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ABSTRACT 
 

LOW-DIMENSIONAL MATERIAL DEVICES FOR ATOMIC DEFECT 

ENGINEERING, IONIC AND MOLECULAR TRANSPORT 

Jothi Priyanka Thiruraman 

Marija Drndić 

With the advancement of nanofabrication techniques and the growth and synthesis of novel 

low-dimensional materials, such graphene and transition metal dichalcogenides, it is 

possible to probe the fundamental principles of ion and molecule transport down to the 

single-atom scale. Understanding these ionic and atomic interactions during molecular 

transport at an atomic level play a pivotal role in developing solid-state aquaporins or bio- 

mimicking artificial membrane proteins channels. Apart from biological processes in living 

cells, ionic transport plays a vital role in membrane-based technologies such as water 

purification, desalination, separation techniques and energy harvesting. This thesis focuses 

on developing low-dimensional devices and creating sub-nanometer pores or point defects 

for exploring molecular and ionic transport phenomena at an atomic scale. Additionally, 

defect engineering of such point defects also has potential quantum applications, including 

quantum sensing and computation. First, I discuss the fabrication process of these low-

dimensional devices, including 2D materials growth, transfer with the help of 

nanofabrication techniques and various characterization modes. Further, in this regime of 

angstrom-scale confinements, I investigate ionic transport phenomenon in monolayer 2D 

materials with single sub-nanometer pore and an ensemble of sub-nanometer pores and 

report experimental results showing strong deviation from continuum physics. 

Macroscopic quantities such as bulk ion concentration for these angstrom-size systems 
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become insufficient to explain features of the measured ion conductance and its scaling 

with experimental parameters such as ion concentration and surface charge of the pore 

(edge atoms).  
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1 Introduction 
 

Some sections of this chapter have been adapted from the invited Perspective publication, 

titled “Ions and Water Dancing through Atom-Scale Holes: A Perspective toward “Size 

Zero”” by J. P. Thiruraman, P. Masih Das, M. Drndić. Cite This: ACS Nano 2020, 14, 4, 

3736–3746 

1.1  Low-Dimensional Materials: A Brief Overview  

With the advancement of the rapidly emerging technology and silicon being the 

frontrunner, there is a constant strive to explore new materials, what could perhaps augment 

this industrially perfected 50-year-old material, silicon? To this end, low-dimensional 

materials have shown tremendous potential and exciting properties that can revolutionize 

the semiconductor research and industry with applications in electronics and optoelectronic 

devices including field-effect transistors, heterostructure junctions, photodetectors, 

photovoltaics, and sensors. This is mainly due the existence of bandgap, semi-metallic, 

superconducting nature of 2D materials.74   

Beyond electronics, low-dimensional materials have an irreplaceable position as the 

thinnest material on this planet! The atomic thickness of the low-dimensional materials 

make is extremely attractive candidate for many research fields working in the similar 

atomic size regime. In this thesis, I presented contributed results to the nascent field of 

nanofluidics which explores the transport of ionic species and fluidics.19 The advent of 

nanomaterials and low-dimensional materials such as graphene, graphene oxide, h-BN, Mo 
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and W based transition metal dichalcogenides and other TMDs have been instrumental in 

investigating this ionic and molecular properties at a nanoscale.  

While pristine low-dimensional devices show impermeability to gas molecules as small as 

helium indicative of the thinnest physical barrier, atomic defects in such 2D materials 

transcend them to contain smallest possible nanopores.152 In the past few years, nanoporous 

atomically thin membranes (NATMs) in 2D materials have shown immense potential to 

transform and redefine mass transport at a nanoscale. 209  

It has been a special and an interesting journey to especially see how the field has evolved 

over the course of my PhD. From just a few papers on graphene showing the ability to host 

nanopores to the enormous experimental and theoretical research articles and dedicated 

conferences held today, is testimony to the potential and promise of these next-generation 

materials.   

Ionic transport is a critical process prevalent in living cells to water filtration systems. Apart 

from membrane-based technologies, bio-mimicking solid-state structure can have a 

tremendous impact on understanding of biological systems. Artificial solid-state structure 

that bio-mimicking protein pores such as membrane protein including K+ and Na+ channels 

which play a critical role for physiological function in living cells, ionic pumps in neurons 

and nephrons, aquaporins which demonstrate superior water permeability and selectivity 

are other possible applications of these angstrom-scale confinements structure.  

 

1.2  Physics of Nanopore Structures and Molecular Interactions  
 
With the advancement of nanofabrication techniques and the growth and synthesis of new 

low-dimensional materials, such as nanotubes and graphene, it is possible to probe the 
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fundamental principles of ion and molecule transport down to the single-atom scale. Many 

different artificial structures have been realized and tested such as low-dimensional 

nanopores and “nanoporous” membranes (See for recent review, Danda et al.33). This is an 

interesting size regime (about 1 nm and below) where single ions and molecules are only 

a few times smaller or even comparable to the characteristics size of the apertures through 

which they translocate and their interactions with the atoms of the structures can be 

significant and govern the types of phenomena observed. The geometrically restricted flow 

of ions and water can give rise to new phenomena where atomistic details become 

important, and that can differ from the leading phenomena at larger scales. The single and 

sub-nanometer scale is also typically a regime where, for many materials, simple 

calculations such as Ohm’s law for ion current vs. pore size, otherwise typically applicable 

for larger pores, fail. Macroscopic quantities such as bulk ion mobilities or bulk ion 

concentration become inadequate and have to be modified within the pores to explain 

features of the measured ion conductance and its scaling with experimental parameters 

such as ion concentration, net charges of the pore “walls” (edge atoms) that depends on the 

pH value. Figure 1.1 illustrates several different types of solid-state fluidic transport 

structures, including examples of 2D material pores34,41,44,46,114,116,139,133,167,235, silicon-

28,158,171,206,213 and hafnium-based104 pores, carbon nanotubes7,169,202, and nanopatterned 

channels39. A concise and useful table comparing main characteristics of notable 2D pores 

has been published by Mojtabavi et al.133 in their paper on MXene pores. Other discussions 

can be found in a review by Danda et al.33 Diameters, d, as small as the sizes of single-

atom-vacancies, on the order of 0.1 nm, can be achieved. Channel length, L, from ~ 0.1 nm 

to 10 µm, corresponds to “pores” vs. “tubes” and “channels”, in order of increasing L.  
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Figure 1.1. Overview of the relevant order-of-magnitude sizes of fluidic transport channels 
and selected examples of recently measured structures. Diameters, d, as small as the sizes 
of single-atom-vacancies, on the order of 0.1 nm, can be achieved. 

(a) Channel length, L, can be tuned from ~ 0.1 nm to 10 µm, corresponding to “pores” vs. 
“tubes” and “channels”, as the dominant terminologies used in recent literature to describe 
such structures.  Note that calculated sizes of water molecules are ~ 0.3 nm and of hydrated 
ions about 0.7 to 1 nm39,149. (b) to (f) Examples of recent experiments and device 
configurations, shown in the order of increasing channel length, from L ~ 1 nm for 
“nanopores” as in 2D pores made of graphene46,130,167, MoS2114, WS234, BN116,235, 
MXenes133, sub-10-nm-thick silicon nitride membranes28,158,171,206,213, and sub-7-nm-thick 
HfO2,104, to L ~ 10 nm, for “ultra-short” carbon nanotubes reported by Yao et al. 221 in this 
issue of ACS Nano, to long nanotubes, L ~ 10 µm7,169, and similarly long, but 100- to 1000-
times-wider nanoslits made by stacking and patterning 2D materials39. Copyrights 2013, 
2017, 2019 of American Chemical Society. Copyright 2017 of American Association for 
the Advancement of Science. 
 
 
 
1.2.1 Solid-State Nanopores 

The ionic conductance of the pore (greater than few nanometers) is inversely proportional 

to the thickness of the membrane as given by:  
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where G is the conductance of the nanopore, ‘σ’ is the electrolyte bulk conductivity, ‘t’ is 

the membrane thickness and ‘d’ is the diameter of the pore. This would mean a thinner 

membrane will give rise to a stronger signal. Atomically thin 2D nanopores can as a result 

provide the maximum available signal owing to the minimum thickness of monolayer of 

atoms. In fact, the equation becomes simpler for 2D materials, as the first term becomes 

negligibly small, and the signal becomes dependent only on the nanopore diameter and the 

electrolyte concentration:  

G = σbulk d  

For the purpose of DNA sequencing, single base resolution is also predicted to be possible 

by using 2D materials, as the thickness of such nanopores approach that of a single base 

thickness (thickness of graphene ∼ 0.3 nm). 

 
1.2.2  Sizes of water molecules and ions and the comparably small apertures: ~ 0.1 

– 1 nm 
 

In addition to the physical size of water molecules and common ions in solution, estimated 

to about ~ 0.3 nm to ~ 1 nm39, 43,149,198, another relevant size scale to consider and compare 

to the characteristic size of the nanostructures is the Debye screening length, lD, which is 

a good estimate of how far the electrostatic effects of unscreened charges will persist (that 

is, the distance at which the electrostatic potential drops by a factor of 1/e). This 

characteristic length scale, obtained from Poisson’s equation, governs the exponential 

decay of the electric potential away from the charges, and describes the screening of a 

charge's electrostatic potential due to the net effect of the interactions it undergoes with the 
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other mobile charges (electrons and ions) in the system. For concentrated ion solutions, 

such as 1 M KCl, this length is calculated to be lB  »  0.3 nm, the size of one water molecule. 

It increases to lB  » 1 nm for 0.1 M KCl, equivalent to about four water diameters, and to 

lB  » 10 nm for 1 M KCl 1–4. Therefore, as the size of the channels and nanostructures 

becomes smaller, it is more difficult for charges to be screened within that space even for 

relatively high ion concentrations and Coulomb interactions become important. An “ionic 

Coulomb Blockade” was first suggested analytically and by means of molecular dynamics 

simulations97 and recently reported for sub-1-nm-diameter 2D monolayer molybdenum 

disulfide (MoS2) nanopores43.  

Another conceptually simple, classical length scale directly related to the Debye length, 

arising in phenomena in electrolytes, polyelectrolytes and colloidal dispersions, is 

the Bjerrum length, lB, the separation at which the electrostatic interaction energy between 

two elementary charges is comparable in magnitude to the thermal energy,162 

λ( =	
)!

"$*"*#+$,
, Eq. 1, 

where kB  » 1.38 ´ 10-23 m2 kg s-2 K-1 is the Boltzmann constant, e = 1.6 ´ 10-19 C is the 

elementary charge, er is the relative dielectric constant, eo is the vacuum permittivity, and 

T is temperature. For water at room temperature er = 80, so that lB  » 0.7 nm. Roughly, we 

may assume that at separations smaller than lB, the Coulomb interaction between unit 

charges in water dominates compared to the thermal energy. The Debye length in 

electrolyte solution, lD ~ 1 +𝜆-𝐼⁄ , where I is the ionic strength, frequently expressed in 

molar (M). 
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Given the values of these characteristic length scales, ~ 0.1- 1 nm, it is not a big shocker 

that some interpretations using equations underlined by assumptions valid only for large-

scale ion flow channels may start to dielectrically breakdown for atom-scale apertures. 

Applying old terminology, concepts and theoretical tools for these new atomic-transport 

problems, may not be applicable here. “All-atom” viewpoints, such as put forth by 

molecular dynamics simulations, analyzing the more realistic movement of atoms and 

molecules and relying on appropriate potential functions, can then be expected to have 

more predictive power than the older, mean-field and many-body approaches. 

Experimental outcomes now frequently depend on the minute details and differences in the 

atomic structures.  The corresponding models and theories should be able to reflect this.  

At the same time, experimental approaches at the atomic scale can also suffer from 

significant errors and deficiencies, such as from contamination of samples, and a generally 

small numbers of samples from which conclusions are drawn, due to challenges with 

working at this scale. Additionally, it is reasonable to assume that there may be some 

preferential selection of devices and/or data that fit preconceived expectations and older 

theories. As we proceed in measuring, rationalizing and theorizing atom-scale devices it is 

important to determine related errors and outline assumptions and limitations. It is with 

these upfront, cautionary notes, that we proceed to discussing recent “atom-scale hole 

measurements”. 

1.2.3  Ionic Selectivity of CNTs, Nanopores and Channels 
 
Many recent experiments were focused on the concept of “ion selectivity”, a calculated 

quantity discussed below, viewed as a particularly important aspect of these systems. 

Increasingly in the recent literature, solid-state nanopores, nanotubes and nanochannels 
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have been reported to be “K+ ion selective” (or “cation selective”) meaning that they only 

or preferentially allow the K+ ions to pass through, while impeding others.  For example, 

recent experiments on a garden variety of pores, tubes and channels made out of a wide 

range of low-dimensional solid-state materials (see Table 1) have been carried out in a 

conventional KCl solution. Carbon nanotubes are excellent candidates for such 

experiments since the surface can be functionalized using appropriate pH for ion selective 

transport. Yao et al. 221, demonstrate successful CNT devices which can be tuned to 

selectively pass K+ ions. They hypothesized that due to the presence of carboxyl groups 

(COO-) at the pore edge, neutral or higher pH helps keep the pore charged, and the pore 

attracts more K+ ions. In contrast, in acidic pH, the negative charge on the pore’s rim 

created by COO- groups is neutralized by COO- becoming COOH).  Additionally, the 

authors also analyze noise properties and power-law dependence of the noise on frequency 

and find a 1/f dependence similar to other solid-state pore such as silicon nitride175 and 

graphene pores130. They report that noise decreases with increasing ion concentrations for 

pH 7.5, for which the pore is charged, suggesting that more screening of the pore charge 

means lower noise.  

 

This concept of “ion selectivity” is analogous and borrowed from the field of ion channels 

and ion pumps found in nature45,161, that already existed at these small scales before the 

solid-state structures were possible. These are, for example, the protein molecules that span 

across the cell membrane. Ion channels can allow the passage of certain ions through them 

while blocking others, thus playing important roles in controlling neuronal excitability, and 

therefore, they can be selective for particular ions. Specifically, some biological 
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channels allow the flow of K+ ions effectively, but do not allow Na+ ions to cross the 

membrane. Ion passage through the “K+ channel selectivity filter” is believed to proceed 

as 2-3 K+ ions interspersed by water molecules move in a single file, while permeation 

through the wider and less selective Na+ channels proceeds similarly, although the ions 

may not be dehydrated161. Simple structural concepts like these and schematics of how ions 

pass through these channels are often invoked in biology to rationalize the mechanism of 

ion selectivity.  

 

Table 1.1. Comparison of Ionic Transport Properties in Selected Pore, Channel, and Tube 
Architectures. 

List of selected reports from the literature on low-dimensional porous systems. The 
dimensions, composition, and method of fabrication for various pores are given in addition 
to ionic transport characteristics such as ionic conductance, G, scaling with ion 
concentration, C, surface charge, and ion selectivity ratio. Unless noted, we report values 
for 1 M KCl solution.  
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Table 1.1 summaries the details of recent measurements of small diameter systems 

including their pore sizes, applied voltage, measured conductance and other measured and 

calculated parameters such as the ion selectivity. For convenience, results are listed in the 

order of the year published. 

 

In these systems, the typical first measurement involves immersing the sample in solution 

and if the relatively delicate structure does not break during handling, determining the 

dependence of the ion current, I, on the externally applied voltage, V. Voltage is limited to 

~ 100 mV and maximum » 1 V, for slightly larger structures; for larger voltages the sample 

dielectrically or otherwise breaks down as the electric field reaches ~ 0.1 – 1 V/nm across 

the membrane, sufficient to ionize atoms of the membrane material. The nonzero 

magnitude of the current, in the pA to nA range, and the lack of hysteresis is a good 

indication that transport of ions is occurring. When the I-V relationship is linear one can 

define the slope, which is the ion conductance, G, and one can also consider its dependence 

on the ion concentration. In the case of non-linear I-V curves, G is not well defined and the 

slope of the current at zero-voltage can be used to estimate a conductance value.  Another 

directly measured quantity is the bulk concentration, C, or the ion concentration used in 

the experiment; the ion concentrations and mobilities within the constricted regions are 

different than bulk conductivities for these restricted ion flows. Pore conductivity and ion 

mobilities are sometimes calculated from the measured conductance and some assumed 

transport model, G vs. size, either analytically or from numerical simulations (see example 

of 2D channels 39), to show that they are smaller than bulk values.  
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In many solid-state nanopores and channels, the conductance is limited by the surface 

charge of the pore and saturates at low concentrations96,205, and reported surface charge 

density varied several orders of magnitude, both positive and negative and dependent on 

pH, from ~ µC/m2 in 2D stacked channels39, ~ mC/m2 in silicon nitride205, MoS2 pores41 

and short CNTs221, to C/m2 in boron nitride nanotube173 and graphene nanopores159 (see 

Table 1.1). This is by no means a careful overview of all the values and experimental details 

reported for such systems, but it is already sufficient to notice the large variation of charge 

densities across six orders of magnitude. We should also note that in many cases the surface 

charge density is inferred from a fit of G vs. C and there are significant errors associated 

with these fits. 

To evaluate ion selectivity quantitatively, a salt concentration gradient is set up, at zero 

applied voltage, and both K+ and Cl- ions diffuse from high to low concentration. When 

the rate of diffusion of ion (K+) is higher than the counter-ion (in this case Cl-), a net current 

(also known as short-circuit current because the external voltage is zero) is produced 

across the pore. Diffusion potential or reverse potential (also called open-circuit voltage) 

is referred to as the value of external voltage that can be applied to set the net current to 

zero.  This selectivity (i.e., larger diffusion rate of the ion compared to its counter-ion) is 

governed by the pore surface chemistry and size of the pore. The pH of the solution plays 

an influential role together with the intrinsic surface charge of the material. Depending on 

the salt concentration, a cloud of counter-ions is created in response to total surface charge 

of the pore material, known as Electric Double Layer (EDL). The spatial extent of this 

layer is defined by the Debye length lD. In case of pore dimensions approaching this Debye 
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length, the EDL can overlap causing an excess concentration of counter-ions in the channel. 

Further, these excess counter-ions can then dominate ionic transport through the channel.20, 

87,149  

To quantify ionic selectivity, the diffusion potential (equal to the external voltage applied 

to set the measured current to zero) is given as:  

Vrev = (2t+− 1)  𝑹𝑻	
𝑭

ln 𝑪𝒕𝒐𝒑
𝑪𝒃𝒐𝒕𝒕𝒐𝒎

 ,   Eq.2. 221 

in the form that Yao et al. 221 suggest, where R is the universal gas constant (8.314 J mol 

K-1), T is temperature, F is Faraday’s constant (96,485 C mol-1) and ctop and cbottom are the 

electrolyte concentration on either side of the chamber. In the work by Yao et al. 221, cbottom 

was fixed at 10 mM and ctop was increased from 10 mM to 600 mM (Fig. 2.2a). The authors 

define “t+” as the “transference number” for the cation, that is the fraction of electrical 

current carried by the cation under the influence of applied voltage. The transference 

number can serve as an index of the ion selectivity, t+=1 or 0 for complete cation or anion 

selectivity respectively. Hence, t+= 0.5 corresponds to a non-ion selective channel (Vrev = 

0 for t+ = 0.5 in Eq.1).  

 

The form of Eq. 2. can be contrasted to another form for the reverse potential that was used 

by Rollings et al. 159 for graphene nanopores: 

𝑽𝒓𝒆𝒗 =	
𝒌𝑩𝑻
𝒆
𝐧	 2𝑺𝑮𝑯𝑲𝒄𝒉𝒊𝒈𝒉9	𝒄𝒍𝒐𝒘

𝑺𝑮𝑯𝑲𝒄𝒍𝒐𝒘9	𝒄𝒉𝒊𝒈𝒉
3,   Eq. 3. 159 

 

where kB  » 1.38 ´ 10-23 m2 kg s-2 K-1 is the Boltzmann constant, e = 1.6 ´ 10-19 C is the 

electron charge, SGHK is the “selectivity ratio” (GHK stands for the Goldman–Hodgkin–
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Katz model) and chigh and clow are the high and low concentrations, respectively, on the two 

sides of the membrane. 

 

Slightly different terminology and different forms of these equations are used, for example 

see studies of 2D graphite/MoS2 nanochannels (Fig. 1.2b) and 2D MoS2 nanopores (Fig. 

1,2c) 43. Values of reported “selectivity ratios”, S, for related systems are listed in Table 

1.1. Although the way selectivity is measured and calculated, and the structures and their 

fabrication methods changed across various studies, the one observation that appears 

consistent across various studies is that ionic selectivity occurs for neutral pH or higher 

(see Table 1.1).  
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Figure 1.2. Current-voltage measurements for asymmetric ion concentrations on the two 
sides of the membrane, used to measure the “reverse potential” or “zero-current potential” 
across the pore. 

These measurements are performed to determine the extent to which current is carried by 
the positive and negative ions. (a) a single, 1.5-nm-diameter, » 13-nm-long carbon 
nanotube (CNT) 221 in 10 mM to 600 mM KCl on one side, and 10 mM on the other side 
of the membrane, for pH 7.5 (pore is charged) and pH 3 (pore is neutral), respectively, (b) 
» two hundred, 0.6-thick (~0.13 µm wide and 3-7 µm-long) parallel graphite/MoS2 
nanochannels39 in 100 mM / 10 mM KCl, CaCl2 and AlCl3 (this is an ensemble 
measurement rather than a single channel measurement), and, (c) a single 15-nm-diameter 
2D MoS2 nanopore41 in 1M / 1mM KCl. In (b), in the case of CaCl2 and AlCl3 solutions, 
the current at zero applied voltage is approximately zero and positive, respectively; positive 
current means that anions (Cl-) have a higher mobility than cations. Copyrights 2019 
American Chemical Society.  Copyrights 2017 American Association for the Advancement 
of Science. Copyrights 2016 Springer Nature.  
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Short Carbon Nanotubes (CNTs):  

In the case of CNTs, Yao et al. 221 observe a weak K+ selectivity at pH of 7.5 (Fig. 2a). It 

is interesting to note that this concentration range corresponds to an electric double layer 

(EDL) of 3 nm to 0.4 nm, similar to the pore CNT diameter, 1.5 nm. The region of K+ is 

built up in response to the negatively charged CNT nanopore rim. In their work, the authors 

define “Permselectivity”, P = #3	'#34567
&	'	#34567

 ; where t+ and t- are the transference numbers (the 

ratio of current derived from the K+ ions to the total current produced) for positively and 

negatively charged ions and t+bulk = 0.49 for KCl solution. This investigation is similar and 

consistent with their previous CNT study202, where they observe similar K+ selectivity 

which they attributed to the negatively charged (COO-) rim of the pores at pH 7.5 or higher.  

They observed weak Cl- selectivity with CNTs at pH 3 for 0.8-nm-diameter tubes202, but 

the wider, 1.5-nm-diameter tubes in this issue were not ion selective at the same pH 3.221 

It is interesting to appreciate what a small difference in diameter by 0.7 nm can do in this 

size range.  

2D Nanopores: 

Similar cation (K+) selectivity has been investigated for a range of nanopores (a few-nm-

diameter to 20-nm-diameter pores) in materials such as graphene159 and MoS241. In the case 

of few-nm-diameter (d = 2 nm to 25 nm) 2D MoS2 pores, Feng et al. 41 calculate a decrease 

in ionic selectivity, from 0.62 to 0.23 as the pore size increased from 2 nm to 25 nm. 

Rollings et al. 159 investigated graphene nanopores made using dielectric breakdown with 

diameters up to 20 nm and concluded that ionic selectivity SGHK > 100 (Eq.2) was 

independent of pore diameter. More recently, Caglar et al.23 studied ion selectivity in 

randomly defective graphene and hBN membranes, deposited on glass capillaries, and 
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claim that ~500 anions per each cation get transported across the membrane in case of a 

multivalent hafnium tetrachloride  (HfCl4) salt solution. These authors also used a variation 

of the Goldman−Hodgkin−Katz (GHK) equation and model to extract their quoted 

selectivity ratios. Their samples seem to contain random, irregularly shaped pores with a 

large size distribution of diameters up to ~ 30 nm. In our opinion, one good aspect of these 

samples is that they rely on random defects in material rather than some sophisticated pore 

fabrication method that may be timely and costly. However, in this case it is then 

challenging to study systematically the fundamental aspects of selectivity as a function of 

pore properties if they are random. 

 

Thiruraman et al. 190 previously fabricated well-characterized ensembles of much smaller 

(sub-nm) pores in monolayer MoS2 using Ga ion irradiation and observed non-linear 

current-voltage relationship through these pores for a range of irradiation doses 

corresponding to different pore size distributions. They observed suppressed low-bias 

conductance compared to larger-diameter pores and extracted a simple scaling of 

conductance with effective pore diameter as G  »  9 S/m ´ (d- 0.7 nm) in 1 M KCl, where 

d is the diameter in nm, and 0.7 is the minimum pore diameter for ionic flow. Moreover, 

for such atom-scale pores the concept of characteristic pore “diameter” or pore “size” could 

be further discussed and possibly re-defined given that pore cross-sections are not circular, 

but rather have a well-defined atomic structure and edge terminations. There is a there is 

garden variety of 2D pore-shapes and structural options to consider190. Liu et al.115 

compared and contrasted the properties of few-nanometer-size triangular h-BN nanopores 

vs. circular MoS2 nanopores in DNA translocation experiments. The pore resistance for the 
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triangular pore had to be modified compared to circular pores. Similarly, from the atomic 

structure of angstrom-size MoS2 pores, one can plot the distribution of “diameters” 

measured from the center of mass (COM) of the pore.190 

 

For MoS2 pores with diameters below ~ 2.0 nm, the behaviors of the concentration and 

mobility of ions strongly deviate from bulk properties. Ion concentration, mobilities, and 

hydration are different than their bulk counterparts, as was already shown previously for 

graphene nanopores using MD simulations by Suk et al.226.  Wilson et al.216 used molecular 

dynamics to model 3.5-nm-diameter graphene pores and observed that at ~ 500 mV to 1V 

applied across the membrane, water molecules will polarize, and the electric field will 

compress the polarized molecules inside of the pore, thus creating outwards pressure. 

Atomic structures of single-layer MoS2 nanopores were also modeled, by an equilibrium 

“all-atom” molecular dynamics (MD) model (see also Fig. 3b) in 1M KCl to estimate the 

ratio between pore and KCl bulk conductivity, 𝜎, showing a drop from 	𝜎pore/𝜎bulk ~ 80% 

to 10% with the decrease in the effective pore diameter from ~ 2.5 nm to ~ 0.7 nm148. Non-

equilibrium MD simulations assuming an external voltage applied were then used to 

develop an analytical expression for conductance, which is convenient for direct 

comparisons with experiments191. 

In other work on graphene, O’Hern et al.140 showed a selectivity of 1.3 in graphene sub-

nm-diameter pores that were fabricated using ion beam irradiation of graphene to make 

holes, and further processed in an acidic etchant to enlarge them. 72, 159 The diameters of 

pores created in this process were shown to be < 1 nm. There are also other, more robust, 
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laminate and much thicker (few-micron-thick) membranes, such as graphene oxide (GO) 

membranes63 and laminate MoS260, some of them shown to be ion selective and apparently 

some of them are being commercialized for applications in the near future.    

2D Nanochannels:  

Silica nanochannels have been studied for decades with regard to ionic transport and power 

generation in the presence of concentration gradient. Specifically, Kim et al.87 have shown 

power generation of ~ 8 W/m2 with an efficiency of ~ 30%. While arrays of nanopores in 

2D materials (MoS2) have been envisioned to possibly produce power densities in range of 

mega Watts per m2, based on a simple scaling of results from single pores, this is yet to be 

realized. 41 Recently, Esfandiar et al. 39 have realized a variety of 2D channels fabricated 

using hBN, MoS2, and graphite. In this work, they also measured the zero-current potential 

(here as “Em”) and observed that K+ and Al3+ diffuse through nanochannels faster and 

slower than Cl-, respectively (Fig. 2b). Further, the Henderson equation was used to 

calculate the ratio of ion mobilities. The authors concluded that in case of such 2D 

nanochannels, they detect a decrease in Cl- mobility (~2×10-8 m2V-1s-1) from K+(~7× 10-8 

m2V-1s-1) in the channel and speculate this to arise from polarization of water molecules 

around the ions. In analogy to ion transport, we note that there is a growing work in gas 

transport through similar structures, but this is beyond the scope of our perspective. 

 

1.3 Outline and Intellectual Contribution of this Thesis 
 

In this thesis, we advanced the fundamental understanding of low-dimensional 

devices for the purpose of ionic and gas transport mechanism at single atomic level. In 
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chapter 2, I developed new nanofabrication techniques, methods to produce standard SiNx 

platform which are then processed to create novel low-dimensional membranes and 

devices. Next, we advanced the growth synthesis of low-dimensional materials to yield 

high quality crystals contributing to this growing field. Improving the growth of 2D 

materials was a key ingredient in my work and the quality of the synthesis was observed 

to affect results are also included. In addition, one of the contributions of this thesis 

includes a new growth technique to synthesize MoS2 films with an industrial-standard Mo 

foil as a starting growth precursor, to create 2D membranes on centimeter scale. These 

resulting large area, few-layer membranes contain regions of monolayer MoS2.  This 

allowed us to investigate the fundamental laws governing atomic-scale ionic transport and 

indicate a path towards industrial-scale application. Nanopores are creation by simple 

chemical etching, and preliminary ionic transport studies through these few-layer matrix 

nanofilms of MoS2 were performed. We observe how the ionic conductance scales with 

the nanoporous area of the membrane, which can be controlled by adjusting the etching 

time reported.  

In chapter 3 and initial sections of chapter 4, I developed the novel irradiation 

mechanisms using ion beam to produce “point defects”, “vacancy defects”, “single atomic” 

pores or “sub-nanopores” pore or “angstrom-size” pores (various names for related works 

of nanoscience), essentially pores that are few atoms in diameter. Here, we pioneered the 

use Focused Ion Beam (FIB) irradiation. While FIB was frequently used for other 

materials, its use for 2D materials has not been developed prior to my thesis work. Now, 

ion irradiation effects on 2D materials have grown into a mature subfield. are a growing 

topic. We have explored how the ion irradiation parameters such as dose result in the 
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creation of defects with different sizes and properties. Defect type is examined and 

confirmed using various characterization techniques such as Raman spectroscopy, 

aberration- corrected scanning transmission electron microscopy. In chapter 3, I also 

present results of ion beam irradiation of 2D materials placed on various substrates, as well 

as suspended atomically thin membranes (MoS2 and WS2). For the first time, we created 

nanoporous MoS2 membranes in pores in the sub-nanometer range. In this study, detailed 

statistical image analysis of the defect type or missing atoms and the evolution of defect 

size/area as a result of irradiation are included. Towards the end of chapter 4, I report on 

investigations and results from ionic transport studies through these sub-nanometer pores, 

share specific insights on experimentally observed of ionic current suppression at low 

voltage range (few hundred mV).  

In chapter 5194, I elaborate on a different technique to produce a ‘single’ sub-

nanometer pore in an aim to create the ultimate angstrom-size confinement. This is created 

using the state of the art, aberration-corrected transmission electron microscopy to have the 

ultimate atomic control on membrane lattice. Additionally, we compute a table of atomic 

model with possible pore/ defect types of diameter ranging from a 1 transition metal atom 

to 5 transition metal atoms. Interestingly, a few pores from these theoretically illustrated 

models are experimentally fabricated and demonstrated. Further, I investigate the ionic 

transport in these single angstrom-size confinement and report elusive findings on 

suppressed ionic current that are independent of molarities of salt solution that is yet to be 

understood. Importantly, we observed that the ionic conductance through such small pores 

was not proportional to the bulk conductivity of the surrounding solution. We explain this 
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by the fact that the concentration of ions is small pore is dominated by surface charge 

effects.   

