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Data Reliability Assessment based on subjective opinions

Danchen Zhang, PhD

University of Pittsburgh, 2021

In the big data era, numerous data fluctuates society and people’s life. These data come

from diverse sources, and various information can be inferred and extracted. However, data

quality usually cannot be guaranteed, and hence decision making with such unreliable data

may lead to considerable losses. Accurate data reliability assessment mechanisms can help

recognize the distrustful information and then filter unreliable data out.

In this work, I consider a novel approach to assess data reliability based on subjective

opinions. I structure the data propagation model in terms of data sources producing and

evaluating different statements. Next, I explore data history labels, value conflicts, and

uncertainty. For different combinations of those parameters, I consider common scenarios,

including handling fake news, truth discovery, data cleaning, as well as discovering cancer-

driving genes.

In my dissertation, I explore how to accurately assess data reliability and how to make

a decision based on evaluated reliability. I propose a series of subjective opinion based mod-

els to assess each scenario’s reliability and compare them with state-of-art models through

experiments on real-world data.
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1.0 Introduction

In this chapter, the background and motivation of this study are discussed in the first

section, including different data reliability assessment scenarios and Subjective Opinion based

data reliability representations. The problem statement is presented in Section 2, and then

I go through four research questions in Section 3. Lastly, I outline and summarize the

remaining work of this dissertation.

1.1 Background and Motivation

Data reliability has always been considered as a very important issue. Data come from

diverse sources, fluctuating our daily lives. People make decision based on the information

obtained from such data. However, data quality usually cannot be guaranteed, and hence

decision making with such unreliable data may lead to loss beyond estimation. For example,

in the 2016 US presidential election season, fake news about Hillary Clinton fluctuated

social media and had an indispensable effect on the election results. Accurate data reliability

assessment mechanisms can help people or machines recognize the distrustful information and

then filter unreliable data out. Afterward, people can make decisions with clean, consistent,

and reliable information.

In this study, I focus on the data reliability assessment and assume that data sources

provide values for various statements. Data sources may be unreliable, providing wrong

values, and also, the statement may be fake. This dissertation study aims to assess data

reliability accurately.

A Statement is composed based on an object or a fact. For example, given a restaurant,

a statement may be ”this restaurant is pricy”; given the fake news that Avril Lavigne died

in 2003, a statement could be ”this news is real.” When we doubt the correctness of the

statement, we say it has reliability issues.

Meanwhile, data sources provide values to statements, reflecting the data source’s
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Figure 1: Three sources provides different values to a statement.

opinion or stance, as shown in Figure 1. For example, source A says ”Yes, Avril died in

2003”, source B says ”No, she died in 2011”, and source C says ”No, she is alive”. The

values of a statement could be conflicting. It indicates that some data sources are providing

wrong values, and we say the data sources providing wrong values are unreliable. Also,

among the candidate values, we want to figure the most likely correct values.

Figure 1 illustrates the scenario with only one statement. In real-world scenarios, there

are usually many statements, and many data sources simultaneously providing values to

them, constructing a much more complicated network, as shown in Figure 2.

To sum up, in this study, I explore the following problems: (1) given multiple data

sources, which of them are reliable; (2) given the statements, which statements are correct;

(3) given conflicting values, which value is true. I address these questions to assess data

reliability in different scenarios, as explained in the next section.

1.1.1 Different data reliability assessment scenarios

In this section, I identify four different scenarios based on whether historical data is

provided or not, and whether values are conflicting, as shown in Table 1.

2



Figure 2: Different sources provide different values on multiple statements.

Table 1: Four different scenarios for data reliability assessment, and corresponding real-world

problems in this study.

No historical

statement labels

Has historical

statement labels

Single value
Scenario 1. E.g., find

cancer driver genes.

Scenario 2. E.g.,

fake news detection

Multiple values
Scenario 3. E.g., find

true book author list

Scenario 4. E.g., find

true city populations

3



In some scenarios, historical statement labels are provided. For example, with expert

manual annotation, we could know the news, ”Avril died in 2003”, is fake. With these

historical statement labels, algorithms could learn patterns of reliable and unreliable data,

and then predict the reliability of unknown data. On the other hand, in some situations,

historical statement labels are not provided. Then, we have to look for other evidences to

help differentiate reliable data and unreliable data.

In the meantime, values provided to one statement could be consistent or conflicting.

Take an example with conflicting values: several websites (sources) provide different depart-

ing times (conflicting values) for one flight. Conflicting values may have different types, i.e.,

numeric or categorical values. Take an example with consistent values: in a social network,

such as Twitter, people (sources) forward the news articles that they believe are real, and

we could say that the ”Action: Forward” are consistent values. We could regard consistent

values as the votes from providers to statements. Therefore, a robust framework that can

handle different types of values is needed.

Scenario 1: sources provide consistent values to statements, and historical state-

ment labels are not provided.

In this scenario, we could only observe data sources providing consistent values for state-

ments, and the values are more like ”votes.” Without historical statement labels differentiat-

ing reliable and unreliable data, we have to collect other kinds of evidence. We could assume

that the popularity indicates the reliability (unreliability, if votes mean negative support).

Sometimes, the assumption may not hold real-world problems, e.g., both fake news and real

news may have a large quantity of ”forwards” on social platforms. Without reading the

news content or labeled training data, it is unreasonable to decide news veracity based on

its popularity. Therefore, in Scenario 1, we need to collect reasonable background knowledge

that could help differentiate reliable data from unreliable data.

In this study, we will work on a real-world problem, finding the cancer driver gene, to

explore this scenario. Gene mutation randomly happens in chromosomes and could accumu-

late when people get older. Some gene mutations are cancer driver mutations that lead to

cancer, while other mutations are passenger mutations, which has nothing to do with cancer.

If a gene frequently mutates in cancer patients’ cell samples, especially among those who

4



have very few mutated genes, it is very likely to be a cancer driver gene.

The Cancer Genome Atlas (TCGA) is a landmark cancer genomics program, held by

National Cancer Institute and the National Human Genome Research Institute, recording

the patient gene mutation data over 33 cancer types (http://cancergenome.nih.gov/). We

will identify cancer driver genes based on the cancer patients’ gene mutation distribution

in TCGA. To be more specific, data sources are patients; for each gene, the corresponding

statement is ”gene ** is a cancer driver gene”; if a gene mutates in a patient cell samples, we

say the patient provides a value ”yes” to the corresponding statement. We illustrate such a

problem in Figure 3.

After data reliability assessed, we could rank statements by their reliability scores, but

deciding statement veracity could be challenging. Without labeled training data, we will

have to pick a heuristic strategy, such as selecting top N, or decide a threshold.

Figure 3: An example of sources providing consistent values. Cancer patients have mutation

on both cancer driver genes and not-related genes.

Scenario 2: sources provide consistent values to statements, and historical state-

ment labels are provided.

In this scenario, with historical statement labels, we could learn the characteristics and

patterns of reliable sources and unreliable sources. Then, based on source reliability, we

5



could predict the veracity of unlabeled statements.

Fake news propagation is an example of such a scenario. On social platforms, users

forward the news. Some users can identify fake news and do not forward them, while other

users are confused and forward many pieces of fake news. Please note when a user does

not forward the news, maybe he believes the news is fake, or maybe they think the news is

not interesting, or the news is not fed to his personalized account. Due to this reason, in

this study, we only consider ”forward” as a positive vote, and do not take ”no forward” as

a negative vote. This is why we do not consider the values as conflicting values. In such

a case, the statement about a piece of news could be ”this news is true,” data sources are

social platform users, and when they share the news, they provide value to the statement

that ”Yes, I agree that news is true.” Such an example scenario is illustrated in Figure 4.

Figure 4: An example of sources providing consistent values. In social media platforms,

users forward the news that they believe is real.

Scenario 3: sources provide conflicting values to statements, and historical state-

ment labels are not provided.

In this scenario, given one statement, the values from different sources may be conflict-

ing. The goal of data reliability assessment is to figure out the most likely value for the

statement, and then the false statement could be fixed with the predicted true value. With-

6



out labeled historical data, we usually assume that majority of sources are reliable, and the

value popularity implicates its truthfulness. Then the value receiving most support could be

selected as the true value.

An example is the conflicting book author lists in online bookstores. As shown in Figure

5, five bookstores provide different author lists for two books in their web-pages. The goal is

to accurately assess the reliability of the source and candidate values of each statement and

figure out the correct statements. Such kind of problems appears in a research area called

Truth Discovery.

Figure 5: An example of sources providing conflicting values. Online bookstores provide

different author list for two books.

Scenario 4: sources provide conflicting values to statements, and historical state-

ment labels are provided.

In this scenario, with historical statement labels, we should explore patterns of reliable

sources. Then later, based on assessed source reliability, we could predict the veracity of

unlabeled statements.

An example is the editing of city populations in Wikipedia. As we know, any people

can edit the wiki page (with modification approval), and there could be many different

population data provided to the same city. As shown in Figure 6, five editors provide city

7



populations for Pittsburgh and New York City, and we need to evaluate the editors’ and

population numbers’ reliability and figure out the real population for each city. The goal is

to accurately assess the reliability of the source and candidate values of each statement. A

subset of city populations are known, and we could predict the rest based on them.

Figure 6: An example of sources providing conflicting values. Wikipedia editors provide

different population data for two cities.

1.1.2 Subjective Opinion based data reliability representations

Data reliability assessment based on observed data without fully considering

data uncertainty.

When we measure data reliability, it is natural to use the probability to represent it,

such as the algorithm Accu from [Dong et al., 2009] . I.e., statement reliability could be

defined as the probability of being real; source reliability could be defined as the probability

of providing true values; given multiple conflicting values, value reliability could be defined

as the probability of being true. For example, if a source always provides true values, then

its reliability could be 100%.

8



In the area of fake news detection, truth discovery, and cancer driver gene discovery, the

majority of past studies are using probability based models, maximizing the existence prob-

ability of the given dataset. However, these probability based representation effectiveness

depends on the observed samples, and the possible uncertainty of the data is not taken into

account, which will be illustrated by the following two examples.

Figure 7: An example of data with uncertainty in fake news detection task.

Example 1. Figure 7 describes a simulated dataset in Scenario 2, where users share

real/fake news on social platforms, and we have a part of historical statement labels. User

1 is 100% reliable user, as he spreads only real news; User 3 is 50% reliable user, as he

spreads half real and half fake news; User 2 share three real news, and also share three other

news whose labels are unknown yet. This unknown news veracity leads to uncertainty in the

current data. For example, if news 5, 6, and 7 are all fake, then User 2 is as unreliable as

User 3; if they are all real, then User 2 is as reliable as User 1.

If we use probability to measure reliability on labeled data, then the probability of User

2 sharing real news is 100% (3/3), same as User 1; if we use weight to measure reliability

on labeled and unlabeled data, then User 2 weight could be 0.5 (3/6), same as User 3.

Compared with User 1 and 3, User 2 has a different situation. As the situation uncertainty

9



is not recorded, these reliability representations could not represent the whole information.

Example 2. Figure 8 describes a simulated dataset in Scenario 3, where sources

(providers) provide conflicting values to statements, and no historical statement labels are

provided. We could assume most providers have no malicious purpose, trying their best to

provide true values. Among the conflicting values, mean value, median value, and the most

popular value is very likely to be true.

Figure 8: An example of data with uncertainty in truth discovery task.

In this simulated example dataset, common sense tells us that the true value of Statement

2 is very likely to be 0.5, as ten sources vote 0.5, and the other candidate value 0.0 seems

to be an outlier. In terms of Statement 1, true value also has a chance to be 0.5, as four

sources vote for 0.5, and the average of the other six values is also 0.5. In such a case,

provider p11 provides ”true value” in Statement 1, and provider p12 provides ”true value”

in Statement 2. Then the traditional probability or weight based methods would give high

and same reliability scores for them. Then, it is hard to decide the true value for Statement

3, as two very reliable sources provide different values.

However, the situation of Statement 1 is more uncertain than that of Statement 2, as 0.4

and 0.6 have three votes respectively and have a chance of being true. The value variance

in Statement 1 is big, so p11 has a higher probability that it did not provide true value.

The above calculation is based on the assumption that the popularity wins and mainstream

sources win. In the real world, it does happen that minority wins. So, we should have a
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high uncertainty opinion towards p11. On the other hand, p12 is very likely to provide true

value. If we could consider such uncertainty, then in terms of Statement 3, maybe 0.5 from

p12 is more likely to be true than 0.1 from p11.

In summary, traditional probability and weight based models lose the information about

data uncertainty, and in turn, fail to characterise the data completely. In this dissertation

study, we aim to find a better representation to assess data reliability in different scenarios.

Subjective Opinions based data reliability assessment.

Subjective Opinions could represent the probability affected by the degrees of uncertainty,

i.e., express a person’s subjective belief about the truth of a statement with degrees of

uncertainty [Jøsang, 2016b]. To handle Subjective Opinions, Subjective Logic (SL) [Jøsang,

2016c] is used in this dissertation. A subjective opinion from a source p towards a statement

s can be represented by a triple ωp
s = {t, d, u}, with t, d, u ∈ [0, 1], and t+ d+ u = 1, where

t means trust, d means distrust, and u means uncertainty. Traditional probability could be

obtained as (t+u/2). When u = 0, t equals probability, indicating that given no uncertainty,

subjective opinion representation is same as in the probabilistic logic.

Then, when we decide about the statement veracity and select the most likely true values,

we could focus on trust t and distrust d. They represent our opinions with pure certainty.

On the other hand, the probability and weight based representations mix the certainty with

uncertainty. Thus, Subjective Opinion based decision making should be more accurate.

In Example 1, User 1 only shares real news, and our subjective opinion could be

ωI
User 1 is reliable = {1, 0, 0}; User 3 shares half real and half fake news, and our subjective

opinion could be ωI
User 3 is reliable = {0.5, 0.5, 0}; User 2 shares 3 real news, and 3 unknown

news, our subjective opinion could be ωI
User 2 is reliable = {0.5, 0, 0.5}. In this way, we could

easily observe the difference among the three users.

In Example 2, Statement 2 is relatively more certain than Statement 1. Though p11

and p12 give ”true value” respectively, I have different subjective opinions towards their

reliability, such as ωI
p11 is reliable = {0.4, 0, 0.6} and ωI

p12 is reliable = {0.91, 0, 0.09}. Then in

terms of Statement 3, since we trust more on p12, we may prefer 0.5 as the true value.

In this dissertation, we propose to use Subjective Opinion to represent our assessment
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for data reliability and expect this representation could have a better performance than

traditional probability and weight based representations. Therefore, we expect to predict

statement veracity and select true value more accurately.

SL is a calculus for Subjective Opinions, enabling us to manipulate the generated sub-

jective opinions [Jøsang, 2016c]. Two Subjective Logic operations are utilized in this study.

