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ANALYSIS OF COLLABORATIVE ARGUMENTATION IN TEXT-BASED

CLASSROOM DISCUSSIONS

Luca Lugini, PhD

University of Pittsburgh, 2021

Collaborative argumentation can be defined as the process of building evidence-based, rea-

soned knowledge through dialogue and it is the foundation for text-based, student-centered

classroom discussions. Previous studies for analyzing classroom discussions, however, have

not focused on the actual content of student talk. In this thesis, we develop a framework for

analyzing student talk in multi-party, text-based classroom discussions to understand how

students interact and collaboratively build arguments. The proposed framework will simul-

taneously consider multiple features, namely argumentation, specificity and collaboration.

We additionally propose computational models to investigate three aspects: 1) automatically

predicting specificity; 2) automatically predicting argument components, and investigating

the importance of speaker-dependent context; 3) using multi-task learning to jointly predict

all aspects of student talk and improve reliability.
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1.0 INTRODUCTION

Classroom discussions are regarded as one of the most effective pedagogical approaches

for enhancing student skills. Extensive research in the educational community has shown

that reasoning, reading, and writing skills can be positively affected by high-quality student-

centered classroom discussions in English Language Arts (ELA) classrooms [Reznitskaya and

Gregory, 2013, Graham and Perin, 2007, Applebee et al., 2003]. High quality discussions

encourage student-to-student talk, negotiation of claims, supporting claims with evidence,

and reasoning about those claims. Although the effectiveness of particular kinds of claims,

evidence and reasoning can vary across disciplines, Chisholm and Godley [Chisholm and

Godley, 2011] and Lee [Lee, 2006] showed that the specificity of these argument moves

is related to discussion quality. Student-centered discussions and elaborated student talk

during collaborative argumentation are also recognized as indicators of learning opportunities

in different academic disciplines [Grossman et al., 2014, NGA & CSSO, 2010]. During

classroom discussions in which questions are open-ended (i.e. with multiple possible right

answers) working on collaborative argumentation gives students the opportunity to build

disciplinary knowledge and learn how to critically think in a disciplinary way [Engle and

Conant, 2002, Reznitskaya and Gregory, 2013]. There are several advantages of engaging

in disciplinary argumentation collaboratively in a group rather than individually: students

obtain a better understanding of the process of building and evolving disciplinary knowledge

by considering multiple viewpoints, supporting and challenging each other’s ideas [Engle

and Conant, 2002]; they have the ability to return to previous ideas at any point in time

to re-examine and improve them [Hong and Scardamalia, 2014]; they gain more complex

disciplinary expertise by formulating, challenging and supporting different interpretations of

an idea with evidence and reasoning.
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Figure 1: Rubric used by a teacher in grading a classroom discussion.

From the instructor’s point of view, however, many teachers struggle to develop the

skill necessary for effectively teaching collaborative argumentation [Lampert et al., 2010].

During a discussion a teacher must perform multiple tasks: manage the discussion, make

sure all instructional goals are accomplished, keeping track of which students speak and how

much they speak, all the while paying attention to the content and important features of

students’ talk and possibly reacting with planned interventions. As if this was not enough,

usually no records exist after the discussion ends, so it is up to each teacher to recall what

happened during the discussion in order to grade individual students and plan for the next

discussion. Figure 1 shows the rubric used by a high school teacher when grading students in

a classroom discussion. The figure shows that grades have a component based on homework

assignment (questions and pre-notes) and one for students’ reflections on the classroom

discussion (post-notes). The rest of the grade comes from the students’ contributions during

the discussion: follow-up questions to other students’ statements, and responses to other

students’ statements with particular attention on whether they provide support or not. The

2



teacher, therefore, needs to process each utterance to understand whether it poses a follow

up question to a previous utterance, if it is related to a previous utterance at all, and if

support for the student’s statement is given. Since the teacher is also in charge of managing

the discussion, at any point in time they may need to intervene with probes (e.g. asking for

support in case it is not provided by a student or facilitating collaboration between students)

and to make sure the discussion stays on topic. Effectively understanding and orchestrating

collaborative argumentation requires advanced skills which are difficult to develop [Lampert

et al., 2010].

Natural Language Processing (NLP) techniques have the potential of alleviating this

problem by automatically analyzing classroom discussions and providing teachers with feed-

back on how to improve collaborative argumentation overall in the classroom. At the same

time, students could also benefit from individual feedback on their contributions during dis-

cussions. While there is an increase in deploying automated tools in the classroom, prior

research has not focused extensively on student-centered classroom discussions. Chen et

al. [Chen et al., 2014] developed a tool for teacher self-assessment of classroom discussion

through analyzing the frequency of participation of students in the discussion and teacher-

student turn patterns. Blanchard et al. [Blanchard et al., 2016] proposed a system for

detecting teacher questions from classroom discussion recordings. Gerritsen et al. [Gerritsen

et al., 2015] developed a system with the goal of providing teaching assistants with feedback

on instructor/student talk ratio and wait time. Researchers have also developed systems for

identifying different instructional segments from recordings of classroom discussions [Kelly

et al., 2018], and detecting dialogic properties of teacher questions [Samei et al., 2014].

Unfortunately, none of these works actually focuses on the content of student talk during

discussion, making it unsuitable for analyzing collaborative argumentation. Similarly, prior

systems developed for analyzing the content of discourse have not actually focused on data

from spoken discussions. The limitations of prior work on collaborative argumentation also

stem from the lack of publicly available corpora for multi-party, student-centered classroom

discussions with related annotations.

The NLP community has also investigated problems related to the specific aspects of

collaborative argumentation which are the focus of this thesis, namely argumentation and

3



specificity. With respect to former, several works analyzed aspects of argumentation in

educationally-oriented domains such as student essays [Persing and Ng, 2015, Stab and

Gurevych, 2014, Nguyen and Litman, 2015, Nguyen and Litman, 2016b, Nguyen and Lit-

man, 2016a, Nguyen and Litman, 2018] while others focused on analyzing argumentation

in multi-party online dialogues [Swanson et al., 2015, Misra et al., 2015, Habernal and

Gurevych, 2017, Niculae et al., 2017]. These works, however, present some limitations when

considering collaborative argumentation in classroom discussions: they either adapt a differ-

ent argumentation scheme or disregard important labels (e.g. warrants) from their analyses,

or were developed for performing tasks other than predicting argument components (e.g.

analyzing quality of arguments, argument facets, argument strength, argument relations),

and none of them focuses on multi-party educational discussions. As for specificity, previ-

ous research has mainly addressed the domains of newspaper articles [Louis and Nenkova,

2011, Louis and Nenkova, 2012, Li and Nenkova, 2015, Li et al., 2016, Carlile et al., 2018],

and online/social media posts [Gao et al., 2019, Ke et al., 2018, Swanson et al., 2015]. Besides

the difference in domain with our work on classroom discussions some of the limitations of

the prior works are: they either annotate/predict specificity using a different unit of analysis

that does not hold particular meaning in our corpora which derives from spoken discussions

(e.g. sentences), or use a continuous numerical value instead of discrete categories; most

importantly, none of them considered external resources when annotating/predicting speci-

ficity, which is a big limitation since our work is aimed at text-based discussions in which

the definition of specificity is related to information about the text.

Overall, perhaps in part due to lack of publicly available corpora, there is a need in the

NLP community for computational models specifically focused on analyzing collaborative

argumentation and its components with respect to spoken, multi-party, text-based classroom

discussions. We try to bridge this gap by presenting an end-to-end framework (from data

collection, to manual annotation, to predictive models) that is targeted at helping teachers

understand and improve collaborative argumentation in their classroom discussions.
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1.1 THESIS STATEMENT

Motivated by the need for developing tools to support teachers and students in classroom

discussions, the goal of this research is to develop a framework and computational models

for analyzing collaborative argumentation in multi-party, text-based classroom discussions.

The research hypotheses to be tested are as follows:

• H1: The first hypothesis relates to the effectiveness and reliability of the proposed

framework, and is divided into two sub-hypotheses:

– H1.1: The proposed annotation scheme can be used by humans to reliably annotate

important aspects of student talk in classroom discussions.

– H1.2: The proposed annotation scheme generates useful information for teachers.

• H2: The annotation of features of student talk can be reliably automated. This hypoth-

esis is divided into four sub-hypotheses:

– H2.1: The proposed model for specificity prediction delivers better performance

than systems developed for other domains.

– H2.2: Performance of an existing argument mining model can be improved by using

features developed for argument mining in online dialogues.

– H2.3: Modeling student-dependent contextual information will improve argument

component classification performance.

– H2.4: The proposed approach for modeling contextual information in argument

component classification will be effective for multiple neural network models.

• H3: A model for jointly predicting all features of student talk using multi-task learning

will outperform the individual models trained separately on each of the features.

The models we propose for testing hypotheses H2 and H3 consist of a hybrid combination of

a neural network and handcrafted features: we can therefore augment the features extracted

automatically by a neural network with the robustness of handcrafted features in a setting

with a limited amount of training data.
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1.2 CONTRIBUTIONS

For the educational community, we develop an annotation scheme for important aspects

of classroom discussions grounded in theory of learning that can reliably be annotated by

humans (i.e. argumentation, specificity and collaboration). The annotation scheme provides

teachers with actionable information for planning classroom discussions. Additionally, we

develop tools using NLP techniques to automatically generate annotations for student talk

in classroom discussions. Such techniques can then be incorporated into practical tools to be

used in the classroom. Lastly, we develop an analytics system capable of supporting teachers

in understanding and fostering collaborative argumentation.

For the argument mining community, we develop new argument component classification

models specifically designed for classroom discussions, and analyze the impact of student-

dependent contextual information. We also carry out experiments to understand how ar-

gument component classification performance is affected by using different types of neural

networks and different input granularity.

For the NLP community, we develop a hybrid approach to predict specificity which com-

bines a neural network and handcrafted features in order to train a robust model given

the limited amount of training data. We additionally evaluate how our proposed models

for argument component classification can take advantage of contextual information. We

show that the proposed models for contextual information generalize to other neural net-

work types. Lastly, we perform experiments on simultaneously training models on multiple

tasks including argument component classification, specificity, and collaboration. We show

that multi-task learning can be used to train robust models, in particular for argument

components and collaboration, that outperform the respective individual models.

As additional contribution, we released a dataset of classroom discussion transcripts

annotated with the proposed annotation scheme for free use to the research community. An

example excerpt of such discussion is given in Table 7.
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1.3 OUTLINE

This chapter introduced the motivation and some of the challenges of this thesis. The rest

of this thesis is organized as follows: Chapter 2 briefly describes the different datasets used

in this work; Chapter 3 outlines the proposed framework for annotating different aspects

of classroom discussions; Chapter 4 introduces computational models for automatically pre-

dicting specificity of student talk; Chapters 5 and 6 presents work on argument component

classification in classroom discussions; Chapter 7 describes joint models for simultaneously

predicting multiple important features of classroom discussions; Chapter 8 reports on find-

ings from classroom deployment of an analytics tool, and Chapter 9 summarizes the thesis.
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2.0 DATA AND RESOURCES

Since we have been working on developing an annotation scheme and computational models

incrementally over the course of multiple years, we have used different datasets for testing

research hypotheses. This chapter provides a description of all datasets used in our work.

Table 1 shows the annotations available for the datasets and the tasks/chapters for which

each is used.

The first dataset, D1, consists of manually transcribed text-based classroom discussions

from English Language Arts high school classes. Text-based discussions are about a “text”

(e.g., literature such as Macbeth and Memoir of a Geisha, a news article, a speech, etc.) and

can either be mediated by a teacher or conducted exclusively among students. The number

of students per discussion ranges from 5 to 13. The dataset was annotated for specificity

according to the annotation scheme proposed in Chapter 3. Specificity labels distribution is

shown in Table 2.

The dataset spans 23 classroom discussions and over 2000 argument moves. Two pairs

of annotators coded specificity for 5 and 9 transcripts respectively, while the remaining 9

transcripts were single-coded. Inter-rater reliability on specificity labels for the two anno-

tator pairs as measured by quadratic-weighted Cohen’s Kappa is 0.714 and 0.9, indicating

substantial agreement and almost perfect agreement, respectively. A gold standard set of

labels for each double-coded discussion was obtained by resolving the disagreements between

the two annotators. This dataset was used to develop our specificity prediction models in

Chapter 4.

Dataset D2 consists of 73 transcripts of text-based classroom discussions, 5 of which

are also present in D1. Some of the transcripts were gathered from published articles and

dissertations, while the rest originated from videos which were manually transcribed by one

8



Table 1: Classroom discussion datasets annotated with number of discussions, number of ar-

gument moves, which annotations they contain, inter-rater agreement measures (unweighted

Kappa for argumentation and collaboration, quadratic-weighted Kappa for specificity), and

a description of their use in this work.

Dataset Disc
Argument
Moves

Annotations
Cohen
Kappa

Description

D1 23 2057 Specificity
0.714,
0.900

Used for predicting
specificity in Chapter 4

D2 73 2047
Argument component

Specificity
0.629
0.641

Used for argument com-
ponent classification in
Section 5.2 and for
preliminary analysis in
Chapter 7

D3 29
3135

(2125 turns)

Argument component
Specificity

Collaboration

0.890
0.700
0.740

Used for argument com-
ponent classification in
Chapter 6 and multi-
task learning in Chapter
7

D4 18
1942

(1467 turns)

Argument component
Specificity

Collaboration

0.971
0.813
0.578

Used for predicting ar-
gument components in
Section 6.4.5 and in
Chapter 8.

Table 2: Dataset D1 statistics.

Annotation Total Count Percentage

Specificity Low 730 35.49%

Medium 974 47.35%

High 353 17.16%

Total 2057 100.00%

of our annotators. While detailed demographic information for students participating in

each discussion was not available, our dataset consists of a mix of small group (16 out of 73)

9



Table 3: Distribution of class labels for argument component type and specificity in dataset

D2.

Annotation Total Count Percentage

Argumentation Claims 1034 50.51%

Evidence 655 32.00%

Warrants 358 17.49%

Total 2047 100.00%

Specificity Low 710 34.69%

Medium 996 47.66%

High 341 16.65%

Total 2047 100.00%

versus whole-class (57/73) discussions, both teacher-mediated (64/73) versus student only

(9/73). Additionally, the discussions originated in urban schools (28/73), suburban schools

(42/73), and schools located in small towns (3/73). After pre-processing (see Section 3.3

for details), we used the framework from Chapter 3 to annotate argument components and

specificity. Only student turns were considered for annotations; teacher turns at talk were

filtered out and do not appear in the final dataset. The distribution of argument component

and specificity labels for D2 are shown in Table 3.

The average number of argument moves among the discussions is 27.3 while the standard

deviation is 25.6, which shows a high variability in discussion length. The average number

of words per argument move and standard deviation are 22.6 and 22.1, respectively, which

also shows large variability in how much students speak. Dataset D2 will be used in Chapter

5 for testing the performance of argument component classification models.

Dataset D3 consists of 29 discussions: three rounds of discussions were recorded for each

of the 10 teachers participating in a research study (one discussion was not text-based and

therefore omitted), from three different high schools in the Pittsburgh area. Each discussion

was 30 to 40 minutes long, with a mix of whole-class and small-group discussions: the number
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of students ranged between 6 and 28. In terms of grade/level the classes were composed of

three ninth grade, three tenth, two eleventh, and two twelfth grade; six of the classes were

honors or AP level and four were “regular” level. A researcher observed each discussion while

being recorded, created a map to link numerical student IDs to the location of each student,

and took handwritten notes that were later used to align speaker IDs with the discussion

transcript.

Each transcript was manually transcribed (by a professional transcription service) and

pre-processed by an expert annotator in the same way as transcripts in dataset D2. Dataset

D3 was also annotated following the annotation scheme from Chapter 3. The annotated

transcript is publicly available for research use at http://discussiontracker.cs.pitt.edu and

additional details on data collection and annotation can be found in [Olshefski et al., 2020].

The final D3 dataset consists of 3135 argument moves. The average number of argument

moves per discussion is 108.1 and the standard deviation is 30.3, which suggests that discus-

sions in D3 are much longer and with less variability in length compared to the dataset D2.

The average number of words per argument move and standard deviation are 34.96 and 25.59

respectively, which shows that argument moves in D3 are generally longer than those in D2,

but show a comparable variability. The annotators who provided labels for dataset D3 are

the same as the ones used for dataset D2. Inter-rater reliability analyses were carried out by

double-coding three discussions (the remaining 26 discussions were single-coded). Annota-

tors achieved 92% agreement when deciding on argumentative vs. non-argumentative turns

at talk. Unweighted kappa for argumentation and collaboration annotations was, respec-

tively, 0.89 and 0.74. Quadratic-weighted kappa for specificity annotations was 0.70. Table

4 shows the class distributions for the D3 dataset. Dataset D3 will be used in Chapters 6

and 7.

Dataset D4 consists of 18 discussions collected in the Spring 2020 semester. Each dis-

cussion was transcribed using the same professional service used for D3 in order to maintain

consistency of transcriptions. The data collection and annotation procedures (including an-

notators) were the same as in D3. As for D3, a researcher observed each discussion, created

a map to link numerical student IDs to the location of each student, and took handwritten

notes that were later used to align speaker IDs with the discussion transcript. The main
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Table 4: Distribution of class labels for argument component type, specificity and collabo-

ration for dataset D3.

Annotation Total Count Percentage

Collaboration New 802 37.69%

Agree 37 1.74%

Extensions 1015 47.70%

Challenge 274 12.88%

Total 2128 100.00%

Argumentation Claims 2047 65.30%

Evidence 762 24.30%

Warrants 326 10.40%

Total 3135 100.00%

Specificity Low 1189 37.93%

Medium 1071 34.16%

High 875 27.91%

Total 3135 100.00%

differences between D4 and D3 consist in the size of the dataset, and in the fact that D4

contains one discussion per teacher. Therefore, D4 consists of discussions from 18 teachers

(10 of which also contributed to D3) from 4 high schools in the Pittsburgh area (3 of which

appear also in D3). The average number of words per argument move is 48.84 and standard

deviation is 34.4, which indicates that in general D4 contains longer argument moves than

D3 - though not consistently. Inter-annotator reliability was computed on 3 transcripts for

argumentation (kappa = 0.971) and specificity (quadratic-weighted kappa = 0.813) and col-

laboration (kappa = 0.578). D4 will be used in Section 6.4.5 to analyze the cross-dataset

performance of argument mining models as well as in Chapter 8. Class label distributions

for D4 are shown in Table 5.
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Table 5: Distribution of class labels for argument component type, specificity and collabo-

ration for dataset D4.

Annotation Total Count Percentage

Collaboration New 325 22.15%

Agree 38 2.59%

Extensions 790 53.85%

Challenge 314 21.41%

Total 1467 100.00%

Argumentation Claims 1402 72.19%

Evidence 345 17.77%

Warrants 195 10.04%

Total 1942 100.00%

Specificity Low 554 28.53%

Medium 697 35.89%

High 691 35.58%

Total 1942 100.00%
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3.0 ANNOTATION OF CLASSROOM DISCUSSIONS

In this chapter we discuss the design of a framework for annotating student talk in text-based

classroom discussions. We developed the annotation scheme with the intent of capturing

three important aspects of classroom talk that are theorized to be important with respect to

discussion quality and learning opportunities: argumentation (the process of systematically

reasoning in support of an idea), specificity (the quality of belonging or relating uniquely to a

particular subject), collaboration (relations between different turns in the discussion). This

work is illustrated in [Lugini et al., 2018] and [Olshefski et al., 2020] and the contribution is

shared with Christopher Olshefski.

3.1 RELATED WORK

Several studies in the educational domain have used argument moves, i.e. students’ claims

about the text, sharing textual evidence for claims, and reasoning to support claims, as

measure of discussion quality [Reznitskaya et al., 2009, Chisholm and Godley, 2011]. Stu-

dent reasoning in particular is believed to be of primary importance, especially when it is

elaborated, highly inferential and based in evidence [Kim, 2014a, McLaren et al., 2010]. In

the NLP field the main focus of educationally-oriented argumentation research has been on

corpora of student persuasive essays [Ghosh et al., 2016, Klebanov et al., 2016, Persing and

Ng, 2016, Wachsmuth et al., 2016, Stab and Gurevych, 2017, Nguyen and Litman, 2018]. In

contrast with these previous works, our focus lies in multi-party spoken discussion transcripts

from classrooms. Argumentation in online multi-party settings was studied by Swanson et

al. [Swanson et al., 2015] and Misra et al.[Misra et al., 2015], however their focus was on
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analyzing argument quality or argument facets unlike our work which is aimed at argument

component classification. Furthermore, unlike studies in argument mining which only con-

sider claims and premises [Stab and Gurevych, 2014, Stab and Gurevych, 2017, Nguyen and

Litman, 2015, Nguyen and Litman, 2018], we include the warrant label as it is important to

understand how students explicitly link evidence to claims through their reasoning.

In the educational community, previous studies found that specificity is another factor

which impacts the quality of discussions [Chisholm and Godley, 2011, Sohmer et al., 2009]

(where discussion quality was manually evaluated by experts based on argumentative struc-

ture and sociolinguistic content). Chisholm and Godley found a relation between the increase

in specificity and the increase in quality of claims and reasoning. Within the NLP community,

previous research analyzed specificity of sentences in the context of professionally-written

newspaper articles and its role in their summarization [Li and Nenkova, 2015, Louis and

Nenkova, 2011, Louis and Nenkova, 2012]. Li et al. [Li et al., 2016] subsequently improved

the annotation scheme used in [Louis and Nenkova, 2011, Li and Nenkova, 2015] by consid-

ering contextual information, and by using a scale from 0 to 6 rather than binary specificity

annotations. The annotation guidelines used in these studies work well for general purpose

corpora [Gao et al., 2019] where the content is not directly related to a single source of in-

formation (e.g. a text), however in text-based discussions specificity must capture particular

relationships between a discussion and the text it is based on (e.g. does it mention specific

characters, does it provide a quote from the text). In order to capture such relationships

we define specificity for classroom discussions in terms of a set of characteristics that simul-

taneously consider an utterance and the text currently discussed. Another difference with

previous work is in the unit of analysis: we annotate argumentative discourse units since

the concept of sentence is not clearly defined in speech. Carlile et al. [Carlile et al., 2018]

also use argumentative discourse unit as unit of analysis for annotating specificity. Their

definition of specificity, however, differs between (major) claims and premise, and since they

do not include warrants in their annotation guidelines, their annotation scheme cannot be

directly applied to our problem.

Prior work in the educational community focused on classroom discourse research an-

alyzed collaboration in terms of accountable student talk and dialogue structure. While
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developing guidelines to facilitate productive disciplinary engagement, Engle and Conant

[Engle and Conant, 2002] found that accountability for building on others’ ideas (integrating

other people’s contributions into the student’s own ideas) and accountability for developing

group expertise (sharing individual, personal expertise with other members of the discussion

group) are important aspects for the collaborative learning process in the classroom. Keefer

et al. [Keefer et al., 2000] analyzed student-centered classroom discussions by identifying

different dialogue types within a discussion (e.g. critical discussion, consensus dialogue).

They also used a graphical representations to show how students’ utterances are connected

throughout the discussion. However, these works represent small-scale expert analyses and

do not provide actionable ways of annotating classroom discussions to understand if and how

students collaborate. In Computer-Supported Collaborative Learning (CSCL), Samei et al.

[Samei et al., 2014] evaluated how well humans and machine learning models can identify

two dialogic properties of questions in classroom discourse, uptake (i.e. asking a question

which is related to a prior statement) and authenticity (i.e. open-ended questions). Zhang

et al. [Zhang et al., 2013] developed a classroom analytics system with the goal of improving

knowledge co-construction through graphical visualizations of metadiscourse (how the dis-

course is organized) to identify threads of related ideas. Another construct in CSCL often

used to analyze collaborative knowledge construction is transactivity [Gweon et al., 2013], in

order to understand if participants in a conversation build on prior exchanges. Recent efforts

have also been focused on developing automated models for predicting transactivity that are

aimed at achieving state of the art results and improving generalization performance to out-

of-domain data [Fiacco and Rosé, 2018]. A transactive exchange has two characteristics: (i)

it contains reasoning; (ii) it references an idea voiced earlier in the discussion. It is therefore

intrinsically linked with argumentation. While these related works share our research inter-

est in understanding interactions between students, they are limited in the type of discourse

annotated (e.g. only questions, only reasoning) and in how student utterances are connected

(e.g. only identifying “build-on” relations, or transactive/non transactive exchanges). In

order to fully capture nuanced interactions between students during a classroom discussion,

we annotate all collaborative utterances with several distinct labels in addition to the utter-

ance to which they refer. Richey et al. [Richey et al., 2016] collected and annotated the SRI
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corpus of middle school, small group discussions of mathematical solutions with the goal of

understanding how student talk patterns correlate with collaborative learning. The corpus

includes multi-level annotations on collaboration: collaboration indicators (e.g. planning,

acknowledging, explaining) and overall collaboration quality ratings (e.g. good collabora-

tion, not collaborating). Though the SRI corpus is similar to the ones used in this thesis,

there are some fundamental differences: SRI consists small group discussions (3 students on

average) while our datasets consist of a mix of small group and whole-class discussions; SRI

consists of audio recordings along with time-stamped annotations, while our datasets consist

of written transcriptions with related synchronous annotations; SRI focuses solely on collab-

oration, whereas all our datasets except D1 include annotations on multiple dimensions of

collaborative argumentation.

3.2 ANNOTATION SCHEME

This work uses two unit of analysis: for collaboration we use turns, which consist of a com-

plete utterance; for argumentation and specificity we use argument moves, i.e. an utterance,

or part of an utterance, containing a single argumentative discourse unit (ADU) [Peldszus

and Stede, 2013]. In this document we use the terms argument move and ADU interchange-

ably. Table 6 shows the three dimensions of student talk considered in the definition of our

annotation scheme: argumentation, specificity and collaboration. The complete annotation

manual is provided in Appendix A.

