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This dissertation consists of three chapters in applied behavioral economics and machine

learning applications in economics.

The first chapter studies how reference-dependent utilities influence people’s behaviors

on crowd-sourced review websites and cause attribution bias. Using data from Yelp, I tested

how potential disappointments may affect customers’ reviews by applying a regression dis-

continuity design to control for unobserved factors that may also simultaneously influence

ratings. This chapter links to an emerging literature of attribution bias in economics and

provides empirical evidence and implications of attribution bias on online reputation systems.

The second chapter extends the work of first study and explores attribution bias when

both reference dependence and state dependence are possible to appear. I specifically use

the scenario of special occasions to test two leading theories of attribution bias empirically.

The empirical results can be explained by one theory of attribution bias where people have

higher expectations about restaurants on special occasions and then misattribute their dis-

appointments to the qualities of the restaurants. From the connection between our empirical

analyses and theories of attribution bias, this chapter provides another piece of evidence of

how attribution bias influences people’s perceptions and behaviors.

The third chapter connects machine learning with financial forecasting. I construct a

model with recurrent neural networks and focus on the point forecasting of the yield curve

to explore the possibility of having better forecasts for the term structure. While allowing

similar interpretation as previous econometric methods, the neural network model in this

paper shows better forecasting accuracy.
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1.0 Attribution Bias on Online Reputation Systems

Consumers benefit from reading ratings online before making their purchases, yet this

information aggregation process may have some potential problems that was not previously

credited in the literature. Through an empirical approach, I showed how people could review

businesses inconsistently when their expectations are formed by ratings on crowd-sourced

review websites. Using data from Yelp, I tested how potential disappointments may affect

customers’ reviews by applying a regression discontinuity design to control for unobserved

factors that may also simultaneously influence ratings. In addition, I developed a model illus-

trating rating behaviors with reference-dependent utilities to establish testable hypotheses

and showed that comparisons between their true experience and expectation, when con-

sumers write their reviews, could impede their assessment of businesses’ qualities and cause

attribution bias. After carefully excluding confounding variables, my results support the hy-

pothesis that consumers have attribution bias when they write reviews. Several robustness

checks support these findings and shed further light onto this example of attribution bias.

This paper links to an emerging literature of attribution bias in economics and provides

empirical evidence and implications of attribution bias on online reputation systems.

1.1 Introduction

Consumer-reviewed websites have increasingly attracted attention over the past decades.

More and more people use these websites as guides when it comes to searching for restau-

rants, hotels, movies. . . etc. These websites create platforms for people to gather information

at a low cost and decrease the level of information asymmetry. However, this process of in-

formation aggregation may be causing a variety of problems. Among drawbacks of existing

online reputation systems, reference-dependent behaviors are one important factor that was

not widely-recognized and can undermine the credibility of review websites.

Reference dependence means that people’s experiences are affected by expectations they

1



have in their minds. Imagine Bill was heading to a restaurant for dinner. Before he left, he

had checked reviews on Yelp and found out the restaurant’s rating was 4 out of 5 stars. Bill

probably would expect good food and nice service. However, if the dining experience turned

out to be a 3.5-star level to him, would he feel as though the experience was poorer than

the case which he did not check the reviews beforehand? The answer supported by evidence

in this paper is yes. The comparison between his true experience and expectation made

the dining experience less enjoyable. With this psychological effect, when Bill is asked to

review the restaurant, he would tend to give a lower rating than he would have, if he did not

have the reference. This phenomenon is called attribution bias because Bill misattributed

his psychological loss to the quality of the restaurant. Since an ideal rating system should

truthfully reflect the quality of businesses, attribution bias is one important drawback of

crowd-sourced sharing platforms that should be carefully studied and explored. This paper

is the first to discover attribution bias in online rating systems, providing an important

contribution of psychological bias in the e-commerce literature.

To discover attribution bias on consumer-reviewed websites, this paper studies review

data from Yelp and takes advantage of special structures of the platform. In most crowd-

sourced review forums, reviews are presented in numerical and/or graphical forms. In par-

ticular, ratings on Yelp are presented in stars and users are only allowed to use full stars

from 1 to 5 in rating a business. For instance, a reviewer can give 3 stars but cannot give

3.5 stars on the website. In addition to individual user ratings, Yelp also calculates average

ratings in half-star increments for businesses and shows the average ratings as the most ap-

parent measure of the businesses on the website. Since units of average ratings are in half

stars, the rating system has to round average ratings of businesses into the nearest half-star

units. For example, an average rating of 3.75 would be rounded up to 4 stars and a 3.74

would be rounded down to 3.5. This rounding mechanism on Yelp creates discontinuities

for businesses with similar ratings and creates potential psychological loss for consumers.

Applying this concept to the story of Bill, if the restaurant had an average of 3.75 stars, Bill

would see the average rating as 4 stars on the website and the 0.25 difference between the

true average and the rating he saw would become his disappointment and could potentially

influence his experience. From Yelp data, if Bill wrote his review after his dinner, I could

2



further observe whether his review showed attribution bias. This idea can be generalized

to other consumers as well. By using the data from Yelp and its discontinuities, I could

check whether attribution bias affected people’s ratings and caused a problem for the rat-

ing system. The rounding feature on Yelp also lends us a good way to control for many

unobserved effects. Since rounding thresholds on Yelp are exogenous, the discontinuities in

the data gave a treatment that was as good as random and created a natural experiment

that excluded many endogenous factors. By utilizing the data features, this paper applies

a regression discontinuity design as an identification strategy to detect attribution bias and

control for possible confounding factors.

Through the empirical analysis, this paper contributes to the reference dependence lit-

erature in behavioral economics. Reference dependence has been introduced to economics

by [48]. While scholars have gradually realize the importance of reference dependence, we

may still neglect its existence in many fields. More evidence of this effect could help us bet-

ter understand when this phenomenon could be important. Previous work has been done,

for example, on how a small tax affects peoples’ behaviors in using plastic bags [41] and

how loss aversion could influence the asking price in the housing market [31]. This paper,

on the other hand, identifies the existence of reference dependence when people write their

reviews on crowd-sourced review websites and helps us understand its importance in online

reputation systems. Furthermore, this study takes a step beyond reference dependence by

linking its findings with attribution bias. Reference dependence only explains how people’s

behaviors are affected by their expectations in mind. Attribution bias further describes how

reference dependence can distort peoples’ perceptions and affect how people learn about

qualities of products, usefulness of information, and values of many other things. This paper

connects to attribution bias by studying how attribution bias affects consumers’ learning of

businesses’ qualities and further influences their reviews.

Learning with attribution bias is an emerging research topic in behavioral economics.

In the literature, some theoretical models have been proposed to explain how learnings can

be misled by attribution bias. [30] formalized attribution bias into a theoretical model and

use the model to describe how consumers can misattribute their gain-loss utilities when

their experiences deviate from their expectations. For experimental and field studies, [36]

3



found that consumers could misattribute temporary states, such as weather or thirst level to

the stable qualities of consumption goods through experiments and surveys. [10] conducted

laboratory and online experiments to demonstrate how positive and negative surprises could

affect workers’ perceptions of effort costs and influence their willingness to work. Built

on the behavioral evidence supported by the above-mentioned research, this paper further

consolidates the existence and importance of attribution bias by providing the first empirical

evidence from observational data in this literature.

Another contribution of this paper is in the industrial economics and online-review liter-

ature. One area which this study helps explain is people’s motivation for rating businesses.

In [54], an experiment was conducted to demonstrate when buyers know true qualities of

sellers after their consumption; buyers tend to give higher ratings for sellers who exceeded

their expectations and revenge to those with lower qualities. This paper connects the model

in [54] to the model of attribution bias in [30] and create a new theoretical framework

showing that attribution bias could be one cause of buyers’ reactions in the real world.

Previous works have also shown that ratings on Internet review forums could possibly af-

fect businesses’ revenue. [1] demonstrated that a half-star increase in Yelp rating decreases

the online reservation availability by 19 percent and increases restaurants’ revenue signifi-

cantly. [62] estimated that a one-star increase in rating can increase revenues by 5-9 percent

for restaurants without chain affiliation. [84] showed how higher ratings on websites could

possibly hurt sales. [17] presented how patients’ reviews on Yelp can increase the revenue

of clinics and benefit other patients by informing them about the medical service qualities

of physicians. Although many research had been done to understand the advantages and

possible drawback of online-review system, attribution bias in consumer rating systems was

not credited in the literature previously. Combined with the above findings, this paper pro-

vides another perspective on how attribution bias can be a channel affecting the revenues of

businesses and the welfares of consumers.

The rest of the paper proceeds as follows. In the next section, a theoretical framework

is provided to establish testable hypotheses. A two-period model is proposed to fit into

the learning and rating environment we usually see in the real world. Section 3 is data

summary and identification strategies. In section 4, I present the main estimation results and
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robustness checks. In the last section, I include discussion about implications of attribution

bias and possible future work.

1.2 Theoretical Framework

In this section, I develop a model illustrating rating behaviors and generate propositions

based on the model. The two-period model characterizes how consumers learn about the

quality of businesses in the first period and rate businesses after their consumption experience

in the second period.

1.2.1 The Model

The model I propose is an extension from [30] and [54].

1.2.1.1 First Period

In first period, a consumer i learns the quality of a business using his recent dining

experience. The utility from the business takes the following form:

ui(q|ri) = vi(q)︸︷︷︸
Consumption utility

+µi ni(vi(q)|ri)︸ ︷︷ ︸
Gain-loss utility

(1)

ni(vi(q)|ri) =

fi(|vi(q)− vi(ri)|) if vi(q) ≥ vi(ri)

λifi(|vi(q)− vi(ri)|) if vi(q) < vi(ri)

(2)

q ∈ [1, 5] is the quality of the business, ri is the reference point and µi is the coefficient

governing the impact of gains and losses. vi(q) is the utility from the dining experience and

it is increasing in quality. fi(x) is a concave function increasing in x with fi(0) = 0 and

λi ≤ −1 captures loss aversion. The consumer then tries to figure out the quality of the

businsee from her experience. If she is a rational agent, she can exclude the gain-loss utility

and ascertain the quality of the business. However, if she cannot fully eliminate the influence

from gain and loss, she may misattribute her bad experience relative to her reference point
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to the true quality and undervalue the business, and vice versa. To be more specific, consider

an example that consumer i goes to a business with quality q and totally ignores the gain-loss

utility. In such a case, the consumer experiences an utility level of u∗ and

u∗ = vi(q) + µi ni(vi(q)|ri) (3)

However, since the consumer ignores the gain-loss utility, she will believe u∗ = vi(q) and

form an estimate q̂ of the quality of the business based on consumption utility only. Thus,

when there is a bad experience, the consumer will include the loss utility when she considers

the quality of the business without notice and will undervalue the business since q̂ < q. This

phenomenon is the so-called attribution bias.

1.2.1.2 Second Period

After learning the quality of the business, consumer i decides whether to rate it online.

Rating is costly and only if the benefit from rating a restaurant is greater than the cost, will

consumer i be willing to write a review. Moreover, expressing the true experience is easier

than giving other kinds of ratings since coming up with imaginary reasons always takes

more effort. In my model, I also assume a general consumer cares about both businesses

and other customers. When consumer i is considering how to rate a business, if consumer

i’s consumption experience exceeds her expectations, she has an altruistic feeling for the

business and gives a higher rating. On the other hand, if her experience with the business

is worse than her expectation, she will take a vengeful action and give a lower rating. When

it comes to the concern about other consumers, I assume consumer i’s utility takes a warm

glow form. That is when considering whether reviewing businesses will help others, she cares

about whether she writes a review or not but does not care about how useful or precise the

review is. To sum up, the maximization problem of consumer i in the second period is:

max
ai

Ui(q̂i, ri, ai) = max
ai

ωi(q̂i − ri)Us(ai) + βi

n∑
j

Ia − Iaci(|ai − q̂i|) (4)

ri and q̂i are the reference point and the quality she learns from the first period. ai ∈ [1, 5] is

the rating she can give. Us(a) is the utility of the sellers and it is increasing in a. ωi shows
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how much she cares about whether a business meets her expectation and it can influence the

strength of her reciprocal or vengeful action. Ia is the indicator function equals 1 if consumer

i writes her review. βi
∑n

j Ia is the utility from helping other consumers and it is a constant

once consumer i decides to rate. This utility function captures the warm glow of consumer

i. The warm-glow assumption simplifies the analysis and its comparative statics will not

change if I replace the assumption with the sum of other consumers’ utility as long as their

utility functions are concave and they prefer a precise review. ci(x) is the cost of writing

reviews and it is a convex function with minimum at x = 0. Consumer i takes q̂i and ri into

account, decides whether to rate or not and what is the a∗i she wants to give and maximize

Ui(q̂i, ri, ai).

1.2.2 Propositions

After analyzing the model proposed above, we can conclude some comparative statics of

the model to the following propositions.

Proposition 1. When there is attribution bias and q < ri(q > ri), the perceived quality,

q̂i < q (q̂i > q).

Proposition 1 gives us a scenario to test the existence of attribution bias. If two groups

of reviewers both have attribution bias and different reference points, the perceived qualities

of them will be different.

Proposition 2. When consumer i decides to rate and q̂i < ri (q̂i > ri) and if there is

attribution bias and ωi = 0 then a∗i = q̂i (a∗i = q̂i).

From proposition 2, if we can find an environment where ωi = 0 and two groups of

reviewers have different reference points and attribution bias, then we should see a difference

in their rating behaviors. Furthermore, the difference demonstrates the impact of attribution

bias.
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1.3 Data Source and Identification Strategy

1.3.1 Data Source

Established as a restaurant review forum in 2004, Yelp.com is now the largest crowd-

sourced review website in North America for all businesses, including medical services, home

improvement and many other industries. In 2019, Yelp has 36 million unique users and has

accumulated 205 million reviews. Yelp not only provides its users with valuable information

about businesses but also creates a convenient platform to share their own experience and

makes the information aggregation process easier than ever. The company also provides

researchers a great data source to understand its users’ behaviors by holding many rounds of

data challenges. I seized this opportunity provided by Yelp and conducted empirical analysis

in this paper based on the released data from Yelp data challenge round 13. The data

includes all recommended reviews in 11 metropolitan areas around the world. The 11 cities

are Edinburgh, Stuttgart, Montreal, Toronto, Pittsburgh, Charlotte, Urbana-Champaign,

Phoenix, Las Vegas, Madison, and Cleveland from October 2004 to November 2018.

1.3.2 Identification Strategy

The ratings on Yelp are in half-star increments. This means the stars showed on the

website are rounded to the closest half-star units. For example, if the underlying true average

of a restaurant is 3.75, users will see 4 stars, and if the true average is 3.74, users will see

3.5 stars. By utilizing this rounding feature, I assumed that a true quality of a business

is its true average and consumers form their expected quality of the business based on the

rounded stars they see on Yelp. When the true average of the business is inconsistent with

the stars users perceive, the difference between the true quality and consumers’ expectation

could cause a psychological loss or gain for them. For instance, when the true average of

a business is 3.75 and the star on Yelp is 4, the gap between the business’s true quality

and users’ 4-star expectation would be a loss. Since these gaps in ratings can be reasonably

modeled as exogenous random shocks in small windows, the environment allows me to use

the regression discontinuity method to test the effect of reference dependence and further
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explore if it is caused by attribution bias.

