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Constructing Invariant Representation of Sound Using Optimal Features and Sound 

Statistics Adaptation 

Shi Tong Liu, PhD 

University of Pittsburgh, 2021 

 

The ability to convey information using sound is critical for the survival of many vocal 

species, including humans. These communication sounds (vocalizations or calls) are often 

comprised of complex spectrotemporal features that require accurate detection to prevent mis-

categorization. This task is made difficult by two factors: 1) the inherent variability in vocalization 

production, and 2) competing sounds from the environment. The auditory system must generalize 

across these variabilities while maintaining sufficient sensitivity to detect subtle differences in fine 

acoustic structures. While several studies have described vocalization-selective and noise invariant 

neural responses in the auditory pathway at a phenomenological level, the algorithmic and 

mechanistic principles behind these observations remain speculative.  

 

In this thesis, we first adopted a theoretical approach to develop biologically plausible 

computational algorithms to categorize vocalizations while generalizing over sound production 

and environment variability. From an initial set of randomly chosen vocalization features, we used 

a greedy search algorithm to select most informative features that maximized vocalization 

categorization performance and minimized redundancy between features. High classification 

performance could be achieved using only 10–20 features per vocalization category. The optimal 

features tended to be of intermediate complexity, offering an optimal compromise between fine 

and tolerant feature tuning.  Predictions of tuning properties of putative feature-selective neurons 
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matched some observed auditory cortical responses. While this algorithm performed well in quiet 

listening conditions, it failed in noisy conditions. To address this shortcoming, we implemented 

biologically plausible algorithms to improve model performance in noisy conditions. We explored 

two model elements to aid adaption to sound statistics: 1. De-noising of noisy inputs by 

thresholding based on wide-band energy, and 2. Adjusting feature detection parameters to offset 

noise-masking effects. These processes were consistent with physiological observations of gain 

control mechanisms and principles of efficient encoding in the brain. With these additions, our 

model was able to achieve near-physiological levels of performance. Our results suggest that 

invariant representation of sound can be achieved based on task-dependent features with 

adaptation to input sound statistics. 
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1.0 Introduction 

 

Many species, including humans, rely on vocalizations to convey information crucial for 

the survival of the species, such as food availability, predator warnings, mating, etc. As a result, 

the processing of these conspecific communication sounds is an essential task for the auditory 

system. Imaging studies in humans found that speech is encoded in a hierarchical fashion, from 

spectral features such as phonemes in primary auditory areas to more abstract elements such as 

semantics in the higher areas (Chang et al 2010, Heer et al 2017, Belin et al 2011). A similar 

preference for conspecific communication sounds has been shown in other vocal species such as 

macaques (Petkov et al 2008; Perrodin et al 2011) and common marmosets (Callithrix jacchus) 

(Sadagopan et al, 2015). What is less certain however, are the encoding strategies for classifying 

communication sounds into conceptual categories. There are considerable variations in acoustic 

parameters such as pitch, speed, etc. between different speakers (for example, Agamaite and Wang 

2015). In addition, real-world acoustic environments often contain other extraneous signals that 

can disrupt the recognition process. This requires the auditory system to encode sound in an 

invariant manner to generalize across these variations, while paradoxically remain sensitive to the 

fine differences in the spectrotemporal structure between distinct sound categories. Our goal in 

this thesis to elucidate how the auditory system can overcome both production and environmental 

variations to classify sounds, particularly vocalizations, into discrete categories. To accomplish 

this goal, we will build a computational model of sound categorization to test methods of achieving 

production and environmental invariant encoding. Testable predictions made using this model may 

be used to guide future behavioral and electrophysiological studies. 
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1.1 Encoding and Processing of Communication Sounds in the Auditory Pathway 

 

Understanding how the auditory system encodes and processes vocal sounds such as 

human speech or animal vocalizations is a long-standing topic in auditory research. Early 

anatomical studies have identified regions in the temporal and parietal lobe such as superior 

temporal gyrus (STG) and Wernicke’s area that are involved in speech comprehension. Further 

studies continued to map out the organization in the auditory cortical network by identifying the 

characteristics and functionality of core, belt and parabelt areas within the temporal cortex 

(Romanski and Averbeck 2009). A major obstacle in these types of studies, aside from the need 

for human subjects, is the complex spectrotemporal structure of speech signals. It is more difficult 

to standardize and parametrically vary speech signals than other simple stimuli such as a sinusoidal 

tone due to the intricate variations in both frequency and time domain. To simplify the problem, it 

can be useful to individually examine the spectral and temporal content of speech signals and how 

each is represented in the brain. The spectral content of speech is largely based around formant 

frequencies, which are the resonant frequencies of the vocal tract and the energy peaks in the 

speech signal (Fant 1970). The first and second formant frequencies are often used to distinguish 

between vowel sounds (Petersen and Barney 1952, Hillenbrand et al 1994). They also play an 

important, but a lesser role in the identification of consonants (Hillenbrand et al 2001). Tone and 

pitch information can also be extracted from the spectral domain and be used for speaker 

identification. Speech and vocalizations are also heavily modulated in amplitude, providing ample 

temporal cues for recognition. Early psychoacoustical studies have identified that temporal 

features are the dominant source of information in speech recognition (Van Tasell et al 1987, 

Rosen 1992). In particular, Shannon et al 1995 showed that even in conditions of greatly reduced 

spectral information, near-perfect recognition performance can be achieved if temporal features 
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are preserved. Similar conclusions can be drawn from studies on the recognition performance of 

cochlear implant users. Hochmair-Desoyer et al 1980 reported that single-channel cochlear 

implant users can reasonably comprehend unknown sentences based on speech amplitude 

waveform alone. Given the importance of temporal information in speech recognition, the 

remainder of the introduction section will place a larger emphasis on regions in the auditory 

pathway that exhibit selectivity for changes in temporal modulation. Most of the conclusions are 

drawn from studies using animal subjects, with corroboration from human studies. 

 

1.1.1 Encoding in Auditory Periphery 

 

Neural representation of sound begins at the inner hair cells in the cochlea, where the 

acoustic signal is transformed from mechanical perturbations into action potentials encoding the 

relevant information. This information is then carried by the auditory nerve (AN) and act as input 

to the rest of the auditory pathway. Acoustic information is tonotopically organized, with each AN 

fiber showing responses to stimuli within a half-octave of its best frequency (BF), meaning it can 

be viewed as a bank of bandpass filters (Delgutte 1980, Young 2007). At the stage of AN, there is 

evidence showing the presence of adaption to sound statistics and various nonlinearities such as 

phase-locking and two-tone suppression (Zhang et al 2001, Zilany et al 2009). Studies on AN 

response to sinusoidal amplitude modulated (SAM) tones shown that AN phase-lock to the 

modulation frequency of the tones but are generally poorly tuned (based on spike rate) to variations 

in those frequencies (Krishna and Semple 2000). A similar phenomenon is observed in the cochlear 

nucleus, mainly the primary-like and chopper neurons, both of which receive inputs from AN but 
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show little change in sensitivity to temporal modulations (Young 2007). Overall, there is little 

evidence suggesting speech processing in the auditory periphery. 

 

1.1.2 Encoding in Central Auditory 

 

In contrast, neurons in the inferior colliculus (IC) and cortical areas such as the primary 

auditory cortex (A1) exhibit higher selectivity to variations in modulation frequency of SAM tones 

as measured by their spike rate (Krishna and Semple 2000). This is an indication that the 

representation of sound transformed from a temporal coding scheme in the auditory periphery 

regions towards a rate coding scheme in the higher areas. Evidence suggests that this 

transformation of the encoding scheme is completed at the level of the IC (Krishna and Semple 

2000, Langner and Schreiner 1988).  Taken together, this indicates that speech & vocalization 

recognition can start as early as IC. Indeed, there are studies that point to the existence of 

vocalization responsive neurons in the IC in various vocal animals (Portfors et al 2009; Suta et al 

2003; Holmstrom et al 2010; Sadagopan et al 2015). However, the majority of IC neurons respond 

to multiple categorizes of vocalizations, whereas neurons in cortical areas, such as A1 exhibit 

higher selectivity for individual vocalization categories (Carruthers et al 2015; Aizenberg and 

Geffen 2013; Fritz et al 2010; Wang et al. 1995). Neurons in secondary and higher cortical areas 

show further sharpening of selectivity to call categories (Tian et al 2001; Perrodin et al 2011, 

Fukushima et al 2014, 2015) Cortical neurons are also more stringent in their preference. For 

instance, Wang and Kadia 2001 showed that marmoset cortical neurons strongly differentiate 

between natural and time-reversed vocalizations. This emergence of vocalization selectivity 

starting in the IC can be thought of as a build-up of complexity in the acoustic features the 
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vocalization selective neurons are encoding for. For instance, a ubiquitous feature of vocalizations 

and speech are frequency-modulated FM sweeps (Ryan 1983, Wang et al 1995). While neurons in 

both the auditory periphery and higher areas show selectivity to FM sweeps, the majority of 

neurons in IC and higher areas have a directional preference and will fire preferentially or 

exclusively to FM sweeps either upward or downward direction only (Poon and Chiu 1991, 

Sadagopan and Wang 2008, Zhang et al 2003). No such directional preferences were observed in 

AN or the cochlear nucleus. 

A gradual build-up of complex spectrotemporal features has also been reported in the 

human auditory system. A 2014 study in human speech recognition by Mesgarani et al examined 

electrophysiological recordings of neurons in the superior temporal gyrus (STG) and found 

neurons encoding for distinct phonetic features (Mesgarani et al 2014). Some of these neurons 

demonstrated non-linear integration of multiple, lower-level spectrotemporal cues to establish an 

acoustic-phonetic representation of speech in the STG. Overall, there is a distinct transition in 

encoding strategy from continuous spectrotemporal signal to discrete conceptual categories as the 

signal progress through the auditory pathway. 

 

 

1.2 Effect of Production Variability on The Invariant Representation of Sound 

 

A major challenge in the transition from continuous spectrotemporal variations to discrete 

sound categories is to account for the sound production variability. Given the bio-mechanical 

nature of sound production, this variance is nearly inevitable. In human speech, physical 

differences in vocal cord and tract between individuals can produce significant variations in 
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formant frequencies of spoken vowels (Wakita 1977, Hillenbrand 1994, Asakawa 2007). These 

variations can often lead to overlapping formant frequency characteristics between different vowel 

sounds (Hillenbrand 2001). Without contextual information, categorizing vowels from different 

speakers using spectral analysis prove to be challenging. Perceptually, however, these variations 

are well within human speech recognition capabilities (Liberman et al 1967, Hillenbrand 2001). 

Similar capabilities are observed in other vocal species. For instance, marmosets show variability 

in phrase frequency between individuals of the same and different gender has also been observed 

(Agamaite et al 2015). 

This invariant representation of sound arises gradually in the auditory pathway, where 

higher regions in the pathway exhibit more tolerance to acoustic transformations that preserve the 

identity of the call (Bidelman et al 2013). For instance, a large population of marmoset A1 neurons 

exhibits invariance to sound levels (Sadagopan and Wang 2008). That is not to say that these 

variations are “lost” during neural processing, but rather the auditory system is able to differentiate 

certain acoustic variations as unessential in terms of categorizing the sound. This disparity between 

the invariant perception of sound and the representation of acoustic variability is the central 

conflict in the categorization of communication sounds. On one hand, perceptual categorization 

can be insensitive to even large variations in sound parameters such as sound levels, pitch shifts 

as a result of sex and age differences, temporal dilation (slow speech), etc. On the other hand, the 

distinction between similar sound categories is often achieved by tuning into the fine difference 

within often complex acoustic structures of the signal. This leads to conflicting requirements for 

simultaneous fine and broad selectivity in sound categorization. How the brain chooses acoustic 

features that allow for this paradoxical encoding of sound remains largely unclear. 
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1.3 Effect of Noise on the Invariant Representation of Sound 

 

Aside from the inherent variations during sound production, the acoustic environment has 

its own set of challenges for the auditory system to overcome. Real-world listening conditions 

frequently have competing sound sources that can disrupt the recognition process. These sources 

can arise from multiple talkers, such as in the case of the famous “cocktail party problem”, or other 

elements in the environment such as the rustling of leaves and the humming of fans. A normal 

functioning auditory system shows robustness to the effects of noise. Studies suggest that noise 

invariance is an emerging property of the auditory system and that higher areas in the auditory 

pathway generally show more indifference to the effects of noise (Mesgarani and Chang 2012, 

Ding and Simon 2013). For the human auditory system, there is evidence showing a decrease in 

sensitivity to environmental variations in a speech in higher cortical areas (Okada et al 2010, Chang 

et al 2010, Kell et al 2018, Norman-Haignere & McDermott 2018). Similarly, in other vocal 

animals, there is evidence supporting this emerging context invariant representation of sound. 

Rabinowitz et al 2013 examined single unit response to noisy stimuli, both synthetic and natural, 

in ferret AN, IC, and A1. The results showed that A1 responses changed the least due to noise and 

AN the most. 

To achieve said invariance, the auditory system must first distinguish between signal and 

noise from an incoming sound signal. In the absence of context or prior knowledge, deviations 

from the average sound statistics are typically considered to be important signals deserving of 

attention. However, the auditory system must be able to detect and represent changes in sounds 

with a wide range of statistical properties to adequately function in a highly variable acoustic 

environment. For instance, a pin drop in a silent room and sirens in traffic noise are indicative of 
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important events, but the changes in both the absolute and relative sound levels between the signal 

and background (contrast) are vastly different. Moreover, the reported dynamic range of auditory 

neurons [Dean et al 2005; Wen et al 2009] appears ill-equip to adequately encode for such 

variations in acoustic environment. This “dynamic range problem” highlights a fundamental 

challenge for the auditory system of efficiently encoding for highly variable parameters [Colburn 

et al 2003; Wen et al 2009].  

Similar to sound production variability, the “dynamic range problem” is not a uniquely 

auditory phenomenon. The visual system also must represent stimulus with contrast variations that 

far exceed the limited dynamic range of its cortical neurons due to their response saturation at 

higher contrast levels [Heeger 1990, 1991]. Heeger 1992 described a solution to this problem using 

a divisive normalization model observed in cat striated cortex (primary visual cortex, V1). The 

model states that the response of individual neurons was normalized by the sum of near-by 

population response. The result is a response that is dynamically adjusted based on stimulus 

contrast. This effectively changes the dynamic range of the neuron such that it remains sensitivity 

to relative changes in the stimulus. The consequence of the divisive normalization model is 

maintaining the same neural response to stimulus in various contrast conditions, allowing further 

processing to occur without the brain having the attend to variations in the stimulus contrast level, 

thus achieving contrast invariant visual representation.  

The underlying principles of the divisive normalization model prompted the question if 

analogous mechanisms exist in the auditory system. Rabinowitz et al 2011 observed stimulus 

contrast-dependent response change in ferret A1 neurons. They quantified this gain change (ratio 

of output spikes to input current) as adjustments in output nonlinearities that modeled the measured 
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neuronal responses. These gain changes were well described by the divisive normalization model 

and served to compensate for the limited dynamic range in cortical neurons.  