The argumentation scheme is based upon Lee’s work [Lee, 2006]. It consists of a reduced

set of labels originating from Toulmin’s argumentation model [Toulmin, 1958]. Our scheme

explicitly specifies that for an argument move to be labeled as warrant it must come after

claim and evidence, since by definition warrants cannot exist without these two components.

A coded excerpt of a discussion is shown in Table 7. In the first row we can see student

St1’s turn being segmented into three argument moves. It show a natural expression of an

argument: St1 first voices a claim, then provides historical events as evidence, and finally

explains how the evidence links to the initial claim.
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Table 6: Description of the labels sets in the proposed annotation scheme

Label Definition

Argumentation

Claim An arguable statement that presents a particular interpretation of

a text or topic

Evidence Facts, documentation, text reference, or testimony used to support

or justify a claim

Warrant Reasons explaining how a specific evidence instance supports a spe-

cific claim

Specificity

Specificity elements: particulars, details, content language, chain

of reasoning

Low Statement that does not contain any of the specificity elements

Medium Statement that accomplishes one of the specificity elements

High Statement that accomplishes two or more specificity elements

Collaboration

New Expressing a new idea (or concept, or perspective) in the discussion

Extension Building off a prior idea

Challenge Challenging or questioning a prior idea

Agree Expressing almost the exact idea of a prior turn

For specificity, the annotation scheme is based on [Chisholm and Godley, 2011]. The

main goal of this scheme is to capture specificity as it relates to text-related characteristics

mentioned by students. The three specificity labels in Table 6 stem directly from four

elements of an argument move:

1. particulars: argument moves containing at least two terms that are particular (e.g., a

person and a setting or a setting and an action) rather than a general group or situation
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Table 7: Sample discussion excerpt from a discussion on the play “The Crucible”.

Turn Speaker Talk Col Ref Arg Spec

1 St 1
My interpretation of it is that,
without a middle ground, you
are left with two very extreme
points. Whether or not the
middle ground directly cen-
tered, we have a range. We
have a spectrum.[...]

New
Claim Medium

Throughout history, whether
you go back to ancient Europe,
and you look at tyrannies and
dictatorships, not even ancient
Europe. If you go back to the
Holocaust and what Hitler was
doing over in Germany [...] if
you go back to Communism,
as well [...]

Evidence Medium

Those are two extremes, and
neither of them ended well,
and just anarchy there. There
is no order there, there is
no civilized kind of society to
base anything around. I think
the middle ground is neces-
sary just to create some kind
of spectrum that we can go off
of.

Warrant Medium

2 St 9 I acknowledge your point, but
there wasn’t nobody going
against anything until this
happened, until this event oc-
curred.

Challenge 1 Claim Low

3 St 1 Does that make the way they
were living right, thought?

Challenge 2 Claim Low

4 St 9 If they were happy, I believe
they were perfectly fine.

New Claim Low

5 St 17 My assessment of the topic at
hand is, there needs to be a
balance between state rights
and user rights. [xx] slide, and
to what extent was it off bal-
ance.

Extension 1 Claim Medium
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such as “you”, “everyone”, “books”. Clichés or overgeneralizations are not particulars;

2. details: descriptions, explanations or elaborations that make the idea more understand-

able, contextualized, qualified, substantiated or vivid. (“Detailed” argument moves

should avoid or at least explain general terms like good, bad, stupid, i.e., terms with

multiple definitions);

3. content language: use of vocabulary or phrases that are specific to English Language

Arts (such as “irony”, “simile”, “tragedy”, etc.) or the text being discussed (such as

quotes or expressions);

4. chain of reasoning: phrases or clauses that attempt to rationalize, justify or explain an

idea(s). They link or synthesize at least two pieces of information or ideas;

Although these four elements were not directly coded by annotators, their definition was

helpful in the training stages for achieving higher reliability. The first three argument moves

in Table 7 all contain the second specificity element, as they provide definitions or elabora-

tions. However, no content-specific vocabulary, clear chain of reasoning, or particulars are

provided; therefore all three moves are labeled as medium specificity. Argument moves 2,

3 and 4 do not provide any specificity element and are labeled as low specificity. In a later

argument move (not shown in the excerpt in Table 7) Student 4 says the following: Back,

in their society, they had a Puritan society, so being self serving wasn’t accepted, so if you

didn’t follow God, then it was frowned upon, I have a quote, hold on. On page 198, Hale

said, ”In the book, a record that Mr. Parris keeps, I note that you are rarely in church on

Sabbath day”. This argument move was labeled as high specificity because it contains con-

tent language, a direct quote from the text, as well as details, explaining what they meant

by “Puritan society”.

The main goal of collaboration is to understand how a particular turn in a discussion

relates to prior turns. The specific set of codes was developed through multiple iterations,

starting with a set of 9 different collaboration codes based on a synthesis of related work

in classroom discourse research [Keefer et al., 2000, Engle and Conant, 2002] and CSCL

[Zhang et al., 2013, Gweon et al., 2013, Fiacco and Rosé, 2018, Richey et al., 2016], with

particular focus to theory of accountable talk [Michaels et al., 2008, Michaels et al., 2010].

After a first round of annotation we decided to merge/remove ones that either never actually
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happened in discussions (e.g. synthesis), or ones that created confusion for the annotators

(e.g. rebuttal). Beside the collaboration label, annotators also marked a reference to the

specific prior turn in the discussion that the current turn relates to. After analyzing part of

collaboration annotations on dataset D3 we found that 95% of turns had a reference within

the prior four turns. We therefore decided to include this as a guideline in the codebook,

requiring annotators to only code collaboration with respect to the four prior turns (unless

the speaker explicitly references an earlier turn). Detailed examples of each collaboration

label can be found in Appendix A. In the overall scope of this thesis, collaboration plays a

less central role compared to specificity and argumentation. While we extensively explored

features and models to automatically predict argument components and specificity for ADUs,

less emphasis was placed on collaboration: the main goal for collaboration with respect to

the proposed NLP models, is to be incorporated as one of multiple tasks for jointly predicting

two or three collaborative argumentation aspects.

The complete coding manual in Appendix A provides a more extensive set of example

discussion excerpts with related labels that annotators can use when coding discussions.

3.3 DATA ANNOTATION

The data collection procedure was different for each dataset and is detailed in Chapter 2.

Prior to applying the annotation scheme described in the previous section, each transcript

was preprocessed using a procedure that was generally the same for all datasets in this study:

1. starting from a transcription of a classroom discussion, an expert annotator augmented

each turn with a turn number and the ID of the student who voiced it (using the hand-

written notes described in Chapter 2);

2. the annotator marked down non-argumentative turns, where a student utterance did not

contain substantive argumentation (e.g. procedural talk, off-topic talk, meta-discourse

talk); non-argumentative turns were filtered out when building NLP models in this thesis;

3. the same annotator further segmented argumentative turns from (2) into argument dis-

course units.
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To ensure consistency the same expert annotator performed the preprocessing step for all

datasets. After preprocessing, each transcript contained all the elements needed to applying

our proposed annotation scheme. For different datasets, then, annotators used the coding

manual we developed to label each student turn for collaboration (D3 and D4) and each

ADU for argumentation (D2, D3 and D4) and specificity (all datasets).

3.4 RELIABILITY OF THE ANNOTATION SCHEME

In order to assess whether the proposed scheme can be reliably used to annotate class-

room discussions, we conducted multiple reliability analyses. We evaluated reliability of

distinguishing between argumentative and non-argumentative turns by double coding one

transcript from dataset D3. Although this analysis yielded low Cohen kappa (0), raw per-

centage agreement was high at 92%. The difference between the two results is based on high

class imbalance: annotator A only labeled 2 turns as non-argumentative (which B noted as

argumentative), while B only marked 1 turn as non-argumentative (which A labeled as argu-

mentative). We then conducted a reliability study on turn segmentation with two annotators

on a subset of dataset D2 consisting of 53 transcripts. Our analysis is based on the same

metric used by Habernal and Gurevych [Habernal and Gurevych, 2017], where they used

Krippendorff unitized alpha (αU) [Krippendorff, 2004] to evaluate the reliability of identify-

ing argumentative discourse units in user-generated web discourse. Whereas Habernal and

Gurevych used Krippendorff αU to evaluate the task of identifying ADU boundaries and

at the same time assigning labels to ADUs, our segmentation task is simpler since it only

involves identifying ADU boundaries. We obtained a Krippendorff αU of 0.952, which shows

that turns at talk can be reliably segmented.

In the following sections we will outline the results of reliability analyses on annotations

for each dataset used in this thesis.
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3.4.1 Reliability Analysis on Dataset D1

The annotators were initially trained by using the annotation scheme to code transcripts

one at a time and discussing disagreements at end of each transcript. Then, we used five

text-based discussions for testing inter-rater reliability after training. Annotator pair P1

annotated discussions of The Bluest Eye, Death of a Salesman, and Macbeth. Pair P2

annotated two discussions based on the speech Ain’t I a Woman. Overall, more than 40

students participated in the discussions, which generated 250 argument moves (consisting

of more than 8200 words). Given the ordinal type of specificity labels, quadratic-weighted

kappa (qwkappa) was used as measure of inter-rater reliability.

As previously noted in Table 1, the two annotator pairs achieved qwkappa of 0.714

and 0.9, which indicates substantial agreement and almost perfect agreement, respectively

[McHugh, 2012]. Upon inspecting the confusion matrix for annotators P2 (similar trends

observed for P1) we noticed relatively few low-high label disagreements as compared to

low-med and med-high (4 vs. 18, respectively). This is also reflected in the quadratic-

weighted kappa as low-high disagreements will carry a larger penalty (unweighted kappa of

0.797 compared to qwkappa of 0.900). The main reasons for disagreements over specificity

labels come from two of the four specificity elements discussed in Section 3.2: whether

an argument move is related to one character or scene, and whether it provides a chain

of reasons. With respect to the first of these two elements we observed disagreements in

argument moves containing pronouns with an ambiguous reference. Of particular note is

the pronoun it. If we consider the argument move “I mean even if you know you have a

hatred towards a standard or whatever, you still don’t kill it”, the pronoun it clearly refers

to something within the move (i.e. the standard) that the student themselves mentioned. In

contrast, for argument moves such as “It did happen” it might not be clear to what previous

move the pronoun refers, therefore creating confusion on whether this specificity element is

accomplished. Regarding specificity element (4) we found that it was easier to determine

the presence of a chain of reasons when discourse connectives (e.g. because, therefore) were

present in the argument move. The absence of explicit discourse connectives in an argument

move might drive annotators to disagree on the presence/absence of a chain of reasons, which
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is likely to result in a different specificity label. Additionally, annotators found that shorter

turns at talk proved harder to annotate for specificity.

3.4.2 Reliability Analysis on Dataset D2

Reliability analysis on dataset D2 was performed by double-coding 50 (out of 73) discussions,

for a total of 1049 argument moves. While we used quadratic-weighted Cohen kappa for

specificity since it is of ordinal type, argument component is a categorical variable therefore

unweighted kappa is used in this case. The two annotators achieved a kappa of 0.629 for

argumentation and qwkappa of 0.641 for specificity, indicating substantial agreement for

both annotations [McHugh, 2012].

3.4.3 Reliability Analysis on Dataset D3

For this study, a subset of D3 was double-coded by two annotators for all three components

of collaborative argumentation. Collaboration, like argumentation, represents a categori-

cal variable therefore unweighted Cohen kappa was used. Metrics for argumentation and

specificity remain unchanged, kappa and qwkappa respectively. Argumentation annotations

resulted in the highest kappa at 0.89, indicating almost perfect agreement. Collaboration was

the second highest, with kappa of 0.74, suggesting a substantial agreement level. Specificity

followed closely with qwkappa of 0.70, also indicating substantial agreement.

Once an adequate agreement level was achieved, the rest of the discussions were single-

coded for all 3 classes. In order to build the gold standard annotation set for D3, disagree-

ments in the double-coded transcripts were resolved through discussion and deliberation

between the two annotators. For more details on D3, please refer to [Olshefski et al., 2020].

3.4.4 Reliability Analysis on Dataset D4

For the last inter-rater reliability study on D4, we followed the same protocol and metrics used

for dataset D3. Initially, a partial set of transcripts in D4 was double-coded. The annotators

achieved high kappa for argumentation (0.971) and qwkappa for specificity (0.813), which
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indicates almost perfect agreement for both classes. On collaboration, on the other hand,

annotators achieved a lower kappa of 0.578, representing moderate agreement. Given the

lower reliability for collaboration, the rest of discussions were also double-coded.

As for D3, the gold standard dataset was built by discussing and resolving disagreements

between the two annotators.

3.5 OPPORTUNITIES AND CHALLENGES

Our annotation scheme introduces opportunities for the educational community to conduct

further research on the relationship between features of student talk, student learning, and

discussion quality. Although Chisholm and Godley [Chisholm and Godley, 2011] and we

found relations between our coding constructs and discussion quality, these were small-

scale studies based on manual annotations. Once automated classifiers are developed, such

relations between student talk and learning can be examined at scale. Also, automatic

labeling via a standard coding scheme can support the generalization of findings across

studies, and potentially lead to automated tools for teachers and students.

The proposed annotation scheme also introduces NLP opportunities and challenges. Ex-

isting systems for classifying specificity and argumentation have largely been designed to

analyze written text rather than spoken discussions. This is (at least in part) due to a lack

of publicly available corpora and schemes for annotating argumentation and specificity in

spoken discussions. The development of an annotation scheme explicitly designed for this

problem is the first step towards collecting and annotating corpora that can be used by the

NLP community to advance the field in this particular area. Furthermore, in text-based

discussions, NLP methods need to tightly couple the discussion with contextual information

(i.e., the text under discussion). For example, an argument move from one of the discussions

mentioned in dataset D2 stated “She’s saying like free like, I don’t have to be, I don’t have to

be this salesman’s wife anymore, your know? I don’t have to play this role anymore.” The use

of the term salesman shows the presence of specificity element (3) (see Section 3.2) because

the text under discussion is indeed Death of a Salesman. If the students were discussing
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another text, the mention of the term salesman would not indicate one of the specificity

elements, therefore lowering the specificity rating. Thus, using existing systems is unlikely

to yield good performance. In fact, we previously [Lugini and Litman, 2017] showed that

while using an off-the-shelf system for predicting specificity in newspaper articles resulted

in low performance when applied to classroom discussions, exploiting characteristics of our

data could significantly improve performance. We have similarly evaluated the performance

of two existing argument mining systems [Nguyen and Litman, 2018, Niculae et al., 2017] on

transcripts in dataset D1. We noticed that since the two systems were trained to classify only

claims and premises, they were never able to correctly predict warrants in our transcripts.

Additionally, both systems classified the overwhelming majority of moves as premise, re-

sulting in negative kappa in some cases. Collaboration can be equally very interesting and

challenging from the NLP point of view. A target turn is annotated for collaboration with

respect to a particular reference turn, therefore for a model to achieve high accuracy it needs

to correctly identify the reference. It is then challenging to effectively make use of contex-

tual information outside of the target turn. Let us consider the collaboration annotations in

Table 7. Suppose in turn 6, Student 6 voices an extension of turn 5. Because turn 5 itself is

an extension of turn 1, they relate to the same core idea. Then, it is easy for a classifier to

infer (incorrectly) that turn 6 is an extension of turn 1 instead of turn 5. Likewise, suppose

turn 6 was annotated as a challenge to turn 5. Since turns 1 and 5 relate to the same idea,

a classifier could infer (incorrectly) that turn 6 is a challenge to turn 1 instead of turn 5.

Using our scheme to create a corpus of classroom discussion data manually annotated for

argumentation, specificity, and collaboration will support the development of more robust

NLP prediction systems.

Finally, we collected the Discussion Tracker corpus (D3), a corpus of American high

school English classroom discussions. This corpus consists of 29 multi-party, text-based dis-

cussions originating in 3 high schools and from 10 teachers. We annotated the dataset

for collaboration, argumentation and specificity as described in this chapter, and pub-

licly released it for free use for research purposes. The dataset is available at https:

//discussiontracker.cs.pitt.edu and a full, detailed description of data collection and

annotation procedures can be found in [Olshefski et al., 2020]. Along with the dataset, meta-
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data containing the folds used for cross-validation in all experiments on D3 in this thesis is

available, in order to facilitate reproducibility of results. The public release of the corpus

enables NLP researchers to investigate multiple research inquiries. Much like part of the

work in this thesis, the annotations can be used individually to develop machine learning

models for automated prediction of the three collaborative argumentation components. Per-

haps more interesting research questions can be explored based on the fact that D3 provides

simultaneous annotations of multiple dimensions of collaborative argumentation. Like we

show in Chapter 7, it is possible for example to investigate whether these dimensions are

related and how. If a relation does exist, joint models can be developed for multiple dimen-

sions. Additionally, it is possible to compare and contrast D3 to other publicly available

argumentative datasets based on written text to understand the difference between written

and verbal arguments (which also introduces the possibility for transfer learning). Lastly, it

is possible to compare D3 to web-based multi-party discussions, to understand similarities

and differences between online and in-person argumentation.

3.6 SUMMARY

In this chapter we proposed a new annotation scheme for three theoretically-motivated fea-

tures of student talk in classroom discussion: argumentation, specificity and collaboration.

We demonstrated usage of the scheme by presenting an annotated excerpt of a classroom

discussion. We demonstrated that the scheme can be used to annotate classroom discussions

with high reliability. Finally, we discussed some possible applications and challenges posed

by the proposed annotation scheme for both the educational and NLP communities.
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4.0 PREDICTING SPECIFICITY FOR CLASSROOM DISCUSSIONS

4.1 INTRODUCTION

Specificity is defined by the Oxford Dictionary as “The quality of belonging or relating

uniquely to a particular subject” 1. Natural language processing (NLP) techniques can be

used to facilitate the analysis of classroom discussion and of specificity. Speciteller [Li and

Nenkova, 2015] is a popular method for predicting sentence specificity. It was developed by

analyzing newspaper articles to distinguish between general and specific sentences. Spoken

and written language differ in grammatical structure, contextual influence, and cognitive

process and skills [Chafe and Tannen, 1987, Biber, 1988]. As such we believe that using

Speciteller as-is on classroom discussions will lead to sub-optimal performance, which we

can improve.

In this chapter we propose a method to automatically determine specificity of student

argument moves in high school ELA classroom discussions of texts. The contributions of

this work are twofold. For the educational community this work will enable the exploration

of hypotheses concerning specificity and discussion quality over large datasets, spanning

multiple classes and including a large number of students, which would otherwise require a

prohibitive amount of work for manually annotating data. Additionally, we develop a set of

pedagogically meaningful features which can be used to understand important elements of

highly specific discussions. For the NLP community, we make the following contributions:

we experimentally evaluate the performance of prior approaches for predicting specificity in

a new domain; we compare between different feature sets and algorithms; finally, we provide

a model for predicting specificity tailored to spoken dialogue and in an educational setting,

1https://en.oxforddictionaries.com/definition/specificity
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which outperforms the current state of the art.

4.2 RELATED WORK

To the best of our knowledge, this is the first work to analyze specificity of transcripts of

spoken dialogue, and more precisely in classroom discussions. Louis and Nenkova [Louis

and Nenkova, 2011] analyzed specificity in news articles and their summarizations. Their

proposed method leverages a combination of lexical and syntactic features and annotated

data from the Penn Discourse Treebank to train a logistic regression classifier. They used the

trained model to analyze differences in specificity between human-written and automatically-

generated summaries of news articles. Li and Nenkova [Li and Nenkova, 2015] developed

Speciteller, a tool for predicting the specificity score of sentences. Specificity was defined

in relation to the amount of details in a sentence. This tool uses a set of shallow features

(described in Section 4.3.2) and two dense word vector representations to train two logistic

regression models on Wall Street Journal articles. Additionally, they improved classification

accuracy by using a semi-supervised co-training method on over thirty thousand sentences

from the Associated Press, New York Times, and Wall Street Journal. Our annotation

scheme is based on prior educational work in coding specificity [Chisholm and Godley, 2011],

and our prediction models will incorporate features used by Speciteller.

Like other machine learning-based methods, Speciteller is highly dependent on its train-

ing data. Since our objective is to analyze classroom discussions, we also draw on work

that has used Speciteller to analyze data that is more similar to our corpus. Swanson et al.

[Swanson et al., 2015] analyzed online forum dialogues for the purpose of argument mining.

By performing feature selection they observed that argument quality is highly correlated

with specificity as measured by Speciteller across multiple topics. We believe there might be

a correlation between specificity and other features used in their work (described in Section

4.3.3) to predict argument quality, therefore we used some of these features in our approach.

More recently, Gao et al. [Gao et al., 2019] proposed a model for predicting specificity in

social media posts. The model is largely based on the same features used by Speciteller
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augmented by named entities, part of speech tags, correctness score, and a set of features for

explicitly capturing tweet information (URLs, mentions, emojis). Since specificity is anno-

tated as a numerical value, the proposed features are used to train a regression model. Ke

et al. [Ke et al., 2018] analyzed specificity for the purpose of argument persuasion. They

modeled specificity using a word-level recurrent neural network. Since specificity represents

one of several components of argument persuasion and therefore specificity prediction rep-

resents an intermediate step, the model does not give much emphasis to this task and (as

noted by the authors) performance can be substantially improved. Since we published our

proposed model, it has also been extended by other researchers: in their work Ko et al. [Ko

et al., 2019] used a base model inspired by the layout in Figure 2, concatenating a sentence

embedding obtained using a recurrent neural network to handcrafted features and using it

as input to a classifier, and extended it with the goal of generalizing specificity prediction to

domains where little training data is available.

4.3 PROPOSED MODELS

This section provides a description of Speciteller [Li and Nenkova, 2015] and additional

features and models that we propose to predict specificity.

4.3.1 Speciteller tool

The baseline for testing our hypotheses consists of using Speciteller out of the box to predict

the specificity of each argument move. Speciteller accepts a string as input and outputs a

specificity score in the range [0, 1], where 0 indicates general sentences and 1 indicates specific

sentences. Since the unit of analysis for the current work is an argument move, which may

consist of multiple sentences, we evaluated the performance of Speciteller in several scenarios

(e.g. sentence, argument move). We found that the best results are obtained when using the

complete argument move as input to Speciteller. In order to convert the numeric specificity

score into a specificity class (i.e. low, medium, or high) we set two thresholds t1 and t2, then
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labeled argument moves with specificity score s ≤ t1 as low, those with score t1 < s ≤ t2

as medium, and those with score s > t2 as high. The optimal thresholds were found by

starting at 0 and iteratively increasing them by 0.001 at each step, while saving the best

results. The values for the optimal thresholds are: t1 = 0.02 and t2 = 0.78. It is important to

note that this represents the upper bound for Speciteller’s performance. Finding the optimal

thresholds is not trivial and in practice it could be done through cross-validation.

4.3.2 Speciteller feature set

The initial set of features we evaluated was that used in Speciteller. We extracted features

from each argument move using the source code provided by Speciteller2. In their proposed

method, Li and Nenkova extracted two categories of features, a shallow feature set and a word

embeddings set, and used them for two separate classifiers. In this work, we concatenate

both shallow features and word embeddings to form a single feature vector. We will refer to

these features as the Speciteller set. Shallow features for each sentence consist of: number

of connectives, sentence length (number of words), number of numbers, number of capital

letters, number of symbols (including punctuation), average number of characters for the

words in the sentence, number of stopwords (normalized by sentence length), number of

strongly subjective and polar words (using the MPQA [Wilson et al., 2009] and the General

Inquirer [Stone and Hunt, 1963] dictionaries), average word familiarity and imageability

(using the MRC Psycholinguistic Database [Wilson, 1988]), average, maximum, minimum

inverse document frequency values. Word embeddings features consist of the average of 100-

dimensional vectors for each word in the sentence. The embeddings were provided by Turian

et al. [Turian et al., 2010] and trained on a corpus consisting of news articles.

4.3.3 Online dialogue features

While extracting arguments from online forum dialogues, Swanson at al. [Swanson et al.,

2015] found that Speciteller scores (as a measure of specificity) are highly correlated with

argument quality. In addition to Speciteller scores, their model used several feature sets.

2https://www.cis.upenn.edu/ nlp/software/speciteller.html
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While not explicitly stated by the authors, we believe there might exist a correlation be-

tween specificity and the other feature sets. We will add the following sets of features to the

features already present in Speciteller.

Semantic features3 The number of pronouns present in a given argument move. De-

scriptive statistics for word lengths: minimum, maximum, average, and median length of

the words in an argument move. It is worth noting that the average word length differs from

the one implemented in Speciteller as this feature keeps punctuation into account. Number

of occurrences of words of length 1 to 20: one feature for each word length - words longer

than 20 characters will be counted in the feature for length 20.

Lexical features N-gram language models are often powerful features, but one drawback

is their dependence on specific domains. Since we plan to build a model for predicting speci-

ficity which is able to generalize to multiple topics, we did not use the raw N-gram features.

To alleviate this problem, we used the term frequency - inverse document frequency (tf-idf)

feature for each unigram and bigram in the corpus with frequency of at least 5. Descriptive

statistics of lexical features for each argument move, namely minimum, maximum, and av-

erage, were also used.

Syntactic features To mitigate the data sparsity that impacts word n-grams, and to

get more generalizable features, we extracted unigrams, bigrams, and trigrams of Parts Of

Speech (POS) tags, using the Natural Language Toolkit [Bird et al., 2009a].

4.3.4 Additional feature sets

In addition to the previous feature sets, we also extracted the following feature sets which

we believe are able to capture specificity with respect to the educational domain of ELA

text-based classroom discussions.

Pronoun features Pronouns are grammatical units that might help us gain useful infor-

mation about the focus of an argument move. For example, if the pronoun “she” is present

in an argument move, the student might likely be referring to one specific character, which is

one of the aspects considered when annotating specificity. Therefore we extracted a set of the

3The name of the feature set in the original paper is semantic-density features; we use semantic features
for brevity.
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following pronoun features: binary feature indicating presence/absence of pronouns; total

number of pronouns in the argument move4; the numbers of first, second, and third person

pronouns; the number of singular and plural pronouns; the number of pronouns for each of

the following categories: personal, possessive, reflexive, reciprocal, relative, demonstrative,

interrogative, indefinite.