Lastly, in chapter 6195, I present our experimental work on helium transport studies 

in TMD membrane devices with single atomic apertures. Prior to our work, there were only 

a handful of studies, primarily in graphene membranes, investigating how gas flows 

through small apertures. While pristine WS2 membrane acts as the thinnest physical barrier, 

atomic apertures created on these monolayer membranes (using my irradiation technique 

from chapter 3) showcase helium transport. At an atomic scale, we observe that these 

angstrom-scale apertures are invisible to helium gas and helium atoms experience no 

energy barrier, thereby abiding by the predicted Knudsen flow rates.  
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2 Device Fabrication and Growth of Low-Dimensional Materials 
 

2.1  Device Fabrication  
 
All devices presented in this thesis work involve a silicon-based substrate or supporting 

platform onto which the 2D material is supported. Although intriguing architectures are 

being developed using low-dimensional materials, there is an inevitable need for these 

materials to be integrated with micro-device or platform to further study its properties. For 

example, we investigate ionic properties in a solution-based environment which calls for 

compatibility with micron sized electrodes of an amplifier. Another critical use of SiN 

membrane is its ubiquitous use in TEM microscopy. Since a majority of studies discussed 

in the following chapters use TEM techniques to characterize pores and defects, the use of 

such platform aid in experimental procedures.  

The 2D materials are grown using CVD techniques as explained in later sections of this 

chapter. In this section, the details of the photolithography to create “SiN chips” (referred 

to 5x5mm devices in the nanofabrication community) using the semiconductor equipment 

and other cleanroom tools are discussed.  

 
2.1.1  Photolithography for Silicon Nitride Platform 
 

Silicon-based support chips are developed with the help of nanofabrication techniques 

delineated in the figure 2.1 (adapted from Danda thesis) The process starts typically with a 

4-inch Si/SiO2 wafers of respective thickness 525 μm/5 μm wafer (<100> lattice oriented, 

phosphorus-doped, 1-10 Ω- cm resistivity) with 50nm or 100 nm of low	stress	silicon	
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nitride	(SiNx)	deposited on both sides of the wafer. The thickness of SiN deposition is 

crucial since this starting thickness is the same as the supporting SiN membrane thickness 

useful for 2D materials (as seen in Figure 2.1 (i)). SiO2 is desired for its capacitive 

properties which further enhance the signal to noise ratio in ionic measurement of such 

devices. In fact, this dielectric property led to the invention of “glued-glass” chips (which 

I was briefly experimenting with as a master’s student) and more popularly “Glass- chips” 

(also sold at Goeppert LLC) which use fused-silica glass wafers instead of the silicon/ 

silicon dioxide wafer as seen in this work. For reference, dielectric constant at 300K in 

increasing order for SiO2, Si3N4, Si is 3.9, 7.5, 11.7 respectively.  
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Figure 2.1. Lithographic patterning and etching of Si/SiO2/SiNx chips. 

(a-i) Photolithography, RIE/HF etching, and KOH etching steps to fabricate free-standing 
SiNx windows. (j) Optical image of the trench side of a wafer with ~ 100 chips. (k) SEM 
image of a 50 µm × 50 µm square free-standing SiNx window on a Si/SiO2 substrate. This 
figure has been adapted from Danda et al. 

 

In order to fabrication the supporting SiN membranes, we follow the steps elaborated in 

figure 2.1. The wafer is spin-coated (4000 rpm, 45seconds) with a negative photoresist 

(NR7) on one side while the other side is carefully coated with S1818 positive photoresist 

(this resist serves as a protective layer to the SiN underneath) using a pipette. Ensuring that 

this layer completely covers the SiN is crucial to obtain defect-free SiN chips. Next, the 
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wafer is pre-baked at 115oC	for	3	minutes	on	a	hotplate	between	each	resist	coating	

steps	described	previously.	Following	this	step,	the NR7 side of the wafer is placed onto 

the mask aligner (Karl	SUSS	MicroTec	MA-6).  

The chrome mask is patterned using the Heidelberg	DWL	66+	and	designed	with	the	

software,	 layout	 editor	 or	 CAD.	 The	 design	 contains	 a	 square	 pattern	 which	 is	

transformed	 to	 the	 square	 SiN	window	or	 suspended	membrane.	 The	 design	 also	

contains	outlines for each chip which help in cleaving the chips free once the etching steps 

are complete.   

 

For the UV exposure, a dose of 5 mW/ cm2 or 170 mJ/ cm2 for 3-4 seconds (3.4 seconds) 

at 365nm is carried out. Further, the wafer is then post-baked at 115oC for 3 minutes. 

For resist development, the wafer is gently dunked in RD6 developer for 7 seconds to reveal 

the developed pattern. Next, the wafer is thoroughly rinsed in DI water followed by drying 

with a N2 gun.		

 
 
For the Nitride etch, Oxford PlasmaLab 80+ reactive ion etcher is used with SF6 with a 

plasma power of 50 W and pressure of < 30 mT for 10 minutes. The exposed SiNx is dry 

etched using Oxford Plasma Lab 80+ reactive ion etcher with SF6 with a plasma power of 

50 W and pressure of < 30 mT. Timed at 2 mins for 50 nm and 4 mins for 100nm.  

BOE etch (5:1	volume	ratio	of	40%	NH4F	in	water	to	49%	HF	in	water) is conducted to 

create the trenches as seen in Figure 2.1 (f) and (h). Ensure to knock-off any air bubbles 

present on the surface which will lead to surface defect and poor quality of chips. The wafer 
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in etched in BOE for 70 minutes (with additional 10 to 20 mintues as seen in some cases) 

and is inspected with a profilometer (Filmetrics	F40,	reflectometer) to ensure complete 

SiO2 etching. Finally, acetone and IPA wash removes any residual resist.  

To etch the Si, a 40%	by	weight	KOH	solution (1000ml of water with 666.67g of KOH 

pellets) is prepared with thermostat (external probe connected the hot plate) to monitor the 

stable temperature at 62 C of the solution. Note: Solution is highly exothermic, and solution 

must be prepared with caution by adding the salts pellets gradually into the water. A 

magnetic stir bar (set to 120 rpm) is also added to maintain a more consistent solution 

concentration. The trench is formed in about ~22 hours and again, optically observed and 

monitored after the first 20 hours, to ensure the desired SiO2 layer is achieved. Finally, this 

is washed with DI water and acetone/ IPA as explained previously.  

To etch our final layer of SiO2, the wafer is coated with S1818 using a pipette (again the 

protective layer to prevent any damage to the SiNx windows) and dried in overnight in the 

dark (to prevent any photoreaction). This SiO2 BOE etch step is again done for about 100 

mins followed by the washing off the protective resist with acetone and IPA.  

 

 

 

 



 27 

2.2 Graphene Growth  
 

 

Figure 2.2. Schematics of experimental CVD graphene growth setup. Adapted from Danda 
et al. 

All graphene growth was synthesized with the CVD technique with copper foil (Alfa Aesar 

99.999% pure copper foil) as the catalyst along with methane as precursor. Thin foils of 

copper are cut typically about 1cm× 3cm (could larger, if there is a need for it) and rinsed 

and cleaned in 30% HCl solution. The pre-cleaned foil in placed in a quartz tube and placed 

in the center of the tube furnace as shown in the figure. This is heated to 1050C in argon 

(Ar) and hydrogen (H2) at flow rates 350 sccm and 20 sccm, respectively, at a ramp rate of 

∼ 50C/ min. Further, the foil is annealed with an increased Ar flow of 500 sccm while the 

H2 flow remained at 20 sccm at 1050C for 15 minutes. Finally, the temperature of the 

furnace is reduced to of 1000oC at a ramp rate of -10oC/min, for the optimal growth along 

with introducing methane CH4 at 10 sccm (Ar at 500 sccm Ar, H2 20 sccm) for another 15 

mins. At last, the furnace is rapidly cooled down and sample is carefully removed.  
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2.2.1 Graphene Transfer  
 

Figure 2.3. Schematics of experimental bubble transfer of graphene on copper foil. 
Adapted from Danda et al. 

Bubble transfer was been a clean method to obtain a large area of monolayer of graphene. 

The sodium hydroxide (NaOH) salt solution is prepared with ~1M (sometimes a much 

lower molarity was also used, 2 grams of NaOH in 1 liter of DI water).  This mixture is 

first filtered through a 0.22 um membrane filter. The as grown graphene-copper foil is spin 

coated with PMMA and bake for 100C for 2 mins. Using Carbon electrode as Anode and 

cathode with Cu/graphene/PMMA stack, a simple setup like the electrolysis of water is 

carried out. A voltage range of 5-10V is used (6V is optimal for 0.01M solution). Graphene 

+ PMMA stack peel-off clean from Cu substrate. The Graphene/ PMMA stack is further 

rinsed in nanopure DI water several times (use 3-4 different beakers and let it sit for 2-3 

mins each beaker) to remove any salt residue. The graphene/ PMMA stack is ready for its 
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final transfer onto a desired substrate, further the PMMA can be washed off after transfer 

and drying with acetone/ IPA.  

Alternatively, the copper film can also be etched away by floating Cu/graphene/PMMA 

stack on a solution of 0.3M iron chloride (12g/ 250 ml water) 

2.3 Growth of Transition Metal Dichalcogenide (TMDs)  
 
 

 
 

Figure 2.4. Schematics of experimental CVD growth setup for WS2 flakes. Adapted from 
Danda et al. 

 
For TMD growth, a SiO2 wafer (thickness 150 nm thick) is cut into small pieces, roughly 

to 1cm× 1 cm. For these substrates are cleaned in the piranha acid for about 40 minutes. In 

parallel, the growth precursors are prepared in separate vials in the following concentration, 

in the case of WS2 (1) sodium cholate (4% = 0.04 g/1 ml DI water) and (2) For WS2- 

ammonium metatungstate (15 mM = 45 mg/1 mL DI water). In the case of MoS2, 1% 

sodium cholate (10 mg/1 mL) and 1% ammonium heptamolybdate (11 mg/1 mL) solution 

is used.  These prepared solutions are then sonicated for 1 hour in a water bath. Once the 

precursor solutions are ready and SiO2 substrates are clean from piranha acid etching 
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(sometimes followed with Ozone plasma clean), these substrates are then spin coated (4000 

rpm for 15 sec) with 1 drop of ammonium metatungstate solution for WS2 (and ammonium 

heptamolybdate solution for MoS2), once dried (dried in the fume hood for a few minutes) 

the substrates are again spun with sodium cholate solution with the respective 

concentration for the desired TMD flake. 

Finally, the growth substrates are carefully positioned on a quartz boat and placed in the 

center of the 1-inch diameter tube furnace (Thermo Fisher Scientific Lindberg/Blue M). In 

addition, 70 grams of sulfur crystal for WS2 and (150 mg for MoS2) are placed on a SiO2 

piece (on the unpolished Si side of a 1cm× 1 cm piece of Si/SiO2 wafer piece) and 

positioned about 2.5cm away from the end of the furnace (and ~ 22 cm from the substrates), 

in the upstream direction at a temperature of 150 °C. A heating belt is utilized to monitor 

a temperature of 150 C at the sulfur location. The sulfur is placed outside the furnace, away 

from the center portion of tube in an upstream direction. The furnace is ramped up to 800 

C in 11 mins (as shown in the table below) at 65°C min-1. The gas flow is controlled as 

shown in the table below. For WS2, hydrogen is flown during the growth phase only for 

about 10 mins at 15 sccm.  

 

Table 2.1 Controlled parameters for monolayer WS2 flake growth 
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Table 2.2. Controlled parameters for monolayer MoS2 flake growth 

Note- in the case of WS2, that the growth temperature is at 800C and the 5 mins with carrier 

gas Argon is followed to stabilize the furnace temperature at 800C. The first 20 minutes of 

Ar is flown to ensure the furnace tube is purged of other gases. The temperature of the 

furnace and tube is well calibrated at various steps and this is critical just as any other step 

in the growth procedure. After 10 mins of growth time, the H2 was turned off and the 

furnace was rapidly cooled to room temperature by opening the furnace hood while Argon 

is allowed to flow.  For MoS2 flake, during step 2, the heating belt must be plugged in (with 

a set point of 180°C) at the time when the temperature of the furnace reaches 700°C. When 

the furnace reaches 750˚C, the sulfur should be either glistening (i.e., partly melted) or 

fully melted. After the third step, for rapid cooling - heating belt and furnace are turned off 

with the furnace open. Additionally, two fans are also positioned at the furnace to create a 

rapid cooling environment. After about 2-3 hours, the substrates are carefully removed.  

 

 
Figure 2.5. TMD Characterization techniques. 
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(a) AFM scan of a monolayer WS2 flake. The line profile in white indicates a thickness of 
0.7 nm, which corresponds to a monolayer. (b) Raman spectra (λ = 532 nm) of a monolayer 
WS2 flake with indicated primary modes. (c) Photoluminescence (PL) spectra of a pristine 
suspended monolayer WS2 membrane showing three spectral components: neutral exciton 
(X0), trion (XT ), and defect (XD). (d) Gaussian blur- filtered AC-HRSTEM lattice image 
taken at 80 kV. The inset is a SAED pattern with expected (100) and (110) diffraction 
spots. Adapted from references34.   
 
2.3.1 Transfer of TMD and Device Fabrication  
 

 
Figure 2.6. Position-controlled transfer of TMDs from as-grown substrate to a desired 
device. 

Figure 2.6.  shows the transfer process for TMD flakes that is ubiquitously used in this 

work. Pictured before step (iv) is the Si/SiN device used in Chapter 6. With WS2 flakes 

grown on Si/SiO2 wafer pieces, we cut smaller pieces with areas about 3 × 3 mm2 that 

contain good WS2 flakes. Using a wet transfer technique, the TMD flake side of the SiO2 

pieces is coated with polymethyl methacrylate (PMMA, MicroChem C4, 4000 rpm for 60 

seconds). The PMMA coated substrates are left to dry at ambient temperature for a few 
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minutes before being floated onto the KOH etchant (prepared with 8g of KOH pellets 

dissolved in 100 ml of water). Depending on the thickness of the SiO2 wafer, the time for 

etching away the SiO2 layer varies, lasting between 30-90 mins. This etching results in the 

PMMA+TMD flake peeling off the substrate and floats on the KOH etchant. These 

PMMA+TMD flakes are then collected with a glass slide, rinsed about 2 or 3 times in clean 

DI water baths before being transferred onto a SiNx/Si chip with a hole (diameter range, 

100 to 200 nm) drilled by Focused Ion Beam. Manual position transfer is practiced when 

the flake size and their number density are high, so as to maximize the possibility of 

covering a SiNx FIB hole with one single PMMA+TMD flake. This step of placing the 

PMMA+TMD flake over the SiNx FIB hole is somewhat challenging as the coverage of 

the FIB hole depends on the flake density since this process is carried out by trial and error. 

However, majority of effort was directed towards improves flake density and flake size 

and therefore the transfer is completed within a few trials. Average time to transfer a flake 

in this fashion did not exceed more than 20 mins per SiN device. In addition to this manual 

transfer, I have also experimented with custom-built manipulators, with needles and 

tweezers to move the flake on the substrate to increase device yield. These manipulations 

come at a cost, since there is now a higher risk of device failure caused by the usage of 

additional tools, which can sometimes break the SiNx membrane. In this work, all devices 

were fabricated by manually “fishing” the PMMA+TMD flake onto the SiNx FIB hole 

(unless stated otherwise). After we transfer the flake and optically verify the coverage, the 

sample is then dried in ambient temperature for 30 min. Furthermore, the sample is placed 

into hot acetone (90°C) to remove the supporting PMMA and finally washed with IPA and 

annealed in RTA usually at 300 C in Argon gas for 90 mins to remove any contaminants.  
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2.4 Large-Scale fabrication of MoS2 Film  
 
This work has been adapted from the journal publication, titled “Centimeter-Scale 

Nanoporous 2D Membranes and Ion Transport: Porous MoS2 Monolayers in a Few-Layer 

Matrix” by Paul Masih Das, Jothi Priyanka Thiruraman, Yung-Chien Chou, Gopinath 

Danda and Marija Drndic. Cite This: Nano Lett. 2019, 19, 392−399  

 
2.4.1 Introduction  

Two-dimensional nanoporous membranes have received attention as catalysts for energy 

generation and membranes for liquid and gas purification but controlling their porosity and 

facilitating large-scale production is challenging. We show the growth and fabrication of 

centimeter-scale molybdenum disulfide (MoS2) membranes with tunable porous areas up 

to ∼ 10% of the membrane and average nanopore diameters as large as ∼ 30 nm, controlled 

by the etch time. We also measure ionic conductance between 0.1 and 16 μS per μm2 

through variably etched nanoporous membranes. Ensuring the mechanical robustness and 

large-area of the membrane, bilayer and few-layer regions form a strong supporting matrix 

around monolayer regions, observed by aberration-corrected scanning transmission 

electron microscopy. During etching, nanopores form in thin, primarily monolayer areas 

whereas thicker multilayer regions remain essentially intact. Atomic-resolution imaging 

reveals that after exposure to the etchant, the number of V1mo vacancies increases and 

nanopores form along grain boundaries in monolayers, suggesting that etching starts at 

intrinsic defect sites. This work provides an avenue for the scalable production of 

nanoporous atomically thin membranes. 
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2.4.2 Background  
 

Two-dimensional (2D) transitional metal dichalcogenides (TMDs) have demonstrated 

new physical phenomena in electronics, nanofluidics, and biosensing, and have shown 

myriad applications in each of these fields.33,86,211 While electronics strive for defect-free 

materials, other fields such as DNA sequencing, 34, 129 battery/electrochemical storage,100 

and membrane separation technologies like water desalination57, 190 and gas separation29,229 

have a different set of requirements − including mechanically robust and large-area 

membranes − to achieve transport of molecules through atomic vacancies and nanopores 

in suspended membranes. 

In addition to ionic/molecular transport applications, nanoporous TMD membranes 

have been tested as electrodes and catalysts for a range of photo- and electrochemical 

processes.77,236 For example, it has been shown that edge sites in molybdenum disulfide 

(MoS2) display particularly high electrocatalytic activity during hydrogen evolution 

reactions.73,201,220 However, current chemical syntheses for porous TMDs based on 

hydrothermal chemical processes offer limited sample purity and porosity control.107,230,236 

Alternative mechanical fabrication techniques based on focused ion beam (FIB) and 

transmission electron microscope (TEM) irradiation, though accurate, have scalability 

limitations.27, 190 

Nanoporous membrane characteristics such as fluid flux and permeance exhibit 

enhancement in the regime of atomically thin membranes.137,141,209 However, existing 

techniques for fabricating nanoporous atomically thin membranes (NATMs) from 

mechanical exfoliation, liquid-phase exfoliation, and chemical vapor deposition (CVD) of 

monolayer TMDs are usually limited in size to the µm- or mm-scale.34,139,190,211 More 
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importantly, cm-scale suspended monolayer membranes are too fragile for most 

applications requiring high flux fluid or gas flow, and often require extensive pre-

processing such as defect sealing. 141, 209 To meet both requirements, here we propose a 

way to increase the robustness of large-area suspended membranes, while also preserving 

atomically thin regions required for high volume ionic/molecular transport, by fabricating 

cm-scale nanoporous membranes consisting of monolayer regions embedded in a few-layer 

matrix. Specifically, we demonstrate the acid-assisted etching of MoS2 films as a new 

means of fabricating 2D nanoporous membranes. These structures are produced through a 

simple and scalable process that results in mechanically stable, high quality membranes. 

The structural characteristics of cm-scale MoS2 films grown by sulfurizing Mo foil are first 

analyzed using a combination of atomic force microscopy (AFM), Raman spectroscopy, 

and aberration-corrected scanning TEM (AC-STEM). We then develop a multi-step wet-

etch procedure to produce suspended membranes and utilize an industry-standard etchant 

to induce nanopore formation. AC-STEM is used to quantify the size and density of 

nanopores as well as to provide insights into the pore formation mechanism at the atomic 

scale. 
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2.4.3 Growth and Characterization of MoS2 Thin Films 
 
 

 
 

Figure 2.7. Characterization of pristine (as-grown) and transferred MoS2 films. 

(a) Optical image of a centimeter-scale MoS2 film grown through Mo foil sulfurization. (b) 
Raman spectrum (excitation wavelength = 532 nm), (c) AFM scan, and (d) optical image 
of a continuous 0.2 cm × 0.2 cm MoS2 film transferred onto a Si/SiO2 substrate. The 
difference between the in-plane (E1) and out-of-plane 2g (A ) phonon modes (E1 − A = 
24.5 cm−1) in (b) and the line 1g 2g 1g profile in (c) are both consistent with an average 
thickness of 5.5 nm (N ∼ 6−7 layers). (e) Low-magnification AC-STEM image of a 4 × 4 
array of 1 μm diameter MoS2 membranes (i.e., suspended MoS2 films) on a holey carbon 
film. (f) SAED pattern of a MoS2 membrane showing (100) and (110) ring patterns, 
suggesting a polycrystalline structure.  

 
We grow cm-scale MoS2 films through the sulfurization of unannealed, commercially 

available Mo foil (see Methods and Supplementary Figure S1).8,10,187 Figure 2.7a shows a 

1 cm x 4 cm piece of Mo foil after the sulfurization process. The growth of MoS2 on top 

gives the gray Mo foil a purple hue under ambient light. A Raman spectrum reveals two 
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characteristic vibrational modes: an in-plane 𝐸:;&  mode at 384.7 cm-1 and an out-of-plane 

𝐴&; mode at 409.2 cm-1 (Figure 2.7b). The separation of 24.5 cm-1 between the two modes 

suggests that the average thickness of the MoS2 is approximately (𝑁 ~) 6-7 layers.109 This 

is consistent with AFM scans, which reveal an average height of 5.5 nm (Figure 2.7c). 

Because of their multi-layer structure, these MoS2 films are more robust than their 

monolayer counterparts and can therefore be more readily processed and transferred from 

substrate to substrate on large scales.88,91,209 These observations are consistent with 

previously published experimental and theoretical works showing that suspended few-

layer thick MoS2 exhibits higher in-plane elastic moduli and effective spring constants (i.e., 

rigidity) in comparison to monolayer MoS2.16,26,135 Figure 2.7d shows an optical image of 

a 0.2 cm x 0.2 cm piece of MoS2 film that has been transferred (see section 2.4.5) onto a 

Si/SiO2 substrate with mostly no tears or discontinuities. Similarly, transferring a film to a 

substrate such as holey carbon results in a relatively large array of MoS2 membranes, such 

as the one shown in Figure 1e. It should be noted that the term membrane is used here to 

refer to any freestanding region of a 2D (i.e. MoS2) film that is suspended over a hole. 

Subsequent selected area electron diffraction (SAED) patterns reveal two concentric rings 

corresponding to the (100) and (110) lattice spacings of the MoS2 basal plane (Figure 2.7f). 

The presence of rings as opposed to distinct diffraction spots indicates that the MoS2 

membranes have an overall polycrystalline structure.174 
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Figure 2.8. Monolayer regions in a few-layer MoS2 matrix. 

(a) High- magnification HAADF AC-STEM image of a few-layer matrix in a pristine 
MoS2 membrane. Excluding areas with polymer contamination (bottom right), thicker 
regions generally have a higher intensity due to HAADF Z-contrast behavior. (b) False-
colored version of (a) with highlighted regions of the membrane for N = 1 (purple), 2 (red), 
3 (yellow), and 4 (blue) layers. (c) (i−iv) Corresponding FFT patterns for selected areas 
within the few-layer matrix shown in (b) with (100) and (110) diffraction spots highlighted 
in yellow and green, respectively. The number of layers (N) in a particular region of the 
matrix is equivalent to the number of sets of 6-fold symmetric diffraction spots in the 
corresponding FFT. For N = 2−4, the twist angle between layers is ∼9−11°. The scale bars 
in (c) correspond to 4 nm-1.  

 
 
In addition to being polycrystalline (Figure 1f), these MoS2 membranes also have a 

relatively high surface roughness (𝜎 ~ 1.9 nm) in comparison to exfoliated monolayer 

MoS2 (𝜎 ~ 0.1 nm) (Figure 2.7c).153 This suggests that despite having an average thickness 

of 𝑁 ~ 6-7 layers, the resulting membranes contain a varying number of layers. We 
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therefore utilize high-angle annular dark field (HAADF) AC-STEM imaging, which 

provides insight into both crystal structure and thickness at the atomic scale.101,190 Figure 

2.8a shows a representative few-layer region (i.e. matrix) of a MoS2 membrane measuring 

roughly 280 nm2 (AC-STEM field of view). The trigonal prismatic (2H) MoS2 lattice in a 

monolayer region transitions to a Moiré superlattice in thicker multi-layer regions due to 

interlayer twisting.67,227 The false-colored image in Figure 2.8b highlights distinct grains 

within the matrix based on their thickness: 𝑁 = 1 (purple), 2 (red), 3 (yellow), and 4 (blue) 

layers. About 4% of the matrix area shown is monolayer (𝑁 = 1) whereas the bi- (𝑁 = 2), 

tri- (𝑁 = 3), and quad-layer (𝑁 = 4) areas occupy 29%, 41%, and 26%, respectively. A fast 

Fourier transform (FFT) of the monolayer region encased in this few-layer matrix reveals 

one set of six-fold symmetric (100) (orange) and (110) (green) diffraction spots as expected 

for a 2H phase TMD (Figure 2.8 c(i)).76 FFT patterns of thicker regions containing 𝑁 layers 

each exhibit a corresponding 𝑁 sets of six-fold symmetric diffraction spots with twist 

angles of ~ 9-11° between layers (Figures 2.8 c(ii)-(iv)). We note that while the annealed 

Mo foil growth substrates have been shown to yield monolayer MoS2 films, 187 the 

unannealed Mo foils are integral in producing the few-layer matrix-like structures shown 

here, due to their comparatively high surface roughness of 𝜎 ~ 13 nm (see Figure 2.2). In 

other words, the initial roughness of the underlying substrate is exploited in this work as it 

facilitates the simultaneous growth of monolayers and multilayers within the same sample. 

Further characterization on annealed Mo foils, such as Raman and X-ray photoelectron 

spectroscopy (XPS), can be found in the works of Tai et al. 187 and Bai et al.10 
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2.4.4 Controlled Large-Area Etching for Nanoporous MoS2 Films 
 
Nanoporous membranes from uniformly monolayer 2D materials are often limited by 

crystal size, poor transfer techniques, and/or non-scalable pore formation methods. 86,90, 141, 

209,228 By utilizing the matrix-like structure of these MoS2 films, we fabricate atomically 

thin membranes that can be grown, transferred, and etched over relatively large (cm-scale) 

areas, limited by our sulfurization chamber size. While thicker sections of the MoS2 

membrane are preserved in order to provide robustness to the overall membrane, 

interspersed thin regions are etched away to form nanopores. Figure 2.9 is a step-by-step 

schematic of the process through which we use PAN etchant to form nanoporous MoS2 

membranes with tunable porosity. We found that pores nucleate at defect sites within 

monolayer regions of the pristine material and expand under further etchant exposure (see 

Figure 2.11). Etch time can be used to control sample porosity, from impermeable 

membranes to nanoporous membranes containing holey areas occupying up to 7.1% of the 

total suspended area (see Figure 2.10).  
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Figure 2.9. Schematic of nanoporous MoS2 membrane fabrication using PAN etchant. 

(a) MoS2 films are isolated by (b) depositing a protective polymer (PMMA) layer and 
etching away the underlying Mo foil. (c) After being cleaned in DI H2O, the film is (d) 
placed in the PAN etchant, which results in the (e) formation of pores (Figure 2.11). After 
being cleaned in DI H2O, the MoS2 is (f) placed on a supporting substrate such as a holey 
carbon film (Figure 2.7e), dried, and rinsed with acetone, which dissolves the PMMA and 
leaves behind a nanoporous MoS2 membrane.  

The procedure to achieve robust, large-area porous MoS2 membranes is illustrated in 

Figure 2.9: the MoS2 film supported on Mo foil is first cut into cm-scale pieces, coated 

with a protective polymer (PMMA) layer, and placed in iron chloride (FeCl3) solution 

(Figures 2.9a-b). In the presence of FeCl3, which acts as a Lewis acid, the Mo foil is etched 

away via an oxidation reaction.6 Residual FeCl3 is then removed by transferring the floating 

polymer coated MoS2 film to a water bath (Figure 2.9c). Next, the MoS2 is placed in a bath 

containing PAN etchant (54:21:13:12 (v/v) mixture of H2O, phosphoric, nitric, and acetic 

acids), which is ubiquitously used in the semiconductor industry as an etchant for Mo and 

Al thin films.117,134 This results in the formation of pores over the entirety of the film 
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(Figures 2.9d-e), the mechanism of which is discussed later (see Figure 2.11). We use etch 

times of 0 (pristine), 30, 60, and 90 minutes in this study. The process is completed by an 

additional water rinse, transfer to a substrate such as holey carbon or silicon nitride (SiNx), 

and finally placement in acetone. The latter causes removal of the sacrificial polymer layer 

and results in a nanoporous MoS2 membrane (Figure 2.9f).  

2.4.5 Characterization and Fluid Transport of Nanoporous MoS2 

 

Figure 2.10. TEM-based quantification of nanoporous MoS2 membranes. 

(a) Low-magnification AC-STEM image of a pristine 1.3 μm diameter MoS2 membrane. 
Images of different membranes after treatment in PAN etchant for (b) 30, (c) 60, and (d) 
90 min with nanoporous/ etched regions highlighted in green. Plots of (e) total pore area 
Aporous and (f) average pore diameter ⟨d⟩ as a function of exposure time to the PAN 
etchant. Error bars correspond to the standard deviation over multiple (∼20) membranes. 
The schematic shown in the inset of (e) indicates the labeling of n pores (green) in a 



 44 

membrane (gray), each with diameter di corresponding to a circular pore with the same 
area (see eqs 1 and 2). (g) Averaged distributions (per μm2) of pore diameters and 
corresponding n values for pristine (blue), 30 (purple), 60 (red), and 90 (yellow) minute 
etched MoS2 membranes. Best fit lines (dashed) are drawn as a guide to the eye.  

 

Figure 2.10a shows a low-magnification AC-STEM image of a pristine MoS2 membrane 

covering a 1.3 μm diameter hole after the transfer process and before etching. Statistical 

analysis of pore membranes was performed using global thresholding of AC-STEM images 

for different etch times in ImageJ (see section 2.4.6). For n pores in a membrane, each with 

diameter di corresponding to a circular pore with the same area, we first define average 

pore diameter ⟨d⟩ as  

〈𝐝〉 =
∑ 𝐝𝐢𝐧
𝐢>𝟏

𝐧 										(𝟏) 

This is illustrated in the inset of Figure 2.10 e. Here, we only consider nanopores with di > 

3 nm due to imaging resolution limitations at this magnification. We also define the total 

porous area percentage Aporous as  

𝐀𝐩𝐨𝐫𝐨𝐮𝐬(%) =
∑ 𝛑E𝐝𝐢𝟐G

𝟐
𝐧
𝐢>𝟏

𝐀𝐡𝐨𝐥𝐞
	𝐱	𝟏𝟎𝟎%										(𝟐) 

where Ahole is the area of the underlying FIB hole (∼1.3 μm2). As shown in the 

summarized results in Figure 2.10 e,f, both Aporous  and ⟨d⟩ are obtained by averaging 

over multiple (∼20, total  area ∼ 27 μm2) images of suspended regions. n values normalized 

to an area of 1 μm2 are given in Figure 2.10g. The few pores found in pristine membranes 
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(Figure 2.10 g, n ∼ 8) yield Aporous ∼ 0.1% and ⟨d⟩ ∼ 14 nm. A reported by others, this 

is most likely the result of imperfect transfer or irregular growth due to the high surface 

roughness of the unannealed Mo foil (see Figure 2.12).187 After treatment in the PAN 

etchant for 30 min, A and ⟨d⟩ increase to roughly 1.4% porous and 15 nm, respectively 

(Figure 2.10 b). We also note that the etchant assists in removing residual polymer 

(PMMA) from the MoS2 surface, which appears as a white haze in the pristine film (Figure 

2.10 a) but disappears after PAN treatment (Figure 2.10b). Additional exposure to the 

etchant for 60 and 90 min increases Aporous to 1.7% and 7.1%, respectively (Figure 2.10 

c,d). The average pore diameter also increases from 19 to 26 nm while n more than doubles 

from 60 to 140 pores. Figure 2.10 e,f demonstrates that increasing etch time leads to 

monotonic rises in both Aporous and ⟨d⟩, respectively. Similarly, the average pore diameter 

distributions (per μm2) shown in Figure 2.10 g indicate that longer etch times result in an 

increase in the percentage of pores in the membrane with larger (>5 nm) diameters. This 

demonstrates that etch time can be used to controllably fabricate nanoporous MoS2 

membranes with tunable pore ensemble characteristics.  
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Figure 2.11. Nucleation and expansion of nanopores in monolayer MoS2 regions due to 
PAN etchant exposure. 

