a)a∈p

which solve

max
η,λ∗p

∫
X

(fp ◦ η)dµp (2.1)

s.t. λa ◦ η = proja ◦η ∀a 6∈ p (2.2)

λ∗a ◦ η = proja ◦η ∀a ∈ p (2.3)

λ∗a : X × Y → Ya is Σa-measurable ∀a ∈ p (2.4)

η : X → X × Y is Σ-measurable. (2.5)

A Bayesian Nash equilibrium of the game is a fixed point of the correspondence λ 7→∏
p Fp(λ)

together with the function η : X → X × Y it uniquely determines.

Proposition 5 is a special case where all the players have no information exchange with

any other players. But in general, the Kakutani fixed point theorem can be inapplicable due

to the lack of convexity in the constraints (2.2) and (2.3). Thus it is necessary to acknowledge

that the set of equilibria of an extensive-form game may be empty or non-compact in further

discussions.
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2.3 Parametrized Game Optimization

Let G be a game defined in Definition 2 where X and Y are compact Hausdorff spaces

and Φ : X ⇒ Y be its solution. Consider X as the action space of an additional agent

whose payoff function is denoted by ϕ : X × Y → R. Define the worst-case value function

v : X → R by v(x) = inf{ϕ(x, y) | y ∈ Φ(x)} and consider the constrained minimax problem.

sup
x∈X

inf
y∈Φ(x)

ϕ(x, y). (2.6)

Assume Φ has nonempty and compact values. Some sufficient conditions regarding

whether the infimum or the supremum is attainable are stated as follows.

• If X is a finite set, then the supremum is attainable. If Y is a finite set, then the infimum

is attainable. If ϕ takes discrete values, then both the infimum and the supremum are

attainable.

• If Φ is upper hemicontinuous and ϕ is lower semicontinuous, then the infimum is attain-

able [6, Lemma 17.30].

• If Φ is lower hemicontinuous and ϕ is upper semicontinuous, then the supremum is

attainable [19, Theorem 9.2.1].

However, the solution to a game is not lower hemicontinuous in general. If the supremum

is not attainable, the agent has to select a suboptimal solution in the nonempty set Vε :=

{x ∈ X | v(x) ≥ sup v − ε} for a small threshold ε.

Similarly for games with non-trivial information structures, let Φ′ be the set of η that

constitutes an equilibrium and consider

sup
x∈X

inf
η∈Φ′

ϕ(η(x)). (2.7)

This formulation transforms the coupled constraint (x, y) ∈ Gr Φ into separate constraints

x ∈ X, η ∈ Φ′ at the price of considering functions η : X → Y instead of points y ∈ Y .

From the game theoretical point of view, the minimax problem (2.7) is a two-player zero-sum

Stackelberg game. However, the minimax theorem cannot be applied here without Φ′ being

nonempty, compact, and convex.
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2.4 Gradient-Based Methods

Problem (2.6) is a special minimax problem with an equilibrium constraint y ∈ Φ(x). The

lower level MPEC problem can be solved by replacing the equilibrium constraints with the

KKT (Karush–Kuhn–Tucker) conditions. Suppose there are finite number of agents and each

agent’s action space is a sublevel set of a convex function within an affine Euclidean subspace,

i.e., Ya = g−1
a (Rpa

− ) ∩ h−1
a ({0}qa) where ga : Rna → Rpa is convex and ha : ya 7→ Aaya + ba

is affine. For all j = 1, · · · , pa, assume gaj(y
∗
a) < 0 for some y∗a ∈ h−1

a ({0}qa) in the affine

subspace and limt→∞ gaj(tya) = +∞ for all ya 6= 0, so that ga satisfy Slater’s condition and

Ya are nonempty and bounded. Let fx,a(y, ya) := fa(x, ra(y, ya)). The constraint y ∈ Φ(x)

can be written as

∀a :


ya ∈ arg max

y′a
fx,a(y, y

′
a)

s.t. ga(y
′
a) ≥ 0

ha(y
′
a) = 0.

Assume the smoothness of fa and ga, then a relaxation to the above constraint is stated by

the KKT conditions

Lal(x, y, µ, λ) = 0 ∀l = 1 · · · , na
Gak(y, µ) = 0 ∀k = 1, · · · , pa
haj(ya) = 0 ∀j = 1 · · · , qa

∀a = 1, · · · , |A|

where

La(x, y, µ, λ) = fx,a(y) +

pa∑
k=1

µakgak(ya) +

qa∑
j=1

λajhaj(ya)

Lal(x, y, µ, λ) =
∂La
∂yal

(x, y, µ, λ)

Gak(y, µ) =
√
µ2
ak + gak(ya)2 − µak − gak(ya).

The complementarity condition is formulated with the Fischer-Burmeister merit function

[21], to translate the disjunction gak(ya) ≥ µak = 0 or µak ≥ gak(ya) = 0. It has numerical

advantages over the inner product formulation µT
a ga(ya) = 0 [16, 17].

12



Having the above KKT conditions as the constraints in (2.6), the constrainted minimax

problem

sup
x∈X

inf
y∈Y
µ,λ

{ϕ(x, y) | ∀l, k, j, a : Lal(x, y, µ, λ) = Gak(y, µ) = haj(y) = 0}

can be solved with further KKT conditions or with appropriate relaxations [31].

13



3.0 Bayesian Approach to Parametrized Games

Gradient-based methods suffer from a few limitations in our application. First, the func-

tions involved need to have (sub-)gradients. Second, two levels of optimization together with

an equilibrium constraint results in a large set of KKT equations, high order of derivatives,

and accumulated relaxations or approximations. Third and most importantly, the equilibria

of a game can have non-connected components, all of which need to be considered in a de-

sign process. This cannot be achieved effectively through a local method. In this chapter,

I propose the application of the Bayesian optimization method to solve parametrized game

problems.

The Bayesian optimization method was first proposed by Kushner [20], and has found

many applications in machine learning [32]. Two main ingredients of a typical Bayesian

optimization method are a Gaussian process prior and an acquisition function. The Gaus-

sian process prior models how samples inform the belief and the acquisition function models

how the belief guides sampling in return. In recent literature, the most popular prior is the

squared exponential kernel, the most popular acquisition function is the expected improve-

ment. In this dissertation, I use the Wiener process prior originally proposed by Kushner.

It has the advantage of having an analytical expression of the probability of reaching maxi-

mum. So the acquisition function used in this dissertation is based on optimality instead of

improvement.