Adaptation to sound statistics is not restricted to cortical neurons. Dean et al 2005 identified 

adjustments of neural responses to mean sound level in inferior colliculus (IC). The responses are 

not completely invariant to sound level, however, suggesting that at least in the level of IC, there 

is a still need to encode some information about the overall sound level. Similar adaptation to mean 

sound level was also found at the level of the auditory nerve, albeit at a weaker level compared to 

IC (Wen et al 2009). These results show that sound statistic adaptation is widespread in the 

auditory pathway and there is a gradual strengthening of invariant representation towards the 

higher processing areas.  

Besides vision and audition, normalization or normalization-like mechanisms are also 

involved in population coding of the olfactory system [Olsen et al 2010] and associative memory 

in the hippocampus [McNaughton & Morris, 1987]. Indeed, normalization appears to be a 

canonical computation in the brain [Carandini & Heeger, 2012]. In addition, computational models 

of sensory neurons with normalization (via gain control) accounted for many observed nonlinear 

behaviors in a “typical” sensory cell [Schwartz & Simoncelli, 2001]. Adaptation to stimulus 

statistics also complies with the efficient encoding principle of the brain by eliminating the need 

to maintain copies of neurons for every possible stimulus environment. Taken together, this builds 

a strong case for normalization, via gain control, playing an important role in building invariant 

representation in sensory modalities, such as noise invariance in the auditory pathway.  
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1.4 Computational Modeling Approaches to Understanding Feature Selection for Invariant 

Representation 

 

Computational principles and information theory play an important role in neuroscience 

research by providing educated guesses and directions for physiological experiments. Algorithms 

and methods that prove useful in computational simulations may offer insight into plausible neural 

mechanisms. In recent times, automatic speech recognition (ASR) algorithms have seen rapid 

advancements thanks to the tremendous demand for voice-guided technology in our daily lives. 

As such, it is worth examining if any of the computational principles in ASR may be applicable to 

a biological system. 

Early ASR models were based on signal sequence matching using dynamic time wrapping 

algorithms (Sakoe and Chiba 1971, Rabiner et al 1978) or hidden Markov models (Levinson 1986, 

Rabiner 1989). In more recent times, neural networks have risen into prominence in speech 

recognition thanks to their high performance compared to previous algorithms and advancements 

in computational power. The principle of neural networks is loosely based on the neural circuit, 

where each neuron is considered a computational node, and the output of each node is computed 

as a non-linearly weighted sum of its inputs. Synaptic connections between neurons are simulated 

as connections between the input/output of nodes. These nodes may also aggregate into layers 

based on their computational goals. Neural networks excel at classification tasks such as speech 

recognition and facial identification because they impose a minimum restriction on model inputs, 

thus better generalize across production and environmental variability. These principles for feature 

selection can be utilized in studying the sensory system. 



11 
 

Aside from speech recognition algorithms, the computational methods from the visual 

system also offered insight on addressing production variability. Ullman et al 2002 found that an 

information-maximization approach to feature selection resulted in autonomously selected facial 

features that are robust to within-class variations. Facial features were randomly generated with 

minimal restrains and a set of the most informative features (MIFs) were selected to maximize the 

mutual information for classification. The MIFs were of intermediate complexity and coincide 

with results from IC studies, providing a principled explanation for the purpose of these IC features 

(Ullman et al 2002). In this thesis, we will develop a computational model to test if this approach 

to feature selection can account for production variability in sound categorization. 

A well-known challenge for ASR algorithms, and a potential shortcoming of this model, is their 

susceptibility to the disruptive effect of noise. While a significant number of noise removal 

algorithms have been purposed, the success is relatively limited, especially in comparison to the 

physiological performance level of normal-hearing individuals. Most noise-robust speech 

recognition algorithms require specified training in noisy conditions to improve their performance, 

which is inconsistent with the principle of efficient encoding in the brain since this will 

significantly increase the number of acoustic features the auditory system needs to encode. A more 

physiologically plausible method is compensation based on prior knowledge about the acoustic 

environment, which is similar to the effect of contrast gain control in the auditory pathway. The 

algorithm first estimates the overall noise activity and then maps the noisy inputs to clean speech 

templates based on learned parameters. This approach requires significantly fewer speech 

templates while having similar robustness in performance compared to algorithms that are 

specifically trained in noisy environments, which fits with the principle of efficient encoding in 

the brain. 
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1.5 Research Goals 

 

Our primary goal in this thesis is to show physiologically feasible methods of addressing 

production and environmental variability in sound categorization. To do so, we will first construct 

a computational model that is capable of accurately classifying different communication sound 

categories by template matching acoustic inputs with categorical features. The features will be 

selected such that they maximally differentiate between various sound categories. Based on prior 

success in the visual system, we hypothesize that this model to be insensitive to production 

variability and will verify through testing with call samples obtained from various vocal animals 

(marmosets, macaques, and guinea pigs). We will augment this computational model with a noise 

compensation algorithm simulating the effects of contrast gain control in the auditory pathway and 

examine its effectiveness in making the model robust to noise. Finally, based on model results and 

experimentally obtained physiological and behavioral data, we will explore possible analogous 

neural mechanisms for achieving production and noise invariant sound categorization.  
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2.0 Optimal Features for Auditory Categorization 

 

Humans and vocal animals use vocalizations to communicate with members of their 

species. A necessary function of auditory perception is to generalize across the high variability 

inherent in vocalization production and classify them into behaviorally distinct categories (‘words’ 

or ‘call types’). Here, we demonstrate that detecting mid-level features in calls achieves 

production-invariant classification. Starting from randomly chosen marmoset call features, we use 

a greedy search algorithm to determine the most informative and least redundant features necessary 

for call classification. High classification performance is achieved using only 10–20 features per 

call type. Predictions of tuning properties of putative feature-selective neurons accurately match 

some observed auditory cortical responses. This feature-based approach also succeeds for call 

categorization in other species, and for other complex classification tasks such as caller 

identification. Our results suggest that high-level neural representations of sounds are based on 

task-dependent features optimized for specific computational goals. 
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2.1 Introduction 

 

Human speech recognition is a highly robust behavior, showing tolerance to variations in 

prosody, stress, accents, and pitch. For example, speech features such as formant frequencies 

exhibit large variations within- and betweenspeakers (Peterson and Barney 1952; Hillenbrand et 

al 1995), arising from production mechanisms (production variability). To achieve accurate speech 

recognition, the auditory system must generalize across these variations. This challenge is not 

uniquely human. Animals produce species-specific vocalizations (calls) with large within- and 

between-caller variability (Wang 2000) and must classify these calls into distinct categories to 

produce appropriate behaviors. For example, in common marmosets (Callithrix jacchus), a highly 

vocal New World primate species, critical behaviors such as finding other marmosets when 

isolated depend on accurate extraction of call-type and caller information (Epple 1968; Chen et al 

2009; Miller et al 2010; Kato et al 2014). Similar to human speech, marmoset call categories 

overlap in their long-term spectra (Figure 1a), precluding the possibility that calls can be classified 

based on spectral content alone, and requiring selectivity for fine spectrotemporal features to 

classify calls. At the same time, marmoset calls also show considerable production variability 

along a variety of acoustic parameters (Agamaite et al 2015). For example, twitter calls produced 

by different marmosets vary in such parameters as dominant frequencies, lengths, inter-phrase 

intervals, and harmonic ratios (Figure 1). Tolerance to large variations in spectrotemporal features 

within each call type is thus necessary to generalize across this variability. Therefore, there is a 

simultaneous requirement for fine and broad selectivity for production-invariant call classification. 

The present study explores how the auditory system resolves these conflicting requirements. 
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Figure 1 Production variability in marmoset calls. a The overall spectra of 3 major marmoset call 

types and other minor call types (grouped as ‘Other calls’), showing spectral overlap between call 

categories. b Spectrograms of three twitter calls showing examples of production variability 

between individuals. c–f Production variability of twitter calls quantified along multiple 

parameters: c bandwidth, d dominant frequency, e duration, and f inter-phrase interval. Dots are 

parameter values of a single call produced by an individual marmoset. Histograms are overall 

parameter distributions, split into the training (blue) and testing (red) sets. These data show the 

large production variability captured by the training and test datasets, over which the model must 

generalize. No systematic bias is evident in calls used for model training and testing 

 

This problem of requiring fine- and tolerant feature tuning, necessitated by high variability 

amongst members belonging to a category, is not unique to the auditory domain. For example, in 

visual perception, object categories such as faces also possess a high degree of intrinsic variability 

(Tsao and Livingston 2008; Jenkins et al 2011; Kramer et al 2018; Ullman et al 2002). To classify 

faces from other objects, using an exemplar face as a template typically fails because this does not 

generalize across within-class variability (Ullman et al 2002). Face detection algorithms use 

combinations of mid-level features, such as regions with specific contrast relationships (Viola and 

Jones 2004; Sinha 2002), or combinations of face parts (Ullman et al 2002), to accomplish 

classification. Of these algorithms, the one proposed by Ullman et al. (Ullman et al 2002) is 

especially interesting because of its potential to generalize to other classification tasks across 

sensory modalities. In this algorithm, starting from a set of random fragments of faces, the authors 

used greedy search to extract the most informative fragments that were highly conserved across 

all faces despite within-class variability. Post hoc analyses revealed that these fragments were mid-
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level, i.e., they typically contained combinations of face parts, such as eyes and a nose. The features 

identified using this algorithm were consistent with some physiological observations, for example 

at the level of BOLD responses (Lerner et al 2008). While the differences between visual and 

auditory processing are vast, these results inspired us to ask whether a similar concept – sound 

categorization using combinations of acoustic features – could be implemented by the auditory 

system. 

The behavioral salience of calls for marmosets (Epple 1968; Chen et al 2009; Miller et al 

2010; Kato et al 2014).), and the increasing resources allocated to the processing of calls along the 

cortical processing hierarchy (Sadagopan et al 2015), suggest that call processing is a 

computational goal of auditory cortex. Call processing involves detecting the presence of calls in 

the acoustic input, classifying them into behaviorally relevant categories, extracting information 

about caller identity, determining the behavioral state of the caller, and developing situational 

awareness of the environment. Although a number of studies have described call-selective 

responses at various stages of the auditory pathway, there has been little investigation into how the 

auditory system goes about solving these problems, both at the algorithmic and mechanistic levels. 

In this study, we start with the premise that the detection and classification of calls into discrete 

call types is a critical first step that enables the above computations. Our overall question in this 

study is to ask how production-invariant call classification can be accomplished in the auditory 

pathway. Specifically, we test the hypothesis that production-invariant call classification can be 

accomplished by detecting constituent features that maximally distinguish between call types. 

Starting from an initial set of randomly selected marmoset call features, we use a greedy search 

algorithm to determine the most informative and least redundant set of features necessary for call 

classification. We show that high classification performance can indeed be achieved by detecting 
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combinations of a small number of mid-level features. We then demonstrate that predictions of 

tuning properties of putative feature-selective neurons match previous data from marmoset 

primary auditory cortex. Finally, we show that the same algorithm is equally successful in caller 

identification with marmoset calls, and in call classification in other species such as guinea pigs 

(Cavia porcellus) and macaque monkeys (Macaca mulatta). Taken together, our findings suggest 

that classification of sound categories using mid-level features may be a general auditory 

computation. 

 

 

2.2 Results 

 

2.2.1 Intermediate Features are More Informative for Classification 

 

We start with the premise that the first step in call processing is the categorization of calls 

into discrete call types, generalizing across the production variability that is inherent to calls. Let 

us consider the example of classifying twitter calls from all other call types. Marmoset twitters can 

be characterized along several acoustic parameters, such as bandwidth, duration, dominant 

frequency, and inter-phrase interval (Agamaite et al 2015). In Figure 1c–f, we plot the values of 

these parameters for individual calls emitted by 8 animals, showing the extent of within- and 

between-individual variability over which generalization is required for twitter categorization. 

Similar generalization is required for categorizing the other call types as well (Appendix Figure 

1). We first generated 6000 random initial features from the cochleagrams of 500 twitter calls 

emitted by 8 marmosets (‘training’ set, blue histograms in Figure 1). For the purposes of this study, 
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a feature is a randomly selected rectangular segment of the cochleagram, corresponding to the 

spatiotemporal activity pattern of a subset of auditory nerve fibers within a specified time window. 

For each random feature, we determined an optimal threshold at which its utility for classifying 

twitters from other calls was maximized. The merit of each feature was taken to be the mutual 

information value (in bits) at this optimal threshold (Figure 2; Equation 1). 
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Figure 2 Initial feature generation and evaluation. a The spectrogram of a twitter call (top), and 

its corresponding cochleagram (bottom). Cochleagram color scale denotes firing rates of auditory 

nerve fibers. b Schematic for initial random feature generation for a twitter (within-class) versus 

other calls (outsideclass) categorization task. Waveforms (top) were converted to cochleagrams 

(middle). The magenta box outlines a random initial feature picked from the twitter cochleagram 

shown. The maximum value of the normalized cross-correlation function between each call 

(within-class—blue, outside-class—green) and each random feature was taken to be the response 

of a feature to a call. c Distributions (top) of a feature’s responses to 500 within-class (blue) and 

500 outside-class (green) calls. The mutual information (bottom) of a feature computed as a 

function of a parametrically varied threshold. The dotted line, corresponding to maximal mutual 

information, is taken to be each feature’s optimal threshold 

 

In Appendix Figure 2, we plot the merits of all 6000 initial features as a function of each 

feature’s bandwidth and temporal integration window. Along the margins, we plot the maximum 

merit of features within each bandwidth- or temporal window bin. These distributions compare the 

best features from each time bin and show that features of intermediate lengths relative to the total 

call length show higher merits for call classification. This is an expected consequence of two 

characteristics of calls: (1) call types overlap in spectral content, so that brief features do not 

contain sufficient information to separate out categories, and (2) calls have high production 

variability, so that long features are less likely to be found across all calls belonging to the same 

category. We observed similar distributions for the classification of other marmoset call types, i.e., 

for trill vs. other calls, and phee vs. other calls (Appendix Figure 2). We then characterized feature 

complexity using a kurtosis-based metric (Methods). While features of low merit showed low 
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complexity values and whole calls showed high complexity values, features of high-merit showed 

intermediate complexity values. This observation supported the hypothesis that mid-level features 

of intermediate complexity were most informative for classification (Appendix Figure 2). 

 

2.2.2 Most Informative Features for Classification 

 

Because we generated the initial features at random, many of these have low merit, and 

many are similar. Therefore, the set of optimal features for classification is expected to be much 

smaller than this initial set. To determine the set of optimal features that together maximize 

classification performance, we used a greedy-search algorithm (see Methods). Briefly, we started 

with the feature of highest merit, and successively added features that maximized pairwise mutual 

information with respect to the already chosen feature set. We refer to the set of these optimal 

features as most informative features (MIFs) following the nomenclature of Ullman et al. (Ullman 

et al 2002, 2004). We determined that call classification could be accomplished using 11 MIFs for 

twitter vs. all other calls, 20 MIFs for trill vs. all other calls, and 16 for phee vs. all other calls. In 

Figure 3, magenta boxes outline the top 5 MIFs that are optimal for each of these classification 

tasks (the first five MIFs in Table 1). The optimal features that we arrive at are mostly intuitive – 

for example, the top MIFs for classifying twitters detect the frequency contour of individual twitter 

phrases and the repetitive nature of the twitter call. In some cases, features seemed counter-

intuitive— for example, the second MIF for trill classification seems to detect empty regions of 

the cochleagram. In this theoretical framework, the lack of energy at those frequencies is also 

informative about the presence of a trill. 
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Figure 3 Most informative features for the classification of marmoset calls. Magenta boxes 

correspond to MIFs for the classification of a twitters vs. all other calls, b phees vs. all other calls, 

and c trills vs. all other calls, overlaid on the cochleagrams of the parent calls from which the MIFs 

were obtained 

 

In Tables 1, 2, and 3, we show the pairwise information added by each MIF, the merits, 

and the weights of the top 10 MIFs for these classification tasks. Note that 1 bit of information 

corresponds to perfect classification. For twitters, detecting a single feature (the top MIF) was 

sufficient to gain 0.95 bits of information. Subsequent features probably detected only a few 

additional twitters without introducing new false alarms. For the other call types, however, the top 

MIF only provided 0.78 or 0.6 bits of information. Although successive MIFs individually had 

high merit (second column), they added little information to the top MIF (first column), likely 

because of redundancy—each MIF could only add a small number of additional hits without 



23 
 

introducing new false alarms. However, detecting these features was crucial for solving the task, 

as they ultimately elevated the total information to >0.9 bits. The MIFs have positive weights, 

suggesting that they are informative by virtue of their presence (rather than absence) in the target 

category. Because we approach very high levels of classification using our pairwise optimization 

of mutual information, and because joint optimization of mutual information across the entire MIF 

set is computationally expensive, we used the pairwise-optimized MIF set for all further analyses. 