(a) High-magnification AC-STEM lattice image of a monolayer region in a MoS2 
membrane showing the presence of a low concentration of foreign dopants and intrinsic 
transition metal vacancies (V1Mo). (b) High-angle (𝜃 = 31°) grain boundary (outlined in 
white) between two monolayers showing the preferential formation of vacancies along 
grain boundaries due to PAN etchant exposure.  Further exposure results in the (c) 
expansion of vacancies into larger nanopores and eventually the (d) complete etching of 
grain boundaries. (e) Schematic of the ionic transport setup used to measure the 
conductance of nanoporous MoS2 membranes (see Methods). (f) Current-voltage (IB-VB) 
curves (± 500 mV) for pristine (blue) and etched (purple – 30 minutes, red – 60 minutes) 
MoS2 membranes with corresponding ionic conductance values. 

 

We also use AC-STEM imaging to investigate the mechanism for pore fabrication at the 

atomic level. Figure 2.11a shows a high-magnification AC-STEM image of the monolayer 

region of a pristine MoS2 membrane. We focus here on monolayer areas, which are 

observed to etch before thicker multilayer regions (see Figure 2.11c). Transition metal 

vacancies (V1Mo) and heavy-atom dopants are visible within the MoS2 lattice as missing 
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and high-intensity atoms, respectively (Figure 2.11a). After exposure to the PAN etchant, 

more V1Mo vacancies in the membrane become visible. In particular, vacancies tend to 

appear along or near grain boundaries in the polycrystalline membrane (Figure 2.8c). 

Figure 2.11b shows a high-angle (θ = 31°) grain boundary (outlined in white) between two 

monolayer regions in which a large concentration of V1Mo vacancies is spatially localized 

to the interface. Such vacancies are not present at other grain boundaries in the pristine 

material (Figures 2.8a-b) and are therefore attributed to the etching process. Further etching 

of the membranes results in the expansion and joining of vacancies into larger nanopores 

that form preferentially along grain boundaries (Figure 2.11c). In some cases, grain 

boundaries over 20 nm in length were found to be completely etched to form linear voids 

(Figure 2.11d). Previous reports have shown that grain boundaries in TMDs contain a high 

density of defects such as chalcogen vacancies (V1S and V2S) and distorted 4/8-fold rings. 

38,234 The highly confined formation of pores and vacancies along grain boundaries 

observed with AC-STEM (Figures 2.11b−d) therefore suggests that intrinsic defects 

primarily located at grain boundaries within the polycrystalline MoS2 membrane act as 

nucleation sites for the PAN etchant-based reaction.  

2.4.6 Additional Experimental Methods 

MoS2 Film Growth: MoS2 films were grown via the sulfurization of Mo foil. A centimeter-

scale piece of Mo foil (Alfa Aesar, 0.025 mm thick) was first sonicated in 30% acetic acid 

for 15 min. The foil was then washed with deionized (DI) H2O, blow dried with N2 gas, 

and positioned in the middle of a 1 in. diameter tube furnace (Barnstead Thermolyne 

21100). The foil was placed directly on quartz plates in a quartz boat in order to limit MoS2 
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growth to one side. After being flushed with N2 gas (1000 sccm), the furnace was heated 

to 800 °C with a ramp rate of 70 °C/min and a N2 flow rate of 100 sccm. The furnace was 

then held at 800 °C for 5 min under a N2 flow rate of 700 sccm while 25 mg of sulfur, 

placed 23 cm away from the foil, was kept at 180 °C. Afterward, the system was rapidly 

cooled by shutting off the furnace, sliding the foil out of the furnace, and turning on cooling 

fans.  

Device Fabrication: MoS2 films were isolated and trans- ferred by first spin-coating one 

side of a mm/centimeter-scale piece of the growth product with C4 PMMA. We note that 

the backside of the foil is polished with sandpaper prior to spin- coating to remove any 

extraneous MoS2. The underlying Mo foil was then etched by floating the film in 2 M 

FeCl3 solution for 24 h. The floating film was transferred with a glass slide to DI H2O for 

an additional 24 h to remove residual FeCl3. Nanoporous membranes were then fabricated 

by treating the PMMA-coated MoS2 film in an acid-based etchant known as PAN 

(54:21:13:12 (v/v) mixture of H2O, phosphoric, nitric, and acetic acids) for between 30 and 

90 min (see Figure 2.9). The film was then washed with DI H2O, transferred to a supporting 

substrate such as holey carbon, dried overnight, and immersed in HPLC-grade acetone for 

24 h to remove the polymer coating. The final membrane consists of a nanoporous MoS2 

film suspended over one or multiple (up to centimeter- scale arrays) micron-sized holes.  

 

Bulk Characterization: Raman spectroscopy was performed using an NT-MDT NTEGRA 

Spectra with a 532 nm Nd:YAG laser excitation and 1800 lines/mm spectrometer grating 
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(0.5 cm−1 resolution). AFM scans were completed with a Bruker Dimension Icon 

operating in tapping mode.  

TEM Imaging and Analysis: AC-STEM images were obtained using a HAADF detector 

with a collection angle of 54−220 mrad on a Cs-corrected JEOL ARM-200CF operating at 

80 keV and SAED patterns were acquired using a JEOL 2010F operating at 200 keV. AC-

STEM image analysis and nanopore quantification were performed using custom-scripted 

ImageJ and DigitalMicrograph software: Images were first Gaussian blurred to reduce 

background noise, porous regions were then isolated via intensity thresholding and counted 

using ImageJ’s “Analyze Particles” functionality. All measurements were performed at 

room temperature.  

Ionic Transport Measurements: Nanoporous MoS2 membranes were fabricated on 100 nm 

diameter FIB holes in SiN membranes using the process described above. Prior to 

experiments, samples were annealed at 300 °C for 90 min under a continuous 95:5 (v/v) 

Ar/H2 gas flow. Afterward, samples were glued into a custom PDMS mold and immersed 

in 50:50 (v/v) water/ethanol solution for 30 min. Membranes were then flushed with 1 M 

KCl (with 10 mM EDTA and 1 mM Tris) solution. Ionic measurements were obtained 

using Ag/AgCl electrodes connected to a EPC-10 HEKA amplifier operating at 10 kHz.  
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Figure 2.12. Characterization of the Mo foil growth substrate 

(a) Optical microscope image and (b) AFM scan of the surface of the unannealed Mo foil 

(see Methods in the main text) prior to the sulfurization process. The unannealed foils 

display a relatively high surface roughness (𝜎	 ~ 13 nm) and result in the matrix-like 

structure of the MoS2 films with both mono- and few-layer regions (see Figures 1-2). 
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Conversely, the sulfurization of Mo foil annealed at 1400°C yields uniformly monolayer 

MoS2.21,22  

 
Figure 2.13. Current power spectral densities for nanoporous MoS2 membranes 

Power spectral densities (PSD) for pristine (green) and etched (blue – 30 minutes, red – 60 

minutes) membranes. Pristine and 30 minute-etched membranes exhibit power spectra that 

contain noise contributions from only the amplifier (see Methods). This is also similar to 

the power spectra seen in thicker materials such silicon nitride. 36,37 On the other hand, 

samples exposed to PAN etchant for 60 minutes yield power spectra that agree with the 

behavior of pores in 2D materials such as graphene36 and MoS2,8 where 1/𝑓	 noise is 

dominant at low frequencies. This finding is intuitive as the 60 minutes etch results in a 

highly nanoporous membrane that allows for significant ion flow through thin, monolayer 

regions of the membrane. The PSD plotted above are extracted from current traces at 0 V 
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for each device and fitted to the equation 𝑃𝑆𝐷 = IJ!

Kα
	 	where the noise coefficient, A = 

1.60x10-1, and the low frequency exponent, α = 1.03.  

2.4.7 Summary  

Fluid filtration, energy generation, and biomolecule detection have recently been 

demonstrated using porous TMD membranes due to the ability of pores and vacancies to 

form ionic channels in solution.34,60,220 Here, we demonstrate variable ionic conductance 

through nanoporous MoS2 membranes fabricated via PAN etching. The experimental setup 

(see section 2.4.6) consisting of a 100 nm diameter, SiN- supported nanoporous membrane 

(orange) separating two chambers of 1 M KCl solution (blue) is shown in Figure 2.11e. 

The obtained current−voltage (IB−VB) curve for a pristine MoS2 membrane yields an ionic 

conductance (i.e., slope) of roughly 1 nS (Figure 2.11f, blue). A membrane that has been 

exposed to 30 min of PAN etching exhibits an increase in conductance to 21 nS due to the 

formation of additional pores in the MoS2 (Figure 2.11f, purple). The red curve in Figure 

2.11f shows the comparatively high conductance (130 nS) obtained from a membrane 

etched for 60 min. This monotonic increase of conductance with etch time is expected due 

to higher values of ⟨d⟩ and Aporous (Figure 2.10e−f), resulting in increased ionic current 

across the membrane. The corresponding current noise power spectral densities for pristine 

and variably etched MoS2 membranes are presented in section 2.4.6, Figure 2.13. Pristine 

and 30 min-etched membranes exhibit current noise power spectra that are similar to 

spectra from thick materials such as silicon nitride (SiNx). 130,175 Samples etched for 60 min 

yield spectra that agree with previously published data on nano- porous monolayer MoS2 

membranes, in which 1/f noise (f = amplifier frequency) is dominant at low frequencies.190 
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The fact that the measured noise in our samples is similar to the reported noise for pores in 

monolayer membranes is also consistent with the overall picture that ionic transport 

primarily occurs through pores in thin, monolayer regions of the MoS2 membrane, despite 

having an average thickness of a few layers (see Figures 2.7 and 2.8).  

In conclusion, we have demonstrated a new method for the production of suspended 

centimeter-scale nanoporous MoS2 membranes offering tunable pore sizes and densities. 

These membranes satisfy several practical requirements: the presence of monolayers for 

obtaining high ion/gas flux, combined with the structural robustness of multilayers and 

large membrane areas. AFM and Raman spectroscopy were used to show that large-scale 

MoS2 films grown with Mo foil sulfurization had an average thickness N of ∼ 6−7 layers. 

Mass-contrast HAADF AC-STEM imaging was utilized to further show that suspended 

films are comprised of a polycrystalline, multilayer matrix structure with embedded 

regions as thin as a single layer. MoS2 -based NATMs were fabricated by implementing a 

novel wet-etch process based on the industry-standard PAN etchant. Using AC-STEM 

imaging, it was shown that etchant treatment time can be used to control the porosity of 

the membrane with total porous areas Aporous of between 0.1 and 7% and average pore 

diameters ⟨d⟩ of up to 26 nm. Although the mechanical robustness of the overall membrane 

was preserved by intact multilayer regions during PAN etching, nanopores formed in thin, 

monolayer regions and subsequently expanded under further etchant exposure. Atomic-

resolution images demonstrated that the mechanism by which pores are formed relies on 

intrinsic defects and is frequently localized to grain boundaries within the polycrystalline 

structure. Variable ionic conductance as a function of etch time was also established 
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through nanoporous membranes. The methods and characterization techniques presented 

here can be extended to the growing family of TMDs. This work also provides a unique 

approach to increasing the robustness of such membranes by characterizing and employing 

the often underutilized multilayer form of 2D materials, while at the same time not relying 

on thicker, laminate membranes. Coupled with recent advances in 2D materials growth and 

substrate engineering, the few-layer matrix structure of these MoS2 films can likely be 

further tuned to control nanopore characteristics. Likewise, the direct spatial correlation 

between atomic defects and larger pores yields opportunities to tune the size, density, and 

location of pores within the membrane.  
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3 Defect Engineering and Nanopatterning in Transition Metal 
Dichalcogenide 

 

3.1 Introduction  
 
Manipulation and structural modifications of 2D materials for nanoelectronic and 

nanofluidic applications remain obstacles to their industrial-scale implementation. Here, it 

is demonstrated that a 30 kV focused ion beam can be utilized to engineer defects and tailor 

the atomic, optoelectronic, and structural properties of monolayer transition metal 

dichalcogenides (TMDs). Aberration- corrected scanning transmission electron 

microscopy is used to reveal the presence of defects with sizes from the single atom to 50 

nm in molybdenum (MoS2) and tungsten disulfide (WS2) caused by irradiation doses from 

1013 to 1016 ions cm-2. Irradiated regions across millimeter-length scales of multiple devices 

are sampled and analyzed at the atomic scale in order to obtain a quantitative picture of 

defect sizes and densities. Precise dose value calculations are also presented, which 

accurately capture the spatial distribution of defects in irradiated 2D materials. Changes in 

phononic and optoelectronic material properties are probed via Raman and 

photoluminescence spectroscopy. The dependence of defect properties on sample 

parameters such as underlying substrate and TMD material is also investigated. The results 

shown here lend the way to the fabrication and processing of TMD nanodevices.  
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Photograph featured on web via University of Pennsylvania’s landing page on March 15th, 

2018. This work was subsequently published in ACS Nano and highlighted in Penn Today’s 

magazine (link: https://penntoday.upenn.edu/spotlights/creating-atomic-water-filters). The 

equipment photographed in the background is the Focused Ion Beam (FEI FIB Strata 

DB235) at Singh Center, Penn. This industrial standard, Gallium sourced FIB tool served 

“instrumental” in new 2D materials endeavors during my PhD.  

The results presented here were published in 2019, in the article " Irradiation of Transition 

Metal Dichalcogenides Using a Focused Ion Beam: Controlled Single-Atom Defect 

Creation " by Thiruraman J.P., Masih Das, P., Drndić, M., Advanced Functional Materials, 

29, 1904668  

3.2 Background  
 
Among the expanding catalogue of two-dimensional (2D) materials, transition metal 

dichalcogenides (TMDs) have generated significant interest due to their exceptional 

electronic, optical, and structural properties.86,121,211 In particular, TMDs have been noted 
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for transmembrane applications such as DNA sequencing,34,140 energy harvesting, 209 water 

desalination,57, 190 and gas separation223,232 because of their extreme thinness and ability to 

host sub-nm scale pores. Other studies have shown that defects in single-atom thick 

materials can be used to manipulate electronic, magnetic, and catalytic properties.72,222 For 

example, defects in wide-bandgap h-BN exhibit spin effects and potential quantum 

functionality. 40,172 The widespread realization of these applications is contingent upon the 

development of scalable processes for the fabrication of atomic-level defects with 

precisely-controlled sizes, spatial densities, and locations within the lattice.  

 Focused ion beams (FIBs) are widely utilized for doping, device fabrication, and 

micromachining in semiconductors such as SiC, GaAs, and Ge. 129,155 More recently, FIB 

irradiation has been extended as a means of structural modification and nanopatterning in 

2D materials such as graphene. 143 Theoretical studies2, 48, 99,166 on the role of ion incidence 

angle and substrate effects in the defect creation process in 2D materials like TMDs and 

graphene, and similar experimental studies, 119, 139, 190 are starting to emerge. A wide range 

of techniques for defect creation have been reported in literature including plasma 

etching,183 thermal decomposition, 118 acid etching,126,140 electron irradiation, 145 and ion 

irradiation. 119, 190 The latter two irradiation methods directly allow for accurate and 

spatially selective defect sites. While electron irradiation is exercised for defect creation, it 

predominately leads to mono-sulfur and disulphur vacancies in TMDs.95,145,225 In this 

study, exploiting the higher mass of energetic ions, we are able to generate single atom 

vacancies in monolayer TMDs using ion irradiation. Previously, we have also 

demonstrated ion irradiation as a method of fabricating sub-nm pores in MoS2 for ionic 

transport through nanoporous membranes. 190  
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As of now, there is a relatively poor correspondence between ion irradiation experiments 

and theory in 2D materials.48,99,190,199,223 One likely reason for these discrepancies is the 

inadequate understanding of experimental parameters. For example, material 

contamination has been ubiquitously reported after ion irradiation and while it plays a 

significant role in analytical and structural characterization, such “substrates” are rarely 

accounted for in theoretical simulations.14,143,184,190,199,200  Similarly, Surwade et al. 

demonstrated that water transport properties in nanoporous graphene with defects produced 

from electron and ion irradiation result in negligible water flux while defects from oxygen 

plasma etching exhibit rapid water transport, despite identical Raman spectra from the two 

defect creation techniques.183 We speculate that this difference in filtration performance 

may result from the lack of thorough information of FIB operation on 2D materials. FIBs 

were developed with a primary focus for material fabrication and ablation to produce 

micro-structures, and therefore their usage on 2D materials is still unconventional and 

underdeveloped. For example, traditional Stopping Range/Transport of Ions in Matter 

(SRIM/TRIM) software237 is widely used to replicate FIB-based micro-

manufacturing/doping in bulk materials, but its approach of binary-collision approximation 

treats 2D materials as an amorphous material with no regard to atomic crystallinity and 

thus produces inaccurate results. 99,105, 119,139  

In this report, we investigate the effects of FIB irradiation on the structural, optoelectronic, 

and phononic properties of monolayer TMDs. Aberration-corrected scanning transmission 

electron microscopy (AC-STEM) along with scanning electron microscopy (SEM) provide 

information into a tenable irradiation mechanism and feature properties of fabricated 

defects with sizes over three orders of magnitude from ~ 0.1 nm (atomic vacancies) to 50-
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nm-large holes. Irradiated TMD materials appear less contaminated than graphene systems 

due to less reactive defect sites, which allows for consistent defect creation and analysis 

over comparatively large, mm-length scales across different samples. Characteristics of the 

irradiated membranes such as defect density percentage and average defect size are also 

quantified and reported as a function of TMD material, supporting substrate, and irradiation 

dose. Raman and photoluminescence (PL) spectroscopy results demonstrate macro-scale 

changes in material properties due to FIB irradiation.  

3.3 Fabrication of Angstrom-Size Pores Devices using Gallium Ion Beam 
 

 

Figure 3.1. Irradiation mechanism and HAADF images of monolayer TMD flake 
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Graphic of pixel-by-pixel irradiation mechanism on a monolayer TMD flake (orange) 
suspended over 1-micron diameter holes using a focused Ga+ ion beam (yellow). The inset 
illustrates the raster pattern of the FIB. HAADF AC-STEM images of suspended 
monolayer (b) WS2 and (c) MoS2 flakes after FIB irradiation with doses of 1.5×1014 and 
5.1×1013 ions/cm2, respectively. Defects are recognized by the absence of contrast at lattice 
sites. Due to the Z-contrast behavior of HAADF imaging, the image intensity of S atoms 
is weaker compared to heavier Mo/W atoms. Scalebars in (b) and (c) denote 2 nm.  
 

Figure 3.1 shows a schematic of the process used to irradiate monolayer TMDs. A TMD 

flake grown by chemical vapor deposition (CVD) is transferred through a chemical wet 

etch process (see the Experimental Section), suspended on a holey carbon substrate, and 

exposed to a 30 kV Ga+ focused ion beam that is incident normal to the sample. In our 

study, we use a combination of Raman spectroscopy (see Figure 3.3 and Figure 3.4 in the 

Section 3.4), PL spectroscopy (see Figure 3.4), and atomic resolution AC-STEM imaging 

(see Figures 3.1,3.3, and Figure 3.6 in the Section 3.4) to confirm the monolayer nature of 

our materials. These data are consistent with previous reports of monolayer TMDs.4,12,26, 32  

Exposure parameters and dose calculations are discussed later. Irradiated samples are first 

characterized through high-angle annular dark-field (HAADF) imaging, an AC-STEM 

technique by which mass contrast information of individual atomic positions is obtained, 

particularly well-suited to atomically thin 2D materials15,24, 190 Figure 3.1 b,c shows 

HAADF lattice image of WS2 and MoS2, respectively, that have been exposed to FIB 

irradiation with doses of 1.5 × 1014 and 5.1 × 1013 ions cm-2, respectively. Within the 

hexagonal lattice structure, single-atom defects (i.e., vacancies) are identified by the 

absence of contrast at regularly spaced lattice positions. We focus here on transition metal 

sites due to the weak HAADF contrast of S atoms compared to heavier Mo/W atoms233 and 
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observe that defects with tunable densities and sizes down to a single atom can be 

engineered over millimeter-scale areas in TMDs (limited by the FIB exposure area). STEM 

imaging was performed at an acceleration voltage of 80 kV while focusing time and probe 

current were minimized (see the Experimental Section) such that transition metal defect 

fabrication from electron beam knock-on damage is expected to be negligible. 95, 145 

 
3.3.1 Mechanism of Irradiation of TMDs using Focused Ion Beam  

We first demonstrate the underlying mechanisms involved in the irradiation process and 

highlight certain features that are unique in the context of 2D materials. Ion beam exposure 

dose D for bulk materials is typically given as  

𝐷 = JL
MI

  (1) 

where I is the ion beam current, t is the total exposure time, q is the ion charge, and A is 

the exposure area.69  In bulk materials, dose—i.e., the number of ions hitting the sample 

surface per cm2—is used as a measure of doping or implanting ions into a substrate. 1, 65 

However, this concept has been loosely borrowed for 2D materials where ions are used for 

defect creation55, 119, 190 and as shown later, fails to accurately account for the irradiated 

area since beam raster can cause nonuniform irradiation on materials at the nanoscale.  

We suggest the following empirical formula that more accurately describes the direct-ion 

impact which can cause the spatial distribution of defects formed in 2D materials. This is 

given as  

𝐷 = N89:;	(L<P=)
M

 (2) 
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Figure 3.2. Mechanism of Irradiation of TMDs using Focused Ion Beam 

a) SEM micrograph displaying the raster pattern caused by an ion beam at 4.3 × 1013 ions 
cm-2 (td = 32 μs per pixel) with (inset) high resolution image of raster bands/stripes on 
suspended monolayer WS2. b) TEM micrograph of suspended monolayer WS2 irradiated 
with a dose of 5.3 × 1015 ions cm-2 showing varying defect density across a suspended WS2 
membrane of 2.5 μm diameter. c,d) Zoomed-in images of the two regions indicated in (b), 
clearly showing triangular tears caused by Ga+ ion irradiation. e) Histogram of defects for 
suspended WS2 samples exposed to 5.3 × 1015 ions cm-2 exhibiting average and median 
defect sizes of ≈1420 and 1140 nm2.  
 

where td is the dwell time per pixel, Ns is the number of scans, and Abeam is the area of 

the ion beam spot. Compared to the bulk formula, total exposure time here is determined 
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by the number of repetitive scans, Ns, on each pixel. As in this study, Ns is applicable in 

techniques where imaging/rastering mode (or “grab frame”) capture is involved. We utilize 

an ion probe current of 10 pA and spot-size of 100 nm diameter (Figure 3.1a). Previous 

dose calculations1, 65typically use Equation (1) where area A corresponds to the total area 

of all pixels in the imaging area. However, only a small region of each pixel is exposed to 

the ion beam. Therefore, our dose calculation (Equation (2)) only accounts for the area of 

the ion beam spot size (Abeam) that is irradiated within each pixel (see Figures 3.1a and 

3.2b). To calculate the dose, we multiply the irradiated area by the number of times the 

beam scans over the surface of the sample. Using the total scan area (Equation (1)) gives a 

less accurate dose estimate because defects caused by ion irradiation in 2D materials are 

only created in irradiated regions and not across the whole sample surface that is scanned 

under the ion beam. Differences in dose calculations between Equations (1) and (2) can be 

found in Table 3.2 in the Section. In this study, scans are controlled with a resolution (np) 

of 416 × 416 pixels, pixel width of 600 × 600 nm, and dwell time (td) of ≈16 μs per pixel 

to irradiate a selected region of the suspended flake, unless otherwise specified.  

Observation of these values and the corresponding dose calculation reveal the resolution at 

which the irradiation was conducted and the possible nonuniform spacing between defects. 

Figure 3.2a shows one such scenario where the raster pattern on a monolayer WS2flake is 

noticed as dark, irradiated (pink line) and bright, unirradiated (blue line) bands in a 

scanning electron micrograph. This is intuitive as the ion beam spot can be described as a 

Gaussian function whose maximum is incident at the center of each pixel.103, 129 With a set 

resolution, the FIB software divides the imaging area into a number of pixels over which 
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the beam will scan in a raster pattern. The pixel width, spot size, and overlap % of the ion 

beam play a significant role in decoding and mapping the pattern and spacing of defects on 

an irradiated sample. This is clearly demonstrated in the low-magnification HAADF image 

of FIB-irradiated monolayer WS2 suspended over a 2.5 μm diameter hole in Figure 3.2b. 

Here, we observe linear bands of defective areas spaced ≈500 nm apart. This 

nonhomogeneous pattern corresponds to the raster mechanism of the FIB where the 

spacing between bands or stripes is controlled by the specified resolution (i.e., pixel width).  

High-magnification images reveal that the individual holes or tears in the material are 

shaped as equilateral triangles with side lengths of  ≈50 nm (area  ≈1200 nm2) (Figure 

3.2c). Single triangles coalesce into larger defects near band centers, where the middle of 

the Gaussian ion beam hits the sample (Figure 3.2d). Quantitative analysis of the defects 

(see the Experimental Section) yields average and median defect areas of ≈1420 and 1140 

nm2, respectively (Figure 3.2e).  
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3.4 Characterization of Atomic Defects in TMDs using Raman Spectroscopy 
and Aberration-Corrected Transmission Electron Microscopy (AC-
TEM) 

 

 
Figure 3.3. Characterization of atomic defects in TMDs using Raman Spectroscopy and 
Aberration-Corrected Transmission Electron Microscopy (AC-TEM) 

 
 (Top row) Low- and (bottom row) high-magnification HAADF AC-STEM images of 
suspended monolayer WS2 exposed to Ga+ FIB irradiation with doses of (a-b) 0, (c-d) 
5.1×1013, (e-f) 6.4×1014, (g-h) 1.9×1015, and (i-j) 3.1×1016 ions/cm2. Quantitative analysis 
for all doses is provided in Figures 3.6 and 3.10. (k) PL spectra of FIB-irradiated WS2 with 
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(inset) spectral weight percentage plot for the exciton (X0, blue), trion (XT, green), and 
defect (XD, red) peaks. (l) Raman spectra of FIB-irradiated WS2 showing no change over 
the irradiation dose range (see also Figure 3.4).   
 

 
 

 
Figure 3.4 Raman peak shifts for suspended monolayer WS2 exposed to FIB irradiation 
with doses between 0 and 1017 ions/cm2 

Raman spectra (shown in Figure 3.2) were fit to three phonon modes: (a) second-order 
longitudinal acoustic 2LA(M), (b) in-plane E12g(Г), and (c) out-of-plane A1g(Г) (see 
Experimental Section). No discernible peak shifts above the spectrometer resolution (0.5 
cm-1) were observed over the dose range studied here. 
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Figure 3.5. HAADF AC-STEM images of pristine monolayer MoS2 and WS2 

HAADF AC-STEM images of pristine CVD-grown monolayer (a) MoS2 and (b) WS2 taken 
at 80 kV. Bright spots correspond to transition metal (Mo, W) atoms in a trigonal prismatic 
(2H) coordination with chalcogen (S) atoms. 
 

We also probe the effects of varying irradiation dose D, achieved by retaining a constant 

dwell time per pixel, td, and changing the total number of FIB raster scans, NS. In addition 

to pristine material (Figure 3.5), irradiation doses ranging over three orders of magnitude 

from 5.1 × 1013 to 3.1 × 1016 ions cm-2 are studied. Figure 3.3 shows a series of low-

magnification (top row) and high-magnification (bottom row) HAADF AC-STEM images 

of variably irradiated suspended monolayer WS2 membranes. A low degree (5.1 × 1013 

ions cm-2) of irradiation results in the appearance of single transition metal atom defects 

(Figure 3.3 c,d). Larger levels of FIB irradiation (6.4 × 1014–1.9 × 1015 ions cm-2) show a 

denser distribution of single atom to sub-nanometer defects (Figure 3.3e–h). The atomic 

configuration of these defects is described later in Figure 3.9. We note observable defect 

areas of ≈0.10, ≈0.14, and ≈0.27 nm2 for V(1W+6S), V(2W+2S), and V(3W+12S), 

respectively.  
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Quantitative analysis for all doses is provided in Figure 3.6 and Figure 3.10 in section 3.4. 

Under an order of magnitude higher dose 3.1 × 1016 ions cm-2, the membrane begins to 

display larger, nanometer-scale defects (Figure 3.3 i,j). We note that unlike irradiated 

graphene, which becomes heavily contaminated due to the pinning of atmospheric 

impurities at defect sites,184,199 the exposed TMDs did not exhibit a noticeable increase in 

contamination until doses above 1016 ions cm-2 due to the presence of ablated material on 

the membrane. This suggests that defects in TMDs are less chemically reactive than defects 

in graphene, which can facilitate consistent structural characterization across samples and 

over large length scales. Above 3.1 × 1016 ions cm-2, irradiated membranes were observed 

to be mechanically unstable and prone to collapse. 35   

Moving from atomic- to bulk-scale properties, we utilize PL and Raman spectroscopy to 

characterize the effects of FIB irradiation on the optoelectronic and phononic structure of 

TMDs, respectively. Figure 3.3k shows the PL spectra (excitation wavelength = 532 nm) 

obtained from suspended monolayer WS2 membranes exposed to FIB irradiation from 0 

(pristine) to 3.2 × 1016 ions cm-2. Spectra were fit to three characteristic WS2 excitations: 

defect (XD, 1.88 eV), trion (XT, 1.96 eV), and exciton (X0, 2.02 eV).35 The spectral weight 

percentage for each excitation as a function of irradiation dose is shown in the inset of 

Figure 3k. In particular, XD exhibits a direct dependence on dose and monotonically 

increases from 0.7% in the pristine case to 3% for 3.2 × 1016 ions cm-2. This is similar to 

the case of plasma-irradiated WS2, in which XD increases up to 40% as a function of plasma 

exposure.30 However, unlike plasma-etched WS2, where XT steadily decreases with 

exposure time, FIB-irradiated WS2 experiences a peak (57%) in XT at 6.4 × 1014 ions cm-
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2, which results in redshift of the PL signal. Similarly, X0 is lowest (41%) at this dose. This 

suggests that XT and X0 are not sensitive to atomic defects (i.e., sub-nanometer defects do 

not induce doping). We attribute this peak in XT at 6.4 × 1014 ions cm-2 to the presence of 

substitutional dopants in suspended WS2 at this dose (see Figure 3.7 in the Section 3.4.2). 

The origin and effect of these substitutional dopants that appear in AC-STEM images in 

place of W atoms are being studied extensively as a part of a separate work. We are 

currently not able to confidently attribute their origin to a specific step during sample 

growth or subsequent handling. 

We also note that with increasing FIB irradiation, PL peak intensity decreases 

monotonically by roughly two orders of magnitude for both monolayer WS2 and MoS2.190  

Although further analytical TEM studies are needed, the PL intensity decrease observed 

here suggests that FIB irradiation likely produces mainly transition metal defects rather 

than chalcogen vacancies, because chalcogen vacancies were previously found to cause an 

increase in PL intensity, opposite from what we measure.24,197  

 

In addition to PL, Raman spectroscopy is widely implemented to characterize vibrational 

modes within 2D materials and has previously been used to analyze He+-, Ne+-, Mn+-, 

and Ga+-irradiated MoS2. Figure 3.3 exhibits the Raman spectra for FIB-irradiated WS2 

for the corresponding doses in Figure 3k. Spectra were normalized and fit to characteristic 

WS2 vibrational modes, in particular the second-order longitudinal acoustic 2LA(M), in-

plane E12g(Γ), and out-of-plane A1g(Γ) modes (Figure 3.4). 15, 132  Over the irradiation 

dose range measured here, we do not observe any changes or significant shifts in the Raman 
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spectra. This has also been reported in plasma-irradiated WS2 under the same excitation 

(532 nm) by Chow et al. and implies that the primary phonon modes in WS2 are not 

sensitive to defects at this wavelength.  

