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Abstract

Determining the number of factors in exploratory factor analysis is arguably the most
crucial decision a researcher faces when conducting the analysis. While several simu-
lation studies exist that compare various so-called factor retention criteria under dif-
ferent data conditions, little is known about the impact of missing data on this
process. Hence, in this study, we evaluated the performance of different factor reten-
tion criteria—the Factor Forest, parallel analysis based on a principal component
analysis as well as parallel analysis based on the common factor model and the com-
parison data approach—in combination with different missing data methods, namely
an expectation-maximization algorithm called Amelia, predictive mean matching, and
random forest imputation within the multiple imputations by chained equations
(MICE) framework as well as pairwise deletion with regard to their accuracy in
determining the number of factors when data are missing. Data were simulated for
different sample sizes, numbers of factors, numbers of manifest variables (indicators),
between-factor correlations, missing data mechanisms and proportions of missing
values. In the majority of conditions and for all factor retention criteria except the
comparison data approach, the missing data mechanism had little impact on the accu-
racy and pairwise deletion performed comparably well as the more sophisticated
imputation methods. In some conditions, especially small-sample cases and when
comparison data were used to determine the number of factors, random forest
imputation was preferable to other missing data methods, though. Accordingly,
depending on data characteristics and the selected factor retention criterion, choos-
ing an appropriate missing data method is crucial to obtain a valid estimate of the
number of factors to extract.
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Introduction

In recent years, psychological research has increasingly focused on the issue of miss-

ing data (e.g., West, 2001). However, this cannot be said about research relying on

exploratory factor analysis (EFA) where missingness is almost always neglected

(Russell, 2002). One reason for this suboptimal research practice might be the lim-

ited literature on this issue. Especially, when regarding the factor retention process

(determing the number of factors in EFA), there is hardly any research evaluating

missing data methods. Although, there are articles (Dray & Josse, 2015; Josse &

Husson, 2012) focusing on principal component analysis (PCA), the estimation of

factor loadings (Lorenzo-Seva & Van Ginkel, 2016) or the proportions of explained

variance (Nassiri et al., 2018), the process of determining the number of factors is

mostly ignored despite its central role within the analysis.

There is an article by McNeish (2017) that dealt with the factor retention process

and missing data in small-sample conditions and a simulation study by Goretzko,

Heumann, and Bühner (2019) who evaluated six missing data methods in combina-

tion with parallel analysis. Both articles showed that multiple imputation seems to be

favorable over pairwise or listwise deletion practices (especially the latter), but relied

either on the eigenvalue-greater-one rule (Kaiser, 1960) which should not be used

(Fabrigar et al., 1999; Goretzko, Pham, & Bühner, 2019) or parallel analysis (Horn,

1965) which has been shown to be inferior to more modern approaches in some data

contexts (e.g., Braeken & Van Assen, 2017; Lorenzo-Seva et al., 2011; Ruscio &

Roche, 2012). However, since Auerswald and Moshagen (2019) showed that no fac-

tor retention criterion is preferable under all data conditions, it seems reasonable to

assume that these criteria are affected differently by missing data and that their com-

patibility with missing data methods also varies.

Factor Retention Criteria

Over the years, several methods to determine the number of factors in EFA—so-

called factor retention criteria—have been developed. While overly simple heuristics

like the Kaiser–Guttman rule (the eigenvalue-greater-one rule; Kaiser, 1960) or the

scree-test (Cattell, 1966) are considered to be outdated (e.g., Fabrigar et al., 1999),

more complex and often simulation-based approaches have emerged that promise a

more accurate estimation of the number of latent factors. In this article, we consider

parallel analysis (first implementation by Horn, 1965), comparison data (Ruscio &

Roche, 2012) as well as a factor retention approach based on machine learning

(Goretzko & Bühner, 2020).

2 Educational and Psychological Measurement 00(0)



Parallel Analysis. Parallel analysis is often considered a gold standard for factor reten-

tion (inter alia as it is rather robust against distributional assumptions, see Dinno,

2009). The basic idea of parallel analysis is to compare the eigenvalues of the

empirical correlation matrix with eigenvalues of simulated (or resampled) data sets

to determine how many empirical eigenvalues are greater than random reference

eigenvalues. For this purpose, S data sets (increasing S yields more robust reference

eigenvalues) are simulated and the eigenvalues of the correlation matrix are calcu-

lated. Accordingly, parallel analysis provides eigenvalue distributions based on S

values for each eigenvalue. To determine the number of factors, each empirical

eigenvalue is compared with the distribution of simulated reference eigenvalues and

factors are retained as long as the empirical eigenvalue is greater than a specific

quantile of this distribution (the initial implementation of Horn, 1965, was based on

a comparison with the mean across the S simulated data sets, while often the 95%

quantile is used, Revelle, 2018).

As this general idea of parallel analysis can be implemented using simulated or

resampled data, the eigenvalues of the correlation matrix, or the eigenvalues of a

reduced correlation matrix based on the common factor model as well as different

quantiles of the reference eigenvalue distributions, the performance of these different

versions of parallel analysis can vary (Lim & Jahng, 2019).

Comparison Data. The comparison data approach by Ruscio and Roche (2012) can be

seen as a special case of parallel analysis using comparison data sets that reproduce

the empirical correlation matrix as closely as possible based on different factor solu-

tions instead of using random data for comparison. This method subsequently tests

different factor solutions based on the RMSE between the empirical eigenvalues and

the respective eigenvalues of the comparison data sets to determine whether retaining

an additional factor ‘‘significantly’’ increases the similarity between empirical and

reference eigenvalues. With this idea of simulated comparison data and a series of

significance tests, comparison data unites parallel analysis and model comparisons

known from structural equation modeling. Contrary to classical parallel analysis

based on normal data, this method is able to take skewed item distributions into

account (for further information on the data generation, see also Ruscio & Kaczetow,

2008).

