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Due to the inception of the big data applications, it is becoming increasingly important to 

manage and analyze large volumes of data. However, it is not always possible to efficiently 

analyze very big chunks of detailed data. Thus, data aggregation techniques emerged as an 

efficient solution for reducing the data size and providing summary of the key information in the 

original data. For example, yearly stock sales are used instead of daily sales to provide a general 

summary of the sales. Data aggregation aims to group raw data elements in order to facilitate the 

assessment of higher-level concepts. However, data aggregation can result in the loss of some 

important details in the original data, which means that the aggregation should be done in a 

creative manner in order to keep the data informative even if there is a loss in some details. In 

some cases, we may have only aggregated versions of the data due to the data collection 

constraints as well as high storage and processing requirements of the big data. In these cases, we 

need to find the relationship between aggregated datasets and original datasets. Data 

disaggregation is one solution for this issue. However, accurate disaggregation is not always 

possible and easy to utilize.  

In this dissertation, we introduce a novel approach to improve the quality of data to be 

more informative without disaggregating the data. We propose information preserving signature 

based preprocessing strategy, as well as an aggregation-based information retrieval architecture 

using signatures. We compensate the loss of details in the raw data by highlighting the most 
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informative parts in the aggregated data. Our approach can be used to assess similarity and 

correspondence between datasets and to link aggregated historical data with most related 

datasets. We extended our approach to be used with time series datasets. We also created hybrid 

signatures to be used at any aggregation level. 
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1.0  INTRODUCTION 

Due to the inception of the big data applications, it is becoming increasingly important to 

manage and analyze large volumes of data. However, it is not always possible to efficiently 

analyze very big chunks of detailed data. Thus, we need to analyze a less detailed version of the 

data, which should be reasonably informative. So, data aggregation techniques emerged as an 

efficient solution for reducing the data size and providing a summary of the key information in 

the original data [1]. Data aggregation aims to group raw data elements in order to facilitate the 

assessment of higher-level concepts. However, data aggregation can result in the loss of some 

important details in the original data, which means that the aggregation should be done in a 

creative manner in order to keep the data informative even if there is a loss in some details. 

Therefore, it can efficiently affect several applications that require data processing, such as 

indexing. In some cases, we may only have aggregated versions of the data due to the data 

collection constraints. In these cases, and in order to process these aggregated data we need to 

disaggregate the data. However, accurate disaggregation is not always possible and easy to 

utilize.  

In our approach, we propose to improve the quality of aggregated datasets by combining 

the raw data and aggregation sustainable data signatures. Our approach is generic and can be 

applied to many domains. 
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More specifically, in this research we develop a scalable approach that aims to 

improve the quality of aggregated data by creating representative data signatures, which 

utilizes specific patterns around data cells.  

This thesis aims to answer the following accompanied research questions: 

Research Question 1: How much information can be preserved in aggregated data and 

how this information can be utilized? 

Research Question 2: How to relate the information at different aggregation levels and 

how to build an efficient retrieval architecture on top of aggregated datasets?  

Research Question 3: How to build an efficient retrieval architecture on the top of 

aggregated time series datasets? 
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2.0  BACKGROUND AND LITERATURE REVIEW 

2.1 DATA AGGREGATION 

Data aggregation techniques emerged as an efficient solution for reducing the size of data and 

providing summary of the key information in the source data. Data aggregation aims to group 

raw data elements in order to facilitate the assessment of higher-level concepts. There are several 

methods for data aggregation [2] , such as simple arithmetic methods [3], which include 

averaging, central-cell, median, nearest neighbor, bilinear, bicubic. All these methods extract a 

value from a n x n window in the original data image as the pixel value in the new image. 

Another way for data aggregation is geo-statistical method [4], which considers the spatial 

properties in the operation of aggregation, including variance-weighted, geo-statistical variance 

estimation, spatial variability-weighted and simulation methods. The transform-based 

aggregation [5] decomposes the original dataset into components with different frequencies, in 

which the low-frequency components together compose a smoothed dataset. Data aggregation 

can result in the loss of some important details in the original data.  

Figure 1 shows Walmart sales dynamics for an anonymous item.  As shown in Figure 

1(a), we can find the most active week(s) during the year. In Figure 1(b), the data are aggregated 

by month. In this figure, we can find that the best months are Feb, April, and December. 

However, we cannot determine the best week in each month. In Figure 1(c) the data are 
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aggregated by quartile. In this figure, we can find that the best quarter is the fourth one that 

includes October, November, and December. However, we cannot determine the best month(s) 

among these months or the best week during the best month. From this example, we can see that 

aggregation can help in finding some features and patterns which are hard to find in the 

individual data values. On the other hand, aggregation reduces the data size. For example, if we 

are representing the data as a table, then the weekly data will be of size 52 X 1, the monthly data 

will be of size 12 X 1, and the quartile data will be of size 4 X 1. 

 

 

               (a)                                                         (b)                                                     (c) 

Figure 1. Sales for Anonymous Item for Anonymous Walmart Store in 2011 

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data 

 

One of the advantages of data aggregation is improving the response time of the queries. 

Therefore, using aggregate data can improve the queries to be executed in a shorter time 

compared to the whole dataset. For example, as shown in Figure 1, to get any sales about a 

certain week, we need to access a dataset of size 4 (using a quartile dataset) while by using the 

whole dataset, we need to access a dataset of size 52. The efficiency improvement can be more 

notable in the large-scale datasets, where the aggregation will result in lower resource 

consumption including memory and CPU. Additionally, it will save the time by minimizing the 

search indices. 

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data
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The loss of information caused by the aggregation can be attenuated using different 

techniques such as max-pooling, low pass filtering and wavelet decomposition.  

Deep learning methodology aims to extract high level features from complex datasets. 

Convolutional neural networks (CNNs) are special type of artificial neural networks, in which 

they learn meaningful features in an adaptive manner [6]. CNN includes both features extraction 

and classification processes that require multiple convolutional and pooling layers to get the 

hierarchical properties of the input data. Max pooling is one of the widely used pooling methods. 

It aims to down sample the input data and reduce its dimensionality. [7] However, max pooling 

is quite simple and doesn’t always provide optimal solution [8].  

Low pass filter is a linear algorithm that is widely used as a preprocessing step in the 

applications of signal processing. It aims to remove the high frequency components of noise, 

which don’t interfere with the signal spectrum [9].  

Wavelet is a multi-stage process that can be used to detect sudden transitions. It captures 

frequency and location information at the same time, which means that it can provide us with 

more details about the dataset that in turn helps to create a representative signature of the dataset 

[10] 

2.2 DATA DISAGGREGATION 

Disaggregating data is one significant approach to reveal patterns that can be masked through 

larger aggregated data. It can help to ensure that resources are spent on the areas where they are 

most needed and can have the biggest impact [11]. Steady‐state edge detection, harmonic 

analysis [12], and transient state [13] are examples of data disaggregating algorithms.  
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Although disaggregated data can be more informative, e.g., to train neural networks, it is 

always challenging to use data disaggregation techniques. For example, it can be hard to detect 

patterns from small disaggregated data, and if we have different data sources, these sources may 

have different definitions or break down of the data, which can result in biased results.  There are 

several methods for disaggregating data, such as the method presented in [14], which performs 

information reconstruction from consecutive and non-overlapping summaries (histograms) by 

maximizing an entropy measure. However, it is not clear how this method can handle overlap or 

missing values. 

Given low frequency timeseries such as annual sales, weekly stock and market index, the 

goal of temporal disaggregation is to produce a high-resolution series [15-17] such as, quarterly 

sales, daily stock market index, while satisfying temporal aggregation constraints, which aim to 

ensure that the sum, average, and the first or the last value of the resulting high frequency time 

series is consistent with the low frequency series. If they are consistent, related series observed at 

the required high frequency can be used to disaggregate the original observations. These series 

are called indicators. However, we should take into consideration the selecting indicators since 

two strongly correlated low frequency time series may not be correlated at a higher frequency 

[18]. Therefore, choosing good indicator series is not a straightforward task. Temporal 

disaggregation methods have been used for the cases of non-overlapping aggregated reports and 

cannot be directly applied. 

One method to find an approximate solution of an under-determined linear system 

corresponding to the task of disaggregation is to apply least squares method (LSQ) and Tikhonov 

regularization [19, 20], by introducing additional constraints such as smoothness in spatial or 

temporal domain to allow the reconstruction to represent some parts of the target data. Although 
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Tikhonov regularization has been widely used in solving problems in various communities, the 

application of Tikhonov regularization has not been addressed in historical data fusion domain 

[21]. 

