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Abstract 

Linking Striatal Dopamine and Decision-Making to Adolescent Risk-Taking 

 

Brenden Tervo-Clemmens, PhD 

 

University of Pittsburgh, 2021 

 

 

 

Adolescence is characterized by a peak in risk-taking behaviors that increases the 

likelihood of problematic substance use, sexually transmitted diseases, and fatal accidents.  

Prominent neurodevelopmental theories suggest these behaviors are driven by the maturation of 

the striatal dopamine (DA) system and its modulation of prefrontal-striatal circuitry. To date, 

research in this area has been limited, both by limitations in assessing DA systems in vivo in human 

adolescents and an incomplete understanding of the intermediate cognitive and affective processes 

linking striatal DA and risk-taking. This dissertation built upon a first-of-its kind longitudinal 

neuroimaging dataset (N=144) using direct (positron emission tomography [PET]) and indirect 

(brain tissue iron) measures of striatal DA, resting-state functional connectivity data, field-standard 

risk-taking measures, and a validated developmentally-sensitive decision-making task. To increase 

statistical power, an additional sample (N=187) with key overlapping measures was also 

examined. Across three aims, mixed support was found for the hypothesized integrative 

psychobiological model. Consistent with prior work, significant developmental differences were 

found in risk-taking propensity measures (both adolescent peaks and age-related decreases), in 

brain iron-based, indirect measures of striatal DA (age-related increases), and in model-based 

learning during the decision-making task (age-related increases). However, associations between 

risk-taking propensity measures and striatal DA measures were small in magnitude and not 

statistically significant. Evidence was found for an association between indirect striatal DA 

measures and an exploratory analysis of performance on the decision-making task, where those 
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with higher striatal iron for their age displayed more habitual responding during early adolescence. 

There was also evidence that striatal tissue iron measures were associated with frontostriatal 

connectivity. Nevertheless, broader circuit-level hypotheses of developmental changes in 

dopamine processing supporting changes in frontostriatal connectivity and subsequently risk-

taking propensity were limited in this sample. Results suggest risk-taking may be related to striatal 

DA indirectly via decreased frontostriatal connectivity, although these associations were not 

developmentally sensitive in the current sample. These initial results establish testable hypotheses 

for larger developmental samples with more detailed phenotyping and expanded imaging metrics. 

Ultimately, this work can inform diverse neurodevelopmental pathways of adolescent risk-taking 

and contribute to biologically informed interventions for at-risk youth.  

  



 vi 

Table of Contents 

Preface ......................................................................................................................................... xiii 

1.0 Introduction ............................................................................................................................. 1 

1.1 Adolescent Risk-Taking ................................................................................................. 2 

1.1.1 Defining Adolescent Risk-Taking .......................................................................3 

1.1.2 Adolescent Risk-Taking Across Cultures and Species .....................................3 

1.2 Adolescent Neurocognitive Development and Models of Risk-Taking ..................... 4 

1.2.1 Normative Adolescent Neurocognitive Development .......................................5 

1.2.2 Dual-Systems Models of Adolescence and Risk-Taking ...................................7 

1.2.2.1 Neuroimaging Evidence Supporting Dual-Systems Models of 

Adolescent Risk-Taking ...................................................................................... 8 

1.2.2.2 Summary and Remaining Questions ..................................................... 9 

1.3 Striatal Dopamine and Risk-Taking ........................................................................... 10 

1.3.1 Summary and Remaining Questions ................................................................11 

1.4 Decision-making Links Striatal DA and Adolescent Risk-Taking........................... 12 

1.4.1 Summary and Remaining Questions ................................................................13 

2.0 Specific Aims and Hypotheses ............................................................................................. 15 

3.0 Methods .................................................................................................................................. 16 

3.1 Overview of Project Structure .................................................................................... 16 

3.2 Participants ................................................................................................................... 17 

3.3 Neuroimaging Measures .............................................................................................. 18 

3.3.1 Direct Measures of Striatal DA .........................................................................18 



 vii 

3.3.2 Indirect Measures of Striatal DA .....................................................................18 

3.3.3 Resting-state Functional Neuroimaging ...........................................................20 

3.3.3.1 Preprocessing ......................................................................................... 21 

3.3.4 Striatal Regions-of-Interest ...............................................................................21 

3.4 Risk-Taking Assessments ............................................................................................. 22 

3.4.1 UPPS-P Impulsive Behavior Scale ....................................................................22 

3.4.2 RT-18 ...................................................................................................................23 

3.4.3 Balloon Analog Risk Task .................................................................................23 

3.5 Decker Two-Stage Sequential Learning Task ........................................................... 24 

4.0 Analysis .................................................................................................................................. 26 

4.1 General Statistical Procedures .................................................................................... 26 

4.2 Modeling Overview ...................................................................................................... 28 

4.2.1 Aim 1: Characterize the developmental associations between striatal DA and 

risk-taking ....................................................................................................................29 

4.2.2 Aim 2: Identify developmental changes in decision-making that link striatal 

DA and adolescent risk-taking ...................................................................................30 

4.2.3 Aim 3: Determine how developmental changes in striatal dopamine modulate 

frontostriatal circuitry to predict decision-making and adolescent risk-taking ...31 

4.2.4 Power Considerations ........................................................................................32 

5.0 Results .................................................................................................................................... 33 

5.1 Aim 1: Characterize the developmental associations between striatal DA and risk-

taking ................................................................................................................................... 33 

5.1.1 General Developmental Patterns of Risk-Taking and Striatal DA ...............33 



 viii 

5.1.2 Links between Striatal DA and Risk-taking ....................................................35 

5.2 Aim 2: Identify developmental changes in decision-making that link striatal DA and 

adolescent risk-taking ........................................................................................................ 38 

5.2.1 General Developmental Patterns in Decision-Making Task ..........................38 

5.2.2 Decision-making as a Mediator of the Relationships between Striatal DA and 

Risk-Taking .................................................................................................................39 

5.3 Aim 3: Determine how developmental changes in striatal dopamine modulate 

frontostriatal circuitry to predict decision-making and adolescent risk-taking ........... 43 

6.0 Discussion............................................................................................................................... 46 

6.1 Developmental Patterns of Risk-Taking .................................................................... 46 

6.2 Age-related change in Iron-Based Indirect Measures of Striatal Dopamine .......... 48 

6.3 Striatal DA and Risk-Taking Propensity Measures .................................................. 49 

6.4 Age-related Changes in Decision-Making Task......................................................... 52 

6.5 Decision-Making Strategies and Risk-Taking Measures .......................................... 54 

6.6 Striatal DA and Decision-Making Strategies ............................................................. 55 

6.7 Frontotriatal Connectivity, Dopamine, and Behavior .............................................. 57 

6.8 Towards Robust links among Multi-Method data .................................................... 59 

6.9 Design Strengths and Limitations ............................................................................... 60 

7.0 Conclusion & Implications ................................................................................................... 62 

Appendix A Validation of Tissue Iron Measure ...................................................................... 63 

Appendix B Striatal and Pallidal Regions of Interest.............................................................. 64 

Appendix C Psychometric Analyses .......................................................................................... 65 

Appendix D Cortical Regions of Interest .................................................................................. 68 



 ix 

Appendix E Power Analysis ....................................................................................................... 69 

Appendix F Model Results for Links between Striatal DA and Risk-taking ........................ 73 

Appendix G Parsing Developmental Changes in Decision-Making Task.............................. 76 

Appendix H Model Results for Links between Striatal DA and Decision-Making .............. 77 

Appendix I Model Results for Links between Striatal DA and Frontostriatal 

Connectivity ............................................................................................................................ 80 

Bibliography ................................................................................................................................ 83 



x 

List of Tables 

Table 1 Model Results for Age-Related Changes in Risk-Taking Propensity Measures ..... 34 

Table 2 Model Results for Age-related Changes in Striatal Tissue Iron ............................... 35 

Table 3 Model Results for Age-related Changes in Striatal Tissue Iron ............................... 39 

Appendix Table 1 Pearson Correlations Among Risk-Taking Measures.............................. 66 

Appendix Table 2 Model Results for taT2* and Risk-Taking ................................................ 73 

Appendix Table 3 Model Results for DTBZ and Risk-Taking ............................................... 74 

Appendix Table 4 Model Results for RAC and Risk-Taking ................................................. 75 

Appendix Table 5 Model Results for taT2* and Decision-Making ........................................ 77 

Appendix Table 6 Model Results for DTBZ and Decision-Making ....................................... 78 

Appendix Table 7 Model Results for RAC and Decision-Making ......................................... 79 

Appendix Table 8 Model Results for taT2* and Frontostriatal Connectivity ...................... 80 

Appendix Table 9 Model Results for DTBZ and Frontostriatal Connectivity...................... 81 

Appendix Table 10 Model Results for RAC and Frontostriatal Connectivity ...................... 82 



 xi 

List of Figures 

Figure 1 Tissue Iron-Specific Scan and Tissue Iron Estimated via Standard Functional 

Neuroimaging .................................................................................................................. 20 

Figure 2 Developmental Two-Stage Sequential Learning Task ............................................. 25 

Figure 3 Analysis Overview ....................................................................................................... 26 

Figure 4 Age-related Changes in Risk-Taking Propensity Measures .................................... 33 

Figure 5 Age-related Changes in Striatal Tissue Iron ............................................................. 35 

Figure 6 Association between Striatal Tissue Iron and Risk-Taking..................................... 36 

Figure 7 Association between Striatal PET Marker DTBZ and Risk-Taking ...................... 36 

Figure 8 Association between Striatal PET Marker RAC and Risk-Taking ........................ 37 

Figure 9 Age-varying Association between Striatal Tissue Iron and Risk-Taking .............. 37 

Figure 10 Age-related Change in Decision-Making Variables ............................................... 39 

Figure 11 Striatal Tissue Iron with Decision-Making Variables ............................................ 40 

Figure 12 Age-Varying Association between Pallidum Tissue Iron and Decision-Making 

Variables .......................................................................................................................... 40 

Figure 13 Association between Decision-Making and Risk-Taking Variables ..................... 42 

Figure 14 Association between Striatal Tissue Iron and NAcc-vmpfc Connectivity ............ 44 

Figure 15 Association between Striatal Tissue Iron and NAcc-vmpfc Connectivity ............ 44 

Figure 16 Association between NAcc-vmpfc Connectivity and Risk-Taking ........................ 45 

Appendix Figure 1 taT2* with DTBZ ....................................................................................... 63 

Appendix Figure 2 Harvard Oxford Striatal and Pallidal Regions of Interest..................... 64 

Appendix Figure 3 Grand Mean Values of DTBZ, R2’, and taT2* ....................................... 64 



 xii 

Appendix Figure 4 Age by Sex Effects in Risk-Taking ........................................................... 65 

Appendix Figure 5 Factor Loadings of Risk-Taking Measures ............................................. 67 

Appendix Figure 6 Cortical Regions of Interest from Neurosynth ........................................ 68 

Appendix Figure 7 Power Simulation Results.......................................................................... 72 

Appendix Figure 8 Decision-Making Task Results by Binned Age ....................................... 76 

Appendix Figure 9 Normed First-Stage Stays by Condition and Age ................................... 76 

 



 xiii 

Preface 

I would like to express my deepest gratitude to everyone who has supported my academic 

journey. To my loving, supportive, and understanding wife who has never let me lose track of what 

is important in life. To my parents and sister, who have always possessed a patient understanding 

for my interest in life’s complex questions, while also helping me realize the most important ones 

are those that end up helping other people.  

To my wonderful academic advisor Beatriz Luna, PhD, a fearless and ground-breaking 

scientist, who has supported and inspired me through every turn. To all the collaborators and 

friends who have made me a better scientist and person.  



 1 

1.0 Introduction 

Adolescence is unique period of the lifespan, initiated by puberty and characterized by 

ongoing maturation of cognitive and affective brain systems (Luna et al., 2015). Behaviorally, 

studies from rodents, non-human primates, and across human cultures provide converging 

evidence that compared to adulthood, adolescence is marked by more risk-prone and impulsive 

behaviors (Spear, 2000). While historical perspectives viewed these behaviors as a sign of 

immaturity, contemporary neurodevelopmental (Luna & Wright, 2016)(Steinberg, 2010)(Casey et 

al., 2008) and psychosocial (Wills et al., 1994) theories suggest adolescent risky behavior reflects 

a tendency towards sensation-seeking and a normative drive towards environmental exploration, 

which may be essential for the late development of specialized cognitive and affective brain 

systems (Larsen & Luna, 2018). Yet, for some adolescents, risk- taking may lead to negative health 

outcomes, including problematic substance use, sexually transmitted diseases, and fatal accidents 

(Resnick et al., 1997). 

Despite well-established developmental patterns of adolescent risk-taking and its potential 

negative health outcomes, the underlying psychobiological mechanisms governing adolescent 

risk-taking largely remain unknown. For example, multiple ‘dual-system’ perspectives (see 

Shulman et al., 2016 for review) suggest adolescent risk-taking is driven by a predominance of 

striatal-reward systems, mediated by functional changes in the dopamine (DA) neurotransmitter 

system, over prefrontal cortex, mediated by cortical cognitive control systems. However, owing to 

the contraindications of assessing striatal DA in vivo in human pediatric populations (via Positron 

Emission Tomography [PET]), there is limited evidence of unique adolescent DA processing in 

humans. Moreover, beyond the methodological challenges of imaging DA in vivo, a mechanistic 
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and integrative understanding of how striatal DA gives rise to adolescent risk-taking has remained 

elusive, in part due to the multiple behavioral functions ascribed to striatal DA. Finally, despite 

the implication of both the striatum and prefrontal cortex underlying adolescent risk-taking, limited 

work has examined how age-related change in prefrontal-striatal (frontostriatal) functional 

connectivity predicts adolescent risk-taking, particularly in the context of individual differences in 

striatal DA.  This dissertation sought to address these gaps in knowledge, examining multiple 

levels of analysis within an integrative psychobiological model of adolescent risk-taking.  