While several low-frequency peaks do appear, we similarly did not see changes in the 

E12g(Г) and A1g(Г) modes of FIB-irradiated MoS2. 190 This is consistent with previous 

reports, which only observe peak shifts in highly defective MoS2, 119,131 and suggests that 

sub-nm defects with low densities (< 1%) do not affect the Raman spectra of monolayer 

MoS2. 

Due to the versatility of FIB instrumentation, irradiation can be performed on a wide range 

of substrates and materials under a variety of conditions. Here, we investigate the role of 

the underlying substrate on the resulting structural and defect characteristics of different 

monolayer TMD materials. Figure 3.3 a,b shows schematically the substrate-supported 

irradiation and characterization process. CVD-grown TMD flakes were exposed to 5.1 × 

1013 ions cm-2 FIB irradiation while sitting on a Si/SiO2 substrate, transferred to a holey 

carbon film using a wet etch process, and imaged using HAADF AC-STEM (see the 

Experimental Section for more details). Figure 3.3 c,d exhibits the obtained AC-STEM 

images for MoS2 (blue) and WS2 (red) flakes, respectively. Figure 3.3 e,f shows 

corresponding images for flakes that were exposed to the same irradiation dose (5.1 × 1013 

ions cm-2) while suspended on a holey carbon film (Figure 1a).  
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3.4.1 Nanopatterning on Suspended and Supported TMDs Substrate  
 

 

Figure 3.6. Nanopatterning on Suspended and Supported Substrate 

a) Schematic of the irradiation mechanism for monolayer TMDs supported on a Si/SiO2 
substrate using a focused Ga+ ion beam (yellow). b) After irradiation, samples are 
transferred onto holey carbon films and imaged using AC-STEM (electron beam, green). 
HAADF AC-STEM images of c) substrate-supported MoS2, d) substrate-supported WS2, 
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e) suspended MoS2, and d) suspended WS2 after exposure to FIB irradiation with a dose of 
5.1 × 1013 ions cm-2.  
 
 
 

 
Figure 3.7 AC-STEM images of substitutional dopants. 

AC-STEM images of substitutional dopants from (a) suspended WS2 exposed to 6.4×1014 
ions/cm2 and (b) substrate-supported WS2 exposed to 5.1×1013 ions/cm2. Substitutions are 
primarily observed in samples at low irradiation doses (1013-1014 ions/cm2) and are not 
seen in pristine MoS2 and WS2s (Figure 3.5). 
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Figure 3.8. AC-STEM micrographs of FIB-irradiated (6.4×1014 ions/ cm2) monolayer 
WS2 under constant imaging conditions (i.e., STEM raster scanning). 

Under electron doses of (i) 6.0×106 (1 scan), (ii) 1.2×107 (2 scans), and (iii) 1.8×107 e-

/nm2 (3 scans), existing defects (white arrows) did not expand or migrate, suggesting 
negligible electron beam-induced radiation damage during imaging. This study utilizes an 
acceleration voltage of 80 kV, STEM probe current of 22 pA, and imaging doses of ~ 106 
e-/nm2 (see Methods), which does not cause knock-on damage in monolayer TMDs.62, 145 
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Figure 3.9. High magnification AC-STEM images of individual defects along with their 
observed atomic configuration.  

The average areas of V(1W+6S), V(2W+2S), and V(3W+12S) are ~0.1 nm2, ~0.14 nm2, 
and ~0.27 nm2, respectively. 

 
By sampling over multiple atomic resolution images (see the Experimental Section), we 

obtain values for average defect area and defect density, defined as the percentage of 

transition metal sites containing vacancies. The total image area analyzed for each sample 

configuration (total ≈105 nm2) is listed in Table 3.1 in the Section 3.4.2 while histograms 

of defect sizes for MoS2 and WS2 are given in Figures 3.11 and 3.12 in the Section 3.4.2, 

respectively.  

The application of different TMD materials and substrates offers additional methods of 

tuning defect properties. For example, under an irradiation dose of 5.1 × 1013 ions cm-2, 

suspended monolayer MoS2 (blue circles, Figure 3.8) has a defect density and average area 

of 1.2% and 0.28 nm2, respectively. These are significantly larger than the corresponding 

values of 0.08% and 0.12 nm2 obtained for suspended WS2. Similar trends are observed in 

supported materials and suggest that defects are more readily produced in MoS2 compared 
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to WS2 possibly due to its lower displacement threshold energy. The relationship between 

average defect area and defect density (%) is presented for substrate-supported and 

suspended monolayer TMDs exposed to FIB irradiation in Figure 3.9a. We measure that 

the average defect area increases to ≈1 nm2, as the defect density increases to ≈10%.  

Figure 3.8 also demonstrates that the presence of a substrate causes lower defect densities 

and average defect areas. For instance, suspended MoS2 displays an average defect area of 

0.28 nm2 while supported MoS2 (blue diamonds, Figure 3.6 g,h) has a lower value of 0.14 

nm2 under 5.1 × 1013 ions cm-2 irradiation. Likewise, the defect density of 0.007% for 

supported WS2 (red diamonds, Figure 4g,h) at this dose is an order of magnitude smaller 

than 0.08% for suspended WS2. We note that while supported WS2 demonstrates a low 

defect density due to the occurrence of FIB-induced substitutional dopants (see Figure 3.7), 

it displays an average defect area (0.08 nm2) that is consistent with the size of a single 

transition metal vacancy (0.07 nm2). In other words, for the same irradiation dose of 5.1 × 

1013 ions cm-2, we obtain single-atom defects in case of WS2 and larger defects ranging 

from 0.05 to 0.4 nm2 in the case of MoS2 (see Figures 3.11 and 3.12 in the Section 3.4.2). 

This effect of larger defects in MoS2 compared to WS2, for a given dose is consistent for 

both suspended and supported material.   

Recent simulations with kV-range Ne+ and Ar+ ion irradiation of MoS2 suggest that in 

addition to direct sputtering, further defects in supported MoS2 are created due to 

backscattered ions and atoms sputtered from the substrate.99, 119 However, this is not 

expected for heavier ions such as Ga+. This is consistent with the fact that we do not see 

larger/denser defects in supported materials and also shows that direct ion sputtering is 

more dominant than substrate-induced defects in Ga+-irradiated TMDs. While FIB 
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irradiation enables defect engineering with tunable densities and sizes down to a single 

atom, further experimental and theoretical studies are needed in order to clarify the 

different mechanisms that result in defects as a function of ion composition, TMD material, 

and different sample architectures. 

3.4.2 Statistical Image Analysis of Angstrom-Size Pores in TMDs  
 

 
Figure 3.10. Statistical Image Analysis of Angstrom-Size Pores in TMDs 

Summarized average defect area, defect density and median defect area values of (square) 
pristine, (diamond) substrate-supported, and (circle) suspended monolayer TMDs for 
irradiation dose values of 0, 5.1 × 1013, 6.4 × 1014, 1.9 × 1015, and 3.1 × 1016 ions cm-2. 
Results for MoS2 and WS2 are shown in blue and red, respectively.  Pristine, substrate-
supported, and suspended systems are represented by squares, diamonds, and circles, 
respectively.  
 
Further statistics and histograms of individual defects are provided in figures below. 
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Error bars represent two quartiles above and below the median. Similar to defect density 

and average defect area, median defect areas are larger (i) at higher irradiation doses, (ii) 

in suspended systems, and (iii) in MoS2 (compared to WS2). The results for different FIB 

exposure conditions including irradiation dose (see Figure 3.7), underlying substrate, and 

TMD material are summarized in Figure 3.8. A direct dependence of defect density (Figure 

3.8 right), average defect area (Figure 3.8 left), and median defect area (Figure 3.8, bottom) 

on irradiation dose is observed. For example, suspended WS2 (red circles, Figure 3.8) has 

defect densities of ≈0.01 %, 0.08 %, 0.2 %, 0.9 %, and 8 % for increasing irradiation doses 

of 0, 5.1 × 1013, 6.4 × 1014, 1.9 × 1015, and 3.1 × 1016 ions cm-2, respectively. Such increases 

in defect area and density are expected due to the creation of new defects as well as the 

enlargement of existing defects as the number of raster scans (Ns) across the sample 

increases.  

 

 
Table 3.1. Total imaged area of atomic resolution HAADF AC-STEM micrographs. 

Total imaged area of atomic resolution HAADF AC-STEM micrographs used to calculate 
defect density, average defect area, and median defect size for various suspended and 
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substrate-supported TMDs. A description of the analysis procedure can be found in the 
Experimental Section. Defect histograms for each listed sample are shown in Figures 3.11-
3.12 while summarized results are given in Figures 3.6 and 3.10.  

 

 
Table 3.2. FIB irradiation dose calculations and defect densities from Equation (1) and 
Equation (2). 

FIB irradiation dose calculations (columns 2-3) and defect densities (column 4) for pristine, 
suspended, and substrate-supported TMDs. As discussed in the main text, calculations 
using equation (1) are inaccurate for 2D materials and result in ion dose values an order of 
magnitude lower than defect densities (for example, see Suspended MoS2). Equation (2) 
provides a more accurate dose estimate.  
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Figure 3.11. Statistical Image Analysis of irradiated MoS2 on different substrates  

Histograms of individual defects for MoS2 under several irradiation conditions (see Figure 
3.6) showing relative frequency of defect occurrence (sum normalized to one) as a function 
of defect area. Only defects above the size of a single transition metal atom (area > 0.05 
nm2) are included due to AC-STEM resolution and contrast limits. Light blue, green and 
orange shading indicate the 1Mo, 2Mo and 3Mo defect types respectively. The inset in the 
bottom row is a zoom in of the larger defect area regime, showing a small proportion of 
somewhat larger defects (up to ~2.2 nm2). 
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Figure 3.12. Statistical Image Analysis of irradiated WS2 at various doses on different 
substrates  

Histograms of individual defects for WS2 under several irradiation doses (see Figure 3) and 
substrate conditions (see Figure 3.6) showing relative frequency of defect occurrence (sum 
normalized to one) as a function of defect area. Only defects above the size of a single 
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transition metal atom (area > 0.05 nm2) are included due to AC-STEM resolution and 
contrast limits. Light blue, green and orange shading indicate the 1W, 2W and 3W defect 
types respectively (as shown in Figure 3.9). The insets in the middle and bottom rows are 
zoom ins for the larger defect area regime, showing a small contribution of larger defects 
up to ~ 17 nm2. 
 

3.5 Additional Experimental Methods  
 
CVD Growth:  

Monolayer MoS2 and WS2 flakes were grown using CVD processes similar to 

previously reported methods.34,136 Solutions of 0.2 (2) % sodium cholate growth promoter 

and 18 (15) mM ammonium heptamolybdate (metatungstate) were spun onto piranha-

cleaned Si substrates coated with 300 (150) nm of SiO2, which were then loaded into the 

center of a 1-inch tube furnace (Thermo Scientific Lindberg/Blue M). For the MoS2 growth, 

samples were heated under N2 gas flow (700 sccm) at a rate of 70°C/min and held at 750°C 

for 15 minutes. For WS2, samples were heated in Ar (100 sccm) at a rate of 65°C/min and 

held at 800°C for 10 minutes, during which time 15 sccm of H2 was also added. 

Approximately 100 mg of sulfur precursor placed 22 cm from the substrates was kept at 

180°C during the growth procedures. Both samples were rapidly cooled to room 

temperature by cracking open the furnace. 

Device Fabrication:  

WS2 and MoS2 crystals were transferred from Si/SiO2 substrates to holey carbon 

TEM grids using a wet etch technique. Crystals were first coated with C4 PMMA while 

aqueous 1 M KOH solution was used to etch away the underlying substrate. After being 

washed in deionized (DI) H2O, crystals were scooped onto TEM grids and dried for 30 

minutes. Polymer liftoff and sample cleaning were performed using acetone and rapid 

thermal annealing in Ar:H2 gas, respectively. 
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Gallium Ion Irradiation: 

Monolayer TMDCs flakes were irradiated with a Ga+ sourced ion beam FEI Strata-

Dual Beam instrument. The acceleration voltage of the ion beam was set to 30 kV and 

incident normal to the surface. The beam spot size was observed to be 100 nm for a flash 

second at 10 pA current. In order to produce atomic defects, an area of 250 ×	250 µm was 

irradiated with the dwell time (16 µs), current (10 pA) and pixel resolution (1024 × 884) 

kept constant. The exposure is carried out in an imaging mode which follows a raster 

pattern where the beam sequentially exposes each pixel in a row. FEI FIB Strata DB 235 

has an option to ‘grab frame’ which takes a single scan at a set resolution, this option was 

employed for all our scans.  The dose is varied by changing the number of scans. Suspended 

and substrate-supported samples were exposed to FIB irradiation while sitting on holey 

carbon TEM grids and Si/SiO2 substrates, respectively. 

AC-STEM Imaging:  

MoS2 and WS2 samples were imaged using a Cs-corrected JEOL ARM 200CF 

STEM operating at 80 kV. Images were obtained using a HAADF detector with a collection 

angle of 54-220 mrad and 10 cm camera length. Probe current (22 pA), focusing time (< 2 

s), and electron dose (~ 6.0×106 e-/nm2) were kept low to minimize beam-induced knock-

on damage (see Table 3.1 ).62,145  

AC-STEM Image Analysis:  

All images from various doses were analyzed using Fiji or ImageJ software.165 

Custom macros were built for studying large number of files. Since images for doses of 

1.9×1015 and 3.1×1016 ions/cm2 consisted of large/nanoporous defects, a repeatable macro 

was used to calculate the number of defects (see Supplementary Information of Ref. 8 for 
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more details). In order to reduce noise and increase visibility of the atoms ImageJ was used, 

a Gaussian blur filter with 0.03 nm of blurring radius was applied. Prior to defect counting 

from AC-STEM images, further noise reduction was applied using the “Remove Outliers” 

process. At this point AC-STEM signal from sulfur atoms were spread. Cleaned images 

were then subjected to the “Local Threshold” process with the Sauvola method to obtain 

binary images which consist of black-colored defect regions and white-colored TMD 

regions. Statistical analysis of the defect area and the number of defects were carried out 

using these binary images.  

Images for doses of 0, 5.1×1013, and 6.4×1014 ions/cm2 primarily consisted of 

smaller/single-atom defects such that filters, and noise reduction tools were utilized as 

required by each image. The core procedure for image analysis remained the same as 

above. Overall, a Gaussian blur filter (radius = 0.03 to 2 nm) was applied to increase the 

signal of the transition metal atom. The sulfur site vacancy and sulfur defects were ignored 

due to lack of contrast caused by polymer contamination. Additional noise reduction tools 

such as “background subtraction” were employed if the resultant image yielded better 

contrast. The goal was to count the individual defect sizes (~0.06 nm2, single W defect) 

from each image using “Analyze Particle” in ImageJ.  

Raman & PL Spectroscopy: 

Raman and PL spectra from multiple pristine and FIB-irradiated samples were 

obtained in an NTEGRA Spectra system with 532 nm excitation and CCD detector. Raman 

measurements were acquired with an 1800 lines/mm grating while PL spectra were attained 

under a 150 lines/mm grating. Raman data (intensity vs. Raman shift) for monolayer WS2 

were fit to three vibrational Lorentzian modes: 2LA(M) at 350 cm-1, E12g(Г) at 356 cm-1, 
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and A1g(Г) at 418 cm-1.15,132 PL data (intensity vs. energy) was fit to three excitations: 

defect (XD) at 1.88 eV, trion (XT) at 1.96 eV, and exciton (X0) at 2.02 eV. 30 

 

3.6 Summary 
 
In conclusion, we studied the effects of ion beam irradiation on the atomic structure and 

properties of monolayer TMDs and demonstrated how an industry-prevalent tool can be 

used to fabricate single atom defects over mm-scale areas. In addition to ion beam current 

and exposure time, we have highlighted the importance of other overlooked parameters 

such as magnification/resolution, dwell time, and exposure technique under which the FIB 

irradiation is performed since this directly dictates the spatial distribution of defects, 

especially in 2D materials. It is important for future studies to recite the specifications of 

their ion irradiation parameters as presented in this study for any potential reproducibility 

and comparison. Using a precise set of parameters, we created defects with tunable sizes 

and densities over several orders of magnitude in MoS2 and WS2 for different sample 

configurations (i.e., suspended vs. substrate-supported) across irradiation doses from 1013-

1016 ions/cm2. SEM and AC-STEM revealed that average defect areas and densities were 

larger in suspended materials and in MoS2 compared to WS2. Raman spectroscopy under 

a 532 nm excitation revealed little to no variations in the phononic structure of FIB-

irradiated TMDs while PL showed changes in the optoelectronic structure arising from 

increased defect states. The observations presented here promote future studies on utilizing 

defects for a thriving variety of potential applications in TMDs ranging from nanoporous 

membranes for gas and fluid transport to newly emerging ideas of quantum information 

processing. 
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4  Angstrom-Size Nanoporous Membrane Creation in MoS2 
and Ionic Transport 

 

4.1 Introduction  

Atomic defect engineering in thin membranes provides opportunities for ionic and 

molecular filtration and analysis. While molecular dynamics (MD) calculations have been 

used to model conductance through atomic vacancies, corresponding experiments are 

lacking. We create sub-nm vacancies in suspended single-layer molybdenum disulfide 

(MoS2) via Ga+ ion irradiation producing membranes containing ~ 300 to 1200 pores with 

average and maximum diameters of ~ 0.5 nm and ~ 1 nm, respectively. Vacancies exhibit 

missing Mo and S atoms, as shown by aberration corrected scanning transmission electron 

microscopy (AC-STEM). The longitudinal acoustic band and defect-related 

photoluminescence were observed in Raman and PL spectroscopy, respectively. As the 

irradiation dose is increased, the median vacancy area remains roughly constant, while the 

number of vacancies (pores) increases. Ionic current versus voltage is nonlinear and 

conductance is comparable to that of ~ 1-nm-diameter single MoS2 pores, proving that the 

smaller pores in the distribution display negligible conductance. Consistently, MD 

simulations show that pores with diameters < 0.6 nm are almost impermeable to ionic flow. 

Atomic pore structure and geometry, studied by AC-STEM, are critical in the sub-

nanometer regime where the pores are non-circular and the diameter is not well-defined. 

This study lays the foundation for future experiments to probe transport in large 

distributions of angstrom-size pores. 
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The results presented here were published in the article "Angstrom-Size Defect Creation 

and Ionic Transport through Pores in Single-Layer MoS2" by Thiruraman J.P. *, Fujisawa 

K. *, Danda G., Masih Das P., Zhang T., Bolotsky A., Perea-Lopez N., Nicoli A., Senet P., 

Terrones M., Drndić M., Nano Letters, 18 (3), 1651–1659  

4.2 Background  
 
Ionic and molecular transport through individual solid-state nanopores have been studied 

thanks to the ability to fabricate nanometer scale holes in thin membranes.21 In contrast, 

ionic transport through smaller, sub-nanometer (sub-nm) pores and nanoporous two-

dimensional (2D) membranes has not yet been explored in detail, although these systems 

present fascinating opportunities to study phenomena at the atomic scale. Most studies infer 

the conductance and sub-nm pore diameters indirectly from modeling.159, 72 With the recent 

availability of 2D materials112 that can be suspended as membranes,132 and the ability to 

image atomic-scale defects,145 it is now possible to study the fundamental principles behind 

ion flow through sub-nm pores72. A few recent papers have reported transport 

measurements in individual molybdenum disulfide (MoS2) sub-nm pores. 41, 43 

Thin nanoporous membranes containing large numbers of pores provide opportunities 

for fluid filtration, molecular analysis and energy generation. In water desalination 

applications, there is a demand for high-throughput, where atomic-scale pores (atomic 

vacancies in the material) provide unique benefits. This is because (i) water transport scales 

inversely with membrane thickness allowing for high water fluxes and (ii) membranes with 

sub-nm pores are highly selective.183,209, 31,32 Previous experiments explored ionic transport 
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in nanoporous graphene membranes.209,141,142 Heiranian et al. indicated the benefits of 

MoS2 pores compared to graphene65. To the best of our knowledge, there have been no 

studies of transport in nanoporous MoS2 membranes. 

4.3 Fabrication of Angstrom-Size Nanoporous MoS2 Membranes 
 
 

 
Figure 4.1. Irradiation of monolayer MoS2 flake under controlled 30kV Ga+ ion beam. 

 

Low-dimensional devices are fabricated for hosting a population of angstrom-sized pores 

and for further conducting ionic transport investigations. In this work, Single-layer MoS2 

triangular-flakes were synthesized via a halide-assisted powder vaporization method 

(Figure 4.1(a)).108, transfer the 2D flake onto a substrate (carbon grid or SiNx chip 

depending on the experimental procedure) (Figure 4.9, 4.10) and create angstrom-sized 

pores with the help of Focused Ion Beam. In addition, we also investigate the vacancy 

defects and the resulting properties of the suspended MoS2 lattices using AC-STEM, 

Raman spectroscopy, and photoluminescence (PL) spectroscopy.  

The presence of single-layer material was confirmed by fluorescence microscopy (Figure 

1(b), 673 nm bandpass filtered). While single-layer MoS2 shows strong 
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photoluminescence, the signal is quenched in multilayered MoS2.177 Similar to graphene,66 

polycrystalline MoS2 fractures at grain boundaries under strain. 36 In order to maintain the 

rigidness of the material, we focused on single crystal MoS2. Single-layer MoS2 flakes 

were transferred onto carbon grids111 or SiNx132 using a PMMA-assisted transfer (Figure 

S1 and S2). Atomic vacancy-defects were introduced by rastering the Ga+ ion probe over 

a certain area (Figure 1(c)) using a focused ion beam (FIB). 131,25 The degree of 

defectiveness was controlled by varying the Ga+ ion dose from 6.25×1012 ions/cm2 (see 

S3) until the photoluminescence (PL) signal of the irradiated MoS2 fell into noise level 

(2.50×1013 ions/cm2). After prolonged irradiation, the fluorescence signal was suppressed 

regardless of dose. 

 
4.3.1 Raman and Photoluminescence Spectroscopy of Ga+ irradiated monolayer 

MoS2 membrane 
 

 
Figure 4.2. Raman and Photoluminescence Spectroscopy of Ga+ irradiated monolayer 
MoS2 membrane 
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In the context of Raman and photoluminescence spectroscopy, we observe the longitudinal 

acoustic (LA) band and defect-related PL and determine the vacancy-defect size 

distribution as a function of Ga+ ion irradiation dose, showing the median defect diameter 

in the range of 0.3−0.4 nm.   

Single-layer MoS2 triangular-flakes were synthesized via a halide-assisted powder 

vaporization method (Figure 4.1(a)).108 The presence of single-layer material was 

confirmed by fluorescence microscopy (Figure 4.1(b), 673 nm bandpass filtered). While 

single-layer MoS2 shows strong photoluminescence, the signal is quenched in multilayered 

MoS2. 177 Similar to graphene,66 polycrystalline MoS2 fractures at grain boundaries under 

strain.36 In order to maintain the rigidness of the material, we focused on single crystal 

MoS2. Single-layer MoS2 flakes were transferred onto carbon grids111 or SiNx132 using a 

PMMA-assisted transfer (Figure 4.9 and 4.10). Atomic vacancy-defects were introduced 

by rastering the Ga+ ion probe over a certain area (Figure 4.1(c)) using a focused ion beam 

(FIB). 131,25 The degree of defectiveness was controlled by varying the Ga+ ion dose from 

6.25×1012 ions/cm2 (see 4.11) until the photoluminescence (PL) signal of the irradiated 

MoS2 fell into noise level (2.50×1013 ions/cm2). After prolonged irradiation, the 

fluorescence signal was suppressed regardless of dose.  

The effect of Ga+ ion irradiation on MoS2 flakes was investigated by Raman spectroscopy 

and photoluminescence (PL) microscopy (panels d and e of Figure 4.2, respectively). After 

Ga+ ion irradiation of the MoS2, several Raman peaks located around 200 cm-1, in the 

vicinity of the longitudinal acoustic (LA) band emerged, whereas the first-order in-plane 

(E’) and out-of-plane (A’1) modes remained unaffected. 131 The LA band consists of several 
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peaks including LA (~M), LA (~K) and a van Hove singularity at the saddle point between 

K and M point in the Brillouin zone.25 Since these LA (~M) and LA (~K) modes far from 

Γ-point are only activated when defects are introduced into the MoS2 lattice, their relative 

intensity with respect to the A’1 mode (I(LA)/I(A’1)) can be used as an indicator of the 

degree of crystallinity.131,25 The relative intensity, I(LA)/I(A’1) increased with higher Ga+ 

ion doses (see inset of Figure 4.2(d)), as expected.  

The PL of the MoS2 flakes was found to be sensitive to ion irradiation. 197 For pristine 

MoS2, there were two peaks at 1.88 and 2.03 eV in the PL spectra, corresponding to the A 

and B exciton peaks. The A exciton peak was composed of two sub-peaks with energy at 

1.88 eV (neutral exciton: A0) and 1.82 eV (trion: A-).120 After Ga+ ion irradiation, the 

neutral exciton A0 was suppressed and a new peak: a bound exciton (D) located at ~ 

1.72 eV emerged. This newly emerged photoemission peak can be correlated to defect-

mediated radiative recombination processes. 197, 30,24 The bound exciton peak is also 

observed when the MoS2 is irradiated by α particles197 and energetic plasma. 30 The spectral 

weight of the bound exciton peak becomes higher with increasing Ga+ ion dose similar to 

the relative intensity of the LA band, and at a dose of 2.5×1013 ions/cm2, the PL intensity 

becomes close to the noise level. The enhancement of the LA band and the suppression of 

the neutral exciton reflect a qualitative increase of defectiveness (e.g., number and size of 

vacancies), within MoS2 monocrystals after the Ga+ ion irradiation. However, upon the 

collision between an ion and an atom, several different types of defects including 

topological defects, atomic vacancies, holes and amorphous regions can form112 depending 

on the ion species and their kinetic energy.48 A quantitative study of vacancy-defects; such 

as type, density and edge termination of defects, is required but cannot be completed using 
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only the techniques above. In this context, Surwade et al. mentioned that even when similar 

optical signatures were observed in differently prepared defective graphene membrane, 

water transport properties of the membranes varied.183  

 

4.4 Electron Micrographs of Ga+ irradiated monolayer MoS2 membrane 
 
In 2D systems, the type of vacancy-defects introduced by ion irradiation changes 

depending on the ion characteristics and kinetic energy.119,224 For electron irradiation of 

MoS2 using a parallel beam, mono-sulfur vacancies (VS) and di-sulfur vacancies (V2S) are 

predominant.145,25 With increased electron irradiation time, sulfur vacancies migrate and 

aggregate into line defects.94 In contrast to electrons, the mass of an ion is larger and varies, 

resulting in ion-species dependent effects. Molecular dynamics (MD) simulations suggest 

that higher mass causes more displacement and sputtering of atoms.119,224 Direct 

observation of vacancy-defects created by Ga+ ion irradiation is needed in order to fully 

understand their characteristics.  

 

Figure 4.3. Aberration corrected scanning transmission electron microscopy (AC-STEM) 
characterization of single-layer MoS2 showing an evolution of angstrom-size defects with 
Ga+ ion beam irradiation. 
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Ion irradiated MoS2 membranes were investigated by aberration corrected scanning 

transmission election microscopy (AC-STEM). Figure 4.3(a) shows high angle annular 

dark-field (HAADF) images of MoS2 before and after Ga+ ion irradiation for different 

doses: 0 (pristine), 6.25×1012, 8.16×1012, 1.11×1013, 1.60×1013 and 2.50×1013 ions/cm2. 

HAADF intensity changes depending on ~ Z2 (Z: atomic number), allowing us to roughly 

distinguish elements (Mo or S) and therefore the atomic configuration of vacancy-defects. 

Figure 4.3(b) shows magnified STEM-HAADF images of several atomic vacancies. Metal 

atomic vacancies with several sulfur vacancies (VxMo+yS) are formed rather than sulfur 

vacancies (VS), topological defects (bond changing), or amorphous regions. This is 

consistent with expected sputtering behavior due to the relatively higher mass of Ga+ in 

comparison to electrons and leads to di-sulfur or mono-sulfur termination-rich edge 

structures.  

 

4.4.1 Statistical Image Analysis of the Sub-nm size Pores using AC-STEM Images  
 

In order to investigate the effect of the Ga+ ion dose on pore (i.e. vacancy-defect) area and 

density, statistical analysis was performed on AC-STEM images (see Figure 4.15). Within 

the irradiation dose ranges we used, the pore density increases with larger doses whereas 

the pore area remains roughly constant. For the lowest dose (6.25×1012 ions/cm2), the 

majority of the atomic pores were single-molybdenum-based vacancies (V1Mo+yS), while 

the number of missing sulfur varied. With increasing Ga+ ion dose, the number of double-

molybdenum-based vacancy (V2Mo+yS) increased and some triple-molybdenum-based 

vacancies were also found (V3Mo+yS) (Figure 2(b)), exhibiting low intensity STEM-
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HAADF signals inside the defect. Since these defects were observed far from carbon 

contamination caused by the transfer process (Figure S4) and the STEM-HAADF intensity 

was close to VS, we assigned the structure inside the defect to sulfur. When the Ga+ ion 

dose reached 2.50×1013 ion/cm2, the density of pores with size > 0.8 nm in diameter 

increased (See Figure 4.15).  

To investigate the effect of the Ga+ ion dose on pore (i.e., vacancy-defect) area and density, 

statistical analysis was performed on AC-STEM images (see Figure 4.15). Within the 

irradiation dose ranges we used, the pore density increases with larger doses, whereas the 

pore area remains roughly constant. For the lowest dose (6.25 × 1012 ions/cm2), the majority 

of the atomic pores were single-molybdenum-based vacancies (V1Mo+yS), while the 

number of missing sulfur atoms varied. With increasing Ga+ ion dose, the number of 

double- molybdenum-based vacancies (V2Mo+yS) increased, and some triple-

molybdenum-based vacancies were also found (V3Mo+yS; Figure 4.3), exhibiting low-

intensity STEM−HAADF signals inside the defect. Because these defects were observed 

far from carbon contamination caused by the transfer process (Figure 4.12) and the 

STEM−HAADF intensity was close to VS, we assigned the structure inside the defect to 

sulfur. When the Ga+ ion dose reached 2.50 × 1013 ion/cm2, the density of pores with size 

>0.8 nm in diameter increased (see Figure 4.4).  

4.5 Experimental Ionic Transport Measurements of Sub-nm Size MoS2 
Pores 
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Figure 4.4. (a) The experimental setup to measure the conductance of nanoporous MoS2 
membranes and (b) Current-voltage plot of a MoS2 device irradiated with a dose of 
1.60×1013 ions/cm2 showing a non-linear trend in the voltage range VB = ± 0.8 V. 

