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Abstract
Purpose of Review Both chimeric antigen receptor (CAR) T cells and T cell–engaging antibodies (BiAb) have been approved for
the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of
therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to
their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limita-
tions of either approach and to combine the best of both worlds.
Recent Findings By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of
research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the
tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-
tumor on-target effects.
Summary BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-
life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate
superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome
some of their limitations, e.g., to make them more controllable.
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Introduction

In efforts to harness T cells in the fight against cancer, several
immunotherapeutic approaches have been successfully devel-
oped. Among others, chimeric antigen receptor (CAR) T cells
and T cell–engaging bispecific antibodies (BiAb) have gained
approval by regulatory agencies and are currently being used
to treat patients with hematological malignancies.

Both BiAb and CAR T cells use antibodies or antibody
fragments to redirect T cells to specific tumor-associated an-
tigens, which is a shared facet of these major histocompatibil-
ity complex (MHC)–independent approaches. Their clinical
application has achieved unprecedented response rates in pa-
tients with relapsed or refractory B cell malignancies, al-
though in only partially overlapping indications [1, 2]. Both
can induce severe adverse events like cytokine release syn-
drome (CRS) and neurotoxicity. Further, a large proportion of
patients inevitably relapse, and the efficacy of BiAb or CAR T
cells targeting solid tumors remains limited [3••].

BiAb are recombinant proteins with antigen-binding antibody
domains both for T cell–specific and tumor-associated antigens.
When infused into the patient, they can redirect endogenous T
cells to kill cancer cells expressing a specific target [4].

CAR T cells are usually generated by genetically modify-
ing patient-derived T cells ex vivo before their adoptive trans-
fer back into the patient. A CAR is a synthetic receptor
consisting of a single-chain variable fragment (scFv) linked
to a transmembrane domain and intracellular T cell–activating
domains. CAR binding to the antigen on the tumor cell surface
activates the CAR T cell and triggers a T cell response against
antigen-expressing tumor cells [5•].

In this review, we present and describe different formats of
BiAb and CAR T cell therapies.We compare BiAb with CAR
T cells, highlighting the differences and similarities, as well as
the advantages and limitations of either strategy. In line with
this, we outline preclinical and clinical strategies that are cur-
rently in development to overcome therapeutic limitations and
boost efficacy.

T Cell–Engaging Bispecific Antibodies

The term BiAb will be used in this review for all antibody-
based molecules containing antigen-binding sites for both T
cell and tumor-associated antigens. Generally, BiAb can be
divided into BiAb containing an Fc domain and Ab fragment–
based ones. Labrijn et al. provide an extensive overview of the
different BiAb formats [6•].

Most BiAb with an Fc domain bear mutations introduced
to abolish Fc-mediated effector functions such as antibody-
dependent cellular cytotoxicity, phagocytosis, and
complement-dependent cytotoxicity, given that they can result
in off-target immune cell activation [6•, 7, 8]. However, these

BiAb are usually designed to maintain binding of the neonatal
Fc receptor (FcRn) which protects them from degradation,
thus conferring a long plasma half-life (days) compared to
the plasma half-life of fragment-based BiAb (hours) [9–13].
This can be advantageous as they can be administered in a
bolus injection, whereas fragment-based BiAb need to be in-
fused continuously. The drawback is that they are more slowly
eliminated from the circulation in the occurrence of adverse
events. Fragment-based BiAb can be produced relatively eas-
ily at high yields and low costs but are more prone to aggre-
gation or stability issues [14]. Generally, they exhibit faster
tissue penetration than Fc-containing BiAb, including cross-
ing of the blood-brain barrier. This distinction is a double-
edged sword, as it may increase patient susceptibility to neu-
rotoxicity, while being more favorable for the treatment of
brain tumors [15•]. The opposite applies to larger BiAb with
an Fc domain, which are actively exported from the brain by
transcytosis mediated by FcRn [9].

BiAb valency, i.e., the number of binding arms, as well as the
affinity of the individual binding domains can greatly influence
the functionality and biodistribution of a BiAb. In the case of a
CD3-binding BiAb, one binding site for CD3 is preferred to
prevent unwanted T cell activation by CD3 cross-linking [2••].
A reduced affinity for CD3 can minimize BiAb trapping in tis-
sues containing a high number of T cells [6•, 16, 17]. In addition,
BiAb with reduced potency can be administered at higher doses
to augment efficacy while limiting adverse events. In contrast,
two tumor antigen–binding domains can increase selective rec-
ognition and killing of highly antigen-expressing tumor cells by
increasing the avidity (through the simultaneous binding of both
arms) while sparing healthy cells expressing the antigen at lower
levels [7, 18–20]. In addition, lowering the affinity for both the
CD3 and tumor antigen–binding domains have also been shown
to widen the therapeutic window [21].