 

Table 1. Information Content of Twitter MIFs 

MIF # Added Info. Merit Weight 

1 0.95 0.95 14.58 

2 0.01 0.84 12.14 

3 0.01 0.44 9.26 

4 0.01 0.85 12.49 

5 0.01 0.87 12.49 

6 <0.01 0.87 12.49 

7 <0.01 0.80 11.71 

8 <0.01 0.84 12.3 

9 <0.01 0.39 8.97 

10 <0.01 0.34 8.62 
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Table 2. Information Content of Phee MIFs 

MIF # Added Info. Merit Weight 

1 0.78 0.78 10.06 

2 0.01 0.67 7.76 

3 0.01 0.74 8.65 

4 0.01 0.71 8.29 

5 0.01 0.75 8.87 

6 0.01 0.72 8.39 

7 0.01 0.71 8.27 

8 <0.01 0.71 8.27 

9 <0.01 0.75 8.90 

10 <0.01 0.71 8.49 

 

Table 3. Information Content of Trill MIFs 

MIF # Added Info. Merit Weight 

1 0.60 0.60 7.88 

2 0.10 0.12 5.37 

3 0.04 0.12 4.40 

4 0.04 0.25 7.13 

5 0.04 0.53 7.59 

6 0.03 0.43 6.18 

7 0.03 0.29 7.44 

8 0.03 0.27 8.14 

9 0.02 0.27 8.26 

10 0.02 0.22 7.74 
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Figure 4 MIFs are of intermediate bandwidths and lengths. Scatter plot of the distribution of all 

MIFs for a twitters, b phees, and c trills as a function of their bandwidth and temporal integration 

period. Dashed line indicates the mean length of each call type. Colors are: blue—twitter, red—

phee, yellow—trill 

 

  



26 
 

In frequency, MIFs neither encompassed the entire call bandwidth, nor consisted of only 

few frequency bands. In time, MIFs showed integration windows of the order of hundreds of 

milliseconds (Figure 4a–c). The mean MIF lengths were 215 ms, 68 ms, and 406 ms for twitters, 

trills, and phees, respectively. Compared to the average lengths of the calls (twitters: 1.25 s, trills: 

0.5 s, phees: 1.27 s), these correspond to 17%, 14%, and 32% of mean call length, respectively. 

Interestingly, these lengths may correspond to timescales of temporal modulations in calls—for 

twitters, the sum of mean phrase length and mean inter-phrase interval is ~190 ms; for trills, the 

mean amplitude modulation period is ~30 ms. Thus, as with the initial feature set, MIFs for call 

classification were also of intermediate length and complexity. 

 

2.2.3 Accurate Classification of Novel Calls Using MIFs Alone 

 

To validate our model and to test the effectiveness of using only the MIFs for classifying 

call types, we used a novel set of calls consisting of 500 new within-category and 500 new outside-

category calls drawn from the same 8 marmosets. This test call set did not significantly differ from 

the training set along any of the characterized parameters (red histograms in Figure 1). We 

conceptualized each MIF as a simulated template-matching neuron whose response to a stimulus 

was defined as the maximum value of the normalized cross-correlation (NCC) function. This 

simulated MIF-selective neuron ‘spiked’ whenever its response crossed its optimal threshold, i.e., 

when an MIF was detected in the stimulus. In Figure 5, we plot the spike rasters of simulated 

MIFselective neurons for twitter, phee, and trill (top 10 MIFs shown), responding to a train of 

randomly selected calls from the novel test set. Each spike was weighted by the log-likelihood 

ratio of the MIF and the weighted sum of responses in 50 ms time bins was taken as the evidence 
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in support of the presence of a particular call type. Although occasional false positives and misses 

occurred, over the set of MIFs the evidence in support of the correct call type was almost always 

the highest. Therefore, production invariant call categorization is a two-step process—first, MIFs 

are detected in the stimuli, and then each feature is weighted by its log-likelihood ratio to provide 

evidence for a call type. 

 

 

Figure 5 MIF responses to marmoset call sequences. a The cochleagram of a sequence of 

marmoset calls, some of which overlap. b Raster plot of the responses of the top 10 MIFs for 

twitter (top, blue), phee (middle, red), and trill (bottom, yellow). Each dot represents spiking of a 

putative MIF-selective neuron (i.e. when the response of the MIF exceeds its optimal threshold). 

c The evidence for presence of a particular call type, defined as the normalized sum of the firing 

rate of all MIF-selective neurons, weighted by their log-likelihood ratio. Over the duration of each 

call, the call type with the most evidence is considered to be present. Occasional false alarms are 

usually outweighed by true-positive MIF detections 
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Figure 6 Classification performance and controls. a Receiver operating characteristic (ROC) 

curves for the classification of twitters, phees, and trills using MIFs alone. b Detection error 

tradeoff (DET) curves comparing the default model (blue) to other model variations: (i) MIF-based 

classification with acoustic waveforms (red), (ii) feature selection without greedy search (green), 

and (iii) when entire calls are used as features (yellow). c Comparison between various model 
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conditions (same as B) in terms of cumulative information added by each successive feature, 

averaged across all three call type classification tasks. Random (purple) is the classification of 

twitters using randomly selected features as MIFs, averaged across 20 trials. d ROC curves of 

three model controls: (i) classification of twitters when the model is trained on the twitters of 4 

animals, and tested on twitters from 4 new animals (triangles), (ii) classification of twitters from 

other twitter calls (circles), and (iii) classification of twitters using trill MIFs (crosses) 

 

We quantified the performance of the entire set of MIFs (n = 11, 16, and 20 for twitter, 

phee, and trill, respectively) for the classification of novel calls by parametrically varying an 

overall evidence threshold and computing the hit rate (true positives) and false alarm rate (false 

positives) at each threshold. From these data, we plotted receiver operating characteristic (ROC) 

curves (Figure 6a). In these plots, the diagonal corresponds to chance, and perfect performance 

corresponds to the upper left corner. The MIFs achieved >95% detection rates for all call types 

with very low false alarm rates. 

 

2.2.4 Control Simulations 

 

First, we ensured that our selection of 6000 initial random features adequately sampled 

stimulus space. To do so, we iteratively selected sets of MIFs using our greedy search algorithm 

from initial random sets from which previously picked MIFs were excluded. We found that distinct 

sets of MIFs that had similar classification performance could be selected in successive iterations 

(Appendix Figure 3). This suggests that our initial random feature set indeed contained several 

redundant MIF-like features, confirming the adequacy of our initial sampling.  
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Second, in order to determine the contributions of various model assumptions and 

parameters, we repeated this process of random initial feature generation, threshold optimization, 

and MIF selection in different scenarios. To better visualize these differences, we used detection-

error tradeoff curves (Figure 6b), where perfect performance is the lower left corner. In this figure, 

the performance of the default model, as described above, is plotted in blue. First, when we used 

the acoustic waveform of calls instead of cochleagrams, classification performance was on average 

worse (Figure 6b; red), suggesting that phase information in the waveform may be detrimental for 

classification. Second, we used the features with top merits without greedy-search optimization 

for classification, and again found that performance compared to the default model was worse 

(Figure 6b, green). Finally, using entire calls as features, either treating entire individual calls as 

features (‘grandmother cell’ model; Figure 6b, yellow), or using the aligned and averaged training 

call as a single feature (Appendix Figure 4) also resulted in worse performance compared to the 

intermediate feature-based model.  

In Figure 6c, we compare the average cumulative information added by successive features 

across all three call classification tasks (twitter vs. all other calls, trill vs. all other calls, and phee 

vs. all other calls) for each control simulation against the performance of the default model. The 

default model significantly outperformed (at p < 0.01, rank-sum test) the no greedy-search model 

for all classification tasks, after correcting for multiple comparisons (Bonferroni correction). Exact 

p-values corresponding to default model comparison with the constrained model and the no-

greedy-search model were: twitter (p= 0.000087 and p =0.00021, respectively, rank-sum tests), 

trill (p= 0.0058 and p= 0.00067, respectively, rank-sum tests), and phee (p= 0.00015 and p= 

0.00021, respectively, rank-sum tests). While the default model for trill exhibited significantly 

higher performance compared to the acoustic-waveform model (p= 0.000091, rank-sum test), the 
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default models for twitter and phee did not (p= 0.89 and p= 0.43, respectively, rank-sum tests). 

These results suggest that our underlying assumptions—using the cochleagram, unconstrained 

initial feature selection, and MIF optimization using a greedy search—were justified. Twitter MIFs 

were not qualitatively different when derived from calls emitted by a smaller set of animals (4 

animals). Training on a set of 4 animals and testing on the other 4 animals yielded high 

performance (Figure 6d, triangles), confirming the robustness of using MIFs for categorization of 

new calls. Twitter MIF performance in classifying twitters from other twitters was near-chance, 

suggesting that the estimation of mutual information values was unbiased (Figure 6d, circles). 

Finally, MIFs derived for one task (such as trill vs. other calls) showed chance level performance 

for other tasks (such as twitter vs. other calls; Figure 6d, crosses), demonstrating the task-

dependence of the derived MIFs. 

 

2.2.5 The Precedence of Intermediate Features for Classification 

 

We have previously shown that features of intermediate lengths and complexities possess 

high individual merits for classification (Appendix Figure 2). We have also shown that the set of 

MIFs is composed intermediate features (Figure 4a–c). To directly test whether features of 

intermediate size were indeed the most informative, we re-derived MIFs after constraining the 

initial set of features to particular time and frequency bins and quantified model performance 

(Figure 7). When we constrained the features to be only small (<100 ms and <1 oct.) or removed 

all small features, performance was worse than the default model (Figure 7, top row). Similarly, 

model performance was worse compared to the default model when we constrained to only large 

features (>250 ms and >2 oct.) or removed all large features. When we constrained bandwidth and 
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time independently to be large or small, model performance was worse compared to the default 

model, with large values being more detrimental (Figure 7, bottom row). As previously discussed, 

using the largest possible features (whole calls or average call) resulted in poor classification 

performance as well. These results demonstrate that features of intermediate size indeed provide 

the best classification performance. 

 

 

Figure 7 The precedence of intermediate features for classification. DET curves for call 

classification using features of different sizes, bandwidths, and durations for the classification of 

a twitters, b phees, and c trills. The default model is in black. Top row shows performance when 

using small features only (<100 ms and <1 oct; blue discs.) or excluding small features (blue 

circles), and using large features only (>250 ms and >2 oct.; red discs) or excluding large features 

(red circles). For trills, some of these conditions fall outside the range of the axes. Bottom row 

shows performance when feature bandwidths and durations were independently varied. Because 
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of the short duration of trill calls, we did not test the effect of using only long duration features. 

Symbols are: purple inverted triangles—high bandwidth features only, green inverted triangle—

low bandwidth features only, purple triangle—long-duration features only, green triangle—short-

duration features only 

 

2.2.6 MIF Tuning Properties Match Neural Responses from A1 L2/3 

 

MIF tuning properties match neural responses from A1 L2/3. So far, we have demonstrated 

MIFs derived purely using theoretical principles can achieve high levels of production-invariant 

call categorization performance. We then asked whether the auditory system uses such an optimal 

feature-based approach for call classification. To explore this possibility, as a first step, we 

generated tuning curves of model neurons that were selective for the theoretically derived MIFs, 

and asked if these tuning curves matched previous experimental observations. In this effort, we 

were restricted by the appropriateness and availability of previous data. To do so, we first 

constructed cochleagrams of stimuli, such as trains of frequency-modulated sweeps, amplitude 

modulated tones, noise bursts, clicks, two-tone combinations, etc. We then used the maximum 

value of the NCC function as a metric of the model MIF neurons’ response to these stimuli, as we 

did earlier for calls. These responses were conceptualized as membrane potential responses, which 

elicited spiking only if they crossed each MIF neuron’s optimal threshold. We used a power law 

nonlinearity, applied to the maximum NCC values (see Methods, Equation 2), to determine the 

firing rate responses of model MIF neurons (Appendix Figure 6). We then compared these model 

MIF tuning curves to neural data from marmoset primary auditory cortex (A1). 
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Although, the MIF model did not have prior access to neurophysiological data, we found 

that model MIF neural tuning recapitulated actual data to a remarkable degree, both at the 

population and single-unit levels. For example, the population of model MIFs showed high 

preference for natural calls compared to reversed calls (Figure 8a, bottom), similar to observations 

by Wang and Kadia (reproduced in Figure 8a, top). The high sparseness of auditory cortical 

neurons is well-documented (Hromadka et al 2008; Hromadka and Zador 2009; Sadagopan and 

Wang 2009). The responses of model MIF-selective neurons were also sparse—only few MIF 

neurons were activated by any given stimulus set, and only after extensively optimizing the 

parameters of the stimulus set to drive-specific model MIF neurons. For example, in Figure 8b 

(top), we show a single-unit recording from a marmoset A1 L2/3 neuron that did not respond to 

most stimulus types (reproduced from Sadagopan and Wang), and only strongly responded to 

twotone stimuli. Twitter MIFs (Figure 8b, bottom) were similarly not responsive to most stimulus 

types, and only responded to carefully optimized linear frequency-modulated (lFM) sweeps. None 

of the model twitter and trill MIF-selective neurons responded to pure tones (Figure 8b, bottom), 

similar to many A1 L2/3 neurons. 

Most strikingly, we could recapitulate some specific and highly nonlinear single-neuron 

tuning properties as well. Figure 8c (top; reproduced from Sadagopan and Wang) is a single-unit 

recording from marmoset A1 L2/3 that did not respond to pure tones, but selectively responded to 

upward lFM sweeps of specific lengths (~80 ms). Responses of at least three of the top 5 twitter 

MIF-selective model neurons showed similar tuning for 80 ms long upward lFM sweeps 

(Figure 8c, bottom). A second peak at ~40 ms was also present in responses of two model twitter 

MIF-selective neurons, also matching the experimental data. Figure 8d (top; reproduced from 

Sadagopan and Wang) shows another single-unit recording from marmoset A1 L2/3, where the 
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neuron did not respond to single lFM sweeps (lightest gray line), but strongly responded to trains 

of upward lFM sweeps occurring with 50 ms inter-sweep interval. The neuron’s response scaled 

with the number of sweeps present in the train (darker colors correspond to more sweeps). Three 

of the top 5 twitter MIF-selective neurons also showed remarkably similar tuning (Figure 8d, 

bottom)—these model neurons did not respond to single sweeps, but responded to trains of at least 

2 or more sweeps occurring with a 50 ms inter-sweep interval. Taken together, these data suggest 

neurons tuned to MIF-like features are present in A1 L2/3. Therefore, we predict that a spectral-

content based representation of calls in the ascending auditory pathway becomes largely a feature-

based representation in A1 L2/3. 

