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Kurzzusammenfassung

Diese Dissertation vereint Resultate aus fünf Forschungsartikeln über Konstruktionen
und Anwendungen von Modulformen und ihrer Verallgemeinerungen. Wir beginnen mit
der Konstruktion neuer Quantenmodulformen der Tiefe zwei, was Resultate von Bring-
mann, Kaszian und Milas verallgemeinert. Dazu verbinden wir die Asymptotik gewisser
falscher Thetafunktionen binärer quadratischen Formen mit mehrfachen Eichlerintegralen
von Thetafunktionen. Quantenmodularität der falschen Thetafunktion folgt aus dem
Verhalten dieser Integrale nahe der reellen Achse.

Anschließend betrachten wir das asymptotische Profil eines gewissen Eta-Theta Quo-
tienten, welcher in der Partitionsfunktion der Verschränkungsentropie in der Stringtheorie
auftritt. Insbesondere verallgemeinern wir Methoden von Bringmann und Dousse, und von
Dousse und Mertens, um die auftretende meromormphe Jacobiform zu behandeln. Durch
die Anwendung der Kreismethode nach Wright erhalten wir eine zweidimensionale Asymp-
totik für die von zwei Variablen abhängigen Koeffizienten des Eta-Theta-Quotienten.

Drittens untersuchen wir das asymptotische Verhalten der Erzeugendenfunktion
ganzzahliger Partitionen, wessen Grade zu r kongruent modulo t sind, und wir bezeichnen
diese Grade mit N(r, t;n). Indem wir zeigen, dass die Erzeugendenfunktion über einer
gewissen Schranke monoton wachsende Koeffizienten aufweist, sind wir in der Lage
Inghams Taubersatz anzuwenden. Dies ergibt direkt, dass N(r, t;n) in r bei fixiertem t
für n→∞ gleichverteilt ist, was wiederum eine kürzlich aufgestelle Vermutung von Hou
and Jagadeeson über ein Resultat konvexer Art bestätigt.

Das nachfolgende Kapitel ist der Untersuchung von Spuren zyklischer Integrale mero-
morpher Modulformen und ihrer Beziehung zu Koeffizienten harmonischer Maaßformen
gewidmet. Indem wir auf Gittern der Signatur (1, 2) arbeiten, ordnen wir zunächst eine
lokal harmonische Maaßform einem Siegel Thetalift zu, unter Einbeziehung des Maaß
Steigerungsoperators, durch explizite Berechnung der Steigerung der lokal harmonis-
chen Maaßform und Benutzung des Standardarguments der Entfaltung des Thetaliftes.
Danach übernehmen wir Techniken von Bruinier, Ehlen und Yang, um den Thetalift als
konstanten Term einer q-Reihe zu berechnen (bis auf Terme, die für gewisse Klassen von
Eingabefunktionen verschwinden), was sowohl die Koeffizienten von ξ-Urbildern unärer
Thetafunktionen also auch Thetafunktionen beinhaltet. Da solche Urbilder harmonische
Maaßformen sind, erhalten wir eine Beschreibung der Spuren in Form der Koeffizienten
von Thetafunktionen und harmonischer Maaßformen. Durch die Wahl eines spezifischen
Gitters in Beziehung zu quadratischen Formen und durch die Beobachtung, dass die den
konstanten Term festlegenden Funktionen mit rationalen Koeffizienten gewählt werden
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können, erhalten wir einen neuen Beweis eines kürzlichen Resultates von Alfes-Neumann,
Bringmann und Schwagenscheidt.

Abschließend untersuchen wir die Beziehung zwischen Modulformen und selbstkon-
jugierten t-Kernpartitionen. Wir erhalten die Anzahl selbstkonjugierter 7-Kernpartitionen
als einzelne Klassenzahl auf zwei Arten. Die erstere Art zeigen wir anhand von Modu-
laritätsargumenten der Erzeugendenfunktion der Hurwitz-Klassenzahlen. Darüberhinaus
bieten wir eine ergänzende kombinatorische Beschreibung zur Erklärung der Gleichheit
an. Insbesondere konstruieren wir eine explizite Abbildung zwischen selbstkonjugierten
t-Kernpartitionen und quadratischen Formen einer gegebenen Klassengruppe. Zusätzlich
zeigen wir, dass das Geschlecht der quadratischen Form eindeutig ist, und wir bestimmen
die Anzahl der Urbilder des Geschlechts. Mit Hilfe dieser Resultate können wir die
Gleichheit zwischen der Anzahl 4-Kernpartitionen und der Anzahl selbstkonjugierter
7-Kernpartitionen auf bestimmten arithmetischen Progressionen zeigen. Neben dem Fall
t = 4 betrachten wir auch, ob Gleichheiten zwischen t-Kernpartitionen und selbstkon-
jugierten 2t− 1-Kernpartitionen möglich sind. Wir zeigen, dass dies für t = 2, 3, 5 nicht
so ist, und wir bieten für t ≥ 6 eine Vermutung sowie Teilresultate an.
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Abstract

This thesis combines results of five research papers on the construction and applications
of modular forms and their generalisations. We begin by constructing new examples
of quantum modular forms of depth two, generalising results of Bringmann, Kaszian,
and Milas. To do so, we relate the asymptotics of certain false theta functions of binary
quadratic forms to multiple Eichler integrals of theta functions. Quantum modularity of
the false theta functions follows from the behaviour of such integrals near the real line.

Next, we turn our attention to the asymptotic profile of a certain eta-theta quotient
that arises in the partition function of entanglement entropy in string theory. In particular,
we generalise methods of Bringmann and Dousse, and Dousse and Mertens, to deal with
the meromorphic Jacobi form at hand. Applying Wright’s circle method for Jacobi forms
we obtain a bivariate asymptotic for the two-variable coefficients of the eta-theta quotient.

Thirdly, we investigate the asymptotic behaviour of the generating function of integer
partitions whose ranks are congruent to r modulo t, denoted by N(r, t;n). By proving
that the series has monotonic increasing coefficients above some bound, we are in a
position to apply Ingham’s Tauberian theorem. This immediately implies that N(r, t;n)
is equidistributed in r for fixed t as n→∞, in turn implying a recent conjecture of Hou
and Jagadeeson on a convexity-type result.

The following chapter is dedicated to an investigation of traces of cycle integrals of
meromorphic modular forms and their relationship to coefficients of harmonic Maass
forms. Working on lattices of signature (1, 2), we first relate a locally harmonic Maass
form to a Siegel theta lift involving the Maass raising operator by explicitly computing
the raising of the locally harmonic Maass form, and using the usual unfolding argument
for the theta lift. We then borrow techniques of Bruinier, Ehlen, and Yang to compute the
theta lift as (up to terms that vanish for certain classes of input functions) the constant
term in a q-series involving the coefficients of ξ-preimages of unary theta functions as
well as theta functions. Since such preimages are harmonic Maass forms, we obtain a
description of the traces in terms of coefficients of theta functions and harmonic Maass
forms. Choosing a specific lattice related to quadratic forms and noting that the functions
determining the constant term can be chosen to have rational coefficients, we obtain a
new proof of a recent result of Alfes-Neumann, Bringmann, and Schwagenscheidt.

Finally, we investigate the relationship between modular forms and self-conjugate
t-core partitions. We obtain the number of self-conjugate 7-cores as a single class number
in two ways. The first we show with modularity arguments on the generating function of
Hurwitz class numbers. We also provide a complementary combinatorial description to

5



explain the equality. In particular, we construct an explicit map between self-conjugate
t-cores and quadratic forms in a given class group. Moreover, we show that the genus
of the quadratic forms is unique, and determine the number of preimages of the genus.
Using these results, we show an equality between the number of 4-cores and the number
of self-conjugate 7-cores on specific arithmetic progressions. Aside from the t = 4 case,
we consider whether equalities between t-cores and self-conjugate 2t−1-cores are possible.
We show for t = 2, 3, 5 that they are not, and offer a conjecture and partial results for
t ≥ 6.
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Chapter I

Introduction and Statement of
Objectives

I.1 Definitions and previous results

This thesis consists mostly of the research articles [ABMS,BKM,Ma1,Ma2,Ma3] (see
page 158 for references for the introduction, statement of results, and outlook) that deal
with various aspects of the construction and applications of modular forms and their
generalisations. In this section we collect the required definitions, some background, and
relevant examples.

I.1.1 Modular forms and Jacobi forms

Modular forms and their generalisations underpin a vast amount of number theory.
For example, their Fourier coefficients often encode highly non-trivial information, e.g.
the number of certain integer partitions. The values of the coefficients, their asymptotic
behaviour, and more general behaviour of modular forms have applications throughout
number theory and beyond.

To begin, we introduce some standard notation. We fix the upper half-plane H :=
{τ = u+ iv ∈ C : v > 0}. We mostly consider the Hecke congruence subgroup of level
N1, defined by

Γ0(N) :=

{
γ =

(
a b
c d

)
∈ SL2(Z) : N | c

}
.

The group Γ0(N) acts on H via the Möbius transformation

Mτ =
aτ + b

cτ + d
, for M =

(
a b
c d

)
∈ Γ0(N).

1One may also define modular forms for more general congruence subgroups.
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CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

A holomorphic function f : H→ C is called a modular form of weight k ∈ Z, level N ,
and character χ if

f(Mτ) = χ(d)(cτ + d)kf(τ) (I.1.1)

holds for all M =
(
a b
c d

)
∈ Γ0(N) and f is bounded at all cusps Γ0(N)\(Q ∪ {∞}) of

Γ0(N). We write f ∈Mk(N,χ). Functions that satisfy (I.1.1) that are allowed to have
poles at cusps are called weakly holomorphic modular forms, and those that are allowed
isolated poles in points in H are called meromorphic modular forms. We call f a cusp
form if it vanishes at all cusps, and write f ∈ Sk(N,χ).

An extension of this definition is given by half-integral weight modular forms where,
for k ∈ 1

2 + Z, one replaces (I.1.1) by

f(Mτ) = ε−2k
d

( c
d

)
χ(d)(cτ + d)kf(τ),

where εd := i for d ≡ 3 (mod 4) and εd := 1 if d ≡ 1 (mod 4). Here,
( ·
·
)

is the Kronecker
symbol. We also require the 4 | N for half-integral weight. A prototypical example of a
half-integral weight modular form is the modular form of weight 1

2 for SL2(Z) given by
the Dedekind η-function, defined as

η(τ) := q
1
24

∏
j≥1

(
1− qj

)
,

for q := e2πiτ .
In this thesis, we are also particularly interested in the two-variable generalisations of

modular forms, known as Jacobi forms. These are functions f : C×H→ C, (z, τ) 7→ f(z; τ)
that satisfy a certain modularity property in τ and an elliptic transformation in z (i.e.,
a simple transformation under shifts by Zτ + Z), and certain growth conditions. We
refer the reader to the book of Eichler and Zagier [EZ] that first developed the theory of
Jacobi forms for their full definitions and properties. As an indication of their importance,
note that Eichler and Zagier relied heavily on them on the seminal work proving the
Saito–Kurokawa conjecture [EZ,Za4].

Of particular importance for this thesis is the prototypical Jacobi theta function,
defined for z ∈ C, τ ∈ H by

ϑ(z; τ) :=
∑

n∈ 1
2

+Z

eπin
2τ+2πin(z+ 1

2).

I.1.2 Generalisations of modular forms

In this section we describe some of the generalisations of modular forms found in this
thesis. Note that these constructions may be extended to include elliptic variables z in
analogy to Jacobi forms. We follow [BFOR, Chapter 4].
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CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

I.1.2.1 Harmonic Maass forms and mock modular forms

For k ∈ 1
2Z, the weight k hyperbolic Laplacian is given by

∆k := −4v2 ∂

∂τ

∂

∂τ
+ 2ikv

∂

∂τ
.

Weight k harmonic Maass forms are certain real-analytic functions that are annihilated
by ∆k. More precisely, a harmonic Maass form of weight k ∈ 1

2Z on Γ0(N) (where 4 | N
if k ∈ 1

2Z\Z) is any smooth function f : H→ C satisfying the following three properties:

(1) For all M =
(
a b
c d

)
∈ Γ0(N) we have that

f(Mτ) =

{
(cτ + d)kf(τ) if k ∈ Z,(
c
d

)
ε−2k
d (cτ + d)kf(τ) if k ∈ 1

2Z\Z,

where again
( ·
·
)

is the Kronecker symbol.

(2) We have that ∆k(f) = 0.

(3) There exists some polynomial Pf (τ) ∈ C[q−1] such that

f(τ)− Pf (τ) = O(e−εv)

as v →∞ for some ε > 0. Analagous conditions are required at all cusps.

Further relaxation of the growth condition to be O(eεv) gives harmonic Maass forms of
manageable growth, which by a slight abuse we also refer to as a harmonic Maass form in
this thesis. Define the operator

ξk := 2ivk
∂

∂τ
.

A seminal paper of Bruinier and Funke [BF] first introduced ξk and showed that it maps
the space of harmonic Maass forms of weight k to the space of cusp forms of weight 2− k,
and similarly maps the space of harmonic Maass forms of manageable growth of weight
k to the space of weakly holomorphic modular forms of weight 2− k. Moreover, each of
these maps is surjective.

A harmonic Maass form f splits naturally into two pieces f+, f− where f+ is holo-
morphic and f− is non-holomorphic. In particular, f has a Fourier expansion of the
shape [BFOR, Lemma 4.3]

f(τ) =
∑

n�−∞
c+
f (n)qn + cf (0)v1−k +

∑
n�∞
n 6=0

c−f (n)Γ(1− k,−4πnv)qn,

14
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where Γ(s, z) :=
∫∞
z e−tts−1dt denotes the incomplete Gamma function. Then we define

f+(τ) :=
∑

n�−∞
c+
f (n)qn, f−(τ) := cf (0)v1−k +

∑
n�∞
n 6=0

c−f (n)Γ(1− k,−4πnv)qn.

A mock modular form of weight k is the holomorphic part f+ of a harmonic Maass
form of weight k for which the non-holomorphic part f− is non-trivial. For a mock
modular form g, any non-trivial function h for which g + h is modular is known as a
completion of g. The image of g + h under ξ is known as the shadow of g + h.

A prototypical example was given by Zagier [Za2] as follows. Let H(n) be the usual
Hurwitz class number, which counts the number of SL2(Z)-equivalence classes of integral
binary quadratic forms of discriminant −n, weighted by 1

2 times the order of their
automorphism group. Then

H(τ) := − 1

12
+
∑
n≥1

H(n)qn +
1

8π
√
v

+
∑
n≥1

nΓ

(
1

2
, 4πn2v

)
q−n

2

is a harmonic Maass form (of manageable growth) of weight 3
2 on Γ0(4). Thus

H+(τ) := − 1

12
+
∑
n≥1

H(n)qn

is a mock modular form of the same weight. Its shadow is the unary theta function

− 1

16π

∑
n∈Z

qn
2
.

As mentioned, one can generalise these definitions to include an elliptic variable to
obtain mock Jacobi forms. A fundamental example of a mock Jacobi form that we make
great use of is Zwegers’ µ-function [Zw], defined by

µ(z1, z2; τ) :=
eπiz1

ϑ(z2; τ)

∑
n∈Z

(−1)neπi(n
2+n)τe2πinz2

1− e2πinτe2πiz1

for z1, z2 ∈ C\Zτ + Z. Zwegers showed that the addition of a certain non-holomorphic
completion term (written in terms of a Mordell integral) to µ yields a non-holomorphic
Jacobi form. This breakthrough unified the theory of the elusive mock theta functions
of Ramanujan into a concrete framework, and spurred a vast amount of research in the
past two decades.

15
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I.1.2.2 Quantum modular forms

In 2010, Zagier [Za3] introduced a new type of modular object, known as quantum
modular forms, following investigations into Kontsevich’s “strange” function [Za3,Za5].
A quantum modular form is essentially a function f : Q → C for some fixed Q ⊆ Q,
whose errors of modularity (for M =

(
a b
c d

)
∈ SL2(Z))

f(τ)− (cτ + d)kf(Mτ)

are in some sense “nicer” than the original function. Often, for example, the original
function f is defined only on Q, but the errors of modularity can be defined on some
open subset of R. The set Q is called the quantum set of the function f . One may also
consider quantum modular forms for M ∈ Γ, a subgroup of SL2(Z). Further, Zagier also
considered so-called “strong” quantum modular forms, where one considers asymptotic
expansions and not just values. Leaving this definition intentionally vague allowed Zagier
to collect many examples in the same heading.

Additional examples of quantum modular forms are given in [BM, CMW], where
characters of vertex operator algebras were explored. Further examples arise at the
interface of physics and knot theory, after investigations into Kashaev invariants [HK,HL],
as well as limits of quantum invariants of 3-manifolds and knots [Za3].

One may assemble strong quantum modular forms into vector-valued versions as
follows. For 1 ≤ j ≤ N ∈ N, a collection of functions fj : Q → C is called a strong vector-
valued quantum modular form of weight k, multiplier χ = (χj,`)1≤j,`≤N , and quantum set
Q for SL2(Z) if, for all M =

(
a b
c d

)
∈ SL2(Z) we have that2

fj(τ)− (cτ + d)−k
∑

1≤`≤N
χj,`(M)f`(Mτ)

can be extended to an open subset of R and is real-analytic there.

In Chapter II, extensions to higher depths appear (more specifically, to depth two),
following investigations of Bringmann, Kaszian, and Milas [BKMi1,BKMi2] into certain
characters of vertex algebras. They considered higher-depth analogues of quantum
modular forms, and provided two examples of such forms of depth two. In the simplest
case these are functions that satisfy

f(τ)− (cτ + d)kf(Mτ) ∈ Qk(Γ)O(R) +O(R),

where Qk(Γ) is the space of strong quantum modular forms of weight k on Γ, and O(R) is
the space of real-analytic functions on R ⊂ R. As noted in [BKMi1], the easiest (trivial)
examples come from multiplying two depth one forms.

2Correcting a minor typographical error of [Ma1].
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I.1.3 Integer partitions

For a positive integer n a partition Λ := (λ1, λ2, . . . , λs) of n is a non-increasing
sequence of non-negative integers λj such that

∑
1≤j≤s λj = n. The theory of partitions

and modular forms is intricately interwoven. For example, let p(n) count the total number
of distinct partitions of n. Then the generating function for integer partitions may be
written in terms of η by

∑
n≥0

p(n)qn =
∏
j≥1

(
1− qj

)−1
=

q
1
24

η(τ)
.

The relationship between coefficients of (generalisations of) modular forms and various
partition-theoretic objects has been an area of vast interest in the last century. Hardy and
Ramanujan developed their now-ubiquitous circle method to first study the asymptotic
behaviour of p(n) [HR]. A further fundamental investigation in this field is focused on the
rank of a partition, defined to be the largest part minus the number of parts. The rank
statistic was first introduced by Dyson [Dy] in an attempt to combinatorially explain the
famous Ramanujan congruences [BR], and since its introduction has a storied history,
detailed further in Chapter IV. Denoting the number of partitions on n whose rank is
congruent to r modulo t by N(r, t;n), a groundbreaking paper of Bringmann and Ono
[BO] showed that the generating function of N(r, t;n) is intimately related to the theory
of harmonic Maass forms and mock modular forms.

Furthermore, partitions lie at the interface of theory of modular forms, combinatorics,
and other areas of mathematics - of particular interest to the current thesis are t-core
partitions (defined in Section I.2.5), which encode the representation theory of the
symmetric groups Sn and An. Techniques from each field have been developed in the
last century that build the web of connections between these areas.

I.1.4 Asymptotic expansions of modular forms

The asymptotic behaviour of coefficients of modular forms and their implications in
various areas of mathematics is a long-studied problem. For example, in 1918 Hardy and
Ramanujan proved their famous asymptotic formula for p(n) [HR], which states that as
n→∞ we have

p(n) ∼ 1

4
√

3n
e
π
√

2n
3 .

To show this, they developed the now ubiquitous tool of the Hardy-Ramanujan circle
method. We follow the exposition of the circle method given in [BFOR, Proof of Theorem
4.13]. In essence, the idea of the circle method is that for a series A(q) =

∑
n≥0 a(n)qn

17
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with radius of convergence 1, then by Cauchy’s theorem, one may extract the coefficients
as

a(n) =
1

2πi

∫
C

A(q)

qn+1
dq,

where C is an arbitrary path in the unit disc that loops around 0 exactly once in the
counterclockwise direction. Many of the applications of the circle method focus on
coefficients a(n) where the singularities of the generating function A lie at roots of unity
on the unit disc, and which are well-understood. In particular, near these singularities,
one can often find nice approximations of A. These provide the main asymptotic terms,
and the remaining terms contribute to a smaller error term.

For p(n), for example, Hardy and Ramanujan computed that the pole at q = 1
is the dominant one (i.e. that it gives the largest growth), and away from q = 1
the contribution is far smaller, and thus contributes to an error term of lower order.
Rademacher improved the estimates of Hardy and Ramanujan to provide an exact
formula for p(n), demonstrating the power of the circle method. Bringmann used similar
techniques, following investigations of Dragonnete [Dr] and Andrews [Andr], to compute
the asymptotic behaviour of the generating function for N(r, t;n) for odd t [Bri], a result
which was central in the paper of Hou and Jagadeeson [HJ] that inspired the results of
Chapter IV.

In the course of this thesis, we see two special cases of the circle method, detailed
further below.

I.1.4.1 Ingham’s Tauberian Theorem

Ingham’s Tauberian theorem is essentially a special case of the Hardy-Ramanujan
circle method, where the circle method is computed for a large family of similarly-behaved
functions. Consider the case when a(n) are non-negative, real, and (weakly) monotonically
increasing3. Assuming some technical conditions on the growth of A(e−z) for z ∈ H such
that z → 0 in certain regions, Ingham’s Tauberian theorem [In] states that if

A(e−t) ∼ λ log

(
1

t

)α
tβe

γ
t as t→ 0+,

with λ, α, β, γ ∈ R with γ > 0, then

a(n) ∼ λγ
β
2

+ 1
4 log(n)α

2α+1
√
πn

β
2

+ 3
4

e2
√
γn, as n→∞.

3There is a similar style of statement for the sum of the coefficients if the coefficients a(n) are not
monotonic.
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As noted in [BJM], the technical conditions alluded to above (as well as the log term)
have often been missed in recent applications of the theorem. However, as shown by
Bringmann, Jennings-Shaffer, and Mahlburg, for modular objects the technical conditions
are essentially always satisfied, and often the log term is not needed.

I.1.4.2 Wright’s circle method

Wright [Wr1,Wr2] developed another version of the circle method, which is a middle-
ground between the ease of Ingham’s Tauberian theorem and the power of the full
Hardy-Ramaujan circle method. Essentially, Wright’s circle method splits off the main
growth term toward the dominant pole(s), and bounds the contribution away from
this/these pole(s). Thus one obtains an asymptotic estimate for the main term in a
similar fashion to the full circle method, but trades the possibility of obtaining exact
formulae for the ease of dealing with the remaining contributions with a uniform bound.

Bringmann and Dousse [BD], and Dousse and Mertens [DM] pioneered the use of a
modified version of Wright’s circle method to deal with Jacobi forms in their investigations
of the partition crank and rank, respectively. A variant of this technique is used heavily in
Chapter III where we investigate the bivariate asymptotic behaviour of a certain Jacobi
form.

I.2 Statement of objectives

I.2.1 A family of vector-valued quantum modular forms of higher depth

In the first project of this thesis, presented in Chapter II, I obtain an infinite family
of examples of a relatively new type of modular object, known as quantum modular
forms of higher depth, introduced by Bringmann–Kaszian–Milas in a series of papers
[BKMi1,BKMi2,BKMi3]. There, the authors developed the theory after investigations
into the character of a vertex operator algebra W (p)A2 , where p ≥ 2, associated to the
root lattice of type A2 of the simple Lie algebra sl3, and gave two isolated examples of
quantum modular forms of depth two.

For positive definite binary quadratic form Q(n1, n2) and a finite set S of pairs of
non-zero rational points α, I study the partial theta function

F (q) :=
∑
α∈S

ε(α)
∑

n1,n2≥0

qQ(n1,n2),

where ε : α 7→ R\{0}. Imposing some symmetry conditions on S and ε, I show the
following theorem, giving an infinite family of vector-valued quantum modular forms
of depth two and weight one. As noted in Section II, the techniques presented also
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immediately give an infinite family of scalar-valued quantum modular form of higher
depth.

Theorem I.2.1. The function F is, up to one-dimensional boundary terms, a sum of
components of a vector-valued quantum modular form of depth two and weight one on
SL2(Z) with some explicit quantum set Q defined in Section II.4. In some special cases,
F itself is a single component of a vector-valued form.

To prove this theorem, I follow the ideas of [BKMi2] in this more general setting.
First, I relate F (q) asymptotically to a double Eichler integral of the shape∫ i∞

−τ̄

∫ i∞

ω1

f1(ω1)f2(ω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1,

where the fj lie in the space of vector-valued modular forms on SL2(Z). Such integrals
exhibit higher-depth quantum modularity as τ tends radially to a rational point on the
real line, and so F (q) inherits the same behaviour. One difficulty to overcome here is
the definition of the quantum set Q. Since the situation is so generic, the definitions
are rather technical, using the theory of quadratic Gauss sums to obtain the quantum
sets. Nevertheless, these quantum sets are seen to always be infinite (although very
occasionally somewhat sparse).

By relating the double Eichler integral to certain non-holomorphic theta functions
with coefficients given by double error functions, I then place this in a modular setting
by viewing it as the “purely non-holomorphic part” of an indefinite theta function of
signature (2, 2).

Proposition I.2.2. The indefinite theta function of signature (2, 2) defined in Section
II.10 has purely non-holomorphic part Θ(τ)E(τ), where Θ(τ) is a theta function of
signature (2, 0).

I.2.2 The asymptotic profile of an eta-theta quotient related to entan-
glement entropy in string theory

The second paper in this thesis, presented in Chapter III, deals with an application
of the theory of modular forms to string theory by determining the asymptotic profile
of a certain eta-theta quotient. In particular, the weight minus three and index zero
meromorphic Jacobi form

f(z; τ) :=
ϑ(z; τ)4

η(τ)9ϑ(2z; τ)

appears in the partition function for both the Melvin model [RT] and the conical entropy
of both the open and closed superstring [HNTW]. To perform certain calculations, for
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example to find the behaviour of the partition function in the UV limit (that is, as
τ → 0+), one needs to find the asymptotic behaviour of the partition function, in turn
requiring knowledge of the asymptotic behaviour of such Jacobi forms. Letting

f(z; τ) =:
∑
n≥0

b(m,n)ζmqn,

I show how to obtain a uniform bivariate asymptotic behaviour of the coefficients b(m,n)

whenever |m| ≤
√
n

6π
√

2
log(n). In particular, I prove the following theorem.

Theorem I.2.3. For β := π
√

2
n and |m| ≤ 1

6β log(n) we have that

b(m,n) = (−1)m+δ+ 1
2

β5

27π5(2n)
1
4

e2π
√

2n +O
(
n−

13
4 e2π

√
2n
)

as n→∞. Here, δ := 1 if m < 0 and δ = 0 otherwise.

The proof of this theorem relies on Wright’s circle method applied to Jacobi forms, a
technique that was pioneered by Bringmann-Dousse [BD] and Dousse-Mertens [DM] in
their investigations into the partition rank and crank, respectively. However, the fact
that f(z; τ) has a pole at z = 1

2 necessitates a modification to the arguments.

To combat this, one can deform the path of the integrals determining the Fourier
coefficient of ζm of f , denoted by fm, picking up a residue term in the process. Carefully
computing the asymptotic behaviour of both the residue term and the remaining expres-
sion for fm toward the dominant pole at q = 1 and away from the dominant pole, one
obtains strong enough bounds to apply Wright’s circle method for Jacobi forms.

I.2.3 Asymptotic equidistribution and convexity for partition ranks

Numerous statistics involving partitions have been introduced in the last century,
including the rank of a partition, defined to be the largest part minus the number of parts.
We denote the number of partitions of n with rank m by N(m,n), with a refinement
given by N(r, t;n). In [BO], Bringmann and Ono showed that the generating function of
N(r, t;n) is essentially the holomorphic part of a Maass form on some congruence subgroup,
and further used this to give an alternative proof for Ramanujan-type congruences for
N(r, t;n) than the proof given by Atkin and Swinnerton-Dyer [AS].

The aim of the project detailed in Chapter IV of this thesis is two-fold; to determine
the asymptotic behaviour of N(r, t;n) for all t, and to prove a convexity-type conjecture
of Hou and Jagadeeson. The central argument relies on the modular properties of the
generating function of N(r, t;n). The first main result is the following.
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Theorem I.2.4. For fixed 0 ≤ r < t and t ≥ 2 we have

N(r, t;n) ∼ 1

t
p(n) ∼ 1

4t
√

3n
e2π
√

n
6

as n→∞. In particular, N(r, t;n) is asymptotically equidistributed (i.e. for large n and
fixed t, the asymptotics are independent of the residue class r).

The main idea of the proof is to determine the asymptotic behaviour of N(r, t;n)
by using Ingham’s Tauberian theorem [In]. To do so, I first show that N(r, t;n) is
a monotonic function of n above some bound using standard techniques in analysing
coefficients of q-series, generalising results of Chan and Mao [CM]. In order to use
the Tauberian theorem, it is necessary to determine the asymptotic behaviour of the
generating function

∑
n≥0N(r, t;n)qn toward q = 1. To find this, I rewrite the generating

function in terms of the mock-modular higher level Appell functions [Zw], and employ
their modular properties as well as their modular completions.

Further, Hou and Jagadeesan [HJ] (in the spirit of Bessenrodt and Ono [BO]) showed
that for 0 ≤ r ≤ 2 we have

N(r, 3; a)N(r, 3; b) > N(r, 3; a+ b)

for all a, b larger than some specific bound. At the end of the same paper, the authors
offered the following conjecture on a more general convexity result.

Conjecture I.2.5. For 0 ≤ r < t and t ≥ 2 then

N(r, t; a)N(r, t; b) > N(r, t; a+ b)

for sufficiently large a and b.

A simple consequence of the equidistribution of the partition rank is the following
theorem.

Theorem I.2.6. The conjecture of Hou and Jagadeeson is true.

I.2.4 Cycle integrals of meromorphic modular forms and rationality

The penultimate project in this thesis, presented in Chapter V, concerns the applica-
tion of modular forms in the theory of theta lifts. In particular, in [ABMS] Alfes-Neumann,
Bringmann, Schwagenscheidt, and I show that linear combinations of traces of cycle inte-
grals of meromorphic modular forms may be written in terms of coefficients of harmonic
Maass forms.
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In [KZ2,KZ1,Za1], Kohnen and Zagier introduced and investigated certain functions
fk,d in related a lift between certain spaces of modular forms. The cusp forms fk,d,
of weight 2k for SL2(Z), (and their variations) have seen a wide array of applications,
for example they appear in the Fourier coefficients of holomorphic kernel functions for
the Shimura and Shintani lifts [Ko,KZ2]. Furthermore, fk,d give an important class of
functions that have rational periods [KZ1]. In particular, certain linear combinations of
the cycle integrals ∫

cQ

fk,d(τ)Q(τ, 1)k−1dτ

were shown to be rational. Here, cQ is the image in SL2(Z)\H of the geodesic {τ ∈
H : a|τ |2 + bu+ c = 0} where τ = u+ iv, and Q = [a, b, c] lies in the space of quadratic
forms of discriminant D, QD.

More recently, a landmark paper of Duke, Imamoğlu, and Tóth [DIT] detailed the
relationship between fk,d and certain errors of modularity of cycle integrals. A key step
was to produce a preimage of a certain generating function of the cycle integrals of weakly
holomorphic modular forms.

Bringmann, Kane, and Kohnen [BKK] continued this investigation. However, there
was an obstacle to generalising the results of [DIT] to the functions fk,d in finding certain
preimages. The authors provided an unprecedented approach in modular forms to allow
certain jump singularities of their functions in order to rectify this, introducing the
function (for k ≥ 2 and D a non-square discriminant)

F1−k,D(τ) =
D

1
2 − k

2
(

2k−2
k−1

)
π

∑
Q=[a,b,c]∈QD

sgn(a|τ |2 + bu+ c)Q(τ, 1)k−1β

(
Dv2

|Q(τ, 1)|2
; k − 1

2
,
1

2

)
,

where β(w; s, r) :=
∫ w

0 ts−1(1 − t)r−1dt is the incomplete beta function. The function
F1−k,D is an example of a new type of automorphic object - a locally harmonic Maass
form. That is, it behaves like a harmonic Maass forms apart from an exceptional set
of density 0. While it is known that a harmonic Maass form cannot map to a cusp
form under both of the differential operators D2k−1 and ξ2−2k, the fact that F1−k,D has
singularities rectifies this. In fact, it was shown that under both operators, F1−k,D maps
to a multiple of fk,D [BKK]. As a simple corollary of this connection, one obtains that
the even periods of fk,D are rational.

Alfes-Neumann, Bringmann, and Schwagenscheidt [ABS] extended the rationality
result of Kohnen and Zagier to traces of refined versions of fk,D. Their results rely on
the connection between fk,D and F1−k,D and the Shintani lift. In Chapter V, we extend
the results of [ABS] to a vector-valued setting and showed that the traces can be written
as the constant term of a q-expansion involving coefficients of certain harmonic Maass
forms and theta function.

23



CHAPTER I. INTRODUCTION AND STATEMENT OF OBJECTIVES

Theorem I.2.7. For all k ∈ N certain linear combinations of the traces of the cycle
integrals are a constant term of a Fourier expansion involving coefficients of harmonic
Maass forms and theta functions.

The proof involves using that the traces can be written as a special value of the
iterated Maass raising operator applied to a certain locally harmonic Maass form. It
is then possible to realise this as a regularised theta lift, following Borcherds classical
construction [Bor]. Finally, using Stokes’ theorem along with techniques of Bruinier,
Ehlen, and Yang [BEY] we describe the theta lift as a constant term in the Fourier
expansion described.

Since all of the coefficients in the functions determining the Fourier expansion can be
chosen to be rational, these results also give an elegant alternative proof to the results of
[ABS]. We also give interesting examples that may be immediately concluded from this
theorem, e.g. for LD(s) the usual L-function associated to a non–square discriminant
D > 0 and Hurwitz class numbers H(n) it may be shown that

trf2,[1,0,1]
(D) = −40LD(−1)− 4

∑
n,m∈Z

n≡D (mod 2)

H
(
D − n2 −m2

)
.

Further examples of this type, and others involving the smallest parts partition function
may also be easily deduced.

I.2.5 On t-core and self-conjugate (2t− 1)-core partitions in arithmetic
progressions

The final project in this thesis concerns the application of modular forms to properties
of certain t-core partitions, defined as follows. The Ferrers–Young diagram of a partition
Λ of n is the s-rowed diagram

• • · · · • λ1 dots
• • · · · • λ2 dots
·
·
• · · · • λs dots.

We label the cells of the Ferrers–Young diagram as if it were a matrix, and let λ′k denote
the number of dots in column k. The hook length of the cell (j, k) in the Ferrers–Young
diagram of Λ equals

h(j, k) := λj + λ′k − k − j + 1.
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If no hook length in any cell of a partition Λ is divisible by t, then Λ is a t-core partition.
A partition Λ is said to be self-conjugate if it remains the same when rows and columns
are switched.

Such t-core partitions are intricately linked to various areas of number theory and
beyond. For example, Garvan, Kim, and Stanton [GKS] used t-core partitions to
investigate special cases of the famous Ramanujan congruences for the partition function.
Furthermore, t-core partitions encode the modular representation theory of the symmetric
groups Sn and An [GO,FS].