3.1 Single-Variable Bayesian Optimization

A fundamental assumption of games with perfect information is that the payoff functions

are common knowledge. From the theoretical point of view, knowing the function and

knowing all the values of the function are equivalent. But from the computational point of

view, they are distinct. A function f is known in the sense that there is a known algorithm

which outputs the function value f(t) when a variable t is provided as input. In other words,

14



before the input is provided and the output is probed, the value of the function is a priori

unknown, although the function is assumed known. This uncertainty justifies a Bayesian

approach to optimization, as first proposed in [20].

For simplicity, suppose f is a real-valued continuous function defined on the unit interval

[0, 1]. Let (ti)1≤i≤n be a strictly monotonically increasing sequence 1 on [0, 1] and Fn a

random process on [0, 1] such that the distribution of Fn(t) describes the Bayesian belief of

f(t) after all the function values (f(ti))1≤i≤n are obtained.

A simple way to construct Fn is to use Wiener processes. The standard Wiener process

(W (t))t≥0 can be defined as the zero-mean Gaussian process on R+ characterized by the

covariance function E[W (t)W (s)] = min{t, s}. It can also be characterised by its properties.

P1: Starting at the origin: W (0) = 0,

P2: Continuous path: W (t) is continuous in t,

P3: Markovian increments: W (s)−W (t) is independent of (W (τ))τ≤min{t,s}.

P4: Stationary Gaussian increments: W (s)−W (t) is Gaussian N (0, |s− t|).

Stationarity in P4 reflects a homogeneous uncertainty of the function values at all points.

The Markov property in P3 requires the uncertainty of the function to propagate without

memory. The distribution of increments is assumed Gaussian, but we will discuss later

whether any modification may be needed. P2 reflects the continuity of f as desired. In fact,

the support of the Wiener measure is the set of all continuous functions starting from the

origin [28, Corollary 3.31]. P1 provides the Wiener process a deterministic endpoint. This

is somehow undesired in our application because the function values at the endpoints are

also a priori unknown. To obtain a deterministic value of the function, we must sample it.

So instead of postulating a prior belief F0, we begin by establishing F1 as

F1(t) = f(t1) +W 1(t)−W 1(t1) =

f(t1) +W 2(t1 − t), t ∈ [0, t1]

f(t1) +W 1(t− t1), t ∈ [t1, 1].

where W 1 and W 2 are two independent Wiener processes. More generally, the process of

sampling simply breaks down the process Fi into one forward Wiener process, one backward

1Sampling needs not to be performed in increasing order. The monotonocity is assumed only to simplify
notation. Sampling at repeating locations are simply redundant, as we assume the observation is noiseless.
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Wiener process, and (n − 1) Brownian bridges in-between. In particular, the marginal

distribution of Fn(t) is a Gaussian with the mean and the variance

t ∈ [0, t1] :

µ(t) = f(t1)

σ2(t) = t1 − t
(3.1)

t ∈ [ti, ti+1] :

µ(t) = (f(ti+1)(t− ti) + f(ti)(ti+1 − t))/(ti+1 − ti)

σ2(t) = (ti+1 − t)(t− ti)/(ti+1 − ti)
(3.2)

t ∈ [tn, 1] :

µ(t) = f(tn)

σ2(t) = t− tn.
(3.3)

Now consider the maximum of Fn and where it is reached. Let W (t) := maxs∈[0,t] W (s)

and Fn := maxs∈[0,1] Fn(s). For n = 1, the cumulative distribution function of the maximum

F1 is given by

P(F1 ≤ f(t1) + ε) = P(W (t1) ≤ ε)P(W (1− t1) ≤ ε)

= erf

(
ε√
2t1

)
erf

(
ε√

2(1− t1)

)
=

2

π

1√
t1(1− t1)

ε2 + o(ε2).

Figure 2 plots this probability as a function of t1 for small ε and shows that a function

value sampled close to the boundary has a higher chance to be close to the function max-

imum. This imbalance is a direct result of the property of Gaussian increments in P4. If

this imbalance is unwanted, we can model Fn with deterministically time-changed Wiener

processes instead. Let

F1(t) =

f(t1) +W 1(φ(t1 − t))−W 1(φ(0)), t ∈ [0, t1]

f(t1) +W 2(φ(t− t1))−W 2(φ(0)), t ∈ [t1, 1].
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Figure 2: Probability of the first sampled function value being close to the function maximum

as a function of the sample location.
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then the probability is given by

P(F1 ≤ f(t1) + ε) = P(W (φ(t1)) ≤ ε)P(W (φ(1− t1)) ≤ ε)

= erf

(
ε√

2(φ(t)− φ(0))

)
erf

(
ε√

2(φ(1− t)− φ(0))

)
=

2

π

1√
(φ(t)− φ(0)))(φ(1− t)− φ(0)))

ε2 + o(ε2).

When φ(t) = t/(1 − t), this probability is independent of t for small ε. This time change

balances out the effect in Figure 2 by hyperbolically stretching out the uncertainty of the

function values when t gets away from t1.

Our objective is to locate the function maximum given Fn, so we want to calculate

the distribution of Fn+1 as a function of tn+1 ∈ [0, 1] for the next sample. Let (xi)0≤i≤n+2

be the monotonically increasing sequence of all the elements in {0, 1, tn+1} ∪ {ti}1≤i≤n
2.

For i = 1, · · · , n, let Bi be the Brownian bridge over [xi, xi+1] where Bi(xi) = f(xi) and

Bi(xi+1) = f(xi+1). Let Bi = maxx∈[xi,xi+1] Bi(x) be their respective maxima. At the two

extremities, let B0(x) = W (x1 − x) + f(x1) and Bn+1(x) = W (x − xn+1) + f(xn+1). Their

maxima are respectively B0 = W (x1) + f(x1) and Bn+1 = W (1 − xn+1) + f(xn+1). The

cumulative distribution functions of maxima are given by

P(B0 ≤ m) = erf

(
m− f(x1)√

2x1

)
(3.4)

P(Bi ≤ m) = 1− exp

(
−2

(m− f(xi))(m− f(xi+1))

(xi+1 − xi)

)
(3.5)

P(Bn+1 ≤ m) = erf

(
m− f(xn+1)√

2(1− xn+1)

)
(3.6)

P(Fn+1 ≤ m) =
n+1∏
i=0

P(Bi ≤ m). (3.7)

The above expressions make use of the function value in the next sample f(tn+1), what

we really want is to use only the information from the first n samples to examine whether

2Assuming no repeating elements among them.
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Fn(tn+1) is close to Fn without knowing the value of f(tn+1). To this end, we simply apply

the law of total probability to the Fn+1 and we obtain

P(Fn ≤ Fn(tn+1) + ε) =

∫ ∞
m

P(Fn+1 ≤ m+ ε|f(tn+1) = m)φFn(tn+1)(m)dm. (3.8)

where m = max1≤i≤n f(xi)−ε and φFn(tn+1) is the Gaussian probability distribution function

of Fn(tn+1). We observe that when m � f(xi) and m � f(xi+1), we have P(Bi ≤ m) ≈ 1

and φFn(tn+1) ≈ 0 for tn+1 ∈ [ti, ti+1]. This reflects the intuition that the function maximum is

most likely to be reached in the intervals whose endpoints are close to the sample maximum.