Another method to recover information from summary data is to use methods of the 

inverse problem theory in order to inject a priori knowledge about the domain, and finally 

transforming the problem into a constrained optimization problem [14]. The method shows that 

for smooth enough distributions, it is possible to have full recovery of information given partial 

sums. Although, this method could handle overlaps and missing values, the method is unable to 

efficiently handle data conflicts. 

H-FUSE is another method that efficiently reconstructs historical counts from possibly 

overlapping aggregated reports [21]. It recovers times sequence from its partial sums by 

formulating it as an optimization problem with various constraints. The method allows the 

injection of domain knowledge such as smoothness and periodicity. 

ARES (Automatic REStoration) is an efficient approach that automatically reconstructs 

and recover historical data from aggregated reports in two phases [22]: (1) estimating the 

sequence of historical counts using domain knowledge; (2) using the estimated sequence to 

derive significant patterns in the target sequence in order to refine the reconstructed time series.  

Given all the previously mentioned methods for data disaggregation, we can find that 

each method has its own limitations. Additionally, the original data can’t be correctly retrieved, 

which makes it hard for the machine learning algorithms to achieve high matching accuracy. In 

our approach, we focus on making the aggregated data to be more informative and have details 

and signature without the need to use any disaggregation method. 
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2.3 IMAGE RETRIEVAL 

We will explore our techniques in the context of two-dimensional data sets, which can be 

considered as images. Currently, there is a tremendous increase in the number of digital images 

that have been uploaded into different archive and online database. Most of the traditional 

method to retrieve relevant images rely on the text-based approaches, which are complex and 

time intensive since they rely on certain captions and metadata. Therefore, it is becoming 

increasingly important to find an efficient technique to retrieve relevant images from certain 

archives or database. Content-based image retrieval (CBIR) and image classifications are 

emerging approaches that aim to bridge the gap between the image feature representation and 

human visual understanding.  

Image classification is the process of finding the most accurate specifications of the 

image that can be further used to classify other images into a definite number of classes [23]. 

Image retrieval methods can be classified into a number of categories [24] including, text based 

image retrieval, content based image retrieval, sketch based image retrieval, query based image 

retrieval, semantic based image retrieval, annotation based image retrieval.  

Text based image retrieval methods depend on adding metadata to the images, such as 

caption, descriptions or keyword, which help in retrieving the image through the use of 

annotation words. However, these methods are very complex and time and resource consuming 

since they require a number of employees to do the manual annotation [25]. In the semantic 

based image retrieval, the semantic gap can be defined as the lack of synchronization between 

the extracted information from the visual data and the interpretation of the same data [26]. 

Sketch based image retrieval algorithms use sketches as an input to the algorithm, in which the 

sketches can be used to retrieve all related images [24].   
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Content Based Image Retrieval (CBIR) is considered as one of the major strategies for 

retrieving and classifying images. CBIR is heavily dependent on the domain of the image [27], 

which can be either narrow domain such as retina, fingerprint or face recognition, or broad 

domain such as internet images. Color, shape and textures are very important features that help 

to define high level semantic in the image retrieval process. Therefore, CBIR depends on 

analyzing these image’s features including, color, size, shape and texture, which provide better 

image indexing and higher accuracy in retrieving the images [28]. There are several color 

features that can be used to retrieving images including [29], co-occurrence matrix, difference 

between pixels of scan pattern and color histogram for k-mean, color covariance matrix, color 

histogram, color moments, and color coherence vector. Texture features represent the shape 

distribution. Additionally, texture representation methods can be categorized into three 

categories [30] including, structural, multi resolution filtering, and statistical methods. To 

identify a certain texture in an image, the image needs to be modeled as a two-dimensional gray 

level variation.   

Several content-based image retrieval (CBIR) algorithms have been developed. Krishna 

et al study [31] provided an image indexing algorithm that utilizes k-mean algorithm. This 

algorithm starts with reading the image and then separating the colors using decorrelation 

stretching. The next step is the conversion of the RGB to L*a*b color space and finally the 

classification of color space under a*b* through the use of the k-means algorithm in order to 

separate objects. Syam et al study [32] provided a genetic algorithm that aims to extract image 

features and thus measure image similarity. The Gabor wavelet transform and HSV color 

histogram in CBIR is an approach that uses both texture feature and color histogram for quick 

and efficient retrieval of relevant images from the image database [33]. In this approach, 
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researchers compute the mean and standard deviation on each color band of the image and sub-

band of different wavelets. In the next step, the standard Wavelet and Gabor wavelet transforms 

are used to decompose the image into sub-bands.  

Authors in [34] developed a new algorithm to retrieve low quality images from generic 

databases. Their method comprises several steps including cluster section, threshold value 

computing, binary images transformation, feature vector extraction, final feature vector, 

comparison of feature vector, and image retrieval. Measuring distances between images is 

another strategy of images classification [35]. Authors in [23] developed an algorithm that is able 

to measure distances between images by transforming each image into sequence of characters 

and then calculate the LZ-complexity and the string distance measure.  

There are several objective image quality metrics that aim to provide some quantitative 

measures to estimate the quality of the image [36]. The mean squared error (MSE) is the simplest 

metric, which can be calculated by averaging the squared intensity differences of distorted and 

reference image pixels, with the related quantity of peak signal-to-noise ratio (PSNR). The 

Structural SIMilarity (SSIM) index is an accepted standard for image quality metrics [37]. SSIM 

is a method that aims to assess the similarity between two images. It also aims to predict the 

quality of the digital image [36]. SSIM takes into consideration the image degradation as an 

important change in the structural information. It also takes into consideration other factors 

including and contrast masking terms and luminance masking.   

In some cases, users need to retrieve images form very large databases or repositories, 

which is considered as a complex process. Therefore, deep learning algorithms can be used to 

expediate the process of image retrieval. The term frequency-inverse document frequency (TF-

IDF) was introduced for content based image retrieval [38].  
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2.4 PERFORMANCE MEASURES  

The performance of classification algorithms can be measured using a number of measures 

including, accuracy, precision, recall and F1 score. In order to define each one of these measures, 

we need to introduce the confusion matrix, true positives, true negatives, false positives, false 

negatives. The confusion matrix can be defined as a table of rows and columns, in which each 

column represents the predicted class and each row represents the actual class. It aims to 

visualize the performance of the classification process [39]. Table 1 shows a confusion matrix 

that includes three classes: cat, dog and horse. In this example, the classification algorithm can 

correctly predict 10 cat images out of 80. On the other hand, it can wrongly predict 50 cat images 

as dog and 20 cat images as horse. True positive (TP) represents the number of correctly 

identified objects [40]. For example, true positives of cat object is 10. True negative (TN) 

represents the number of correctly predicted negative values [40]. For example, true negatives of 

cat object is 94= (9+15+30+40). On the other hand, false positive (FP) represents the incorrect 

positive classification [40]. For example, false positives of cat object is 25=(5+20). False 

negative (FN) represents the number of incorrect negative classification [40].  

 

Table 1. Confusion Matrix 

A
ct

u
al

 C
la

ss
 

Predicted Class 

 Cat Dog Horse 

Cat 10 50 20 

Dog 5 9 15 

Horse 20 30 40 
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As we mentioned earlier, the performance of classification algorithms can be measured 

using a number of measures including, accuracy, precision, recall and F1 score [40]. Accuracy is 

the ratio of correctly classified objects to the total number of objects that need to be classified, 

which equals (TP+TN) / (TP+FP+FN+TN). Precision is the ratio of correctly predicted positive 

classifications to the total predicted positive classifications, which equals (TP) / (TP + FP). 

Recall is the ratio of correct positive classifications to the total number of positives, which equals 

(TP) / (TP+FN). F1- score is calculated using precision and recall, which equals  

2 (Recall x Precision) / (Recall + Precision) = 2TP / (2TP + FP+ FN) 
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3.0  PROPOSED APPROACH 

In this chapter, we describe the main challenges that we propose to tackle in this thesis as well as 

the proposed solutions, the assumptions, and the thesis contribution.  

3.1 OVERVIEW 

As discussed earlier, data can be either in a raw form or aggregated at different levels. Although, 

aggregation allows to speed up processing of big data, it may lead to the problem of missing 

some major details, which in turn can affect the quality of data. For example, in the case of 

indexing, the accuracy of indexing can be affected. On the other hand, raw data include o lot of 

details and not all these details are important. Thus, a major objective of this proposal is to 

improve the quality of data making it more informative by highlighting the most important parts 

of the data regardless of whether the data is raw or aggregated.  