For t, n ∈ N we let ct(n) denote the number of t-core partitions of n, along with sct(n)
the number of self-conjugate t-core partitions of n. Ono and Sze [OS] investigated the
relation between 4-core partitions and Hurwitz class numbers H(|D|), and showed that
if 8n+ 5 is square-free, then

c4(n) =
1

2
H(32n+ 20).

More recently Ono and Raji [OR] showed similar relations between self-conjugate
7-core partitions and certain Hurwitz class numbers. In particular, by combining the
results of Ono-Sze and Ono-Raji and using elementary congruence conditions, one may
easily show that for n 6≡ 4 (mod 7) and 56n+ 21 square-free, we have

2 sc7(8n+ 1) = c4(7n+ 2). (I.2.1)

This fact hints at a deeper relationship between sc2t−1 and ct, which we investigate.
Our main results pertain to the case t = 4. In particular, we give a formula for sc7(n) in
terms of a single class number. In order to do so, let ` ∈ N0 be chosen maximally such
that n ≡ −2

(
mod 22`

)
and define

Dn :=


28n+ 56 if n ≡ 0, 1 (mod 4) ,

7n+ 14 if n ≡ 3 (mod 4) ,

Dn+2

22` −2 if n ≡ 2 (mod 4) ,

νn :=


1
4 if n ≡ 0, 1 (mod 4) ,
1
2 if n ≡ 3 (mod 8) ,

νn+2

22` −2 if n ≡ 2 (mod 4) ,

0 otherwise.

A binary quadratic form is called primitive if gcd(a, b, c) = 1 and, for a prime p, p-
primitive if p - gcd(a, b, c). We let Hp(D) count the number of p-primitive classes of
integral binary quadratic forms of discriminant −D, with the same weighting as H(D).
The main result of our work in this direction is the following.

Theorem I.2.8. For every n ∈ N we have

sc7(n) = νnH7 (Dn) .
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The first technique we use to show this relies on standard techniques in modular
forms, yet yields an elegant and surprisingly simple proof. However, this approach does
not yield a combinatorial explanation. To remedy this, and to complement the theorem
above, we also provide the following result. The proof relies on constructing a map φ
between self-conjugate 7-core partitions and binary quadratic forms. In order to construct
such a map, we use the combinatorial structures of abaci and extended t-residue diagrams
associated to partitions, along with classical results of Gauss connecting solutions of the
equation x2 + y2 + z2 = n and the genus of binary quadratic forms in a particular class
group.

Theorem I.2.9. For every n ∈ N, the image of φ is a unique non-principal genus of
7-primitive and 2-totally imprimitive binary quadratic forms with discriminant −28n−56.
Moreover, suppose that ` is chosen maximally such that n ≡ −2

(
mod 22`

)
and 7n+14

22`

has r distinct prime divisors. Then every equivalence class in this genus is the image of
νn2r many self-conjugate 7-cores of n.

Aside from the case t = 4, we also provide results on whether equalities like (I.2.1)
can hold for other t non-trivially. We prove that they cannot in the cases of t = 2, 3, 5,
and offer the following conjecture and partial results for t ≥ 6.

Conjecture I.2.10. The only occurrence of arithmetic progressions for which ct and
sc2t−1 agree up to integer multiples non-trivially (even asymptotically) is when t = 4.
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Chapter II

A family of vector-valued
quantum modular forms of depth
two

This chapter is based on a paper published in The International Journal of Number
Theory [Ma1].

II.1 Introduction and statement of results

In a celebrated paper of Zagier, the concept of quantum modular forms is introduced,
following investigations into Kontsevich’s “strange” function [22,23], given by

K(q) := 1 +
∞∑
n=1

(q; q)n,

where (a; q)n :=
∏n−1
j=0 (1 − aqj) for n ∈ N0 ∪ {∞} is the q-Pochhammer symbol, and

q := e2πiτ with τ ∈ H. In particular, K(q) does not converge on any open subset of C,
but is seen to be a finite sum at any root of unity. Zagier shows that at roots of unity ζ,
the function K(ζ) agrees to infinite order with the Eichler integral of η(τ) := q

1
24 (q; q)∞

(see page 959 of [22] for the precise definition of the Eichler integral in this context), and
hence inherits the Eichler integral’s quantum modular properties.

Here we give a brief description of the essence of what a quantum modular form
is, and for a full introduction refer the reader to e.g. Chapter 21 of [3]. A quantum
modular form is essentially a function f : Q → C for some fixed Q ⊆ Q, whose errors of
modularity (for M =

(
a b
c d

)
∈ SL2(Z))

f(τ)− (cτ + d)kf(Mτ) (II.1.1)

are in some sense “nicer” than the original function. Often, for example, the original
function f is defined only on Q, but the errors of modularity can be defined on some

27



CHAPTER II. QUANTUM MODULAR FORMS OF DEPTH TWO

open subset of R. The set Q is called the quantum set of the function f . One may also
consider quantum modular forms for M ∈ Γ, a subgroup of SL2(Z). Further, Zagier also
considered so-called “strong” quantum modular forms, where one considers asymptotic
expansions and not just values. Leaving this definition of quantum modular forms
intentionally vague allowed Zagier to collect many examples in the same heading.

Since their introduction, there has been an explosion of research into quantum modular
forms in many guises, and they appear in work in many areas. For example, in [12] the
authors consider a certain generalisation of K(q) and investigate its quantum properties.
It is shown to have intricate connections to the Habiro ring (introduced in [14]) and
implications therein to combinatorics, in particular to the generating function for ranks
of strongly unimodal sequences, are explored.

There are also deep connections between quantum modular forms and other areas.
For example, the connection between them and mock modular forms (surveyed in e.g.
[19]) is investigated in papers such as [4,9, 10], among others. Furthermore, interesting
examples of quantum modular forms exist in the interface of physics and knot theory,
see e.g. a study of Kashaev invariants of (p, q)-torus knots in [15,16] and investigations
of Zagier into limits of quantum invariants of 3-manifolds and knots [23] - indeed, this is
the reason that Zagier chose the name “quantum” modular forms.

An additional example is given in [8,11], where characters of vertex operator algebras
are explored, and it is shown that natural parts of these characters are quantum modular
forms (of depth one). Motivated in part by these discoveries, the authors of [6] consider
higher-dimensional analogues, defining so-called higher depth quantum modular forms,
and provide two examples of such forms of depth two. In the simplest case, these are
functions that satisfy

f(τ)− (cτ + d)kf(Mτ) ∈ Qk(Γ)O(R) +O(R),

where Qk(Γ) is the space of quantum modular forms of weight k on Γ, and O(R) is the
space of real-analytic functions on R ⊂ R. As noted in [6], the easiest (trivial) examples
come from multiplying two depth one forms - however, the two examples discussed therein
appear to be non-trivial examples.

Again, these examples arise from a physics perspective. In fact, they come from the
character of a vertex operator algebra W (p)A2 , where p ≥ 2, associated to the root lattice
of type A2 of the simple Lie algebra sl3. The authors show that the character can be
decomposed into two distinct functions, each of which are quantum modular forms of
depth two on some subgroup of the full modular group. In a follow-up paper [7] the same
authors also show that their functions can be viewed as vector-valued quantum modular
forms of depth two on all SL2(Z) (see Section II.2.4 for definitions).

In this paper we require (II.1.1) to be real-analytic, and the functions we consider will
satisfy the properties of strong quantum modular forms. We construct a generalisation
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of a function called F1 defined in [6, 7]. In doing so, we provide an infinite family of non-
trivial vector-valued quantum modular forms of depth two. We define our generalisation
F as a sum of three terms, F (q) := F1(q) + F2(q) + F3(q) where

F1(q) :=
∑
α∈S

ε(α)
∑

n∈α+N2
0

qQ(n)

is a weighted sum of partial theta functions, and where F2, F3 are one-dimensional sums
arising from the boundary term n = 0 in a double Eichler integral. Here, Q(n) is a
positive definite integral binary quadratic form, S is a finite set of pairs in Q2, and
ε : S → R\{0}. Both S and ε are required to satisfy some symmetry conditions - see
Section II.3 for the full definitions.

Remark 1. The function F1 of Bringmann, Kaszian, and Milas as defined in [6, 7] is a
direct specialization of the function F presented here, specialized to a certain set of six
pairs of rational points, the specific quadratic form Q(x) = 3x2

1 + 3x1x2 + x2
2, and a fixed

ε. In particular we have conflicting notation - note that the functions F1, F2 given in
[6, 7] and the functions F1, F2 given in the present paper are different.

Analagously to [7], we show that F satisfies the following (see Theorem II.9.1 for a
precise statement).

Theorem II.1.1. The function F is a sum of components of a vector-valued quantum
modular form of depth two and weight one on SL2(Z) with some explicit quantum set
Q defined in Section II.4. In some special cases, F itself is a single component of a
vector-valued form.

Though here we only show the vector-valued version, we note that it is also possible
to show that our function F is a quantum modular form of depth two and weight one
itself, on a suitably chosen congruence subgroup of SL2(Z), generalising the situation in
[6]. The connection for Theorem II.1.1 is made by relating F asymptotically at certain
roots of unity to a double Eichler integral E of the shape∫ i∞

−τ̄

∫ i∞

ω1

f1(ω1)f2(ω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1,

where the fj lie in the space of vector-valued modular forms on SL2(Z). By a result of [7],
such Eichler integrals possess higher depth vector-valued quantum modular properties
(see Proposition II.2.1), and so by virtue of the asymptotic agreement at points in Q of
F and E , the function F inherits these properties.

We then place the Eichler integral E into a modular setting by relating it to an
indefinite theta function (see Proposition II.10.1 for a precise statement).
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Proposition II.1.2. The indefinite theta function of signature (2, 2) defined in Section
II.10 has purely non-holomorphic part Θ(τ)E(τ), where Θ(τ) is a theta series of signature
(2, 0).

The paper is organised as follows. We begin in Section II.2 by reviewing basic
properties of special functions, and detailing results that will be needed throughout the
paper. In Section II.3 we introduce the function F that we concentrate on for the rest of
the paper. We define the quantum set Q in Section II.4 before we find the asymptotic
behaviour of F at certain roots of unity in Section II.5. In Section II.6 a double Eichler
integral is introduced and shown, via the use of Shimura theta functions, to exhibit
modular properties. Next we turn to Section II.7 where we show that the double Eichler
integral can be viewed as a piece of a certain indefinite theta series. Given results in
this section, we proceed to prove the main results regarding quantum modularity of F
in Section II.9. We set the double Eichler integral in a modular setting in Section II.10,
using boosted complementary error functions and a result of [1]. Finally, we conclude the
paper in Section II.11 with some questions which will be investigated in further work.
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II.2 Preliminaries

We begin by introducing some basic functions along with recalling relevant results
pertinent to the rest of the paper.

II.2.1 Error functions

We first define a rescaled version of the usual one-dimensional error function. For
u ∈ R set

E(u) := 2

∫ u

0
e−πω

2
dω. (II.2.1)

This has first derivative given by E′(u) = 2e−πu
2
. The function E(u) may also be written

using incomplete gamma functions Γ(a, u) :=
∫∞
u e−ωωa−1dω, with a > 0, via the formula
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E(u) = sgn(u)

(
1− 1√

π
Γ

(
1

2
, πu2

))
, (II.2.2)

where we set

sgn(x) :=


1 if x > 0,

0 if x = 0,

−1 if x < 0.

We will also make use of an augmented sgn function, defined by sgn∗(x) := sgn(x) for
x 6= 0 and sgn∗(0) := 1.

We also require, for non-zero u, the function

M(u) :=
i

π

∫
R−iu

e−πω
2−2πiuω

ω
dω.

A relation between M(u) and E(u), for non-zero u, is given by

M(u) = E(u)− sgn(u). (II.2.3)

Therefore, using (II.2.2), we have that

M(u) =
− sgn(u)√

π
Γ

(
1

2
, πu2

)
. (II.2.4)

We further need the two-dimensional analogues of the above functions. Following [1]
and changing notation slightly, we define E2 : R× R2 → R by

E2(κ;u) :=

∫
R2

sgn(ω1) sgn(ω2 + κω1)e−π((ω1−u1)2+(ω2−u2)2)dω1dω2,

where throughout we denote components of vectors just with subscripts. Note that

E2(κ;−u) = E2(κ;u).

Again following [1], for u2, u1 − κu2 6= 0, we define

M2(κ;u1, u2) := − 1

π2

∫
R−iu2

∫
R−iu1

e−πω
2
1−πω2

2−2πi(u1ω1+u2ω2)

ω2(ω1 − κω2)
dω1dω2.

Then we have that

M2(κ;u1, u2) =E2(κ;u1, u2)− sgn(u2)M(u1)

− sgn(u1 − κu2)M

(
u2 + κu1√

1 + κ2

)
− sgn(u1) sgn(u2 + κu1).

(II.2.5)
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The relation (II.2.5) extends the definition of M2(u) to include u2 = 0 or u1 = κu2 - note
however that M2 is discontinuous across these loci. Putting x1 := u1 − κu2, x2 := u2

yields

M2(κ;u1, u2) =E2(κ;x1 + κx2, x2) + sgn(x1) sgn(x2)

− sgn(x2)E(x1 + κx2)− sgn(x1)E

(
κx1√
1 + κ2

+
√

1 + κ2x2

)
.

We also have the first partial derivatives of M2 as

M
(1,0)
2 (κ;u1, u2) = 2e−πu

2
1M(u2) +

2κ√
1 + κ2

e
−π(u2+κu1)2

1+κ2 M

(
u1 − κu2√

1 + κ2

)
,

M
(0,1)
2 (κ;u1, u2) =

2√
1 + κ2

e
−π(u2+κu1)2

1+κ2 M

(
u1 − κu2√

1 + κ2

)
,

along with the first partial derivatives of E2

E
(1,0)
2 (κ;u1, u2) = 2e−πu

2
1E(u2) +

2κ√
1 + κ2

e
−π(u2+κu1)2

1+κ2 E

(
u1 − κu2√

1 + κ2

)
,

E
(0,1)
2 (κ;u1, u2) =

2√
1 + κ2

e
−π(u2+κu1)2

1+κ2 E

(
u1 − κu2√

1 + κ2

)
,

all of which follow from Proposition 3.3. of [1].

II.2.2 Euler-Maclaurin summation formula

We state two special cases of the Euler-Maclaurin summation formula, in one and
two dimensions, as needed for this paper.
Let Bm(x) be the mth Bernoulli polynomial which is defined by text

et−1 =:
∑

m≥0Bm(x) t
m

m! .
We recall the property

Bm(1− x) = (−1)mB(x). (II.2.6)

The one dimensional case follows a result of Zagier in [21], and it implies that, for
α ∈ R and F : R→ R a C∞ function of rapid decay,∑

n∈N0

F ((n+ α)t) ∼IF
t
−
∑
n≥0

Bn+1(α)

(n+ 1)!
F (n)(0)tn, (II.2.7)
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where we set IF =
∫∞

0 F (x)dx. By ∼ we mean that the difference between the left- and
right-hand side is O(tN ) for any N ∈ N.

We now turn to the two-dimensional case. Let α ∈ R2 and F : R2 → R a C∞ function
of rapid decay. The Euler-Maclaurin summation formula in two dimensions then implies
that (generalising another result of Zagier in [21] to include shifts by α)

∑
n∈N2

0

F ((n+ α)t) ∼IF
t2
−
∑
n2≥0

Bn2+1(α2)

(n2 + 1)!

∫ ∞
0

F (0,n2)(x1, 0)dx1t
n2−1

−
∑
n1≥0

Bn1+1(α1)

(n1 + 1)!

∫ ∞
0

F (n1,0)(0, x2)dx2t
n1−1

+
∑

n1,n2≥0

Bn2+1(α2)

(n2 + 1)!

Bn1+1(α1)

(n1 + 1)!
F (n1,n2)(0, 0)tn1+n2 ,

(II.2.8)

here with IF =
∫∞

0

∫∞
0 F (x1, x2)dx1dx2.

II.2.3 Shimura’s theta functions

In [20] Shimura gave transformation laws of certain theta series, which we require
here. For ν ∈ {0, 1}, h ∈ Z and N,A ∈ N with A | N,N | hA define

Θν(A, h,N ; τ) :=
∑
m∈Z

m≡h (modN)

mνq
Am2

2N2 , (II.2.9)

where τ ∈ H and q := e2πiτ , as usual. Then we have the following transformation formula

Θν(A, h,N ;Mτ) = e

(
abAh2

2N2

)(
2Ac

d

)
εd(cτ + d)

1
2

+νΘν(A, ah,N ; τ), (II.2.10)

for M = ( a bc d ) ∈ Γ0(2N) with 2 | b. Here e(x) := e2πix and, for odd d, εd = 1 or i
depending on whether d ≡ 1 (mod 4) or d ≡ 3 (mod 4) respectively, and

(
c
d

)
is the

extended Jacobi symbol. Further, we have that

Θν

(
A, h,N ;−1

τ

)
= (−i)ν(−iτ)

1
2

+νA−
1
2

∑
k (modN)

Ak≡0 (modN)

e

(
Akh

N2

)
Θν(A, k,N ; τ).

(II.2.11)
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We also require the transformations

Θν(A,−h,N ; τ) = (−1)νΘν(A, h,N ; τ),

and if h1 ≡ h2 (modN), then

Θν(A, h1, N ; τ) = Θν(A, h2, N ; τ).

II.2.4 Vector-valued quantum modular forms

Since the study of vector-valued quantum modular forms has been motivated in the
introduction, here we give only the formal definition, following [7]. We begin with the
depth one case, before defining those of higher depth.

Definition II.2.1. For 1 ≤ j ≤ N ∈ N, a collection of functions fj : Q → C is called a
vector-valued quantum modular form of weight k and multiplier χ = (χj,`)1≤j,`≤N and
quantum set Q for SL2(Z) if, for all M =

(
a b
c d

)
∈ SL2(Z) we have that1

fj(τ)− (cτ + d)−k
∑

1≤`≤N
χj,`(M)f`(Mτ)

can be extended to an open subset of R and is real-analytic there. We denote the vector
space of these forms by Qk(χ).

II.2.5 Higher depth vector-valued quantum modular forms

We now consider generalisations of vector-valued quantum modular forms, again
following [7].

Definition II.2.2. For 1 ≤ j ≤ N ∈ N, a collection of functions fj : Q → C is
called a vector-valued quantum modular form of depth P , weight k and multiplier
χ = (χj,`)1≤j,`≤N and quantum set Q for Γ if, for all M =

(
a b
c d

)
∈ SL2(Z) we have that

fj(τ)− (cτ + d)−k
∑

1≤`≤N
χ−1
`,j (M)f`(Mτ) ∈

⊕
`

QP`κj (χ`)O(R),

where ` runs through a finite set, κ` ∈ 1
2Z, P` ∈ Z with max(P`) = P − 1, χl multipliers,

OR is the space of real analytic functions on R ⊂ R which contains an open subset of R.
We also define Q1

k(χ) := Qκ(χ), Q0
k(χ) := 1, and let QPk (χ) denote the space of forms of

weight k, depth P , and multiplier χ for Γ.

1Correcting a minor typographical error of [Ma1].
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Remark 2. As before, one can consider strong higher depth quantum modular forms,
looking at asymptotic expansions and not just values. The functions described in this
paper satisfy this stronger condition.

II.2.6 Double Eichler Integrals

In Section II.6 we consider certain double Eichler integrals and investigate their
transformation properties. Here, we recall relevant definitions and results.

Let fj ∈ Skj (Γ, χj) be a cusp form of weight k with multiplier χj on Γ ⊂ SL2(Z). If

kj = 1
2 then we allow fj ∈ M 1

2
(Γ, χj), the space of all holomorphic modular forms of

weight 1
2 with multipler χj . We define a double Eichler integral by

If1,f2(τ) :=

∫ i∞

−τ̄

∫ i∞

ω1

f1(ω1)f2(ω2)

(−i(ω1 + τ))2−k1(−i(ω2 + τ))2−k2
dω2dω1,

along with the multiple error of modularity (dc ∈ Q)

rf1,f2,
d
c
(τ) :=

∫ i∞

d
c

∫ d
c

ω1

f1(ω1)f2(ω2)

(−i(ω1 + τ))2−k1(−i(ω2 + τ))2−k2
dω2dω1.

In [7] the authors also prove the following proposition, which we will make use of.

Proposition II.2.1. Consider functions fj , g` (1 ≤ j ≤ N, 1 ≤ ` ≤ M) that are
vector-valued modular forms which satisfy the transformations

fj

(
−1

τ

)
= (−iτ)κ1

∑
1≤k≤N

χ−1
j,kfk(τ) , g`

(
−1

τ

)
= (−iτ)κ2

∑
1≤m≤N

ψ−1
`,mgm(τ),

where κ1, κ2 ∈ 1
2 + N0. Then we have the transformation formula

Ifj ,g`(τ)− (−iτ)κ1+κ2−4
∑

1≤k≤N
1≤m≤M

χ−1
j,kψ

−1
`,mIfk,gm

(
−1

τ

)

=

∫ i∞

0

∫ i∞

ω1

fj(ω1)g`(ω2)

(−i(ω1 + τ))2−κ1(−i(ω2 + τ))2−κ2
dω1dω2 + Ifj (τ)rg`(τ)− rfj (τ)rg`(τ).

The one-dimensional version of this proposition can be concluded in a similar way,
regarding g`(τ) as constant. In particular, we define
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Ifj (τ) :=

∫ i∞

−τ̄

fj(ω)

(−i(ω + τ))2−k dω, rfj , dd
(τ) :=

∫ ∞
d
c

fj(ω)

(−i(ω + τ))2−k dω.

If k = 1
2 then we allow fj to be in Mk(Γ, χ). The one dimensional Eichler integral Ifj

is defined on H ∪Q, whereas the error of modularity rfj , dc
exists on all R\{−d

c} and is

real-analytic there. If fj is a cusp form, then rfj , dc
exists on all R. The transformation

property then follows from the above. We note that Proposition II.2.1 implies that the
double Eichler integrals above are vector-valued quantum modular forms of depth two.

II.2.7 Gauss Sums

Here we recall, without proof, some relevant results on the vanishing of quadratic
Gauss sums, which we will use when investigating the radial asymptotic behaviour of our
function in Section II.5.

Let a, b, c ∈ N and denote the generalised quadratic Gauss sum by

G(a, b, c) :=
∑

n (mod c)

e
2πi(an2+bn)

c .

Then we have the following Lemma, which follows from basic properties of Gauss
sums - see e.g. Chapter 1 of [2].

Lemma II.2.2. The following results on the vanishing of G(a, b, c) hold:

1. If gcd(a, c) > 1 and gcd(a, c) - b then G(a, b, c) = 0.

2. If 4 | c, b is odd, and gcd(a, c) = 1 then G(a, b, c) = 0.

3. If c ≡ 2 (mod 4) and gcd(a, c) = 1 then G(a, 0, c) = 0.

II.2.8 Boosted Error Functions

In Section II.10 we relate a double Eichler integral to a signature (2, 2) indefinite
theta function. To do so, we use techniques described in [1]. There, the authors consider
so-called boosted error functions and use them to find “modular completions” of a certain
family of indefinite theta functions in signature (n− 2, 2). A modular completion of a
non-modular holomorphic function f(τ) is any function g(τ) such that f̃(τ) := f(τ)+g(τ)
is modular non-trivially, i.e. g(τ) is non-holomorphic.

We recall the relevant simplified results here for convenience in signature (2, 2), noting
in particular the change in notation “flips” the conditions of the double null limit situation
described in Section 4.3 of [1].
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Consider a bilinear form B(x, y) := xTAy for a symmetric m×m matrix A, and its
associated quadratic form Q(x) := 1

2B(x, x). Assume that Q(x) has signature (2, 2) and
also that, for µ ∈ L ⊂ Z4, we have Q(µ) ∈ Z. Take four vectors C1, C2, C

′
1, C

′
2 ∈ R4.

Then we define the orthogonal projections

C1⊥2 := C1 −
B(C1, C2)

Q(C2)
C2 and C2⊥1 := C2 −

B(C1, C2)

Q(C1)
C1,

along with the discriminant ∆(C1, C2) := Q(C1)Q(C2)−B(C1, C2)2.
We let Cm′ = C ′m and let ∆I denote the determinant of the Gram matrix

B(Cn, Cm)n,m∈I where I is a subset of indices {1, 1′, 2, 2′}. Further, let Dm,n be off-
diagonal cofactors of the Gram matrix B(Cm, Cn)m,n∈{1,1′,2,2′}.

We require

1. B(C1, C
′
2) = B(C ′1, C

′
2) = B(C ′1, C2) = 0,

2. Q(C1) < 0 and Q(C2) < 0,

3. Q(C ′1) = Q(C ′2) = 0,

4. B(C1, C
′
1) < 0 and B(C2, C

′
2) < 0,

5. ∆(C1, C2) > 0,

6. M00 is positive definite,

where M00 :=
(

∆122′ D1′2′
D1′2′ ∆11′2

)
. Then we define boosted complementary error functions in

one and two dimensions by

M(C;x) := M

(
B(C, x)√
−Q(C)

)
,

M2(C1, C2;x) := M2

(
−B(C1, C2)√

∆(C1, C2)
;
B(C2, x)√
−Q(C2)

,
B(C1⊥2, x)√
−Q(C1⊥2)

)
.

The authors of [1] then provide the following Theorem, describing the completion of a
certain theta function.

Theorem II.2.3. Under the conditions above, consider the locally constant function
given by

Φ(x) := (sgn (B(C1, x))−
(
sgnB(C ′1, x)

)
)((sgnB(C2, x))−

(
sgnB(C ′2, x)

)
).
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Let τ = u+ iv ∈ H. Then the theta function

ϑ [Φ(x)] (τ) :=
∑

λ∈a+Z4

Φ
(√

2vλ
)
qQ(λ),

admits a modular completion to a non-holomorphic theta series

ϑ
[
Φ̂(x)

]
(τ) :=

∑
λ∈a+Z4

Φ̂
(√

2vλ
)
qQ(λ),

of weight two, where a ∈ R4. The completion (in terms of the function Φ(x)) is given by

Φ̂(x)− Φ(x) =M2 (C1, C2;x) +
(
sgn (B(C2⊥1, x))−

(
sgnB(C ′2, x)

))
M (C1;x)

+
(
sgn (B(C1⊥2, x))− sgn

(
B(C ′1, x)

))
M (C2;x) .

II.3 The Partial Theta Function F

Throughout, we consider a positive definite integral binary quadratic form
Q(n) := a1n

2
1 + a2n1n2 + a3n

2
2, where aj ∈ N for 1 ≤ j ≤ 3, and gcd(a1, a2, a3) = 1. Let

the discriminant of Q(n) be −D := a2
2 − 4a1a3 < 0.

Let s ≥ 1 be some fixed integer. We write elements of Z[1
s ] in the form r + x

s where

r, x ∈ Z and − s
2 ≤ x <

s
2 , and let α(k) := (α

(k)
1 , α

(k)
2 ) be a pair of elements in Z[1

s ]×Z[1
s ],

labeled by (k). For s 6= 1 we require that α does not lie in Z2 (we could instead add
a condition here similar to (II.3.1) for just elements in Z2. However, this would be
equivalent to breaking the vector-valued form into two separate forms, considering those
elements in Z2 in a separate vector, with s = 1).

We let

S ∗ :=
{
α(j) | 1 ≤ j ≤ N

}
,

be a finite set of N such pairs, and define

S := S ∗ ∪
{

(1− α(j)) | α(j) ∈ S ∗, 1 ≤ j ≤ N
}
,

where (1− α(k)) := (1− α(k)
1 , 1− α(k)

2 ) is meant componentwise. For convenience, we will
often suppress the superscript on elements α ∈ S . We are free to assume s is minimal,
such that each element α has at least one of x1, x2 coprime to s (otherwise, we can reduce
each fractional part until we are in this situation, possibly splitting into different sets
with two different s1 and s2).

We also work with subsets of S ∗ given by
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S ∗
1 := {α ∈ S ∗ | α1 ∈ Z} and S ∗

2 := {α ∈ S ∗ | α2 ∈ Z} .

Consider also a function ε : S ∗ → R\{0} extended to S by the relation ε(1− α) = ε(α),
such that ∑

α∈S

ε(α) = 0. (II.3.1)

For fixed S ∗, ε, and Q(n) = a1n
2
1 + a2n1n2 + a3n

2
2, the function that we concentrate

on in this paper is given by

F (q) :=
∑
α∈S

ε(α)
∑

n∈α+N2
0

qQ(n) − 1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)

 ∑
j∈1−α2+N0

qa3j2 −
∑

j∈α2+N0

qa3j2


− 1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)

 ∑
j∈1−α1+N0

qa1j2 −
∑

j∈α1+N0

qa1j2

 .

Throughout, if α1, α2 ∈ Z then we omit possible n = (0, 0) and j = 0 terms in
summations implicitly. In each case, this is equivalent to subtracting a constant term and
so does not affect modularity properties.

We consider three different parts separately, writing F (q) = F1(q) + F2(q) + F3(q),
where

F1(q) :=
∑
α∈S

ε(α)
∑

n∈α+N2
0

qQ(n).

We also define

F2(q) := −1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)

 ∑
j∈1−α2+N0

qa3j2 −
∑

j∈α2+N0

qa3j2

 ,

F3(q) := −1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)

 ∑
j∈1−α1+N0

qa1j2 −
∑

j∈α1+N0

qa1j2

 .

Remark 3. If for each (a, x) ∈ S ∗
1 the element (b, 1−x) is also in S ∗

1 and sgn∗(a) = sgn∗(b)
as well as ε(a, x) = ε(b, 1 − x), then the function F2 vanishes identically. A similar
statement holds for the function F3.
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Although this definition is only the analogue of the function called F1 from [6],
it is worth noting that results and techniques therein combined with those of the
present paper allow us to also consider the obvious generalization of the function called
F2 defined by Bringmann, Kaszian, and Milas in [6], and to give analogous results.
Again note that we have conflicting notation, and our function F2 is different to that in [6].

Remark 4. It is possible to drop the condition (II.3.1) if we are willing to lose the
possibility of having quantum set Q. This is essentially the same as using a vector of
quantum sets - one for each fixed α ∈ S ∗ - such that the main term in the Euler-Maclaurin
summation formula of the element

∑
n∈α+N2

0
qQ(n) +

∑
n∈1−α+N2

0
qQ(n) vanishes at certain

roots of unity dictated by the quantum set. In this case, the largest SL2(Z)-invariant
quantum set would be Q1 for one fixed α, as defined in the following section. However,
this would be empty in some cases, and we would need to work on suitable subgroups of
the full modular group to restore an infinite quantum set.

Example II.3.1. As a running example we consider the positive definite quadratic form
Q(x) = 2x2

1 + x1x2 + x2
2 of discriminant −D = −7, along with the set

S ∗ =

{(
1

4
,
1

4

)
,

(
1

4
,−2

4

)}
.

Further, we set

ε(α) =


1 if α =

(
1

4
,
1

4

)
,

−1 if α =

(
−2

4
,
1

4

)
.

We see that this set satisfies our condition with s = 4, and that both S ∗
1 ,S

∗
2 are empty,

so we need only consider F1.

II.4 The Quantum Set Q

Here we describe the quantum set for our function F , the main idea being that the
choice of set will force the main term in the Euler-Maclaurin summation formula to
vanish so that we do not obtain a growing term in the asymptotic expansions toward
certain points in Section II.5.

Throughout we write elements of Q as h/k with gcd(h, k) = 1, and define δ := gcd(h, s)
and γ := gcd(k, s). For a fixed α = (r1, r2) + (x1, x2)/s ∈ S , set
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g(x) = g(x1, x2) :=

{
gcd(2a1x1 + a2x2, a2x1 + 2a3x2) if x 6= (0, 0),

1 if x = (0, 0),

with the convention that gcd(0, t) = t for t ∈ N0. We define

G := {g(x) | α ∈ S } .

Then the first part of the quantum set is given by

Q1 :=

{
h

k

∣∣∣ s
δ
,
s

γ
- g for every g ∈ G

}
.

In particular, note that if g(x) = 1 for every choice of α then the conditions on s
δ and

s
γ are always satisfied away from h ∈ sZ or k ∈ sZ. We also differentiate cases based
upon whether or not the following congruence condition holds

Q(x) (mod s) is constant across S . (II.4.1)

If in addition we have s - g for every g ∈ G, we set
Q2 :=

{
h

k

∣∣∣ h ∈ sZ} and Q3 :=

{
h

k

∣∣∣ k ∈ sZ} if (II.4.1) holds,

Q2 :=

{
h

k

∣∣∣ h ∈ s2Z
}

and Q3 :=

{
h

k

∣∣∣ k ∈ s2Z
}

else.

(II.4.2)

If s divides some element in G then the situation is more complicated and we will need
to differentiate several cases. In this case, it will be easier to define the “extra” quantum
sets Q2 and Q3 algorithmically after (II.5.4) is introduced and investigated. In each case,
we find a particular n ∈ N and define

Q2 :=

{
h

k

∣∣∣ h ∈ snZ} and Q3 :=

{
h

k

∣∣∣ k ∈ snZ} .
The “full” quantum set is then defined as Q := Q1 ∪Q2 ∪ Q3. Notice that for some

choices of s,Q,S this quantum set is somewhat sparse (e.g. if s = 2, 4 and a2 ∈ 2Z and
2k ∈ G for some k ∈ N).

The transformation formulae of the double Eichler integrals in Section II.6 currently
require Q = SQ, and so we note the following equalities. First, the action of S on a
fraction h

k is given by S(hk ) = −k
h . Then it is clear that SQ1 = Q1, since each of the

numerator and denominator are assumed to have the same property in the definition
of Q1 above. Then notice that, for a fixed choice of n ∈ N, we have SQ2 = Q3 as we
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just switch the numerator and denominator, i.e. for h ∈ snZ we have that gcd(k, s) = 1
and so S(hk ) = −k

h has a denominator lying in snZ and a numerator co-prime to the
denominator by construction. The argument is similar as to why SQ3 = Q2. Hence
overall we have that SQ = Q.

Example II.4.1. (continued) Continuing our example, we compute gcd(2x1+x2, x1+2x2)
for each of the elements x ∈ {(1, 1), (1,−2), (−1,−1), (−1, 2)} and find that G = {1}.
Furthermore, we have that Q(x) ≡ 0 (mod 4) for every element in S , hence we take the
quantum set Q.

II.5 Radial Asymptotic Behaviour of F at Certain Roots
of Unity

In this section we aim to find the asymptotic behaviour of the function F at a point

e2πih
k
−t as t→ 0+, with h/k ∈ Q. To do so, we rewrite F in a way that we may apply

the Euler-Maclaurin summation formula.

II.5.1 Asymptotic Behaviour of F1

Decomposing F as above, we concentrate firstly on F1. We have

F1

(
e2πih

k
−t
)

=
∑
α∈S

ε(α)
∑

n∈α+N2
0

e(2πih
k
−t)Q(n) =

∑
α∈S

ε(α)
∑
n∈N2

0

e(2πih
k
−t)Q(n+α).

Letting n 7→ `+ nksδ where 0 ≤ `j ≤ ks
δ − 1 and δ := gcd(h, s) gives that the sum on n is∑

0≤`≤ ks
δ
−1

n∈N2
0

e(2πih
k
−t)Q(`+n ks

δ
+α). (II.5.1)

Noting that, for n ∈ Z, we have e2πih
k
Q(`+n ks

δ
+α) = e2πih

k
Q(`+α) which is independent of

n, we can write (II.5.1) as

∑
0≤`≤ ks

δ
−1

e2πih
k
Q(`+α)

∑
n∈ δ

ks
(`+α)+N2

0

e−tQ(n ks
δ

).

Defining F1(x) := e−Q(x) we can therefore write

F1

(
e2πih

k
−t
)

=
∑
α∈S

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α)

∑
n∈ δ

ks
(`+α)+N2

0

F1

(
ks

δ

√
tn

)
. (II.5.2)
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The main term in the Euler-Maclaurin summation formula (II.2.8) is then given by

δ2

k2s2t
IF1

∑
α∈S

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α), (II.5.3)

which we will show below vanishes for h/k ∈ Q. We may let ` run modulo ks
δ , since we

have that e2πih
k
Q(`+n ks

δ
+α) = e2πih

k
Q(`+α) whenever n is a pair of integers. Hence the sum

on ` equals (writing α = r + x
s as in Section II.3)∑

` (mod ks
δ )

e2πih
k
Q(`+x

s ). (II.5.4)

If s = 1 then (II.5.4) is clearly independent of α and hence the main term vanishes. If
s > 1 we let ` = N + νk, again meant componentwise, with N (mod k) and ν

(
mod s

δ

)
.