We have a subjective opinion towards a source, and the source recommends us with a value

with some degree of uncertainty, then ”recommendation operator” in Subjective Logic could

help us obtain our opinion towards the value. Also, when several sources provide value, we

need to fuse these many subjective opinions, and the Subjective Logic ”consensus operator”

could help combine them. They will be explained in Chapter 2.

1.2 Problem representation

Consider a dataset that contains a set of statements S = {s1, s2, ..., si, ..., sn}, and a set

of providers (sources) P = {p1, p2, ..., pj, ..., pm}. Each statement corresponds to an object,

which is not explicitly shown in the data. Data sources provide values to the statements,

and the value from a provider pj to a statement si is defined as vij. We have the following

mapping function:

f : P × S → V. (1)

Please note that vij = null means provider pj doesn’t provide values to statement si. Such a

dataset can be represented as a matrix, as shown in Table 2. The providers’ and the values’

reliability needs to be assessed, and the statements’ veracity needs to be predicted.

In terms of statements and providers, we have the following assumptions:

- data sources are independent of each other, i.e., while providing the values, a data

source does not reference or copy other sources’ values.

- statements are independent of each other, i.e., statements relationship, such as

similarity, conflict, and relatedness, are not considered.
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- majority data sources have no malicious purpose, i.e., providing false values de-

liberately.

In this dissertation, I explore how to map different scenarios into this problem repre-

sentation and how to more accurately assess the data reliability with Subjective Opinions

handling data uncertainties.

Table 2: The dataset is represented as a matrix, with n statements and m sources/providers.

p1 p2 p3 ... pj ... pm

s1 v11 v12 v13 ... v1j ... v1m

s2 v21 v22 v23 ... v2j ... v2m

s3 v31 v32 v33 ... v3j ... v3m

... ... ... ... ... ... ... ...

si vi1 vi2 vi3 ... vij ... vim

... ... ... ... ... ... ... ...

sn vn1 vn2 vn3 ... vnj ... vnm

1.3 Research questions

Research Question 1: How to assess data reliability when sources provide consistent values

to statements without historical data?

Research Question 2: How to assess data reliability when sources provide consistent values

to statements, and historical data are provided?

Research Question 3: How to assess data reliability when sources provide conflicting

values to statements, and historical data are not provided?

Research Question 4: How to assess data reliability when sources provide conflicting

values to statements, and historical data are provided?

For each of the above research questions, we explore the following questions:
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- What are the uncertainties in this data scenario?

- How to comprehensively record the uncertainty in the reliability representation?

- How to assess data reliability with such representation?

- Is such data reliability assessment more accurate than past models’?

1.4 Overview of the Chapter Structure

The dissertation includes seven chapters. Chapter 1 introduces the background and

motivation of this dissertation study, and also specific the four research questions. Chapter

2 introduces the related works. Chapter 3 to Chapter 6 details the proposed solutions for

each research question. Chapter 7 provides the conclusion.
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2.0 Related Works

In this chapter, we will first explore the area of data reliability assessment area, intro-

duce its history and recent works. Then, based on the real-world problems we will work

on, background knowledge and related works of three areas will be discussed, including fake

news detection, truth discovery, and cancer driver gene discovery. Also, as our data relia-

bility assessment is based on Subjective Opinions, the related works and more background

knowledge of it and Subjective Logic are considered.

2.1 Data Reliability Assessment

Data reliability has always been considered as a very important issue. Data come from

diverse sources, fluctuating our daily lives. People make decision based on the information

obtained from such data. However, data quality usually cannot be guaranteed, and hence

decision making with such unreliable data may lead to loss beyond estimation. For example,

in the 2016 US presidential election season, fake news about Hillary Clinton fluctuated

social media and had an indispensable effect on the election results. Accurate data reliability

assessment mechanisms can help people or machines recognize the distrustful information and

then filter unreliable data out. Afterward, people can make decisions with clean, consistent,

and reliable information.

Barlow et al., defines reliability as a quantified measure of uncertainty about a partic-

ular type of event [Barlow and Proschan, 1975]. For example, assume an event is ”source

A provide true values”, the reliability could describe our measure towards this event’s ve-

racity. Probability is a method to quantify the reliability [Bennett et al., 2003], and in this

dissertation, we propose to assess reliability with Subjective Opinions.

In the area of integrated databases, Zadorozhny and Grant [2016] classify the reliability

into internal reliability and external reliability. Internal reliability is about the value incon-

sistency without considering data sources. For example, in a population dataset, New York
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City’s population is bigger than New York State’s population, which is obviously inconsis-

tent. There are many studies working on the internal reliability assessment and correspond-

ing data inconsistency resolution, such as methods in [Dong and Naumann, 2009, Bleiholder

and Naumann, 2009, Bertossi, 2006, Bertossi and Chomicki, 2004, Destercke et al., 2011].

By the definition from [Zadorozhny and Grant, 2016], the reliability explored in this

dissertation is the external reliability, which is outside of the database and take the reliability

of the data sources into consideration. Such kind of external data reliability assessment plays

an important role in the Truth Discovery and Fake News Detection, and will be discussed

more in the following two sections.

Wireless Sensor Network (WSN) is another type of data structure and reliability assess-

ment is an important procedure to get good quality data [Jaggle et al., 2009]. In a WSN,

many sensor nodes collect data from the environment, and there is a reader could read data

from sensors. However, the communication of sensor-sensor and the sensor-reader may fail,

and the collected data reliability is not guaranteed. Hence, data reliability assessment is a

challenging topic in such a scenario. There are many models proposed, such as [Jaggle et al.,

2009, Chiu et al., 2001, Hardy et al., 2007, Shpungin, 2007].

Additionally, data reliability assessment are explored and discussed from other aspects.

Quinn et al. [2009] proposed a framework that allows user community to annotate their

trust towards the data and hence reliability is collected. Götzinger et al. [2017] deployed a

hierarchical agent-based system that classifies data reliability but using Fuzzy logic instead

of conventional Boolean values, and use it to enhance the Early Warning Score (EWS)

systems in health-care domain. Shcherbakov et al. [2005] proposed a method of employing

the principal component analysis (PCA) to assess cirrus cloud data reliability.

2.2 Truth discovery

In this section, we introduce the related works in Truth Discovery area. It mainly solves

the data conflict problem in data fusion by selecting the true value from multiple candidate

values for each statement, and accurate data reliability assessment is important [Li et al.,
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2016]. After reviewing the existing literature, I classify them into two categories: (1) single

true value truth discovery methods, (2) multiple true values truth discovery methods. In

this study, we focus on the first category with ”single true value”, which can be further

separated into five groups: (1) Bayesian based models, (2) web links analysis based models,

(3) information retrieval based methods, (4) crowd sourcing based models, (5) external

knowledge based models.

The first group is the early Bayesian based methods, which in the procedure usually gen-

erates a temporary true value used for parameter calculation. Dong et al. [2009], proposed

a method called Accuracy, which is calculated as the probability of each value being correct,

and average the confidence of facets provided by the source as the provider trustworthiness.

After that, they proposed the concept of Accuracy-similarity, which further considers the

similarity of two values. Then, Dong et al. [2012] proposed POPAccuarcy, which differs from

Accuracy by releasing the assumption that false value probability is uniformly distributed.

In [Dong et al., 2009, 2012] researchers also explored the data copying problem. Another

Bayesian method is the TruthFinder, proposed by Yin et al. [2008], which differs from Ac-

curacy by not normalizing the confidence score of each statement. Dong et al. [2015] further

proposed to learn the web source trustworthiness through a multi layer probabilistic model,

where they assume many extractors work on extracting facts from online web pages, and the

source in different extractors, should have a different trustworthiness.

The second group of methods is also Bayesian based methods, and more particularly, can

be called as probabilistic graphical model based methods. Zhao and Han [2012] proposed

Gaussian Truth Model (GTM), in which the data source reliability follows a Gaussian dis-

tribution, and value reliability follows a gamma distribution, as shown in Figure 9 (a). The

parameters are learned through EM. Pasternack and Roth [2013] proposed a similar model,

Latent credibility analysis (LCA), and additionally allows the data source to have a confi-

dence score on the data it provides, as shown in Figure 9 (b). Zhao et al. [2012] proposed

a similar graphical model, but define the reliability of data source by both sensitivity and

specificity, which evaluate the data source reliability on both true positive and true negative

values, as shown in Figure 9 (c). Also, it differentiates the data source’s value of agree

(provide the value), disagree (provide other value), and null.
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Figure 9: Different probabilistic graphical models in truth discovery.

This third group of methods are regarded as the optimization problem, which aims to find

the most appropriate trustworthiness score and value truth assignment to get optimization

under some constraints. Li et al. [2014a] proposed a confidence aware approach for truth

discovery (CATD) to minimize the distances between true value and fake values, and also

minimize the weight of data sources generating big errors. Li et al. [2014b] generalize CATD

by allowing the value to be heterogeneous, and distances between true value and fake values

can be calculated and aggregated from different dimensions. Rekatsinas et al. [2017] proposed

SLiMFast where data source weight is tuned to maximum the probability of the observed

data.

The forth group of methods are based on the web links analysis. Pasternack and Roth

[2010] proposed three methods: (1) AverageLog is a transformation of Hub-Authority algo-

rithm, with source trustworthiness being the averaged confidence score of provided values

multiplying the log of provided value count; (2) Investment, where the confidence score of

the value grows exponentially with the accumulated providers’ trustworthiness. (3) Pooled-

Investment, where the confidence score of the value grows linearly. Galland et al. [2010]

proposes 2-Estimates, which is a transformation of Hub-Authority algorithm, whose provider

trustworthiness is the average instead of the sum of the vote count. They further proposed

3-Estimates, which additionally considers the difficulty to get the true values.

The fifth group of methods are semi-supervised methods, which will utilize a subset of
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data with groundtruth. Yin and Tan [2011] proposed a semi-supervised reliability assessment

method, SSTF. It is basically a PageRank method assuming that there is a set of statements

having the true value, which will affect the result in the PageRank iteration. Mukherjee et al.

[2016] proposed TruthCore that use a small set of training data to construct an independent

reliable sources, starting from which the outliers are removed in each iteration to balance

the similarity among the sources. Pochampally et al. [2014] proposed a method to measure

the source precision and recall, and correlation (dependency) between sources, based on

which the value confidence score is computed. They used extra training data to calculate

the precision and recall.

Also, different from above mentioned method, a network embedding based method,

CASE, is proposed [Lyu et al., 2017]. It constructs a network by data sources and val-

ues they provide, and embed the network into a low dimensional vector space. The true

value will be the one who is most close to majority voting selected averaged embedding

vector.

In addition, in recent years, with the increasing popularity of online crowdsourcing plat-

form, truth discovery models are frequently used in this scenario to help pick the useful

information [Ouyang et al., 2016, Nguyen et al., 2017, Zheng et al., 2016, Chen et al., 2017,

Yin et al., 2017]. For example, people from crowdsourcing platforms provide different la-

bels for arguments, Nguyen et al. [2017] proposed a method to aggregate the arguments.

Ouyang et al. [2016] proposed a scalable and effective way to deal with the data fusion of

the crowdsourcing data in a large scale.

As mentioned above, there is a set of models working on multiple-truth-discovery prob-

lems. Wang et al. [2015] proposed an integrated Bayesian approach to the multi-truth-finding

problem. It consider the involvement of sets of values in claims, different implications of inter-

value mutual exclusion, and larger source profiles. Then, Wang et al. [2016] further improved

their method by taking the value implications into consideration (i.e., the data similarity),

and also replace the Bayesian model with a probabilistic graphical model, as the work in

[Zhao and Han, 2012]. Afterwards, Fang et al. [2017a,b] proposed a graph-based method,

SmartMTD, models and quantifies two types of source relations to estimate source relia-

bility precisely and to detect malicious agreement among sources for effective multi-truth
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discovery. We do not go deeper, as we only focus on single truth value problems.

Finally, we select 12 major methods, and compare them in Figure 10. From [Waguih and

Berti-Equille, 2014, Fang et al., 2017c, Li et al., 2012] we can know that, there is no ”one-

fits-all” approach that always beats others in all dataset. Further, according to [Waguih and

Berti-Equille, 2014, Fang et al., 2017c], groundtruth data of current datasets that are used to

evaluate and compare the methods are too sparse to generate statistically significant results.

The groundtruth in popular datasets, such as Book-Author, Flight, Movie, and Biography,

covers less than 10% objects in the dataset. In some scenarios, the groundtruth data is

even unfeasible. Therefore, when faced with a real scenario, it maybe safe to try several

methods, and construct a large enough validation dataset to select the fitting model(s), or

try to compare the methods through the way like [Fang et al., 2017c] without groundtruth

data.

Figure 10: An summary of 12 major methods in truth discovery area.
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2.3 Fake news detection

Several recent survey papers encompass the wide range of research devoted to fake news

including [Kumar and Shah, 2018, Shu et al., 2017a, Conroy et al., 2015, Chen et al., 2015,

Bondielli and Marcelloni, 2019]. The most important problem in this area is to automatic

detection. As mentioned in the previous section, there are different types of fake news and

there is also a close connection with rumours. So fake news detection techniques have a

substantial overlap with the detection of rumours, fake opinion, fake accounts, hoaxes, and

frauds. For that reason we include some algorithms from papers about those that can also

be used for fake news detection.

Fake news detection mainly use three kinds of information: (1) the content of news

articles, including word level, syntactic level, and semantic level information, (2) news prop-

agation by users on social networks, including user profiles, news profiles, spreading data,

etc, and (3) network structure extracted from news articles and social media. In most works,

detection is implemented by a classification model on different kinds of features.

Word level and syntactic level features of news articles are found to be the most effective

in many papers, such as models in [Rubin and Lukoianova, 2015] and [Wang, 2017]. Both

word and syntactic information are essential. The increasing popularity of neural networks

in natural language processing (NLP) has led to the extraction and use of semantic features

in fake news detection, such as the models in [Hassan et al., 2015, Potthast et al., 2017,

Pérez-Rosas et al., 2017, Ajao et al., 2018, Kochkina et al., 2018, Song et al., 2019, Zubiaga

et al., 2018].

From another aspect, many researchers explore the information from the social network

where the news is spread and to the people in the network. They focus on the news profile

features, such as the number of likes and propagation times, and user profile features, such as

the number of posts, registration age, and the number of followers. Many studies have found

that systems cannot detect fake news accurately if they only use social network features, so

they are usually used together with the content features, such as models in [Castillo et al.,

2011, Chu et al., 2010, Qazvinian et al., 2011, Kwon et al., 2013, Ma et al., 2015, Kumar

et al., 2016, Liu et al., 2019, Li et al., 2019].
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Multiple network structures can be obtained from this area, such as user-follow-user

networks, news-agree/conflict-news networks, and user-spread-news networks [Gupta et al.,

2012, Jin et al., 2016, Ruchansky et al., 2017, Tacchini et al., 2017, Della Vedova et al.,

2018, Guacho et al., 2018]. There is also a smaller number of works that focus on news fact

checking, where the reference facts are in a preexisting knowledge base such as DBpedia [Wu

et al., 2014, Ciampaglia et al., 2015, Shi and Weninger, 2016]. A comparison of related fake

news detection studies is given in Figure 11.