 
In order to observe the ionic transport characteristics of the angstrom-size defects in the 

MoS2 membranes, we implement the device setup shown in Figure 4.4 (a). A MoS2 flake 

was selected under an optical microscope and then transferred over a SiNx window with a 

~ 200 nm diameter FIB hole (Appendix A).34,130 The membrane was then irradiated with 

doses ranging from 6.25×1012 to 2.50×1013 ions/cm2 to create atomic vacancies with 

average single defect diameters between 0.4 and 0.5 nm. The top inset of Figure 4.4 (a) 

shows a STEM image of a suspended MoS2 membrane over a FIB hole exposed with a 

dose of 2.50×1013 ions/cm2. A resultant non-linear current-voltage (IV) curve is shown in 

Figure 4.4 (b) for an irradiated MoS2 membrane (device P, dose = 1.60×1013 ions/cm2). For 

comparison, a similar trace is shown in the bottom inset for a pristine sample demonstrating 

a baseline ionic conductance (G = dI/dV) of ~ 10 pS.  
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Figure 4.5. (c) Current versus time traces at an applied voltage of VB = 0.1 V and (d) the 
corresponding power spectral density for two devices (device P and Q, dose = 1.60×1013 
ions/cm2). (e) Current versus time trace for device Q at an applied voltage of VB = 1V 

Figure 4.5(c-d) show ionic current traces at VB = 0.1 V and the corresponding current noise 

for two devices (dose = 1.60×1013 ions/cm2). It should be noted that only those devices are 

shown here which have an ionic conductance G > 5 nS in the range ± 0.1 V. For devices 

exhibiting G < 5 nS, the defects are too small to allow significant ionic flow below a certain 

threshold voltage (discussed below), thus making ionic noise extraction difficult. The 

power spectral density was extracted from the current traces and fit to the equation: 

PSD = R!S
T>

 (Eq. 1) 
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where PSD is the power spectral density, I is the corresponding ionic current, f is the 

frequency, A is the noise coefficient and α is the low-frequency noise exponent. All the 

devices showed a noise exponent value, α ~ 1 and noise coefficient, A ~ 10-4-10-5, 

suggesting dominant low-frequency noise as has been demonstrated previously in 2D 

nanopore devices.141,130,235 

To further investigate the stability of our devices, we applied a constant VB = 1 V and 

monitored the change in ionic current for another device with the same dose (device Q, 

dose = 1.60×1013 ions/cm2) as shown in Figure 4.5(e). The current increased in jumps from 

20 nA (from Figure 4.5(c)) to 250 nA, suggesting incremental damage of the membrane as 

opposed to gradual increase of defect sizes. 42 The noise coefficients extracted from each 

section and plotted in the inset (0-th point is from Figure 4.5(c)) reveal that the low-

frequency noise decreases when increasing the conductance, in accordance to a power law: 

A = 0.48	G': (Eq. 2) 

A similar trend of increasing conductance was also observed in other devices when VB 

exceeded ± 0.8 V. To ensure that we did not damage our devices during ionic experiments, 

VB was kept between ± 0.5 V for most of our devices. 
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Figure 4.6 Ionic current vs. voltage (I-V) curves and conductances measured for pristine 
and irradiated MoS2 membranes with Dose 1 = 6.25×1012, Dose 2 = 1.11×1013, Dose 3 = 
2.5×1013 ions/cm2. 

(a) Ionic current vs. voltage (I-V) curves measured for pristine and irradiated MoS2 
membranes with Dose 1 = 6.25×1012, Dose 2 = 1.11×1013, Dose 3 = 2.5×1013 ions/cm2. 
The applied sweep rate was between 5-20 mV per second. (b) Corresponding dI/dV with 
respect to voltage for non-linear I-V curves in (a). (c) Conductance, G is shown as a 
function of the pore diameter for both the continuum (black, yellow, orange, and pink) and 
molecular dynamics (MD) simulated (blue) models. Plotted are also G values from the MD 
model discussed in the text for five pores shown in Figure 5, the experimentally obtained 
G values for MoS2 nanoporous membranes and single nanopores, as well as reported values 
from previous works on SiN,206 a-Si,158,171 and MoS2 nanopores. 41,43 

Figure 4.6 (a) presents the I-V curves for a pristine membrane and 15 devices irradiated at 

three different doses (Dose 1 = 6.25×1012, Dose 2 = 1.11×1013, Dose 3 = 2.50×1013 

ions/cm2). We note that while a total of 25 devices were irradiated and tested, 10 of these 
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devices yielded negligible ionic conductance (G ~10 pS) comparable to non-irradiated, i.e. 

pristine samples, close to our detection limit, and are not shown here.  In Figure 4.6 (a), 

several of the 15 I-V curves plotted overlap (6 red- Dose 1, 4 green- Dose 2, 5 blue- Dose 

3, 1 black- pristine). Six representative differential conductances (dI/dV) for Doses 1-3 are 

shown in Figure 4.6(b). Collective current passing through multiple angstrom-size pores in 

a MoS2 membrane resulting in non-linear I-V curves at voltages, VB ≥ 0.1 V, are displayed 

by ~ 80% of the devices. At lower voltages (VB < 0.1 V), the I-V curves are linear (Figure 

4(a) inset). Such non-linear trends have been observed previously for sub-nm 2D pores and 

were attributed to stripping of the ionic solvation shell at higher driving voltages.72,43  

About 20% of devices showed higher conductance (G > 5 nS) and a linear trend even up 

to 1 V. This may be due to the merging of individual angstrom-size pores or their 

enlargement over time, resulting in higher conductance values and linear I-V curve 

behavior that is typically observed in nanometer-size pores that are well-described by the 

continuum model. 43  

Using the previously stated AC-STEM analysis (Figure 4.15), we estimate the number 

of pores, N, and their diameters, D, within the nanoporous membranes for the various 

doses. The mean and maximum diameters of pores are 0.4 nm and 0.8 nm for Dose 1, 0.5 

nm and 0.9 nm for Dose 2, and 0.5 nm and 1.3 nm for Dose 3, respectively. The number 

of pores ranges from N ~ 300 for Dose 1, N ~ 700 for Dose 2 and N ~ 1200 for Dose 3. 

This is estimated using the results from Figure 4.15(a) and calculating how many pores of 

average diameter are contained in the suspended area ~ 3×104 nm2. From the defect size 

distributions, we also estimate the number of pores with diameters larger than the hydrated 

K+ ion diameter (the smaller ion compared to Cl-),150 D > 0.6 nm: ~ 30, ~ 120 and ~ 240 
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for Doses 1 to 3, respectively. Similarly, the estimated number of pores with D ≥ 1 nm are 

zero for Doses 1 and 2 and ~ 34 for Dose 3. Doses 1-3 were chosen because they produce 

well-separated, angstrom-size defects. For higher doses, defects start to merge resulting in 

larger, irregularly shaped pores. 

Despite a large number of defects, most of them are very small, below ~ 5 Å. Based on 

molecular dynamics simulations, 65 such pores are expected to be too small for ions to flow 

through but should allow water molecules to pass. We therefore expect the measured 

conductance in the range of VB = ± 0.1V of the irradiated MoS2 membranes to be low, and 

indeed, it was found to be ~ 1 nS in 80% of the devices shown in Figure 4.6 (a). The average 

conductances of the irradiated devices were ~ 1 nS for Doses 1 and 2, increasing to ~ 10 

nS for Dose 3. We compare and contrast the irradiated membranes to single nanopore 

devices in Figure 4.7(c), which plots the conductances of the nanoporous membranes as a 

function of the effective defect diameter (including the mean G for each dose), as well as 

the conductances of two single MoS2 nanopore devices that were drilled using AC-STEM 

with effective D ~ 1.4 nm and ~ 1.1 nm (shown in Figure 4.6 (a) i-ii). Effective D is defined 

as D of a circle with the same area as the pore (calculated using ImageJ software).  We also 

compare our results with previously published literature on single sub-2 nm diameter pores 

in MoS2, 41, 43 thinned silicon nitride206 and amorphous silicon membranes with D ~ 0.3 to 

2 nm. 158,171 

The average conductance measured for Dose 1 is ~ 1.4 nS, slightly higher than that of 

Dose 2 (1.11 ×1013 ions/cm2), where the measured average conductance is 0.9 nS. While 

the larger Dose 2 is expected to give larger mean conductance than Dose 1, the averaged 

experimental results can be explained by the following two factors: (i) the mean vacancy 
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sizes obtained from these two doses are very close to each other, i.e., 0.4 nm and 0.5 nm 

for Dose 1 and Dose 2, respectively, as shown in Figure 4.15, and (ii) the spread in the 

conductance values for different samples, irradiated at each dose, is larger than the 

difference between the averages of the two doses. Dose 3 (2.5 ×1013 ions/cm2), which is 

the highest dose used, yielded the largest mean conductance (~10 nS), consistent with 

expectations that samples irradiated with larger dose yield higher ionic conductance. 

We observe a two orders of magnitude variation in the experimental conductance values 

corresponding to single pores and nanoporous membranes, from G ~ 0.1 to 10 nS for single 

pores with D ~ 0.3 to 2 nm, and G ~ 1 to 100 nS for nanoporous devices with average D ~ 

0.5 nm. This enhancement in conductance is expected due to the presence of multiple 

nanopores. However, the scatter among devices could come from several reasons, 

including the variations in atomic structure and edge terminations that can result in 

different properties of the pores when they are introduced in the salt solutions. This has not 

yet been explored experimentally. It is also challenging to determine the diameter 

accurately. The effective D used on the x-axis is measured from AC-TEM images with 

pores in vacuum before ionic measurements and it can change later, for example due to 

expansion or contamination in solution.34  
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4.6 Theory of Sub-nm Pores: Non-Equilibrium Molecular Dynamics 
(NEMD)  

 

Figure 4.7 Molecular Dynamics of individual sub-nm MoS2 pores with current-voltage 
characteristics and individual sub-nm pore conductance. 

 (a) AC-STEM images of individual MoS2 pores (i) pore 1 and (ii) pore 2 with effective 
diameter ~ 1.4 and 1.1 nm, respectively. Corresponding all-atom structures used in NEMD 
(Non-Equilibrium Molecular Dynamics, see SI Section 10) simulations are presented aside. 
Mo, S2, and S atoms are shown in blue, yellow, and purple spheres, respectively. (iii) 
Atomic structure of an equivalent circular pore of diameter ~ 0.9 nm. QSTEM 
simulations92 for vacancy-defects caused by (iv) 1Mo and 1S missing (V1Mo+1S) and (v) 
3Mo and 5S atoms (V5Mo+3S). (b) I-V characteristics and (c) conductance G panel computed 
from NEMD simulations for the five pores shown in panel (a). Error bars represent the 
standard deviation from the ionic current computed from NEMD runs.  

 

In order to estimate the conductance of the pores with precise and stable diameters, we 

perform molecular dynamics simulations147 (see section 4.6). Figure 4.6(a) (i) – (v) shows 
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the five configurations that were tested, where pores 1 and 2 (same as in Figure 4.6 (c)) 

correspond to AC-STEM drilled MoS2 pores with effective diameters of ~ 1.4 nm and 1.1 

nm, respectively (see Figure 4.7), pore 3 corresponds to a perfectly circular pore of 

effective diameter 0.9 nm, and finally V1Mo+1S and V3Mo+5S, which represent the defect-

vacancies with one of the smallest and largest diameters, respectively (Section 4.6, Figure 

4.15). The conductances of these five pores are plotted in Figure 4.6(c). As shown in Figure 

4.6 (b), I-V curves were computed for each system via MD simulations and conductances 

G were obtained by linear fitting of I-V curves with 0.15 V < VB < 0.6 V. Figure 4.6 (c) 

presents the conductance obtained for all the simulated pores, showing a variation of three 

orders of magnitude depending on the pore size. Pores 1 and 2 are characterized by 

conductance values of 3.3 and 3.5 nS, respectively, which agree within a factor of 2-3 with 

the experimental values (~10 nS and 1.5 nS in Figure 4.6c), while pore 3 shows a 

conductance of 0.4 nS. The conductance G drops drastically for pore 3 because of its 

smaller diameter when compared with pore 1 and 2 and because its diameter is close to the 

limiting diameter value for zero conductance. Finally, pores made of defects V1Mo+1S (D ~ 

0.4 nm) and V3Mo+5S (D ~ 0.6 nm) exhibited a negligible conductance G of ~ 0.02-0.03 nS, 

confirming the fact that pores made of defects smaller than ~ 0.6 nm do not conduct ions 

in our experiments.  

In this size range (< 1 nm), small changes in D by ~ 0.1 nm result in conductance changes 

by one order of magnitude or more (notice the sharp drop of the blue line in Figure 4.6(c)). 

Using the MD simulations, we obtain an empirical linear model of open conductance for 

sub-3 nm MoS2 pores, plotted as the blue line in Figure 4.6(c):  

GUV = C(D − DWXY) (Eq. 3) 
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where GMD is the pore conductance derived from MD, C = 8.92 S/m is the conductivity of 

KCl ions through sub-3 nm single-layer MoS2 nanopores and Dmin = 0.73 nm is the 

minimum pore diameter for ionic flow. Furthermore, in Figure 4.6(c), this model derived 

from MD simulations147 is featured as a blue line along with the black, yellow, pink and 

orange fit lines G (L, D) which represent the continuum model for the conductance for 

different values of pore thickness, L.  

  Ionic measurements have validated the continuum model for pores with nanometer-scale 

diameters and shown that an effective pore thickness, L ~ 1.6 nm is a good approximation 

for MoS2.214 This corresponds to the black line in Figure 4.6(c). Here, the pore is modeled 

as a system of three resistors in series. The interior of the nanopore is modeled as a 

cylindrical resistor, RZ =
&
[
"\
$V!

, where σ is the conductivity of the electrolyte, L is the 

thickness of the nanopore and D is its diameter. Additionally, there is an access resistance 

in series on each side where current paths converge from the bulk electrolyte into the pore, 

58 R] =
&
[
&
:V

. The total resistance of the single nanopore, R1, is given by the sum of the 

three resistances – the interior of nanopore and two access resistances: 

𝐑𝟏 = 𝐑𝐩 + 𝟐𝐑𝐚 =
𝟏
𝛔
( 𝟒𝐋
𝛑𝐃𝟐

+ 𝟏
𝐃
)  (Eq. 4) 

This gives us an equation for conductance through a single nanopore of diameter D and 

thickness L: 

𝐆𝟏 =
𝛔	𝛑𝐃𝟐

(𝟒𝐋9𝛑𝐃)
  (Eq. 5) 

We stress that G (L =1.6 nm, D) does not fit the conductance measured in single MoS2 

sub-nm pores plotted in Figure 4.6(c), in contrast to the agreement found in pores with 

larger diameters (D > 1 nm). In fact, the data clearly shows that small pores conduct less 
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than expected from this model and a better fit can be obtained by assuming a larger pore 

thickness (pink line in Figure 4.6(c) where L = 13 nm) or by assuming an effectively 

smaller diameter. The orange line, G (L = 1.6 nm, D-0.6 nm) corresponds to a continuum 

model assuming that the pore diameter is smaller than the actual diameter by 0.6 nm, 

meaning that a pore with D = 0.6 nm would give zero current. This best fit is also consistent 

with the assumption that for a KCl ionic solution, K+ is the smallest hydrated ion with a 

diameter of 0.6 nm, such that a pore diameter, D = 0.6 nm will effectively resist the 

transport of ions.72,150  This model closely resembles the linear model of conductance 

obtained from MD simulations for sub-2nm pores. For large D, G (L = 1.6 nm, D-0.6 nm) 

≈ G (L = 1.6 nm, D) and the two models converge (orange and black lines). To our 

knowledge, besides these data points, the only comparable pores that have been measured 

in the sub-2 nm diameter range are Si/SiO2 pores206 and ultra-thin Si3N4.30 The 

corresponding fit G (L = 3 nm, D) is shown in yellow for comparison with G ~ 3 to 10 nS 

for D ~ 0.8 to 2 nm. 

4.6.1 Calculation of Effective Diameters of Non-Circular Pores  
 

In order to define an effective diameter, we measured the total sub-nm diameter pore area 

using a threshold function from a commercial, ImageJ software, and then calculated the 

diameter that corresponds to a circle with an equivalent area. For TEM images (MoS2 pore 

1 and pore 2), the scale bar used was derived from the averaged distances between two 

adjacent Molybdenum atoms (0.32 nm) in the vicinity of the pore.  
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Figure 4.8. Distributions of diameters computed from MoS2 pores atomic structures. The 
center of mass of the pore is shown using a grey sphere in the structure images in inset. 

 

4.7 Additional Experimental Methods 
 
Fabrication of MoS2 Devices: 

A 50-nm thick suspended window of silicon nitride of dimensions 50 μm × 50 μm was 

fabricated on a 5 μm/525 μm SiO2/Si wafer using optical lithography and KOH and HF 

wet etching techniques1,2. A 200-nm-diameter hole was drilled in the center of the window 

using a 30 kV, 10 pA Ga+ FIB source and a single-layer MoS2 flake was transferred onto it 

using a custom-built manipulator (Figure 4.10) to form a suspended MoS2 membrane.  

Transfer of Single-Layer MoS2 onto Carbon Grids:  
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To transfer single-layer MoS2 onto gold Quantifoil TEM grid (from SPI), a layer of poly 

methyl methacrylate (PMMA) (495K, A4) was first spin-coated onto as-grown MoS2 

flakes. After PMMA cured, it was immersed in 2M NaOH etchant solution to lift off the 

PMMA-coated MoS2 flakes. Subsequently, the detached film was rinsed in deionized water 

and fished onto the grid. Finally, PMMA layer was cleaned in acetone and IPA, leaving 

the transferred single-layer MoS2 on the grid.  

Transfer of Single-Layer MoS2 onto SiNx Membrane:  

Procedure for monolayer MoS2 flake transfer onto the SiNx chips were carried out with a 

dry-transfer process with the help of a PDMS stamp technique. The SiNx chips have a 

focused ion beam (FIB) drilled holes of diameter ~100-200 nm onto which the 2D flake is 

transferred and stays suspended, the stamping process hence needs immense skill, patience 

and technique. Here, the technique developed involved a micron sized PDMS stamp glued 

with a double-sided tape to a narrow bar (as shown in Figure 4.9). This PDMS stamp was 

used to lift-off the 2D flake from the as-grown substrate and carefully “stamped” onto the 

center of the desired SiN chip. The FIB drilling was cautiously performed in the center of 

the SiN chip so the further stamping process yields successful suspended-2D flake devices. 

A micromanipulator consisting of a piezoelectric stage (NanoMax-TS flexure stage, 

Thorlabs) and a custom-built cantilever was applied to align the MoS2 flake sample with 

SiNx chip. An optical microscope (Olympus BH2 Microscope) was used to monitor the 

deterministic transfer process. 



 107 

 

Figure 4.9. (a) Optical and (b) fluorescence (673 nm-centered bandpass filtered) 
microscopic image of transferred single-layer MoS2 flake onto SiNx window with FIB 
hole at the center. 

 

Figure 4.10.The setup of the deterministic transfer stage for micro-positioning MoS2 
flakes onto SiNx windows. 

Control of Defects by varying Ga+ Ion Dose:  

Suspended MoS2 flakes were irradiated with Ga+ ions using the ion gun of a FEI Helios 

dual beam instrument. To perform the Ga+ ion irradiation, we set the acceleration voltage 

at 30 kV and the current intensity at 230 pA. The beam incidence was normal to the surface 
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and followed a raster path over a rectangular area, 410 μm long and 274 μm wide. The 

beam impinges the sample in imaging mode, in this condition the beam dwelled 50 ns in 

each step; the spacing between steps was approximately 260 nm. Finally, the different 

doses on the single-layer MoS2 were achieved by manually varying the irradiation time.  

 

Figure 4.11. Optical images (top) and fluorescence images (bottom, 673 nm-centered 
bandpass filtered) of the pristine and the Ga+ ion irradiated single-layer MoS2 on 
Quantifoil TEM grid. 

Raman/Photoluminescence Spectroscopy of Irradiated Membranes: 

All Raman spectra and photoluminescence spectra were collected from suspended MoS2 

flakes over Quantifoil TEM grid. To avoid both heating effect and laser induced damage 

to the suspended MoS2, 10-50 μW of laser power under ×100 (N.A. 0.95) objective lens 

was used. The Raman and Photoluminescence spectra were acquired using the ‘inVia 

Raman Microscope’ (Renishaw) equipped with a 488 nm laser.  

AC-STEM Observation and Counting Defects: 

Aberration corrected scanning transmission electron microscopy (AC-STEM) study was 

carried out by FEI Titan3 G2 S/TEM operated at 80 kV to investigate the atomic structure 
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of MoS2 triangles. A high-angle annular dark field (HAADF) detector was used for Z 

contrast imaging. In order to reduce noise and increase visibility of atoms, Gaussian Blur 

filter with 0.03 nm of blurring width was applied by ImageJ program. Prior to vacancy-

defect counting from STEM-HAADF images, further noise reduction was applied using 

the “Remove Outliers” process. At this point STEM-HAADF signal from sulfur atoms 

were spread. Cleaned STEM-HAADF images were then subjected to the “Local 

Threshold” process with the Sauvola method to obtain binary STEM- HAADF images 

which consist of black-colored defect regions and white-colored MoS2 regions. Statistical 

analysis of the defect area and the number of defects were carried out using these binary 

STEM-HAADF images.  

 

Figure 4.12. Raw STEM image of a V3Mo+5S type vacancy-defect in MoS2 lattice (left).  

The periodic feature of MoS2 lattice was removed by applying several circular band pass 

filters to FFT (right). The highlighted area in red corresponds to the carbon deposited area.  
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Figure 4.13. Step-by-step images of the binary creation process from the raw STEM 
images. 

The ImageJ software was used for all processing. A raw STEM image ((a), 38.4 nm × 38.4 

nm, 2048 pixel × 2048 pixel) is processed using the Gaussian Blur filter (filtering radius: 

0.03 nm) to reduce noise (b). Further, noise reduction is applied by using the Remove 

Outliers process (10 pixel of radius and threshold 50 was used) (c). After this step, the ADF 

signal from Mo and S are dispersed, then the crystal and defect parts are separated. Finally, 

to efficiently ignore the carbon contamination layer present on the surface of MoS2, Local 

Threshold process (Sauvola method, radius: 40 pixel, k-value: 0.20, r-value: 200) is 

applied, and then the binary image is obtained (d).  
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Figure 4.14. Low magnification STEM-HAADF image of the pristine and Ga+ ion 
irradiated MoS2. 

Simulation of HAADF Images of Defects: 

The STEM-ADF image simulation was conducted by the QSTEM package92. Simulation 

parameters such as acceleration voltage, spherical aberration (C3 and C5), convergence 

angle and inner and outer angles for HAADF detector were set according to experimental 

conditions. All other aberrations except spherical aberration and defocus were kept as 0.  

Statistical Analysis of the Sub-nm size pores using AC-STEM Images: 

 In order to investigate the effect of the Ga+ ion dose on nanopore area and density, 

statistical analysis was applied to AC-STEM images. Binary images were first prepared 

from AC-STEM images by post-image processing (see Figure 4.13). Nanopore density, 

average area and total pore area percentage (see Figure 4.15 (a)-(c)) increase linearly with 

irradiation dose. By extrapolating the linear regression (Figure 4.15 (c)), an atom sputtering 
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rate was calculated as 1.07 atom/ion. The area of the pore slightly increases when the Ga+ 

ion dose is increased, but since the pore area is limited by the atomic configuration, a 

Gaussian distribution is not expected. By comparing the average and the median of the 

nanopore area (Figure 4.15 (b)), only the average increased when the Ga+ ion dose 

increased to 2.50×1013 ions/cm2, indicating that some pores expanded or merged laterally. 

Therefore, the nanopore diameter distribution was obtained (Figure 4.15 (d)). Instead of 

the average nanopore area, S (nm2), the effective nanopore diameter, D (nm), was 

calculated from the area using S = π(D/2). The pore diameter distribution showed that 

diameters of most defective samples were several angstroms in size.  

Further, to understand the distribution of nanopore diameters, the same nanopore counting 

procedure was applied to simulated STEM-HAADF images. The simulated STEM-

HAADF images (Figure 4.15(e)) were acquired using parameters from the actual imaging 

conditions. The effect of six different nanopore structures—three types of single-Mo-based 

nanopores (V1Mo (0.38 nm), V1Mo+3S (0.56 nm), V1Mo+6S (0.56 nm)) and three types 

of double-Mo-based nanopores (V2Mo+2S (0.54 nm), V2Mo+6S (0.68 nm), V2Mo+10S 

(0.70 nm))—were considered, and the diameter for each nanopore was obtained using the 

simulated STEM-HAADF images. These were also plotted in the nanopore diameter 

distribution (see bars in Figure 4.4 (d), the color of the bar corresponds to the nanopore 

structure in inset of Figure 4.4 (d)). Since the nanopore counting procedure was carried out 

at low magnification (Figure 4.14), the effect of mono-sulfur vacancies exhibiting low 

STEM-HAADF intensities at the edges of nanopores, was mostly ignored. This leads to 

the conclusion that the diameter of V1Mo+3S is almost the same as the diameter of 
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V1Mo+6S. When we compare experimental diameter distributions with simulated 

diameters for V1Mo nanopores, a large number of nanopores exhibit diameters smaller 

than the V1Mo pores. In order to understand this difference, we counted the number of 

missing Mo atoms from high magnification STEM-HAADF images (Figure 4.16).  

For the lowest irradiation dose (6.25×1012 ions/cm2), 80% of the defects consist of single- 

Mo-based nanopore, indicating that the overall nanopore diameter distribution shifted to 

smaller diameters, possibly due to broadening of atoms by higher order aberrations in the 

STEM-HAADF image. Assuming that a random number of surrounding sulfur atoms are 

sputtered along with a molybdenum atom by Ga+ ion irradiation, and that the sputtering 

probability for sulfur atoms is low, V1Mo and V2Mo+2S can be a major contribution to 

the nanopore distribution.  

For 6.25×1012 ion/cm2 irradiations, the main peak in the pore diameter distribution is close 

to the V1Mo, whereas the density of nanopores with diameter corresponding to 0.54 nm 

(diameter for simulated V2Mo+2S), is low. As the Ga+ ion dose increased, the nanopore 

density centered at nanopore diameters of 0.54 nm increased, indicating that the density of 

double-Mo-based pores increased. Moreover, when the Ga+ ion dose reached 2.50×1013 

ion/cm2, densities of pores with size > 0.8 nm in diameter increased.  
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Figure 4.15. Statistical analysis of sub-nm diameter pores identified by AC-STEM 
observation. 

Statistical analysis of sub-nm diameter pores identified by AC-STEM observation. (a) pore 

density, (b) pore area and (c) total pore area percentage were calculated from binary images 

created from AC-STEM image. (d) Distribution of the pore diameters for defects produced 

by Ga+ ion irradiation, for different Ga+ ion doses. The red (blue)-colored box corresponds 

to diameter ranges for V1Mo+yS (V2Mo+yS) pores which is calculated from simulated STEM-

HAADF images by a commercial software, QSTEM (inset, scale bar is 500 pm). 
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Figure 4.16. Statistical analysis of missing Mo atom using high magnification the STEM-
HAADF images. 

Ionic Current Measurements: 

EPC-10 HEKA amplifier with Ag/AgCl electrodes was used to perform ionic 

measurements on our devices. 1 M KCl (with 10 mM EDTA and 1 mM Tris; measured 

solution conductivity = 11.18 S/m, pH 8.7) solution was prepared using DI water, and the 

conductivity and pH were measured with Accumet XL-20 pH conductivity meter. Ionic 

measurements were conducted on pristine samples (non-irradiated, MoS2 suspended 

samples) and irradiated samples. Prior to ionic measurements, the device was annealed at 

300o C in an Ar-H2 environment for 90 minutes. This was a crucial step as it was found to 

prevent delamination of the flakes when the device interacts in a liquid environment. The 

device was then immersed in a 50% water-ethanol solution for at least 30 minutes to help 

in wetting and formation of ionic channels through the defects1,2. 1 M KCl solution was 

then introduced on both sides of the device and a voltage bias (VB) was applied while 
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simultaneously measuring the ionic current (IB). To ensure no damage to our devices during 

ionic experiments, VB was kept between ± 0.5 V for most of our devices.  

Non-Equilibrium Molecular Dynamics (NEMD): 
 
Simulations were performed using the LAMMPS software package.150 The simulation box 

of dimension 7.5 x 7.5 x 15 nm3 is comprised of a MoS2 nanoporous membrane plus a 1M 

KCL ionic solution. A Stillinger-Weber potential is used to characterize Mo-S bonded 

interactions79 and non-bonded interactions between MoS2, water and ions were described 

using a Lennard-Jones (LJ) plus Coulomb potential. The water model used in the present 

work is the TIP3P model.81 LJ parameters for K+ and Cl- ions were taken from 

references,179 where specific parameters were developed for the water model employed. LJ 

parameters and bulk partial charge for Mo and S atoms were taken from references 

respectively,110,204 as already used in other works.65 Before running NEMD, an equilibrium 

of the system in the NPT ensemble (T= 300K and P= 1 bar) without any electric field was 

performed during 100 ps to relax the system at the target temperature and pressure. 

Relaxation was followed by MD runs of 10 ns carried out in the NVT ensemble using the 

velocity-Verlet algorithm185 with a time step of 1 fs. A Nosé-Hoover thermostat138,64 was 

used to maintain the temperature at 300 K with a time constant of 0.1 ps. Particle-particle 

particle-mesh method was used to describe long-range electrostatic interactions. A cutoff 

of 1.0 nm was applied to LJ and Coulomb potential for non-bonded interactions. A SHAKE 

algorithm163 was used to constrain the bond lengths and angle of TIP3P water molecules. 

Finally, Non-Equilibrium MD simulations (NEMD) using periodic boundary conditions 

were carried out by applying an external uniform electric field, directed normal to the 
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nanoporous membrane (z-direction), acting on all charged particles throughout the 

simulated system. This gives rise to a force qi · E that applied to all the atoms in the 

simulation box, i.e., Mo, S, OW, HW, K+ and Cl-.  The resulting applied voltage is V = -ELz, 

where Lz is the length of the simulation box in the z-direction, with V = 0.15, 0.3, 0.45 and 

0.6 V. The ionic current and conductance calculations were performed using the same 

method as described in previous work.147 

4.8 Summary  
 
In conclusion, we created nanoporous MoS2 membranes containing ~ 100-1000, angstrom-

size pores with a mean diameter of ~ 0.5 nm, and the devices were characterized by atomic-

resolution imaging, Raman and PL spectroscopy. The measured conductance in 80% of the 

devices was of the order of 1 nS. We have also fabricated two single ~ 1-nm-diameter 

MoS2 pores with corresponding AC-STEM images and G was found to be ~ 1 and 10 nS. 

Our experiments and comparison with single pore data demonstrate that conductance must 

occur only through the few larger pores within the distribution and that majority of the 

defects do not allow ions to pass through. These results have a direct application for water 

desalination. Our MD simulations reveal that the defects with diameters less than ~ 0.6 nm 

are too small for ions to go through and result in negligible conductance < 20 pS. This 

conductance is comparable to the conductance obtained in a controlled experiment using a 

pristine membrane. Future studies may use atomic-resolution imaging to correlate the ionic 

transport measurements with the detailed information of the atomic structure of the 

individual conducting defects. Furthermore, there is a need for modeling of nanoporous 

membranes containing a large distribution of angstrom size pores, that is now possible 

using the AC-STEM insights provided by this work. 
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5  Single Zero-D Pore and Quantum Confinement in Ionic Transport 
 
This section has been represented from the publication titled, “Stochastic Ionic Transport 

in Single Atomic Zero-Dimensional Pores” by Jothi Priyanka Thiruraman, Paul Masih 

Das, and Marija Drndić. ACS Nano 2020 14 (9), 11831-11845 

 

5.1 Introduction 
 

In the recent years, biological proteins such as Na+ channels, K+ channels and aquaporins 

are being revered as touchstones for their water molecule and ionic transport properties. 

Studies have shown unique non-linear current-voltage (I-V) characteristics in sub-nm 

solid-state pores fabricated and tuned under a variety of operating conditions.43,57,72,164,190 

These observations constitute a breakthrough in understanding water purification and ionic 

selectivity with low-dimensional materials. Among reports on fabrication using novel 

solid-state materials, there have been a few innovative device architectures that mimic 

biological protein ion channels such as K+ channels. For example, carbon nanotubes 

(CNTs) with 0.8-1.5 nm diameters,202,221 nanocapillaries with 0.6 nm heights,39,50 and 

nanopores in graphene, MoS2, and WS2 with ~ 0.2 nm to few-nm diameters,174,202,190 have 

shown cation selectivity. Arrays of pores with diameters comparable to the hydrated ion 

sizes have been demonstrated in two-dimensional (2D) materials, opening a regime of 

transport studies at the atomic scale.72,190,192 A few notable experimental studies were 

conducted on single sub-1-nm-diameter 2D pores.43,192 Here they used theoretical fits of 

conductance vs. pore diameter to quote the “experimental” 2D pore diameter in the sub-

nm regime from measured currents72,43 rather than measure it directly, assuming that 

models are correct in the sub-nm regime. These pore diameter values were then used as 
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important ingredients to obtain, what could be considered, a “by-design” match with 

theories72 such as claiming evidence for “Coulomb blockade” 43 and “atom-by-atom” pore 

formation phenomena. 42 However, the fabrication and ionic transport properties of 

individual atomically engineered pores in 2D membranes is yet to be experimentally 

established. 43, 192 Effects arising from ion confinement such as quantized ionic conductance 

vs. pore diameter, Coulomb blockade and steric hindrance where the drop in conductance 

as successive hydration shells are prevented from passing through the small pores have 

been anticipated. 190,43,97,157,238,239 Other competing effects may include hydrophobicity of 

pores. 151, 176 Understanding ionic conduction phenomena in these confined geometries will 

expand their applications in drug delivery, biomedical, water filtration, nanopower 

generation and energy harvesting.2,190,140,82,183,41  

5.2 Background 
 

In this study, we create single atomic (sub-nm) pores in a monolayer 2D material, obtain 

their single-atom-resolution structural images, and probe the correlated current-voltage 

behavior in salt solutions. We fabricate devices with individual atomically precise MoS2 

pores using aberration-corrected scanning transmission electron microscopy (AC-STEM). 