In 2009, the first BiAb was approved by the European
Medicines Agency (EMA). Although more than 40 BiAb
are currently in phase 1 and 2 clinical trials for both hemato-
logical and solid cancers, to date only two molecules have
gained regulatory approval for cancer therapy [22].
Removab® (catumaxomab), an anti-CD3 × anti-epithelial cel-
lular adhesion molecule (EpCAM) BiAb containing an Fc
domain, was intraperitoneally applied to treat malignant asci-
tes in ovarian cancer but was withdrawn from the market in
2017 for commercial reasons.

Blincyto® (blinatumomab), an anti-CD3 × anti-CD19
fragment–based bispecific T cell engager (BiTE®), is the only
BiAb currently on the market. It gained approval for B cell
precursor acute lymphoblastic leukemia (ALL) by the US
Food and Drug Administration (FDA) in 2014 and by the
European Medicines Agency in 2015. Lacking an Fc domain,
and thus not protected from degradation by FcRn, it has a half-
life of approximately 1 to 2 h and can therefore only be ad-
ministered via a continuous intravenous infusion [10, 11].
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Complete response rates ranged from 36 to 69% in clinical
trials (see Table 1).

Other BiAb currently under clinical investigation include,
e.g., BiTE molecules targeting CD20 in chronic lymphoblas-
tic leukemia, CD33 in acute myeloid leukemia, and B cell
maturation antigen (BCMA) in multiple myeloma [15•].

Beyond BiAb, CAR T cells comprise a promising arm of
cancer immunotherapy which is introduced in the next
section.

CAR T Cells

CAR structure typically consists of an extracellular antigen
recognition domain (in most cases an antibody-derived
scFv) connected via a spacer and a transmembrane domain
to one or more intracellular signaling domains [23•]. These
domains determine the type of signal transmitted after the
scFv engages its target. While first generation CAR constructs
can only propagate signal 1 via the intracellular CD3ζ chain of

Table 1 Comparison between CAR T cells and BiAb

CAR T cells BiAb

Structure T cells genetically engineered to express a synthetic
receptor consisting of an extracellular scFv linked
to intracellular activation and co-stimulatory
domains

Recombinant soluble protein with binding domains
for a T cell and a tumor antigen

Signals for T cell activation Signal 1 (CD3ζ), signal 2 (CD28, 4-1BB; in 2nd and
3rd generation CAR constructs), signal 3
(cytokine stimulation ex vivo)

Signal 1 (CD3ζ)

Immune synapse Atypical [37] Classical [36]

Effector cells Engineered CD8+ and CD4+ T cells; less
differentiated T cells show better efficacy in vivo

Endogenous CD8+ and CD4+ T cells; mainly
antigen-experienced T cells kill

Manufacturing Autologous CAR T cells: individual production for
each patient

Off-the-shelf product

Allogeneic CAR T cells: production in batches from
healthy donor T cells (investigational use only)

Prone to manufacturing variability (T cell subset
composition, transduction efficiency, number of
viable T cells) and failure

Pre-treatment Lymphocyte apheresis for collecting T cells (for
autologous T cells), lymphodepletion
chemotherapy before CAR T cell infusion

Dexamethasone to limit CRS and neurotoxicity

Dosing Single dose Multiple dosing, for short half-life formats
continuous infusion

Costs Up to 320,000 € in Germany [63] Up to 293,000 € in Germany [64]

Regulatory approval Kymriah: r/r B cell precursor ALL patients up to 25
years (FDA 2017, EMA 2018), adult patients with
large B cell lymphoma (FDA and EMA 2018) [25,
27]

Blinatumomab: r/r B cell precursor ALL (FDA 2014,
EMA 2015 (only Philadelphia
chromosome–negative ALL)), B cell precursor
ALL with minimal residual disease (FDA 2018,
EMA 2019 (only adults)) [65, 66]Yescarta: adult patients with large B cell lymphoma

(FDA 2017, EMA 2018) [26, 28]

Tecartus: adult patients with r/r mantle cell
lymphoma (FDA and EMA 2020) [29, 30]

Complete response rates (CR/CRh/CRi) Adult B cell ALL: 83 to 93% [67–69] Adult B cell ALL: 36 to 69% [76–80]
Pediatric B cell ALL: 70 to 94% [70–73]