Figure 11: An summary of 29 major methods in fake news detection area.
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2.4 Cancer driver gene mutation discovery

In cancer genomics, one of the most critical tasks is to distinguish cancer driver mutations

from passenger mutations [Greenman et al., 2007]. In human cells, gene mutates randomly.

The abnormal behaviors demonstrated by cancer cells are the result of a series of mutations in

key regulatory genes (https://www.cancerquest.org/), and we call these mutations as cancer

driver mutations. The other mutations that do not lead to cancer cells are called passenger

mutations. The most simple methods are based on mutation frequency, i.e., most frequently

mutated genes in cancer patient cells are driver genes [Ding et al., 2008]. However, such

a naive model classifies too many non-related genes as driver genes (high False Discovery

Rate) [Banerji et al., 2012], and many advanced models are proposed.

The first type of model is based on the Background Mutation Rate (BMR). Genes

have a ”normal” mutation rate, which is called background mutation rate, and if they

mutate more often than expected in cancer cells, the genes are likely to be cancer driver

genes. Algorithms based on such evidences include MutSig [Banerji et al., 2012], MutSigCV

[Lawrence et al., 2013] and MutSiC [Dees et al., 2012], Simon [Youn and Simon, 2011], On-

codriverFM [Gonzalez-Perez and Lopez-Bigas, 2012] and ActiveDriver [Reimand and Bader,

2013]. Michaelson et al. [2012] finds that the gene BMR variety could be very large. Consider-

ing this, MutSigCV uses patient-specific mutation frequency and spectrum, and gene-specific

BMR. Also, OncodriverFM uses external knowledge, the functional impacts of mutation, to

help identify the driver genes. Our baselines will be selected from this type of model.

The second type of model is based on machine learning and labeled training data. Can-

Predict [Polymorphisms, 2007], CHASM [Carter et al., 2009] used Random Forest model

to learn driver gene patterns. SVM is used in [Jordan and Radhakrishnan, 2014]. Cen-

sus of Human Cancer Genes (CGC) provides a list of cancer genes, which is usually used

as labeled driver genes. However, there is no golden standard passenger gene list. For

example, in [Carter et al., 2009], synthetic passenger mutations are generated to play as

labeled passenger genes; in [Tan et al., 2012], a list of none disease driver genes from

(https://www.uniprot.org/docs/humsavar) are used as labeled passenger genes. As men-

tioned above, TCGA is a landmark cancer genomics program, held by the National Cancer
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Institute and the National Human Genome Research Institute, recording the patient gene

mutation data over 33 cancer types (http://cancergenome.nih.gov/). In this dissertation,

our utility case with TCGA data considers the scenario without labeled training data, and

hence this type of model is not selected as baselines.

The third type of model is the network and pathway-based approaches, which consider

the gene-gene interaction. Such kind of models include MEMo [Ciriello et al., 2012], Dendrix

[Vandin et al., 2012], PARADIGM-Shif [Ng et al., 2012], DriverNet [Bashashati et al., 2012],

TieDIE [Paull et al., 2013], MAXDRIVER [Chen et al., 2013] and DawnRank [Hou and

Ma, 2014]. In this dissertation, we only used the gene mutation data and did not consider

the gene network and pathway knowledge, and hence this type of model is not selected as

baselines.

Besides, there are methods using other medical knowledge and data to help identify

driver genes. For example, CONEXIC introduces the gene copy number change into their

model. In this dissertation, we will only use the gene mutation data from TCGA.

2.5 Subjective Opinions and Subjective Logic

Subjective Logic [Jøsang, 2016a, 1997] is a powerful decision making tool extending the

probabilistic logic by including uncertainty and subjective belief ownership. It is widely used

in trust network analysis [Jøsang et al., 2006], conditional inference [Josang, 2008], infor-

mation provider reliability assessment [Pelechrinis et al., 2015], trust management in sensor

networks [Oleshchuk and Zadorozhny, 2007], etc. Subjective logic uses subjective opinions to

express subjective beliefs about the truth of propositions with degrees of uncertainty. Kane

and Browne [2006] successfully applied subjective logic to a wireless network environment.

Liu et al. [2011] presented a novel reputation computation model to discover and prevent

selfish behaviors by combining familiarity values with subjective opinions. To the best of

our knowledge, our work is the first one applying SL to area of data reliability assessment.

Subjective Logic defines a set of logical operations [Oleshchuk and Zadorozhny, 2007],

and in this paper we use two of them:
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• Recommendation operation. Assume two persons, A and B: A has an opinion towards

B, and B has an opinion towards a statement s. Then according to B’s recommendation,

A also has an opinion towards this statement s. The definition of tje recommendation

operator ⊗ is as follows:

ωAB
S = ωA

B ⊗ ωB
S = {tAB

S , dAB
S , uAB

S },

where tAB
S = tABt

B
S , dAB

S = tABd
B
S ,

and uAB
S = dAB + uAB + tABu

B
S .

• Consensus operation. If two persons A and B have opinions towards one statement S,

then consensus operator ⊕ can be used to combine their opinions. The definition of the

consensus operator ⊕ is as follows:

ωA,B
S = ωA

S ⊕ ωB
S = {tA,B

S , dA,B
S , uA,B

S },

where tA,B
S = (tASu

B
S + tBS u

A
S )/(uAS + uBS − uASuBS ),

dA,B
S = (dASu

B
S + dBS u

A
S )/(uAS + uBS − uASuBS ),

and uA,B
S = (uASu

B
S )/(uAS + uBS − uASuBS ).

Figure 12: The procedure of deciding whether to watch a movie.

With the recommendation and consensus operations, people can merge their opinions to-

wards an unknown statement. For example, person A wants to know whether a new movie is

worthy to watch, as shown in Figure 12. He searches online and finds a blog saying the movie

is absolutely the best movie of the year. However, his friend B told him that he watched the

movie yesterday, and it is just an average work. We can assume A’s opinion towards B (i.e.,
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the statement ”B is trustful”) is {0.8, 0.1, 0.1}, while B’s impression towards the movie (i.e.,

the statement ”the movie worth my money and time”) is {0.5, 0.4, 0.1}. Then, according to

B’s recommendation, A will have an opinion towards the movie {tAB
movie, d

AB
movie, u

AB
movie}, where

tAB
movie = tABt

B
movie = 0.8 ∗ 0.5 = 0.4,

dAB
movie = tABd

B
movie = 0.8 ∗ 0.4 = 0.32,

uAB
movie = dAB + uAB + tABu

B
movie = 0.1 + 0.1 + 0.8 ∗ 0.1 = 0.28.

It is possible that the blog is an advertisement to attract people with overpraised words,

and we assume A’s opinion about the blog is {0.5, 0.2, 0.3}. The blog holds an opinion {1,

0, 0} towards the movie. According to the blog’s recommendation, A’s opinion towards the

movie is {tA,blog
movie , d

A,blog
movie , u

A,blog
movie}, where

tA,blog
movie = tAblogt

blog
movie = 0.5 ∗ 1 = 0.5,

dA,blog
movie = tAblogd

blog
movie = 0.5 ∗ 0 = 0,

uA,blog
movie = dAblog + uAblog + tAblogu

blog
movie = 0.2 + 0.3 + 0.5 ∗ 0 = 0.5.

After combining both friend B and blog’s recommendation via consensus operation, A

has a final impression towards the movie, {tA,B;A,blog
movie , dA,B;A,blog

movie , uA,B;A,blog
movie }, where

tA,B;A,blog
movie = (tA,B

movieu
A,blog
movie + tA,blog

movieu
A,B
movie)/(u

A,B
movie + uA,blog

movie − u
A,B
movieu

A,blog
movie) = (0.5 ∗ 0.5 + 0.5 ∗

0.3)/(0.3 + 0.5− 0.3 ∗ 0.5) = 0.5313,

dA,B;A,blog
movie = (dA,B

movieu
A,blog
movie + dA,blog

movieu
A,B
movie)/(u

A,B
movie + uA,blog

movie − u
A,B
movieu

A,blog
movie) = (0.2 ∗ 0.5 + 0 ∗

0.3)/(0.3 + 0.5− 0.3 ∗ 0.5) = 0.25,

uA,B;A,blog
movie = (uA,B

movieu
A,blog
movie)/(u

A,B
movie+uA,blog

movie−u
A,B
movieu

A,blog
movie) = (0.3∗0.5)/(0.3+0.5−0.3∗0.5) =

0.2188.

Finally, A decides to watch the movie.
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3.0 RQ 1: how to assess data reliability when candidate values are not conflict

and and historical data is not provided

Scenario 1 is the most challenging scenario in this study. There is no historical statement

labels, and each statement only has one value from different sources. We could say sources

are voting statements. In first section, we give our proposed Subjective Opinion based

framework for data reliability assessment, and in second section, we will work with a real-

world data reliability assessment problem, see how the framework is actually utilized and

evaluate its performance.

3.1 Subjective Opinion based data reliability assessment

In my Subjective Opinion based data reliability assessment framework, statement re-

liability is represented by ωmodel
si

, describing the model’s opinion towards the declaration

“statement si is real”, and provider reliability is represented by ωmodel
pj

, describing the model’s

opinion towards the declaration “provider pj is real”. My framework first initialize the state-

ment reliability, then iteratively assess provider/source reliability and statement reliability

until converge, and lastly predict statement veracity based on reliability, as shown in Figure

13.

Step-1: initialize statement reliability. Initially, all the statements receive same re-

liability, {1, 0, 0}. It indicates that initially we believe all statements are true, and their

reliability will be calculated in the iteration.

Step-2: evaluate provider reliability. Provider reliability is defined as model’s opinion

towards the statement ”provider pj is reliable”, which is defined as:

ωmodel
pj

= {tmodel
pj

, dmodel
pj

, umodel
pj
}. (2)

The task background knowledge will help define the specific values of the triple, and hence

this part should be different in different tasks.
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Figure 13: Subjective Opinion based data reliability assessment framework for Scenario 3.

Step-3: evaluate statement reliability. For each statement, we collect all sources who

provide values to it. Based on whether provider has same belief in all statements that he

provides values to, we have two different statement reliability assessment cases.

Case 1 If provider/source pj has same belief in all statements that he provide values to,

then directly fuse these sources’ reliability with Subjective Logic consensus operation. The

fused opinion represents our belief for the statement ”statement si is real”.

ωmodel
si

= ωmodel
p1

⊕ ωmodel
p2

⊕ ...⊕ ωmodel
pk

, (3)

where p1, p2,..., pk are sources providing values to si.

Case 2 If provider/source pj has different beliefs in the statements that he provide values

to, first get the Subjective Opinion to statements according to provider’s recommendation,

and then fuse these opinions with Subjective Logic consensus operation. The fused opinion

represents our belief for the statement ”statement si is real”.

ωmodel
si

= (ωmodel
p1

⊗ ωp1
si

)⊕ (ωmodel
p2

⊗ ωp2
si

)⊕ ...⊕ (ωmodel
pk

⊗ ωpk
si

), (4)

where p1, p2,..., pk are sources providing values to si, and ω
pj
si describe provider pj’s opinion

towards the statement si.
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Please note that, if we could collect external knowledge about the reliability, we could

use consensus to fuse the new “external opinion” into the current ωmodel
si

.

ωmodel, external knowledge
si

= ωmodel
si

⊕ ωexternal knowledge
si

, (5)

Finally, the obtained ωmodel
si

is a triple, as shown in:

ωmodel
si

= {tmodel
si

, dmodel
si

, umodel
si
}. (6)

Step-4: predict statement veracity based on reliability. Step 2 and Step 3 iteratively

runs until reliability scores converge. Then we could decide the statement veracity. This will

be very tricky. Without historical statement labels, we could only know which statement

is more reliable than another. One way to predict veracity could be select the statements

whose tmodel
si

> dmodel
si

. Another way could be that rank all statements by their tmodel
si

score,

select Top N as true statements, classify the rest as false statements, and evaluate the model

with eval@N, such as F1@5, Precision@10, Recall@50, and AUC@60.

However, please note that if only statement-source-value matrix is provided but without

other evidences, all fancy models will degenerate into majority voting. I.E., the most popular

statements are selected as true, and the most unpopular ones are taken as false; the sources

belonging to majority are reliable, and the sources belonging to minority are unreliable.

Therefore, we have to explore this scenario with a specific real-world problem. I will collect

the problem’s background knowledge, together with the statement-source-value matrix, to

explore the data reliability assessment in this scenario. In this study, I will work on a

real-world problem, “cancer driver gene discovery from TCGA data”.

3.2 Utility case 1: cancer driver gene discovery from TCGA data

3.2.1 Background: gene mutations and cancer

Cancer is caused by gene mutations. The genes whose mutation could cause cancer

are called cancer driver genes. Such genes could be classified into two broad categories:
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proto-oncogenes and suppressors. Proto-oncogenes produce proteins that stimulating the

cell division, and their mutation may cause ending-less cell division regardless of the need.

Suppressors will produce proteins that stop cell division, and their mutation may also leads

to ending-less cell division. Such ending-less cell division leads to either benign tumor, or

malignant tumor (cancer). For more details, please refer [Urry et al., 2017] and CancerQuest1.

Not all gene mutations cause cancer, and some of them may even has no effect on our

body. Depending on how the gene mutates, mutations are classified into several types, such

as Missense mutation, Frameshift mutation, Nonsense mutation [Cartegni et al., 2002]. In

this study, I do not care specific mutation types, and depending on whether gene mutation

has an effect on our body, I group mutation types to two sets: (1) first group includes “Silent

mutation” and “Synonymous mutation”, which does not affect generated proteins and has

no effect in our body; (2) second group includes “Missense mutation”, “Nonsense mutation”

and the rest mutation types, whose mutation will change the generated proteins and then

affect our body, may or may not related to cancer. For simplicity, we call first group mutation

as silent mutations, and call second group as non-silent mutations.

Genes mutations that do not drive cancers as the passenger gene mutations [Wodarz et al.,

2018]. Each gene has a Background Mutation Rate (BMR), which is the gene’s probability

of mutating among human species, including as driver gene mutations and as passenger gene

mutations [Tokheim et al., 2016]. Gene’s BMR is related to several attributes. Following

[Lawrence et al., 2013], in this study, we relate gene’s BMR to (1) global expression level,

(2) DNA replication time, and (3) HiC statistic, a measure of open vs. closed chromatin

state (from Lieberman-Aiden et al.), and additionally, add (4) gene length.

In cell division, gene mutations randomly happens, and they will accumulate in the

following cell divisions. Therefore, some cancer patients may have many mutated genes, but

only a small part of them leads to cancer [Tokheim et al., 2016]. Some driver gene mutations

appear in many types of cancers, and some gene mutations appear only in one type of cancer

[Futreal et al., 2004, Sondka et al., 2018].