Named entities Named entities might give us a sense of characters or places that stu-

dents discuss, with respect to specificity. For example, saying “I did not like Biff” is more

specific than saying “I did not like one of the characters” as it points out which of the char-

acters a student might not like. For this task we used the Stanford Named Entity Recognizer

[Finkel et al., 2005] (NER) with the pre-trained 3 class model detecting location, person and

organization entities. We extracted the following features: a binary feature indicating the

presence/absence of any named entity; a binary feature indicating presence/absence of each

of the three named entity classes; the total number of named entities; the total number of

named entities per class. We complemented the previous counts by adding a normalized

feature, with respect to the length of the argument move, for each of them.

Book features Since our dataset consists of text-based discussions, we might be able

to leverage information about the texts (i.e. books) for each discussion to understand how

much each argument move is related to the book or its characters. First, a manually-created

summary and a list of characters for each book were obtained from the web, using Wikipedia

when possible or Sparknotes as an alternative. Then, the following character-related features

were extracted from each argument move: a binary feature indicating the presence/absence

of a character’s name; the number of characters mentioned; the number of characters men-

tioned normalized by the length of the argument move. A character was counted by matching

each word in the argument move to their first name, last name, or their nickname. Addition-

ally the following summary related features were extracted: the number of overlapping words

with the argument move; Jaccard similarity between the argument move and the summary;

tf-idf based cosine similarity between the summary and the argument move. We extracted

the summary related features in two different settings: considering the book summary as a

4This feature differs from that described in section 4.3.3: the feature from the online dialogue set only
considers deictic pronouns.
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single entity; computing the similarity between the argument move and each sentence in the

summary, then picking the maximum. All features were extracted after removing stopwords

from the argument move and summary.

Embeddings Li and Nenkova [Li and Nenkova, 2015] used sentence embeddings based

on word embeddings in order to increase the accuracy of Speciteller. The sentence em-

beddings were obtained by computing the average of pre-trained word embeddings for each

word in the sentence. We believe our method can further benefit from sentence embeddings

specifically trained on our corpus and optimized for our target: predicting specificity. We

generated embeddings by training a character-level Long-Short Term Memory (LSTM) net-

work [Hochreiter and Schmidhuber, 1997], using it as an encoder on the argument moves

from our corpus. Each argument move, which might consist of multiple sentences, represents

one sequence (training sample) for the LSTM training. Since punctuation is not very mean-

ingful given that we are analyzing spoken discussions, all characters that are not letters or

numbers are ignored. Inputs for the LSTM consist of one-hot (1 X N) encoding of individual

characters.

The neural network is trained by using the hidden state of the LSTM unit at the end of

the argument move as embedding, feeding it to a softmax classifier for predicting specificity,

and back-propagating errors. Cross-entropy was used as the objective function to optimize

during training. A disadvantage of neural network models is the fact that their large number

of parameters requires extensive amount of data to show their expressive power. Given the

size of our training data we try to mitigate this problem by merging the embeddings for

an argument move with handcrafted features. Ideally we would combine embeddings with

all the features described previously but the resulting model would be far too large for our

dataset, therefore we chose to use the Speciteller + Semantic feature set for this task. The

training procedure changes slightly: an argument move is propagated through the LSTM

resulting in a fixed size embedding; handcrafted features are extracted from the argument

move, concatenated to form a vector, and a fully-connected layer is applied to those; the

output of the fully-connected layer is concatenated with the embedding, and given as input

to a softmax classifier to predict specificity. A graphical overview of the model is given in

Figure 2.
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Figure 2: Network setup for training neural network-based embeddings.

It is important to note that the neural network for embeddings and the classifier are

jointly trained, therefore the embeddings are specifically tailored to encode information re-

garding specificity. The Keras library [Chollet et al., 2015a] was used for extracting sentence

embeddings as well as for evaluating performance of the softmax classifier.

Pedagogical feature set In addition to maximizing kappa for specificity prediction,

an additional objective for this study is to find meaningful features that can help explain

different aspects of highly specific discussions. Many of the features described above, like

N-grams or tf-idf, might have good predictive power but they are not easily interpretable

and bear little relation to our codebook.

When considering NLP techniques applied to the educational domain, there is an increas-

ing interest in developing models that capture important components of the construct to

measure. Rahimi et al. [Rahimi et al., 2017], for example, developed a model for automated

essay scoring using rubric-based features; Loukina et al. [Loukina et al., 2015] evaluated

different feature selection methods to obtain interpretable features in an educational setting.

In order to create an interpretable feature set we started by manually selecting meaningful

features from Speciteller (imageability, subjectivity, polarity, and familiarity ratings, number

of connectives, fraction of stopwords). At training/test time, this set is combined with
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features from the Pronoun, Named entities, and Book feature sets. Since all the features

from the last 3 sets are interpretable, we only chose a few features from each set, selecting

the ones with highest information gain with respect to specificity. For each fold, we first

rank features in the Pronoun, Named entities, and Book sets by information gain, then select

the top k (based on the number of features in each respective set), concatenate them to the

interpretable Speciteller features and train a logistic regression model. Section 4.4.4 will give

examples of selected features.

4.4 EXPERIMENTS AND RESULTS

In this section we provide results for our experiments. All classifiers and feature sets were

evaluated using 10-fold cross validation, and using quadratic-weighted Cohen’s kappa as the

performance metric since it is important to make a distinction between different classification

errors (e.g. classifying a low specificity argument move as high should result in bigger error

than classifying it as medium). The experiments were performed on dataset D1 (see Chapter

2), and a the distribution of specificity class labels can be seen in Table 8.

Table 8: Dataset D1 statistics.

Annotation Total Count Percentage

Specificity Low 730 35.49%

Medium 974 47.35%

High 353 17.16%

Total 2057 100.00%

We used the scikit-learn Python package5 for training and evaluating classifiers, as well

as performing feature selection. Specifically, sections 4.4.1 and 4.4.2 will be used to test

our first hypothesis: that by retraining an existing model on our corpus we will obtain

an improvement in performance. Sections 4.4.2 and 4.4.3 will be used to test our second

5http://scikit-learn.org/stable/
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Figure 3: Speciteller scores by specificity class.

hypothesis: that by using features from additional NLP literature we can further improve the

performance of a state-of-the-art model. Section 4.4.4 will test our third hypothesis: that the

additional features we handcrafted to capture specificity with respect to verbal discussion in

an educational setting will lead to better performance.

4.4.1 Baseline using Speciteller off-the-shelf

Since we plan to use Speciteller as a baseline for comparing the performance of our proposed

method, we iteratively tested thresholds to find the set which results in the highest quadratic-

weighted kappa in all scenarios described in Section 4.3.1. The best result was obtained when

the input to Speciteller is the complete argument move, and the resulting quadratic-weighted

kappa is 0.495, which represents Speciteller’s upper bound performance. Figure 3 shows the

frequency distribution of speciteller scores for each specificity class.
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From the figure we can see that Speciteller is able to correctly capture specificity for a

portion of the argument moves in the dataset, as there is a peak in the low end of the spectrum

for the distribution of low specificity scores and a peak in the high end of the spectrum for

the distribution of high specificity scores. The medium specificity class seems to be the most

problematic one, which has a similar trend as the low specificity class distribution in the low

end of the spectrum, and a similar trend to the high specificity class distribution in the high

end of the spectrum. Ideally we would expect the medium specificity distribution to have

a peak towards the middle of the spectrum but that is not the case. Additionally, the low

specificity class distribution shows a peak between 0.6 and 0.7 which will further penalize

accuracy.

Table 9 shows the confusion matrix when applying the optimal thresholds in order to get

specificity labels from Speciteller scores. As we can see from the confusion matrix the overlap

Table 9: Confusion matrix using Speciteller scores to classify according to the optimal split

points.

predictions

low med high

ground truth

low 352 360 18

med 280 565 129

high 4 139 210

between the low and medium specificity classes and the medium and high specificity classes

causes a large number of misclassifications: almost half of the low specificity argument moves

are classified as medium, over 40% of the medium specificity argument moves are classified

as either low or high, and almost 40% of high specificity argument moves are classified

as medium. We believe these errors stem from two main reasons: as with many data-

driven approaches, Speciteller is highly dependent on its training corpus. Speciteller was

trained on articles from the Wall Street Journal and the New York Times. Articles written

by professional writers are inherently different from transcriptions of spoken discussions

between high school students. Additionally, for training the model, Speciteller used a binary
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general/specific label, while we consider three labels in our work. Since Speciteller has

no prior knowledge on medium specificity sentences, it is understandable that most of the

misclassifications come from this class.

4.4.2 Training using Speciteller features

Our hypotheses as to why Speciteller does not work effectively out of the box are related

to its corpora and the way it was trained. With respect to the features used by Speciteller,

we believe they might be useful in classrooms discussion as well. We extracted the shallow

feature set and the neural network word embeddings feature sets and combined them to train

a logistic regression classifier on our dataset. This classifier was chosen because one of our

objectives is to compare the importance of other feature sets in addition to the Speciteller

one, and in order for this comparison to be fair we decided to use the same classifier Speciteller

uses. Additionally, the classifier weights can be used to understand the importance of each

feature. It is important to note that, unlike Speciteller, we will be using a single classifier on

the combination of all features, and will not be able to leverage semi-supervised co-training.

Table 10 shows the performance of a logistic regression classifier trained on this feature

set and others described in the previous section. As we can see from the table, training a

Table 10: Classification performance of different feature sets. * indicates statistically sig-

nificant improvement over Speciteller features with p-value < 0.001. Statistical significance

was tested using a two-tailed paired t-test. Bold font highlights best results.

Feature sets QWKappa

Speciteller 0.5758

Speciteller + Online dialogue 0.6347*

All: Speciteller + Online dialogue + Pronoun + NE + Book 0.6360*

Speciteller + Semantic + Embeddings 0.6550*

Pedagogical 0.5886

classifier using the Speciteller feature set on our corpus results in a considerable increase
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in performance, with QWKappa of 0.5758 which represents a 16% relative improvement

over the 0.495 QWKappa obtained using Speciteller out of the box. This confirms our first

hypothesis that Speciteller’s performance, like many other methods, is highly dependent on

its training corpus and using this model out of the box would give sub-optimal results.

4.4.3 Speciteller and online dialogue features

To test whether features from Section 4.3.3 are useful, we combined the Speciteller features

with the Semantic, Lexical, and Syntactic features and trained a logistic regression classifier

based on the concatenated feature vectors. Table 10 confirms our hypothesis that the 4

feature sets combined result in statistically significant (statistical significance was computed

using a two-tailed paired t-test since we used the same folds for all experiments) higher kappa

than using only Speciteller features. When combining Speciteller with each of the 3 other

feature sets individually, kappa increases but not with statistical significance. We evaluated

additional classifiers (Support Vector Machine, decision tree, random forest, Naive Bayes)

but none of them outperformed logistic regression. Since the number of features is over 7000,

we also tried using Recursive Feature Elimination (RFE) and Principal Component Analysis

(PCA) for feature selection/reduction, but neither improved performance.

4.4.4 Additional features

To the feature set described in the previous section, we added the features described in

Section 4.3.4. We then tested our third hypothesis by evaluating the performance of a

logistic regression model trained with these features.

We can see from Table 10 that all additional feature sets yield better performance than

the Speciteller feature set by itself. This result confirms our third hypothesis: the addi-

tional feature sets are able to capture aspects of specificity with respect to verbal discussion

and the educational domain. In particular the feature set containing neural network-based

sentence embedding achieved the best kappa measure of 0.6550, which suggests that sen-

tence embeddings are also domain-dependent. Compared to using Speciteller off-the-shelf

this method improves kappa by 32%. While the size of the neural network was constant
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during training/test (not optimized for each fold), we experimented with several numbers

of hidden nodes (ranging from 50 to 200) for the LSTM and fully-connected layers, which

resulted in kappa values in the range 0.6283− 0.6550.

The Pedagogical feature set is also able to marginally outperform the Speciteller feature

set. Compared to the best result, the loss in kappa when using the Pedagogical set is 11%.

At the expense of a slightly lower accuracy we gain the ability to use only informative

features, which can be used to better understand highly specific versus general classroom

discussions. The use of logistic regression also makes this possible: the model’s coefficients

give us an indication of how important features are. Table 11 shows the top 12 features in

the Pedagogical feature set ranked by the magnitude of the model’s coefficients.

Table 11: Pedagogical feature set and respective logistic regression coefficients. Italic font

shows features developed in this study (Section 4.3.4).

Feature Coefficient

Number of connectives 1.9168

Cosine similarity – whole summary 0.9293

MRC imageability 0.8172

Number of characters 0.6931

MPQ subjectivity -0.5440

Fraction of stopwords -0.4087

MRC familiarity 0.3986

Number of possessive pronouns 0.2035

Number of named entities normalized 0.1865

Number of 3rd person pronouns 0.1755

Word overlap – whole summary 0.1585

Number of personal pronouns 0.1476

The table shows the results of a model trained on the complete dataset. The number

of connectives seems to be the most important feature for predicting high specificity. This

seems straightforward, as more connectives translates into more clauses, which provide more
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information. While the annotators did not look for connectives during coding, one of the

aspects they analyzed was the presence/absence of a chain of reasoning, and the number of

connectives might capture that aspect. The cosine similarity between the argument move

and the book summary (considered as one entity) is another important feature in the model:

higher similarity between the summary and what a student says means that they are using

terms from the book. This feature seems to capture another aspect in our codebook, the

use of book-specific vocabulary. We can use the information provided by these features to

understand specificity, and to give feedback to teachers and students: if for example a stu-

dent tends to produce low specificity argument moves and the number of connectives used

is generally low, that might be an indication that they should elaborate more on their state-

ments. Conversely, if the number of connectives used is high but the number of characters

mentioned is low, that might be an indication that the student should reference specific

characters more often.

4.5 SUMMARY

In this chapter we proposed several models for predicting specificity and evaluated them

on text-based, high school classroom discussion data. We showed that an existing general-

purpose system achieves significantly better performance when its features are used for re-

training on educational data. We also showed that performance can be further improved

by using additional features from the NLP literature [Swanson et al., 2015], especially when

combined with neural network embeddings and other new features tailored to text-based

classroom discussion. Finally we proposed a subset of pedagogical features which, even

though slightly less performing, provide the ability to interpret the features, which is espe-

cially important for the educational community.

The findings reported in this chapter were published in [Lugini and Litman, 2017].
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5.0 ARGUMENT COMPONENT CLASSIFICATION FOR CLASSROOM

DISCUSSIONS

5.1 INTRODUCTION

Although there is no universally agreed upon definition, argument mining is an area of natural

language processing which aims to extract structured knowledge from free-form unstructured

language. In particular, argument mining systems are built with goals such as: detecting

what parts of a text express an argument component, known as argument component identifi-

cation; categorizing arguments into different component types (e.g. claim, evidence), known

as argument component classification; understanding if/how different components are con-

nected to form an argumentative structure (e.g. using evidence to support/attack a claim),

known as argument relation identification. The development and release to the public of

corpora and annotations in recent years have contributed to the increasing interest in the

area.

One domain in which argument mining is rarely found in the literature is educational

discussions. With the increasing importance of argumentation in classrooms, especially in

student-centered discussions, automatically performing argument component classification

is a first step for building tools aimed at helping teachers analyze and better understand

student arguments, with the goal of improving students’ learning outcomes.

Many current argument mining systems focus on analyzing argumentation in student

essays [Stab and Gurevych, 2014, Stab and Gurevych, 2017, Nguyen and Litman, 2015,

Nguyen and Litman, 2018], online dialogues [Swanson et al., 2015, McLaren et al., 2010,

Ghosh et al., 2014, Lawrence and Reed, 2017], or in the legal domain [Ashley and Walker,

2013, Palau and Moens, 2009]. A key difference between these studies and our work consists
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in the source of linguistic content: although we analyze written transcriptions of discussions,

the original source for our corpora consists of spoken, multi-party, educational discussions,

and the difference in cognitive skills and grammatical structure between written and spoken

language [Biber, 1988, Chafe and Tannen, 1987] introduces additional complexity.

5.2 IMPROVING THE PERFORMANCE OF AN EXISTING ARGUMENT

MINING MODEL

Our work and previous research studies on student essays share the trait of analyzing ar-

gumentation in an educational setting. However, while student essays are typically written

by an individual student, in classroom discussions arguments are formed collaboratively be-

tween multiple parties (i.e. multiple students and possibly teachers). While our work shares

the multi-party setting in which arguments are made with research aimed at argument min-

ing in online dialogues, prior online dialogue studies have not investigated the educational

domain.

Given these differences, we believe that argument mining models for student essays and

online dialogues will perform poorly when directly applied to educational discussions. How-

ever, since similarities between the domains do exist, we expect that features exploited by

such argument mining models can help us in classifying argument components in classroom

discussions. Moreover, unlike the other two domains, we have access to labels belonging to

a different (but related) class, specificity, which we can try to incorporate in argumentation

models to boost performance. Our contributions are as follows. We evaluate features pro-

posed in an existing argument mining system, wLDA, to understand their usefulness in a

different, educationally-related setting. We then extend wLDA with additional feature sets

developed for analyzing arguments in an online, multi-party setting. We finally evaluate

two neural network models in several different scenarios pertaining to their input granular-

ity (words vs. characters) and propose a hybrid model which includes both neural network

embeddings and handcrafted features.
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5.3 RELATED WORK

With respect to the educational domain, previous studies in argument mining were largely

aimed at student essays. Persing and Ng [Persing and Ng, 2015] studied argument strength

with the ultimate goal of automated essay scoring. Stab and Gurevych [Stab and Gurevych,

2014] performed argument mining on student essays by first jointly performing argument

component identification and classification, then predicting argument component relations.

Nguyen and Litman [Nguyen and Litman, 2015] developed an argument mining system for

analyzing student persuasive essays based on argument words and domain words. While

domain words are used only in a specific topic, argument words are used across multiple

topics and represent indicators of argumentative content. They later proposed an improved

version of the system [Nguyen and Litman, 2016b], which we will refer to as wLDA, by

exploiting features able to abstract over specific essay topics and improve cross-topic perfor-

mance. While our current work is also aimed at developing argument mining systems in the

educational setting, we focus on educational discussion instead of student essays. Our work

also differs in the argument component types used: we analyze claims, evidence, and war-

rants, while prior studies mostly focused on claims and premises. The inclusion of warrants

is particularly important to explicitly understand how students use them to connect evidence

to claims. As such, we do not expect prior models to work well on our corpus, although some

of the features might still be useful. Also, while some of the previously proposed systems

address multiple subproblems simultaneously, e.g. argument component identification and

argument component classification, we only focus on argument component classification.

Swanson et al. [Swanson et al., 2015] developed a model for extracting argumentative

portions of text from online dialogues, which were later used for summarizing the multiple

argument facets. Misra et al. [Misra et al., 2015] analyzed dyadic online forum discus-

sions to detect central propositions and argument facets. Habernal and Gurevych [Habernal

and Gurevych, 2017] analyzed user-generated web discourse data from several sources by

performing micro-level argumentation mining. While these prior works analyze multi-party

discussions, the discussions are neither originally spoken nor in an educational setting. Fur-

thermore they are based on different annotation scheme, and perform both argument com-
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ponent identification and argument component classification, which translates in different

units of analysis.

Like other areas of natural language processing, argument mining is experiencing an in-

crease in the development of neural network models. Niculae et al. [Niculae et al., 2017] used

a factor graph model which was parametrized by a recurrent neural network. Daxenberger

et al. [Daxenberger et al., 2017] investigated the different conceptualizations of claims in

several domains by analyzing in-domain and cross-domain performance of recurrent neural

networks and convolutional neural networks, in addition to other models. While trying to

improve performance of classifiers for rhetorical analysis of texts, Lauscher et al. [Lauscher

et al., 2018] developed a recurrent neural network model for argument component classi-

fication. Chakrabarty et al. [Chakrabarty et al., 2019] developed a model for argument

component and relation classification in online discussions based on a transformer model.

We also propose the use of a neural network in our work, however unlike these previous

studies it will be only part of the final model which will also include handcrafted features.

5.4 ARGUMENT COMPONENT CLASSIFICATION MODELS

In this section we outline an existing argument component classification system that will

serve as a baseline for our experiments, then propose several new models that use features

extracted from neural networks and hand-crafted features.

5.4.1 Existing Argument Mining System

The wLDA1 system was developed for performing argument component identification, classi-

fication, and relation extraction from student essays. We chose to use this system as baseline

since it was developed for an educational application and we have complete access to the

source code and can therefore not only run it as-is but also use it to extract its features sets

to re-train the model and make appropriate modifications/improvement. We also tried a

1The original name of wLDA+4 stands for “with LDA supported features and expanded with 4 features
sets” compared to their previous system. We use wLDA for brevity.
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second argument mining system [Niculae et al., 2017], however we were not able to re-train

the system on our corpus. A preliminary evaluation of the pre-trained system showed that

it overwhelmingly predicted argument moves as claims (the system was trained to classify

claims and premises), therefore we decided not to use it in further experiments.

For the purpose of this study, we only consider the argument component classification

subsystem of wLDA. The model is based on a support vector machine classifier which exploits

features able to improve cross-topic performance. The feature set consists of four main

subsets: lexical features (argument words, verbs, adverbs, presence of modal verbs, discourse

connectives, singular first person pronoun); parse features (argumentative subject-verb pairs,

tense of the main verb, number of sub-clauses, depth of parse tree); structural features

(number of tokens, token ratio, number of punctuation signs, sentence position, first/last

paragraph, first/last sentence of paragraph); context features (number of tokens, number

of punctuation signs, number of sub-clauses, modal verb in preceding/following sentences)

extracted from the sentences before and after the one considered; four additional features

for abstracting over essay topics.

Since the model was trained on essays annotated for major claim, claim, and premise,

but not on warrants, in our evaluation we did not take into account misclassification errors

for argument moves in our dataset labeled as warrants. The pre-trained system performs

argument component identification using a multiclass classification approach, such that each

input will be classified as non argumentative, major claim, claim or premise. Since our goal

is to evaluate performance related to the component classification problem, we ignored all

the argument moves classified as non argumentative by wLDA. Considering the definitions

of premise and evidence in the Toulmin model [Toulmin, 1958], we made the assumption of

the two labels being equivalent for this study, i.e. if the predicted class for an argument move

is premise and its gold standard label in our dataset is evidence, we consider the prediction

correct. In the same way we consider both claim and major claim labels as equivalent to

claims in our dataset.
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Figure 4: Neural network models used in this study: neural network only setup (a); model

incorporating neural network and handcrafted features (wLDA and online dialogue sets) (b).

5.4.2 Neural Network Models

Since the pre-trained model did not work well on our dataset, and the features it is based

on show a large gap in performance compared to the original work (see Section 5.5), we

decided to use neural networks, and evaluate their ability to automatically extract meaningful

features. The proposed models consist of variations of two basic neural network types, namely

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) models. All

the choices regarding the models were made in order to keep complexity and the number

of weights at a minimum, since neural network models require in general a large amount

of training data, while we have a limited size dataset. The CNN model is based on a

model proposed by Kim [Kim, 2014b] and already used for argument mining in the past

[Daxenberger et al., 2017], with a difference in the number of convolutional/pooling layers.

In particular, our model uses 3 convolutional/max pooling layers instead of 6, and only

one fully connected layer after the convolutional ones, followed by a softmax layer used for

classification. This choice resulted from observing significant overfitting when increasing the

number of convolutional layers due to the increase in the number of model weights and the

limited dataset size. Figure 4 shows diagrams for the different neural network setups used

in our experiments.
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The RNN model consists of a single Long Short-Term Memory (LSTM) network [Hochre-

iter and Schmidhuber, 1997]. After propagating a complete argument move through the

LSTM network, the resulting hidden state is the feature vector used as input to a softmax

layer which outputs the predicted label. Recurrent neural networks have also been used in

the field of argument mining [Daxenberger et al., 2017, Niculae et al., 2017]. We set the

size of the hidden state to 75 based on several factors. Following Bengio [Bengio, 2012], we

decided to have an overcomplete network, i.e. one in which the size of the hidden state is

bigger than the size of the input. Since the dimensionality of our character-based encoding

is 37 and that for word-based embeddings is 50, we chose a hidden state with size greater

than 50 (we use the same hidden state size for both models). Increasing the size introduced

overfitting even quicker than the CNN model, given that the number of weights increases

more quickly for our LSTM model.

When using text as input to a neural network, we can generally view an argument move

as either a sequence of characters, or as a sequence of words. Unlike previous neural network-

based argument mining models, each of our models was evaluated under both conditions:

for character-based models we used a one-hot encoding (one-out of n) for each letter and

number - special characters were filtered since they don’t hold particular meaning in speech,

and we cannot be sure of transcription conventions; for word-based models we used Global

Vectors (GloVe) [Pennington et al., 2014] with dimensionality of 50. An important aspect to

consider is that, while word-based models have some prior knowledge encoded in the word

embeddings, character-based models do not.

Since neural network models usually require a large amount of training data to be ef-

fective, and we have relatively fewer number of argument moves compared to number of

model weights, we also tested hybrid models in which a neural network output is combined

with handcrafted features before the final softmax classification layer, as shown in Figure 4

(b). Both CNN and LSTM models used categorical cross-entropy as loss function, and the

number of epochs was automatically selected at training time by monitoring performance on

a validation set consisting of 10% of the training set for each fold.
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5.4.3 Online Dialogue Features

Since our dataset is based on multi-party discussion, it shares similarities with prior argu-

mentation work in multi-party online dialogues. Therefore we experimented with features

from [Swanson et al., 2015], organized into three main subsets: semantic-density features

(number of pronouns, descriptive word-level statistics, number of occurrences of words of

different lengths), lexical features (tf-idf feature for each unigram and bigram, descriptive

argument move-level statistics), and syntactic features (unigrams, bigrams and trigrams of

part of speech tags). The only difference between the original features and the ones we

implemented consists in the use of Speciteller [Li and Nenkova, 2015]. As we previously

observed [Lugini and Litman, 2017], applying Speciteller as-is to domains other than news

articles results in a considerable drop in performance. Therefore, instead of including the

specificity score obtained by directly applying Speciteller to an argument move, we decided

to use Speciteller’s features.