If we use this approximation very generously in calculating (3.7), then P(Fn+1 ≤ m) = 1

if m > m and P(Fn+1 ≤ m) = 0 if m < m. Instead of points close to the maximum, we

simply look for points greater than the sample maximum. This is the traditional acquisition

function used in Bayesian optimization [4, §2.3].

The integral (3.8) can be written as

∑
I⊆{1,··· ,n}

(−1)|I|
∫ ∞
m

dm erf

(
m+ ε− f(x1)√

2x1

)
erf

(
m+ ε− f(xn+1)√

2(1− xn+1)

)

exp

(
−(m− µ(tn+1))2

2σ2(tn+1)
− 2

∑
i∈I

(m+ ε− f(xi))(m+ ε− f(xi+1))

(xi+1 − xi)

)
.

Each integral takes the form∫ ∞
m̄

erf(a1(m− b1)) erf(a2(m− b2)) exp
(
−a0(m− b0))2

)
dm. (3.9)

The error functions can be expanded into integrals and (3.9) becomes a Gaussian integral

over a polytope

1

α

∫∫∫
S

exp(−(s2
1 + s2

2 + s2
3))ds1ds2ds3

where S = {(s1, s2, s3) ∈ Rm | 0 ≤ s1 ≤ a′1s3− b′1, 0 ≤ s2 ≤ a′2s3− b′2, s3 ≥ m′}. This integral

can be numerically evaluated with Monte Carlo integration or other approximation methods

[7, 18].
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3.2 Multi-Variable Bayesian Optimization

In game theory, the Nash equilibrium is defined through the concept of best responses.

Each player does not have the intent to optimize their payoff function over the entire space

of strategy profiles, but instead, they optimize their payoff function along their own action

space while assuming other players’ actions are kept fixed. In this section, we still assume

the action space of each player is one-dimensional, but we extend the Bayesian optimization

approach to include all the players of a game.

3.2.1 A Generalization of the Wiener process

Unknown values of a function with several real variables can be modeled with random

fields, which generalize stochastic processes. Traditionally, the generalization is carried out

isotropically with respect to the variables, because most applications of Bayesian optimiza-

tion seek global optima of a function. However, as we are interested in equilibria of games,

we only need optimality along one variable with all the other variables kept fixed, so we can

generalize the Wiener process in an anisotropic fashion by requiring the generalized Wiener

process to be a Wiener process in each of its variables.

Definition 4 (Generalized Wiener Process on Rm
+ ). A function ψ : Rm

+ → L0(Ω,R) is

a generalized Wiener process if, for any y ∈ Rm
+ and any k ∈ {1, · · · ,m}, the function

(ψy,k −ψy,k(0))/σ is a standard Wiener process for some σ > 0, where ψy,k : R+ → L0(Ω,R)

is the function given by ψy,k(x) = ψ(y1, · · · , yk−1, x, yk+1, · · · , ym).

The simplest generalization of the Wiener process can be given as the follows.

Proposition 6. Let ψ : Rm
+ → L0(Ω,R) be a zero-mean Gaussian process given by the

covariance matrix

E[ψ(y)ψ(y′)] =
m∑
j=1

min{yj, y′j}. (3.10)

Then ψ is a generalized Wiener process.

Proof. By definition, ψy,k is also a zero-mean Gaussian process and E[ψy,k(x)ψy,k(x
′)] =

‖y‖1 − yk + min{x, x′}. Hence E[(ψy,k(x)− ψy,k(0))(ψy,k(x
′)− ψy,k(0))] = min{x, x′}.
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The process defined above can be written as a sum of m independent Wiener processes

along each coordinate of its variables ψ(y) =
∑m

j=1Wj(yj). However, this process has a

fundamental flaw, that is the values of ψ at certain locations are perfectly correlated.

Proposition 7. The two-dimensional generalized Wiener process ψ defined in Proposition 6

satisfies ψ(1, 1) = ψ(1, 0) + ψ(0, 1).

Proof. By 3.10, we have E[ψ(1, 1)ψ(1, 1)] = E[(ψ(1, 0) + ψ(0, 1))(ψ(1, 0) + ψ(0, 1))] =

E[ψ(1, 1)(ψ(1, 0) + ψ(0, 1))] = 2. Therefore ψ(1, 1) = ψ(1, 0) + ψ(0, 1).

A quadratic term can be added to (3.10) to fix this problem.

Proposition 8. Let λ > 0. Let ψ : Rm
+ → L0(Ω,R) be a zero-mean Gaussian process given

by the covariance matrix

E[ψ(y)ψ(y′)] =
m∑
j=1

min{yj, y′j}+
λ

2

∑
j 6=l

min{yj, y′j}min{yl, y′l}. (3.11)

Then ψ is a generalized Wiener process without linear correlation.

Proof. By definition, ψy,k is also a zero-mean Gaussian process and E[ψy,k(x)ψy,k(x
′)] =

(1−λyk)(‖y‖1−yk)+(λ/2)(‖yyT‖1,1−yTy)+(1+λ‖y‖1−λyk) min{x, x′}. Hence E[(ψy,k(x)−
ψy,k(0))(ψy,k(x

′)− ψy,k(0))] = (1 + λ‖y‖1 − λyk) min{x, x′}.
The Cauchy-Schwarz inequality states E[ψ(y)(aψ(y′) + bψ(y′′))]2 ≤ E[ψ(y)2]E[(aψ(y′) +

bψ(y′′))2]. Without loss of generality, assume a > 0 and b > 0. Expand all the terms in

the inequality and write them in terms of uj = min{yj, y′j}, vj = min{yj, y′′j }, and wj =

min{y′j, y′′j }. We obtain that the equality holds if and only if u = y = y′ and v = y = y′′.

Another direction of generalization is to extend the domain of the process from the

positive quadrant to the entire Euclidean space.