Data aggregation can result in the loss of some important details in the original raw data, 

which in turn can affect the process of indexing these data. In our approach, we could 

compensate the loss of details in the raw data by highlighting the most important features in the 

aggregated data, which helps the indexing process to get higher accuracy. One solution of the 

problem of the loss of some important details is to disaggregate the data. However, as we 

mentioned it in the previous chapter, this is not always efficient and easy to utilize.  
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As mentioned earlier, there are different methods for disaggregation. Each method has its 

own limitations. In our approach, we do not require to disaggregate. Instead, we create a 

signature for the aggregated data to be used instead of the aggregated data.  

METHODOLOGY AND PROPOSED SOLUTIONS 

Next, we address the main challenges that are related to every research question, we also 

describe the finished and unfinished tasks for every research question.  

3.2 RESEARCH QUESTION 1: HOW MUCH INFORMATION CAN BE 

PRESERVED IN AGGREGATED DATA AND HOW THIS INFORMATION CAN BE 

UTILIZED? 

3.2.1 Information preservation in aggregated data 

Although data aggregation is useful for data analysis, data aggregation can lead to the loss of 

some important details. Given a dataset in an aggregated format that may involve some missing 

details based on the degree of the aggregation, our task is to make the aggregated version of the 

data as informative as possible without the need to disaggregate the data. In order to solve this 

challenge, we could detect the changes in the aggregated data and then assess the degree of these 

changes and consider the most significant changes as a signature of the data. The signature 
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design addresses whether this signature will be representative enough for the aggregated data or 

not. 

We developed an approach to highlight the most informative parts of the dataset. 

Additionally, we could estimate how much data quality we can preserve in the aggregated data. 

As a result, we could identify a data object and the relationship between different data objects. 

For example, if we have different aggregated versions of different images, our approach can 

identify each aggregated image and to whom it belongs. The identification is done by comparing 

the signatures of the images. As shown below in Figure 2, we have three different images with 

aggregated versions for each one. It is apparently hard to match the aggregated versions and the 

original ones especially when the aggregation is done at high level. Additionally, bitwise 

comparison is very hard since the original and the aggregated versions are completely different 

from each other, and there is no way to find some clear patterns or features.    

 

 

Figure 2. Images with their aggregated form 

 

We addressed this question by creating a signature that assesses the changes around a 

data cell. More changes around the cell reflect higher importance of the cell. When the 

aggregation includes the whole side (left, right, upper, lower), this will be similar to edge 
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detection in the field of image processing. However, in our work, we divide each side to sub-

areas, then we aggregate each sub-area instead of the whole side as in the edge detection.  

We expect that the signature can be used instead of original aggregated datasets. The 

indexing process using signature space could achieve higher accuracy in retrieving images using 

original space. Meanwhile, using the same method to identify corresponding images from 

aggregated data could not achieve the same level of accuracy. 

In order to create our signature of a dataset m x n, we proposed to use a filter that is m’x 

n’ matrix and its coefficients total that equals to 0. Therefore, the upper bound sign will have an 

opposite sign of the lower bound. Additionally, the left and right bounds will have opposite 

signs. The coefficients of the filter get lower value as the data cell being more far away from the 

central cell in order to give closer cells more weight than remote cells. After that, we calculated 

the net value of horizontal and vertical components using equation 3. We call the resulted dataset 

conflict matrix. Then we normalized the results using the maximum value. So, the output is in 

the range of [0 1]. If we want to be more localized, the matrix will be divided into segments and 

the normalization will be done using the maximum value of each segment. We then use a 

threshold value that is a value between 0 and 1. For example, when we use a threshold value of 

0.6, then everything in the normalized results that is below 0.6 will be changed to 0. Higher 

threshold values mean that we are interested in the most informative parts of the dataset.  

Figure 3 shows an example of 3 x 3 filter and 5 x 5 filter. The coefficients of the 5 x 5 

filter in the x and y directions are shown below the matrix. If the filter is m’ x n’ and the dataset 

is m x n, then the following condition should be satisfied: 

3 ≤ m’ ≤ m  and  3 ≤ n’ ≤ n 
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Figure 3. Filter Coefficients for X and Y respectively 

 

To get a certain cell value in the signature, the convolution filter will be applied on that cell. 

Cell Conflict_X=                     Equation 1 

Cell Conflict_Y=                     Equation 2 

Cell Conflict =                       Equation 3 

Where k, and h are the dimensions of the filter in both directions.  

 

To illustrate our approach, consider the Mandrill image from Figure 4. After applying a 

filter of size 31 x 31 and using a threshold value of 0.5 on each pixel, the resulted matrix will be 

the signature of that dataset as shown in Figure 4.b.   
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Figure 4. a) Complete Mandrill Image b) Mandrill’s Signature 

 

After applying the filter, all cells in the conflict matrix will have the conflicts for each 

cell in the dataset. After that. the matrix will be normalized using the maximum value. Thus, the 

matrix values will be [0 1]. In this case, the strongest conflicted cell(s) will have the value 1. 

The next step is to select the threshold value. This threshold will be in the range [0 1], 

where 0 means that we are selecting the whole conflict matrix.  Selecting the threshold value of 

0.3 means that we are selecting the cells that have a conflict value of 0.3 or more. Figure 6 shows 

different signatures using different thresholds. As shown in Figure 5, higher threshold value 

means less details.  

 

 

Figure 5. Signatures Using Threshold 0.5, 0.6, 0.7, and 0.8 
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If we have a reference dataset and aggregated versions of this reference dataset, then the 

same steps (applying the filter and then selecting a threshold value) will be applied on both the 

reference dataset and aggregated dataset. One question here is, what is the optimal size of the 

filter and the optimal value of the threshold. It is important to determine these values in order to 

minimize the error in the comparison. Our approach is able to detect the best filter size and the 

best threshold value and to do the correct mapping between the reference dataset and the 

aggregated dataset, which is very complicated to be done manually through human eyes. 

After obtaining the optimal filter size and the optimal threshold value, the signature will 

be obtained from the reference image. By using the same filter and threshold value, the 

aggregated signature will be obtained. As the resulted datasets are normalized, the error or the 

difference between the two datasets can be calculated bitwise or segment wise in order to handle 

any transformation in the aggregated image. The error between datasets can be calculated using 

the following steps: 

• Find the relative error using equation 4.  

• Construct the percentile error for the resulted matrix.  

• Find the area under the percentile error curve.  

o The higher the area means the bigger matching between the two images. 

        Equation 4 

where agg_image_value is the pixel value of the aggregated image, and the 

org_image_value is the original pixel value.  
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Figure 6 shows the area under the percentile error curve using different thresholds and the 

bitwise comparison between the reference dataset and the aggregate dataset, where the x axis is 

the mask size and the y axis is the aggregate size. From this figure we can conclude that to get 

good results its recommended to use mask size equals or larger than aggregation size. 

 

 

Figure 6. Area Under Percentile Error Curve Using Segmentation for Comparison 

 

Figure 7 shows the area under the percentile error curve using different thresholds and the 

segmentation for the comparison between the reference dataset and the aggregate dataset, where 

x axis is the filter size, the y axis is the aggregate size. The color reflects the area under the 

percentile error curve, where blue means smaller area and red means larger area. It is clear the 

best results can be obtained using larger mask size and lower threshold. 
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Figure 7. Area Under Percentile Error Curve Using Segmentation for Comparison 

 

In order to select the filter size and threshold, first, we have to provide a balance between 

performance (the computation time and memory size) and the accuracy to be more accurate in 

the matching between datasets. If we are not concerned about the time and resources, we can 

choose a very low threshold such as, 0.1 and large filter size, since this low threshold includes 

fine grain data. If we are concerned about the computation time and memory, then we have to 

select large threshold and, in this case, we have coarser data. As the dataset is m x n and the filter 

is m’ x n’, then the computation cost is O(m*n*m’*n’). 

In general, larger filter size is better than smaller filter size. However, as we increase the 

filter size, the computation time and required memory will be larger. From figure 7 we can 

choose very low thresholds such as, 0.1 and 0.2 for higher accuracy. Large threshold values such 

as 0.7 and 0.8 provides better performance in terms of time and memory. It is also recommended 

to avoid midrange values such as, 0.3, 0.4, and 0.5. The reason is that when we move the 
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threshold from 0.1 to 0.4, more details will be discarded, which affects the comparison between 

the aggregated images and the original images. This means that more zeros will be added for 

both of the conflict matrices that are related to aggregated image and original image. Thus, the 

distribution of relative errors will be changed and more non-zero values will appear. However, as 

we increase to higher threshold values such as 0.8, then more zeros will be added for both of the 

conflict matrices that are related to aggregated images and original image. As most of the values 

are zeros in both sides of the two conflict matrices, then the percentage of zero values of the 

relative error will be increased, but in this case, we take the most conflicting parts (informative 

parts of each image), which means that we increase the possibility of mismatching.   