5.5 EXPERIMENTS AND RESULTS

This section provides our experimental results. In Section 5.5.1 we will test our first hy-

pothesis: using an argument mining system trained in a different domain will result in low

performance, which can be improved by re-training on classroom discussions and by adding

new features. Section 5.5.2 will be used to test our second hypothesis: neural network models

can automatically extract important features for argument component classification. Our

third hypothesis will be tested in Section 5.5.3: adding handcrafted features (i.e. online

dialogue features, wLDA features) to the ones automatically extracted by neural networks

will result in an increase of performance.

The data used for the experiments described in this section consists of dataset D2 intro-

duced in Chapter 2. As we can see from the label distribution shown in Table 12, students

produced a high number of claims, while warrant is the minority class. We can also observe a

class imbalance for specificity labels, though the ratio between majority and minority classes
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Table 12: Distribution of class labels for argument component type in dataset D2.

Annotation Total Count Percentage

Argumentation Claims 1034 50.51%

Evidence 655 32.00%

Warrants 358 17.49%

Total 2047 100.00%

is lower than that for argument component labels.

The unit of analysis for our work is argument move, which consists of a segment of text

containing an argumentative discourse unit (ADU) [Peldszus and Stede, 2013], hence a turn

can potentially be segmented into multiple argument moves. Turn segmentation effectively

corresponds to argument component identification, and it is carried out manually.

Our experiments evaluate every model using a leave-one-transcript-out cross validation:

each fold contains one transcript as test set and the remaining 72 as training set. Cohen

kappa, and unweighted precision, recall, and f-score were used as evaluation metrics.

The following python libraries were used for implementing and testing the different mod-

els: Scikit-learn [Pedregosa et al., 2011], Tensorflow [Abadi et al., 2015], Keras [Chollet et al.,

2015b], NLTK [Bird et al., 2009b].

Given that in our dataset warrants appear much less frequently than claims and evidence,

data imbalance is a problem we need to address. If trained naively, the limited amount

of training data and the unbalanced class distribution lead the neural network models to

specialize towards claims and evidence, with much weaker performance on warrants. This is

also the case for non neural network models, although the impact on performance is lower.

To combat this phenomenon we decided to use oversampling [Buda et al., 2017] in order to

create a balanced dataset, hoping to further reduce the performance gap between the different

classes 2. After computing the class frequency distribution on the training set, we randomly

sampled moves from the two minority classes and added them to the current training set,

2We also tried setting class weights during training to influence the loss function, though it only improved
results marginally.
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repeating the process until the class distribution was completely balanced (i.e. until the

number of argument moves for each class equals the number of moves in the majority class)

Table 13 shows the results for all experiments. The statistical significance results in the

table use the system in row 3 as the comparison baseline, as wLDA represents a system

specifically designed for argument component classification (among other tasks). Additional

statistical comparisons are provided in the text as well.

5.5.1 Using wLDA Off the Shelf and wLDA Features

Since not all the argument moves were considered when computing results for the pre-

trained out of the box wLDA model (see Section 5.4.1), the results in row 2 are not directly

comparable to others and are not used for statistical significance tests. Nonetheless they

show the upper bound in performance of the pre-trained model, and we can see that it is

comparable to a majority baseline which always predicts the majority class in each fold. This

result shows that claims and evidence expressed in written essays and classroom discussions

have very little in common. While the overall performance of the pre-trained model is

comparable to a majority baseline, the individual F-scores for claims and evidence give us

an insight into the usefulness of its features: the F-score for evidence is in line with that of

several neural network-based models. This is clearer when we look at improvement obtained

training a logistic regression model3 using the same wLDA features on our dataset (row 3),

which outperforms the pre-trained wLDA in all metrics (row 2), and indicates that the wLDA

features are still able to somewhat distinguish between claims and evidence while performing

considerably worse on warrants. Additionally, if we add to this model the online dialogue

feature set, the resulting model improves all results and obtains the best kappa overall (row

4). This confirms our hypothesis: given the similarity that exists between our domain and

online dialogues, features developed for analyzing argumentation in online dialogues are also

useful in classroom discussions.

3We also experimented with random forest, naive Bayes and support vector machines, but they provided
inferior results compared to logistic regression.
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Table 13: Results obtained with the baseline model/features and the proposed neural network

models using different feature sets. Each line represents the average of a transcript-wise cross

validation. Best results are in bold. ?, †, and ‡ indicate statistical significance at the 0.1,

0.05, and 0.01 levels respectively, compared to the model in row 3. The three right-most

columns represent per-class F-score for evidence, warrants, and claims respectively.

Row Models / Fea-

tures

Kappa Prec Rec F-score Fe Fw Fc

1 Majority baseline 0.068 0.265 0.406 0.314 0.109 0.004 0.532

2 Pre-trained wLDA 0.077 0.289 0.350 0.269 0.351 N/A 0.456

3 Logistic Regression

(wLDA features)

0.142 0.412 0.394 0.379 0.390 0.211 0.540

4 Logistic Regression

(wLDA features +

online dialogue)

0.283 0.508 0.500 0.480 0.479 0.222 0.693

Character level NN models

5 LSTM -0.002 0.062 0.253 0.082 0.007 0.242 0.013

6 LSTM + wLDA +

online dialogue

0.034 0.217 0.304 0.150 0.080 0.272‡ 0.090

7 CNN 0.143 0.439 0.423 0.393 0.372 0.218 0.574

8 CNN + wLDA +

online dialogue

0.241? 0.482 0.475 0.450 0.449 0.236 0.637

Word level NN models

9 LSTM 0.069 0.408 0.399 0.218 0.161 0.198 0.295

10 LSTM + wLDA +

online dialogue

0.181 0.462 0.447 0.391 0.362 0.279‡ 0.522

11 CNN 0.125 0.410 0.404 0.378 0.370 0.231 0.526

12 CNN + wLDA +

online dialogue

0.241? 0.492? 0.488 0.455† 0.468 0.276‡ 0.622
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5.5.2 Neural Network Models Alone

Our second hypothesis is validated by the results in Table 13 by comparing row 3 with rows

7 and 11, where we can see that the CNN models achieve performance comparable to a

classifier trained on features specifically developed for argument component classification.

This indicates that convolutional neural network models are able to extract useful features.

Additionally, when comparing the best of these models (row 12, with respect to f-score)

to the best performing model based only on handcrafted features (row 4), the difference in

performance is not statistically significant for any of the metrics in Table 13.

Looking more closely at the results obtained using neural network models alone we can

see two different trends. While LSTM models show performance comparable to random

chance (e.g. row 5, with kappa close to zero and lower than the majority baseline), one of

our two CNN models (row 7) performs as well as or better than the wLDA based model

(row 3) (except for Fe in row 7), while performance for the second CNN model (row 11)

is considerably close to the wLDA model. Overall, under the same conditions CNN mod-

els almost always outperform LSTM models. One interesting difference between the two

models is that the prior knowledge introduced by word embeddings in word-based models

is essential for improving performance of LSTMs (e.g. row 5 vs row 9), while this is not

the case for CNN models (e.g. row 7 vs row 11). The length of sequences (i.e. argument

moves) for character-based models makes it extremely hard for LSTMs to capture long-term

dependencies, especially with limited amount of training data. Convolutional models, on the

other hand, learn kernels that effectively function as feature detectors and seem to be able

to better distinguish important features, and do not always benefit from word level inputs.

5.5.3 Adding wLDA Features and Online Dialogue Features

It is clear from Table 13 that almost all neural network models benefit from additional hand-

crafted features. This is not surprising, given that neural networks require a large amount

of data to be trained effectively, and although random oversampling helped, we still have a

limited amount of training data. Even when including additional features the two architec-

tures show slightly different trends: CNN usually outperform LSTM, however LSTM models
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benefit more from the additional features. This is at least in part due to LSTMs initially

having lower performance without handcrafted features. We analyzed the importance of

different subsets of the online dialogue features through a feature ablation study. For CNN

models, removing any subset of features resulted in a decrease in performance, except for

the syntax subset in the character level CNN + wLDA + online dialogue model. For LSTM

models, however, not all feature subsets contributed to increasing performance.

5.6 SUMMARY

In this chapter we evaluated the performance of an existing argument mining system devel-

oped for a different educational application (i.e. student essays) on a corpus composed of

spoken classroom discussions. Although the pre-trained system showed poor performance

on our dataset, its features show promising results when used in a model specifically trained

on classroom discussions. We extracted additional feature sets based on related work in the

online dialogue domain, and showed that combining online dialogue and student essay fea-

tures achieves the highest kappa on our dataset. We then developed additional models based

on two types of neural networks, showing that performance can be further improved. Lastly,

we provided an experimental evaluation of the differences between convolutional networks

and recurrent networks, and between character-based and word-based models.

The findings described in this section were published in [Lugini and Litman, 2018].
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6.0 SPEAKER-DEPENDENT CONTEXTUAL INFORMATION FOR

ARGUMENT COMPONENT CLASSIFICATION

6.1 INTRODUCTION

While the models proposed in the previous chapter do consider contextual information, such

information is used in a very limited way. The contextually-informed features of wLDA

were developed for essays written by a single person. They consist of four features (number

of punctuation signs, number of tokens, number of sub-clauses and presence/absence of

modal verbs) which are extracted from the preceding and following argument move relative

to the one under consideration. Therefore, both the number of features and the span of

the context are relatively small compared to the rest of the features. Additionally, the

neural network portion of our previous model only considers the current argument move,

completely disregarding context. In this section we will propose multiple sets of features

that aim at capturing contextual information in discussion and analyze their impact on

argument component classification.

6.2 RELATED WORK

Stab and Gurevych [Stab and Gurevych, 2014] claim that context plays an important role

in identifying argument components, and propose context features extracted from the sen-

tence containing the ADU. Nguyen and Litman [Nguyen and Litman, 2016a] developed a

context-aware model for argumentative relation mining of argumentative essays. They pro-

posed two sets of contextual features which extract information related to writing topics
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(topic-context) and from surrounding sentences of a source and target sentence, to help

predict if the source and the target are connected by an argumentative relation and how

(e.g. support, attack). The context-aware model proved to outperform models without

contextual information. However, the contextual features cannot be incorporated in our

model for argument component classification for two main reasons: (i) some of these fea-

tures require two sentences, a source and a target, whereas our model operates on one single

argument move; (ii) other features are extracted from components at the sub-sentence level

and aligning them with argument moves is not straightforward. Habernal and Gurevych

[Habernal and Gurevych, 2017] used a subset of features from their argument component

identification/classification model to represent context. Persing and Ng [Persing and Ng,

2016] also used contextual features extracted from the sentences preceding and following the

ADU and performing ACI/ACC jointly. Aker et al. [Aker et al., 2017] evaluated different

ACI/ACC joint models which use, among others, contextual features. These works share

three main limitations: (i) a single context configuration is chosen (typically either prior or

prior/following sentences) and in some cases one dimension is optimized (typically context

size); (ii) they only extract a subset of features from context as compared to features for

the target ADU, which could potentially reduce the impact of contextual information; (iii)

even in multi-party discussions, context is solely based on the relative position of each ADU,

not considering additional sources of information (e.g. speaker/author ID). Optiz and Frank

[Opitz and Frank, 2019] analyzed a previous argument mining system and found that, for

its predictions, it relies on context more than it does on the ADU content. Their results

showed that in some cases obscuring the target ADU leads to better performance for ar-

gument component classification and relation extraction. Chakrabarty et al. [Chakrabarty

et al., 2019] developed an argument mining system in which context is indirectly modeled

while training the argument component classifier. A BERT model is fine-tuned to predict

the next sentence (i.e. the context). Like earlier work, however, context is limited to a fixed

size without extensive evaluation.

Other related work was aimed at capturing contextual information in neural models and

in multi-party conversations. Memory networks are capable of learning long-term dependen-

cies [Weston et al., 2014, Sukhbaatar et al., 2015], therefore they may be a viable option for
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capturing contextual information in our discussion transcriptions. Mohtarami et al. [Mo-

htarami et al., 2018] developed an end-to-end memory network for the Fake News Challenge

(https://www.fakenewschallenge.org). The task addressed was to predict the stance of

an article with respect to a given input claim (i.e. agree, disagree, discuss, unrelated), and

is somewhat related to argument relation extraction since the proposed model focuses on

claims and evidence. The memory network model outperformed conventional convolutional

neural networks, recurrent neural networks, or combinations thereof. While achieving good

results, their proposed model contains over 100 million parameters and would surely overfit

in our case given that we have a few thousand training samples. An interesting example

of modeling contextual information in multi-party conversations was recently introduced by

Meng et al. [Meng et al., 2018]. When considering the task of speaker classification, they

proposed a model which captured both content and temporal contextual information. Con-

tent information refers to the actual utterances for each student, while temporal information

relates to the order of the utterances. For both types of information, the context is captured

with respect to each speaker, i.e. the target variable: each speaker is modeled based on

their previous utterances at any point in time. If we were to consider a similar approach we

would have to model context separately for each argument component type, and this would

be extremely challenging for warrants given the highly imbalanced class distributions in our

datasets. Additionally, their modelling of content-context assumes that each of the speakers’

utterances is equally important regardless of how or when it happened in the conversa-

tion, while more recent utterances are likely to be more important in argument component

classification.

In developing a system for dialogue generation Li et al. [Li et al., 2017] modeled contex-

tual information as the concatenation of the previous two utterances with the current one.

Ortega and Vu [Ortega and Vu, 2017] analyzed different neural network models for includ-

ing contextual information in multi-party dialogues in order to predict dialogue acts. They

experimented with context size between 2 and 5 utterances, meaning that only local context

has an impact on the prediction of the current dialogue act. Neither of these models actually

accounts for speakers. They are only focused on extracting information from local context,

i.e. previous 2-5 utterances, regardless of who spoke such utterances. They also concatenate
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context utterances and the current utterance in a single sequence, which is processed by

an single recurrent neural network simultaneously. In contrast to these previous directions

we propose to: (1) separately model “local” (immediate vicinity of the target ADU) and

“global” (beyond the immediate vicinity of the target ADU, potentially reaching the begin-

ning of the discussion) context; (2) consider the identity of speakers when including previous

argument moves; (3) instead of concatenating context argument moves with the current one,

we process them separately in order to reserve specific portions of the final feature vector

for the two components. Lison and Bibauw [Lison and Bibauw, 2017] analyzed how training

instances “(context, response)” can be paired with numerical weights and incorporated into

the training of a neural conversational model for domain adaptation. Similarly to our pro-

posed model, the current utterance is processed separately from the context and each has

their own portion of the feature vector. However, the context only includes one utterance,

and each training instance consists of only two utterances from two speakers, which means

that the model is not able to capture long-term contextual dependencies and is therefore

inadequate for argument component classification in classroom discussions.

6.3 SPEAKER-DEPENDENT CONTEXT MODEL

We propose to extend the models described in Section 5.4, hybrid baseline, by expanding the

contextual components and incorporating contextual information appropriately designed for

multi-party discussions. Figure 5 shows a diagram of how we incorporated the new contextual

features into the model. The main idea behind the proposed model is to significantly expand

the feature vector which is used as input to the final softmax classifier with contextual

information that the models from the previous chapter largely or entirely ignore.

In order to test whether the same strategy is effective for other argument component

classification models, we implemented an additional baseline. Given the recent success of

Transformer neural networks [Vaswani et al., 2017] and pretrained models in NLP tasks

[Devlin et al., 2019, Wolf et al., 2019] the BERT baseline consists of a BERT pretrained model

to generate word embeddings of dimensionality 768; average pooling is used to aggregate all
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Figure 5: Proposed model incorporating speaker-dependent context features.

word embeddings in an ADU, and a softmax layer is used as classifier.

6.3.1 Local Context

The first component, named Local Context, has the objective of extracting information from

the immediate vicinity of target ADU in order to capture short-term argumentative patterns.

For example, it may be highly likely to have a piece of evidence right after a claim. Likewise,

a warrant is highly likely to appear right after a claim and evidence pair. We define local

context as ADUs preceding and/or following the target ADU, regardless of the speaker

voicing them. In this setting, context size is measured in terms of complete ADUs used to

extend the baseline, and context position refers to the relative position of these ADUs to

the target one (i.e. preceding, following or both). We address the main limitations of prior

work on local context in three ways:
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1. We analyze the impact of varying both context location and size on system performance

instead of arbitrarily picking a context position and only changing size;

2. We model contextual information the same way we model the target ADU;

3. We propose a method for automatically optimizing context size/position.

For item (1), we consider context sizes from 1 to 6, and 3 positions: preceding, where all

context ADUs come before the target ADU; following, where context follows the target

ADU; both, where context is centered around the target ADU. The choice of maximum

context size 6 was made based on results showing diminishing returns and the consideration

that increasing it further would go beyond “local” context. With respect to item (2), for each

of the two baselines, the complete model is used to generate ADU embeddings for all ADUs

in the context. They are then concatenated with the target ADU embedding to form the

final feature vector, which is followed by a softmax classifier. In this case the dimensionality

of the final feature vector grows linearly with context size. This would be a problem for

the hybrid baseline since it already has 7000+ features. To reduce overfit, we simplify the

hybrid baseline model by reducing the handcrafted feature set to the Speciteller feature set

consisting of 114 features - reducing the dimensionality to 2514 (2400 for the neural network

part and 114 for handcrafted features). The BERT baseline is less prone to overfitting since

its dimensionality is only 768. Item (3) is implemented by changing the way context ADU

embeddings are processed. Context size is set to the maximum size (6 in this case) and

an attention layer [Luong et al., 2015] learns weights to compute a weighted average and

aggregate the whole context into a single embedding. By learning attention weights, the

model will automatically decide the importance of ADUs at each position and therefore

optimize context size/position.

6.3.2 Speaker Context

The second component, named Speaker Context, has the objective of capturing information

related to the student who is the source of the current argument move. This module an-

alyzes all the student’s contributions to the discussion so far, and it is aimed at capturing

the student’s propensity towards certain argument components, e.g. whether the student
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tends to provide many unsubstantiated claims, or whether they tend to explain their ev-

idence at all. Table 14 shows the distribution of argument components for each student

participating in one of the discussions in dataset D3. Among the six students participating

Table 14: Argument component class distributions for a discussion about the book “Into the

wild”.

Student
Argument Move %

Claim Evidence Warrant

3 100 0.0 0.0

6 91.1 8.9 0.0

7 91.8 6.1 2.1

9 80.0 17.5 2.5

10 84.6 15.6 0.0

14 90.0 10.0 0.0

in the discussion, four of them did not provide warrants. Student 3, for example, always

provided unsubstantiated claims throughout the discussion. Students 9 and 10 stand out

when considering the amount of evidence given. Even among students 7 and 9, the only ones

who occasionally provide warrants, there is a wide gap in the amount of evidence given. By

considering individual student propensities towards argument components, the classifier can

make more informed predictions. The speaker context features will be particularly helpful

in small groups discussions, since the average number of turns per student is typically higher

than whole class discussions, providing more information for these features to capture.

In our datasets we typically have access to speaker ID, however the ground truth labels

of a speaker’s previous ADUs are not available when making predictions for a discussion.

Therefore, this information needs to be extracted from the student’s ADU text. In order

to produce the output feature vector, the speaker context module is composed of two parts

as shown in Figure 6: each of the student’s previous argument moves is converted into an

ADU embedding, and a recurrent neural network (RNN) produces the final speaker context

vector by analyzing the sequence of embeddings.
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Figure 6: Architecture of the Speaker Context and Teacher Context components.

Given the speaker ID for the target ADU, the speaker context module performs the

following steps: (1) gather the speaker’s previous ADUs from the discussion; (2) convert

each ADU into an embedding; (3) aggregate them into a single, fixed-size feature vector and

concatenate it with the baseline. Step 1 is achieved by simply filtering out ADUs based on

speaker ID, which is readily available in each discussion. In step 2 for the hybrid baseline

we use a CNN to generate ADU embeddings. Since the number of parameters in the RNN

for next step is highly dependent on its input size (i.e. the output dimensionality of the

CNN from this step), we decided to implement an additional, simpler CNN just for encoding

a student’s previous ADUs. The CNN is based on the same structure as the one in the

hybrid baseline model, but with the number of filters reduced from 16 to 4. This resulted

in a 200-dimensional vector. For the BERT baseline the same embedding - average pooling

model was used in this step, given that we are already using the BERT model with smaller

dimensionality. Step 3 was accomplished using a Long Short-Term Memory (LSTM) network

[Hochreiter and Schmidhuber, 1997], though Gated Recurrent Unit (GRU) [Bahdanau et al.,
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2014], as well as bidirectional versions of the two were tested and showed similar results.

Similarly to local context, we also implemented an attention-based mechanism for optimizing

context size. In this scenario, we set the speaker context size to its maximum (40 in this

case) and learn attention weights that decide the importance of each ADU in the context.

6.3.3 Teacher Context

The third component relates to information that we have disregarded entirely so far: teacher

talk. We observed during data collection and analysis that the involvement of the teacher

can vary greatly between different discussions. This is in part due to the organization of

the discussion: most teachers believe they should keep their contributions to a minimum,

intervening only if the discussion gets off topic and not influencing the flow of the discus-

sion, in a Socratic seminar style. While this belief is shared among most teachers, it is hard

to operationalize in practice. Several other factors can influence the frequency of teacher

talk: the size of the class and discussion group, the presence/absence of dominating students

in the discussion, and (perhaps the most important) whether students feel comfortable ex-

pressing their ideas in front of others. In such cases the teacher has to step in to guide the

discussion, asking questions and possibly asking individual students for clarification, thereby

significantly contributing towards the discussion as a whole. Table 15 shows an excerpt of

another discussion in our corpus.

At the beginning of the discussion, student 8 is mainly making claims but struggles

to provide evidence, therefore the teacher has to constantly probe for more information.

This back-and-forth between student and teacher continues for 14 turns, after which other

students join the discussion. Later in the discussion, the teacher intervenes with the explicit

intention of getting students to provide more evidence, with probes such as: “Can you

give me an example of something that he does or that he says to prove that he’s anxious?”,

“Can you give me an example in real life, St 4, of when that would be the case? How you

can understand situations better by just observing not participating?”, “Other examples of

when it would be good to be a wallflower?”, “What was happening?”. Overall, the teacher

contributed to the discussion with 43% of the turns. By incorporating teacher talk in our
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Table 15: Excerpt from a discussion on the novel “The perks of being a wallflower”.

Turn Student Talk

3 Teacher Yes, his sister and her boyfriend. And why does he feel bad for
them?

4 8 Because he knows they’re not in a good relationship.

5 Teacher Why not?

6 8 Well for one, that he’s just not a good guy or-

7 Teacher Why?

8 8 Well, for one example is he hit her, and then he just ... Like you
said, he’s the guy who’s going to be throwing up in the bushes at
the party house and stuff like that and just uncontrollable.

9 Teacher So if he’s not a good guy, like you said St 8, why does Charlie feel
bad for him?

10 8 Because he has to deal with himself. You know?

11 Teacher You mean the boyfriend?

12 8 Yeah. Like he feels bad for him because that’s his own self that he
has to deal with. Like when his sister breaks up with him, that’s
going to be the last that he sees of him. But himself, he has to
live with being a bad person, unless he changes.

13 Teacher How do you know the sister breaks up with him though?

14 8 Well if they do. You know what I mean?

15 Teacher But if they didn’t, then would he still feel bad for him? Would
Charlie still feel bad for him?

16 8 Yeah, probably.

model we can capture many text-related concepts that our previous work overlooked (e.g.

Charlie feeling bad, a breakup, being anxious).

Similarly to the speaker context module, the Teacher Context module will capture the

sequence of statements made by the teacher from the beginning of the conversation to the

current argument move. The teacher context features can be extracted in the same way as

the speaker context features: generating an embedding for each teacher turn and feeding the

embeddings in a recurrent neural network (see Figure 6). In order to keep the computational

complexity to a minimum and reduce the risk of overfitting the parameters of the neural

networks for speaker context and teacher history can be shared entirely (when using both

context types).

After examining the results obtained by modeling teacher talk through a neural network,
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we found that the small performance benefit may not be worth the increase in computational

complexity (the number of parameters in the model increases from 33 thousand to 155

thousand). We then tried replacing the neural teacher context model with a simple, concise

set of handcrafted features aimed at capturing teacher contributions at both local (i.e. within

a few ADUs of the target ADU) and global level (i.e. going all the way back to the start

of the discussion). They mainly focus on capturing two aspects, amount and frequency of

teacher talk. The handcrafted features consist of:

• binary feature capturing if the teacher spoke right before the target ADU;

• number of teacher turns in the previous 3 turns;

• number of teacher words in the previous 3 turns;

• number of ADUs since the last teacher turn;

• number of words in the last teacher turn;

• number of teacher turns so far;

• number of teacher words so far.

This feature set is simply concatenated to the other handcrafted features in the hybrid

baseline model.

6.4 EXPERIMENTS AND RESULTS

In order to test different research hypotheses we carried out multiple experiments. The

components described above were first individually tested in order to understand what con-

textual information is actually needed for argument component classification. The results

of each experiment will be compared to its appropriate baseline (hybrid baseline and BERT

baseline) described in the previous section. Datasets D3 and D4 (see Chapter 2) were used

in the following experiments. Class distributions for D3 and D4 are shown in Tables 16 and

17.
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Table 16: Distribution of class labels for argument component type for dataset D3.

Annotation Total Count Percentage

Argumentation Claims 2047 65.30%

Evidence 762 24.30%

Warrants 326 10.40%

Total 3135 100.00%

Table 17: Distribution of class labels for argument component type for dataset D4.

Annotation Total Count Percentage

Argumentation Claims 1402 72.19%

Evidence 345 17.77%

Warrants 195 10.04%

Total 1942 100.00%

6.4.1 Local Context

In the first experiment we want to understand the impact that the local context module

described above has on the performance of the argument component classification system.

Figure 7 shows results obtained by extending the two baselines with the local context

module.

Table 18 shows the best results obtained for each experimental setting. We report un-

weighted Cohen kappa along with macro precision, recall and F-score.

From the plots in Figure 7 (a) we can make several observations about the hybrid model.