Definition 5 (Generalized Wiener Process on Rm). A function ψ : Rm → L0(Ω,R) is

a generalized Wiener process if, for any binary vector s ∈ {−1,+1}m, the function y 7→
ψ(s1y1, · · · , smym) restricted on Rm

+ is a generalized Wiener process.
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A straightforward generalization is given as follows.

Proposition 9. For any pair of points y ∈ Rm and y′ ∈ Rm, if yiy
′
i ≥ 0 then let zi = |yi|

and z′i = |y′i|, if yiy
′
i ≤ 0 then let zi = z′i = 0. Let ψ be a generalized Wiener process

on Rm
+ . Then the zero-mean Gaussian process ψ′ on Rm given by the covariance matrix

E[ψ′(y)ψ′(y′)] = E[ψ(z)ψ(z′)] is a generalized Wiener process. In addition, for any y ∈ Rm

and any k ∈ {1, · · · ,m}, the functions defined on R+ by x 7→ (ψ′y,k(x)−ψ′y,k(0))/σ and x 7→
(ψ′y,k(−x)−ψ′y,k(0))/σ are two independent standard Wiener processes for some σ > 0, where

ψ′y,k : R→ L0(Ω,R) is the function given by ψ′y,k(x) = ψ′(y1, · · · , yk−1, x, yk+1, · · · , ym).

Proof. Let s ∈ {−1,+1}m, y ∈ Rm
+ , and y′ ∈ Rm

+ , then E[ψ′(sy)ψ′(sy′)] = E[ψ(y)ψ(y′)], so

ψ′ is a generalized Wiener process on Rm.

If x ≥ 0 and x′ ≥ 0, then E[ψ′y,k(x)ψ′y,k(x
′)] is an affine function in min{x, x′}. If x ≥ 0

and x′ ≥ 0, then E[ψ′y,k(x)ψ′y,k(x
′)] is an affine function in min{−x,−x′}. This provides two

Wiener processes as constructed in the proposition. If xx′ ≤ 0, then E[ψ′y,k(x)ψ′y,k(x
′)] =

E[ψ′y,k(0)ψ′y,k(0)]. Therefore, these two Wiener processes are independent.

3.2.2 Bayesian Inference

The Bayesian inference for Gaussian processes follows a simple procedure. Let (fi)i be

a sequence of known function values at the respective points yi and (f ′j)j a sequence of

unknown function values at the respective points y′j. By definition, (f, f ′) is a multivariate

Gaussian with the mean vector (m,m′) where mi = µ(yi) and m′j = µ(y′j) and the covariance

matrix R UT

U W


where Rik = Σ(yi, yk), Wjl = Σ(y′j, y

′
l), and Uji = Σ(yi, y

′
j). LetP MT

M Q

 =

R UT

U W

−1

be the precision matrix. Bayes’s theorem states that the conditional distribution φ(f ′|f) ∝
φ(f, f ′) is again a multivariate Gaussian and lnφ(f ′|f) = −1

2
(f ′)TQf ′+ (f ′)T(Qm′−M(f −

22



m)) +A for some constant A. Hence, the mean vector of φ(f ′|f) is given by m′−Q−1M(f −
m) = m′+UR−1(f−m) and the covariance matrix of φ(f ′|f) is given by Q−1 = W−UR−1UT.

To establish the prior using a generalized Wiener process, we need to define an origin.

It has to be a point where the function has a known deterministic value or at least a known

probability distribution. Given a sequence of known function values (fi)i at the respective

points yi, we can pick an arbitrary i and let yi be the origin. However, it is important to

make sure that the inference result does not depend on the index i we choose.

Proposition 10. Let ψ be the generalized Wiener process constructed in Proposition 9 from

Proposition 6. Bayesian inference performed based on this prior does not depend on the

choosing of the origin.

Proof. Let y1 be the origin, f = (f2), and f ′ = (f ′1), then the inferred mean of f ′ is given

by

f1 +
Σ(y2 − y1, y

′
1 − y1)

Σ(y2 − y1, y2 − y1)
(f2 − f1).

Let y2 be the origin, f = (f1), and f ′ = (f ′1), then the inferred mean of f ′ is given by

f2 +
Σ(y1 − y2, y

′
1 − y2)

Σ(y1 − y2, y1 − y2)
(f1 − f2).

The inferred means are identical if and only if

Σ(y2 − y1, y
′
1 − y1)

Σ(y2 − y1, y2 − y1)
+

Σ(y1 − y2, y
′
1 − y2)

Σ(y1 − y2, y1 − y2)
= 1.

Processes constructed in Proposition 9 satisfy Σ(−x,−x′) = Σ(x, x′). So the inferred

means are identical if and only if

Σ(y1 − y2, y1 − y′1) + Σ(y1 − y2, y
′
1 − y2) = Σ(y1 − y2, y1 − y2). (3.12)

Consider the jth component Σ(y1j−y2j, y1j−y′1j)+Σ(y1j−y2j, y
′
1j−y2j)−Σ(y1j−y2j, y1j−y2j).

Without loss of generality, assume y2j ≥ y1j.

• Suppose y2j ≥ y1j ≥ y′1j, then Σ(y1j − y2j, y1j − y′1j) + Σ(y1j − y2j, y
′
1j − y2j) − Σ(y1j −

y2j, y1j − y2j) = 0 + (y2j − y1j)− (y2j − y1j) = 0.

• Suppose y2j ≥ y′1j ≥ y1j, then Σ(y1j − y2j, y1j − y′1j) + Σ(y1j − y2j, y
′
1j − y2j) − Σ(y1j −

y2j, y1j − y2j) = (y′1j − y1j) + (y2j − y′1j)− (y2j − y1j) = 0.
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• Suppose y′1j ≥ y2j ≥ y1j, then Σ(y1j − y2j, y1j − y′1j) + Σ(y1j − y2j, y
′
1j − y2j) − Σ(y1j −

y2j, y1j − y2j) = (y2j − y1j) + 0− (y2j − y1j) = 0.

Therefore, (3.12) holds. As a result of (3.12), the inferred variances of f ′ are also identical

regardless of which origin is chosen.

The quadratic terms in (3.11) fail (3.12). To restore the symmetry among yi, we add the

respective quadratic terms for each i into (3.11)

E[ψ(z)ψ(z′)] =
m∑
j=1

min{zj, z′j}+
λ

2

n∑
i=1

∑
j 6=l

min{zj − yij, z′j − yij}min{zl − yij, z′l − yij}.

Unlike traditional Bayesian inference, each observation of the function values adds uncer-

tainty onto the prior.

