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Abstract 

Optical Distributed Sensing: Reel-to-Reel Fabrication of quasi-distributed FBGs for 

Improved scattering signal and enhanced harsh environment stability  

 

Shuda Zhong, M.S. 

 

University of Pittsburgh, 2021 

 

 

 

 

Bragg gratings inscribed in optical fiber are key components for both multiplexable and 

distributed optical sensing. Comparing with other sensor devices, Bragg grating based fiber 

sensors offer a number of advantages include low manufacturing cost, immunity to 

electromagnetic fields (IMFs), long lifetimes, high sensitivity, multiplexing, and environmental 

ruggedness. Bragg grating based fiber sensor arrays have been used extensive to perform structural 

health monitoring for large civil and mechanic structures. To perform high spatial resolution 

measurements on large structures, thousands of grating devices need to be multiplexed on a single 

fiber.   

In this thesis, a fully automated reel-to-reel fiber handling system is designed and 

integrated into a KrF 248-nm excimer laser, enabling continuous Bragg grating fabrication using 

a phase mask approach. Through the control of fiber tension and spooling speed, grating sensor 

can be inscribed continuously at desired locations within 5-mm accuracy. One hundred fifty evenly 

spaced FBGs have been successfully inscribed in a single fiber with 3-cm spacing, spectral and 

spatial characteristics of these fiber sensors are characterized using an Optical Backscatter 

Reflectometry (OBR). The spectral accuracy was within 0.5-nm of the designed grating 

wavelength, which are sufficient for both optical time domain reflectometry and optical frequency 

domain reflectometry interrogation. The successful development of this fully automated grating 

fabrication system enable development of fiber sensing cables for a wide array of applications.   
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1.0 Introduction  

In this section, we will present the background and motivation in Section 1.1, the thesis 

contribution in Section 1.2, and thesis outline in Section 1.3. 

1.1 Background and Motivation  

Rayleigh-based distributed optical fiber sensors (DOFSs) have attracted tremendous 

attention due to their capability of detecting changes in strain, acoustics, temperature, pressure, 

corrosion, relative humidity, viscosity, chemical concentration, radiation, and a host of other 

measurands. These sensors have the most prominent potential in applications of structural health 

monitoring such as oil and gas pipelines leakage monitoring, down-hole sensing in oil wells, and 

for intrusion detection., etc.  

In distributed optical fiber sensing based on Rayleigh scattering, coherent laser pulses are 

sent along the optical fiber, and the optical fiber act as a distributed interferometer as a result of 

Rayleigh scattering along the optical fiber, and a gauge length approximately equal to the pulse 

length can be observed. After the laser pulse is sent to the optical fiber, the intensity of the reflected 

light will be measured as a function of time. Therefore, perturbation of a certain section of fiber 

will induce changes in the reflected intensity of successive pluses from the corresponding region 

of fiber. However, the resolution and sensitivity of DOFS are restricted in conventional optical 

fibers due to low Rayleigh scattering intensity.  
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To solve the low Rayleigh scattering problem, different methods have been studied. One 

approach is via improving the capture efficiency for backscattered light from more numerical 

aperture (NA) of the fiber. However, in the actual design space of single-mode fiber, the increase 

in capture efficiency is less than 2 dB. Another method is to add scattering particles, but more 

scattering particles usually increases the fiber attenuation. One approach to increase the optical 

backscattering involves laser processing of optical fiber. Exposing optical fibers to pulsed radiation 

is well known to increase Rayleigh scattering. Backscattering can be further increased by forming 

periodic or quasi-periodic Bragg gratings. The Bragg grating can be inscribed along a fiber of great 

lengths while the attenuation of the fiber does not significantly increase.  

To fabricate periodic gratings over a long length of optical fiber, one method is to expose 

the optical fiber to the UV light while fiber is drawing, and coating is applied after the UV 

exposure, but this method has problem aligning the fiber with the laser system while the fiber is 

drawing, particularly the vibration from drawing process is inevitable. Another approach is to 

firstly remove the coating, then expose the fiber to UV light, finally recoating the fiber for 

protection. However, this method would cause waste for original fiber coating, furthermore, the 

glass surface of the fiber might be damaged by the coating removal process, causing fiber 

reliability issues. Improvements in the above aspects are desirable. Therefore, the present approach 

has developed a small-diameter single-mode optical fiber with grating and its forming process. 

The fabrication of periodic or quasi-periodic Bragg gratings over a long length of optical 

fiber requires higher standard and more labor when compared to traditional single point sensors 

fabrications. The limitation on manual fabrication of quasi-distributed FBGs lies in precision, 

speed, and distance.   
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In general, a single FBG point sensor can be fabricated by a UV laser using a phase mask 

as shown in the Figure 1, or a femtosecond laser via point-by-point procedure to form the desired 

grating profile into the fiber. 

The phase mask is made of a silicon glass plate, which is transparent to UV rays. On one 

of the planes, photolithography is used to etch a one-dimensional periodic surface relief structure, 

causing transparent and opaque regions. The shape of the periodic pattern is approximately a 

square wave in profile. To fabricate Bragg gratings using a UV laser with a phase mask, the optical 

fiber is placed almost in contact with the profile of the phase mask. When the optical fiber is 

exposed to light through the phase mask, the photosensitive effect causes the fiber core to produce 

a periodic grating structure which changes the refractive index of the core. To use a femtosecond 

laser to fabricate Bragg gratings, first, the femtosecond pulsed laser is focused on the fiber core 

through the polyimide coating and the fiber cladding, and then uniformly spaced lines are carved 

on the core and cladding using a plane-by-plane method. 