The resulting pores contain 1 to 5 missing Mo atoms with effective diameters (dTEM, see 

Methods for definition and discussion) ranging from ~ 0.53 to 0.92 nm. Using atomic 

resolution images, we also present a library of predicted MoS2 pores with discretized sub-

nm diameters and zigzag-armchair edge configurations. These pores constitute quasi-zero-

dimensional (zero-D) channels43, 97, 192 with feature sizes comparable to the dimensions of 
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water molecules (~ 0.3 nm), hydrated ions (~ 0.7 nm to 1 nm) and Debye screening lengths 

( ~ 0.1 nm to 3 nm in 3 M to 10 mM  KCl, respectively). 43,121, 198 

Using ionic transport measurements, the wetting properties, ion current noise, and 

conductivity properties of individual zero-D MoS2 pores are characterized. We present a 

methodology for inducing a conducting ion channel in a sub-nm 2D pore using ethanol 

solutions and probe different ionic states (un-wet, partially wet, and fully wet) through 

current-voltage and noise power spectral density measurements. Due to their similar 

effective sizes, the measured conductance (G) range for zero-D pores (0.6 nS - 1 nS) in 

monolayer MoS2 is similar to the conductance in biological ion channels. In the low-bias 

regime (± 100 mV), we also observe that the ionic conductivity of zero-D MoS2 pores is 

largely independent of the bulk conductivity of different salt solutions and concentrations, 

making the pore almost equally conducting in 0.01 M KCl as in 3 M KCl. This is in contrast 

to larger-diameter pores in the same material where pore and bulk conductivity are 

approximately the same.52, 114 These experimental findings are overall consistent with 

molecular dynamics simulations of sub-5 nm MoS2 nanopores for 1 M KCl188 and provide 

opportunities for further studies on low-dimensional ionic transport in solid state materials.  

5.3 Experimental Methods 
 

Pore fabrication33 in 2D materials has been realized using several methods including 

electron130,167 and ion irradiation, 193 electroporation, 42,102 polymer patterning,207,189 

annealing/healing83 in-situ transmission electron microscopy (TEM),118 and plasma 

etching. 33, 140, 209 Electron beam drilling with sub-nm size probes enables the formation of 

individual pores while offering control over pore size and geometry. With the growing use 
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of aberration-corrected electron optics, transmission electron beams can be focus to 

diameters < 0.1 nm and have enabled studies of 2D materials down to an unprecedented 

resolution of ~ 39 pm.80 Recent advancements in electron microscopy also open 

possibilities for precise nanopore device engineering in 2D materials: to controllably make 

single and few-atom-sized pores and to atomically control the pore edges. Defect and pore 

creation in 2D materials has been studied in vacuum inside the TEM95,124,125,127,145,212, 

where 2D flakes typically hang off the supporting substrate or TEM grid and the chip is 

not designed for ex situ nanofluidics. Correlating advanced microscopy (AC-TEM) 

insights with transport properties from the same 2D devices measured ex situ has been 

challenging due to device requirements, such as having a single nanopore within an 

otherwise continuous membrane that does not leak, and a nanopore that is sufficiently 

stable in liquid or gas environments.  

5.3.1 Fabrication of Zero D Pore 
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Figure 5.1. Selected area AC-STEM drilling for individual sub-nm MoS2 pores. 

(a) Optical image of a 3 mm-diameter SiNx/Si circular chip platform (gray) for the TEM-
beam fabrication of sub-nm pores with transferred MoS2 flakes. (b) A monolayer MoS2 

flake (outlined by the purple dashed lines) transferred over a ∼150−200 nm diameter FIB 
hole on a SiNx/Si chip (inside the blue square) and annealed to form a seal with the 
supporting chip. Inset: Enlarged TEM image of the FIB hole with suspended MoS2 flake. 
(c) Atomic resolution image of pristine (as- grown and transferred) monolayer MoS2 
suspended on a SiNx/Si chip and (d) the lattice with a pore of effective diameter (dTEM, 
see Methods for definition) ∼1.1 nm. Z contrast is indicative of Mo and S atoms. (e) 
Schematic showing imaging of suspended monolayer MoS2 under an AC- STEM beam 
(light blue) with a dose of 3.2 × 106 e−/nm2. Mo and S atoms are shown in dark blue and 
yellow, respectively, while the electron exposure area is shown in orange. (f) Illustration 
of the sub-nm pore drilling using STEM selected area exposure technique with a dose of 
9.7 × 108 e−/nm2 and (inset) a completely drilled 0D pore.  

 

Figure 5.1 shows the sub-nm diameter MoS2 pore fabrication process using AC-STEM 

selected-area exposure of the 2D membrane. A monolayer MoS2 flake is transferred onto a 
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50 × 50 μm2 window in the center of the 3 mm diameter TEM grid with a 30 nm-thick 

SiNx film on top of a 290 μm-thick Si support substrate (Figure 5.1a). As indicated in the 

inset of Figure 5.1b, the electron transparent SiNx window contains a ∼150 nm diameter 

hole drilled with a focused Ga+ ion beam (FIB). The MoS2 flake ∼50−80 μm in size is 

positioned such that it is suspended over the FIB hole (Figure 5.1b) and annealed at 300 

°C with Ar:H2. The pore drilling process starts by zooming into the suspended MoS2 region 

covering the FIB hole to acquire a high-angle annular dark-field (HAADF) image (dose = 

3.2 × 106 e−/nm2, time = 8 s) of the pristine (as-grown and transferred) lattice (Figure 

5.1c).  

For a 2D material exposed to an electron beam, defect production is mediated by 

momentum transfer from energetic electrons to lattice atoms (knock-on damage) and in-

plane electronic excitations (radiolysis).5 Here, we employ a STEM acceleration voltage 

of 80 kV, in which the maximum knock-on electron energy transfer is lower than the 

displacement thresholds for Mo (20 eV) and S (6.5 eV) atoms in monolayer MoS2.95,225 

Previous reports have also demonstrated that an exposure dose of ∼106 e−/nm2 causes 

negligible radiolysis damage in monolayer MoS2.To drill a sub-nm diameter pore, the 

STEM instrument is switched from full scan (13 nm × 13 nm area) to selected area (1 nm 

× 1 nm area) exposure, in which the raster area of the electron beam is reduced, thereby 

increasing the dose to 9.7 × 108 e−/ nm2 (total exposure time = 10 s). At this exposure dose, 

radiolysis causes atoms to be sputtered off the lattice within the selected area,5,226 thus 

creating a sub-nm pore (pore 1, Figure 5.1d). The process is demonstrated schematically 



 124 

in Figure 5.1 e,f. Atomic pores are formed by removing a fixed, small number of Mo and 

S atoms, with edges that mainly follow the lattice shape.  

Compared to other electron exposure techniques such as high-resolution TEM (HRTEM) 

drilling and electron beam lithography, the use of a highly focused (probe beam with full 

width at half-maximum (fwhm) ∼ 0.1 nm) STEM beam allows for simultaneous imaging 

and atom removal while creating pores with atomically precise geometries. The resulting 

electron micrographs of the 0D pore are crucial in accurately characterizing pore size and 

atomic structure for subsequent ionic transport measurements.  

5.3.2 Geometric Pore Models and Atomic Structures of Fabricated Pores. 

 Selected area STEM drilling enables fabrication and investigation of a finite number of 

pores fabricated with an area below 1 nm2. MD modeling has shown how the pore edge 

configuration in a 2D material drastically affects its molecular transport. 57 For example, 

Heiranian et al. theoretically predicted that a nanopore with only Mo- terminated edges 

allows for higher water fluxes compared to pores that are mixed (i.e., edges with Mo and 

S atoms), S- terminated pores, and C-terminated (i.e., graphene) pores. 57 We first present 

a library of 27 geometrically possible combinations of missing atoms to create 0D MoS2 

pores, ≤1 nm2 in area. These pore model configurations are shown in Table 5.1 and 

correspond to 1−5 Mo atoms missing and up to 12 S atoms missing. Pore areas range from 

(i) Amodel ∼ 0.26 nm2 for missing 1 Mo atom to (xxvii) Amodel∼ 1.0 nm2 for missing 5 Mo 

and 12 S atoms.  
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Table 5.1. llustration of geometrically possible configurations of MoS2 atomic (0D) 
pores with areas ≤1 nm2. 

 
Red and black pore edges correspond to zigzag and armchair edge configurations, 
respectively, and in orange are the mixed pore edges that are a combination of zigzag and 
armchair. The pore areas are approximately equal to the multiples of the area of a unit ring, 
0.086 nm2, comprised of 3 Mo and 6 S atoms, illustrated on the top left. These geometrical 
pore models assume perfect pore edges following the shape of the lattice, and their 
thermodynamic stability in vacuum and ionic solutions is not a priori guaranteed. 

The geometric models provided in Table 5.1 are labeled as (n Mo, m S) and defined by (n, 

m), where n and m are the numbers of missing Mo and S atoms, respectively. These models 

show ideal pores without lattice distortions around the pore edges that we can occasionally 

observe in experiments. For example, in the image of pore 1 in Figure 5.f, we observe about 

3−4 Mo atoms that have been displaced at the upper right side of the pore’s edge. The 

specific pore models (i), (vii), (xiv), and (xxi) have only Mo atoms missing and are simply 

labeled as (1 Mo) to (4 Mo). To compute pore sizes, the area of one hexagonal ring, Aring, 

model = 0.086 nm2 (Table 5.1, top view of the lattice) is estimated from the normal distance 

from the Mo atom to the line connecting the two out-of-plane S atoms, a distance of 0.182 

nm. 190,188 For each model, the pore area is estimated from the number of missing hexagonal 
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rings. For example, for pore (i) (1 Mo), A(1Mo), model = nr × Aring, model = 0.26 nm2, 

where the number of missing rings is nr = 3.  

Since STEM drilling preserves the localized atomic structure of the MoS2, pore edges are 

combinations of zigzag and/or armchair paths, which are defined in Table 5.1. A few 

examples of purely zigzag pores are (i) (1 Mo) and (xx) (3 Mo, 12 S), while purely armchair 

pores include (x) (2 Mo, 4 S) and (xviii) (3 Mo, 6 S). Conventional descriptions of pore 

diameter applicable for nm-scale pores break down since these pores can no longer be 

assumed circular (Table 5.1). A better way to capture the pore size and anisotropy is using 

the histogram of pore sizes in different planar directions passing through the pore’s center 

of mass (see the Supporting Information of ref 4). 190 Here we use the number of missing 

Mo and S atoms along with a schematic of the most probable pore edge configuration and 

suggest to generalize this notation for similar 2D nanopore studies in the future.  

While Table 5.1 shows the majority of the geometrically possible combinations of 0D pores 

in a monolayer MoS2 lattice with an area below 1 nm2, it explicitly displays a few pore 

geometries that are likely feasible and can be fabricated through STEM drilling (such as in 

Figure 5.1). For example, armchair pores (ix) (2 Mo, 4 S) and (x) (2 Mo, 4 S) contain the 

same missing atoms of 2 Mo atoms and 4 S atoms, however, they are neither identical in 

their pore shape nor in area ((ix) 0.52 nm2 and (x) 0.60 nm2). Similarly, (xiv) 3 Mo and 

(xv) 3 Mo illustrate pores that are a combination of zigzag and armchair pore edges (i.e., 

mixed) with the same theoretical area of 0.60 nm2 but differ in their shape as seen in Table 

5.1.  
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In this case, we find that the pore in (xv) is difficult to experimentally fabricate, and we 

attribute this to its highly elongated shape: Under electron irradiation, pores prefer circular 

expansion due to the reduced displacement energy for atoms on the pore edge. 124 More 

convoluted and intricate pore edges such as those depicted in (xxi) and (xxii) pose a 

challenging fabrication and detection task even for tools with high controllability such as 

STEM due to the low displacement threshold and Z-contrast of chalcogen sites. 95, 193 Even 

more importantly, the structural stability of such artistically rendered, intricate pores is far 

from guaranteed, is likely lattice dependent, and yet to be explored and understood in 

different environments.  

5.4 Experimental Ionic Transport Measurement of a Single Zero-D Pore 
Device 

 

Atomic structure, formation, and stability of 2D MoS2 pores (as in pore configurations in 

Table 5.1) made by the electron beam irradiation in vacuum have been investigated using 

density functional theory (DFT), for example, by Wang et al.266 who claimed that it is 

favorable for the ejected Mo atoms to attach to the 2D sheet as well as by other authors 

who also modeled the ion conductance through 2D MoS2 pores. 57,188,190 Ironically, many 

structural DFT stability simulations consider the material in vacuum. While these 

simulations seem suitable for TEM-only studies, their relevance is lower for nanofluidic 

devices where additional atoms and ions are present around the pore and can interact with 

the 2D material to form chemical bonds and even etch the material. 33, 42,34 Stability of pores 

in salt solution is therefore a different and more complex problem than stability of pores in 

vacuum, as evidenced by various electrochemical phenomena observed between salt 
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solutions and 2D materials such as oxidation.33, 42,34,35 There are exceptions of MoS2 

nanopore modeling in fluids, 57,188, 190, 41 but further work is required. DFT combined with 

MD simulations may provide further insight, especially if they are in concordance with 

experimental findings. Our experiments outline several pores that were stable enough to be 

measured in ionic solutions.  

	

 
Figure 5.2. TEM images of MoS2 (sub-nm-size) atomic pores and pore geometric models. 
Zigzag-armchair 0D pores in MoS2. 

AC-STEM image (left) and schematic (right) of 0D pores with (a) (2 Mo, 8 S), (b) (1 Mo, 
2 S), (c) (5 Mo, 12 S), (d) (2 Mo, 7 S), and (e) (2 Mo, 8 S) atoms missing. (f) The 3D 
renderings of the intensity from the HAADF images of the pores shown in (b) and (d) are 
also provided.  
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Figure 5.2 demonstrates five example devices with AC-STEM HAADF images of zigzag 

and armchair structures successfully drilled and examined using the selected area technique 

shown in Figure 5.1c−f. The five pores include: (a) (2 Mo, 8 S), (b) (1 Mo, 2S),(c) 

(5Mo,12S),(d) (2Mo,7S),and (e) (2Mo,8S). Overall, the pores in this study range from 1−5 

Mo vacancies with a pore area from 0.34 nm2 to 1.0 nm2. Figure 5.2f shows three- 

dimensional (3D) renderings of the intensity from the HAADF images of pores 2 and 4. 

The STEM beam can be controlled down to a ∼ 0.1 nm probe size, nevertheless, the 

precision of this technique is limited due to sample drift and the relatively low displacement 

threshold (∼ 7 eV) for S vacancies.31, 95 As a result of this, AC-STEM is mainly employed 

to create defects at Mo sites (Z = 42), while further efforts are needed to precisely control 

the composition of chalcogen (S) sites.  

Pore Contamination: It is likely to have 2D membrane and pore contamination by a 

carbon/graphitic film partially or completely covering the MoS2 that cannot be easily 

observed in our HAADF images, as specifically discussed for similar MoS2 films by Wen 

et al.215, who demonstrated the detection of often-missed, lighter atoms (C, O, N) by 4D-

STEM imaging. This additional material could alter the pore’s wetting and other properties, 

reduce its diameter or completely block the pore, and also yield smaller ionic current than 

predicted since the contaminated pore may be significantly thicker. For larger, nm-diameter 

MoS2 pores, a good agreement was found between the ionic conductance models and 

expected 2D MoS2 pore thickness in the range ~ 0.7 nm to 1.6 nm43, 114, with the quoted 

device failure for 2 nm to 20-nm-diameter MoS2 pores from membrane leakage (G > 300 

nS) or pore clogging (G < 10 nS) of  < 30%.114 Future efforts of modeling 2D pores and 
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other ultrathin devices may wish to consider effects of carbon contamination, whose role 

is becoming increasingly more recognized and could be considered in interpreting 

behaviors of pores and devices at the atomic scale. 

5.4.1 Experimental Ionic Properties of Single 0D Pores 

	

 
Figure 5.3. Schematic of single pore STEM drilling, solution treatment, and measurement 
setup. 

(a) Fabrication and pore wetting workflow for a suspended monolayer MoS2 0D pore. (i) 
Drilling a sub-nm pore on the suspended MoS2 flake. (ii) Wetting of pore with ethanol 
(50%) for 15− 30 min. (iii) Device rinsed in DI water before ionic measurement. (iv) 
Device flushed with salt solution for ionic measurement. (b) The design of nanopore ionic 
measurement consisting of a 2D MoS2 nanopore separating two chambers of salt solution 
with Ag/AgCl electrodes (mounted on a microfluidic platform, not shown). (Inset) A 
sample HAADF image of a sub-nm MoS2 pore.  

After drilling in ultra-high vacuum (p ~ 1.7 x 10-5 Pa) in the aberration corrected STEM, 

the zero-D pore is immediately stored in a vacuum-sealed container prior to experimental 

measurements to minimize oxidation-induced pore changes and expansion. 30,34,38 Figure 

5.3(a) displays a schematic of the 3 mm-diameter SiNx/Si device (also pictured in Figure 

5.1(a)) with a monolayer MoS2 flake. The single zero-D pore that is drilled and imaged is 

located in the center of this membrane as explained previously in Figure 1. A number of 
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studies have highlighted the importance of wetting nanochannels and pores prior to ionic 

measurements.39, 43 Here, we elaborate on the dedicated pre-treatment steps used to 

facilitate wetting of sub-nm MoS2 pores while monitoring and examining intermediate 

responses before a measurable current state. We use a 1:1 mixture of ethanol and DI water 

to help wet our devices using the process shown schematically in Figure 5.3(a) (ii)-(iv). 

The process begins by immersing the device in the ethanol-water mixture for 15-30 minutes 

(Figure 5.3(a) (ii)). The following steps include rinsing with DI water and immersing the 

chip in salt solution (Figure 5.3(a) (iii)-(iv)).  These last two steps take about one minute 

each with a total time of a few minutes. This cycle of processes is repeated sequentially a 

few times (about 3 to 6 times) until a detectable current (discussed later in Figure 5.4) is 

observed. Ionic transport measurements are performed with two-terminal Ag/AgCl 

electrodes (Figure 5.3(b)). The inset of Figure 5.3(b) shows an AC-STEM image of a pore 

which was not electrically measured. During measurements, we limit the applied voltage 

to ± 100 mV to minimize electric-field-induced damage to the device. 43, 190  
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Figure 5.4. Ion current−voltage and noise curves in single pore devices. 

(a) AC-STEM image of the as-fabricated sub-nm pore 2 (1 Mo, 2 S) in vacuum, prior to 
any I−V measurements with dTEM = 0.53 nm. (b) Control device and pore device I−V 
measurements: (black) bare Ag/AgCl electrodes in air, (orange) partially wet pore 2, and 
(yellow) likely a fully wet pore 2 after exposure to ethanol for 15 min. (c) I−V 
measurements of pore 3 (5 Mo, 12 S) with dTEM = 0.87 nm in 1 M KCl, pH 8.7 (purple) 
after 15 min ethanol exposure, (red) de-wetting after an additional 30 min in 1 M KCl, and 
(blue) again after following the wetting procedure it was found to rewet. For comparison, 
I−V curves for a pristine MoS2 membrane are shown in green in both (b) and (c). (d) 
Current noise PSD of samples in various conditions: (green) pristine membrane (no 
intentional holes), (black) bare Ag/AgCl electrodes in air, (red) a pore before ethanol 
wetting, and (blue) a pore after ethanol wetting.  
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Wetting Behavior of Zero-D Pores: 

We observe that the wetting of 0D pore devices is a challenge for ionic measurements, 

indicating their hydrophobic nature. Figure 5.4 represents two different sequence of events 

involved in wetting 0D MoS2 pores. The HAADF image of pore 2 shown in Figure 5.4a 

indicates a structure with area of ∼ 0.22 nm2  (dTEM = √"S,eU
$

= 0.53 nm), consisting of 1 

Mo and 2 S atoms missing (also shown in Table 5.1 as (ii)). The method to extract area 

from an HAADF images is shown in section 5.10, Figure 5.5. The intensity profile of the 

dashed yellow line is shown in the inset of Figure 5.4a and demonstrates the absence of a 

single Mo atom in the periodic lattice structure. In the linescan across this pore, we also 

observe residual peaks whose intensity appears consistent with the presence of single S 

atoms. To better characterize and understand differences in conductance levels observed 

in a single 0D pore sample (from vacuum to salt solution via ethanol immersion), we 

empirically categorize its observed transport behavior into three different states:  

State 1: Negligible conductance <0.1 nS (∼ 10 pA for V < 0.1 V) with I−V curves similar 

to those measured in pristine membranes in solution. When pores were immersed in salt 

solution directly from vacuum, without any ethanol treatment, immeasurable ionic current 

was obtained (<10 pA in some cases), similar as the noise of the open circuit setup. This 

means that either (i) the ionic solution did not reach the pores (unwet state) or that (ii) the 

ion current through these pores is below the detection limit. An example of this state is 

shown in red in Figure 4c.  

State 2: Measurable ionic current with pronounced hysteresis in I−V curves. In this case, 

samples were immersed in ethanol prior to ionic measurements. The I− V curves were 
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characterized by pronounced hysteresis but measurable signals. This is possibly due to 

incomplete pore wetting and gas molecules dissolved in solution and present on the surface 

of the microfluidic chip that make their way to the pore region and affect the conductance. 

151, 176 Hysteresis in I−V curves were noticed to be temporary in some devices before 

obtaining a conducting state (state 3). The orange curve in Figure 5.4b shows an example 

of state 2.  

(3) State 3: Measurable ionic current with no hysteresis in I− V curves. After immersing 

the samples for adequate (>15 min) time in ethanol, we observed I−V curves with no 

hysteresis corresponding to a measurable conductance up to ∼0.8 nS. Such curves are 

shown in yellow in Figure 5.4b as well as purple and blue in Figure 5.4c. Additional 

examples of all three states can be found in section 5.9, Figure 5.8.  

Current−voltage characteristics of samples in this work show different scenarios with 

various sequences of events. Three of such sequences involving states 1−3 are shown for 

pore 2 (Figure 5.4b), pore 3 (Figure 5.4c), and pore 4 (Figure 5.55), all successfully 

resulting in a measurable current and therefore ending in state 3. Figure 5.4b shows the 

first scenario where the ionic current−voltage curves obtained for pore 2 go through the 

following stages in the wetting process: (i) After soaking in an ethanol:water mixture for 

15 min (see section 5.9), we measure an I−V curve (orange) in 1 M KCl with hysteresis 

behavior where the maximum current is ±10 pA. This value of current is comparable to 

pristine MoS2 membranes with ethanol wetting (green) but shows a looplike I−V curve 

characteristic of state 2. (ii) After placing the device into ethanol for 3 h, we measure in 10 

mM KCl and observe an I−V curve (yellow) with G ∼ 0.98 nS (i.e., state 3).  
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We also have fabricated several pores which led to hysteresis- like I−V behavior and ended 

in state 2 (pores 1 and 5 shown in Figure 5.1) or had other issues such as excessive PMMA 

contamination. Pore/membrane breakage was observed in three devices which exhibited 

excessive conductance (∼ 375 nS or higher, see section 5.10 Figure 5.7a) caused likely due 

to (1) an unstable pore with significant PMMA contamination introduced during the 

transfer process and (2) device damage during measurements. Out of a total of ∼30 

fabricated devices, 41% accounted for devices with drilled pores where ionic measurement 

was attempted. This also includes devices which had multiple sub-nm pores, for example, 

pores 6−8 in section 5.10 Figure 5.7. In the case of pore 7 which was measured up to ±0.5 

V in 1 M KCl, we observe a nonlinear trend in I−V with a conductance G ∼ 2.2 nS. In 

order to clearly distinguish between the background signal and signal dominated by pore 

conduction, the control I−V curves for bare Ag/AgCl electrodes (black) and pristine MoS2 

membranes (green) were also measured (Figure 5.4b). As expected, the bare electrodes in 

air show a negligible conductance G ∼ 10 pS with a current of ∼0.5 pA at −100 mV to 1 

pA at +100 mV, also comparable to pristine membranes, G ∼ 10−30 pS.  

We do not detect any systematic dependence of conductance on pore size or geometry, but 

rather a stochastic set of values. For example, pore 2 showed a higher conductance than 

pore 3 despite a smaller pore size recorded during TEM drilling and measurement at a 

lower KCl concentration (Figure 5.4b vs Figure 5.4c). This may be a real, counterintuitive 

effect, or it may be an artifact from pores changing during the course of the experiments. 

Previous non-equilibrium molecular dynamics (NEMD) conductance simulations on 

selected MoS2 pore geometries (including pores (ii) and (xix) from Table 5.1) showed that 



 136 

conductance varies in magnitude (∼0.01 nS to ∼1 nS) in this pore size range (∼0.4 to 0.9 

nm). 190,188 

5.5 Discussion on Sub-nm MoS2 Pore Studies 57,190,43,42,188 
 
 
 It is useful to compare our findings with previous measurements. Single MoS2 monolayer 

pores with somewhat larger diameters (1.1 nm and 1.4 nm, directly imaged by AC-TEM) 

yielded measured G ~ 1.5 nS and 10 nS in 1M KCl, respectively, and non-equilibrium 

molecular dynamic simulations for pores as in (ii) and (xix) in Table 5.1 computed G ~ 

0.02 nS and G ~ 0.03 nS, respectively.190  Feng et al. 43 reported conductance in pores made 

by electroporation to be ~ 1 nS (extracted at 100 mV) for quoted diameters of 0.3 nm, 0.6 

nm, 0.8 nm and 1 nm, 43 but failed to explain how pore diameters were obtained given that 

the pore images were not presented. Salt (bulk) conductivities are not directly applicable 

for sub-nm pores,188 and a simple cylindrical pore model for conductance when used to 

gauge the size of electroporated pores42 is not sufficient. Up to ± 5 V was applied (Section 

5.10 Figure 5.10  in Ref. 43) in 1 M KCl across a pore of presumably 0.3 nm in diameter (a 

single sulfur vacancy), 43 while 0.8 V was previously found to be the critical voltage42 

above which MoS2 membrane can break. Single sulfur vacancies are common defects95,145 

in “pristine” (i.e., membranes without intentional holes) MoS2 membranes, but give 

negligible ionic conductance of pristine membranes, < 0.01 nS 190 (see also Figure 5.4), 

rather than 1 nS. These experimental details require attention in order to experimentally 

test and reproduce the far-reaching conclusions43 about a “voltage gap” for transport, the 

“signature” of “Coulomb Blockade”, that increases as the pore diameter decreases. The 

“voltage gap” proportional to multiples of kBT for which there is no transport, is not 
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observed in our measurements of pores with well-characterized structure by AC-TEM, 

where we report the low-bias conductance consistent with the picture of reduced pore 

conductivity compared to bulk.  Furthermore, authors claimed43 that soaking in ethanol, 

“30 min to 24 h to rule out hydrophobic effects”, “eliminates the possibility that 

nonlinearity originates from hydrophobic effects”. 43 However, we find that while ethanol 

helps obtain measurable currents, we did not find that ethanol treatment alone guarantees 

that pores will be fully wet or that it eliminates hydrophobic effects and possible resulting 

nonlinearities in I-V curves. Theoretical simulations appear to miss this connection to 

experimental details (including pore contamination),57,188,180,190 making the role of the 

alcohol-based wetting solvent unclear from an energy barrier standpoint which could 

elucidate its role in modification of the pore surfaces.  

 

5.5.1 Reversible Wetting−Rewetting Behavior 
 
It is important to note that these conducting states are reversible in a sense that a conducting 

pore (State 3) can switch to a non-conducting state (State 1) (more discussion on 

hydrophobicity in pores is below). 151, 176, 9, 75,123, 160  This implies that the ionic current paths 

may easily close in zero-D pores. We find that if the same pore is treated in ethanol again, 

it can start to show measurable ionic current and conduct (State 3). Ethanol is therefore 

critical for ionic measurements in 2D materials and especially for smaller-diameter zero-D 

pores here. This is demonstrated in Pore 3 (5 Mo, 12 S), which shows the second scenario 

where the pore was initially measured in State 1 after both 30 seconds and 5 minutes of 

ethanol wetting where we obtained an immeasurable and unstable I-V response. However, 

after an interval of 15 minutes in ethanol, the pore was observed to conduct (i.e., State 3) 
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with G ~ 0.73 nS in 1 M KCl (purple curve in Figure 5.4(c)). This conducting state (~ 0.7 

nS) was verified periodically after 10 minutes but was found to de-wet and reverted to State 

1 after about 30 minutes after measuring in salt solution. This is denoted by the red I-V 

curve in Figure 5.4(c) with a max current of 0.9 pA at -100 mV and 0.6 pA at +100 mV. 

By repeating the wetting procedure, the pore was measured after 60 minutes, and was found 

to return to the conducting state 3 (light blue) with a conductance of 0.72 nS in 1M KCl. 

Later, this pore was stored in an ethanol mixture overnight and observed to still conduct 

after 14 hours with similar conductance values of 0.73 nS in 1 M KCl and 0.72 nS in 1 M 

LiCl.  

 

5.5.2 Hydrophobic Characteristics of Single Atomic Pores 

We observe that pores can wet and de-wet repeatedly, manifested by the fluctuation in the 

pore’s conductance “on” and “off” upon successive current-voltage measurements, on the 

timescales of minutes. This resembles, at least qualitatively, the behavior of biological (K+) 

ion channels where “hydrophobic gating” is observed,  an “on/off” behavior where the 

channels opens and closes for ion flow due to changes in the degree of pore wetting and 

presence of nanobubbles.9,75, 160  In biological ion channels, the current depends on the 

degree to which the ion channels are wet with liquid which, in turn, was found to depend 

on pore diameter, on the hydrophobic nature of atoms lining the pore and the applied 

voltage.9 In our case, the 2D materials are largely hydrophobic, and wetting of the surface 

is a challenge. We explored an alcohol (ethanol) pre-wetting procedure in the context of 

sub-nm pores to maximize the amount of electrolyte that flows through the pore and to 

maximize the measured current.   
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The hydrophobic nature of 2D material solid-state nanopores has been previously observed 

and ethanol-prewetting of MoS243 and WS2 34 was found to help obtain measurable ion 

currents consistent with the pore size. Wetting can be probed further by applying external 

pressure to force the liquid transport through the pore.123 The general concepts of wetting 

and de-wetting of pores used here are not new. Difficulty of pore wetting, the “dry”, “wet” 

and “partially-wet” states of hydrophobic solid-state (silicon nitride) and polymer pores 

with diameters of the order of ~ 10 nm and ~ 100 nm, and the corresponding hysteretic 

behavior observed in I-V curves, have been reported a while ago. 151, 160, 176 A hydrophobic 

pore can transition between the dry (non-conducting) and the wet (conducting) state upon 

voltage application. As voltage is increased, the pore can transition to a conducting state at 

higher bias resulting in an apparent non-linear I-V curve. This phenomenon was referred 

to as “voltage-induced gating”176 and “electric-field-induced wetting and dewetting”151 of 

a fabricated hydrophobic pore. Therefore, by applying voltage, a hydrophobic pore can be 

forced into a partially or fully-wet, conducting state. In this fully conducting state, the pore 

allows a maximum current possible based on its size, i.e., the same current as in a 

hydrophilic pore of the same size. In addition, MD simulations have shown ionic 

“memcapacitive effects” and hysteresis loops (I-V measurement in a loop with no 

crossover) in nanopore systems, that depend on frequency and were proposed to arise from 

polarizability of ionic solutions.98 

Non-linearities in I-V curves can originate from hydrophobic effects and also from the ion 

confinement effects in small diameter pores, when their sizes are comparable to sizes of 

hydrated ions and Debye lengths. In biology, hydrophobicity is an essential property for 

ion channel behavior and gating, and it can be an inherent property of the pore. For 
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example, stable gas pockets (“bubbles”) can form inside hydrophobic regions of the pore; 

a sub-nm-wide pore region is required to make the bubbles stable long enough to observe 

relevant biological effects and when bubbles break, ions and water molecules flow 

through.160 Analogous effects could be expected in solid-state pores and, because they are 

fabricated, these pores could serve as model systems to study such effects further and 

design artificial pores with specific functions.  For example, according to modeling of 

MoS2 pores, water flux can vary depending on whether Mo only, S only or mixed atoms, 

Mo and S, are at the edges.57 Another approach to controlling the degree of hydrophobicity 

would be to coat the 2D pores, for example by atomic-layer-deposition of TiO2, as 

demonstrated on graphene pores, to make them hydrophilic while only slightly increasing 

the pore thickness. 130 It is interesting to note that the non-linearity in I-V  measurements is 

largely absent in molecular dynamics simulations190 and this is yet to be understood. 