Figure 8 provides an example with real numbers to perform the comparisons between two 

datasets (original and aggregate version of the same dataset). In this figure, we have a subset of 

the original dataset in the left side and a subset of its corresponding aggregate dataset in the right 

side. We performed the aggregation using the average of each two adjacent cells in each row. We 

then applied our filter to find the conflict matrix for each dataset. We then normalized each 

conflict matrix by its maximum value. After that, we used a threshold value of 0.4 in order to 

filter the results, then we calculated the pair wise relative error and the final step was to build the 

percentile error. 
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Figure 8. Similarity Assessment between two datasets 

 

The previously mentioned filter does not work well when the mean of area to the right of 

each central cell equals to the mean of the left area of the central cell. Even though, the 

distribution of values maybe different in each area (left and right areas). The same limitation 

appears in the case of upper and lower areas. Therefore, we need to treat the two areas as 

different areas even if they have the same mean. Given the examples below, we can notice this 

limitation. Additionally, this limitation can appear when we use weighted mean filter, median, 

maximum, minimum, and Laplacian filter instead of the mean. For example, considering the 

following cases, we can see the limitation of each filter. Using these filters, we cannot always 

discriminate different datasets since we always get the same results as shown in the following 

examples.  

We can see that the distribution of the data around the central cell is different in the two 

datasets (dataset1 and 2) as shown in Figure 9.  
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• By using a convolutional mean filter of size 3x3, the results from the two datasets 

are the same and equal to 2.78 and so we cannot discriminate the two datasets.  

• By using a convolutional maximum filter of size 3x3, the results from the two 

datasets are the same and equal to 6. By using a convolutional minimum filter of 

size 3x3, the results from the two datasets are the same and equal to 1 and so we 

cannot discriminate the two datasets.  

• By using a convolutional median filter of size 3x3 the results from the two 

datasets are the same and equals to 3 and so we cannot discriminate the two 

datasets. 

 

 

Figure 9. Mean Filter and 2 Datasets 

 

• By using a convolutional weighted mean filter of size 3x3, the results from the 

two datasets (dataset 3 and 4) are the same and equal to 3.56 using the following 

weighted 3x3 filter, as shown in Figure 10. 
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Figure 10. Weighted Mean Filter and 2 Datasets 

 

• By using a Laplacian filter of size 3x3, the results from the two datasets (dataset 5 

and 6) are the same and equal to 1 using the weighted 3x3 filter as shown in 

Figure 11 and so we cannot discriminate the two datasets.  

 

Figure 11. Laplacian Filter and 2 Datasets 
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• By using an edge detection filter of size 5x5 to detect the vertical edges, the 

results from the two datasets (dataset 7 and 8) are the same and equal to 0 using 

the following 5x5 filter, as shown in Figure 12 and so we cannot discriminate the 

two datasets.  

 

 

Figure 12. Edge Detection filter and 2 Datasets 

3.2.2 Signature Filter Design 

Given the previously mentioned limitations for the different filters, we need to design a more 

efficient filter that can assign a unique value for the changes around the central cell for each 

different distribution of data around the central cell.  In our approach, we used a scanning filter 

to estimate the changes around each data cell. The filter size is n x m. In our experiments, we 
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used the same values for m and n. This means that the filter is n x n. The filter coefficients have 

different values according to the Euclidean distance from the filter center. The filter has two 

components in the x and y dimensions as shown in figure 13. 

 

 

Figure 13. X and Y coefficients for filter of size 3 x 3 

 

Using this filter, we still may have the limitation of previous filters, so we will divide the 

area around the central cell to up, down, right, and left areas. Then we will divide each area into 

different partitions and aggregate each partition and assign different weights for each partition 

according to the distance between this partition and the central cell.  

We used the equations below to find the final difference in both x and y directions for 

each cell. Table 2 provides a description of the symbols use in each equation.  
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Table 2. Signature sub equations 

Symbol Description 

mqR The weighted average for the q part in the right side of the central cell 

mqL The weighted average for the q part of the left side of the central cell 

mqU The weighted average for the q part of the upper side of the central cell 

mqD The weighted average of the q part of the down side of the central cell 

diffq_x The absolute difference between the right and left weighted average of the q part 

diffq_y the absolute difference between the up and down weighted average of the q part 

G The number of parts to the right or left sides of the central cell 

D The number of parts to up or down sides of the central cell 

Diff_x The average of the differences in the x direction 

Diff_y The average of the differences in the y direction 

Diff(i,j) The net difference around the central cell (i,j) 

Signature(i,j) The relative net differences around the central cell.  

P and Z To control the portions of signature and original respectively. 
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In figure 14, the filter size in both directions is 9, the filter x dimension is in the form of 

(2nx + 1) and y dimension is in the form (2ny + 1). There are four columns in both right and left 

sides of the central cell (the black one in figure 15). Additionally, there are four rows in both top 

and bottom of the central cell. The aggregation level = 2 in both directions (x and y), which 

means that we are aggregating each two adjacent columns in the x direction. It also means that 

we are aggregating each two adjacent rows in the y direction. As shown in figure 15, we have 

four rows above the central cell. The colors reflect the aggregated rows. Rows with numbers 4 

and 5 are aggregated together. Rows with numbers 2 and 3 are also aggregated together. 

Furthermore, the columns with numbers 4 and 5 are aggregated together, as well as columns with 

numbers 2 and 3 are aggregated together. The aggregation is done by taking the weighted 

average. Cells near the central cell have higher weights. We used the Euclidean distance to 

control the weight of each cell.  
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Figure 14. Filter of Size 9 x 9 in both X and Y Directions 

 

In our approach, we depend on the symmetry, i.e., the left side and the right side of the 

central cell have the same size, and on the distance to the central cell. The blue parts in the figure 

16 have the same size and the same distance to the central cell. This is also applied to the top and 

bottom sides. To estimate the changes around the central cell in the x direction, we compare the 

difference between left and right sides. In the following example, we compare the aggregated 

columns (4,5) with the aggregated columns (7, 8) as shown in figure 15. We also compare the 

aggregated columns (2,3) with the aggregated columns (9, 10). Therefore, we have two results of 

the comparisons in the x direction (diff1_x and diff2_x). On the other hand, to estimate the 

changes around the central cell in the y direction, we compare the difference between the top and 

bottom sides. In this example, we compare the aggregated rows (4,5) with the aggregated rows 

(7,8). We also compare the aggregated rows (2,3) with the aggregated rows (9,10), and thus, we 

have two results of the comparisons in the y direction (diff1_y and diff2_y).  
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Figure 15 provides another detailed example that shows a part of a dataset with a 

scanning filter of size 7 X 7. The scanning filter has two dimensions. The aggregation level is 1. 

The x dimension is in the form (2nx + 1) and the y dimension is in the form (2ny +1). Therefore, 

in the example shown in figure 15, nx=3 means that there are three columns to the right of the 

central cell and three columns to the left. Additionally, ny=3 means that there are three rows 

above the central cell and three rows below the central cell.  

 



 32 

 

Figure 15. Filter of Size 7 x 7 in Both X and Y Directions 

 

3.2.3 Experimental Study: Objects Comparison Using Signatures: 

In order to show the effectiveness of our signature we used images (Mandrill, Laura and Tipper). 

We created different aggregated versions for each reference (original image), then we used our 

signature with different filter sizes such as 10, 16, and 61. Tables 3-6 show the total relative error 

between each reference image and the aggregated version. For example, aggregation 16 means 

that we need to aggregate the first 16 cells in the row and assign the mean value to all the 16 

cells, and then aggregate the second 16 cells (starting from cell 17 to cell 32) and repeat this 

process for all cells in each row. The values shown in the tables below represent the difference 

between the area under the curve for the relative error (when all error values equal zeros) and the 

area under the curve as shown in Figure 16. When the difference converges to zero, then the two 

datasets that we want to compare become close to each other (belongs to the same object).  
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                                        (a)                                                                                               (b) 

Figure 16. Percentile error when all errors=0 and when errors have non-zero values 

 

From Figure 16, we can notice the area of the white region equals difference between the 

area under the curve when all values of errors and the area under the curve when errors have 

non-zero values. The values in tables 3, 4, and 5 represent the area of white region in Figure 16. 

As this value converge to zero it means the percentage of errors with value zero is higher and 

then the two objects, we are comparing are closer to each other. 