3.2.3 Bayesian Optimization

The generalizations proposed in §3.2.1 allow us to make use of the properties of the stan-

dard Wiener process and Brownian bridge by restricting the multivariate process along any

of its variables. More specifically, the mean of ψz,k(x) is piecewise affine in x and the variance

of ψz,k(x) is piecewise quadratic in x. These pieces are connected at the kth coordinates of

the points where the function values are known. Let rz,k(x) = (z1, · · · , zk−1, x, zk+1, zm).

Suppose we want to calculate the probability that a point C = rz,k(xC) reaches the path

maximum within a tolerance ε along the affine line {y ∈ Rm | ∀i 6= k : yi = zi}. Then we

only need to perform Bayesian inference at point C, the connecting points rz,k(yik), and the

boundary points rz,k(0) and rz,k(1). Let (x0, · · · , xn+1) be the strictly increasing sequence

of the elements of {0, 1, yik | 1 ≤ i ≤ n}. Let µf and Σf be the mean vector and the

covariance matrix of the function values f := (f0, f1, · · · , fn, fn+1, fC) corresponding to the

points (x0, · · · , xn+1, xC). Then the probability P(F (C) ≥ Fz − ε) is given by the law of

total probability

24



P(F (C) ≥ Fz − ε) =

∫
P(F (C) ≥ Fz − ε|F (x) = f)φF (x)(f)df (3.13)

=

∫
S
G(f − µf ,Σf )

n+1∏
i=0

(
1− exp

(
−2

(fC + ε− fi+1)(fC + ε− fi)
xi+1 − xi

))
df (3.14)

where S := {f ∈ Rn+3 | ∀i = 0, · · · , n+1 : fC ≥ fi−ε}. This integral can again be expressed

as a sum of Gaussian integrals over polytopes.

Figure 3: Example problem. Given the function values f(A), f(B), and f(D), we want to

calculate the probability that F (C) reaches the path maximum max{F (C) | uC fixed}. The

connecting points where the Bayesian inference is performed is K,G, J , and C.

Example 2. Consider the problem illustrated in Fig 3. We want to find out the probability

that the action vC of player a2 is a best response to the action uC of player a1 within a

tolerance level ε after knowing the a2’s payoff function values at three strategy profiles A,B,

and D. The conditional distribution of F (C) is given by the Gaussian

φ(fC |fA, fB, fD) ∝ φ(fB, fD, fC |fA).

The mean and the variance of this Gaussian are piecewisely affine or quadratic, as plotted

in Fig 4. On each segment, we recognise either expression from (3.1) - (3.3).
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Figure 4: Numerical results of Fig 3 as function of the coordinate along the search dimension.

(a) The first plot shows the function values at the sample points. The numbers printed next

to the points represents the position of the respective sample points relative to the search

dimension. (b, c) The mean and the variance of the probabilistic belief of the function values

along the search dimension. (d) The probability that the path maximum is attained within

a small threshold along the search dimension.
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3.3 Bayesian Optimization for Parametrized Games

Figure 5: A strategy profile C of a two-player game within the action spaces.

The point C in Fig 5 is a Nash equilibrium of the two-player game as if Fa2(DE) ≤ Fa2(C)

and Fa1(DE) ≤ Fa1(C). The probability that C reaches a Nash equilibrium within a small

threshold is

P(Fa2(DE) ≤ Fa2(C) + ε and Fa1(JK) ≤ Fa1(C) + ε) (3.15)

As increments along ya1 and ya2 are mutually independent given F (C), the above probability

(3.15) can be written as∫
P(Fa2(DE) ≤ m2 + ε)P(Fa1(JK) ≤ m1 + ε)φF (C)(m1,m2)dm.

We can generalize (3.15) for finite players and write out the explicit probabilities using (3.14),

then (3.15) becomes
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∫
S
G(f − µf ,Σf )

∏
a∈A

n+1∏
i=0

(
1− exp

(
−2

(fa,C + ε− fa,i+1)(fa,C + ε− fa,i)
xa,i+1 − xa,i

))
df

where S =
∏

a∈A Sa = {f ∈ R(n+3)|A| | fa,C ≥ fa,i − ε}.
The minimax problem without equilibrium constraints

sup
x∈X

inf
y∈Y

ϕ(x, y)

is a two-player zero-sum game, the probability of a point (x, y) reaching minimax is given

by ∫
P(ϕ(x) ≥ m− ε)P(ϕ(y) ≤ m+ ε)φϕ(x,y)(m)dm (3.16)

where ϕ(y) = maxx∈X ϕ(x, y) and ϕ(x) = miny∈Y ϕ(x, y). The minimization over y is a high

dimensional global optimization. However, coordinate descent given as follows only produces

a local minimum.∫
S
G(ϕ− µϕ,Σϕ)

n+1∏
i=0

(
1− exp

(
−2

(ϕC + ε− ϕi+1)(ϕC + ε− ϕi)
xi+1 − xi

))
∏
a∈A

(
1− exp

(
−2

(ϕC − ε− ϕi+1)(ϕa,C − ε− ϕi)
ya,i+1 − ya,i

))
dϕ.

So it is necessary to compare the values reached at the probable local minima. To do so, we

can perform Bayesian inference for all the probable local minima.

Given the equilibrium constraint y ∈ Φ(x), we first question whether (x, y) is feasible,

if so, then it has a chance greater than (3.16) of being a solution, because some of its

competitors may be eliminated for being unfeasible. Suppose the increment ϕ(x′, y)−ϕ(x, y)

is a Gaussian with mean µ and variance σ2. The chance of this increment being positive is

1

2

(
1 + erf

(
µ√
2σ2

))
.

Take into consideration of the equilibrium constraint y ∈ Φ(x), and let q be the probability

of (x′, y) being a game equilibrium. The point (x′, y) eliminates (x, y) as a minimax solution
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if the increment ϕ(x′, y)− ϕ(x, y) is positive and (x′, y) is a game equilibrium. Suppose the

values of ϕ and Fa are independent, then this occurs at the probability of

1

2
q

(
1 + erf

(
µ√
2σ2

))
.

We want to transform this multiplicative effect on the probability into an additive effect

on the Gaussian. Define the effective mean of the Gaussian increment ϕ(x′, y) − ϕ(x, y) as

µ′ := µ− δ where the correction term δ satisfy

1

2

(
1 + erf

(
µ− δ√

2σ2

))
=

1

2
q

(
1 + erf

(
µ√
2σ2

))
.

The values of δ and µ′ as a function of q and µ are shown in Fig 6.