Regression discontinuity method was first proposed in [79]. The two psychologists use

regression discontinuity in their seminal paper to test whether National Merit Scholarship

awards affect the career choice of college students. The statistical theories, limitations and

applications behind regression discontinuity design are provided by [57] in details. In my

analysis, I focused on an environment where the true averages of businesses are close to the

rounding thresholds. This choice allowed me to utilize discontinuities in the rounded average

ratings and apply a regression discontinuity design. One important assumption behind this

design is that the only difference for businesses on different sides of the rounding thresholds

is the ratings which consumers saw on Yelp. I argue this is a reasonable assumption because

other things related to businesses’ quality should be truthfully reflected by their true averages

and do not change significantly with the rounding thresholds. This data characteristic gives

me a natural experiment to test the treatment effect of reference dependence since the

only way the discontinuities can influence consumers’ experience is through manipulating

their expectations of the businesses before their visits. To estimate the effect of reference-

dependent behaviors, I run the following ordinary least square regression:

stari = α0 + α1RDi + α2diffi + λXi + εi (5)

RDi =

1 if diffi > 0

0 if diffi ≤ 0

Here stari represents the rating consumer i posted after she visited a business. diffi is the

distance between the true average and the rounding threshold before consumer i went to the

business. RDi is an indicator function showing whether the true average of the business was

on the right-hand side or left-hand side of the threshold. When RDi > 0, the true average

was on the right-hand side of the threshold and the star on Yelp was rounded up to the

closest half unit. Thus, when RDi = 1, the gap between the true average and the star on

Yelp caused a potential loss for consumer i. Similarly, when RDi = 0, there was a potential

gain for consumer i. By estimating the coefficient of RDi, we can quantify how different

reference points affect consumers’ rating behaviors. Xi represents control variables and εi is
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the error term. In Yelp’s data, stari is actually a discrete variable of an integer value ranging

from 1 to 5. Thus, I also used ordered Probit regression in my analysis to model the discrete

choices of reviewers.

A closer look on the equation (5) helps us understand how the proposition 1 and 2 in

the theoretical framework can be tested. As a result of the proposition 1, when there is

attribution bias, we expect the perceived qualities q̂i would be different if users were on

different sides of the rounding thresholds. From the proposition 2 and the difference in

perceived qualities, we also expect the rating actions a∗i would be different. This variation

allows us to use the regression to detect the reference-dependent behaviors of Yelp users. If

the estimation of equation (5) shows a significant negative effect of RD, it will provide an

supporting evidence of attribution bias in reviewers’ ratings.

1.3.3 Data Selection

In my main analysis, I only included reviews for businesses with more than 100 ratings

on Yelp at the time they were reviewed. This restriction was made to ensure my analysis

was conducted on relatively stable businesses. To apply the regression discontinuity design,

I also set up a 0.005-unit bandwidth to focus my analysis in small windows. Leveraging such

a large dataset, I am able to choose such a fine bandwidth to help ensure that using a linear

functional form to approximate the data trend is suitable in my analysis. This assumption

will be further tested in the following section of bandwidth choice. In addition, since one

of the main goals of this paper is to prove the existence of attribution bias, I only checked

ratings from consumers who reviewed the businesses the first time. These restrictions will

be relaxed and tested in the following sections and the main implications of this paper do

not change much. The original data does not have the average stars of each business that

reviewers could see in different time periods. Thus, I calculated the average stars for all

businesses at every time point from the data. With the restrictions and the adjustments

mentioned above, I present the summary statistics of my data in the appendix.
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1.4 Empirical Analysis and Estimation Results

In this section, I show the estimation results of the previous specified regression. All

standard errors in my estimations are calculated with the method of [85] to account for

potential heteroscedasticity. In addition, I also provide several placebo tests to validate my

regression results.

1.4.1 Reference Dependence in Rating Behaviors

To begin with, I start my analysis by providing a graph to visualize the discontinuity in

the data.

Figure 1: Stars Discontinuity with Distances to Rounding Thresholds

In this figure, the 0.005 unit is chosen to be the bandwidth of the figure. I further divided

the diff axis into ten parts. Each part has a length of 0.001 unit and can be considered as

one small bin on the graph. Within the bins, data points are pulled together. For example,

if one data point is 0.00025 unit to the left-hand side of 0, the data point will be assigned to

the bin covering -0.001 to 0. Each red dot represents an average of one bin and black lines

are the visualization of the estimation results of the equation (5).
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Figure 2: Normalized Stars Discontinuity with Distances to Rounding Thresholds

From figure 1, we can see there is a clear discontinuity before and after the threshold.

In figure 2, I normalized the ratings by subtracting the stars with their closest rounding

thresholds. For instance, when a business has a true average of 3.23, the closest rounding

threshold is 3.25 and the ratings given by users is subtracted by 3.25. In the normalized

graph, the average of the normalized stars before the thresholds are higher than 0 and the

average of normalized star are lower than 0 after the thresholds. Moreover, the pattern of the

graph is similar to the one without the normalization. To check whether this discontinuity

also appears after controlling other possible covariates, I present the following regression

results.

In the first column of table 1, I estimate equation (5) without any control variables.

The result shows the effect of RD is significant. From my previous argument, we can

also interpret this result to mean that there are significant differences in consumers’ rating

behaviors because consumers had different reference points. One possible concern about

the result in column 1 is that people may react very differently when they go to businesses

in different star ranges. For example, the rating behavior for a person going to a 4.5-star
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Table 1: Regression Results of Reference-Dependent Behaviors

(1) (2) (3) (4)

Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating

RD -0.1955∗∗∗ -0.5892∗∗∗ -0.5846∗∗∗ -0.5847∗∗∗

(0.041) (0.039) (0.039) (0.039)

diff 20.6772∗∗∗ 7.4264 7.1154 7.1672

(6.646) (6.060) (6.077) (6.085)

intercept 3.9439∗∗∗ 1.3394∗∗∗ 1.5683∗∗∗ 1.7292∗∗

(0.024) (0.247) (0.471) (0.717)

Observations 20897 20897 20897 20897

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the estimation without any controls

(2) adds fixed effects for different rating ranges

(3) adds city fixed effects and fixed effects for different rating ranges

(4) adds above fixed effects and year fixed effects
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restaurant is very likely to be different from the situation when she goes to a 3-star one. In

column 2, I include dummy variables for star ranges as a way to control for this phenomenon.

The result in column 2 alleviates this concern since the estimate of RD is again significant

and its size is even larger. Column 2 shows how reference points can have a non-negligible

impact on consumers’ behaviors. After controlling the star-range effect, when consumers

have higher expectations for businesses, their ratings can be a half star lower compared to

the case when they have low expectations for similar businesses. In column 3 and 4, more

fixed effects such as city fixed effects and year fixed effects are controlled in equation (5).

The results in these two columns are similar to column 2 and provide evidence of users’

reference-dependent behaviors.

When we carefully search for other possible explanations of the regression results in table

1, some concerns may arise. It is likely the results were caused by other mechanical reasons

in the data and were not related to reference dependence. One potential explanation is mean

reversion. Mean reversion is usually used to describe fluctuations in stock markets. A stock

going up one day has a high chance to go down the next day. Prices of stocks are very random

and do not really have a pattern. If this phenomenon also happened in the Yelp data, the

rating differences caused by RD should not be considered as reference-dependent behaviors.

To answer these concerns, I conducted a placebo test by creating imaginary thresholds in

the data. In my placebo test, I chose thresholds that would not cause discontinuities in the

stars consumers saw on Yelp. For instance, one threshold is 3.5, and no matter whether the

true average was slightly below or above 3.5, consumers would see a 3.5 star. In that case,

there is no potential gain or loss when consumers go to the business. Thus, if we cannot

see any effect for those imaginary thresholds, the concerns about other mechanical factors

should be mitigated. With this placebo test, I estimated the equation (5) on reviews which

were written when the true average of the businesses were close to the stars consumers saw

on Yelp. The result is presented in table 2. In column 1, we can see that the effect of

RD for those imaginary thresholds is almost zero and insignificant. This result reassures us

that the effect of RD should come from peoples’ reference-dependent behaviors rather than

from random incidents. Other placebo tests using imaginary thresholds with more controlled

variables are provided in column 2, 3 and 4. The effect of RD is also not significant in these
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regressions.

Table 2: Placebo Test of Reference-Dependent Behaviors

(1) (2) (3) (4)

Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating

RD -0.0056 -0.0230 -0.0202 -0.0195

(0.029) (0.028) (0.028) (0.028)

diff 3.5165 5.3597 4.5994 4.4960

(4.831) (4.556) (4.604) (4.618)

intercept 3.7709∗∗∗ 1.4763∗∗∗ 1.8096∗∗∗ 1.6092∗∗

(0.012) (0.073) (0.270) (0.718)

Observations 30955 30955 30955 30955

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the estimation without any controls

(2) adds fixed effects for different rating ranges

(3) adds city fixed effects and fixed effects for different rating ranges

(4) adds above fixed effects and year fixed effects

To study these results more carefully, I also conducted ordered Probit regressions since

users’ choices are discrete. The results for the discrete choice model are provided in the

appendix and conclusions from it are similar to what we have in table 1 and 2. From the

results in the OLS model and the ordered Probit model, I provided evidence of Yelp users’

reference-dependent behaviors with several placebo tests and showed that my findings are

robust.
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1.4.2 Revenge or Attribution Bias?

So far, the regression results in this paper provide strong evidence to support the existence

of reference-dependent behaviors. However, it is not clear if Yelp users’ reference dependence

was caused by attribution bias or they simply just wanted to exact revenge, to be reciprocal

or to correct the ratings when they noticed there were gaps between the qualities of the

businesses and their ratings on Yelp. To answer this question, I proposed another regression

to detect if the discontinuities in the data increase users’ tendency of giving extremely low

ratings. In this analysis, I run the following logistic regression:

P (RevengeReciprocali = 1|RDi, Xi, diffi) = F (α0 + α1RDi + α2diffi + λXi + εi) (6)

Here,

F (x) =
1

1 + e−x

RevengeReciprocali =

1 if |true average− stari| > 2.5

0 otherwise

In this regression, RevengeReciprocali captures if user i wants to exact revenge or to

be reciprocal to businesses that had qualities different from her expectation. I assumed the

reviewer would give an extremely low or high rating in this case. A revenge is defined by

giving a rating that is 2.5 stars lower than the true average, and reciprocal is defined as

giving a 2.5-star higher rating. The equation (6) allows me to estimate if RD affects the

probability of seeing extreme ratings. The results are shown in table 2.

In the first column of table 3, the regression result without any controls shows a marginally

significant effect of RD on the probability of revenge or reciprocal. After adding some rat-

ing range fixed effects, the effect of RD becomes stronger in column 2. Column 3 and 4

separate revenge and reciprocal, and both results show significant effect of RD on revenge

or reciprocal probabilities. These regressions confirm the concern about factors confounding
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with attribution bias. To alleviate this concern, I utilize one special feature on Yelp’s rating

system.

Table 3: Regression Results of Probability of Revenge or Reciprocal

(1) (2) (3) (4)

P(Revenge or Reciprocal) P(Revenge or Reciprocal) P(Revenge) P(Reciprocal)

RD 0.1450∗ 0.6735∗∗∗ 0.8153∗∗∗ -0.5165∗∗

(0.081) (0.086) (0.110) (0.205)

diff -20.5455 -9.624 -1.7157 -2.0198

(13.020) (13.619) (17.246) (32.618)

intercept -1.7192∗∗∗ -2.7430∗∗∗ 1.3394∗∗∗ -2.7510∗∗∗

(0.047) (1.034) (0.247) (1.056)

Controls No Yes Yes Yes

Observations 20897 20897 20897 20897

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the logit regression on vengeful and reciprocal actions without any controls

(2) shows the regression on vengeful and reciprocal action with fixed effects for different rating ranges

(3) shows the logit regression on revenge probability with fixed effects

(4) is the logit regression on reciprocal probability with fixed effects
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Yelp has a special rewarding system for dedicated users and awards the best of them

elite status. An elite can enjoy special events held by Yelp and interacts closely with other

elites in the community. Attaining the level is like joining a private club and this rewarding

system creates an additional incentive for users. To become an elite, a user needs to use her

real name, have a clear photo of herself and post quality reviews frequently. Yelp also allows

other users to evaluate how useful a review is. The usefulness of reviews is another important

factor that will determine whether a user can become a member of Yelp’s elite squad. This

selection criterion for elites gives me a way to find an environment where users care much

more about the usefulness and accuracy of their reviews than rating emotionally. Combining

this characteristic of elites with the proposition 2 in my theoretical framework, I argue that

ωi = 0 when I focus my analysis on Yelp elites. Therefore, the effect of RD excludes the

impact from vengeful or reciprocal actions and can serve as evidence of attribution bias.

To demonstrate that elite members try their best to provide precise information about

businesses, I estimate a variant of the equation (6) by considering whether a user had become

an elite before she wrote her reviews. The regression which I extend from the equation (6)

becomes:

P (RevengeReciprocali = 1|RDi, Xi, diffi) =

F (α0 + α1RDi + α2diffi + α3elitei + α4RDi × elitei + λXi + εi)
(7)

The regression results are shown in table 4. In the first column of table 4, we can see a

clear negative effect of elite, which means when a user has become an elite, the probability

of giving extreme ratings is much lower. This result supports our assumption that elite users

do not rate emotionally. Furthermore, the interaction term of RD and elite is not significant

in column 1, which suggests the discontinuities in the rating system do not have significant

effect on elite users for the probability of giving extreme ratings. In column 2 to column 4

of table 4, I provide a more careful analysis by adding control variables or separate revenge

and reciprocal actions. The results still support my assumption about elite users.
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Table 4: Regression Results of Probability of Revenge or Reciprocal

(1) (2) (3) (4)

P(Revenge or Reciprocal) P(Revenge or Reciprocal) P(Revenge) P(Reciprocal)

RD 0.5326∗∗∗ 0.7366∗∗∗ 0.8519∗∗∗ -0.7951∗

(0.106) (0.111) (0.112) (0.441)

elite -1.5803∗∗∗ -2.2880 -1.2905 -2.4156

(0.186) (8.260) (61.820) (9.243)

RD × elite 0.2570 0.0118 -0.0024 -5.0296

(0.221) (0.439) (0.454) (12.989)

Controls No Yes Yes Yes

Observations 20897 20897 20897 20897

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the logit regression on vengeful and reciprocal actions without any controls

(2) shows the regression on vengeful and reciprocal action with fixed effects for different rating ranges

(3) shows the logit regression on revenge probability with fixed effects

(4) is the logit regression on reciprocal probability with fixed effects
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After testing the assumption of ωi = 0 in proposition 2, I estimated equation (5) again

with elite users only. The regression results are in table 5.