For example, as shown in Table 5, when we compare an aggregated version of Mandrill 

dataset with an original version of Mandrill, then the difference is 29.1. however, the difference 

between the aggregated version of Mandrill and the original version of Laura and Tipper is 47.05 

and 94.81 respectively. The same thing applies to tables 3, 4, 5 and 6. The best results can be 

achieved when the filter size is greater than the aggregate level as shown in table 5.  
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Table 3. Matching relative errors for aggregate level= 16, Filter= 16 

 Original 

Aggregated Mandrill Laura Tipper 

Mandrill 56.85 83.30 72.73 

Laura 80.67 65.68 71.04 

Tipper 72.8 67.0 61.06 

 

 

Table 4. Matching relative errors for aggregate level = 32, Filter= 10 

 Original 

Aggregated Mandrill Laura Tipper 

Mandrill 88.91 87.94 90.72 

Laura 92.73 86.62 92.61 

Tipper 95.60 95.17 45.61 

 

 

Table 5. Matching relative errors for aggregate level = 12, Filter= 61 

 Original 

Aggregated Mandrill Laura Tipper 

Mandrill 29.1 47.05 94.81 

Laura 81.21 25.71 93.39 

Tipper 84.25 78.83 29.13 
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Table 6. Matching relative errors for aggregate level = 60, Filter= 61 

 Original 

Aggregated Mandrill Laura Tipper 

Mandrill 48.14 66.54 93.55 

Laura 93.87 34.81 84.30 

Tipper 62.4 61.30 57.34 

 

 

From the above tables, we can conclude that more accurate results can be obtained when 

the filter size is greater than the aggregation level. For example, when the filter size is 61 and the 

aggregate level is 12, then the diagonal will contain the smallest matching error values as 

compared to the other values and the variance will be high.   

In the next experiment, we compared six images (primarily related to three persons in 

different poses). Table 7 shows results of comparison using our approach. L1 refers to person 1 

who looks to the left. R1 refers to person 1 who looks to the right, and so on as shown in Figure 

17. The comparison was done using the difference between the area under the curve for each 

image. Therefore, minimum value means higher similarity between two datasets (images). The 

results show that the comparison between L1 and R1 is the minimum difference value when L1 

is compared with R2 and R3. Additionally, the comparison between L2 and R2 is the minimum 

difference value when L2 is compared with R1 and R3, and the same thing applies to L3. Table 8 

shows results of comparison using original dataset (images). The comparison between L1 and R1 

is the maximum value of comparison. The comparison between L1 and R3 is the minimum value 

of comparison, which means that L1 is highly similar to R3, instead of R1. The same thing 
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applies to L2 and L3. Thus, we can conclude that our approach can transform the data to be more 

informative and thus get higher accuracy of comparison between datasets.  

 

 

Figure 17. Three Different Persons with Different Poses 

 

Table 7. Differences between images using our signature 

 

 

Table 8. Differences between images using original version 
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Figure 18 shows the area under the curve for L1 and R2 respectively using our approach. 

In order to find the area under the curve, we normalized the dataset through the division by the 

maximum value in the dataset. Therefore, the values of the dataset will be between 0 and 1. Then 

we divided this range using a step value such as 0.001 and thus the x axis represents 1000 points 

such as, 0.001, 0.002, 0.003 and so on. The y axis represents the count of all values that are less 

than or equal the x value. Y (0.002) = count of all data values in the normalized dataset that 

equal to 0.002 or less.  

 

 

Figure 18. Area Under Curve for L1 and R2 Respectively Using Our Approach 

 

From Figure 18, there is a noticeable difference in the area under the curve for L1 and 

R2. However, in Figure 19, we can see that using the original data to calculate the area under the 

curve does not provide a noticeable difference in the area under the curve for L1 and R2.  
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Figure 19. Area Under Curve for L1 and R2 Respectively Using Original Datasets 

 

For the previous experiments we can notice the importance of our signature in 

distinguishing different objects as compared to the use of the original data only. 

Finally, and based on our experimental study, we observed that the signature can preserve 

the information in the aggregated dataset and thus make it more informative. 

3.3 RESEARCH QUESTION 2: HOW TO RELATE THE INFORMATION AT 

DIFFERENT AGGREGATION LEVELS AND HOW TO BUILD AN EFFICIENT 

RETRIEVAL ARCHITECTURE FOR AGGREGATED DATASETS? 

3.3.1 Aggregated Information Retrieval Approach (sigMatch) 

After creating our signature, we need to explore the efficiency of this signature in retrieving and 

indexing aggregated images using different aggregation levels. For this purpose, we built an 
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architecture of the aggregated information retrieval approach using signature space and original 

space. We are calling this approach SigMatch. 

Given a raw dataset that is rich in details and a repository of aggregated datasets that 

lacks some details, what is the relationship between the detailed dataset and each dataset in the 

repository? Comparing detailed dataset and aggregated dataset is challenging and will not 

provide accurate results. In order to solve this challenge, we could develop a retrieval approach 

that is based on the signature space instead of the original space. Since we can highlight the most 

informative parts in each dataset using the signature space, we can reduce the distance between 

the detailed dataset and the corresponding aggregated dataset, which in turn improves the 

retrieval process. We tested our approach using different detailed datasets and aggregated 

datasets. The result showed a considerable improvement in the accuracy of indexing process.  

We addressed this research question by developing an aggregated information retrieval 

approach using the signature as mentioned earlier in research question 1.  As shown in Figure 20, 

we have an aggregated repository of different levels of aggregation and we also have detailed 

images in the left side, we need to relate each detailed image with its corresponding image(s) in 

the aggregated repository. This object comparison task can be done in two ways (as shown in 

Figure 21): (1) using original data and aggregated data only or (2) using the signatures of 

detailed images and aggregated images in the repository. In the first way, each image in the set 

of query images will be compared with each image in the images repository and thus there will 

be an accuracy array for each image in the query images. Accuracy array of index i includes 

multiple results of comparing image i with repository images. The process of comparing will be 

applied for all other images in the set of query images. In the second way, we used signature of 

images instead of original images. So, the accuracy array of index i includes multiple results of 
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comparing signature of image i with signatures of the images in the repository. The comparing is 

done using structural similarity index measure (SSIM) since it is an improvement of the 

traditional methods such as mean squared error (MSE) and peak signal to noise ratio (PSNR) 

[41].  

 

 

Figure 20: Example of Aggregated Repository 
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Figure 21: Object Comparisons Approaches 

 

We tested our approach using the CIFAR-10 dataset [42] that consists of 60000 32x32 

colored images and divided into 10 classes with 6000 images per class as shown in Figure 22. 

We created an aggregated repository of this dataset, the aggregation was done at different levels 

such as, 2, 4, 6, 8, and 10. The aggregation level represents the number of the adjacent cells that 

are aggregated together. For example, aggregation level of 4 indicates that we are aggregating 

each adjacent 4 cells. This means that cells of index 1,2,3 and 4 are aggregated together and cells 

of index 5, 6, 7 and 8 are aggregated together. In our experiment, we created a dataset that 

consists of 5 categories and each category has 500 images. In this experiment, we assessed the 

similarity or the distance between each image and the corresponding image in the aggregated 

repository using the original and signature space. 
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Figure 22: CIFAR-10 Sample Images 

Source: https://becominghuman.ai/training-mxnet-part-2-cifar-10-c7b0b729c33c 

 

Figure 23 shows how we measure the distances between original image and different 

aggregated versions of the image in the original and signature spaces. We created a signature for 

each original and aggregated image. We could measure the distance between an image and 

aggregated image using any aggregation level through the measure of distance between original 

and the aggregated image, or through the measure of distance between the signature of the 

original image and the signature of the aggregated image.  

https://becominghuman.ai/training-mxnet-part-2-cifar-10-c7b0b729c33c
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Figure 23. Distances in Original Space and Signature Space 

 

Here: 

 d1 is the distance between the original image and aggregated form at level 2 

 d2 is the distance between the original image and aggregated form at level 4 

 s1 is the distance between the signature of the original image and the signature of the  

          aggregated form at level 2 

 s2 is the distance between the signature of the original image and the signature of the  

          aggregated form at level 4. 

The results of comparison are shown in Figure 24, we observe that the average of 

distances using signatures is much smaller than the average of distances using original. This 

means that our approach can detect the related images using signatures more precisely than using 

original images and aggregated images.   
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Figure 24. Distance Between Original and Aggregated Images in Original Space and Signature Space 

 

The percentile of the distances using original and signatures is shown in Figure 25.  As 

shown in the figure, we can see that the area under the curve can be used to reflect the 

distribution of distances. It is clear that larger area under the curve indicates smaller distances. It 

is also clear that the area the under curve for the signature curve is larger than the area under the 

curve for the original curve. This means that the distances using signature is smaller than 

distances using original. 
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Figure 25. Percentile of Distances for Original and Signature 

 

We repeated this procedure using different aggregation levels including, 4,6,8, and 10. 