No matter which methods is used to fabricate an FBG, the fiber needs to be precisely 

aligned to meet the laser pulse. To inscribe the FBG to the fiber successfully, the fiber needs to be 

within the working range of the laser, which could be as small as a quarter of the diameter of fiber 

core.  Apart from that, the tension of the fiber needs to be in constant during the photo imprinting 

process since the FBG reflective wavelength will be shifted if the tension is changed. Furthermore, 

it is cumbersome to fabricate FBGs manually while ensure each sensing point is evenly distributed, 

meanwhile, handling and fixing the fiber to the laser targeting position reduce the speed of 

fabrication significantly and would break the fiber because it is fragile, and the number of FBGs 

that can be inscribed along one optical fiber is limited by manual fabrication because as the length 
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of fiber increase, the collection and handling of fiber would be more vulnerable to bending and 

breaking off.  

 

Figure 1 . Grating profile fabrication process 

1.2 Thesis Contribution  

In this thesis, two major works are done regarding the fabrication and testing of quasi-

distributed FBG sensors: One aims at developing a reel-to-reel system that significantly improve 

the efficiency and accuracy of quasi-distributed FBG sensors fabrication using the small diameter 

single-mode optical fiber in [1], while the other focuses on testing the fabricated sensor via OBR.  

Firstly, to address the problem lies in manual fabrication of quasi-distributed fiber sensors, 

a fully automated reel-to-reel system is designed and integrated into the laser system, allowing 

evenly spaced gratings to be inscribed continuously along an optical fiber. The system consists of 

two motors, fiber guidance, alignment and supports, two spools for fiber feeding and collection, 

and a control center (computer). The speed and distance are controllable via LabVIEW. 
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Meanwhile, to attain stable tension, the motor is controlled to have steady acceleration and 

deceleration to overcome the effect of momentum. The reel-to-reel system is tested and 150 FBGs 

are inscribed along a single fiber using this system. Total time consumed is less than an hour, 

therefore, the speed limitations of manual fabrication is removed. Since two large spools are used 

for fiber feeding and collection, the length of the fiber does not affect the handling risk of breaking 

off the fiber, the distance limit is also transcended.  

Furthermore, the samples fabricated by the reel-to-reel system is then scanned by OBR, the 

results indicate each FBG are spaced evenly with three centimeters, and their Bragg waveforms 

are very closed, which proves that the precision limitations of manual fabrication is also overcame.  

 

1.3 Thesis Outline 

This thesis consists of five chapters and is organized as follows:   

Chapter 1 states the background, motivation, and contributions of this thesis.   

Chapter 2 describes the basic techniques for fiber optic sensor fabrication, their 

characteristics, and the fundamental properties of fiber gratings, A focus is given on FBG and 

quasi-distributed FBG where fundamental theory, working principles and limitations are 

discussed.   

Chapter 3 proposes the design of a fully automated reel-to-reel system to solve the problem 

inherent in manual fabrication of FBGs. The components layout, control algorithms, fabrication 

process and results are provided and the goal of fabricating an extended quasi-distributed FBGs is 

achieved.   
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Chapter 4 concludes all the work in this thesis and proposes possible approaches to improve 

performance and further applications of the reel-to-reel for future research. 
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2.0 Fiber Bragg Grating  

In this section, we will present the fiber optic sensors’ working principle and basic 

composition in Section 2.1, the principle of fiber Bragg gratings in Section 2.2, FBG technology 

in Section 2.3, and the interrogation techniques and multiplexing for quasi-distributed FBGs in 

Section 2.4. 

2.1 Optical Fiber Sensors  

In the past few decades, extensive research in the fields of optoelectronics and optical fiber 

communications has increased dramatically. As a result, applications were initially concentrated 

on military and aerospace equipment, and later on heritage culture [2], medical health monitoring 

[3], [4], and various engineering fields [5-8].  More recently, devices like laser printers, small 

volume disc-players, and laser Pointers, barcode scanners have been brought by the 

optoelectronics industry. More stable and higher performance telecommunication links with 

reducing bandwidth cost have been provided by the fiber optic communication industry, 

particularly the advancement in both fiber optical communication and optoelectronics were applied 

in the broad study of optic sensor (FOS) technology. The development and subsequent mass 

production of components in FOS technology has been in turn applied in these industries [9], [10]. 

Joint developments optimize the components with lower prices and replace conventional electrical 

sensing device for acceleration, rotating movement, temperature, corrosion, compression force, 
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acoustics, crack formation, vibration, linear and angular position, humidity, strain, chemical 

material measurements, viscosity, and many other sensing deployments[11].  

Generally, ‘A-to-E’ characteristics are required for a effective and reliable sensory 

technology which can used in a high-performance monitoring system as listed follow:  (A)ccuracy: 

sensor is expected to be stably accurate; (B)enefit: sensor is expected to be competitive in 

commercial price with acceptable cost; (C)ompact: the size of the sensor is expected to be small, 

especially for embedment application; (D)urable: sensor is expected to have a long service life; 

and (E)asy: straightforward to handle with the time it takes to retrieve the sensing information 

should be as fast as almost at the same time [12]. Therefore, the optical fiber sensors features 

adequately meets these requirements that the FOS can be used intrinsically or extrinsically depends 

on applications.  