1.1 Adolescent Risk-Taking 

The notion of adolescence as a period of heightened impulses and risks can be traced back 

for centuries. For example, writings from the mid 19th century noted the potential for “moral 

problems” following "internal revolutions” [puberty] in youth, which would subside following 

maturation (see (Demos & Demos, 1969) for review). While these early writings viewed 

adolescent behavior through a perspective of immaturity and morality that are now outdated (see 

below), they aptly reflect the transitional nature of adolescent risky behavior. Supporting this, 

considerable prior research has identified the adolescence, typically defined as the second decade 

of life in humans (10-20-years-old)(Sawyer et al., 2018), as a unique and sensitive period for 

various risky behaviors that are observed across species and cultures.   
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1.1.1 Defining Adolescent Risk-Taking 

Most frequently, adolescent risk-taking is defined in epidemiological terms, where it has 

been demonstrated that across cultures, adolescence is a period when behaviors that increase 

mortality are more common, including reckless driving, risky sexual behavior, and problematic 

substance use (Duell et al., 2018)(Resnick et al., 1997). Nevertheless, it is well documented that 

the engagement of many of these behaviors is, in part, mitigated by access and opportunity (see 

(Duell et al., 2018) for discussion). To this end, adolescent risk-taking is also frequently defined 

in terms of propensity to engage in risky-behaviors, either through self-report measures of 

behavioral correlates of risk-taking (e.g., sensation-seeking, impulsivity, novelty-seeking, see 

below) or laboratory-based risk-taking behavioral tasks (e.g., Balloon Analogue Risk Task, 

(Lejuez et al., 2002)). The current project takes an inclusive perspective on the construct of “risk-

taking”, acknowledging observed correlations amongst these measures (Lejuez et al., 

2002)(Lauriola et al., 2014)(Horvath & Zuckerman, 1993) that may support a common underlying 

construct. Nevertheless, its noted that various assessments of “risk-taking” and related constructs 

are not well correlated (Creswell et al., 2018)(Stamates & Lau-Barraco, 2017) or psychometrically 

validated (Hedge et al., 2018) and/or have no immediate analogue in animal models. This suggests 

a potential specificity among various definitions and measurements of “risk-taking”. To this end, 

methodological variation is discussed and quantitatively explored throughout the project. 

1.1.2 Adolescent Risk-Taking Across Cultures and Species 

Converging evidence suggests that adolescence is a period of heightened risk-taking 

(Resnick et al., 1997; Shulman et al., 2016). Although early work demonstrating these 
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developmental patterns was performed primarily in the United States and Western Europe, recent 

work has demonstrated that across cultures, both epidemiological definitions of risk-taking (e.g., 

substance use, unprotected sex) and risk-taking behavioral analogues, display a developmental 

peak during adolescence or early adulthood (Duell et al., 2018). Of note a majority of this research 

has been performed within samples excluding for psychiatric and neurological disorders or large 

cohorts more closely approximating population variability, suggesting such an adolescent peak in 

risk-taking behavior represents a normative developmental trajectory.  

Supporting a normative development of risk-taking behavior and a potential evolutionary 

precedent, animal models show marked differences during and after puberty in behaviors 

analogous to human risk-taking. For example, in maze paradigms, peripubertal mice and rats 

display increased “risk-taking” (time spent in physically unprotected areas) and “novelty-seeking” 

(time spent in novel unexplored areas) compared to adults (see (Laviola et al., 2003)(Spear, 

2000)for a review). Similar observations have been made in peripubertal/adolescent non-human 

primates, who are more likely than adults to voluntarily leave their primary troop, a behavior 

associated with increased mortality (risk-taking), as well as explore novel food sources (novelty-

seeking) (Spear 2000). Taken together, cross-cultural and cross-species research identifies 

increased risk-taking as a conserved and normative adolescent behavior.  

1.2 Adolescent Neurocognitive Development and Models of Risk-Taking 

Multiple models have been developed to account for adolescent increases in risk-taking. 

As mentioned above, the earliest of these perspectives viewed adolescent risk-taking as a sign of 

immaturity or “moral failings”. Over time, these perspectives shifted and adolescent-risk taking 
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was considered to be the result of “cognitive deficiencies” and problems in “youth culture” 

(Steinberg, 2010)(Baumrind, 1987). Taken together, early perspectives considered adolescent risk-

taking to be the result of limitations reflecting non-functional and maladaptive behaviors. In 

contrast, contemporary models situate risk-taking in the context of normative brain development 

and the result of a predominance of striatal-reward systems over cortically-mediated cognitive 

control (Luna & Wright, 2016). Critically, contemporary perspectives suggest risk-taking 

behaviors reflect adaptive processes of environmental exploration (Luna et al., 2015), which may 

be essential for psychosocial maturation (Crone & Dahl, 2012a) and the late development of 

specialized brain systems (Larsen & Luna, 2018).  

1.2.1 Normative Adolescent Neurocognitive Development 

Converging evidence from human neuroimaging and molecular studies in rodents suggests 

dynamic changes in the striatal reward system during and following puberty. For example, 

neuroimaging has suggested adolescents have increased functional recruitment of the ventral 

striatum in anticipation of rewards (Geier, Terwilliger, Teslovich, Velanova, & Luna, 

2010)(Padmanabhan et al., 2011). Supporting these findings, rodent studies suggest a 

peripubertal/adolescent peak in dopaminergic function in the striatum (Gelbard et al., 1989), which 

is widely associated with reward signaling (Schultz, 2002) and motivated behavior (Cools, 2008). 

Other human neuroimaging has shown functional development during adolescence in a series of 

paralimbic regions more broadly associated with salience processing, including the amygdala 

(Ernst & Paulus, 2005)(Guyer et al., 2008) and insula (van Leijenhorst et al., 2006). This work has 

led to the contextualization of adolescents’ heightened reward function within a broader domain 

of affective engagement (Crone & Dahl, 2012b), which may be part of an evolutionarily adaptive 
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process that supports independence and increases the odds of reproductive success (L. P. Spear, 

2000). 

In addition to normative changes in the striatal reward system, adolescence also marks a 

period of ongoing cognitive development. For example, although adolescents can perform 

complex “cognitive control” tasks, the ability to consistently implement cognitive control 

continues to mature through adolescence and into adulthood. Supporting this,  adolescents display 

prolonged behavioral development within subdomains of cognitive control, including working 

memory (Geier, Garver, Terwilliger, & Luna, 2009)(Luciana et al., 2005) inhibitory 

control(Bjorklund & Harnishfeger, 1995)(Luna et al., 2004), and performance monitoring (Ordaz 

et al., 2013). Parallel evidence from human neuroimaging and animal studies suggests a network 

of ‘top-down’ control regions, including lateral prefrontal and posterior parietal cortices, support 

these cognitive control behaviors (see (Luna et al., 2015) for review). Initial developmental 

neuroimaging studies, during both inhibition (Rubia et al., 2006) and working memory (Klingberg 

et al., 2002) tasks, have shown differences in how lateral prefrontal and posterior parietal regions 

are recruited in adolescents compared to adults. Supporting this, non-human primate studies 

demonstrate developmental changes in neuronal firing patterns in similar lateral prefrontal regions 

(Zhou et al., 2016)(Lewis, 1997). Yet, longitudinal neuroimaging studies, particularly those that 

only analyze data from correct trials, and thus control for performance differences, find an age-

related decrease in the recruitment of lateral prefrontal and posterior parietal regions that reach 

adult levels by mid-adolescence (Simmonds et al., 2017)(Ordaz et al., 2013). This may suggest 

adolescents become less dependent on domain general top-down control regions in favor of more 

specialized activation patterns. This idea is supported by recent work demonstrating that large-
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scale patterns of brain activation stabilize during adolescence (Montez et al., 2017) and ensembles 

of brain regions (putative brain networks) become increasingly integrated (Marek et al., 2015).  

1.2.2 Dual-Systems Models of Adolescence and Risk-Taking 

Results demonstrating immaturities in prefrontal executive and striatal reward systems 

have led to ‘dual systems’ models, which suggest adolescence may be characterized by a relative 

predominance of reward systems over cognitive control systems (Shulman et al., 2016). Early 

versions of these models proposed that striatal systems matured earlier than a slow maturing 

prefrontal system (Casey et al., 2008). However, increasing evidence suggests striatal systems also 

have a protracted maturation through adolescence, with DAergic systems having greater function 

during the pubertal period (Wahlstrom et al., 2010)(Padmanabhan et al., 2011) and continued 

structural changes through adolescence (Raznahan et al., 2014). To this end, a second model 

proposed that, during an adolescent peak in striatal DAergic function, prefrontal systems were still 

maturing, resulting in a relative imbalance between reward and cognitive control systems 

(Steinberg, 2010). More recently, based on accumulating evidence that prefrontal systems can be 

engaged at adult levels by mid adolescence during executive function tasks (Ordaz et al., 

2013)(Simmonds et al., 2017), the ‘driven dual systems model’ (Luna & Wright, 2016) suggests 

that adolescents’ new access to cognitive control systems facilitates complex behaviors that are 

“driven” by a developmental peak in affective/reward system function that supports complex 

reward driven risk-taking. 

Across all of these models, the relative imbalance between these “dual-systems” (reward 

vs. cognitive control) is thought to bias adolescence towards sensation-seeking and novelty-

seeking in order to facilitate environmental exploration, which may be an adaptation to increase 
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independence and the odds of reproductive success (Spear 2000). Within this context, risk-taking 

behaviors (e.g., substance use, risky sexual behaviors, reckless driving) are viewed as the result of 

a combination of normative increases in sensation-seeking and increased autonomy from 

caregivers.  

1.2.2.1 Neuroimaging Evidence Supporting Dual-Systems Models of Adolescent Risk-

Taking 

Existing functional neuroimaging (e.g., fMRI) studies provide mixed support for dual-

systems models of adolescent risk-taking. Whereas growing evidence implicates the striatum in 

risk-taking like behaviors, less direct evidence has been found to support a role of cortical regions 

in adolescent risk-taking. For example, functional neuroimaging indicates that increased BOLD 

activation in the striatal-reward system is associated with both risk-taking behaviors and risk-

taking propensity measures during adolescence (Galvan et al., 2007)(see (van Duijvenvoorde et 

al., 2016) for review). Moreover, a recent meta-analysis from our group demonstrates that 

adolescents at increased risk for substance use disorders (SUD), who are more likely to engage in 

risky-behavior, display increased striatal activation ((Tervo-Clemmens et al., 2020). In contrast, 

BOLD activation in the prefrontal cortex has been associated with risk-taking propensity measures, 

particularly the completion of laboratory-based analogues of risk-taking (Balloon analogue risk 

task) (Rao et al., 2008)(Schonberg et al., 2012)(Qu et al., 2015), but its association to more direct 

real-world adolescent risk-taking behaviors has been mixed (Tervo-Clemmens, Simmonds, 

Calabro, Day, et al., 2018)(Claus & Hutchison, 2012)(see (van Duijvenvoorde et al., 2016) for 

review). To this end, our recent meta-analysis did not find evidence for prefrontal associations 

with an increased risk for substance use among adolescents (Tervo-Clemmens et al., 2020). One 

possibility is that prefrontal activation differences only emerge in high-risk cohorts (Tervo-
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Clemmens et al., 2017) or in the context of divergent developmental trajectories (Quach et al., 

2020).  

More recent research has examined functional connectivity between the prefrontal cortex 

and striatum while examining adolescent risk-taking. To this end, converging evidence suggests 

age-related increases in frontostriatal connectivity during adolescence is associated with reduced 

risk-taking propensity measures (Van Den Bos et al., 2015)(Christakou et al., 2011), where it has 

been suggested lower levels of risk-taking may result from prefrontal cortex exerting greater “top-

down” control on the striatum into adulthood. To this end, disruption of this prefrontal cortex 

activity via Transcranial Magnetic Stimulation (TMS) leads to increases in risk-taking propensity 

measures (Knoch et al., 2006). 

1.2.2.2 Summary and Remaining Questions 

Overall, neuroimaging studies provide support for the basic tenets of dual-systems models 

predicting adolescent risk-taking, particularly a primary role for striatal-reward systems. A primary 

outstanding question for dual-systems models is the role of striatal dopamine in adolescent risk-

taking behaviors. Dual-systems models build from rodent and primate studies, which have 

demonstrated that striatal DA is associated with behaviors analogous to human risk-taking (e.g., 

impulsive choice, see Striatal Dopamine and Risk-Taking) and undergoes functional changes 

during adolescence (see Normative Adolescent Neurocognitive Development). However, owing 

to the challenges of assessing striatal DA in vivo in human pediatric populations, there is limited 

evidence of unique adolescent DA processing in humans.  
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1.3 Striatal Dopamine and Risk-Taking 

Converging evidence from animal models implicates striatal dopamine (DA) in behaviors 

analogous to human risk-taking, although the directionality of these associations is highly nuanced. 

From one perspective, a substantial body of work in rodents implicates lower levels of striatal DA, 

particularly in the ventral striatum/nucleus accumbens, as predictive of increased levels of “risk-

taking like” behaviors, typically framed as “impulsive choice” (see (Jupp & Dalley, 2014) for 

relevant recent review). For example, in rats, reduced DA D2/D3 receptor expression (Mitchell et 

al., 2014) and over expression of dopamine transporter (DAT) (Adriani et al., 2009), both of which 

may index a reduced overall striatal DA tone, have been shown to decrease risky choices, in 

paradigms where rodents choose between larger uncertain [risky] rewards and smaller certain [less 

risky] rewards. This suggestion has some translation support, where human positron emission 

tomography (PET) studies have shown reduced striatal DA D2 binding in adults with substance 

use disorder (N. D. Volkow et al., 1997), who may be conceptualized as having higher levels of 

risk-taking. However, D2 agonists, which increase DA function, have been shown to increase drug 

seeking behavior (Self et al., 1996) and “impulsive choices” in the paradigm discussed above 

(Mitchell et al., 2014). Moreover, it remains unclear how a negative association between striatal 

DA and risk-taking fits with developmental observations, where it is thought that adolescents have 

higher striatal DA function and increased risk-taking. To this end, striatal DAergic effects may 

follow an inverted U pattern, with relatively low levels or relatively high levels leading to risky 

and impulsive behavior, analogous to the relatively well-characterized non-linear association 

between striatal DA and cognition (Cools & D’Esposito, 2011)(Williams & Goldman-Rakic, 

1995). Importantly, the DA system is complex, and there remains the possibility that certain 
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behaviors, including risk-taking, may be more or less related to specific components (e.g., receptor 

subtypes, overall DA tone) of the DA system but not others.  

Beyond directionality, the spatial specificity of associations between striatal DA and risk-

taking behaviors is also nuanced. For example, opposing effects of DA on risk-taking have been 

observed in ventral and dorsal subdivisions of the striatum (Mitchell et al., 2014)(Palm et al., 

2014). This may reflect the more general dorsal and ventral division of behavioral functions within 

the striatum, where the dorsal striatum, through direct connections with lateral prefrontal cortex, 

supports action selection and habit formation, while the ventral striatum, through direct 

connections with value-based circuits in the orbital frontal cortex, signals primary rewards (cf., 

(O’doherty et al., 2004). It is also possible the location of these effects may vary as a function of 

the severity of clinical status. For example, in the addiction literature, it has been suggested that 

early drug experimentation is driven by ventral-striatal reward function, while later problematic 

use is maintained by the dorsal-striatum’s habit formation circuitry (Everitt & Robbins, 2005). 

