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Abstract: Climate change has resulted in food insecurity for the majority of farming communities in
the Sudano-Sahelian zone of Mali. In this paper, we present a methodology for scaling climate-smart
agriculture (CSA) technologies such as Contour Bunding (CB), Microdosing (MD), Intercropping (IC),
Zaï pits, and Adapted crop Variety (AV) treatments, and evaluated their contribution to smallholder
households’ food self-sufficiency. We used the participatory technology selection method and on-
farm demonstration in order to tackle farm-related constraints. The study found that there has been
a major shift in the spatial distribution of land use/land cover (LULC) classes between 2016 and
2020. About 25% of the areas changed from other land use/land cover to cropland. Crop yields
obtained from CSA-treated fields were significantly higher than yields from farmers’ practice (FP).
The application of CSA technologies resulted in millet yield increases by 51%, 35%, and 23% with
contour bunding (CB), microdosing (MD) and intercropping (IC), respectively. With Zaï pits and
adapted variety (AV) treatments, the yield increases were 69% and 27%, respectively. Further, the use
of IC and MD technologies reduced the food-insecure household status to 13%, which corresponds
to a food insecurity reduction of 60%. The application of Zaï technology reversed the negative
status of food-insecurity to +4%, corresponding to a reduction in food insecurity of more than 100%.
In the case of food-secure households, the application of CSA technologies led to increased food
production. However, notwithstanding this, prospects for CSA in the Sahel hinge on the capacities
of farming households and local extension agents to understand the environmental, economic and
social challenges in the context of climate change, and consequently to self-mobilize in order to select
and implement responsive technologies.
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1. Introduction

Agriculture is the mainstay of the household economy in the Sudano-Sahelian zone
of Mali. Farmers practice traditional farming systems, enduring difficult agroecological
conditions such as soil-related constraints [1], high climate variability [2,3] as well as labor
and land constraints [4]. In addition, public services are handicapped by inadequate
infrastructure and inappropriate agricultural policies [5] and limited access for farmers to
specialized knowledge [6] and innovations [7].

Climate change brings new threats to this scenario, portending a potential decrease in
yields by up to 41% in the 21st century due to future warming and rainfall variabilities [8–11].
Rapid population growth is another factor that is putting greater pressure on farmland
and natural resources management, leading to the fragmentation of small landholdings
and overexploitation as well as the degradation of land [12,13]. These challenges affect the
livelihoods of farming communities and have resulted in a situation of food insecurity in
which a large fraction of the population is facing hunger and malnutrition [14]. In the Sahel,
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self-sufficiency with regards to cereals is projected to drop from 80% to below 40% by 2050
due to future crop yield changes [15]. In such a situation, the survival of the people in these
communities depends on the effective adaptation of agriculture to climate change [16,17].

In the face of this challenge, the primary solution promoted within the agricultural
development community is to intensify agricultural production [18] whilst at the same
time minimizing the adverse impacts of climate change on the whole range of farming
systems [19]. Climate-smart agriculture (CSA), a concept developed by the Food and Agri-
culture Organization of the United Nations [20], has been proposed as a mainstream oppor-
tunity to improve food and livelihood security in the Sahel zone [21]. It aims at increasing
agricultural productivity and farmers’ incomes, strengthening the resilience of ecosystems
and livelihoods to climate change and reducing greenhouse gas emissions [22,23]. Al-
though CSA is a relatively new concept to stakeholders, its practices are already embedded
in many indigenous farming systems, helping farmers in producing food in the context
of a changing climate [24]. For instance, water harvesting practices such as Zaï pits [25],
the half-moon technique, and contour bunding [26] have been developed for the Sahelian
region and recently implemented in the Sudanian zone—however, with little consideration
of the farm-based context. In the region recently, CSA research has resulted in the develop-
ment and dissemination of potential technologies such as solar-powered drip irrigation
systems, agriculture insurance, climate information systems, the development of national
and regional climate change action plans and policies which represent new opportunities
for farmers to adapt and reduce climate-related risks.