In table 5, I present the estimation with elite users only in the first column. The cor-

responding result of non-elite users is in column 3. In column 1, we can see the significant

negative effect of RD on reviewers’ ratings and the size is non-negligible. From my estima-

tion, when Yelp users had different reference points before they reviewed the same businesses,

the ratings they gave could differ by a half star on average. Compared with the result in

column 3, in which I included non-elite users in the analysis, we can see RD has a smaller

effect when we only consider elite users. This result consolidates my assumption about Yelp

elites because after removing non-elite users, we expect to see a smaller coefficient on RD

since elites usually rate more objectively. Columns 2 and 4 provide placebo tests for columns

1 and 3. In these columns, the effects of RD are again insignificant and these results support

that the effect of RD is from attribution bias.
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Table 5: Attribution Bias of Elite Users

(1) (2) (3) (4)

Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating

RD -0.4146∗∗∗ -0.0372 -0.6281∗∗∗ -0.0199

(0.016) (0.029) (0.045) (0.033)

diff -2.5688 9.1575 10.1308 4.8003

(10.383) (7.699) (7.062) (5.324)

intercept 0.9919∗∗∗ 2.6146∗∗∗ 1.3945∗∗∗ 1.4239∗∗∗

(0.033) (0.455) (0.280) (0.072)

Controls Yes Yes Yes Yes

Observations 3924 5888 16973 25067

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) adds fixed effects for different rating ranges and focuses on Yelp elites

(2) is a placebo test with imaginary rounding thresholds for (1)

(3) adds fixed effects for different rating ranges and focuses on non-elite users

(4) is a placebo test with imaginary rounding thresholds for (3)
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1.4.3 Bandwidth Choice of Regression Discontinuity Design

Another possible concern about my regression results is the choice of bandwidth in my

regression discontinuity design. It is possible that the above results only hold for some

specific bandwidths. To answer this question, I followed [47] and use their nonparametric

method to choose the optimal bandwidth. The discontinuity visualization is provided in

figure 3 and the set of regression results is presented in table 6.

Figure 3: RD Plot with Optimal Bandwidth
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Table 6: Attribution Bias with the Optimal Bandwidth (0.056)

(1) (2) (3) (4)

Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating

RD -0.5241∗∗∗ 0.0021 -0.3852∗∗∗ 0.006

(0.007) (0.006) (0.012) (0.010)

diff 1.5478∗∗∗ 0.8761∗∗∗ 1.1021∗∗∗ 0.6204∗∗∗

(0.100) (0.093) (0.174) (0.158)

intercept 0.6073∗∗∗ 0.5075∗∗∗ 0.5176∗∗∗ 0.4865∗∗∗

(0.015) (0.014) (0.004) (0.004)

Controls Yes Yes Yes Yes

Observations 651775 714161 123679 141883

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) includes all users

(2) is a placebo test with imaginary rounding thresholds for (1)

(3) includes only elite users

(4) is a placebo test with imaginary rounding thresholds (3)

The results in table 6 still support the existence of attribution bias in the data since

they are almost the same as the previous results. In column 1, I use the optimal bandwidth

calculated based on the method in [47] and include all Yelp users within the bandwidth. The

effect of RD is again negative and has a similar size as before. In column 3, I choose another

optimal bandwidth with elite users only, and the effect of RD is negative and smaller than

the effect in column 1. These results are consistent with the analyses in the previous section.

In columns 2 and 4, I provide the placebo tests for columns 1 and 3. The effects of RD are

almost zero and insignificant.
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1.5 Discussion and Conclusion

1.5.1 Implication of Attribution Bias in Online Reputation Systems

From the regression results in the previous section, I provided empirical evidence of

attribution bias on crowd-sourced review websites. To understand the implication and im-

portance of attribution bias in this setting, I have linked my results to previous literature.

In [62], he showed that a half-star increase in ratings on Yelp can help restaurants’ revenue

by 5 to 9 percent. In [1], they provided another piece of evidence that Yelp ratings can help

businesses and make the restaurants they studied sell out 49 percent more frequently. These

results suggest that Yelp ratings can give strong incentives for business owners to improve

the quality of their products and services. However, when I combine what they discovered

with the findings in my paper, the incentives may be distorted by attribution bias. For

instance, when a business’s true quality is around one rounding threshold on Yelp, it may

not always be good to improve its quality and cross the threshold. When the owner of the

business only makes minimum effort to cross the threshold, attribution bias could cause

other reviewers to review the business more harshly and make her effort in vain. In order

to prevent this curse of attribution bias, the owner needs to make extra effort and make

her business’s quality significantly better than the threshold. This potential dynamic with

attribution bias between crowd-sourced review websites and businesses was not credited in

the literature before.

Attribution bias in the information aggregation process on consumer-reviewed websites

is another important problem that has to be considered. It is usually believed that these

websites benefit consumers by allowing them to collect useful information with low cost and

decrease the information asymmetry in many markets. The information provided by the

crowd-sourced forums is also believed to be reliable. Concerns about possible manipulations

on these websites have been alleviated by [62] and [1]. In their papers, they utilized an

econometric method proposed in [64] to detect manipulations of running variables in re-

gression discontinuity designs and excluded the possibility of rating manipulations on Yelp.

However, attribution bias is not a manipulation, and without considering its existence, the
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current online rating systems may not be credible. Although we may be able to argue that

the averages of many consumers’ ratings may still be robust and close to the true qualities,

other users can still read biased reviews and receive inaccurate information as a result of

attribution bias.

The above-mentioned implications of attribution bias in online reputation systems show

us the importance of being aware of its existence and impacts. More studies about system

dynamics and welfare effects with respect to attribution bias would help us know how this

bias shapes economic activities and invent a better mechanism to gather consumers’ opinions

online.

1.5.2 Conlusion

This paper links to the developing literature of attribution bias in economics and provides

the first empirical evidence of attribution bias from observational data. The results of this

paper support the hypothesis that users have attribution bias when they review businesses.

In addition, the paper points out potential problems of current online reputation systems.

Future studies of attribution bias in different fields can be valuable since there are many

other possible applications of attribution bias that can be explored. One potential direction

that is closely related to this paper is utilizing text content in reviews to understand whether

users also show attribution bias in other contexts. For instance, consumers may have different

expectations when they go to a restaurant for special occasions. By studying the text reviews,

we may be able to discover attribution bias in their dining experiences.

A broader direction worth pursuing is understanding the best way to provide quality

measures. Presenting measures with rounding stars makes it easy for people to process

the information. However, the findings in this paper suggest that attribution bias could

affect people’s perceptions and influence their opinions when we need their feedbacks. When

businesses or governments try to simultaneously provide information and collect feedbacks

by creating dynamic systems, how to strike a balance between user-friendly measures and

precise information is an important policy question. Answering this question would create

a more reliable way to take advantage of collective wisdom.
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2.0 Hope Hurts: Attribution Bias in Yelp Reviews

This paper incorporates applied econometrics, causal machine learning and theories of

reference-dependent preferences to test whether consuming in a restaurant on special oc-

casions, such as one’s birthday, anniversary, commencement, etc., would increase people’s

expectations and would make consumers rate their consumption experiences lower. Further-

more, our study is closely linked to the emerging literature of attribution bias in economics

and psychology and provides a scenario where we can test two leading theories of attribu-

tion bias empirically. In our paper, we analyzed reviews from Yelp and combine the text

analyses with regressions, matching techniques and causal machine learning. Through a se-

ries of models, we found evidence that consumers’ ratings are lower when they went to the

restaurants on special occasions. This result can be explained by one theory of attribution

bias where people have higher expectations about restaurants on special occasions and then

misattribute their disappointment to the quality of the restaurants. From the connection

between our empirical analysis and theories of attribution bias, this paper provides another

piece of evidence of how attribution bias influences people’s perceptions and behaviors.

2.1 Introduction

It is long acknowledged that one’s behavior and decisions are influenced by reference

points (24). Prospect theory (48) indicates that an individual’s overall utility is not solely

determined by consumption experience, but also by one’s reference level, like expectations.

Expectations, as a commonly used reference point, is widely discussed in many economic

studies in terms of its influence on people’s behavior and decisions (51; 52; 69). The expecta-

tion (dis)confirmation theory (6; 71) is another similar theory existing in information systems

and psychology. It predicts that higher prior expectations often come with higher likelihood

of disconfirming beliefs. Both the prospect theory and the expectation (dis)confirmation

theory predict that higher prior expectations are usually less likely to be met and often
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end up with lower satisfaction. In this study, we incorporated such theories with empirical

data to explain a seemingly counter-intuitive phenomenon: hope hurts. Consuming in one’s

favorite restaurant on special occasions, such as birthdays, would more likely to result in

dissatisfaction than to bring happiness due to higher expectations than usual days.

To start with, we constructed a reference-dependent utility model which incorporates

psychological states. In the model, we allow states to interact with reference points, and

this flexibility helps explain why special occasions may build up people’s expectations about

restaurants and make their dining experiences less enjoyable.

Empirically, we connected the user and business-level information with our theoretical

framework and check whether special occasions affect Yelp users’ behaviors. In order to

uncover the causal relationship between special occasions and ratings, we employed applied

econometrics and natural language processing techniques to glean insights from text reviews

in combination with other variables.

Besides the average effect of special occasions, we are also interested in their heteroge-

neous impacts on different users. To account for this aspect, we applied the recent methods

from casual machine learning, such as casual tree and causal forest to estimate the hetero-

geneous effects.

Our paper contributes to the emerging literature of attribution bias in behavioral eco-

nomics. In previous papers, decision makers’ attribution biases are either caused by differ-

ences between their expectations and true experiences (10; 46) or states when they make the

decisions (36). In the scenario of special occasions, both scenarios can happen and influence

Yelp users’ behaviors in opposite directions. Thus, by using data from Yelp, we are able to

study and understand what the possible theoretical and empirical results can be when these

two causes of attribution bias interact with each other. Another contribution of this study is

related to the ongoing discussion on how to create good crowd-sourced rating systems. Previ-

ous literature has shown drawbacks of current rating systems (16; 46) and our paper provides

more insights on this topic. From another perspective, our paper suggests that ratings about

consumption in different situations may provide distinct information. Finding good ways to

help users digest information with considerations about review scenarios could potentially

improve the usefulness of rating systems. Our results also bring practical insights to mar-
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keting strategies about how to launch successful marketing campaigns. With consumers’

preferences in mind, businesses’ owners could design promotions to avoid the negative ef-

fects of reference dependence by decreasing gaps between consumers’ expectations and true

experiences.

The rest of the paper proceeds as follows. In the next section, a detailed literature review

is provided to connect our paper to existing research in behavioral economics, information

system, and Psychology. In section 3, we propose a theoretical framework to discuss how

different causes of attribution bias interact with each other. Our empirical strategy and

data source are provided in section 4. In section 5, we present main estimation results and

robustness checks for our analysis. Finally, discussions about implications of attribution bias

and conclusions are included in the last section.

2.2 Related Literature

This paper connects several disciplines of research to answer questions in the intersection

of behavioral economics, psychology and information systems. Thus, the literature review

in this section gives a broad overview for relevant papers in the fields mentioned above.

In behavioral economics, scholars have discovered anomalies about how psychological

factors affect decision makings of people. In [44] and [11], researchers found that weather

influences people’s housing and automobile purchasing decisions and the effects are explain-

able by psychological mechanisms but not classical utility theories. [81] and [68] provided

empirical results and a theoretical framework about how investors’ emotions influence their

decisions and financial markets. Following these papers, our research studies the effect of

potential psychological factors from special occasions, how they impact the information ag-

gregation process on Yelp and the mechanisms behind them.

In discovering the potential mechanisms behind the influence of special occasions, a

closely related literature in behavioral economics is about learning with misattributions.

[50] developed a reference-dependent utility model which describes how reference points are

formed and influence agents’ behaviors when there is uncertainty. [30] extended the reference-
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dependent utility model and formalized attribution bias into their theoretical framework. In

their model, the researchers described how decision makers can misattribute their gain-loss

utility to their consumption experiences when the utilities they get are different from their

expectations. [46] used the model of [30] and tested the existence of attribution bias on

online reputation systems with Yelp’s data. In [36], the authors proposed another model of

attribution bias based on an extension of projection bias. From their model, states under

which consumers make their consumption are another source of attribution bias. In our

paper, we combined the two sources of attribution bias (30; 36) and developed a reference-

dependent utility model with consideration of consumers’ consumption states. This model

not only helps us understand how two types of attribution bias interact with each other but

also allows us to form testable hypotheses that we can check with review data from Yelp.

The Expectation Disconfirmation Theory (abbreviated as EDT below) is another strand

that could account for attribution bias in online rating systems. EDT suggests that con-

sumers would evaluate the difference between product performance and their expectations

of the product (or anticipated performance of the product), and the “calculated gaps” in-

fluence their satisfactions. When the expectation of the product is higher, ceteris paribus,

the likelihood of disconfirmation increases correspondingly and results in lower consumer

satisfactions. In the fields of information systems (6; 9; 16; 39; 55; 65) and of marketing (2;

13; 20; 72; 73), this theory has already been widely used to describe the determinants of

customer satisfactions, and the disconfirmation is often viewed as the mediator (20). In addi-

tion, expectation disconfirmations can happen in two types. When the product performance

is better than the expectation, this is called “positive disconfirmation”. On the contrary, if

the performance is worse than the expectation, it is called “negative disconfirmation”. In

our study, we focus on cases where ”negative disconfirmations” can potentially happen.

Theoretically, there are several theories in psychology that can provide mental mecha-

nisms for expectation disconfirmations and attribution bias. A relevant one is called contrast

effect (12; 63), which suggests that when negative disconfirmations happen, the perceived

performance of products would be much worse, and vice versa. In our case, for example,

when consumers’ goal is to celebrate their birthdays in restaurants, their expectations are

likely to be higher than usual due to the effect of special occasions. Following the higher
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expectations, the occurrence of negative disconfirmations becomes more likely and causes

stronger dissatisfactions. In other words, during special occasions, the chance that Yelp

users have negative dining experiences due to high expectations goes up. In this scenario,

contrast effect triggers the dissatisfactions and causes users to give lower ratings for their

consumption.

Other psychological mechanisms, such as assimilation-contrast effect (42) or generalized

negativity (14), could also account for this cognitive bias. The underlying explanations are

a bit different among these theories. However, they all provide similar predictions as our

current study. Last but not least, how contrast effect magnifies the negative disconfirmation

echoes the models in [30], and they all lead to the classical conclusion of reference-dependent

preferences: losses loom (48).

The last stream of related literature is about disadvantages and improvements of word-

of-mouth online reputation systems. Previous research has shown how multidimensional

rating systems can lead users to write systematically different reviews compared to single-

dimensional rating systems (16; 78). Others presented that the ubiquitous rounding feature

in most online rating systems may lead to unexpected impacts on both reviewers and business

(1; 46; 62). Our paper connects with these papers and shows that reviews from different

scenarios should be considered separately because attribution bias plays an important role

in them. A multidimensional rating system may potentially alleviate this problem since it

can provide more background information about the reviews.

2.3 Theoretical Framework

In previous literature, potential biases due to difference between expectations and real

experience are commonly explained with reference-dependent utilities (50) in behavioral

economics or the expectation disconfirmatition theory (6, 9) in information systems.

In this section, we present a theoretical model extending those models and closely follow

the settings from [30] and [36]. The model illustrates how Yelp users’ consumption utilities

are influenced by their states and their reference points when they make consumptions. The
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impacts on users’ consumption utilities further influence their ratings on Yelp.