Similar to previous calculations, we compute that the sum on ` in (II.5.3) is equal to

∑
N (mod k)

e
2πih
ks2

((a1(s2N2
1 +2sN1x1)+a2(s2N1N2+sx2N1+sx1N2)+a3(s2N2

2 +2sx2N2)+Q(x))

×
∑

ν (mod s
δ )

e2πih
s

(ν1(2a1x1+a2x2)+ν2(a2x1+2a3x2)).

Given this, we see that showing (II.5.3) is zero becomes equivalent to showing that the
following expression vanishes

∑
α∈S

ε(α)
∑

N (mod k)

e
2πih
ks2

((a1(s2N2
1 +2sN1x1)+a2(s2N1N2+sx2N1+sx1N2)+a3(s2N2

2 +2sx2N2)+Q(x))

×
∑

ν (mod s
δ )

e
2πi

h/δ
s/δ

(ν1(2a1x1+a2x2)+ν2(a2x1+2a3x2))
.

(II.5.5)

First, consider values h/k ∈ Q1. Since gcd(hδ ,
s
δ ) = 1, the sum on ν vanishes unless

s
δ | (2a1x1 + a2x2) and s

δ | (a2x1 + 2a3x2), implying that s
δ | g(x). By construction, this

is a contradiction to our assumption on Q1. Therefore, for h/k ∈ Q1 the main term
vanishes. It is also easily seen from here that if s - g(x) for each α then the main term
will vanish.

Then it remains to show that the main term is zero for our different choices of sets
Q2 and Q3. First, we consider values of h ∈ sZ or h ∈ s2Z depending on whether (II.4.1)
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holds or not, respectively. For ease of exposition we show this only in the case where
(II.4.1) holds - the second case follows similarly.

Writing Q(x) = sX + x0 for each choice of α, with 0 ≤ x0 < s constant across S by
assumption, it follows that it suffices to show

∑
α∈S

ε(α)
∑

N (mod k)

e
2πih/s
k ((a1(sN2

1 +2N1x1)+a2(sN1N2+x2N1+x1N2)+a3(sN2
2 +2x2N2)+X) = 0.

Since δ = s in Q2 we see that gcd(k, s) = 1 and so in particular the inverse of s modulo
k, which we denote by s̄, exists. Making the change of variables N 7→ N − s̄x and using
that h/s ∈ Z gives

e
−2πis̄x0h/s

k

∑
N (mod k)

e
2πih
k
Q(N)

∑
α∈S

ε(α),

which vanishes since
∑

α∈S ε(α) = 0.
Next, consider elements in Q3. First, fix a choice of α. Note that s does not divide

both x1, x2 for each α by assumption (if this were not the case, then (II.5.4) is seen to
be constant and so we would require the same constant across all choices of α, implying
that every α lies in Z2). We have already seen that when s - g(x) the main term vanishes
for any value of k ∈ Z, and so we now assume s | g(x) (a similar argument holds for the
cases where s/δ | g(x)).

We are aiming to find m ∈ N such that for k ∈ smZ the term

∑
N (mod k)

e
2πih
sk (a1(sN2

1 +2N1x1)+a2(sN1N2+x2N1+x1N2)+a3(sN2
2 +2x2N2))

vanishes (here we have taken the factor e
2πihQ(x)

ks2 out of the sum). Since s | g(x) we may
define X1 := (2a1x1 + a2x2)/s and X2 := (a2x1 + 2a3x2)/s, each of which lie in Z, to
obtain the two-dimensional Gauss sum (putting k = sm)

∑
N (mod sm)

e
2πih
sm (a1N2

1 +a2N1N2+a3N2
2 +N1X1+N2X2). (II.5.6)

The main idea here is to reduce this to a product of one-dimensional Gauss sums and
use well-known results. As with most Gauss sums we may reduce (II.5.6) to the product
of two-dimensional Gauss sums over prime powers (via the Chinese Remainder theorem),
and hence consider
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∑
N (mod pn)

e
2πih
pn (a1N2

1 +a2N1N2+a3N2
2 +N1X1+N2X2), (II.5.7)

where p is some prime dividing s, n ∈ N, and gcd(h, p) = 1 by construction. We see that
for the main term in the Euler-Maclaurin expansion formula to vanish, it suffices to show
that the above sum is zero for any prime dividing s. Since s does not divide both x1 and
x2 there exists at least one p` ‖ s that does not divide both x1 and x2. Fixing such a
prime, we see that at least one of a1 and a3 admit an inverse modulo pn. For ease of
exposition we assume throughout that ā1 exists, denoting the inverse of a1. Next, we
differentiate situations depending on the parity of p.

If p is odd then 2̄ also exists modulo pn. Completing the square on N1 in the
exponential term of (II.5.7) gives

a1N
2
1 + a2N1N2 + a3N

2
2 +N1X1 +N2X2

≡ a1(N1 + 2̄ā1(a2N2 +X1))2 − 4̄ā1(a2N2 +X1)2 + a3N
2
2 +X2N2 (mod pn) .

Thus the sum on N becomes (up to constants, after making the shift
N1 7→ N1 + 2̄ā1(a2N2 +X1))∑

N1 (mod pn)

e
2πih
pn

a1N2
1

∑
N2 (mod pn)

e
2πih
pn (D1N2

2 +2x∗2N2),

where D1 := a3 − 4̄ā1a
2
2 and x∗2 :=

x2(a3−4̄ā1a2
2)

p`
∏
j q
nj
j

∈ Z, with s = p`
∏
j q

nj
j written in its

prime decomposition. This is now a product of one-dimensional quadratic Gauss sums.
Concentrating on the sum on N2 we consider first the case where D1 is not coprime with
pn. That is, we assume gcd(D1, p

n) = pr with r ≥ 1. Then, if pr - x∗2 we see by part one
of Lemma II.2.2 that the Gauss sum vanishes. The second case is where D1 is coprime
with pn, implying that p` | x2 since x∗2 ∈ Z. Thus the sum vanishes for any n ∈ N unless
p` | x2, which cannot happen as then we would have that p` divides both x1 and x2 since
p | g(x). Hence the sum vanishes for all k ∈ sZ.

Next we turn to the case of p = 2. In particular, we then have that 2 | a2. Again we
have that at least one of ā1 or ā3 exist modulo 2n for n ∈ N, and we assume that ā1 does
for ease of exposition. Letting N1 → N1 − ā1

a2
2 N2 gives us the numerator

a1N
2
1 +X1N1 +N2

2

(
a3 − ā1

a2
2

4

)
+N2

(
X2 −X1ā1

a2

2

)
(mod 2n) ,

and so again we obtain a product of two one-dimensional Gauss sums. Explicitly, we
have
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∑
N1 (mod 2n)

e
2πih
2n (a1N2

1 +X1N1)
∑

N2 (mod 2n)

e
2πih
2n (D2N2

2 +N2(X2−X1ā1
a2
2 )),

with D2 := a3 − ā1
a2

2
4 . If X1 is odd then the sum on N1 will vanish for any n ≥ 2

using part two of Lemma II.2.2, so take k ∈ sZ with 4 | k. If X1 is even then we put
N1 → N1 +X1/2 to give the sum on N1 as (up to a constant)∑

N1 (mod 2n)

e
2πih
2n

a1N2
1 .

Using part three of Lemma II.2.2 this vanishes only if n = 1, and so we may choose
k ∈ sZ with 2 ‖ k. The sum on N2 is∑

N2 (mod 2n)

e
2πih
2n (D2N2

2 +2x∗2N2),

where x∗2 := D2x2

2`
∏
j q
nj
j

and 2` ‖ s. In a similar fashion to the case of odd p, this vanishes

unless 2`−1 | x2. In this case, let r be such that 2r ‖ D2 and put t := D2/2
r odd, so the

sum becomes

2r
∑

N2 (mod 2n−r)

e
2πih
2n−r (tN2

2 +bN2).

If b := 2tx2

2`
∏
j q
nj
j

is odd then this vanishes for all n ≥ r + 2 by part two of Lemma II.2.2,

so choose k ∈ sZ with 2r+2 | k. If it is even then we complete the square by shifting
N2 → N2 − t̄b/2 to obtain (up to a constant)

∑
N2 (mod 2n−r)

e
2πihtN2

2
2n−r ,

vanishing only when n = r + 1. Here we may then choose k ∈ sZ with 2r+1 ‖ k by part
three of Lemma II.2.2.

Choosing overall the minimum n such that the main term vanishes for each choice of
α ∈ S (and ensuring that it is at least 1 or 2 depending on (II.4.1)), we may form the
extra part of the quantum set. Analogously to (II.4.2) we define

Q2 :=

{
h

k

∣∣∣ h ∈ snZ} and Q3 :=

{
h

k

∣∣∣ k ∈ snZ} ,
along with any necessary conditions on whether higher powers of s may divide h or k.
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Continuing with analysing the asymptotic behaviour of F1 we next turn to the other
terms in the Euler-Maclaurin summation formula (II.2.8). With h/k ∈ Q, the second
term is given by

∑
α∈S

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α)

∑
n2≥0

Bn2+1

(
δ(`2+α2)

ks

)
(n2 + 1)!

∫ ∞
0
F (0,n2)

1 (x1, 0)dx1

(
ks
√
t

δ

)n2−1

.

In the same way as in [6] we claim that the terms where n2 is even vanish. To see
this we first recall that each α ∈ S pairs canonically with 1−α by construction. Thus if
we show that the expression

∑
0≤`≤ ks

δ
−1

(
e2πih

k
Q(`+α)B2n2+1

(
δ(`2 + α2)

ks

)
+ e2πih

k
Q(`+1−α)B2n2+1

(
δ(`2 + 1− α2)

ks

))

vanishes, then the claim will follow immediately. Recalling the behaviour of the Bernoulli
polynomials (II.2.6) and shifting the second term via ` 7→ −`+ (−1 + ks

δ )(1, 1) gives this
immediately.

Treating the terms where n2 is odd (again using the canonical pairing in S ) we
now see that the Bernoulli polynomial transform no longer cancels, but give the same
contribution. Hence the second term in the Euler-Maclaurin summation formula for F1 is

−2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α)

∑
n2≥0

B2n2+2

(
δ(`2+α2)

ks

)
(2n2 + 2)!

×
∫ ∞

0
F (0,2n2+1)

1 (x1, 0)dx1

(
k2s2t

δ2

)n2

.

(II.5.8)

Similarly, the third term in (II.2.8) is given by

−2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α)

∑
n1≥0

B2n1+2

(
δ(`1+α1)

ks

)
(2n1 + 2)!

×
∫ ∞

0
F (2n1+1,0)

1 (0, x2)dx2

(
k2s2t

δ2

)n1

.

The final term of (II.2.8) is equal to
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∑
α∈S

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α)

×
∑

n1,n2≥0

Bn1+1

(
δ(`1+α1)

ks

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

ks

)
(n2 + 1)!

F (n1,n2)
1 (0, 0)

(
ks
√
t

δ

)n1+n2

.

Proceeding in the same way, only the terms where n1 ≡ n2 (mod 2) are non-zero.
Therefore this is equal to

2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e2πih
k
Q(`+α)

×
∑

n1,n2≥0
n1≡n2 (mod 2)

Bn1+1

(
δ(`1+α1)

ks

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

ks

)
(n2 + 1)!

F (n1,n2)
1 (0, 0)

(
ks
√
t

δ

)n1+n2

.

II.5.2 Asymptotic Behaviour of F2 and F3

We now focus on the function F2, and use similar techniques to above. Set
F2(x) := e−a3x2

, rewrite as in (II.5.2), and use the Euler-Macluarin summation for-
mula in one dimension (II.2.7) to obtain the main term as

− δ

2ks
√
t
IF2

∑
α∈S ∗1

ε(α) sgn∗(α1)

 ∑
0≤r≤ ks

δ
−1

e2πih
k
a3(r+1−α2)2 − e2πih

k
a3(r+α2)2

 .

Letting r 7→ ks
δ −r−1 in the first term of the inner summand shows that this vanishes

identically. The second term in the one-dimensional Euler-Maclaurin formula for F2 is
given by (pairing even terms and noting odd terms vanish as above)
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1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a3(r+(1−α2))2

∑
m≥0

B2m+1

(
δ(r+(1−α2))

ks

)
(2m+ 1)!

×F (2m)
2 (0)

(
k2s2t

δ2

)m

− 1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a3(r+α2)2

∑
m≥0

B2m+1

(
δ(r+α2)

ks

)
(2m+ 1)!

×F (2m)
2 (0)

(
k2s2t

δ2

)m
.

The same argument runs for the function F3 with setting F3(x) := e−a1x2
, yielding

1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a1(r+(1−α1))2

∑
m≥0

B2m+1

(
δ(r+(1−α1))

ks

)
(2m+ 1)!

×F (2m)
3 (0)

(
k2s2t

δ2

)m

− 1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a1(r+α1)2

∑
m≥0

B2m+1

(
δ(r+α1)

ks

)
(2m+ 1)!

×F (2m)
3 (0)

(
k2s2t

δ2

)m
.

II.6 Double Eichler Integrals of Weight One

Here we introduce and study a family of double Eichler integrals of weight 1, and
show that they are a part of a vector-valued quantum modular form of depth two and
weight one.

Recalling that Q(n) has non-zero coefficients aj and has discriminant −D < 0, for
α ∈ S ∗, ωj ∈ H we set

Eα(τ) := −
√
D

4

∫ i∞

−τ̄

∫ i∞

ω1

θ1(α;ω1, ω2) + θ2(α;ω1, ω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1, (II.6.1)

along with theta functions
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θ1(α;ω1, ω2) :=
1

a1

∑
n∈α+Z2

(2a1n1 + a2n2)n2e
πi(2a1n1+a2n2)2ω1

2a1
+
πiDn2

2ω2
2a1

and

θ2(α;ω1, ω2) :=
1

a3

∑
n∈α+Z2

(a2n1 + 2a3n2)n1e
πi(a2n1+2a3n2)2ω1

2a3
+
πiDn2

1ω2
2a3 .

In particular, we note that if α ∈ Z2, the term n = (0, 0) vanishes in each of the
theta functions, and therefore so does Eα(τ) at n = (0, 0). We aim to show the following
proposition.

Proposition II.6.1. The function

E(τ) :=
∑
α∈S ∗

ε(α)Eα(sτ)

is a linear combination of components of a vector-valued quantum modular form of depth
two and weight one for SL2(Z).

Remark 5. Though we do not explore the situation here, for a fixed α the term Eα(τ) can
itself be viewed as a modular form on a suitable subgroup Γ of SL2(Z). As mentioned in
Section II.4 a larger quantum set can be used here (if it is not already Q), modifying the
level of Γ where appropriate.

Proof of Proposition II.6.1. We start by rewriting E(τ) in terms of Shimura theta
functions Θ1(A, h,N ; τ) - see Section II.2.3 for the relevant definitions. For θ1 set
ν1 = 2a1n1 + a2n2 ∈ 2a1α1 + a2α2 + Z and ν2 = n2 ∈ α2 + Z. We further have that
ν1 − a2ν2 = 2a1n1 ∈ 2a1α1 + 2a1Z .

Putting these into the definition we obtain that

θ1(α;ω1, ω2) =
1

a1

∑
ν∈(2a1α1+a2α2,α2)+Z2

ν1−a2ν2∈2a1α1+2a1Z

ν1ν2e
πiν2

1ω1
2a1

+
πiDν2

2ω2
2a1 .

We then rewrite θ1(α;ω1, ω2) as

1

a1

∑
%∈{0,1,...,2a1−1}

 ∑
ν1∈2a1α1+a2α2+a2%+2a1Z

ν1e
πiν2

1ω1
2a1

∑
ν2∈α2+%+2a1Z

ν2e
πiDν2

2ω2
2a1

 .

Summing over α in the set S ∗ then gives
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∑
α∈S ∗

ε(α)θ1(α;ω1, ω2)

=
1

a1s2

∑
A∈A

ε1(A)
∑

ν1≡A1 (mod 2a1s)

ν1e
πiν2

1ω1
2a1s

2
∑

ν2≡A2 (mod 2a1s)

ν2e
πiDν2

2ω2
2a1s

2

=
1

a1s2

∑
A∈A

ε1(A)Θ1

(
2a1s,A1, 2a1s;

ω1

s

)
Θ1

(
2a1s,A2, 2a1s;

Dω2

s

)
,

where

A := {(2a1sα1 + a2sα2 + a2%s, sα2 + %s) | α ∈ S ∗, 0 ≤ % ≤ 2a1 − 1} (mod 2a1s)

and ε1(A) := ε(A1−a2A2
2a1s

, A2
s ). Note that A has size 2a1N , where we count elements with

multiplicity.
There is a similar situation for θ2, where we let

B := {(2a3sα2 + a2sα1 + a2%s, sα1 + %s) | α ∈ S ∗, 0 ≤ % ≤ 2a3 − 1} (mod 2a3s)

of size 2a3N along with ε2(B) := ε(B2
s ,

B1−a2B2
2a3s

). We obtain that E(τ) is given by the
expression

−
√
D

4a1s2

∑
A∈A

ε1(A)

∫ i∞

−τ̄

∫ i∞

ω1

Θ1(2a1s,A1, 2a1s;ω1)Θ1(2a1s,A2, 2a1s;Dω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1

−
√
D

4a3s2

∑
B∈B

ε2(B)

∫ i∞

−τ̄

∫ i∞

ω1

Θ1 (2a3s,B1, 2a3s;ω1) Θ1 (2a3s,B2, 2a3s;Dω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1.

For n ∈ N, we note the equality

Θ1(a, b, a;nτ) =
∑
j∈Z

(aj + b)q
n
2a

(aj+b)2
=

1

n

∑
j∈Z

(anj + bn)q
1

2an
(anj+bn)2

=
1

n
Θ1(na, nb, na; τ).

(II.6.2)

We split E(τ) = EA(τ) + EB(τ) where

EA(τ) := −
√
D

4a1s2

∑
A∈A

ε1(A)
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×
∫ i∞

−τ̄

∫ i∞

ω1

Θ1(2a1s,A1, 2a1s;ω1)Θ1(2a1s,A2, 2a1s;Dω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1,

EB(τ) := −
√
D

4a3s2

∑
B∈B

ε2(B)

×
∫ i∞

−τ̄

∫ i∞

ω1

Θ1 (2a3s,B1, 2a3s;ω1) Θ1 (2a3s,B2, 2a3s;Dω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω2dω1.

We concentrate firstly on EA(τ) and, for k1 (mod 2a1s) and k2 (mod 2Da1s), set

Ik1,k2(τ) := IΘ1(2a1s,k1,2a1s;·),Θ1(2Da1s,Dk2,2Da1s;·)(τ).

Via (II.2.11) we compute the transformations of the two Shimura theta functions as

Θ1

(
2a1s, k1, 2a1s;−

1

τ

)
=

(−i)(−iτ)
3
2

√
2a1s

∑
j (mod 2a1s)

e

(
jk1

2a1s

)
Θ1(2a1s, j, 2a1s; τ)

and

Θ1

(
2Da1s,Dk1, 2Da1s;−

1

τ

)
=

(−i)(−iτ)
3
2

√
2Da1s

∑
j (mod 2Da1s)

e

(
jk2

2a1s

)
×Θ1(2Da1s, j, 2Da1s; τ).

Using (II.6.2) we find

EA(τ) = − 1

4a1s2
√
D

∑
α∈S ∗

∑
A∈Aα

ε1(A)IA1,A2(τ),

where for a fixed α ∈ S ∗ we define

Aα := {(2a1sα1 + a2sα2 + a2%s, sα2 + %s) | 0 ≤ % ≤ 2a1 − 1} (mod 2a1s) .

Then using Proposition II.2.1 we obtain the transformation formula
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∑
α∈S ∗

∑
A∈Aα

ε1(A)IA1,A2(τ)

− (−iτ)−1

2a1s
√
D

∑
α∈S ∗

∑
A∈Aα

ε1(A)
∑

k1 (mod 2a1s)
k2 (mod 2Da1s)

e

(
k1A1 + k2A2

2a1s

)
I
k1,

k2
D

(
−1

τ

)

=
∑
α∈S ∗

∑
A∈Aα

ε1(A)

(∫ i∞

0

∫ i∞

ω1

Θ1(2a1s,A1, 2a1s;ω1)Θ1(2Da1s,DA2, 2Da1s;ω2)√
−i(ω1 + τ)

√
−i(ω2 + τ)

dω1dω2

+ IΘ1(2a1s,A1,2a1s;·)(τ)rΘ1(2Da1s,DA2,2Da1s;·)(τ)

− rΘ1(2a1s,A1,2a1s;·)(τ)rΘ1(2Da1s,DA2,2Da1s;·)(τ)

)
.

Choosing (k1, k2) = (A1, DA2) in the second term then returns our original Eichler
integral. Each choice of A ∈ Aα is then seen to be a component of a vector valued

quantum modular form. In cases where e(A) := e
(
A2

1+DA2
2

2a1s

)
is the same across choices

of A ∈ Aα, one can take this outside of the sum on A as a constant factor, and so∑
A∈Aα ε1(A)IA1,A2(τ) can be seen as a single component of a vector-valued quantum

modular form. Furthermore, if e(A) is also constant across choices of α ∈ S ∗ then we
view all of EA(τ) as a single component.

A similar statement holds for EB, and then one can easily put all components into a
single vector-valued form in the obvious way.

Example II.6.2. (continued) Returning to our example we see that we set

θ1(α;ω1, ω2) :=
1

2

∑
n∈α+Z2

(4n1 + n2)n2e
πi(4n1+n2)2ω1

4
+

7πin2
2ω2

4

along with the similar expression for θ2. Working through, we set ν1 = 4n1 + n2 and
ν2 = n2 so that ν1 − ν2 = 4n1, giving the expression in terms of Shimura theta functions
as

∑
α∈S ∗

ε(α)θ1(α;ω1, ω2) =
1

32

∑
A∈A

ε1(A)Θ1

(
16, A1, 16;

ω1

4

)
Θ1

(
16, A2, 16;

7ω2

4

)
,

where, after a little calculation, we have the set

A = {(5, 1), (6, 2), (9, 5), (10, 6), (13, 9), (14, 10), (1, 13), (2, 14)} (mod 16) .
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Further, we set ε1(A) = ε(A1−A2
16 , A2

4 ). It is then simple to check that e(A) is constant
across the set A, and hence EA is a single component. We also find that the similarly
defined function e(B) is constant across the set

B = {(5, 1), (3, 1), (1, 5), (7, 5)} (mod 8) .

Hence we view our Eichler integral as a single component of the vector-valued form.

II.7 Indefinite Theta Functions

Here we realise the double Eichler integrals as pieces of indefinite theta functions,
with coefficients given by double error functions. We first write E(τ) := E( τs ) in such a
way that we can apply the Euler-Maclaurin summation formula.

Lemma II.7.1. Let u(n1, n2) := (u1, u2) = (
√
v(2
√
a1n1 + a2√

a1
n2),
√
vmn2), with m :=√

4a3 −
a2

2
a1

, and κ := a2
m
√
a1

= a2√
D

. We have that

E(τ) =
1

2

∑
α∈S ∗

ε(α)
∑

n∈α+Z2

M2(κ;u)q−Q(n).

Proof. The claim follows once we have shown that

M2(κ;u) =

−
√
Dn2(2a1n1 + a2n2)

2a1
qQ(n)

∫ i∞

−τ̄

e
πi(2a1n1+a2n2)2ω1

2a1√
−i(ω1 + τ)

∫ i∞

ω1

e
πiDn2

2ω2
2a1√

−i(ω2 + τ)
dω2dω1

−
√
Dn1(a2n1 + 2a3n2)

2a3
qQ(n)

∫ i∞

−τ̄

e
πi(a2n1+2a3n2)2ω1

2a3√
−i(ω1 + τ)

∫ i∞

ω1

e
πiDn2

1ω2
2a3√

−i(ω2 + τ)
dω2dω1.

There are three different cases to consider, since we do not have the term n = (0, 0):

1. Both n1 6= 0 and n2 6= 0.

2. We have n1 = 0 and n2 6= 0 ⇐⇒ u1 − κu2 = 0 and u2 6= 0.

3. We have n1 6= 0 and n2 = 0 ⇐⇒ u1 − κu2 6= 0 and u2 = 0.

We argue as in [6], and for the first case obtain that
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M2(κ;u) =− u1

2
√
v

u2√
v
q
u2

1
4v

+
u2

2
4v

∫ i∞

−τ̄

e
πiu2

1ω1
2v√

−i(ω1 + τ)

∫ i∞

ω1

e
πiu2

2ω2
2v√

−i(ω2 + τ)
dω2dω1

− u1 − κu2

2
√

(1 + κ2)v

u2 + κu1√
(1 + κ2)v

q
(u2+κu1)2

4(1+κ2)v
+

(u1−κu2)2

4(1+κ2)v

∫ i∞

−τ̄

e
πi(u2+κu1)2ω1

2(1+κ2)v√
−i(ω1 + τ)

×
∫ i∞

ω1

e
πi(u1−κu2)2ω2

2(1+κ2)v√
−i(ω2 + τ)

dω2dω1.

Plugging in the definitions of u and κ here yields the result directly.

For case 2 we set f1(v) := M2(κ; a2√
a1

√
vn2,m

√
vn2) and we want to prove the equality

f1(v) = −
√
Da2n

2
2

2a1
e2πia3n2

2τ

∫ i∞

−τ̄

e
πi(a2n2)2ω1

2a1√
−i(ω1 + τ)

∫ i∞

ω1

e
πiDn2

2ω2
2a1√

−i(ω2 + τ)
dω2dω1.

Letting ω1 7→ ω1 − τ and ω2 7→ ω2 − τ where τ = u+ iv the right-hand side becomes

−
√
Da2

2a1
n2

2

∫ i∞

2iv

e
πi(a2n2)2ω1

2a1

√
−iω1

∫ i∞

ω1

e
πiDn2

2ω2
2a1

√
−iω2

dω2dω1

=

√
Da2

a1
n2

2

∫ ∞
v

e
−π(a2n2)2ω1

a1

√
ω1

∫ ∞
ω1

e
−πDn2

2ω2
a1

√
ω2

dω2dω1 =: f2(v).

By (II.2.5) we have that

f1(v) = E2

(
κ;

a2√
a1

√
vn2,m

√
vn2

)
− sgn(n2)E1

(
a2√
a1

√
vn2

)
.

Considering differentials in v we obtain
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f ′1(v) =
n2

2
√
v

(
a2√
a1
E

(1,0)
2

(
κ;

a2√
a1

√
vn2,m

√
vn2

)
+mE

(0,1)
2

(
κ;

a2√
a1

√
vn2,m

√
vn2

))
− n2

2
√
v

sgn(n2)
a2√
a1
E′1

(
a2√
a1

√
vn2

)

=
n2

2
√
v

( 2a2√
a1
e
−πa2

2vn
2
2

a1 E
(
m
√
vn2

)
+

2(κ+ 1)√
1 + κ2

e

−π
(
m
√
vn2+

κa2√
a1

√
vn2

)2

1+κ2 E(0)

− sgn(n2)
a2√
a1

2e
−πa2

2vn
2
2

a1

)
=
a2n2√
va1

e
−πa2

2vn
2
2

a1

(
E
(
m
√
vn2

)
− sgn(n2)

)
.

Since m > 0 we have

E
(
m
√
vn2

)
− sgn(n2) = M

(
m
√
vn2

)
=
− sgn(n2)√

π
Γ

(
1

2
, πm2vn2

2

)
,

using (II.2.4). Thus we obtain

f ′1(v) = − a2|n2|√
va1π

e
−πa2

2vn
2
2

a1 Γ

(
1

2
, πm2vn2

2

)
.

We then consider the differential of f2(v). Computing directly we obtain

f ′2(v) =

√
Da2

a1
n2

2(−1)
e
−π(a2n2)2v

a1

√
v

∫ ∞
v

e
−π(Dn2

2)ω2
a1

√
ω2
dω2

ω2

=

√
Da2

a1
n2

2(−1)
e
−π(a2n2)2v

a1

√
v

√
a1√

πDn2
2

Γ

(
1

2
,m2πvn2

2

)
=
−a2|n2|√
a1vπ

e
−π(a2n2)2v

a1 Γ

(
1

2
,m2πvn2

2

)
.

Setting f(v) = f1(v)− f2(v) we see that f ′(v) = 0, and since limv→∞ f(v) = 0 we obtain
that f1(v) = f2(v) as required.

For case 3 a similar argument holds, setting f3(v) := M2(κ; 2
√
a1
√
vn1, 0). The claim

now follows.
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II.8 Asymptotic behaviour of the double Eichler integral

In this section we relate the functions E and F . Letting F (e2πih
k
−t) =:∑

m≥0 ah,k(m)tm as t→ 0+, we prove the following Theorem.

Theorem II.8.1. For h, k ∈ Q as determined by Section II.4 we have that

E
(
h

k
+

it

2π

)
∼
∑
m≥0

a−h,k(m)(−t)m.

Proof. Using Lemma II.7.1 and that M2 is an even function we have

E(τ) =
1

2

∑
α∈S

ε(α)
∑

n∈α+N2
0

M2(κ;u(n1, n2))q−Q(n1,n2)

+
1

2

∑
α∈S̃

ε̃(α)
∑

n∈α+N2
0

M2(κ;u(−n1, n2))q−Q(−n1,n2),

with J̃ := {(1− α1, α2) | α ∈ S } and ε̃(α1, α2) := ε(1− α1, α2).
In order to be able to apply the Euler-Maclaurin summation formula, we define

M∗2 (κ;x1, x2) by replacing each sgn with sgn∗. Explicitly, we set

M∗2 (κ;u1, u2) := sgn∗(x1) sgn∗(x2) + E2(κ;x1 + kx2, x2)− sgn∗(x2)E(x1 + κx2)

− sgn∗(x1)E

(
κx1√
1 + κ2

+
√

1 + κ2x2

)
.

(II.8.1)

It is easy to see that, using (II.2.5) and (II.8.1), we have

M2(κ;u1(0, x2), u2(x2))− lim
x1→0+

M∗2 (κ;u1(±x1, x2), u2(x2)) = ±M
(√

1 + κ2x2

)
,

M2(κ;u1(x1, 0), u2(0))− lim
x2→0+

M∗2 (κ;u1(±x1, x2), u2(x2)) = ±M(x1).

We then rewrite E(τ) = E∗(τ) +H1(τ) +H2(τ), defining

E∗(τ) :=
1

2

∑
α∈S

ε(α)
∑

n∈α+N2
0

M∗2 (κ;u(n1, n2))q−Q(n1,n2)

+
1

2

∑
α∈S̃

ε̃(α)
∑

n∈α+N2
0

M∗2 (κ;u(−n1, n2))q−Q(−n1,n2),
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along with the boundary terms

H1(τ) := −1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)

×

 ∑
j∈α2+N0

M
(
j
√

(1 + κ2)v
)
q−a3j2 −

∑
j∈1−α2+N0

M
(
j
√

(1 + κ2)v
)
q−a3j2


and

H2(τ) := −1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)

×

 ∑
j∈α1+N0

M
(
j
√
v
)
q−a1j2 −

∑
j∈1−α1+N0

M
(
j
√
v
)
q−a1j2

 .

If α1 ∈ Z (resp. α2 ∈ Z) then for the n1 = 0 (resp. n2 = 0) we take the limit n1 → 0
(resp. n2 → 0) in the M∗2 functions.

Remark 6. In the case that for every (a, x) in S ∗
1 , the element (b, 1− x) also exists in

S ∗
1 , along with the conditions sgn∗(a) = sgn∗(b) and ε(a, x) = ε(b, 1− x), then H1 = 0

identically. A similar statement holds for the function H2.

Using techniques similar to those in Section II.5 we next determine the asymptotic
behaviour of E∗, H1 and H2. First we rewrite E∗ as

E∗
(
h

k
+

it

2π

)
=
∑
α∈S

ε(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(`1+α1,`2+α2)

∑
n∈ δ(`+α)

ks
+N2

0

F4

(
ks

δ

√
tn

)

+
∑
α∈S̃

ε̃(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(−(`1+α1),`2+α2)

∑
n∈ δ(`+α)

ks
+N2

0

F̃4

(
ks

δ

√
tn

)
,

with F4(x) := 1
2M

∗
2 (κ; 1√

2π
(u(x1, x2)))eQ(x) and F̃4(x) := F4(u(−x1, x2)).

Then the contribution from the F4 term to the main term in the Euler-Maclaurin
summation formula is given by

δ2

k2s2t
IF4

∑
α∈S

ε(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(`+α),
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which vanishes, conjugating a result from Section II.5. Similarly, the contribution from
the F̃4 to the main term of the Euler-Maclaurin summation formula also vanishes.

The second term of (II.2.8) is (again noting as in Section II.5 that terms where n2 is
even vanish)

−2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(`+α)

∑
n2≥0

B2n2+2

(
δ(`2+α2)

ks

)
(2n2 + 2)!

×
∫ ∞

0

(
F (0,2n2+1)

4 (x1, 0) + F̃ (0,2n2+1)
4 (x1, 0)

)
dx1

(
k2s2t

δ2

)n2

.

We now claim that

∫ ∞
0

(
F (0,2n2+1)

4 (x1, 0) + F̃4
(0,2n2+1)

(x1, 0)

)
dx1 = (−1)n2

∫ ∞
0
F (0,2n2+1)

1 (x1, 0)dx1,

(II.8.2)
corresponding to the terms arising in equation (II.5.8). First, we simplify the right-hand
side of (II.8.2)

(−1)n2

∫ ∞
0
F (0,2n2+1)

1 (x1, 0)dx1 =

[
∂2n2+1

∂x2n2+1
2

∫ ∞
0
F1(x1, x2)dx1

]
x2=0

=

[
∂2n2+1

∂x2n2+1
2

e
−m2x2

2
4

∫ ∞
0

e
−
(√

a1x1+
a2x2
2
√
a1

)2

dx1

]
x2=0

.

Taking the integral without differentiating and substituting ω = 1√
π

(√
a1x1 + a2x2

2
√
a1

)
we

get

∫ ∞
0

e
−
(√

a1x1+
a2x2
2
√
a1

)2

dx1 =

√
π

a1

∫ ∞
a2x2

2
√
a1π

e−πω
2
dω =

√
π

2
√
a1

(
1− E

(
a2x2

2
√
a1π

))
.

Therefore the right-hand side of (II.8.2) is given by

[ √
π

2
√
a1

∂2n2+1

∂x2n2+1
2

e
−m2x2

2
4

(
1− E

(
a2x2

2
√
a1π

))]
x2=0
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=−

[ √
π

2
√
a1

∂2n2+1

∂x2n2+1
2

e
−m2x2

2
4 E

(
a2x2

2
√
a1π

)]
x2=0

,

since the other terms vanish under differentiation and setting x2 = 0.

Next we concentrate on the left-hand side of (II.8.2), and to ease notation we set

h1(x1, x2) := E2(κ;u(x1, x2)),

h2(x1, x2) := E(u1(x1, x2)),

h3(x1, x2) := E

(
κx1√
1 + κ2

+
√

1 + κ2x2

)
.

We also define

c0(x1, x2) := eQ(x1,x2),

cj(x1, x2) := hj

(
1√
2π

(x1, x2)

)
eQ(x1,x2),

for j = 1, 2, 3.

By definition of M∗2 (κ;u) we compute that

F (0,2n2+1)
4 (x1, 0) + F̃ (0,2n2+1)

4 (x1, 0)

=
1

2
(c

(0,2n2+1)
0 (x1, 0) + c

(0,2n2+1)
1 (x1, 0)− c(0,2n2+1)

2 (x1, 0)− c(0,2n2+1)
3 (x1, 0))

+
1

2
(−c(0,2n2+1)

0 (−x1, 0) + c
(0,2n2+1)
1 (−x1, 0)− c(0,2n2+1)

2 (−x1, 0) + c
(0,2n2+1)
3 (−x1, 0))

=c
(0,2n2+1)
0 (x1, 0)− c(0,2n2+1)

2 (x1, 0),

using that c0 and c1 are even, whereas c2 and c3 are odd.