This study focused on the scaling of CSA technologies—while taking into account local
communities’ capacity and farmers’ field constraints—to aid adaptation to climate change
and augment smallholders’ household food self-sufficiency by increasing agricultural
production. This study aimed to evaluate the contribution of CSA technologies to achieving
smallholders’ household food self-sufficiency in the context of climate change in the Sudano-
Sahelian region of Mali.

2. Materials and Methods
2.1. Study Site and Approach to Implementation

To carry out this study, we implemented activities in 30 villages proportionately
distributed across three regions, Koulikoro (13◦56′41′ ′ N, 7◦37′28′ ′ W), Mopti (14◦29′54′ ′ N,
3◦11′09′ ′ W) and Segou (13◦22′05′ ′ N, 5◦16′24′ ′ W) (Figure 1). Mopti is a region located
in the Sahel zone of Mali with a mean annual rainfall of 500 mm. The first planting here
occurs in early July. The Koulikoro and Segou regions are located in central and southern
Mali and both have a mean annual rainfall in the 700–800 mm range. In these regions, the
first planting occurs in June.

Village selection for this study was done with reference to the global vulnerability
index of Mali. Communities with a vulnerability rank in the range of 40–60% compared
to the national average of 35% [27,28] were selected for the study. Prior to implementa-
tion of activities, a three-day training program on CSA technologies was organized in
each region. In each study village, five farmers were trained to be trainers who in turn
instructed 35 other farmers. This made a total of 1200 farmers in the 30 study villages.
Technology selection was participatory [29] and based on the reciprocal commitments
of partners: (i) farmers agreed to provide land for the demonstration of field activities,
and performed services such as planting, weed control and harvesting; (ii) the research
team consulted the farmers about their problems and provided list of technologies such as
zaï pits, contour bunding, microdosing, cereal-legume intercropping, tree-crop-livestock
systems, high yielding, drought resistant seeds, and rainfall forecasting systems. For each
given technology, the pros and cons have been discussed in the plenary meetings. (iii) The
farmers selected the technologies according to the specific constraints of their field such
as poor soil fertility, poor water retention, inter-seasonal dryness and low crop yields;
(iv) the research team and the farmers collaborated in conducting and monitoring the field
demonstration which consisted of field delimitation, planting and grain weighing.
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Mali (2018).

2.2. Spatial Land Use Land Cover Map Using Satellite Imagery

A land use land cover (LULC) map of the study area was prepared using Sentinel-2
time series normalized difference vegetation index (NDVI) imagery (10 m resolution) for
the months of 2016 and 2020 (12 layers for each year) and the methodology of mapping
cropland areas [30,31].

The process starts with extracting the NDVI from the satellite imagery, followed by
classifying the images using unsupervised ISOCLASS cluster Isodata classification with
an average size of classes of 40 and 40 iterations to reach the convergence threshold of
0.99. Unsupervised classification helps in capturing various LULC types and extracting
the signatures of every class. The spectral profiles/signatures generated from the initial
40 unsupervised classes were identified as different classes and labelled on the basis of bi-
spectral profiles, Sentinel-2 NDVI time-series plots, ground survey data and high-resolution
images (Google Earth). The classes were then grouped and finally labelled based on class
similarities. If any disparities were found in the classification, that particular class was
masked and the process was repeated until a fine classification map was obtained. Most of
the classes were thus identified, even though there can be some mixed classes [32].

2.3. CSA Technologies Implemented by Farmers

Contour Bunding: Contour bunding (CB) technology consists of erosion control
structures built in lines along the natural contours of the land after removing 10–15 cm of
soil for each line. In our study, CB structures were built to a height of 20–30 cm and spaced
20–50 m apart depending on the slope of the farm land. Field demonstrations of contour
bunding were carried out with 97 farmers who applied the technique on 182 ha across the
three regions.

Microdosing: Microdosing involves applying small amounts of mineral or organic
fertilizer to the planting hole or pocket at the time of sowing or about two to three weeks
following crop emergence. Since most farmers cannot afford large investments in soil
fertility management, this technique is considered a low-cost fertilizer application option for
smallholder farming. Among the surveyed farmers, 169 applied microdosing technology
over 418 ha.