Factor Retention Using Machine Learning. Recently, a new factor retention criterion

relying on extensive data simulation and machine learning modeling has been devel-

oped by Goretzko and Bühner (2020). Their idea was to simulate various data sets

that cover all important data conditions of an application context—varying the sam-

ple size (N 2 (200; 1000)), the number of manifest variables (up to 80 indicators), the

number of latent factors (up to eight) as well as the loading patterns and between-

factor correlations (and therefore the communalites). Then the authors calculated

variables that were assumed to be related to the number of underlying factors (e.g.,

eigenvalues, matrix norms, and inequality measures as well as more general data
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characteristics such as the sample size) for each simulated data set and stored these

variables together with the known number of factors of each data set as a training data

set. Afterward, an XGBoost (Chen & Guestrin, 2016)—a tree-based machine learning

model—was trained on these data to ‘‘learn’’ the relationship between the data char-

acteristics and the number of underlying latent factors. Their trained XGBoost model

(with tuned hyperparameters, see Goretzko & Bühner, 2020) outperformed all classi-

cal factor retention criteria in a simulation study with newly simulated data, but has

not been evaluated with missing data yet.

Missing Data Mechanisms and Missing Data Method

The literature on missing data distinguishes between three major missing data

mechanisms—missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR). Little and Rubin (2002) give a more detailed

introduction to these different types of missingness. In this study, we focus on the

mechanisms MCAR, which means that missing values occur completely due to a ran-

dom process and MAR, which means that the missingness is dependent on variables

that are observed. The latter seems to be plausible in the context of EFA, since the

observed variables are usually designed to be indicators for the same latent variables

(Goretzko, Heumann, & Bühner, 2019).

In cases of MCAR or MAR, several imputation methods can be used to replace the

missing values and to ensure valid inference. Contrary to single imputation proce-

dures, multiple imputation methods allow for estimating the additional imputation

variance (for further readings, see Little & Rubin, 2002) and are therefore preferred

in most applications. Arguably the most common framework for multiple imputation

is multiple imputations by chained equations (MICE) also known as fully conditional

specification (van Buuren et al., 2006), where missing values in one variable are

iteratively imputed given all other variables and their current imputed values. Within

this framework, one can use various imputation models—simple regression models,

tree-based methods, or specific imputation models like predictive mean matching to

predict values for the missing data (e.g., Little, 1988).

In the present article, we apply the MICE framework with both a random forest

and predictive mean matching as imputation models. Predictive mean matching is

based on a (linear) regression model applied to the observed data1 and the regression

coefficients obtained from the model are taken as expected values of a multivariate

normal distribution from which artificial coefficients are then randomly drawn.

These ‘‘random’’ coefficients are used to predict the variable that should be imputed.

However, contrary to a common regression imputation approach these predicted val-

ues are not taken as the imputation values but are rather compared with each other to

find the most similar observations that are not missing in the empirical data set for

each observation that is missing for that variable. These similar observations are then

regarded as potential ‘‘donors’’ whose observed values are used to impute the actual

missing values by selecting one of them by chance.
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The random forest is a tree-based machine learning model (Breiman, 1999) that

can be used as an imputation model within MICE as well. This model consists of sev-

eral decision trees that are grown using recursive binary splitting. In this process, a

number of bootstrap samples (in general, this number is around 500 and often opti-

mized when the predictive performance should be maximized, but for imputation pur-

poses, it can be set to 10, see Shah et al., 2014) is drawn from the empirical data set

and a single tree is built on each sample using the variable of interest as the dependent

variable.2 This growing process stops when each terminal node only contains obser-

vations with the same value on the dependent variable or certain termination criteria

are met. The resulting tree structure can be used to predict the missing values by aver-

aging the mean value of each of the terminal nodes to which a specific observation is

assigned to. In contrast to predictive mean matching which relies on a linear and

therefore additive model, the possibly complex tree-structure can reflect interactions

and promises to be superior when the missing data mechanism is rather complex

(Goretzko, Heumann, & Bühner, 2019).

A different approach is Amelia (Honaker et al., 2011), an expectation-

maximization (EM) algorithm that we investigate as an alternative to MICE. The

basic idea of Amelia is to combine a classic EM-algorithm with bootstrapping to

induce randomness necessary for multiple imputation. On each bootstrap sample, an

EM-algorithm is applied to estimate the sufficient statistics for the expected values

(m) and the variance–covariance matrix (S) of an assumed multivariate normal dis-

tribution (an assumption that is often made for EFA modeling as well). First, m and

S are initially estimated based on the respective bootstrap sample. Then during each

E-step, all missing values are imputed drawing from the distribution with the current

values of m and S and afterward, during the M-step these parameters are reestimated

given the data set with the current set of imputed values. This procedure is iterated

until a convergence criterion is fulfilled (Honaker & King, 2010).

Method

We wanted to extend the work of Goretzko, Heumann, and Bühner (2019) who eval-

uated the performance of parallel analysis in combination with MICE and three dif-

ferent imputation models (predictive mean matching, linear regression, and random

forest), the Amelia algorithm by Honaker et al. (2011) as well as pairwise and list-

wise deletion varying the sample size, the number of manifest variables, the number

of latent variables as well as the missing data mechanism. As they found predictive

mean matching and linear regression to perform very similar and listwise deletion to

be inferior in the majority of conditions, we focused on four missing data methods

(the Amelia, MICE with predictive mean matching, and a random forest implementa-

tion as well as pairwise deletion as a baseline) in this study. When Goretzko,

Heumann, and Bühner (2019) dealt with the impact of missing data on the factor

retention process, they only evaluated one implementation of parallel analysis, but

did not cross the different missing data methods with different factor retention
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criteria. Accordingly, we combined the four missing data methods with two imple-

mentations of parallel analysis based on the factor model (PA-FA; as done by

Goretzko, Heumann, & Bühner, 2019) and based on PCA (PA-PCA)—both using

the 95% percentile of the eigenvalue distribution, the comparison data (CD)

approach by Ruscio and Roche (2012), and a new machine learning approach by

Goretzko and Bühner (2020) that we retrieved from the associated OSF repository

(https://osf.io/mvrau/). For both implementations of parallel analysis, we also com-

pared the two combination or aggregation approaches for multiple imputed data sets

presented in Goretzko, Heumann, and Bühner (2019). One aggregation strategy (that

we will call the mode approach) is based on the idea that the factor retention is done

on each imputed data set and the factor solution that is proposed for the majority of

imputed data sets (i.e., the mode of the distribution of the suggested numbers of fac-

tors across all imputed data sets) is used as the result for the empirical data set. The

other approach (referred to as the cor approach) is based on an averaged correlation

matrix (i.e., the correlation matrix is calculated for each imputed data set and the

resulting matrices are averaged element-wise). The second strategy can also be

implemented for covariance matrices as it was suggested by Nassiri et al. (2018).