Figure 26 shows the area under the curve. As shown in this figure, the area under the curve for 

each aggregation level using signature space is greater than the area under the curve using 

original space. The average of difference between the two areas under the curve using originals 

and signatures equals 0.3. 
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Figure 26. Area Under the Curve- Same Category 

 

After that, we performed the comparison between different categories as shown in table 

9. In this case, each image is not compared with the corresponding aggregated image. For 

example, the original airplane image is compared with aggregated frog image and the original 

horse image is compared with aggregated truck image. 

 

Table 9. Categories for Comparison 

Original Category Aggregated Category 

Airplane Frog 

Cat Airplane 

Frog Cat 

Horse Truck 

Truck Horse 
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Figure 27 shows the area under the curve for distances using original space and signature 

space within different categories. In this figure, we can see that there is no big difference 

between the distances using original space and signature space. The average of difference 

between the two areas under the curve using originals and signatures equals 0.15.  

 

 

Figure 27. Area Under the Curve- Different Categories 

 

Figure 28 shows the area under the curve for the range between similarity and non-

similarity areas under the curve. Large difference indicates more precise decision can be done. 

Our approach provides a wider range, which means more accurate decision in comparing two 

objects.  
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Figure 28. Area Under the Curve for the Range Between Similarity and Non-similarity 

 

It is clear that for all aggregation levels, the range between similarity region and non-

similarity region is wider in the case of signature than the range in the case of original. The 

decision regions are shown in figure 29. When the range is narrow as in the original, the decision 

of similarity and non-similarity will be more difficult, and the error rate will increase. 

 

 

Figure 29. Similarity and Non-Similarity Regions 
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3.3.2 Performance of Signature Based Retrieval 

In this experiment, we looked for the most corresponding image(s) from the aggregated 

repository. We executed a query as shown below:  

Query: Given an image A, retrieve the top k corresponding images from the aggregated 

repository. 

 

Figure 30 shows different aggregated datasets and original datasets. In this experiment, 

for each image in the original dataset, the corresponding image(s) should be retrieved for the 

corresponding aggregated data repository. We used two methods for retrieving the corresponding 

images from the aggregated repositories including, using original space and using signature 

space. In the signature space method, we create a signature for the original and each object in the 

aggregated repository.  

 

 

Figure 30. Retrieval from Aggregated Repository 

 

In the first method of retrieval, we perform the retrieval from the aggregated repository. 

In the second method, we create a signature for each object or image in the aggregated 
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repository. In both methods, we use the structural similarity index measure (SSIM) to measure 

the similarity between any two images. We then measure the TP, FP, and Precession for the 

retrieval process using original and signatures. The net TP, FP, and Precision for N images are 

calculated using the following equations: 

TP=mean (TP1, TP2, TP3, . . . ,TPn) 

FP=mean (FP1, FP2, FP3, . . . ,FPn) 

Precision=mean (P1, P2, P3, . . . ,Pn) 

Figure 31 shows the average TP using different top K, where TPi equals 1 when the SSIM of the 

image and the aggregated image is among the Top K results. We can notice that the average of 

TP using signatures is greater than the average of TP using originals for all aggregation levels. 

 

 

Figure 31. Average of True Positive Values 
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The average of FP using different aggregation levels are shown in figure 32. We can 

notice that as we increase the value of K the average of FP increases also we can notice that if we 

want to be more precise then we have to set K=1 and in this case the average of FP using 

signatures is less than the average of FP using originals. 

 

 

Figure 32. Average of False Positive Values 

 

The average of precision values is shown in figure 33. We can notice that the average of 

precision using signatures is always greater than the average of precision using originals and as 

we increase the value of K, the average of precision goes down. 
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Figure 33. Average of Precision Values 

 

Figure 34 shows the average of true positive values for different aggregation levels for 

multiple top K values. When we compare an image with its corresponding aggregated image and 

in order to determine TP, the similarity value of comparing the image with the aggregated image 

should be within the top k largest values of similarities. As we increase the k values, the TP rate 

will be increased, and the FP rate will be increased too. To be more accurate, we need to set k to 

be 1. This means that the similarity of comparing an image with the most corresponding one of 

the aggregated images should be the largest value of similarity than the value of similarity of 

comparing an image with all other non-corresponding images. Through the use of signature, the 

average of TP values is always higher than the average of TP values using original images and 

aggregated images.  
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Figure 34. Average of True Positive Values for Different Aggregation Levels 

 

Figure 35 shows the average of FP values for different aggregation levels. It is clear that 

for most of the aggregation levels and through the use of signature, the average of FP values is 

always less than the average of FP values using original images and aggregated images.  

 

 

Figure 35. Average of False Positive Values for Different Aggregation Levels 

 

Figure 36 shows the average of precision values for different aggregation levels. For all 

the aggregation levels and through the use of signature, the average of precision values is always 

higher than the average of precision values using original images and aggregated images.  
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Figure 36. Average of Precision Values for Different Aggregation Levels 

 

Figure 37 shows the area under the curve for TP, FP and precision values for different 

aggregation levels. For each aggregation level, we took the value of TP, FP and precision for 

different top k level. For example, to get the area under the curve for TP at aggregation level 

equals 2, we took the TP values at aggregation level 2 for top k=1, top k=2…top k=10, then we 

built the percentile curve and then we built the area under the curve. As shown in the figure, the 

signature space performance is better than the original space. The TP and precision values are 

better than original. 
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Figure 37. Area Under the Curve for TP, FP, and Precision 

 

Figure 38 shows the area under the curve for TP, FP and precision values for different top 

k values. For each top k value, we took the value of TP, FP and precision for different 

aggregation levels. For example, to get the area under the curve for TP at top k=1, we took the 

TP values at top k=1 for aggregation level=2, aggregation level=3… aggregation level=10, then 

we built the percentile curve and then we built the area under the curve. As shown in the figure, 

it is clear that the signature space performance is better than the original space. The TP and 

precision values are better than original. We provide the area under the curve for different top k 

values. However, the most important case is when top k=1 and in this case the signature achieves 

higher top TP rate, lower FP rate and higher precision rate as compared to the original.  

 

 



 56 

 

Figure 38. Area Under the Curve for Different Top K Values 

 

3.3.3 Comparing with Related Approaches 

After we designed our aggregation sustainable signatures and proved that it outperforms the 

original data space, then we need to compare it with other related methods including, max-

pooling, low pass filtering and Haar wavelet. Max-pooling is utilized in CNN and helps in 

extracting low level features such as points and edges. It can be used to reduce dimensionality of 

the dataset. For example, 16 x 16 dataset can be reduced into 8 x 8 dataset through the use of 2 x 

2 max-pool. On the other hand, low pass filtering can be considered as the bases of most 

smoothing methods. It deals with frequencies and preserves the frequencies that are below the 



 57 

cut-off frequency. It also attenuates frequencies that are higher than the cut-off frequency. Haar 

wavelet is a multi-stage process that deals with frequency and location of the dataset. 

In the following experiment, we used a digit dataset that contains 10 classes (0 to 9) and 

each class contains 250 images. So, the aggregated repository contains 2500 images at each 

aggregation level. Our task was to index 100 images to the corresponding images from the 

repository at each aggregation level. The results of TPs, FPs and precisions are shown in figures 

39, 40 and 41 respectively. From Figure 39, we see that our signature is good at all aggregation 

levels. Additionally, our signature is the best at high aggregation levels such as 12, 14, 16, 18 

and 20. On the other hand, our signature has low rate of false positives as shown in figure 40, 

especially at higher levels such as 12, 14, 16, 18 and 20. The same behavior applies to the 

precision since our signature is good at all aggregation level and it is the best at higher 

aggregation levels as shown in Figure 41.  

 

 

Figure 39. Average of TPs for Multiple Signatures 
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Figure 40. Average of FPs for Multiple Signatures 

 

 

Figure 41. Average of Precisions for Multiple Signatures 

 

Apparently, there is a diversity in the performance of the signatures. There are some 

signatures are good for fine granularity and our signature is good for high granularity. We 
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address this diversity by developing hybrid signatures that combine our signature with other 

signatures. Therefore, we take the advantage of our signature at high levels of aggregation and 

the advantage of other signatures at low levels of aggregation.  

3.3.4 Hybrid Signatures 

The aim of hybrid signatures is to find a signature that is good on average, which means that it is 

good at low and high aggregation levels but not the best one as shown in Figure 42. This can be 

done through the development of hybrid signatures, which combine our signature with other 

signatures such as max-pooling, low pass filtering and Haar wavelet.  