Consistent with the prediction of feature selectivity, we also found neurons in A1 of both 

marmosets and guinea pigs that respond selectively to conspecific call features. In Figure 9, we 

present the spike rasters of example single neurons in both marmoset and guinea pig A1 responding 

to marmoset (Figure 9a) and guinea pig calls (Figure 9b), respectively. We presented multiple 

exemplars of each call type as stimuli. These example neurons responded at specific time points 

to a few call stimuli, typically across 1–3 categories. Such responses are consistent with our 

feature-based model because single features alone do not completely categorize calls, i.e., MIFs 

do not have 1 bit of information for categorization. Rather, combinations of features weighted by 

their log-likelihood ratios are necessary to ultimately achieve complete call category information. 

These data provide promising support for our model, but further experiments are necessary to: (1) 

determine how informative these neural features are about call category and how they compare 

with model features, (2) to confirm where such responses arise in the auditory pathway, and (3) to 

account for possible low-level confounds. Experiments are presently ongoing to address these 

issues.  
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Figure 8 Predictions of putative MIF-neuron tuning properties match cortical data. (a–d, top row) 

Neural data from marmoset A1. (a–d, bottom row) Model predictions. (a-top) Preference of 

marmoset A1 responses for natural twitters over time-reversed twitters. (a-bottom) Preference of 

model MIF neurons for natural calls over reversed calls. (b-top) Sparse responses of marmoset A1 

L2/3 neuron. (b-bottom) Sparse responses of MIF neurons. The number of MIF neurons showing 

responses to the stimulus categories on the x-axis are plotted. Colors correspond to call type 

(blue—twitter, red—trill, yellow—phee). (c-top) Marmoset A1 L2/3 neuron tuned to upward lFM 

sweeps of a specific length (~80 ms). Error bars correspond to ±1 SD. (c-bottom) Twitter MIF 

neurons show similar tuning. (d-top) Marmoset A1 L2/3 neuron that does not respond to single 

lFM sweeps but shows tuning to trains of upward lFM sweeps with 50 ms inter-sweep interval. 

Grayscale corresponds to the number of lFM sweeps in the train. (d-bottom) Three of the top 5 

twitter MIFs showed similar tuning for lFM sweep trains. a-top reproduced from Wang and Kadia 

(2001), b–d top reproduced from Sadagopan and Wang (2009) 
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Figure 9 Feature selectivity in cortical neurons. a Spike rasters of three single units from marmoset 

A1 responding to marmoset call stimuli. Black dots correspond to spikes; gray shading 

corresponds to stimulus duration (different calls have different lengths). Note that spikes occur at 

specific times, and in response to 2 or 3 call types, suggesting that the neurons are responding to 

smaller features within these calls. b Spike rasters of three single units from guinea pig A1 

responding to guinea pig call stimuli 
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2.2.7 Task-dependent MIF Detection as a General Computation 

 

To determine whether MIF-based representations of sounds could also be used for 

optimally solving other tasks, we performed three proof-of-principle simulations using limited 

available datasets. First, we tested whether we could accurately determine caller identity using an 

MIF-based approach. We generated training and test sets of 60 twitters each from eight marmosets, 

and generated 500 initial random features from the training set. We applied the greedy-search 

algorithm to determine the MIFs for caller identification in a caller A vs. all other callers task 

(Figure 10a). We found that similar to call categorization, caller identification could also be 

achieved using a small number of MIFs (n = 4). If caller identification was performed in a binary 

fashion (four classifications between two animals each), in half of these tasks, classification could 

be accomplished using less than 3 MIFs, indicating that the calls of these marmosets probably 

differed along the frequency axis. This is because if there are clear differences in dominant 

frequency (for example, Animal 1 vs. 4 in Figure 1d), all features that lie in one animal’s frequency 

range will detect all of that animal’s calls and none of the other animal’s calls. During the greedy 

search procedure, these features will be considered redundant and reduced to a single feature. In 

the other half, more MIFs were required for caller identification, and in general, MIFs were larger 

than those for call-type classification. This is likely because the differences between twitters 

produced by these animals are smaller compared to the differences between call types and can only 

be resolved in a higher dimensional space. Thus, integration over more frequencies and a larger 

time window may be necessary to resolve caller differences. In Appendix Figure 7, we plot the 

ROC for caller identification between a pair of marmosets with overlapping dominant frequencies. 
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The MIF-based approach (n = 20 MIFs) achieved >80% hit rates with <10% false alarm rate for 

caller identification. 

 

 

Figure 10 The applicability of MIF-based classification for other auditory tasks. The top four 

MIFs and ROC curves for: a marmoset caller identification (twitter calls), b Guinea pig call 

classification (MIFs for whine calls shown). Colors are: blue—whine, red—wheek, green—

rumble. c Macaque call classification (MIFs for coo calls shown). Colors are blue—grunt, red—

coo, green—harmonic arch 

 

Second, we tested whether MIF-based call classification generalized to other vocal species, 

using guinea pig and macaque call classification as examples. Guinea pigs are highly vocal rodents 

that produce seven primary call types (Eisenberg 1974; Berryman 1976; Grimsley et al 2012), 
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which are highly overlapping in the low frequency end of the spectrum, and show high production 

variability. We used the MIF-based approach to classify guinea pig call types (whine, wheek, and 

rumble) from all other guinea pig call types. Similar to marmosets, guinea pig classification could 

be accomplished using a handful of features (12, 9, and 3 MIFs for whine, wheek, and rumble), 

and MIF-based classification achieved high performance levels (Figure 10b). Similarly, we 

implemented the MIF-based algorithm to classify macaque calls (using 5, 4, and 9 MIFs for coos, 

grunts, and harmonic arches) from a limited macaque call dataset (Hauser 1998) and achieved high 

classification performance (Figure 10c). These proof-of-principle experiments demonstrate that an 

MIFbased approach indeed succeeds for different auditory classification tasks and in different 

species, suggesting that building representations of sounds using task-relevant features in auditory 

cortex may be a general auditory computation. 

 

 

2.3 Discussion 

 

In these experiments, we set out to understand the computations performed by the auditory 

system that enable the categorization of behaviorally critical sounds, such as calls, despite wide 

variations in the spectrotemporal structure of calls belonging to a category (production variability). 

We found that the optimal theoretical solution is to detect the presence of informative midlevel 

features (termed MIFs) in calls. These MIFs generalize over production variability, and 

conjunctions of MIFs accomplish production-invariant call classification with high accuracy. 

Critically, the tuning properties of model MIF-selective neurons matched previous recordings from 

marmoset A1 to a surprising degree. MIF-based classification was also successful for other tasks 
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(marmoset caller identification), and in other species (guinea pig and macaque call recognition). 

Our results suggest that the representation of sounds in higher auditory cortical areas is based on 

the detection of optimal task-relevant features. 

An implication of our results is that in higher auditory processing stages, neural 

representations of sounds serve-specific behavioral purposes. For example, the MIF-based 

classification approach that we proposed here is targeted to solve well-defined classification 

problems. At earlier stages of the auditory pathway, however, it may be more important to 

faithfully represent sounds using basis sets that enable the accurate and complete encoding of novel 

stimuli. Previous theoretical studies have proposed, for example, that natural sounds can be 

efficiently encoded using spike patterns, where each spike represents the magnitude and timing of 

input acoustic features (Smith and Lewicki 2006). However, when optimized to encode the 

complete waveforms of natural sound ensembles, the kernel functions that elicit each spike show 

a striking similarity to cochlear filters. The advantage of this approach is that novel stimuli can be 

completely encoded using these kernel functions. In our approach, the input to our model 

implements a similar encoding schematic—in the cochleagram, inputs are encoded as 

spatiotemporal spike patterns, where each spike is the result of cochlear filtering. In this early 

representation, while information about category identity is present, it is distributed in the activity 

of many neurons in a high-dimensional space. We propose that in later processing stages, this early 

representation is transformed into a representation where category identity is more easily separable. 

By encoding MIF-like features, sound representation in later processing stages is less useful for 

high-fidelity encoding (although stimulus reconstruction is possible, see Appendix Note and 

Appendix Figure 5), but is instead goal-oriented. However, this means that each task will require 

a distinct set of MIFs for optimal performance, and animals likely perform a large number of such 
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behaviorally relevant tasks. The observed >1000- fold increase between the number of cochlear 

inputs and auditory cortical neurons may partially result from this necessity to encode a multitude 

of task-dependent MIFs. Previous theoretical studies have suggested that the generation of 

redundant and over- complete representations of sounds to solve spatial localization problems 

might underlie this increase in the number of neurons (Asari et al 2006). Our study proposes 

another computational reason why such an expanded representation of sounds may be necessary. 

Another powerful method to accomplish classification uses hierarchical convolutional 

neural networks, or deep networks. In these models, layers of filtering, normalization, and pooling 

operations are cascaded, resulting in individual units exhibiting increasingly complex tuning 

properties (Rasanene et al 2016; Khalighinejad et al 2017; Kell et al 2018). A final layer reads out 

class identity. Deep networks can achieve near-human levels of performance on specific tasks, but 

carry some disadvantages. First, they often require training data of the order of millions of samples. 

In the visual domain, deep networks appear not to use the same features as humans for object 

classification (Ullman et al 2016). Finally, an intuitive explanation for how deep network models 

actually accomplish classification is not yet available. In our approach, we explicitly train our MIF 

neurons to extract maximally distinguishing features, providing insight into why certain features 

are represented amongst these neurons. Our model does not require as extensive a training set. We 

consider our approach complementary to the deep learning approach, in that we aim to provide an 

explicit and intuitive explanation of why certain features are extracted, as opposed to matching 

human performance using complex model architectures. 

Conceptually, our MIFs may be similar to ‘image signatures’ obtained by recently 

developed unsupervised methods (Anselmi et al 2016) (see Appendix Discussion). Our approach 

is complementary to alternative experimental approaches, such the characterization of neural 
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tuning along an exhaustive list of call parameters (DiMattina and Wang 2006), characterizing call 

tuning as tuning for regions of the modulation spectrum (Hsu et al 2004; Woolley et al 2005; 

Stowell and Plumbley 2014), and combinations of these methods in conjunction with machine 

learning tools (Fukushima et al 2015) (see Appendix Discussion). Our results suggesting auditory 

cortex as a locus where the neural representation of vocalization sounds generalizes over 

production variability is consistent with a recent study showing that neurons in the auditory cortex 

of ferrets show robust responses to vowel identity tolerant to manipulations of various vowel 

features (Town et al 2018). 

Mechanistically, neural selectivity for MIFs may be generated (1) gradually along the 

ascending auditory pathway, or (2) de novo in cortex. Single-neuron feature selectivity often (but 

not always, see below) leads to selectivity for one or a few call types, and analyzing call selectivity 

of neurons at different auditory processing stages could provide insight into where MIF-based 

representations might be generated in the auditory pathway. In early auditory processing stages, 

evidence for call selectivity at the single-neuron level is minimal. For example, at the level of the 

cochlear nucleus, few single neurons in species other than mice show call selectivity (Pollak 2013). 

At the level of inferior colliculus, a population-level bias in call-selectivity has been reported 

(Pollak 2013; Portfors et al 2009; Holmstrom et al 2010), but evidence for single-neuron level call-

selectivity is equivocal (Suta et al 2003). It is only at the level of auditory cortex where clear single-

neuron selectivity for calls or call features has been observed. Therefore, it is quite likely that 

selectivity for MIF-like features in species with spectrotemporally complex calls is generated at 

the level of auditory cortex. This is supported by the expansion in the number of cortical neurons 

mentioned above. Importantly, the cortical emergence of MIF-based representations is also 
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supported by the fact that MIF-like responses have been observed in the superficial layers of 

marmoset A1 (Sadagopan and Wang 2009).  

We propose the following hierarchical model for auditory processing based on the 

representation of task-relevant features. In thalamorecipient layers of A1, representation of sound 

identity is still based on spectral content. This is reflected in the strongly tone-tuned responses of 

A1 L4 neurons. From these neurons, tuning for MIF-like features may be generated using 

nonlinear mechanisms, such as combination-sensitivity. For example, the tuning properties of the 

marmoset A1 responses shown in Figure 8 was determined to be the result of selectivity for precise 

spectral and temporal combinations of two-tone pips (Sadagopan and Wang 2009).  This is also 

consistent with a recent computational model showing that combinations of spectrotemporal 

kernels, optimized for representing natural sounds, recreates aspects of experimentally observed 

spectrotemporal receptive fields from recordings in cat auditory cortex (Mlynarski et al 1981). 

Further experiments, probing call and feature selectivity in identified layers of A1, are necessary 

to more precisely address where selectivity for MIF-like features first emerges in the ascending 

auditory pathway, and at what stage MIFs are combined to result in a categorical read-out. Once 

categories are detected, further hierarchical processing stages might be necessary to accomplish 

more sophisticated behavioral goals, such as caller identification, integration of social context with 

call perception, or decoding the emotional valence of calls. 

In conclusion, we propose a hierarchical model for solving a central problem in auditory 

perception—the goal-oriented categorization of sounds that show high within-category variability, 

such as speech (Petersen and Barney 1952; Hillenbrand et al 1995) or animal calls (Wang 2000). 

Our work has broad implications as to where in the auditory pathway categorization begins to 

emerge, and what features are optimal to learn in categorization tasks. For example, the lack of 
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distinction of perceptual categories of English /r/ and /l/ by native Japanese spekers might be a 

consequence of not learning and encoding (MacKain et al 1981; Raizada et al 2010) the optimal 

features necessary for this /r/-/l/ categorization, as it is not task-relevant for Japanese speech. Our 

model would predict that /r/-/l/ category learning would cause selective responses to develop for 

new task-relevant features, and primarily reflected in changes to the A1 L2/3 circuit. Consistent 

with this hypothesis, a recent study showed that training humans to categorize monkey calls 

resulted in finer tuning for call features in the auditory cortex (Jiang et al 2018). We therefore 

suggest that the neural representation of sounds at higher cortical processing stages uses task-

dependent features as building blocks, and that new blocks can be added to this representation to 

enable novel perceptual requirements. 
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2.4 Methods 

 

2.4.1 Vocalizations 

 

All procedures conformed to the NIH Guide for Care and Use of Laboratory Animals. All 

marmoset procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC) of The Johns Hopkins University. All guinea pig procedures were approved by the 

IACUC of the University of Pittsburgh. We used vocalization recordings from 8 adult marmosets, 

both male and female, for these experiments. Marmoset calls were recorded from a marmoset 

colony at The Johns Hopkins University using directional microphones (Agamaite et al 2015). 