1.3.1 Summary and Remaining Questions 

Taken together, animal models strongly implicate striatal DA in “risk-taking like” 

behaviors, although these effects are nuanced and appear sensitive to functional striatal 

subdivisions and potentially, clinical status. While studies using direct assessments of DA, via 

PET, have been performed in humans, these have primarily been done in psychiatric (e.g., 

addiction: see (Nora D. Volkow et al., 2007) for review) and neurological (e.g., Parkinson’s 

disease: (Evans et al., 2009) for review) samples. Accordingly, normative associations between 

striatal DA and risk-taking behaviors during adolescence and adulthood remain largely unknown. 

Understanding the association between striatal DA and risk-taking across these developmental 
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periods is critical for understanding both the basic psychobiological mechanisms of risk-taking 

and through comparisons of indirect measures of striatal DA (see Methods), developmental 

patterns of risk-taking. 

1.4 Decision-making Links Striatal DA and Adolescent Risk-Taking 

Beyond methodological challenges in imaging striatal DA, difficulty remains in 

determining the exact mechanisms that transform individual differences in striatal DA to real-

world behaviors. While striatal DA plays a major role in signaling reward (Schultz, 1998), it also 

underlies critical aspects of several cognitive and affective functions, including general 

motivational drive, the learning of environmental contingencies of rewards, and facilitation of 

complex executive functions (Friston et al., 2014). Nevertheless, it remains unclear how and under 

which conditions these more basic cognitive and affective processes link striatal DA to risk-taking. 

Understanding these intermediate, computational processes that link striatal DA and risk-taking is 

likely key to understanding variability in prior literature and the developmental mechanisms 

underlying the rise of these behaviors during adolescence.  

Computational neuroscience provides a powerful approach to investigate associations 

between striatal DA and the prioritization of the cognitive and reward functions, hypothesized to 

be supported by striatal DA. For example, prior literature demonstrates that individual differences 

in striatal DA predict learning rates during reinforcement learning tasks, which have been shown 

to be altered in psychiatric disorders associated with risk-taking (e.g., ADHD: (Luman et al., 

2010)). Developmentally, reinforcement learning rates have been shown to improve from 

adolescence to adulthood (Davidow et al., 2016). Beyond these basic reward learning tasks, recent 

work has utilized more complex decision-making tasks to examine both cognitive and reward 
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demands.  To this end, emerging computational work (Deserno et al., 2015) indicates that striatal 

DA is associated with the balance of two decision-making strategies: 1) model-free learning, where 

recent reward history drives reactive choices vs. 2) model-based learning of rewards, where 

choices are deliberatively enacted based on a cognitive model of learned associations between 

actions and outcomes. As in simple reward tasks, these decision-making strategies have been 

shown to have developmental patterns. Adolescents have been found to utilize a combination of 

model-free and model-based learning strategies, while adults predominantly engage model-based 

strategies (Decker et al., 2016). Furthermore, supporting the relevance of these decision-making 

strategies to potential risk-taking behaviors, overreliance on model-free learning has been 

associated with adult substance use disorder (SUD) (Gillan et al., 2016). 

1.4.1 Summary and Remaining Questions 

Prior literature suggests striatal DA predicts reinforcement learning rates and the relative 

prioritization of rewards. Behaviorally, these intermediate reward and decision-making strategies 

have been shown to vary developmentally and are implicated in psychiatric disorders associated 

with risk-taking. Nevertheless, it remains unknown whether these intermediate decision-making 

processes link striatal DA and adolescent risk-taking. However, based on the reviewed 

developmental patterns in decision-making strategies, we hypothesized adolescence may mark a 

sensitive period where model-free and model-based decision-making strategies more readily 

interact, predicting normative increases in risk-taking. For example, the use of model-based 

learning may facilitate environmental exploration, leading to novel and in some cases, risk-prone 

contexts (parties with peers). At the same time, the continued use of model-free strategies may 



 14 

lead to failures to consider long-term consequences (underage drinking citation), in favor of 

immediate and recent rewards (social bonding). 
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2.0 Specific Aims and Hypotheses 

Across three aims, this project tested an integrative psychobiological model of adolescent 

risk-taking that built upon contemporary neurodevelopmental theory. First, we characterized 

associations between striatal DA and self-report and laboratory measures of risk-taking and how 

these relationships vary across development, testing the hypothesis that increased risk-taking in 

adolescence is driven by higher levels of striatal DA. Second, we sought to identify developmental 

changes in decision-making that may link striatal DA and adolescent risk-taking, formally testing 

a psychobiological model where reinforcement learning strategies mediate the association between 

striatal DA and risk-taking. Finally, we examined the effect of developmental changes in striatal 

DA on the strength of prefrontal-striatal connectivity and how these predict decision-making and 

risk-taking, seeking to determine the broader circuit dynamics underlying adolescent risky 

behavior. 
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3.0 Methods 

3.1 Overview of Project Structure 

The current project first proposed to use one existing longitudinal developmental 

neuroimaging dataset (Parent Project: Luna R01 MH080243: N=144, up to three visit per-

participant, 319 total visits, PET sample). Based on subject attrition in this primary sample at the 

third visit, and in order to improve statistical power (particularly for those analyses using the 

decision-making task), a second dataset that included the Decker Two-Stage Sequential Learning 

Task (which measures model-free/model based approaches), risk-taking propensity measures, and 

neuroimaging data that could be used to assess striatal iron (an indirect measure of striatal 

dopamine) was also included (Parent Project: Luna R01 MH067924, N=187, 7T sample). Both 

studies utilized accelerated longitudinal design, where subjects were initially recruited with a 

uniform age distribution, spanning early adolescence to adulthood (PET sample: ages 12-32, 7T 

sample: ages 10-30), and males and females were equally represented at each age. In the PET 

sample, following this initial baseline visit, subjects completed up to two follow up visits. In the 

final analysis sample from the PET study, 63 participants had three visits of data, 43 had two visits 

of data, and the remaining (38) had one visit of data. The average difference in time between both 

the first and second and second and third visits was approximately 20 months (1.71 and 1.66 years, 

respectively), with both of these follow-up visits including data from the adolescent period (second 

visit age range: 13.53-32.41 years; third visit age range: 15.06-33.34 years). The current project 

used all available data from the three visits and each analysis used the maximum sample size, in 

order to increase statistical power. We note that all included study measures were collected at all 
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three time points, except the Decker Two-Stage Sequential Learning Task (see below), which was 

only collected in the third visit. The 7T sample has completed its first year of data collection, the 

data from which are presented in the current report.  

The University of Pittsburgh’s Institutional Review Board approved both studies. Adult 

participants provided informed consent. For minors, parents provided informed consent and youth 

(> 18-years-old) provided assent. Participants were compensated for completing research 

assessments.  

3.2 Participants 

General exclusion criteria for both samples were: self-reported (via online screen) history 

of a psychiatric disorder, either in the participant or a first-degree relative, T-scores above clinical 

cutoffs for any symptom scales on either the youth self-report (YSR) (subjects < 18-years-old) or 

adult self-report (ASR)(subjects > 18-years-old) psychopathology assessments (Achenbach, 

2017), neurological disorders, MRI contraindications (e.g., non-removable metal in the body, past 

head injury with loss of consciousness, pregnancy), and IQ scores (Elliott, 2004) below 80.  
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3.3 Neuroimaging Measures 

3.3.1 Direct Measures of Striatal DA 

Using positron emission tomography (PET) (performed on a Siemens mMR dual modality 

PET/MR scanner) direct measures of striatal DA were collected in subjects 18- 32-years-old in the 

PET sample : [11C]Dihydrotetrabenazine (DTBZ) and [11C]Raclopride (RAC), reflecting 

presynaptic vesicular DA availability and D2/3 receptor concentration, respectively. RAC and 

DTBZ were collected with bolus+infusion paradigms and time activity curves were fit using the 

simplified reference tissue model (SRTM, with a cerebellar reference region) and Ichise's 

Multilinear Reference Tissue Model (MRTM, with a pericalcarine reference region) (Ichise et al., 

1996) (Ichise et al., 2003), respectively to estimate binding potential (BP). We note PET image 

processing was completed with the PET center at the University of Pittsburgh, Department of 

Radiology. 

3.3.2 Indirect Measures of Striatal DA 

MR-based measures of tissue iron concentration were acquired for all subjects (12-32 

years-of-age) in the PET sample, using a specialized tissue iron scan (R2’). Scans were performed 

with the same Siemens mMR dual modality PET/MR scanner as above. Tissue iron co-localizes 

with DA vesicles (Zucca et al., 2017), is necessary with DA synthesis (Ortega et al., 2007), has 

been found to change with development (Peterson et al., 2019)(Larsen & Luna, 2015), and in 

recent work from our group, has been shown to correlate with longitudinal changes in direct, 

DTBZ PET measures of DA availability (Larsen et al. 2020). To this end, we originally proposed 
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to use R2’ as a putative indirect marker of striatal DA, with R2’ estimated using validated 

procedures from recent work from our group (Larsen et al., 2020). However, given challenges in 

correcting R2’ for head motion and other artifacts (see Larsen et al., 2020), the current project 

validated and further developed a method for assessing striatal tissue iron using standard functional 

neuroimaging data from a functional resting-state scan (see below). Specifically, building from an 

earlier protocol (Larsen & Luna, 2015), for each voxel (smallest unit of measurement in the 

neuroimaging data) we calculated the median value over all collected volumes (i.e., the full 

functional time course) and normalized these values across the brain, resulting in a single volume 

per visit (taT2*). In addition to the procedures developed in Larsen & Luna 2015, we also 

incorporated motion censoring procedure (threshold frame-wise displacement < .3 mm) to reduce 

the impact of head motion on these estimates. taT2* estimates were highly correlated with 

quantitative R2’ tissue iron estimates (Figure 1) and consistent with our recent work (Larsen et al., 

2020) were significantly associated with DTBZ direct measures of DA availability (see Appendix 

A). Therefore, taT2* was used as the indirect DA measure in the current project. taT2* images 

were computed for all available data in both the PET and 7T samples. ComBat, a batch-correction 

tool, originally developed for genomics data that has been widely used in neuroimaging (Fortin et 

al., 2018)(Fortin et al., 2018)(Radua et al., 2020) was used to harmonize the taT2* measures in 

PET and 7T samples. We note that because taT2* is negatively associated with tissue iron (see 

Figure 1), the direction of this measure was reversed in all subsequent figures to ease interpretation, 

such that higher values reflect higher levels of iron.  
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Figure 1 Tissue Iron-Specific Scan and Tissue Iron Estimated via Standard Functional Neuroimaging 

The Association between R2’ and taT2* was significant across all striatal regions (p’s < .001): the 

caudate (caud), nucleus accumbens (NAcc), pallidum (pall), putamen (put), and whole striatum (striatum). 

 

 

3.3.3 Resting-state Functional Neuroimaging 

In the PET sample, two eight-minute scans (16 minutes total) of resting-state (eyes-open) 

were collected at each visit within the same session and using the same scanner as the PET data 

(Siemens mMR dual modality PET/MR scanner). Functional data were collected using an echo 

planar imaging (EPI) sequence with the following parameters: TR = 1.5s, TE = 30ms, Flip Angle 

= 80°, and 96 x 96 acquisition matrix with a field of view of 220 mm. Thirty-three slices were 

collected in the axial plane with an isotropic voxel size of 2.3 mm x 2.3 mm x 2.3 mm and a 2.3 

mm gap between slices. In the 7T sample, an eight-minute resting-state scan (eyes-open) was 

performed with a 3D EPI acquisition, with an effective TR = 2.18s and 2.00 mm x 2.00 mm x 

2.00m isotropic voxel size. 
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3.3.3.1 Preprocessing 

Standard preprocessing techniques were used and relied on the same general pipeline as 

recent work from our (Tervo-Clemmens, Simmonds, Calabro, Montez, et al., 2018) that was 

designed to minimize confounding effects of head motion (Hallquist et al., 2013). Steps include: 

4D slice-timing and head motion correction, wavelet despiking (Patel et al., 2014), brain 

extraction, non-linear registration of functional data to a standard anatomical brain (MNI-152c 

template) via subject structural image (MP-rage), spatial smoothing with a 5mm Gaussian kernel 

(Susan; (S. M. Smith & Brady, 1997)), intensity normalization, nuisance regression with six rigid 

body head motion parameters and their derivatives and non-gray matter signal (white matter and 

CSF and their derivatives), and bandpass filtering between 0.009 and 0.08 Hz. Volumes with 

significant head motion (frame-wise displacement > .3mm) were removed from analysis. 

3.3.4 Striatal Regions-of-Interest 

 In order to increase the reliability of striatal DA estimates, while also permitting the 

exploration of striatal subdivisions, primary analyses examined direct striatal DA measures, mean 

binding potential estimates for D2/D3 receptor concentration (RAC) and vesicular DA (DTBZ), 

and the indirect DA measures R2’ from anatomically-defined striatal regions of interests (ROIs): 

caudate, putamen, and nucleus accumbens, from the Harvard Oxford Atlas (Appendix B). 

Following more detailed analyses of indirect measures of DA via iron, we also included estimates 

from the pallidum, another structure of the basal ganglia associated with reward and affective 

function, given this is among the most iron rich regions in the brain (see Appendix B), which has 

been corroborated by post-mortem research (Langkammer et al., 2012).  In order to reduce the 
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number of statistical comparisons and reduce measurement error, estimates were averaged across 

hemispheres for each ROI. 

3.4 Risk-Taking Assessments 

Owing to the challenges of accurately assessing risk-taking behavior from a public health 

perspective (e.g., limitations of access and opportunity: see Defining Adolescent Risk-Taking), the 

current project utilized risk-taking propensity measures. In order to examine convergent validity, 

multiple risk-taking propensity measures were examined.  With the exception of the Balloon 

Analog Risk Task (BART), which was only collected in the PET sample, all measures were 

available in both samples.  

3.4.1 UPPS-P Impulsive Behavior Scale 

The UPPS-P (Whiteside & Lynam, 2001) is a 59-item self-report assessment, designed to 

measure five facets of impulsivity (Negative and Positive Urgency, Lack of Premeditation, Lack 

of Perseverance, Sensation-Seeking), many of which have been associated with public-health 

defined risk-taking (e.g., substance use: (Whiteside & Lynam, 2003); risky sexual behavior: 

(Deckman & DeWall, 2011)). The UPPS-P has been psychometrically validated with respect to 

between-subject differences. In validation studies, UPPS-P factor structure has shown to be non-

invariant across samples (Cyders, 2013) and subscales have been shown to have high internal 

consistency (Cronbach’s alpha’s > .85 (Carlson et al., 2013)) and test-retest reliability (r’s > .8 

(Weafer et al., 2013)). Given the high correlation between Negative and Positive Urgency (r=.69) 
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in the dataset and in order to reduce the overall number of statistical comparisons, the broader 

domain of Urgency was used, as in previous formulations of the measure (cf., (G. T. Smith & 

Cyders, 2016)) 

3.4.2 RT-18 

The RT-18 is an 18-item self-report assessment, designed specifically to assess risk-taking 

propensity in youth (de Haan et al., 2011). Validation samples indicate the RT-18 has high internal 

consistency (Cronbach’s alpha = .886), test-retest reliability (r = .94), and predicts risk-taking 

phenotypes (e.g., substance use) (de Haan et al., 2011).  