Then we are considering the expression

− ∂2n2+1

∂x2n2+1
2

[∫ ∞
0

(
eQ(x1,x2) − eQ(x1,x2)E

(
1√
2π
u1(x1, x2)

))
dx1

]
x2=0

=− ∂2n2+1

∂x2n2+1
2

[∫ ∞
0

eQ(x1,x2)M

(
1√
2π
u1(x1, x2)

)
dx1

]
x2=0

=− ∂2n2+1

∂x2n2+1
2

[
ea3x2

2

∫ ∞
0

ea1x2
1+a2x1x2M

(
1√
2π
u1(x1, x2)

)
dx1

]
x2=0

.
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Taking the integral without differentiating, and letting ω = 1√
2π
u1(x1, x2) we obtain

− e
m2x2

2
4

∫ ∞
a2x2√
2πa1

M(ω)e
πω2

2

√
π

2a1
dω

=−
√

π

2a1
e
m2x2

2
4

(∫ ∞
0

M(ω)e
πω2

2 dω −
∫ a2x2√

2πa1

0
M(ω)e

πω2

2 dω

)
.

After differentiating an odd number of times and evaluating at x2 = 0 the terms
arising from the first intgeral here vanish, and we decompose the second integral using
M(ω) = E(ω)− 1. Since E(ω) is odd, the contributions from this term also vanish, and
overall we are left with

−
√

π

2a1

∂2n2+1

∂x2n2+1
2

[
e
m2x2

2
4

∫ a2x2√
2πa1

0
e
πω2

2 dω

]
x2=0

=−
√

π

2a1
i−2n2−1 ∂

2n2+1

∂x2n2+1
2

[
e−

m2x2
2

4

∫ a2x2i√
2πa1

0
e
πω2

2 dω

]
x2=0

.

The integral in question is therefore given by

i
√

2

∫ a2x2
2
√
πa1

0
e−πω

2
dω =

i√
2
E

(
a2x2

2
√
a1π

)
.

Given this, it is easy to conclude that the left-hand side of (II.8.2) is given by

−
√

π

4a1
(−1)n2

∂2n2+1

∂x2n2+1
2

[
e−

m2x2
2

4 E

(
a2x2

2
√
a1π

)]
x2=0

as claimed.

The third term in the Euler-Maclaurin summation formula is given by

−2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(`+α)

∑
n1≥0

B2n1+2

(
δ(l1+α1)

ks

)
(2n1 + 2)!

×
∫ ∞

0

(
F (2n1+1,0)

4 (0, x2) + F̃ (2n2+1,0)
4 (0, x2)

)
dx2

(
k2s2t

δ2

)n1

,
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again observing that the terms with even n1 vanish. A similar argument to before gives
us that this is equal to

− 2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(`+α)

∑
n1≥0

B2n1+2

(
δ(`1+α1)

ks

)
(2n1 + 2)!

×
∫ ∞

0
F (2n1+1,0)

1 (0, x2)(−1)n1dx2

(
k2s2t

δ2

)n1

.

The final term in (II.2.8) is

2
∑
α∈S ∗

ε(α)
∑

0≤`≤ ks
δ
−1

e−2πih
k
Q(`+α)

∑
n1,n2≥0

n1≡n2 mod 0

Bn1+1

(
δ(`1+α1)

ks

)
(n1 + 1)!

Bn2+1

(
δ(`2+α2)

ks

)
(n2 + 1)!

×
(
F (n1,n2)

4 (0, 0)− (−1)n1F̃ (n1,n2)
4 (0, 0)

)(ks√t
δ

)n1+n2

.

Via a similar argument to the one in [6], we have that

F (n1,n2)
4 (0, 0)− (−1)n1F̃4

(n1,n2)
(0, 0) = in1+n2F (n1,n2)

1 (0, 0).

We can see this by decomposing the left-hand side as

F (n1,n2)
4 (0, 0)− (−1)n1F̃4

(n1,n2)
(0, 0) = c

(n1,n2)
0 (0, 0)− c(n1,n2)

3 (0, 0).

Using c3(−x1,−x2) = −c3(x1, x2) we have that

c
(n1,n2)
3 (0, 0) = (−1)n1+n2+1c

(n1,n2)
3 (0, 0).

Since we have only cases where n1 ≡ n2 (mod 2) the contribution from the c3 terms
vanishes. Thus we are left with

c
(n1,n2)
0 (0, 0) = in1+n2

[
∂n1

∂xn1
1

∂n2

∂xn2
2

e−Q(x1,x2)

]
x1=x2=0

= in1+n2F1(0, 0).

Now consider the asympototic behaviour of the functions H1 and H2. Set F5(x) :=

M(
√

2√
π
x)ea3x2

and note that

F2m
5 (0) = (−1)m+1

[
∂2m

∂x2m
e−a3x2

]
= (−1)m+1F2m

2 (0).
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The contribution to the Euler-Maclaurin summation formula in one dimension (II.2.7)
arising from the H1 term is then given by

1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a3(r+(1−α2))2

∑
m≥0

B2m+1

(
δ(r+(1−α2))

ks

)
(2m+ 1)!

×F (2m)
5 (0)

(
k2s2t

δ2

)m

− 1

2

∑
α∈S ∗1

ε(α) sgn∗(α1)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a3(r+α2)2

∑
m≥0

B2m+1

(
δ(r+α2)

ks

)
(2m+ 1)!

×F (2m)
5 (0)

(
k2s2t

δ2

)m
.

Similarly, for the H2 term we obtain the contribution

1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a1(r+(1−α1))2

∑
m≥0

B2m+1

(
δ(r+(1−α1))

ks

)
(2m+ 1)!

×F (2m)
6 (0)

(
k2s2t

δ2

)m

− 1

2

∑
α∈S ∗2

ε(α) sgn∗(α2)
∑

0≤r≤ ks
δ
−1

e
2πih
k
a1(r+α1)2

∑
m≥0

B2m+1

(
δ(r+α1)

ks

)
(2m+ 1)!

×F (2m)
6 (0)

(
k2s2t

δ2

)m
,

where F6(x) := M(
√

2√
π
x)ea1x2

. Noting that

F2m
6 (0) = (−1)m+1

[
∂2m

∂x2m
e−a1x2

]
= (−1)m+1F2m

3 (0).

gives the claim.

II.9 Proof of Theorem 1.2

We are now ready to prove a refined version of Theorem II.1.1.
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Theorem II.9.1. Let Q be as in Section II.4. The function F̂ : Q → C defined by

F̂ (hk ) := F (e2πish
k ) is a sum of components of a vector-valued quantum modular form of

depth two and weight one.
Moreover, with A and B as in Section II.6, if the functions

e

(
A2

1 +DA2
2

2a1s

)
, e

(
B2

1 +DB2
2

2a3s

)

are constant across all choices of A ∈ A and B ∈ B then F̂ (hk ) is a single component of
a vector-valued quantum modular form of depth two and weight one.

Proof. By Theorem II.8.1 we have that

F̂

(
h

k

)
= lim

t→0+
F
(
e2πi sh

k
−t
)

= ahs1, ks2
= lim

t→0+
E
(
−h
k

+
it

2π

)
,

where s1 := s/ gcd(s, k) and s2 := gcd(s, k). The claim then follows from Proposition
II.6.1.

Example II.9.2. (continued) Returning again to our example, and using that e(A), e(B)
are constant across A,B (as seen in Section II.2.6), the above Theorem shows us that
this example is a single component of a vector-valued quantum modular form of depth
two and weight one with quantum set Q = Q on SL2(Z).

II.10 Completed Indefinite Theta Functions

We now view the function E(τ) as the “purely non-holomorphic” part of an indefinite
theta series. For A ∈ Mm(Z) a non-singular m ×m matrix, P : Rm → C, and a ∈ Qm

we define the theta function

ΘA,P,a(τ) :=
∑

n∈a+Zm
P (n)q

1
2
nTAn.

Set A1 :=

(
2a1 a2 2a1 a2
a2 2a3 a2 2a3
2a1 a2 0 0
a2 2a3 0 0

)
with associated bilinear form B1(x, y) = xTA1y and

quadratic form Q1(x) := 1
2B1(x, x). We also set A0 :=

(
2a1 a2
a2 2a3

)
and the function

P0(n) := M2(κ; 2
√
a1n1 + a2√

a1
n2,mn2), and for n ∈ R4 put
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P (n) :=M2

(
κ; 2
√
a1n3 +

a2√
a1
n4,mn4

)
+ (sgn(n1) + sgn(n3))M

(
a2n3 + 2a3n4√

a3

)
+ (sgn(n2) + sgn(n4))M

(
2a1n3 + a2n4√

a1

)
+ (sgn(2a1n3 + a2n4) + sgn(n1))(sgn(a2n3 + 2a3n4) + sgn(n2)).

Note that for α ∈ S ∗ we have

2Eα(τ) = Θ−A0,P0,α(τ).

In particular, we have the following Proposition.

Proposition II.10.1. The function Eα can be viewed as the “purely non-holomorphic
part” of

ΘA1,P,a(τ) =
∑

n∈a+Z4

P (
√
vn)qQ1(n),

where a ∈ 1
sA
−1
1 Z4 with (a3, a4) = (α1, α2). Moreover, ΘA1,P,a(τ) is an indefinite theta

function of signature (2, 2).

Proof. To see the first claim, we put P− := M2(κ; 2
√
a1n3 + a2√

a1
n4,mn4) and we then

have

ΘA1,P−,a(τ) = 2Eα(τ)ΘA0,1,(a1−a3,a2−a4)(τ).

The authors in [6] give a framework to proceed directly to prove the convergence and
modularity properties of ΘA1,P,a(τ) via a Theorem of Vignéras, and so instead here we
employ Section II.2.8 of the present paper, which follows from [1].

Choosing C1 = (0, 1, 0,−1)T , C2 = (1, 0,−1, 0)T , C ′1 = (0, 0, a2,−2a1)T , and C ′2 =
(0, 0,−2a3, a2)T one can verify that the conditions in Section II.2.8 hold. Computing
the completion given in Theorem II.2.3 along with those in the locally constant product
of sign functions gives exactly the terms in P (n) up to a factor of 1√

2
. Therefore, by

Theorem II.2.3 we see that ΘA1,P,a(τ) is a non-holomorphic theta series of weight 2,
clearly of signature (2, 2).

Example II.10.2. (continued) For our example we set A1 :=

(
4 1 4 1
1 2 1 2
4 1 0 0
1 2 0 0

)
along with

A0 := ( 4 1
1 2 ). We also set
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P (n) :=M2

(
1

7
; 2
√

2n3 +
1√
2
n4,

√
7√
2
n4

)
+ (sgn(n1) + sgn(n3))M (n3 + 2n4)

+ (sgn(n2) + sgn(n4))M

(
4n3 + n4√

2

)
+ (sgn(4n3 + n4) + sgn(n1))(sgn(n3 + 2n4) + sgn(n2)).

Then, for example, the function E( 1
4
, 1
4) is seen to be the non-holomorphic part of

ΘA1,P,a(τ) =
∑

n∈a+Z4

P (
√
vn)qQ1(n),

with a ∈ 1
4A
−1
1 Z4 such that (a3, a4) =

(
1
4 ,

1
4

)
.

II.11 Further questions

We end by commenting on some related questions.

1. Here we discussed only the case where we had a binary quadratic form. It is
expected that a somewhat similar situation occurs for more general forms exists,
though it is expected to be much more technical. Systematic study of higher depth
analogues of F is planned, however this will require more careful treatment due
to a variety of factors. Work of Nazaroglu on higher dimension error functions
[18] gives a possible pathway to this. Discussions with Kaszian have also revealed
some difficulty in defining the quantum set for higher dimensional versions of F in
general. In particular, in the present paper we exploited the fact that

Bm(1− x) = (−1)mB(x)

when determining the asymptotic behaviour of F . We were then able to deduce
vanishing results for possible growing terms via the use of the Euler-Maclaurin
summation formula in two dimensions. In higher dimensions this relationship
becomes more complex, and using the n-dimensional Euler-Maclaurin formula (see
e.g. Equation 3.1. in [5]) we find more growing terms that we require to vanish. In
general, it is anticipated that this will place many restrictions on the quantum set.

2. Further generalisation of the situation will be explored, in particular to include the
holomorphic part of certain indefinite theta functions. That is, replace Q(n) by an
indefinite quadratic form of signature (1, 1), and take the holomorphic part of a
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certain family of indefinite theta functions following Zwegers’ construction in [24].
Generically these look like

∑
n∈a+Zr

(sgn(B(c1, n))− sgn(B(c2, n))) e2πiB(n,b)qQ(n),

where a, b, c1, c2 lie in Zr and satisfy certain conditions to ensure convergence (see
[24] for a full definition). Our question is then: are there certain families of these
indefinite theta functions with higher depth quantum modularity?

3. It is anticipated that in a following paper certain examples of the quantum modular
forms here are viewed as q-series, using Larson’s “translation” [17] of work by
Griffin, Ono, and Warnaar on generalised Andrews-Gordon identities [13].

4. In this paper we only realised the double Eichler integral (and therefore F ) as
components of a vector-valued quantum modular form, but we did not compute
the other components of the vector-valued form explicitly. Further work in this
direction is expected, and its implications in representation theory explored.
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Chapter III

The asymptotic profile of an
eta-theta quotient related to
entanglement entropy in string
theory

This chapter is based on a paper published in Research in Number Theory [Ma2].

III.1 Introduction and Statement of Results

Modern mathematical physics in the direction of string theory and black holes is
intricately linked to number theory. For example, work of Dabholkar, Murthy, and Zagier
relates certain mock modular forms to physical phenomena such as quantum black holes
and wall crossing [6]. Similarly, the connections between automorphic forms and a second
quantised string theory are described in [7], and modular forms for certain elliptic curves
and their realisation in string theory is discussed in [14]. Further, the recent paper [11]
discusses in-depth the links between work of the enigmatic Ramanujan in relation to
modular forms and their generalisations and string theoretic objects (and indeed, why
such links should be expected).

Knowledge of the behaviour of the modular objects aids the descriptions of physical
phenomena. For instance, in [10], the authors use the classical number-theoretic Jacobi
triple product identity to demonstrate the supersymmetry of the open-string spectrum
using RNS fermions in light-cone gauge (see also [21]). In particular, parts of physical
partition functions are often modular or mock modular objects. For example, the partition
functions of the Melvin model [18] and the conical entropy of both the open and closed
superstring [12] both involve the weight −3 and index 0 meromorphic Jacobi form

f(z; τ) :=
ϑ(z; τ)4

η(τ)9ϑ(2z; τ)
,
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where η is the Dedekind eta function given by

η(τ) := q
1
24

∏
n≥1

(1− qn) ,

and

ϑ(z; τ) := iζ
1
2 q

1
8

∏
n≥1

(1− qn)(1− ζqn)(1− ζ−1qn−1)

is the Jacobi theta function, with ζ := e2πiz for z ∈ C, and q := e2πiτ with τ ∈ H, the
upper half-plane.

We are particularly interested in the coefficients of the q-expansion of f where
0 ≤ z ≤ 1, away from the pole at z = 1/2, where the residue of f is calculated in [21] -
the other residues may be calculated using the elliptic transformation formulae for f . For
instance, the asymptotic behaviour of the coefficients is required in order to investigate
the UV limit. For a fixed value of z the problem of finding the asymptotics of the
coefficients is elementary, as [12] notes. In particular, fixing z = h

k a rational number with

gcd(h, k) = 1 and 0 ≤ h < k
2 , then classical results in the theory of modular forms (see

Theorem 15.10 of [3] for example) give that the coefficients of f(hk ; τ) =
∑

n≥0 ah,k(n)qn

behave asymptotically as

ah,k(n) ∼
(
h
k

) 7
4

2
√

2π
n−

9
4 e

4π
√
hn
k .

In the present paper, we let

f(z; τ) =:
∑
n≥0
m∈Z

b(m,n)ζmqn.

and investigate the coefficients b(m,n); in particular we want to compute the bivariate
asymptotic profile of b(m,n) for a certain range of m.

In [2], the authors introduce techniques in order to compute the bivariate asymptotic
behaviour of coefficients for a Jacobi form in order to answer Dyson’s conjecture on
the bivariate asymptotic behaviour of the partition crank. This method is used in
numerous other papers - for example, in relation to the rank of a partition [8], ranks and
cranks of cubic partitions [13], and certain genera of Hilbert schemes [15] (a result that
has recently been extended to a complete classification with exact formulae using the
Hardy-Ramanujan circle method [9]), along with many other partition-related statistics.

Using Wright’s circle method [22, 23] and following the same approach as [2] we show
the following theorem.
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Theorem III.1.1. For β := π
√

2
n and |m| ≤ 1

6β log(n) we have that

b(m,n) = (−1)m+δ+ 1
2

β5

27π5(2n)
1
4

e2π
√

2n +O
(
n−

13
4 e2π

√
2n
)

as n→∞. Here, δ := 1 if m < 0 and δ = 0 otherwise.

Remark 7. Although our approach is similar to [2, 8], in some places we require a little
more care since finding the Fourier coefficients requires taking an integral over a path
where f has a pole. In this case, we turn to the framework of [6] - this is explained
explicitly in Section III.3.

We begin in Section V.2 by recalling relevant results that are pertinent to the rest
of the paper. In Section III.3.1 we investigate the behaviour of f toward the dominant
pole q = 1. We follow this in Section III.3.2 by bounding the contribution away from the
pole at q = 1. We finish in Section III.4 by applying Wright’s circle method to find the
asymptotic behaviour of b(m,n) and hence prove Theorem III.1.1.
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III.2 Preliminaries

Here we recall relevant definitions and results which will be used throughout the rest
of the paper.

III.2.1 Properties of ϑ and η

When determining the asymptotic behaviour of f we will require the modularity
behaviour of both ϑ and η. It is well-known that ϑ satisfies the following lemma (see e.g.
[16]).

Lemma III.2.1. The function ϑ satisfies the following transformation properties.

1. ϑ(−z; τ) = −ϑ(z; τ)
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2. ϑ(z + 1; τ) = −ϑ(z; τ)

3. ϑ(z; τ) = i√
−iτ e

−πiz2
τ ϑ

(
z
τ ;− 1

τ

)
Further, we have the following well-known modular transformation formula of η (see

e.g. [19]).

Lemma III.2.2. We have that

η

(
−1

τ

)
=
√
−iτη(τ).

III.2.2 Euler Polynomials

We will also make use properties of the Euler polynomials Er, defined by the generating
function

2ext

1 + et
=:
∑
r≥0

Er(x)
tr

r!
.

Lemma 2.2 of [2] shows that the following lemma holds.

Lemma III.2.3. We have

−1

2
sech2

(
t

2

)
=
∑
r≥0

E2r+1(0)
t2r

(2r)!
.

Further, Lemma 2.3 of [2] gives the following integral representation for the Euler
polynomials.

Lemma III.2.4. We have that

Ej :=

∫ ∞
0

w2j+1

sinh(πw)
dw =

(−1)j+1E2j+1(0)

2
.

III.2.3 A particular bound

In Section III.3.2 we require a bound on the size of

P (q) :=
q

1
24

η(τ)
,

away from the pole at q = 1. For this we use the following lemma which is shown to hold
in Lemma 3.5 of [2].
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Lemma III.2.5. Let τ = u+ iv ∈ H with Mv ≤ u ≤ 1
2 for u > 0 and v → 0. Then

|P (q)| �
√
v exp

[
1

v

(
π

12
− 1

2π

(
1− 1√

1 +M2

))]
.

In particular, with v = β
2π , u = βm−

1
3 x

2π and M = m−
1
3 this gives for 1 ≤ x ≤ πm

1
3

β
the bound

|P (q)| � n−
1
4 exp

2π

β

 π

12
− 1

2π

1− 1√
1 +m−

2
3

 . (III.2.1)

III.2.4 I-Bessel functions

Here we recall relevant results on the I-Bessel function defined by

I`(x) :=
1

2πi

∫
Γ
t−`−1e

x
2 (t+ 1

t )dt,

where Γ is a contour which starts in the lower half plane at −∞, surrounds the origin
counterclockwise and returns to −∞ in the upper half-plane. We are particularly
interested in the asymptotic behaviour of I`, given in the following lemma (see e.g.
(4.12.7) of [1]).

Lemma III.2.6. For fixed ` we have

I`(x) =
ex√
2πx

+O

(
ex

x
3
2

)
as x→∞.

We also require the behaviour of an integral related to the I-Bessel function. Define

Ps :=
1

2πi

∫ 1+im−
1
3

1−im−
1
3

vseπ
√

2n(v+ 1
v )dv.

Then Lemma 4.2 of [2] reads as follows.

Lemma III.2.7. For |m| ≤ 1
6β log(n) we have

Ps = I−s−1

(
2π
√

2n
)

+O

(
exp

(
π
√

2n

(
1 +

1

1 + |m|−
2
3

)))
as n→∞.
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III.3 Asymptotic behaviour of f

The aim of this Section is to determine the asymptotic behaviour of f . To do so
we consider two separate cases: when q tends toward the pole q = 1, and when q is
away from this pole. It is shown that the behaviour toward the pole at q = 1 gives the
dominant contribution when applying the circle method in Section III.4.

First note that Lemma III.2.1 implies that f(−z; τ) = −f(z; τ), and so b(−m,n) =
−b(m,n). We now restrict our attention to the case of m ≥ 0.

We next find the Fourier coefficient of ζm of f , following the framework of [6]. Since
there is a pole of f at z = 1

2 , we define

f±m(τ) :=

∫ 1
2
−a

0
f(z; τ)e−2πimzdz +

∫ 1

1
2

+a
f(z; τ)e−2πimzdz +G±

=− 2i

∫ 1
2
−a

0
f(z; τ) sin(2πmz)dz +G±,

where a > 0 is small, and

G± :=

∫ 1
2

+a

1
2
−a

f(z; τ)e−2πimzdz.

For G+ the integral is taken over a semi-circular path passing above the pole. Similarly,
G− is taken over a semi-circular path passing below the pole. Then the Fourier coefficient
of ζm of f is

fm(τ) :=
f+
m + f−m

2
= −2i

∫ 1
2
−a

0
f(z; τ) sin(2πmz)dz +

G+ +G−

2
. (III.3.1)

Shifting z 7→ z − 1
2 and parameterising the semi-circle we see that

G+ = lim
a→0+

∫ 0

−π
aieiθf

(
aeiθ +

1

2
; τ

)
e−2πim(aeiθ+ 1

2)dθ.

Next we insert the Taylor expansion of the exponential function e−2πimaeiθ and note
that terms of order O

(
a2f

(
aeiθ + 1

2 ; τ
))

vanish as a→ 0+ since f has only a simple pole
at z = 1

2 . Thus we obtain

G+ = i(−1)m
∫ 0

−π
lim
a→0+

(
af

(
aeiθ +

1

2
; τ

))
eiθdθ.
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We next note that using L’Hôpital’s rule and Lemma III.2.1 gives

lim
a→0+

(
af

(
aeiθ +

1

2
; τ

))
= −e−iθ

ϑ
(

1
2 ; τ
)4

2η(τ)9ϑ′ (0; τ)
.

Therefore we see that

G+ = i(−1)m+1π
ϑ
(

1
2 ; τ
)4

2η(τ)9ϑ′ (0; τ)
= 4(−1)m+ 1

2
η(2τ)8

η(τ)16
,

where we have used the well-known facts that

ϑ

(
1

2
; τ

)
= −2

η(2τ)2

η(τ)
,

and
ϑ′(0; τ) = −2πη(τ)3.

A similar calculation shows that G− = G+. Hence the contribution of the final term in
(III.3.1) is given by

G+ +G−

2
= 4(−1)m+ 1

2
η(2τ)8

η(τ)16
.

Remark 8. The residue term η(2τ)8

η(τ)16 is the generating function for 8-tuple partitions [20].

Various number-theoretic properties of similar overpartition tuple functions are studied in
[4, 5] for example. The physical interpretation of the residue term is discussed in Section
3.2 of [21], and it is an interesting question as to whether further number-theoretic

properties (aside from asymptotics) of η(2τ)8

η(τ)16 also have a physical interpretation.

In the following two subsections we determine the asymptotic behaviour of f toward
and away from the dominant pole at q = 1 respectively. Throughout, we will let τ = iε

2π ,

ε := β(1 + ixm−
1
3 ) and β := π

√
2
n . We determine asymptotics as n→∞.

III.3.1 Bounds towards the dominant pole

Here we find the asymptotic behaviour of f toward the dominant pole at q = 1, shown
in the following lemma.

Lemma III.3.1. Let τ = iε
2π , with 0 < Re(ε)� 1, and 0 < z < 1

2 . Then we have that

f

(
z;
iε

2π

)
= − ε

3

π3

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) (1 + e−4π2Re( 1
ε)(1−2z) +O

(
e−4π2Re( 1

ε)(1−z)
))

.
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Proof. Using the modularity of f (which follows from Lemmas III.2.1 and III.2.2) and

setting q0 := e−
2πi
τ , we have that

f(z; τ) =
τ3ζ

2
τ
∏
n≥1

(
1− ζ

1
τ qn0

)4 (
1− ζ−

1
τ qn−1

0

)4

iζ
1
τ
∏
n≥1 (1− qn0 )6

(
1− ζ

2
τ qn0

)(
1− ζ

−2
τ qn−1

0

)
=
τ3
(
ζ

1
2τ − ζ−

1
2τ

)4

i
(
ζ

1
τ − ζ

−1
τ

) ∏
n≥1

(
1− ζ

1
τ qn0

)4 (
1− ζ−

1
τ qn0

)4

(1− qn0 )6
(

1− ζ
2
τ qn0

)(
1− ζ

−2
τ qn0

) .
This gives

− ε
3

π3

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) ∏
n≥1

(
1− e

4π2

ε
(z−n)

)4(
1− e

4π2

ε
(−z−n)

)4

(
1− e

−4π2n
ε

)6 (
1− e

4π2

ε
(2z−n)

)(
1− e

4π2

ε
(−2z−n)

) .
In order to find a bound we expand the denominator using geometric series. For

0 < z < 1
2 we see that |e

4π2

ε
(±2z−n)| < 1 for all n ≥ 1, and so we expand the denominator

to obtain the product as

∏
n≥1

(
1− e

4π2

ε
(z−n)

)4(
1− e

−4π2

ε
(z+n)

)4∑
j≥0

e
4jπ2

ε
(2z−n)

∑
k≥0

e
−4kπ2

ε
(2z+n)

∑
`≥0

e
−4π2`n

ε

6

,

which, for 0 < Re(ε)� 1, is of order

1 + e−4π2Re( 1
ε)(1−2z) +O

(
e−4π2Re( 1

ε)(1−z)
)
.

Hence overall we find that

f

(
z;
iε

2π

)
= − ε

3

π3

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) (1 + e−4π2Re( 1
ε)(1−2z) +O

(
e−4π2Re( 1

ε)(1−z)
))

,

yielding the claim.

Remark 9. It is easy to see that this gives the same main term as noted in Section 4.5 of
[12] (up to sign, which the authors there do not make use of).

Since f(z; τ) = −f(1− z; τ) we see this immediately also implies the following lemma.
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Lemma III.3.2. Let τ = iε
2π , with 0 < Re(ε)� 1, and 1

2 < z < 1. Then we have that

f

(
z;
iε

2π

)
=
ε3

π3

sinh
(

2π2(1−z)
ε

)4

sinh
(

4π2(1−z)
ε

) (1 + e−4π2Re( 1
ε)(2z−1) +O

(
e−4π2Re( 1

ε)z
))

.

We now look to find the behaviour of fm toward the pole at q = 1. We begin with
the contribution from the residue term

4(−1)m+ 1
2
η(2τ)8

η(τ)16
.

Lemma III.3.3. As n→∞ we have

4(−1)m+ 1
2
η( iεπ )8

η( iε2π )16
= (−1)m+ 1

2
ε4

26π4

(
e

2π2

ε +O(1)

)
.

Proof. Using the modularity of η given in Lemma III.2.2 we see that

η(2τ)8

η(τ)16
=

(
−iτ

2

)4 η
(
− 1

2τ

)8
η
(
− 1
τ

)16 =
(τ

2

)4 (
e
πi
τ +O(1)

)
.

As τ = iε
2π this yields

ε4

28π4

(
e

2π2

ε +O(1)

)
.

To estimate the contribution from the first integral in (III.3.1), we follow the approach
of [2, 8], and define three further integrals

gm,1 := − ε
3

π3

∫ 1
2
−a

0

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) sin(2πmz)dz, (III.3.2)

along with

gm,2 := − ε
3

π3

∫ 1
2
−a

0

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) e−4π2Re( 1
ε)(1−2z) sin(2πmz)dz, (III.3.3)
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and

gm,3 :=

∫ 1
2
−a

0

f (z; iε
2π

)
+
ε3

π3

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) (1 + e−4π2Re( 1
ε)(1−2z)

) sin(2πmz)dz.

We now investigate the contribution from gm,1 and show the following proposition.

Proposition III.3.4. Assume that |x| ≤ 1. Then for a→ 0+, and with τ = iε
2π we have

that
gm,1 = O

(
β4
)

as n→∞.

Proof. We first use the Taylor series representation of sinh(x)4 and sin(x) which are
given by

sinh(x)4 =
∑
n≥0

(
4n+2

(
4n+2 − 4

))
x2n+4

8 · (2n+ 4)!
,

sin(x) =
∑
n≥0

(−1)nx2n+1

(2n+ 1)!
.

Thus we see that

sinh

(
2π2z

ε

)4

sin(2πmz) =
∑
k≥0

(
4k+2

(
4k+2 − 4

)) (
2π2z
ε

)2k+4

8 · (2k + 4)!

∑
r≥0

(−1)r(2πmz)2r+1

(2r + 1)!
.

Substituting this into (III.3.2) we find that

gm,1(τ) = − ε
3

π3

∑
k,r≥0

(−1)r
(
4k+2

(
4k+2 − 4

))
(2πm)2r+1

(
2π2

ε

)2k+4

8 · (2k + 4)!(2r + 1)!
Ik+r+2,

where

I` := lim
a→0+

∫ 1
2
−a

0

z2`+1

sinh
(

4π2z
ε

)dz =

∫ 1
2

0

z2`+1

sinh
(

4π2z
ε

)dz.
Following the ideas of [2] we further define I ′` by

I ′` :=

∫ ∞
0

z2`+1

sinh
(

4π2z
ε

)dz − I`.
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Then

I ′` =

∫ ∞
1
2

z2`+1

sinh
(

4π2z
ε

)dz � ∫ ∞
1
2

z2`+1e−4π2zRe( 1
ε)dz

�
(

4π2Re

(
1

ε

))−2`−2

Γ

(
2`+ 2; 2π2Re

(
1

ε

))
,

where we use the incomplete gamma function Γ(α;x) :=
∫∞
x e−wwα−1dw. Since we have

the asymptotic behaviour of

Γ(`;x) ∼ x`−1e−x

as x→∞ we find that

Γ

(
2`+ 2; 2π2Re

(
1

ε

))
∼
(

2π2Re

(
1

ε

))2`+1

e−2π2Re( 1
ε).

Hence we may conclude that

I ′` � Re

(
1

ε

)−1

e−2π2Re( 1
ε) � e−2π2Re( 1

ε).

Now under the substitution z 7→ zε
4π we find that∫ ∞

0

z2`+1

sinh
(

4π2z
ε

)dz =
( ε

4π

)2`+2
∫ ∞

0

z2`+1

sinh(πz)
dz =

( ε

4π

)2`+2
E`

=
( ε

4π

)2`+2 (−1)`+1E2`+1(0)

2
.

Then we obtain that

gm,1 = − ε3

2π3

∑
k,r≥0

(−1)2r+k+3
(
4k+2

(
4k+2 − 4

))
(2πm)2r+1

(
2π2

ε

)2k+4

8 · (2k + 4)!(2r + 1)!

( ε

4π

)2r+2k+6

×
[
E2r+2k+5(0) +O

(
(4π)2r+2k+6 |ε|−2r−2k−6e−2π2Re( 1

ε)
)]
.

Letting m′ := m/2 and bounding terms where k ≥ 1, we see that

gm,1 =
ε4

27

∑
r≥0

(m′ε)2r+1

(2r + 1)!

[
E2r+5(0) +O

(
|ε|2
)]
.
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Next, using Lemma III.2.3 we recognise that∑
r≥0

(m′ε)2r+1

(2r + 1)!
E2r+5(0) =

1

m′3
∂3

∂ε3

∑
r≥0

(m′ε)2r+4

(2r + 4)!
E2r+5(0) = − 1

2m′3
∂3

∂ε3
sech2

(
m′ε

2

)

= − 4

m3

∂3

∂ε3
sech2

(mε
4

)
.

We therefore obtain

gm,1 = − ε4

25m3

(
∂3

∂ε3
sech2

(mε
4

)
+O

(
|ε|2 cosh (mε)

))
.

Further, we have that

∂3

∂ε3
sech2

(mε
4

)
= −

m3
(
cosh2

(
mε
4

)
− 3
)

sinh
(
mε
4

)
8 cosh5

(
mε
4

) .

It is clear that

−
(
cosh2

(
mε
4

)
− 3
)

sinh
(
mε
4

)
8 cosh5

(
mε
4

) = O(1).

Therefore, we see that

gm,1 =
ε4

25

(
O(1) +O

(
ε2m−3 cosh(mε)

))
.

Further, recall that ε = β(1 + ixm−
1
3 ). Then we have that

cosh(mε) = cosh
(
βm+ iβm

2
3x
)

= cosh(βm)
(

1 +O
(
βm

2
3

))
.

Hence we obtain

gm,1 =
ε4

25

(
O(1) +O(ε2m−3 cosh(mβ)

)
= O(ε4) = O(β4),

where for the last equality we use that ε� β.

To bound the contribution of gm,2 we note the following trivial lemma.

Lemma III.3.5. For |x| ≤ 1 we have that

|gm,2| � gm,1.

Next we bound the contribution from gm,3.
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Proposition III.3.6. For |x| ≤ 1, we have that

|gm,3| �
ε3

π3
.

Proof. We see that

|gm,3| =

∣∣∣∣∣∣∣
∫ 1

2
−a

0

f (z; iε
2π

)
+
ε3

π3

sinh
(

2π2z
ε

)4

sinh
(

4π2z
ε

) (1 + e−4π2Re( 1
ε)(1−2z)

) sin(2πmz)dz

∣∣∣∣∣∣∣ .
We estimate the right-hand side using Lemma III.3.1, to find that

|gm,3| �
∫ 1

2
−a

0

ε3

π3

∣∣∣∣∣sin(2πmz)

1− e
−8π2z
ε

∣∣∣∣∣ e4π2Re( 1
ε)(2z−1)dz.

We see that
sin(2πmz)

1− e
−8π2z
ε

� 1,

and so it follows that |gm,3| � ε3

π3 e
−4aπ2Re( 1

ε) � ε3

π3 .

Combining Lemmas III.3.3 and III.3.5, and Propositions III.3.4 and III.3.6, we obtain
the following theorem regarding fm as defined in (III.3.1).

Theorem III.3.7. For |x| ≤ 1 we have that

fm

(
iε

2π

)
= (−1)m+ 1

2
ε4

26π4
e

2π2

ε +O
(
β3
)

as n→∞.

III.3.2 Bounds away from the dominant pole

We next investigate the behaviour of fm away from the pole q = 1, by assuming that

1 ≤ x ≤ πm
1
3

β . In the following lemma we bound the residue term

η(2τ)8

η(τ)16
,

away from the pole q = 1.
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Lemma III.3.8. For 1 ≤ x ≤ πm
1
3

β we have that

∣∣∣∣∣ η
(
iε
π

)8
η
(
iε
2π

)16

∣∣∣∣∣� n−2 exp

π√2n− 8
√

2n

π

1− 1√
1 +m−

2
3


as n→∞.

Proof. We first write

η(2τ)8

η(τ)16
=
η(2τ)8

q
2
3

q
2
3

η(τ)16
.

Using equation (III.2.1) directly we find that (with τ = iε
2π )

q
2
3

η(τ)16
= P (q)16 � n−4 exp

4π
√

2n

3
− 8
√

2n

π

1− 1√
1 +m−

2
3

 .
It remains to consider the behaviour of eε/12η( iεπ ). Using the transformation formula of η
given in Lemma III.2.2 along with the well-known summation representation of η, we see
that as n→∞ we obtain

e
ε
12 η

(
iε

π

)
= e

ε
12

√
π

ε
e−

π2

12ε

∑
j∈Z

(−1)je−
π2(3j2−j)

ε �
√
π

ε
e−

π2

12ε .