Guinea pig calls were recorded from 3 male and 3 female adult guinea pigs. Two or more guinea 

pigs with varied social relationships were placed on either side of a transparent divider in a sound 

attenuated booth. Directional microphones, suspended above the guinea pigs were used to record 

calls. Calls were recorded using Sound Analysis Pro 2011(Tchernichovski et al 2000), digitized at 

a sampling rate of 48 KHz, low-pass filtered at 24 KHz, manually segmented using Audacity, and 

classified into different call types. 

 

2.4.2 Random Feature Generation 

 

All modeling was implemented in MATLAB. We focused on classifying each of three 

major marmoset call types, twitter, trill, and phee, from all other call types. That is, three main 

binary classification tasks— twitter vs. all other calls, trill vs. all other calls, and phee vs. all other 

calls were considered. We set up the categorization tasks as a series of binary classifications based 
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on the results of an earlier study of visual categorization that demonstrated the advantages of 

features learnt using multiple binary classifications compared to those learnt using a single multi-

way classification. Specifically, in that study, multiple binary classifications resulted in features 

that were distinctive and highly tolerant to distortions (Akselrod-Ballin et al 2008). For each 

classification task, we first generated training datasets, which consisted of 500 random within-

class calls (e.g., twitters) produced by 8 animals (about 60 calls per animal), and 500 random 

outside-class calls (e.g., trills, phees, other calls) produced by the same 8 animals. In order to 

convert sound waveforms of the calls into a physiologically meaningful quantity, we transformed 

these calls into cochleagrams using a previously published auditory nerve model (Zilany et al 2014) 

using human auditory nerve parameters with high spontaneous rate. We used human auditory 

nerve parameters because of the close similarity between marmoset and human audiograms 

(Osmanski et al 2011). The output of this model was the time-varying activity pattern of the entire 

population of auditory nerve fibers, and resembles the spectrogram of the call (Figure 2a, b). We 

then extracted 6000 random features from these 500 within-class cochleagrams. To do so, we 

randomly chose a center frequency, bandwidth, onset time and length and extracted a snippet of 

activity from the cochleagram. Each feature thus corresponded to the spatiotemporal pattern of 

activity of a subset of auditory nerve fibers within a specified time window (magenta box in Figure 

2b). We used rectangular feature shapes rather than other shapes to minimize assumptions – for 

example, an ellipse shaped feature would imply that the weighting of individual auditory nerve 

fibers changes over time. For twitters, to ensure that smaller features were well-sampled, 2000 of 

these features were restricted to have a bandwidth less than 1 octave and a duration less than 100 

ms. The bandwidth and duration of the remaining 4000 features were not constrained. 
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2.4.3 Feature Complexity 

 

We characterized feature complexity using the reduced kurtosis of the activity distribution of all 

auditory nerve fibers contained within a feature. Briefly, if the feature was an empty region of the 

cochleagram, or a region of uniform activity, the activity of all nerve fibers in all time bins would 

be about equal. This activity would thus be normally distributed, and show a reduced kurtosis 

value of zero. At the other extreme, for entire calls, there would be many bins of high activity, and 

a large number of bins with zero activity, resulting in an activity distribution with very high 

reduced kurtosis. We hypothesized that midlevel features that represent aspects of calls such as 

frequency-modulated sweeps or combinations of phrases over time would show intermediate 

reduced kurtosis values, and be more informative than low-level (tones) or high-level (entire calls) 

features. 

 

2.4.4 Threshold Optimization 

 

We defined the response of a feature to a call as the maximum value of the normalized 

cross-correlation (NCC) function between the feature’s cochleagram and the call’s cochleagram, 

restricted to the auditory nerve fibers that are represented in the feature. Note that this means 

features can only be detected in the frequency range that they span, but can be detected anywhere 

in time within a call. NCC is a commonly used metric to quantify template-match. To compute the 

NCC, the feature and the cochleagram patch at each lag were normalized by subtracting their 

respective mean values and dividing by their respective standard deviations before convolving 

them. This results in a value between −1, signifying that the feature and cochleagram patch at that 
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lag are completely anticorrelated, and +1, signifying a perfect match between the feature and the 

cochleagram. Because this is a computation-intensive step, template matching was implemented 

on an NVIDIA GeForce 980 Ti GPU. For each feature, then, we obtained 500 within-class 

responses, and 500 outside-class responses (response histograms of an example feature in Figure 

2c). To transform these continuous response distributions into a binary detection variable, we used 

mutual information to quantify the information provided by a feature about the class (within- or 

outside-class) over a parametrically varied range of thresholds. We computed mutual information 

following the method of Ullman et al. (Ullman et al 2002), by measuring the frequency of detecting 

a feature 𝑓𝑖 at a given threshold 𝜃𝑖  (𝑓𝑖 = 1 if present, 0 if absent) in the within-class (𝐶 = 1) or 

outside-class (𝐶 = 0) cochleagrams as: 

𝐼(𝑓𝑖(𝜃𝑖), 𝐶) = ∑ 𝑝(𝑓𝑖, 𝐶)
𝑓𝑖={0,1}

𝐶={0,1}

log (
𝑝(𝑓𝑖, 𝐶)

𝑝(𝑓𝑖)𝑝(𝐶)
) 

(1) 

where 𝑝(𝐶)  was assumed to be 0.10. We empirically verified that features identified were 

insensitive to variations of this value. The optimal threshold for each feature was taken to be the 

threshold value at which the mutual information was maximal, and the merit of each feature was 

taken to be the maximum mutual information value in bits (Figure 2c). The weight of each feature 

was taken to be its log-likelihood ratio. At the end of this procedure, each of the initial 6000 

features were allocated a merit, a weight, and an optimal threshold at which each individual 

feature’s utility for classifying calls as belonging to within- or outside-class was maximized. Note 

that merit and weight are distinct quantities that need not be monotonically related. For example, 

if the lack of energy in a frequency band is indicative of a target category, features that contain 

energy in this frequency band will be detected often in the other categories, but not in the target 
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category. The feature will thus have high merit for classification, as it is informative by its absence, 

but have a negative weight. 

 

2.4.5 Greedy Search 

 

Because we chose initial features at random, many of these features individually provided 

low information about call category, and many of the best features for classification were similar, 

or redundant. Therefore, to extract maximal information from a minimal set of features for 

classification, we used a greedy search algorithm (Ullman et al 2002) to iteratively (1) eliminate 

redundant features, and (2) pick features that add the most information to the set of selected 

features. The minimal set of features that together maximize information about call type were 

termed maximally informative features (MIFs). The first MIF was chosen to be the feature with 

maximal merit from the set of all 6000 initial random features. Every consecutive MIF was chosen 

to maximize pairwise added information with respect to the previously chosen MIFs. Note that 

these consecutive features need not have high merit individually. We iteratively added MIFs until 

we could no longer increase the hit rate without increasing the false alarm rate. Practically, this 

meant adding features until total information reached 0.999 bits, or individual features added less 

than 0.001 bits, whichever was reached earlier. At the end of this procedure, a small set of MIFs, 

containing the optimal set of features for call classification was obtained. 
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2.4.6 Analysis and Statistics 

 

To test how well novel calls could be classified using these MIFs alone, we generated from 

the same 8 animals a test set of 500 within- and outside-class calls that the model had not been 

exposed to before. We computed the NCC between each test call and MIF, and considered the 

MIF to be detected in the call if the maximum value of the NCC function exceeded its optimal 

threshold. If detected, the MIF provided evidence in favor of a test call belonging to a call type, 

proportional to its log-likelihood ratio. We then summed the evidence provided by all MIFs and 

generated ROC curves of classification performance by systematically varying an overall evidence 

threshold. We used the area under the curve (AUC) to compare ROC curves for classification 

performance by MIFs generated with different constraints (see Results). Statistical significance 

was evaluated using ranksum tests, with Bonferroni multiple-comparisons corrections, for 

comparing between these conditions, and for comparing performance to a large number of 

simulations generated using random MIFs. 

 

2.4.7 Generating Predictions 

 

To generate predictions of the responses of putative MIF-selective neurons to other 

auditory stimuli, we first generated a large battery of stimuli that have been used in previous 

recordings from marmoset A1, and computed their cochleagrams as earlier. We then computed the 

maximum value of the NCC function between the MIF and the stimulus cochleagram. This resulted 

in response values that could be conceptualized as equivalent to membrane potential (𝑉𝑚 ) 

responses. These were converted to firing rates by applying a power law nonlinearity, of the form: 
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FR = 𝑘 ∙ [𝑉𝑚 − 𝜃]𝑝 (2) 

where FR is the firing rate response in spk s−1, 𝜃 is the MIF’s optimal threshold, 𝑝 is the 

exponential nonlinearity set to a value of 4, and 𝑘 is an arbitrary scaling factor. 

 

 

2.4.8 Call Reconstruction from MIFs 

 

To reconstruct calls, we conceptualized MIFs as MIF-selective neurons, and considered 

the times at which NCC values exceeded the optimal threshold to be the spike times of these 

neurons. MIF spike times were computed with a time resolution of 2ms to simulate refractoriness, 

and alphafunctions were convolved with the spike times to determine the peak time at which each 

MIF was detected. A copy of the MIF cochleagram was then placed at the peak time, or summed 

(with log-likelihood weights) if overlapping with a previously placed cochleagram. The accuracy 

of reconstruction was defined as the NCC between the original stimulus and its reconstructed 

version at zero lag. 

 

2.4.9 Electrophysiology Methods 

 

Predictions generated from the MIFs were compared to earlier recordings from marmoset 

A1. All recordings were from the auditory cortex of adult marmosets. Population data comparing 

natural to reversed twitters were obtained from Wang and Kadia (Wang and Kadia 2001). These 

experiments were performed in anesthetized marmosets. Single-neuron data regarding feature 

selectivity were obtaine from Sadagopan and Wang (Sadagopan and Wang 2009). These 
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recordings were from awake, passively listening marmosets. Single-neuron data regarding feature 

selectivity in guinea pigs were obtained from adult, head-fixed, passively listening guinea pigs at 

the University of Pittsburgh. Briefly, a headpost and recording chambers were secured to the skull 

using dental cement following aseptic procedures. Animals were placed in a double-walled, 

anechoic, sound attenuated booth. A small craniotomy was performed over auditory cortex. High-

impedance tungsten electrodes (3–5MΩ, A-M Systems Inc. or FHC, Inc.) were advanced through 

the dura into cortex to record neural activity. Stimuli were generated in MATLAB, converted to 

analog (National Instruments), attenuated, power-amplified (TDT Inc.), and presented from the 

best location in an azimuthal speaker array (TangBand 4” fullrange driver). Single units were 

sorted online using a template matching algorithm (Ripple, Inc), and refined offline (MKSort). All 

analyses were performed using custom MATLAB code. 
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3.0 Adaptation to Sound Statistics for Noise Invariant Categorization 

 

Accurate processing of behaviorally important sounds such as speech for humans and 

vocalizations for vocal animals is critical for survival and social interactions. In a previously 

published model, we had demonstrated that detecting non-redundant spectrotemporal features of 

intermediate complexity could achieve optimal performance for vocalization categorization. That 

model was developed and tested in ideal (quiet) listening conditions. In real-world listening 

conditions, however, this task is often made difficult by the near omnipresence of competing sound 

sources. Models that are trained and optimized in quiet conditions fail to generalize to such noisy 

conditions. Physiological observations and results from automatic speech recognition algorithms 

suggest incorporating adaptation to sound statistics is a possible method for achieving noise 

invariance. Here, we show that an algorithmic implementation of gain control, a known 

mechanism for adaptation to sound statistics, improved sound categorization performance in noise. 

We implemented bottom-up and top-down gain control algorithm, broadly corresponding to 

subcortical and cortical processes in the auditory pathway. High classification performance could 

be achieved in noisy environments when top-down gain control, corresponding to contrast gain 

control found in auditory cortical neurons, was implemented. Our results demonstrate noise 

invariant categorization of complex sounds can be achieved using biologically plausible 

mechanisms of adapting to sound statistics. 
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3.1 Introduction 

 

Recognition of behaviorally important sounds is often performed in the presence of 

acoustic interference from competing sound sources. The human auditory system, and those of 

other vocal animals, shows robustness to noise interferences when processing conspecific 

communication sounds. Our knowledge about the neural mechanisms behind this process, however, 

remains inadequate. This is exemplified by the performance of speech processors used in auditory 

prosthetic devices. For instance, cochlear implant users often report great difficulty hearing in 

noise levels that are trivial for normal hearing individuals, even if they perform comparably to 

normal hearing individuals in optimal acoustic conditions (Fu et al 2005). Automatic speech 

recognition algorithms face a similar challenge. High-performing recognition algorithms such as 

deep neural networks are still susceptible to the effects of noise despite their human-level 

performance in standard listening conditions. These algorithms, however, can provide a good 

testing ground for physiologically inspired mechanisms of noise invariant processing. Studies 

suggest that adaption to sound statistics can be a valid strategy for mitigating the effects of noise. 

Neurons in the auditory system that exhibit such adaption to stimulus contrast can maintain their 

response in various acoustic conditions (Dean et al 2005; Watkins and Barbour 2008; Rabinowitz 

et al 2011). They achieve this adaption by modulating their neural response, i.e. gain control. In 

conditions of low contrast (noisy environments), neurons increase their gain, thereby expand the 

dynamic range of their response (Rabinowitz et al 2011, 2013). A large dynamic range increases 

the neuron’s sensitivity to small changes in the stimulus. Since noise elevates overall sound energy 

and thereby diminishes the level differences between background and signal, an expanded dynamic 

range can offset this effect. The magnitude of contrast-dependent adaptation strengthens as one 
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ascends the auditory hierarchy, which coincides with the neural representation of the stimulus 

being increasing invariant to noise (Rabinowitz et al 2013).  

Studies in human and other vocal animals show that noise invariant representation is the 

result of a transition from a continuous encoding of spectrotemporal properties to a discrete 

encoding of sound categories (Liberman et al 1967; Chang et al 2010; Ding 2012, 2013). The 

former method of encoding is typically found in subcortical areas and the auditory periphery, 

whereas the latter is a staple of cortical sound representation. Given that gain control is found in 

nearly all stages of auditory processing, it is likely to play an important role in shaping noise 

invariant representation (Rabinowitz et al 2013). However, it is unclear if the significance of 

contrast gain control changes in different stimulus encoding schemes. In addition, its neural 

mechanism of implementation remains to be addressed.  

In this study, we aim to investigate these questions by constructing a noise invariant sound 

categorization model using the principles of contrast gain control. We build on our previous model 

for sound categorization by implementing contrast gain control algorithms that mimic the observed 

physiological effects (Liu et al 2019). Briefly, our model uses a template matching algorithm to 

search for the presence of optimized acoustic features in the stimulus. The optimized features, 

termed most informative features (MIFs), are selected from an initial set of random features to 

maximize sound category information and minimize inter-feature redundancy.  Classification of 

the stimulus is based on the number and identity of the MIFs detected by the model. Our 

information-maximization approach to MIF selection allows the model to achieve high 

categorization accuracy while accounting for inherent variability between individuals during 

sound production. We chose this model as the basis for implementing contrast gain control because 

of the biological relevance of the MIFs. For instance, when used to categorize vocalizations of the 
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common marmoset (Callithrix jacchus, a highly vocal new world species), the model selected 

MIFs with predicted tuning properties strikingly similar to those observed in the marmoset primary 

auditory cortex. Thus, we expect that examining the effects of contrast gain control on MIF 

detection in noise will yield results with more physiological relevance. Specifically, we 

implemented a bottom-up and top-down gain control algorithm to our computational model, 

corresponding to gain control in the subcortical and cortical regions. We interpreted bottom-up 

gain control as modulation of the input cochleagram (frequency-time representation of the neural 

activity of auditory nerve fibers in response to acoustic input) based on locally measured sound 

statistics; and top-down gain control as scaling the MIFs’ response to stimulus, simulating 

contrast-based changes in the gain of putative MIF-detecting neurons. 