Firstly, all models containing any contextual information outperform the context-free base-

line. With respect to context size, there seems to be an inflection point after which we see

diminishing returns, though the specific value is different for all three position settings. The

overall best results were obtained by including both preceding/following local context of
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Figure 7: Result plots for adding local context to the hybrid baseline and BERT baseline on

dataset D3.

Table 18: Local context results for different experimental settings. Each row shows the best

results for the corresponding settings when varying context size. Bold font shows the best

results for each model.

Row Model Local Context Kappa Precision Recall F-score

1

Hybrid Baseline

- 0.350 0.535 0.531 0.509

2 Preceding 0.497 0.646 0.691 0.657

3 Following 0.449 0.593 0.641 0.604

4 Both 0.521 0.657 0.727 0.676

5 Attention 0.513 0.644 0.706 0.659

6

BERT Baseline

- 0.483 0.620 0.669 0.632

7 Preceding 0.631 0.740 0.775 0.752

8 Following 0.535 0.655 0.697 0.667

9 Both 0.657 0.759 0.787 0.769

10 Attention 0.539 0.657 0.704 0.672

68



size 4; in this setting we obtained significantly better precision and f-score (p-value < 0.05)

compared to the same setting with context size 2 (green line in the figure). With respect to

position, all models including either preceding or both context positions perform significantly

better than the baseline (p-value < 0.01). For following context position the performance

improvement is more sensitive to context size: a statistically significant improvement is ob-

tained for context size 1, but for larger context sizes the improvements are not statistically

significant. Given that model complexity increases linearly with context size, larger datasets

may benefit more from larger context sizes. It is important to note that all the findings

discussed so far are also valid for the BERT baseline, which is evident by comparing Figures

7 (a) and (b). Additionally, for each comparable experimental setting, BERT models achieve

higher performance than the hybrid model. We also argue that both context position and

size should be optimized, unlike prior works which picked a single position and optimized

context size. Context position may arguably be even more important than size: Figure 7

shows that the difference between each line (i.e. for different context positions) is bigger than

differences observed within each line (i.e. for different context sizes in a given position).

One finding that is not consistent across the two models is the use of attention to optimize

context size/position. In the hybrid model, the attention weights learned during training

are able to effectively aggregate all context ADUs. This is evidenced by the results showing

that the attention model achieves performance that is not statistically significantly different

than the best overall results. For the hybrid model, therefore, context size and position

can be automatically optimized during training by trading a marginal performance penalty.

For the BERT model, however, the attention model is not effective and results show it only

outperforms the baseline and context including only ADUs after the target one. In both

scenarios where any ADUs before the target one are included in context, the performance

of the attention model is significantly worse than those with static context size/position

(p-value < 0.05), though still significantly better than the baseline (p-value < 0.05). We

speculate that this is due to the BERT model already being entirely based on attention

mechanisms. Word embeddings in BERT are dependent on all other words within an ADU,

and by using the average pooling layer, this model produces ADU embeddings that are more

similar compared to the hybrid model. The ineffectiveness of the attention mechanism in the
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BERT model is clear when looking at the actual attention scores. In an effective attention

model we would expect the attention score to vary considerably across the context ADUs,

so that the weighted average reflects difference in importance of those ADUs. In one of the

experiments we conducted, we analyzed the standard deviation of attention scores across

context ADUs for both models. We found that, on average, the attention score standard

deviation in the attention model was 0.25 for the BERT model, and 19 for the hybrid

model. In synthesis, the attention layer for the BERT model produces very similar scores

for all context ADUs, acting almost as a simple, unweighted average. For these reasons

we believe that, in models that are heavily attention-based, context position and size are

hyperparameters to optimize during training.

6.4.2 Speaker Context

In the second experiment we will extend the baseline models with the speaker context module,

to understand if taking into consideration individual ADUs for each speaker will be helpful

for argument component classification. We define speaker context size K as the K closest

prior ADUs to the target ADU, voiced by the target student. In this experimental setting we

varied context size between 5 and 40, effectively capturing all of the student’s prior ADUs

since the beginning of the discussion.

Figure 8 shows results obtained by extending the two baselines with the speaker context

module, and the best results for each experimental setting are displayed in Table 19.

Both the hybrid and the BERT model share several findings. Adding speaker context,

of any size, significantly increases precision, recall and f-score (p-value < 0.05) over the

context-free baseline. With increase of context size, we either see a diminishing return

effect or a plateau effect, suggesting that in general a speaker’s most recent ADUs are more

important than earlier ones. By comparing the purple lines in Figure 8 to the green lines

in Figure 7 we can see that, individually, adding local context benefits models more than

adding speaker context. This is consistent with our expectations given that we are analyzing

multi-party discussions, and at any point in time students try to argue with respect to what

other students have just said beforehand, rather than to what they have previously said
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Figure 8: Result plots for adding speaker context to the hybrid baseline and BERT baseline

on dataset D3.

Table 19: Speaker context results for different experimental settings. Each row shows the

best results for the corresponding settings when varying context size. Bold font shows the

best results for each model.

Row Model Context Kappa Precision Recall F-score

1

Hybrid Baseline

- 0.350 0.535 0.531 0.509

2 Speaker Context 0.470 0.626 0.682 0.636

3 Attention 0.457 0.605 0.627 0.603

4

BERT Baseline

- 0.483 0.620 0.669 0.632

5 Speaker Context 0.625 0.733 0.794 0.751

6 Attention 0.532 0.649 0.706 0.663

themselves. It is again worth pointing out that modeling speaker context in this way is

beneficial for two distinct argument component classification models. Additionally, for each

respective experimental setting the BERT model always outperforms the hybrid model.
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Diverging findings emerge when considering attention mechanisms for automatically op-

timizing speaker context size. In the hybrid model the attention mechanism works as in-

tended, with results that are not statistically significantly different than the best results,

albeit slightly worse. In this case, again, at the expense of a marginal performance loss

we can let the model choose which context ADUs are more important than others when

aggregating them. For the BERT model on the other hand, the attention mechanism can-

not effectively understand the relative importance of each context ADU and the resulting

model performance are significantly worse than any fixed-size speaker context. At the same

time, however, the attention model is still statistically significantly better than the baseline

(p-value < 0.05).

6.4.3 Teacher Context

In this experiment we will examine the importance of teacher talk in our argumentation

model. Like the previous experiment, we changed the size of teacher context from a minimum

of 5 to a maximum of 40. Only the hybrid baseline was used in this experiment.

Figure 9 shows results obtained by extending the baseline with the teacher context mod-

ule, and the best results are highlighted in Table 20.

As Figure 9 shows adding the speaker context module always outperforms the baseline

result, and we see a similar diminishing return effect when increasing context size as for other

context types. Unlike previous results though, none of the improvements achieved through

the neural teacher attention models are statistically significantly better than the baseline.

This is somewhat disappointing given the increase in model size that this module requires.

We hypothesized that this may be due to the variation in teacher talk across discussions:

the average percentage of teacher talk in dataset D3 is 24.22, while standard deviation is

18.05 (in terms of raw number of teacher turns per discussion, the average is 41.10 and

standard deviation is 38.79). We ran additional cross-validation experiments where, for each

fold, we only kept in the test set discussions with percentage of teacher talk above average.

Regrettably this evaluation did not show statistically significant improvements either.

We then replaced the neural teacher context modules with the handcrafted teacher con-
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Figure 9: Result plots for adding teacher context to the hybrid baseline on dataset D3.

Table 20: Teacher context results for different experimental settings. Each row shows the

best results for the corresponding settings when varying context size. Bold font shows the

best results.

Row Model Context Kappa Precision Recall F-score

1

Hybrid Baseline

- 0.350 0.535 0.531 0.509

2 Teacher Context 0.395 0.558 0.575 0.552

3 Teacher Features 0.441 0.597 0.633 0.594

text feature set and repeated the cross-validation experiment (the complete cross-validation

experiment with all discussions in each test set). In this setting we obtained better perfor-

mance than both the baseline and the neural teacher context, as shown in row 3 of Table

20, and the improvements over the baseline are statistically significant (p-value < 0.05).
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6.4.4 Combining Context Types

In the fourth experiment, we combined the different context modules to test whether our

argumentation models can benefit from multiple sources of context simultaneously.

We started by combining teacher context with local context in the hybrid model. We

extended the best local context setting (i.e. ADUs preceding and following the target, with

context size 4), which achieved Kappa 0.521 and F-score 0.676, with the neural teacher

context module. When varying teacher context size, we observed a drop in performance

with Kappa ranging from 0.448 to 0.481, and in some cases the difference was statistically

significant compared to local context only (p-value < 0.01). Replacing the neural teacher

context module with teacher context features did not improve performance in this case:

the result was Kappa 0.451 and F-score 0.626, significantly worse than local context alone

(p-value < 0.05).

We then combined speaker context and teacher context. We extended the best performing

speaker context setting, where Kappa = 0.470 and F-score = 0.636, with both teacher context

modules and observed Kappa between 0.424 and 0.455 and F-score between 0.604 and 0.629,

some of which are significantly worse than speaker context alone.

These findings lead us to believe that the performance loss when combining teacher

context with other context types is not only due to the increase in model complexity (re-

member that speaker context and teacher context share the same model/weights). Therefore,

although teacher talk can be beneficial for argument component classification when other

context information is not available, it should be given lower priority than other context

types.

Lastly, we combined local context and speaker context. First we picked the best local

context configuration, and extended it with the speaker context module varying speaker

context size. We then repeated the experiment with other local context configurations, i.e.

picking the best local context size for each position.

By comparing the purple and grey lines in Figure 10 (a) we can see that combining both

context types always outperforms speaker context alone. All improvements are statistically

significant (p-value < 0.05) for speaker context size > 5. Same trends were observed when
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Figure 10: Result plots for adding local context and speaker context to the hybrid baseline

and BERT baseline on dataset D3. For the “Speaker Context + Local Context” line, local

context position was set to “both” and size to 4.

considering other local context settings, where improvements over speaker context only were

also statistically significant (p-value < 0.05). Similar observations can be made with respect

to local context only, though the performance improvement of the two combined context

types is not as high, and only occasionally statistically significant. We also combined both

attention-based models, where both local and speaker context are automatically optimized.

It is encouraging to see that difference between the attention model and the best overall result

is relatively small and not statistically significant. Additionally, this attention-based model

significantly outperforms the speaker context attention-based model (p-value < 0.005).

Similar observations hold true for the BERT models as shown in Figure 10 (b), though

differences between individual context and two context models are smaller compared to the

hybrid model, and less frequently statistically significant. In particular, the best overall

Kappa for this model was obtained with local context only, while both local and speaker

context performed equally or better for precision, recall and F-score. As for individual con-

text models, automatically optimizing local and speaker contexts with attention mechanisms
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Table 21: Local Context and Speaker Context results for different experimental settings.

Each row shows the best results for the corresponding settings when varying context size.

Bold font shows the best results for each model. Rows for baseline results and individual

context type results are repeated from previous sections.

Row Model Context Kappa Precision Recall F-score

1

Hybrid Baseline

- 0.350 0.535 0.531 0.509

2 Local 0.521 0.657 0.727 0.676

3 Speaker 0.470 0.626 0.682 0.636

4 Local + Speaker 0.539 0.674 0.727 0.689

5 Attention 0.533 0.664 0.725 0.681

6

BERT Baseline

- 0.483 0.620 0.669 0.632

7 Local 0.657 0.759 0.787 0.769

8 Speaker 0.625 0.733 0.794 0.751

9 Local + Speaker 0.653 0.759 0.810 0.774

10 Attention 0.562 0.673 0.722 0.686

results in significantly lower performance compared to the best overall (p-value < 0.05).

One important consideration when jointly modeling local context and speaker context

relates to model robustness. We observed that it is easier to consistently achieve higher

results, on average, when modeling both context types compared to including either context

type separately in a model. In other words, optimization of local context position, size, and

speaker context size is less influential on performance. As an example, using the hybrid model

it is much easier to achieve a Kappa > 0.5 with both context types, in several configurations,

compared to either context separately: local context alone is only able to achieve this in the

best possible setting, and it is not even possible with speaker context alone.
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6.4.5 Cross-dataset Experiment

In the last experiment on context information for argument component classification, we are

interested in analyzing the performance of the context modules in a cross-dataset setting.

We experimented with the BERT model on datasets D3 and D4.

We first performed a 10 fold cross-validation experiment on dataset D4 to see if our

earlier findings are valid for a different dataset, and to obtain baseline performance figures

on D4 itself since this is a much smaller dataset than D3 (1942 ADUs compared to D3’s

3135).

Figure 11: Result plots for adding local context and speaker context to the BERT baseline

on dataset D4. For the “Speaker Context + Local Contex” line, local context position was

set to “both” and size to 4.

Figure 11 shows that findings on D4 are largely consistent with those on D3. If we

compare respective experimental settings, we find that on average the results for D4 are

0.1 to 0.15 lower than those on D3. We believe this is within expectation given the large

difference in number of ADUs. The best performance for both local and teacher context

on D4 is achieved with smaller context size compared to D3. This is also expected since

bigger context size results in larger model, which may require more data to properly train.

In general, though, the performance gains of our context models over the baseline are larger
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Table 22: Cross-dataset experimental results.

Row Evaluation Context Kappa Precision Recall F-score

1
D4 cross-validation

- 0.263 0.514 0.539 0.501

2 Local + Speaker 0.575 0.753 0.721 0.718

3
Training D3, test D4

- 0.375 0.552 0.661 0.571

4 Local + Speaker 0.599 0.731 0.805 0.755

5
D3 cross-validation

- 0.483 0.620 0.669 0.632

6 Local + Speaker 0.653 0.759 0.810 0.774

7
Training D4, test D3

- 0.401 0.616 0.572 0.586

8 Local + Speaker 0.572 0.703 0.767 0.716

for D4, which indicates that our proposed models are effective in cases when less labeled

data is available.

For cross-dataset experiments, we first evaluated the BERT baseline when training on

D3 and testing on D4 (and vice versa). We then chose the context settings with the best

results in D3 cross-validation, and tested its performance on D4 (and vice versa).

A number of interesting observations can be made from Table 22. First, within-dataset

performance is higher than cross-dataset performance when testing on the larger dataset

D3, while the smaller dataset D4 can benefit from models being trained on larger corpora.

Second, when testing on D4 the performance gap between baseline models (row 1 vs. 3)

is on average larger than that between models with context information (row 2 vs. 4).

This may be a signal that our context models make it easier to achieve better performance

even for smaller dataset, though more experimentation with additional datasets is required

to properly confirm this hypothesis. Third, our proposed context models almost always

outperform the baseline even in cross-dataset scenarios.
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6.5 SUMMARY

In this section, we proposed and evaluated context-aware extensions of our previous mod-

els for argument component classification for classroom discussions. We implemented three

context types: (i) local context, to model the immediate vicinity of the target ADU at

any point in the discussion; (ii) speaker context, to capture individual speaker behaviors

with respect to their own prior ADUs in the discussion; (iii) teacher context, to capture

teacher/student turn taking patterns and the content of teacher talk. We first evaluated

each context individually and found that all contextualized models outperform the baseline,

context-free model. After thorough performance evaluation with respect to each context

type’s parameters, we proposed extensions that use attention mechanisms to automatically

optimize context size and/or position. We then combined the different context types to

train more robust argument component classification models. Finally, we analyzed the per-

formance of contextualized models on an additional dataset and in cross-dataset settings.

The findings described in this section were published in [Lugini and Litman, 2020].
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7.0 JOINT LEARNING OF DIFFERENT ASPECTS OF CLASSROOM

DISCUSSIONS

7.1 INTRODUCTION

Multi-task learning has shown potential for improving robustness of neural network models

in Computer Vision community [Girshick, 2015], and it is becoming increasingly popular in

NLP applications as well. The core premise of multi-task learning is to exploit information

from multiple, related tasks in order to better train neural network models that will out-

perform individual models trained on the respective individual tasks. Collobert and Weston

[Collobert and Weston, 2008] proposed a general architecture based on a convolutional neural

network and used multi-task learning to jointly train the model on several tasks: Semantic

Role Labeling, Part of Speech tagging, Chunking, Named Entity Recognition, Semantically

Related Words, and Language Modeling. They showed that models trained jointly on mul-

tiple tasks were always able to outperform single-task models, and in several cases they

required less training time. Dong et al. [Dong et al., 2015] showed that jointly training

a neural machine translation model on multiple languages simultaneously can significantly

outperform models learned independently on individual language pairs. Liu et al. [Liu et al.,

2015] trained a deep neural network jointly on two tasks, semantic classification (query clas-

sification) and information retrieval (ranking for web search). The proposed model consists

of shared lower-level representations connected to task-specific representations, which are

then used as input to task-specific classifiers. They found that multi-task learning has a

regularization effect and is crucial in learning more general representations and avoiding

overfitting to a specific task. More recently, Schulz et al. [Schulz et al., 2018] investigated

multi-task learning in the context of argumentation mining. They proposed a neural network
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in which the primary task of argument component identification and classification (posed as

a sequence tagging problem) is augmented by additional tasks. The additional tasks consist

of the same task as the primary task when training on different datasets. This approach can

essentially be viewed as a transfer learning approach framed as multi-task learning since the

learning gains come from a difference in the source domain of the data rather than difference

in tasks to perform. It is then not surprising that multi-task models outperformed individual

models, especially when limited amount of in-domain data is available for the primary task

compared to secondary tasks. Lauscher et al.[Lauscher et al., 2018] additionally showed that

argumentation can be used as an auxiliary task to improve other primary tasks. They eval-

uated the performance of neural network models on several tasks related to analyzing the

rhetoric of scientific writing: discourse role classification, subjective aspect classification, ci-

tation context identification, and summary relevance classification. Their claim that rhetoric

analysis can be more effective when including argumentative information is backed up by

their experimental results: each of the four tasks benefited from having argument compo-

nent identification and classification information as a secondary task. The main difference

between primary task and secondary tasks resides in the loss function, which is typically op-

timized with respect to the primary task, essentially prioritizing it over all secondary tasks.

The fact that argument component classification performance did not increase in any of the

four multi-task experiments is evidence that argumentation was strictly an auxiliary task to

which the models assigned considerably less importance during training.

7.2 PILOT STUDY ON DATASET D2

Motivated by the related works described in the previous section, we investigated the impact

of multi-task learning on the analysis of classroom discussions. The multi-task models we

envision differ from prior works in the following aspects:

• unlike Schulz et al. [Schulz et al., 2018], which showed that additional data containing the

same labels can be effectively used through multi-task learning, our objectives are: to (i)

make use of additional labels (for related tasks) for the same dataset, without increasing
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the overall dataset size; (ii) to model argument component classification together with

tasks beyond argumentation mining through multi-task learning;

• unlike Lauscher et al. [Lauscher et al., 2018], our main objective is to improve per-

formance of all tasks in multi-task settings, therefore we do not make the distinction

between primary and secondary tasks (which typically depends on the definition of the

loss function); additionally, we consider more than two tasks simultaneously.

Figure 12 shows the setup of the different multi-task models for the experiments carried

out in this chapter. In all the models an ADU is processed through an ADU encoder (the

Figure 12: Configurations of multi-task models: baseline single-task model (a); two-tasks

model (b); three-tasks model (c).

neural network blocks in the figure, labeled “NN”) and the handcrafted features described

in Section 6.3.1 are extracted simultaneously. The two are concatenated and form a feature

vector which is shared among all tasks in the multi-task models. In the single-task model in

Figure 12 (a) the feature vector is given as input to a single softmax classifier.

As a first experiment we will add a secondary task to the model (Figure 12 (b)), which

will consist of predicting specificity. In a second experiment, we will test the performance of

a single multi-task model trained jointly on all three tasks. Argumentation and specificity

are based on the same unit of analysis, while collaboration is coded at the turn level and will
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Figure 13: Distribution of argument components by specificity level.

require pre-processing. We addressed this problem by applying BIO tags instead of using

the raw collaboration labels, so as to have a label for each ADU and be aligned with the

other two tasks: if an ADU is at the “beginning” of a turn, we add the prefix “B-” to its

class label (e.g. B-extension), otherwise we add the “inside” prefix “I-” (e.g. I-extension);

the “O-” prefix is never used.

Preliminary Experiments and Findings We conducted a preliminary experiment

on multi-task learning with the objective of improving performance of an argument compo-

nent classification system on the dataset D2. We first analyzed the distribution of argument

components for different specificity levels, and Figure 13 shows that the frequency of each

argument component varies considerably between low, medium, and high specificity ADU.

The amount of information shared between the two classes can also be analyzed through

the normalized mutual information (NMI) metric, which can be used as an indicator of

performance gain obtained in multi-task settings [Bjerva, 2017]. The metric ranges between

0 an 1, where 1 means the two classes are perfectly correlated and 0 represents no correlation

at all; larger gains in performance can be expected from class pairs with higher NMI. The
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normalized mutual information between argument components and specificity in dataset D2

is 0.039.

We implemented multi-task learning as depicted in Figure 12 (b), where the feature

vector for the two tasks is entirely shared, and is directly given as input to two softmax

classifiers. Table 23 shows the argument component classification results for models trained

using multi-task learning and specificity as second task (rows 13-20) along with the respective

results obtained by the single-task models (rows 5-12).

Our findings are in line with the literature in other domains, with results showing that

models trained on argumentation and specificity labels almost always outperform the ones

trained only on argumentation. LSTMs benefit from the multi-task setup more than CNN

models: among all combinations of LSTM models, the only one able to achieve kappa greater

than 0.2 and F-score greater than 0.4 is a multi-task one. Additionally, the word-level CNN

model using wLDA and online dialogue feature sets and trained using multi-task learning

is the only model able to achieve F-score greater than 0.3 for warrants. Overall these pre-

liminary findings on D2 are encouraging because the multi-task models outperformed the

single-task ones even with a very modest NMI between the two tasks.

7.3 IMPROVING ARGUMENT COMPONENT CLASSIFICATION

THROUGH MULTI-TASK LEARNING

Looking at the multi-task learning models described in the previous section, we can see

that the portion of weights that is truly entirely shared between tasks is the neural network.

Therefore we decided to remove most of the handcrafted features and only keep the Speciteller

feature set and only focus on CNN, effectively using the same hybrid baseline model described

in Section 6.3.1. We also decided to use dataset D3 for our experiments since it has 3 classes

(argument component, specificity and collaboration), unlike D2. Class distributions for

dataset D3 are shown in Table 4.

Before running new experiments, we computed the normalized mutual information scores

between pairs of classes:
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Table 23: Argument component classification results of multi-task learning models on dataset

D2 (with specificity as second task). Each line represents the average of a transcript-wise

cross validation. Best results are in bold. The three right-most columns represent per-class

F-score for evidence, warrants, and claims respectively. For easier comparison rows 5-12 for

single-task models are repeated here from Table 13.

Row Models / Features Kappa Prec Rec F-score Fe Fw Fc

Character level NN models

5 LSTM -0.002 0.062 0.253 0.082 0.007 0.242 0.013

6 LSTM + wLDA +
online dialogue

0.034 0.217 0.304 0.150 0.080 0.272 0.090

7 CNN 0.143 0.439 0.423 0.393 0.372 0.218 0.574

8 CNN + wLDA + on-
line dialogue

0.241 0.482 0.475 0.450 0.449 0.236 0.637

Word level NN models

9 LSTM 0.069 0.408 0.399 0.218 0.161 0.198 0.295

10 LSTM + wLDA +
online dialogue

0.181 0.462 0.447 0.391 0.362 0.279 0.522

11 CNN 0.125 0.410 0.404 0.378 0.370 0.231 0.526

12 CNN + wLDA + on-
line dialogue

0.241 0.492 0.488 0.455 0.468 0.276 0.622

Multi-task character level NN models

13 LSTM 0.060 0.408 0.399 0.208 0.134 0.203 0.287

14 LSTM + wLDA +
online dialogue

0.117 0.379 0.375 0.287 0.362 0.279 0.522

15 CNN 0.166 0.444 0.437 0.407 0.399 0.220 0.586

16 CNN + wLDA + on-
line dialogue

0.259 0.506 0.488 0.468 0.474 0.262 0.640

Multi-task word level NN models

17 LSTM 0.093 0.379 0.364 0.276 0.298 0.252 0.378

18 LSTM + wLDA +
online dialogue

0.232 0.497 0.482 0.440 0.419 0.299 0.583

19 CNN 0.164 0.351 0.443 0.441 0.476 0.249 0.598

20 CNN + wLDA + on-
line dialogue

0.276 0.521 0.512 0.485 0.484 0.312 0.638

• 0.041 for argument component - specificity;

• 0.314 for argument component - collaboration;

• 0.047 for specificity - collaboration.
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All of the results are higher than the one obtained for dataset D2, but in particular the

relationship between argument component and collaboration seems the most promising. We

additionally performed a sanity check to understand the maximum performance improvement

we can expect. First, we added the true collaboration labels as input to the softmax classifier

for the baseline argumentation model. Cohen Kappa jumped from 0.350 to 0.563, and F-

score improved from 0.509 to 0.664. We repeated the experiment with a reduced collaboration

label set, new turn vs. rest, in which we combined extensions, challenges and agreements in

one label. It should theoretically be easier for a classifier to learn the reduced collaboration

label set, and the performance gains obtained in this setting were: Kappa reached 0.573 and

F-score 0.671.

7.3.1 Turn-level Collaboration Classifier

We first evaluated the performance of multi-task learning with the model architecture shown

in Figure 12. In this setting the classifiers consist of the hybrid model described in the pre-

vious section, and is entirely shared between the 3 tasks. Given the limited performance

improvement obtained with this multi-task architecture, shown in Table 24, and the proven

potential gain with gold standard collaboration labels, we hypothesized that the current

limiting factor is the inaccuracy of the predicted collaboration labels. With many attempts

to improve the collaboration classifier, it became clear that there are at least two reasons

why the current models struggle, with Kappa ranging between 0.2 and 0.3: (i) collaboration

is annotated at the turn level, and when turns are segmented into multiple ADUs the col-

laboration model is missing valuable information; (ii) when annotating for a collaboration

label, the annotators also provide a reference turn (within the 4 prior turns), meaning that

a collaboration label represents the relationship between two turns.