2.3.1 The Model

For a Yelp user i, her utility ui, from a dining experience at time t is the following:

ui(q|st, ri) = vi(q, st)︸ ︷︷ ︸
Consumption utility at state st

+µi ni(vi(q, st)|ri)︸ ︷︷ ︸
Gain-loss utility

(8)

ni(vi(q, st)|ri) =

fi(|vi(q, st)− ri|) if vi(q, st) ≥ ri

λifi(|vi(q, st)− ri|) if vi(q, st) < ri

(9)

Following 48, user i’s utility is a combination of consumption utility and gain-loss utility

in equation (1), and µi governs the weight she puts on her gain-loss utility. For her con-

sumption utility, vi, we assume it is a function of a restaurant’s quality, q, and her state,

st, at time t. st can be considered as a numerical measure of the user’s average happiness

level at time t. For instance, if user i visit a restaurant on a special occasion at time 0, and

she revisit the restaurant again on a normal occasion at time 1, we will expect that s0 > s1.

Moreover, better qualities and higher states are assumed to bring consumers higher utilities.

To guarantee the property, we let vi be a concave function with respect to q and si.

The gain-loss utility ni is further explained in equation (2). fi(x) is a concave function

increasing in x and fi(0) = 0. The difference between the user’s consumption utility, vi, and

her reference point, ri, determines if there is a gain or loss in her dining experience. λi < −1

is assumed to capture loss aversion. When vi is larger than ri, there is a gain for user i,

and the gain-loss utility is positive. On the other hand, if vi is smaller than ri, the gain-loss

utility is negative.

With the model in this section, we can derive some interesting hypotheses with easy

comparative statics. And these hypotheses allow us to test them empirically with Yelp’s

data.
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2.3.2 Hypotheses from the Model

In this section, we use the model in the previous section to discuss possible effects of st

and what implications of those effects are.

When we consider our model, if we only allow st to change and fix other variables, it

is very natural to see that when st is larger, ui is larger. For example, if user i goes to a

restaurant twice with a same reference point, ri, she will enjoy her dining experience more

when she goes there on a special occasion.

To summarize this effect, we have our first hypothesis,

Hypothesis 1. When s0 > s1, and everything else is fixed, we have

ui(q|s0, ri) > ui(q|s1, ri)

.

Hypothesis 1 gives us an intuitive way to understand how st influences users’ experience.

However, it is also shown in the literature (15; 70) that ri may not be independent of st,

and higher st can lead to higher ri. If we assume ri is increasing in st, the effect of st will

become ambiguous. To further explain possible effect under this new assumption, we have

the next hypothesis.

Hypothesis 2. When s0 > s1, ri(st) is increasing in st, and everything else is fixed, there

are two possible outcomes.

If vi(q, s0) − vi(q, s1) > µi(ni(vi(q, s1)|ri(s1)) − ni(vi(q, s0)|ri(s0))), then ui(q|s0, ri) >

ui(q|s1, ri).

If vi(q, s0) − vi(q, s1) < µi(ni(vi(q, s1)|ri(s1)) − ni(vi(q, s0)|ri(s0))), then ui(q|s0, ri) <

ui(q|s1, ri).
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In hypothesis 2, we see that if the reference point ri increases a lot because of the increase

in st, it is possible for user i to have a lower utility in a higher state. For example, when

user i has a very high expectation about celebrating her birthday in a restaurant, it is likely

that she will be disappointed. The disappointment can lead to a experience worse than her

previous visits.

The comparative statics give us a chance to test whether reference points change with

psychological states and how do they interact with states empirically. These hypotheses lead

to our identification strategies in the next section.

2.4 Data Source and Empirical Strategy

To test our theory empirically, we use data from Yelp Dataset Challenge round 13. In

the data, we have access to all user reviews in 11 cities around the world, and the time

window of the data is from October 2004 to November 2018. By using the data, we know

users’ previous rating history, rating dynamics of all businesses, text reviews from users and

many other information which we can use as control variables in our regressions.

To address the question of interest and link the observational data with our theoretical

framework, we first classified reviews into special and non-special occasions. To do so, we

searched keywords related to special occasions, such as birthday, anniversary and commence-

ment. When these keywords showed up in text reviews, we labeled the reviews as written on

special occasions. This method may lead to some measurement errors. A detailed discussion

is provided in next section. After identifying reviews on special occasions, we conducted our

main analysis on repeated reviews on Yelp. Repeated reviews are reviews from users who

had at least one consumption on non-special occasions and at least one on special occasions

in the same restaurants. Because they are reviews from the same users who went to the

same restaurants on different occasions, the unobserved heterogeneity of Yelp users and of

restaurants are mainly controlled by the within subject comparison.

To begin with, we ran a series of ordinary least square (OLS) estimations to examine

effects of special occasions. The main regression we study in our analysis is:
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starijt = α0 + α1SpecialOccasionijt + α2Rijt + λX + εijt (10)

SpecialOccasionijt =

1 if the dining experience was on a special occasion

0 if not

In equation 3, starijt is the rating which user i gave on Yelp for her dining experience

at restaurant j at time t. SpecialOccasionijt is an indicator function equals to 1 when the

dining at restaurant j at time t was on a special occasion. Rijt is a potential reference

point for user i at time t for restaurant j. In previous literature(46), it was shown that

Yelp users use restaurants’ average ratings as their reference points before their visits. In

our analysis, we assume Yelp users gather information about restaurants on Yelp and form

their expectations based on the information. For users who did not visit a restaurant before,

their Rijts equal to the average ratings of restaurant j they saw on Yelp before first visits.

For users who repeatedly visit a restaurant, the Rijts are their ratings for restaurant j from

previous visits. X includes all other potential control variables, such as pricing ranges of the

restaurants, average ratings of the restaurants and how many people like the reviews, etc.

The identification strategy behind equation (3) is based on hypothesis 1 and 2. From

hypothesis 1, when the reference points for user i is independent of her state st, a higher

st leads to a higher utility. If the assumptions of hypothesis 1 are true, we will expect the

regression coefficient of SpecialOccasionijt to be positive. On the other hand, we know from

hypothesis 2 that if the q of a restaurant is fixed but ri is not fixed and is a function of st, it

is possible for user i’s utility to go down when st goes up. If we find that the coefficient of

SpecialOccasionijt is negative after controlling other variables, we may reject hypothesis 1,

and the most appealing explanation will be that ri increases with st and the increase in the

reference points leads to disappointments when users dine in the restaurants on their special

occasions. Thus, equation (3) gives us a way to test our theory and hypotheses.
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In addition to OLS, we used difference-in-differences estimators (5) to factor out the

influence of order effects (of restaurant visits). For Yelp users who visit the same restaurants

several times, there may be some trends for their ratings. Difference-in-differences (diff-in-

diff) estimators allow us to control for those trends and make the comparison between special

and non-special occasions more reliable. In our dif-in-dif analysis, we estimated the effect

of special occasions on Yelp users who went to the same restaurants twice, and at least for

one of their repeatedly-visited restaurants, the first visit was on non-special occasions and

second visit was on special occasions. When focusing on these users, we were able to compare

the restaurants they went on special occasions and non-special occasions and conclude what

the effect of special occasions on their second visits is. For the dif-in-dif estimators, the

regression we studied is the following:

starijt = α0 + α1Treatedij + α2RpV isitijt + δRpV isitijt × Treatedij + λX + εijt (11)

Treatedij =

1 if user i has visited restaurant j on a special occasion

0 if not

RpV isitijt =

1 if it is the second time user i visited restaurant j

0 if it is the first time

Here, starijt and X are defined the same way as in equation (3). Treatedij is a variable to

identify whether a Yelp user has been to the restaurant on a special occasion. RpV isitijt

shows if a dining experience is a user’s first visit or not. The dif-in-dif estimator we are

interested in is δ, the coefficient of RpV isitijt × Treatedij, which shows the effect of special

occasion on users’ second visits.
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Besides above estimations, we also applied cross-classified multilevel models (56, 43) to

account for the special structure of Yelp’s data. It is worth noting that the relationship

between users and restaurants are not necessarily hierarchical. For example, Yelp users may

consume in different restaurants and hence, the structure of the data is not conventionally

nested. A diagram explaining the data structure is provided in the appendix. To cope

with this special data characteristic, we employed the cross-classified multilevel model in our

study, which gives us better precision for our estimations.

Moreover, we are also interested in learning heterogeneous treatment effects of special

occasions. To better understand how special occasions affected different subgroups in our

data, we used causal tree (3) and causal forest (83) to estimate the heterogeneous effects.

To check the robustness of our analysis, we conducted similar estimation on a larger

sample including all users who reviewed a restaurant repeatedly on non-special occasions.

However, users who went to a restaurant on special occasion can be very different from those

users who went there on non-special occasion. To avoid systematic differences for different

kinds of users, we applied propensity score matching to control for various variables and

make the two groups more comparable.

Another potential threat to our inference is reviewers’ self-selection. It is probable that

those who were extremely satisfied or unsatisfied were more likely to rate the restaurants

and to post their reviews. Fortunately, we could attenuate this concern by using Yelp’s elite

feature. Yelp elites are those users who are the most active and professional. They tend to

post comments for every restaurants they have visited. Using data focusing on Yelp elites

not only minimizes self-selection threat, but also gives us an opportunity to examine whether

elites are free from the reference-dependent bias. Furthermore, we can compare elite with

non-elite users by estimate the heterogeneous treatment effects for both subgroups.

Lastly, some may question if there is a ceiling effect in the rating system. For example,

consumers are very likely to choose better restaurants to consume on their special occasions.

If these restaurants are already 5 star ones in their minds, even the experiences are beyond

their expectations, there is no room for them to give ratings higher than 5 star. This could

be a potential threat to our analysis since the effect of special occasion could just come

from the ceiling effect. Therefore, we also run Tobit models to deal with this censored data
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situation.

2.5 Empirical Analysis and Results

In this section, we first show the results from our OLS estimations and dive into crossed-

classified multilevel models to present more precise estimates when taking our data structure

into consideration. After the first set of results, we show the estimates of heterogeneous

treatment effects from our causal forest and causal tree estimations. More robustness checks

are provided in the end of this section.

2.5.1 OLS, Diff-in-Diff Estimators and Multilevel Models

As we mentioned in the identification strategy, when we estimated equation (3), we

focused only on repeated reviews from users who have visited same restaurants on both

special and non-special occasions. In this way, we can have an apple to apple comparison

since it is similar to a within subject quasi-experiment. The results is shown in table 7 with

control variables.

The first column in table 7 shows the OLS result without control variables. The coefficient

for SpecialOccasion is negative and statistically significant at 0.01 level. To guarantee

other factors influencing users’ reviews are taking into consideration, we put in other control

variables in the estimations of equation (3). One concern about column 1 is that people may

act differently when it comes to reviewing restaurants in different star ranges. In column 2,

we put in fixed effects for different average rating ranges. For instance, a restaurant with

average rating at 3.5 star will be given a fixed effect for being in the 3.5 star range. The

estimate still shows a negative effect of SpecialOccasion. These results are different from

what we derived from hypothesis 1. In hypothesis 1, we expect SpecialOccasion to have

positive effect on reviewers’ ratings. However, we see a negative effect of SpecialOccasion.

Another possible explanation of what we see in column 2 is that only users who were

disappointed about their repeated visits would rate a restaurant more than once, and users
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Table 7: OLS Results of Special Occasion Effect on Repeated Reviews

(1) (2) (3) (4)

Reviewer’s rating Reviewer’s rating Reviewer’s rating Reviewer’s rating

SpecialOccasion -0.2410∗∗∗ -0.2404∗∗∗ -0.3693∗∗∗ -0.3374∗∗∗

(0.024) (0.023) (0.038) (0.036)

RpV isit NA NA -0.0759∗∗ -0.1081∗∗∗

NA NA (0.038) (0.028)

SpecialOccasion×RpV isit NA NA 0.1957∗∗∗ 0.1673∗∗∗

NA NA (0.047) (0.044)

Controls No Yes Yes Yes

Observations 12632 12632 12632 12632

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the OLS result without any controls

(2) shows the OLS result with fixed effects for different rating ranges

(3) shows the OLS result with column 2’s fixed effect and controls for repeated visits

(4) adds potential reference points and more control variables
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tend to celebrate their special occasions in restaurants they have visited before. If that is the

case, the negative effects we see from SpecialOccasion are not about special occasions but

about the order of users’ visits. To eliminate this concern, we control the order of the visits

of the Yelp users by adding a variable RpV isit. RpV isit = 0 when it is the first time a user

visits a restaurant, and RpV isit = 1 when it’s not the first time. By using RpV isit and the

interaction term of RpV isit and SpecialOccasion, we see that RpV isit does have a negative

effect on people’s ratings. However, the coefficient of SpecialOccasion is still negative and

statistically significant. This result shows that the effect of SpecialOccasion is not just due

to the order of users’ visits.

To better fit our empirical analysis with the theory in the previous section, we also put

in potential reference points of users in the estimation. To find good reference points, we

assume Yelp users used the average rating of a restaurant as the reference points for their first

visit, and they used the ratings they previously gave as the reference points when they visit

the restaurant more than once. If reference points are fixed and does not change with users’

states as the assumption of hypothesis 1, we should expect the effect from SpecialOccasion

to disappear when we control for the potential reference points. However, we still see a

negative effect of SpecialOccasion in the estimation result in column 4, which suggests that

users’ reference points actually changed with special occasions. The results in table 7 support

our hypothesis 2 and shows that the effect size of increasing the reference points are larger

than the effect size of being in a higher state.

For understanding potential heterogeneous effects on different groups of users, we con-

ducted another analysis focusing only on the elite users of Yelp. Elite users are users who

actively contribute on the platform and are dedicated in providing useful information to

others. Those users tend to record their experiences as much as possible, and this feature

gives us a chance to check what the impact of special occasions is on the most experienced

users. In table 8, we show the results of elite users. For different control variable settings,

the effect sizes of SpecialOccasion on ratings are smaller comparing to previous results with

all users. However, the effect is still all negative and statistically significant. This shows

that though elite users are more experienced, they are still not immune to attribution bias.

When we try to interpret the results from table 7 and 8, the effect of SpecialOccasion is
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Table 8: OLS Results of Special Occasion Effect on Repeated Elite Reviews

(1) (2) (3) (4)

Reviewer’s rating Reviewer’s rating Reviewer’s rating Reviewer’s rating

SpecialOccasion -0.0826∗∗ -0.0829∗∗∗ -0.1341∗∗∗ -0.1208∗∗∗

(0.033) (0.031) (0.048) (0.046)

RpV isit NA NA -0.0421 -0.1208∗∗∗

NA NA (0.04) (0.028)

SpecialOccasion×RpV isit NA NA 0.0880 0.0996∗

NA NA (0.061) (0.058)

Controls No Yes Yes Yes

Observations 4612 4612 4612 4612

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the OLS result without any controls

(2) shows the OLS result with fixed effects for different rating ranges

(3) shows the OLS result with column 2’s fixed effect and controls for repeated visits

(4) adds potential reference points and more control variables
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ambiguous for Yelp users’ non-first visits. Since we see the coefficients of SpecialOccasion×

RpV isit are positive, when we compare special occasions with non-special ones for Yelp

users’ non-first visits, it is unclear if SpecialOccasion has significant negative effects on

reviewers’ ratings. To get more precise estimates of the impact of special occasions, we use

difference-in-differences estimators to estimate the effect of special occasions on non-first

visits. The estimations we do are based on equation (4), and the results are shown in table

9 and table 10. The coefficient of interest is Treated× RpV isit, and we can see that when

we include all users in table 9, the effects of special occasions on their second visits are

negative and significant in all specifications. These results confirm that special occasions

still cause Yelp users to give lower ratings even when they have previous experiences with

the restaurants. For results in table 10, we see that the effect of special occasions is smaller

for elite users, which is consistent with our previous OLS estimations. When we include all

control variables, the influence of special occasions is still significant.