Inherent optical sensors use optical fibers directly as sensing materials and as a way to transmit 

optical signals that interfere with environmental data. The light would be contained in the optical 

fiber and conduct sensing function, in this case, other than at the detecting end of the sensor. While 

as for external sensors, the optical fiber is directly applied to be a light carrying device that goes 

to and from the optical sensor head location. Externally located, the sensor head typically uses 

optical elements, and is required to modulate the characteristics of light changes induced by the 

physical disturbance of the target in the environment. Inherent fiber optic sensor are more 

appealing and have been extensively studied, because compared with the external, this solution 

has many advantages, for example, the fiber sensor head design adaptability and their inner fiber 

characteristics [13].  

The signal transmission method and main carrier in optical fibers (OFs) are photons, which 

hold no electrical charges, and therefore is unbiased in electrical field. A photons has no mass  in 
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while no moving. Compared with electrons, in movement, their weight is close to zero. In wires, 

electrons need to receive a voltage as a pushing to transcend the initial momentum and thus can 

moves, when electrons flows, it forms current in the wire, generating heat. In addition, the 

magnetic field generated by the electron flow exceeds the wire boundary. Such fields interfere 

with the current in other conductors within the field, and unwanted current might be generated in 

the conductors according to Faraday’s theory. The field generated by the current might be 

undesired that causing crosstalk among the conductors, resulting in interference in sensor 

performance. In addition, the conducting wires would draw flashing spark that render equipment 

failure inoperative [14] or the sensor reverses in the presence of other factors. 

However, with the application of the FOS system, photons have none of these conditions. 

Photon even generate no electrical or electromagnetic fields within one optical fibre, therefore,  it 

can dramatically removing the cross-talk. Unlike two adjacent electrons traveling in the same wire, 

there is no interaction between two adjacent photons traveling in the same fiber. As a result, 

multiple conductors is not able to combine and form to one conductor to prevent the electron from 

being repelled because of electrons’ universal charge. In contrast, the combination of an extremely 

huge amount of information into one optical fiber is possible, this configuration names 

multiplication. Because the fiber does not carry any electrical signals, it is safer in harsh 

environments such as those containing explosive gases or fuels. Size and weight may not be 

essential in certain applications, but they can be crucial in others, and reducing them can be very 

useful [15], [16].   

A fiber is basically a glass or plastic solid string that carries light along its length. Fiber 

sensors are sensitive to any factor that alters the frequency, polarization, intensity, or light phase 

that passes across the fiber. The feasibility to investigate multiple sensing elements multiplexable 
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[17-20] within one fiber makes it possible to equip a whole structure by using the optical sensor 

and controllable quantity of accessing and processing centers. It allows signal to be transmitted 

across greater length with larger band-width comparing with other communication mode. Signals 

travel more efficiently through fibers than through metal wires. Optical fiber is used instead of 

metal wires for signal transmission since it has less signal loss.  

As shown in Figure 2, the basical fiber structure required for the guidance of the light wave 

has a core surrounded by cladding. The total internal reflection of pulse that occurs at the region 

of interface between cladding and core is used to propagate light down an OF. The cladding's lower 

refractive index refracts light, which keeps it contained in the fiber. Figure 2 shows a cross-section 

of a typical OF. OFs are fiber strands made up of cores and cladding of distinct refractive indices. 

The refractive index of the cladding of an OF is lower than that of the core, so that light propagates 

down the core instead of escaping. When light travels through the medium at a specific angle of 

incidence, total internal reflection occurs. The propagation of light within an OF is represented in 

Figure 2, where θa, θb and θc are distinct propagation angles. The reflecting pulse with angle θb 

flows approximately around core-cladding interface. Between the refracted light path and the 

regular light path, a 90-degree angle is created. When the incident angle of light is larger than the 

critical angle, the light is reflected into the core which enable the pulse to pass into the fiber core 

and is confined by the fiber cladding [21]. 
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Figure 2. Fiber structure and light propagation process 

2.2 Optical Fiber Grating  

Fiber gratings [22] are periodic perturbation of the core refractive index of an optical fiber. 

These sensors can be categorized into two groups based on the grating period (Λ): If Λ is on the 

order of m, it is Fiber Bragg Grating (FBG); if Λ is several hundreds of m, it is Long Period Grating 

(LPG). Imprinting different grating profiles is possible owing to phase masking. The pulse passes 

through the gratings is heavily influenced by grating profiles. Because the grated profile 

configuration located in the OF core has such a large impact on light wavelength modulation, the 

performance of various grating profiles in sensing has been considered and studied. The illustration 

of each grating profile is shown in Table 1. 
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Table 1. Various grating profiles 

 

Their operation uses the interaction of a core transmission mode with different core or 

cladding modes. [23] specifies phase-matching condition that must be met as follow:   

Δβ =
2𝜋

Λ
m (2.1) 

where the subtraction of the involved modes’ propagation indexes is denoted by the letter Δβ =

β1 − β2. The integer m is referred to as the mode order, m = 1 otherwise the waveguide support 

more than one mode of propagation. This coupling is manifested in the transmission spectrum by 

the existence impedance spikes, the locations of which is determined by grating characteristics as 

well as external factors such as temperature and strain. We can conclude from these considerations 

that the fiber grating sensors are based on a wavelength, or frequency, measurement. 

In an optical fiber’s core, a fiber Bragg grating [24] pairs forward-propagating light from 

a backward-propagating light mode. Therefore, β2 = −β1 and Δβ = 2β1, as a result, a length Λ is 

obtained in the order of micrometers [23]. The coupling takes place at a set of wavelengths known 

as Bragg wavelengths, which are defined as [25].  