We show that both forms of gain control increase model performance in noisy conditions. 

Bottom-up gain control shows a de-noising effect on the input, while top-down gain control 

increased the range of MIFs’ responses, allowing better separation of call type categories. 

Furthermore, we found that top-down gain control significantly elevates model performance to 

near physiological levels and may even exceed it in narrowly-defined categorization tasks. Taken 

together, our results suggest that gain control may indeed be an important neural mechanism for 

building noise invariant representation. 
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3.2 Results 

 

3.2.1 Selecting for Robust Features to Increase Performance in Noise 

 

We previously described a feature-based model of sound categorization that accounts for 

the variability in sound production (See Liu et al 2019 Methods). Briefly, we started with a set of 

randomly selected acoustic features from a bank of animal calls and evaluated the efficacy of each 

feature as a classifier of its call type. The classifier functions by thresholding the normalized cross-

correlation value between the feature and the input such that values exceeding the threshold signal 

the presence of a feature. We then selected, using an information-maximization approach, a set of 

the Most Informative Features (MIFs) for categorizes of that call type. When presented with a 

novel set of calls obtained from several callers, detecting the set of MIFs is sufficient to achieve 

very high categorization accuracy with a low false alarm rate in a manner that is robust to 

production variability. Given that this feature-selection approach can produce a production-

invariant representation of call categories, we speculated if these MIFs are also noise invariant. 

We first tested the categorization performance of MIF sets for the three major marmoset call types 

(phee, trill, and twitter) using calls masked with Gaussian white noise at various intensity levels. 

Results are visualized using receiver operating characteristic (ROC) curves in Figure 11A, with 

lighter shading corresponding to a lower signal-to-noise ratio (SNR). All MIFs were negatively 

impacted by noise and dropped to chance-level performance (diagonal line) for noise levels greater 

than -6 dB SNR. Based on these results, we theorized that selecting the MIFs for their performance 

in the ‘clean’ condition may have resulted in over-optimization and making them susceptible to 

noise. Given that we have a large sample of acoustic features to draw from, there may exist a set 
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of MIFs that trade-off accuracy in the ‘clean’ condition for robustness to noise. To test this 

hypothesis, we selected fifteen additional MIF sets from the pool of 6000 randomly generated 

acoustic features without replacement (no duplicate features between MIF sets) and tested them in 

0 dB SNR noise. The area under the ROC curve (AUC) values in noise were compared against the 

‘clean’ condition (Figure 11B). We identified the most robust MIF set for each of the three call 

types as the one with the smallest difference in AUC between the two conditions, i.e., with the 

least slope of the SNR-performance relationships (solid black line in Figure 11B). Figure 11C 

shows the ROC of the most robust MIF sets in the same noise conditions as Figure 11A. Figure 

11D shows the amount of increase in AUC (colored area between the curves) using the robust MIF 

sets compared to the ‘clean’ optimized sets. These results demonstrate that it is possible to select 

MIF sets that are robust to noise at the cost of a small drop-off in ‘clean’ condition performance. 

The difference in performance increase between robust and ‘clean’ optimized MIFs for the three 

call types is likely due to the random nature of the initial acoustic feature generation. All 

computations from here on will be using the most robust MIF sets in place of the ‘clean’ optimized 

sets. 
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Figure 11 MIF optimization and performance in noise. A Receiver operating characteristic (ROC) 

curves for marmoset phee, trill and twitter calls. The MIFs are tested at 10, 6, 3, 0, -3, -6-, and -

10dB SNR. The MIF sets used for these three calls are optimized for categorization in the ‘clean’ 

condition. Lighter shading corresponds to lower signal-to-noise ratio (SNR). B Performance of 

alternative MIF sets in both ‘clean’ and noisy conditions. Colored lines represent the original, 

‘clean’ optimized MIF sets used in A. Solid blacklines represent the most robust MIF sets. In the 
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case of twitter, the original MIF set is also the most robust. C ROC curves for the most robust MIF 

sets tested in the same noise conditions as A. D Area-under-the-curve (AUC) plots for the original 

and most robust MIF sets. The colored area corresponds to the values gained by using robust MIF 

sets for categorization. 

 

3.2.2 Bottom-up Gain Control to ‘De-noise’ Inputs 

 

To further increase model robustness in noise, we implemented a de-noising algorithm 

based on the concept of modulating the neural response based on overall and local sound 

statistics. Because we theorized that putative MIF neurons are likely located in the auditory 

cortex (see Liu et al 2019 Discussion), this algorithm aimed to simulate the cumulative effect of 

sound statistics adaptation in the inputs to MIF neurons, i.e., the cumulative effect of gain control 

in sub-cortical areas. To implement this algorithm, we first measured local sound energy in 2 

octave and 200 ms-wide bins of the cochleagram, overlapping by 50% in both frequency and 

time. We computed the mean activity in each of these blocks, and thresholded the activity in 

each block by a factor (alpha) that was proportional to the mean activity. All activity below this 

threshold was set to zero.  (see Methods for details). Figure 12A shows an exemplar of a noisy 

cochleagram (left), the mean value of each frequency-time block (middle), and the de-noised 

cochleagram after thresholding based on the local mean value (right). To enhance the de-noising 

process, we optimized the scaling factor alpha to maximize the AUC at each SNR level tested, 

(Figure 12B). The choice for individually optimizing 𝛼 is to include the modulatory effect of the 

overall sound statistics in addition to the local activity mean of 𝜇. Figure 12C shows the effect of 

optimal thresholding on MIF performance in noise for the three call types. We observed that 
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thresholding has a small benefit for trill and twitter categorization, but little to no benefit for 

phee calls. A possible reason for this discrepancy of benefits between call types might be their 

differences in bandwidth. Twitter calls have the largest bandwidth out of the three call types, 

meaning that it can span several frequency blocks. In contrast, phee has the smallest bandwidth, 

meaning the whole call is often contained in one frequency block. When optimizing for 

thresholds, twitter calls have three 𝛼 within their bandwidth for adjustments (three degrees of 

freedom), while phee is often limited to a single 𝛼 within its bandwidth (one degree of freedom). 

This discrepancy in degrees of freedom for optimization is likely a major contributing factor to 

the difference in performance increase between the calls. 
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Figure 12 Bottom-up gain control. A Example cochleagrams of a noisy trill call (left). The 

cochleagram is divided into smaller time-frequency blocks (middle), and the mean value of each 

block is then used as a basis for thresholding the noisy cochleagram. Visual inspection of the 

resulting cochleagram (right) shows that the trill call is noticeably more visible due to the apparent 

decrease in background noise level. B Optimization curves for the threshold parameter, alpha, for 

each call type at different noise levels. Lighter shading corresponds to lower SNR. For trill and 

twitter calls, the optimization curves show local maxima at several SNR levels. While for phee 

calls, thresholding the noisy cochleagram does not appear to increase AUC (maximum value of 

optimization curve is 0). C AUC plots for categorization with and without cochleagram 

thresholding. The colored area corresponds to the values gained by thresholding cochleagrams at 

the optimal alpha value for each SNR level. 

 

3.2.3 Adapting MIFs’ Response to Noise 

 

Though selecting for robust features and de-noising the input both improved categorization 

in noise, these additions were insufficient for the model to reach physiological performance levels 

in similar conditions. Examining the ROC curves in various noise levels (Figure 11A) showed that 

for the same false alarm rate, hit rate decreased with increasing noise levels. This suggests that the 

model’s poor performance in noise is the result of its failure to detect features in noise. Figure 13A 

shows an exemplar of failed feature detection. A feature is considered present in the input if its 

response (i.e. normalized cross-correlation value between the feature and the input) crosses the 

MIF’s optimal threshold. We observed that the overall shape of the response curve was similar in 

both ‘clean’ and noisy conditions, but shifted to sub-threshold levels. The straightforward solution 
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would be to counteract this shift in response by either proportionally lowering the threshold value 

(that was previously optimized in clean conditions) or by scaling up the response to achieve supra-

threshold detection. Since we theorized that putative MIF detecting neurons are likely located in 

the auditory cortex, a biologically plausible method of implementing these solutions would be 

some form of cortical gain control that creates an overall excitatory effect on these MIF neurons. 

Figure 13B shows a proposed mechanism of cortical gain control that excites pyramidal cells 

(putative MIF detection neurons) via disinhibition of PV interneurons (reproduced from Willmore 

et al with permission). We investigated both lowering of threshold (Figure 14) and a multiplicative 

scaling of the response (Figure 15) approach to noise adaptation. 

 

3.2.4 Adjusting Detection Threshold 

 

MIF threshold values were optimized in the ‘clean’ condition to maximize hit rate while 

minimizing false alarms. Noise lowers the MIF response for both within-class and outside-class 

stimuli. In most cases, the distribution of within-class and outside-class responses remained 

relatively proportional to each other. Therefore, it might be possible to obtain a similar 

classification performance from these features by proportionally lowering the threshold. Figure 

14A shows this process for an exemplar feature. At each noise level, we varied a parameter (beta) 

that was multiplied with the threshold previously optimized for clean performance to yield a new 

threshold.  A beta value of 1 corresponded to an unchanged threshold. Figure 14B shows the MIF 

performance with different thresholds in various noise conditions (lighter shade corresponds to 

higher noise levels). When we plotted the new threshold value that maximized performance at 

each SNR as a function of SNR, we observed that it linearly scaled with noise level. Because it is 



66 
 

biologically unrealistic for the system to have knowledge of the stimuli before it is actually 

recognized, we computed an average beta value across all call types tested, and used this beta value 

to adjust MIF thresholds at various noise levels. Similar to the subcortical model above, the overall 

noise level can be computed using neurons with widely-tuned and overlapping receptive fields.  

Figure 14D shows the increase in performance at various noise levels using the standard threshold 

ratio. Compared to selecting for robust features and the sub-cortical model (de-noising inputs), the 

effect of a threshold change was much more profound. For phee and twitter, even at extreme noise 

levels of -10 dB SNR, the model achieved very high performance levels, even higher than that 

reported in behavioral experiments (Osmanski et al 2013). Model over-performance is likely a 

consequence of the limited set of categorization tasks for which our model was trained.  

Physiological optimization of cortical gain control network requires feedback from higher areas 

(top-down modulation) regarding the true category of noisy calls. This process is not as efficient 

or as accurate as the artificial optimization process. Furthermore, the physiological optimization 

process must account for all behaviorally important sounds, not just the three call types, which is 

likely to further dilute the benefits of threshold change. Nevertheless, the results suggest that 

threshold change can play an influential role in noise invariant categorization, both physiologically 

and computationally. 
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Figure 13 Theoretical computational and neural mechanisms of gain control. A Example of a 

twitter MIF that failed to be detected in noise. Comparing the response curves in for the ‘clean’ 

and noisy, we see that there appears to be both a DC shift downward and reduction in the spread. 

Theoretically, multiplying the MIF response in noise by a constant, which is analogous to the 

effects of gain control on a putative MIF-detecting neuron, should produce a response curve that 

is comparable to the clean one. B Neural mechanism of contrast gain control as purposed by 

Wilmore et al 2014 (figure adapted with permission). Cortical-cortical interactions such as 

attention can recruit vasoactive intestinal polypeptide (VIP)-expressing interneurons, which can 

excite pyramidal cells via disinhibition of parvalbumin (PV)-expressing interneurons. Putative 

MIF-detecting neurons are likely to be pyramidal cells located in the auditory cortex, meaning they 

are the target of cortical contrast gain control via this purposed mechanism. 
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Figure 14. Top-down gain control via threshold change. A Schematic of how decreasing the MIF 

detection threshold can lead to the MIF maintaining its merit as a classifier. MIF detection 

threshold in the ‘clean’ condition is optimized to provide maximum separation between the 

distribution of response for the within-class (same call type as MIF) and outside-class (different 

call type as MIF) class. As noise level increases, the mean and spread of the response distributions 

decrease for both class of calls. However, if there is still sufficient separation between these two 

distributions, the new optimized threshold can allow the MIF to have classification performance 



69 
 

in noisy conditions that is comparable to the clean one. B Optimization curves of the ratio between 

noisy and clean threshold. There is a local maxima for each SNR level and across all three call 

types. This implies that threshold change is a generally applicable method of improving MIF 

categorization in noise. C Optimal threshold ratio as a function of SNR levels. Curves are color-

coded to match the call type. The black line corresponds to the threshold ratio averaged across of 

all three call types. D AUC plots for categorization with and without cochleagram threshold 

changes. The colored area corresponds to the performance gained. Twitter seemed to benefit the 

most from threshold changes, which can be attributed to its unique spectrotemporal structure 

compared to other marmoset call types. 

 

3.2.5 Increase MIFs’ Response Gain  

 

A more faithful implementation of cortical contrast gain control is to scale up the MIF 

response (increased gain) in noisy conditions. This directly stimulates the excitatory effect on the 

putative MIF detection pyramidal cells. To determine the optimal scaling parameter for each noise 

condition, we plotted the distribution of MIF responses in noise and the distribution in the ‘clean’ 

condition (Figure 15A, exemplar of -3 dB SNR). The diagonal red line indicates the linear mapping 

of noise response to ‘clean’ response. The slope of the line is the constant scaling factor 𝛽 by 

which the noise response multiple to obtain the corresponding ‘clean’ response. The result of the 

linear mapping is shown on the right, with the transformed noise distribution (red) overlaid with 

the ‘clean’ distribution (grey).  There is a high degree of overlap between the transformed and 

‘clean’ response distributions, which indicates that the gain control MIF is likely to maintain its 

classification merit in noise. In Figure 15B, we plotted 𝛽 as a function of SNR for all three call 

types as well as the average of the three. We observed a negative correlation between 𝛽 and noise 
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level (Figure 15B) for all three call types. This is expected because as the noise level increases, so 

must the response gain in order to offset the effects of noise. Figure 15C shows the increase in 

AUC (shaded area between the curves) by scaling the MIF responses by 𝛽. This implementation 

of gain control has a significant effect on noise performance and is comparable to those achieved 

by shifting the threshold.  

 

 

Figure 15. Top-down gain control via MIF response gain. A Response distribution for MIFs across 

all three call types in 3dB noise (along horizontal axis) and clean condition (along vertical axis). 

The slope of the diagonal red line represents the scaling factor (i.e. response gain) to map the noisy 

response distribution to the clean one. The transformed noise response (red) is plotted with the 

clean response (grey), showing good overlap between the two distributions. B Response gain (beta) 

as a function of SNR level. Curves are color-coded to match the call type. The black line 

corresponds to the threshold ratio averaged across of all three call types. C AUC plots for 

categorization with and without cochleagram threshold changes. The colored area corresponds to 
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the performance gained. The effects of MIF response gain and threshold change is near identical, 

which is expected because both methods ultimately make it easier for MIF responses in noise to 

surpass the detection threshold. 