In our data with repeated reviews, users may repeatedly visit more than one restaurant.

Thus, our review data is nested in both user level and restaurant level, and it has no clear

hierarchy between user and restaurants. To account for this data structure and get more

precise estimates, we used a cross-classified multilevel model (43) to conduct another se-

ries of estimations. In table 11, we still get similar results as before. All coefficients of

SpecialOccasion are negative and significant at 0.01 level.

2.5.2 Heterogenous Treatment Effects with Causal Machine Learning

With the analyses above, we have tested the existence of attribution bias of high expec-

tations. We also showed that SpecialOccasion could have differential effects on elite and

non-elite Yelp users. To better understand the impacts of special occasions on different types

of users, we employed a nonparametric causal forest algorithm (23; 83; 4) to examine the

heterogeneous treatment effects. The main purpose of this analysis is to use causal forest

to estimate conditional average treatment effect (CATE) of Yelp elites and non-elite users.

CATE is defined as follows:

CATE : τ(x) = E[Yi(1)− Yi(0)|elitei = x], x ∈ {1, 0} (12)
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Table 9: Diff-in-Diff Results of Special Occasion

(1) (2) (3)

Reviewer’s rating Reviewer’s rating Reviewer’s rating

Treated 0.2252∗∗∗ 0.1747∗∗∗ 0.1776∗∗∗

(0.025) (0.024) (0.023)

RpV isit -0.1149∗∗∗ -0.1149∗∗∗ -0.1242∗∗∗

(0.013) (0.012) (0.011)

Treated×RpV isit -0.1114∗∗∗ -0.1114∗∗∗ -0.1756∗∗∗

(0.041) (0.039) (0.036)

Controls No Yes Yes

Observations 37998 37998 37998

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the dif-in-dif result without any controls

(2) shows the dif-in-dif result with fixed effects for different rating ranges

(3) adds potential reference points and more control variables
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Table 10: Diff-in-Diff Results of Special Occasion of Elite Users

(1) (2) (3)

Reviewer’s rating Reviewer’s rating Reviewer’s rating

Treated 0.2172∗∗∗ 0.1752∗∗∗ 0.1927∗∗∗

(0.035) (0.033) (0.031)

RpV isit -0.0754∗∗∗ -0.0725∗∗∗ -0.0866∗∗∗

(0.015) (0.014) (0.013)

Treated×RpV isit -0.0362 -0.0392 -0.1098∗∗

(0.054) (0.051) (0.047)

Controls No Yes Yes

Observations 23300 23300 23300

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the dif-in-dif result without any controls

(2) shows the dif-in-dif result with fixed effects for different rating ranges

(3) adds potential reference points and more control variables
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Table 11: Multilevel Model Results of Special Occasion Effect on Repeated Reviews

(1) (2) (3) (4)

Reviewer’s rating Reviewer’s rating Reviewer’s rating Reviewer’s rating

SpecialOccasion -0.1679∗∗∗ -0.1696∗∗∗ -0.3058∗∗∗ -0.3114∗∗∗

(0.019) (0.018) (0.036) (0.035)

RpV isit NA NA -0.1472∗∗∗ -0.1438∗∗∗

NA NA (0.031) (0.030)

SpecialOccasion×RpV isit NA NA 0.2327∗∗∗ 0.2113∗∗∗

NA NA (0.050) (0.047)

Controls No Yes Yes Yes

Observations 12632 12632 12632 12632

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the OLS result without any controls

(2) shows the OLS result with fixed effects for different rating ranges

(3) shows the OLS result with column 2’s fixed effect and controls for 

repeated visits (4) adds potential reference points and more control 

variables
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In equation (5), Yi(1)− Yi(0) is the average treatment effect of SpecialOccasion. elitei = 1

when the review is written by an elite user and elitei = 0 if not.

Causal Forest is adopted here for a few reasons. Firstly, the assumption of linear inter-

action effect as the heterogeneous treatment effect in econometrics is very strong and often

questioned (37). On the other hand, causal forest can automatically incorporate nonlinear

functional form, such as higher-order terms or complex interaction effects, so the strong as-

sumption of linearity is relaxed. In addition, casual forest is a delicate extension of the widely

used algorithm of random forest (8); besides keeping the predictive capability of ensemble

methods, causal forest further constructs asymptotic confidence intervals for the treatment

effect, which acts as a great tool for the combination of causal inference and machine learn-

ing. Thirdly, causal forest as an improved version of machine learning technique provides

out-of-bag prediction and attenuates the concern of over-fitting. Last but not the least,

causal forest allows us to estimate heterogeneous treatment effects at group level, which fits

our need perfectly.

Table 12: CATE from Causal Forest

(1) (2) (3)

ATE CATE(Elite) CATE(Non-Elite)

SpecialOccasion -0.175 -0.064 -0.238

(-0.214,-0.135) (-0.123,-0.007) (-0.291,-0.186)

Observations 12632 12632 12632

95% confidence intervals in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the average treatment effect (ATE)

(2) shows the conditional average treatment effect for elites

(3) shows the conditional average treatment effect for non-elites

Our results from causal forest estimation is presented in table 12 and figure 4. In table
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12, the average treatment effect of special occasions is -0.175 and the 95% confidence interval

is from -0.214 to -0.135. The size of the effect is similar to our OLS estimation and shows

negative effect of SpecialOccsion on reviewers’ ratings. Moreover, the treatment hetero-

geneity is also detected as our previous analyses. Comparing with Yelp Elite, non-elite Yelp

users suffer more from attribution bias (for the elites subpopulation, the confidence interval

ranges from -0.123 to -0.007; for the non-elites subpopulation, the confidence interval is from

-0.291 to -0.186). The magnitude of conditional average treatment effect (CATE) is stronger

for these non-elite users (Figure 1), which indicates that they were more biased when they

consumed on their special days. It is also worth noting that though the heterogeneous treat-

ment effect is confirmed, the Yelp Elites are not free from this bias. In brief, even for the

active and experienced users, attribution bias may still distort their judgment.

Figure 4: CATE for Yelp Elites

In addition, estimating the effect on Yelp elites has an additional benefit for our study:

to attenuate the well-known extremity bias (38; 45; 58) in online rating systems. By com-

paring the rating distributions between elites and non-elites, we can observe that Yelp elite’s

proportions of choosing the extreme ratings (1-star and 5-star) are both lower than that of

non-elites, (χ2(4, N = 12632) = 623.48 , p < 0.001 (see Appendix)). Previous paper also

shows that elite users do no try to revenge restaurants when there are potential gaps be-

tween restaurants’ true quailities and their expectations in general (46). All of the evidence

46



supports that elites suffer less from extremity bias. By estimating elite’s CATE, it helps us 

examine the treatment effect when the extremity bias is less serious.

Another set of honest casual tree estimations of heterogeneous effects is provided in the 

appendix.

2.5.3 Robustness Checks

     A potential threat to our OLS analyses is ceiling effect. Since Yelp users cannot acclaim 

restaurants with more than 5 stars, the ratings they can give are censored above. When users 

dine in restaurants with high average ratings on special occasions, even if they are very 

content with the restaurants, the most they can give is still 5 stars. This situation could make 

positive effects of special occasions undetectable and amplify the impact of negative reviews. 

This bias could also explain the negative coefficients of SpecialOccasion in our OLS 

estimations, invalidating our theory about attribution bias. To deal with this problem, we 

apply a Tobit model to attenuate the potential influence of ceiling effect. As the setting in [80], 

the observed dependent variable (Yelp user’s rating) in our case is given by

y = y∗ if y∗ < 5

y = 5 if y∗ ≥ 5

Where y∗ is the actual latent rating, and y is the observed rating. Because of the restriction on 

the rating scale, y cannot exceed 5, which is the highest possible score on Yelp. Thus, y∗ is 

known exactly when it is less than 5 but unknown when it is greater than 5. To account for 

this data structure, we use censored regression models (Tobit Model) to analyze the data, and 

juxtapose the results of the whole sample and elite sub-sample with previous analyses. In table 

13, we see the effects of SpecialOccasion are negative in all specifications, which supports our 

previous analyses. In our appendix, we also include estimation results for censored least 

absolute deviations estimators (75), which are also consistent with our previous results.

To see if our results can be generalized to a larger population, we included repeated 

reviews and reviews from users who have repeatedly visited the same restaurants on non-

special occasions only. For example, if a user visited a restaurant twice on non-special
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Table 13: Results of Special Occasion Effect on Repeated Reviews for Tobit Models

(1) (2) (3) (4)

Reviewer’s rating Reviewer’s rating Reviewer’s rating Reviewer’s rating

SpecialOccasion -0.4535∗∗∗ -0.4612∗∗∗ -0.7482∗∗∗ -0.5952∗∗∗

(0.056) (0.053) (0.089) (0.073)

Controls No Yes Yes Yes

Observations 12632 12632 12632 12632

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the Tobit result without any controls

(2) shows the Tobit result with fixed effects for different rating ranges

(3) shows the Tobit result with column 2’s fixed effect and controls for repeated visits

(4) adds potential reference points and more control variables
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occasions only, the reviews she wrote would be included in this larger sample. Since we do

not necessarily have a within subject comparison in this sample, to account for potential bias

in other variables, we used propensity score matching to estimate the causal effects of special

occasions and the result is in table 14. From the estimate from the matched sample, the

effect of SpecialOccasion is still negative and significant, which indicates that attribution

bias also shows up in this larger sample.

Table 14: Matching Results

Reviewer’s Rating

SpecialOccasion -0.0650∗∗∗

(0.0236)

intercept 3.8483∗∗∗

(0.0167)

Observations 133333

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

propensity score matching (knn)

In our previous analyses, we use keyword searching to identify whether Yelp users’ re-

views are about their dining experiences on special occasions. However, this method could

cause potential measurement errors. For example, if a reviewer wrote “there were a family

celebrating a birthday”, the review will be classified as related to special occasions. We

alleviated this concern by randomly selecting thousands of reviews and manually classifying

them into special-occasion reviews or non-special ones. The results of this manually classified

data are shown in table 15. From the table, we see that coefficients in the first two columns

are with the same signs as our previous OLS analyses. Thus, even with some measurement

errors, there seems to be no systematic bias because of the errors. A byproduct of this man-

ual classification is that we are able to identify whether the reviewers celebrated their own

49



special occasions or participated in celebrations of other people’s special occasions. We took

advantages of this finer classification and explored the differences between different types of

special occasions. In column 3 and 4 of table 15, we present the effect of celebrating one’s

own special occasions and celebrations for others. The results show that when celebrating

for others, the effects of special occasions are negative, and the sizes are significantly larger

than celebrating one’s own special occasions. From our observations when doing manual

classification, these results are also caused by reference-dependent type of attribution bias.

When arranging or recommending restaurants for others’ special occasions, Yelp users’ apply

higher standards for food qualities and services. Such expectations make them more easily

disappointed, and lead to lower ratings after their dining experiences.

Table 15: OLS Results of Special Occasion Effect on Manually Classified Data

(1) (2) (3) (4)

Reviewer’s rating Reviewer’s rating Reviewer’s rating Reviewer’s rating

SpecialOccasion -0.3976∗∗∗ -0.3641∗∗∗ NA NA

(0.059) (0.051) NA NA

One’s own special occasion NA NA -0.1873∗∗∗ -0.2059∗∗∗

NA NA (0.071) (0.059)

Others’ special occasion NA NA -0.5773∗∗∗ -0.5199∗∗∗

NA NA (0.077) (0.069)

Controls No Yes No Yes

Observations 1847 1847 1847 1847

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the OLS result without any controls 

(2) shows the OLS result with control variables 

(3) shows the OLS result without any controls 

(4) shows the OLS result with control variables
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2.6 Discussion and Conclusion

2.6.1 Attribution Bias and Online Review Systems

As we briefly discussed in the literature review section, attribution bias caused by special

occasions can be classified into a broader category of problems of online rating systems. In

[16], the researchers provide evidence showing that multidimensional rating systems is more

informative than systems only presenting average ratings. The cost for users to find rele-

vant information on multidimensional systems is much lower since it automatically provides

other reviewers’ opinions from many aspects. Hence, the authors suggest that multidimen-

sional rating systems can improve the information aggregation process of the word-of-mouth

platforms. When considering their proposal together with our findings, multidimensional

systems could potentially attenuate attribution bias as well. If more background informa-

tion about reviews is provided in an easily accessible way, users will understand more about

the scenarios when reviewers dined in the restaurants. Taking those extra information from

multidimensional systems into account, the gap between users’ expectations and experiences

could be reduced, and the impact of attribution bias would be much smaller.

2.6.2 Practical Implication in Marketing

In this research, besides the estimation of average treatment effect of special occasions,

we specifically examine the heterogeneity of treatment effect (HTE) for Yelp Elites and

non-elites users. By applying the causal forest algorithm, the treatment heterogeneity is

confirmed. The empirical results reveal that when encountering an expectation-experience

gap (especially negative disconfirmation), the non-elite user’s disconfirmation effect is much

larger, which is denoted by the greater magnitude of the negative coefficient. In addition,

it is worth noting that, even for the Yelp Elite users, the subpopulation who are active,

experienced and professional for rating restaurants, they still suffer from the cognitive bias

due to a higher expectation. In our view, this confirmed treatment heterogeneity for the

Yelp elites/non-elites is not only for satisfying academic curiosity, but also offers insights for

reflecting campaigns and opportunities for customizing organizations’ marketing strategy.
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Launching marketing campaigns or advertisements could be a double-edged sword. Un-

doubtedly, an effective campaign or an eye-catching advertisement can help attract more

consumers and gain more profits. However, from the perspective of attribution bias or ex-

pectation disconfirmation, for those who are allured, their expectations are likely to be much

higher than usual. This phenomenon creates a paradoxical circumstance: consumers who are

attracted are now harder to feel satisfied. The tension between attracting more customers

and increasing the likelihood of dissatisfaction seems to be a dilemma.

Nevertheless, considering the treatment heterogeneity of Yelp elites/non-elites in this

study, this tension could be relieved or even be utilized. For example, it is a conventional

practice for restaurants to release discounts or relevant information to attract consumers

who want to celebrate their own birthdays. Based on the results we obtained in this study,

it is already known that Yelp elites’ (negative) disconfirmation effect is not as strong as

those who are non-elites. Therefore, the businesses could make use of the different levels of

expectation between experienced diners and new customers by offering discount information

for the former before consumption (as usual discount activities), but offering the same infor-

mation for the latter after consumption (serving as a surprise, beyond their expectations).

By doing so, the businesses can simultaneously maximize the attraction of campaigns or

advertisements while minimizing the concern of consumers’ negative disconfirmation.