Since the CD approach relies on the item distributions, averaging the correlation

matrices of the different imputed data sets was not feasible (which is also the case for

the machine learning approach as it relies on features that are based on the raw data

as well). For this reason, we used only the mode approach—the most frequent factor

solution across the multiple imputed data sets as the final solution for the initial data

set—for both CD and the machine learning method.

Data Simulation

We slightly altered the simulation design of Goretzko, Heumann, and Bühner

(2019).3 For our study, normal data were simulated for three sample sizes

(N = 250, 500, 1000), four numbers of variables (p = 16, 24, 36, 48), three numbers of

factors (k = 2, 4, 6), different values of interfactor correlations (r = 0, 0:2, 0:4), two

missing data mechanisms (MCAR, MAR), and two proportions of missing values

(m = 10%, 25%). In total 324 data conditions were evaluated excluding conditions

with unusual variables-to-factor ratios (e.g., k = 2 and p = 48 or k = 6 and p = 16).

The data simulation was conducted with R (R Core Team, 2018) following the

procedure of Goretzko, Heumann, and Bühner (2019). In a first step, the true factor

patterns for our simulation based on standardized primary loadings between 0:5 and

0:7 and cross-loadings between 0 and 0:1 were drawn.4 Then a population correlation

matrix S was calculated based on this pattern matrix and the respective between-

factor correlations (S = LFLT + C2 with C2 = 11p3p � diag(LFLT)) which was

then used to draw the data samples for given N , p and k with the mvtnorm package

(Genz et al., 2018). We then induced missingness (MCAR or MAR) with the mice

package (van Buuren & Groothuis-Oudshoorn, 2011) according to Goretzko,

Heumann, and Bühner (2019) who relied on Brand (1999) using the ampute-function
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and two different sets of missingness patterns. When p = 16, we used two missing

data patterns—either the first or the last eight variables contained missingness. When

p . 16, t = dp � me (which is the rounded-up product of the number of manifest vari-

ables p and the proportion of missingness m, i.e., when p = 24 and m = 0:25, t = 6) pat-

terns were simulated for each condition (on average 45% of manifest variables

contained missingness in each pattern). Each data set without missingness was then

split into t subdata sets, so that missing values were introduced in each subset accord-

ing to its own missing data pattern and the proportion of missingness set in the

respective simulation condition. For further readings on this multivariate approach to

induce missingness we refer to Schouten et al. (2018).

Evaluating the Missing Data Method

Missing values were either treated with pairwise deletion, imputed five times with

Amelia or imputed five times with MICE in combination with predictive mean match-

ing or random forest imputation. Then parallel analysis based on a PCA (PA-PCA) as

well as parallel analysis based on the common factor model (PA-FA) using the 95%

percentile of the sampled eigenvalue distribution as implemented in the psych pack-

age (Revelle, 2018), CD with functions provided by Ruscio and Roche (2012) and

the machine learning approach by Goretzko and Bühner (2020) called Factor Forest

(FF; see https://osf.io/mvrau/ for the material) were applied to all imputed data sets

and the most frequent solution was used as the aggregated solution for the initial data

set (this approach was denoted the mode approach in Goretzko, Heumann, & Bühner,

2019). Averaging the correlation matrices was only possible for both implementations

of the parallel analysis, so we considered 22 combinations of factor retention criteria

and missing data methods (four retention criteria for pairwise deletion and six proce-

dures for each imputation method).

For all these combinations, the suggested number of factors was averaged over all

500 replications of each data condition. We collected the accuracy and proportions

of under- and overfactoring and compared all procedures (factor retention criterion

+ missing data method) to find the best approach for each condition.

Results

The overall accuracy of PA-FA was greater than 90% for all missing data methods

(91.08%-98.79% for the mode approach and 98.22%-99.14% for the cor approach).

While FF also reached 90% overall accuracy for all missing data methods (FF with

predictive mean matching [pmm] yielded the lowest accuracy of 91.21%) and PA-

PCA was able retain the correct number of factors with an overall accuracy greater

than 85% for all missing data methods (mode and cor approach), CD showed a very

poor performance when combined with pmm, the Amelia algorithm (em) or pairwise

deletion (pair)—combinations with an overall accuracy of less than 70%. Only in

combination with random forest imputation (rf), CD yielded a high overall accuracy
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(96.18%). The overall accuracy for each combination of factor retention criterion and

missing data method is displayed in Table 1.

PA-FA and FF showed (nearly) no bias when combined with rf, pair, or em, but a

slight tendency to overfactor when pmm was used (for PA-FA this was the case for

the mode approach; there was no bias with pmm when the cor approach was used).

PA-PCA underestimated the number of factors on average and showed the highest

bias in combination with rf (independent of the aggregation strategy mode or cor).

CD tended to overfactor (especially when combined with pmm) with all missing data

methods except from rf. In Table 2, the estimated bias of the factor retention (the ten-

dency of over- or underfactoring, i.e., the average deviation of the suggested number

of factors from the true number of latent factors k) is presented for each combination

of criterion and missing data method.

The missing data mechanism (MCAR vs. MAR) had almost no impact on the per-

formance of the factor retention criteria. The overall accuracy of each combination

of factor retention criterion and missing data method differed less than one percent-

age point between MCAR and MAR (second highest difference 0.01) with one excep-

tion, CD with pair reaching a 4.83 percentage points higher accuracy with MCAR

than with MAR.