Finding the cancer driver genes is an important and difficult task in medical domain.

There are an estimated 20,000-25,000 human protein-coding genes by Human Genome Project

1https://www.cancerquest.org/cancer-biology
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in 2001 [Collins and McKusick, 2001]. Human cancer gene census in 2004 found 292 cancer

driver genes [Futreal et al., 2004], and now have 724 cancer driver genes in the 2018 results

[Sondka et al., 2018]. Cancer driver genes are validated in laboratories, costing a lot of re-

sources and time. This work is still undergoing, and more cancer driver genes will be found

in the future.

The Cancer Genome Atlas (TCGA) is a landmark cancer genomics program, held by

National Cancer Institute and the National Human Genome Research Institute, recording

the patient gene mutation data over 33 cancer types (http://cancergenome.nih.gov/). Many

related studies work on cancer driver gene identification with the cancer patients’ gene mu-

tation distribution in TCGA, and hope to select the most likely cancer driver genes as

inspirations for human cancer gene census institute researchers.

In this study, we will identify cancer driver genes based on the cancer patients’ gene

mutation distribution in TCGA. To be more specific, data sources are patients; for each

gene, the corresponding statement is ”gene ** is a cancer driver gene”; if a gene mutates

in a patient cell samples, we say the patient provides a value ”yes” to the corresponding

statement. We illustrate such a problem in Figure 3. After data reliability assessed, we

could rank genes by their reliability scores. I hope this study could contribute to this work.

With the above background knowledge, I conclude the following assumptions for assessing

the gene’s reliability being a cancer driver gene.

Assumption 3.2.1. If a gene’s mutation rate is much larger than its BMR, it is likely to

be a cancer driver gene. On a specific cancer, if a gene’s mutation rate is much larger than

its BMR, it is likely to be a driver gene for this specific cancer.

The most recent Human cancer gene census in 2018 [Sondka et al., 2018] found 724 cancer

driver genes and there are 20,000-25,000 human protein-coding genes [Collins and McKusick,

2001]. Therefore, only a small part of human genes are related to cancer. We could further

infer that, the cancer patients’ gene mutation distribution is similar to the normal person’s

gene mutation distribution, and only a small set of cancer driver genes’ mutation behavior

differs. It indicates that most gene’s mutation is not related to cancer, and their mutation

rate in cancer patient samples should be similar to their real BMR. Therefore, it is naturally

31



to get the above assumption about gene’s mutation rate and BMR. When we calculate gene’s

BMR, since most genes are not cancer driver genes, we could regard the cancer driver genes

as noise, and learn the BMR pattern from all genes data with Machine Learning models.

Assumption 3.2.2. If in cancer patient samples, a gene’s non-silent mutation rate is ex-

traordinarily larger than its silent mutation rate, this gene is likely to be a cancer driver

gene.

Gene’s silent mutation rate should be similar among both health people samples and

among cancer patient samples, but cancer driver gene’s non-silent mutation rate should

be very different in both sample sets. Therefore, in cancer patient samples, the difference

between regular genes’ non-silent mutation rate and silent mutation rate could be learned,

and if the difference is abnormally large, this gene is likely to be a cancer driver gene.

Assumption 3.2.3. If a gene mutates frequently in cancer patient samples, this gene is very

likely to be a cancer driver gene.

It is natural to take the gene mutation frequency into consideration. If a gene never

mutates in cancer patient samples, we have no evidence to suspect it as a cancer driver gene.

Assumption 3.2.4. If a patient sample have abnormally many mutated genes (like thou-

sands), most mutated genes should not be cancer driver genes, and we should have high

uncertainty towards mutated genes in this sample data.

As above mentioned, cancer driver genes only take a small part of the gene set. For one

patient, if his/her sample has a lot of mutated genes, it is hard differentiate cancer driver

genes and non-driver genes. On the contrary, if the sample only has one mutated gene,

this gene is very likely to be the driver gene. We could say patient’s gene mutation count

increment leads to extra uncertainty.

3.2.2 Specific model design

In this subsection, we first give define several parameters, and then give the specific

model design with our proposed framework.
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Gene’s global silent mutation rate. As above mentioned, we will use ”silent mu-

tation” to represent both silent mutations and synonymous mutations. In TCGA dataset,

there are 4712 cancer patients of 21 types of cancers. Please note that, “global” means

“across all types of cancer”, while later “local” means “one type of cancer”. Extracting

silent mutations from all these samples, and have the following definition for gene gi’s global

silent mutation rate:

s gmr(gi) =
#patient with silent gi mutations

#patient
, (7)

where #patient is the count of patients and in this study it is 4712, and #patient with silent

gi mutations is the count of patients whose gene gi mutates silently.

Gene’s global non-silent mutation rate. Since we have already know silent muta-

tions and synonymous mutations are not related to the cancer, we remove all these silent

mutations from the dataset, and calculate each gene’s global non-silent mutation rate.

ns gmr(gi) =
#patient with nonsilent gi mutations

#patient
, (8)

where #patient with nonsilent gi mutations is the count of patients whose genej mutates

non-silently.

Gene’s BMR. Gene’s ns gmr is calculated based on the cancer patients datasets. If the

gene is not cancer driver gene, its mutation rate should be similar to that is calculated based

on normal people’s data. However, the cancer driver genes’ ns gmr should be different from

that calculated based on normal people’s dataset. Therefore, we want to predict each gene’s

BMR. Luckily, majority genes are not cancer driver genes, and we could use the current

data to train a K Nearest Neighbor (KNN) model, with gene (1) gene length, (2) global

expression level, (3) DNA replication time, and (4) HiC statistic as features, and ns gmr as

the dependent variable. Considering the current features cannot fully describe the gene, we

combine the ns gmr and predicted ns gmr together as the final BMR.

ns bmr(gi) =α ∗KNN ns gmr(gi) + (1− α) ∗ ns gmr(gi), (9)

where KNN ns gmr(gi) is gene non-silent mutation rated predicted by the KNN model.
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When training the KNN model, we found our less than 1% features has empty value.

To deal with it, for each feature, we train a KNN model with the feature as the dependent

value, and ns gmr as the independent value. This trained KNN model will predict the gene’s

feature based on gene’s mutation rate.

Gene’s local non-silent mutation rate. Gene’s global mutation rate is calculated on

the datasets containing all types of cancer. Then, for each type of cancer, we calculate the

local non-silent mutation rate.

ns lmr(gi) =
#patient with nonsilent gi mutations

#patient
, (10)

where #patient with nonsilent gi mutations and #patient is the count of patients in a

particular type of cancer.

Max gene count. As above mentioned, when a patient have too many mutated

genes, figuring his/her cancer driver genes are too hard, compared with another patient

who only have 2 or 3 mutated genes. Therefore, we set a bar for patient mutated gene count,

max mutation count. When patient has more mutations, we have full uncertainty. We rank

the patient gene mutation count from low to high, and take the mutation count at 95% as

the bar. I.E., 5% patients who have more mutations will receive full uncertainty, and the

95% patients who have less mutations than max mutation count will provide information

about finding cancer driver genes.

Based on above defined concepts, we design the SL based reliability representations as:

Gene background reliability. For each gene, we calculate its reliability being a cancer

driver genes using the ns gmr, ns bmr, ns lmr and s gmr. We first calculate a gene’s score

as:

score′(gi) =
ns gmr(gi) + e

s gmr(gi) + e
+
ns gmr(gi) + e

ns bmr(gi) + e
+
ns lmr(gi) + e

ns bmr(gi) + e
. (11)

Please note that e is a parameter to avoid the denominator being 0, and we set it as 0.01 in

this study. Score score′(gi) ranges in (0,∞), and I map it to the new range [0, 1] to fit the

Subjective Opinion representation with the following metrics:

score(gi) =
score′(gi)

1 + score′(gi)
(12)
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Then we construct the gene gi’s background (BKGD) reliability as:

ωBKGD
gi

= {tBKGD
pj

, dBKGD
pj

, uBKGD
pj

}. (13)

where 
tBKGD
pj

= (1− θ)score(gi)

dBKGD
pj

= (1− θ) ∗ (1− score(gi))

uBKGD
pj

= θ.

(14)

In the function, θ is a parameter to tune model’s uncertainty towards such background gene

reliability.

Patient’s recommendation reliability. The model has a Subjective Opinion towards

the patient sample. If patient have too many mutated genes, model has a high uncertainty.

Model’s opinion towards the patient ptj is:

ωmodel
ptj

= {tmodel
ptj

, dmodel
ptj

, umodel
ptj
}, (15)

where 
tmodel
ptj

= 1− umodel
ptj

dmodel
ptj

= 0

umodel
ptj

= MIN(1,
#mutated count ptj

#max mutation count
+ e)

(16)

where #mutated count ptj is the patient mutated gene count. Parameter e is added to

prevent umodel
ptj

being 0.

When a gene mutates in a patient’s cell, we could say this patient recommend this

mutated genes as the cancer driver genes. Patient ptj’s opinion towards gene gi could directly

reference model’s opinion towards the gene gi, i.e., assign ωmodel
gi

to ω
ptj
gi . Then patient’s

recommendation is calculated as:

ωmodel, ptj
gi

= ωmodel
ptj

⊗ ωptj
gi
. (17)

Gene’s reliability being a cancer driver gene. Gene’s final reliability being a

cancer driver gene is calculated as the fusion of gene’s background reliability and patients’

recommendations.

ωmodel
gi

={tmodel
gi

, dmodel
gi

, umodel
gi
}

=ωBKGD
gi

⊕ ωmodel, pt1
gi

⊕ ωmodel, pt2
gi

⊕ ...⊕ ωmodel, ptk
gi

,
(18)

where pt1 to ptk are the patients where gene gi mutates.
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3.2.3 Dataset: TCGA

The TCGA data we use is the MAF files published by TumorPortal. Totally there are

data for 21 cancers, which is shown in Table 3. In the MAF files, several categories of

somatic mutations are reported, including Missense and nonsense, Silent mutations, Splice

site, defined as SNP within 2 bp of the splice junction, Indels that overlap the coding region

or splice site of a gene or the targeted region of a genetic element of interest, Frameshift

mutations, Mutations in regulatory regions.

The groundtruth is collected from TumorPortal, which gives the widely known cancer

genes for 21 cancers, and the 2018 Human Cancer Gene Census. In this study, we have

several evaluation metrics: (1) Mean Average Precision (MAP), (2) NDCG, (3) Area under

the ranking curve (AUC), (4) Precision at different positions, and (5) Recall at different

positions. Please note that, when calculate AUC, genes are sorted from most possible cancer

genes at the top, and least possible cancer genes at the bottom, and sum the groundtruth

cancer genes’ ranking together as the AUC. Therefore, the smaller AUC, the better the

model. Other evaluation metrics, higher better.

3.2.4 Baselines

Mutation Significance (MutSigCV) [Pugh et al., 2013], [Sjöblom et al., 2006] is the most

frequently used tools in this area. It analyzes lists of mutations discovered in DNA se-

quencing, to identify genes that were mutated more often than expected by chance given

background mutation processes. First, tumors are aggregated together and mutations are

tallied, and then a score and p-value are calculated for each gene. A significance threshold

is chosen to control the False Discovery Rate (FDR), and genes exceeding this threshold are

reported as significantly mutated.

Majority is the second baseline we chose in this study, which simply counts the mutation

of each gene. Though simple, for some particular cancer data, it even has better performance

than MutSigCV.

In Equation 12, we proposed a score, gene score, calculated with several types of muta-

tion rates. To better evaluate our proposed Subjective Opinion based framework effective-
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Table 3: Gene mutation data of 21 cancers

Cancer Abbreviation Patient count Candidate genes

Acute myeloid leukemia AML 196 2523

Bladder cancer BLCA 99 10277

Breast cancer BRCA 892 13430

Carcinoid CARC 54 1232

Chronic lymphocytic leukemia CLL 159 1831

Colorectal Carcinoma CRC 233 14838

Diffuse large B-cell lymphoma DLBCL 58 5190

Esophageal adenocarcinoma ESO 141 7320

Glioblastoma multiforme GBM 291 8195

Squamous cell carcinoma of

the head and neck
HNSC 384 14427

Kidney clear cell cancer KIRC 417 10174

Lung adenocarcinoma LUAD 405 16862

Lung squamous cell carcinoma LUSC 178 13692

Medulloblastoma MED 92 824

Melanoma MEL 118 13419

Multiple myeloma MM 207 5602

Neuroblastoma NB 81 1289

Ovarian cancer OV 316 8576

Prostate cancer PRAD 138 1745

Rhabdoid tumor RHAB 35 181

Endometrial cancer UCEC 248 18146
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Table 4: Compare three models’ performance on MAP, NDCG and AUC.

MAP NDCG AUC

Majority 0.220 0.616 64391.619

MutSigCV 0.286 0.657 101612.191

MutSc 0.380 0.742 44963.286

SO-CGD 0.397 0.752 44092.667

ness, we propose another baseline which judge genes only with gene score. If our proposed

SO based model outperforms this one, it proves that Subjective Opinion based framework

is effective. We call this baseline as MutSc, short for Gene Mutation Rate based Score.

Our porposed Subjective Opinion based Cancer Gene Discovery model is named as SO-

CGD.

3.2.5 Experiment Results

We report the models’ MAP, NDCG, and AUC results in Table 4, and report Recall and

Precision at different positions in Table 5. We utilized wilxon significance test to compare

the difference significance, and label the best runs with p− value ≤ 0.05 in bold.

Table 4 shows that our proposed SO-CGD model outperforms three baselines by MAP,

NDCG and AUC. Especially, SO-CGD and MutSc has much higher performance than Major-

ity and MutSigCV. In terms of Recall and Precision, our proposed SOcgd and MutSc outper-

forms other models, and SOcgd has significant better Precision than MutSc {@5,@10,@20,

@50,@100}, and significant better Recall {@10,@20,@100,@180}.

Then we compare three model’s performance across different types of cancers. Figure

14(a) shows the Average Precision of three model, Figure 14(b) shows NDCG, Figure 14(c)

shows AUC, and Figure 14(d) shows Precision@100. First, compare SO-CGD with Majority

and MugSigCV. We could see that SO-CGD perform best on all the cancers in terms of AUC

and Precision@100, while SL performs best in most cases in terms of NDCG and AP. Majority
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Table 5: Precision and Recall performance at different positions of three models.