Furthermore, the tools we applied open the door to personalized marketing. Causal

machine learning algorithms like generalized random forests (GRFs) (4), causal tree (3) and

causal forest (83) allows us perform a sufficiently fine-grained level of analysis, estimating the

user-level treatment effects. With sufficient user data, combining with predictive techniques

and behavioral science knowledge, we could have a much deeper understanding of individual

consumer preference and behaviors, which is pivotal for companies’ marketing strategies.

Needless to say, the combination of causal inference and machine learning models shows a

promising way for organizations who are eager to make informed decisions from data.
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2.6.3 Conclusion

In our paper, we show that attribution bias can be detected in online rating systems. The

theoretical framework and the empirical results give us a new perspective on how reference

dependence and state dependence create attribution bias and how they interact when it

comes to reviewing businesses. Our research extends the previous studies about attribution

bias in behavioral economics and further distinguishes different possible explanations. This

paper also contributes to the discussion on how to form better rating platforms. From our

analysis, we show that information on rating websites is highly related to the situations where

users make their consumption. How to include useful information about the review scenarios

while keeping overall content easy to digest is a question which needs further exploration.

Furthermore, we connect our findings with practical application in marketing to provide

potential strategies for businesses in the future.

Still, there remain some limitations unsolved in our paper. According to past studies

(2; 12), there are several psychological models that could explain the effect of disconfirmed

expectancy, like assimilation effect (29), contrast effect (42), generalized negativity (14), and

assimilation-contrast effect (42). The latter three give the same prediction as our current

results for the disconfirmation phenomenon.

Assimilation effect predicts that when users find gaps between their expectations and

experiences, they have the tendency to solve the psychological discomforts because of the

difference. This contradicts with our findings. The contrast effect (42) indicates that the

expectation-experience gap would be magnified when disconfirmation happens. So when the

users’ experiences are inferior to what they expected, the negative disconfirmation makes

them more dissatisfied. Secondly, the theory of generalized negativity (14) predicts that

any sorts of disconfirmation, regardless of the fact that consumers confront the positive

or the negative disconfirmation, they would feel unpleasant or unsatisfying due to the dis-

crepancy. Lastly, the assimilation-contrast effect (42) offers a more complicated mental

mechanism. It combines the assimilation effect and the contrast effect. It predicts that

when the expectation-experience gap is small, the assimilation effect dominates, and when

the gap is large, the contrast effect rules. In our case, it seems that the mixed prediction
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may undermine the likelihood of detecting the treatment effect of special occasions, because

some Yelp users may perceive the expectation-experience gap small, and some may consider

it large. However, we think the effect of special occasion makes these users hold much higher

expectation (“Today is a special day!”) for the coming consumption, and it is reasonable to

anticipate that people will choose better restaurants for their special days, which also raises

their expectations. All of these will increase the likelihood of negative disconfirmation, so

we gauge that the large expectation-experience gap would be more prevalent in our case.

To sum up, with the results we obtained in the current study, it is not easy to dis-

tinguish between the different psychological models that could all explain the phenomenon

we observe. Due to the limit of our expertise, we only provide the theoretical framework

and analysis of one possible explanation - reference dependence and attribution bias. We

welcome suggestions and future discussions on the other possibilities.
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3.0 From Econometrics to Machine Learning: Application of Recurrent

Neural Networks on Yield Curve Forecasting

Financial derivatives and interest rates correlate strongly with United States government

bonds. Among many characteristics of government bonds, the term structure or the so-called

yield curve is one of the main targets that investors always attempt to forecast. In this

paper, I construct a model with recurrent neural networks (RNN) and focus on the point

forecasting of the yield curve to explore the possibility of having a better forecast for the

term structure. In addition, the similarities between RNN and the state-space models allow

me to show that the newly proposed neural-network method is closely linked with previous

financial econometric forecasting literature and can be considered as a generalization of the

dynamic Nelson-Siegel method (Diebold and Li, 2006). While allowing similar interpretation

as previous econometric methods, the neural network model in this paper shows better

forecasting accuracy.

3.1 Introduction

The advance of machine learning in the past decades has created many possibilities in

solving forecasting problems. Among machine learning approaches, neural networks have

a particular advantage in capturing nonlinear relationships in data and are widely used in

forecasting. When it comes to forecast time series data, one type of neural network, the

recurrent neural network, has gotten increasing attention because of its dynamic flexibility

in time domains. An ability to learn the importance of different data features in sequences

allows a recurrent neural network to refine its forecasting results sequentially based on new

input data and previous history. This characteristic is similar to many dynamic time series

forecasting models in statistics and econometrics. However, in most traditional models, cer-

tain functional forms need to be assumed in advance. A recurrent neural network, on the

other hand, is an assumption-free method and the model simply learns functional forms from

55



data in its training stage. The similarities and differences between recurrent neural networks

and traditional time series econometrics make them comparable and can help us under-

stand what would be meaningful applications of recurrent neural networks in the financial

forecasting.

Although scholars have created a huge body of literature on application of recurrent

neural networks in previous decades, most of the applications are on machine translation

and language parsing. It was only until recently that researchers have started to rigorously

discuss how we can apply recurrent neural network to financial time series forecasting. This

research is proposed to extend the boundary of current literature. Constructing forecasts for

financial data is known to be one of the most difficult tasks among all forecasting challenges.

The unpredictability of financial time series makes the classic random walk model remain

a benchmark for point forecasting. Despite the random walk simply uses the current value

as a forecast for the future, other time series models can hardly surpass it. This difficulty

makes most traditional financial forecasting models undesirable since their results are not

even better than the random walk.

The above-mentioned advantages of recurrent neural network and problems of time se-

ries models have inspired me to start this study. The paper aims to provide suitable neural

network settings for financial time series forecasting. To make this research applicable and

testable, I chose yield curves of United States government bonds as targets for proposed fore-

casting models and will test their performance based on forecasting errors of the government

bonds’ interest rates. This decision makes the study closely connected to practical needs of

central banks and financial industries since global economies and financial derivatives cor-

relate strongly with United States government bonds. Having a good point forecasting of

yield curves is important for bond portfolio management, and a reliable density forecasting

of interest rate is crucial for asset pricing and risk management. In this research, I focus

on the point forecasting of the yield curve and compare different methods to explore the

possibility of having a better forecast for the term structure.
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3.2 Literature Review

This study is designed to answer questions in the intersection of machine learning, fi-

nancial economics, and time series econometrics. Therefore the following review will cover

literature in these three fields.

Machine learning with recurrent neural network can be dated back to 1980s. In their

seminal paper, [77] introduce a recurrent neural network for the first time as a self-organizing

learning mechanism in mimicking brain behaviors. [40] improved the work of Rumelhart et

al. and proposed a long short term memory (LSTM) recurrent neural network. Their new

model fixed the difficulty of gradient exploding in the original network and made LSTM

more applicable to learning with long time steps. Since then, LSTM has been used to solve

problems in different fields. For example, in improving speech recognition with artificial

intelligence, [34] showed how LSTM can help decrease the recognition error rate. As another

example, [18] modified LSTM and proposed an encoder-decoder mechanism to improve sta-

tistical machine translation.

In previous finance literature, the yield curve forecasting has been done using no-arbitrage

models, dynamic stochastic general equilibrium (DSGE) models or econometric approaches

without equilibrium and no-arbitrage conditions. Starting from [82], a series of papers have

used either diffusion processes or discrete Markov affine models with no-arbitrage conditions

to describe the term structure movements. [27], [33] fall into this category and follow the

no-arbitrage tradition with different focuses. Approaching the problem from a different

perspective, [22] laid the microeconomic foundation of the movement of yield curves from

investors’ preferences and constructed the DSGE outcome. Although the above-mentioned

papers are theoretically appealing for explaining market behaviors, they were not designed

for forecasting. According to [27], they all forecast poorly.

On the other hand, the econometric approaches without no-arbitrage and DSGE con-

straints perform better for the point forecasting task. In the literature along this line, [25]

has been one of the most influential pioneers. In their paper, they use a latent dynamic

factor model to fit the cross-sectional yield curve and dynamically update the factors to

conduct forecasting. Compared to other competing approaches, this method is not only
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simple and elegant but it also improves the forecasting accuracy significantly. Following the

breakthrough of Diebold and Li, [19] connected their econometric model to the no-abitrage

constraints and showed that the model actually satisfies many properties in the finance

theory of term structures. The research of Christensen et al. validated the application of

Diebold and Li’s model and bridged the gap between pure statistical approaches and finance

theories on yield curves forecasting.

Recently, many scholars have started to work on financial forecasting using machine

learning techniques. Forecasting economic outcomes with neural networks, [76] built a novel

model with an attention mechanism on the foundation of the encoder-decoder structures and

used the model in forecasting the NASDAQ stock index. [21] borrowed tools from natural

language processing and applied the encoder-decoder architecture to forecast the United

States unemployment rate and demonstrated that their models made better forecasts than

financial experts. Connecting to financial theories more closely, [53] used a feedforward neural

network and imposed no-arbitrage conditions to provide a general setting for conducting a

yield curve forecasting with neural network. [7] proposed a neural network in forecasting

excess bond return and presented statistical evidence in favor of their model. Although

the emerging trend of combing financial forecasting and machine learning has led financial

econometrics to a new direction, forecasting yield curve using recurrent neural networks still

seems to be a missing part in the existing literature.

In this paper, I proposed a new application of recurrent neural network in yield curve

forecasting. In particular, I compare several forecasting methods including random walk and

dynamic Nelson Siegel model from [25] with my newly proposed recurrent neural networks

in this paper.

The rest of the paper proceeds as follows. In the next section, I provide an introduction to

the neural networks I used in this paper. The model setting of [25] and other methodologies

are also presented in section 3. A detailed description of the data and empirical analyses are

in section 4. In the end, I offer final discussions and conclude the paper.
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3.3 Dynamic Nelson-Siegel Model and Neural Networks

3.3.1 Dynamic Nelson-Siegel Model

The Dynamic Nelson-Siegel (DNS) method was proposed by [25]. The model extends

the work of [67] and integrates the dynamic features into it. This allows the model to use

past data and forecast forward. The setting of the model is the following:

Assuming a cross-sectional model for yield curve at time t

yt(τ) = β1,t + β2,t(
1− e−λτ

λτ
) + β3,t(

1− e−λτ

λτ
− e−λτ ) (13)

yt is the yield rate. τ represents the length of the interest rate we consider and can be 1

month, 2 months, 1 year, 30 years...etc. The three βs can be interpreted as three latent

dynamic factors and {1, 1−e−λτ
λτ

, 1−e−λτ
λτ

− e−λτ} are the loadings on those factors. λ is a

macroeconomic parameter and can be calibrated with other macroeconomic models. In this

paper, I follow the setting of [25] and let λ = 0.0609

The first stage of forecasting is a simple ordinary least square estimation. The model fits

the historical data and estimates {β1,t, β2,t, β3,t} for each time point t. Once the estimated

{β̂1,t, β̂2,t, β̂3,t} are generated from the model, we proceed to the second stage.

In the second stage, an first-order autoregressive model is used to forecast the βs. Again,

we conduct another ordinary least square estimation to get estimates ĉi, γ̂i of ci, γi from

β̂i,t = ci + γiβ̂i,t−h

and forecast β̂i,t+h using

β̂i,t+h = ĉi + γ̂iβ̂i,t

After these steps, the forecast ŷt+h(τ) is formed by plugging in {β̂1,t+h, β̂2,t+h, β̂3,t+h}.

And we get

ŷt+h(τ) = β̂1,t+h + β̂2,t+h(
1− e−λτ

λτ
) + β̂3,t+h(

1− e−λτ

λτ
− e−λτ ) (14)
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From the above procedures, we can see that the model from [25] is both flexible and

parsimonious. There are several advantages of the model. The number of parameters is

relatively small in this setting and it makes estimations less computationally intense. The

model can also fit the historical yield curve very well with the flexibility of exponential

loadings. To forecast forward, the setup is just another first order autoregressive regression

and can be easily conducted. The dynamic Nelson-Siegel model is also more interpretable

compared to ARIMA model. Since the latent factors can be interpreted as a constant term,

a slope term, and a curvature term, the model also tells us about the relative importance

of short-term and long-term interest rates and can help us understand the current situation

of government bonds markets. The forecasting results of dynamic Nelson-Siegel model is

shown in section 4.

3.3.2 Recurrent Neural Networks

A recurrent neural network (RNN) is an assumption-free method, and the model sim-

ply learns functional forms from data in its training stage. The similarities and differences

between RNN and time series econometrics make them comparable and can help us under-

stand what would be meaningful applications of a recurrent neural network in the field of

forecasting. Among the recurrent neural networks, Long Short-Term Memory (LSTM) Neu-

ral Network, a special type of them is widely used in solving the task of machine translation

and language parsing. Recently, LSTM also becomes one of the most popular candidates

when scholars attempt to use machine learning in time series forecasting because of its ability

to capture useful information and forget unnecessary noises from the historical data. In this

paper, the possibility of applying LSTM to yield curve forecasting is explored.

3.3.2.1 Simple RNN

Before introducing LSTM, a common structure of a recurrent neural network is presented

first. A recurrent neural network takes an input sequence {xt} and feeds elements of {xt}

into the network one at a time. Each time a xt goes into the network, xt is combined with

previous hidden state st−1 to construct a new hidden state st. With the new hidden state,
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the network generates an output ot of time t with st.

The details of the computation in a RNN are the following:

st ∈ RI , xt ∈ RP , ot ∈ RK

sti = f(
P∑
j=1

Ujixtj +
I∑
j=1

Wjist−1j + bi), i = 1, 2 . . . I

otk = g(
I∑
j=1

Vjkstj + ck), k = 1, 2 . . . K

A more compact way to write the equations above is:

st = f(Uxt +Wst−1 + b)

ot = g(V st + c)

The hidden state st is a real vector in a I-dimensional space. Input xt is a P -dimensional

vectors and output ot is a K-dimensional vector. When input xt and previous hidden state

st−1 go into the RNN, they interact with coefficient matrices U and W . Each xtj in vector

xt is weighted by Uji, and st−1j is weighted by Wji. In the end, those terms are summed

up with a constant term bi and go through a function f to create the ith element of a new

hidden state as sti . At time t, each element stj in the hidden state vector st is weighted

by Vjk and combined with a constant term ck. The summation of weighted stj and ck is

then transformed by a function g to create the output ot. The above description of RNN is

visualized as a graph by [59] as figure 5.

Figure 5: Recurrent Neural Network
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In my RNN, f and g are smooth functions with first and second derivatives. The elements

in coefficient matrices U , W and V are the parameters to be estimated. When it comes to

estimate the parameters, a loss function needs to be set up. In my application, I choose

mean square errors of my forecasts as the loss function. In the training stage, parameters

can be estimated with stochastic gradient descent mechanism since the derivatives of f and

g exist.