 

λBragg = 2 𝑛𝑒𝑓𝑓 Λ (2.2) 
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where 𝑛𝑒𝑓𝑓 is the propagating core mode's effective refractive index. As shown in Figure 3, the 

propagation or mirrored spectrometry of an FBG show a narrow plunge or spike focused on λBragg. 

 

 

Figure 3. Spectra of an FBG 

 

A Long Period Grating (LPG) allows to pair transmitting core mode light to a separated 

co-propagating cladding modes light of ordered equals to n. Δβ is negligible since β2 =  β(n) >

0. As a result, the period Λ is of magnitude of hundreds of micrometers [23] [26]. The grating’s 

propagation spectrum consists of a collection of impedance bands because of the quickly 

attenuated cladding modes. Each band is corresponding to a distinct cladding mode coupling that 

focuses at a spectral range described by [26]: 

 

λ(𝑛) = 𝛿𝑛𝑒𝑓𝑓
 Λ (2.3) 

where 𝛿𝑛𝑒𝑓𝑓
 is the difference between 𝑛𝑒𝑓𝑓  and 𝑛𝑐𝑙𝑎𝑑

(𝑛)
, 𝑛𝑒𝑓𝑓  and are propagating core mode’s 

refractive indices and  𝑛𝑐𝑙𝑎𝑑
(𝑛)

 cladding mode’s refractive indices. The impedance group spectral 

range is affected by a couple of exterior factors, including strain, temperature, and the diffraction 

coefficient of the center around cladding [27] [23].  
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In an apodized FBG, the profiles of gratings are not imprinted in a uniform manner. 

Modifying grated profile strength to realize more steady transitions among gratings is what this 

entails. Apodized gratings are nonuniformly modulated core gratings. Apodized grated 

configuration is used for eliminating aside lobe in the spectral measurement [28]. In order to 

increase the spectrum's side lobe suppression ratio (SLSR), various apodization profiles have been 

investigated. Gaussian, Nuttal, and chirped apodization are examples of these profiles. In a 

research that uses a di-ureasil coating for humidity measurement, apodized grated profile with a 

Gaussian profile were used [29].  

Via changing periodical profile in the refraction indices, FBG (CFBG) chirped gratings can 

be created [30]. Because the periodicity of the grating varies, CFBG reflects different spectra. The 

linear increase in FBG frequency alternation across the grated profile allows for wider spectral 

measurement compared with that of the conventional Bragg gratings [30]. An experiment 

involving utilization of chirped FBG for pressure-monitor system was recently published [31]. For 

gas-pressure monitor, chirped FBG is attached with rubbers, and then attach to a plate. The chirped 

FBG observed a comparatively excellent accuracy of -267.7 pm/kPa inside a detection spectrum 

of 0-10 kPa. The linear relationship of comparatively excellent accuracy pressure gauge is 97.93 

percent, and smaller compared to that of metallic diaphragm and pressure gauge  with 99.99 

percent. The research shows that chirped FBG can be used as sensing element for low pressure, 

high sensitivity performance.  

Tilted grating is a grated profile that is investigated most recently. In contrast to uniform 

or apodized gratings, the modulation of refraction indices has an oriented angle[32]. Tilted gratings 

are caused by a change in the refractive index of the fibre core when the grating plane and the fibre 

cross-section are tilted at an angle. Mode coupling becomes more complex as a result [33]. Tilted 
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gratings have been used for the development of gas composition sensors [34]. Researches found 

that ethanol and gasoline solutions could be detected successfully. 

2.3 FBG Technology  

As previously stated, a fiber Bragg grating is formed by an intense light interference pattern 

causing a regular modification of the reflectance coefficient in the fiber core. A little quantity of 

light guided along the fiber core is reflected at each different reflectance coefficient, and all of the 

reflections add up coherently at well-defined wavelengths called Bragg wavelengths, as defined in 

Hill et al. [25] were the first to show how permanent grating can be formed. They used 488 nm 

laser to excite a germania-doped optical fiber, and observed that the reflected light intensity raised  

over time, till nearly the total light was reflected back from the fiber. Photosensitivity, a non linear 

effect that realize the amplification of fiber core reflection coefficient using extensive laser pulse 

radiation to exposure and imprint the fiber, was used to explain the increase in back reflected light. 

A fiber Bragg grating was created in this early experiment when a little quantity of laser pulse 

mirrored back from the optical fiber's final interfered with the intense laser pulse to create a 

periodic pattern. When deliberate interference results in a optimum of laser pulse magnitude, the 

index of refraction increases to a greater extent. The reflected light becomes more intense as the 

grating's strength, which is correlated to the extent of its coefficient modulation, improves until it 

saturates.  

The phase mask technique [35], which was successively introduced in 1993, largely 

replaced the fiber Bragg gratings imprinting approach. A phase mask is a shallow periodic 

rectangular wave structure with transparent and opaque regions that are etched into a thin slab of 
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silica glass using photolithographic techniques. The phase mask has a principle aim to separate the 

laser pulse to different orders of diffraction, namely 0, +1, and -1, one reason behind this goal is 

that the phase mask is made by silica which is translucent to UV light. Zero-order diffraction is 

suppressed by carefully controlling the phase mask’s ridge deepness, allowing the order of 

positive/negative one of the diffraction laser pulse to meet the requirement for the production of 

the intense wave laser pulse that pass through the optical fiber core and thus can be used for 

inscription of Bragg gratings. The phase mask period will be half of the photon imprinted index 

grating pariod. The grating period is not affected by the wavelength of the writing radiation.  

Several research teams were concerned with the development and creation of novel grating 

techniques using more complicated reflection coefficient modulation characteristics in the mid-

1990s. as a result of technological assessment. 