 

 

3.3 Discussion 

 

In this paper, we proposed and tested methods to increase the robustness of our sound 

categorization model in noise. Our overall goal is to test physiological principles of noise invariant 

representation in a computational setting with the hopes of using the results to provide insight and 

guidance for future experiments. To that end, we identified adaptation to sound statistic via 

contrast gain control as a potential strategy for achieving noise-robust categorization (Dean et al 

2005; Watkins and Barbour 2008; Rabinowitz et al 2011). Based on the difference in sound 

encoding schemes in the subcortical and cortical regions, we implemented two separate versions 

of contrast gain control: bottom-up and top-down, respectively. Bottom-up gain control had the 

effect of reducing the relative noise level by modulating the input by the local mean activity in a 

frequency-time block. Top-down gain control increased the model’s sensitivity to features 

obscured by noise, thereby lowering the number of failed detections. Both implementations of gain 

control increased model performance in noise, especially top-down gain control. The combined 

effects of these mechanisms are sufficient for the model to achieve physiological performance 

levels in noise, and even overperforming in well-defined categorization tasks (Osmanski et al 

2013). Our results suggest, from a computational perceptive, the efficacy of these neural 

mechanisms in constructing noise invariant representation of sound in the brain. 
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Gain control allowed the model to maintain satisfactory performance in a variety of noise 

conditions with just one set of MIFs per call type. This is consistent with the principle of efficient 

encoding in the brain (Smith and Lewiski 2006; Holmstrom et al 2010). In contrast, automatic 

speech recognition algorithms can afford a much liberal use of computational power thanks to 

technical advancements in recent times. These algorithms often use multi-condition training which 

selects condition-specific features to deal with variations in the acoustic environment. The 

equivalent method for our model would be to train a new set of MIFs for each of the noise 

conditions we tested. While this approach will undoubtedly allow the model to achieve its 

maximum performance in noise, it significantly increases the number of features and parameters 

needed. If we consider the vast diversity of noise types and levels in real-world listening 

environments, the size of the feature bank required is likely magnitudes larger than our current 

case. Because of this, it is highly unlikely for the auditory system to implement this strategy on a 

consistent basis for adapting to noisy environments. Noise-specific features may still be encoded, 

however, if there is prolonged exposure to that condition and/or a significant physiological need 

for categorization under that condition. Hypothetically, animals over-trained in a reward-driven 

discrimination task in noise may begin to encode for noises-specific features, provided that their 

existing mechanisms for noise invariant representation are insufficient for this task. Still, we 

believe mechanisms like contrast gain control is preferred by the brain for their efficiency because 

it stretches the scope of the conditions that one feature set can be used for.  

We were surprised to discover how well detection threshold change/MIF response gain 

control worked for categorization in noise. In comparison, the effect of de-noising input appeared 

lackluster even though both methods are derived from the same physiological observation of sound 



73 
 

statistic adaptation. This discrepancy can be explained by the difference in the target of the 

modulation. In bottom-up gain control, modifications were made on the input, while the top-down 

gain control acted directly on the MIFs. From a computational point of view, top-down gain control 

has an interjection point closer to the output of the categorization model, meaning its impact on 

the model is less diluted compared to bottom-up gain control. Another way of interpreting this is 

that bottom-up gain control is dependent on the mean activity level in a local frequency-time block 

for modulating input, whereas top-down gain control can directly control the threshold/response 

of the MIFs. The latter has a much more direct effect on whether the MIF will pass its detection 

threshold. We believe this observation is not just the result of model architecture, but also has 

potential for broader physiological implications. In the auditory pathway, earlier areas in the 

pathway typically emphasize continuous encoding of the spectrotemporal information of sound 

while cortical and higher areas shift to discrete categorical representations (Liberman et al 1967; 

Chang et al 2010; Ding and Simon 2013). As a result, vocalization/speech feature selective neurons 

are predominantly located in cortical or higher areas. Therefore, cortical gain control mechanisms 

can directly modulate the activity of these feature selective neurons and have a greater impact on 

noise invariance. This is consistent with observations that the effects of gain control and noise 

invariance strengthen as one ascends the auditory hierarchy (Rabinowitz et al 2013) 

Furthermore, we selected parameters in both bottom-up and top-down gain control for 

maximum model performance in noise. This implies that the objective of gain control in both 

cortical and subcortical areas is to construct noise invariant representation. While this statement is 

likely true for cortical gain control, it may not be as valid for subcortical regions. Faithful 

representation in the early stages of auditory processing may be important for accurate and 

complete encoding of novel stimuli. In addition, there is a significantly smaller number of 
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vocalization/speech selective neurons in subcortical areas compared to cortical ones. Therefore, it 

is possible that gain control in subcortical areas, while helpful for categorization in noise, may be 

optimized for other purposes. Taken together, this implies that cortical gain control mechanisms 

are a greater contributor to noise invariant representation than subcortical ones.  

We developed this computational model for testing feasibility of neural mechanisms; 

therefore, we purposely designed the model to operate on broader computational principles with 

minimal mechanistic assumptions. This is to ensure the model is inclusive to maximum number of 

possibilities and retain its modular nature for future addition/subtraction based on developing 

physiological evidence. In other words, our current implementation of gain control is largely 

agnostic to the specific neural mechanisms. Nevertheless, we will discuss how known mechanisms 

of gain control fit within our proposed computational framework. 

Since the optimization step of our models requires access to overall incoming sound 

statistics, this suggests that gain control for the purpose of invariant representation of sound are 

likely the results of inter-neuron/network mechanisms. In auditory cortex, and other sensory 

systems in general, cortical responses are often shaped by the co-occurrence of synaptic excitation 

and inhibition [Anderson et al., 2000; Poo & Isaacson, 2009; Wehr & Zador, 2003; Wilent & 

Contreras, 2004; Zhang et al., 2003]. The ratio between excitation and inhibition is dynamic, but 

tightly regulated (E/I balance). GABA mediated inhibition increases membrane conductance, and 

per Ohm’s Law, has a divisive effect on membrane potential. If synaptic excitation and inhibition 

are large in magnitude compared to other factors of membrane conductance, then changes to the 

E/I ratio can significantly alter membrane potential towards or away from firing threshold [Higley 

& Contreras, 2006]. Chance et al 2002 also support the gain control capabilities of E/I balance by 

showing divisive gain modulation of neuronal response by introducing a barrage of excitatory and 
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inhibitory synaptic conductances. Further studies suggest that overall level of synaptic input 

appears to be a control signal that modulates the gain of neuronal responses [Chance & Abbott 

2005]. These results are consistent with our implementation of gain control as a mechanism for 

noise-invariant representation. For a putative MIF neuron in auditory cortex (Liu et al 2019), the 

normalized cross-correlation with sound stimulus corresponds to the driving input of the neuron. 

The modulatory inputs to the putative MIF neuron arise from other cortical neurons that gauges 

the overall background activity and exert their affect via intra-cortical connections. 

While gain control can be mediated by network mechanisms, within-neuron mechanism 

such as synaptic depression can also drive gain changes. Fluctuations in rapid firing afferents can 

mask meaningful changes in slow firing afferents. Neurons can selectivity reduced the gain of 

rapid and sustained firing afferents via short-term depression [Abbott et al 1997; Rothman et al 

2009]. The difference in relative gain between fast and slow afferents serves to emphasize small 

rate changes, thereby increasing the neuron’s sensitivity in low contrast conditions [Abbott et al 

1997]. Since synaptic depression is a self-contained mechanism, it can explain neural adaptation 

to sound statistics at the local level (i.e. contained within the neuron’s STRF). However, the time 

course of gain control observed in vivo potentially argue against synaptic depression as the 

mechanism that drives contrast-invariance. Synaptic depression operates in the milliseconds scale 

while cortical gain control was observed to be around hundreds of milliseconds [Rabinowitz et al 

2012]. Alternatively, the time course can be explained the result of integrating multiple stimuli to 

accurately gauge the acoustic background.  

It is also entirely possible that different gain control mechanisms operate at different stages 

of the auditory system. In the visual system, both the retina and V1 have been observed to utilize 

separate gain control mechanisms (Carandini et al 1997; Brown & Masland 2001). These 
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mechanisms may have different spectral integration range (local or global) and time constants. 

Therefore, it may be accurate to attribute sound statistic adaptation to the cumulative effect of gain 

control in general rather than any specific mechanism. Furthermore, gain control in higher 

processing stages can also be inherited from earlier stages. Thus, it can be difficult to 

experimentally discern the effects of sub-cortical and cortical gain control mechanisms. 

Finally, the mechanisms discussed here are not an exhaustive list of achieving noise 

invariant representation of sound. Attention has been shown to play a major role in noise 

discrimination tasks. Studies in ferrets shown neurons changing their spectrotemporal receptive 

fields (STRFs) in a task-dependent manner to enhance the contrast between background noise and 

the target signal (Fritz et al. 2007; Atiani et al. 2009; Yin et al. 2014). Spatial cues and contextual 

information can also be utilized in situations of competing sound sources to parse different streams 

of sound, such as the case of the cocktail party effect. This classic scenario raises a point about 

what separates signals from noise. In our model training, we clearly assigned parts of the input as 

either signal or noise, and they can be well differentiated based on sound statistics. However, in 

scenarios with multiple talkers such as a cocktail party, the differentiation may not be as well-

defined. For one, the noise may be competing vocalizations/speech that shares similar sound 

statistics as the signal. Since the premise of gain control is that the signal and noise have 

measurable differences in sound statistics, its effectiveness may be diminished in dealing with 

overlapping vocalization/speech. 

In summary, we showed that adaptation to sound statistics via gain control is an effective 

approach for improving sound categorization in noise. Computational implementation of gain 

control has yielded robust performance comparable to physiological levels. Given the presence of 
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gain control in all stages of the auditory system, it likely plays an important role in building noise 

invariant representations in the brain.  
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3.4 Methods 

 

3.4.1 Vocalizations and Noisy Stimulus 

 

All procedures conformed to the NIH Guide for Care and Use of Laboratory Animals. All 

marmoset procedures were approved by the Institutional Animal Care and Use Committee 

(IACUC) of The Johns Hopkins University. All guinea pig procedures were approved by the 

IACUC of the University of Pittsburgh. We used vocalization recordings from 8 adult marmosets, 

both male and female, for these experiments. Marmoset calls were recorded from a marmoset 

colony at The Johns Hopkins University using directional microphones (Agamaite et al 2015). 

Guinea pig calls were recorded from 3 male and 3 female adult guinea pigs. Two or more guinea 

pigs with varied social relationships were placed on either side of a transparent divider in a sound 

attenuated booth. Directional microphones, suspended above the guinea pigs were used to record 

calls. Calls were recorded using Sound Analysis Pro 2011(Tchernichovski et al 2000), digitized at 

a sampling rate of 48 KHz, low-pass filtered at 24 KHz, manually segmented using Audacity, and 

classified into different call types. Gaussian white noise was artificially added to the vocalizations 

using MATLAB software. The parameters of the noise were set to achieve a target signal-to-noise 

ratio (SNR). We computed the exact SNR value for each of the noisy calls to ensure that none 

deviated more than ten percent from the target SNR value. 
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3.4.2 MIF Generation and Selection 

 

See Liu et al 2019 Methods for MIF model details 

 

3.4.3 De-noising the Cochleagram 

 

We divided input cochleagrams into smaller frequency-time blocks that are 200 ms in 

duration and spans 2 octaves in bandwidth. Each block has a fifty-percent overlap in both time and 

frequency with the adjacent blocks. This is to ensure adequate coverage of the entire 

spectrotemporal field of the input.  The mean activity, 𝜇 of each block is then calculated. Note that 

since we converted the input from acoustic waveform into cochleagrams via the Auditory Nerve 

Model (Zilany et al 2014), the values of the cochleagram represents neural firing rate, FR. The 

mean value of each frequency-time block can therefore be thought of as the average firing rate of 

a bundle of auditory nerve fibers over a period of time. We then scale 𝜇  by a constant 𝛼  to 

determine the threshold T for each frequency-time block. Subthreshold values in the block are set 

to 0). Note that all frequency-time blocks share the same 𝛼 value, but since 𝜇 likely differs from 

block to block, the threshold will also differ. We search for the best 𝛼 value for maximum model 

performance, measured as area-under-the-curve (AUC), using a hill climbing optimization method. 

Starting with 𝛼 value very close to 0 (i.e. no change to cochleagram), we incrementally increased 

𝛼 and see if a better AUC value can be reached. To be sure there are no other local maximas, we 

kept testing larger 𝛼 values past the optimal value until a steady downward trend is observed or 

the AUC value falls below 0.5 (near chance rate).  
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3.4.4 Threshold Optimization 

 

The new MIF threshold value for detection in noise was optimized as a ratio of the 

threshold value in the ‘clean’ condition (for derivation of the threshold value in the ‘clean’ 

condition, see Methods Liu et al 2019). Since we know the ratio value is bounded between 0 and 

1, we used brute-force optimization and systematically tested ratio values within that range to find 

the one that gave the best AUC. Classification in noise testing was performed with the same set of 

MIFs, with the only difference being the thresholds were adjusted. Please note that this threshold 

ratio is applied to all MIFs. We did not individually optimize the threshold in noise for each MIF.  

 

3.4.5 MIF Response Gain 

 

To find optimal gain value, we started with an estimate of the optimal value as the ratio of 

the mean value of the two distributions. We then scale the MIF distributions in noise by the gain 

and obtained a transformed distribution. To compare the degree of overlap between the 

transformed distribution and the ‘clean’ distribution, we computed the Bhattacharyya distance 

between the two distributions. We again used the hill climbing optimization methods (testing 

values that incremental differs from a starting value, look for increase in performance) to find the 

optimal gain value that gave us the most overlap between the transformed and ‘clean’ distributions.  
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4.0 General Discussion 

 

 

4.1 Summary of Findings 

 

The goal of this thesis was to show physiologically feasible methods of addressing 

production and environmental variability in sound categorization. The auditory system was 

seemingly faced with conflicting requirements of fine-tuning for accurate sound categorization 

and tolerance for variations in sound production and environmental interreferences. We 

approached this issue from a theoretical point-of-view by using computational principles and 

modeling to show the efficacy of potential solutions. To preserve physiological relevancy, we 

attempted to ground these solutions in experimentally observed truth. We aimed to use these results 

as a basis for future experiments to valuate these proposed methods. 

In chapter 2, we showed that features of intermediate complexity can accurately categorize 

sound while account for production variability. We developed a computational model that can 

select for these features based on an information-maximization approach. The set of most 

informative features (termed MIFs) can achieve high accuracy while remaining robust to 

production variability. Critically, the predicted tuning properties of putative MIF-selective neurons 

closely matched previous recordings from marmoset A1. The implications of our results are that 

the brain may be encoding for task-relevant features that served specific behavioral purposes. We 

also demonstrated the general computational applications of our model for vocalizations of species 

other than the marmoset and other auditory related tasks such as caller identification. 
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In chapter 3, we examined the computational efficacy of adapting to input sound statistics 

as a method of improving model categorization performance in noise. Specifically, we identified 

gain control as the neural mechanism to achieve this adaptation. We subsequently added gain 

control inspired algorithms to our existing computational model. The implementation was two-

fold: a bottom-up method of gain control, simulating the effects of auditory periphery and 

subcortical areas; as well as a top-down method of gain control, simulating the effect in cortical 

and higher areas. Our results showed that both methods of gain control, along with selecting for 

noise robust features, help improved model performance in noise to near physiological levels. 

Taken together with results from chapter 2, we have built a computational model that can 

accurately categorize calls while remaining robust to production and environment variabilities. 