Zaï pits: Commonly called towalen in Mali, Zaï pits are a soil rehabilitation system
that concentrates runoff water and organic matter in small seed pits (10–15 cm deep,
average diameter 20–40 cm). The pits’ inter-row distance was 0.8 m against the 0.5 m pit
distance within rows. The pits are dug manually during the dry season ahead of the rainy
season [25]. A handful (≈0.3 kg) of animal manure or compost is placed in each pit, which
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adds up to about 9.5 t ha−1. Our field demonstration of Zaï pits was carried out with
154 farmers applying this technique on 129 ha across the three regions.

Intercropping: Farmers’ technique consists of randomly mixing cereals and legumes
within sowing lines. In contrast, intercropping (IC) technology involves sowing two or
three lines of the main crop, say millet, separated by one or two lines of a legume, either
cowpea or groundnut. The number of lines sown depends on a farmer’s priorities. For this
study, 194 farmers applied intercropping on 192 ha.

Adapted variety (AV): Alternatively, millet seed of the Toroniou variety were given to
farmers for demonstration. Toroniou is a short-duration variety with a sowing-maturation
duration of 80 days. Our evaluation of this improved millet variety was carried out with
373 farmers who applied the technique on 374 ha across the three regions.

2.4. Farmers’ Practice

Our study also monitored Farmers’ Practice (FP) as a control treatment in the plots
adjacent to the CSA technology plots. Farmers carried out cropping operations (e.g.,
planting, weeding, hilling, ridging, harvesting) in both CSA and FP fields. Small variations
in planting dates were allowed to accommodate labor availability. Farmers’ practice is
mainly based on direct sowing with limited tillage. Millet receives no or limited supply of
mineral fertilizer.

A follow-up in the form of a formal survey was carried out with the same farmers
who conducted the experiments in order to evaluate their perception of the efficiency of
each technology and to classify the constraints and difficulties encountered during the
implementation process. Based on our understanding of local farming systems, responses
of farmers were translated into scientific variables.

2.5. Field Monitoring and Survey for Quantitative Evaluation

Field monitoring was carried out by 10 field technicians, each in charge of three vil-
lages. The field technicians were responsible for monitoring the setup of the demonstration
plots and providing advice to farmers during the cropping season. The households were
characterized after determining the population size and disaggregating by gender, land
area (ha) and yield (kg ha−1) under CSA technology and control treatments.

2.6. Assessment of Household Food Self-Sufficiency

Our approach to assessing household food self-sufficiency was based on an analysis
of the total energy produced and energy required, expressed as kcal household-1 year-
1 [33,34]. Total energy produced (kcal) was calculated on the basis of the mean crop
yield, total land available per household, and population [34]. Energy requirement was
calculated on the basis of the number of household members and the average daily energy
requirement per person (2450 kcal per person per day for adults and 1775 kcal per person
per day for children under the age of 11).

Donations and food exchanges were not taken into account. The ratio of total energy
available to households yearly to total energy needs was used as an indicator of food
security [35]. When this ratio is negative, it signifies food insecurity; when it is positive,
it indicates that food is affordable and people are food-secure.

2.7. Statistical Analysis

For the evaluation of technologies, statistical analysis was done for mean separation
using the p value of 5% significance. After the field day visit and crop harvesting a survey
was conducted to evaluate the percentage of farmers who liked or disliked one technology
in relation to the other. In total, 97 and 169 farmers, respectively, were interviewed on
contour bunding and microdosing application while 154 and 194 farmers, respectively,
were interviewed for zaï pits and cereal legume intercropping. Comparisons between
technologies were performed in order to identify context-based solutions. Effects were
considered significant at a probability level of ≤0.05.
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A total of 60 farmers participated in the preferred classification of CSA technologies [36,37].
A set of the five CSA technologies was listed in the schedule and the preference level of each
technology was recorded as highly preferred, moderately preferred and least preferred with
their respective scores being 3, 2 and 1. The relative preferences of CSA technologies were
worked out by ranking techniques based on their mean cumulative scores. The weighted
mean score (WMS) for each technology was obtained by multiplying the frequencies with
their respective scores, adding them up and dividing by the total number of respondents
as follows:

Weighted mean score (WMS):
∑ sifi

n
where:
fi = frequency of the respondents for each CSA technology;
Si = score of the CSA technology;
i = 1, 2 or 3;
n = total number of respondents.