Diffuse large B cell lymphoma: 40 to 57% [52, 53,
74, 75]

Mantle cell lymphoma: 67% [31]

Relapse rates (% of complete responders) Adult B cell ALL: 12 to 61% [68, 69] Adult B cell ALL: 40 to 70% [76–78, 80]
Pediatric B cell ALL: 26 to 40% [70–72]

Diffuse large B cell lymphoma: 21% [75]

CD19-negative relapse (% of all relapses) B cell ALL: 16 to 68% [69–72] Adult B cell ALL: 8 to 30% [76, 81]

Toxicities More frequent and severe CRS (≥ grade 3: 13 to
47%) and neurotoxicity (≥ grade 3: 5 to 50%),
on-tumor off-target effects (B cell aplasia when
targeting CD19) [52, 53, 68–71, 73, 75]

CRS (≥ grade 3: 2 to 6%) and neurotoxicity (≥ grade
3: 7 to 17%), on-tumor off-target effects (B cell
aplasia when targeting CD19) [76–80]
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the TCR complex, second-generation CAR constructs have an
additional co-stimulatory domain, in most cases the intracel-
lular domain of CD28 or 4-1BB, through which signal 2 is
transmitted. In third-generation CAR constructs, two co-
stimulatory domains are included, further augmenting the
co-stimulus.

Individual CAR features can greatly impact CAR T cell
function, including T cell phenotype, persistence, tonic signal-
ing, and on-target off-tumor effects. For example, lowering
the affinity of the scFv can help CAR T cells discern tumor
cells differentially expressing the antigen from healthy cells
expressing it at lower levels, thus limiting on-target off-tumor
responses [24]. In addition, exchanging the co-stimulatory
domain has been shown to impact T cell activation as well
as the in vivo persistence of CAR T cells (as observed when
swapping the CD28 co-stimulus for 4-1BB) [23•]. Also, the
transduction of specific T cell subsets, the method of trans-
gene delivery, and selection of the promoter can influence the
efficacy and adverse effects of CART cells [1, 23•]. This topic
has recently been reviewed in more detail elsewhere [23•].

After clinical trials showed dramatic response rates, two
CAR T cell products targeting the B cell antigen CD19 re-
ceived marketing authorization by the FDA in 2017 and the
EMA in 2018 for relapsed or refractory (r/r) B cell malignan-
cies after two or more lines of systemic treatment [25–28].
Kymriah (tisagenlecleucel) is approved for r/r B cell precursor
ALL and large B cell lymphoma, and Yescarta (axicabtagene
ciloleucel) for large B cell lymphoma. Both use second-
generation CAR constructs but differ in their co-stimulatory
domains: 4-1BB for Kymriah and CD28 for Yescarta.
Complete response rates in ALL range from 70 to 94% but
are lower in diffuse large B cell lymphoma with 40 to 57%
(see Table 1).

In addition, Tecartus (brexucabtagene autoleucel) has
been approved in 2020 by the FDA and EMA for r/r
mantle cell lymphoma [29, 30]. It utilizes the same anti-
CD19 CAR as Yescarta and achieved a complete re-
sponse in 67% of patients in the clinical trial that led
to its regulatory approval [31].

More than 200 CAR T cell products are currently being
evaluated in clinical trials for a variety of different targets in
both hematological and solid malignancies, with more than 40
trials started in 2020 alone [32, 33]. For example, anti-BCMA
CAR T cells have shown promising results in multiple mye-
loma patients and are currently under regulatory review [34].
Most studies use patient-derived autologous T cells, while a
minority uses allogeneic T cells from healthy donors.
Allogeneic T cells on the one hand hold the promise
of a standardized off-the-shelf product with lower costs
and the added option for repeated infusions. On the
other hand, they need to include additional genetic mod-
ifications to lower the risk of graft-versus-host disease
and alloimmunization [3••].

There is certainly more to come from CAR T cells as anti-
cancer therapeutics. This growing potential, and how it com-
pares to that of BiAb therapy, are outlined below.

Comparison of CAR T Cells and BiAb

Both CAR and BiAb approaches are distinctly advantageous
in their own right. Although a clinical trial comparing these
approaches within the same cohort for the same indication is
still lacking, it remains important to compare and contrast
these approaches. This is what we aim to outline in this sec-
tion, highlighting differences in their mode of action,
manufacturing, and clinical applications.