Chirped FBGs, apodized FBGs, phase shift FBGs, tilted FBGs, and long period fiber 

gratings are some examples [36] [37].  The industrial transformation took place in the middle of 

1990s, spurred by telecommunications demands and the explosion of the communications balloon, 

a massive increase is seen in the corporations and research organizations involved in the optical 

fiber grating development, manufacturing, distribution, and deployment. In 1995, 3M, 

Photonetics, and Bragg Photonics were the first companies to commercialize FBGs. Many industry 

players made a significant shift from telecommunications to sensor industry shortly after 

telecommunications bubble burst. At the time, continuing to exploit the technical and 

manufacturing infrastructure was a wise and tactical decision in the segment of FBG industrial. 

The majority of optical sensing industry focused on discontinuous, singular sensor of particular 

specifications like temperature and strain, utilizing sensing system of concealed or packed 

gratings, as FBGs transitioned from telecommunications system to sensor components. lateral 
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radiation of interferometric methods or phase masks were commonly used to create these early 

gratings. Initially, the manufacturing procedures of these FBGs depends massively on manual 

labor, dramatically restricting the gratings' crucial characteristics and functionality 

regarding fabrication capability, reproducibility, structural durability and the amount of FBGs that 

can be written on a continuous fiber. Various experiments have been conducted in the development 

of opto-electronic elements capable of demodulating FBG-based sensors as a result of the growing 

interest in FBG sensing technology. The sensor industry, on the other hand, is significantly more 

cost-conscious, necessitating different sensor points and increased structural stability. The 

capability to manufacture a series of various FBGs at various regions of an optical fiber is also 

required. To meet these demands, increasingly advanced on-fly reel-to-reel manufacturing 

procedures and technologies are being designed, enabling the inprinting of intricate FBG rows 

onto an optical fiber. [38] [39]. 

External factors have an impact on the FBG reaction. Moreover, every alteration in grating 

structure or the reflective index, like temperature or strain , changes the Bragg spectrum, rendering 

the FBG an excellent intrinsic sensing element for wavelength-encoded data that is unaffected by 

the amplitude of signal [25]. If the grating has a force DF subjected, the sensing data changes in 

consistence with the equation below: 

Δ𝜆𝐵𝑟𝑎𝑔𝑔

𝜆𝐵𝑟𝑎𝑔𝑔
= (1 +

1

𝑛𝑒𝑓𝑓

𝛿𝑛𝑒𝑓𝑓

𝛿𝑆
 ) (

1

Λ

𝛿Λ

𝛿𝐹
) ΔF (2.4) 

where S stands for strain. For a grating with a wavelength of 1300 nm, a typical responsiveness to 

stretched lateral stress is 1 nm per millistrain [40]. When DT varies in temperature, the grating's 

central wavelength shifts according to the relationship: 

Δ𝜆𝐵𝑟𝑎𝑔𝑔

𝜆𝐵𝑟𝑎𝑔𝑔
=

1

𝑛𝑒𝑓𝑓
(

𝛿𝑛𝑒𝑓𝑓

𝛿𝑇
 ) Δ𝑇 +

1

Λ
(

𝛿Λ

𝛿𝑇
) Δ𝑇 (2.5) 
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where 
𝛿𝑛𝑒𝑓𝑓

𝛿𝑇
  is the thermo-optic coefficient, which is around 105/C [41], and 

1

Λ
(

𝛿Λ

𝛿𝑇
) is the thermal 

expansion coefficient, which is around 0.5 106/C at room temperature [42]. 

The thermo-optic effect is primarily responsible for the thermal index of a grating at 1550 

nm, which is around 0.01 nm per C. However, the performance is also dependent on the coating 

of fiber, specifically substance and coverage depth of the coating; moreover, as coverage becomes 

deeper, the saturation tendency increases [43]. When the spike of the grating locates at smaller 

wavelengths, sensitivity of temperature decreases as well [44]. 

2.4 Interrogation Techniques and Multiplexing for Quasi-Distributed FBGs 

The interrogation system, which analyses the back-propagation data of FBGs, is the most 

crucial component of surveillance method regarding both quality and expense[45]. Minimal 

wattage, greater sensitivity, fast responsiveness, compact volume and the ability to carry fast data 

acquisition even in real-time manner are all requirements for FBG interrogation systems. To 

achieve all of these results, FBG sensing system necessitate the use of a costly optics sensor 

interrogator. Because of their high accuracy, Engineers have embraced FBG, making them the 

most popular sensing element for SHM. The FBG sensors' typical resolutions and measurement 

ranges are those required by civil engineering: The thermal working spectrum for stress analysis 

is in about ten me and greater than 200 C, with precision to be 1 e and 0.1 C, which corresponds 

to a spectral precision of around 1 pm. While this spectrum precision can be effortlessly realized 

by costly lab experimental instruments, resolving resolution within this range and compact, packed 

electro optics device that can be functional outside the lab could be more difficult. 
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The FBG interrogation approach chosen is determined by the optic parts method available 

in given utilization. Negative band illustration within telecommunication C bandwidth is the 

easiest approach to interrogate a fiber Bragg sensor series (1530-1565 nm). A one 

dimensional sensing series could be produced in a singular longer optic fibre by imprinting a 

series of FBGs containing distinct and separate Bragg wavelengths or through binding stubs of 

shared optic fibre to distinct FBGs. 