We hence have ∣∣∣∣∣η
(
iε
π

)
e

2ε
3

∣∣∣∣∣
8

�
∣∣∣∣√π

ε
e−

π2

12ε

∣∣∣∣8 � (
π

β

)4

e
− 2π2

3β � n2e−
π
√

2n
3 .

Combining the two bounds yields the result.

Next, we investigate the contribution of∣∣∣∣∣
∫ 1

2
−a

0
f(z; τ) sin(2πmz)dz

∣∣∣∣∣�
∫ 1

2
−a

0
|f(z; τ) sin(2πmz)|dz.

Then we want to bound

|f(z; τ) sin(2πmz)| =
∣∣∣∣sin(2πmz)ϑ(z; τ)4

η(τ)9ϑ(2z; τ)

∣∣∣∣
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away from the dominant pole. For 0 < b < 1
2 far from 1

2 we see that we may bound the
integrand in modulus by

|f(b; τ) sin(2πmb)| � |P (q)|9
∣∣∣∣q− 3

8
ϑ(b; τ)4

ϑ(2b; τ)

∣∣∣∣� |P (q)|9
∑
n∈Z
|q|

n2+n
2 � |P (q)|9

∑
n∈Z

e−βn
2
.

As z → 1
2 we apply L’Hôpital’s rule to the integrand |f(z; τ) sin(2πmz)| which yields

the bound ∣∣∣∣∣
∫ 1

2
−a

0
f(z; τ) sin(2πmz)dz

∣∣∣∣∣� η(2τ)8

η(τ)16
.

Hence, away from the dominant pole in q, we have shown the following proposition.

Proposition III.3.9. For 1 ≤ x ≤ πm
1
3

β we have that∣∣∣∣f (z; iε2π
)∣∣∣∣� n−2 exp

π√2n− 8
√

2n

π

1− 1√
1 +m−

2
3


as n→∞.

III.4 The Circle Method

In this section we use Wright’s variant of the Circle Method to complete the proof of
Theorem III.1.1. We start by noting that Cauchy’s theorem implies that

b(m,n) =
1

2πi

∫
C

fm(τ)

qn+1
dq,

where C := {q ∈ C | |q| = e−β} is a circle centred at the origin of radius less than 1, with
the path taken in the counter-clockwise direction. Making a change of variables, changing
the direction of the path of the integral, and recalling that ε = β(1 + ixm−

1
3 ) we have

b(m,n) =
β

2πm
1
3

∫
|x|≤πm

1
3

β

fm

(
iε

2π

)
eεndx.

Splitting this integral into two pieces, we have b(m,n) = M + E where

M :=
β

2πm
1
3

∫
|x|≤1

fm

(
iε

2π

)
eεndx,

and

E :=
β

2πm
1
3

∫
1≤|x|≤πm

1
3

β

fm

(
iε

2π

)
eεndx.

Next we determine the contributions of each of the integrals M and E, and see that
M contributes to the main asymptotic term, while E is part of the error term.
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III.4.1 The major arc

First we concentrate on the contribution M . Then we obtain the following proposition.

Proposition III.4.1. We have that

M = (−1)m+ 1
2

β5

27π5(2n)
1
4

e2π
√

2n +O
(
m−

2
3n−

13
4 e2π

√
2n
)

as n→∞.

Proof. By Theorem III.3.7 and making the change of variables v = 1 + ixm−
1
3 we obtain

M = (−1)m+ 1
2
β5

26π4
P4 +O

(
β4eπ

√
2n
)
.

Now we rewrite P4 in terms of the I-Bessel function using Lemma III.2.7, yielding

M = (−1)m+ 1
2
β5

26π4
I−5(2π

√
2n) +O

β5e
π
√

2n

(
1+ 1

1+m
− 2

3

)+O
(
β4eπ

√
2n
)
.

The asymptotic behaviour of the I-Bessel function given in Lemma III.2.6 gives that

M =(−1)m+ 1
2

β5

27π5(2n)
1
4

e2π
√

2n +O
(
n−

13
4 e2π

√
2n
)

+O

β5e
π
√

2n

(
1+ 1

1+m
− 2

3

)
+O

(
β4eπ

√
2n
)
.

It is clear that the first error term is the dominant one, and the result follows.

III.4.2 The error arc

Now we bound E as follows.

Proposition III.4.2. As n→∞

E � n−2 exp

2π
√

2n− 8
√

2n

π

1− 1√
1 +m−

2
3

 .
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Proof. By Proposition III.3.9 we see that the main term in the error arc is given by the
residue. Hence we may bound

E �
∫

1≤x≤πm
1
3

β

n−2 exp

π√2n− 8
√

2n

π

1− 1√
1 +m−

2
3

 eεndx
� n−2 exp

2π
√

2n− 8
√

2n

π

1− 1√
1 +m−

2
3

 .
Noting that this is exponentially smaller than M finishes the proof of Theorem III.1.1.

III.5 Open questions

We end by commenting on some questions related to the results presented above.

1. Here we discuss the asymptotic profile of the coefficients b(m,n) for |m| ≤ 1
6β log(n).

We are also interested in the profile when m is larger than this bound, and so in
future it would be instructive to investigate the asymptotic profile of b(m,n) for
large |m|. For example, similar results in this direction for the crank of a partition
are given in [17].

2. In the present paper, we provide a framework for investigating the profile of eta-
theta quotients. In particular, we deal with the case of a function with a single
simple pole on the path of integration. Future research is planned in order to
expand this framework for a family of meromorphic eta-theta quotients with a
finite number of (not necessarily single) poles on the path of integration. This
should include similar eta-theta quotients that appear in other physical partition
functions.

3. In showing Theorem III.1.1 we see that the main asymptotic term arises from

the pole at z = 1/2, and in turn from the residue term η(2τ)8

η(τ)16 ; is there a physical

interpretation for the fact that these terms give the largest contribution to the
asymptotic behaviour of b(m,n)?
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Chapter IV

Asymptotic Equidistribution and
Convexity for Partition Ranks

This chapter is based on a paper published in The Ramanujan Journal [Ma3].
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IV.1 Introduction and statement of results

A familiar statistic in combinatorics is the number of partitions of an integer n,
denoted by p(n). The function p(n) has been studied extensively, giving rise to results
such as the famous Ramanujan congruences [13]. Of particular interest to the current
paper is the asymptotic behaviour of the number of partitions, proven by Hardy and
Ramanujan in [8]. They showed that as n→∞

p(n) ∼ 1

4n
√

3
e2π
√

n
6 .

Other statistics involving partitions have been introduced since, the most pertinent
of which for us is the rank of a partition, defined to be the largest part minus the number
of parts. We denote the number of partitions of n with rank m by N(m,n). By standard
combinatorial arguments it can be shown that the generating function of N(m,n) is
given by (see equation 7.2 of [7] for example)

R (ζ; q) :=
∑
n≥0
m∈Z

N(m,n)ζmqn =
∑
n≥0

qn
2

(ζq, ζ−1q; q)n
,
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where ζ := e2πiz, q := e2πiτ with τ ∈ H the upper half plane, and (a; q)n :=
∏n−1
j=0 (1−aqj).

Further, to ease notation we set (a1, a2; q)n := (a1; q)n(a2; q)n. First introduced by Dyson
in [6] as an attempt to describe the Ramanujan congruences combinatorially, the rank
statistic has a storied history. For example, we have that

R(−1; q) = 1 +
∑
n≥1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

which is the famous mock theta function f(q), defined by Ramanujan and Watson in the
early twentieth century.

As a further refinement of N(m,n) we let N(r, t;n) be the number of partitions of n
with rank congruent to r modulo t. It is well-known that for nonnegative integers r, t
we have the following equation that relates the generating function for N(r, t;n) to the
generating functions of p(n) and N(m,n) (see e.g. Section 14.3.3 of [3])

∑
n≥0

N(r, t;n)qn =
1

t

∑
n≥0

p(n)qn +
t−1∑
j=1

ζ−rjt R(ζjt ; q)

 , (IV.1.1)

where ζt := e2πi/t.
In [4] it was remarked that the results therein may be employed to obtain asymptotics

of N(r, t;n). This question was explored by Bringmann in [2] for odd t, via use of the
circle method. However, while the formulae obtained therein are stronger than our
asymptotics, the present paper requires less strict results and hence we have somewhat
shorter proofs. While the theorem we present can be concluded from the results of
Bringmann in [2] for odd t, we give results for all t ≥ 2 and prove the following result.

Theorem IV.1.1. For fixed 0 ≤ r < t and t ≥ 2 we have that

N(r, t;n) ∼ 1

t
p(n) ∼ 1

4tn
√

3
e2π
√

n
6

as n→∞. Hence for fixed t the number of partitions of rank congruent to r modulo t is
equidistributed in the limit.

Recently, in [1] Ono and Bessenrodt showed that the partition function satisfies the
following convexity result. If a, b ≥ 1 and a+ b ≥ 9 then

p(a)p(b) > p(a+ b).

A natural question to ask is then: does N(r, t;n) satisfy a similar property? In [9] Hou
and Jagadeesan provide an answer if t = 3. They showed that for 0 ≤ r ≤ 2 we have

N(r, 3; a)N(r, 3; b) > N(r, 3; a+ b)
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for all a, b larger than some specific bound. Further, at the end of the same paper, the
authors offer the following conjecture on a more general convexity result.

Conjecture IV.1.2. For 0 ≤ r < t and t ≥ 2 then

N(r, t; a)N(r, t; b) > N(r, t; a+ b)

for sufficiently large a and b.

As a simple consequence of Theorem IV.1.1 we prove the following theorem.

Theorem IV.1.3. Conjecture IV.1.2 is true.

Remark 10. We note that unlike in [9] our proof of Theorem IV.1.3 does not give an
explicit lower bound on a and b. To yield such a bound one could employ similar
techniques to those in [9], relying on the asymptotics found in [2]. However, since [2]
gives results only for odd t one could only find such bounds directly for odd t. Further,
to find an explicit bound for general t is a difficult problem.

The paper is organised as follows. In Section V.2 we give some preliminary results
needed for the rest of the paper. We begin by showing the strict monotonicity in n of
N(m,n) in Section IV.3 which then allows us to prove a monotonicity result of N(r, t;n)
in Section IV.4. Section IV.5 serves to find the asymptotic behaviour of the level three
Appell function. In Section IV.6 we prove Theorem IV.1.1. We are then able to conclude
Theorem IV.1.3 in Section IV.7.

IV.2 Preliminaries

IV.2.1 Appell functions

We make extensive use of properties of Appell functions in Section IV.5, and so here
we recall relevant results without proof. In his celebrated thesis [14] Zwegers studied the
Appell function

µ(u, z; τ) :=
eπiu

ϑ(z; τ)

∑
n∈Z

(−1)neπi(n
2+n)τe2πinz

1− e2πinτe2πiu
,

where

ϑ(z; τ) :=
∑

n∈ 1
2

+Z

eπin
2τ+2πin(z+ 1

2
),

with z ∈ C, is a Jacobi theta function. It is well-known that ϑ satisfies the following two
transformation formulae (see e.g. [12]);
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ϑ(z + 1; τ) = −ϑ (z; τ) ,

and

ϑ(z; τ) =
i√
−iτ

e
−πiz2
τ ϑ

(
z

τ
;−1

τ

)
.

Zwegers used this to then show that µ satisfies

µ(u+ 1, v; τ) = −µ(u, v; τ),

and

µ(u, v; τ) =
−1√
−iτ

e
πi(u−v)2

τ µ

(
u

τ
,
v

τ
;−1

τ

)
+

1

2i
h(u− v; τ),

where h is the Mordell integral

h(z; τ) :=

∫
R

eπiτx
2−2πzx

cosh(πx)
dx.

Further, Zwegers showed the following two transformation properties of h;

h (z; τ) =
1√
−iτ

e
πiz2

τ h

(
z

τ
;−1

τ

)
, (IV.2.1)

and

h(z; τ) + e−2πiz−πiτh(z + τ ; τ) = 2e−πiz−
πiτ
4 . (IV.2.2)

In more recent work [15] Zwegers introduced Appell functions of higher level and
showed that they also exhibit similar transformation formulae. We define the level `
Appell function by

A`(u, v; τ) := eπi`u
∑
n∈Z

(−1)`nq
`n(n+1)

2 e2πinv

1− e2πiuqn
.

Then it is shown that

A`(u, v; τ) =

`−1∑
k=0

e2πiukA1

(
`u, v + kτ +

`− 1

2
; `τ

)

=

`−1∑
k=0

e2πiukϑ

(
v + kτ +

`− 1

2
; `τ

)
µ

(
`u, v + kτ +

`− 1

2
; `τ

)
,

and so A` inherits transformation properties from ϑ and µ.
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IV.2.2 A bound on h

In Section IV.5 we investigate asymptotic properties of h, and make use of a bound
given in [11]. Proposition 5.2 therein reads as follows.

Proposition IV.2.1. Let κ be a positive integer, α, β ∈ R with |α| < 1
2 and −1

2 ≤ β <
1
2 ,

and z ∈ C with Re(z) > 0. Then

∣∣∣∣h( iβκz + α;
i

κz

)∣∣∣∣ ≤

|sec(πβ)|κ

1
2 Re

(
1

z

)− 1
2

e−
πβ2

κ
Re( 1

z )+πκα2 Re( 1
z )
−1

if β 6= −1

2
,(

1 + κ
1
2 Re

(
1

z

)− 1
2

)
e−

π
4κ

Re( 1
z ) if β = −1

2
.

In particular, we will use this to show that all but finitely many terms arising from a
particular Appell function are exponentially decaying in the asymptotic limit.

IV.2.3 Ingham’s Tauberian Theorem

To conclude our main result, we use the following theorem of Ingham [10] that gives
an asymptotic formula for the coefficients of certain power series.

Theorem IV.2.2. Let f(q) :=
∑

n≥0 a(n)qn be a power series with weakly increasing
non-negative coefficients and radius of convergence equal to one. If there exist constants
A > 0, λ, α ∈ R such that

f(e−ε) ∼ λεαe
A
ε

as ε→ 0+, then

a(n) ∼ λ

2
√
π

A
α
2

+ 1
4

n
α
2

+ 3
4

e2
√
An

as n→∞.

IV.3 Strict monotonicity of N(m,n)

In this section we show strict monotonicity of N(m,n) for n ≥ 2m+ 25. This follows
work of Chan and Mao in [5] in which the following theorem regarding weak monotonicity
of N(m,n) is shown.

Theorem IV.3.1. For all non-negative integers m and positive integers n we have that

N(m,n) ≥ N(m,n− 1),

except when (m,n) = (±1, 7), (0, 8), (±3, 11) and when n = m+ 2.
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First, we state without proof some relevant results, beginning with the following
trivial lemma which is an example of the famous Postage Stamp Problem.

Lemma IV.3.2. The coefficient of qn with n ≥ 18 in the expression∑
j≥0

q3j
∑
k≥0

q4k

is greater than or equal to two.

We also have the following result, see Lemma 10 of [5].

Lemma IV.3.3. The expression

1− qm+1

(1− q2)(1− q3)

has non-negative power series coefficients for any positive integer m.

Lemma 9 of [5] reads as follows.

Lemma IV.3.4. With (a)n := (a; q)n, we have that

1− q
(aq)1(q/a)1

=
∑
n≥0

n∑
m=−n

(−1)m+namqn,

and

1− q
(aq)2(q/a)2

=− q +
1

1− q3
+

q2

1− q4
+

q8

(1− q3)(1− q4)

+
∑
m≥1

(am + a−m)qm
(

1− qm+1

(1− q2)(1− q3)
+

qm+3

(1− q3)(1− q4)

)
.

We use results of [5] to show that, for sufficiently large n, the coefficients of amqn in
the series ∑

n≥0

(1− q)qn2

(aq)n(q/a)n

are strictly positive for n 6= m+ 2. This then implies the following proposition.

Proposition IV.3.5. For positive m and n ≥ 2m+ 25, or m = 0 and n ≥ 30, we have
that

N(m,n) > N(m,n− 1).

94



CHAPTER IV. EQUIDISTRIBUTION AND CONVEXITY FOR PARTITION RANKS

Proof. As in [5] we define ∑
m∈Z

amfm,k(q) :=
1− q

(aq)k(q/a)k
.

Then∑
n≥0

(1− q)qn2

(aq)n(q/a)n
=1− q +

∑
n≥1

qn
2
f0,n(q)

+
∑
m≥1

(
am + a−m

)qfm,1(q) + q4fm,2(q) +
∑
n≥3

qn
2
fm,n(q)

 .

(IV.3.1)

The main idea of [5] is to show that these combinations of fm,n(q) have non-negative
coefficients of qn and amqn for n large enough, and away from n = m + 2 (since
N(n− 2, n) = 0 trivially). Here, we simply observe that for some larger bound on n the
coefficients are in fact strictly positive, implying our result.

Concentrating firstly on the first sum in the right-hand side of (IV.3.1), the proof of
Lemma 13 in [5] gives (correcting a minor error of [5])∑

n≥1

qn
2
f0,n(q) =

∑
n≥0

(−1)nqn+1 + q4

(
−q +

1

1− q3
+

q2

1− q4
+

q8

(1− q3)(1− q4)

)
−
∑
n≥3

qn
2+1 +

∑
n≥0

bnq
n,

for some nonnegative sequence {bn}n≥0. Thus, if we show that∑
n≥0

(−1)nqn+1 + q4

(
−q +

1

1− q3
+

q2

1− q4
+

q8

(1− q3)(1− q4)

)
−
∑
n≥3

qn
2+1

has strictly positive coefficients of qn for large enough n then we are done for this term.
Expanding the above expression gives∑
n≥0

q2n+1−
∑
n≥0

q2n+2−q5+
q4

1− q3
+

q6

1− q4
+

q12

(1− q3)(1− q4)
−
∑
n≥2

q4n2+1−
∑
n≥1

q4n2+4n+2.

As in [5] we note that both of the expressions∑
n≥0

q2n+1 −
∑
n≥2

q4n2+1,
q6

1− q4
−
∑
n≥1

q4n2+4n+2
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have non-negative coefficients. So, it remains to show that

q12

(1− q3)(1− q4)
−
∑
n≥0

q2n+2 (IV.3.2)

has strictly positive coefficients for every n large enough. Using Lemma IV.3.2 it is easy
to see that for n ≥ 30 the coefficients of qn in (IV.3.2) are strictly positive.

We next consider the second sum in the right-hand side of (IV.3.1) i.e. the expression

∑
m≥1

(
am + a−m

)qfm,1(q) + q4fm,2(q) +
∑
n≥3

qn
2
fm,n(q)

 ,

and we wish to show that, for n sufficiently large and n 6= m+ 2, the coefficients of amqn

are strictly positive.
Consider first the terms

q(1− q)
(aq)1(q/a)1

+
q4(1− q)

(aq)2(q/a)2
.

We now show that these have positive coefficients of qn for large enough n. This will
imply that

qfm,1(q) + q4fm,2(q)

also has positive coefficients for large enough n and m ≥ 1. Unlike in [5] we do not need
to split this into three cases. Then, by Lemma IV.3.4, we want to show that

q
∑
n≥0

n∑
m=−n
m 6=0

(−1)m+namqn + q4
∑
m≥1

(am + a−m)qm
(

1− qm+1

(1− q2)(1− q3)
+

qm+3

(1− q3)(1− q4)

)

has positive coefficients for n large enough. By Lemma IV.3.3 it clearly suffices to choose
n such that the coefficient of qn in

q2m+7

(1− q3)(1− q4)

is at least two. By Lemma IV.3.2 we see that choosing n ≥ 2m+25 will suffice. Therefore
the coefficients of qn with n ≥ 2m+ 25 and m ≥ 1 in the expression∑

m≥1

(
am + a−m

) (
qfm,1(q) + q4fm,2(q)

)
are strictly positive.
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From [5] we have that
∑

k≥3 q
k2
fm,k(q) has non-negative coefficients for all n, and so

we conclude overall that

N(0, n) > N(0, n− 1) for n ≥ 30,

N(m,n) > N(m,n− 1) for m ≥ 1, n ≥ 2m+ 25.

IV.4 Monotonicity of N(r, t;n)

Using results of the previous section we now prove the following theorem.

Theorem IV.4.1. Let 0 ≤ r < t and n ≥ M where M := max(2r + 25, 2(t− r) + 25).
Then we have that

N(r, t;n) ≥ N(r, t;n− 1).

Proof. We first rewrite N(r, t;n) as

N(r, t;n) =
∑
k∈Z

N(r + kt, n), (IV.4.1)

in particular noting that this is a finite sum, since for |r+ kt| > n we have N(r+ kt, n) =
0. We differentiate two separate cases, depending on whether r = 0 or r 6= 0. If
r + kt + 2 6= n for any k ∈ Z then we use Theorem IV.3.1 directly to conclude that
N(r, t;n) ≥ N(r, t;n− 1).

Now assume that there exists a term where r + kt+ 2 = n. First, let r 6= 0. We want
to show that ∑

k∈Z
N(r + kt, n) ≥

∑
k∈Z

N(r + kt, n− 1).

Since N(−m,n) = N(m,n) we see that there are at most two terms that vanish on the
left-hand side, given by N(n − 2, n) and N(2 − n, n). Then their counterparts on the
right-hand side satisfy N(n− 2, n− 1) = N(2− n, n− 1) = 1. Since r 6= 0 and n ≥M
there must be at least two non-zero intermediate terms e.g. N(r, n) and N(r − t, n). For
each of these intermediate terms we apply Proposition IV.3.5 and conclude our result for
n ≥M .

We now turn to the case of r = 0. Then (IV.4.1) becomes

N(0, n) + 2N(t, n) + · · ·+ 2N(n− 2, n),

where again the last term vanishes. We want to show that this expression is greater than
or equal to

N(0, n− 1) + 2N(t, n− 1) + · · ·+ 2N(n− 1, n− 1),
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where the last term is equal to two. Then it is enough to use that N(0, n) ≥ N(0, n−1)+2
for large enough n. Further, it is easy to see that we may adapt the proof of Proposition
IV.3.5 to show that

∑
n≥1 f0,n(q)qn

2
has coefficients strictly greater than one for all

n ≥ 42, implying that
N(0, n) ≥ N(0, n− 1) + 2,

for n ≥ 42. For values of n between 1 and 42 we test on MAPLE the expression
N(0, n)−N(0, n− 1) and can show for all n ≥ 15 we have that N(0, n) ≥ N(0, n− 1) + 2.

Therefore for n ≥ 15 we have that

N(0, t;n) ≥ N(0, t;n− 1).

Combining the above arguments finishes the proof.

IV.5 Asymptotic behaviour of the Appell function
A3(u,−τ ; τ)

In this section we investigate the asymptotic behaviour of the Appell function
A3(u,−τ ; τ) when we let τ = iε

2π and ε → 0+. We further impose that 0 < u ≤ 1
2

throughout. We prove the following theorem.

Theorem IV.5.1. Let 0 < u ≤ 1
2 and τ = iε

2π . Then

A3(u,−τ ; τ)→ 0

as ε→ 0+.

Proof. Using the transformation formulae given in Section IV.2.1 we rewrite the level
three Appell function

A3(u, v; τ) =
1

3τ

2∑
k=0

e
πiu(3u−2v)

τ ϑ

(
v

3τ
+
k

3
;− 1

3τ

)
µ

(
u

τ
,
v

3τ
+
k

3
;− 1

3τ

)

+
1√
−12iτ

2∑
k=0

e
πi
(
−k2τ

3
+ 6uk−2vk

3
− v

2

3τ

)
ϑ

(
v

3τ
+
k

3
;− 1

3τ

)
h(3u− v − kτ ; 3τ).

Specialising to v = −τ we obtain

A3(u,−τ ; τ) =
1

3τ
e
πiu(3u+2τ)

τ

2∑
k=0

ϑ

(
−1

3
+
k

3
;− 1

3τ

)
µ

(
u

τ
,−1

3
+
k

3
;− 1

3τ

)

+
e
−πiτ

3

√
−12iτ

2∑
k=0

e
πi
(
−k2τ

3
+ 6uk+2τk

3

)
ϑ

(
k − 1

3
;− 1

3τ

)
h(3u+ τ − kτ ; 3τ).
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We write A3(u,−τ ; τ) = S1 + S2 with

S1 :=
1

3τ
e
πiu(3u+2τ)

τ

2∑
k=0

ϑ

(
−1

3
+
k

3
;− 1

3τ

)
µ

(
u

τ
,−1

3
+
k

3
;− 1

3τ

)
(IV.5.1)

and

S2 :=
e
−πiτ

3

√
−12iτ

2∑
k=0

e
πi
(
−k2τ

3
+ 6uk+2τk

3

)
ϑ

(
k − 1

3
;− 1

3τ

)
h(3u+ τ − kτ ; 3τ).

We first investigate the terms from S1. By definition we know that

ϑ(z2; τ)µ(z1, z2; τ) = eπiz1
∑
n∈Z

(−1)neπi(n
2+n)τe2πinz2

1− e2πinτe2πiz1
,

and so

ϑ

(
z;− 1

3τ

)
µ

(
u

τ
, z;− 1

3τ

)
= e

πiu
τ

∑
n∈Z

(−1)ne−
πi(n2+n)

3τ e2πinz

1− e−
2πin
3τ e

2πiu
τ

= q
−u

2
0

∑
n∈Z

(−1)nq
n2+n

6
0 ζn

1− q
n
3
−u

0

,

where q0 := e
−2πi
τ . Thus, with z = k−1

3 , we have

S1 =
1

3τ
q
− 1

2
(3u2+u)

0 e2πiu
2∑

k=0

∑
n∈Z

(−1)nq
n2+n

6
0 ζn

1− q
n
3
−u

0

. (IV.5.2)

First we check the behaviour of S1 at possible poles. Assume u = 1
3 , so that the n = 1

term has a pole of order one. Then (IV.5.1) is

1

3τ
ρq
− 1

3
0

2∑
k=0

∑
n∈Z

(−1)nq
n2+n

6
0 e

2πin(k−1)
3

1− q
n−1

3
0

,

where ρ := e
2πi
3 . The only issues are the n = 1 terms in this sum, and so we investigate

the numerator

− 1

3τ
ρ

2∑
k=0

e
2πi(k−1)

3 .

From here it is clear that we have a zero of order one in the numerator and hence have
a removable singularity at u = 1

3 . It is clear that for the n = 1 terms, the limit as u
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approaches 1
3 from both above and below is zero, since the numerator is always zero and

the denominator is non-zero away from u = 1
3 .

Furthermore, it is clear that

2∑
k=0

ζn =

{
3 if n ≡ 0 (mod 3) ,

0 else.

Thus (IV.5.2) is equal to

1

τ
q
− 1

2
(3u2+u)

0 e2πiu
∑
n∈Z

(−1)nq
3n2+n

2
0

1− qn−u0

.

We want to find the lowest power of q0 in this sum, since negative powers of q0 give
growing terms in the asymptotic limit. Considering only the inner sum without the
prefactor, the n = 0 term is

1

1− q−u0

=
−qu0

1− qu0
= −qu0 − q2u

0 + . . . ,

where we have used that u ∈ (0, 1
2 ] and τ ∈ H. It is clear that any term n ≥ 1 will have

terms of order q
5
2
0 or higher.

When n < 0 we have that n− u < 0 and hence the term

(−1)nq
3n2+n

2
0

1− qn−u0

=
(−1)n+1q

3n2+n
2

0 qu−n0

1− qu−n0

=(−1)n+1q
3n2+n

2
0 qu−n0

∑
j≥0

q
j(u−n)
0

=(−1)n+1q
3n2−n+2u

2
0

∑
j≥0

q
j(u−n)
0 ,

with the lowest order term (−1)n+1q
3n2−n+2u

2
0 . We note that 3n2−n+2u

2 ≥ 2 + u.

We then see that, for u ∈ (0, 1
2 ], the most negative power of q0 is given by the n = 0

term and is

−1

τ
q
− 1

2
(3u2+u)

0 e2πiuqu0 = −1

τ
q
− 1

2
(3u2−u)

0 e2πiu. (IV.5.3)

Note in particular that for 0 < u ≤ 1
6 we have that 3u2 − u < 0 and so here we have a

positive power of q0, hence in this case (IV.5.3) tends to 0 in our asymptotic limit.
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We now investigate the second-smallest power of q0 giving a non-zero contribution to
the asymptotic behaviour. This is given by the second term in the n = 0 expansion, and
is

−1

τ
q
− 1

2
(3u2+u)

0 e2πiuq2u
0 = −1

τ
q
− 3

2
(u2−u)

0 e2πiu.

Since u2−u = u(u−1) < 0 the power of q0 is positive and hence this term gives vanishing
contribution to the asymptotic behaviour. In a similar way, all further terms give no
contribution, since the power of q0 increases as we take |n| larger in (IV.5.2).

Now we look to find the contribution of the error of modularity terms S2 to the
asymptotic behaviour of A3. First, we note that the smallest power of q0 appearing in
ϑ
(
k−1

3 ;− 1
3τ

)
is given by

−iq
1
24
0

(
e−

πi(k−1)
3 − e

πi(k−1)
3

)
. (IV.5.4)

Using (IV.2.1) we find that

h(3u+ (1− k)τ ; 3τ) =
1√
−3iτ

e
πi(3u+(1−k)τ)2

3τ h

(
u

τ
+

1− k
3

;− 1

3τ

)
=

1√
−3iτ

e
πiτ(k−1)2

3
+ 3πiu2

τ
+2πiu(1−k)h

(
u

τ
+

1− k
3

;− 1

3τ

)
.

Hence we have

S2 =
i

6τ

2∑
k=0

e
πi
(

2u+ 3u2

τ

)
ϑ

(
k − 1

3
;− 1

3τ

)
h

(
u

τ
+

1− k
3

;− 1

3τ

)
. (IV.5.5)

If u ≤ 1
6 we rewrite

h

(
u

τ
+

1− k
3

;− 1

3τ

)
= h

(
−3u

−3τ
+

1− k
3

;− 1

3τ

)
.

Then writing τ = iε
2π we see that Proposition IV.2.1 with κ = 1, z = 3ε

2π , β = −3u, and

α = 1−k
3 gives the bound as ε→ 0+ of

∣∣∣∣h(uτ +
1− k

3
;− 1

3τ

)∣∣∣∣ ≤

|sec(−3πu)|

(
2π

3ε

)− 1
2

e−
6π2u2

ε
+

(1−k)2ε
6 if − 3u 6= −1

2
,(

1 +

(
2π

3ε

)− 1
2

)
e−

π2

6ε if − 3u = −1

2
.

Combining the above we see that for u < 1
6 the contribution of S2 to the overall asymptotic

behaviour is bounded in modulus by

2π|sec(−3πu)|
3ε

2∑
k=0

e−
π2

6ε

(
2π

3ε

)− 1
2

e
(1−k)2ε

6 .
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It is easy to see that as ε → 0+ this contribution vanishes. In a similar way, the
contribution from S2 to the overall asymptotics vanishes when u = 1

6 .
We now consider u > 1

6 . In order to apply Proposition IV.2.1 we need to shift the
function h. Using (IV.2.2) gives

h
(−3u

−3τ
+

1− k
3

;− 1

3τ

)
= h

(
−3u+ 1

−3τ
+

1

3τ
+

1− k
3

;− 1

3τ

)
= −e−2πi(uτ + 1−k

3 )+ πi
3τ h

(
1− 3u

−3τ
+

1− k
3

;− 1

3τ

)
+ 2e−πi(

u
τ

+ 1−k
3 )+ πi

12τ

= −e−2πi(uτ + 1−k
3 )+ πi

3τ h

(
1− 3u

−3τ
+

1− k
3

;− 1

3τ

)
+ 2e

πi(k−1)
3 q

u
2
− 1

24
0 .

Then we write S2 = S2,1 + S2,2, where

S2,1 :=
−i
6τ

2∑
k=0

e
πi
(

2u+ 3u2

τ

)
e−2πi(uτ + 1−k

3 )+ πi
3τ ϑ

(
k − 1

3
;− 1

3τ

)
h

(
1− 3u

−3τ
+

1− k
3

;− 1

3τ

)
and

S2,2 :=
i

3τ

2∑
k=0

e
πi
(

2u+ 3u2

τ

)
ϑ

(
k − 1

3
;− 1

3τ

)
e
πi(k−1)

3 q
u
2
− 1

24
0

=
i

3τ

2∑
k=0

e2πiuq
− 3u2

2
+u

2
− 1

24
0 ϑ

(
k − 1

3
;− 1

3τ

)
e
πi(k−1)

3 .

We concentrate firstly on S2,1. Recalling that u ≤ 1
2 and using Proposition IV.2.1

with κ = 1, z = 3ε
2π , β = 1− 3u, and α = 1−k

3 gives the bound∣∣∣∣h(1− 3u

−3τ
+

1− k
3

;− 1

3τ

)∣∣∣∣ ≤ |sec(π(1− 3u))|
(

2π

3ε

)− 1
2

e−
2π2(3u−1)2

3ε
+

(1−k)2ε
6 .

Then we see that the contribution of S2,1 to the overall asymptotic behaviour is bounded
in modulus by

2π|sec(π(1− 3u))|
3ε

2∑
k=0

e
−π2

6ε

(
2π

3ε

)− 1
2

e
(1−k)2ε

6 .

It is easy to see that as ε→ 0+ this contribution vanishes. We are left to consider the
contribution of S2,2. Using the behaviour of ϑ given in (IV.5.4) the lowest power of q0
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arising from this sum is

1

3τ

2∑
k=0

e2πiuq
− 3u2

2
+u

2
− 1

24
0 q

1
24
0

(
1− e

2πi(k−1)
3

)
=

1

τ
e2πiuq

− 1
2

(3u2−u)

0 ,

exactly canceling the contribution from the first term of the Appell function given in
(IV.5.3). So, when u > 1

6 we must investigate the second-largest non-zero term of both
the Appell function and S2,2, since all terms in S2,1 are exponentially suppressed in the
limit.

It is easily seen from the definition of ϑ that the power of q0 in ϑ
(
k−1

3 ;− 1
3τ

)
is greater

than or equal to 1
24 + 1

3 for other terms. Then the power of q0 in S2,2 is seen to be positive,
since −1

2(3u2 − u) ≥ −1
8 for 1

6 < u ≤ 1
2 . Hence these terms give no contribution in the

limiting situation. Further, we have already seen that there are no other non-vanishing
contributions from (IV.5.2). The claimed result now follows.

IV.6 Proof of Theorem IV.1.1

In this section we prove the following.

Theorem IV.1.1. For fixed 0 ≤ r < t and t ≥ 2 we have that

N(r, t;n) ∼ 1

t
p(n) ∼ 1

4tn
√

3
e2π
√

n
6

as n→∞. Hence for fixed t the number of partitions of rank congruent to r modulo t is
equidistributed in the limit.

Proof. From Theorem IV.4.1 we know that the power series∑
n≥M

N(r, t;n)qn

has weakly increasing coefficients. We are therefore in the situation where we may apply
Theorem IV.2.2, and so we investigate the asymptotic behaviour

lim
ε→0+

∑
n≥1

N(r, t;n)e−εn.

Using (IV.1.1) and the fact that R(ζ; q) = R(ζ−1; q) we have that

∑
n≥0

N(r, t;n)qn =
1

t

 ∞∑
n=0

p(n)qn +

b t−1
2
c∑

j=1

(
ζrjt + ζ−rjt

)
R(ζjt ; q) + δt(−1)rR(−1; q)

 ,
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where δt := 1 if t is even, and 0 otherwise. We next note that it is possible to rewrite

R(ζ; q) =
(1− ζ)

(q)∞

∞∑
n=−∞

(−1)nq
n(3n+1)

2

1− ζqn
= (1− ζ)φ(τ)−1

∞∑
n=−∞

(−1)nq
3n(n+1)

2 q−n

1− ζqn

=
(
ζ−

3
2 − ζ−

1
2

) 1

φ(τ)
A3(z,−τ ; τ),

where φ(τ) :=
∏
n≥1(1− qn).