Signals Provided for T Cell Activation

Optimal T cell activation requires three signals: signal 1 is
normally provided by the T cell receptor (TCR)-major histo-
compatibility complex (MHC) interaction, signal 2 through a
co-stimulatory receptor on the T cells binding its ligand on
antigen-presenting cells or target cells, and signal 3 by cyto-
kines such as interleukin (IL)-2, IL-7, and IL-15 [3••, 35].
CAR activation itself provides signal 1 through the CD3ζ
intracellular domain and signal 2 through the co-stimulatory
domains. BiAb only provide signal 1 by activating the CD3
receptor [3••, 35]. As CAR T cells are stimulated with cyto-
kines during manufacturing, thereby providing signal 3, they
have an additional advantage regarding T cell activation [35].
This may contribute to the fact that, based on the currently
approved products, CAR T cells are considered more effica-
cious than blinatumomab (see Table 1).

Immune Synapses and Killing Mechanisms

BiAb-induced immune synapses formed between T cells and
antigen-expressing target cells are very similar to the classical
cytolytic immune synapse formed via the TCR-MHC interac-
tion (Fig. 1a, b) [36]. In contrast, CAR T cells form an atypical
synapse which is smaller and less organized and induces
faster, stronger, and shorter signaling compared to the classi-
cal immune synapse (Fig. 1c). It alsomediates faster target cell
lysis by accelerated recruitment of lytic granules to the synap-
se and more rapid T cell detachment [37].

CAR T cells can kill antigen-expressing tumor cells via the
release of cytotoxic granules containing perforin and
granzymes, through the Fas-FasL pathway, and by sensitizing
the tumor stroma following the release of pro-inflammatory
cytokines [5•]. CAR activation was shown to upregulate FasL
on T cells [38], and interferon-γ stimulation leads to Fas up-
regulation on some colon carcinoma cell lines and increased
their susceptibility to CAR T cell–mediated killing [39]. BiAb
are known to induce cytotoxicity via perforin and granzyme B
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[40]. Both BiAb and CAR T cells can mediate serial tumor
cell killing [3••]. Interestingly, both strategies could mediate
lysis of antigen-negative tumor cells that were in direct contact
with antigen-positive cells, most likely involving the Fas-FasL
axis in both cases [41, 42]. This suggests that Fas-FasL–based
killing can also be mediated by BiAb.

Antigen Spreading

Following antigen-specific tumor cell lysis, the released anti-
gens may be taken up by dendritic cells and cross-presented to
T cells, priming additional T cell responses in a process
known as antigen or epitope spreading. There is evidence
demonstrating that tumor-specific CD8+ T cells can mediate
this process [43]. After treatment with mesothelin-specific
CAR T cells, novel antibodies in two cancer patients could
be detected using high-throughput serological analysis and
immunoblotting. Both patients showed clinical antitumor ac-
t iv i ty fol lowing treatment despi te not receiving
lymphodepletion therapy before CAR T cell infusion [44].
Another study could show that clonal expansion of endoge-
nous T cells could be induced by anti-mesothelin CAR T cells
in several solid tumor patients, which was detected by deep
sequencing of the TCR beta chain. This was not observed in
patients receiving lymphodepletion prior to CAR T cell

transfer [45]. Taken together, these studies show that CAR T
cells can induce broadening of humoral responses as well as T
cell epitope spreading in patients, effects that appear to be
hampered by lymphodepletion. An example of epitope
spreading has also been reported for BiAb therapy. A BiTE
targeting Wilms’ tumor protein (WT1) led to the expansion of
secondary T cell clones (with specificity for tumor-associated
antigens other than WT1) in in vitro co-cultures of patient
PBMCs with autologous tumor cells [46].

CD4+/CD8+ T Cells and T Cell Phenotype

For both CAR T cells and BiAb, CD4+ T cells not only
provide support for CD8+ T cells but have been shown
to be directly cytotoxic [47•], although in a slower fash-
ion. Further, CD4+ CAR T cells are less prone to
activation-induced cell death [1•] and persist longer
in vivo [48].

While less differentiated CAR T cells (naïve, stem cell
memory, central memory) show better efficacy in vivo, it is
mainly antigen-experienced T cells (effector memory) that
mediate lysis via BiAb [2••, 47•, 49•]. Interestingly, BiAb
have even been shown to redirect regulatory T cells to kill
tumor cells [50].