3. Results
3.1. Spatial Distribution of Land Use/Land Cover

Figure 2 shows the spatial maps for the years 2016 and 2020 indicating the major land-
use classes at two study sites, Sio and Benena. The major classes are irrigated croplands
and rainfed croplands; the others are mixed due to the complexity of the LULC pattern
and also the water bodies. Sio has irrigated croplands, wetlands and water bodies whereas
Benena has rainfed croplands and a mixed class of rangelands and croplands.
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As can be seen in Table 1, the areas of the various LULC classes in Sio and Benena
show significant changes from 2016 to 2020—mainly to the irrigated croplands, rainfed
croplands and mixed classes. In Sio, there is an increase in the area of irrigated croplands
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(from 16,311 ha to 20,354 ha) and a decrease in rainfed croplands (from 3977 ha to 1426 ha).
Further, the decrease in the area of wetlands indicates a conversion of wetlands into
croplands. Benena, on the other hand, shows a mixed trend, mainly a decrease in the extent
of rainfed croplands and the conversion of rangelands/barren lands into mixed cropland.
This indicates very small fields and an absence of continuous farming in such fields.

Table 1. Area (ha) of various LULC classes (for the years 2016 and 2020) in two study sites.

LULC Class
2016 2020

Benena Sio Benena Sio

1. Irrigated croplands 75 16,311 75 20,354
2. Rainfed croplands 7736 3977 6187 1426
3. Rangelands/crop mixed 12,227 2058 27,058 3445
4. Barrenland/crop mixed 5342 6016 14,757 1802
5. Shrublands/grasses 26,670 15,206 1392 16,216
6. Barrenlands/shrubs 1250 5766 4003 9835
7. Barrenlands/wetlands 332 3897 160 1280
8. Settlements 7 227 26 389
9. Water bodies 15 1660 0 871

3.2. Household Characterization

The mean household size ranged from 17 to 24 people. There is 40% unemployment
compared to the total population size in the Koulikoro, Mopti and Segou regions (Table 2).
The proportion of the inactive population, i.e., those not directly contributing to agricultural
activities, is high in households across the three regions.

Table 2. Household (HH) population and cropping land (ha) across the Koulikoro, Mopti and Segou regions.

Region Male Female HH
Labor HH Size Ground

Nut Cowpea Maize Millet Sorghum HH
Land (ha)

Koulikoro 11.34 9.44 12.68 20.78 1.2 0.5 0.7 4.2 2.0 8.7
Mopti 12.76 11.64 15.71 24.39 1.5 1.1 0.5 8.8 2.4 14.2
Segou 9.05 8.13 10.41 17.18 1.0 0.6 0.7 3.5 1.6 7.5

Mean 11.05 9.74 12.68 20.78 1.25 0.74 0.64 5.48 2.03 10.14

3.3. Evaluation of Millet Grain Yield under CSA Technologies and Farmers’ Practice
3.3.1. Contour Bunding Technology

Millet grain yields under the contour bunding practice were less than 700 kg ha−1 in
the 25% trial across the three regions, while in the 75% trial, they were below 1700 kg ha−1

in Koulikoro and Segou and 2000 kg ha−1 in Mopti (Figure 3). In contrast, in the control
treatment, yields were less than 400 kg ha−1 in the 25% trial, and below 1000 kg ha−1 in
Segou and Mopti and 1500 kg ha−1 in Koulikoro in the 75% trial. Statistically, yields under
contour bunding were significantly higher than yields in the control treatment, with a
difference of more than 385 kg ha−1 (Table 3). In Koulikoro, however, the yield difference
was not significant.