After several iterative extensions of the hybrid model we reached a compromise between

model performance and limitations, and the resulting collaboration model is shown in Figure

14. The main limitation of the model is the assumption that the reference turn is known

beforehand. We tried relaxing this constraint and adding a context module to capture

information from the 4 prior turns, however since the target turn could potentially be related
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Figure 14: Configuration of the enhanced collaboration classifier which produces one collab-

oration output for each turn, without the use of BIO tags.

to multiple context turns the simple context model was not able to discern the correct

reference and therefore the correct collaboration label. In order to generate turn embedding

we use a combination of CNN and BERT embeddings: the CNN is needed as that is the part

of the model that will be shared among tasks, while BERT is needed to improve performance.

We also found that simply concatenating the target embedding and reference embedding did

not work well: the element-wise multiplication explicitly models an approximate similarity

between the two embeddings.
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7.4 EXPERIMENTS AND RESULTS

In this section we report on several experiments carried out to understand if multi-task

learning can improve performance of any of the 3 classifiers, and which ones can benefit from

multi-task learning the most. This is achieved by not distinguishing between primary and

secondary tasks (i.e. assigning equal weight to each task in the loss function), in the hope

that all tasks can simultaneously achieve higher performance compared to their respective

single-task models. We evaluated both collaboration models (baseline and turn-level) for the

full set of collaboration labels as well as a reduced set described in the previous section.

7.4.1 Pairwise Multi-task Learning

In the first experiment we tested the effect of jointly modeling two tasks, by implementing

the models described in Figure 12 (b), where all classifiers produce ADU-level outputs and

collaboration uses BIO tags.

Table 24: Results for multi-task models when combining 2 tasks. Col Set refers to either

full or reduced set of collaboration labels. Per-class Cohen Kappa (QWK for specificity) and

macro F-score are displayed. Best results with respect to each collaboration label setting are

highlighted in bold. The Baseline Collaboration results refer to row 1 of Table 18.

Row Tasks Col Set K a F a K s F s K c F c

1 Baseline full 0.350 0.509 0.750 0.689 0.199 0.201

2 Arg, Spec

full

0.364 0.529 0.742 0.684 - -

3 Arg, Col 0.384 0.542 - - 0.199 0.213

4 Spec, Col - - 0.739 0.686 0.196 0.200

5 Baseline reduced 0.350 0.509 0.750 0.689 0.177 0.319

6 Arg, Spec

reduced

0.364 0.529 0.742 0.684 - -

7 Arg, Col 0.387 0.546 - - 0.243 0.370

8 Spec, Col - - 0.752 0.690 0.223 0.357
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From the results in Table 24 we can make several observations. For argumentation

and collaboration the multi-task models always outperform the single-task baseline, in both

full and reduced collaboration labels. For specificity, on the other hand, there is no large

difference in single-task vs. multi-task performance. Additionally, while argumentation

and collaboration (for reduced set) can benefit from specificity as second task, the bigger

performance gain is obtained between collaboration and argumentation themselves. This

was within expectation given the NMI scores in the previous section. Unfortunately the

improvements on argumentation are not statistically significant, while those on collaboration

for the reduced set are (p-value < 0.05).

7.4.2 Three-task Multi-task Learning

In the second experiment we will use multi-task learning by implementing the model in Figure

12 (c) which makes use of all three tasks simultaneously, to test whether jointly training a

model on three tasks is more effective (for some or for all tasks) than training models on two

tasks and in single-task setting. Even in this experiment all classifiers produce ADU-level

outputs and collaboration uses BIO tags.

Table 25: Results for multi-task models when combining all three tasks. Col Set refers

to either full or reduced set of collaboration labels. Per-class Cohen Kappa (QWK for

specificity) and macro F-score are displayed. Best results with respect to each collaboration

label setting are highlighted in bold.

Row Tasks Col Set K a F a K s F s K c F c

1 Baseline full 0.350 0.509 0.750 0.689 0.199 0.201

2 Arg, Spec, Col full 0.397 0.554 0.745 0.694 0.206 0.213

3 Baseline reduced 0.350 0.509 0.750 0.689 0.177 0.319

4 Arg, Spec, Col reduced 0.394 0.553 0.741 0.687 0.241 0.368

Table 25 shows similar trends to the previous experiment: argumentation and collab-

oration seem to benefit from multi-task learning, while specificity does not. In both ex-
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perimental settings with different collaboration label sets, the improvement in F-score for

argumentation is statistically significant (p-value < 0.05). For the reduced collaboration set,

collaboration performance is significantly boosted by multi-task learning (p-value < 0.05),

while the difference for full collaboration set is not statistically significant.

By comparing results between this experiment and the previous one, we can also ob-

serve that if a multi-task model already uses argumentation and collaboration labels, adding

specificity improves only the argumentation results.

7.4.3 Turn-level Collaboration Classifier

In this experiment we try to improve the performance of the collaboration classifier by testing

the model in Figure 14, and see if better collaboration model results in better multi-task

results for argumentation.

Table 26: Results for multi-task models when using the new collaboration classifier. Col Set

refers to either full or reduced set of collaboration labels. Per-class Cohen Kappa (QWK for

specificity) and macro F-score are displayed. Best results with respect to each collaboration

label setting are highlighted in bold.

Row Tasks Col Set K a F a K s F s K c F c

1 Baseline full 0.350 0.509 0.750 0.689 0.519 0.482

2 Arg, Spec, Col full 0.419 0.575 0.744 0.683 0.551 0.510

3 Baseline reduced 0.350 0.509 0.750 0.689 0.707 0.852

4 Arg, Spec, Col reduced 0.424 0.581 0.747 0.685 0.731 0.864

We can clearly see from Table 26 the same trends we observed in Section 7.4.2, though

the magnitude of improvements from single-task to multi-task models for argumentation and

collaboration increased. For argumentation, the improvement on recall between rows 2 of

Tables 25 and 26 (respectively 0.575 and 0.606) is statistically significant (p-value < 0.05),

while that for F-score approaches significance (p-value = 0.06). If we compare row 4 across

the two tables we also find that increase in recall for argumentation (from 0.565 to 0.601)
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is statistically significant (p-value < 0.05). With respect to the single-task baseline, all

argumentation metrics in row 2 significantly improved (p-value < 0.01): precision increased

from 0.535 to 0.576, and recall from 0.531 to 0.606. We also found statistically significant

improvements across all argumentation metrics when comparing row 4 to its baseline in row

3 (p-value < 0.05): precision increased from 0.535 to 0.584, and recall from 0.531 to 0.601.

A large performance improvement was obtained on collaboration, with the turn-level

collaboration model significantly outperforming the earlier, non-BERT based, in single-task

configuration (p-value < 0.0001). While we are pleased with the performance gain for col-

laboration, we were expecting the increased accuracy to bring a bigger improvement to

argumentation in multi-task setting (the improvement in Kappa was 0.022 and 0.03 for the

two collaboration code settings). Overall we are still quite far from the best possible results

achievable (Kappa of 0.563 and 0.573), but all the multi-task experiments have shown that

the relationship between argumentation and collaboration can be exploited for significant

performance benefits.

7.4.4 Local Context and Multi-task Learning

For the last experiment in this section we wanted to explore the possibility of jointly de-

veloping a context model from Section 6.3 and multi-task learning. For the context model,

we decided to focus on the Local Context and consider the position in which context ADUs

are centered around the target ADU. Since the hybrid model was also used for multi-task

learning experiments, we extended it with the turn-level collaboration classifier, along with

a specificity classifier. In this setting therefore: the argumentation model makes use of lo-

cal context; the specificity model uses only the text in the target ADU; the collaboration

model consists of the model in Figure 14 and uses the full collaboration label set. We first

trained the model multiple times with different local context sizes, then combined multi-task

learning with the attention-based local context model.

As we can see from Figure 15, the combination of local context (with variable size) and

multi-task learning (green line) does not improve performance over local context only (red

line). All differences between the two are not statistically significant. When looking at
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Figure 15: Results obtained combining context models with multi-task learning. Each line

shows results for local context (LC), attention-based local context (LC att), multi-task learn-

ing (MTL), local context and multi-task learning (LC+MTL) and local context attention

combined with multi-task learning (LC att+MTL).

attention-based models, on the other hand, introducing multi-task learning in the model

actually results in a performance drop (yellow and aqua lines). Additionally, all models

including local context always outperform the multi-task learning model (blue line).

These results warrant further investigation to understand why two models which sep-

arately give significant performance improvement do not seem to work well together. We

speculate that this effect is due to the way the CNN is shared for multiple purposes. In the

local context module, the same CNN is used for converting the target ADU into an embed-

ding, as well as converting all context ADUs into embeddings. During training, then, for

each ADU the CNN will receive multiple gradient updates. Coincidentally the CNN is also

the portion of the model that is shared between tasks in multi-task learning. The number

of gradient updates that happen through collaboration is much lower than the one through
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argumentation (collaboration is turn-based and the number of turns is always less than or

equal to the number of ADUs), therefore the shared portion of the model may focus more

on the argumentation task. This is somewhat confirmed by the fact that when introducing

local context into the multi-task learning model, Kappa on the collaboration task drops on

average by 0.05 and F-score by 0.04. In the joint model with attention mechanism, Kappa

for collaboration drops from 0.551 to 0.300 and F-score from 0.510 to 0.279.

7.5 SUMMARY

In this chapter we investigated the use of multi-task learning as a way of jointly training

models to predict multiple related aspects of classroom discussions: argument component,

specificity and collaboration. The proposed multi-task models differ from the ones pro-

posed in argumentation mining literature in the type of tasks to perform, and they take full

advantage of our annotation framework proposed in Chapter 3.

We first implemented pairwise multi-task models which jointly solve two of the three

available classification tasks to better understand which classroom discussion components

are more or less related to each other. Argumentation and collaboration showed higher

affinity and potential for joint modeling, while specificity seems to be almost independent

from the other two tasks. We then implemented a multi-task learning model to jointly train

classifiers on all three tasks simultaneously and found that, in the presence of argumentation

and collaboration, introducing the specificity task only improves argumentation performance.

We then developed a more advanced collaboration model that was able to achieve more than

double the performance of the previous one, albeit introducing some limitations consisting

in needing additional inputs (e.g. collaboration references). The introduction of this model

into the multi-task training process resulted in higher performance for the argumentation

task. The last experiment we carried out was intended to explore the combination of context

information for argumentation and multi-task learning. Results from this experiment tell us

that naively combining the two approaches does not result in better models, and we may

have to develop better ways of sharing parameters between tasks to take advantages of both.
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8.0 CLASSROOM ANALYTICS DEPLOYMENT

8.1 INTRODUCTION

With the goal of addressing challenges in teaching and analyzing collaborative argumen-

tation, we developed Discussion Tracker, a system to provide teachers analytics regarding

their classroom discussions. Unlike prior research which developed tools for the classroom

by focusing on frequency of participation, teacher questions, instructor/student talk ratio

and student turn patterns [Chen et al., 2014, Blanchard et al., 2016, Gerritsen et al., 2015],

we decided to build our analytics tool based on the aspects of collaborative argumentation

discussed in Section 3.2: argumentation, specificity and collaboration.

8.2 DISCUSSION TRACKER

Now at its second iteration in the development cycle, Discussion Tracker organizes data

visualizations across three main tabs:

1. Current Discussion: this tab contains all of the information and analytics pertaining to

the current discussion to be analyzed. This tab is in turn divided into 4 minor tabs:

a. Overview (Figure 16): displays basic information such as teacher name, date, discus-

sion topic, along with percentages of teacher talk, percentage of speaking students,

average turns per speaking student, and finally three pie charts with distributions

of argumentation, specificity and collaboration.

b. Annotated transcript (Figure 17): displays the transcript of the entire discussion
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sorted by turn number, along with student ID and the three collaborative argumen-

tation components for each turn/ADU.

c. Collaboration map (Figure 18): 2-dimensional visualization of how students col-

laborate together; new turns stretch out horizontally while instances of extensions,

challenge, agree develop the graph vertically.

d. Help page: contains definitions for all terms used throughout the system.

2. Discussion history (Figure 19): after repeatedly using Discussion Tracker, teachers can

keep track of frequency distributions of the three annotated components over time; ad-

ditionally they can check for each discussion whether they achieved the goal they had

set beforehand.

3. Plan next discussion (Figure 20): displays the main strengths and weaknesses of the

current discussion, and prompts the teacher to select one of them to address for next

time; after selecting a weakness, the teacher is prompted to three instructional resources

targeting that weakness; strengths and weaknesses are automatically identified applying

handcrafted rules to frequency distributions for collaborative argumentation labels.

Discussion Tracker was initially built as a standalone desktop application using Python

and Tkinter, though we are in the process of developing a web-based version of the application

to improve accessibility.

We used Discussion Tracker in the process of collecting dataset D4 in the Spring semester

of 2020 as well as performing usability study and assessing the performance of NLP classifiers.

In the absence of a downstream task for extrinsic evaluation of the computational models

proposed in this thesis so far, this study serves at least as a point of reference in understanding

if teachers would find the collaborative argumentation aspects beneficial1. Furthermore, by

collecting and annotating the dataset, it provided a benchmark for us to evaluate the NLP

classifiers previously trained on dataset D3 and estimate whether they could be used in

practice.

1This represents an upper bound since we used manual annotations in the study, which do not reflect the
actual performance of the NLP models we developed for collaborative argumentation.

95



Figure 16: Screenshot of Discussion Tracker overview page.

8.3 EVALUATION

The procedure for deployment of Discussion Tracker was as follows:

• a 40 minute text-based literary discussion was recorded in a classroom;

• the teacher completed an online survey the same day;

• the discussion was transcribed and manually coded by experienced annotators;

• within 2 weeks from the initial recording, a researcher carried out a 45 minute interview

with the teacher; during this time the teacher used Discussion Tracker to explore the

discussion analytics provided by the system (based on manual annotations);

• the teacher completed a second online survey the same day with questions regarding

their experience in using Discussion Tracker.
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Figure 17: Screenshot of Discussion Tracker annotated transcript page.

Discussion Tracker was deployed in 18 discussions, with 18 different teachers from 4 high

school in the Pittsburgh area.

8.3.1 Results on Discussion Tracker Usability

During the second survey, each teacher answered 13 questions on a 5-point Likert scale

(“Strongly Disagree” to “Strongly Agree”) about usability of the system and usefulness of

the information provided. Table 27 shows the average rating for each of the 13 questions

(value of 1 means they “Strongly Disagree” with the question, while value of 5 means they

“Strongly Agree” with it).
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Figure 18: Screenshot of Discussion Tracker collaboration map page.

It is encouraging to see that all responses averaged above 4. One of the items of most in-

terest to us is “Overall, Discussion Tracker is helpful for my teaching of literature discussion”,

which received one of the highest mean scores.

8.3.2 NLP Classifiers

We evaluated a classifier for each of the 3 collaborative argumentation aspects. For argu-

mentation, the model is based on the BERT baseline combined with local context, described

in Section 6.3.1. For specificity, the model consisted of the same BERT baseline, but without

context information. For collaboration, the classifier consisted of a model very similar to the
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Figure 19: Screenshot of Discussion Tracker discussion history page.

one from Section 7.3.1, but we removed the CNN component (because we are not training

multi-task learning models). The choice of models was dictated by including components

which achieved good results and showed high efficiency in terms of computation time and

complexity (e.g. local context for argumentation). On the other hand, components that sig-

nificantly increased computational complexity while not consistently improving performance

were left out of this experiment (e.g. multi-task components for collaboration).

The models were trained on dataset D3 and tested on D4. When needed (i.e. for choosing

context size and position for the argumentation model), hyperparameter optimization was

carried out through cross-validation on D3, then the model was trained on the complete

dataset D3. Results are reported in Table 28.

For the specificity model, kappa indicates substantial agreement with manual labels. For

99



Figure 20: Screenshot of Discussion Tracker plan next discussion page.

argumentation and collaboration kappa indicates moderate agreement. It is worth pointing

out that inter-rater agreement between the two human annotators for collaboration (with

respect to the collaboration labels only, excluding turn references) over the whole dataset

was measured in kappa = 0.578, not far from the result obtained by the classifier. On

the other hand, inter-rater agreement between annotators was measured in Kappa = 0.971

for argumentation and quadratic-weighted kappa = 0.813 for specificity. The larger perfor-

mance gap between these two kappas and the ones obtained from the classifiers indicate that

there is much room for improvement in our proposed models for automated prediction of

specificity and argumentation. The collaboration classifier also stands out when looking at

the difference between macro F-score and micro F-score. The high difference is due to the

fact that the NLP model never predicts “agree”, and very rarely predicts “challenge”. As

for argumentation and specificity, the differences between macro F-score and micro F-score,
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Table 27: Teacher survey items and Likert score means.

Question Mean Question Mean

The overview of the discussion is helpful. 4.67 I find the system easy to use. 4.11

The pie charts of different features

of the student discussion are helpful.
4.78

The system helps me to recognize

my students’ strengths during

discussion.

4.72

The annotated transcript of student

discussion is helpful.
4.89

The system helps me to recognize

my students’ weakness during

discussion.

4.72

The collaboration diagram is helpful. 4.22

The system gives me more insight

into student learning than I usually get

from thinking about the discussion.

4.67

The system-generated strengths

and weaknesses are helpful.
4.44

The system encourages me to

make more changes to my facilitation

of discussion than I usually do.

4.28

The goal-setting is helpful. 4.56

Overall, Discussion Tracker is

helpful for my teaching of literature

discussions.

4.72

The instructional resources are helpful. 4.17

Table 28: Results of the three classifiers on dataset D4.

Model Kappa Macro F-score Micro F-score

Argumentation 0.574 0.730 0.789

Specificity 0.727 0.688 0.679

Collaboration 0.566 0.439 0.775

though not negligible, are within expectation if we consider imbalance between class labels

(particularly for argumentation).
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8.4 SUMMARY

In this section we described Discussion Tracker, a discussion analytics system designed to help

teachers analyze their classroom discussions. Discussion Tracker shows teachers transcripts of

classroom discussions along with analytics based on collaborative argumentation annotations

we described in Chapter 3. We deployed the system in 18 classrooms and collected usability

results via surveys. Teachers reported that they found the system easy to use, and that

the analytics helped in analyzing collaborative argumentation. Using the dataset collected

in this study as well as manual annotations, we carried out experiments to evaluate NLP

models for argumentation, specificity and collaboration. The NLP models evaluated in in this

chapter consist of a subset of the models developed in Chapters 5, 6, and 7. They represent

a compromise between performance and complexity: they include select components that

proved to be well performing in our experiments while at the same time not drastically

increasing computational complexity. This represents a simulation of the classifiers that

would have been deployed, had we shown teachers automated predictions instead of manual

annotations. Results showed the classifiers to be in moderate to substantial agreement with

labels provided by human annotators.
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9.0 CONCLUSIONS

9.1 SUMMARY OF CONTRIBUTIONS

In this thesis, we proposed to analyze collaborative argumentation for text-based classroom

discussions. First, we developed a framework for annotating transcripts of classroom dis-

cussions. The scheme utilizes turns and argument moves (ADUs) as units of analysis and

introduces guidelines on annotating three important aspects for collaborative argumenta-

tion: argument component, specificity and collaboration. Several datasets were annotated

using the proposed scheme and reliability analyses showed that discussion transcripts can be

reliably annotated by human coders.

Second, we proposed a computational model for automated prediction of specificity in

classroom discussions. We showed that the proposed models can effectively combine hand-

crafted features and neural networks and outperform previously proposed specificity pre-

diction models. At the same time we investigated the use of a pedagogically meaningful,

interpretable feature set and the importance each individual feature carries: at the expense

of a slight decrease in accuracy, using this feature set could potentially enable us to give

students very detailed feedback on the specificity of their utterances.

Third, we proposed several computational models for automatically predicting argument

components in transcripts of classroom discussions. We initially improved the performance

of an existing argument mining system by extending its feature set with features previously

used in the analysis of online dialogues. We also combined the handcrafted features with

multiple types of neural networks and were able to obtain additional performance gains.

Since these models include a very limited amount of contextual information, we proposed to

extend the models by considering local context, teacher- and speaker-dependent context. We
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demonstrated that adding contextual information will improve the performance of argument

component classifiers, and we performed extensive experiments to understand in detail how

important each context type (e.g. local vs. teacher vs. speaker) is in multi-party discussion.

Finally, since argument component, specificity and collaboration are related aspects of

collaborative argumentation, we developed a set of joint models which are trained simulta-

neously on these tasks, in order to capture potential relationships existing between the three

classes.

With respect to the research hypotheses stated in Chapter 1, we provide support for H1.1

by showing that transcripts of classroom discussions can reliably be annotated by trained

human annotators; at the same time we provide support for H1.2 with teacher surveys show-

ing these annotations to be useful in analyzing discussions. We also support hypotheses

H2.1 and H2.2 where the performance of existing models for predicting specificity and ar-

gument component, respectively, can be improved by extending the models with additional

handcrafted features and pairing them with neural networks. We proved hypothesis H2.3 by

showing that contextual information can substantially enhance argument component classifi-

cation models. Our experiments on contextual models for two baselines, one CNN-based and

one transformer-based, indicates that the proposed contextual models can be effective for

different neural network models, supporting hypothesis H2.4. Hypothesis H3 was partially

confirmed: while it is true that multi-task learning can lead to better argument component

classification models, the improvements are not always statistically significant. Multi-task

learning can also improve performance of collaboration models, while it does not have a sig-

nificant effect on specificity. Furthermore, the combination of context models and multi-task

learning needs more extensive exploration.

Our contributions with respect to corpora are also of note. We collected two datasets

consisting of 29 and 18 classroom discussions over the span of a year and a half. We then

annotated both datasets with the annotation scheme proposed in Chapter 3. We also made

the first dataset (D3) publicly available and free for research use, and are working towards

releasing D4. While we also annotated datasets D1 and D2, they cannot be publicly released

for copyright reasons.
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9.2 LIMITATIONS AND FUTURE DIRECTIONS

Though many efforts went into developing, validating, and experimenting with the proposed

features and models, we want to acknowledge that there are several limitations to our current

work.

In Chapters 4, 5, 6 and 7 every model makes the assumption that turns are already

segmented into multiple ADUs, and disregards the possibility of having non-argumentative

text. A model to be deployed as part of an automated analytics system cannot make such

assumptions, therefore the task of automating turn segmentation should be explored, along

with the task of filtering-out non-argumentative content.

Likewise, in Chapter 7 when we developed a new collaboration classifier, in order to

achieve significantly higher performance, we had to impose the restriction of having reference

turns as an additional input. In practice this would require manual pre-processing which

would render any classroom tool considerably less useful. Additionally, when developing

the multi-task learning models we limited ourselves to three argumentative collaboration

tasks. There are potentially many additional tasks that would be interesting to explore from

a research standpoint (e.g. argument relation classification, discourse relations) as well as

potentially beneficial to overall classifier performance (e.g. language modeling, named entity

recognition) which we have not explored.

In Chapter 6 we discovered that using an attention mechanism to automatically optimize

context size and position does not work well for different classifiers. In particular it does

not work well for the classifier with currently the best performance on argument component

classification in classroom discussions. For such model we can apply typical hyperparameter

optimization strategies, however it is worth exploring additional ways of automating context

optimization that in general work well for several computational models.

Some of the context models in Chapter 6 are based on speaker ID (whether it be individ-

ual speaker or teacher) though in a real-world scenario, for a completely automated system

this would require accurate speaker diarization, which may not perform well in scenarios

with lower audio quality.

Maybe an even bigger limitation of all our current approaches lies in the fact that we
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are completely reliant on textual information derived from audio transcriptions. However,

there are additional components that we are omitting: interpersonal dynamics based on

audio-visual cues are integral parts of face-to-face discussions. Regrettably we do not yet

have access to audio and video signals, though it would be interesting to explore additional

models that can take advantage of these additional modalities.

Of particular note are limitations with respect to the classroom analytics deployment

described in Chapter 8. Most teachers found a strength in the fact that Discussion Tracker

could enable them to give detailed hard evidence to students as feedback on how they build

their arguments and how they collaborate with others, which is not feasible with their hand-

written notes. On the other hand, we don’t have a definitive answer on whether the teacher

themselves notice new discussion aspects or details when using Discussion Tracker. Other

immediate limitations we gathered from teachers cognitive interviews are directly linked to

the annotation framework and predictive models developed throughout this thesis. While

carefully reading through the annotated transcript page in Discussion Tracker some teachers

raised the issue of disagreement with respect to particular ADU/turn labels. Since the cog-

nitive interview was conducted in-person by a researcher on our team, such disagreements

were discussed on a case-by-case basis. This is only feasible during the system development

phase as the ultimate goal is for teachers to use Discussion Tracker independently without

supervision. There are two relatively straightforward avenues to address this limitation and

increase teacher trust in the automated models. We can augment each prediction with a

confidence score, so that teachers know which annotations to be mindful of when reading

through an annotated transcript. This solution is easy to implement since most machine

learning models (certainly the ones discussed in this thesis) can produce confidence scores

as additional output. However, it requires teachers to understand what confidence scores

are, along with estimating thresholds beyond which we might not want to trust the system,

and does not provide details on why the system made such prediction. The second solution

consists in employing explainable prediction models (e.g. the specificity classifier described

in Section 4.3.4 which uses a pedagogical feature set). This approach has the benefit of

providing detailed reasons compared to a single confidence score, but it may be counterpro-

ductive if it results in information overload for the teacher (an explanation can be generated
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for each label, and there may be hundreds of labels in a single discussion).

Another particular aspect for which we received episodic feedback from teachers relates to

the Discussion Tracker collaboration map. In general, teachers liked the graphical structure

of the collaboration map, where it is easy to identify highly collaborative moments by looking

for parts of the graph that extend vertically. What is not clear is how important it is

for teachers to know precisely how students are collaborating. This relates directly to the

two collaboration classifiers from in Section 7.3.1: one which produces all four possible

collaboration labels, and one that only produces two (new vs. rest). Future work needs to

address the issue of whether it is enough for teachers to know if a particular turn contains a

new idea or relates to a prior idea: if this hypothesis holds true, collaboration classifiers can

be considerably more accurate, as experiments in Chapter 7 showed.