Figure 6: δ and µ′ as a function of q and µ. Both functions have a vertical asymptote at

q = 0.
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There are two adverse consequences of this method. First, the modified process reaches

−∞ at some points. These are the sampled points strictly dominated by other sampled

points. From a probabilistic point of view, we are not interested in these isolated points,

but their neighboring points may have mean of very large magnitude and cause numerical

instability. To avoid this, we can let the effective mean be max{µ′, θ} instead for some

threshold θ < 0. We can see from Fig 6 that we do not need to set θ very small to avoid a

noticeable false increase in q. Second, the effective mean µ′ may not be piecewise linear in

x′ although the original mean µ is. To circumvent this problem, we can make use of linear

interpolation to divide the whole segment into smaller pieces, then the formulae (3.4) - (3.6)

are again applicable on each segment.

Finally, the probability that (x, y) solves the general problem

sup
x∈X

inf
y∈Φ(x)

ϕ(x, y). (3.17)

is given by∫
P(ϕ(y) ≥ m0 − ε)

(∏
a∈A

P(ϕ(x, y−a) ≤ m0 + ε)P(Fa(x, y−a) ≥ ma − ε)
)
φx,y(m)dm

(3.18)

where m := (m0,ma)a∈A and φx,y(m) is the joint distribution of ϕ(x, y) = m0 and Fa(x, y) =

ma. We assume x and ya are all one-dimensional, but this can be generalized into high

dimensional variables by optimizing over each of their coordinates and compare the function

values of their local optima. Each probability factor is calculated with (3.7) using (3.4)

- (3.6) on separate segments. These functions are obtained by solving Gaussian inference

problems. These functions for ϕ are adjusted and linearly interpolated by δ according to Fig

6, where q is calculated as∫ ∏
a∈A

P(Fa(x, y−a) ≥ ma − ε)φx,y(m)dm. (3.19)

To conclude, the remarkable feature of the Bayesian optimization is its flexibility in

dealing with complex structures such as multilevel optimization and equilibrium constraints,

because it can use simple rules of probabilities to translate the logical problem behind the

complex formulation.
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4.0 Applications and Related Problems

The mathematical problem of minimax programming with equilibrium constraints

sup
x∈X

inf
y∈Φ(x)

ϕ(x, y). (4.1)

admits many specific applications, which will be discussed in this chapter.

4.1 Centralization and Decentralization

Real world applications often face different levels of centralization in a system. This can

be a design problem in the organization of governments, in the control of currencies and

transactions, or in smart grid or IoT (Internet of things) protocols. Centralized systems are

often characterized as efficient yet prone to risk and error, and decentralized systems the

opposite.

The game Fa(x, y) describes the behavior of a decentralized system. The objective func-

tion ϕ(x, y) in (4.1) describes the behavior of a centralized system. By establishing the

equilibrium as the constraint in (4.1), we make sure that both systems achieve the same out-

come y when they reach optimality and equilibrium respectively. Suppose ϕ is independent

of x, then (4.1) describes the following problem: given a centralized system that optimizes

ϕ, we want to design a decentralized system (by choosing a value of x), so that its worst-

case outcome has the same characteristics as the centralized system: optimizing ϕ as much

as possible. On the other hand, suppose Fa is independent of x, then (4.1) describes the

following problem: given a decentralized system Fa, we want to design a centralized system

(by choosing a value of x) that is optimal when it operates under the worst-case outcome of

the decentralized system.

31



More generally, we can put two games of different levels of decentralization as the con-

straints. This is the case of the example proposed in introduction.

sup
x∈X

inf
y1∈Y1
y2∈Y2

ϕ(x, y1, y2)

s.t. y1 ∈ Φ1(x)

y2 ∈ Φ2(x)

One game may have M players while the other may have M ′ players. Having two games

in the constraints does not change the nature of the problem, because we can consider two

games as a single game of two groups of players where each group of player have no impact

on the payoff of the players in the other group.

4.2 Linear-Quadratic Games

Linear-quadratic games are the most basic type of dynamical games with nice properties

and well studied solutions. When there is only one agent, the game is simply a control

problem. Consider the two-variable centralized control problem

max
x,u1,u2

∫
(xTQx+ uT

1R1u1 + uT
2R2u2)dt

s.t. ẋ = Ax+B1u1 +B2u2

and the two-player decentralized game problem with the same dynamics

max
x,u1

∫
(xTQ1x+ uT

1R11u1 + uT
2R12u2)dt

s.t. ẋ = Ax+B1u1 +B2u2

max
x,u2

∫
(xTQ2x+ uT

1R21u1 + uT
2R22u2)dt

s.t. ẋ = Ax+B1u1 +B2u2.

32



Suppose these two problems admit the same linear feedback ui = Kix as solution, then

they are related by the following system of equations

Ac =A−B1K1 −B2K2 (4.2)

0 =BT
i P −RiKi (4.3)

0 =BT
i P −RiiKi (4.4)

0 =Q+ PAc + AT
c P +KT

1 R1K1 +KT
2 R2K2 (4.5)

0 =Q1 + P1Ac + AT
c P1 +KT

1 R11K1 +KT
2 R12K2 (4.6)

0 =Q2 + P2Ac + AT
c P2 +KT

2 R22K2 +KT
1 R21K1. (4.7)

Here, Eqs (4.2), (4.3), and (4.5) solve the centralized control, while Eqs (4.2), (4.4), (4.6),

and (4.7) solve the decentralized game.

Assume the system dynamics (A,B1, B2) are known, the conversion from control to game

is to solve for (Qi, Rij) given (P,Q,Ri), and vice versa for conversion from game to control.

For either direction of the conversion we perform, Ki and Ac can always be expressed by

known quantities by solving the original problem, then the decision variables are reduced to

(P,Q,Ri) or (Pi, Qi, Rij), in which the remaining constraints (4.3), (4.5) or (4.4), (4.6), (4.7)

are a linear system.

Assume that both players have the same control space. Denote the dimension of the

state space by nx and the dimension of the control space by nu. When the centralized

control is converted to the decentralized control, there are 2nx(nx + 1) + 2nu(nu + 1) scalar

unknowns and 2nxnu + nx(nx + 1) scalar equations. As expected, this system is always

under-determined. When the decentralized control is converted to the centralized control,

there are nx(nx+1)+nu(nu+1) scalar unknowns and 2nxnu+nx(nx+1)/2 scalar equations.

Note that there is no guarantee whether this system is under-determined or over-determined.