3.4.3 Balloon Analog Risk Task 

The balloon analog risk task (BART) is a computer-based measure of risk-taking 

propensity (Carl W. Lejuez et al., 2002), which has been shown to predict public-health defined 

risk-taking (e.g., substance use & reckless behavior: Lejuez et al., 2002; (C. W. Lejuez et al., 2003) 

and show developmental changes during adolescence (Duell et al., 2018). In the task, a computer 

screen displays a small balloon and a display of “Total Money Earned”. On each of the twenty 

trials, participants press a button on the keyboard to “pump the balloon” and earn 1¢ for each 

pump. Each balloon has a randomly selected popping point (signaled by a “pop” sound) where the 

participant loses all money from that trial. However, at any point in the trial, participants can stop 

pressing the pump button and can collect their earnings. The primary outcome measure is the 

number of pumps across balloons that didn’t pop, which is conceptualized to reflect risk-taking in 

that more pumps indicates a greater risk of loss for a larger reward. In validation analysis, this 



 24 

primary measure has been shown to have good within-session (r =.81, Lejuez et al., 2002) and 

acceptable daily (r =.71 (White et al., 2008)) test-retest reliability.  

3.5 Decker Two-Stage Sequential Learning Task 

Participants in both studies, completed a developmentally-validated task (Figure 2) that 

provides estimates of model-free and model-based decision-making (Decker et al., 2016). Within 

the task, participants must first choose between two rockets that have different probabilities 

(common: 70% vs. rare: 30%) of traveling to one of two planets. Once at the planets (the second 

stage choice), participants choose between one of two aliens and they are either rewarded (shown 

a stimulus of “space- treasure”) or not-rewarded (shown an empty circle), according to a slowly 

drifting reward probability. A model-free decision strategy is conceptualized as a simple bias to 

recent rewards (“model-free learning”), where participants’ choices of rockets are simply driven 

by whether or not they were rewarded on the previous trial. In contrast a model-based strategy is 

conceptualized as evidence of goal-directed behavior and meta-knowledge of the task (“model-

based learning”), where for example participants choose the blue rocket if they had been previously 

rewarded on the red planet, as this maximizes the likelihood of returning to the red planet (Figure 

2). 
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Figure 2 Developmental Two-Stage Sequential Learning Task 

 

Building from this prior work, we developed another measure relevant to decision-strategy: 

repetitive choices, by modeling the frequency that each subject repeats the same choice of rocket 

on successive trials, across all trial conditions. This “repetitive-responses”/“first-stage stay” 

parameter captures participants’ tendency to repeat the same choice of the rockets, irrespective of 

reward and probability structure. This measure become of interest during data analysis when strong 

evidence for this strategy was observed in all models and thus, was used in additional exploratory 

analyses. Recent research from collaborators of our group (Brown et al., 2020; Dombrovski lab, 

University of Pittsburgh, Department of Psychiatry) demonstrates acceptable test-retest reliability 

from outcome measures from this task across weeks (r’s > .7) and good within-session (split-half) 

reliability (r’s > .8). We note, unlike all other measures, this decision-making task was only 

collected in year 3 of the PET sample, in part, specifically for this dissertation project. This task 

was also collected in the 7T sample and served as the impetus to additionally include the 7T in the 

current project. 

Decker et al. 2016
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4.0 Analysis 

See Figure 3 for an overview of proposed primary analyses. Panel models highlight 

primary study hypotheses and theoretical predictions. We also followed established guidelines 

(Muller et al., 2005) and general best practices in data analysis in order to ensure final statistical 

models are parsimonious and methodological ambiguity and limitations are clearly presented. 

 

Figure 3 Analysis Overview 

 

4.1 General Statistical Procedures 

This project pre-defined a general set of a statistical procedures in order to reduce potential 

bias and improve transparency. In the rare cases where final analyses differed from this set of 

general procedures (included in the initial proposal), rationale for deviations accompanies analysis.  

1) Distributions of variables: Distributions were examined for normality for all study variables. 2) 

Outlier detection: univariate outliers (operationalized as 3 standard deviations above the mean) 
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were examined for potential removal. When possible, these data points were also assessed with 

respect to regression leverage statistics (cooks distance, with a cut off determined as 3 standard 

deviations above the mean). Data points determined to be both univariate outliers and leverage 

points were removed from analysis. 3) Inclusion of covariates: head motion (frame-wise 

displacement following volume censoring: see Resting-State Functional Neuroimaging) was used 

as a covariate in all neuroimaging analyses. The initial analytic plan suggested inclusion of other 

covariates would include reporting significance of primary study variables with and without 

including these covariates. However, due to concern about the influence of non-developmental 

visit effects (e.g., practice, habituation to the scanning environment) biasing estimates (e.g., (Luna 

et al., 2020), visit number was likewise always included as a covariate. Sex was not shown to have 

a substantive main effect or interaction with age with respect to the primary outcome (risk-taking) 

and was therefore not used as a covariate (see Appendix C). 4) Multiple comparison correction: 

multiple comparison correction was performed using the false discovery rate (FDR) with a 

threshold of q < .05. 5) Sensitivity analysis: a sensitivity analysis reviewing the above domains, as 

well as any addition analysis-specific domains, accompanies the reported results. 6) Data 

reporting: zero order correlations for primary risk-taking variables are reported (Appendix C). 

Intraclass correlation coefficients (ICCs) are reported for all primary longitudinal data (Appendix 

C). All significance values are reported to three decimal places. Wherever possible, standardized 

measures of the strength of the association between study variables are presented.   



 28 

4.2 Modeling Overview 

Based on the reviewed literature and hypothesized non-linear association between striatal 

DA and risk-taking, primary analyses used general additive models, with thin plate spline basis 

functions (MCGV in R: (Wood, 2012), allowing for a flexible and empirically-defined functional 

form. In cross-sectional analysis (see below), the employed GAM model had the following general 

structure: 

 

where Y is the response variable, , is the parametric model intercept, and  and  are smooth 

functions (thin plate splines: MCGV default) of the covariates and .  

However, as discussed above, the PET sample was collected in an accelerated longitudinal 

design, with participants (N=144) starting the study at various ages (12- 32-years-old) and 

prospectively followed for up-to three visits. Accordingly, with the exception of the decision-

making task (see above), all variables in the PET sample include longitudinal data. In order to 

provide the most precise estimates possible from the dataset, longitudinal data were always 

included when available.  

Longitudinal data were handled within the GAM framework through the inclusion of 

random effects, where the GAM model utilizes the following general structure in the case of a 

random intercept:   

 

where  is the response variable for an individual subject and the model intercept,  is composed 

of fixed and random effects (  , where  is the grand mean of the response variable 

and  is the random intercept term). All models were initially estimated with random intercepts 

and a random slope for the primary variable of interest. Following longitudinal modeling 



 29 

guidelines, the random effects structure was simplified (random intercept only) in the rare cases 

when the model did not properly converge. In order to provide a simple measure of magnitude and 

direction in GAM/GAMM models, which given their non-linear and multilevel structure do not 

have a field-standard for standardized effect sizes, we provide Kendall’s Tau as a descriptive 

measure. No inferential statistics are performed on Kendall’s Tau parameters.  

4.2.1 Aim 1: Characterize the Developmental Associations Between Striatal DA and Risk-

Taking 

This aim sought to test the hypothesis that increased risk-taking in adolescence is driven 

by higher levels of striatal DA. Primary analyses proceed in two steps. First, we examined the 

overall relationship between striatal DA and risk-taking, while covarying age. Associations 

between striatal DA measures were examined for each risk-taking propensity measure (UPPS-P 

subscales, RT-18, and BART, see above). Due to the potential non-linear associations between 

striatal DA and risk-taking measures (see above), primary analysis utilized generalized additive 

models (see Modeling Overview). Our second set of analyses examined whether the association 

between striatal DA and risk-taking measures varied as a function of age by including an 

interaction term between participant age and DA measures within the GAM framework. Given the 

focus on adolescent hypotheses, age-moderation was only examined in striatal tissue iron 

measures, which included the full age-range of participants (see above). In order to systematically 

examine potential age-varying associations, a time-varying effect modeling (TVEM)(Tan et al., 

2012) approach was used within the GAM framework in R (Dziak et al., 2020). Across both sets 

of analyses (age constant and age varying), significance testing was carried out with each risk-
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taking measure independently with multiple comparison correction (FDR) preformed across 

measures. 

4.2.2 Aim 2: Identify Developmental Changes in Decision-Making That Link Striatal DA 

and Adolescent Risk-Taking 

This aim sought to identify whether decision-making links striatal DA and risk-taking by 

examining associations between decision-making and striatal DA and risk-taking measures.  We 

also sought to test the developmental hypothesis that age-related increases in model-based decision 

strategies during adolescence, driven by developmental changes in striatal DA, were associated 

with decreased risk-taking. We first examined age-invariant associations and then planned to 

determine the extent to which the mediating role of decision-making strategies on the relationship 

between striatal DA and risk-taking varies by age (Figure 3), where we hypothesized the largest 

indirect effect to be observed during adolescence.  

Consistent with prior work using variants of the included decision-making task (Decker et 

al., 2016)(Gillan et al., 2016), primary analysis first estimated a single per-subject parameter 

characterizing the relative use of model-based strategy using a generalized linear mixed effects 

model. Within this framework, model-based strategies are defined by a reward (rewarded/non-

rewarded) by transition type (common/rare) interaction term that is allowed to vary across subjects 

(i.e., random effect). Based on the observation during data analysis for subjects to repeat the same 

choice across trials, irrespective of task condition (see Methods section), we also performed 

secondary analysis examining this strategy, which was defined within the model framework as the 

per-subject random intercept (mean proportion of first-stage stays).  



 31 

4.2.3 Aim 3: Determine How Developmental Changes in Striatal Dopamine Modulate 

Frontostriatal Circuitry to Predict Decision-Making and Adolescent Risk-Taking 

Building on prior literature demonstrating 1) age-related increases in striatal dopamine 2) 

developmental decreases in risk-taking being associated with increased frontostriatal connectivity 

(Van Den Bos et al., 2015) and 3) emerging work demonstrating that increased striatal DA in 

humans predicts increased frontostriatal connectivity (Kelly et al., 2009), we hypothesized that 

frontostriatal connectivity was a mechanism by which striatal DA influences decision-making and 

risk-taking (Figure 3).  

To first examine whether striatal DA predicts frontostriatal connectivity, we examined 

associations between individual differences in striatal DA measures (RAC, DTBZ, taT2*) and 

resting-state connectivity values, while covarying a smoothed (non-linear) functional form of age, 

within the GAM framework. We originally proposed to utilize a voxelwise frontostriatal 

connectivity approach, with mass univariate associations generated from striatal ROIs to the 

frontal cortex. However, based on concurrent work performed by our group (Marek & Tervo-

Clemmens et al., 2020) demonstrating the low statistical power of many brain-phenotype 

association studies, a more targeted, hypothesis-driven approach was used. Specifically, based on 

the well-established literature on parallel frontostriatal connections (cf., (Haber, 2016)), we 

examined connectivity between our striatal ROIs and key cortical targets of dorsolateral prefrontal 

cortex, ventromedial prefrontal cortex, and pre-supplementary motor area (see Appendix D). 

Cortical ROIs were spheres (12mm radius) generated from peak coordinates from term-based 

meta-analyses from neurosynth.org. As in striatal ROIs, in order to reduce the number of statistical 

comparisons and reduce measurement error, estimates were averaged across hemispheres for bi-

lateral ROIs (e.g., DLPFC; see Appendix D). Furthermore, in analyses examining associations 
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with striatal DA, in order to reduce the number of potential comparisons between DA measures in 

each striatal region (4 regions) and each frontostriatal connection (21 connections), mean DA 

measures across the striatum were used. 

4.2.4 Power Considerations 

This project’s analyses were designed with consideration to “sensitivity” style power 

analyses, generated through Monte Carlo simulation and based on the original sample design. 

These results indicated the design was sufficiently powered (80%) to detect effect sizes, 

traditionally defined as small to moderate (.25-.3) (See Appendix E). In order to maximize power, 

this project additionally included a second sample (7T) with key overlapping measures in order to 

increase statistical power. In order to further maximize statistical power, which concurrent work 

from our group has raised concerns over in brain-behavioral phenotype studies in neuroimaging 

(Marek & Tervo-Clemmens et al., 2020), the largest available sample size is used for each analysis. 

Sample size details (number of unique subjects, total number of visits, which parent sample the 

participants came from) accompany all results. 
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5.0 Results 

5.1 Aim 1: Characterize the Developmental Associations Between Striatal DA and Risk-

Taking 

5.1.1 General Developmental Patterns of Risk-Taking and Striatal DA 

The examined risk-taking propensity measures (N=326 subjects, 528 total visits, PET + 7T 

samples) supported two distinct developmental trajectories (Figure 4; Table 1). The BART and 

UPPS Lack of Perseverance, Lack of Premeditation, and Urgency displayed significant linear age-

related decreases, with younger participants having greater risk-taking than older participants. In 

contrast, UPPS Sensation-Seeking significantly, and RT18 as a trend, displayed an inverted u 

functional form of age, although expression of these measures appeared to peak in late 

adolescence/early adulthood (~20-years-old), rather than the mid-adolescent peak suggested in 

neurodevelopmental heuristic models.  

 

Figure 4 Age-related Changes in Risk-Taking Propensity Measures 

Note, upps_pers (Lack of Perseverance), upps_pre (Lack of Premeditation), upps_ss (Sensation 

Seeking), upps_urg (Urgency). *** FDR q < .001, + FDR q < .10. 
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             Table 1 Model Results for Age-Related Changes in Risk-Taking Propensity Measures 

 edf Kendall Tau FDR q 

BART 1.000 -0.143 0.000 

RT18 2.067 -0.051 0.070 

upps_pers 1.000 -0.217 0.000 

upps_pre 1.000 -0.180 0.000 

upps_ss 3.244 0.020 0.001 

upps_urg 1.000 -0.198 0.000 

Note, edf: effective degrees of freedom; Kendall Tau: Aggregated (across all visits) Kendall Tau 

between Age and risk-taking measure. FDR q: corrected significance value 

 

The distinction between the developmental trajectories of these measures was further supported 

by exploratory factor analysis demonstrating two factors that had patterns of loadings among the 

measures that mirrored the groupings of the measures’ developmental effects (Appendix C) 

Consistent with prior work (Larsen & Luna, 2015)(Larsen et al., 2020), indirect measures 

of striatal dopamine (N=212, 342 total visits, PET + 7T samples), as assessed via striatal tissue 

iron, displayed significant age-related increases (see Methods for sign interpretation) across all 

ROIs, except the caudate, which was not significant (Figure 5; Table 2). We note recent work from 

our group has investigated developmental patterns of direct measures of striatal DA as assessed by 

PET in adult participants, demonstrating for example, that D2/3 receptor density shows an age-

related decrease from 18- to 30-years-old(Larsen et al., 2020). 
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Figure 5 Age-related Changes in Striatal Tissue Iron 

Age-related change in taT2* (reverse scored for interpretation; see Methods) in the caudate (caud), 

nucleus accumbens (NAcc), pallidum (pall), putamen (put), and whole striatum (striatum). Note, *** FDR q < 

.001 

 

Table 2 Model Results for Age-related Changes in Striatal Tissue Iron 

 edf Kendall Tau FDR q 

caud 1.000 0.072 0.459 

NAcc 1.000 0.175 0.000 

pall 2.486 0.321 0.000 

put 1.000 0.327 0.000 

striatum 1.000 0.279 0.000 

Note, edf: effective degrees of freedom; Kendall Tau: Aggregated (across all visits) Kendall Tau 

between Age and risk-taking measure (sign flipped from original scale to match plot; see Methods). FDR q: 

corrected significance value.  