Across the three regions, 30–40% of the farmers appreciated the CB technology because
of its benefit of water conservation, while 10–25% of them cited reduction of soil erosion
as the main benefit (Figure 4). On the other hand, 32% of the farmers, especially those
in Koulikoro, said the need for repeated annual maintenance of the technology was a
major constraint to its long-term use. In Segou and Mopti, 25% and 32% of the farmers,
respectively, said the lack of adequate technical skills and appropriate equipment were
major constraints to the implementation of CB technology.
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Table 3. Millet yields (kg ha−1) obtained under climate-smart practices and farmers’ practice in the
Koulikoro, Mopti and Segou regions. SED (Standard Error of Difference of mean).

Koulikoro Mopti Segou Overall

Contour bunding 1197 1155 1072 1135
Farmers’ practice 1052 721 689 750
p value 0.64 0.002 0.156 0.001
SED 304.5 138.1 265.2 117

Microdosing 1113 700 1024 920.3
Farmers’ practice 704 567 810 681.2
p value 0.001 0.196 0.116 0.001
SED 122.7 102 134.6 119.2
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Table 3. Cont.

Koulikoro Mopti Segou Overall

Intercropping 889 1063 498 1048
Farmers’ practice 735 1194 912 851
p value 0.240 0.218 0.015 0.008
SED 130.1 105.7 164.2 73.57

Zaï 1111 2111 1182 1330
Farmers’ practice 542 1406 683 788
p value 0.05 0.001 0.001 0.001
SED 270.0 169.8 109.0 88.80

Adapted variety 883 1080 994 1009.7
Farmers’ practice 608 923 747 797
p value 0.004 0.028 0.001 0.001
SED 94.0 71.3 70 44.74
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3.3.2. Microdosing (MD)

Under the microdosing practice, millet yields were less than 500 kg ha−1 in the 25%
trial, and below 1600 kg ha−1 in the 75% trial in Koulikoro and Segou. For the control
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treatment, yields were less than 400 kg ha−1 in the 25% trial, and below 1000 kg ha−1 in the
75% trial (Figure 3). Mean yields obtained under microdosing in the Koulikoro and Segou
regions were, respectively, 1113 kg ha−1 and 1024 kg ha−1 (Table 3). Statistical analysis
showed that yields obtained under microdosing in Koulikoro and Segou were significantly
higher (p < 0.001) than yields obtained with the control treatment, by 409 kg ha−1 and
259 kg ha−1, respectively. In the Mopti region, yields for the MD practice and control
treatment did not differ significantly.

With regard to farmers’ perceptions of microdosing, 38% in Segou and 28% in Mopti
said the technology facilitates access to nutrients, thereby aiding rapid plant development
and resulting in a good yield (Figure 4). Moreover, MD technology allows a farmer to cover
a larger extent of land with an optimum amount of mineral fertilizer. In contrast, 18% of
the farmers in Koulikoro and 12% in Segou said the application of MD technology required
a lot of effort and was time-consuming.

3.3.3. Intercropping

Yield distribution under the intercropping system showed that in the 50% trial, yields
varied from 700 kg ha−1 to 1200 kg ha−1 in Koulikoro and Segou, and from 700 kg ha−1 to
1600 kg ha−1 in Mopti (Figure 3). For farmers’ practice in the 50% trial, the yields varied
from 300 kg ha−1 to 1100 kg ha−1 in Koulikoro and from 250 kg ha−1 to 700 kg ha−1 in
Segou. Statistical analysis showed that yields under the intercropping system were signifi-
cantly higher than under farmers’ practice—the difference being +197 kg ha−1 (Table 3).
However, the yield difference was not significant in the Koulikoro and Mopti regions.

Asked about their perceptions of intercropping technology, 35–38% of the farmers in
the study regions appreciated the technology not only because of the dual grain/biomass
benefit but also as a diversification strategy. The intercropping of three rows of millet
and two rows of cowpea facilitates harvesting and reduces biomass losses compared
to traditional cropping systems. However, 20% of the farmers in Koulikoro said the
application of intercropping technology requires more time.