Pores may be dynamic in shape and change their conformations and edge 

termination – like in ion channels, this is a possibility for solid-state pores as well, but it is 

hard to probe directly and more thermodynamic modeling would be beneficial to inform 

the experiment. It is likely that the pore structure could change over time. Atomic-scale 

fluctuations at the pore edge could have additional contributions to the degree of 

hydrophobicity inside of the atomic-scale pores. In biological pores, nanobubbles within 

the pore have been theoretically considered as possibly responsible for ion channel 

gating.160 The extent to which the different parts of the pore itself are hydrophilic or 

hydrophobic depends on the ion channel diameter, the applied voltage and the local 

properties of pore edges and their interactions with ions and water molecules.9 Future 
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studies can attempt to directly probe effects of these parameters in atomic 2D pores and 

the degree to which these effects can be controlled at the atomic scale.  

 

5.5.3 Noise Characteristics of Single Atomic Pore Chips 

 In addition to I−V characteristics, we find that the power spectral density (PSD) of these 

states yields insights into frequency- dependent properties and can be used to help 

determine the extent to which a 0D pore is wet. PSD in solid-state nanopores is given as  

𝑃𝑆𝐷 = IJ!

Kα
	 	where I denotes the ionic current, A is the noise coefficient, α is the low-

frequency noise component, and f is the frequency.186 The PSD acquired at different stages 

of the wetting process for pore 4 is shown in Figure 5.4 d. For the bare electrodes (black), 

we obtain a noise coefficient of A = 2 × 10−7 and noise component of α = −0.3, which is 

representative of instrumentation noise. Additionally, the spectrum for bare electrodes is 

identical to the PSD for a de-wet, incomplete wet pore (red), suggesting the absence of a 

conducting ion channel. For pore 4 (2 Mo, 7 S), a completely wet with ethanol (navy blue), 

we note A = 5 × 10−6 and α = −0.47, which is similar to that of the pristine MoS2 membrane 

wet with ethanol (green, A = 7 × 10−5, α = −0.14). Crucially, the PSD for both cases 

exhibits a decrease in the sub- 102 Hz regime (Figure 5.4 c) compared to the rest of the 

frequency range and is characteristic of 1/f noise in conducting solid-state pores. 34,221,190,231 

This is in stark contrast to the flat PSD obtained for both bare electrodes and de-wet pore 

and suggests that ethanol is essential in creating a conducting ion channel through either 

intrinsic defects (in the pristine membrane) or STEM- fabricated 0D pores (in pore 4). A 
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combination of I−V and noise analysis can therefore be utilized to better understand these 

states (states 1−3) to determine whether a sub-nm pore is completely wet.		

5.6 Confinement Effects in Zero D with various Ionic Molarities   
 

 
Figure 5.5. Ion current−voltage curves and pore conductivities calculated from a bulk 
model 

(a) AC-STEM image and (inset) intensity profile of a sub-nm pore (pore5) with dTEM 
=0.65nm, where dTEM= 4ATEM/π and ATEM is the pore area. (b)I−V characteristics and 
(inset) schematic of pore 5 for various molarities of KCl−10 mM (yellow), 1 M (navy), and 
3 M (green). (c) I−V curves for pore 5 obtained with different salt solutions, 1 M LiCl 
(orange), 1 M MgCl2 (pink), 1 M KCl (light blue), and a pristine MoS2 membrane (black). 
Also shown in (c) are the current−voltage curves for arrays of sub-nm pores (labeled as 
array 1 and array 3) produced with low (dose 1, red) and high (dose 3, blue) doses of FIB 
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irradiation reproduced here from previous work for comparison190. (d) Pore conductivities 
of chloride-based salts (pH 8.7) including 1 M LiCl (orange), 1 M MgCl2 (pink), and KCl 
at concentrations of 3 M KCl (green), 1 M KCl (navy), 0.1 M KCl (purple), and 0.01 M 
(yellow) from 3 different sub-nm MoS2 pores (pores 2−4) are presented. Each bar includes 
pore conductivity derived from eq 2 (shown in inset) for upper and lower bounds of 
thickness (L = 0.7 nm and 1.6 nm) and diameter (dTEM = 0.53 nm and 0.87 nm, and dModel 
= 0.65 nm and 1.13 nm). Bulk conductivities of these salt solutions are plotted for 
comparison as asterixis (red).  

Another example of such a zigzag−armchair pore (pore 4) is shown in Figure 5.5. A 

HAADF image of this pore is shown in Figure 5.5a, alongside its atomic edge configuration 

shown in the inset of Figure 5.5b. Pore 4 has 2 Mo atoms and 7 pairs of S atoms missing, 

shown as (xii) in Chart 1, corresponding to a geometric area of 0.69 nm2. This is, again, 

confirmed by the Z contrast produced across the pore (yellow line) in the inset of Figure 

5.5a. In the case of pore 5 (which is our third I−V scenario), abiding by the procedure 

outlined in Figure 5.3a(i−iv), we obtain the current−voltage measurements for multiple salt 

solutions and salt concentrations. First, we examine the conductance in the case of different 

salt concentrations in Figure 5.5b: 10 mM KCl (yellow), 1 M KCl (blue), and 3 M KCl 

(green) at pH 8.7. We clearly observe a phenomenon where the 0D pore demonstrates an 

ionic conductance largely independent of the salt concentration, all three I−V of 10 mM, 1 

and 3 M KCl correspond to G ∼ 0.71 nS, 0.69 nS and 0.75 nS, respectively, extracted as 

slopes of the linear fits to the I−V curves in the voltage ranges ±100 mV.  

I-V characteristics acquired for other salt solutions such as 1 M LiCl (orange) and 1 M 

MgCl2 (pink) from an applied voltage range of	± 200 mV are presented in Figure 5.5(c). 

Given that these salt solutions have a significant difference in bulk conductivity (precisely, 

1 M LiCl = 9.5 S/m, 1 M MgCl2 = 12.3 S/m, 10 mM KCl = 0.14 S/m, 1 M KCl = 10.8 

S/m and 3 M KCl = 29.28 S/m), it is noteworthy that we observe a small change in pore 
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conductance value in these salt solutions through the zero-D pore in the ± 200 mV range, 

compared to the difference in respective bulk values. In contrast to the typical linear 

behavior of nm-sized pores, these zero-D pores also exhibit somewhat non-linear current-

voltage curves. These non-linearities are more evident at higher voltages, as shown in the 

inset of Figure 5.5(c), which are I-V curves obtained from an array of sub-nm zero-D 

pores produced in the MoS2 membrane by FIB irradiation and measured over a range of 

± 800 mV.190 These arrays contained on average ~ 300 - 1200 small pores of diameters 

smaller than ~ 1 nm (out of which ~ 30 - 240 pores on average were larger than 0.6 nm – 

the hydrated K+ ion diameter) and these samples exhibited G in a wide range ~ 0.5 nS to 

50 nS in 1M KCl (these G values are for the dose used for “Array 3”).  While the particular 

sample “Array 3” in Figure 5(c) is found to be less conducting than Pore 4, the mean 

conductance of all such measured samples, FIB irradiated at the same dose, was larger 

than G of Pore 4, with a mean conductance value of ~ 20 nS.190 Additional, slight non-

linearity is also observed in case of multiple pore devices, for example Pore 7, in Section 

5.10 Figure 5.7 (e) for 1M KCl. We also plot in Section 5.10 Figure 5.6, a bar graph of 

calculated conductance ranges by fitting a line to I-V curves over several voltage ranges, 

such as ± 30 mV, ± 50 mV, ± 100 mV, ± 200 mV from zero-D pores measured in this 

work (Pores 2, 3, 4) in section 5.10 Figure 5.6. We note that there is a difference of ± 0.01 

to 0.086 nS across different voltage range for a given zero-D pore, reflecting the degree 

of non-linearity. About 42% of the zero-D pores fabricated, yielded a conductance of 0.7 

nS- 0.9 nS across various cation-based chloride salt solutions from 0.1 M to 3 M with a 

slight variation in conductance (± 0.1 nS). While the other devices showed hysteretic I-V, 

the current was immeasurably small and/or pores could not be wet.  
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5.7 Calculation of pore conductivities based on measured conductance and 
pore sizes  

 

We can estimate pore conductivities based on measured conductance G and effective pore 

diameters from TEM images prior to I-V measurements, dTEM, and those obtained from 

pore models, dModel, assuming a known pore thickness, L, discussed below. Using a 

continuum model applicable for bulk behavior in nm-size and larger diameter solid-state 

pores, conductance G can be well-described for solid-state pores29:  

𝑮 = 𝝈E 𝟒𝑳
𝝅𝒅𝟐

+ 𝟏
𝒅
G
'𝟏

  (Eq. 2)  

where 𝜎 is conductance of the solution that depends on the molarity, d is effective pore 

diameter (assuming circular pores) and L is the effective pore thickness; d and L 

correspond to the effective dimensions of the ionic conducting cylindrical channel. As d 

and L approach zero, ions are confined in spaces of dimensions comparable to ionic radii, 

and the ion concentrations, mobilities and hydration are theoretically different from 

bulk192,24,40 Perez et al.188 recently proposed an analytical expression similar to Eq. 2, based 

on inputs from molecular dynamics simulations, for small MoS2 pores, but with a modified 

multiplication pre-factor 𝜎 in Eq. 2, to reflect the reduced K+ and Cl- ion concentrations 

and mobilities compared to bulk (See the Equation in Section 5.10).  In other words, for 

small pores, the authors proposed that one can consider that a small pore has a modified 

conductivity compared to bulk, and Eq. 2 can be modified by replacing 𝜎 with another 

function of diameter,  𝜎ijkl(𝑑) ≠ 𝜎mnop. For an effective MoS2 pore diameter around 1 

nm, the ion mobility was computed to be about 60% of bulk mobility and ion concentration 

to be about 30% of bulk concentration.188  



 146 

In Equation 2, the total resistance R = 1/G = Rpore + Raccess, where Rpore = ( "q
r	st!

) is 

the resistance of the pore, which is modeled as a cylinder. The second term, Raccess = ( &
rt

) 

is the so-called “access” resistance, arising from the solution in the top and bottom 

hemispheres on the two sides of the membrane.58,4  In our case, the effective pore diameter, 

d, and the effective pore length, L, are comparable (both ~ 1 nm). For L  in our calculations 

and for error estimation, we use here a range of values for L previously used, from L = 0.7 

nm 42,190  (the geometric thickness of the MoS2 membrane) up to L = 1.6 nm estimated from 

previous MoS2 pore conductance measurements on larger diameter pores.114 For the 

effective diameter estimates here, we use, ATEM  ~ 0.22 nm2 to 0.59 nm2, and AModel  ~ 0.34 

nm2 to 1.0  nm2 , yielding dTEM from ~ 0.53 nm to ~ 0.87 nm, and dModel from 0.65 to 1.12 

nm. The pores could be thicker if there is contamination and have larger diameters if they 

expanded over time. 

 From measured conductances, Gmeas, we can estimate the equivalent pore 

conductivities that would yield these conductances, a perspective proposed by Perez et al. 

to view sub-5 nm diameter MoS2 pores,188 as 

 

𝝈𝒑𝒐𝒓𝒆 = 𝑮𝒎𝒆𝒂𝒔 E
𝟒𝑳
𝝅𝒅𝟐

+ 𝟏
𝒅
G,        (Eq. 3) 

 

,where Gmeas is the measured conductance,  d is the diameter, and L is the pore thickness. 

Using measured conductance from zero-D pores, a range of pore diameters from AC-

STEM images, from corresponding pore models and L values from 0.7 nm -1.6 nm43, 114, 

we calculated spore, plotted for various salt solutions and concentrations in Figure 5.5(d).29, 
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58,3  Therefore, error bars in Figure 5.5(d) reflect uncertainties in d from our analysis.  Errors 

are plotted using the ranges of dTEM and dMODEL for d, and the range from 0.6 nm to 1.6 nm 

for L. 

For comparison, also plotted in red symbols are the corresponding bulk 

conductivities for each solution. Our results at 1 M KCl display spore/ sbulk =  25% - 65% 

(for 0.53 nm - 0.87 nm diameter pores) which also somewhat agrees with the trend from 

molecular dynamics simulations for sub-5 nm MoS2 pores where they reported  8% - 40% 

(for 0.7 nm - 1.25 nm diameter pores).188  

The conductance values observed are a bit smaller than 1 nS and similar across 

different concentrations and cations (K+, Li+, Mg++). Furthermore, I-V characteristics are 

non-linear, although non-linearities are mostly pronounced for higher voltages (Figure 

5.5(c)).  While hydrophobicity can lead to such observations as discussed above, another 

contributing factor in small pores is the spatial confinement and interactions experienced 

by the salt ions when the pore is of the similar size to the size of the hydrated salt ions. This 

has also been shown in other MD simulations where dehydration of the first hydration 

layer, orientation of water dipoles inside and outside the pore dictate the type of non-

linearities observed in these small measurable currents.164 Further, Richards et al.157 

showed that ion transport is hindered when pore size is comparable to dimensions of 

hydrated ion molecules and that partial dehydration is the main factor for energy 

barriers.157,156 Ion selectivity of pores is another aspect that has been experimentally 

investigated, such as in cation-selective sub-nm graphene pores140 but the available body 

of reproduced experimental work is limited. 192 
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5.8 Saturation of Conductance vs Molarity  

We observe a saturation in conductance across 3 M to 0.01 M KCl and other salt solutions. 

For larger, nanometer size solid-state pores, this saturation in KCl solution was previously 

observed to occur for molarities below ∼0.1 M. 41,205 This molarity corresponds to Debye 

length, λD ≈ 1 nm for 0.1 M KCl, equivalent to about four water molecule diameters, and 

λ ≈ 3 nm for 10 mM KCl. We see that for a 0D pore (d < 1 nm) the saturation of G with 

decreasing molarity, M, occurs at higher molarities than for one order of magnitude larger 

nm-size pores. This is likely because the characteristic pore size d is now comparable to 

λD even at relatively higher molarities such as 1−3 M KCl, where λD ≈ 0.1− 0.3 nm, 

explaining why we observe similar conductance for 3 M and 10 mM KCl.   

At low molarity < 0.1 M KCl, we observe in Figure 5.5(d) that conductance is similar or  

larger than expected from the corresponding bulk value and assuming an idealized inert 

transport channel governed by Eq. 2.178 This is because Equation 2 does not take directly 

into account that pores have charged surfaces (although this is effectively taken into 

account in Eq. 3  by assuming some equivalent pore conductivity, spore). For “large” pores, 

the pore’s surface charge effect on G can be negligible given that surface charges are 

screened within Debye’s length λD ≈ 0.3 nm in 1 M KCl. It was previously established that 

as the system size decreases approximately below micron and nm-scales, surface charge 

effects on G can be noticeable on ionic transport at molarities below ~ 0. 1 M, and transport 

can even become fully governed by surface charges in nanofluidic channels in very “small” 

systems and/or very “low” molarities.178 The lower the molarity, the larger the size of the 

channel for which surface charge effects on G are noticeable.  
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In nanofluidic channels, as molarity M decreases, conductance transitions from a regime 

where G ~ M to the regime where G saturates as a function of M at low molarities. 178  This 

dependence was established experimentally in silicon nitride (see for example SI in Ref. 

64)205 and 2D pores, with negative surface charge densities of the order ~ - 0.01 C/m2 to  - 

0.1 C/m2 reported41 for MoS2 pores with diameters d > 2 nm by fitting G vs. M and 

dependent on pH. This “low-molarity transport behavior”, where the definition of what is 

“low” depends on the system size, is explained by electrostatic effects of the channel’s 

surface charge on the fluid. The smaller the system, the higher the molarity at which this 

saturation occurs: a charged pore surface attracts oppositely charged counterions from 

solution while repelling co-ions.  This results in a charged layer forming close to the pore 

walls, called the double layer, and this layer screens the immobile surface-charge.  To 

maintain charge neutrality the number of mobile counterions in a channel can exceed the 

bulk ion concentration and dominate transport.178 

Low conductance presents a challenge for higher bandwidth measurements, requiring 

capacitance minimization to reduce noise and current contributions from capacitor 

charging. Compared to zero-D MoS2 pores supported on Si chips (Figure 5.1), pores 

fabricated on low-capacitance glass chips12,13 exhibited a lower noise but significantly 

higher polymer contamination (see section 5.10 Figures 5.8 and 5.9). Future studies will 

benefit by using low-capacitance platforms combined with low-noise transimpedance 

amplifiers28, 53,54, 170 to get insight into the short timescale behavior of both ion channels 

and zero-D solid state pores, such as to resolve short current events and probe the 

mechanisms of the channel on/off dynamics.53   
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5.9 Additional Experimental Methods  
 

CVD Growth: Monolayer MoS2 flakes were grown using CVD processes reported in 

previous works.193 Solutions of 0.2% sodium cholate growth promoter and 18×10-3 m 

ammonium heptamolybdate were spun onto piranha-cleaned Si substrates coated with 300 

(150) nm of SiO2, which were then loaded into the center of a 1 in. tube furnace (Thermo 

Scientific Lindberg/Blue M). For the MoS2 growth, samples were heated under N2 gas flow 

(700 sccm) at a rate of 70 °C min-1 and held at 750 °C for 15 min. Approximately 100 mg 

of sulfur precursor placed 22 cm from the substrates was kept at 180 °C during the growth 

procedures. Samples were rapidly cooled to room temperature by opening the furnace.  

Device Fabrication: MoS2 crystals were transferred from Si/SiO2 substrates with a focused 

ion beam (FIB) hole (~ 150 – 200 nm in diameter) using a wet etch technique. Crystals 

were first coated with C4 PMMA while aqueous 1 M KOH solution was used to etch away 

the underlying substrate. After being washed in deionized (DI) H2O, crystals were scooped 

onto TEM grids and dried for 30 min. Polymer liftoff and sample cleaning were performed 

using acetone and rapid thermal annealing in Ar : H2 gas at 300 °C, respectively. While 

tears and other failures modes of membranes and pores are possible, we have optimized 

our procedure to have continuous triangular flakes of MoS2, that are sealed to the 

supporting chip by annealing. When there are tears, the measured current is significantly 

larger; for example, for pores larger than 1 nm in diameter, the current is in the tens of nA’s 

and for larger tears significantly more. We had a few samples that clearly broke as 

evidenced by a sudden surge of current, followed by confirmation in microscopy. The small 

magnitude of current is an indicator of two possible outcomes: either the conducting pore 
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is small or that the membrane and/or pore are not fully wetting to allow maximum current 

flow based on pore size. 

Pore Fabrication and Imaging: Sub-nm MoS2 pores were fabricated and imaged using a 

Cs-corrected JEOL ARM 200CF STEM operating at 80 kV. The spherical aberration 

coefficients was generally Cs ~ 100 nm. Pores were drilled by switching the instrument 

with a 22 pA probe current to selected area (1×1 nm) exposure and monitoring the 

radiolysis process. After approximately 10 seconds, the instrument was switched back to 

full scan (13 × 13 nm). Images were obtained using a HAADF detector with a collection 

angle of 54–220 mrad and 10 cm camera length. Only one image was acquired after pore 

drilling to minimize beam-induced knock-on damage. 

We note that TEM images provide structural information only for the initial, as-

fabricated pores in vacuum, prior to any I-V measurements. This presents a limitation here 

as well as previous nanopore studies where it was experimentally challenging to locate and 

image the pores after ionic measurements. Previous similar individual pore studies have 

not measured the pore diameter directly.72, 43 It is possible and likely that once the pores 

are taken out of vacuum and immersed in solution their structure can change and these 

changes can include pore clogging as well as pore etching over time in salt solution2. 

Moreover, these changes could be amplified by the applied electric field to enlarge the 

pores.42 Here, we limit the applied voltage to 0.1 V and we also calibrate our conductance 

values using results from larger 2D pores 114,189,190 as expected upper bounds for our sub-

nm pores (~ 1 nS to 10 nS). Conductance larger than 1 nS may strongly indicate that the 
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pores have expanded beyond 1 nm in diameter over the course of handling and 

measurements. 

There can be several complications in device fabrication. While we did not probe 

the extent of debris, we observe that annealing is critical to seal the membrane and make it 

not leaky or lift off in ionic solution. We go by the amount of measured ionic current as an 

indicator of the degree of holes or current paths. We did not observe membranes lifting off, 

but we observed pore expansions and increase in ionic current if higher voltages are 

applied. 

Pore Diameter Determination: The geometric models (Table 5.1 and pore schematic in 

figures) were carefully created based on the missing atoms observed in TEM images and 

the 3D view such as in Figure 5.2f. These models do not consider the electron cloud space 

or the orbital distance which can perhaps be accounted for through Molecular Dynamics 

(not employed here). Additionally, we assume that the pore edges follow a perfect lattice 

from which the missing atoms are simply cut out. In the real TEM images however, we see 

that there can be lattice distortions and bunching of Mo atoms, such that the distances 

between atoms along the edge can vary and be slightly shorter or longer than in the pristine 

lattice. Furthermore, in the real pores there is a consistent uncertainly in the number of S 

atoms specially along the pore edges due the weaker intensity of S atoms produced in 

contrast to heavier Mo atoms. Therefore, we use both the pore areas obtained through TEM 

images (dTEM) (see Figure 5.5) and geometric models (dModel). 
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Definition of effective pore diameters used in this study: For the purpose of careful analysis 

we define two pore diameters, dTEM and dModel, both calculated as diameters of equivalent 

circles with the same area as the pore, where the pore area is estimated in two different 

ways. For  𝑑z{| =	+4𝐴z{| 𝜋⁄ 	, we estimate the pore area, ATEM, directly from the AC-

TEM zoomed in image of the pore and the scale bar is obtained experimentally in the TEM. 

This image analysis is done using functions and filter in software ImageJ (See Image 

Processing SI S1). For 𝑑|jtlo =	+4𝐴|jtlo 𝜋⁄ 	,	we use the area calculated from the 

geometric model of the pore and the scale bar is obtained theoretically from the atomic 

distances in the 2D MoS2 lattice. An example analysis and calculation of dTEM for Pores 

2,3,4, are given in Figure SI S1. The differences in values of dTEM and dModel primarily 

come from the deviation of the pore edges from the perfect lattice, for example if a pore 

has atoms that are bunched up on the edges, such as in Figure 5.1f. 

Ionic Measurements: EPC-10 HEKA amplifier setup56 with Ag/AgCl electrodes was used 

to perform ionic measurements on our devices. 1 M KCl and other salt solutions (with 10 

mM EDTA and 1 mM Tris; measured solution conductivity = 11.18 S/m for 1 M KCl, pH 

8.7) solution was prepared using DI water, and the conductivity and pH were measured 

with Accumet XL-20 pH conductivity meter. Similar measurements were also conducted 

for glass chips 12,13 but on the Chimera amplifier setup with higher-bandwidth (1-MHz).206 

Prior to ionic measurements, the device was annealed at 300 °C in an Ar : H2 environment 

for 90 minutes. The device was then immersed in a 50% water-ethanol solution typically 

for 15 to 30 minutes, which we empirically found to help wetting and formation of ionic 

channels through the pores. Some samples were immersed for longer time from 3-5 hours 
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to 12 hours. The device in ethanol was intermittently bubbled in the solution with the glass 

pipette to ensure no air bubbles are left trapped in the device.  Voltage (V) was applied 

across the pore while measuring the ionic current (I). Voltage bias was kept below ± 0.1 V 

for most pores in this work. A custom-built LabView Software is used to run experiment 

on Heka amplifier, I-V sweeps and time-trace features of this program was utilized.56 

Majority of the I-V measurement involved a sweep rate of 5 mV per second, 10 mV per 

second was used for faster acquisition. All I-V sweeps were offset to start at zero and were 

averaged in case of multiple I-V sweeps. “Pristine membranes” (membranes without holes) 

are control devices and not the same devices used to drill pores. It was challenging for us 

to measure in salt solution and then use the same membrane again to drill the pore and 

remeasure in solution. This is because the membrane gets dirty from the salt solution and 

there are additional possible failure modes such as membrane breaking. Therefore, we rely 

on control samples (membranes without drilling) to establish the baseline current, and on 

samples with drilling to establish the current through the pore. Because these are not the 

same samples, this presents a limitation of the present study. 
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Image processing for TEM pore area and diameter determination: 

 

Figure 5.6. Image processing for TEM pore area and diameter determination. 

To calculate experimental pore diameters (dTEM) from AC-STEM, atomic resolution 
images were first exposed to background subtraction and Gaussian blur filtering to reduce 
noise. The area of the pore (ATEM) was then calculated by performing a thresholding 
function that differentiates the pore (zero contrast) from the pore edge (nonzero contrast), 
as outlined in yellow for Pores 2, 3, and 4 above. The diameter is then calculated using 
𝑑z{| = +4𝐴z{|/𝜋. The entire process was performed in ImageJ software. 
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Conductance of zero-D pores: 

 

Figure 5.7. Conductance of zero-D pores 

Zero-D pores showing an average conductance of 0.79 nS across various cation-based 
chloride salt solutions with a standard deviation of ~ 0.1 nS in conductance. Each data bar 
includes conductance from an individual zero-D device for a given salt solution with a 
variation in the range of ± 0.01 to 0.086 nS arising from the slope of the fitted line obtained 
at various voltage ranges such as ± 30 mV, ± 50 mV, ± 100 mV, ± 200 mV (as applicable). 
The line inside the bar indicates the median of the conductance for a given salt solution, 
error bar shows the 75 % and 25 % percentile.  
 
Samples containing multiple sub-nm MoS2 pores drilled with AC-TEM: 
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Figure 5.8. Samples containing multiple sub-nm MoS2 pores drilled with AC-TEM 
AC-STEM images monolayer MoS2 samples containing multiple pores. (a) The 
conductance of Pore 6 (orange, dTEM = 1.2 nm; blue, dTEM = 0.55 nm) was observed to 
increase up to ~ 375 nS with successive I-V measurements, suggestive of pore enlargement. 
(b) Pore 7 is composed of 3 individual zero-D pores (red, dTEM = 0.92 nm; green, dTEM = 
0.52 nm; pink, dTEM = 1.0 nm) that cumulatively contributed to a conductance of 2.20 nS 
in 1 M KCl and 2.23 nS for 1 M NaCl. (c) Pore 8 had two individual zero-D pores (purple, 
dTEM = 0.53 nm; green, estimated dTEM ~ 0.60 nm) which gave a total conductance of 12.8 
nS for 1 M KCl, 5.56 nS for 0.1 M KCl, and 1.65 nS for 10-5 M KCl. The I-V curves for 
10-2 M KCl and 10-3 M KCl show hysteresis-like behavior (as shown in panel (g) – State 
2) with G ~ 0.3 nS and G ~ 1.09 nS respectively. As discussed previously, I-V sweeps with 
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hysteresis exhibit a loop-like hysteresis (no crossover) with the current value for a given 
voltage differing significantly (~ 80 pA), or the maximum current is close to background 
signal (as low as ±10 pA).   
 

Current-voltage and noise characteristics of sub-nm MoS2 pores on a low-capacitance glass 

chip: 

 
Figure 5.9. Current-voltage and noise characteristics of sub-nm MoS2 pores on a low-
capacitance glass chip 
AC-STEM images of multiple sub-nm pores in monolayer MoS2 transferred on a low-
capacitance glass chips.12,13 Both samples were measured in 1 M KCl. (a) The ionic current 
of Glass chip Sample 1 was found to steadily and irreversibly increase with voltage, 
resulting in a high conductance (G ~ 15 nS), likely caused by enlargement of pores. (b) 
Glass chip Sample 2 was also found be unstable with G ~ 3 nS. Compared to the continuous 
I-V measurements shown in the main text and other supplementary figures, the ionic 
currents here were obtained by acquiring current-time traces at discrete voltages. 
 
Because of the low current level in sub-nm pores and the need for better signal-to-noise, 

we integrated the 2D materials on low-noise all-glass chips12,28 and measured with our 

higher-bandwidth (1-MHz) Chimera amplifier setup3. TEM images and conductance 

values for two devices are shown in Figure 5.8, with corresponding noise properties given 

in Figure 5.9. While glass chip devices displayed a reduced noise compared to Si-based 
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chips (see Figure 5.8(d) in the main text), they were found to be especially delicate and 

prone to breakage, i.e., either the suspended region or the pore collapsed resulting in high 

conductances, and more work is needed. 

 
Figure 5.10. Power Spectral Density of a glass chip 

The (left) power spectrum density and (right) current-time trace for Glass chip Sample 2. 

The pore was conducting with ionic current I ~ 1.2 nA at a bias voltage of 200 mV in 1 M 

KCl. The glass chips provide reduced capacitance which inevitably reduces the noise 

across the entire frequency range by more than a factor of 2.28  
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Molecular dynamics simulation equation for sub-5 nm-diameter MoS2 pore conductance 

in 1 M KCl: 

 
Figure 5.11. Molecular dynamics simulation equation for sub-5 nm-diameter MoS2 pore 
conductance in 1 M KCl 

(a) Pore to bulk conductivity ratios (σpore/σbulk) for different salt solutions and 
concentrations. (b) Magnification of the 0-250% range of panel (a) for five solution 
conditions (excluding 0.01 M KCl). (c) σpore/σbulk for different concentrations of KCl 
solution. As described below, σpore/σbulk was studied theoretically as a function of effective 
pore diameter by Perez et al. in MD studies4. Figure 5.5(d) of the main text contains the 
pore conductivities obtained using Eq. 3 used to produce the plots above. 
 

 

The equation for sub-5 nm-diameter MoS2 pore conductance in 1 M KCl reported by Perez 

et al.188 to account for reduced ion concentrations and mobilities is given by: 
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Where, δK+= 0.38 nm , δCl−= 0.41 nm, ϵK+ = 1.03, ϵCl−= 0.97, φK+ = 0.832 nm2,  φCl− = 0.793 

nm2. 

 

Our findings at 1 M KCl generally agree with the trend from molecular dynamics 

simulations of MoS2 pores that calculated reduced ion mobilities and concentrations in the 

regime of pore sizes comparable to ionic radii. 148 Our smallest pores show more 

conductance of ~ 0.7 nS however the uncertainty in ‘L’ (membrane thickness) and range 

of diameter ‘d’ result in pore conductivities ~ 25 - 65 % of the bulk conductivity at 1 M 

KCl (obtained by fitting to Equation 3 of main manuscript). This is about two times larger 

than ~ 8 % - 40 % from molecular dynamics148, for effective pore diameters ~ 0.53 nm to 

0.92 nm.  Our range r@AB9
r8CDE

= 25%− 65% would correspond to theoretical pore diameters 

~ 1 nm to 1.8 nm in the MD model. 148 These discrepancies are not surprising, given the 

expected sharp change of 𝜎ijkl/𝜎mnop(%)	in this diameter range, about 5% change per 0.1 

nm diameter change148 and given our possible experimental errors in determining the pore 

diameter at the time of ionic measurements, among the possible sources of errors. We 

remind that experimental diameters correspond to pores in vacuum prior to ionic 

measurements. 