 

5.1.2 Links between Striatal DA and Risk-taking 

Neither indirect (N=212, 342 total visits, PET + 7T samples) nor direct (N=78, 161 total 

visits, PET sample) PET DTBZ or RAC measures of striatal DA availability had corrected 

significant associations with risk-taking propensity measure in the age-invariant analyses 
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(covarying age) (FDR q’s  > .148) (Figures 6,7,8; Appendix F). Likewise, for the indirect striatal 

DA measure (which again had the full age-range or participants: 10-33-years-old), there were no 

corrected, significant age by DA interactions for any risk-taking propensity measure (FDR q’s > 

.319)(Figures 9). 

 

Figure 6 Association between Striatal Tissue Iron and Risk-Taking 

Association between taT2* (reverse scored for interpretation; see Methods) in the whole striatum and 

risk-taking measures: BART, RT-18, upps_pers (Lack of Perseverance), upps_pre (Lack of Premeditation), 

upps_ss (Sensation Seeking), upps_urg (Urgency). No associations were significant in the whole striatum 

(shown here) or any other striatal regions (see Appendix F) 

 

 

Figure 7 Association between Striatal PET Marker DTBZ and Risk-Taking 

Association between DTBZ in the whole striatum and risk-taking measures: BART, RT-18, upps_pers 

(Lack of Perseverance), upps_pre (Lack of Premeditation), upps_ss (Sensation Seeking), upps_urg (Urgency). 

No associations were significant in the whole striatum (shown here) or any other striatal regions (see Appendix 

F) 
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Figure 8 Association between Striatal PET Marker RAC and Risk-Taking 

Association between RAC in the whole striatum and risk-taking measures: BART, RT-18, upps_pers 

(Lack of Perseverance), upps_pre (Lack of Premeditation), upps_ss (Sensation Seeking), upps_urg (Urgency). 

No associations were significant after corrections for multiple comparisons in the whole striatum (shown here) 

or any other striatal regions (see Appendix F). †, p < .05 (uncorrected). 

 

 
Figure 9 Age-varying Association between Striatal Tissue Iron and Risk-Taking 

Top row displays association between whole striatum taT2* ( reverse scored for interpretation; see 

Methods) and risk-taking measures: BART, RT-18, upps_pers (Lack of Perseverance), upps_pre (Lack of 

Premeditation), upps_ss (Sensation Seeking), upps_urg (Urgency), for equally spaced age terciles (parsed from 

age by-taT2* interaction). Bottom row displays age-varying, risk-taking with taT2* coefficient (sign flipped 
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from original scale to match top plot: see Methods) estimated via TVEM. No corrected significant associations 

were significant in the whole striatum (shown here) or any other striatal regions.   

5.2 Aim 2: Identify Developmental Changes in Decision-Making That Link Striatal DA and 

Adolescent Risk-Taking 

5.2.1 General Developmental Patterns in Decision-Making Task 

Consistent with prior work (Decker et al., 2016), a significant positive relationship (FDR 

q < .001) (N=213 subjects, 228 total visits, PET + 7T samples) was observed between participant 

age and model-based learning, where adults displayed more model-based learning than adolescents 

(Figure 10). As described above, during data analysis, we observed a substantial range of 

individual variability in the overall proportion of repetitive responses/first stage stays, which could 

not be simply attributed to model-based or model-free learning (Appendix G). This post-hoc 

parameter of proportion of repetitive responses was robustly positively associated with age (FDR 

q < .001)(Figure 10), where we suggest adults are more likely to display habitual/repetitive 

responding (higher first stage stays) than adolescents, who appear more exploratory and resistant 

to these behaviors. This suggestion is consistent with prior work in rodents (Serlin & Torregrossa, 

2015)(Towner et al., 2020)(Rode et al., 2020)(see Discussion). 
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Figure 10 Age-related Change in Decision-Making Variables 

Left, model-based learning; Right, repetitive responses. *** FDR q < .001 

 

 

Table 3 Model Results for Age-related Changes in Striatal Tissue Iron 

 edf Kendall Tau FDR q 

Model-based 2.168 0.211 0.000 

Repetitive 

Responses 1.000 0.296 0.000 

Note, edf: effective degrees of freedom; Kendall Tau: Aggregated (across all visits) Kendall Tau 

between Age and decision-making measure. FDR q: corrected significance value.  

5.2.2 Decision-making as a Mediator of the Relationships between Striatal DA and Risk-

Taking 

This aim was initially proposed to test whether decision-making mediates the relationship 

between striatal DA and risk-taking. Consistent with the original data analysis plan and proposed 

mediation model, we examined relationships between 1) striatal DA and decision-making and 2) 

decision-making and risk-taking metrics.  

Neither indirect (FDR q’s > .105) (N=124, cross-sectional sample, PET years + 7T) nor 

direct (FDR q’s > .296)(N=31, PET sample) DA measures had corrected significant associations 
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with decision-making metrics in the age-invariant analyses (covarying age)(Figure 11; Appendix 

H).  

 

Figure 11 Striatal Tissue Iron with Decision-Making Variables 

Association between whole striatum taT2* (reverse scored for interpretation; see Methods) and model-

based (Left) and repetitive responses (Right) decision-making variables: No corrected significant associations 

were significant in the whole striatum (shown here) or any other striatal regions (see Appendix H). 

 

Figure 12 Age-Varying Association between Pallidum Tissue Iron and Decision-Making Variables 

Top row displays association between pallidum taT2* (reverse scored for interpretation; see Methods) 

and model-based (Left) and repetitive responses (Right) decision-making variables for equally spaced age 
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terciles (parsed from age by-taT2* interaction). Bottom row displays age-varying, decision-making with taT2* 

coefficient (sign flipped from original scale to match top plot: see Methods) estimated via TVEM. See Appendix 

H for other regions. * FDR q < .05 

 

In contrast, the indirect striatal DA measures, which we again note includes the full age-range of 

participants (10-33-years-old), displayed a corrected-significant age by iron interaction for the first 

stage stay/repetitive response parameter for iron in the pallidum (FDR q = .047)(Figure 12). Using 

TVEM to visualize this age by iron interaction in more detail demonstrated that there was a 

significant positive relationship between tissue iron and repetitive responses early in adolescence 

that subsequently decreased and was no longer significant by mid-to late-adolescence (Figure 12). 

Given the normative developmental trajectories of tissue iron (increasing with age) and repetitive 

responses (increasing with age), this may suggest that adolescents that are relatively “mature” for 

their age neurobiologically, are likewise more “mature” with respect to the behavioral phenotype, 

as would be observed in a parallel maturation of iron and repetitive responding. Nevertheless, this 

putative mechanism will need to be tested with expanded longitudinal data (see Discussion). We 

note due to the limited data and restricted age-range of the sample with both direct DA measures 

and the decision-making task, age moderation was not explored with these data.  

To further examine the proposed model whereby decision-making mediates the 

relationship between striatal DA and risk-taking, we next examined the association between 

decision-making and risk-taking measures (N=213 subjects, 228 total visits, PET + 7T samples). 

The relationship between decision-making parameters (model-based learning and repetitive 

responses) and risk-taking measures was not significant in either the age-invariant analysis 

(controlling for age) (FDR q’s > .556) (Figure 13), although effect sizes were near equivalent in 

magnitude to those from similar prior reports (Gillan et al., 2016)(see Discussion), or when 

examining an age by decision-making interaction predicting risk-taking (FDR q’s > .678). Given 
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the general inconsistency of these results with the proposed mediational model (e.g., non-

significant association between decision-making and risk-taking), whereby striatal DA leads to 

risk-taking indirectly, via decision-making, more complex models within this aim (e.g., moderated 

mediation) were not pursued. 

 
Figure 13 Association between Decision-Making and Risk-Taking Variables 

Association between decision-making variables: model-based (top row), and repetitive responses 

(bottom row), and risk-taking: BART, RT-18, upps_pers (Lack of Perseverance), upps_pre (Lack of 

Premeditation), upps_ss (Sensation Seeking), upps_urg (Urgency). No corrected significant associations were 

found.  
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5.3 Aim 3: Determine How Developmental Changes in Striatal Dopamine Modulate 

Frontostriatal Circuitry To Predict Decision-Making And Adolescent Risk-Taking 

The third and final aim of this dissertation was proposed to test whether striatal DA may 

act indirectly through broader frontostriatal connectivity to influence decision-making and 

subsequently risk-taking. To investigate this perspective, while acknowledging some of the 

inconsistencies in the overarching psychobiological model (see Aims 1 and 2), we examined 1) 

the association between striatal DA measures and frontostriatal connectivity and 2) the association 

between frontostriatal connectivity and decision-making and risk-taking measures.  

Consistent with recent work from our group using a different analytic approach within a 

portion of the PET sample (Parr et al., 2021), corrected significant associations (FDR q’s < 

.05)(Appendix I)(N=212, 328 total visits, PET + 7T samples) were found between indirect 

measures striatal DA measures and frontostriatal connectivity. Furthermore, this effect was 

observed within the nucleus accumbens (NAcc) and ventromedial prefrontal cortex(vmpfc) (FDR 

q = .043)(Figure 14), a connection established in animal models as relevant for reward-related 

behavior (Haber, 2016). This was not observed with the direct PET DTBZ and RAC DA measures 

(FDR q’s < .126). There was no evidence of an age by indirect striatal DA measure interaction 

predicting frontostriatal connectivity in any of the connections (FDR q’s > .172), including the 

NAcc-vmpfc (Figure 15)(p =.467).   
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Figure 14 Association between Striatal Tissue Iron and NAcc-vmpfc Connectivity 

Association between striatum taT2* (reverse scored for interpretation; see Methods) and NAcc-vmpfc 

connectivity. Higher iron scores are associated with lower connectivity. * FDR q < .05. See Appendix I for all 

connections.  

 

 
Figure 15 Association between Striatal Tissue Iron and NAcc-vmpfc Connectivity 

Top row displays association between whole striatum taT2* (reverse scored for interpretation; see 

Methods) and NAcc-vmpfc connectivity for equally spaced age terciles (parsed from age by-taT2* interaction). 

Bottom row displays age-varying, taT2* with NAcc-vmpfc coefficient (sign flipped from original scale to match 

top plot: see Methods) estimated via TVEM.  
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Following up on the corrected, significant NAcc-vmpfc connection, we examined 

associations between NAcc-vmpfc connectivity and the risk-taking and decision-making 

measures. In a basic model (covaring age, visit, and head motion) there was an uncorrected 

significant associations linking connectivity to RT-18 ( p = .039, FDR q = .207), with higher NAcc-

vmpfc associated with lower risk-taking values (Figure 16). Nevertheless, this was reduced to an 

uncorrected trend when covaring for striatal iron (p=.073, FDR q= .357), limiting the implication 

of this result in the proposed psychobiological models of risk-taking. NAcc-vmpfc connectivity 

was not associated with the decision-making variables (FDR q’s > .132). 

 

 

 
Figure 16 Association between NAcc-vmpfc Connectivity and Risk-Taking 

Association between NAcc-vmpfc connectivity and risk-taking: BART, RT-18, upps_pers (Lack of 

Perseverance), upps_pre (Lack of Premeditation), upps_ss (Sensation Seeking), upps_urg (Urgency). ††, p < 

.05 (uncorrected) without covariates, p > .05 (uncorrected) with covariates (see Main text).  
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6.0 Discussion 

Overall, mixed support was found for the proposed integrative psychobiological model of 

DA-related processes underlying adolescent risk-taking. Critical replications of emerging 

developmental work were observed, including age-related increases in tissue iron-based, indirect 

measures of striatal dopamine availability, age-related decreases and adolescent peaks in risk-

taking propensity measures, and age-related increases in model-based learning in the decision-

making task. Nevertheless, in the current analyses, striatal DA measures were not significantly 

associated with risk-taking measures. There was evidence that indirect striatal DA measures were 

associated with habitual responding in the decision-making task and frontostriatal connectivity. 

Nevertheless, broader circuit level-hypotheses of developmental changes in dopamine processing 

supporting changes in frontostriatal connectivity and subsequently decision-making and risk-

taking propensity were not supported.  

6.1 Developmental Patterns of Risk-Taking 

We observed significant age-related change in almost all risk-taking propensity measures. 

Among the examined risk-taking measures, two general developmental trajectories were observed, 

with one group of measures (BART, UPPS Lack of Perseverance, Lack of Premeditation, 

Urgency) showing linear decreases, and two other measures (UPPS sensation seeking, and as a 

trend the RT-18) showing late adolescent peaks in expression. These results are highly consistent 

with prior work that has identified linear decreases in “impulsivity” (Harden & Tucker-Drob, 
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2011) but an adolescent peak, or inverted “u” functional form of age, in “sensation-seeking” (Duell 

et al., 2018)(Harden & Tucker-Drob, 2011)(Romer & Hennessy, 2007). Critically, the inverted 

“u” functional form of age in sensation seeking is consistent with predominant 

neurodevelopmental models (see (Shulman et al., 2016) for review), although this has not been 

universally supported, empirically (e.g.,(Littlefield et al., 2016)).  While the current project 

adopted an inclusive view of risk-taking (see Introduction), the distinct developmental trajectories 

among the included measures, may suggest a possible substantive distinction between more 

“impulsivity” and “sensation-seeking” facets of risk-taking. This was supported by exploratory 

psychometric work in the current project (see Appendix C) that identified two factors with one 

having strong loadings for the UPPS Lack of Perseverance, Lack of Premeditation and one having 

strong loadings for the RT-18 and UPPS Sensation Seeking, even when residualizing the measures 

with respect to age.  