  The wavelength spacing of FBG sensors can be as small as 1 to 2 nanometers, enabling 

at most several dozens of them multiplexable within one C band optical fibre. Every optical fiber 

Gragg grating could located along the optical fiber at any point. Crosstalk causing by numerous 

back-reflective signal and spectrum projection, however, ultimately determines the smallest 

separating distance and the most quantity of FBGs. As a result, the same optical fiber serves as a 

stress sensor array, one multiplexable setup, and a transmissible center all at the same time. This 

allows for multiple point sensing and quasi-distribution sensors to function. The system is fed with 

pulse signal with a broad spectral signal including the wavelength of every Bragg gratings, and 

wavelengths detecting device gets a narrow-band element mirrored from the FBGs. Time-division 

multiplex (TDM) and wave-division multiplex (WDM) are the two most common interrogation 

schemes. TDM systems use a square broad-band light to distinguish between distinct FBGs having 

equal Bragg frequency based on how long it takes by each FBG reflective light gets to the detecting 

device, with closer gratings receiving signals before those from further away. The frequency in 

every signal can be determined by its arrival to the detector. An alternative is by using a high-

speed spectrometer. The requirement for small specular reflection FBGs of the tiny gap within 

them to allow the investigator sufficient period to obtain wavelengths measure are two major 

drawbacks of TDM systems. These drawbacks frequently limit a TDM measurement system's 
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performance and utility. Within the singular fibre various FBGs could be integrated and resolved 

at the same time using a WDM system, as long as the FBGs are distinct in wavelengths. In practice, 

it can be accomplished by combining a broad-band pulses with a spectral measuring device to 

detect, another approach is by combining basic photo-diode detecting device with configurable, 

swept-wavelength pulse power.   
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3.0 Reel to Reel System Design and Working Principle  

In this section, we will present the components and layout of the reel-to-reel system in 

Section 3.1, the control algorithm and sample fabrication process in Section 3.2, and outcome of 

the fabricated sample scanned by OBR in Section 3.3. 

  

3.1 Components and Layout   

To accomplish the objectives, the preferable devices and hardware of the system have been 

evaluated and chosen among several different alternatives available in the market, which would 

generate the most desirable outcome considering the robustness of the system, the fabrication 

speed, accuracy, and cost.  

 

Figure 4. Reel-to-reel system components 
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As shown in Figure 4, the reel-to-reel system consists of two spools Figure 4(a) and Figure 

4(b), the one in Figure 4(a)  as feeder, and the other in Figure 4(b) as receiver, with each has a 

different adaptor, two ferrules are deployed and one of them is shown in Figure 4(c), two pulleys 

and their support structure are applied and one of them is shown in Figure 4(d), an Orientalmotor 

brushless motor of modal BXM230-GFS with gear head GFS2G200 of a reduction gear ratio 200 

: 1, and its driver BXSD30-A are shown in Figure 4(e), a transversal Thorlabs actuator of modal 

ZST225B and its driver TST101 are shown in Figure 4(f), a Thorlabs shutter of modal SH1 and 

its driver KSC101 are shown in Figure 4(g), a phase mask, a timing relay and an NI digital I/O 

device of modal USB-6221 for communication are shown in Figure 4(j), Figure 4(h), and Figure 

4(i), respectively.  

 

 

 

Figure 5. Reel-to-reel system layout 

The overall component layout is shown in Figure 5. Firstly, the fiber sent from the feeding 

spool changes its direction through the pulley, then the fiber is aligned to position of phase mask 

by two ferrules, after the laser inscription, the fiber is transmitted to the receiver spool via the 
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second pulley. However, it is not as straightforward as it seems, to successfully inscribe FBG into 

the fiber core, the tension, the transversal and vertical displacements of the fiber need to be with 

in minimum variation while the fiber is being drew by the motor, if the fiber’s tension is not steady, 

it is likely to cause about 2nm shift in the Bragg wavelength of the fabricated FBG [25]. Moreover, 

if the fiber moves transversally or vertically when being drew, it is likely to cause the fiber core to 

move out of the phase mask target region, resulting in inscription failure. To solve the problems 

of tension and movement variability, the preferable devices and hardware of the system have been 

evaluated and chosen, and the layout of each components are discreetly designed as explained 

below.  

 

First, the ferrules located in both sides of the face mask are crucial to keep the fiber at 

desired location, their structure and cross section view are shown in Figure 6, the fiber used is of 

diameter 125 micrometers, and the ferrule’s bore hole at the right end is 150 micrometers, by 

combining two ferrules, the fiber can be aligned while being drew by the motor with a minimum 

displacement. The ferrules have 60 degrees of angle as indicated in the cross section of Figure 6, 

which is important to keep the fiber from stuck in the ferrule and avoid fiber breaking, enabling 

smooth fiber transmission. To use the ferrule correctly, the fiber needs to be transmitted from the 

left to right, otherwise, the fiber will stuck by the sharp vertical angle and break.  Apart from that, 

the grooves inscribed into the clamping place of the phase mask and the pulleys located near the 

reels are used to guide the fibers from one reel to another and facilitate the alignment and reduce 

vibration and displacement during fiber drawing.  
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Figure 6. Ferrule structure 

The displacement of the fiber is monitored using a camera with amplify capacity of three 

times as shown in Figure 7, the camera is placed above the phase mask and fiber, and the fiber 

begins to be transmitted, meanwhile, the camera is turned on and the real-time footage is shown 

in a 27-inch monitor, with the three times capacity, the result shows no noticeable displacement in 

transversal direction. As for the vertical direction, it is assumed that the probability of vibration 

and displacement is similar to the transversal displacement since the fiber is constrained by 

cylindrical ferrules, thus there is no necessity to monitor the vertical displacement.  
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Figure 7. Top view of the fiber drawing displacement testing monitored by camera 