As expected, the higher the sample size N was, the more accurate all combinations

of factor retention criteria and missing data methods were. With N = 1000, FF and

PA-FA (mode and cor approach) yielded (nearly) perfect accuracy for all missing

data methods, while PA-PCA reached approximately 95% accuracy independently of

the aggregation strategy (mode or cor) and the missing data method. The perfor-

mance of CD highly varied between an accuracy of 70.22% with pmm and 98.85%

with rf. With N = 250, all methods yielded considerably lower accuracies. In Table 3,

the overall accuracy of all combinations of factor retention criteria and missing data

Table 1. Overall Accuracy of the Factor Retention Criteria in Combination With Different
Missing Data Methods.

Criterion pair pmm rf em

Mode
FF 0.966 0.912 0.984 0.959
PAFA 0.983 0.911 0.988 0.975
PAPCA 0.913 0.899 0.876 0.896
CD 0.656 0.549 0.962 0.699

Cor
PAFA NA 0.982 0.985 0.991
PAPCA NA 0.907 0.874 0.896

Note. pair stands for pairwise deletion, pmm for predictive mean matching, rf for random forest

imputation, and em for the Amelia algorithm. Mode and Cor indicate which aggregation strategy was

used for PA. FF = Factor Forest; PAFA = parallel analysis based on common factor model; PAPCA = parallel

analysis based on principal component analysis; CD = comparison data; NA = not applicable.
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methods is displayed for these small-sample conditions with N = 250. In small-sam-

ple-size conditions, pmm yielded the lowest accuracy. While the combination of

pmm and PA-FA-cor reached an accuracy of 95.40%, FF, PA-FA-mode as well as

PA-PCA (both aggregation strategies) yielded notably lower accuracies (between

77.23% and 83.65%) and CD was accurate only 42.19% of the time. rf provided very

good results when combined with FF, PA-FA and CD, whereas in combination with

PA-PCA all other missing data methods showed (slightly) better results in these

conditions.

Table 2. Estimated Bias of the Factor Retention Critieria in Combination With Different
Missing Data Methods.

Criterion pair pmm rf em

Mode
FF 0.070 0.193 0.018 0.076
PAFA 0.013 0.106 20.015 0.018
PAPCA 20.178 20.175 20.296 20.223
CD 0.511 0.904 0.007 0.430

Cor
PAFA NA 0.013 20.021 20.001
PAPCA NA 20.195 20.311 20.231

Note. pair stands for pairwise deletion, pmm for predictive mean matching, rf for random forest

imputation, and em for the Amelia algorithm. Mode and Cor indicate which aggregation strategy was

used for PA. FF = Factor Forest; PAFA = parallel analysis based on common factor model; PAPCA = parallel

analysis based on principal component analysis; CD = comparison data; NA = not applicable.

Table 3. Overall Accuracy of the Factor Retention Criteria in Combination With Different
Missing Data Methods for Small Sample Sizes (N = 250).

Criterion pair pmm rf em

Mode
FF 0.908 0.772 0.953 0.886
PAFA 0.959 0.777 0.965 0.930
PAPCA 0.846 0.814 0.784 0.822
CD 0.546 0.422 0.919 0.547

Cor
PAFA NA 0.954 0.956 0.975
PAPCA NA 0.836 0.777 0.823

Note. pair stands for pairwise deletion, pmm for predictive mean matching, rf for random forest

imputation and em for the Amelia algorithm. Mode and Cor indicate which aggregation strategy was used

for PA. FF = Factor Forest; PAFA = parallel analysis based on common factor model; PAPCA = parallel

analysis based on principal component analysis; CD = comparison data; NA = not applicable.
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Interfactor correlations generally worsened the factor retention process—the

higher these correlations were, the lower the accuracy was (see Table 4). This

was striking in the case of PA-PCA in combination with rf (both cor and mode)

which reached a very high accuracy in conditions with no or little between-

factor correlations (r = 0 : AccPA�PCA�cor = 99.55% and AccPA�PCA�mode = 99.66%;

r = 0:2 : AccPA�PCA�cor = 93.83% and AccPA�PCA�mode = 94.09%), but performed way

worse when substantial between-factor correlations were present (r = 0:4:
AccPA�PCA�cor = 68.90% and AccPA�PCA�mode = 69.15%). Contrary, CD benefited

from correlated factors as its performance improved for three of four missing data

methods (CD and rf reached an accuracy of approximately 95% independently of the

interfactor correlation). Although, CD in combination with pair (r = 0 : AccCD =

63.39% vs. r = 0:4 : AccCD = 67.26%), em (r = 0 : AccCD = 63.25% vs. r = 0:4 :
AccCD = 76.04%), and pmm (r = 0 : AccCD = 49.50% vs. r = 0:4 : AccCD = 60.20%)

provided better results with correlated factors than with orthogonal factors, their per-

formance was inferior to all other combinations of factor retention criteria and miss-

ing data methods.

Figure 1 displays the overall accuracy of the factor retention process for each com-

bination of criterion (and aggregation level) and missing data method. When 10% of

the data was missing, the number of factors could be determined quite accurately by

all methods. FF and PA-FA (cor and mode approach) yielded almost perfect accu-

racy, while CD in combination with pmm, pair, or em performed notably worse (the

respective conditions are removed from the plot as the CD reached an accuracy of

less than 50% for all values of k; CD in combination with rf showed a comparably

high accuracy though). PA-PCA (both cor and mode) was able to retain two and four

factors with nearly perfect accuracy, but was inferior to all other factor retention cri-

teria when k = 6 (independently of the missing data method).

In conditions with 25% missingness, CD had very poor accuracies in combination

with em, pair, and pmm, but was competitive when combined with rf (even though

CD + rf was slightly inferior to PA-FA and FF with an error-rate of approximately

10% in conditions with six factors). FF struggled to correctly identify the number of

factors in conditions with k = 2 and 25% missingness. However when combined with

rf instead of em, pmm, or pair, FF reached an accuracy of 92.82%, while all other

methods performed even better. PA-PCA showed the same pattern as in conditions

with 10% missingness—independently of the missing data method, it reached a high

accuracy when the true number of factors was rather low (k 2 ½2, 4�) and yielded a

substantially smaller accuracy when k = 6.