Prec@5 Prec@10 Prec@20 Prec@50 Prec@100 Prec@180

Majority 0.486 0.438 0.293 0.171 0.108 0.071

MutSig 0.733 0.629 0.429 0.233 0.130 0.078

MutSc 0.810 0.652 0.488 0.267 0.159 0.101

SO-CGD 0.838 0.695 0.495 0.271 0.165 0.100

Recl@5 Recl@10 Recl@20 Recl@50 Recl@100 Recl@180

Majority 0.119 0.196 0.231 0.341 0.407 0.463

MutSig 0.156 0.247 0.295 0.377 0.436 0.473

MutSc 0.203 0.285 0.367 0.466 0.552 0.604

SO-CGD 0.207 0.297 0.373 0.462 0.578 0.612

voting, though the strategy is naive, is quite effective in the NB cancer. Also, MutSigCV has

better AP and NDCG on LUAD and HNSC. But our proposed SO-CGD model significantly

outperforms both baselines. Then, we compare SO-CGD and MutSc. In most cancers data,

SO-CGD provides a similar but slightly better performance than MutSc. It indicates that,

our proposed gene score computed with the gene’s various mutation rate is very effective.

Then SO-CGD’s slight but significant improvement over MutSc indicates the effectiveness

of our proposed Subjective Opinion based data reliability assessment framework.

39



(a) The average precision. (b) The NDCG.

(c) The AUC. (d) The Precision@100.

Figure 14: Compare three models’ performance on each type of cancer.
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3.3 Summary

In this chapter, we have presented the Subjective Opinion based data reliability assess-

ment framework in the scenario where there is neither labeled training data nor conflicting

values. This is the most challenging research question in this dissertation. We first propose

a general framework, and then give specific designs with a real-world problem, finding cancer

driver genes with TCGA data. Experiment results shows that our proposed models signifi-

cantly outperforms state-of-art baseline models, validating the effectiveness of our proposed

framework.
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4.0 RQ 2: How to assess data reliability when sources provide consistent

values and historical statement labels are provided

Compare with Research Question 1, this chapter explores a relatively easier scenario,

where a set of labeled training data is provided to help data reliability assessment. Providers

still provide non-conflicting values to the statements, and hence when a source provide value

to a statement, we could say that the source votes the statement. In the first section, we will

introduce the proposed Subjective Opinion based framework for data reliability assessment,

and then in the second section, the proposed framework is used in a real-world problem.

4.1 Subjective Opinion based data reliability assessment

Subjective Opinion based data reliability assessment framework for this scenario is ba-

sically same as that in Scenario 1. The only difference is that labeled training data (i.e.,

statement veracity) is provided in this scenario. Intuitively, we should have following as-

sumptions:

Assumption 4.1.1. If a provider votes many reliable statements, then this provider is also

reliable; if provider votes many unreliable statements, then this provider should also be un-

reliable.

Assumption 4.1.2. If a provider votes many statements, but statements veracity can not

be declared, then we should have high uncertainty towards the provider.

Assumption 4.1.3. If a statement receives many votes from highly uncertain providers,

then we should keep high uncertainty towards this statement.

Related works talked in Section 2.3 only consider the first assumption, and usually ig-

nore the uncertainty in the latter two assumptions. Our framework take all of them into

consideration.

The framework first prepossesses the dataset, initialize the statement veracity labels,
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Figure 15: Subjective Opinion based data reliability assessment framework for Scenario 3.

then iteratively assess provider/source reliability (ωmodel
pj

), statement reliability (ωmodel
si

) and

predict statement veracity based on reliability until converge, as shown in Figure 15. In

this scenario, labeled training data (i.e., statement veracity) is provided, and therefore, we

could directly use the provided statement veracity labels. Also, with labeled training data,

assessed reliability and predicted statement veracity should be more accurate than that in

Scenario 1. Therefore, we include “statement veracity prediction” as a part of iteration, and

predicted/provided statement veracity is used in provider reliability assessment.

Step-1: preprocessing the dataset and initialize statement veracity. In the prepro-

cessing procedure, if a provider pj only votes one statement si, this provider pj should be

removed. The reason is that (1) if the statement si veracity is unknown, we cannot infer

pj’s reliability, and hence pj cannot provide information; (2)if the si’s veracity is known, as

pj does not vote other statements, model needs no information from it.

For the labeled statements, their ground-truth veracity is directly assigned, and will not

be changed in the following steps. For the unlabeled statements, their veracity is labeled as

“unknown”, and will be continuously updated in each iteration with following steps.
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Step-2: evaluate provider reliability. Provider reliability is defined as model’s opinion

towards the statement ”provider pj is reliable”, which is defined as:

ωmodel
pj

= {tmodel
pj

, dmodel
pj

, umodel
pj
}. (19)

Since historical statement labels are provided, then we could define


tmodel
pj

=
rc(pj)

rc(pj)+fc(pj)+uc(pj)
∗ (1− θ),

dmodel
pj

=
fc(pj)

rc(pj)+fc(pj)+uc(pj)
∗ (1− θ),

umodel
pj

=
uc(pj)

rc(pj)+fc(pj)+uc(pj)
∗ (1− θ) + θ,

(20)

where uc(pj) is the count of statements without labels, to which this source pj provides

values; rc(pj) is the count of true statements (i.e., ground-truth true or predicted true), to

which this source pj provides values; fc(pj) is the count of false statements (i.e., ground-truth

false or predicted false), to which this source pj provides values. Please note that, in the

first iteration, rc(pj) and fc(pj) comes from labeled training data, and in later iterations,

they also include the predicted statement veracity. Parameter θ represent model’s basic

uncertainty towards the providers, and could be tuned with the dataset.

Step-3: evaluate statement reliability. For each statement, we collect all sources who

provide values to it. Based on whether provider has same belief in all statements that he

provides values to, we have two different statement reliability assessment cases as RQ1.

Case 1 If provider/source pj has same belief in all statements that he provide values to,

then directly fuse these sources’ reliability with Subjective Logic consensus operation. The

fused opinion represents our belief for the statement ”statement si is real”.

ωmodel
si

= ωmodel
p1

⊕ ωmodel
p2

⊕ ...⊕ ωmodel
pk

, (21)

where p1, p2,..., pk are sources providing values to si.

Case 2 If provider/source pj has different beliefs in the statements that he provide values

to, first get the Subjective Opinion to statements according to provider’s recommendation,

and then fuse these opinions with Subjective Logic consensus operation. The fused opinion

represents our belief for the statement ”statement si is real”.

ωmodel
si

= (ωmodel
p1

⊗ ωp1
si

)⊕ (ωmodel
p2

⊗ ωp2
si

)⊕ ...⊕ (ωmodel
pk

⊗ ωpk
si

), (22)
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where p1, p2,..., pk are sources providing values to si, and ω
pj
si describe provider pj’s opinion

towards the statement si.

Finally, the obtained ωmodel
si

is a triple, as shown in:

ωmodel
si

= {tmodel
si

, dmodel
si

, umodel
si
}. (23)

Step-4: predict statement veracity based on reliability. Since we have historical

statement labeling data, and the ωmodel
si

has been predicted, we could train a classifica-

tion model, such as SVM, to automatically learn and predict statement veracity. I.e.,

{tmodel
si

, dmodel
si

, umodel
si
} are features, and statement veracity labels are target classes. These

three steps iteratively run until converge.

4.2 Utility case 2: fake news detection

4.2.1 Dataset: FakeNewsNet

FakeNewsNet [Shu et al., 2018] is selected as the validation dataset in this study. It

consists of two real-world datasets, BuzzFeed and PolitiFact. BuzzFeed contains 90 real news

and 90 fake news, with 15,257 users interacting with (re-tweet or like) the news. PolitiFact

contains 120 real news, 120 fake news, and 23,865 users interacting with the news. Following

the first step in the framework, we remove the users who shares only one news article. After

preprocessing, 3,002 users are left in BuzzFeed, and 4,139 users are left in PolitiFact. Also,

we find the PolitiFact data is denser than BuzzFeed data, i.e., people share more news in

PolitiFact.

Please note that if a news article is not shared by anyone, or shared by only one user but

the user’s reliability could not be assessed (removed in preprocessing), we directly label the

news as fake news and do not update its label in iterations. We do know such a straightfor-

ward strategy leads to failure, but such loss on unpopular news is acceptable in real-world

scenarios.
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4.2.2 Experiment settings

Following procedures in [Shu et al., 2017b], [Tacchini et al., 2017], and [Della Vedova

et al., 2018], we learn and evaluate our models with 5-fold cross-validation, i.e., 20% of

data is used as testing, while 80% of data is used to train the model. Each cross-validation

is repeated 50 times, and the average performance with standard deviation is reported.

Accuracy, Precision, Recall, and F1 of detecting fake news are selected as the evaluation

metrics.

Prob fnd has no parameters, while SO fnd has one parameter α, which describes peo-

ple’s natural/basic uncertainty. Following [Shu et al., 2017b], [Tacchini et al., 2017] and

[Della Vedova et al., 2018], we select α = 0.9, because it achieves the highest performance

with both datasets in cross-validation.

4.2.3 Baselines

Harmonic from [Tacchini et al., 2017]. This method is very similar to our proposed

Prob fnd, iteratively evaluating the reliability scores of both users and news, and both

methods ignore the unknown news and users in the calculation. The major difference is

that Harmonic explicitly differentiate reliable users from unreliable users, and real news is

those that accumulate more scores from reliable users, while fake news is those that accu-

mulate more scores from unreliable users. On the other hand, in Prob fnd, news reliability

is defined as the average reliability of the users that shared it without explicitly different

reliable and unreliable users.

HC-CB-3 from [Della Vedova et al., 2018]. This method is developed based on Har-

monic. It utilizes the word-level features of news content with a logistic regression model. If

the news is shared by more than λ people, social-network based Harmonic is used; otherwise,

content based classification is used.

TriFN from [Shu et al., 2017b]. This method designed a Tri-Relationship embedding

framework, which utilizes the information from news content, news-user interaction, and

news-publisher relationship. TriFN shows much better performance than several other base-

lines, which use content based or social-network based features, and they are not included
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in this paper due to page limit.

Prob fnd from [Zhang and Zadorozhny, 2020]. This method martians reliability score

for both provider and statements, and runs iteratively. The main difference between Prob fnd

and SO fnd is that Prob fnd doesn’t explicitly record the uncertainty in its reliability scores.

Comparing Prob fnd and our SO fnd, we could clearly see the effectiveness of Subjective

Opinion based representations.

(a) BuzzFeed.

(b) PolitiFact.

Figure 16: Repeated 5-fold cross-validation results on two real-world datasets.
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Table 6: Repeated 5-fold cross-validation results on two real-world datasets.

Prob fnd SO fnd HC-CB-3 Harmonic TriFN

ACC .852± .055 .871± .051∗∗ .856± .052 .854± .052 .864± .026∗

Buzz- Prec .788± .086 .816± .079∗ .791± .076 .782± .075 .849± .040∗∗

Feed Recl .969± .043∗ .960± .004 .966± .045 .983± .041∗∗ .893± .013

F1 .866± .052 .880± .050∗∗ .867± .050 .869± .050 .870± .019∗

ACC .922± .036 .953± .029∗∗ .938± .029∗ .916± .042 .878± .020

Polit- Prec .887± .056 .941± .048∗∗ .899± .057∗ .876± .074 .867± .034

iFact Recl .967± .034∗ .967± .034∗ .948± .046 .970± .030∗∗ .893± .023

F1 .924± .035∗ .953± .030∗∗ .921± .041 .919± .044 .880± .017

x∗∗: the run with the best performance.
x∗ : the run with the second best performance.

4.2.4 Experiment Results

Experiment results are shown in Table 6, and their comparison is better illustrated in

Figure 16. Best and second-best performed runs are labeled with ’**’ and ’*’. Our proposed

SO fnd has the best performance on Accuracy and F1 in both datasets, indicating that

SO fnd can differentiate fake news from real news much more accurately than other methods.

Further, it beats Prob fnd in almost every evaluation metrics, showing that keeping a record

of unknown cases as an uncertainty value is essential, and can highly improve the fake

news detection accuracy. On the other hand, we can find that Prob fnd has very similar

performance with Harmonic, implying that whether or not explicitly differentiate reliable

users from unreliable users does not make a big difference in these two datasets.

Also, both baselines and our proposed methods have lower precision and a higher recall

on both datasets. It indicates that most fake news is detected, but much real news is wrongly

classified as fake news. Such a model is better than one that wrongly classifies fake news to

real news. Because (1) the broad propagation of fake news may lead to inestimable damages,
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(a) BuzzFeed. (b) PolitiFact.

Figure 17: Accuracy and F1 of SO fnd varying with different α on BuzzFeed and PolitiFact.

but people can search online if a piece of real news is filtered but needed; (2) we can hire

people to manually check and filter real news from these automatically predicted fake news,

and as the data size decrease a lot, the manual effort cost is smaller.

To be more specific, on the BuzzFeed dataset, SO fnd got the best Accuracy 87.1% and

F1 score 88.0%, while TriFN got second-best accuracy and F1. In terms of precision and

recall, we can see that SO fnd has second-best precision 81.6%, and Prob fnd has second-

best recall 96.9%. On the PolitiFact dataset, SO fnd has the best Accuracy 95.3%, F1 score

95.3%, precision 94.1%, and second-best recall 96.7%; while Prob fnd gained second best F1

score 92.4%, and recall 96.7%. Also, TriFN and our proposed SO fnd have a relatively more

balanced precision and recall than other baselines, but SO fnd have better performance than

TriFN across almost all evaluation metrics. HC-CB-3, Harmonic, and Prob fnd are more

imbalanced, sacrificing the precision to get the higher recall, but the F1 score is still less

than SO fnd.

4.2.5 Further Discussion

Is SO fnd performance sensitive to natural uncertainty parameter?

SO fnd has one parameter α, which describes people’s natural/basic uncertainty. Above
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reported results are obtained when α = 0.9, which is the highest performance with both

datasets in cross-validation. We report the Accuracy and F1 of SO fnd when α changes

in range [0.1, 0.9]. We repeat the cross-validation procedure 50 times, and the average

performance is reported in Figure 17.

From Figure17, we can observe that though SO fnd prefers larger α in both datasets

when α varies across [0.1, 0.9], the accuracy and F1 do not change a lot, with the increments

less than 2%. It shows SO fnd is relatively stable to the parameter α in range [0.1, 0.9].

How does the training data size affect the performance of the methods?

In this subsection, we explored the performance of Prob fnd and SO fnd when they are

trained by different sizes of data. As shown in Figure 18, the size of training data increases

from 10% to 90%, and the accuracy is evaluated for each model on both BuzzFeed and

PolitiFact. We repeat the training and testing procedure 50 times for each run, and the

average performance is reported.

From Figure 18, we can observe that, Accuracy and F1 score of Prob fnd and SO fnd

all increase in both datasets when training data size rises. Also, SO fnd’s performance

outperforms Prob fnd in most cases, except when they are trained with 20% or less data on

BuzzFeed.

Shu et al. reported TriFN’s performance with the different training set sizes in [Shu

et al., 2017b]. On BuzzFeed, when training data is 40% and less, TriFN’s Accuracy and

F1 is less than 80%; however, Prob fnd’s Accuracy and F1 are above 80% even with 10%

training data, and SO fnd’s Accuracy and F1 are above 80% with 20% or more training

data. On PolitiFact, TriFN’s Accuracy and F1 are above 80% with 40% or more training

data; however, SO fnd’s Accuracy and F1 are above 90% even with 10% training data, and

Prob fnd’s Accuracy and F1 are above 90% with 33% or more training data. It shows that,

compared to TriFN, our proposed two models are able to achieve a similar or even better

performance with much less labeled training data.