3.3.2.2 LSTM

A LSTM neural network is built on simple RNN and was originally designed to solve the

gradient vanishing and explosion problem of simple RNN. A LSTM makes further assump-

tions on the functional forms of f in previous section. It consists of five parts: the input

gate, output gate, forget gate, memory cell and visible state. Here I follow the notation from

[61] and show their exact forms as the following:

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊗ ct−1 + it ⊗ c̃t

ht = ot ⊗ tanh(ct)

Here, Wf, Wi, Wo, Wc ∈ Rh×d and Uf , Ui, Uo, Uc ∈ Rh×h are the coefficient matrices. bf , bi,

bo, bc ∈ Rh are constant vectors. Moreover,

xt ∈ Rd: input vector to the LSTM unit

ft ∈ Rh: forget gate’s activation vector

it ∈ Rh: input/update gate’s activation vector

ot ∈ Rh: output gate’s activation vector

ht ∈ Rh: hidden state vector, also known as output vector of the LSTM unit. This is the

st in previous section
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c̃t ∈ Rh: cell input activation vector

ct ∈ Rh: cell state vector

Figure 6: LSTM

Although these formulas seem very complicated, the above computations can be visual-

ized into simpler pieces in figure 6 from [28]. In figure 6, we can consider the big box as the

functions f and g in the previous section and the inputs of the box are only ct−1, ht−1 and

xt. The most important innovation of LSTM is the forget gate ft. By choosing appropriate

parameters in Wf and Uf , the problem of having vanishing or exploding gradients is greatly

alleviated. More details of gradient problems are in [32] and [74]. To sum up, although

LSTM uses an innovative and complicated way to solve the gradient problems, the structure

is still the same as the simple RNN in previous section. In each time step, new input xt

is combined with previous hidden state ht−1 to create new hidden state ht and output ot

through some potential nonlinear functions f and g.

3.3.2.3 Dual-Stage Attention-Based Encoder and Decoder

Before going into the actual model of this paper, another important structure, encoder

and decoder, is introduced in this subsection.
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Since there is no restriction on functional forms when training a RNN, we cannot guar-

antee the convergence of the model. Even if the model can converge, it may takes too long to

achieve the goal. Thus, if we can utilize some prior knowledge about yield curve forecasting

from previous literature, it could potentially be very helpful.

In [25], they showed the hidden states βt are highly correlated with a constant level, slope

and curvature of the yield curve. Moreover, when doing a principal component analysis on

yield curve yt(τ), the first three components are basically the three elements in βt. By using

this information, I was inspired to use an encoder-decoder architecture in my model.

An encoder-decoder architecture takes in data and transforms the data into lower di-

mensional features by using a encoder. With the lower dimensional features, we can decode

the data by going through another decoder. This structure aims to find a lower dimensional

representation of the data without losing important features of the data. In that sense, it

is similar to principal component analysis and can be considered as a nonlinear PCA. The

encoder-decoder structure is visualized as figure 7 from [66].

The encoder-decoder neural network is also used by many other researchers in finance

and macroeconomics recently. In [35], they proposed usage of an encoder to incorporate

information from other variables with historical returns of assets to improve their pricing

accuracy. In [21], an encoder-decoder architecture is used to improve the forecast of United

States unemployment rate.

Figure 7: Encoder and Decoder

In my model, I use an encoder-decoder structure proposed by [76], which add two atten-

tion mechanisms into a two layered LSTM.
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More details about this attention-based encoder and decoder are provided in the ap-

pendix.

3.3.2.4 Structure of the Final Model

In this section, I integrate all the tools in previous discussions and describe the model

structure of this paper.

The first part of my model is a first-stage estimation of βs as the case in [25]. All yield

rates yt are compared with the output ŷt by calculating mean square errors. Mean square

errors are set up as the loss function and the estimation is conducted to minimize the mean

square errors. The goal for this step is to encode yield rate into lower dimensions as hidden

states.

The second part of the model is a dual-stage encoder and decoder similar to [76] that

takes in hidden states (βs) from previous steps and generates outputs through the neural

network as equation (3). The outputs of the dual-stage LSTM can be considered as forecasts

of future hidden states. The forecast of future hidden states is then fed into equation (2) to

create final forecasts. A loss function using mean square errors between the true yield rates

and the forecasts is applied in the training stage, and stochastic gradient descent algorithm

is conducted to minimize the mean square errors.

The structure of my model is visualized in figure 8, and figure 9. The training and testing

process is summarized in algorithm 1.
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Figure 8: Final Model for k-period Ahead Forecasting

Figure 9: An Example of Dual-Stage Encoder and Decoder
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Algorithm 1: Forecasting k-period ahead yield rate

Initialize all parameters;

Estimate equation (1) to get the hidden states (βs)

while forecast for the training set does not converge do

plug in βt−k and yt−k into the dual-stage encoder and decoder to get β̂t;

plug in β̂t into equation (2) to get ŷt;

calculate loss (mean-squared errors) from yt and ŷt;

minimize loss function by doing stochastic gradient descent;

update parameters of the dual-stage encoder and decoder;

if meet convergence criterion then

break the loop;

end

end

fix parameters of dual-stage encoder and decoder;

conduct out-of-sample forecasting for yt+k based on the trained model

3.4 Empirical Analysis

3.4.1 Data Source

The main source of the data in this paper is constant maturity zero coupon Treasury

yields provided by [60]. In their paper, a non-parametric kernel-smoothing method with a

novel adaptive bandwidth was used to construct more reliable yield rates. The dataset is

provided on their website 1 and the yield curve data is daily from June 14, 1961 to December

31, 2019. This novel dataset consists of yield rates with 360 different maturities in 14000

transaction dates. The size of this data allows me to apply complex neural network for

my forecasting tasks with more confidence since training neural network requires estimating

many more parameters than traditional time series methods and needs a larger sample size.

1https://sites.google.com/view/jingcynthiawu/yield-data
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3.4.2 Forecasting Results

In this section, I show out-of-sample forecasts that are 120-transaction-day-ahead (6-

month ahead) or 240-transaction-day-ahead (1-year ahead) for yield rates with maturities

of 3 months, 12 months, 36 months, 60 months and 120 months from 1994/01 to 2000/12

and from 2015/01 to 2019/12. The gap between two neighboring forecasts is 20 transaction

days. The forecast-accuracy measure used here is root-mean-square error (RMSE) and the

results are shown in table 16 to 21. Evolution of cumulative RMSEs and forecast errors for

each period are shown in the appendix.

In the previous study (25), the forecast is conducted with monthly data from 1994/01

to 2000/12. Thus, the first set of forecasts in this section serves as a robustness check

of Diebold and Li’s results and provides comparison between my proposed model and the

dynamic Nelson Siegel (DNS) model. The second set of forecasts works as another evaluation

of my model with a more recent interest rate data.

From now on, the proposed model in this paper will be called LSTM for convenience.

The first set of results for 1994/01 to 2000/12 is presented in table 16 to table 17. In table

16, we can see that for 6-month ahead forecasting, LSTM model performs slightly better

than both random walk and the DNS model except for the 3-month maturity one. To check

if the forecasts of LSTM are statistically significantly better, I conduct the Diebold-Mariano

test (26) in table 18. The Diebold-Mariano test shows that in some maturities, LSTM indeed

performs better than the DNS model and random walk. For 12-month ahead forecasting,

LSTM performs better than random walk and the DNS model in all maturities, and the test

in table 18 also confirms the good performances of LSTM are statistically significant. These

results are consistent with what we see in [25] for the DNS model. Moreover, the results

show that LSTM performs better than the DNS model in 1994-2000.

In table 19, we see the results for 6-month ahead forecasting from 2015/01 to 2019/12.

For most maturities, out-of-sample RMSEs for LSTM are worse than random walk. On the

other hand, the DNS model is obviously worse than the other two models for most maturities.

This result is very different from previous findings in [25]. In their paper, they showed that

the DNS model has significantly better out-of-sample forecasts than random walk in 1994/01
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Table 16: Out-of-sample 6-month-ahead Forecasting Errors

Maturity(τ) Mean Std. Dev. RMSE

Random Walk

3 months -0.2060 0.5507 0.5880

12 months -0.1980 0.7241 0.7506

36 months -0.1283 0.8456 0.8553

60 months -0.0790 0.8237 0.8274

120 months -0.0161 0.7166 0.7168

DNS

3 months -0.0224 0.7973 0.7976

12 months -0.3252 0.8195 0.8816

36 months -0.2294 0.8180 0.8496

60 months 0.0178 0.7823 0.7825

120 months 0.1905 0.6860 0.7120

LSTM with attention encoder and decoder

3 months -0.2259 0.6148 0.6550

12 months -0.3097 0.6707 0.7387

36 months -0.1117 0.7263 0.7348

60 months 0.0256 0.7278 0.7282

120 months 0.0838 0.6877 0.6928
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Table 17: Out-of-sample 12-month-ahead Forecasting Results

Maturity(τ) Mean Std. Dev. RMSE

Random Walk

3 months -0.3880 0.9005 0.9804

12 months -0.3872 1.0876 1.1544

36 months -0.2550 1.1940 1.2209

60 months -0.1533 1.1483 1.1585

120 months 0.0128 1.0070 1.0071

DNS

3 months -0.2060 0.9982 1.0192

12 months -0.4815 1.0032 1.1128

36 months -0.2260 0.9772 1.0030

60 months 0.1229 0.8972 0.9055

120 months 0.9901 0.7557 0.9136

LSTM with encoder and decoder

3 months -0.3191 0.8243 0.8840

12 months -0.4042 0.8495 0.9407

36 months -0.2108 0.8734 0.8984

60 months -0.0770 0.8707 0.8741

120 months -0.0232 0.8455 0.8458
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to 2000/12. However, it is not the case here in 2015/01 to 2019/12. On the other hand,

although LSTM does not forecast better than random walk in most maturities, it performs

much better than DNS. In table 21, the Diebold and Mariano test also confirms that random

walk performs the best and the DNS model forecast the worst for 6-month ahead forecasting

in 2015 to 2019.

Table 18: Out-of-sample Forecast Accuracy Comparisons

Maturity(τ) Against RW Against DNS Against RW Against DNS

(6-month horizon) (6-month horizon) (12-month horizon) (12-month horizon)

3 months 1.081 -2.603∗ -1.423 -1.906∗

12 months -0.171 -2.372∗ -2.796∗ -2.775∗

36 months -1.796∗ -2.280∗ -4.485∗ -1.568

60 months -1.747∗ -1.410 -5.034∗ -0.419

120 months -0.519 -0.492 -3.499∗ -0.721

I present Diebold–Mariano forecast accuracy comparison tests of the LSTM model forecasts

against those of the random walk model (RW) and the dynamic Nelson Siegel model (DNS).

The null hypothesis is that the two forecasts have the same mean squared error.

Negative values indicate superiority of the LSTM model forecasts, and asterisks

denote significance relative to the asymptotic null distribution at the 10 percent level.

For 12-month-ahead forecasting results in table 20, LSTM preforms better than both

random walk and DNS model in all maturities in terms of RMSEs. When checking the

Diebold-Mariano test results in table 21, LSTM is statistically significantly better than

random walk in 3-month, 36-month and 120-month forecasts. For the test against DNS,

LSTM is also significantly better than DNS in all maturities.
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Table 19: Out-of-sample 6-month-ahead Forecasting Errors

Maturity(τ) Mean Std. Dev. RMSE

Random Walk

3 months -0.1793 0.3142 0.3617

12 months -0.1588 0.3599 0.3934

36 months -0.0607 0.4484 0.4525

60 months 0.0017 0.4794 0.4794

120 months 0.0588 0.5005 0.5039

DNS

3 months -0.0752 0.8415 0.8449

12 months -0.2194 0.8814 0.9083

36 months -0.0024 0.8547 0.8547

60 months 0.1426 0.7713 0.7843

120 months 0.2800 0.6577 0.7149

LSTM with attention encoder and decoder

3 months 0.0312 0.3479 0.3492

12 months 0.0096 0.4508 0.4509

36 months 0.1587 0.5431 0.5658

60 months 0.1375 0.5617 0.5783

120 months 0.0289 0.5637 0.5644
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Table 20: Out-of-sample 12-month-ahead Forecasting Errors

Maturity(τ) Mean Std. Dev. RMSE

Random Walk

3 months -0.4101 0.4301 0.5943

12 months -0.3860 0.5068 0.6371

36 months -0.2057 0.6248 0.6578

60 months -0.0682 0.6264 0.6301

120 months 0.0774 0.6211 0.6259

DNS

3 months -0.1816 0.6922 0.7157

12 months -0.4377 0.7422 0.8617

36 months -0.1871 0.8905 0.9100

60 months 0.0814 0.8494 0.8533

120 months 0.9709 0.7679 0.8432

LSTM with encoder and decoder

3 months -0.3026 0.4725 0.5611

12 months -0.2864 0.5543 0.6239

36 months -0.0464 0.5907 0.5925

60 months -0.0074 0.5689 0.5689

120 months -0.0471 0.5462 0.5483
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Table 21: Out-of-sample Forecast Accuracy Comparisons

Maturity(τ) Against RW Against DNS Against RW Against DNS

(6-month horizon) (6-month horizon) (12-month horizon) (12-month horizon)

3 months -0.697 -4.294∗ -1.962∗ -4.993∗

12 months 2.816∗ -5.239∗ -0.516 -7.177∗

36 months 3.098∗ -4.284∗ -1.672∗ -6.678∗

60 months 2.556∗ -3.626∗ -1.424 -4.035∗

120 months 2.054∗ -2.601∗ -1.940∗ -3.041∗

I present Diebold–Mariano forecast accuracy comparison tests of the LSTM model forecasts

against those of the random walk model (RW) and the dynamic Nelson Siegel model (DNS).

The null hypothesis is that the two forecasts have the same mean squared error.

Negative values indicate superiority of the LSTM model forecasts, and asterisks

denote significance relative to the asymptotic null distribution at the 10 percent level.

3.5 Discussion and Conclusion

From the out-of-sample forecasting, we can see the possibility of having a better fore-

casting accuracy in terms of RMSE by using recurrent neural networks, especially for the

forecasts of longer horizons. Although the forecast results show that LSTM may not al-

ways performs better than random walk, it usually gives more precise forecasts comparing

to the DNS model. In addition, the forecast from LSTM still inherits most of the theoretical

properties from the DNS model. Moreover, since the model I propose in this paper is a gen-

eralization of the original DNS model, imposing the no-arbitrage conditions in the previous

literature (19) on my model is also feasible. The reasons above make LSTM a preferred

option when doing DNS-type of yield curve forecasting.

The proposed forecasting model in this paper can be seen as a “hybrid” model, which

incorporates the existing theoretical frameworks in financial forecasting with models in ma-

chine learning, rather than just using pure machine learning methods. The methodology of

using a mixture of traditional models and machine learning is also prospering in many other
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fields and is proven to give better performance in out-of-sample forecasting (49).