Choosing the Best Combination of Factor Retention Criterion and Missing
Data Method

For readers who are interested in choosing a combination of factor retention criterion

and missing data method that performs best for a specific data context, we provide a

more detailed presentation of our results in Tables 5 and 6. There, the accuracy of

10 Educational and Psychological Measurement 00(0)



T
a
b

le
4
.

A
cc

u
ra

cy
o
f
A

ll
C

o
m

b
in

at
io

n
s

o
f
Fa

ct
o
r

R
et

en
ti
o
n

C
ri

te
ri

a
an

d
M

is
si

n
g

D
at

a
M

et
h
o
d
s

fo
r

In
te

rf
ac

to
r

C
o
rr

el
at

io
n
s

r
.

C
ri

te
ri

o
n

r
=

0
:0

r
=

0
:2

r
=

0
:4

p
ai

r
p
m

m
rf

em
p
ai

r
p
m

m
rf

em
p
ai

r
p
m

m
rf

em

M
o
d
e

FF
0
.9

7
7

0
.9

2
5

0
.9

9
6

0
.9

6
4

0
.9

7
2

0
.9

1
9

0
.9

9
1

0
.9

6
6

0
.9

4
7

0
.8

9
3

0
.9

6
6

0
.9

4
7

PA
FA
�

m
od

e
0
.9

8
7

0
.9

0
2

0
.9

9
9

0
.9

6
9

0
.9

8
7

0
.9

1
1

0
.9

9
6

0
.9

8
0

0
.9

7
5

0
.9

1
9

0
.9

6
9

0
.9

7
6

PA
PC

A
�

m
od

e
0
.9

9
8

0
.9

7
4

0
.9

9
7

0
.9

9
6

0
.9

7
0

0
.9

6
5

0
.9

4
1

0
.9

5
8

0
.7

7
0

0
.7

5
9

0
.6

9
2

0
.7

3
2

C
D

0
.6

3
4

0
.4

9
5

0
.9

6
9

0
.6

3
3

0
.6

6
1

0
.5

5
0

0
.9

6
9

0
.7

0
4

0
.6

7
3

0
.6

0
2

0
.9

4
8

0
.7

6
0

C
o
r PA

FA
�

co
r

N
A

0
.9

8
2

0
.9

9
9

0
.9

9
4

N
A

0
.9

8
5

0
.9

9
4

0
.9

9
6

N
A

0
.9

7
9

0
.9

6
2

0
.9

8
4

PA
PC

A
�

co
r

N
A

0
.9

9
8

0
.9

9
6

0
.9

9
9

N
A

0
.9

6
7

0
.9

3
8

0
.9

5
8

N
A

0
.7

5
7

0
.6

8
9

0
.7

3
2

N
ot

e.
p
ai

r
st

an
d
s

fo
r

p
ai

rw
is

e
d
el

et
io

n
,
p
m

m
fo

r
p
re

d
ic

ti
ve

m
ea

n
m

at
ch

in
g,

rf
fo

r
ra

n
d
o
m

fo
re

st
im

p
u
ta

ti
o
n

an
d

em
fo

r
th

e
A

m
el

ia
al

go
ri

th
m

.
M

o
d
e

an
d

C
o
r

in
d
ic

at
e

w
h
ic

h
ag

gr
eg

at
io

n
st

ra
te

gy
w

as
u
se

d
fo

r
PA

.
FF

=
Fa

ct
o
r

Fo
re

st
;
PA

FA
=

p
ar

al
le

l
an

al
ys

is
b
as

ed
o
n

co
m

m
o
n

fa
ct

o
r

m
o
d
el

;
PA

PC
A

=
p
ar

al
le

l
an

al
ys

is
b
as

ed
o
n

p
ri

n
ci

p
al

co
m

p
o
ne

n
t

an
al

ys
is

;
C

D
=

co
m

p
ar

is
o
n

d
at

a;
N

A
=

n
o
t

ap
p
lic

ab
le

.

11



F
ig

u
re

1
.

A
cc

u
ra

cy
o
f

al
l

co
m

b
in

at
io

n
s

o
f

fa
ct

o
r

re
te

n
ti
o
n

cr
it
er

ia
an

d
m

is
si

n
g

d
at

a
m

et
h
o
d
s

fo
r

d
iff

er
en

t
am

o
un

ts
o
f

m
is

si
n
gn

es
s

(1
0
%

vs
.

2
5
%

)
an

d
d
iff

er
en

t
fa

ct
o
r

so
lu

ti
o
n
s

(C
D

+
em

/p
m

m
/p

ai
r

w
as

ex
cl

u
d
ed

in
co

n
d
it
io

n
s

w
it
h

2
5
%

m
is

si
n
gn

es
s

as
th

e
ac

cu
ra

cy
w

as
le

ss
th

an
5
0
%

).

12



T
a
b

le
5
.

A
cc

u
ra

cy
o
f
A

ll
C

o
m

b
in

at
io

n
s

o
f
Fa

ct
o
r

R
et

en
ti
o
n

C
ri

te
ri

a
an

d
M

is
si

n
g

D
at

a
M

et
h
o
d
s

fo
r

D
iff

er
en

t
Sa

m
p
le

Si
ze

s,
N

u
m

b
er

s
o
f
M

an
ife

st
V
ar

ia
b
le

s
an

d
P
ro

p
o
rt

io
n
s

o
fM

is
si

n
gn

es
s

(P
ar

t
1
).