 

 

Figure 42. Expected Hybrid Signature Performance 

 

As shown in Figure 43, there are different strategies to combine multiple signatures and 

to create a hybrid one. For example, we can create the aggregation sustainable data signature 
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(ASDS) of the original and then find the max-pooling for the resulted signature. another strategy 

is to find the max-pooling of original and then find the ASDS for the resulted signature. the same 

thing applies for other methods as shown in Figure 43. Therefore, we have 6 hybrid signatures, 

including Sig of Max, Max of Sig, Sig of LPF, LPF of Sig, Sig of Wav and Wav of Sig.  

 

 

 

Figure 43. Hybrid Signature Design 

 

In order to select the best strategy for creating the hybrid signature, we need to choose of 

the two hybrid signatures within each group. For example, we need to choose Sig of Max or Max 

of Sig. We conducted an experiment for indexing and the results are shown in Figure 44.  
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Figure 44. Hybrid Signatures Performance 

 

From Figure 44, we can conclude that the best hybrid signatures are: Sig of Max, Sig of 

LPF and Wav of Sig. We extended the previous experiment of indexing to include the hybrid 

signatures and the results of TPs, FPs and Precisions are shown in Figures 45, 46 and 47 

respectively. from these figures, we can see that Sig of LPF is good on average and this means 

that it is good at low and high aggregation levels. Additionally, we can see that Sig of Max can 

be used at low and high aggregation levels.  
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Figure 45. Average of TPs for Multiple Signatures with Hybrid Signatures 

 

 

Figure 46. Average of FPs for Multiple Signatures with Hybrid Signatures 
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Figure 47. Average of Precisions for Multiple Signatures with Hybrid Signatures 

 

Figure 48 shows the results of exploring TPs, FPs and Precisions in different ranges of 

aggregation. We started with particular ranges and then we used wider ranges until we reach the 

final general range, which includes all aggregation levels from low to high as shown in the 

bottom of Figure 48. The first row in Figure 48 shows that for fine granularities such as 2, 4, 6 

and 8, the best signatures are original, max-pooling, low pass filter and wavelet respectively. 

However, our signature is the best for all high aggregation levels such as 12, 14, 16, 18 and 20, 

which are the most challenging ones. For this reason, our signature could achieve good 

performance. The last row in Figure 48 shows TPs rate, FP rates, and precisions for all 

signatures. We can see that our signature has the highest rate of TP, lowest rate of FP and highest 

rate of precisions. Our signature’s performance is also extremely far away from all other 

signatures and the heat maps colors prove this performance.  
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Figure 48. Performance Measures for Multiple Signatures 
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Figure 49 shows the results of exploring TPs, FPs and Precisions in different ranges of 

aggregation for all signatures including hybrid signatures. We started with particular ranges and 

then we used wider ranges until we reach the final general range, which includes all aggregation 

levels from low to high as shown in the bottom of Figure 49. The first row in Figure 49 shows 

that for fine granularities such as 2, 4, 6 and 8, the best signatures are original, max-pooling, low 

pass filter and Sig of Max-pooling respectively. The second row in Figure 49 shows the results 

for wider ranges and we can notice that Wav of Sig is good for fine granularities. However, our 

signature is the best for all high aggregation levels such as 12, 14, 16, 18 and 20, which are the 

most challenging ones. For this reason, our signature could achieve good performance. The last 

row in Figure 49 shows TPs rate, FPs rate, and precisions rate for all signatures. We can see that 

our signature has the highest rate of TP, lowest rate of FP and highest rate of precisions. Our 

signature’s performance is also extremely far away from all other signatures and the heat maps 

colors prove this performance. 
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Figure 49. Performance Measures for Multiple Signatures with Hybrid Signatures 
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Finally, we compared our signature with related approaches, including max-pooling, low 

pass filtering and haar wavelet and we observed the efficiency of our approach SigMatch in 

retrieving and indexing aggregated images using different aggregation levels since it could 

achieve higher accuracy in retrieving related aggregated images. We also created hybrid 

signatures that combine our signature with other signatures. These hybrid signatures are good on 

average and this means that they are good in all aggregation levels including low and high 

aggregation levels.  

3.3.5 Practitioner Guide 

Given a detailed image, which needs to be indexed to related images in an aggregated repository 

of images, then we need to choose the best approach for indexing based on the aggregation 

level(s) of the repository images. The approaches of indexing include original, max-pooling, low 

pass filtering, wavelet and hybrid signatures (sig of max, sig of LPF, and wav of sig). Our 

recommendation is to use the following rules in order to select the best indexing method: 

• If the aggregation level is very low such as 2 or 4, then it is good to use either 

original or max-pooling. 

• If the aggregation level is low such as 6 or 8, then we recommend to use LPF, Sig 

of Max and Wav of Sig. 

• If the aggregation level is high such as 10 or 12, then we recommend to use our 

basic signature, LPF or wavelet. 

• If the aggregation level is very high such as 14, 16 or more, then we recommend 

to use our basic signature. 
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• If the aggregation level is unknown, then we recommend to use our basic 

signature or the hybrid signatures (Sig of Max and Sig of LPF). 

3.4 RESEARCH QUESTION 3: HOW TO BUILD AN EFFICIENT RETRIEVAL 

ARCHITECTURE FOR AGGREGATED TIME SERIES? 

Nowadays, we have a lot of applications that explore time series of different kinds. Those 

time series are blindfold, large scale and mission critical, such as economical time series, social 

time series and medical time series. In this research question, we need to extend the aggregation 

sustainable signature-based approach developed in research question 2 to time series datasets. 

We explored how we can process and retrieve aggregated time series. Therefore, we considered 

high frequency time series generated from the dataset in the aggregated repository. Also, if there 

is a big aggregated timeseries dataset, then how we can relate a certain part of this big aggregated 

timeseries with a detailed timeseries dataset. 

Time series dataset is represented as data points within successive times as shown in 

Figure 50. Time series data originally emerge from observations that represent evolution of some 

phenomena over time [43], which allows time series data to provide valuable information about 

the relationship and dependency between successive observations. Therefore, time series can be 

widely used to represent trends and fluctuations in different fields such as, finance, weather, 

astronomical observations and medical observations like blood pressure and body temperature. 

Time series data are most commonly visualized through line graphs.  
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Figure 50. Time Series Example 

 

Figures 51 and 52 show examples of intensive and sparse time series datasets. In Figure 

51, we can see the hourly temperatures of a patient within one year and there are 8760 data 

points. However, the monthly body weight of the same patient is shown in Figure 52 and there 

are 12 data points. Therefore, by comparing these time series datasets, we can notice the 

difference between intensive and sparse time series datasets. The intensive time series dataset 

means high frequency dataset, which implies that the data are collected at a fine scale. Sparse 

time series dataset means low frequency dataset, which implies that the data are collected at a 

large scale. 
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Figure 51. Intensive Time Series Example 

 

 

Figure 52. Sparse Time Series Example 

 

There are several measurements to assess the similarity between time series datasets 

including, Euclidean distance, time series normalization [44], transformation rules [45], dynamic 

time warping [46], and longest common subsequence [47]. 
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In our work, we used low pass filter [48]. The low pass filter can pass low frequencies 

and block the high frequencies. Figure 53 shows an example of low pass filter using different 

cut-off frequencies. From Figure 53, we can notice that decreasing the cut-off frequency will 

result in blocking more higher frequencies. On the other hand, increasing the cut-off frequency 

will result in passing more frequencies since these frequencies will be less than the cut-off 

frequency.  

 

Figure 53. Example of Low Pass Filter 

 

As shown in Figure 54, we assessed the similarity between time series datasets using four 

different paths including: 

1. Compare the two time series datasets (T1 and T2) using a distance measure (path 

P1). 
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2. Compare the two signatures (Sig1 and Sig2) of the two time series datasets using 

a distance measure (path P2). 

3. Compare the two transformed time series datasets (TSF1 and TSF2) using a 

distance measure (path P3). 

4. Compare the two hybrid signatures of the transformed time series datasets 

(TSF1_Sig and TSF2_sig) using a distance measure (path P4).  

The distance measure can be different based on the properties of the time series dataset. 

For example, the transformed time series dataset will be different than the original time series 

dataset, and therefore the distance measure will be different.  

 

 

Figure 54. Time Series Comparison Approaches 

 

In our work, when we have two different (in size) time series datasets, we use the 

dynamic time wrapping measure as a measurement to assess the similarity between time series 
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datasets. As an example of time series dataset to be compared is the monthly stock sales with 

daily stock sales. In this case, we have a raw dataset and aggregated time series dataset. Another 

example to compare is the daily temperature dataset with historical datasets from previous years.  