 

 To ensure steady fiber tension when the fiber is being drew, the feeding reel needs 

resistance when being pulled, which can be realized by adding axial clamping force to the ball 

bearings the drum sits on. The axial clamping force would generate a friction between the drum 

and the adaptor, resulting in opposite force when the drum rotates, and this force is transmitted to 

the fiber in the form of tension. The ball bearing part connecting the adaptor and the reel is crucial, 

it resembles the structure of a classical two-bearing-one-shaft structure, the shaft ends are 

connected to a rigid supporter where the inner ring of the bearing sits on. On the other hand, the 

outer ring of the bearing rotates with the reel as the feeding reel rotates and feeds fiber.  But the 

inner ring of the bearing stays still with the shaft since a screw and two washers are used to clamp 

both the inner rings to create friction, and thus control the tension, which can be adjust manually. 

In addition, the reel needs to always rotate in the same direction with the screw fastening direction, 

otherwise it might be loose due to the friction, causing the assembled reel to collapse and damage 

the phase mask. By applying the mechanism of the tunable axial clamping force, the steady tension 
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of the fiber can be guaranteed, moreover, this design allows the tension to be adjustable using a 

nut.   

To enable stable transmission of the fiber, the receiver reel is connected to the receiver 

motor in a rigid way via a 3D printing flange as shown in Figure 8 with its cross-section view, the 

flange connects the motor shaft to the spool using transition fit and is very tight to ensure the spool 

rotates simultaneously with the motor shaft. Apart from that, to avoid the problem of spool bending 

from the motor shaft by the gravity since the reel is one-end-connected, the other end of the reel 

needs to be supported by a stand which can hold a rotating spool.  

 

 

Figure 8. 3D printing flange with its cross-section view 

 

The receiver motor is applied to pull the fiber of desired length in a suitable speed that the 

fragile fiber does not break, this is the primarily requirement for the motor since the quasi-

distributed FBG array needs to be evenly spaced. The length control is realized by controlling the 

time and speed motor runs, the time control is via the timing relay, and speed control is via the 

Orientalmotor software MEXE02 that can write the desired speed value to the motor driver and 

store it as operational data. In additional to speed, the operational data also includes parameters of 

motor acceleration and deceleration, which are crucial to avoid fiber break at the beginning of fiber 
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pulling, moreover, steady and small deceleration keeps the tension of the fiber constant and reduce 

the effect of the rotating momentums of the system. 

 

If only the receiver motor is used, the circumference of the receiver reel will increase as 

more fiber are rolled in, but the total angle motor runs are constant, thus the length of each segment 

the motor collect increases more and more as the fiber length increase, which would be a problem, 

causing the FBGs cannot distributed evenly along the fiber. To solve the problem, a transverse 

motor is added and works together with the receiver motor to collect the fiber layer-by-layer onto 

the spool. The transverse motor is a Thorlabs linear actuator motor and is controlled by TST101 

controller using kinesis. The transverse motor is used when large amount of fiber needs to be 

collected, to avoid too much fiber overlapping and causing error in the length of each segment. 

say, if 3 meters of fiber is wanted for each segment of sensor region, but the diameter of the spool 

increase as a result of more and more fiber overlap together as the motor rotate same angles for 

each collection, the actual length will be larger, if this error keeps increasing, the sensitized region 

will be more and more sparse. By adding a transversal motor, the error of the fiber length is reduced 

to minimum as the fiber is very thin, and it also expand the capacity of the fabrication to inscribe 

longer sensors in one time. 
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3.2 Control Algorithm and Fabrication Process  

  

The system communication setup is very essential when developing a fully automated 

system with different components.  There were no off-the-shelf answers and needs to build it step 

by step. As shown in Figure 9, the computer is connected NI I/O device via USB protocol to realize 

LabVIEW control, then the timing relay and shutter is connected to the NI I/O device, and the 

receiver motor is then controlled by the timing relay. Meanwhile, the transverse motor is connected 

to the computer via Software Kinesis and can be synchronized with the receiver motor. 

 

Figure 9. Reel-to-reel system communication setup 

To realize fully automated control of the reel-to-reel system, LabVIEW is applied as the 

control center and the code’s algorithm is shown in Figure 11. At the beginning of the fabrication, 

the parameters including the value of motor velocity, acceleration, and deceleration needs to be 

determined and written into the receiver motor’s driver, the driver will store the data as operational 

data, and a circuitry, as shown in Figure 10,  is connected to the I/O channel of the driver to select 

a specific set of operational data, then the parameters including the motor ON time, shutter ON 
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time, and total iterations needs to be determined and set in LabView. After the parameters has been 

encoded, the communication between PC and other I/O device needs to be connected, and the 

shutter needs to be in triggered mode to enable LabVIEW control. Last step of the preparation is 

to warmup the laser source and ensure the pulse strength is stable.  