N
p

%
m

is
s

FF
PA

-F
A

-m
o
d
e

PA
-P

C
A

-m
o
d
e

C
D

em
p
ai

r
p
m

m
rf

em
p
ai

r
p
m

m
rf

em
p
ai

r
p
m

m
rf

em
p
ai

r
p
m

m
rf

2
5
0

1
6

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

9
0
.9

9
0
.8

3
0
.8

4
0
.8

3
0
.8

2
0
.9

1
0
.8

7
0
.8

5
0
.9

7
2
5
0

1
6

2
5

0
.9

2
0
.9

1
0
.8

1
0
.9

9
0
.9

0
0
.8

8
0
.7

2
0
.9

6
0
.8

1
0
.8

3
0
.8

2
0
.7

7
0
.3

1
0
.3

0
0
.1

0
0
.8

8
2
5
0

2
4

1
0

0
.9

6
0
.9

5
0
.9

3
0
.9

8
0
.9

8
0
.9

8
0
.9

8
0
.9

6
0
.7

8
0
.8

0
0
.7

9
0
.7

6
0
.8

7
0
.8

3
0
.8

1
0
.9

4
2
5
0

2
4

2
5

0
.5

8
0
.6

3
0
.4

5
0
.7

7
0
.8

7
0
.9

1
0
.6

5
0
.9

0
0
.7

6
0
.7

9
0
.7

8
0
.6

9
0
.2

3
0
.2

6
0
.0

6
0
.8

2
2
5
0

3
6

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

9
0
.8

3
0
.8

4
0
.8

4
0
.8

2
0
.8

5
0
.7

8
0
.7

5
0
.9

7
2
5
0

3
6

2
5

0
.9

3
0
.9

6
0
.7

0
0
.9

9
0
.8

7
0
.9

5
0
.5

0
0
.9

5
0
.8

2
0
.8

4
0
.7

7
0
.7

6
0
.1

8
0
.2

4
0
.0

3
0
.8

9
2
5
0

4
8

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

2
0
.9

4
0
.9

3
0
.8

8
0
.8

5
0
.7

9
0
.7

3
0
.9

8
2
5
0

4
8

2
5

0
.8

2
0
.9

3
0
.3

9
0
.9

9
0
.8

4
0
.9

6
0
.3

3
0
.9

9
0
.8

9
0
.9

3
0
.7

9
0
.8

3
0
.1

7
0
.3

0
0
.0

3
0
.9

4
5
0
0

1
6

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.8

9
0
.9

1
0
.9

0
0
.8

9
0
.9

4
0
.9

1
0
.9

1
0
.9

9
5
0
0

1
6

2
5

1
.0

0
0
.9

9
0
.9

8
1
.0

0
0
.9

8
0
.9

6
0
.9

1
1
.0

0
0
.8

7
0
.9

1
0
.9

0
0
.8

5
0
.4

3
0
.3

7
0
.1

4
0
.9

2
5
0
0

2
4

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.8

8
0
.8

8
0
.8

8
0
.8

8
0
.9

5
0
.8

9
0
.9

1
0
.9

9
5
0
0

2
4

2
5

0
.9

5
0
.9

4
0
.8

3
1
.0

0
0
.9

9
0
.9

9
0
.9

3
1
.0

0
0
.8

6
0
.8

8
0
.8

8
0
.8

4
0
.3

6
0
.3

3
0
.0

9
0
.9

6
5
0
0

3
6

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

4
0
.9

6
0
.9

5
0
.9

2
0
.9

6
0
.8

9
0
.9

2
1
.0

0
5
0
0

3
6

2
5

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

4
1
.0

0
0
.9

0
0
.9

5
0
.9

5
0
.8

5
0
.4

1
0
.3

9
0
.1

1
0
.9

8
5
0
0

4
8

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

8
0
.9

2
0
.9

5
1
.0

0
5
0
0

4
8

2
5

1
.0

0
1
.0

0
0
.9

6
1
.0

0
1
.0

0
1
.0

0
0
.9

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

7
0
.5

0
0
.5

1
0
.1

6
0
.9

9
1
,0

0
0

1
6

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

8
0
.9

8
0
.9

8
0
.9

7
0
.9

8
0
.9

4
0
.9

6
0
.9

9
1
,0

0
0

1
6

2
5

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

8
0
.9

8
1
.0

0
0
.9

4
0
.9

7
0
.9

6
0
.9

4
0
.6

1
0
.4

7
0
.2

8
0
.9

3
1
,0

0
0

2
4

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.8

9
0
.9

0
0
.9

0
0
.8

9
0
.9

9
0
.9

4
0
.9

8
1
.0

0
1
,0

0
0

2
4

2
5

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

9
1
.0

0
0
.8

9
0
.9

0
0
.8

9
0
.8

9
0
.6

5
0
.5

1
0
.2

9
0
.9

9
1
,0

0
0

3
6

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

6
0
.9

9
1
.0

0
1
,0

0
0

3
6

2
5

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

8
0
.8

2
0
.6

7
0
.5

0
1
.0

0
1
,0

0
0

4
8

1
0

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

8
1
.0

0
1
.0

0
1
,0

0
0

4
8

2
5

1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

2
0
.7

9
0
.6

9
1
.0

0

N
ot

e.
p
ai

r
st

an
d
s

fo
r

p
ai

rw
is

e
d
el

et
io

n
,
p
m

m
fo

r
p
re

d
ic

ti
ve

m
ea

n
m

at
ch

in
g,

rf
fo

r
ra

n
d
o
m

fo
re

st
im

pu
ta

ti
o
n

an
d

em
fo

r
th

e
A

m
el

ia
al

go
ri

th
m

.
PA

-F
A

=
P
ar

al
le

l

an
al

ys
is

b
as

ed
o
n

th
e

fa
ct

o
r

m
o
d
el

;
PA

-P
C

A
=

p
ar

al
le

l
an

al
ys

is
b
as

ed
o
n

p
ri

n
ci

p
al

co
m

p
o
ne

n
t

an
al

ys
is

;
FF

=
Fa

ct
o
r

Fo
re

st
.

13



each of the 22 combinations (factor retention criterion + missing data method +

aggregation strategy) is displayed for all evaluated sample sizes, numbers of manifest

variables, and different proportions of missing data. We aggregated the results for

both missing data mechanisms, different levels of between-factor correlation as well

as the three numbers of latent factors as these variables are usually unknown for

empirical data. One can see that for many conditions, all combinations yield high

accuracies (e.g., N = 1000, p = 48, and 10% missing values), while in other condi-

tions, some combinations perform quite weakly and others are nearly perfectly accu-

rate (e.g., when N = 250 p = 48, and the proportion of missingness equals 25%, FF

should be combined with random forest imputation [99% accuracy] rather than with

predictive mean matching [39% accuracy], whereas random forest imputation in

Table 6. Accuracy of All Combinations of Factor Retention Criteria and Missing Data
Methods for Different Sample Sizes, Numbers of Manifest Variables and Proportions of
Missingness (Part 2).