The current work primarily focused on the developmental trajectories of risk-taking 

measures and their association with neurodevelopmental features. However, future work may 

examine associations among these risk-taking measures in more detail. In particular large-scale 

longitudinal data that can compare these putative broad-scale factors to more focused assessment-

specific factor structures (e.g.,  UPPS (Whiteside & Lynam, 2001)), including within the context 

of parallel maturation and correlated within-person change (Collado et al., 2014)(Harden & 

Tucker-Drob, 2011). Broad between and within-person factor structures may also be useful to 

further examine associations with executive function development during adolescence (e.g., 

(Romer et al., 2011)(Lane et al., 2003)). Ultimately, this work can not only clarify the 

developmental trajectories of these key constructs, but also provide insight into how the normative 



 48 

adolescent peaks in risk-taking may be related to psychopathology that emerges during this period 

(e.g., problematic substance use).  

6.2 Age-related Change in Iron-Based Indirect Measures of Striatal Dopamine 

Consistent with prior work, we observed significant, moderate effect sizes suggesting age-

related increases in striatal tissue iron (Larsen & Luna, 2015) (Larsen et al., 2020) which were 

likewise associated with individual differences in PET measures of vesicular dopamine 

availability. These results thus support our group’s initial work demonstrating a striatal iron-

vesicular dopamine connection (Larsen et al., 2020) and the interpretation of adolescence as a 

period of change in the dopaminergic system (Larsen et al., 2020)(Luna et al., 2015)(Tarazi et al., 

1998)(Andersen et al., 1997)(Teicher et al., 1995). 

Methodologically, our group initially showed a significant association between iron-based 

measures from specialized scans (R2’) and PET measures of vesicular striatal dopamine (Larsen 

et al., 2020). Supporting and expanding upon this, the current project demonstrated that a tissue 

iron-based measure calculated from standard functional neuroimaging data (taT2*) was likewise 

associated with PET measures of vesicular striatal dopamine. Therefore, this work further supports 

suggestions (Larsen et al., 2020)(Luna et al., 2020) to consider brain tissue iron as an indirect 

measure of striatal dopamine in neurodevelopmental studies.  

A remaining substantive complexity in this area is that striatal iron has been shown to 

seemingly accumulate across the lifespan (Acosta-Cabronero et al., 2016), which differs from 

predominant neurodevelopmental theories of striatal dopamine that predict a developmental peak 

during the adolescent period (e.g.,(Luna et al., 2015)). Accordingly, while striatal tissue iron and 
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striatal dopamine may share common mechanisms, evidenced by their small to moderate 

correlation at the individual difference level, their maturation may also be driven by some 

divergent developmental mechanisms. Future work bridging cellular and molecular neuroscience 

and human neuroimaging metrics (e.g., opto-genetic based fMRI in rodents) is necessary to more 

precisely dissociate these common and specific developmental mechanisms. However, given its 

significant association with gold-standard PET dopamine measures and ease of calculation from 

existing functional neuroimaging data, additional work considering the functional associations of 

striatal tissue iron is clearly indicated.  

6.3 Striatal DA and Risk-Taking Propensity Measures 

In contrast to prior reports (Buckholtz et al., 2010)(Dalley et al., 2011)(see (Dalley & 

Roiser, 2012) for review), we did not find evidence for links between individual differences in 

striatal DA and risk-taking propensity measures. Nevertheless, its critical to contextualize this 

result within the current state of human individual difference research using positron emission 

tomography [PET] and neuroimaging more broadly. First, as part of the innovation of this project, 

few studies, all with relatively small samples (e.g., N=32 (Buckholtz et al., 2010)), compared to 

the current project’s direct striatal DA measure sample: N=78, 161 total visits) have examined 

associations between individual differences measures of risk-taking and impulsivity and direct 

measures of dopamine. This number of studies is even smaller when excluding the larger 

proportion of studies that examine impulsivity within the context of psychiatric (e.g., (N. D. 

Volkow et al., 1997; Nora D. Volkow et al., 2007; Nora D. Volkow & Wise, 2005)) or neurological 

diagnoses (e.g.,(Stark & Claassen, 2017)). As a result, the current analyses were predicated in part 
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on the idea that understanding the true magnitude of (effect size) of the association between 

normative individual differences in dopamine and risk-taking would likely require a larger sample 

than these prior studies. That the current sample, which is twice as large as key prior works in this 

area (e.g., (Buckholtz et al., 2010)), demonstrated a non-significant association likely reflects the 

need for even larger studies to precisely estimate effect sizes in this area. To this end a small true, 

population effect size linking striatal DA to risk-taking measures and expected variability across 

small samples (sampling variability) could parsimoniously account for the discrepancy between 

the current work and prior reports. This suggestion is supported by concurrent work from our group 

on broader neuroimaging brain-behavior associations (Marek & Tervo-Clemmens et al., 2020).  

Acknowledging statistical challenges in the still emerging field of human neuroimaging 

links between striatal dopamine and risk-taking, it is also noteworthy that prior work has used 

different PET dopamine assessments. For example, Buckholtz and colleagues (2010) notable prior 

work in this area also used a D2/3 radiotracer like the current project did for the adult sample.  

However, their work further used an amphetamine challenge, where endogenous dopaminergic 

binding was compared to amphetamine-induced binding, a procedure which can dissociate 

dopamine release from D2/3 receptor concentration (Nora D. Volkow et al., 1994). While the 

current work and the motivating neurodevelopmental literature (Luna et al., 2015), hypothesized 

general individual differences across the dopamine system, it is possible this more precise 

dissociation of dopamine release is particularly relevant for risk-taking related behaviors. 

Therefore, although the current work assessed two distinct aspects of the dopaminergic system 

(vesicular DA and D2/3 receptor concentration), further work comparing multiple radiotracers in 

the context of amphetamine-induced DA release may be necessary to test fully characterize the 

specificity of dopamine-risk-taking associations. 
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It is also relevant to consider the temporal structure of dopaminergic signaling and the 

current project’s focus on aggregate, mean-level individual differences, or what might be 

considered more “trait” like dopamine assessments. To this end, while prior animals studies 

provide support for an association between aggregate mean-level/“tonic” dopamine and risk-

taking type behaviors (Adriani et al., 2009)(Mitchell et al., 2014), more recent work has suggested 

these relationships may be more closely associated with time-varying “phasic” responses to for 

example, individual rewards (e.g.,(Stopper et al., 2014)(Freels et al., 2020)). Indeed, a prominent 

theory in the addiction literature suggests links between the DA system and risk-taking and 

impulsive behaviors evolve overtime, as phasic DA responses to rewards change in magnitude and 

timing (see (Berridge & Robinson, 2016). Nevertheless, such temporally varying associations 

between the dopamine system and risk-taking behaviors remain challenging to test with human 

neuroimaging that relies on aggerate per-session mean levels of DA. Parallel analyses with within-

person fMRI analyses and striatal DA measures (Calabro et al., 2020) may thus be an important 

area of future work in examining the neurobiology of risk-taking.   

Another potential explanation for the observation of non-significant dopamine-risk-taking 

associations is that the current sample excluded for current and prior psychopathology and 

neurological disorders. As alluded to above, a significant majority of prior work on associations 

between PET-based striatal DA and individual differences has been performed in participants 

meeting diagnostic criteria for psychiatric or neurological disorders. Accordingly, the true 

underlying association between DA and risk-taking related behaviors may be non-linear, with 

associations considerably magnifying at clinical levels of severity. Such an explanation may 

likewise account for low reproducibility in normative ranges, where a smaller effect size would 

require larger sample sizes to achieve adequate statistical power and high rates of reproducibility.  



 52 

Future work may test these predictions by examining dopamine-risk-taking associations across a 

full range of severity, spanning normative variability to clinical presentations.      

6.4 Age-related Changes in Decision-Making Task 

Consistent with prior work (Decker et al., 2016), we observed age-related increases in 

model-based learning in a developmental version of the two-stage sequential reinforcement task. 

Non-linear modeling of this association (via general additive models) suggested rapid 

improvements during late childhood and early adolescence that stabilized to adult-levels by late 

adolescence. Given model-based learning has been described as requiring goal-directed behavior, 

this result may be consistent with the general observation of adolescence as a sensitive period in 

the development of goal-directed cognitive behaviors (“cognitive control”: (Larsen & Luna, 2018; 

Luna et al., 2015)). Supporting this, prior work in adults has shown that individual differences in 

model-based learning are associated with putative subcomponents of cognitive control (e.g., 

working memory (Otto et al., 2013). Given the demonstrated replicability of adolescent changes 

in model-based learning and the growing interest in the construct, future, more detailed work may 

investigate common and specific developmental patterns of model-based learning and cognitive 

control.  

In addition to replicating age-related changes in model-based learning, the current project 

also presented an exploratory, novel characterization of age-related differences in repetitive 

responses/first-stage stays in the decision-making task. Specifically, observing the strong main 

effect of age on this parameter, we sought to further understand this potential strategy. Within the 

context of the task, this “first-stage stay” parameter captures participants’ tendency to repeat the 
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same choice of the rockets, irrespective of reward and probability structure, where high values are 

thought to correspond to habitual choices and low values corresponded to more exploratory 

choices. From this perspective, we observed adolescents as more exploratory and adults as more 

habitual in their responding.  Consistent with this, considerable prior animal work has 

characterized adolescence as a period of heightened exploration (Linda P. Spear, 2000) and that 

adolescents are more resistant to behavioral habits than adults (Serlin & Torregrossa, 

2015)(Towner et al., 2020)(Rode et al., 2020). Critically, it has also been suggested that this 

habitual behavior may be independent of goal directed cognitive control (Balleine & O’doherty, 

2010). To this end, we observed significant age-related increases in “first-stage stays” across all 

trial types, suggesting this effect was independent of goal directed, model-based learning and may 

represent an alternative developmental shift in strategy. This result may reflect an adaptive nature 

of adolescent peaks in sensation-seeking and risk-taking that support environmental exploration 

(Linda P. Spear, 2000) necessary for specialization and establishment of adult trajectories (Larsen 

& Luna, 2018). Future work should further investigate the developmental overlap in this 

exploratory-habit-like behavior and model-based learning within the context of broader adolescent 

cognitive development. Of particular interest may be the distinction between experience-

dependent (habitual responding, automaticity) and experience-independent (executive function) 

processes and how these reflect broader views of adolescent neurocognitive development (Romer 

et al., 2017). 
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6.5 Decision-Making Strategies and Risk-Taking Measures 

In contrast to the hypothesized integrative model of risk-taking, we found small, non-

significant associations, when covarying age, between decision-making strategies from the 

sequential learning task and risk-taking measures. It is worth noting however, that detailed review 

of some prior work using a variant of this task with risk-taking related phenotypes (Gillan et al., 

2016), suggests that the observed effect sizes of the association between model-based learning and 

our risk-taking measures were broadly consistent with this prior report. We also found similar 

effect sizes for the association between the post-hoc first-stage stay parameter and risk-taking 

measures. Given the small magnitude of these results and some consistency with secondary 

analyses from prior work (Gillan et al., 2016), larger sample sizes are likely needed for consistent 

statistical inferences to be drawn on associations between these decision-making strategies and 

risk-taking measures. Alternatively, growing work has shown that behaviors that share features 

with risk-taking (e.g., impulsivity)(Tomko et al., 2014)(Stevens et al., 2020)(Pedersen et al., 2019) 

have substantive day-to-day variability that is predictive of real-world outcomes (e.g., alcohol use 

(Stevens et al., 2020)(Pedersen et al., 2019)). Therefore, future work may explore associations 

between decision-making strategies and daily variability in risk-taking related behaviors. In 

summary, based on the current project and related prior work, the magnitude of the effect linking 

these decision-making strategies to phenotypic risk-taking measures appears small and prompts 

more detailed investigations of underlying mechanisms, across varying timescales.   
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6.6 Striatal DA and Decision-Making Strategies 

Preliminary evidence was found for the predicted association between striatal DA and 

decision-making strategies. Among the full sample (adolescents and adults), we observed 

significant associations between tissue iron-based indirect measures of striatal DA and the post-

hoc repetitive responses/first-stage stay parameter during early adolescence (in the presence of an 

age by striatal iron interaction predicting repetitive responses). Specifically, during early 

adolescence a positive association was observed, with higher tissue iron being associated with 

more repetitive responses. These results therefore support predictions from foundational animal 

work suggesting adolescent changes in dopamine give rise to changes in reward related-behavior 

(cf., (Linda P. Spear, 2000)). Moreover, as alluded to above (see Results), the direction of this 

association and the normative trajectories of striatal tissue iron and repetitive responses parameter 

may suggest a parallel maturation of striatal DA and these habitual responses. Given this and the 

specificity of the striatal tissue iron-habitual response association to early and mid-adolescence, 

this result may speak to timing differences in adolescent development that subsequently normalize 

when most individuals reach adult-levels of maturity. Future work may test these predictions in 

prospective longitudinal data. Prospective longitudinal data can likewise be used to test whether 

deviations from normative development of the striatal tissue iron-repetitive responding pairing is 

associated with the emergence of habit-related adolescent psychopathology (e.g., substance use), 

as would be predicted by prominent neurodevelopmental frameworks (see (Shulman et al., 2016)). 

Such longitudinal work in humans would be particularly well served by parallel molecular studies 

in rodents that unpack the common/specific maturation of striatal tissue iron and striatal dopamine 

(see Age-related change in Iron-Based Indirect Measures of Striatal Dopamine), given challenges 

in PET imaging in adolescent humans.   
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More broadly, the significant association between striatal tissue iron and repetitive 

responses but the lack of any significant relationships between striatal dopamine measures and 

risk-taking assessments highlights a potential neurodevelopmental dissociation between decision-

making and risk-taking. While the current project built upon predominant adolescent theory that 

typically emphasizes a broad range of potentially inter-related affective behaviors (e.g.,(Steinberg, 

2004)), some contemporary work has emphasized potential key neurodevelopmental differences 

among decision-making and risk-taking processes (Hartley & Somerville, 2015). Acknowledging 

general differences among laboratory and self-report measures (see Towards Robust Links among 

Multi-method Data), this result may speak to risk-taking more as the end result of diverse 

neurodevelopmental and genetic inputs and decision-making as more directly linked to underlying 

striatal development. In support of this perspective, the hypothesis for the current project predicted 

decision-making would mediate the relationship between striatal dopamine and risk-taking, which 

ultimately situates risk-taking as a more distal target of striatal development (compared to risk-

taking). Nevertheless, this mediation model was not supported. However, the current result of links 

between indirect striatal dopamine measures and decision-making may prompt future work to 

examine broader, multivariate associations across neurodevelopmental systems in predicting risk-

taking. While the current model of striatal dopamine predicting risk-taking via decision-making 

was not directly supported, it may nevertheless be relevant within the context of a broader multi-

system understanding of risk-taking.  
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6.7 Frontotriatal Connectivity, Dopamine, and Behavior 

Within the context of a multi-system understanding of risk-taking, the current project 

hypothesized that striatal dopamine’s association with decision-making and risk-taking would 

ultimately unfold through frontostriatal connectivity. Supporting this perspective, we found a 

significant association between striatal tissue iron and nucleus accumbens (NAcc)-ventro medial 

prefrontal cortex (vmpfc) resting-state connectivity, which was also found in recent work from our 

group that used a subsample of the data from the current work (Parr et al., 2021). This association 

is particularly relevant given the well-established anatomical basis of this circuit in primates 

(Haber, 2016), where vmpfc projects to the NAcc, and the considerable research implicating it in 

adolescent reward-related behaviors and decision-making (Galvan et al., 2006)(see (Luciana & 

Collins, 2012) for review).  