Does users voting less news articles should receive higher uncertainty?

Intuitively, if we observe user A forwarding 100 news articles, and user B only forwarding

3 news articles, we should be more confident about our judgement towards user A than that

towards user B. I.E., if provider pj gives values to a few statements, then we could only
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(a) BuzzFeed.

(b) PolitiFact.

Figure 18: Accuracy and F1 of Prob fnd and SO fnd varying with different training data

size on BuzzFeed and PolitiFact.
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Table 7: Compare the SO fnd and the extended version on BuzzFeed and PolitiFact.

BuzzFeed SO fnd Extended version PolitiFact SO fnd Extended version

accuracy 0.871 0.874 accuracy 0.953 0.955

precision 0.816 0.817 precision 0.941 0.946

recall 0.96 0.966 recall 0.967 0.967

f1 0.88 0.879 f1 0.953 0.955

collect a small set of evidence, and hence model’s uncertainty should be higher. Therefore, I

enrich the Equation 20 with function f(pj) to consider the size of statements that provider

pj votes. 
tmodel
pj

=
rc(pj)

rc(pj)+fc(pj)+uc(pj)
∗ (1− f(pj)),

tmodel
pj

=
fc(pj)

rc(pj)+fc(pj)+uc(pj)
∗ (1− f(pj)),

tmodel
pj

=
uc(pj)

rc(pj)+fc(pj)+uc(pj)
∗ (1− f(pj)) + f(pj),

(24)

where function f(pj) is defined as:

f(pj) = θ ∗ (1− rc(pj) + fc(pj) + uc(pj)

1 +max({#rc(pk) + fc(pk) + uc(pk)|pk ∈ {P}})
). (25)

Parameter θ is used to tune the weight of this size effect.

Table 7 shows the extended model’s performance. Though most evaluation metrics in-

crease with extended model, there is no significant difference (p− value > 0.05). Therefore,

at least on these two real-world dataset, when calculate provider’s reliability, taking the size

of statements that provider votes into consideration is not essential.

In what situations, will Prob fnd and SO fnd win and fail?

In this subsection, we explore in what situations two proposed methods shall win and

shall fail. This experiment is conducted on PolitiFact because two methods’ performance

difference is more significant on it than BuzzFeed.

First, we use all news labels in PolitiFact to calculate user reliability in Formula 1.

Second, we mark smart users are those whose user reliability >= 0.8, mark credulous users
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Figure 19: Easy classified, challenging, and hard classified news in PolitiFact.

are those whose user reliability <= 0.2, and mark other users as the middle users who are

neither so smart nor so credulous. Third, as shown in Figure 19, based on the distribution

of three types of users, we identify three levels of difficulty for news classification:

• Easily classified news. News that is shared mainly by smart users, as shown in area

1 in Figure 19, are very likely to be real news; news that is shared mainly by credulous

users, as shown in area 2, are very likely to be fake news. Smart and credulous users

could be easily identified with training data, and hence models can easily classify them.

• Challenging news. If the news is shared by a similar amount of middle users and

smart/credulous users, as shown in areas 3 and 4 in Figure 19, the classification perfor-

mance is affected by the reliability assessment of middle users. The reliability assessment

accuracy for middle users vary in different models, and the classification of such news is

challenging. We found that our proposed two models were able to identify them success-

fully.

• Hard classified news. If the news is shared mainly by middle users, as shown in area 5

and 6 in Figure 19, it is hard to classify them. The classification performance is directly
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decided by (1) the reliability assessment accuracy for the middle users, and (2) how the

news reliability assessment is designed. We checked the failure cases for both methods in

repetitive experiments and found that there were 15 out of 17 frequently appearing failure

cases in Prob fnd, and 7 out of 9 frequent failure cases in SO fnd, can be attributed to

a large number of middle users, and SO fnd has relatively fewer losses than Prob fnd.

Two other failure cases for Prob fnd and SO fnd are: (1) a piece of real news (news id 84)

is spread by more credulous users and hence is wrongly classified. (2) unknown news, whose

related user information (reliability) cannot be assessed from the data, is directly classified

as fake news. Hence, a piece of real news (news 22) is wrongly classified.

As shown in Figure 19, area 3 and 5 are much larger than area 4 and 6, as we found that

in PolitiFact, most fake news is easily classified news and only a few are challenging or hard

classified fake news, while nearly half of real news is challenging or hard to be classified. It

explains that, when used as the SVM classification feature in first iteration of the SO fnd,

news distrust has a better performance than news trust, and hence is selected. When

news trust is high, the news are likely to be real, and when news distrust is high, the news

are likely to be fake. However, when news trust is low, the news may be hard classified real

news, or fake news; when news distrust is low, the news is very likely to be real (because

challenging and hard classified fake news are too few). Hence, we use news distrust as the

SVM feature for classification.

4.3 Summary

In this chapter, we have presented the Subjective Opinion based data reliability assess-

ment framework in the scenario where labeled training data is provided, which provide rich

evidences for model to accurately make assessment. We validate our framework on a real-

world dataset. Experiment results shows that our proposed models significantly outperforms

state-of-art baseline models, validating the effectiveness of our proposed framework.
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5.0 RQ 3: How to assess data reliability when source provide conflicting

values without historical data

In this chapter, we will discuss the data reliability assessment in the scenario where

historical data are not provided, but the conflicting values may appear. This question is

supposed to be moderate challenging, as conflicting values could provide additional evidences

for reliability assessment.

5.1 Subjective Opinion based data reliability assessment

In this Subjective Opinion based data reliability assessment framework, provider reliabil-

ity is represented by ωmodel
pj

, describing the model’s opinion towards the declaration “provider

pj is reliable”. Different from Scenario 1 and 2, in this scenario, one statement may receive

several different values from multiple providers, and hence we evaluate the reliability of can-

didate value v instead of statement si, which is represented by ωmodel
v . In such a scenario, I

have following assumptions and the proposed framework consider them all:

Assumption 5.1.1. If values from a provider are usually (or quite close to) true values,

this provider is reliable; if provider’s values are far from the truth, then this provider is very

unreliable.

Assumption 5.1.2. Assume most data are real, then if a statement’s candidate value dis-

tribution is particularly scattered (or do not support each other’s existence), then it is harder

to predict the truth than anther statement with concentrated distribution. Evidences from the

former statement should receive higher uncertainty than the latter one.

Assumption 5.1.3. If a provider provides values to many statements, with the evidences

accumulating, we should have a lower uncertainty towards the provider.

Assumption 5.1.4. Also, we should consider the basic uncertainty that even the most reli-

able provider/statement/value could be wrong.

55



Figure 20: Subjective Opinion based data reliability assessment framework for Scenario 3.

My framework first initialize the statement true values and discrimination scores, then

iteratively assess provider/source reliability and update the statement true value until con-

verge, as shown in Figure 20.

Step-1: initialize the statement true values and statement discrimination

score. Before entering iteration, all statements are initialized with a true value vi′ , which is

obtained with naive strategies, such as Majority Voting, Average, Maximum, Minimum, or

other algorithms. Later, vi′ will be updated in each iteration.

Then, each statement is assigned a discrimination score. This score ignores the provider’s

reliability (i.e., equally treat every provider), only focus on statement’s candidate value

distribution. Given an statement sa, if most of the candidate values are very similar/close

to each other, the true value is very likely to be one of them or very close to them. However,

given another statement sb, if candidate values vary largely, even for a human, it is hard to

infer the true value, and the inferred score for each value is less unconvincing. When evaluate

a provider’s reliability, the statement sa can provide a more convincing evidence than the

statement sb. Based on such consideration, we propose use statement’s discrimination
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score to describe “referencing this statement’s data, model’s ability to differentiate the

reliable and unreliable providers”. Statement si’s discrimination score Disc(si) is defined as:

Disc(si) =

∑m
x=1

∑m
y=1{Imp(vix → viy)|x 6= y}∑m
x=1

∑m
y=1{1|x 6= y}

(26)

where Imp(vix → viy) reflects the implication from vix to viy, introduced from [Yin et al.,

2008]. It is a value reflecting to what degree Viy is (partially) true if Vix is correct. In this

study, Imp(vix → viy) ranges from 0 to 1, with 0 means no such implication, and 1 means vix

fully support Viy is true. Its formula should be defined in specific tasks. We need consider

the task background, and also consider value’s meaning, and value’s types.

Step-2: calculate provider’s reliability. Provider’s reliability is defined as our opin-

ions towards the statement “provider pj is reliable”, which is define as:

ωmodel
pj

= {tmodel
pj

, dmodel
pj

, umodel
pj
}. (27)

Intuitively, if the provider’s values are close to the statement true values, then this provider

is reliable; otherwise, this provider is unreliable. Therefore, we define:
tmodel
pj

=
∑n

i=1{Disc(si)∗Imp(vi′→vij)|vij 6=null}∑n
i=1{Disc(si)|vij 6=null} ∗ (1− umodel

pj
)

dmodel
pj

= 1− tmodel
pj

− umodel
pj

umodel
pj

= θ ∗
∑n

i=1{1−Disc(si)|vij 6=null}∑n
i=1{1|vij 6=null} + α,

(28)

where α is a parameter representing our basic uncertainty, θ is a parameter tunning the

weight of averaged Disc score, and Imp(vi′ → vij) is the implication from the predicted

true value to vij, which is same as the one in Equation 26, defined based on specific task

background.

Step-3: update the true values. Each statement’s true value could be decided based

on each value’s reliability, either in a discriminative way, or in a generative way. If values

are numeric, we could select the value with highest reliability as the true value, and could

also calculate a true value based on the reliability score. If values are categorical, then we

will have to chose one from the existing candidate values in a discriminative way.
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Case 1: in a discriminative manner. If provider/source pj has same belief in all

values that he provides, then provider pj’s reliability could represent provider pj’s recom-

mendation towards the value. One value could be provided by several providers, and then

fuse these sources’ reliability with Subjective Logic consensus operation. The fused opin-

ion represents our belief for the statement “vij is the true value for statement si”, which is

represented as:

ωmodel
vij

= {tmodel
vij

, dmodel
vij

, umodel
vij
}. (29)

It is obtained by:

ωmodel
vij

= ωmodel
p1

⊕ ωmodel
p2

⊕ ...⊕ ωmodel
pk

, (30)

where p1, p2,..., pk are providers who provide values for si. Given a statement si, for each

candidate value {vij|j = 1, ...,m, vij 6= null}, we compare their reliability ωmodel
vij

, and select

the value with highest trust tmodel
vij

as the true value.

Case 2: in a generative manner. In this case, for the statement si, we assume that

value vi′′ is the temporary true value. Then provider pj gives an opinion towards “the value

vi′′ is the true value for statement si” based on the distance between his provided value vij

and this vi′′ . The model could learn vi′′ ’s reliability based on pj’s recommendation. After

considering statement si all providers’ recommendation, the model could get a fused idea

about this temporary true value vi′′ , and based on which generates a predicted true value.

There are many ways to obtain the temporary true value vi′′ , and we recommend to

use statement’s maximum or minimum candidate value. Take maximum for example, after

obtaining the final opinion towards this vi′′ , if trust is high, the generated value should

approach the maximum candidate value; if trust is low, the generated value should approach

the minimum candidate value. Vice versa. On the other hand, if chose median, average,

or majority, when the trust in the final fused opinion is low, the model has no idea about

whether the predicted true value should be bigger or lower than vi′′ . In this study, for

each statement si, we chose its maximum candidate value as the temporary true value,

vi′′ = max({vij|j ∈ {1, . . . ,m}).

First, on each statement si, we normalize all the candidate values in the following manner:
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v
′

ij =
vij −min({vij|j ∈ {1, . . . ,m})

max({vij|j ∈ {1, . . . ,m})−min({vij|j ∈ {1, . . . ,m})
, (31)

Then we have v
′
ij ∈ [0, 1]. After this, statement “true value of statement si is the max

candidate value max({vij|j ∈ {1, . . . ,m})” is mapped to “in the normalized space, true

value of statement si is 1”. Thereby, the provider pj’s opinion towards the statement can be

defined as:

ω
pj
vi′′=1 = {(1− β)v

′

ij, 1− (1− β)v
′

ij − β, β}, (32)

where β describe provider’s fundamental uncertainty, similar to above α.

Second, the provider pj can recommend his opinion ω
pj
vi′′=1 to the model. Recommenda-

tion operation can help people know the statement according to their acquaintances. Thus,

model’s opinion towards “in the normalized space, true value of statement si is 1” could be

obtained:

ω
model,pj
vi′′=1 = ωmodel

pj
⊗ ωpj

vi′′=1. (33)

Statement si has a set of candidate values from several providers {p1, p2, ..., pk}, and

the model should have a summarized opinion based on all recommendations. Consensus

operation can help fuse several opinions towards one statement together. The model’s final

opinion towards the temporary true value vi′′ is defined as:

ωmodel,p1,p2,...,pk
vi′′=1 = ωmodel,p1

vi′′=1 ⊕ ωmodel,p2
vi′′=1 ⊕ ...⊕ ωmodel,pk

vi′′=1 . (34)

In the final fused opinion ωmodel,p1,p2,...,pk
vi′′=1 , the trust reflects model’s confidence about the

temporary true value vi′′ = 1 in the normalized space. Map tmodel,p1,p2,...,pk
vi′′=1 to the original

numerical space, and we could get the predicted true value vi′ .

vi′ =tmodel,p1,p2,...,pk
vi′′=1 ∗ (max({vij|j ∈ {1, . . . ,m})−min({vij|j ∈ {1, . . . ,m}))+

min({vij|j ∈ {1, . . . ,m}).
(35)
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5.2 Utility case 3: Find true book author list

5.2.1 Dataset: Book

It is a popular categorical dataset in truth discovery area, composed by Luna Xin Dong1.

Its data describes that for each book, online bookstores post author list in their web pages,

but some data is wrong. It contains the information on ISBN, book name, authors, online

bookstore name for 1265 books. Totally, there are 894 bookstores and they generate 26,494

author lists.

We have two testing data. First one is the gold testing dataset published by Luna Dong,

consisting of 100 books. The second testing dataset is composed of 161 book, containing the

first 100 books and other 61 books. The 61 books are selected because different methods

appearing in our experiments generates different true data. Thus it is more challenging than

the first one. Similar to Luna Dong, we call it silver testing dataset. For both testing data,

the true author list are manually assigned by people reading the cover page of the book. In

our experiments, we will report the accuracy of each method on both testing dataset.