N p %miss

PA-FA-cor PA-PCA-cor

em pmm rf em pmm rf

250 16 10 0.99 0.99 0.99 0.83 0.83 0.82
250 16 25 0.95 0.89 0.96 0.81 0.82 0.77
250 24 10 0.98 0.98 0.96 0.78 0.79 0.76
250 24 25 0.93 0.90 0.88 0.75 0.78 0.68
250 36 10 1.00 1.00 0.99 0.83 0.84 0.82
250 36 25 0.98 0.94 0.93 0.82 0.83 0.73
250 48 10 1.00 1.00 1.00 0.91 0.92 0.88
250 48 25 0.99 0.95 0.97 0.90 0.92 0.82
500 16 10 1.00 1.00 1.00 0.90 0.90 0.89
500 16 25 0.99 0.97 1.00 0.87 0.90 0.85
500 24 10 1.00 1.00 1.00 0.88 0.88 0.88
500 24 25 1.00 0.99 1.00 0.86 0.88 0.84
500 36 10 1.00 1.00 1.00 0.94 0.95 0.92
500 36 25 1.00 1.00 1.00 0.90 0.94 0.85
500 48 10 1.00 1.00 1.00 1.00 1.00 1.00
500 48 25 1.00 1.00 1.00 0.99 1.00 0.97
1,000 16 10 1.00 1.00 1.00 0.98 0.98 0.97
1,000 16 25 1.00 0.99 1.00 0.94 0.97 0.94
1,000 24 10 1.00 1.00 1.00 0.89 0.90 0.89
1,000 24 25 1.00 1.00 1.00 0.89 0.89 0.89
1,000 36 10 1.00 1.00 1.00 1.00 1.00 1.00
1,000 36 25 1.00 1.00 1.00 1.00 1.00 0.98
1,000 48 10 1.00 1.00 1.00 1.00 1.00 1.00
1,000 48 25 1.00 1.00 1.00 1.00 1.00 1.00

Note. pair stands for pairwise deletion, pmm for predictive mean matching, rf for random forest

imputation and em for the Amelia algorithm. PA-FA = Parallel analysis based on the factor model; PA-

PCA = parallel analysis based on principal component analysis; FF = Factor Forest.
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combination with PA-PCA and the mode-approach was outperformed by all other

missing data methods).

Baseline Comparison

For an easier interpretation of these results, the accuracy of the four factor retention

criteria on comparable data without any missing values is displayed in Table 7. While

FF and PA-FA estimated the number of factors correctly in almost every data set, CD

had slightly lower accuracies across all conditions (mostly above 95% accuracy),

while PA-PCA showed rather poor performance in small-sample conditions (see also

Table 3).

All in all, most combinations provided similar results compared with the baseline

performance of the factor retention criterion on fully observed data. CD in combina-

tion with the Amelia algorithm, predictive mean matching or pairwise-deletion,

though, showed a more than 25 percentage points lower accuracy on average than

CD’s baseline performance on data without missing values (CD and predictive mean

matching had a 40.70 percentage points lower accuracy), while this performance gap

was in the single digits for all other combinations (CD and random forest imputation

showed basically the same accuracy [~96%] as CD in the baseline conditions).

Discussion

In this study, 22 combinations of missing data methods (pair, rf, em, and pmm) and

factor retention criteria (FF, PA-FA-cor, PA-FA-mode, PA-PCA-cor, PA-PCA-mode,

and CD) were evaluated with regard to their accuracy and bias (over- or

Table 7. Accuracy of the Factor Retention Criteria Different Sample Sizes and Numbers of
Manifest Variables When No Data Are Missing.

N p FF PA-FA PA-PCA CD

250 16 1.00 1.00 0.84 0.96
250 24 0.99 0.98 0.80 0.92
250 36 1.00 1.00 0.83 0.90
250 48 1.00 1.00 0.92 0.89
500 16 1.00 1.00 0.91 0.98
500 24 1.00 1.00 0.88 0.96
500 36 1.00 1.00 0.95 0.96
500 48 1.00 1.00 1.00 0.97
1,000 16 1.00 1.00 0.98 0.98
1,000 24 1.00 1.00 0.90 0.98
1,000 36 1.00 1.00 1.00 0.98
1,000 48 1.00 1.00 1.00 0.99

Note. PA-FA = parallel analysis based on the factor model; PA-PCA = parallel analysis based on principal

component analysis; CD = comparison data; FF = Factor Forest.
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underfactoring) in various simulated data conditions. While the choice of the missing

data method had very little impact on the accuracy when PA-based factor retention

or the new FF approach were used, it was crucial for an accurate factor retention

when CD was used. Contrary to the findings of Goretzko, Heumann, and Bühner

(2019), the missing data methods performed quite similiar which can be explained

by the altered simulation conditions—in this study higher primary loadings (associ-

ated with higher communalites and more reliable indicators) were used as we wanted

to focus on conditions in which all factor retention criteria are able to retain the true

number of factors with (nearly) perfect accuracy when no data are missing.

Accordingly, the overall accuracy of each method is notably higher in this study.

McNeish (2017) and Goretzko, Heumann, and Bühner (2019) found pairwise dele-

tion to be inferior to multiple imputation (especially random forest imputation and

the Amelia algorithm in combination with the cor aggregation strategy)—a result that

we did not find for parallel analysis in the investigated data conditions. An explana-

tion for the relatively good performance of pairwise deletion might be the compar-

ably ‘‘easy’’ conditions with (almost) perfect simple structure in this study, whereas

Goretzko, Heumann, and Bühner (2019) investigated more difficult conditions with

smaller primary and higher cross-loadings. In addition, McNeish (2017) focused on

small-sample conditions and found pairwise deletion to be inferior to multiple impu-

tation mainly in conditions with 60 or 120 observations, while factor retention with

pairwise deletion worked similarly well when N = 240 (which is close to our small-

sample condition).