Fig. 1 Schematic presentation of the interaction between T cells and
tumor cells via a TCR, a BiAb, a CAR, and a SAR in combination with
a BiAb. a A CD8+ T cell recognizes a tumor cell presenting a peptide
from a tumor antigen on MHC class I via its TCR. b A BiAb mediates T
cell recognition of a tumor cell by binding to both an antigen on the T cell
surface, most commonly CD3, and a tumor cell surface antigen. cAT cell
genetically modified to express a CAR binds a surface antigen expressed

on the tumor cell via the scFv domain of the CAR in an MHC-
independent manner. d A SAR-transduced T cell interacts with a tumor
cell via a BiAb binding the SAR extracellular domain and a tumor cell
surface antigen. BiAb, T cell redirecting bispecific antibody; CAR,
chimeric antigen receptor; SAR, synthetic agonistic receptor; TCR, T
cell receptor
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Manufacturing

One of the greatest differences between the two strategies is
the manufacturing process. Thus far, CAR T cells have to be
produced individually for each patient, a costly and laborious
process (2 to 4 weeks) spanning lymphocyte apheresis to re-
infusion, during which the disease may progress [49•]. After
leukapheresis, patient T cells are isolated and activated before
they are genetically modified with the CAR construct and
expanded [51]. After quality testing, the product is shipped
to the patient, who is pre-conditioned with lymphodepleting
chemotherapy before CAR T cell infusion.

Lymphodepletion is not required prior to BiAb treatment.
Additional obstacles for CAR T cell therapy include the chal-
lenge of achieving sufficient T cell numbers following
leukapheresis and ex vivo expansion of the transduced T cells
[52, 53].

In contrast, BiAb are off-the-shelf biologics that are easier
to produce recombinantly and purify.

They bear the additional advantage of facile dose manage-
ment, which is often challenging or not possible in the CAR T
cell setting. However, based on the currently approved prod-
ucts, CAR T cells seem to be more efficacious than
blinatumomab (see Table 1).

T Cell Expansion and Persistence

Another major difference between CAR T cells and BiAb is
the reliance on T cell expansion and persistence. While CAR
T cells greatly rely on CAR T cell expansion, which can be
higher than 1000-fold [54], T cell expansion is less important
for BiAb because any antigen-experienced T cell can be en-
gaged for tumor cell killing [47•]. With respect to recurrence
after successful therapy, CAR T cells possess the advantage
that they can engraft long term in the patient and thus attack
recurring tumors, while BiAb action is abolished shortly after
the last infusion [47•]. The impact of gene editing approaches
on the production of a more refined CAR T cell product will
broaden this disparity in years to come [55].

Adverse Events

There are twomain adverse events, one being CRS, a systemic
response caused by antigen-specific T cell activation and sub-
sequent release of pro-inflammatory cytokines. The other is
neurotoxicity, otherwise referred to as immune effector cell–
associated neurotoxicity syndrome (ICANS) [56]. CRS is
generally more frequent and severe in CAR T cell therapy
(see Table 1), often occurring in the first days after treatment
and correlating with disease burden [3••, 57, 58]. CRS and
ICANS are currently managed using an IL-6 receptor-
blocking antibody (tocilizumab) and corticosteroids. To re-
duce these adverse events, pre-treatment with dexamethasone

and step-up dosing have proven successful for blinatumomab,
while split dosing has been tested in the CAR T cell setting
[3••]. In addition, on-target off-tumor toxicities can be a major
concern that depends on the expression profile of the targeted
antigen in healthy tissues. In the case of B cell malignancies
treated with anti-CD19 BiAb or CAR T cells, the consequent
B cell aplasia has been largely manageable by the infusion of
immunoglobulins [59, 60].

Relapse

Despite high initial response rates, many patients relapse after
anti-CD19 CAR T cell or blinatumomab treatment (see
Table 1). However, the rate of CD19-negative relapses after
initially successful therapy seems to be higher in CAR T cell–
treated patients than in blinatumomab-treated patients (see
Table 1). It is important to remember that blinatumomab is
often used as a bridge to allogeneic stem cell transplantation.
Such a transplantation would rather be the choice (if available)
in case of relapse in spite of CAR T cell treatment [61, 62].
Along these lines, differences in antigen-loss variants might
simply be a reflection of a lower treatment pressure with
blinatumomab compared to CAR T cells [2••]. Many ap-
proaches that are currently in development aim to improve
either therapy alone or combine the best of both approaches
in efforts to develop novel solutions. These perspectives and
their potential are discussed in the final section below.