Additional feedback we gathered from teachers can be categorized as human-in-the-loop,

where they would like to be involved (to some degree) in the decisions made by the system

instead of being passive users. Some teachers inquired about the possibility to specify new

class labels for one of the three collaborative argumentation components (e.g. argumenta-

tion) and have Discussion Tracker automatically learn to identify it in the future (perhaps

after providing a few examples). Other teachers raised questions about adjusting the speci-

ficity labels since they are defined on a scale: for example someone thought the specificity

labels were “too generous”, whereas they would label certain ADUs as medium specificity

instead of high. In a few cases teachers also raised the possibility of using Discussion Tracker

for different tasks than it was designed to. While we explicitly designed the system as a tool

to help teachers understand how students collaboratively build arguments, some teachers

would like to use it as tool to help them in grading individual students for each discussion.

At a system level, these problems require usability analyses to understand how teachers

would actually use Discussion Tracker in real-world scenario without supervision. From the

NLP point of view, they would require that our models be able to accomplish few-shot or

zero-shot learning. Recent developments in few-shot learning (in particular with the use of

large language models) point to promising future avenues, though there are two considera-

tions to be made: model size and computational complexity might increase significantly; the

ability to add new class labels should be carefully managed in order to not deviate too much
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from the original label set in Discussion Tracker.

Overall there is much room for progress, and we can highlight three main lines of re-

search that would be beneficial for better understanding of collaborative argumentation.

First, for the educational community it may be interesting to perform evaluations of systems

like Discussion Tracker at large scale to better estimate what teachers need in order to im-

prove classroom discussions. This includes going beyond the three aspects of collaborative

argumentation analyzed in this work, and going beyond text-based discussions.

Second, large-scale studies would also be of interest for the NLP community - in no small

part due to the datasets they would generate, which educational problems often lack. A clear

research direction consists of developing better models, but we also argue that an interest-

ing area of exploration would be models capable of giving concrete, actionable feedback to

teachers and students.

Finally, with respect to “systems” area, much work is needed to produce an end-to-

end, completely automated analytics platform: performing ASR and speaker diarization,

automating turn segmentation, implementing systems that perform in or close to real-time.
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Moschitti, A. (2018). Automatic stance detection using end-to-end memory networks.
arXiv preprint arXiv:1804.07581.

[NGA & CSSO, 2010] NGA & CSSO (2010). Common core state standards initiative.

[Nguyen and Litman, 2015] Nguyen, H. and Litman, D. (2015). Extracting argument and
domain words for identifying argument components in texts. In Proceedings of the 2nd
Workshop on Argumentation Mining, pages 22–28.

[Nguyen and Litman, 2016a] Nguyen, H. and Litman, D. (2016a). Context-aware argumen-
tative relation mining. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages 1127–1137.

[Nguyen and Litman, 2016b] Nguyen, H. and Litman, D. J. (2016b). Improving argument
mining in student essays by learning and exploiting argument indicators versus essay
topics. In FLAIRS Conference, pages 485–490.

[Nguyen and Litman, 2018] Nguyen, H. V. and Litman, D. J. (2018). Argument mining for
improving the automated scoring of persuasive essays. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence.

[Niculae et al., 2017] Niculae, V., Park, J., and Cardie, C. (2017). Argument Mining with
Structured SVMs and RNNs. In Proceedings of ACL.

[Olshefski et al., 2020] Olshefski, C., Lugini, L., Singh, R., Litman, D., and Godley, A.
(2020). The discussion tracker corpus of collaborative argumentation. In Proceedings
of The 12th Language Resources and Evaluation Conference, pages 1033–1043, Marseille,
France. European Language Resources Association.

[Opitz and Frank, 2019] Opitz, J. and Frank, A. (2019). Dissecting content and context in
argumentative relation analysis. In Proceedings of the 6th Workshop on Argument Mining,
pages 25–34, Florence, Italy.

[Ortega and Vu, 2017] Ortega, D. and Vu, N. T. (2017). Neural-based context representation
learning for dialog act classification. arXiv preprint arXiv:1708.02561.

[Palau and Moens, 2009] Palau, R. M. and Moens, M.-F. (2009). Argumentation mining:
the detection, classification and structure of arguments in text. In Proceedings of the 12th
international conference on artificial intelligence and law, pages 98–107. ACM.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,

115



A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[Peldszus and Stede, 2013] Peldszus, A. and Stede, M. (2013). From argument diagrams to
argumentation mining in texts: A survey. International Journal of Cognitive Informatics
and Natural Intelligence (IJCINI), 7(1):1–31.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543.

[Persing and Ng, 2015] Persing, I. and Ng, V. (2015). Modeling argument strength in student
essays. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 543–552.

[Persing and Ng, 2016] Persing, I. and Ng, V. (2016). End-to-end argumentation mining in
student essays. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
1384–1394.

[Rahimi et al., 2017] Rahimi, Z., Litman, D., Correnti, R., Wang, E., and Matsumura, L. C.
(2017). Assessing students’ use of evidence and organization in response-to-text writ-
ing: Using natural language processing for rubric-based automated scoring. International
Journal of Artificial Intelligence in Education, pages 1–35.

[Reznitskaya and Gregory, 2013] Reznitskaya, A. and Gregory, M. (2013). Student thought
and classroom language: Examining the mechanisms of change in dialogic teaching. Edu-
cational Psychologist, 48(2):114–133.

[Reznitskaya et al., 2009] Reznitskaya, A., Kuo, L.-J., Clark, A.-M., Miller, B., Jadallah,
M., Anderson, R. C., and Nguyen-Jahiel, K. (2009). Collaborative reasoning: A dialogic
approach to group discussions. Cambridge Journal of Education, 39(1):29–48.

[Richey et al., 2016] Richey, C., D’Angelo, C., Alozie, N., Bratt, H., and Shriberg, E. (2016).
The sri speech-based collaborative learning corpus. In INTERSPEECH, pages 1550–1554.

[Samei et al., 2014] Samei, B., Olney, A., Kelly, S., Nystrand, M., D’Mello, S. K., Blanchard,
N., Sun, X., Glaus, M., and Graesser, A. C. (2014). Domain independent assessment of di-
alogic properties of classroom discourse. In Proceedings of the 7th International Conference
on Educational Data Mining, pages 233–236.

[Schulz et al., 2018] Schulz, C., Eger, S., Daxenberger, J., Kahse, T., and Gurevych, I.
(2018). Multi-task learning for argumentation mining in low-resource settings. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages
35–41. Association for Computational Linguistics.

116



[Sohmer et al., 2009] Sohmer, R., Michaels, S., O’Connor, M., and Resnick, L. (2009).
Guided construction of knowledge in the classroom. Transformation of knowledge through
classroom interaction, pages 105–129.

[Stab and Gurevych, 2014] Stab, C. and Gurevych, I. (2014). Annotating argument com-
ponents and relations in persuasive essays. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical Papers, pages 1501–
1510.

[Stab and Gurevych, 2017] Stab, C. and Gurevych, I. (2017). Parsing argumentation struc-
tures in persuasive essays. Computational Linguistics, 43(3):619–659.

[Stone and Hunt, 1963] Stone, P. J. and Hunt, E. B. (1963). A computer approach to content
analysis: studies using the general inquirer system. In Proceedings of the May 21-23, 1963,
spring joint computer conference, pages 241–256. ACM.

[Sukhbaatar et al., 2015] Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end
memory networks. In Advances in neural information processing systems, pages 2440–2448.

[Swanson et al., 2015] Swanson, R., Ecker, B., and Walker, M. (2015). Argument mining:
Extracting arguments from online dialogue. In Proceedings of the 16th Annual Meeting of
the Special Interest Group on Discourse and Dialogue, pages 217–226.

[Toulmin, 1958] Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge Univer-
sity Press.

[Turian et al., 2010] Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the 48th annual
meeting of the association for computational linguistics, pages 384–394. Association for
Computational Linguistics.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser,  L., and Polosukhin, I. (2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

[Wachsmuth et al., 2016] Wachsmuth, H., Al Khatib, K., and Stein, B. (2016). Using argu-
ment mining to assess the argumentation quality of essays. In Proceedings of COLING
2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 1680–1691.

[Weston et al., 2014] Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks.
arXiv preprint arXiv:1410.3916.

[Wilson, 1988] Wilson, M. (1988). Mrc psycholinguistic database: Machine-usable dictio-
nary, version 2.00. Behavior Research Methods, 20(1):6–10.

117



[Wilson et al., 2009] Wilson, T., Wiebe, J., and Hoffmann, P. (2009). Recognizing contextual
polarity: An exploration of features for phrase-level sentiment analysis. Computational
linguistics, 35(3):399–433.

[Wolf et al., 2019] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., and Brew, J. (2019). Huggingface’s trans-
formers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.

[Zhang et al., 2013] Zhang, J., Chen, M.-H., Chen, J., and Mico, T. F. (2013). Computer-
supported metadiscourse to foster collective progress in wu knowledge-building communi-
ties. In Proceedings of the International Conference of Computer-supported Collaborative
Learning.

118



APPENDIX A

CODING MANUAL

This chapter contains the complete coding manual used for annotating discussions.

Collaboration Coding

Unit of Analysis: Turns at Talk
Description: Collaboration coding involves the way each turn at talk functions in relation
to previous talk. E.g., does the turn introduce a new idea, repeat a previous idea, add to
a previous idea, or contradict a previous idea? We code for four different types of turns at
talk; new ideas, agreements, extensions, and challenges.

1. • Variable: Initiating Turn / New Idea.

• Code: N.

• Definition: An initiating turn is the expression of a new idea in the discussion. This
does not have to be a new topic, but should be a new idea, concept, or perspective. It
usually does not reference ideas in prior turns at talk, or it does so only superficially
(as in Student 4 example) . Turns that build on ideas in previous turns at talk are
coded as “extension.”
New student questions posed to the whole class that do not probe or question a
previous answer are uncoded [ex. “What real-world problem can be related in terms
of acceptance and steps towards change to the racial problem described in the text?”].
Turn Reference: Even though new ideas do not reference any prior turns at talk,
copy and paste the disc ID into the turn reference column (if coding a turn labeled
“T126.EAGER.2.Mockingbird.2”, copy “T126.EAGER.2.Mockingbird.2” in the turn
reference column).

• Example: Teacher: would you consider that an example of satire?... Yes? Any
comments?

Student 22: Uh I would say yes because, the whole story’s kind of making fun of the
social requirements, I guess.

Teacher: What other things did the colleagues talk about when they talked about
going to this funeral?

Student 6: They felt like they were required to go but even though um they felt that
it was required, they still believed that um they were more relieved that they were,
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they weren’t dead, that he was.

Both student comments above are coded as initiation because they introduce new ideas
that do not refer back to previous student talk.

Student 3: Well, um, I have another quote on page 13, “His wife, especially the
youngest, lived in perpetual fear of his fiery temper, and so did his little children.”
So that shows that he really does rule in his household and that everyone under him
is treated like, they’re not treated with enough respect in my point of view.

Student 4: And I also believe that men are also providers, like um yams are like
an important crop in the Igbo culture. And I have a quote, and um it says, “yams
stood for manliness, and he who could feed his family on yams from one harvest to
another was a very great man indeed.”

Explanation: Student 4’s turn is coded as an initiating turn because they raise the
new idea of men being providers of food while the previous turns at talk have focused
on men’s violence and domination. Even though they use the word “also” their turn
introduces a new idea that is not an explicit extension of previous ideas.

2. • Variable: Extension.

• Code: E.

• Definition: A turn is an extension if it builds off another student’s ideas. Extension
turns must extend one of the preceding four codeable student turns unless a turn
prior to those 4 is specifically referenced.

Extension turns include at least 2 key ideas or terms that were voiced by another
student. Key ideas/terms may be textual, topical or conceptual terms. Textual terms
may include characters and places from a text under discussion (like “Macbeth” or
“Birnam Wood”), but do not include titles of texts. Topical terms may include
disciplinary topics (like theme, metaphor, symbol, etc.). Conceptual terms may
include abstract ideas (like “culture,” “domination,” “regret”).

Extensions sometimes (but not always) include terms like “also, another, too”; or
indicators of agreement/alignment (such as, “like X said. . . ”)

Extensions can also include a self extension which is a turn of talk that adds infor-
mation to or re-words one’s own idea that was shared without acknowledging the
idea of other speakers in close proximity.

“Turn Reference” coding: For extension turns, code the “turn reference” as the
related idea that was most recently expressed by another student within the past
four codeable student turns. However, if a turn coded as “extension” includes an
explicit reference to a particular turn (by student name or idea) many turns in the
past, code the explicitly mentioned turn as the “turn reference” even if it is many
turns in the past.

• Example: Student 1: “angered by his youngest wife, who went to plait her hair at
her friend’s house, and then I returned early enough to pick the afternoon milk.”
This shows that men are violent and the boss of their family.

Student 2: Well I have another quote that shows that men are violent. Like, in page
38, yeah, I think, wait yeah 38, “Okonkwo’s second wife merely cut a few leaves off
the umm banana tree, to make some food.” And she said, “So without um further
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agreement Okonkwo gave her a beating.” Which means that Okonkwo has like a
superior, and he beats whatever he wants to beat.

Explanation: Student 2 above repeats three key words/ideas from Student 1’s state-
ment (wives, men, violence)but adds new information (a new quote, a different ex-
planation) so their turn is coded as extension.

3. • Variable: Challenge / Probe.

• Code: C.

• Definition: Challenge and probe turns challenge or question a prior idea. Challenges
and probes should reference another student’s turn (which may or may not have
been coded) in the preceding four codeable student talk turns. Challenges to points
made further back are considered “Initiating Turns/New Ideas” (N).

A turn is considered a challenge if it includes both (1) key words/concepts from
previous turns (such as “culture,” “domination,” or “regretful”) and (2) some in-
dication of disagreement. Note that indications of disagreement can be very subtle
(such as “still” or “actually” or “he did tell his sister”) or more explicit (such as “I
disagree”, “No,” “but,” “however,” “though”)

A turn is considered a probe if it challenges or requests more information,
detail, elaboration, or clarification/explanation in the form of a question
(“Why do you think that?” “You really think Macbeth wasn’t crazy?” or “What
do you mean?”). Will often include second person pronoun or direct address. Does
not include procedural questions like “Wait what was his question?”

NOTE: Turns sometimes contain what may appear to be indications of disagreement
(e.g., “however” “isn’t”) but are actually referring to ideas within the turn—these
would likely fall under the category of extensions.

“Turn Reference” coding: For challenge turns, code the “turn reference” as the
challenged idea that was most recently expressed by another student within the
past 4 codeable student turns. However, if a turn coded as “challenge” includes an
explicit reference to a particular turn (by student name or idea) many turns in the
past, code the explicitly mentioned turn as the “turn reference” even if it is many
turns in the past.

• Example: Challenge statements: Turn C: They don’t really care about their families.

Turn D: ([C] with Turn C) Actually, they do care, because, um, if he didn’t beat his
children, then his children wouldn’t learn their lessons. So he has a reason to beat
them.

Explanation: turn D is coded as a Challenge to turn C because it includes (1) the key
idea of the way men relate to their families, and (2) an indication of disagreement
(“actually”)

Challenge questions: Why do you think that? What do you mean?

Explanation:. Other ways to challenge could be through questions like “why do you
think that?” Or “What do you mean?”

4. • Variable: Agreeing Turn.

• Code: A.
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• Definition: Turns that either express almost the exact thing in one of the preceding
four coded student turns OR affirm the previous statement with a short response
like “yeah” or “I agree with what she said.”
When a turn seems like it should be coded as an extension but lacks two clear key
terms or ideas, it is likely to be coded as an agreement. (see last example)
• Example: St 1: I think that it’s people speak up more, I think if people speak up

more about the problem then it’ll be better.
Student 11: I agree
Explanation: Student 11 turn is coded as agreeing because they simply say “I agree”
with Student 1.
Student 3: His strength and innocence as well as his childlike wonder and hope were
lost with his [x]
Teacher: Wow, say that again.
Student 3: His strength and innocence, along with his childlike wonder and hope,
were lost.
Student 3’s second turn is coded as agreeing/repeating because she repeats what she
said in the previous turn only with slightly different wording.
Student 15: Like I’ve realized that it’s not really his choice to treat Hassan like that.
You kinda can’t blame him cause he’s young, and he’s part of society.
Student 16: He was following what he knows. That’s really all he ever knew.
Student 16’s turn affirms Student 15’s idea that the main character did what he did
not by choice, and that “you can’t blame him” since “he’s part of society.” Student
16 says something similar by saying “He was following what he knows”—This turn
cannot be considered extension because it shares only one key term or idea (he),
but it is also unsound to code it as a new idea, because it is not exactly a new idea,
concept or perspective. Because it affirms what was said above and only has one key
term, it is coded as agreement.
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Argumentation Coding

Segmenting into Argument Moves
In order to code for argumentation, we first need to consider whether or not a turn at talk
is made up of multiple moves. There are three types of argument moves: claims, evidence,
and warrants

1. • Variable: Claim
• Code: CL
• Definition: An arguable statement that presents a particular interpretation of a text

or topic.
DOES: often (but not always) precedes evidence and warrants. States something that
can more or less be contested—infers, predicts, hypothesizes, considers possibilities.
DOES NOT: simply recount details from text that are accessible to all readers (ev-
eryone knows Macbeth became king)
• Example: “Linda Loman is like really just protecting Willy from everything.”

2. • Variable: Evidence
• Code: EVI
• Definition: Talk used to support, justify, or back a claim.

DOES: includes facts, textual references, anecdotes. Often (but not always) follows
a claim. Always proximal to a claim (within 1 or 2 turns)
DOES NOT: does not exist without a claim.
• Example: “Like at the end of the book remember how she was telling the kids to

leave and never come back.”

3. • Variable: Warrant
• Code: WAE
• Definition: Move that provides explanation for why evidence supports the claim.

DOES: Always proximal to evidence supporting a claim (almost always follows evi-
dence)
DOES NOT: It rarely occurs before claim/ evidence that it is explaining (despite
Toulmin’s [1958] structure).
• Example: “Like she’s not even caring about them, she’s caring about Willy.”
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Specificity Coding

Unit of Analysis: Argument Moves
Description: Coding for specificity involves labeling the content of an argument move based
on its degree of detail, clarity, elaboration, and content-related vocabulary. We code for
three different degrees of specificity: high, medium, low.

1. • Variable: High

• Code: HI

• Definition: An argument move that includes more than one of the following: 1)
particulars, 2) details, 3) content-language, 4) chain of reasons.

Definitions:

Particulars: Argument move contains at least two terms that are particular (e.g.,
a person and a setting or a setting and an action) rather than a general group or
situation such as “you,” “everyone” “books.” Clichés or overgeneralizations are not
particulars.

Details: Descriptions, explanations or elaborations that make the idea more under-
standable, contextualized, qualified, substantiated or vivid. (“Detailed” argument
moves should avoid or at least explain general terms like good, bad, stupid, i.e.,
terms with multiple definitions).

Content language: Uses vocabulary or phrases that are specific to English Lan-
guage Arts (such as “irony, simile, tragedy,” etc.) or the text being discussed (such
as quotes or expressions). References to main characters, places, etc. in the text are
NOT content language: these are coded as “particulars.”

Chain of reasoning: Phrases or clauses that attempt to rationalize, justify or
explain an idea(s). They link or synthesize at least two pieces of information or
ideas. Thus, “Because Macbeth is scared” does not include a chain of reasoning
because it only has one idea but “Macbeth kills the guards because he is scared”
includes two ideas and thus has a chain of reasoning. Chains of reasoning often
show cause/effect (“because” and “then”), contrast (“however, although, but”) or
reasoning (“so that”). The reasoning does not need to be convincing to the coder,
nor should a coder assess its logic; presence of a chain of reasoning is enough.

• Example: “He’s (particulars) so wrapped up in the thought that it’s his destiny to
be king and that this is what fate has chosen for him, that when he finally does
get what he wants (chain of reasoning) he’s scared and it just bothers him that
the way he became king is deceiving who he was loyal to (details). And he
becomes obsessed with the fact that he doesn’t want someone to do what
he did to become king, (details) which is really ironic (content language).”

Look fors (often): quotes from the book; Multiple expressions of causality; Multiple
qualifiers; Highly arguable; Usually longer; Content-specific vocabulary

2. • Variable: Medium

• Code: MED

• Definition: The statement clearly accomplishes one of the above.

Clichés cannot be coded as medium.
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• Example: “There’s this movie about this guy who can see like forward into the
future and he always changes it. And he always said that once you see into
the future, it changes, because you know what’s going to happen and you
choose to do it faster.” (details, but no particulars, content language or chain of
reasoning)

3. • Variable: Low
• Code: LOW
• Definition: The statement does not clearly accomplish any of the above criteria

Even if statement refers to a character, extremely underqualified statements, gross
overgeneralizations, or cliché’s can limit statement to low specificity.
• Example: “Like, one man’s trash is another man’s treasure”

Look fors: Clichés and overgeneralizations; Unclear subject, time, circumstances;
No explanation or qualifiers.
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Guidelines for Segmenting Turns

Table 29: Segmentation guidelines.
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Guideline
Segment only
when there is a
clear and indis-
putable shift in
the turn at talk.
Don’t segment
unless the
phrase/clause
can be taken
alone and be
understood as
qualitatively dif-
ferent from the
phrase/ clause
before it.
Be attentive to
moments when
talk shifts from
opinion to fact
and fact to opin-
ion.
Err on the
side of under-
segmenting as
opposed to over
segmenting

Turn Example
Okay, wait, okay. My
idea builds up on X’s
idea. Because, beause,
its not really about
if they’re gettinng
disobeyed or not, its
really about like, head.
Like it’s like, not that
she’s disrespecting
them, like, them like,
in Igbo culture they
have like a head game,
and they like, real like,
its not being, about
being, about being
disrespected, but it’s
like the principle of
it. And like, like
while men are the
boss, women are weak
and inferior. They
don’t even own their
own children. But
thats, like, it’s not
about what respect.
They don’t own thier
own children, and
they don’t get enough
respect, and it’s not
about respect. It’s
not about respect
from their men. It’s
about like, about
how the Igbo culture
and the men, look
at how other men
look at them. They
don’t wanna, that’s
why they have more
than one wife and
wives barely get to do
anything. It’s because
it says, the Oracle
says so.

Oversegmentation
Okay, wait, okay. My
idea builds up on X’s
idea. Because, beause,
its not really about
if they’re gettinng dis-
obeyed or not, its really
about like, head. Like
it’s like, not that she’s
disrespecting them, like,
them like,

Suggested
Segmentation
Okay, wait, okay.
My idea builds up
on X’s idea. Be-
cause, beause, its
not really about if
they’re gettinng dis-
obeyed or not, its re-
ally about like, head.
Like it’s like, not
that she’s disrespect-
ing them, like, them
like, in Igbo cul-
ture they have like
a head game, and
they like, real like,
its not being, about
being, about being
disrespected, but it’s
like the principle of
it.
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in Igbo culture they
have like a head game,
and they like, real like,
its not being, about be-
ing, about being disre-
spected, but it’s like the
principle of it.

And like, like while
men are the boss,
women are weak and
inferior.

And like, like while men
are the boss, women are
weak and inferior.

They don’t own
thier own children,
and they don’t get
enough respect, and
it’s not about re-
spect. It’s not about
respect from their
men. It’s about like,
about how the Igbo
culture and the men,
look at how other
men look at them.
They don’t wanna,
that’s why they have
more than one wife
and wives barely get
to do anything. It’s
because it says, the
Oracle says so.

They don’t even own
their own children.
But thats, like, it’s
not about what respect.
They don’t own thier
own children, and they
don’t get enough re-
spect, and it’s not about
respect. It’s not about
respect from their men.
It’s about like, about
how the Igbo culture
and the men, look at
how other men look
at them. They don’t
wanna,
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that’s why they have
more than one wife and
wives barely get to do
anything. It’s because it
says, the Oracle says so.
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Coding Procedures
All of the above features are coded using an Excel spreadsheet. Prior to coding, the spread-
sheet will represent a classroom discussion (see figure on next page) segmented by turns at
talk. Each spreadsheet will include 19 columns, A through S. For each turn at talk, columns
A- E appear as one row (they are actually five excel cells that have been merged), while
columns F – S will appear as five rows (see figures on p. 8). Below are brief explanations of
the columns.

Column A: Disc id. This column provides 5 items of information: The teacher id (T#),
the discussion id (D#), the text id (e.g., TFA), the class id (C#), and the turn # within the
discussion (#). Thus in the example provided (T1D1TFA.C1.1), we know that the teacher
is T1, the first discussion (D1), the text is Things Falls Apart (TFA), the class id is C1,
and the turn number is 1. The next discussion on the same book facilitated by the same
teacher with the same class would begin with the id T1D2TFA.C1.1. Column B: Speaker
id. This column provides the identification of the speaker. “St” indicates a student and T
indicates a teacher. Student i.d.s are based on the order of speakers. Column C: Talk. The
transcribed talk. For transcription conventions see pp. 8-9. Column D: Talk Summary. In
this column please briefly summarize the main idea from the turn at talk. This will help with
any disagreements in collaboration coding. Column E: Relation to Collaborative Reasoning.
For this column, please write one of the six the corresponding collaboration codes (see pp.
1-3). Column F: Turn Reference. For this column please list the prior turn(s) that informed
your collaboration code. For example, if turn TFA1.2 is [E] to the prior turn, then please
COPY and PASTE TFA1.1 into Column E. Column G: Argument Move Segmentation. For
this column, please segment the turn at talk into corresponding argument moves (as done
on p. 4) Columns H –J: CL, EVI, WAR. Please place an X in column that corresponds with
the appropriate argument move label. See pp. 4-5 for definitions.