Considering generating functions we therefore want to investigate the behaviour of

1

tφ(τ)

1 +

b t−1
2
c∑

j=1

(
ζrjt + ζ−rjt

)(
ζ−3j

2t − ζ
−j
2t

)
A3

(
j

t
,−τ ; τ

)
+ 2iδt(−1)rA3

(
1

2
,−τ ; τ

) .
(IV.6.1)

Let τ = iε
2π and consider ε→ 0+. We use Theorem IV.5.1 with u = j

t and see that the
term in square brackets is asymptotically equal to 1 in this limit. Hence we have that
(IV.6.1) behaves as

1

tφ
(
iε
2π

) ∼ 1

t
√

2π
ε

1
2 e

π2

6ε .

Then using Theorem IV.2.2 we see that as n→∞

N(r, t;n) ∼ 1

t
p(n) ∼ 1

4tn
√

3
e2π
√

n
6 .

The claim now follows.

IV.7 Proof of Theorem IV.1.3

As a simple application of Theorem IV.1.1 we prove the following theorem.

Theorem IV.1.3. Conjecture IV.1.2 is true.

Proof. Consider the ratio
N(r, t; a)N(r, t; b)

N(r, t; a+ b)

as a, b→∞. By Theorem IV.1.1 we have

N(r, t; a)N(r, t; b)

N(r, t; a+ b)
∼

1
4ta
√

3
e2π
√

a
6 1

4tb
√

3
e

2π
√

b
6

1
4t(a+b)

√
3
e2π

√
(a+b)

6

=
(4ta
√

3 + 4tb
√

3)

48t2ab

e
2π
√

a
6

√
b
6

e2π
√

(a+b)
6

> 1

as a, b→∞.
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Chapter V

Cycle integrals of meromorphic
modular forms and coefficients of
harmonic Maass forms

This chapter is based on a paper [ABMS], accepted for publication in Journal of
Mathematical Analysis and Applications. This is joint work with Prof. Dr. Claudia
Alfes-Neumann, Prof. Dr. Kathrin Bringmann, and Dr. Markus Schwagenscheidt.

V.1 Introduction and statement of results

A classical result of Kohnen and Zagier [14] asserts that certain simple linear combi-
nations of geodesic cycle integrals of the weight 2k cusp forms1

fk,B(z) :=
D

k+1
2

π

∑
Q∈B

Q(z, 1)−k

are rational. Here k ∈ N≥2 is even and B denotes an equivalence class of indefinite
integral binary quadratic forms of discriminant D > 0. On the other hand, if A is an
equivalence class of positive definite quadratic forms of discriminant d < 0, then the
functions

fk,A(z) :=
|d|

k+1
2

π

∑
Q∈A

Q(z, 1)−k, (V.1.1)

are meromorphic modular forms of weight 2k for Γ := SL2(Z) which decay like cusp forms
towards i∞. Inspired by the results of Kohnen and Zagier, three of the authors showed
in [2] that certain linear combinations of traces of cycle integrals of the meromorphic

1Kohnen and Zagier used a slightly different normalisation to the present paper.
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modular forms fk,A

trfk,A(D) :=
∑

Q∈QD/Γ

∫
cQ

fk,A(z)Q(z, 1)k−1dz

are rational. Here QD denotes the set of integral binary quadratic forms of non-square
discriminant D > 0, and cQ := ΓQ\CQ (ΓQ the stabilizer of Q in Γ) is the image in Γ\H of
the geodesic CQ :=

{
z = x+ iy ∈ H : a|z|2 + bx+ c = 0

}
associated to Q = [a, b, c] ∈ QD.

Note that the cycle integrals have to be defined using the Cauchy principal value as
explained in [2] if a pole of fk,A lies on a geodesic cQ for Q ∈ QD.

In the present paper, we relate the traces of cycle integrals of the meromorphic
modular forms fk,A to Fourier coefficients of so-called harmonic Maass forms. Below
we state our main results in terms of vector-valued harmonic Maass forms for the Weil
representation associated with an even lattice. In the introduction, we however restrict
to the lattice of signature (1, 2)

L :=

{
X =

(
−b −c
a b

)
: a, b, c ∈ Z

}
,

equipped with the quadratic form q(X) := det(X). The significance of the lattice L lies
in the fact that its dual lattice L′ can be identified with the set of all integral binary
quadratic forms, with −4q(X) corresponding to the discriminant. We let C[L′/L] be
the group ring of the discriminant form L′/L, and we denote by D the Grassmannian of
positive definite lines in L⊗R, which can be identified with the complex upper half-plane

H by sending z ∈ H to the positive line generated by
(
−x x2+y2

−1 x

)
.

LetA be a fixed class of positive definite integral binary quadratic forms of discriminant
d < 0. We let zA ∈ H denote the CM point associated to the unique reduced form
Q0 ∈ A, which means that zA is the unique solution of Q0(zA, 1) = 0 in H. For simplicity,
we denote the corresponding positive line in D by the same symbol zA, and we let z⊥A
denote its orthogonal complement in L⊗ R. Since zA is a CM point, the corresponding
positive line in D and its orthogonal complement are defined over Q, and we may define
two sublattices of L by

P := L ∩ zA, N := L ∩ z⊥A,

which are one-dimensional positive definite and two-dimensional negative definite sublat-
tices, respectively. Note that P ⊕N has finite index in L.

The usual vector-valued theta function ΘP associated to P is a holomorphic modular
form of weight 1

2 for the Weil representation of P . We denote by G+
P the holomorphic

part of a harmonic Maass form GP of weight 3
2 for the dual Weil representation of P that
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maps to ΘP under ξ 3
2
, where ξκ := 2ivκ ∂

∂τ with τ = u+ iv ∈ H. Furthermore, for k ∈ 2N
we let

f(τ) =
∑

n�−∞
cf (n)e(nτ)

(with e(w) := e2πiw for w ∈ C) be a fixed weakly holomorphic modular form of weight
3
2−k for Γ0(4) satisfying the Kohnen plus space condition cf (n) = 0 for n ≡ 1, 2 (mod 4).
We also assume that cf (−D) = 0 if D > 0 is a square. Let e0, e1 denote the standard
basis of C[L′/L] ∼= Z/2Z. By the results of [12, Section 5], vector-valued modular forms
for the Weil representation of L can be identified with scalar-valued modular forms (of
the same weight) satisfying the Kohnen plus space condition by the map

g0(τ) e0 +g1(τ) e1 7→ g0(4τ) + g1(4τ). (V.1.2)

For simplicity, we use the same symbol for a scalar-valued weakly holomorphic modular
form and its vector-valued version. Finally, since P ⊕N has finite index in L, one can
naturally view (the vector-valued version of) f as a weakly holomorphic modular form
for the Weil representation of P ⊕N , which we denote by fP⊕N . We refer the reader to
Section V.2.4 for the precise definition of fP⊕N .

The following formula is the main result of this paper; the general result for arbitrary
congruence subgroups and both even and odd k can be found in Theorem V.5.1.

Theorem V.1.1. Let k ∈ 2N and assume that zA does not lie on any of the geodesics
cQ for Q ∈ QD if cf (−D) 6= 0. Then we have that

∑
D>0

cf (−D) trfk,A(D) =
2k−3|d|

1
2

π
∣∣ΓzA∣∣ CT

(〈
fP⊕N (τ),

[
G+
P (τ),ΘN−(τ)

]
k
2
−1

〉)
,

where ΓzA is the stabilizer of zA in Γ = Γ/{±1}, CT denotes the constant term in a
Fourier expansion, 〈·, ·〉 is the natural bilinear form on the group ring of P ⊕N , [·, ·]n
denotes the n-th Rankin–Cohen bracket, and ΘN− is the holomorphic theta function
associated to the positive definite lattice N− := (N,−q).

We remark that by [2, Theorem 1.1] the left-hand side of Theorem V.1.1 is rational
if the coefficients of f are rational. By [10, Theorem 4.3], one can choose GP such that

the coefficients of its holomorphic part G+
P lie in π|d|−

1
2Q. In particular, combining

Theorem V.1.1 and [10, Theorem 4.3] we obtain a new proof for the rationality of
the linear combinations of cycle integrals of the meromorphic modular forms fk,A in
Theorem V.1.1. Moreover, by comparing [2, Theorem 1.2] with Theorem V.1.1 above
one can obtain interesting identities between two finite sums involving coefficients of
harmonic Maass forms.
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Example V.1.2. As an illustrating example of Theorem V.1.1, we consider the class A
of the quadratic form [1, 0, 1] of discriminant −4, with the associated CM point zA = i.
The corresponding positive line in D is spanned by the vector

(
0 1
−1 0

)
. The lattice P is

also spanned by this vector, and is therefore isomorphic to (Z, n2). The lattice N consists
of those X ∈ L with a = −c, and hence is isomorphic to (Z2,−n2 − m2). Note that
P ′/P ∼= Z/2Z and N ′/N ∼= (Z/2Z)2. The vector-valued theta functions associated to P
and N− are given by

ΘP (τ) =
∑
n∈Z

e

(
n2τ

4

)
en, ΘN−(τ) =

∑
m,n∈Z

e

(
(m2 + n2)τ

4

)
e(m,n) .

Note that ΘP can be identified with the Jacobi theta function θ(τ) :=
∑

n∈Z e(n
2τ) under

the map defined in (V.1.2). It follows from work of Zagier [16] that the C[Z/2Z]-valued
generating function

G+
P (τ) := −8π

∑
n≥0

H(n)e
(nτ

4

)
en (V.1.3)

of Hurwitz class numbers H(n) (with H(0) := − 1
12) is the holomorphic part of a harmonic

Maass form of weight 3
2 for the dual Weil representation of P which maps to ΘP under

ξ 3
2
.

Now we choose k = 2. In this case, for every non-square discriminant D > 0 there
exists a unique weakly holomorphic modular form gD of weight −1

2 satisfying the Kohnen
plus space condition and having a Fourier expansion of the form gD(τ) = e(−Dτ) +O(1).
Using the Cohen-Eisenstein series of weight 5

2 , one can show that the constant term of
gD is given by −120LD(−1), where LD(s) denotes the usual L-function associated to a
non-square discriminant D > 0. We denote the vector-valued modular form corresponding
to gD via (V.1.2) by the same symbol gD. Now choosing f = gD and G+

P as in (V.1.3),
Theorem V.1.1 yields the formula

trf2,[1,0,1]
(D) = −40LD(−1)− 4

∑
n,m∈Z

n≡D (mod 2)

H
(
D − n2 −m2

)

for any non-square discriminant D > 0 if i does not lie on any of the geodesics cQ for
Q ∈ QD. Similarly, by computing the Rankin–Cohen bracket, for k = 4 we obtain

trf4,[1,0,1]
(D) =

∑
n,m∈Z

n≡D (mod 2)

(
4D − 10n2 − 10m2

)
H
(
D − n2 −m2

)
.
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The proof of Theorem V.1.1 consists of three main steps. For the first one, we use
the fact that trfk,A(D) can be written as a special value of the iterated raising operator
applied to a locally harmonic Maass form F1−k,D, which was first introduced by Kane,
Kohnen, and one of the authors [4] and whose precise definition in the vector-valued
setup is recalled in Section V.3. Namely, [15, Corollary 4.3] implies that

trfk,A(D)
.
= Dk− 1

2Rk−1
2−2k(F1−k,D)(zA),

where Rnκ := Rκ+2n−2 ◦ · · · ◦Rκ with R0
κ := id is an iterated version of the Maass raising

operator Rκ := 2i ∂∂τ + κ
v , and the symbol

.
= means equality up to a non-zero multiplicative

constant.
In the second step, we write the function Rk−1

2−2k(F1−k,D) as a regularized theta lift,
following Borcherds [3]. Namely, in Theorem V.3.2 we show that∑

D>0

cf (−D)Dk− 1
2Rk−1

2−2k(F1−k,D)(z)
.
=

∫ reg

F

〈
R
k
2
−1

3
2
−k(f)(τ),ΘL(τ, z)

〉
v−

1
2
dudv

v2
,

where the integral is taken over the standard fundamental domain F of Γ and has to be
regularized as explained in Section V.3, and ΘL(τ, z) denotes the Siegel theta function
associated to L.

Finally, in the third step, we use the fact that the evaluation of the Siegel theta
function ΘL(τ, zA) at the CM point zA essentially splits as a tensor product of the
holomorphic theta functions ΘP and ΘN− associated to the lattices P and N−. Then
using Stokes’ Theorem, the regularized theta integral can be evaluated as∫ reg

F

〈
R
k
2
−1

3
2
−k(f)(τ),ΘL(τ, zA)

〉
v−

1
2
dudv

v2

.
= CT

(〈
f(τ),

[
G+
P (τ),ΘN−(τ)

]
k
2
−1

〉)
,

see Theorem V.4.1 below. Our strategy to prove the last formula closely follows methods
from recent work of Bruinier, Ehlen, and Yang [8]. Combining these three steps gives
Theorem V.1.1.

The paper is organized as follows. We begin in Section V.2 by recalling preliminaries
which are pertinent to the rest of the paper. Section V.3 is dedicated to the study of the
regularized theta lift alluded to above. The evaluation of the theta lift at CM points is
discussed in Section V.4. Finally, in Section V.5 we give the proof of Theorem V.1.1 and
its generalisation to higher level and arbitrary weight.
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V.2 Preliminaries

V.2.1 The Weil representation

The metaplectic extension of SL2(Z) is defined as

Γ̃ := Mp2(Z)

:=

{
(γ, φ) : γ =

(
a b
c d

)
∈ SL2(Z), φ : H→ C holomorphic, φ2(τ) = cτ + d

}
.

It is generated by T̃ := (( 1 1
0 1 ) , 1) and S̃ :=

((
0 −1
1 0

)
,
√
τ
)
. We let Γ̃∞ denote the subgroup

generated by T̃ .
Let L be an even lattice of signature (r, s) with quadratic form q and associated

bilinear form (·, ·). Let L′ denote its dual lattice, C[L′/L] be the group ring of L′/L
with standard basis elements eµ for µ ∈ L′/L, and 〈·, ·〉 be the natural bilinear form on
C[L′/L] given by 〈eµ, eν〉 = δµ,ν . The Weil representation ρL associated with L is the

representation of Γ̃ on C[L′/L] defined by

ρL

(
T̃
)

(eµ) := e(q(µ)) eµ, ρL

(
S̃
)

(eµ) :=
e
(

1
8(s− r)

)√
|L′/L|

∑
ν∈L′/L

e(−(ν, µ)) eν .

The Weil representation ρL− associated to the lattice L− = (L,−q) is called the dual
Weil representation associated to L.

V.2.2 Harmonic Maass forms

Let κ ∈ 1
2Z and define the slash-operator by

f |κ,ρL (γ, φ)(τ) := φ(τ)−2κρ−1
L (γ, φ)f(γτ),

for a function f : H→ C[L′/L] and (γ, φ) ∈ Γ̃. Following [9], we call a smooth function
f : H→ C[L′/L] a harmonic Maass form of weight κ with respect to ρL if it is annihilated
by the weight κ Laplace operator

∆κ := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ iκv

(
∂

∂u
+ i

∂

∂v

)
,

if it is invariant under the slash-operator |κ,ρL , and if there exists a C[L′/L]-valued Fourier
polynomial (the principal part of f)

Pf (τ) :=
∑

µ∈L′/L

∑
n≤0

c+
f (µ, n)e(nτ) eµ
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such that f(τ)− Pf (τ) = O(e−εv) as v →∞ for some ε > 0. We denote the vector space
of harmonic Maass forms of weight κ with respect to ρL by Hκ,L, and we let M !

κ,L be the
subspace of weakly holomorphic modular forms. Every f ∈ Hκ,L can be written as a sum
f = f+ + f− of a holomorphic and a non-holomorphic part, having Fourier expansions of
the form

f+(τ) =
∑

µ∈L′/L

∑
n�−∞

c+
f (µ, n)e(nτ) eµ,

f−(τ) =
∑

µ∈L′/L

∑
n<0

c−f (µ, n)Γ(1− κ, 4π|n|v)e(nτ) eµ,

where Γ(s, x) :=
∫∞
x ts−1e−tdt denotes the incomplete Gamma function.

The antilinear differential operator ξκ = 2ivκ ∂
∂τ from the introduction maps a

harmonic Maass form f ∈ Hκ,L to a cusp form of weight 2 − κ for ρL− . We further
require the lowering and raising operators Lκ := −2iv2 ∂

∂τ and Rκ = 2i ∂∂τ + κ
v , which

lower and raise the weight of a smooth function transforming like a modular form of
weight κ for ρL by two.

V.2.3 Maass–Poincaré series

Let κ ∈ 1
2Z with κ < 0, and denote by Mµ,ν the usual M -Whittaker function (see

[1, equation 13.1.32]). We define, for s ∈ C and y ∈ R\{0},

Mκ,s(y) := |y|−
κ
2Msgn(y)κ

2
,s− 1

2
(|y|). (V.2.1)

Following [7], for µ ∈ L′/L and m ∈ Z − q(µ) with m > 0 we define the vector-valued
Maass–Poincaré series

Fµ,−m,κ,s(τ) :=
1

2Γ(2s)

∑
(γ,φ)∈Γ̃∞\Γ̃

(Mκ,s(−4πmv)e(−mu) eµ) |κ,ρL (γ, φ)(τ).

The series converges absolutely for Re(s) > 1, and at the special point s = 1 − κ
2 , the

function
Fµ,−m,κ(τ) := Fµ,−m,κ,1−κ

2
(τ)

defines a harmonic Maass form in Hκ,L with principal part e(mτ)(eµ + e−µ) + c for some
constant c ∈ C[L′/L]. In particular, every harmonic Maass form f ∈ Hκ,L can be written
as a linear combination

f(τ) =
1

2

∑
µ∈L′/L

∑
m>0

c+
f (µ,−m)Fµ,−m,κ(τ). (V.2.2)

The following lemma follows inductively from [8, Proposition 3.4].
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Lemma V.2.1. For n ∈ N0 we have that

Rnκ (Fµ,−m,κ,s) (τ) = (4πm)n
Γ
(
s+ n+ κ

2

)
Γ
(
s+ κ

2

) Fµ,−m,κ+2n,s(τ).

V.2.4 Operators on vector-valued modular forms

For an even lattice L we let Aκ,L be the space of C[L′/L]-valued smooth modular
forms (i.e., modular forms which possess derivatives of all orders) of weight κ with respect
to the representation ρL.

Let K ⊂ L be a sublattice of finite index. Since we have the inclusions K ⊂ L ⊂ L′ ⊂
K ′ we therefore have L/K ⊂ L′/K ⊂ K ′/K, hence the natural map L′/K → L′/L, µ 7→ µ̄.
For µ ∈ K ′/K and f ∈ Aκ,L, and g ∈ Aκ,K , define

(fK)µ :=

{
fµ̄ if µ ∈ L′/K,
0 if µ 6∈ L′/K,

(
gL
)
µ̄

=
∑

α∈L/K

gα+µ,

where µ is a fixed preimage of µ̄ in L′/K. For the proof of the following lemma we refer
the reader to [11, Section 3].

Lemma V.2.2. There are two natural maps

resL/K : Aκ,L → Aκ,K , f 7→ fK , trL/K : Aκ,K → Aκ,L, g 7→ gL,

such that for any f ∈ Aκ,L and g ∈ Aκ,K , we have 〈f, gL〉 = 〈fK , g〉.

V.2.5 Rankin–Cohen brackets

Let K and L be even lattices. For n ∈ N0 and functions f ∈ Aκ,K and g ∈ A`,L with
κ, ` ∈ 1

2Z we define the n-th Rankin–Cohen bracket

[f, g]n :=
1

(2πi)n

∑
r,s≥0
r+s=n

(−1)r
Γ(κ+ n)Γ(`+ n)

Γ(s+ 1)Γ(κ+ n− s)Γ(r + 1)Γ(`+ n− r)
f (r) ⊗ g(s),

where the tensor product of two vector-valued functions f =
∑

µ fµ eµ ∈ Aκ,K and
g =

∑
ν gν eν ∈ A`,L is defined by

f ⊗ g :=
∑
µ,ν

fµgν eµ+ν ∈ Aκ+`,K⊕L.

The proof of the following formula can be found in [8, Proposition 3.6].
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Proposition V.2.3. Let f ∈ Hκ,K and g ∈ H`,L be harmonic Maass forms. For n ∈ N0

we have

(−4π)nLκ+`+2n ([f, g]n) =
Γ(κ+ n)

Γ(n+ 1)Γ(κ)
Lκ(f)⊗Rn` (g)

+ (−1)n
Γ(`+ n)

Γ(n+ 1)Γ(`)
Rnκ(f)⊗ L`(g).

V.2.6 A quadratic space of signature (1, 2)

For M ∈ N we consider the rational quadratic space

V :=

{
X =

(
− b

2M − c
M

a b
2M

)
: a, b, c ∈ Q

}
along with the quadratic form q(X) := M det(X) and the corresponding bilinear form
(X,Y ) := −M tr(XY ) for X,Y ∈ V ; it has signature (1, 2). Furthermore, its elements can
be identified with rational quadratic forms QX = [aM, b, c], where the discriminant of QX
corresponds to −4Mq(X). The group SL2(Q) acts as isometries on V via gX := gXg−1.
Let D be the Grassmannian of lines in V ⊗ R on which q is positive definite. We may
identify D with the upper half-plane H by associating to z ∈ H the positive line generated
by

X1(z) :=
1√

2My

(
−x x2 + y2

−1 x

)
.

Then SL2(R) acts on H by fractional linear transformations, and the identification is
SL2(R)-invariant, i.e., gX1(z) = X1(gz). Furthermore, define

X2(z) :=
1√

2My

(
x −x2 + y2

1 −x

)
, X3(z) :=

1√
2My

(
y −2xy
0 −y

)
.

Along with X1(z), these form an orthogonal basis of V ⊗ R. For X ∈ V and z ∈ H we
define the quantities

pX(z) := −
√

2M(X,X1(z)) =
1

y

(
aM |z|2 + bx+ c

)
,

QX(z) :=
√

2My(X,X2(z) + iX3(z)) = aMz2 + bz + c.

We let Xz and Xz⊥ denote the orthogonal projections of X to the line RX1(z) and its
orthogonal complement, respectively. We have the useful formulas

q(Xz) =
1

4M
pX(z)2, q(Xz⊥) = − 1

4My2
|QX(z)|2. (V.2.3)
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V.2.7 Theta functions

For a positive definite lattice (K, q) of rank n we define the vector-valued theta
function

ΘK(τ) :=
∑

µ∈K′/K

∑
X∈K+µ

e(q(X)τ) eµ .

The function ΘK is a holomorphic modular form of weight n
2 for the Weil representation

ρK .
For the rest of this section we let L be an even lattice in the rational quadratic space

V of signature (1, 2) defined in Section V.2.6. For τ, z ∈ H we define the Siegel theta
function

ΘL(τ, z) := v
∑

µ∈L′/L

∑
X∈L+µ

e(q(Xz)τ + q(Xz⊥)τ) eµ . (V.2.4)

By [3, Theorem 4.1], the Siegel theta function ΘL transforms like a modular form of
weight −1

2 for the Weil representation ρL in τ . Similarly, we define the Millson theta
function

Θ∗L(τ, z) := v
∑

µ∈L′/L

∑
X∈L+µ

pX(z)e(q(Xz)τ + q(Xz⊥)τ) eµ .

Again using [3, Theorem 4.1], we see that the Millson theta function Θ∗L transforms like
a modular form of weight 1

2 for ρL in τ . Note that both theta functions can be rewritten
using (V.2.3). Both theta functions are invariant in z under the subgroup ΓL of the
orthogonal group O(L) which fixes the classes of L′/L.

If K ⊂ L is a sublattice of finite index, then Lemma V.2.2 implies that

ΘL = (ΘK)L, Θ∗L = (Θ∗K)L. (V.2.5)

Now fix some X0 ∈ L′ with q(X0) > 0, let A = ΓLX0 be its ΓL-class and let zA = RX0 ∈
D be the positive line spanned by X0. Recall that we can also view zA as a point in H,
which we call a CM point by a slight abuse of notation. Furthermore, let P = L∩ zA and
N = L ∩ z⊥A be the corresponding positive definite one-dimensional and negative definite
two-dimensional sublattices of L. A direct computation shows that the evaluation of the
Siegel and the Millson theta functions at zA split as

ΘP⊕N (τ, zA) = ΘP (τ)⊗ vΘN−(τ), Θ∗P⊕N (τ, zA) = Θ∗P (τ)⊗ vΘN−(τ), (V.2.6)

where
Θ∗P (τ) :=

∑
µ∈P ′/P

∑
X∈P+µ

pX(zA)e(q(X)τ) eµ

is a holomorphic unary theta series of weight 3
2 for ρP .
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V.3 Locally harmonic Maass forms and theta lifts

In this section we compute the action of the iterated raising operator on a certain
locally harmonic Maass form and show that the resulting function can be written as the
image of a suitable regularized theta lift. From now on, L denotes an even lattice of
full rank in the quadratic space V of signature (1, 2) defined in Section V.2.6, and ΓL is
the subgroup of O(L) which fixes the classes of L′/L. Furthermore, throughout we let
k ∈ N≥2.

Let µ ∈ L′/L and m ∈ Z− q(µ) with m > 0 such that Mm is not a square. Following
[5] (where a scalar-valued version was used) we define the function

F1−k,µ,m(z) :=
(−1)k(4Mm)

1
2
−k(

2k−2
k−1

)
π(2k − 1)

∑
X∈L+µ
q(X)=−m

sgn(pX(z))QX(z)k−1

(
4Mmy2

|QX(z)|2

)k− 1
2

× 2F1

(
1

2
, k − 1

2
; k +

1

2
;

4Mmy2

|QX(z)|2

)
.

The Euler integral representation of the hypergeometric function (see [1, equation 15.3.1])
yields

F1−k,µ,m(z) =
(−1)k(4Mm)

1
2
−k(

2k−2
k−1

)
π

∑
X∈L+µ
q(X)=−m

sgn(pX(z))QX(z)k−1ψ

(
4Mmy2

|QX(z)|2

)
,

where ψ(v) := 1
2β(v; k− 1

2 ,
1
2) is a special value of the incomplete β-function β(w; s, r) :=∫ w

0 ts−1(1− t)r−1dt. In particular, by the same arguments as in [4] the function F1−k,m,µ
converges absolutely and defines a locally harmonic Maass form of weight 2− 2k for ΓL.
We recover the function F1−k,D from [4] if we choose M = 1, D = 4m, and the lattice L
from the introduction. We have the following series representation of Rk−1

2−2k(F1−k,µ,m).

Proposition V.3.1. Assume that pX(z) 6= 0 for every X ∈ L + µ with q(X) = −m.
Then

Rk−1
2−2k (F1−k,µ,m) (z)

=
(−1)k(k − 1)!yk(

2k−2
k−1

)
π(2k − 1)

∑
X∈L+µ
q(X)=−m

sgn(pX(z))k|QX(z)|−k2F1

(
k

2
,
k

2
; k +

1

2
;

4Mmy2

|QX(z)|2

)
.

Proof. It suffices to show that
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Rk−1
2−2k

(
QX(z)k−1

(
4Mmy2

|QX(z)|2

)k− 1
2

2F1

(
1

2
; k − 1

2
; k +

1

2
;

4Mmy2

|QX(z)|2

))

= (k − 1)!(4Mm)k−
1
2 sgn(pX(z))k−1yk|QX(z)|−k2F1

(
k

2
,
k

2
; k +

1

2
;

4Mmy2

|QX(z)|2

)
.

Let w := 4Mmy2

|QX(z)|2 . Using the Euler transformation

2F1(a, b; c;Z) = (1− Z)c−a−b2F1(c− a, c− b; c;Z) (V.3.1)

and the identity (see [1, equation 15.2.3])

∂Z(Za2F1(a, b; c;Z)) = aZa−1
2F1(a+ 1, b; c;Z)

it may be shown by induction that for j ∈ N0

Rj0

(
w
k
2 2F1

(
k

2
,
k

2
; k +

1

2
;w

))
=

(k + j − 1)!

(k − 1)!
(4Mm)−

j
2 sgn(pX(z))j

(
QX(z̄)

y2

)j
w
k+j

2 2F1

(
k − j

2
,
k + j

2
; k +

1

2
;w

)
.

(V.3.2)

In proving this induction, it is useful to note that

R0(w) = −wR−2QX(z)

QX(z)
= −w2pX(z)

QX(z)
,

and that one uses (V.2.3) to obtain the sgn(pX(z))-factor.
In particular, for j = k − 1 equation (V.3.2) becomes

Rk−1
0

(
w
k
2 2F1

(
k

2
,
k

2
; k +

1

2
;w

))
=

(2k − 2)!

(k − 1)!
(4Mm)−

k−1
2 sgn(pX(z))k−1

(
QX(z̄)

y2

)k−1

wk−
1
2 2F1

(
1

2
, k − 1

2
; k +

1

2
;w

)
.

(V.3.3)

Furthermore, it is possible to show that w
k
2 2F1(k2 ,

k
2 ; k + 1

2 , w) is an eigenfunction under
the Laplace operator ∆0 with eigenvalue k(1− k). Now [6, Lemma 2.1] states that for
j ∈ N0 and g : H→ C satisfying ∆0(g) = λg we have

Rk−1
2−2k

(
y2k−2Rk−1

0 (g)
)

(z) =
k−1∏
`=1

(
−λ− `(`− 1)

)
g(z).
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Substituting into (V.3.3) we find that

(k − 1)!

(2k − 2)!
(4Mm)

k−1
2 Rk−1

2−2k

(
y2k−2Rk−1

0

(
w
k
2 2F1

(
k

2
,
k

2
; k +

1

2
;w

)))

= (k − 1)!(4Mm)k−
1
2 sgn(pX(z))k−1yk|QX(z)|−k2F1

(
k

2
,
k

2
; k +

1

2
;w

)
,

where we are using
∏k−1
`=1 (k(1− k)− `(`− 1)) = (2k− 2)! and are inserting the definition

of w.

For a harmonic Maass form f ∈ H 3
2
−k,L we consider the regularized theta lift

Λreg (f, z) :=


∫ reg

F

〈
R
k
2
−1

3
2
−k(f)(τ),ΘL(τ, z)

〉
v−

1
2dµ(τ), if k is even,∫ reg

F

〈
R
k−1

2
3
2
−k(f)(τ),Θ∗L(τ, z)

〉
v

1
2dµ(τ), if k is odd,

where dµ(τ) := dudv
v2 denotes the invariant measure on H, and the regularised integral

is defined by
∫ reg
F := limT→∞

∫
FT , where FT denotes the standard fundamental domain

for Γ truncated at height T . By the results of [7, Section 2.3] for the Siegel theta
function (corresponding to k even) and by [8, Section 7.3] for the Millson theta function
(corresponding to k odd), the integral converges for every z ∈ H.

We now compute the lift of the Maass–Poincaré series by unfolding against it. Thereby
we obtain the following representation of Rk−1

2−2k(F1−k,µ,m) as a regularized theta lift.

Theorem V.3.2. Assume that pX(z) 6= 0 for every X ∈ L + µ with q(X) = −m. If
k ∈ N is even, then

Rk−1
2−2k (F1−k,µ,m) (z) =

(k − 1)!2(4Mm)
1
2
−kM

k−1
2

22kπ
k
2 Γ
(
k
2

)2 Λreg
(
Fµ,−m, 3

2
−k, z

)
.

If k ∈ N is odd, then

Rk−1
2−2k(F1−k,µ,m) (z) = −(k − 1)!2(4Mm)

1
2
−kM

k
2
−1

22kπ
k−1

2 Γ
(
k+1

2

)2 Λreg
(
Fµ,−m, 3

2
−k, z

)
.

Proof. A similar result was proved in [7, Theorem 2.14] and [8, Theorem 7.9]. Here we
give a sketch of the proof for k even for the convenience of the reader; the case k odd
follows similarly (using a single application of (V.3.1) in the final step). We consider the
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regularized theta lift of the Maass Poincaré series Fµ,−m, 3
2
−k,s. Applying Lemma V.2.1

we obtain

Λreg
(
Fµ,−m, 3

2
−k,s, z

)
=(4πm)

k
2
−1 Γ

(
s− 1

4

)
Γ
(
s+ 3

4 −
k
2

) ∫ reg

F

〈
Fµ,−m,− 1

2
,s (τ) ,ΘL(τ, z)

〉
v−

1
2dµ(τ).

By the usual unfolding argument the above expression can be written as

2(4πm)
k
2
−1 Γ

(
s− 1

4

)
Γ(2s)Γ

(
s+ 3

4 −
k
2

) ∫ ∞
0

∫ 1

0
M− 1

2
,s(−4πmv)e(−mu)ΘL,µ(τ, z)v−

5
2dudv,

where ΘL,µ denotes the µ-th component of ΘL. Inserting the Fourier expansion of ΘL

given in (V.2.4) and the definition ofM− 1
2
,s given in (V.2.1), and evaluating the integral

over u, this becomes

2(4πm)
k
2
− 3

4
Γ
(
s− 1

4

)
Γ(2s)Γ

(
s+ 3

4 −
k
2

) ∑
X∈L+µ
q(X)=−m

∫ ∞
0

M 1
4
,s− 1

2
(4πmv)v−

5
4 e−2πv(q(Xz)−q(Xz⊥))dv.

The integral is an inverse Laplace transform and can be computed using equation (11)
on page 215 of [13]. We obtain

2(4πm)
k−1

2
Γ
(
s− 1

4

)2
Γ(2s)Γ

(
s+ 3

4 −
k
2

) ∑
X∈L+µ
q(X)=−m

(
m

|q(Xz⊥)|

)s− 1
4

2F1

(
s− 1

4
, s− 1

4
; 2s;

m

|q(Xz⊥)|

)
.

Plugging in the formula q(Xz⊥) = − 1
4Mmy2 |QX(z)|2 (see (V.2.3)) and the special value

s = k
2 + 1

4 , we arrive at

2(4πm)
k−1

2
Γ
(
k
2

)2
Γ
(
k + 1

2

) ∑
X∈L+µ
q(X)=−m

(
4Mmy2

|QX(z)|2

) k
2

2F1

(
k

2
,
k

2
; k +

1

2
;

4Mmy2

|QX(z)|2

)
.

Using the Legendre duplication formula π
1
2 Γ(2k) = 22k−1Γ(k)Γ(k + 1

2) and comparing
the above expression with Proposition V.3.1, we obtain the stated result.

V.4 Evaluation of the theta lift at CM points

We now evaluate the theta integral at CM points. As in the previous section we
let L denote an even lattice of full rank in the signature (1, 2) quadratic space V
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from Section V.2.6, and we let ΓL be the subgroup of O(L) which fixes the classes of
L′/L. Moreover, we fix some X0 ∈ L′ with q(X0) > 0, and we set A = ΓLX0 and
zA = RX0 ∈ D ∼= H. Then we have the sublattices P = L ∩ zA and N = L ∩ z⊥A.

Recall that GP denotes a harmonic Maass form of weight 3
2 for ρP that maps to ΘP

under ξ 3
2
. Similarly, we let G∗P be a harmonic Maass form of weight 1

2 for ρP that maps

to Θ∗P under ξ 1
2
. For simplicity, we now assume that the input f for the regularized theta

lift is weakly holomorphic. We have the following theorem, which is inspired by a similar
recent result of Bruinier, Ehlen, and Yang (compare [8, Theorem 5.4]).

Theorem V.4.1. Let f ∈M !
3
2
−k,L. For k even we have

Λreg (f, zA) =
π

1
2 Γ
(
k
2

)
2(4π)1− k

2 Γ
(
k+1

2

) CT
(〈
fP⊕N (τ),

[
G+
P (τ),ΘN−(τ)

]
k
2
−1

〉)
.

For k odd we have

Λreg (f, zA) =
π

1
2 Γ
(
k+1

2

)
(4π)

1−k
2 Γ

(
k
2

) CT

(〈
fP⊕N (τ),

[
G∗,+P (τ),ΘN−(τ)

]
k−1

2

〉)
.