When the system is over-determined, the core of these two players is empty. They cannot

achieve a unifying goal following their own agenda.
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4.3 Inverse Game

The problem of inverse game is closely related to the problem of game design. The

inverse problem of dynamic games is a natural extension of the single-agent IRL (inverse

reinforcement learning) problem. Our focus here is the static games instead.

Let (ŷi)1≤i≤n be n sample points in Y . The inverse game problem looks for a value of

the parameter x ∈ X such that all the sample points are equilibria of the game, i.e.

fa(x, ŷi) ≥ fa(x, ra(ŷi, yai))

for all i ∈ N such that 1 ≤ i ≤ n, for all a ∈ A, and for all yai ∈ Ya.
Suppose A is finite. A solution to the inverse game problem is a solution to the minimax

problem

min
x∈X

max
y∈Y n

∑
ai

(fa(x, ra(ŷi, yai))− fa(x, ŷi)).

A solution to the minimax problem is a solution to the inverse game problem if the minimax

has a value of zero. Otherwise, it suggests all the samples cannot be equilibria of a feasible

game simultaneously.

Suppose Y is compact and fa are twice continuously differentiable, uniformly bounded,

and uniformly equicontinuous in x. The minimax problem can be approximated by the

smooth minimization when σ → 0 [10]

min
x∈X

∏
a,i

∫
Ya

exp

(
1

2σ2
(fa(x, ra(ŷi, yai))− fa(x, ŷi))

)
dyai.

Instead of matching the payoffs, the inverse game problem can also match the actions

through an SIP (semi-infinite programming)

min
x,y
‖ŷ − y‖2

s.t. ∀y′ : fa(x, yai) ≥ fa(x, ra(yi, y
′
ai))
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or through an equivalent MPEC

min
x,y
‖ŷ − y‖2 (4.8)

s.t. yai ∈ arg max
y′ai

fa(x, ra(yi, y
′
ai)). (4.9)

In addition, any occurrence of y in the constraints can be replaced by ŷ.

Problem (4.8) is structurally similar to (4.1). They are both bilevel optimizations with

an MPEC as the inner optimization. On the other hand, we can formulate (4.1) using a

relaxation based on (4.8).

max
x

min
ŷ,y

λ‖ŷ − y‖2 + ϕ(x, y)

ya ∈ arg max
y′a∈Ya

fx,a(ŷ, y
′
a)

This relaxation transform the equilibrium constraint in (4.1) into optimality constraint by

decoupling the actions and the responses.

4.4 Inverse Bimatrix Game

Bimatrix games are one of the easiest and most researched types of games in modern

game theory. A bimatrix game consists of two players with finite action spaces. To study the

equilibrium of a bimatrix game, we suppose the players have the ability to randomize their

actions over the entire action spaces with any desired probabilities, and their goals are to

maximize their respective expected payoffs. These probability distributions are called mixed

strategies and the Nash equilibrium of mixed strategies with respect to the expected payoffs

are called mixed strategy Nash equilibrium.

Definition 6. A bimatrix game consists of a pair of matrices (CA, CB) ∈ M(m,n)2. A

pair of discrete probability distributions (pA, pB) ∈ ∆m−1 ×∆n−1 is a mixed strategy Nash

equilibrium to the bi-matrix game if

pA ∈ arg max
qA∈∆m−1

qT
ACApB

pB ∈ arg max
qB∈∆n−1

pT
ACBqB.
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Theorem 1 (Nash). Every bimatrix game has a mixed strategy Nash equilibrium.

The equilibrium condition can also be written as

eT
i CApB ≥ eT

j CApB (4.10)

pT
ACBek ≥ pT

ACBel (4.11)

for all i ∈ supp pA, k ∈ supp pB, j ∈ {1, · · · ,m}, and l ∈ {1, · · · , n}. Inequality (4.10) states

that all the row vectors of CA belong to one of the two half-spaces separated by a hyperplane

orthogonal to pB and the row vectors indexed by supp pA belong to that hyperplane.

To study the payoff matrices, we need to understand how much information they actually

provide.

Definition 7. Two matrices (CA, C
′
A) ∈ M(m,n)2 are equivalent if for any matrix CB ∈

M(m,n) and any pair of distributions (pA, pB) ∈ ∆m−1 ×∆n−1: (pA, pB) is an equilibrium

to (CA, CB) if and only if it is also an equilibrium to (C ′A, CB).

The equivalence defines the quotient topology. For instance, when m = 2 and n = 1,

the best response is uniquely determined by sign((CA)21− (CA)11). An equivalent condition

of equivalence between CA and C ′A is that they satisfy (4.10) simultaneously for any pB.

Consider CA as the polytope in Rn with m vertices being the m row vectors of CA, then CA

is uniquely determined upto equivalence by all the facets whose outward-pointing normal

vector is nonnegative. Translations and uniform positive scalings are equivalence. So we can

limit CA in a unit cube.

It is more common that an external agent is able to observe an outcome (i, k) than the

equilibrium (pA, pB), so it is necessary to first estimate the probability distributions from a

few outcomes. However, if a game admits multiple equilibria, then different outcomes may

come from different distributions. If there may or may not be other equilibria other than

(pA, pB), without additional information, it is reasonable to postulate that all the possible

equilibria altogether bring an additional uniform probability to all the outcomes, as if the

actual outcome was drawn with the probability (p′A, p
′
B) := r( 1

m
, 1
n
)+(1−r)(pA, pB) for some
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r ∈ (0, 1). This provides a method to infer the equilibrium (pA, pB) from an outcome count

c(i, k) using the Dirichlet distribution with a modification

f(pA, pB) ∝
m∏
i=1

n∏
k=1

(((1− r)pA(i) + r/m)((1− r)pB(k) + r/n))α(i,k)+c(i,k)−1

where α(i, k) > 0 is the concentration parameter of the Dirichlet distribution. It can be used

to reflect preferred outcomes such as focal points [29].

The MLE of the equilibrium is the mode of the Dirichlet distribution.

pA(i) =
1

1− r

(∑
k c
′(i, k)∑

ik c
′(i, k)

− r

m

)
pB(k) =

1

1− r

( ∑
i c
′(i, k)∑

ik c
′(i, k)

− r

n

)
where c′(i, k) = α(i, k) + c(i, k) − 1. The positivity of probabilities requires r to be small.

If one of the payoff matrix CB is known, the equilibrium condition can be incorporated into

the MLE.

max
pA,pB

f(pA, pB)

s.t.
∑

i pA = 1,
∑

k pB = 1, pA ≥ 0, pB ≥ 0

pT
ACBek ≥ pT

ACBel or pT
Bek = 0.