3.3.4. Zaï

Across the three regions, yield variability was higher with the Zaï practice compared
to farmers’ practice (Figure 3). Under the Zaï treatment, yields from the 50% trial varied
from 500 kg ha−1 to 2000 kg ha−1 in the Koulikoro and Segou regions, while in Mopti the
yield was 2000–2500 kg ha−1. Under farmers’ practice, the 50% trial yield varied from
450 kg ha−1 to 650 kg ha−1 in Koulikoro and Segou, and from 1000 kg ha−1 to 2000 kg ha−1

in Mopti. Across the three regions, mean yields obtained under the Zaï practice were
significantly higher than under the farmers’ practice (p < 0.001), with a grain gain of
+542 kg ha−1. In Mopti, this difference reached +700 kg ha−1 (Table 3).

Farmers appreciated the Zaï technology because of its water conservation capacity
enhancement and nutrient availability, which led to crop development and higher yields
(Figure 4). In addition, 40% of farmers appreciated the technology’s potential to regenerate
degraded land through the rational use of organic matter. On the other hand, despite
these advantages, all farmers acknowledged that the application of Zaï technology is
time-consuming, requiring additional labor and time input.

3.3.5. Adapted Variety

In the treatment with the adapted variety of millet, yields from the 50% trial varied
from 450 kg ha−1 to 1200 kg ha−1 in Koulikoro and Segou and from 500 kg ha−1 to
1200 kg ha−1 in Mopti (Figure 3). For farmers’ practice, yield from the 50% trial varied from
350 kg ha−1 to 450 kg ha−1 in Koulikoro and Segou and from 600 kg ha−1 to 1200 kg ha−1

in Mopti. The mean yield obtained under the AV treatment was 1010 kg ha−1, which was
significantly higher (p < 0.001) than that obtained under farmers’ practice, with a yield gain
of +213 kg ha−1. This difference applied to all three studied regions (Table 3).
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Regarding farmers’ perceptions, 25% highlighted that the adapted millet varieties
were short-duration and well-adapted to seasonal rainfall variations with ears well-filled
(Figure 4). Some 20% of the farmers in Mopti and Segou and 12% in Koulikoro said the local
varieties are of long- to medium-duration maturity. For 18% of the farmers in Koulikoro
and 11% in Mopti and Segou, grain filling varied from good to medium.

3.3.6. Millet Grain Yield under CSA Technologies

Among the various technologies implemented by this study in the three regions of
Mali, the adapted variety of millet ranked first with the highest weighted mean score,
followed by microdosing and Zaï pits, with weighted mean scores of 0.76 and 0.63, re-
spectively (Table 4. Contour bunding and intercropping received similar weighted mean
scores and were both ranked fourth. However, statistical analysis of the mean yields
obtained under these technologies indicated no significant difference between them with
the exception of Zaï pits, which gave a yield significantly higher than microdosing (Figure 5).

Table 4. Farmers’ preferences of climate-smart technologies demonstrated in three regions of Mali.

Technology Mopti Koulikoro Segou Total Weighted Score Weigthed Mean Score Rank

Adapted variety 27.8 21.4 25.8 75 1.25 I
Microdosing 8.6 18.4 18.8 45.8 0.76 II
Zaï pits 8.8 5.4 23.4 37.6 0.63 III
Contour bunding 17.6 7.6 9 34.2 0.57 IV
Intercropping 13.8 7.4 12.8 34 0.57 IV
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Figure 5. Mean yields of millet obtained under various technologies. (IC: Intercropping; CB: Contour
bunding; ZAI: Zaï pits; MD: Microdosing; AV: Adapted millet variety. The bars represent the error bar).

3.3.7. Household Food Self-Sufficiency

The food self-sufficiency status of 376 households in the three regions was analyzed
and results showed high variability (Table 5). Over the studied regions, 27% of households
were found to be food-insufficient, with a mean of −32% recorded, which corresponds to
an average availability of 1687 kcal per person per day. On the other hand, 274 households
were found to be food self-sufficient, with a surplus food stock (+98%), corresponding to
an average availability of 4928 kcal per person per day.

Table 5. Household (HH) food self-sufficiency status (% kcal/household) under farmers’ current practice in three regions of Mali.