Mechanistically, striatal tissue iron may modulate frontostriatal connectivity through 

multiple pathways. First, as established, iron is involved in the synthesis of dopamine (Ortega et 

al., 2007)(Zucca et al., 2017), co-localizes with dopamine vesicles (Ortega et al., 2007), and as 

shown in our groups prior work ((Larsen et al., 2020) and expanded upon here, is associated with 

individual differences in gold-standard measures of dopamine in humans. To this end, while 

acknowledging direct measures of dopamine were not associated with frontostriatal connectivity 

in the smaller subsample of adults who had those measures, the association between striatal tissue 

iron and NAcc-vmpfc functional connectivity may suggest a modulatory role of dopamine on this 

circuit. A potential mechanism of this modulation could be through established interactions 

between striatal dopamine and prefrontal glutamate (Kalivas, 2009)(McFarland et al., 2003). As 

an alternative or complementary explanation, tissue iron also supports myelination via modulation 

of oligodendrocytes (Todorich et al., 2009). To this end, this result may speak to a mediating role 
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of for example, intracortical myelin (Huntenburg et al., 2017) in the relationship between striatal 

tissue iron and frontostriatal resting-state functional connectivity. Nevertheless, recent work our 

group did not find evidence of this when explicitly modeling inter-individual differences in 

myelination (Parr et al., 2021). Ultimately, a mechanistic account of the link between striatal tissue 

iron and frontostriatal connectivity will rely on detailed animal work and parallel multimodal 

human neuroimaging.    

Further consistent with the proposed model whereby fronstoriatal connectivity would 

mediate the relationship between striatal dopamine and decision-making and risk-taking, we found 

a nominally significant association between NAcc-vmpfc connectivity and risk-taking measure 

(RT-18). However, given this relationship was no longer significant in the current set of analyses 

following more stringent covariate control, some ambiguity remains in determining the behavioral 

relevance of the examined frontostriatal connections. Nevertheless, it’s worth considering 

concurrent work from our group (Marek & Tervo-Clemmens et al., 2020) demonstrating that many 

of the effect sizes linking resting-state connectivity to individual differences among psychological 

variables (e.g., cognition, mental health) are considerably smaller than prior work suggests (e.g., 

top 1% r=~.06). Therefore, considerably larger sample sizes may be required to make reliable 

statistical inferences regarding associations with resting-state connectivity and individual 

difference measures. Alternatively, emerging work has shown that resting-state connectivity 

associations with individual differences in behavior may be best understood in the context of 

broad, multivariate patterns of connectivity spanning multiple brain systems (Marek & Tervo-

Clemmens et al., 2020)(S. M. Smith et al., 2015). Future work from the author plans to investigate 

both of these ideas through multivariate predictive models developed in large-scale consortia 

neuroimaging data.  Furthermore, as above, more detailed molecular based neuroimaging (e.g., 



 59 

intensive longitudinal pharmacology studies) and/or intensive longitudinal sampling can better 

examine these associations between frontostriatal connectivity, dopamine, and behavior from a 

within-subject perspective.  

6.8 Towards Robust Links Among Multi-Method Data 

The current project had mixed success in testing an integrative model of risk-taking using 

various different types of data (e.g., neuroimaging, laboratory-based cognitive performance, self-

reported risk-taking). Challenges in linking this type of multi-method data have been widely 

discussed in the related literature on individual differences of impulsivity. Here, a number of 

studies have found self-report and laboratory-based cognitive measures to be at best, moderately 

associated (cf., (Gerbing et al., 1987).; see (Lane et al., 2003)(Stevens et al., 2020) for more recent 

discussion). From this work, it has been suggested that self-report and laboratory-based cognitive 

measures may assess distinct aspects of psychological constructs (e.g., impulsivity), each with 

some predictive utility on real-world outcomes (e.g., (Sharma et al., 2014)).  

Based on the current projects’ mixed success, and challenges in the broader neuroimaging 

field with individual difference associations between neuroimaging data and psychological 

variables (see (Marek & Tervo-Clemmens et al., 2020) (Poldrack et al., 2017)), it is worth 

considering optimal strategies for linking multi-method data moving forward. A possibility for 

future work, particularly in the context of the still emerging field of developmental cognitive 

neuroscience, is to find ways to incorporate standardized assessment batteries across studies and 

research groups to improve statistical power. Comprehensive assessments of both self-reported 

risk-taking measures and multiple laboratory-based measures in such standardized batteries would 
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also be essential. Such a strategy would facilitate methodological and theoretical development in 

construct definitions that have been designed with multi-method data in mind and go beyond 

heuristics and conceptual similarity.   

6.9 Design Strengths and Limitations 

This project was characterized by a number of strengths, including a first-of-its kind 

longitudinal PET design in normative subjects, the use of multiple field-standard risk-taking 

propensity measures, and the testing of integrative psychobiological mechanisms of risk-taking. 

However, it is worth noting a few key limitations. First, although a portion of this project utilized 

a fairly large accelerated longitudinal neuroimaging sample size and added a second sample to 

improve statistical power, some analyses relied on smaller subsamples and the effective statistical 

power of typical neuroimaging studies is an area of active debate (see Marek & Tervo-Clemmens 

et al., 2020). Despite the limited sample size, we highlight the strength of the current analyses 

given their theorized role linking striatal DA and risk-taking in the extant literature and that the 

included sample size is significantly larger or equivalent to prior high impact publications utilizing 

these measures (e.g., developmental changes in the decision-making task (N=80)(Decker et al., 

2016);  links between the decision-making task and striatal DA (Deserno et al., 2015)(N=29)). 

Moreover, we suggest even non-significant results from these analyses are essential to the 

literature, with reported effect sizes critically guiding future research in this area.  

An additional potential limitation of the current analyses was that not all analyses contained 

longitudinal data and even those that did relied on an accelerated longitudinal design. Although 

this design has the advantage of incorporating both within- and between subject estimates of age-
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related change in developmental studies, within-subject estimates are, in part, constrained by 

participants’ starting ages. For example, those subjects who enter the study at 25-years-old, when 

the majority of normative brain development has occurred, likely have limited within-subject 

change that is driven by developmental processes. While the current analyses incorporated all 

available data (see Modeling Overview), we note further longitudinal research using cohort 

designs will be required to fully characterize within-subject processes (e.g., temporal precedence) 

among these constructs.  

Finally, this project excluded subjects with a reported history of a psychiatric disorder, 

either in themselves, or in a first-degree relative. Given that risk-taking behaviors are exaggerated 

in certain forms of psychopathology (e.g., impulse control disorders), this exclusion criteria may 

have limited the ability of the reported results to characterize the highest end of the population 

distribution of risk-taking behaviors. However, we highlight that this approach provides an 

essential focus on normative adolescent processes, which are critical to understand from both a 

more basic developmental neuroscience perspective and for informing models of the emergence 

of psychopathology during this period.  
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7.0 Conclusion & Implications 

Seeking to address the gap between prior neuroimaging studies and foundational 

neurodevelopmental models, we leveraged a first-of-its-kind longitudinal neuroimaging dataset 

that collected direct and indirect measures of striatal DA to test an integrative psychobiological 

model of adolescent risk-taking. Across three aims, we found mixed support for the integrative 

model linking neurobiological, computational, and circuit dynamics underlying adolescent risk-

taking. Consistent with prior work, significant developmental changes were found in risk-taking 

propensity measures (age-related decreases), in iron-based, indirect measures of striatal DA (age-

related increases), and in model-based learning during the decision-making task (age-related 

increases). We also provide an exploratory novel characterization of repetitive responding that is 

associated with tissue iron. However, associations between individual differences in self-report 

measures of risk-taking propensity and both direct (PET) and indirect, tissue iron based (taT2*) 

striatal DA measures and resting-state connectivity were small in magnitude and largely not 

statistically significant.  Results from this study can inform future work seeking to test foundational 

neurodevelopmental theory in humans, which is essential to understanding and developing 

interventions for substance use disorders, sexually transmitted diseases, and fatal accidents that 

emerge during adolescence.  
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Appendix A Validation of Tissue Iron Measure 

In order to validate the tissue iron measure used in the current project, which again we note 

was estimated from standard functional neuroimaging data as opposed to specialized iron scans 

(see Methods), we examined the association between this measure taT2* and the same PET-based 

striatal dopamine measure (DTBZ) our group recently showed (Larsen et al., 2020) was associated 

with tissue iron. Using the same analytic procedures as the remainder of the project (GAMM 

models; see Modeling Overview), we show that taT2* is significantly associated with DTBZ 

across multiple regions of the striatum, in whole striatum on average, and the pallidum (Appendix 

Figure 1).  

 

Appendix Figure 1 taT2* with DTBZ 

Associations between taT2* (reverse scored for interpretation; see Methods) and PET marker of 

vesicular dopamine, DTBZ, in the caudate (caud), nucleus accumbens (NAcc), pallidum (pall), putamen (put), 

and whole striatum (striatum). Note, *** p < .001, * p < .01 
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Appendix B Striatal and Pallidal Regions of Interest 

 

Appendix Figure 2 Harvard Oxford Striatal and Pallidal Regions of Interest 

 

Striatal regions of interest were chosen based on a priori hypotheses concerning the 

striatum and the pallidum was included given it has the highest striatal tissue iron concentration in 

the brain (see Appendix Figure 3). 

 

Appendix Figure 3 Grand Mean Values of DTBZ, R2’, and taT2* 
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Appendix C Psychometric Analyses 

Sex: Age by biological sex (self-reported Male or Female) interactions in risk-taking 

measures (N=323, 523 total visits, PET + 7T samples) were generally non-significant with the 

exception of the RT-18 (Appendix Figure 4, overlap of 95% CI [shaded area] and estimate [line] 

indicates non-significance, p > .05).  Furthermore, visualization of age-trajectories revealed 

minimal evidence of main effects of sex. Given the minimal evidence of main or interactive effects 

with age, sex was not further examined as a covariate in the current analyses for the sake of 

parsimony. 

 

Appendix Figure 4 Age by Sex Effects in Risk-Taking 

Top row displays smoothed age trajectories (via GAMM; see methods) for male and female 

participants. Bottom row displays difference between male and female estimates (line) and its 95% confidence 

interval. * indicates a significant (p < .05) sex differences were found in the RT-18 by age, as indicated by ages 

where CI of difference estimate does not include zero 
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Longitudinal Stability of Primary Study Measures: Across striatal ROIs, both indirect 

(N=72 with two visits, PET + 7T samples) and DTBZ direct (N=62 with two visits, PET sample) 

striatal DA measures had moderate to good longitudinal stability between study visits (~18 

months)(intraclass correlation coefficients, ICCs: indirect measures: .614-.894, DTBZ direct 

measures: .661-.864). RAC direct PET measures (N=57 with two visits, PET sample) had lower 

stability (ICC’s: .298-.585). Risk-taking (N=119 with two visits, PET) metrics had moderate 

stability (ICCs: .570-.75), except for the BART which had poor stability (ICCs: .387). Consistent 

with prior work (see (Noble et al., 2019) for review), the stability of resting-state connectivity 

(N=66 with two visits, PET sample) was uniformly low (ICC’s < .458).  

Correlation and Factor Structure of Risk-Taking Measures: Pearson correlations among 

risk-taking measures (full cross-sectional sample: N=326 subjects, PET + 7T samples) are 

presented below (Appendix Table 1).  

Appendix Table 1 Pearson Correlations Among Risk-Taking Measures 

 BART RT18 upps_urg upps_pers upps_pre 

RT18 -0.051     

upps_urg -0.032 0.434    

upps_pers 0.012 0.015 0.321   

upps_pre 0.058 0.164 0.231 0.503  

upps_ss -0.052 0.592 0.309 -0.097 0.200 

 

In order to examine potential structure among the correlations among these measures, an 

exploratory factor analysis (oblique rotation: goemin) was used with the full cross-sectional risk-

taking sample (N=326 subjects, PET + 7T samples) and the number of factors extracted (two 

factors extracted) determined through a parallel analysis of simulated data of the same size. Factor 
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loadings (Appendix Figure 5) support a potential distinction between more affect-related risk-

taking focused measures (RT-18 and UPPS Sensation Seeking) compared to more cognitive-based 

impulsivity-related measures (UPSS Lack of Perseverance and Lack of Premeditation). 

Interestingly, the BART did not have a large loading on either factor, which is likely explained by 

its low correlation with the other measures and poor reliability/longitudinal stability (see above). 

We note these results were unchanged (including the number of factors and general loading 

structure) when residualizing all variables with respect to age.  

 

Appendix Figure 5 Factor Loadings of Risk-Taking Measures 
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Appendix D Cortical Regions of Interest 

 

Appendix Figure 6 Cortical Regions of Interest from Neurosynth 
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Appendix E Power Analysis 

This project reports “sensitivity” style power analyses, performed prior to the completion 

of data analysis, where we estimated the required effect size necessary to achieve a “statistically 

significant result” for a given , Power, and sample size. Given the complexity of these style of 

sensitivity power analyses for the primary dataset (PET sample), which includes longitudinal data, 

we report the conceptual lower and upper bounds of statistical power. Furthermore, we recognize 

that protocols for a priori power analyses of interaction terms, which propagate error between two 

independent variables, are widely debated and it remains unclear how best to model the shared and 

specific error of each variable to best match an interaction term. To this end, here we report power 

analyses for bivariate relationships only.  

Longitudinal and cross-sectional power analyses for the PET sample were conducted using 

Monte Carlo simulation via custom scripts in R. The advantage of this custom approach is that it 

allowed us to systematically vary key parameters influencing statistical power (e.g., underlying 

effect sizes, subject attrition, intraclass correlation coefficients (ICCs) of study variables) instead 

of relying on the built-in assumptions of many existing cross-sectional (e.g., G*power: (Faul et 

al., 2007)) and longitudinal power analysis protocols (e.g., SIMR: (Green & MacLeod, 2016)). 