Proof. We give the details of the proof for k even, since the proof for k odd is very similar.
Note that Lemma V.2.2 and (V.2.5) imply that

〈f,ΘL〉 =
〈
f, (ΘP⊕N )L

〉
= 〈fP⊕N ,ΘP⊕N 〉.

Thus we may assume that L = P ⊕N if we replace f by fP⊕N . For simplicity, we write
just f instead of fP⊕N throughout the proof.

First, using the self-adjointness of the raising operator (see [7, Lemma 4.2]) we obtain∫ reg

F

〈
R
k
2
−1

3
2
−k(f)(τ),Θ(τ, zA)

〉
v−

1
2dµ(τ)

=(−1)
k
2
−1

∫ reg

F

〈
f(τ), R

k
2
−1

1
2

(
v−

1
2 ΘL(τ, zA)

)〉
dµ(τ).

Note that the apparent boundary term appearing disappears in the same way as in the
proof of [7, Lemma 4.4]. Using the splitting (V.2.6) of the Siegel theta function and the
formula

R`−κ

(
vκg(τ)⊗ h(τ)

)
= vκg(τ)⊗R`(h)(τ)

which holds for every holomorphic function g, every smooth function h, and κ, ` ∈ R, we
obtain

R
k
2
−1

1
2

(
v−

1
2 ΘP⊕N (τ, zA)

)
= L 3

2
(GP )(τ)⊗R

k
2
−1

1 (ΘN−)(τ).
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Since L1(ΘN−) = 0, Proposition V.2.3 implies that

L 3
2
(GP )(τ)⊗R

k
2
−1

1 (ΘN−)(τ) =
π

1
2 Γ
(
k
2

)
2Γ
(
k+1

2

)(−4π)
k
2
−1Lk+ 1

2

(
[GP (τ),ΘN−(τ)] k

2
−1

)
.

Hence we have that∫ reg

F

〈
R
k
2
−1

3
2
−k(f)(τ),ΘL(τ, zA)

〉
v−

1
2dµ(τ)

=
π

1
2 Γ
(
k
2

)
2Γ
(
k+1

2

)(4π)
k
2
−1

∫ reg

F

〈
f(τ), Lk+ 1

2

(
[GP (τ),ΘN−(τ)] k

2
−1

)〉
dµ(τ).

Now a standard application of Stokes’ Theorem as in the proof of [9, Proposition 3.5]
gives the stated formula.

V.5 Statement of the main results and the proof of Theo-
rem V.1.1

We are now ready to state and prove our main result, which is a more general version
of Theorem V.1.1 for arbitrary congruence subgroups and both even and odd k ∈ N≥2.

As before we let L denote an even lattice of signature (1, 2) in the quadratic space
V from Section V.2.6, and we let ΓL be the subgroup of O(L) which fixes the classes
of L′/L. We can view ΓL as a subgroup of SL2(R), the action on D corresponding to
fractional linear transformations on H. Moreover, we fix some X0 ∈ L′ with q(X0) > 0,
and we set A = ΓLX0 and zA = RX0 ∈ D ∼= H. We have the corresponding sublattices
P = L ∩ zA and N = L ∩ z⊥A.

Generalising (V.1.1) we define the meromorphic modular form

fk,A(z) :=
(4Mq(A))

k+1
2

π

∑
X∈A

QX(z, 1)−k

of weight 2k for ΓL. Furthermore, for µ ∈ L′/L and m ∈ Z− q(µ) with m > 0 and Mm
not being a square, we define the trace of cycle integrals

trfk,A(µ,m) :=
∑

X∈ΓL\Lµ,−m

∫
cX

fk,A(z)QX(z, 1)k−1dz,

where Lµ,−m denotes the set of all X ∈ L+ µ with q(X) = −m, and cX := (ΓL)X\CX
with the geodesic

CX := {z ∈ H : pX(z) = 0} = {z ∈ H : aM |z|2 + bx+ c = 0}.
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We let GP be a harmonic Maass form of weight 3
2 for ρP that maps to ΘP under ξ 3

2
.

Similarly, we let G∗P be a harmonic Maass form of weight 1
2 for ρP that maps to Θ∗P under

ξ 1
2
. Finally, we let f ∈ M !

3
2
−k,L be a weakly holomorphic modular form with Fourier

coefficients cf (µ,m) and we assume that cf (µ,−m) = 0 if m > 0 and Mm is a square.

Theorem V.5.1. Assume that zA does not lie on any of the geodesics cX for X ∈ Lµ,−m
if cf (µ,−m) 6= 0. For k even we have∑

µ∈L′/L

∑
m>0

cf (µ,−m) trfk,A(µ,−m)

=
2k−3 (4Mq(A))

1
2

πM
1−k

2

∣∣∣(ΓL)zA∣∣∣ CT
(〈
fP⊕N (τ),

[
G+
P (τ),ΘN−(τ)

]
k
2
−1

〉)
.

For k odd we have∑
µ∈L′/L

∑
m>0

cf (µ,m) trfk,A(µ,m)

= −2k−1 (4Mq(A))
1
2

M1− k
2

∣∣∣(ΓL)zA∣∣∣ CT

(〈
fP⊕N (τ),

[
G∗,+P (τ),ΘN−(τ)

]
k−1

2

〉)
.

Remark 11. For M = 1 and the lattice L from the introduction, with ΓL ∼= SL2(Z),
Lµ,−m = Q4m, and d = −4Mq(A), we recover Theorem V.1.1. We remark that by
combining the results of this paper and the methods from [8, Section 7] one can also
derive similar formulas for twisted traces of cycle integrals of fk,A.

Proof of Theorem V.5.1. We prove the case of even k, and the case of odd k follows
similarly. First, by [15, Corollary 4.3] we have that

trfk,A(µ,m) =
2k (4Mq(A))

1
2 (4Mm)k−

1
2

(k − 1)!
∣∣∣(ΓL)zA∣∣∣ Rk−1

2−2k(F1−k,µ,m)(zA).

Note that we are using a different normalisation of fk,A, and that the results of [15] are
formulated in a more classical language. However, the exact same arguments as in the
proof of [15, Corollary 4.3] work in the general case that we need.

Next, recall that we can write f as a linear combination of Maass Poincaré series as
in (V.2.2). Hence, we obtain from Theorem V.3.2 the formula∑

µ∈L′/L

∑
m>0

cf (µ,m)(4Mm)k−
1
2Rk−1

2−2k(F1−k,µ,m)(zA) =
(k − 1)!2M

k−1
2

22k−1π
k
2 Γ
(
k
2

)2 Λreg (f, zA) .
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Finally, by Theorem V.4.1 we have the evaluation

Λreg (f, zA) =
π

1
2 Γ
(
k
2

)
2(4π)1− k

2 Γ
(
k+1

2

) CT
(〈
fP⊕N (τ),

[
G+
P (τ),ΘN−(τ)

]
k
2
−1

〉)
.

If we put all the constants together and use the Legendre duplication formula π
1
2 Γ(k) =

2k−1Γ(k2 )Γ(k+1
2 ), we obtain the stated formula.
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Chapter VI

On t-core and self-conjugate
2t− 1-core partitions in arithmetic
progressions

This chapter is based on a manuscript submitted for publication [BKM]. This is joint
work with Prof. Dr. Kathrin Bringmann and Prof. Dr. Ben Kane.

VI.1 Introduction and Statement of Results

A partition Λ of n ∈ N is a non-increasing sequence Λ := (λ1, λ2, . . . , λs) of non-
negative integers λj such that

∑
1≤j≤s λj = n. The Ferrers–Young diagram of Λ is the

s-rowed diagram

• • · · · • λ1 dots
• • · · · • λ2 dots
·
·
• · · · • λs dots.

We label the cells of the Ferrers–Young diagram as if it were a matrix, and let λ′k denote
the number of dots in column k. The hook length of the cell (j, k) in the Ferrers–Young
diagram of Λ equals

h(j, k) := λj + λ′k − k − j + 1.

If no hook length in any cell of a partition Λ is divisible by t, then Λ is a t-core partition.
A partition Λ is said to be self-conjugate if it remains the same when rows and columns
are switched.

Example VI.1.1. The partition Λ = (3, 2, 1) of 6 has the Ferrers–Young diagram

• • •
• •
•
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CHAPTER VI. ON T -CORE AND SELF-CONJUGATE 2T − 1-CORE PARTITIONS

and has hook lengths h(1, 1) = 5, h(1, 2) = 3, h(1, 3) = 1, h(2, 1) = 3, h(2, 2) = 1, and
h(3, 1) = 1. Therefore, Λ is a t-core partition for all t 6∈ {1, 3, 5}. Furthermore, switching
rows and columns leaves Λ unaltered, and so Λ is self-conjugate.

The theory of t-core partitions is intricately linked to various areas of number
theory and beyond. For example, Garvan, Kim, and Stanton [6] used t-core partitions
to investigate special cases of the famous Ramanujan congruences for the partition
function p(n). Furthermore, t-core partitions encode the modular representation theory
of symmetric groups Sn and An (see e.g. [5, 8])

For t, n ∈ N we let ct(n) denote the number of t-core partitions of n, along with
sct(n) the number of self-conjugate t-core partitions of n. In 1997, Ono and Sze [15]
investigated the relation between 4-core partitions and class numbers. Denote by H(|D|)
(D > 0 a discriminant) the D-th Hurwitz class number, which counts the number of
SL2(Z)-equivalence classes of integral binary quadratic forms of discriminant D, weighted
by 1

2 times the order of their automorphism group.1 Then Ono and Sze proved the
following theorem.

Theorem VI.1.2 (Theorem 2 of [15]). If 8n+ 5 is square-free, then

c4(n) =
1

2
H(32n+ 20).

More recently Ono and Raji [14] showed similar relations between self-conjugate
7-core partitions and class numbers. To state their result, let

Dn :=

{
28n+ 56 if n ≡ 1 (mod 4) ,

7n+ 14 if n ≡ 3 (mod 4) .

Theorem VI.1.3 (Theorem 1 of [14]). Let n 6≡ −2 (mod 7) be a positive odd integer.
Then

sc7(n) =


1
4H(Dn) if n ≡ 1 (mod 4) ,
1
2H(Dn) if n ≡ 3 (mod 8) ,

0 if n ≡ 7 (mod 8) .

In particular, by combining Theorems VI.1.2 and VI.1.3 and using elementary con-
gruence conditions, one may easily show that for n 6≡ 5 (mod 7) and 8n+ 5 square-free,

2 sc7(8n+ 1) = c4(7n+ 2). (VI.1.1)

This fact hints at a deeper relationship between sc2t−1 and ct, which we investigate.
Our main results pertain to the case of t = 4. We begin by extending recent results of

1Some authors write H(D) instead of H(|D|); in particular this notation was used in [14].
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Ono and Raji [14]. Letting sc7(n) denote the number of self-conjugate 7-core partitions
of n and ( ··) denote the extended Jacobi Symbol, we may state our first theorem. For
this, for n ∈ Q we set H(n) := 0 if n /∈ Z or −n is not a discriminant.

Theorem VI.1.4. For every n ∈ N, we have

sc7(n) =
1

4

(
H(28n+ 56)−H

(
4n+ 8

7

)
− 2H(7n+ 14) + 2H

(
n+ 2

7

))
.

While Theorem VI.1.4 gives a uniform formula for sc7(n) as a linear combination
of Hurwitz class numbers, it is also desirable to obtain a formula in terms of a single
class number. For this, let ` ∈ N0 be chosen maximally such that n ≡ −2 (mod 22`) and
extend the definition of Dn to

Dn :=


28n+ 56 if n ≡ 0, 1 (mod 4) ,

7n+ 14 if n ≡ 3 (mod 4) ,

Dn+2

22` −2 if n ≡ 2 (mod 4) ,

(VI.1.2)

and

νn :=


1
4 if n ≡ 0, 1 (mod 4) ,
1
2 if n ≡ 3 (mod 8) ,

νn+2

22` −2 if n ≡ 2 (mod 4) ,

0 otherwise.

(VI.1.3)

A binary quadratic form [a, b, c] is called primitive if gcd(a, b, c) = 1 and, for a prime p,
p-primitive if p - gcd(a, b, c). We let Hp(D) count the number of p-primitive classes of
integral binary quadratic forms of discriminant −D, with the same weighting as H(D).

Corollary VI.1.5. For every n ∈ N we have

sc7(n) = νnH7 (Dn) .

Remark. For n 6≡ −2 (mod 7), one has H(Dn) = H7(Dn) and hence the cases n ≡
1, 3 (mod 4) of Corollary VI.1.5 with n 6≡ −2 (mod 7) are covered by Theorem VI.1.3.

For n+ 2 squarefree, we may use Dirichlet’s class number formula to obtain another
representation for sc7(n); Ono and Raji [14, Corollary 2] covered the case that n 6≡
−2 (mod 7) is odd.

Corollary VI.1.6. If n ∈ N is an integer for which n+ 2 is squarefree, then

sc7(n) = − νn
Dn


∑Dn−1

m=1

(−Dn
m

)
m if n 6≡ −2 (mod 7) ,

72

(
7 +

(
Dn
72

7

))∑Dn
72 −1

m=1

(
−Dn

72

m

)
m if n ≡ −2 (mod 7) .
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The following corollary relates sc7(m) with m+ 2 not necessarily squarefree to sc7(n)
with n + 2 squarefree, for which Corollary VI.1.6 applies. The cases ` = r = 0 with
n 6≡ −2 (mod 7) odd were proven in [14, Corollary 3]. For this µ denotes the Möbius
function and σ(n) :=

∑
d|n d.

Corollary VI.1.7. If n ∈ N satisfies n + 2 squarefree, `, r ∈ N0, and f ∈ N with
gcd(f, 14) = 1, then

sc7

(
(n+ 2)22`f272r − 2

)
= 7r sc7(n)

∑
d|f

µ(d)

(
−Dn

d

)
σ

(
f

d

)
.

We also provide a combinatorial explanation for Corollary VI.1.5. To do so, we first
extend techniques of Ono and Sze [15] and explicitly describe the possible abaci (defined
in Section VI.4) of self-conjugate 7-core partitions . Then, in (VI.4.1) below we construct
an explicit map φ sending self-conjugate 7-core partitions to binary quadratic forms, via
abaci and extended t-residue diagrams (defined in Section VI.4).

In order to describe the image of this map, for a prime p and a discriminant D =
∆f2 with ∆ fundamental, we call a binary quadratic form of discriminant D p-totally
imprimitive if the power of p dividing gcd(a, b, c) equals the power of p dividing f (i.e.,
if the power of p dividing gcd(a, b, c) is maximal). Furthermore, recall that two binary
quadratic forms of discriminant D are said to be in the same genus if they represent the
same values in (Z/DZ)∗. We call the genus containing the principal binary quadratic
form of discriminant D the principal genus. The image of φ is then described in the
following theorem.

Theorem VI.1.8. For every n ∈ N, the image of φ is a unique non-principal genus of
7-primitive and 2-totally imprimitive binary quadratic forms with discriminant −28n−56.
Moreover, suppose that ` is chosen maximally such that n ≡ −2 (mod 22`) and 7n+14

22` has
r distinct prime divisors. Then every equivalence class in this genus is the image of νn2r

many self-conjugate 7-cores of n.

Note that Theorem VI.1.8 along with [15, Theorem 6] provides a combinatorial
explanation for (VI.1.1). The cases t ∈ {2, 3} are simple to describe, and immediately
imply that relationships similar to (VI.1.1) along arithmetic progressions do not exist
for t ∈ {2, 3}, which we see in Section VI.5.1. We prove a similar result for t = 5 in
Proposition VI.5.3. Based on these results we offer the following conjecture, along with
partial results on possible values of t (mod 6) along with the possible shapes of arithmetic
progressions in Section VI.5.3.

Conjecture VI.1.9. The only occurrence of arithmetic progressions for which ct and
sc2t−1 agree up to integer multiples non-trivially (even asymptotically) is when t = 4.
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The paper is organised as follows. In Section VI.2, we provide proofs for Theorem
VI.1.4 and Corollary VI.1.6, Corollaries VI.1.5 and VI.1.7 are shown in Section VI.3.
Section VI.4 is dedicated to providing a combinatorial explanation of Theorem VI.1.3
and its generalization in Corollary VI.1.5. In Section VI.5 we prove Conjecture VI.1.9 in
the cases t ∈ {2, 3, 5} and provides partial results for larger t.
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VI.2 Proofs of Theorem VI.1.4 and Corollary VI.1.6

Our investigation for the case t = 4 begins by packaging the number of self-conjugate
7-cores into a generating function and using the fact that it is a modular form to relate
sc7(n) to class numbers. We thus define

S(τ) :=
∑
n≥0

sc7(n)qn+2.

As stated on [14, page 4], S is a modular form of weight 3
2 on Γ0(28) with character (28

· ).

VI.2.1 Proof of Theorem VI.1.4

To prove Theorem VI.1.4, we let

H`1,`2(τ) := H
∣∣(U`1,`2 − `2U`1V`2)(τ).

Here for f(τ) :=
∑

n∈Z cf (n)qn

f
∣∣Ud(τ) :=

∑
n∈Z

cf (dn)qn, f
∣∣Vd(τ) :=

∑
n∈Z

cf (n)qdn,

and
H(τ) :=

∑
D≥0

D≡0,3 (mod 4)

H(D)qD.
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Proof of Theorem VI.1.4. Shifting n 7→ n−2 in Theorem VI.1.4 and taking the generating
function of both sides, the claim of the theorem is equivalent to

S =
1

4
H1,2

∣∣ (U14 − U2

∣∣V7

)
. (VI.2.1)

By [3, Lemma 2.3 and Lemma 2.6], both sides of (VI.2.1) are modular forms of weight
3
2 on Γ0(56) with character (28

· ). By the valence formula, it thus suffices to check (VI.2.1)
for the first 12 coefficients; this has been done by computer, yielding (VI.2.1) and hence
Theorem VI.1.4.

VI.2.2 Rewriting sc7(n) in terms of representation numbers

The next lemma rewrites sc7(n) in terms of the representation numbers (m ∈ N0)

r3(m) := #
{
x ∈ Z3 : x2

1 + x2
2 + x2

3 = m
}
.

For m ∈ Q \ N0, we furthermore set r3(m) := 0 for ease of notation.

Lemma VI.2.1.

(1) For n ∈ N, we have

sc7(n) =
1

48

(
r3(7n+ 14)− r3

(
n+ 2

7

))
.

(2) If n ≡ −2 (mod 7), then we have

sc7(n) =
1

48

((
7 +

(
Dn
72

7

))
r3

(
n+ 2

7

)
− 7r3

(
n+ 2

73

))
.

Proof. (1) By the proof of [3, Lemma 4.1] we have

Θ3(τ) =
∑
n>0

r3(n)qn = 12H1,2

∣∣U2(τ),

where Θ(τ) :=
∑

n∈Z q
n2

is the usual theta function. Plugging this into (VI.2.1), the
claim follows after picking off the Fourier coefficients and shifting n 7→ n+ 2.
(2) Recall that for f(τ) =

∑
n∈Z cf (n)qn a modular form of weight λ+ 1

2 ∈ Z + 1
2 , the

p2-th Hecke operator is defined as

f |Tp2(τ) =
∑
n>0

(
cf
(
pn2
)

+

(
(−1)λn

p

)
pλ−1cf (n) + p2λ−1cf

(
n

p2

))
qn.
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It is well-known that

Θ3|Tp2 = (p+ 1)Θ3. (VI.2.2)

Rearranging (VI.2.2) and comparing coefficients we obtain, by (VI.2.2), for m := n+ 2 ≡
0 (mod 7),

r3(7m) = 8r3

(m
7

)
−
(−m

7

7

)
r3

(m
7

)
− 7r3

(m
73

)
.

The claim follows by (1).

VI.2.3 Formulas in terms of single class numbers

We next turn to formulas for sc7(n) in terms of a single class number.

Corollary VI.2.2.

(1) For n 6≡ −2 (mod 7) and n 6≡ 2 (mod 4), we have

sc7(n) = νnH(Dn).

(2) For n ≡ −2 (mod 7), n 6≡ −2
(
mod 73

)
, and n 6≡ 2 (mod 4), we have

sc7(n) =

(
7 +

(
Dn
72

7

))
νnH

(
Dn

72

)
.

(3) If n ≡ 2 (mod 4), then

sc7(n) = sc7

(
n+ 2

4
− 2

)
.

(4) If n ≡ −2
(
mod 72

)
, then

sc7(n) = 7 sc7

(
n+ 2

72
− 2

)
.

Remark. For n 6≡ 2 (mod 4), we have 7(n + 2) | Dn, so n ≡ −2 (mod 7) implies that
72 | Dn, and hence Corollary VI.2.2 (2) is meaningful.

Proof of Corollary VI.2.2. (1) Since n 6≡ −2 (mod 7), the final term in Lemma VI.2.1
(1) vanishes, giving

sc7(n) =
1

48
r3(7n+ 14).
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The claim then follows immediately by plugging in the well-known formula of Gauss (see
e.g. [13, Theorem 8.5])

r3(n) =


12H(4n) if n ≡ 1, 2 (mod 4) ,

24H(n) if n ≡ 3 (mod 8) ,

r3

(
n
4

)
if 4 | n,

0 otherwise.

(VI.2.3)

(2) Since 73 - (n+ 2), the final term in Lemma VI.2.1 (2) vanishes, giving

sc7(n) =
1

48

(
7 +

(
Dn
72

7

))
r3

(
n+ 2

7

)
.

The claim then immediately follows by plugging in (VI.2.3).
(3) Since n ≡ 2 (mod 4), we have 4 | (n+ 2), and hence (VI.2.3) and Lemma VI.2.1 (1)
imply the claim.
(4) Since n ≡ −2

(
mod 72

)
, 73 | Dn, so 7 | Dn

72 . Hence Lemma VI.2.1 (1), (2) imply the
claim.

VI.2.4 Proof of Corollary VI.1.6

We next consider the special case that n+ 2 is squarefree and use Dirichlet’s class
number formula to obtain another formula for sc7(n).

Proof of Corollary VI.1.6. Note that since n+2 is squarefree, either −Dn is fundamental
(for n 6≡ −2 (mod 7)) or −Dn

72 is fundamental (for n ≡ −2 (mod 7)). Dirichlet’s class
number formula (see e.g. [16, Satz 3]) states that

H(|D|) = − 1

|D|

|D|−1∑
m=1

(
D

m

)
m. (VI.2.4)

By Corollary VI.2.2 (1), (2) (the conditions given there are satisfied because n + 2 is
squarefree and thus neither n ≡ 2 (mod 4) nor n ≡ −2 (mod 73)), we have

sc7(n) = νn

H(Dn) if n 6≡ −2 (mod 7) ,(
7 +

(
Dn
72

7

))
H
(
Dn
72

)
if n ≡ −2 (mod 7) .

(VI.2.5)

Since −Dn is fundamental in the first case and −Dn
72 is fundamental in the second case,

we may plug in (VI.2.4) with D = −Dn in the first case and D = −Dn
72 in the second

case.
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Thus for n 6≡ −2 (mod 7) we plug

H (Dn) = − 1

Dn

Dn−1∑
m=1

(
−Dn

m

)
m

into (VI.2.5), while for n ≡ −2 (mod 7) we plug in

H

(
Dn

72

)
= − 72

Dn

Dn
72 −1∑
m=1

(
−Dn

72

m

)
m.

This yields the claim.

VI.3 Proofs of Corollaries VI.1.5 and VI.1.7

This section relates sc7(m) and sc7(n) if m+2
n+2 is a square.

VI.3.1 A recursion for sc7(n)

In this subsection, we consider the case m+2
n+2 = 22j72`.

Lemma VI.3.1. Let ` ∈ N0 and n ∈ N.

(1) We have

sc7

(
(n+ 2)22` − 2

)
= sc7(n).

(2) We have

sc7

(
(n+ 2)72` − 2

)
= 7` sc7(n).

Proof. (1) Corollary VI.2.2 (3) gives inductively that for 0 ≤ j ≤ ` we have

sc7

(
(n+ 2)22` − 2

)
= sc7

(
(n+ 2)22(`−j) − 2

)
.

In particular, j = ` yields the claim.
(2) The claim is trivial if ` = 0. For ` ≥ 1, Corollary VI.2.2 (4) inductively yields that
for 0 ≤ j ≤ `

sc7

(
(n+ 2)72` − 2

)
= 7j sc7

(
(n+ 2)72(`−j) − 2

)
.

The case j = ` is precisely the claim.
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VI.3.2 Proof of Corollary VI.1.7

We are now ready to prove Corollary VI.1.7.

Proof of Corollary VI.1.7. We first use Lemma VI.3.1 (1), (2) to obtain that

sc7

(
(n+ 2)22`f272r − 2

)
= 7r sc7

(
(n+ 2)f2 − 2

)
. (VI.3.1)

We split into the case n 6≡ −2 (mod 7) (in which case −Dn is fundamental) and
n ≡ −2 (mod 7) (in which case −Dn

72 is fundamental).

First suppose that n 6≡ −2 (mod 7). We use Corollary VI.2.2 (1) to obtain

sc7

(
(n+ 2)f2 − 2

)
= νnH

(
Dnf

2
)

We then plug in [4, p. 273] (−D a fundamental discriminant)

H
(
Df2

)
= H(D)

∑
1≤d|f

µ(d)

(
−D
d

)
σ

(
f

d

)
. (VI.3.2)

Hence by Corollary VI.2.2 (1)

sc7

(
(n+ 2)f2 − 2

)
= sc7(n)

∑
1≤d|f

µ(d)

(
−Dn

d

)
σ

(
f

d

)
,

and plugging back into (VI.3.1) yields the corollary in that case.

We next suppose that n ≡ −2 (mod 7). First note that since 7 - f and n + 2 is
squarefree, (n + 2)f2 − 2 6≡ −2

(
mod 73

)
and n 6≡ 2 (mod 4). We plug in Corollary

VI.2.2 (2), use (VI.3.2) (recall that −Dn
72 is fundamental), and note that (

Dnf
2

72

7 ) = (
Dn
72

7 )
to obtain that

sc7

(
(n+ 2)f2 − 2

)
=

(
7 +

(
Dn
72

7

))
νnH

(
Dn

72

) ∑
1≤d|f

µ(d)

(
−Dn

72

d

)
σ

(
f

d

)
.

We then use Corollary VI.2.2 (2) again and plug back into (VI.3.1) to conclude that

sc7

(
(n+ 2)22`f272r − 2

)
= 7r sc7(n)

∑
1≤d|f

µ(d)

(
−Dn

72

d

)
σ

(
f

d

)
.

Since 7 - f , we have (
−Dn

72

d ) = (−Dnd ) for d | f . Therefore the corollary follows.
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VI.3.3 Proof of Corollary VI.1.5

We next rewrite Corollary VI.2.2 (2) in order to uniformly package Corollary VI.2.2
(1), (2), and (3). We first require a lemma relating the 7-primitive class numbers H7 and
the Hurwitz class numbers.

Lemma VI.3.2. For a discriminant −D, we have

H7(D) = H(D)−H
(
D

72

)
.

Proof. To rewrite the right-hand side, we write D = ∆72`f2 with 7 - f and −∆ funda-
mental discriminant and then plug in the well-known identity

H(D) =
∑
d2|D

h
(
−D
d2

)
ω− D

d2

,

where as usual h(−D
d2 ) counts the number of classes of primitive quadratic forms [a, b, c]

with discriminant −D
d2 and gcd(a, b, c) = 1. This yields

H(D)−H
(
D

72

)
=
∑
d|7`f

h
(
−D
d2

)
ω− D

d2

−
∑

d|7`−1f

h
(
− D

72d2

)
ω− D

72d2

=
∑
d|7`f

h
(
−D
d2

)
ω− D

d2

−
∑
d|7`f
7|d

h
(
−D
d2

)
ω− D

d2

=
∑
d|7`f
7-d

h
(
−D
d2

)
ω− D

d2

. (VI.3.3)

The claim of the lemma is thus equivalent to showing that the right-hand side of (VI.3.3)
equals H7(D). Multiplying each form counted by h(−D

d2 ) by d, we see that (VI.3.3)
precisely counts those quadratic forms [a, b, c] of discriminant −D with 7 - gcd(a, b, c),
weighted in the usual way.

To finish the proof of Corollary VI.1.5, for a fundamental discriminant −∆, we also
require the evaluation of

Cr,∆ :=
∑
d|7r

µ(d)

(
−∆

d

)
σ

(
7r

d

)
−
∑
d|7r−1

µ(d)

(
−∆

d

)
σ

(
7r−1

d

)
.

A straightforward calculation gives the following lemma.
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Lemma VI.3.3. For r ∈ N we have

Cr,∆ = 7r−1

(
7 +

(
∆

7

))
.

We are now ready to prove Corollary VI.1.5.

Proof of Corollary VI.1.5. We first consider the case that n 6≡ 2 (mod 4). If n 6≡
−2 (mod 7), then Corollary VI.1.5 follows directly from Corollary VI.2.2 (1) and Lemma
VI.3.2.

For n ≡ −2 (mod 7), we choose rn ∈ N0 maximally such that n ≡ −2
(
mod 72rn+1

)
and proceed by induction on rn. For rn = 0 we have Dn = ∆nf

272 with −∆n a
fundamental discriminant and 7 - f . Since 7 - f , we have(

−∆nf
2

7

)
=

(
−∆n

7

)
,

and hence combining Corollary VI.2.2 (2), (VI.3.2), and Lemma VI.3.3 gives

sc7(n) = νnH(∆n)

∑
d|7

µ(d)

(
−∆n

d

)
σ

(
7

d

)
− 1

∑
d|f

µ(d)

(
−∆n

d

)
σ

(
f

d

)
.

Noting that 7 - f and ∑
d|f

µ(d)

(
−∆n

d

)
σ

(
f

d

)
(VI.3.4)

is multiplicative, we obtain

sc7(n) = νnH(∆n)

∑
d|7f

µ(d)

(
−∆n

d

)
σ

(
7f

d

)
−
∑
d|f

µ(d)

(
−∆n

d

)
σ

(
f

d

) .

We then apply (VI.3.2) again and use Lemma VI.3.2 to obtain Corollary VI.1.5 in this
case. This completes the base case rn = 0 of the induction.

Let r ≥ 1 be given and assume the inductive hypothesis that that Corollary VI.1.5
holds for all n with rn < r. We then let n be arbitrary with rn = r and show that
Corollary VI.1.5 holds for n. By Corollary VI.2.2 (4), we have

sc7(n) = 7 sc7

(
n+ 2

72
− 2

)
. (VI.3.5)
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By the maximality of rn, 72r−1 | n+2
72 but 72r+1 - n+2

72 , so rn+2

72 −2 = r − 1 < r and hence

by induction we may plug Corollary VI.1.5 into the right-hand side of (VI.3.5) to obtain

sc7(n) = 7νn+2

72 −2H7

(
Dn+2

72 −2

)
. (VI.3.6)

A straightforward calculation shows that

νn+2

72 −2 = νn and Dn+2

72 −2 =
Dn

72

and hence (VI.3.6) implies that

sc7(n) = 7νnH7

(
Dn

72

)
.

Hence Corollary VI.1.5 in this case is equivalent to showing that

H7 (Dn) = 7H7

(
Dn

72

)
. (VI.3.7)

Plugging Lemma VI.3.2 and then (VI.3.2) into both sides of (VI.3.7), cancelling H(∆n),
and again using the multiplicativity of (VI.3.4), one obtains that (VI.3.7) is equivalent
to Cr+1,∆n = 7Cr,∆n . Since r ≥ 1, we have r + 1 ≥ 2, and Lemma VI.3.3 implies that
Cr+1,∆n = 7Cr,∆n , yielding Corollary VI.1.5 for all n 6≡ 2 (mod 4).

We finally consider the case n ≡ 2 (mod 4). We choose ` maximally such that
n ≡ −2

(
mod 22`

)
. Lemma VI.3.1 (1) implies that

sc7(n) = sc7

((
n+ 2

22`
− 2 + 2

)
22` − 2

)
= sc7

(
n+ 2

22`
− 2

)
.

The choice of ` implies that n+2
22` − 2 6≡ 2 (mod 4). We may therefore plug in Corollary

VI.1.5 and the definitions (VI.1.2) and (VI.1.3) to conclude that

sc7

(
n+ 2

22`
− 2

)
= νn+2

22` −2H7

(
Dn+2

22` −2

)
= νnH7 (Dn) .

VI.4 A combinatorial explanation of Corollary VI.1.5

Here we provide a combinatorial explanation for Corollary VI.1.5. We use the theory
of abaci, following the construction in [15].
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VI.4.1 Abaci, extended t-residue diagrams, and self-conjugate t-cores

Given a partition Λ = (λ1, λ2, . . . , λs) with λ1 ≥ λ2 ≥ · · · ≥ λs > 0 of a positive
integer n and a positive integer t, we next describe the t-abacus associated to Λ. This
consists of s beads on t rods constructed in the following way [15]. For every 1 ≤ j ≤ s
define structure numbers by

Bj := λj − j + s.

For each Bj there are unique integers (rj , cj) such that

Bj = t(rj − 1) + cj ,

and 0 ≤ cj < t− 1. The abacus for the partition Λ is then formed by placing one bead
for each Bj in row rj and column cj . The extended t-residue diagram associated to a
t-core partition Λ is constructed as follows (see [6, page 3]). Label a cell in the j-th row
and k-th column of the Ferrers–Young diagram of Λ by k− j (mod t). We also label the
cells in column 0 in the same way. A cell is called exposed if it is at the end of a row.
The region r of the extended t-residue diagram of Λ is the set of cells (j, k) satisfying
t(r − 1) ≤ k − j < tr. Then we define nj to be the maximum region of Λ which contains
an exposed cell labeled j. As noted in [6], this is well-defined since column 0 contains
infinitely many exposed cells.

Example VI.4.1. Let t = 4 and construct the abacus and 4-residue diagram for the
partition Λ = (3, 2, 1). We begin with the abacus, computing the structure numbers
B1 = 5, B2 = 3, and B3 = 1. Then diagrammatically the abacus is

0 1 2 3

1 B3 B2

2 B1

The extended 4-residue diagram of the partition is

0 1 2 3

1 3 •0 •1 •2

2 2 •3 •0

3 1 •2

Then the exposed cells in this diagram are (1, 3), (2, 2), and (3, 1). One may then
determine the region of these cells in the prescribed fashion. For example, the exposed
cell (1, 3) labeled by 2 belongs to the region 1, and hence n2 = 1.
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Using this construction, [15, Theorem 4] reads as follows.

Theorem VI.4.2. Let A be an abacus for a partition Λ, and let mj denote the number
of beads in column j. Then Λ is a t-core partition if and only if the mj beads in column
j are the beads in positions (1, j), (2, j), . . . , (mj , j).

Furthermore, using extended t-residue diagrams, the authors of [6] showed the
following result.

Lemma VI.4.3 (Bijection 2 of [6]). Let Pt(n) be the set of t-core partitions of n. There
is a bijection Pt(n)→ {N := [n0, . . . , nt−1] : nj ∈ Z, n0 + · · ·+ nt−1 = 0} such that

|Λ| = t|N |2

2
+B ·N, B := [0, 1, . . . , t− 1].

When computing the norm and dot-product, we consider N,B as elements in Zt.

We call N the list associated to the t-residue diagram. We now show a relationship
between abaci and lists of a partition.

Proposition VI.4.4. Let N = [n0, . . . , nt−1] be the list associated to the extended t-
residue diagram of a t-core partition Λ. Let `+ s = α`t+β` with 0 ≤ β` ≤ t− 1. Then N
also uniquely represents the abacus (. . . , nt−1 +αt−1, n0 +α0, n1 +α1, . . . ), where n` +α`
occurs in position β` of the abacus.

Proof. The largest part λ1 corresponds to the maximum region of the t-residue diagram,
and also the lowest right-hand bead on the abacus. Let m1 := max{n0, . . . , nt−1} be
achieved at n`1 . Then λ1 = t(m1 − 1) + `1 + 1. For the abacus, we correspondingly find
B1 = λ1− 1 + s = t(m1− 1) + `1 + s = t(m1 +α1− 1) + β1, where `1 + s = α1t+ β1 with
0 ≤ β1 ≤ t − 1. Hence we place a bead in the abacus at the slot (m1 + α1, β1). Since
this is a t-core partition, we also know that there are beads in all places above this slot.
These beads correspond to other parts in the partition whose labels of exposed cells in
the t-residue diagram are `1 but where the exposed cells themselves lie in a lower region.
Thus the β1-th entry in the abacus takes value m1 + α1.