Region
Number of HH

below Food-Self-
Sufficiency

HH Food-Self-
Sufficiency Status

(%, kcal/household)

Standard
Deviation

Number of HH
above Food-Self

Sufficiency

HH Food-Self-
Sufficiency Status

(%, kcal/household)

Standard
Deviation

Koulikoro 20 −35.49 19.18 60 84.21 77.47
Mopti 42 −29 21.06 123 112.67 83.58
Segou 40 −31.97 23.09 91 96.84 71.04

Mean 34 −32.15 21.11 91.33 97.9 77.36
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Figure 6 shows the change in the food self-sufficiency of households after the appli-
cation of CSA technologies. Under conventional farming practices (control), households
were food-insecure with a mean of −32%; with the application of CSA technologies, the
results showed an improvement in the food status of all households. With the application
of IC and MD technologies, the food-insecure household status was reduced to −13%,
corresponding to a food insecurity reduction of 60%. The application of Zaï technology
reversed the negative status to +4%, corresponding to a reduction in food insecurity of
more than 100%.
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In addition, for food-secure households, the application of CSA technologies led to
extra food production (Figure 7). With the application of IC, CB and MD technologies,
household food gain increased from 100% to 152%, and to 140% for the AV technology,
corresponding to an increase of 50% and 40% respectively. The highest increase was
obtained with Zaï technology, with an average of +193% recorded, representing an increase
of +91%.
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Subsequently, we applied the CSA technologies to the farming systems of 102 house-
holds that were food-insecure (Figure 8). As a result, the application of CSA contributed
differently to their household food security status. For example, the application of Zaï pits
and contour bunding enabled, respectively, 65% and 40% of households to be food-secure
compared to 30–35% for IC, AV and MD technologies.
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4. Discussion
4.1. Yield Gain with CSA Technology Application

The findings of our study showed that yields obtained under CSA technologies were
significantly higher than yields from farmers’ practice. These results are consistent with
regional analyses across the Sahelian countries in West Africa [38–41]. It can be inferred
that, despite constraints such as low soil fertility or rainfall variability, there is still room for
improving crops yield in the Sudano Sahelian region of Mali. The challenge for farmers is
to select an appropriate technology to address a specific constraint. However, another chal-
lenge is the lack of technical knowledge among farmers to implement these technologies.
For instance, contour bunding requires the technical knowledge of drawing the contour line
with a theodolite or use of the water level [26]. To address such constraints, a local NGO,
AMEDD, supports communities that wish to conduct land management on at least 1 ha of
land for a payment of $10—which is affordable to farmers. It adopts a watershed approach,
which requires community participation in landscape management [42]. This example indi-
cates that there is a role for the private sector in this process across all local administrative
regions, and makes it imperative that they be included in local development programs
with the support of national extension services. In the case of the Zaï and microdosing
technologies, all farmers surveyed for our study recognized that their implementation was
time-consuming and required additional effort that includes labor and time input. This
results in a low adoption rate for these technologies [43]. However, we found that this
could also be due to the fact that 40% of the household population is inactive (elder and
children), and who do not directly contribute to agricultural activities, which results in less
farming capacity being deployed to meet the needs of a rapidly growing population [44].
For the time constraint related to the application of the Zaï technology mentioned above, a
mechanized solution was developed [45] involving an animal-drawn tool which reduces by
90% the time required for making the pits [25]. Such technology needs to be promoted and
made available in rural areas, with appropriate training given to local extension services
and private sector entities.

Low millet yields and the high variability seen under farmers’ practice are common
phenomena in the Sahel due to smallholder farming diversity and soil fertility variability
across the different agroecological zones [46]. Another challenge is related to the inappro-
priate application of agricultural practices [3] and low household resource endowment
capacity [47]. In the three study regions, farmers continue to apply organic manure by
spreading it over the entire field even though microdosing would increase the manure
application surface area and have a significant net positive effect on overall farm produc-
tivity [48].
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In the three studied regions, the adoption of technologies goes beyond technical and
financial means and would also depend on the literacy status of the farm household [49].
Farmers have to be first convinced about the problem to be addressed, which would open
the door for governments and development experts to promote farmer education and
extension to improve awareness and impart training for CSA technologies.