To more accurately infer the payoff matrix of a player A, they need to play games against

different adversaries B, so that each adversary provides a different constraint.
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4.5 Neural Network Representation

In our model, the payoff functions and the design objectives are parametrized by the

design variable x. The universal approximation theorem suggests that a neural network

can approximate any continuous function on a compact Euclidean set to a given degree

of precision with a finite set of parameters. So even when the underlying functions are

completely left for design, we can using neural networks to represent them.

Represent the payoff functions in the game by a single-layer artificial neural network

using the universal approximation theorem. Let x := (v, w) ∈ RM := RW×K × RW×(1+N)

be the parameters of the artificial neural network f̄ : RM × RN → RK given by f̄k(x, ȳ) =∑W
j=1 vjkσ(

∑N
i=1wjiȳi + wj0) where σ is a smooth discriminatory function [8]. Let rk :

RN × Rnk → RN be the kth substitution function and fk : RN × Rnk → R the kth player’s

payoff function given by fx,k(ȳ, yk) := f̄k(x, rk(ȳ, yk)).

1 0 w0

yK

1

2

nK

...

y1

1

2

n1

...

...
w

W σ W

2 σ 2

1 σ 1

...

v

K f̄K(x, ȳ)

2 f̄2(x, ȳ)

1 f̄1(x, ȳ)

...

Figure 7: Structure of the single-layer artificial neural network representing the payoff func-

tions. The numbers above lines are indices of the corresponding variables.

The downside of representing the objective functions with neural networks is that the

function they represent may be too arbitrary. It is hard to ensure the existence of an equi-

librium because the weights do not provide much information about the function properties.
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One solution is to limit the functions to be designed within the set of convex functions,

which guarantees the existence of a solution under mild conditions. Convexity may also be

a desired property of the function to be designed.

A fully input-convex neural network [3] is a recurrent neural network whose output zk is

a convex function of the input y through k layers of activation

∀i = 0, · · · , k − 1 : zi+1 = σi(Uizi + Viy + bi)

where Ui are matrices of nonnegative components and σi are nondecreasing convex functions.

Because of the recurrent nature of the fully input-convex neural network, the backprop-

agation of gradient can be numerically challenging. The Bayesian approach can have an

advantage in finding the optimal weights in this type of networks.

z0
U0 z1

U1 · · · Ui−1 zi
Ui zi+1

Ui+1 · · · Ul−1 zl

y

V0 Vi−1 Vi Vl−1· · · · · ·

Figure 8: Structure of a fully input-convex neural network.

4.6 Partial Information

The design problems we study in this dissertation focus on the explicit parameters in the

payoff functions. There are also many other degrees of freedom in games that control the

players’ behavior. Player’s reaction to uncertainties is one major factor. This is traditionally

captured by the expected utility or other risk measure functionals. In this section, I propose

the multi-objective optimization approach to games with partial information [15]. As a

result, the design parameter may appear not only in the payoff functions, but also in the

game constraints.
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The information structure of a game with partial information is modeled mathematically

by a σ-algebra on the state space for each agent. The simplest σ-algebras are those gener-

ated by finite partitions of the state space, called the information partitions. As a result,

measurable functions have constant value on each element of the partition, so a strategy of

agent a can be characterized by a function ua : Pa → Ua or a vector ua ∈ U |Pa|
a where Ua is

their action space and Pa is their information partition.

Instead of the exact value of the state, the players in a game with partial information

only know the sets in their respective information partitions to which the state belongs

x ∈ Ea ∈ Pa. A greedy player would like to find a strategy ua(Ea) optimal in all the possible

states x ∈ Ea. This is however a multi-objective optimization problem. In general, multi-

objective optimization problems have no solution which simultaneously optimizes all the

objectives. Instead, we study all the non-dominated solutions in multi-objective optimization

problems. In games with partial information, we can study all the equilibria constituted of

non-dominated responses. By combining the weighted sum method and the ε-constraint

method in multi-objective optimization, I propose the following definition.

Definition 8. In a two-player normal-form game with partial information, a pure strategy

profile (u∗A, u
∗
B) is an equilibrium of εX-constrained FX-optimal strategies if ∀EA ∈ PA, ∀EB ∈

PB :

u∗A(EA) ∈ arg max
uA∈UA

FA[JA(·, uA, u∗B(·))] (4.12-A)

s.t.JA(·, uA, u∗B(·)) ≥ εA on EA

u∗B(EB) ∈ arg max
uB∈UB

FB[JB(·, u∗A(·), uB)] (4.12-B)

s.t.JB(·, u∗A(·), uB) ≥ εB on EB

where εX is a real function on EX and FX is a non-trivial positive continuous linear functional

of functions on EX .

I proved in [15] the conditions under which these equilibria exist and are equivalent

to non-dominated responses in multi-objective optimization. Bayesian Nash equilibria are

special cases where FX are probability measures and εX are lower bounds. But in general,

Definition 8 also offers solutions that are not attainable as Bayesian Nash equilibria. The
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parameters εX are very critical to the properties of these equilibria. Large values of εX can

make both players’ payoffs meet desired thresholds but may also lead to infeasibility instead.

Posing a minimax problem subject to the equilibrium constraints (4.12) with εX as the upper

level optimization variable allows us to find an equilibrium with the best performance among

all of those constituted of non-dominated responses.
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5.0 Conclusion and Future Research Directions

Minimax problems with equilibrium constraints are a fundamental subject in engineer-

ing design worthy of great attention from both theoretical and numerical research. They

translate the robustness of a design against the uncertainty due to the possible presence

of a multitude of equilibria in a game. A significant contribution of this dissertation is to

shed light on the importance and the complexity of this type of problems. I wish to con-

tinue on this line of work by applying this design principle to real engineering or economic

applications.

The Bayesian approach proposed in this dissertation is a novel strategy to solve MPEC

and multilevel programming. Its ability to solve these problems comes from the simple rules

of probabilities which translate the logical problem behind the complex formulations. It also

provides a global point of view which allows a robust optimal design within the parameter

space. Other numerical programming methods with a global characteristics can also be

considered in the future as a solution methodology to enrich the toolbox for this type of

problems.

Bayesian optimization itself is an area of active research, especially for its applications

in machine learning. This dissertation shows the power of Bayesian optimization in dealing

with minimax problems with equilibrium constraints. With proper examination, the same

methodology can be applied to other game theoretical problems, which I would also like to

investigate in the future. The Bayesian approach proposed in this dissertation also requires

further works to consolidation its theoretical soundness and improve numerical efficacy.
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