1. If we have big datasets, we use a sliding window technique and treat each window 

as a sperate time series dataset and follow the paths as shown in Figure 42. 

2. Rank the results in a descending order.  

3. Get top K results. 

We compared our proposed approach with advanced time series processing techniques 

such as max-pooling, low pass filtering and wavelets decomposition [49]. Finally, we developed 

a strategy to process and utilize aggregated data using aggregation sustainable signatures.  

3.4.1 Signature Design  

We extended the aggregation sustainable signature that we created in research question 2 to time 

series datasets. As shown in Figure 55, the filter is one dimension, we changed the filter to be 

divided into 3 parts instead of 2 parts, including left part, central part and right part. the left and 

right parts have the same size. The size of the central part can be in the form of (2x + 1), where x 

> 1.  

 

 

Figure 55. Signature Design for Time Series 
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The signature can be created using the following equations: 

 

Where n is the size of the central part, z is the size of the left and right parts.  

In order to create a signature for a time series dataset, this scanning filter needs to be 

applied on each cell of the dataset. The black cell in the center of the filter will be applied to the 

time series data cell (m(i)).  

3.4.2 Experimental Study 

One example of time series dataset is EEG dataset, in which Each column (attribute) represents a 

time series dataset. An EEG, or Electroencephalogram, is a test that records the electrical signals 

of the brain using small metal discs (electrodes) that are attached to the scalp [44]. The brain 

cells communicate with each other using electrical impulses, which are always working, even if 

the person is asleep. The brain activity will show up on an EEG reading as wavy lines, which is a 

snapshot in time of the electrical activity in your brain as shown in Figure 56. 
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Figure 56. EEG Brain Data 

http://sipl.eelabs.technion.ac.il/projects/estimating-brain-activation-patterns-from-eeg-data/ 

 

Wavy lines will be written in CSV format. Figure 57 provides an example of EEG 

dataset. Each patient has around 6000 attributes, which are recorded every second. The size of 

CSV files is up to 4 GB and every patient typically has ~10 files with an overall size of about 

~10 TB.  

 

 

Figure 57. Example of EEG Dataset 

http://sipl.eelabs.technion.ac.il/projects/estimating-brain-activation-patterns-from-eeg-data/
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The EEG data can be at very high rate and this means that there is a huge amount of data 

by the time. In our experiment, there are 26 channels. If the reading is at a rate of 60 Hz, then the 

amount of data per day equals 26 x 60 x 60 x 60 x 24 readings, which represents a large-scale 

data that is very difficult to handle in short time. Every channel can measure more than one 

attribute at the same time and thus the total number of readings will be highly increased. In order 

to make sense of these data such as comparing these data with historical data to diagnose a 

patient health status and save his/her life, then we need to process these data in an expediated 

process, which is completely difficult using a huge amount of data. Therefore, the optimal 

solution is to use smaller version of the data that can be achieved using aggregation. However, 

aggregation can result in loss of critical details, which in turn can affect the efficiency of 

diagnosis and thus threaten the patient’s life. Our approach can solve this problem by creating 

signatures of aggregated data that are very close to the original data and this means that we are 

using a smaller version of the data that is more informative than the aggregated version.  

In our experiment, we have a repository of 1039 patients’ datasets. Every dataset has 

different version according to the aggregation level. For example, version of aggregation level 5 

means that we are aggregating the readings of each 5 seconds. Our task is to match 100 raw 

datasets with their related datasets in the repository at each aggregation level. We used different 

approaches to perform this task including, original data, max-pooling, low pass filtering and 

wavelet. 

The results of TPs, FPs and precisions are shown in Figures 58, 59 and 60 respectively. 

From Figure 58, we see that our basic signature is good at all aggregation levels. Additionally, 

our basic signature is the best at high aggregation levels such as 20 to 48. On the other hand, our 

signature has low rate of false positives as shown in Figure 59, especially at higher levels such as 
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20 to 48. The same behavior applies to the precision since our signature is good at all 

aggregation level and it is the best at higher aggregation levels as shown in Figure 60.  

  

 

Figure 58. Average of TPs for Multiple Signatures 

 

 

Figure 59. Average of FPs for Multiple Signatures 
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Figure 60. Average of Precisions for Multiple Signatures 

 

From previous figures, we can see that our signature is good at all aggregation levels. The 

best signatures at the lower aggregation levels are low pass filtering and our signature. For high 

aggregation levels such as aggregation level 20 to 48, the best signature is our signature since it 

has the highest TP rate, lowest FP rate and the highest precision rate.  

We created hybrid signatures as we mentioned earlier in question 2. The results of TPs, 

FPs and precisions are shown in Figures 61, 62 and 63. From these figures, we can see that the 

best signatures are our signature and the hybrid signature Sig of LPF for all aggregation levels 

including low and high aggregation levels. The Sig of LPF consists of our signature and low pass 

filtering. It is apparently noticeable that our hybrid signature improved the performance of the 

indexing process.  
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Figure 61. Average of TPs for Multiple Signatures with Hybrid Signatures 

 

 

Figure 62. Average of FPs for Multiple Signatures with Hybrid Signatures 
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Figure 63. Average of Precisions for Multiple Signatures with Hybrid Signatures 

 

Figure 64 shows the results of exploring TPs, FPs and precisions in different ranges of 

aggregation. We started with particular ranges and then we used wider ranges until we reach the 

final general range, which includes all aggregation levels from low to high (2:48) as shown in the 

bottom of Figure 64. The figure shows that our signature has the best performance at all 

aggregation levels including low and high ranges.  
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Figure 64. Performance Measures for Different Signatures 
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Figure 65 shows the results of exploring TPs, FPs and precisions in different ranges of 

aggregation. We started with particular ranges and then we used wider ranges until we reach the 

final general range, which includes all aggregation levels from low to high (2:48) as shown in the 

bottom of Figure 65. The first row in Figure 64 shows that for fine granularities such as 2, 4, 6 

and 8, the best signatures are our basic signature and the hybrid signature Sig of LPF. However, 

the hybrid signature Sig of LPF is the best for all high and low aggregation levels. Our hybrid 

signature could achieve a good performance as it can be used at any aggregation level. The last 

row in Figure 65 shows TPs rate, FPs rate, and precisions rate for all signatures. We can see that 

our hybrid signature has the highest rate of TP, the lowest rate of FP and the highest rate of 

precision. Our hybrid signature’s performance is also extremely far away from all other 

signatures and the heat maps colors prove this performance. By comparing the heat maps colors, 

our hybrid Wav of Sig could improve the performance of wavelet signature as shown in Figure 

65. As we can see in the last row in Figure 65, Wav of Sig has a yellow color as compared with 

the blue color of the Wav signature.  
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Figure 65. Performance Measures for Multiple Signatures with Hybrid Signatures 
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In summary, we extended our aggregation sustainable signature to time series datasets 

and we could achieve significant performance using our basic signature and the hybrid signature 

that combines our aggregation sustainable signature with low pass filtering. Our experimental 

results prove that our aggregation sustainable signature is the best when it is used alone. It is also 

the best when it is combined with low pass filtering and wavelet to create the hybrid signature. 

3.4.3 Practitioner Guide  

Given a detailed time series dataset, which needs to be indexed to related time series datasets in 

an aggregated repository, then we need to choose the best approach for indexing based on the 

aggregation level(s) of the repository time series datasets. In this case, our recommendation is to 

use Sig of LPF and our basic signature. Our basic signature is the best for fine granularity such 

as 2, 4 or 6. Sig of LPF outperforms all signatures at all aggregation levels.  
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4.0   CONCLUSION 

We developed an aggregation sustainable signature to improve the quality of data and preserve 

more information in an aggregated dataset. we used this aggregation sustainable signature to 

build an efficient aggregated information retrieval architecture using signatures (SigMatch) for 

images datasets, which could optimize the matching process. We compared our approach with 

related approaches including, max-pooling, low pass filtering and wavelet and we found that our 

approach outperforms the other approaches. Based on our analysis, we found that some 

signatures perform better at certain aggregation levels. In order to improve the overall 

performance, we developed hybrid approaches to get the advantages from all signatures. We then 

extended our approach to be used with time series datasets in order to create a representative 

signature for aggregated time series data. We created heat maps, to be used as practitioner guides 

to select the best signature(s) according to the aggregation level, for both images and time series 

datasets. The experimental studies showed the efficiency of our signature and the hybrid 

signatures. Our approach can be widely applied in the industry where the communication is a 

vital part since it allows to send smaller version of the data instead of huge amount of data over 

the network. Additionally, it can filter noisy data.  
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