Contrary to parallel analysis, the Factor Forest performed better with random for-

est imputation than with pairwise deletion. This tendency was especially recogniz-

able in small-sample conditions (N = 250) that seem to be the most important for

comparison to real EFA applications in psychological research (Fabrigar et al., 1999;

Goretzko, Pham, & Bühner, 2019). When CD was used for factor retention, though,

pairwise deletion (as well as Amelia and predictive mean matching) clearly per-

formed worse than random forest imputation. In conditions with small sample sizes

and/or high proportions of missingness (25% missing values), CD could not be seen

as a valid method unless combined with random forest imputation. One explanation

why CD was the only factor retention criterion that was strongly influenced by miss-

ing data could be that contrary to PA, for example, the item distributions are taken

into account when simulating the comparison data sets (see Ruscio & Roche, 2012).

Accordingly, in conditions with high proportions of missingness (here 25% missing

values), these item distributions might be distorted if the missing values are not prop-

erly imputed.

Hence, as discussed by Goretzko, Heumann, and Bühner (2019) random forest

imputation seem to be the most promising way to deal with missingness under MAR

or MCAR assumption in the context of EFA (and factor retention). Nevertheless, as it

showed a comparably poor performance when combined with PA-PCA (cor and

mode strategy) when the number of factors got higher (here k = 6) and/or in condi-

tions with substantially correlated factors (here between-factor correlation of
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r = 0:4)—results that are in line with those of Goretzko, Heumann, and Bühner

(2019), rf should not be used without considering the special application context.

When researchers want to use parallel analysis and an imputation method, they

should rather use the cor aggregation strategy or the similar approach by Nassiri

et al. (2018) instead of the mode approach, even though the performance differences

between these two were rather small in this study. PA-FA-cor showed higher overall

accuracies than PA-FA-mode, while being less biased—a tendency that yielded sub-

stantial performance differences in small-sample conditions (which again might be

the most important for current psychological research practice).

Since this study is the first to investigate the interplay of different factor retention

criteria and missing data methods, its focus on rather desirable data conditions with

clear factor patterns and (practically) simple structure, in which an accurate factor

retention is comparably easy, can be seen critically. As Goretzko, Heumann, and

Bühner (2019) showed that the performance of different missing data methods differ

more strongly under less favorable conditions, further research may expand the scope

of this simulation study by adding other data conditions with higher cross-loadings,

nonnormal data, or minor factors in the data-generating models. Another potential

limitation of the current study are the proportions of missingness that were under

investigation. In other simulation studies with regard to missing data much higher

proportions of missing values are considered (e.g., Jochen et al., 2013), but since

EFA is mostly applied when developing a questionnaire or psychological test, we

would argue that the rate of item nonresponse in single questionnaires is arguably

lower than in extensive surveys or settings where the questionnaire is presented after

a time-consuming experiment (i.e., when solely the items have to be answered that

are then used for the EFA) and therefore rarely higher than 25%. Besides, other stud-

ies on this topic used similar proportions of missingness—McNeish (2017) used up to

25% missing values, Nassiri et al. (2018) up to 30%, Lorenzo-Seva and Van Ginkel

(2016) up to 15%, and Josse et al. (2011) up to 30% as well. Nevertheless, as modern

instruments of data collection (e.g., mobile sensing, Schoedel et al., 2020) can yield

higher proportions of missing values, further research should evaluate the influence

of substantially higher missingness rates.

Conclusion

The present study evaluated different combinations of missing data methods and

factor retention criteria with regard to their accuracy and potential biases (namely

under- and overfactoring). For data conditions in which all compared factor retention

methods are able to determine the number of factors accurately when no data are

missing, all investigated missing data methods performed comparably well in combi-

nation with parallel analysis (for both tested aggregation strategies) or the factor for-

est. Accordingly, pairwise deletion yielded similar results as multiple imputation

models based on an EM algorithm and MICE. However, when the comparison data

approach was used for factor retention, pairwise deletion performed poorly and solely
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random forest imputation within the MICE framework provided accurate estimates of

the dimensionality. Consequently, this study shows that depending on which factor

retention criterion is used to assess the dimensionality in EFA, different missing data

methods may be favorable and researchers should be careful when relying on default

settings such as pairwise deletion. Combining the results of this study with those of

other studies, researchers are advised to compare different missing data mechanisms

(to evaluate the robustness of their solution) and factor retention criteria to obtain a

robust and accurate estimate of the number of factors.
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Notes

1. To be more precise, all observations which are not missing for the variable that should be

imputed are used—which means that all other variables in the data set that are used as pre-

dictor variables in the imputation model have to be fully observed or imputed before. For

this reason, the idea of MICE is to sequentially impute all variables and iterate this process

to get better results.

2. Each split is done using the independent variable (out of a subset of randomly drawn

variables—a measure against overfitting) that best separates the two resulting subgroups

with regard to the variable of interest. In other words, a split maximizes between-group

differences and minimizes within-group differences considering that particular variable.

3. In this study, we used the same sample sizes and numbers of latent variables that were

investigated by Goretzko, Heumann, and Bühner (2019). We further added conditions with

36 manifest variables and systematically varied the between-factor correlations, while

Goretzko, Heumann, and Bühner (2019) only compared orthogonal conditions and oblique

conditions with fixed between-factor correlations. Contrary to their study, we investigated

two different proportions of missingness (10% and 25% vs. just 25%) and two missing

data mechanisms (they evaluated four mechanisms including three different types of MAR

that did not yield substantially different results).

4. We used higher primary and smaller cross-loadings compared with Goretzko, Heumann,

and Bühner (2019) since we wanted to ensure that all evaluated factor retention criteria

show nearly perfect accuracy when no data are missing. When no data were missing, FF

had an overall accuracy across all conditions in this study of 99.88%, while PA-FA reached
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99.76%, PA-PCA 91.16%, and CD was able to correctly identify the number of factors in

95.58% the cases.
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