Then removing the element n`1 from the list we are left with
[n0, . . . , n`1−1, n`1+1, . . . , nt−1]. We use the same technique as before, identi-
fying m2 := max{n0, . . . , n`1−1, n`1+1, . . . , nt−1}, achieved at n`2 . We have
k − j ≡ `2 (mod t) such that t(m2 − 1) ≤ k − j < tm2, meaning that
λj = k = t(m2 − 1) + `2 + j. Plugging this in to the formula for the structure
numbers we find that Bj = t(m2− 1) + `2 + s = t(m2 +α2− s) + β2, where `2 = α2t+ β2

with 0 ≤ β < t. Hence we place a bead in the abacus in the slot (m2 + α2, β2) and all
other slots vertically above this, and so the β2-nd entry in the abacus list is given by
m2 + α2. This process continues for each entry of the list.
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If this process gives a non-positive value for the slots of the abacus in which beads are
to be placed, we define the value in that column of the abacus list to be 0 (it is seen that
these values arise from the exposed cells in column 0 of the extended t-residue diagram
and hence are not a part of the partition). It is clear that the β` run through exactly a
complete set of residues modulo t, and hence each column in the abacus is represented
exactly once. It is easily seen that this process defines a unique abacus for each list N
(up to equivalency by Lemma VI.4.6). The converse is also seen to hold.

Remark 12. If the resulting abacus A that appears under an application of Proposition
VI.4.4 has a non-zero first column, we may use Lemma VI.4.6 to rewrite A as an equivalent
abacus with a 0 in the first place.

We use Proposition VI.4.4 to restrict the possible shapes of abaci associated to
self-conjugate t-core partitions.

Lemma VI.4.5. With the notation defined as in Proposition VI.4.4, an abacus is self-
conjugate if and only if it is of the form (. . . ,−n1 + α1,−n0 + α0, n0 + α0, n1 + α1, . . . ).

Proof. The proof of [6, Bijection 2] implies that the elements in the list [n0, . . . , nt−1]
associated to a self-conjugate partition satisfy the relations n` = −nt−`−1 for every
0 ≤ ` ≤ t− 1. Combining this with Proposition VI.4.4 immediately yields the claim.

VI.4.2 Self-conjugate 7-cores

We now restrict our attention to abaci of self-conjugate 7-cores. We require [15, Lemma
1], which allows us to form a system of canonical representatives for abaci associated to
7-core partitions.

Lemma VI.4.6. The two abaci A1 = (m0,m1, . . . ,m6) and A2 = (m6 + 1,m0, . . . ,m5)
represent the same 7-core partition.

Thus every 7-core partition may be represented by an abacus of the form
(0, a, b, c, d, e, f). Then in a similar fashion to Ono and Sze, we find that there is a
one-to-one correspondence

(0, a, b, c, d, e, f)↔ {all 7-core partitions},

where a, b, c, d, e, and f are non-negative integers. We thus assume that the first column
in each abacus has no beads. We next use Lemma VI.4.5 to considerably reduce the
number of abaci we need to consider.

Lemma VI.4.7. Assume that A = (0, a, b, c, d, e, f) is an abacus for a self-conjugate
7-core partition and recall that s = a+ b+ c+ d+ e+ f . Let s 6≡ 4 (mod 7) and r ∈ N0.
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(1) Assume that s = 7r. Then f = 2r, a+ e = 2r, b+ d = 2r, c = r.

(2) Assume that s = 7r + 1. Then a = 2r + 1, b+ f = 2r, c+ e = 2r, d = r.

(3) Assume that s = 7r + 2. Then b+ a = 2r + 1, c = 2r + 1, d+ f = 2r, e = r.

(4) Assume that s = 7r + 3. Then b+ c = 2r + 1, a+ d = 2r + 1, e = 2r + 1, f = r.

(5) Assume that s = 7r + 5. Then d+ e = 2r + 1, c+ f = 2r + 1, b = 2r + 2, a = r + 1.

(6) Assume that s = 7r + 6. Then e+ f = 2r + 1, d = 2r + 2, a+ c = 2r + 2, b = r + 1.

Proof. We prove (1). By Proposition VI.4.4 we see that A corresponds to the list
[−r, a− r, b− r, c− r, d− r, e− r, f − r]. Using Lemma VI.4.5 and the fact that s = 7r,
the conditions are easy to determine. The other cases follow in the same way.

Remarks.

1. It is clear how a similar result to Lemma VI.4.7 may be obtained for all self-conjugate
t-cores.

2. The lack of the case s ≡ 4 (mod 7) in Lemma VI.4.7 follows from the fact that there
are no self-conjugate 2t− 1-core partitions with s ≡ t (mod (2t− 1)), which may be seen
by inspecting the upper-left cell in the Ferrers–Young diagram of such a partition.

Lemma VI.4.7 shows that the abaci of self-conjugate 7-core partitions naturally
fall into one of the distinct families given in Table VI.1, enumerated with parameters
a, b, r ∈ N0.

Type of Partition Shape of Abaci

I (0, a, b, r, 2r − b, 2r − a, 2r)
II (0, 2r + 1, a, b, r, 2r − b, 2r − a)

III (0, a, 2r + 1− a, 2r + 1, b, r, 2r − b)
IV (0, a, b, 2r + 1− b, 2r + 1− a, 2r + 1, r)

V (0, r + 1, 2r + 2, a, b, 2r + 1− b, 2r + 1− a)

VI (0, a, r + 1, 2r + 2− a, 2r + 2, b, 2r + 1− b)

Table VI.1: The different types of abaci for self-conjugate 7-core partitions.
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We relate the families of partitions to quadratic forms, with the relationship shown
in the following proposition. For brevity, we write only triples without ± signs - it is
clear that changing the sign on any entry preserves the result.

Proposition VI.4.8. Let n ∈ N and a, b, r ∈ N0 be given.

(1) The Type I partition with parameters a, b, and r is a partition of n if and only if

7n+ 14 = (7r + 3)2 + (7r + 2− 7a)2 + (7r + 1− 7b)2.

(2) The Type II partition with parameters a, b, and r is a partition of n if and only if

7n+ 14 = (7r + 4)2 + (7r + 2− 7a)2 + (7r + 1− 7b)2.

(3) The Type III partition with parameters a, b, and r is a partition of n if and only if

7n+ 14 = (7r + 5)2 + (7r + 4− 7a)2 + (7r + 1− 7b)2.

(4) The Type IV partition with parameters a, b, and r is a partition of n if and only if

7n+ 14 = (7r + 6)2 + (7r + 5− 7a)2 + (7r + 4− 7b)2.

(5) The Type V partition with parameters a, b, and r is a partition of n if and only if

7n+ 14 = (7r + 8)2 + (7r + 5− 7a)2 + (7r + 4− 7b)2.

(6) The Type VI partition with parameters a, b, and r is a partition of n if and only if

7n+ 14 = (7r + 9)2 + (7r + 8− 7a)2 + (7r + 4− 7b)2.

Proof. We only prove (1). Combining the definition with Proposition VI.4.4, the Type I
partition Λ with parameters a, b, and r has the associated list [−r, a−r, b−r, 0, r−b, r−a, r].
By Lemma VI.4.3, we thus have

n = |Λ| = 7
(
r2 + (a− r)2 + (b− r)2

)
+ (a− r) + 2(b− r) + 4(r − b) + 5(r − a).

Hence we see that

7n+ 14

=49
(
r2 + (a− r)2 + (b− r)2

)
+ 7 (a− r + 2(b− r) + 4(r − b) + 5(r − a) + 6r) + 14

=147r2 + 49a2 + 49b2 + 84r − 98ar − 98br − 28a− 14b+ 14.

This is exactly the expansion of

(7r + 3)2 + (7r + 2− 7a)2 + (7r + 1− 7b)2.

The other cases follow in the same way, using the associated lists in Table VI.2.
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Type of Partition Shape of Associated list

I [−r, a− r, b− r, 0, r − b, r − a, r]
II [r + 1, a− r, b− r, 0, r − b, r − a,−r − 1]

III [a− r, r + 1, b− r, 0, r − b,−r − 1, r − a]

IV [a− r, b− r, r + 1, 0,−r − 1, r − b, r − a]

V [a− r, b− r,−r − 1, 0, r + 1, r − b, r − a]

VI [b− r,−r − 1, a− r − 1, 0, r + 1− a, r + 1, r − b]

Table VI.2: The different types of associated lists for self-conjugate 7-core partitions.

Proposition VI.4.8 shows that for each self-conjugate 7-core of n there is a represen-
tation of 7n+ 14 = x2 + y2 + z2 as the sum of three squares with none of x, y, z divisible
by 7. Define

J(7n+ 14) := {(x, y, z) ∈ Z3 : x2 + y2 + z2 = 7n+ 14, and x, y, z 6≡ 0 (mod 7)}.

Let K(7n+ 14) := J(7n+ 14)/ ∼ where (x, y, z) ∼ (x′, y′, z′) if (x′, y′, z′) is any permuta-
tion of the triple (x, y, z), including minus signs i.e., (−x, y, z) ∼ (x, y, z). Then it is easy
to see that we obtain the following corollary.

Corollary VI.4.9. There is an isomorphism between self-conjugate 7-core partitions
and K(7n+ 14).

Remark 13. Corollary VI.4.9 gives a combinatorial explanation for Lemma VI.2.1 (1).
We then obtain an explanation of Corollary VI.1.5 via the following exposition, using
Gauss’ bijective map from solutions of the equation x2 + y2 + z2 = 7n+ 14 to primitive
binary quadratic forms in certain class groups.

We elucidate the case n ≡ 0, 1 (mod 4) (a similar story holds for n ≡ 3 (mod 8)).
By Gauss’s [7, article 278], for each representation of 7n+ 14 as the sum of three squares
there corresponds a primitive binary quadratic form of discriminant −28n − 56. This
correspondence is invariant under a pair of simultaneous sign changes on the triple (x, y, z).
Explicitly, the correspondence is given by the following. For (x, y, z) ∈ J(7n + 14) let
(m0,m1,m2, n0, n1, n2) be an integral solution to

x = m1n2 −m2n1, y = m2n0 −m0n2 z = m0n1 −m1n0,

where a solution is guaranteed by Gauss’s [7, article 279]. Then

(m0u+ n0v)2 + (m1u+ n1v)2 + (m2u+ n2v)2
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is a form in CL(−28n− 56). Further, this map is independent of (m0,m1,m2, n0, n1, n2).
Hence, similarly to [15], we find a map φ taking self-conjugate 7-cores to binary quadratic
forms of discriminant −28n− 56 given by

φ : Λ→ A→ N → (x, y, z)→ (m0,m1,m2, n0, n1, n2)→ binary quadratic form.
(VI.4.1)

We are now in a position to prove Theorem VI.1.8.

Proof of Theorem VI.1.8. We first assume that n ≡ 0, 1 (mod 4). It is well-known (see
e.g. [7, article 291]) that we have |CL(−28n− 56)| = 2r−1k, where k is the number of
classes per genus, and 2r−1 is the number of genera in CL(−28n− 56). Fix f1, . . . , fk to
be representatives of the k classes of the unique genus of CL(−28n− 56) that φ maps
onto. As in [15] we say that (x, y, z) and fj are represented by (m0,m1,m2, n0, n1, n2) if

x = m1n2 −m2n1, y = m2n0 −m0n2, z = m0n1 −m1n0,

and

(m0u+ n0v)2 + (m1u+ n1v)2 + (m2u+ n2v)2 = fj ,

respectively. Let M denote the set of all tuples (m0,m1,m2, n0, n1, n2) that represent
some pair (x, y, z) and fj . By Gauss’s [7, article 291], we have |M| = 3 · 2r+3k, and
each fj is representable by 3 · 2r+3 elements in M. It is clear that all representatives
fj have (x, y, z) ∈ J(7n + 14). Note that the elements (m0,m1,m2, n0, n1, n2) and
(−m0,−m1,−m2,−n0,−n1,−n2) both map to the same form in K(7n+ 14), and there
are no other such relations. Since each class in K(7n+ 14) corresponds to 8 · 6 different

triples, we see that each element in K(7n + 14) has 3·2r+3

8·6·2 = 2r−2 different preimages.
Hence the set of self-conjugate 7-cores is a 2r−2-fold cover of this genus. To see that the
genus is non-principal, we note as in [15, Remark 3 ii)] that to be in the principal genus,
one of x, y, z would need to vanish. However, this is guaranteed to not happen by the
congruence conditions on elements in K(7n + 14). The case where n ≡ 3 (mod 8) is
similar.

Finally, for n ≡ 2 (mod 4), one uses the simple fact that if the sum of three squares
is congruent to 0 modulo 4, then all squares must be even. Iterating this eventually
reduces it to one of the cases covered above or the n ≡ 7 (mod 8) case.

VI.5 Other t and Conjecture VI.1.9

In this section we consider other values of t, proving Conjecture VI.1.9 in the cases
t ∈ {2, 3, 5} and offering partial results if t > 5.
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VI.5.1 The cases t ∈ {2, 3}

With η(τ) := q
1
24
∏
n≥1(1 − qn) the usual Dedekind eta-function, [15, (3)] and [1,

Theorem 13] give the generating functions of c2(n) and sc3(n) as∑
n≥1

c2(n)qn = q−
1
8
η(2τ)2

η(τ)
,

∑
n≥1

sc3(n)qn = q−
1
3
η(2τ)2η(3τ)η(12τ)

η(τ)η(4τ)η(6τ)
.

These are modular forms of weight 1
2 and levels 2 and 12, respectively. It is a classical

fact that each is a lacunary series, i.e., that the asymptotic density of its non-zero
coefficients is zero (for example, see the discussion after [8, (2)]). We immediately see
that

c2(n) =

{
1 if n = j(j+1)

2 for some j ∈ N,
0 otherwise.

Furthermore, [6, (7.4)] stated that

sc3(n) =

{
1 if n = j(3j ± 2) for some j ∈ N,
0 otherwise.

From these, we immediately obtain the following corollary.

Corollary VI.5.1. For any n ∈ N that is both a triangular number and satisfies n =
j(3j ± 2) for some j ∈ Z we have that sc3(n) = c2(n) = 1.

Clearly, there are progressions on which both sc3(n) and c2(n) trivially vanish. For
example, we have sc3(4n+ 3) = c2(3n+ 2) = 0. For t = 3 we simply observe the following
corollary.

Corollary VI.5.2. There are no arithmetic progressions on which c3 and sc5 are integer
multiples of one-another, even asymptotically.

Proof. Comparing the explicit descriptions for c3(n) and sc5(n) given in [10, Theorem 6]
and [6, Theorem 7] respectively immediately yields the claim.

VI.5.2 The case t = 5

In [6, Theorem 4], Garvan, Kim, and Stanton proved that

c5(n) = σ5(n+ 1),

where σ5(n) :=
∑

d|n(d5)nd denotes the usual twisted divisor sum. Furthermore, Alpoge
provided an exact formula for sc9(n) in [1, Theorem 10]:

27 sc9(n)

145



CHAPTER VI. ON T -CORE AND SELF-CONJUGATE 2T − 1-CORE PARTITIONS

=


σ(3n+ 10) + a3n+10(36a)− a3n+10(54a)− a3n+10(108a) if n ≡ 1, 3 (mod 4) ,

σ(3n+ 10) + a3n+10(36a)− 3a3n+10(54a)− a3n+10(108a) if n ≡ 0 (mod 4) ,

σ(k) + a3n+10(36a)− 3a3n+10(54a)− a3n+10(108a) if n ≡ 2 (mod 4) ,

where k is odd and is defined by 3n + 10 = 2ek where e ∈ N0 is maximal such that
2e | (3n+ 10). Here, the an(E) are the coefficients appearing in the Dirichlet series for
the L-function of the elliptic curve E. The curve 36a is y2 = x3 + 1, the curve 54a is
y2 + xy = x3 − x2 + 12x+ 8, and the curve 108a is y2 = x3 + 4.

Proposition VI.5.3. There are no arithmetic progressions on which 27 sc9(n) and c5(n)
are asymptotically equal up to an integral multiplicative factor.

Proof. Applying the Hasse–Weil bound for counting points on elliptic curves as in [1, (13)]
and letting n→∞ we have, for n 6≡ 2 (mod 4), that

27 sc9(n)

c5(3n+ 9)
∼ σ(3n+ 10)

σ5(3n+ 10)
,

and for n ≡ 2 (mod 4)

27 sc9(n)

c5(n)
∼ σ(k)

σ5(n+ 1)
.

It is then enough to show that σ5 is never constant along arithmetic progressions, i.e.,
the limit is not constant. To see this, consider an arithmetic progression n ≡ m (modM).
Let ` be any prime which does not divide (3m + 10)M and for which

(
`
5

)
= −1. For

each prime p 6= ` that lies in the congruence class of the inverse of ` (mod 3M) and is
relatively prime to 5(3m+ 10) we may construct n(p) = n`(p) such that

3n(p) + 10 = (3m+ 10)p`.

Note that 3n(p) + 10 lies in the arithmetic progression. A straightforward calculation
shows that if the limit exists, then

lim
p→∞

σ(3n(p) + 10)

σ5(3n(p) + 10)
= ±1 + `

1− `

∑
d|(3m+10) d∑

d|(3m+10)

(
d
5

)
d
.

Since ` is arbitrary and there are infinitely many choices of ` by Dirchlet’s primes in
arithmetic progressions theorem, this is a contradiction.
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VI.5.3 The case t ≥ 6

Anderson showed in [2, Theorem 2] that, for t ≥ 6 and n→∞,

ct(n) =
(2π)

t−1
2 At(n)

t
t
2 Γ
(
t−1

2

) (
n+

t2 − 1

24

) t−3
2

+O
(
n
t−1

2

)
, (VI.5.1)

where

At(n) :=
∑
k≥1

gcd(t,k)=1

k
1−t

2

∑
0≤h<k

gcd(h,k)=1

e

(
−hn
k

)
ψh,k

for a certain 24k-th root of unity ψh,k independent of n. As Anderson remarked, it is
possible to show that 0.05 < At(n) < 2.62, although At varies depending on both t and
n.

In a similar vein, Alpoge showed in [1, Theorem 3] that, for r ≥ 10 odd and n→∞,
we have

scr(n) =
(2π)

r−1
4 Ar(n)

(2r)
r−1

4 Γ
(
r−1

4

) (n+
r2 − 1

24

) r−1
4
−1

+Or

(
n
r−1

8

)
, (VI.5.2)

where

Ar(n) :=
∑

gcd(k,r)=1
k 6≡2 (mod 4)

(2, k)
r−1

2 k
1−r

4

∑
0≤h<k

gcd(h,k)=1

e

(
−hn
k

)
χh,k

with χh,k a particular 24-th root of unity independent of n. Moreover, [1, (86) and (87)]
imply that 0.14 < Ar(n) < 1.86.

Remark 14. Inspecting the asymptotic behaviours given in (VI.5.1) and (VI.5.2), it is
clear that the only possibility of arithmetic progressions where the two asymptotics of
ct(n) and scr(n) are integer multiples of one another is r = 2t− 1.

The following lemma provides partial results on Conjecture VI.1.9.

Lemma VI.5.4. For t ≥ 6 and t 6≡ 1 (mod 6) there are no arithmetic progressions on
which ct(n) and sc2t−1(n) are integer multiples of one another.

Proof. Using equations (VI.5.1) and (VI.5.2) we find that, for M1,M2,m1,m2 ∈ N,

ct(M1n+m1)

sc2t−1(M2n+m2)
∼ (4t− 2)

t−1
2 At(M1n+m1)

4
t−3

2 t
t
2A2t−1(M2n+m2)

(
24(M1n+m1) + t2 − 1

) t−3
2

(6(M2n+m2) + t2 − t)
t−3

2

,

as n → ∞. Furthermore, for the two growing powers of n to be equal and cancel
on arithmetic progressions, it is not difficult to see that we must also have that t ≡
1 (mod 6).
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To prove Conjecture VI.1.9 it remains to consider the cases where t ≡ 1 (mod 6).
We easily find that for the powers of n to be equal we must have

M2 = 4M1, m2 = 4m1 +
t2 − 1

6
.

It would therefore suffice to show that

(4t− 2)
t−1

2 At(M1n+m1)

4
t−3

2 t
t
2A2t−1

(
4M1n+ 4m1 + t2−1

6

)
is never constant as n runs. However, this appears to be a difficult problem, and we leave
Conjecture VI.1.9 open.
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Chapter VII

Summary and Discussion

In this chapter, the results of this thesis are summarised, and an outlook on related
problems is discussed.

VII.1 A family of vector-valued quantum modular forms
of depth two

In Chapter II, we saw how to construct an infinite family of vector-valued quantum
modular forms of depth two on SL2(Z) with some quantum set. These arise as (finite
sums of) two-dimensional partial theta functions attached to a positive-definite quadratic
form. To show quantum modularity, we followed techniques of Bringmann-Kaszian-Milas
[BKMi1,BKMi2], asymptotically relating the two-dimensional theta functions to double
Eichler integrals, which are in turn the purely non-holomorphic part of an indefinite
theta function of signature (2, 2).

Further examples of this shape were explored in relation to plumbed 3-manifolds
[BMM]. As remarked in Chapter II, to describe infinite families of similar quantum
modular forms of depth d > 2 using similar techniques would require some more technical
results to obtain non-sparse quantum sets. However, a theory of partial theta functions
was recently developed by Bringmann and Nazaroglu [BN] that describes the general
situation. Explicitly, let L be a lattice of rank N , B : L × L → Z a positive definite
bilinear form, with Q(n) = 1

2B(n,n) for n ∈ L. Furthermore, let ` be a characteristic
vector in L, that is Q(n) + 1

2B(`,n) ∈ Z for all n ∈ L, along with c a vector with
Q(c) = 1.

Then for µ in the dual lattice of L, Bringmann and Nazaroglu define

ΨQ,µ(z, τ) :=
∑

n∈µ+ `
2

+L

sgn (B(c,n)) qQ(n)e2πiB(n,z+ `
2)

They show that ΨQ,µ is a mock Jacobi form, and give its completion explicitly. Note that
this covers the situation of the function F from Chapter II as a certain specialisation.
Since mock modularity is a stricter condition that quantum modularity, the results
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of Bringmann and Nazaroglu thus supersede those on the modularity of the functions
investigated in [BKMi1,BKMi2,Ma1].

VII.2 The asymptotic profile of an eta-theta quotient re-
lated to entanglement entropy in string theory

In Chapter III, I investigated the bivariate asymptotic profile of a certain eta-theta
quotient that arose from the partition function of entanglement entropy in string theory.
Of course, this is not the only eta-theta quotient that appears in settings where it is
important to investigate certain asymptotic limits. For example, they appear naturally
in the investigations of superconformal characters related to black holes [DMZ, Section
7.4]. In more generality, it would be instructive to provide a resolution to the following
problem.

Problem VII.2.1. Extend the framework of [Ma3] to infinite families of eta-theta
quotients.

For aj , c, d ∈ N and bj ∈ Z consider a general family of the shape

N∏
j=1

η(ajτ)bj
ϑ(z; τ)

ϑ(cz; dτ)
.

At the time of writing, an ongoing project joint with Cesana investigates the bivariate
asymptotic profile of this family. In particular, this explicitly covers the cases of eta-theta
quotients with simple poles, where similar techniques to [Ma3] can be used, along with
Wright’s circle method for Jacobi forms. The theta function in the numerator is purely
for convenience, and we also explain how to perform similar calculations for powers of
theta functions in both the numerator and denominator.

Further families of similarly-shaped meromorphic eta-theta quotients in a single
elliptic variable should yield bivariate asymptotics in a similar manner. One would need
to make minor adjustments to the definitions of Fourier coefficients for those with poles
of order higher than one, following [DMZ]. More refined techniques may be required to
deal with two elliptic variables. Such functions appear in numerous places, e.g. planar
polygons arising from investigations into homological mirror symmetry for elliptic curves
[BKZ]. To define the Fourier coefficients of such meromorphic Jacobi forms would require
new insights, as there are now planes of discontinuity where we cannot deform the integral
defining the Fourier coefficients around.

Problem VII.2.2. Investigate bivariate asymptotics for families of Jacobi forms with
multiple elliptic variables.
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While the mathematical descriptions of the bivariate behaviour of the coefficients can
be tackled with the techniques described above, the physical meaning of these descriptions
is yet to be explored.

Problem VII.2.3. What do the descriptions of the bivariate asymptotics described here
mean from a physics perspective?

For example, it seems curious that in Chapter III the main growth came from the
residue term

η(2τ)8

η(τ)16
,

which is both the generating function of 8-tuple partitions and has a physical interpretation
in terms of the supersymmetry of the open-string spectrum using RNS fermions in light-
cone gauge [GSO,Wi]. Is there a deeper picture here?

VII.3 Asymptotic equidistribution and convexity for par-
tition ranks

In Chapter IV, the nature of the asymptotics of the ranks of partitions was investigated.
We first saw that N(r, t;n) is monotonic in n above some bound for fixed r, t. Using this
we determined the asymptotic equidistribution of N(r, t;n) by using Ingham’s Tauberian
theorem. This in turn lead to a resolution of a recent conjecture of Hou and Jagadeeson
[HJ].

However, we showed only the asymptotic behaviour of the partition rank. For t = 3,
the authors of [HJ] proved that

N(r, 3; a)N(r, 3; b) > N(r, 3; a+ b)

for all a, b greater than 11. The techniques used by the authors rely on Bringmann’s
precise asymptotic for N(r, t;n) with t odd, given in [Bri].

Problem VII.3.1. For all t, determine precise lower bounds n(t) such that
N(r, t; a)N(r, t; b) > N(r, t; a+ b) for all a, b greater than n(t).

To use similar techniques to Hou and Jagadeeson, one would first need to perform
a close inspection similar to that of [Bri] for even t. Although this would be a lengthy
computation, the essence of the calculations is well-understood. However, to provide a
bound in a uniform way across all t appears to be a very delicate problem.

Recently, Gomez and Zhu [GZ] gave a different way to construct the lower bound
in the case t = 2. Their techniques rely on an algebraic description of the generating
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function of N(0, 2;n)−N(1, 2;n), which is Ramanujan’s order three mock theta function
f(q), as the trace

S(n) :=
∑
[Q]

F (τQ).

Here, the sum is over Γ0(6) equivalence classes of quadratic forms Q = [a, b, c] with 6 | a
and b ≡ 1 (mod 12), the function F is a certain weight zero modular form on Γ0(6), and
τQ is the Heegner point associated to Q. The central connection is then given by the fact
that N(0, 2;n)−N(1, 2;n) can be recognised as

− 1√
24n− 1

Im(S(n)),

a result of Bruinier and Schwagenscheidt [BS1]. Their proof relies on recognising f(q) as
the holomorphic part of a vector-valued harmonic Maass form of weight 1

2 , constructing
this harmonic Maass form as the Millson lift of F , and then comparing the Fourier
coefficients of either side.

Problem VII.3.2. Can one provide an algebraic toolkit to obtain explicit bounds for
convexity of N(r, t;n) for other values of t?

To investigate this problem, one would first need to define families of generating
functions that capture the equidistribution of the partition rank, and then determine
whether they may be described by certain lifts in a similar process to that of [BS1].
One would then need to carefully determine the Fourier coefficients of the theta lifts
in the usual way. While the idea may persist for small values of t, it seems fanciful to
expect that this would yield a uniform explanation, and a more general technique may
be required.

VII.4 Cycle integrals of meromorphic modular forms and
rationality

In Chapter V we proved that the traces of certain meromorphic modular forms may
be written as the constant term of a Fourier expansion involving the coefficients of theta
functions and harmonic Maass forms. A central object in our proofs was the locally
harmonic Maass form F1−k,D of Bringmann, Kane, and Kohnen.

For k = 1, Hövel also independently discovered the function F0,D [Hö] (in the vector-
valued setting). Furthermore, in [EGKR], Ehlen, Guerzhoy, Kane, and Rolen discussed
the properties of the weight 0 case in the scalar-valued setting; in particular proving that
F0,D is a locally harmonic Maass form via Hecke’s trick. They then used this to describe
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results on vanishing of twisted central L-values. This is intricately related to the famous
congruent number problem, and in turn the Birch and Swinnerton-Dyer conjecture.

The Kudla-Millson lift, its constructions and applications have been studied in detail
in recent years, e.g. [BES,BF,BS1,FH]. It takes modular objects of weight 0 to objects
of weight 3

2 . In contrast to the lift considered in the project described in Chapter V, the
Kudla-Millson lift is a lift on the Grassmanian and hence has very different properties.
Given the properties and importance of the functions F1−k,D, a natural problem to
consider is the following.

Problem VII.4.1. Define and investigate the Kudla-Millson lift of the (vector-valued
generalisation of the) locally harmonic Maass form F0,D.

Another avenue to consider is defining locally harmonic Maass forms in signatures
other than (1, 2). In signatures other than (n, 2) we lose the complex structure of the
underlying manifold, and so in particular we lose the underlying arithmetic geometry
since the manifold is no longer a modular variety. However, one may still define a
Laplacian on n-dimensional hyperbolic space Hn, and there are still interesting properties
of such functions. For example, the same theta lift as in [BEY] but on even lattices of
signature (1, n) was studied by Bruinier in his celebrated habilitation [Bru]1. Under the
action of the hyperbolic Laplacian, the lifts studied by Bruinier are not harmonic, but
are eigenfunctions with a certain eigenvalue depending on the signature of the lattice
[Bru, Section 3.1.1].

In signature (1, 2) Hövel studied a modified theta lift [Hö]. In particular, he included
a particular polynomial factor in the Siegel theta function which had the effect of making
the lift harmonic. A major novelty in Hövel’s work was the inclusion of the twist as
defined by Alfes-Neumann and Ehlen [AE], in turn relying on a genus character defined
by Gross, Kohnen, and Zagier [GKZ]. Similar untwisted theta lifts were also studied by
Bruinier and Funke in [BF] for general signature (p, q) lattices and general choices of
polynomial. In particular, they also showed that such lifts also satisfy a current equation
(see their Theorem 1.5).

Given the results of [Bru], it is a natural question to ask whether the phenomenon
observed by Hövel generalises to even lattices of signature (1, n). In an ongoing project
with Neururer, Scharf, and Schwagenscheidt we have embarked on a part of this investi-
gation. In particular, we are able to define locally harmonic Maass forms in hyperbolic
n-space Hn, by way of constructing the theta lift Φ∗L of an explicit modified Siegel theta
function θ∗L. In doing so, we obtain a series representation (as a sum over a signature
(1, n) lattice with summands involving Gauss hypergeometric functions) in a similar
fashion to [Bru, Hö]. This gives hints to a natural way to define more refined locally

1Actually, Bruinier did not include Maass raising operators, but given the results of [BEY] this is an
easy consequence.

154



CHAPTER VII. SUMMARY AND DISCUSSION

harmonic Maass forms in Hn without the use of a theta lift. In particular when n = 3
the construction should yield Bianchi modular forms, which are historically difficult to
construct.

In [ABMS,BEY,BS2], at certain points in the Grassmanian the theta lifts studied
had close ties to coefficients of mock theta functions, in turn offering rationality results.
For example, explicit results in the case of n = 2 have been obtained in [ABMS,BS2] for
Zagier’s weight 3

2 non-holomorphic Eisenstein series whose coefficients are Hurwitz class
numbers, and similar results can be concluded for the classical smallest parts partition
function from the same papers. We would like to apply the techniques of these papers
to Φ∗L. However, the proofs in [BEY,ABMS] rely critically on the splitting of the Siegel
theta function over natural positive- and negative-definite sublattices of L at such points.

Problem VII.4.2. Determine the splitting behaviour of the modified Siegel theta function
θ∗L at certain points in the Grassmanian of L. Use this to provide connections to mock
theta functions and rationality results.

Furthermore, the ability to twist theta lifts would allow one to greatly generalise
the results, both within the scope of this particular overarching project and beyond
(currently, many results only offer twisting in signature (1, 2), see e.g. [BEY,Hö]). To do
so in signature (1, n) with n ≥ 3 would require defining a similar character to that of
Gross, Kohnen, and Zagier but acting on more general hermitian forms.

Problem VII.4.3. Define a twist for signatures with n ≥ 3.

VII.5 On t-core and self-conjugate 2t− 1-core partitions in
arithmetic progressions

In Chapter VI we discussed the relationships between t-cores and self-conjugate
(2t− 1)-cores on arithmetic progressions. Our main results pertained to the case of t = 4,
where we showed that one may write the number of self-conjugate 7-cores as a single
class number. Furthermore, we offered a combinatorial explanation for this fact, relying
on the combinatorial structures of abaci and extended t-residue diagrams, as well as
Gauss’ map between solutions to ternary quadratic equations and binary quadratic forms
in certain class groups. We also discussed whether equations of a similar shape to (I.2.1)
can hold for other values of t, proving that they cannot hold if t = 2, 3, 5 and offering a
conjecture and partial results for t > 6.

As noted in Chapter VI, t-core partitions encode the modular representation theory
of the symmetric groups Sn and An. Thus, information regarding the existence and
approximate number of such representations can be rephrased in terms of the positivity
and asymptotic behaviour of ct(n). Such questions have been discussed in detail, for
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example in [GO] Granville and Ono showed that if t ≥ 4 then every positive integer n
has at least one t-core partition.

The asymptotic behaviour of the number of t-core partitions is also well-studied. Exact
formulae are known for ct(n) when t = 2, 3, 4, 5, which immediately yield (non)-vanishing
results and estimates for the number of such t-cores. For t ≥ 6 Anderson [Ande] provided
an asymptotic formula relying on the Hardy-Ramanujan circle method. More refined
details may be found by considering congruences and divisibility properties satisfied
by t-cores. An explicit example can be found by combining Ramanujan’s congruences
modulo 5, 7, 11 for the partition function with knowledge of the generating function for
t-cores, which yields that

c5(5n− 1) ≡ 0 (mod 5) , c7(7n− 2) ≡ 0 (mod 7) , c11(11n− 5) ≡ 0 (mod 11) .

Garvan, Kim, and Stanton extended these kind of relations, and showed in [Ga,GKS] that
more general congruences hold for t = 5, 7, 11. A natural question highlighted recently
by Stanton, among others, is whether congruences of this form exist for other values of
t. For t = 2, 3 the answer follows directly from their explicit formulae, but for higher
t the theory is more complex. While some authors have sporadically given congruence
and divisibility properties for 4-cores and self-conjugate 7-cores - e.g. [GCGL,HS,OS], a
unifying theory is still missing.

Problem VII.5.1. Completely classify arithmetic progressions on which the number
of 4-cores (resp. self-conjugate 7-cores) is always divisible by some prime `. Provide a
combinatorial explanation for this.

The disproof of many arithmetic progressions may be quickly resolved by brute force
by computer, but finding arithmetic progressions where such a statement holds will be
more delicate. Recall from Chapter VI that 4-cores are intricately related with class
numbers. Recently Beckwith, Raum, and Richter [BRR] gave a description of conditions
for when H(an+ b) is divisible by a prime ` for all n and fixed a ∈ N and b ∈ Z such that
−b is a square modulo a. Their arguments depend on combining a holomorphic projection
argument pioneered in [IRR] and a powerful method developed by Serre [Se1,Se2] based
on the Chebotarev Density Theorem that was later used by Ono in his celebrated paper
[On] that described the distribution of the partition function modulo primes. Combining
Beckwith, Raum, and Richter’s arguments with those of [OS,OR,BKM] suggests that
Problem VII.5.1 is tractable.

A natural extension of Problem VII.5.1 is to try to apply similar techniques to other
values of t. While we lose the connection to Hurwitz class numbers and therefore the
explicit results of [BRR], the underlying philosophy carries over to this setting. However,
the increase of weights in the generating functions for t-cores with t ≥ 6 may require new
insights, and so a further expansion of the framework discussed above may be required.
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Problem VII.5.2. By expanding the results of [BRR], allow the value of t to vary in
Problem VII.5.1.
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