 

 

4.2 Future Directions 

 

Our future directions with the MIF model are in two broad directions: 1. Physiological 

experiments to verify the findings and predictions of the model; 2. Algorithmic applications of the 

model as a call classifier. In these future experiments, we will use guinea pigs (Cavia porcellus, 

GP) as our animal model instead of marmosets. There are several reasons for this switch: 1. GPs 

are a well-established animal model for studying the auditory system, with rich repertoire of 

vocalizations and well-defined auditory neural anatomy 2. Replacement of primates with a “lower” 

species is in accordance with the animal research guidelines for invasive experiments. 3. GP calls 

share large frequency overlaps with human speech, whereas majority of marmoset calls are in the 

kHz range. 
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4.2.1 Testing Model Predictions with Behavioral and Electrophysiological Experiments  

 

Proper selection of informative acoustic features is the basis of our computational model. 

While we have some initiation about why certain features are important/characteristic to its call 

category, such as repeating frequency-modulated (FM) sweeps to twitter calls, we have yet to 

validate whether the auditory system assign the same level of importance to these MIFs. For speech, 

linguists have identified phonetic features that act as the essential building blocks of spoken 

language. Studies such as Mesgarani et al 2014 have identified neurons in the human superior 

temporal gyrus encoding for these phonetic features. The combination of experimental 

observations and theoretical framework of speech plotted a conceivable path for speech 

representation in the brain. And this is what we aim to ultimately achieve with our MIF model. To 

validate the perceptual importance of MIFs, we can set up discrimination tasks for GPs that require 

them to identify calls with certain MIFs removed (via filtering, noise-masking, or other 

modifications). The perceptual importance of various MIFs can be analyzed form psychoacoustic 

curves. Our lab has previously found success with GP discrimination tasks in noise (Montes-

Lourido et al 2021) using pupillometry as a metric for perceptual detection. It is a reliable, non-

invasive indicator and largely circumvents the need for extensive behavioral training of GPs. We 

hope to continue these experiments in the future. 

Aside from behavioral studies, we can also conduct electrophysiological recordings in GP 

auditory cortex to find potential evidence for neural encoding of MIF-like features. As we have 

demonstrated in chapter 2, the predicted tuning properties of putative MIF detection neurons 

closely reassembles call selective neurons found in marmoset A1. Though these examples only 

qualify as anecdotal evidence, we can make systematic predictions of tuning properties and draw 
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meaningful conclusions with a large recording sample of call selective neurons. Our lab has 

conducted electrophysiological recordings from A1 neurons in awake, passive listening GPs. We 

characterized their tuning properties and their call selectivity in ‘clean’ and ‘noisy’ conditions. We 

can predict call selectivity of neurons using the MIF model based on the observed tuning properties 

of the neuron and test these computational predictions against the actual call selectivity of the 

neurons. Our goal with these experiments is to explain why certain features are encoded and what 

purpose they serve in the grant scheme of auditory processing. These experiments can also be 

extrapolated to other auditory regions both up and downstream of A1. The results from these areas 

can help us to map-out a more complete picture of the features encoded at each processing stage 

and how these features combine and evolve from one stage to another.  

 

4.2.2 Computational Applications of MIF Model 

 

Building a bank of vocalizations is a critical first step for many auditory experiments. 

However, it can be a lengthy and tedious process to manually extract and classify calls from 

recordings. Therefore, we have adapted our model to perform automatic call categorization. The 

model functions as a graphic-user interface (GUI) in MATLAB (Figure 16)  

The model takes sound recording files as input, then attempts to identify calls by searching 

for the presence of corresponding MIFs. Once identification is complete, the model will output the 

time stamps associated with each call and allow the user to select method of audio extraction. We 

also included the ability for users to trained custom MIF sets based on their own vocalization 

recordings. 
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This is an ongoing project, with improvement planned based on user feedback. We are 

currently investigating optimal methods for identifying and extracting overlapping calls. This was 

a frequently requested issue by people who expressed interest in using our GUI and we are looking 

to address in the near future. The model in its current state can detect some, but not all overlapping 

features. We aim to resolve this using smart algorithms to identify potential overlapping calls and 

adjust necessary model parameters to improve detection. Another feature we can implement is 

caller identification. We showed in Figure 10A that by changing the classification task, the model 

can select for MIFs that characterizes speaker identity, albeit at a slightly lower accuracy rate. The 

challenge with implementing caller identification concurrently with call type classification is that 

the former is call type invariant (i.e. females typically vocalize at a higher pitch than males 

regardless of the call made) while the latter should be caller invariant (i.e. both female and male 

twitter calls should be classified as the same call type). We are exploring methods of integrating 

the MIF sets for these two tasks together during classification. Our goal is to have the model able 

to identify both the call type and the caller concurrently. 
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Figure 16. MIF Model GUI A. Example of the GUI categorizing a twitter call. To shorten the 

computation time, we implemented a spectrogram transform approximation of the auditory nerve 

model (Rahnman et al 2020). The spectrogram of the input is displayed on the upper right. Below 

it is the detection rectangle plot showing the time period in which calls are detected (color codes 

correspond to call types, yellow is twitter). The other two rectangle plots, corresponding to trill 

and phee, are flat, indicating that these features were not detected. The ROC curve for the selected 

MIF set is displayed on the lower left. The red circle on the ROC curve corresponds to the 

estimated hit rate vs false alarm ratio for the current threshold. The threshold can be adjusted using 

the slider on the lower right based on preference (e.g., trade-off higher false alarm rate for more 

detection). The feature detection raster shows the MIF response curve overlaid with the current 

threshold. This is a helpful tool for visualizing where evidence for MIF presence is strongest within 

the call. B. GUI for generating new MIF sets. The user can upload sound files for training and 

testing the model, as well as selecting parameters associated with MIF generation and testing. Both 

GUIs have support for parallel computing to expedite the process. 
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Appendix A 

 

Appendix A.1 Discussions 

 

A.1.1 MIF-based Reconstruction of Call Stimuli 

 

The observation that an MIF-based approach successfully generalizes across production 

variability implies that most calls belonging to a category will contain one or more of the MIFs. 

Therefore, we asked how well calls could be reconstructed based on MIFs alone, using twitters as 

a specific example. To do so, we detected model twitter MIF neuron spiking as described in the 

main text to the 500 training and 500 test twitters, and convolved these spike times with an alpha 

function (with a time constant of 20 ms) to detect the peak locations of twitter MIFs within a twitter 

(Appendix Figure 5A). We then placed copies of MIF cochleagrams at these peak locations, or 

added copies of MIF cochleagrams to previously placed feature cochleagrams. The final summed 

cochleagram was taken to be the reconstructed call (Appendix Figure 5B). We evaluated the 

accuracy of reconstruction as the NCC value at zero lag. The mean reconstruction accuracy was 

0.69 (Appendix Figure 5C), suggesting that MIFs were indeed common denominators across 

twitter calls produced by different animals. 

 

A.1.2 Factors Contributing to the Success of the MIF-based Approach 

 

Three factors were critical in the design and implementation of our approach. First, 

focusing on a behaviorally critical task (call categorization), and choosing model species with rich 
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vocal repertoires and behaviors (marmosets and guinea pigs) allowed us to clearly identify a 

computational goal of cortical processing – call categorization. Previous experiments using both 

electrophysiological and imaging techniques (Rasuchecker and Tian 2000; Tuab et ak 2001; 

Romanski and Averbeck 2009; Grimsley et al 2012; Fukushima et al 2014; Petkov et al 2008; 

Perrodin et al 2011l Sadagopan et al 2015), showing an increase in cortical resources allocated to 

call processing, validate our choice of call categorization as a critical computational goal in vocal 

animals. Second, our analyses were based on a large sample of calls recorded from a large number 

of animals. From this data set, we deliberately oversampled a large number of initial potential 

features. This ensured that the full extent of production variability was represented in this data set. 

Third, the greedy search algorithm efficiently identified informative features from a training data 

set of a few hundred calls. Since clean and labelled training data sets are laborious to generate, the 

efficiency of greedy search provided a significant methodological advantage. 

 

A.1.3 Limitations of Greedy Search and MIF-based Classification 

 

In this study, we used greedy search and pairwise maximization of information to find 

optimal features. However, it is possible that the greedy search algorithm does not find an optimal 

solution because of its inability to overcome local maxima. We do not think this is the case because: 

1) the model performs at high accuracy levels, leaving little room for significant improvements, 2) 

we could arrive at similar sets of MIFs and achieve similar performance levels from different initial 

feature sets, specifically when highly informative features were excluded (Supp. Figure 3), and 3) 

we could match or outperform other machine learning based algorithms for marmoset call 

classification (Turesson et al 2016). Therefore, the implemented greedy search algorithm likely 
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converges at a true optimal solution. Our MIF-based approach has two limitations. First, the 

number of auditory tasks that an animal is potentially required to solve is ill-defined. While we 

mitigate this limitation by choosing ethologically critical tasks such as call categorization, it is 

likely that we are only probing a small subset of all behaviorally relevant auditory tasks. 

Consequently, while a subset of neurons in auditory cortex match predictions from our model for 

call and caller classification, developing a larger bank of natural auditory behavior (for example, 

predator sounds versus neutral sounds) will allow us to model and predict a larger fraction of 

cortical responses. Second, our model derives features from the auditory nerve representation of 

stimuli. It is well-known that this representation is transformed more than once before impinging 

on cortical neurons. Therefore, the actual representation from which cortical neurons detect 

features are not accurately modeled here. This limitation arises from the current lack of predictive 

models for central auditory processing stages. It is possible that the performance of our algorithm 

will increase if we could accurately model other sub-cortical processing stages. 

 

A.1.4 Alternative Models 

 

Recently, theoretical efforts have been directed at learning invariant representations from 

small training sets using unsupervised methods (Anselmi et al 2016). In this model, image 

‘signatures’ which serve as a proxy for the probability distribution of an image and its 

transformations are learnt by leveraging the time correlations of image transformations in the real 

world to label image identity. Image signatures can be computed by complex cell-like units using 

Hebbian learning rules. This model predicts that a similar computation might occur in auditory 

cortex. The MIFs that we have derived for call categorization are similar to the image signatures 
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in that they serve as a proxy for the probability distribution of a sound category that has been 

subjected to production variability. Indeed, vocalizations can be viewed as multivariate probability 

distributions along multiple call parameters, and MIFs could serve as the ‘gist’ of a call category 

around which these variations occur. Similar to image signatures, MIFs seem to be computed by 

superficial layer auditory cortex neurons. However, differences arise in how MIFs are learnt. 

Although small sample sizes are adequate, unlike image signatures that are learnt by observing 

image transformations over time, explicit labeling of the class of input examples is necessary for 

learning the MIFs of calls. Conceptually, whereas image signatures are learnt by observing within-

category transformations, MIFs are learnt by contrasting the distributions of sound categories. 

 

A.1.5 Alternative Experimental Approaches 

 

Previous experimental studies have described call selectivity primarily using two methods: 

1) characterization of neural tuning along an exhaustive list of call parameters (DiMattina and 

Wang 2006), and 2) characterizing call tuning as tuning for regions of the modulation spectrum 

(Hsu et al 2004; Woolley et al 2005; Stowell et al 2014). In the former study, marmoset calls were 

parametrized along multiple acoustic dimensions. Some of these parameters were common to all 

call types, such as the length or dominant frequency of a call. The more distinguishing parameters, 

however, were unique to individual call types, such as the inter-phrase interval for twitters, or 

sinusoidal frequency modulation rate for trills. Neural tuning to calls was described using tuning 

to these parameters but did not use the same set of parameters across call types. In our study, 

different MIFs are used for classification of different call types, but MIFs are parametrized along 

the same axes – bandwidth and integration window, allowing for a uniform basis for comparisons. 
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In the latter set of studies, neural tuning for birdsong was described using selectivity for specific 

frequency and temporal modulations. In this case, tuning could be expressed in a unified stimulus 

space (of spectral- and temporal modulation rates). Both these methods, however, serve to describe 

neural tuning, and not to explain why tuning to certain parameters or regions of modulation space 

are necessary in the first place. Our results suggest that generating selectivity for task relevant 

features explains why selectivity for stimulus parameters arises in the first place. In a recent study, 

a combination of the above approaches was used in conjunction with statistical classifier 

techniques to achieve caller identification for macaque coo calls (Fukushima et al 2015). Caller 

identification could not be achieved using a single feature alone, where feature referred to a 

parameter such as fundamental frequency, duration, or location in the modulation spectrum. Rather, 

a combination of cues was required for high caller identification performance. Our study differs 

from this study in that our definition of ‘feature’ is non-parametric, our goal is to generalize over 

individual identity, and features are contrastive and task-dependent. But similar to this study, a 

single feature alone was insufficient for call categorization in our study as well. 
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Appendix A.2 Figures 

 

Appendix Figure 1 Production variability of major marmoset call types. (A-C) Production 

variability of phee calls quantified along various parameters: (A) bandwidth, (B) duration, and (C) 

dominant frequency. Dots depict parameter values for single calls, and histograms indicate the 

overall distribution of these parameters, split into the training (blue) and testing (red) sets. (D-F) 

Production variability of trill calls quantified as in (A-C). 
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Appendix Figure 2 Information content, complexity, and size of all initial random features. 

Scatter plot of all 6000 features generated for each call type: twitter (A), phee (B), and trill (C), as 

a function of their bandwidth and temporal extent. Color scale corresponds to the merit of each 

feature. Marginal histograms depict the maximum merit in each time- or width-bin. (D-F) Features 

of high merit for classification tend to be of intermediate complexity. Merit vs complexity plot of 

all randomly generated twitter (D), phee (E), and trill F) features. Feature complexity is estimated 

to be proportional to the reduced kurtosis of the distribution of activity within a feature or call. In 

these plots, low- or mid-merit features (defined as the bottom 33-%ile (light gray) and 33rd - 

66th %-ile (dark gray)) show distributions of low kurtosis values. Whole calls show high kurtosis 

values (purple). Across call types, high-merit features (top 33%-ile) show intermediate kurtosis 

values, indicating that high-merit features are of intermediate complexity. 
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Appendix Figure 3 Similar classification performance obtained using distinct MIF sets. ROC 

curves for twitter classification using four successive iterations of MIFs, generated by removing 

all MIFs from the previous set, and selecting MIFs from the remaining features. High performance 

demonstrates that feature space was adequately sampled, and that the algorithm was not stuck in 

local maxima. 

 

  



96 
 

 

Appendix Figure 4 Classification using average calls. An average twitter (A), trill (B), and phee 

(C) constructed by aligning and averaging over the calls. (D-F) Classification performance using 

the average call as the single informative feature. 
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Appendix Figure 5 Reconstruction of twitter calls using only twitter MIFs. (A) Cochleagrams of 

MIFs were placed at the time points at which MIFs were detected within a sample twitter call. All 

MIF cochleagrams were then summed, weighted by their loglikelihood ratios. (B) Cochleagrams 

of and example original twitter call and its reconstructed version. (C) Histogram of the 

reconstruction accuracy of 1000 twitter calls. 
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Appendix Figure 6 Simulation of putative MIF-neuron tuning properties. The responses of MIFs 

to cochleagrams of commonly used auditory stimuli were taken to be the maximum value of the 

normalized cross-correlation function. A power law nonlinearity was applied to this value to obtain 

'tuning curves' of the MIF-neurons to these stimuli. 
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