Development versions of the functions used for this simulation are available through our groups’ 

R package (Foran & Tervo-Clemmens, 2019: 

github.com/LabNeuroCogDevel/LNCDR/blob/master/R/multilevel_data_sim.R) 

Within each iteration of the simulation (5,000 per parameter combination: see below), 

bivariate multilevel data was simulated by first generating a multivariate normal distribution 

(means zero, unit variances), corresponding to random intercepts and random slopes of two 
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theoretical variables with the same number of “subjects” as our dataset (N=144). Subsequently 

“data observations” (3 observations per subject, 432 observations total) were created for each of 

the two variables according to linear mixed effects model equations with the following structure:  

 

where  is the observation of subject i at visit j,  is the fixed effect intercept,  is the subject’s 

random intercept, is the fixed effect slope,  is the subject’s random slope, and  is level-

1/measurement error. Attrition, which matched our expected attrition rate for the current study 

(15.27%), was simulated by randomly removing this proportion of observations in each iteration 

(missing completely at random, MCAR). 

Across multiple runs of simulations, the magnitude of correlation between (e.g., intercept-

intercept, intercept-slope, slope-slope) and within the simulated variables (slope-intercept) was 

iteratively manipulated via the correlation structure of the multivariate normal distribution 

generating random intercepts and slopes (see above). To simplify for simulation, univariate fixed 

effects were set to zero, such that each variable had a grand mean of zero ( =0) and the variable 

did not change over visits on average ( ). To provide a general estimate of power to detect 

bivariate relationships, correlations between variables (intercept-intercept, intercept-slope, slope-

slope) were jointly adjusted, ranging from r’s=.1 to r’s=.6, in steps of .05. Realistic small to 

moderate within-variable slope-intercept correlations were tested (r’s=0 to r’s=.3, in steps of .1). 

The variance of level-1/measurement error was also iteratively adjusted such that in an intercept 

(fixed and random) only version of the data generation model (i.e., no fixed or random slopes: 

“unconditional model”), the simulated observations would have intraclass correlation coefficients 

(ICCs) ranging from .6 to .9, in steps of .1, according to the following ICC equation: 
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and solving for the error variance ( ) gives 

 

where  is the variance of random intercepts,  is the level-1/measurement error variance, 

and ICC is the intraclass correlation. Error was added to each observation (see data generation 

model above) by drawing from a normal distribution with mean zero and variance equivalent to 

this computed error variance. Cross-sectional power analyses were performed by randomly 

selecting one visit from the multilevel data and running a simple correlation among the two 

variables.  

Results from the simulation study suggest that under most conditions, bivariate analyses 

using the full sample with longitudinal data would be sufficiently powered (.80) to identify small 

effect sizes associations (between variable correlations < .25) at an alpha of .05 (Appendix Figure 

7A). In the cross-sectional data, the simulation suggests that under most conditions, small to 

moderate effect size associations (correlations < .3) would be required to achieve an alpha of .05 

(Appendix Figure 7B). However, as described in seminal early work (Spearman, 1904), we note 

that lower reliability (here, ICC values) attenuates observed correlations (see Appendix Figure 7C) 

and subsequently reduce statistical power. While prior validation studies have demonstrated high 

ICCs for the utilized risk-taking propensity measures (see above), the ICC values for the 

neuroimaging data are generally unknown. Per the General Statistical Procedures outlined in this 

project, we report all relevant ICC values in the results section.  
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Appendix Figure 7 Power Simulation Results 
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Appendix F Model Results for Links between Striatal DA and Risk-taking 

Appendix Table 2 Model Results for taT2* and Risk-Taking 

ROI Risk-Taking edf Kendall Tau FDR q 

     

caud BART 1.000 0.043 0.970 

caud RT18 1.000 -0.020 0.970 

caud upps_urg 1.000 -0.026 0.970 

caud upps_pers 1.000 -0.057 0.970 

caud upps_pre 1.000 -0.048 0.970 

caud upps_ss 1.000 0.028 0.970 

nacc BART 1.000 -0.069 0.970 

nacc RT18 1.000 -0.015 0.970 

nacc upps_urg 1.000 -0.023 0.970 

nacc upps_pers 1.000 -0.051 0.970 

nacc upps_pre 1.000 -0.080 0.970 

nacc upps_ss 1.000 -0.037 0.970 

striatum BART 1.000 -0.011 0.970 

striatum RT18 1.000 -0.055 0.970 

striatum upps_urg 1.000 -0.083 0.970 

striatum upps_pers 1.000 -0.118 0.970 

striatum upps_pre 1.000 -0.105 0.970 

striatum upps_ss 1.000 -0.003 0.970 

pall BART 1.000 -0.066 0.970 

pall RT18 1.000 -0.027 0.970 

pall upps_urg 1.000 -0.108 0.970 

pall upps_pers 1.000 -0.102 0.970 

pall upps_pre 1.000 -0.111 0.970 

pall upps_ss 1.000 0.020 0.970 

put BART 1.000 -0.023 0.970 

put RT18 1.000 -0.075 0.970 

put upps_urg 1.000 -0.107 0.970 

put upps_pers 1.000 -0.145 0.970 

put upps_pre 1.000 -0.122 0.970 

put upps_ss 1.000 -0.023 0.970 
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Appendix Table 3 Model Results for DTBZ and Risk-Taking 

ROI Risk-Taking edf Kendall Tau FDR q 

     

caud BART 1.000 -0.016 0.997 

caud RT18 1.000 -0.040 0.997 

caud upps_urg 1.000 0.001 0.997 

caud upps_pers 1.000 -0.066 0.997 

caud upps_pre 1.000 -0.024 0.997 

caud upps_ss 1.000 -0.030 0.997 

nacc BART 1.000 -0.084 0.997 

nacc RT18 1.000 0.012 0.997 

nacc upps_urg 1.000 0.042 0.997 

nacc upps_pers 1.000 0.045 0.997 

nacc upps_pre 1.000 0.021 0.997 

nacc upps_ss 1.000 0.009 0.997 

striatum BART 1.000 -0.038 0.997 

striatum RT18 1.000 0.040 0.997 

striatum upps_urg 1.000 0.055 0.997 

striatum upps_pers 1.000 0.009 0.997 

striatum upps_pre 1.000 0.039 0.997 

striatum upps_ss 1.000 0.048 0.997 

pall BART 1.000 -0.033 0.997 

pall RT18 1.000 -0.040 0.997 

pall upps_urg 1.000 -0.014 0.997 

pall upps_pers 1.699 0.043 0.997 

pall upps_pre 1.000 0.010 0.997 

pall upps_ss 1.000 -0.021 0.997 

put BART 1.000 -0.030 0.997 

put RT18 1.000 0.071 0.997 

put upps_urg 1.000 0.087 0.997 

put upps_pers 1.000 0.062 0.997 

put upps_pre 1.000 0.069 0.997 

put upps_ss 1.000 0.078 0.997 
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Appendix Table 4 Model Results for RAC and Risk-Taking 

ROI Risk-Taking edf Kendall Tau FDR q 

     

caud BART 1.000 0.005 0.924 

caud RT18 1.000 0.062 0.924 

caud upps_urg 1.000 0.075 0.924 

caud upps_pers 1.000 -0.057 0.825 

caud upps_pre 1.000 0.161 0.615 

caud upps_ss 1.000 0.059 0.948 

nacc BART 1.000 0.008 0.924 

nacc RT18 1.000 0.015 0.924 

nacc upps_urg 1.000 0.124 0.825 

nacc upps_pers 2.084 0.064 0.615 

nacc upps_pre 1.000 0.248 0.148 

nacc upps_ss 1.000 0.052 0.930 

striatum BART 1.000 0.070 0.959 

striatum RT18 1.000 0.021 0.860 

striatum upps_urg 1.000 0.075 0.924 

striatum upps_pers 1.000 -0.043 0.825 

striatum upps_pre 1.000 0.235 0.259 

striatum upps_ss 1.000 0.040 0.924 

pall BART 1.000 0.035 0.924 

pall RT18 1.000 -0.083 0.924 

pall upps_urg 1.000 0.029 0.790 

pall upps_pers 1.000 0.012 0.924 

pall upps_pre 1.000 0.079 0.615 

pall upps_ss 1.000 -0.048 0.924 

put BART 1.000 0.075 0.924 

put RT18 1.000 0.003 0.615 

put upps_urg 1.000 0.074 0.924 

put upps_pers 1.000 -0.058 0.924 

put upps_pre 1.000 0.217 0.413 

put upps_ss 1.000 0.032 0.924 
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Appendix G Parsing Developmental Changes in Decision-Making Task 

 

Appendix Figure 8 Decision-Making Task Results by Binned Age 

Plotting the proportion of first-stage stays (repeating rocket ship choice: see Figure 2 Main text) as 

function of common and rare transitions and four age bins. The common by rare age interaction that defines 

age-related increases in model-based learning (see Figure 9 Main text) is evident by the relative heights among 

the bars. The main effect age in the proportion of first-stage stays or “repetitive responses” is evident by the 

average height of the bars.  

 

 

 

Appendix Figure 9 Normed First-Stage Stays by Condition and Age 

Plotting the normalized proportion of first-stage stays (normalized by the number of trials in each 

condition to equate across conditions), reveals that significant simple effects of age (p’s < .01) are evident in all 

trial conditions. This is epitomized in trials common trials where adults are not rewarded and model-based 

learning would predict a switch, but they continue to have more first-stage stays than adolescents. We have 

interpreted these repetitive responses in the context of age-related changes in habitual responding (see Main 

text). 
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Appendix H Model Results for Links between Striatal DA and Decision-Making 

Appendix Table 5 Model Results for taT2* and Decision-Making 

ROI Decision-

Making edf Kendall Tau FDR q 

     

caud model based 1.000 0.063 0.392 

caud 

repetitive 

responses 1.000 0.094 0.296 

nacc model based 6.756 0.114 0.105 

nacc 

repetitive 

responses 7.145 0.167 0.105 

striatum model based 2.602 0.174 0.194 

striatum 

repetitive 

responses 1.559 0.203 0.152 

pall model based 1.000 0.155 0.168 

pall 

repetitive 

responses 1.000 0.146 0.475 

put model based 4.609 0.175 0.194 

put 

repetitive 

responses 1.696 0.214 0.105 
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Appendix Table 6 Model Results for DTBZ and Decision-Making 

ROI Decision-

Making edf Kendall Tau FDR q 

     

caud model based 1.000 -0.147 0.854 

caud 

repetitive 

responses 1.000 -0.206 0.707 

nacc model based 1.000 -0.029 0.964 

nacc 

repetitive 

responses 1.000 0.206 0.531 

striatum model based 1.000 -0.074 0.707 

striatum 

repetitive 

responses 5.002 0.044 0.551 

pall model based 1.000 0.083 0.964 

pall 

repetitive 

responses 5.192 0.217 0.707 

put model based 1.000 -0.059 0.707 

put 

repetitive 

responses 3.628 0.147 0.531 
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Appendix Table 7 Model Results for RAC and Decision-Making 

ROI Decision-

Making edf Kendall Tau FDR q 

     

caud model based 2.241 -0.034 0.296 

caud 

repetitive 

responses 2.129 -0.048 0.521 

nacc model based 1.120 -0.202 0.296 

nacc 

repetitive 

responses 1.221 0.020 0.870 

striatum model based 3.016 -0.154 0.365 

striatum 

repetitive 

responses 1.000 -0.071 0.576 

pall model based 2.795 -0.007 0.576 

pall 

repetitive 

responses 4.316 0.255 0.296 

put model based 1.000 -0.099 0.576 

put 

repetitive 

responses 4.539 -0.071 0.576 
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Appendix I Model Results for Links between Striatal DA and Frontostriatal Connectivity 

Appendix Table 8 Model Results for taT2* and Frontostriatal Connectivity 

Connection edf Kendall Tau FDR q 

    

dlpfc_put 1.000 0.028 0.743 

nacc_put 1.000 0.087 0.043 

caud_put 1.000 0.027 0.352 

pall_put 1.000 0.101 0.043 

put_vmpfc 1.000 -0.009 0.743 

put_sma 1.000 0.036 0.743 

caud_dlpfc 1.000 0.022 0.743 

caud_nacc 1.000 0.109 0.018 

caud_pall 1.000 0.064 0.139 

caud_vmpfc 1.000 -0.039 0.743 

caud_sma 1.000 0.004 0.824 

dlpfc_nacc 1.000 -0.021 0.764 

nacc_pall 1.000 0.064 0.043 

nacc_vmpfc 1.000 0.120 0.043 

nacc_sma 1.000 0.016 0.352 

dlpfc_pall 1.000 0.068 0.214 

pall_vmpfc 1.000 -0.001 0.987 

pall_sma 1.000 0.077 0.069 

dlpfc_vmpfc 1.000 -0.006 0.743 

dlpfc_sma 1.000 0.061 0.377 

sma_vmpfc 1.000 0.024 0.428 
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Appendix Table 9 Model Results for DTBZ and Frontostriatal Connectivity 

Connection edf Kendall Tau FDR q 

    

dlpfc_put 1.000 0.015 0.805 

nacc_put 1.000 -0.030 0.805 

caud_put 1.000 0.056 0.788 

pall_put 1.000 0.028 0.788 

put_vmpfc 1.000 0.022 0.805 

put_sma 1.000 -0.006 0.805 

caud_dlpfc 1.000 0.016 0.970 

caud_nacc 1.000 -0.024 0.970 

caud_pall 1.000 0.062 0.788 

caud_vmpfc 1.000 0.027 0.805 

caud_sma 1.000 -0.090 0.632 

dlpfc_nacc 1.000 -0.036 0.788 

nacc_pall 1.000 0.046 0.788 

nacc_vmpfc 1.000 -0.157 0.404 

nacc_sma 1.000 -0.001 0.805 

dlpfc_pall 1.000 -0.042 0.805 

pall_vmpfc 1.000 0.086 0.788 

pall_sma 1.000 -0.020 0.788 

dlpfc_vmpfc 1.000 0.163 0.128 

dlpfc_sma 1.000 0.033 0.805 

sma_vmpfc 1.000 0.070 0.788 
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Appendix Table 10 Model Results for RAC and Frontostriatal Connectivity 

 

Connection edf Kendall Tau FDR q 

    

dlpfc_put 1.000 -0.074 0.484 

nacc_put 1.000 -0.035 0.764 

caud_put 1.000 -0.103 0.545 

pall_put 1.000 0.041 0.931 

put_vmpfc 1.000 -0.099 0.447 

put_sma 1.000 -0.024 0.581 

caud_dlpfc 1.000 -0.065 0.545 

caud_nacc 1.000 -0.032 0.764 

caud_pall 1.000 -0.009 0.931 

caud_vmpfc 1.000 -0.083 0.447 

caud_sma 1.000 0.022 0.764 

dlpfc_nacc 1.000 0.004 0.764 

nacc_pall 1.000 0.018 0.993 

nacc_vmpfc 1.000 0.057 0.931 

nacc_sma 1.000 -0.017 0.764 

dlpfc_pall 1.000 -0.014 0.764 

pall_vmpfc 1.000 -0.025 0.764 

pall_sma 1.000 -0.053 0.447 

dlpfc_vmpfc 1.000 0.054 0.598 

dlpfc_sma 1.000 0.024 0.764 

sma_vmpfc 1.000 0.077 0.675 
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