4.2. Inter—Comparison of CSA Technologies

Except for the significant yield gains from the application of the Zaï and MD tech-
nologies, the other CSA technologies produced similar millet yields in the studied regions.
However, this result differed from farmers’ own ranking of the technologies, in which
adapted varieties ranked first followed by the microdosing technology. This indicates that
absolute yield is not necessarily the principal technology selection indicator for farmers.
Farmers tend to select a technology that requires less effort, labor and financial resources—
which is particularly due to the fact that the majority of farmers do not have the required
farming equipment [50].

At a regional scale, we found that the yield difference between MD treatment and
farmers’ practice was similar in Mopti as well as between CB and FP in the Koulikoro
region, indicating that a specific technology may not necessarily be climate-smart in all
regions. This is explained by the fact that microdosing is already a common practice in
Mopti, unlike in Segou or Koulikoro, where it is new to farmers. In Koulikoro, the fact
that rainfall recorded during the season varies between 800 mm and 900 mm, under which
there is less water stress for the crop to reach maturity, there needs to be an appropriate
technology like that of contour bunding to reduce farm water runoff and help retain
important nutrients in farm fields.

4.3. CSA Contribution to Household Food Self-Sufficiency

Our results showed a high variability of household food self-sufficiency status, al-
though the target villages for the study had been selected from among some of the most
vulnerable communities. Correlation analyses between household food self-sufficiency sta-
tus and household total cultivable land or total population were not separately significant
(p > 0.05). However, the ratio of household land to household population was significantly
related to food self-sufficiency status (Figure 9), suggesting the inference that the diversity
of food self-sufficiency status among households was the result of the combination of the
means of production, such as land, in relation to the household’s population. Balancing
household food self-sufficiency can therefore occur by adjusting the land/population ratio.
However, given constraints such as difficult access to new land [51,52] and land degrada-
tion [53] linked to cultivable land expansion, these options for improving yields are most
promising and applicable.
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From our results it can be inferred that whatever the household, the application
of CSA technologies would improve household food status—although with differing
contributions from each of the technologies. Households that are in food-deficit can thus
improve their food status, and those that are already food self-sufficient would be able to
generate additional food stocks—which follows a distribution system for supporting social
actions, especially for food-insecure households [54]. These exchanges usually take the
form of hospitality, gift-giving, or barter, and serve as a mechanism for coping with climate
fluctuations and also strengthen social stability by reducing youth migration to cities and
northern countries [55].

With regards to the contribution of CSA technologies to improving household food
self-sufficiency, we can infer that the current food production system in the Sahelian zone
must evolve to adapt to current constraints, especially to face climate change and variability.
This aligns with the Food system transformation initiative [56] led by the CGIAR Research
Program on Climate Change, Agriculture and Food Security (CCAFS), under which climate
smart agriculture (CSA) has a key role to play in driving change through innovative actions
that mainstream the three pillars (productivity/adaptation/mitigation) in an effective
way [24].

Bringing CSA technologies to bear on food security is in principle part of the political
agenda to integrate them into local development programs, especially in highly vulnerable
areas. In addition, this also presents new challenges and opportunities for agricultural
research to better adapt different technologies to local constraints.

5. Conclusions

The study showed that grain yields were higher under CSA technologies, indicating
that there is still a margin for improving crop yields under farming conditions if appropriate
technologies are applied in specific agroecological conditions. The challenge for farmers is
to select an appropriate technology to address a specific constraint. While practicing CSA
technologies, we also need to rethink farming systems by including seasonal and daily
rainfall forecasts which are now more accessible and reliable in many regions.

The study highlighted that climate-smart agricultural technologies improve household
food self-sufficiency status, although their contributions may differ regionally. Households
that are in food deficit can improve their food status, and those that are already food
self-sufficient can generate additional food stocks.

This notwithstanding, the prospects of CSA in the Soudano-Sahel hinge on the capaci-
ties of farming households and local extension agents to understand the environmental,
economic and social challenges in a climate-changing context and consequently to self-
mobilize to select and implement responsive technologies for local communities. The
scaling of CSA faces a number of challenges at the local scale, including the lack of a clear
conceptual understanding of opportunities, thus needing critical attention.

For large adoption of CSA technologies, local extension services and communities
must identify specific agro-ecological constraints and prioritize CSA technologies aligned
with them.
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