Since we do not have access to the pre-processed dataset used in previous works, we do

the data cleaning by ourselves, and the clean data is posted online 2. In the dataset, most

stores separate the names by ”;”, but many others use ”,”. We manually recognize those

stores and change them to names separated by ”;”. Then following procedures in [Dong

et al., 2009], middle names are removed. Our dataset is cleaner compared to the data used

in prior works, since, as we will see below, the voting results in our case is 82%, while past

studies showed only 71%.

5.2.2 Baselines

There are 10 baseline models used in the experiments:

Voting. The candidate with max amount of providers is true data. If several candidates

receive same voting, randomly pick one.

1http://lunadong.com/fusionDataSets.htm
2http://crystal.exp.sis.pitt.edu:8080/daz45/
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Sums; Average.log; Investment; PooledInvestment; TruthFinder;

Accuracy; AccuracySim. These seven discriminative methods have similar main idea,

iterativly update each value’s score and provider’s reliability, only in different computing

manners. First five methods appear in [Pasternack and Roth, 2010], and last two are pro-

posed in [Dong and Srivastava, 2015]. TruthFinder and AccuracySim considers the similarity

between candidate values, while other methods do not.

CATD; CRH. These two models are designed as generative model for numerical data,

but can be adapted to categorical data as a discriminative model with slight modification.

Each iteration, with evaluated provider’s reliability, they try to generate/select estimated

true value of each statement to minimize the difference between “estimated true matrix” and

the observed input matrix [Li et al., 2014a,b, Zhao and Han, 2012]. Additionally, CATD is

designed to smoothly predict truth on the long tail data with chi-squared distribution. The

extra merits of first two methods is the lack of parameters.

5.2.3 Experiment settings

In this section, our proposed model is named as SO-Dis. It is based on our Subjective

Opinion based data reliability assessment framework and predict true value in a discrimina-

tive manner.

Working on this categorical dataset, given statement (i.e., book) si and two value (i.e.,

book author list), we define the implication formula in Equation 26 and 28 as:

Imp(vix → viy) =
#|vix

⋂
viy|

#|viy|
. (36)

Following past studies, the parameters of all methods are set with optimal performance

on the testing data. In TruthFinder, λ is set to be 0.4. In AccuracySim, λ is set to be 0.9.

For the proposed method SOTD-Dis, both α and γ are set to be 0.2.
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Table 8: Precision of eleven methods on true book author list finding task. Best results are

in bold.

Method Golden Testing Silver Testing

SO-Dis 0.94 0.776

PooledInvestment 0.87 0.7275

TruthFinder 0.86 0.708

AccuracySim 0.91 0.689

Accuracy 0.89 0.689

Investment 0.79 0.634

Average.log 0.82 0.621

Voting 0.80 0.621

Sums 0.74 0.553

CRH 0.4 0.304

CATD 0.4 0.304

5.2.4 Experiment results

Precision of eleven methods are shown in Table 8, which is sorted by the performance

on silver testing data. We can see that our proposed method SO-Dis has the best perfor-

mance on both testing data. Further, SO-Dis increases precision by 3.3% compared with the

second best method AccuracySim on the golden testing data; and is better than the second

best method PooledInvestment by 6.7% on silver testing data. In addition, it seems that

discriminative models have a much better performance than the CRH and CATD, which are

modified to adapt this task. Also, methods (SO-Dis, TruthFinder, AccuracySim) that utilize

the similarity/implication between values also shows a better performance than those who

does not use.
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5.3 Utility case 4: Find true city population

5.3.1 Dataset: Population

In this study, we pick the dataset Population, proposed in [Pasternack and Roth, 2010],

to validate our proposed framework. This is a numerical dataset, a sample of Wikipedia edit

history of city population. When the data was released in 2010, there were 44,761 tuples

from 4,107 data providers. The version used in [Zhao and Han, 2012, Li et al., 2014b,a]

contains 43,071 tuples. When we download it in 2019, it contains 51,761 tuples from 4,264

data providers on 40,583 cities. The testing data stays same, consisting of 308 randomly

collected cities manually labeled with true population. Therefore, the experiment results

differs from the results from past papers. We pre-process the dataset in a same way as [Zhao

and Han, 2012, Li et al., 2014b,a]: (1) One provider may provide several population to same

city, only the latest one is kept. (2) if a city only have one candidate value (from one or

several providers), its data is removed. (3) Outliers on each city are removed in the same

way as [Zhao and Han, 2012] with TruthFinder. After pre-processing, compared with 4,119

tuples on 1,148 cities from 2,415 providers are left and methods are evaluated on 274 cities

[Zhao and Han, 2012, Li et al., 2014b,a], in our experiment dataset, 5,731 tuples on 1,814

cities from 2,467 providers are left, and methods are evaluated on 280 cities.

5.3.2 Baselines

There are 8 baseline models used in the experiments:

Voting. The candidate with max amount of providers is true data. If several candidates

receive same voting, randomly pick one.

Median; Average. The median and average of all candidate values is predicted as true.

Investment; TruthFinder. These two discriminative methods have similar main idea,

iterativly update each value’s score and provider’s reliability, only in different computing

manners. Investment in [Pasternack and Roth, 2010] doesn’t consider the value similarity

among candidate values, while TruthFinder in [Dong and Srivastava, 2015] considers it.

CATD; CRH; GTM. These three models are designed as generative model for nu-
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merical data, but can be adapted to categorical data as a discriminative model with slight

modification. Each iteration, with evaluated provider’s reliability, they try to generate/select

estimated true value of each statement to minimize the difference between “estimated true

matrix” and the observed input matrix [Li et al., 2014a,b, Zhao and Han, 2012]. Addition-

ally, CATD is designed to smoothly predict truth on the long tail data with chi-squared

distribution. The extra merits of first two methods is the lack of parameters.

5.3.3 Experiment Settings

In this section, we will test two proposed model: SO-Dis and SO-Gen. The former one

is model based on our Subjective Opinion based data reliability assessment framework and

predict true value in a discriminative manner, and the latter one is model predicting true

value in a generative manner.

Working on this numerical dataset, given statement (i.e., city) si, we define the implica-

tion formula in Equation 26 and 28 as:

Imp(vix → viy) = 1− |vix − viy|
max({vij|j ∈ {1, . . . ,m})−min({vij|j ∈ {1, . . . ,m})

. (37)

Following [Zhao and Han, 2012, Li et al., 2014b,a], three evaluation metrics are selected:

MAE, RMSE, and Error Rate. In terms of Error Rate, “error” appears when the predicted

truth is smaller or larger than the ground truth by 10%.

Similarly, following past studies, the parameters of all methods are set based on optimal

performance on the testing data. In TruthFinder, λ is set to be 0.3. In terms of GTM, we

have two set of parameters, the first being (α = 10, β = 10, µ0 = 0, σ2
0 = 1) suggested by

Zhao and Han [2012], and the second being (α = 4, β = 1, µ0 = 0, σ2
0 = 1), which has best

performance in our experiment. For the proposed method SO-Dis, α is set to be 0.1. Finally,

for SO-Gen, α is set to be 0.01, and β is set to be 0.01.
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Table 9: Precision of eleven methods on true book author list finding task. First group shows

the performance of six discriminative models, and second group shows the performance of

six generative models. Best results are in bold.

Methods MAE RMSE Error Rate

Dirscriminative

models

SO-Dis 1122.71 4845.73 14.0%

TruthFinder 1744.05 8942.86 17.0%

Voting 2462.28 11350.62 22.8%

Investment 2614.21 11378.42 26.0%

CRH-weighted median 3030.23 12696.96 26.0%

Median 2426.17 9753.68 33.5%

Generative

models

SO-Gen 1511.47 7211.25 27.9%

CATD 1796.67 8765.81 21.3%

GTM-parameter by us 2424.10 8659.36 57.0%

GTM-parameter

in [Zhao and Han, 2012]
2710.30 9290.32 58.1%

Average 3231.97 9768.31 57.4%

CRH-weighted average 3805.10 11898.04 58.5%
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5.3.4 Experiment Results

All methods’ performance is shown in Table 9. We can see that the proposed method

SO-Dis gives best performance on all three metrics. Additionally, SO-Gen gives the second

best on MAE and RMSE, while CATD gives second best Error Rate. Compared with first

group (discriminative models), second group (generative models) generally have a relatively

similar RMSE but and a higher Error Rate. It indicates that the “error cases” in first group,

though has the less quantity, are farther away from truth than that of second group. Apart

from our two proposed models, CATD and TruthFinder are the baseline models giving best

performance.

5.3.5 Further Discussion

Our proposed SO-Dis model has a parameter, α, describing model’s basic uncertainty

towards each provider. SO-Gen has one more parameter, β, describing provider’s basic un-

certainty towards each value. In the above experiment results subsection, following baseline

paper, these parameters and all baseline parameters are all selected to achieve the highest

performance with the Population dataset. We report the model’s MAE performance with

different parameters in Figrure 21.

Figure 21(a) shows SO-Dis’s MAE performance with different α. We could see that SO-

Dis has a relatively better performance when α is small. However, even though α is large,

SO-Dis MAE is still much less than TruthFinder and CATD (baseline best performance).

Therefore, we could say SO-Dis is robust to parameter α. Figure 21(b) shows SO-Gen’s

MAE performance with different α and β. We can find that SO-Gen is more sensitive to the

parameter settings. Parameter α describes model’s basic uncertainty towards each provider,

while β describes provider’s basic uncertainty towards the temporary true value vi′ . SO-Gen

has the best performance when the model have lowest uncertainty ({α, β}) towards the data.

If model keeps low uncertainty (α) towards providers but provider increases uncertainty (β )

towards the values, performance drops a lot. If keep provider’s uncertainty (β ) towards the

values and increase model’s uncertainty (α) towards providers, we could also see performance

drops, but not so largely. We could say SO-Gen is sensitive to β, and less sensitive to α.
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(a) SO-Dis model’s MAE sensitivity to α (alpha).

(b) SO-Gen model’s MAE sensitivity to α (alpha) and β (beta).

Figure 21: MAE of SO-Dis and SO-Gen varying with different {α, β} on Population dataset.
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5.4 Summary

In this chapter, we have presented the Subjective Opinion based data reliability assess-

ment framework in the scenario statement candidate value conflicts appear, which provide

rich evidences for model to accurately make assessment. There is no labeled training data

in this scenario, and hence is moderate challenging. We validate our framework on two real-

world datasets. Experiment results shows that our proposed models significantly outperforms

state-of-art baseline models, validating the effectiveness of our proposed framework.
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6.0 RQ 4: How to assess data reliability with historical data when sources

provide conflicting values

In this chapter, we will discuss the data reliability assessment in the scenario where

historical data are provided, and also for a given statement, the conflicting values appear.

This question is supposed to be the easiest one in the four research questions, as both

the historical data and conflicting values could provide additional evidences for reliability

assessment.

6.1 Subjective Opinion based data reliability assessment

Subjective Opinion based data reliability assessment framework for this scenario is quite

similar to the one in Scenario 3. Provider reliability is represented by ωmodel
pj

, describing the

model’s opinion towards the declaration “provider pj is reliable”. One statement may receive

several different values from providers, and hence we evaluate the reliability of candidate

value v instead of statement si, which is represented by ωmodel
v . In such a scenario, the

proposed framework considers all the assumptions talked in Scenario 3. My framework first

initialize the statement true values, then iteratively assess provider/source reliability and

update the statement true value until converge, as shown in Figure 22. In this scenario,

labeled training data (i.e., statement true values) is provided. Therefore, we could directly

use the provided true values in the iteration and expect the reliability assessment is more

accurate than that in Scenario 3.

Step-1: initialize the statement true values and statement discrimination

score. If the statement si has the ground-truth value vi′ , this true value is directly used.

For those without labels, select true value vi′ based on naive strategies, such as Majority

Voting, Average, Maximum, Minimum, or other algorithms.

In Scenario 3, each statement has a discrimination score, describing referencing the state-

ment’s data, model’s ability to differentiate the reliable and unreliable providers. It was
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Figure 22: Subjective Opinion based data reliability assessment framework for Scenario 4.

calculated with value distribution in RQ3, and in this scenario, we also pick this concept

but re-define its formula: if the statement has the labeled true value, then it receives a full

discrimination score, Disc(si) = 1; otherwise, the discrimination score is γ ∈ (0, 1).

Step-2: calculate provider’s reliability. Provider’s reliability is defined as our opin-

ions towards the statement “provider pj is reliable”, which is define as:

ωmodel
pj

= {tmodel
pj

, dmodel
pj

, umodel
pj
}. (38)

Intuitively, if the provider’s values are close to the statement true values, then this provider

is reliable; otherwise, this provider is unreliable. Therefore, we define:
tmodel
pj

=
∑n

i=1 Disc(si)∗Imp(vi′→vij)∑n
i=1{Disc(si)|vij 6=null} ∗ (1− umodel

pj
)

dmodel
pj

= 1− tmodel
pj

− umodel
pj

umodel
pj

= θ ∗
∑n

i=1{1−Disc(si)|vij 6=null}∑n
i=1{1|vij 6=null} + α,

(39)

where α is a numeric value, representing our basic uncertainty, θ controls the effect of

providng values for low discriminative statements, and Imp(vi′ → vij) is the implication
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from ground-truth/predicted true value to vij, which is defined based on specific task back-

ground.

Step-3: update the true values. If the statement has the labeled true value, the

true value is directly used. For those without labels, true value could be decided based on

each value’s reliability, either in a discriminative way, or in a generative way. If values are

numeric, we could select the value with highest reliability as the true value, and could also

calculate a true value based on the reliability score. If values are categorical, then we will

have to chose one from the existing candidate values.

Case 1: in a discriminative manner. If provider/source pj has same belief in all

values that he provides, then directly fuse these sources’ reliability with Subjective Logic

consensus operation. The fused opinion represents our belief for the statement “vij is the

true value for statement si”, which is represented as:

ωmodel
vij

= {tmodel
vij

, dmodel
vij

, umodel
vij
}. (40)

It is obtained by:

ωmodel
vij

= ωmodel
p1

⊕ ωmodel
p2

⊕ ...⊕ ωmodel
pk

, (41)

where p1, p2,..., pk are providers who provide values for si. Given a statement si, for each

candidate value {vij|j = 1, ...,m, vij 6= null}, we compare their reliability ωmodel
vij

, and select

the value with highest trust tmodel
vij

as the true value.

Case 2: in a generative manner. In this case, for the statement si without ground-

truth label, we assume that value vi′′ is the temporary true value. Then provider pj gives

an opinion towards “the value vi′′ is the true value for statement si” based on the distance

between his provided value vij and this vi′′ . The model could learn vi′′ ’s reliability based

on pj’s recommendation. After considering statement si all providers’ recommendation, the

model could get a fused idea about this temporary true value vi′′ , and based on which

generates a predicted true value.