 

Figure 10. Circuitry of the motor driver 
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Figure 11. Reel-to-reel system control algorithm 

 

Then start the fabrication process, first start the LabVIEW program to let NI USB6221 I/O 

device to activate the relay, as relay is ON and start timing, the motor receive the signal and start 

to accelerate, after reaching the desired rotational speed, it will take uniform motion until the 

programmed time is up, the timing relay tells the motor to stop, after the motor receive the stop 

signal, it will start to decelerate in a speed that has been written into the motor driver. After the 

motor speed becomes zero, the shutter will be trigger ON for a pre-set time around 0.45 second to 

make sure the fiber core can be radial imprinted for at least one pulse of UV laser through the 

phase mask, since the UV excimer laser source could generate UV pulses of period around 0.2 

second. Successively, the shutter will be closed, shutting out the laser beam to stop grating 
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inscription. The receiver motor would then start to rotate and collect the imprinted FBG to the 

spool.  This would be one full circle to fabricate an FBG grating, and it can be repeated to fabricate 

more FBGs needed, as a result, every FBGs will be fabricated and ensured to be evenly distributed 

along one fiber.  

 

 

3.3 Fabrication Results 

The sample fabricated is tested via an Optical Backscatter Reflectometry (OBR), the return 

loss is measured regarding the distance, as can be seen from Figure 12, the loss profile is evenly 

spaced three centimeters apart, which is exactly the desired distance, as the yellow and red marks 

has a displacement of 59 milliliters, given the error in manual measurement, the distance between 

each inscribed FBG should be evenly spaced in 3 centimeters as desired.  Apart from the horizontal 

axis, the vertical axis shows the amplitude of the back scattering signal including Fresnel reflection 

and Rayleigh backscattering, and the segment has a steady amplitude which is around -80 dB, 

which means the FBGs has a similar reflectivity. However, in order to obtain more details about 

the FBGs, their peak wavelength and corresponding reflectivity are calculated via OBR using 

Fourier transform.  
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Figure 12. OBR scanning result 

 

 For each of the 150 fabricated FBGs, their peak wavelength and corresponding reflectivity 

are collected. The peak wavelength of the 150 FBGs are concentrated between 1548.3 nm to 

1549.3 nm, as shown in Figure 13, and their corresponding reflectivity are around -30 dB as shown 

in Figure 14. Although some of the inscribed FBGs have bias in reflectivity, the majority of the 

FBGs are of constant peak wavelength and reflectivity with acceptable bias. The deviations in 

reflectivity of certain FBGs might be due to the intrinsic instability of the laser strength, or it could 

be due to the small variation of the tension in the fiber between each inscription as a result of 

friction between fiber and spool, ferrule and pulley.  
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Figure 13. Peak wavelength of the fabricated sample 

 

Figure 14. Corresponding reflectivity of the fabricated sample 

 

Figure 15. Combination of peak wavelength with corresponding reflectivity of the fabricated sample 

 

As can be seen from the combination of peak wavelength with corresponding reflectivity of the 

fabricated sample in Figure 15, most of the points are concentrated whereas less than 4 percent of the FBGs 

has a reflectivity below -40 dB, all of these devious points are located near the peak wavelength of 1548.8 

nm.  
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4.0 Summary and Future Works 

In this section, we will present the summary of the thesis in Section 4.1, and the future 

works in Section 2.4. 

 

4.1 Summary  

The fabrication and testing of quasi-distributed FBG sensors are the focus of two major 

works in this thesis: one aims to develop a reel-to-reel system that significantly improves the 

efficiency and accuracy of quasi-distributed FBG sensors fabrication using small diameter single-

mode optical fiber in [1], and the other focuses on testing the fabricated sensor via OBR. 

To begin, a fully automated reel-to-reel system, which in its entirety embedded 2 motors, 

fiber guidance system, fiber feeder and collector, and various sensors, is designed and integrated 

into the laser system to address the problem of manually fabricating quasi-distributed fiber sensors. 

This allows evenly spaced gratings to be inscribed continuously along an optical fiber. Two 

motors, fiber guidance, alignment, and supports, two spools for fiber feeding and collection are 

crucial parts of the system. 

LabVIEW allows the system to control the speed and distance. Meanwhile, to overcome 

the effect of momentum and achieve stable tension, the motor is controlled to have constant 

acceleration and deceleration. 
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The reel-to-reel system is put to the test, with 150 FBGs inscribed along a single fiber. 

Because the total time spent is less than an hour, manual fabrication's speed limitations are no 

longer an issue. Because the fiber is fed and collected on two large spools, the length of the fiber 

has no bearing on the handling risk of breaking off the fiber, and the distance limit is also exceeded 

in the system. 

Furthermore, the samples fabricated by the reel-to-reel system are scanned by OBR, and 

the results show that each FBG is spaced evenly with three centimeters, and their Bragg waveforms 

are very close, demonstrating that the manual fabrication precision limitations have been 

overcome. 

4.2 Future Works 

 

In this thesis, only quasi-distributed FBGs samples have been fabricated. Future studies 

will focus on the sample’s real application performance such as acoustic sensing, vibration sensing 

or temperature sensing. 

Besides, in this paper, the fabrication results scanned by OBR indicates the possibility of 

variance in the reflectivity, which might be due to the instability in laser pulse intensity, or the 

variation in fiber tension during fiber drawing. The two factors should be investigated, and a 

mechanism should be designed to avoid the effect of both factors, which will lead to better FBGs 

fabrication.  

Another direction for future work is to improve the controllability of the reel-to-reel system 

regarding the compatibility of the fiber used in this system. Now only the small diameter fiber 
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used is proved to be feasible, however, for fabrication of FGBs from normal single mode optical 

fibers, the jacket of the fiber needs to be removed, as a result, the fiber used is more fragile, and 

the jacket-removed part of fiber might get stuck in the ferule during fiber drawing, inducing fiber 

breakage. So the future work can focus on improving the reel-to-reel system with more compatible 

fibers by using a better designed ferrule together with more delicate fiber drawing process that 

enable more fragile fibers to be drew in this system. 
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