CR complete remission, CRh CR with partial hematologic
recovery, CRi CR with incomplete hematologic recovery

Future Perspectives

Despite the high efficacy of CAR T cell and BiAb treatments,
several hurdles continue to hamper their broader applicability.
To tackle treatment-related toxicity, which has been especially
problematic for CAR T cells (see Table 1), many approaches
have been developed to improve their safety by making them
more controllable (see Table 2). In addition, many CAR T
cell– or BiAb-treated patients relapse due to antigen escape
and, in the case of CAR T cells, limited persistence of the
transferred T cells. This, alongside tumor antigen heterogene-
ity, has prompted the development of modular approaches
combining T cells engineered with a CAR-like synthetic re-
ceptor and BiAb adapters targeting this receptor and a tumor
antigen (see Table 2). These have the flexibility to redirect
engineered T cells toward multiple targets [82].

Among these platforms are the universal CAR (UniCAR)
[83•], split universal and programmable (SUPRA) CAR [84•],
switch CAR [85•], and the synthetic agonistic receptor (SAR)
developed by our lab (Fig. 1d) [86•]. The activity of the mod-
ular CAR T cell can be controlled by the affinities of the two
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binding sites, as well as the half-life and dosing of the BiAb to
limit side effects while retaining antitumor efficacy.

In addition, multiple tumor antigens can be simultaneously
or sequentially targeted to address antigen heterogeneity and
reduce antigen escape [82]. Moreover, by administering de-
coys for the CAR adaptors, their activity can be controlled
even more tightly [84•]. Interestingly, Viaud et al. could en-
hance memory T cell formation by including “rest” phases
between dosing cycles of the CAR adapter [87•]. It is impor-
tant to note that while advantageous in terms of controllability,
short half-life formats of BiAb mean that regular infusions
will be required. Combining CAR T cells and BiAbwill likely
present hurdles in the form of practicality and cost. Therefore,
CAR adaptors will most practically be useful in the context of
an “off-the-shelf” universal allogeneic CAR T cell line that
can be combined with different adaptors for different tumor
antigens.

Translating the success of BiAb and CAR T cell therapies
to solid cancer indications poses additional challenges. As a
result, attempts to improve T cell recruitment into the tumor
render T cells more resistant to the immunosuppressive tumor
microenvironment and target antigen heterogeneity among
tumor cells are currently underway (see Table 2). One note-
worthy strategy presented by Choi and colleagues employs
engineered CAR T cells to secrete BiAb targeting a second
tumor antigen to treat glioblastoma. They could show this to
be a promising approach in a mouse model which shows
antigen-negative relapse when CAR T cells alone are
employed [88•]. Trafficking of CAR T cells may be enhanced
by equipping them with, e.g., chemokine receptors for
chemokines expressed in the tumor [89•]. Trispecific antibod-
ies targeting CD3, a tumor antigen, and a checkpoint molecule
have been shown to counteract immunosuppression [90•].

Table 2 provides an overview of the current strategies be-
ing developed to overcome the aforementioned challenges of
CAR T cells and BiAb.

Conclusion

Despite the apparent overlap between CAR T cell and BiAb
approaches (such as their application to target the same anti-
gen for some of the same indications), it remains clear that
both therapies offer distinct benefits. The emergence of treat-
ments that combine the best of both the CAR and BiAbworlds
highlights this, as shown by SAR T cells that utilize BiAb to
enable selective and modular control over T cell activation.

Nevertheless, both CAR and BiAb approaches continue to
be developed in their own right, with advancements address-
ing the shortcomings of either approach. Combining BiAb
with bispecific 4-1BB agonists is one such example, where
the lack of a co-stimulatory signal 2 is effectively overcome.
For CAR T cells, various approaches have been developed by

either limiting their activation to the tumor microenvironment,
like the hypoxia-inducible factor (HIF) or synthetic Notch
(SynNotch) CAR, or by making their activation more control-
lable from the outside, e.g., by administering small molecules
or antibodies to activate or inhibit CAR T cell activity.

Due to the speed at which both therapies have gained
regulatory approval, mechanistic insights into the drivers
of treatment efficacy, disease relapse, and treatment-
related toxicities are only now being uncovered.
Translating these insights from bench to bedside in a
timely and effective manner will be important to
achieve greater patient benefit.

Abbreviations A2A, Adenosine 2A Receptor; BCMA, B Cell
Maturation Antigen; CCL, C-C Motif Chemokine Ligand; CCR, C-C
Motif Chemokine Receptor; CEA, Carcinoembryonic Antigen; CiTE,
Checkpoint inhibitory T cell-Engaging; CTLA-4, Cytotoxic T
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