There are many ways to obtain the temporary true value vi′′ , and we recommend to

use statement’s maximum or minimum candidate value. Take maximum for example, after

obtaining the final opinion towards this vi′′ , if trust is high, the generated value should

approach the maximum candidate value; if trust is low, the generated value should approach
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the minimum candidate value. Vice versa. On the other hand, if chose median, average,

or majority, when the trust in the final fused opinion is low, the model has no idea about

whether the predicted true value should be bigger or lower than vi′′ . In this study, for each

statement si that has no label, we chose its maximum candidate value as the temporary true

value, vi′′ = max({vij|j ∈ {1, . . . ,m}).

First, on each statement si, we normalize all the candidate values in the following manner:

v
′

ij =
vij −min({vij|j ∈ {1, . . . ,m})

max({vij|j ∈ {1, . . . ,m})−min({vij|j ∈ {1, . . . ,m})
, (42)

Then we have v
′
ij ∈ [0, 1]. After this, statement “true value of statement si is the max

candidate value max({vij|j ∈ {1, . . . ,m})” is mapped to “in the normalized space, true

value of statement si is 1”. Thereby, the provider pj’s opinion towards the statement can be

defined as:

ω
pj
vi′′=1 = {(1− β)v

′

ij, 1− (1− β)v
′

ij − β, β}, (43)

where β describe provider’s fundamental uncertainty, similar to above α.

Second, the provider pj can recommend his opinion ω
pj
vi′′=1 to the model. Recommenda-

tion operation can help people know the statement according to their acquaintances. Thus,

model’s opinion towards “in the normalized space, true value of statement si is 1” could be

obtained:

ω
model,pj
vi′′=1 = ωmodel

pj
⊗ ωpj

vi′′=1. (44)

Statement si has a set of candidate values from several providers {p1, p2, ..., pk}, and

the model should have a summarized opinion based on all recommendations. Consensus

operation can help fuse several opinions towards one statement together. The model’s final

opinion towards the temporary true value vi′′ is defined as:

ωmodel,p1,p2,...,pk
vi′′=1 = ωmodel,p1

vi′′=1 ⊕ ωmodel,p2
vi′′=1 ⊕ ...⊕ ωmodel,pk

vi′′=1 . (45)

In the final fused opinion ωmodel,p1,p2,...,pk
vi′′=1 , the trust reflects model’s confidence about the

temporary true value vi′′ = 1 in the normalized space. There are two ways to get the final

predicted true value:
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Unsupervised generation. Map tmodel,p1,p2,...,pk
vi′′=1 to the original numerical space, and

use it as the predicted true value vi′ .

vi′ =tmodel,p1,p2,...,pk
vi′′=1 ∗ (max({vij|j ∈ {1, . . . ,m})−min({vij|j ∈ {1, . . . ,m}))+

min({vij|j ∈ {1, . . . ,m}).
(46)

Supervised generation. Since we have labeled training data, we could build a regres-

sion model to predict the true value vi′ . The {tmodel,p1,p2,...,pk
vi′′=1 ,max({vij|j ∈ {1, . . . ,m}),

min({vij|j ∈ {1, . . . ,m})} and their transformed versions will be the features.

6.2 Utility case 6: Find true city population

6.2.1 Dataset: Population

In this study, we pick the dataset Population, proposed in [Pasternack and Roth, 2010],

to validate our proposed framework. This is a numerical dataset, a sample of Wikipedia edit

history of city population. When the data was released in 2010, there were 44,761 tuples

from 4,107 data providers. The version used in [Zhao and Han, 2012, Li et al., 2014b,a]

contains 43,071 tuples. When we download it in 2019, it contains 51,761 tuples from 4,264

data providers on 40,583 cities. It originally contains ground-truth populations only for 274

cities, but in this study, we need ground-truth labels for all cities. Therefore, we label the

Population dataset. First, we download the United States 2000 Census data. Then, we scan

the whole city set in Population and Census data, and all cities are indexed by “city name,

state name”. Only the cities that has one and only one exact match in both data are kept.

Also, these cities’ related wiki editors are kept.

Then, I pre-process the dataset in a same way as [Zhao and Han, 2012, Li et al., 2014b,a]:

(1) One provider may provide several population to same city, only the latest one is kept. (2)

if a city only have one candidate value (from one or several providers), its data is removed.

(3) Outliers on each city are removed in the same way as Zhao and Han [2012] did with

TruthFinder. In this way, we obtain 13,359 tuples from 667 providers about 10,970 cities.
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6.2.2 Baselines

There are 7 baseline models in this section.

Voting. The candidate with max amount of providers is true data. If several candidates

receive same voting, randomly pick one.

Median; Average. The median and average of all candidate values is predicted as true.

CRH; GTM. Model CRH Li et al. [2014b] is designed as generative model for numerical

data, but can be used as a discriminative model with slight modification. Model GTM Zhao

and Han [2012] is a generative model, and we did not further extend it as the discrimina-

tive model in this study. Each iteration, with evaluated provider’s reliability, they try to

generate/select estimated true value of each statement to minimize the difference between

“estimated true matrix” and the observed input matrix . They are unsupervised models,

and we did a small modification to adapt them into a semi-supervised mode: when CRH

and GTM update the “estimated true values” in each iteration, they skip those statements

(i.e., city) having ground-truth values (i.e., populations).

SSTF. Model SSTF [Yin and Tan, 2011] is a semi-supervised model. It also runs iter-

atively updating the city’s population values, and skip those statement with ground-truth

values. SSTF maintains two weight matrix, one being weights for values from same sources

(i.e., wiki editor), and one being weights for values on same statement (i.e., city). SSTF

believes that values of same sources or on same statements should be similar, and lower

down the weights of those having big differences. It tries to find the optimal weight matrix,

and then select the best value that are weighted closest to all other values.

OpSTD. Model OpSTD Yang et al. [2018] is a semi-supervised model. It iteratively

update providers’ reliability and the expected values. Similarly, it ignore the statements

(i.e., city) having ground-truth values (i.e., populations). Expected values are calculated as

the weighted average values, where weight is provider’s weight.

6.2.3 Experiment Settings

Following [Zhao and Han, 2012, Li et al., 2014b,a], three evaluation metrics are selected:

MAE, RMSE, and Error Rate. In terms of Error Rate, “error” appears when the predicted
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truth is smaller or larger than the ground truth by 10%.

Similarly, following past studies, the parameters of all methods are set based on optimal

performance on the testing data. In TruthFinder, λ is set to be 0.3. In terms of GTM, we

have two set of parameters, the first being (α = 10, β = 10, µ0 = 0, σ2
0 = 1) suggested by

Zhao and Han [2012], and the second being (α = 4, β = 1, µ0 = 0, σ2
0 = 1), which has best

performance in our experiment. For our proposed method SO-Dis, γ is set to be 0, while α

is set to be 0.01. Finally, for SO-Gen, γ is set to be 0, while α is set to be 0.01, and β is set

to be 0.01.

6.2.4 Experiment Results

All methods’ performance is shown in Table 10. We can see that the proposed method

SO-Gen gives best performance on all three metrics. Additionally, SO-Dis gives the second

best on all three metrics. Actually, all models, except SO-Gen, give similar error rate without

significant differences (p-value¿0.05).

We can also see following findings: (1) It is reasonable to use predictions from TruthFinder

as priors to remove outliers, consistent with findings from [Zhao and Han, 2012]. Naive

methods, especially Average, gives a much worse performance. (2) Second group (generative

models) usually have a relatively smaller RMSE and and a higher Error Rate than the third

group (discriminative models), indicating that either the “correct cases” whose distance is

smaller than 10% from truth in the second group are more accurate than that in the third

group, or the “error cases” in third group are farther from truth than that of second group.

(3) Also, the lower Error Rate in third group means that true value usually appears in the

candidate value set. Also, we tried to run TruthFinder after outlier removed, but it does not

provide further improvement, and even declined a little bit in terms of MAE and RMSE.

6.2.5 Further Discussion

Our proposed SO-Dis model has two parameters, γ for discriminative score of statement

without labels and α for model’s basic uncertainty towards each provider. SO-Gen has one

more parameter, β, describing provider’s basic uncertainty towards each value. In the above
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Table 10: Compare ten models’ performance on Population. First group shows the perfor-

mance of discriminative models; second group models predict truth in a generative way. Best

results in both groups are in bold.

Models MAE RMSE Error rate

Discriminative models

SO-Dis 304.718 7468.288 0.816

median 310.489 13673.871 0.817

voting 314.674 13771.172 0.816

CRH-selective 351.850 8377.411 0.818

SSTF 717.552 12514.518 0.819

Generative models

SO-Gen 190.416 3350.384 0.481

GTM 311.389 7509.255 0.818

OpSTD 337.331 7659.214 0.819

average 373.700 13792.081 0.819

CRH-generative 409.939 8770.881 0.819
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experiment results subsection, these parameters and all baseline parameters are all selected

to achieve the highest performance with the Population dataset in cross-validation. We

repeat the cross-validation procedure 30 times, and the average performance is reported in

Figure 23.

Figure 23(a) shows SO-Dis’s MAE performance with different α and γ. Surprisingly,

SO-Dis obtains best performance when γ = 0. It indicates that the provider’s reliability is

totally decided by the statements with ground-truth labels. If they provides approaching

truth value, then provider has higher reliability; otherwise, provider will have low reliability.

One reason maybe that current experiments are with five-fold cross-validation, i.e., 80%

statements are equipped with ground-truth value in the iterations. If we lower down the size

of labeled training data, reliability assessment then have to rely on unlabeled statement, and

γ is expected to increase.

On the other hand, when parameter γ is fixed, α’s variation slightly affect MAE perfor-

mance. But still, SO-Dis gets best performance when α = 0.001. It indicates that model

have very low uncertainty about the Population dataset. One reason is above mentioned

five-fold cross-validation, with 80% statements having labels, and hence uncertainty is low.

Another reason is that the conflicting values also provide the model with reliability evidences,

further lowering down model’s uncertainty.

Figure 23(b) shows SO-Gen’s MAE performance with different α and β, while γ is set as

0. In our experiments, I find SO-Gen has a same trend as SO-Dis on gamma, hence directly

use gamma = 0 and only illustrate SO-Gen’s MAE sensitivity with α and β. Parameter

α describes model’s basic uncertainty towards each provider, while β describes provider’s

basic uncertainty towards the temporary true value vi′ . SO-Gen has the best performance

with lowest {α, β, γ}. From Figure 23(b) we could see that when β is very small, such as

β ∈ [0.01 0.3], SO-Dis’s performance is quite robust to parameter α. It indicates that, as

long as SO-Dis’s providers are confident (low uncertainty with β) about their judgement of

statement temporary true value vi′ , the final prediction of the truth will have good quality.

However, if providers have high uncertainty (β) about the statement temporary true value

vi′ , but model have low uncertainty (α) with providers, final prediction is far away from the

real truth, leading poor MAE performance.
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(a) SO-Dis model’s MAE sensitivity to α (alpha) and γ (gamma).

(b) SO-Gen model’s MAE sensitivity to α (alpha) and β (beta) with γ set as 0.

Figure 23: MAE of SO-Dis and SO-Gen varying with different {γ, α, β} on Population

dataset.
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To summary, Scenario 4 is the most certain scenario in four research questions, and the

Population datasets validate this funding as two proposed models get best performance when

all uncertainty related parameters {α, β, γ} is assigned with the lowest value.

6.3 Summary

In this chapter, we have presented the Subjective Opinion based data reliability assess-

ment framework in the scenario where statement historical labels are provided, and statement

candidate value conflicts appear, both of which provide rich evidences for model to accu-

rately make assessment. This scenario is the most easy one in this whole dissertation study.

We also validate our framework on a real-world dataset. Experiment results shows that

our proposed models significantly outperforms state-of-art baseline models, validating the

effectiveness of our proposed framework.
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7.0 Conclusion

Data reliability has always been considered important, especially in current society, where

real and fake data from diverse sources fluctuates people’s daily life. In this dissertation, I

work on accurate data reliability assessment to help people get good quality data. I found

past models do not fully consider the uncertainty in the dataset, and hence in this work,

I propose series of data reliability assessment frameworks for different scenarios. Also, I

found Subjective Opinion is naturally good at recording data uncertainty and introducing

it into my frameworks. Experiments on multiple real-world datasets show the effectiveness

of the proposed models and the framework. In this dissertation, I make the following key

contributions:

• In Chapter 3, I identify a data reliability assessment scenario where historical labels

are not available for training and statement candidate values have no conflicts. Data

reliability assessment in this scenario is more challenging than in other scenarios. It is

hard to collect evidence to differentiate between reliable or unreliable data. In this sce-

nario, the model has to be designed with background knowledge. Therefore, first, I build

a general framework and then give specific designs with a real-world problem, finding

cancer driver genes with TCGA data. A lot of gene mutation background knowledge

is used to build the data reliability model. I conduct experiments on TCGA data, and

my model outperforms state-of-art baseline models, validating the proposed framework’s

effectiveness.

• In Chapter 4, I identify a data reliability assessment scenario where historical labels are

available for training (statement candidate values have no conflicts). Data reliability

assessment in this scenario is moderately challenging. The labeled training data can be

used to differentiate between reliable or unreliable data. Existing models do not fully con-

sider the uncertainty in the data. Therefore, I propose a new data reliability assessment

framework, which is based on Subjective Opinion and can handle data uncertainties well.

People could adapt it to specific tasks with minor changes. I conduct experiments on a

fake news detection task with a real-world dataset. My model outperforms state-of-art
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baseline models, validating the effectiveness of the proposed framework.

• In Chapter 5, I identify a data reliability assessment where though historical labels are

not available for training, each statement has one or candidate values, whose distribution

provides evidence to differentiate reliable or unreliable data. Data reliability assessment

in this scenario is moderately challenging. My proposed Subjective Opinion based frame-

work is able to comprehensively handle the data uncertainty and also introduce the state-

ment Discrimination Score to describe the statement’s ability to provide evidence for the

model, which is new in this area. I conduct experiments on two real-world datasets, and

my models outperform state-of-art baseline models, validating my proposed framework’s

effectiveness.

• In Chapter 6, I identify a data reliability assessment scenario where historical labels

are provided and also each statement has one or candidate values, whose distribution

provides evidence to differentiate reliable or unreliable data. Data reliability assessment

in this scenario is easier than in other scenarios. My proposed Subjective Opinion based

framework is able to comprehensively handle the data uncertainty and also introduce the

statement Discrimination Score to describe the statement’s ability to provide evidence

for the model. I constructed a labeled real-world dataset, and validates that my model

outperform state-of-art baseline models.

In this study, I find in these different scenarios, if real data dominates the dataset, my

proposed model and listed baseline models usually could gain good performance. However,

when misinformation and uncertain data fluctuates the dataset, all models’ performance

will drop. Also, according to the experiments on TCGA dataset in Section 3.2, we could

find that domain knowledge is very informative, providing much evidences to differentiate

the reliable and unreliable data. Currently, we equally regard each data provider, whose

reliability is decided by the quality of their provide values. In the future, I will consider the

data provider’s background into the reliability assessment framework. I.E., maybe domain

experts will have higher reliability in his/her domain, and lower reliability in other domains.
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