Columns K—M: TEXT, INTER, EXP. Please place an X in column that corresponds
with the appropriate domain label. See pp. 5-6 for definitions. Columns O—Q: Particulars,
Detail, Content, Chain. These categories refer to the four different characteristics of speci-
ficity on pp. 6-7. Please place an X in the columns that apply. Columns R—T: LO, MED,
HI. Please place an X in the column that corresponds to the correct level of specificity (see
pp. 6-7).
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APPENDIX B

TRANSCRIPT EXAMPLE

This section contains a complete transcript of a classroom discussion from dataset D3, on
the text The Legend of Sleepy Hollow. The transcript shows turn numbers, student ID and
argument moves. It also shows labels for the three components of collaborative argumen-
tation: argumentation, specificity and collaboration. For each component we include two
labels: the first one is the manual label that can be found in dataset (ground truth), while
the second one is the output of our predictive model. For argumentation we used the model
described in Section 6.4.4 which consists of the BERT model and includes local context
and speaker context. The specificity model has the same architecture as the argumentation
model, though without context modules. The collaboration model consists of the turn-level
collaboration classifier described in Section 7.3.1. Note that while we have predictions for
collaboration labels, the collaboration reference column only includes the ground truth labels
as our collaboration model only produces a label and not a turn reference. Turns without
annotations represent non-argumentative student talk.

Table 30: Transcript of a classroom discussion.

Turn Sp
id

Collab Ref Argument Move Arg Spec

1 St 3 Okay how does the how does the ex-
cessive use of imagery help or detract
from the story?

2 St 7 N, N 2 I think it actually helps the story. Stu-
dent ? I’m talking. {overlap with
many students} um I think I think
that it helps the story cause it like
helps create an environment like a
movie for like the story

C, C M, M
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for instance like um it says that ”each
small brook lies through it with just
murmured enough to uh lull lull ones
response.” Its like its in like the first
couple paragraphs

E, E M, M

so it basically paints paints like he’s
describing like uh he’s describing the
little valley and I think it paints like a
picture of what it would look like and
helps the readers understand the story
more.

W, C M, L

3 St 10 E, E 2 I think that um it also when they’re
describing the setting they also de-
scribe like the people of the town and
it says that, ”they’re given to all kinds
of marvelous beliefs and are subject
to trances and visions and frequently
see strange sights and hear music and
voices in the air.”

E, E M, L

I think that helps explain the extent
of like the strange activity occurring
in the town where this story [xx]

C, W L, L

4 St 11 E, C 2 Okay so going back to what Student 7
said about um how it kind helps paint
a picture I think that the picture that
it paints is like of nature and how this
place is a very like um is like a place
that’s kind of like enclosed by nature

C, C M, M

and how it says that like there were
spacious coves um river dominated
and it says that um that he was in a
grove of tall walnut trees that shades
one side of the valley

E, E M, M

just like this picture just makes it
makes the uh like the place seem very
like surrounded by nature and helps
for the setting be developed

W, W L, L

6 St 5 C, E 2 I think it like detracts from the story
because although it helps the reader
like imagine what’s happening in the
story it kind of distracts them,

C, C M, M
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and this is like one of the descriptions
he used, he said ”he was tall but ex-
ceedingly lanky with with narrow sol,
with narrow shoulders, long arms, and
legs, hands that dangled a mile out of
his sleeves, feet that may have served
for shovels, and his whole frame was
loosely hung together. His head was
small and flat at the top with huge
ears, large pained glassy eyes and a
long sniped nose so that it looked like
a leather cup perched upon his spin-
dled neck, could tell which way the
wind blew.” And that was just like a
small part of it

E, E M, M

so I think its like by the time he’s done
describing each person you kind of just
forget what’s happening because he
uses like pages long to describe a sin-
gle person so you’re like multiple times
where you have to read before the de-
scription to remember what was go-
ing on. So I feel like if he still like
described the characters it would be
helpful but just not to like the extent
he did

W, W H, H

7 St 6 E, E 6 I agree with Student 5 C, C L, M
because like when he gets to the point
of entering like the Van Tassels house
he starts describing like ”It was one of
those spacious farmhouses, with high-
ridged but lowly sloping roofs, built
in the style handed down from the
first Dutch settlers; the low projecting
eaves forming a piazza along the front,
capable of being closed up in bad
weather. Under this were hung flails,
harness, various utensils of husbandry,
and nets for fishing in the neighboring
river.” It still goes on about like de-
scribing what the Van Tassels house
looks like instead of actually like, like
telling what the story’s more about.

E, E H, H
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8 St 4 Spacious farmhouses

9 St 2 E, C 7 Yeah going off of that, I have, I have a
really long paragraph, it’s really long,
and alright, it’s it’s describing Van
Tassel and I guess it’s supposed to em-
phasize his like wealth because it, it
just it uh keeps going on about how
many birds he has and like and like
how, just how many birds he has

E, W H, H

and I guess that does like emphasize
some a little bit of their characters but
I just didn’t think it was really neces-
sary to add to the story

C, C M, M

10 St 6 E, E 6 I think that kinda like Student ? said
about like all this exposition is neces-
sary for character character develop-
ment but I think he put too much in
and that took away from like the con-
tinuity of the story

C, C H, H

cause as a reader it was difficult to like
follow along with what was happen-
ing. Kinda got lost in all the descrip-
tion.

E, E M, M

So I think it was a bit excessive, but
maybe would have been like adequate
for the time when that’s what they ex-
pected in writing back then.

W, W M, M

11 St 9 C, C 10 I agree with Student 6 but I also think
that the imagery’s important

C, C M, M

because it gives perspective of how uh
how uh he, like the main character
thinks and like how he like thinks like
when he meets a character he thinks
that like their entire physical appear-
ance and like picks them apart of like
what they look like and relates them
to like the stories he’s read.

E, E M, M
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12 St 8 E, E 11 Uh I would agree with Student 9 that
the excessive use of imagery really
helps add to the overall story rather
than to detract from it. Washing-
ton Irving uses imagery to portray his
characters and uh setting more vividly
and to really give it the literature
more like, like uh, it states within a
story such as the general [xx] popula-
tion [xx] which has furnished material
for many a wild story in the regional
shout out of the specters [xx] at all the
country firesides where they didn’t re-
ally have those horsemen–

C, W H, M

13 T I’m just having a hard time under-
standing you student laughter Stu-
dent 8 ”I’m just trying to get through
it” I also wanted to stop and point
out to the people recording this that
they may never hear Student 8’s voice
again Student laughter It’s like the
only time Student 8 speaks student
8 ”You said in the paper it was
an honor” Student laughter So his
name’s not, so I’m sorry it’s [xx]
does anybody know that? [xx] peak
again. We’ll burn these tapes don’t
worry. They won’t save them. I
could, I get the quote but honestly you
were speaking so quickly and mum-
bling Student 8 ”I was trying to get
through, I didn’t want to like, I didn’t
want to, it was a long quote” Alright,
I get the quote now, is that the end
of your thought, or go ahead? Stu-
dent 8 ”Alright, okay, alright” Student
laughter Student ? ”You said it was
anonymous” Student 8 ”I remember
you, I remember using Dutch terms
to get the headless horseman into [xx]
a dark vibe into get you into the devil
[xx]” We’re good you got the quote.
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14 St 1 E, E 12 I would agree with Student 8, I was
going to use the quote that Student
5 said how it described how Crane
was not [xx] to his person and it goes
on for an entire paragraph to describe
how tall and lanky he was, and it says
”one might have mistaken him for the
genius of famine descending upon the
earth, or some scarecrow eloped from
a cornfield.”

E, E M, M

So I think the lengthy use of imagery
is, the purpose of it is to be like very
dramatic in all the descriptions so that
it, the point is really gotten across to
what he looks like and how and like
how to give like the overall feeling of
like I guess like what vibe he gives off
{Student 11 ”Going off, go ahead, oh
you’re not done yet”} and but I would
also agree to something some of the
other people have said that it is very
lengthy

C, W H, H

15 St 11 E, E 14 Going off of what Student 1 was say-
ing about how kind of it like adds dra-
matic effect, I think that the author
put this extensive, um I thought that
Irving put extensive uh, uh imagery in
the story because as like we were talk-
ing about how like this is kind of like
shaping American literature I think
that like the reason for this imagery is
kind of like um like start what Amer-
ican literature kind of like is, just add
to more like qualities of what how like
American literature could be like iden-
tified so I think that like it was like he
did this on purpose cause no one had
ever really like done anything like this,
so he kind of had like a blank slate as
to what he could do and I think that
like the imagery like just shapes it yep
end of point

C, C H, H
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16 St 2 C, E 15 I think that the imagery also detracts
from the story too because it’s so
much imagery and it’s more about the
outside person. It doesn’t really delve
too much into the personality. I mean
obviously we know that uh Ichabod
was kind of shallow but we don’t know
like much more about him we don’t
really know his backstory. It’s more
superficial details about him that we
know rather than like the deep traits
of Ichabod

C, W H, H

17 St 7 C, E 16 I agree with you that like most of
the like imagery deals with like, it
doesn’t delve into like deep thoughts
but doesn’t that like help the readers
like understand like Ichabod’s shallow
character more? So like wouldn’t it
like help the progressive like the pro-
gressiveness of the story?

C, C H, M

18 St 1 C, C 17 I would disagree I think that like
the extensive imagery kind of builds
off the like façade of what like Icha-
bod looks like or like what the house
looks like and it builds the like clas-
sic archetype like for the Van Tassels
that like they’re wealthy and have a
lot of money but then beyond that you
don’t really know a lot about them
and I think like you have to really
think about um like Ichabod’s actions
to like pull out a theme of like him be-
ing like really greedy cause you don’t
really realize, I guess I didn’t really
figure it out until I went back and like
thought about it again.

C, C H, H
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19 T Well I’m still likes, the likes are get-
ting real [xx] Overlapping student talk
So when we look at who’s the pro-
tagonist, Ichabod. Don’t we typically
want to root for the protagonist? Stu-
dents ”Yes” Do we want to root for
Ichabod? Students ”No” Not quite,
not a great guy. So who’s the an-
tagonist? Student ”Ron” Ron, do we
want to root for Ron? Students ”No”
Ehh not particularly, right. One of
the things that also was introduced in
romanticism is there are more more
human characters. They, these are
like real humans with real life flaws
and despite the fact that Ichabod is
our protagonist there’s nothing really
likeable about him. He’s driven by
the desire to accumulate, right? Even
when he describes Katrina, he uses
terms that sort, imagery that revolves
around what? (...) What are the im-
ages are all similar to what, like he
uses what, I’m trying to ask it with-
out, what kind of imagery does he use
when he describes

20 St 9 Says like plump as a partridge

21 T Right, so he’s driven by Student ?
”Food” Food. He describes her using
all these food terms because her dad
owns a farm and again she’s beautiful
and her dad’s rich and this just kind
of is what he’s looking for. But we’ve
got these two characters and were not
really rooting for one or the other, got
it?
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22 St ? E, E 17 I also think that the imagery shows
that since it’s like from Ichabod’s per-
spective it’s like and it’s unreliable in
a sense where it’s like he’s not really
telling us facts but his own opinion of
like his extensive opinion of the im-
agery and also like he Teacher said,
he’s like more interested in his desires.
He wants food, he wants greed, and he
gets that in the farm essentially

C, C H, H

23 St 3 Are we good? Question 1? Alright,
question 2. In what ways did Icha-
bod’s overactive imagination eventu-
ally lead to his downfall?

24 St 8 N, N 24 I feel that he bought [xx] imagina-
tion {Student laughter} I feel like Ich-
abod’s imagination leads to his down-
fall in really two ways. I feel like uh
first his imagination leads to him get-
ting completely carried away

C, E M, M

about the situation with Katrina such
that he thinks his chances are much
better than they really are and that
he really fantasizes about the future
so much that he cannot imagine fail-
ing. This [xx] keeps it from making
the necessary life changes to become
the kind of person that’s suitable for
her.

E, E H, H

Second, I think his great enjoyment of
ghost stories about supernatural [xx]
that he actually believes because of his
strong imagination makes him utterly
susceptible to Brom Bones brain

C, C H, H
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which is stated in the book as that
”when he was returning one night
from the neighboring village of Sing
Sing, he had been overtaken by this
midnight trooper; that he had offered
to race with him for a bowl of punch,
and should have won it too, for Dare-
devil beat the goblin horse all hollow,
but just as they came to the church
bridge, the Hessian bolted, and van-
ished in a flash of fire.” {Overlapping
student and teacher talk} Uh uh the
[xx] Brom Bones only shows Ichabod’s
gullibility

E, E H, H

25 St 10 E, E 24 I think that his like love of scary sto-
ries and like all the magic that was
associated with them. Um when he
was being chased it says that ”All the
stories of ghosts and goblins that he
had heard in the afternoon, now came
crowding upon his recollection.” and
like he became more frightened

E, E H, H

and I think he played into like into his
chasing was more frightened than he
was in the fight path and I think like
his overactive imagination like lead to
his downfall

C, C M, M
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26 T We, was this regarding? I’m going to
pause you. We know, is there actually
a headless horseman? No. Who is the
headless horseman? Students ”Brom”
Brom. We all know that, right? Cause
Student ? did not know that. He
thought, he thought there was a head-
less horseman Students laughing And
I told him someone would have to talk
to him about Santa Clause later Stu-
dents laughing So we get that this is,
and I use the air quote purposefully,
we get that this is a ghost story, right?
It’s supposed to be this tongue and
cheek, humorous, like not laugh out
loud but like humorous ghost story
that we get that it’s not actually. Do
we also, did Katrina have any interest
in Ichabod romantically? No. So then
why act like she had interest in him
romantically? (..) If she didn’t, then
why act like it?

27 St 1 N, N Was she like using him to get lessons
out of him or something?

C, C M, L

28 T No. No, you got the first part right, I
thought you had it and then you threw
the lessons thing in

29 St 2 E, N 27 Was she um using him to make Brom
jealous?

C, C M, M
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30 T Yes! So Brom it says earlier, it says
earlier in the story that Brom was
kind of dragging his feet on you know,
looking to wed Katrina, so Ichabod
goes to town, he’s new, he’s flashy,
she starts to flirt with him, Brom gets
ticked off and expedites the process,
and then at the end of the story they
get married, right? And they live hap-
pily ever after. It’s just like, did Ich-
abod actually die? (..) No. He, this,
this kind of story would not have been
punctuated with a bloody death, like
Brom’s not a murderer, he’s just a big
ole goon. So he embarrassed Ichabod
to get him out of town like whether
or not Ichabod actually knew it was
Brom Bones like that’s kind of am-
biguous, there’s a lot of ambiguity at
the end, but if you look at the vibe
of the story, that’s the word of the
day, vibe. If you look at the feel of
the story ending it in a horrific death
of the protagonist, it just doesn’t fit
with like the mood of what we’ve got
goin on. So alright I wanted to make
sure we were clear about that, alright
go ahead

31 St 7 E, E 25 Alright so I agree with what Student
10 said uh that like Ichabod’s imagi-
nation is really powerful

C, C L, L

cause like cause like he’s so like
extremely superstitious like that he
like begins to believe like {Teacher
”LIKES”} Alright, so uh {student
laughter} he begins to believe legends
that like he hears {Student laughter}
{Teacher ”keep goin”} And like to
the point that he’s like afraid to walk
home more like ride home by himself.

E, E M, M
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32 St 4 E, E 31 Going off of what Student 10 said him
having an overactive imagination of
these stories that he truly believes,
when he was on his way home pass-
ing up this bridge that, this supposed
bridge that Andre was captured, ”he
summoned up, however, all his reso-
lution, gave his horse half a score of
kicks in the ribs, and attempted to
dash briskly across the bridge; but in-
stead of starting forward, the perverse
old animal made a lateral movement,
and ran broadside against the fence.”

E, E H, H

So him being like afraid for his life
because of these imaginative stories
made him like scared and the horse is
scared too, so now he’s fearing more
for his life

C, E H, H

33 St 11 E, E 32 I also think his um ambition, kind of
like his um ego kind of also got the
best of him

C, C M, M

because you know, when he saw like
the Katrina and her dad and like ev-
erything that they had he kind of like
fell, not like fell in love with it, but
like fell in love with the idea of hav-
ing all of that, and the quote where
it says that ” Ichabod fancied all this,
and as he rolled his great green eyes
over the fat meadow-lands,” like just
goes on and on about how that’s ev-
erything that he always wanted and he
just assumed that he could get all this
by um because he was kind of like, he
was very, he was he was respected in
the town to an extent just because he
was intelligent and you know he’s like
a new guy and he has all this knowl-
edge and he can sing and he can teach

E, E H, H
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and I think that the fact that he was
respected in this new little town that
he came to kind of made his ego like
extremely large and he thought that
he could um go in and like have every-
thing but like little did he know that
he was kind of, he was kind of being
like tricked by Brom and he ended up
you know, getting hit with a pump-
kin {Student laughter} and run out of
town and so yeah I think that his am-
bition also played a part along with
his imagination too.

W, C H, H

34 St 9 E, C 33 I agree, I think that um because of
his imagination he tends to live in his
fantasy world instead of reality where
he’s, he’s always like instead of like re-
ally seeing what it is, he starts imag-
ining all this fiction in the real world
and that leads to him being gullible

C, C H, H

when Brom actually hits him with the
pumpkin like Student 11 said and then
he just uh he just leaves town because
of it

E, E M, M

35 St 5 E, N 34 [xx] imagination ran wild. That kind
of like led to his downfall cause he
didn’t really think logically. [xx] when
people see something out of the ordi-
nary they like, we’re at first scared but
then they like pause for a second and
they reason through what it could be
but because of his imagination he au-
tomatically thought it was something
like like supernatural such as a gob-
lin so he became scared for no reason
and he kind of just ran but [xx] his
imagination he would have been able
to realize it was just a prank

C, C H, H
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36 St 1 E, E 33 So I wonder what Student 11 be-
fore said that like he’s so like he’s so
wrapped up in like he wants to have
lots of wealth and women and lots of
food and he, it talks about how he
goes from house to house with his stu-
dents to try to find work to pay off his
like rent in return for like food

E, C H, M

and I think he lives a life of like he’s
always getting like food and things
handed to him and he like thinks like
I’m almost there like I’m living the life
but in reality he doesn’t really have
anything because he’s um kind of like
house hopping from student to stu-
dent, so it seems that like he can’t, he
doesn’t really realize what he’s doing
and he thinks like he’s almost made it
and Katrina will like set him up for
[xx]

C, W H, H

37 St 6 E, E 36 Yeah I agree with that. His imagina-
tion kind of makes him complacent

C, C L, M

because um he always saw like this
idealized version of him and him and
Katrina but uh in the end he never
like took an active step like to actu-
ally make that his idea value, he al-
ways treated the idea as reality and
never saw that he didn’t have a chance
with Katrina because he’s ya know,
he’s like a freeloader and Katrina has
all this money and wealth and uh that
would never happen in real life, so [xx]

E, E H, H

38 St 3 Good, alright cool. Question 3, do
you believe Ichabod comes across as
a sympathetic character and why?
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39 St 10 E, E 37 I think that um he does come across as
a sympathetic character like to an ex-
tent because he does uh have redeem-
ing qualities, like he is uh smart and
bright, he is helpful teaching every-
body, but he also does have his flaws
like his imagination and like how vain
he is, and I think that because he isn’t
painted like a stereotypical hero, or
like a stereotypical protagonist, and
like how it says he’s exceedingly lank,
like he’s not like a strong uh person
but he’s super awkward and he’s a bit
more relatable than just like a super-
hero

C, E H, H

40 St 2 E, E 39 Yeah going off of that, I think he is
a relatable person because of just like
the situation he was put in like that he
wanted something that he didn’t real-
ize what it would take and like that’s
something that everybody has been
through like when they wanted some-
thing but they don’t know like what to
do to actually get that, and so I feel
like people can relate to him that way

C, C H, H

41 St 5 C, C 39 I don’t think he was sympathetic
cause like he just came across as
greedy which made people not really
like him as a character.

C, C M, H

”As Ichabod jogged slowly on his way,
his eye, ever open to every symp-
tom of culinary abundance, and as he
beheld them, soft anticipations stole
over his mind of dainty slapjacks, well
buttered, and garnished with honey
or treacle,” anyways so whenever he
sees the farm he just kind of thinks
about how those animals would bene-
fit him not really about how they were
treated or what will happen to them

E, E H, H

which like shows how greedy he is and
how he only cares about things that
specifically like applied for him

W, W M, M
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42 St 1 E, E 41 I would agree with Student 5 like Stu-
dent 10 you pointed out some of the
points of like he’s really really smart
and he has good like singing and choir
voice and that can make him likeable
but I think at the same time he uses
those qualities as a way to get peo-
ple to give him their charity which I
find rather annoying and I think like
similar to what Student 5 said he’s so
wrapped up in trying to uh find like
his great wealth that he wants that he,
I can’t really have sympathy for him
because he’s so greedy and wrapped
up in like the more material things,
that he’s not, like I don’t think he re-
alizes what he could actually do with
like his um like smarts and choir

C, C H, H

43 St 11 E, C 42 I think that it’s kind of a matter of
like he’s not so much, you don’t re-
ally feel sympathy for him because he
is like not a great dude but you kind
of relate to him almost I think cause
like some people were saying that he’s
kind of like a relatable character just
cause like um he’s more human than
like most heros and you find out cause
like nobody’s perfect and everybody
here knows that like none of us are
perfect and that none of those people
are perfect than I think that his flaws
are just kind of like highlighted, cause
he is a character in a story that Irving
wanted to like highlight his flaws to
make him a little more relatable than
the average protagonist in a story

C, C H, H
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44 St 9 E, E 43 I agree that he is more human but I
don’t think he’s sympathetic because
through his imaginations and him liv-
ing in his fantasy world he comes
across as like very self centered where
he wants, he thinks he has this majes-
tic voice when truly since he’s unreli-
able as a narrator we don’t know if he
really had a good voice, so {Teacher
”Who’s unreliable?”} Or like, his, his
perspective, like where he thinks he
has a majestic voice that he can give
people singing lessons

C, C H, H

45 T I just don’t get the unreliability of
that, that’s just part of the story that
the third person narrator is telling us
Student laughter But I stand by the
rest of my statement

46 St 9 E, N 44 I think he’s self centered and he thinks
that Katrina is like falling in love with
him when in reality she’s just using
him

C, W M, M

47 St 6 E, E 44 Yeah I think that is like ignorance
towards like situation doesn’t really
make him that sympathetic

C, C L, L

cause as the reader you’re just more
irritated by what he’s doing than um
sympathetic towards him because he
doesn’t act to take steps to help him-
self. That, that was irritating to me
as the reader, but he does like draw
a lot of sympathy as a character be-
cause like you said all the school chil-
dren stuff he had a lot of uh he had a
lot of sympathy for their parents and
stuff cause he’d always sing and stuff
so he garnered a lot of sympathy with
the adults

E, E H, H

48 T Student ? close this with something
really super smart. (. . . ) Student ?
close this with something moderately
not dumb
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49 St 2 E, E 46 Um I think Ichabod, okay so what do
you think truly happened to Ichabod
the night after the party, do you think
Irving wants us to think one way or
another. I think going back to like
his imagination that he was just, and
just like the situation in general that
he was just so scared because of the
ghost stories and uh what he heard
and also because he was really upset
that Katrina had rejected him, and
I think those added up together and
that’s what caused him to like not see
that he was [xx] to see this apparition
of the headless horseman and that I
don’t think Irving wants us to think
one way or the other

C, C H, H

because he gives clues that it was
Brom Bones but he also says that like,
he said that Brom Bones would laugh
anytime uh the story was mentioned
and he also said that the old maids
say it was the headless horseman.

E, E H, M

So he does kind of give both sides of
the story [xx]

W, W M, M

By analyzing the confusion matrices between true and predicted labels we can analyze
the behavior of our NLP models. Table 31 shows the confusion matrix for collaboration.

Table 31: Confusion matrix for collaboration labels.

Predictions

New Challenge Extension Agree

Ground truth

New 3 0 0 0

Challenge 0 3 3 0

Extension 3 4 19 0

Agree 0 0 0 0

First, we can observe that there are no ”agree” labels in this particular discussion. This
is not unusual since it is by far the label with least number of occurrences (less than 2%
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frequency in D3 and less than 3% in D4). However, for other discussions which do contain
agreements, we noticed that our collaboration model never predicts this particular label.
Since all the performance metrics we report represent an unweighted average, the low per-
formance on agreements impacts the overall performance considerably. It is not easy to
mitigate this effect since the class imbalance is so high, but we believe future studies can
investigate whether oversampling (or other sampling procedures) can have a positive effect
on performance.

Second, the confusion matrix shows the collaboration model performing much better
on extensions: it misses 7/26 extensions, and 19/22 extensions predicted by the model are
actual extensions. Overall, the trend that emerges indicates that our proposed model is well
equipped for distinguishing between new turns from the remaining ones. On the other hand,
if a turn is related to a prior one, as is the case for extensions and challenges, our model can
struggle in distinguishing between them.

Table 32: Confusion matrix for argumentation labels.

Predictions

Claim Evidence Warrant

Ground truth

Claim 27 3 6

Evidence 1 19 1

Warrant 2 0 5

Table 32 shows the confusion matrix for the argument component classifier. The main
takeaway in this case is that the model is better at distinguishing between evidence and
the remaining two labels (5/13 errors) while there is room for improvement in differentiat-
ing claims from warrants (8/13 errors). A considerable improvement in this direction was
achieved with the context models discussed in Chapter 6. In particular, local context was
beneficial for warrants since it incorporates information on nearby argument components
(recall from Chapter 3 that a warrant requires the existence of claim and evidence).

Lastly, Table 33 represents the confusion matrix for the specificity model. A good indica-
tor of model robustness in this case is the absence of low/high specificity misclassifications (0
for this particular transcript, and a low number in general), which are heavily weighted in our
reported quadratic-weighted kappa metric. Data imbalance is not an issue for datasets D3
and D4 in particular, which results in homogeneous performance across all three specificity
labels. Interestingly, we can see a slight tendency of our model to underpredict specificity:
in 7 cases the predicted value was lower than the actual one, while only in 3 cases the model
predicted a higher value than the ground truth.
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Table 33: Confusion matrix for specificity labels.

Predictions

Low Med High

Ground truth

Low 4 2 0

Med 3 21 1

High 0 4 29
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