To sum up, this paper shows how recurrent neural network can carry similar theoretical

properties from previous financial econometrics literature while improving the forecasting

accuracy. Further understanding about how we can incorporate other desirable properties

from financial theories with this model can help us link it closer to traditional financial

theories.
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4.0 Appendix

4.1 Attribution Bias on Online Reputation Systems

4.1.1 Graphs for Regression Discontinuity

Table 22: Summary Statistics for All Users

Obs Mean Std Dev Min Max

Reviewer’s Rating 20897 3.839690 1.367365 1 5

Number of Fans 20897 10.964588 55.844576 0 2383

Written By an Elite or Not 20897 0.18778 0.390544 0 1

Good feedback for a specific review 20897 2.144040 8.234336 0 565

Total Reviews for a Restaurant 20897 369.869694 377.851384 101 3415
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Figure 10: Residual Plot of Equation (5)
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Figure 11: Discontinuity Plot for the Placebo Test
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Figure 12: Discontinuity Plot of Normalized Ratings with the Optimal Bandwidth
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4.1.2 More Robustness Checks

Table 23: Ordered Probit Regression Results of Reference-Dependent Behaviors

(1) (2) (3) (4)

Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating

RD -0.5399∗∗∗ -0.0162 -0.4858∗∗∗ -0.046

(0.0342) (0.024) (0.076) (0.0533)

diff 7.023302 4.2489 -1.57811 11.0434

(5.3853) (3.934) (11.9684) (8.7209)

Controls Yes Yes Yes Yes

Observations 20897 30955 3924 5888

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the estimation with all users

(2) is the placebo test for (1) with imaginary rounding thresholds

(3) includes only elite users.

(4) is the placebo test for (3) with imaginary rounding thresholds
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Table 24: Ordered Probit Model with the Optimal Bandwidth (0.056)

(1) (2) (3) (4)

Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating Reviewer’s Rating

RD -0.4748∗∗∗ 0.0001 -0.4451∗∗∗ 0.0059

(0.0061) (0.0052) (0.0137) (0.012)

diff 1.3834∗∗∗ 0.8421∗∗∗ 1.2576∗∗∗ 0.7636∗∗∗

(0.0894) (0.0814) (0.1992) (0.1806)

Controls Yes Yes Yes Yes

Observations 651775 714161 123679 135724

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the estimation with all users

(2) is the placebo test for (1) with imaginary rounding thresholds

(3) includes only elite users.

(4) is the placebo test for (3) with imaginary rounding thresholds
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4.2 Hope Hurts: Attribution Bias in Yelp Reviews

4.2.1 Cross-Classified Multilevel Models

Figure 13: Comparison between Cross-Classified Multilevel Model and Multilevel Model

In this figure, R represents restaurants, and C stands for consumers. A square with

number 1 shows that a consumer went to the restaurant on a special occasion. A 0 means

that a consumer went there on a non-special occasion. In cross-classified multilevel models,

consumers may write reviews for several restaurants on different occasions, and there is no

clear hierachy between restaurants and consumers. In normal multilevel models, customers

only write one review for one restaurant and the restaurant includes all the reviews of those

customers.
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4.2.2 Distribution of Elites/Non-Elites

Table 25: The Distributions of Ratings of Elites/Non Elites

(1) (2) (3) (4) (5)

1 star 2 star 3 star 4 star 5 star

Non-elite in the sample 13.93% 8.64% 8.92% 17.77% 50.75%

Yelp elite in the sample 4.73% 6.48% 14.12% 32.00% 42.67%

Population Distribution 17% 7% 8% 17% 51%

This table shows the elite/non elite rating distributions of the sample of our analyses

and the population distribution on Yelp

4.2.3 Honest Causal Tree

This subsection shows the estimation results of the heterogeneous treatment effects for

each subpopulation by causal tree algorithm (3). In order to avoid overfitting, which means

the calculated estimation may not be generalized to the population, we perform the honest

causal tree algorithm (3). The honest approach divides the data into two parts, the splitting

subsample and the estimating subsample. The splitting subsample is used to construct

the partition and build a causal tree and the estimating subsample to estimate unbiased

treatment effects for each subpopulation. In this algorithm, we build a causal tree to minimize

−τ(x; Π)2 , where τ(x; Π) = E(Y (1)−Y (0)|x) ∈ l(x; Π)). Here Y (1)−Y (0) is the treatment

effect, Π is a tree partition and l(x; Π) denotes the leaf l ∈ Π such that x ∈ l.

The pruned honest casual tree is displayed below. Obviously, average stars, reference

point, and whether the user belongs to the Yelp Elite all influence the treatment heterogene-

ity. This output resembles our previous results generated by econometric models. We also

take a closer look at the heterogeneous treatment effects for Yelp elites/non-elites. When
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the user is not a Yelp elite and the average star of the restaurant is below 4.4, the effect

of negative disconfirmation (of expectation) is relatively strong and statically significant.

However, if a user belongs to the Yelp elite squad, the effect of negative disconfirmation

becomes much smaller, and is non-significant. The treatment heterogeneity of Yelp elites is

detected again by this method: compared with non-elites, these Yelp elites suffer less from

this cognitive bias.

Figure 14: Results of Honest Causal Tree
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Table 26: Casual Tree Estimation Results

(1) (2) (3) (4) (5)

leaf 1 leaf 2 leaf 3 leaf 4 leaf 5

Treatment effect of Special Occasion -0.2936 -0.2145 -0.2137 -0.1829 -0.0761

(0.027) (0.066) (0.078) (0.076) (0.069)

This table shows the treatment effects of 5 terminal leaves from left to right and standard errors

are in the parenthesis
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4.2.4 Censored Least Absolute Deviations Estimators

Table 27: Results of Special Occasion Effect on Repeated Reviews for Tobit Models

(1)

Reviewer’s rating

SpecialOccasion -0.2489∗∗∗

(0.011)

Controls Yes

Observations 12632

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the CLAD result with controls for business average ratings

, reference points and visit times
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4.2.5 Ordered Logit Estimation Results

Table 28: Ordered Logit Results of Special Occasion Effect on Repeated Reviews

(1) (2) (3) (4)

Reviewer’s rating Reviewer’s rating Reviewer’s rating Reviewer’s rating

SpecialOccasion -0.2354∗∗∗ -0.2672∗∗∗ -0.1943∗∗∗ -0.1782∗∗∗

(0.033) (0.033) (0.014) (0.045)

Observations 12632 12632 12632 12632

standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

(1) presents the OLS result without any controls

(2) shows the OLS result with fixed effects for different rating ranges

(3) shows the OLS result with column 2’s fixed effect and controls for repeated visits

(4) adds potential reference points and more control variables
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4.2.6 Balance Check for Propensity Score Matching

Figure 15: Distribution of Propensity Scores

4.3 From Econometrics to Machine Learning: Application of Recurrent

Neural Networks on Yield Curve Forecasting

4.3.1 Dual-Stage Attention-Based Encoder and Decoder

Attention mechanism is a special structure which puts extra emphases on certain inputs

or particular parts of a neural network by reweighting the coefficient of those elements. It

is used more and more often in machine learning, especially in fields like image captioning

(86) and document classification, to improve the performance of models.

In [76], the authors proposed a dual-stage encoder-decoder model to improve the time-

series forecasting performance of nonlinear autoregressive exogenous models. Inspired by

theories of human attention in psychology, they added two attention mechanisms, input

attention and temporal attention, in a encoder-decoder structure and showed that their dual-
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Figure 16: Distributions Before and After Matching

stage attention based encoder-decoder network peformed better than traditional nonlinear

autoregressive exogenous models.

Following their work, I extend the dual-stage attention based encoder and decoder to

incorporate the case with no exogenous varialbe in my forecasting model. Moreover, the

extension allows me to forecast multidimensional variables rather than just univaraite cases

in the original paper.

The dual-stage attention based encoder-decoder network is based on the LSTM model I

show in section 3.3.2.2: Considering two LSTMs and let one be an encoder and the other be

an decoder.

In the encoder, the hidden state, ht, and output vector, Ot, evolve in the following way:

ht = f1(ht−1, ˜xt−1)

Ot = g1(ht)

g1 is a differentiable activation function and the structure of the function f1 is:

ft = σ(Wf ˜xt−1 + Ufht−1 + bf )
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it = σ(Wi ˜xt−1 + Uiht−1 + bi)

ot = σ(Wo ˜xt−1 + Uoht−1 + bo)

c̃t = tanh(Wc ˜xt−1 + Ucht−1 + bc)

ct = ft ⊗ ct−1 + it ⊗ c̃t

ht = ot ⊗ tanh(ct)

Here, Wf, Wi, Wo, Wc ∈ Rh×d and Uf , Ui, Uo, Uc ∈ Rh×h are the coefficient matrices. bf ,

bi, bo, bc ∈ Rh are constant vectors. Moreover,

x̃t ∈ Rd: reweighted input by the input attention mechanism

ft ∈ Rh: forget gate’s activation vector

it ∈ Rh: input/update gate’s activation vector

ot ∈ Rh: output gate’s activation vector

ht ∈ Rh: hidden state vector

c̃t ∈ Rh: cell input activation vector

ct ∈ Rh: cell state vector

The input attention mechanism works on the original input, xt, and transforms xt to x̃t

in the following way: Let the k-th component of the input series xk = (xk1, x
k
2, ..., x

k
T )ᵀ ∈ RT

and let

ekt = vᵀe tanh(We[ht−1; ct−1 + Uex
k] + be)

αkt =
exp(ekt )∑d
i=1 exp(e

i
t)

where ve ∈ RT , We ∈ RT×2h, and Ue ∈ RT×T . Here αkt works as a new weight for xkt and the

transformed x̃t = (α1
tx

1
t , α

2
tx

2
t , ..., α

n
t x

n
t )ᵀ. After the input attention mechanism, we put x̃t

back to the LSTM and get the hidden-state vector H = {h1, h2, ..., hT+1} from the encoder.
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After the encoder, the hidden-state vector H is fed into the decoder. The decoder is

another LSTM network with a temporal attention mechanism. In the decoder, the hidden

state, h′t, and output vector, O′t, evolve similarly as the encoder:

h′t = f2(h
′
t−1, ˜yt−1)

O′t = g2(h
′
t)

g2 is a differentiable activation function and the structure of the function f2 is:

f′t = σ(Wf′ ˜yt−1 + U ′fh
′
t−1 + b′f )

i′t = σ(W ′
i ˜yt−1 + U ′ih

′
t−1 + b′i)

o′t = σ(W ′
o ˜yt−1 + U ′oh

′
t−1 + b′o)

c̃t
′ = tanh(W ′

c ˜yt−1 + U ′ch
′
t−1 + b′c)

c′t = f ′t ⊗ ct−1 + i′t ⊗ c̃t′

h′t = o′t ⊗ tanh(c′t)

Here, W ′
f , W

′
i , W

′
o, W

′
c ∈ Rp×3 and U ′f , U

′
i , U

′
o, U

′
c ∈ Rp×p are the coefficient matrices. b′f ,

b′i, b
′
o, b
′
c ∈ Rp are constant vectors. Moreover,

yt ∈ R3: β̂s from the estimation of equation (1)

ỹt ∈ R3: reweighted β̂s by the temporal attention mechanism

f′t ∈ Rp: forget gate’s activation vector

i′t ∈ Rp: input/update gate’s activation vector

o′t ∈ Rp: output gate’s activation vector

h′t ∈ Rp: hidden state vector

c̃t
′ ∈ Rp: cell input activation vector

c′t ∈ Rp: cell state vector
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By taking the hts from the encoder with hidden states and cell states from the decoder, the

decoder uses a temporal attention mechanism to create coefficients for reweighting hts. Let

lit = vᵀh′tanh(Wh′ [h
′
t−1; c

′
t−1 + Uh′hi] + bh′), 1 ≤ i ≤ T + 1

γit =
exp(lit)∑T+1
j=1 exp(l

j
t )

Wh′ ∈ Rh×(2p), vh′ ∈ Rh, Uh′ ∈ Rh×h and bh′ ∈ Rh

Using the γit to reweight hi, we can get a context vector st

st =
T+1∑
i=1

γithi

Continuing with the context vector, we can get a reweighted yt−1 as

˜yt−1 = w̃[yt−1; st−1] + b̃

w̃ ∈ R3×(h+3) and b̃ ∈ R3

Finally, we use the hidden state of the decoder, ˜hT+1 and sT+1 and get the forecast ˆyT+1

as

ˆyT+1 = vy(Wy[h
′
T+1; sT+1] + bw) + bv

Wy ∈ Rp×(p+h), vy ∈ R3×p, bw ∈ Rp, bv ∈ R3
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4.3.2 Graph for Forecasting Errors

Figure 17: 6-month Ahead Forecast Errors of Each Period for 3-month Maturity from 1994

to 2000
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Figure 18: 6-month Ahead Forecast Errors of Each Period for 12-month Maturity from

1994 to 2000

Figure 19: 6-month Ahead Forecast Errors of Each Period for 36-month Maturity from

1994 to 2000
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Figure 20: 6-month Ahead Forecast Errors of Each Period for 60-month Maturity from

1994 to 2000

Figure 21: 6-month Ahead Forecast Errors of Each Period for 120-month Maturity from

1994 to 2000
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Figure 22: 6-month Ahead Forecast RMSEs for 3-month Maturity from 1994 to 2000

Figure 23: 6-month Ahead Forecast RMSEs for 12-month Maturity from 1994 to 2000
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Figure 24: 6-month Ahead Forecast RMSEs for 36-month Maturity from 1994 to 2000

Figure 25: 6-month Ahead Forecast RMSEs for 60-month Maturity from 1994 to 2000
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Figure 26: 6-month Ahead Forecast RMSEs for 120-month Maturity from 1994 to 2000

Figure 27: 6-month Ahead Forecast Errors of Each Period for 3-month Maturity from 2015

to 2019
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Figure 28: 6-month Ahead Forecast Errors of Each Period for 12-month Maturity from

2015 to 2019

Figure 29: 6-month Ahead Forecast Errors of Each Period for 36-month Maturity from

2015 to 2019
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Figure 30: 6-month Ahead Forecast Errors of Each Period for 60-month Maturity from

2015 to 2019

Figure 31: 6-month Ahead Forecast Errors of Each Period for 120-month Maturity from

2015 to 2019
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Figure 32: 6-month Ahead Forecast RMSEs for 3-month Maturity from 2015 to 2019

Figure 33: 6-month Ahead Forecast RMSEs for 12-month Maturity from 2015 to 2019
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Figure 34: 6-month Ahead Forecast RMSEs for 36-month Maturity from 2015 to 2019

Figure 35: 6-month Ahead Forecast RMSEs for 60-month Maturity from 2015 to 2019
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Figure 36: 6-month Ahead Forecast RMSEs for 120-month Maturity from 2015 to 2019

Figure 37: 12-month Ahead Forecast Errors of Each Period for 3-month Maturity from

2015 to 2019
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Figure 38: 12-month Ahead Forecast Errors of Each Period for 12-month Maturity from

2015 to 2019

Figure 39: 12-month Ahead Forecast Errors of Each Period for 36-month Maturity from

2015 to 2019
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Figure 40: 12-month Ahead Forecast Errors of Each Period for 60-month Maturity from

2015 to 2019

Figure 41: 12-month Ahead Forecast Errors of Each Period for 120-month Maturity from

2015 to 2019
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Figure 42: 12-month Ahead Forecast RMSEs for 3-month Maturity from 2015 to 2019

Figure 43: 12-month Ahead Forecast RMSEs for 12-month Maturity from 2015 to 2019
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Figure 44: 12-month Ahead Forecast RMSEs for 36-month Maturity from 2015 to 2019

Figure 45: 12-month Ahead Forecast RMSEs for 60-month Maturity from 2015 to 2019
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Figure 46: 12-month Ahead Forecast RMSEs for 120-month Maturity from 2015 to 2019
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