5.10 Conclusion and Future Directions  
 
 
With the help of the state-of-art transmission electron microscopy and advancement of 2D 

material devices, we report an elaborate device fabrication of a single zigzag-armchair 

zero-D pores which have definite pore edges and known atomic composition of pore edges.  

In this regime of sub-nm pores, we observe the conductance of zero-D pore is largely 

independent of bulk conductivity and dependent on the applied bias to drive ions through 
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the pores. We observe a quenched ionic conductance (~ 0.8 nS) compared to nm-scale 

pores in case of pores with the diameters similar to the size of hydrated salt ions, and the 

conductance saturation vs. molarity in a wide ion concentration range. This conductance is 

close to values recently reported in other solid-state atomic-scale systems where ion 

transport was confined to ~ 1 nm in one or more dimensions, such as in single 0.8 nm and 

1.5 nm diameter, 10-nm-long carbon nanotubes. 192,252,221 

Blockade of ion passage by small pores and dehydration of solvated ions were 

hypothesized as mechanisms to explain  experimentally observed suppressed ionic current 

at low voltages and non-linear I-V curves as voltage is increased. 72, 43  We are now able to 

fabricate Zero-D pores that mimic the bio pores, with good reproducibility and similar ionic 

conductance (~ 0.6 - 1 nS) to that of proteins that occur naturally.170,53 Another important 

aspect of these biological pores is their transport mechanisms and selectivity for specific 

cations or anions. This feature is yet to be studied in our zero-D, future experiments can 

investigate conductance at various pH and attempt to modify the surface charge of these 

zero-D pores. We were not able to image the nanopores after the ionic conductance 

measurements. Future studies can also attempt AC-TEM imaging of the pores after the 

ionic measurements and examine the extent to which these measurements result in some 

geometry changes of the pore. 

Several limitations existed in our study. TEM images correspond to pores before ionic 

measurements, and we were not able to image the pores after the ionic measurements. Also, 

because the membrane is contaminated after being in a salt solution, the baseline ionic 

current was established from pristine membrane samples (with no intentional pores) that 
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are not the same samples used for pore TEM drilling, although all samples came from the 

nominally identical batch of membranes (from the same CVD growth) and the same 

fabrication procedures.  

Pretreatment with ethanol here is seen to enhance the pore hydrophilicity and enable 

measurements of small but measurable currents through the pore. Studies have proven that 

the methanol or ethanol/water solvent mixture change the dielectric constant of the solution 

which could alter the surface charge on the pore in a favorable way to allow ions to 

translocate.17 This wetting technique aided by an alcohol is being used by several 

experimental studies already on 2D nanopores and nanochannels.34,39,43, 114,130 So far, our 

experimental investigation leads to the conclusion that wetting the pore is possible through 

a polar solvent such as ethanol which is important for translocating ions through the 

entirety of the zigzag-armchair pore. Future studies may design pore edges to further 

control ion translocation through the pores, maybe also guided by molecular dynamics 

simulation studies addressing pore stability and transport.  
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6 Gas flow through atomic-scale apertures 
 

This section has been represented from the publication titled, “Gas flow through atomic-

scale apertures” by Jothi Priyanka Thiruraman, Sidra Abbas Dar, Paul Masih Das, Nasim 

Hassani, Mehdi Neek-Amal, Ashok Keerthi, Marija Drndić, Boya Radha. ACS 

Nano 2020 14 (9), 11831-11845 

6.1 Introduction  
 
Gas flows are often analyzed with the theoretical descriptions formulated over a century 

ago and constantly challenged by the emerging architectures of narrow channels, slits, and 

apertures. Here, we report atomic-scale defects in two-dimensional (2D) materials as 

apertures for gas flows at the ultimate quasi-0D atomic limit. We establish that pristine 

monolayer tungsten disulfide (WS2) membranes act as atomically thin barriers to gas 

transport. Atomic vacancies from missing tungsten (W) sites are made in freestanding 

(WS2) monolayers by focused ion beam irradiation and characterized using aberration-

corrected transmission electron microscopy. WS2monolayers with atomic apertures are 

mechanically sturdy and showed fast helium flow. We propose a simple yet robust method 

for confirming the formation of atomic apertures over large areas using gas flows, an 

essential step for pursuing their prospective applications in various domains including 

molecular separation, single quantum emitters, sensing and monitoring of gases at ultralow 

concentrations. 
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6.2 Background  
 
Understanding confined gas flows in angstrom-scale tight spaces not only plays a major 

role in the design of gas extraction techniques but also for gas separation and production144. 

In extremely narrow pores, the mean free path of a gas is much larger than that of the 

dimensions of the pore itself, which leads to gas dynamics dominated by molecular 

collisions with walls of the pore rather than the intermolecular collisions. This is known as 

the free molecular regime, and the gas flux through such pores was comprehensively 

described using the Knudsen equation, which has since been modified and adapted to 

explain the flows through various confined systems. From a theory standpoint, a pore or 

an aperture is a simple model system, through which gas transmission is proportional to 

the impingement of gas molecules i.e., likelihood of a gas molecule encountering a pore, 

and the activation barrier if any to cross the pore. In the cases where the membrane surface 

can adsorb gases, the flow is a combination of direct transmission through the pore and 

surface diffusion along the membrane181. Despite the emergence of many nanoscale gas 

flow conduits such as nanopores27,93,219,210,232, nanotubes47,59,61, nanochannels84,168, 

nanolaminates89, 106, etc., ultimately narrow quasi-0D apertures with atomic-scale 

dimensions in both the transmembrane and lateral directions, which challenge the 

applicability of Knudsen equation for gas flows have been limited93, 210,85,232. Although one-

atom vacancies have been ideal candidates for theoretical simulations and modelling of gas 

flows18,78 , they have not been studied extensively in experiments266,232. Here we investigate 

an inert gas, i.e., helium flow through pristine impermeable membranes as well as atomic 

defect vacancies in freestanding monolayer tungsten disulfide (WS2) membranes, to 

validate the Knudsen description in the ultimate atomic aperture limit.  
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6.3 Fabrication of Devices with Atomic Apertures 
 
Several studies in the past have explored various sources for atomic defect creation in 2D 

materials; among those, the popular techniques are oxygen plasma71,92, thermal 

annealing11, ion and electron beam irradiation156,190, acid etching71, 193, and ultraviolet- 

induced oxidation etching106. In particular, ion irradiation offers a precise method of 

creating atomic vacancies with a controlled localization of defect sites at comparatively 

high densities (>1011 cm-2). Recently, we have illustrated how to create highly controlled 

single- atom defects by focused ion beam (FIB) irradiation on a monolayer transition metal 

dichalcogenide (TMD) flake113. In particular, TMDs provide better imaging contrast in 

aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging and 

appear less prone to contamination, enabling easier characterization of the defects. We 

compared the effects of FIB irradiation on various suspended monolayer TMDs and 

established that defects with areas down to 8 Å2 (single transition metal vacancy) can be 

produced in WS2 with a specific low irradiation dose (increasing dose produces larger 

vacancies in the membrane). Therefore, we choose monolayer WS2as an optimal base 

support for hosting single-atom defects. Apart from being mechanically stable with a 

Young’s modulus of 270 GPa and a thickness of ~0.7 nm 22, our detailed investigation of 

the controlled ion irradiation mechanism minimizes the possibility of undesired damage or 

tears. The FIB irradiation mechanism used here allows for exclusively hosting single 

atomic apertures on a freestanding monolayer WS2 membrane, enabling a high density of 

uniform defects in the range of 9×10 ± 3.5×10 cm-2 (see sections 6.6). These defect 

densities are comparable to that achieved in graphene membranes.  
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Figure 6.1. Atomic apertures fabricated using an FIB scanning technique.  

(A) Optical microscope of a monolayer WS2 flake suspended in the center of a silicon 
nitride (SiNx) membrane (~50-nm thickness, 50 µm by 50 µm) using position-control trans- 
fer technique. The inset shows a scanning electron microscopy image of a hole of 250 nm 
in diameter drilled in the center of the SiNx membrane. (B) Schematics of the irradiation 
technique on the suspended WS2 flake, and the inset shows a photo- graph of a SiNx/Si 
chip (11 mm by 11 mm). (C) Aberration-corrected high-angle annular dark-field (AC-
HAADF) image of irradiated monolayer WS2 flake at a dose of ~5.1 × 1013 ions/cm2. Bright 
spots indicate W atoms. (D) Histogram of apertures produced with the irradiated dose used 
in (C). Light shading of blue, green, and orange indicate the size ranges of 1W, 2W, and 
3W atomic apertures in the graph, respectively. Inset: A high-magnification AC-HAADF 
STEM image of one such aperture.  
 

The WS2 membranes incorporating atomic vacancies are supported on silicon chips (SiN 

/Si) with a size of 11 mm by 11 mm (Fig. 6.1A and fig. 6.4). In the center of each chip, one 

or more sub-micrometer holes were drilled in a freestanding silicon nitride (SiNx) 

membrane (Fig. 6.1B). A monolayer WS2 flake was suspended on sub-micrometer holes 
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present on these silicon chips (see fig. 6.4). The suspended flake was irradiated with a 30-

kV gallium–sourced FIB under specific pre-calibrated irradiation dose conditions to 

produce single atomic vacancies (illustration is shown in Fig. 6.1B). We exposed samples 

to an ion irradiation dose of 5.1 ×1013 ion/cm2 and obtained a defect density of 0.08 ± 

0.03%, with an average defect area of 0.12 nm2 and a median defect area of 0.09 nm2. 

Figure 6.1C is a representative image of atomic-scale defects produced through this 

method. We observe single atomic apertures where 1W atom vacancies can be seen, as 

included in Fig. 6.1D. It is often challenging to locate S atoms in AC-STEM images 

because of their weaker contrast compared to heavier W atoms. The creation of atomic 

defects possibly leads to reconstruction of immediate surrounding sulfurs in the monolayer 

lattice; hence, we see a variety of shapes of the apertures such as triangular, truncated 

triangular, to pseudo-spherical (see table 6.1 and fig. 6.5 in Section 6.6). On the basis of 

analysis of several atomic- resolution images, we estimate the total defect sites resulting 

from missing W atoms to be few hundreds to few thousands per one device depending on 

the supported membrane area.  

6.4 Experimental Gas Measurements in Atomic Apertures Devices 
 
The relatively large number of atomic apertures (up to ~2000) in our samples enables gas 

flows detectable by conventional mass spectrometers, such as helium leak detector. Our 

membranes are mechanically robust and sustained the pressure differences of up to ~1 bar. 

For gas flow measurements, the experimental setup consists of mounting the silicon chips 

with O-rings to separate two vacuum chambers, one held at variable pressure P and the 

other in high vacuum connected to a mass spectrometer as depicted in the inset of Fig. 6.2A 

(also see fig. 6.6). The samples are well sealed such that atomic apertures in the WS2 
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membrane act as the only connecting paths between the two chambers where gas molecules 

can flow. As control samples, three replicas were done for each of the pristine silicon 

nitride membrane with and without holes and nonirradiated WS2 membrane suspended 

over the silicon nitride hole. The control samples used to establish baseline flow are a 

different set of membranes than those used for gas transport; however, they all come from 

the same fabrication procedures and chemical vapor deposition (CVD) growth. A bare hole 

without WS2 layer exhibits large gas flow, as expected, and has been used as a standard 

leak for validation of the experimental setup (Fig. 6.2). A freestanding pristine WS2 

monolayer covering nine holes each with diameters of ~250 nm, without any irradiated 

defects, exhibited negligible helium flow be- low our detection limit (~10-18 mol s-1mbar-

1). It is remarkable that the WS2 monolayer grown by CVD methods (see fig. 6.5) has such 

low intrinsic defect density that it is practically impermeable over a suspended area of a 

few square micrometers. Let us recall the ultralow permeability, ranging from 10-23 mol s-

1mbar-1 to only few gas molecules per hour128,182, of intrinsic defects in 2D materials with 

high crystal quality such as mechanically exfoliated graphene, studied extensively with 

specialized device architectures and atomic force microscopy measurements done over 

several days. Apart from the high crystal quality of our WS2 monolayer, the impermeability 

emphasizes the excellent sealing of the WS2 layer on the SiNx membrane in our devices, 

which is achieved by repeated annealing of the samples in H2/Ar atmosphere at 350°C, 

both right after the WS2 monolayer transfer and also before the gas flow measurements (see 

section 6.6).  
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Figure 6.2. Gas flow through atomic apertures. 

Helium gas permeation measured through atomic apertures in WS2 made with same 
irradiation dose (5.1 × 1013 ions/cm2) but with different WS2 areas leading to difference in 
the number of defects in a given sample. The proportion of the 1W, 2W, and 3W vacancies 
in each sample is 69:22:9%, sample no. 1, N ~ 2070 ± 830; sample no. 2, N ~ 440 ± 170; 
sample no. 3, N ~ 300 ± 120. Pristine WS2 membranes without any irradiation and large 
bare hole not covered with WS2 (shown in red color) are shown alongside as controls. Solid 
lines running through symbols indicate best fit to the data. Inset shows a schematic of our 
experimental setup. (B) Comparison of normalized permeance per unit pressure of 
irradiated samples and controls, with the Knudsen estimates. The colors within the gray 
bars representing Knudsen estimates arise from the flow contributions due to 2W (red) and 
3W (dark blue) vacancies. Horizontal light blue color bar indicates the detection limit. 
Error bars on the helium flow of samples are from the SD of flow values recorded over a 
series of helium flow measurements (measured three times) on the same sample repeated 
after annealing three times. For the Knudsen theory estimates, the error bars arise from the 
error values associated with the number of defects and with the total area of the apertures 
A in each sample.  
 
 
6.4.1 Understanding Apertures “Sizes”  
 
Next, we did helium (He) gas flow measurements on FIB-irradiated samples containing 

atomic vacancy defects in suspended WS membranes. Three typical irradiated samples 

along with controls are shown in Fig. 6.2A, in which sample no. 1 has WS2 suspended on 

nine holes each with a diameter of ~200 nm. From our fabrication method, mainly three 

types of defects are possible such as 1W (~69%), 2W (~22%), and 3W (~9%) defects, 
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respectively. Here, the pore configuration is focused on W atoms since experimentally, the 

AC-STEM contrast from S atoms is weak, and hence, their locations are not identified with 

certainty. Unlike the geometric area given in Fig. 6.1D, to get the effective area (accessible 

pore area for He atom), the van der Waals (vdW) diameter of each atom on the aperture 

edge is subtracted (see section S2) 210. The total estimated tungsten defects are given as N 

= N1+ N2+ N3, where N1, N2, and N3 are estimated numbers of 1W, 2W, and 3W 

vacancies, respectively, from AC-STEM image analysis. In our samples, N ~ 2070 ± 830 

for sample no. 1; the sample no. 2 was WS2 on a single hole with a diameter of 250 nm to 

yield total defects N ~ 440 ± 170; the sample no. 3 was WS2 on a 200-nm-diameter hole to 

give estimated defects, N ~ 300 ± 120. Helium flow through atomic apertures increases 

linearly with increasing pressure and also with increasing number of defects in a sample 

(Fig. 6.2A). The gas flux is not exactly linearly correlated with the increase in N. The 

additional sources of error include the variation in the substrate hole area leading to an 

overall WS2 suspended membrane area variation and errors in the ion irradiation dose, in 

total amounting to about ~40% error. At the experimental working pressure P ranges from 

few to 200 mbar, the mean free path of helium is >0.5 µm, and the Knudsen number for 

these atomic apertures in our WS2 monolayer is >103. Here, the defects are not circular and 

have a well-defined atomic structure (see inset in Figs. 6.1D and 6.3), meaning that a 

diameter (typically used for larger circular pores) is not an optimal measure of size. We 

quote their geometric area, i.e., mean area <A>, and the characteristic sizes in table S1. As 

an example, the 1W (+6S) defect has a pore with characteristic size, ~3.15 Å, and an area 

of 0.08 nm2, whereas the 3W (+6S) defect has a pore size of ~5.25 Å and an area of 0.216 

nm2. To represent the size of the He, we use the kinetic diameter (~2.6 Å), which is a 
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semiclassical notion; however, for monoatomic spherical molecules like He, this is quite 

close to the quantum-mechanical size of the electron cloud around the nuclei188. As the 

aperture size is much smaller than the mean free path, the mass flow of the gas Q (moles 

per second) through the aperture is simply the impingement rate upon the area of the pore 

(see section 6.6, Figure 6.7), as described by Knudsen 68, 140.  

Q = PA(1/2pMRT)1/2 (1) 

where P is the inlet pressure, A is the total area of the conducting apertures, M is the atomic 

mass of the gas being transported (M = 4 g mol-1 for helium), R = 8.314 J mol-1 K-1 is the 

gas constant, and T is the temperature (T = 295 K in our experimental setup). In our case, 

A is the sum of all individual atomic aperture areas in the WS2 membrane, which is, on 

average, N1 × A1 + N2 × A2 + N3 × A3 (in our samples, N can be varied from 300 to 2000 

for an individual sample by increasing the membrane area; A1, A2, and A3 are the 

accessible aperture areas for 1W, 2W, and 3W vacancies, i.e., ~0.08, ~0.13, and ~0.23 nm2, 

respectively, given in table 6.1. In the case of control devices, i.e., large bare holes, A is 

the sum of individual hole areas (with diameters in the range of ~200 to ~300 nm). Taking 

into consideration the proportion of the various defects observed in AC- STEM images, we 

calculated the Knudsen estimates from all the vacancies such that 3W vacancies contribute 

to ~9% of the flux, whereas ~91% of the flux is contributed by 1W (+6S) and 2W vacancies 

together (Fig. 6.2B). If the pores are much narrower than the size of the molecule, then 

there can be a finite energy barrier, which is expressed as an exponential term in the Eq. 1, 

exp(−E/RT), where E is the energy barrier that substantially reduces the transmission 

coefficient of the gas even for small E210, 140.  
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The 2D membranes with atomic apertures show measurable helium flux ~10-16 to 10-15 mol 

s-1 mbar-1, over two to three orders higher than the detection limit and significantly lower 

than the leakage rate for sub-micrometer holes (Fig. 6.2B). This corresponds to a flow of 

about ~107 to 108 He molecules per second per millibar pressure difference across the 

membrane. Theoretical simulations with such small pores in graphene have estimated a 

pass through frequency of 10 He molecules per second per defect (close to our flow values 

per millibar for a sample with ~2000 defects; Fig. 6.2), which can be likely ascribed to a 

low diffusion barrier for He resulting from its noninteracting nature18, 210. As a check for 

the reproducibility of devices with atomic apertures, we would like to point out that in a 

given batch of irradiated samples, about 40 to 50% samples show the measurable flow 

commensurate with the number of defects estimated by the irradiation dose113. Other 

devices either did not conduct gas or showed much higher gas flow. From the He flow, we 

back-calculated the number of defects contributing to the flow using Eq. 1, and N matches 

close to the defect numbers from AC-STEM image analysis for the sample numbers. 1 to 

3. For high leaking samples, substituting experimental Q in Eq. 1 gave large contributing 

defect area A, which does not correlate with the defect density statistics attained from AC-

STEM, hinting that these samples might have tears or cracks in the membrane. 

Examination of these samples by scanning electron microscopy (SEM) on large areas 

indeed indicates that they are damaged samples (see tears in suspended WS2; fig. 6.7).  

The measured He flow values are within an order of magnitude of the values predicted by 

the Knudsen estimates, despite the uncertainties in our defect densities and the distribution 

of the type of defects. Equation 1 is based on the kinetic theory and has been applied to 
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describe the flows through apertures using effusion mechanism in both theoretical266 and 

experimental literature89, 106. To more precisely validate the agreement to Eq. 1 and/or 

evaluate its limitations in our experiments, we would need to further de- crease our 

experimental sources of error, including the calibration of all defect areas, which is a 

challenging experimental task. To verify whether there is any energy barrier, we measured 

gas flows by varying the temperature between ~25° to ~100°C, by using a heating tape 

wound around the chamber, interfaced with a temperature controller. We did not see 

noticeable variation in the gas flow with temperature, hinting an absence of an energy 

barrier (an exponential dependence is expected if an energy barrier is present). As per Eq. 

1, a T-1/2 dependence would lead to variation of flux by <10% within the temperature range 

tested, and this is beyond our experimental measurement error.  
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Figure 6.3. Atomic apertures and electron density isosurfaces. 

 
Typical aperture sizes with the irradiation dose (~5.1 × 1013 ions/cm2) are shown. The top 
panel shows the density functional theory (DFT) results for electron density isosurfaces of 
atomic apertures in a WS2 membrane (isovalue of 0.2 e/Å3). The S and W atoms are shown 
in yellow and blue, respectively. The blue and red arrows inside the images are the 
accessible dimensions in width a and length b across the pores (1W+6S, a ≈ b ~ 3.2 Å; 
2W+6S, a ~ 2.1 A, b ~ 6.2 A; 3W+12S, a ~ 5.8 A, b ~ 6.2 A). The accessible aperture areas 
for helium molecules are ~0.08, ~ 0.13, ~ 0.23 nm2, respectively. The bottom row includes 
the AC-STEM images of the defect, while the top row illustrates the observed atomic 
configuration. From the electron density isosurface (EDI) of defects shown in Fig. 6.3 (and 
fig. 6.5) using first-principles density functional theory (DFT) calculations, accessible pore 
areas are obtained (table 6.1). The accessible pore areas from EDI closely match with those 
estimated using vdW radii (section 6.6). The surface transport contributions can be 
negligible as He does not adsorb sufficiently on the WS2 basal plane, similar to that 
observed on graphene (typical adsorption layer thickness, ~4 to 6 Å).208  

Ideal atomic apertures with only 1W missing and with no missing sulfurs on the pore edge 

would likely, theoretically, be nonconducting. On the other hand, 1W defects with six 

sulfur vacancies with an accessible pore diameter of ~3.2 Å, which is larger than the kinetic 

diameter of helium (2.6 Å), would be amenable to gas flows. As shown in Fig. 6.1D, the 

minimum area of the defects obtained from AC-STEM imaging was about 0.06 to 0.1 nm2, 
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which corresponds to the defects with 1W and 6S missing (~0.08 nm2), whereas the 1W 

defects with no sulfurs missing would be of significantly lower area (~0.002 nm2). As the 

characteristic pore size decreases, the electron-overlap between He and membrane 

significantly in- creases, thereby increasing the energy barriers for the flow. However, the 

theoretical calculation of energy barriers might not necessarily capture all the favorable 

electronic interactions in real systems as there can be rearrangements in the vacancies. 

These discrepancies between the computed energy barriers and the experimental flows 

have been noted before by Wang et al93. Specifically, our results do not imply a significant 

energy barrier compared to theoretical predictions209,93,140, 210, and we also note that 

different levels of DFT calculations (and supercell size, or equivalently, the ratio between 

the pore area and the simulated defect area in membrane) can give different energy barriers; 

thus, a separate systematic DFT study is required for carefully probing the energy barriers. 

We stored our samples with atomic vacancy defects under ambient conditions. When we 

tested the samples after a few weeks, it was observed that they tend to get clogged with 

time, leading to reduced/ no He flow. As is well known, all surfaces are likely to be covered 

by hydrocarbons, which might cause the clogging232 of atomic apertures in our case. 

However, upon reannealing at 350°C, He flow was regained to the previously observed 

value within a factor of 2. Storage of samples in activated charcoal helped extend the life 

span of the atomic apertures to be open for few months. Annealing with a combination of 

storage in charcoal has enabled us to keep the atomic apertures open for about a year. The 

atomic vacancy defects, once created, are quite stable and show similar helium flow with 

repeated annealing, indicating that the atomic apertures do not expand or propagate rapidly. 

Those samples that have been irradiated but did not conduct gas remained nonconductive 
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even after repetitive annealing. We speculate that these samples could have contained a 

majority of the dominant 1W defect type with one “W” atom missing but with partial or 

all S atoms at that site, thereby increasing the energy barrier and leading to no He flux. 

While the ion irradiation dose is optimized for single-atom (W) defect pores, the removal 

of sulfur atoms from ion irradiation and the subsequent AC-STEM imaging to precisely 

know the composition of sulfur vacancies at a defect site have remained a challenge. 

However, in the extreme limit, when there were large holes, tears, or cracks in the 

membrane, the flow was much higher, and the membranes themselves were not stable. In 

addition, we performed ion flow measurements in KCl solution on our atomic apertures as 

a cross-check. Those samples that showed inconsistent and unexpectedly high gas flows 

showed high ionic conductance (~400 nS in 1 M KCl; see fig. 6.8), again indicating the 

presence of tears (visible in SEM; see fig. 6.7). The samples that showed gas flows 

commensurate with the Knudsen equation exhibited only a small ionic conductance, <1 nS 

in 0.1 M KCl for total membrane area ~0.4 to 0.6 mm2, as shown in fig. S7. This is expected 

as the atomic apertures with sizes <6 Å exclude ions156, but the presence of tears in the 

membranes leads to bulk ionic flow (see fig. 6.7). These observations further emphasize 

that the sealing of WS2 monolayers to the SiNx membranes is leak proof, leaving no gaps, 

and hence, only irradiated defects contribute to the observed gas flow.  

6.5 Additional Experimental Methods 
 
CVD growth of monolayer WS2 flakes:  

Monolayer WS2 flakes were grown using CVD processes similar to previously reported 

methods. Solutions of 2% sodium cholate growth promoter and 15 × 10-3 M ammonium 
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heptamolybdate (metatungstate) were spun onto piranha-cleaned silicon (Si) substrates 

coated with 150 nm of SiO2, which were then loaded into the center of a tube furnace 

(Thermo Fisher Scientific Lindberg/Blue M). For WS2, samples were heated in argon 

atmosphere [100 standard cubic centimeters per minute (sccm)] at a rate of 65°C min−1 

and held at 800°C for 10 min, during which time 15 sccm of H2 was also added. 

Approximately 100 mg of sulfur precursor placed 22 cm from the substrates was kept at 

180°C during the growth procedures. Both samples were rapidly cooled to room 

temperature by cracking open the furnace.  

 

Position-controlled transfer of WS2 flakes: 

With WS2 flakes grown on Si/SiO2 wafer pieces, we cut smaller pieces with areas about 3 

× 3 mm2 that contain good WS2 flakes. Using a wet transfer technique, the TMD flake side 

of the SiO2 pieces is coated with poly (methyl methacrylate) (PMMA) (MicroChem C4, 

4000 rpm for 60 s). The PMMA-coated substrates are left to dry at ambient temperature 

for a few minutes before being floated onto the KOH etchant (8 g per 100 ml of water). 

Depending on the thick- ness of the SiO2 wafer, the time for etching away the SiO2 layer 

var- ies. Last, we observe the PMMA + TMD flake floating on the KOH etchant. These 

PMMA + TMD flakes are then rinsed three times in clean water baths before being used 

to transfer them onto a SiNx/Si chip with a hole (diameter range, 200 to 300 nm) drilled by 

FIB. Po- sition transfer is practiced when the flake size and their number density are high, 

so that in this case, it is possible to place one PMMA + TMD flake onto the SiNx FIB hole. 

This step of placing the PMMA + TMD flake over the SiNx FIB hole is somewhat 

challenging since the coverage of the FIB hole depends on the number of the as-grown 
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flakes. However, because in a given batch of CVD growth, the number of grown flakes is 

large, the transfer is completed within several transfer trials. In addition to this manual 

transfer, we have also used custom-built manipulators, with needles and tweezers to move 

the flake on the substrate to increase device yield. These manipulations came at a cost, 

since there was now a higher risk of device failure caused by the usage of additional tools, 

which can sometimes break the membrane. In this work, all devices were fab- ricated by 

manually “fishing” (moving) the PMMA + TMD flake onto the SiNx FIB hole. After we 

transfer the flake and optically verify the coverage, the sample is then dried in ambient 

temperature for 30 min. Furthermore, the sample is placed into hot acetone (90°C) to 

remove the supporting PMMA.  

Gallium Ion Irradiation: 

Monolayer TMD flakes were irradiated with a Ga -sourced ion beam FEI Strata Dual-Beam 

instrument. The acceleration voltage of the ion beam was set to 30 kV and incident normal 

to the surface. The beam spot size was observed to be 100 nm for a flash second at 10-pA 

current. To produce atomic defects, an area of 250 nm by 250 nm was irradiated with the 

dwell time (16 µs) and current (10 pA). Pixel resolution (1024 × 884) was kept constant. 

The exposure was carried out in an imaging mode, which followed a raster pattern where 

the beam sequentially exposed each pixel in a row. The instrument, FEI FIB Strata DB 

235, has an option to “grab frame,” which takes a single scan at a set resolution; this option 

was used for all the scans. The dose was varied by changing the number of scans. 

Suspended and substrate-supported samples were exposed to FIB irradiation while sitting 

on holey carbon TEM grids and Si/SiO substrates, respectively.  
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AC-STEM imaging: 

AC-STEM images of WS2  samples were acquired using a Cs-corrected JEOL ARM 200CF 

STEM operating at 80 kV. Images were obtained using a high-angle annular dark-field 

(HAADF) detector with a col- lection angle of 54 to 220 mrad and 10-cm camera length. 

Probe current (22 pA), focusing time (<2 s), and electron dose (≈6.0 × 106 e- nm-2) were 

kept low to minimize beam-induced knock-on damage 

 

First-principle calculations for Helium transport through atomic apertures: 

To shed light on the energy barriers of the He atom crossing through the defected WS2, the 

density functional theory (DFT) was performed with the Generalized Gradient 

Approximations (GGA) 146 form with exchange-correlation potential parametrization of 

Perdew–Burke–Ernzerhof (PBE)154. The calculations were carried out by the Quantum-

ESPRESSO (QE) package49 and have been performed based on the plane-wave basis sets 

and ultrasoft nonlocal pseudopotentials203. To take the vdW contributions into account in 

the total energy, the Tkatchenko−Scheffler (vdW-TS)196 method was used. The cut-off of 

kinetic energy in the plane-wave expansion and the convergence threshold for the self-

consistent field (SCF) calculations were chosen as 280.0 eV and 10−6 eV/atom, 

respectively. Calculations were done at zero kelvin for a rectangular supercell shape with 

size 15.953×16.579 Å2 for all considered defects consisting of 29(60), 29(54), 28(58), 

28(54), 27(54), and 27(48) atoms of W (S) for 1W, 1W (+6S), 2W (+2S), 2W (+6S), 3W 

(+6S), and 3W (+12S) with a vacuum layer of 30 Å between periodic images in the vertical 

direction. The total energy of the He/defected WS2 structures was calculated by placing a 
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He atom at distance z above the center of the pore. For a given structure, the total interaction 

energy was calculated by using equation E(z)=Et(z)-Eref where Et(z) is the total energy of 

the system (He+ defected WS2) and Eref is the energy of the system when He atom is far 

from WS2, i.e. z>>1nm. This calculation was repeated for different z values in steps of 0.25 

Å. The corresponding results (interaction energy and energy barriers) are shown in Figure 

S5 and Table S1 for six different vacancies. We also calculated the electron density 

isosurface (EDI) using the using the above aforementioned functionals and energy cut-

off and etc. For the EDI image, the isovalue set to be 0.2 e/Å3. From the interaction energy 

profile versus distance from WS2plane, we can determine the adsorption thickness 

(typically about ~ 4 to 6 Å).  

 

Molecular Dynamics Simulations: 

In order to find the probability density of He atoms along the z-direction, we conducted 

molecular dynamics simulations (MDS).  The simulations were done using LAMMPS 

(Large-scale Atomic/Molecular Massively Parallel Simulator). The simulation box has a 

dimension of 3×3×3 nm3, where the WS2layer is located at the middle of the z-axis. 500 He 

atoms were added to the system. Reflective boundary conditions were applied in the z-

direction of the simulation box (normal to the WS2 plane) and periodic boundary conditions 

were applied in two other directions (x and y). For a given defect, each MDS was run in 

the NVT ensemble for a period of 1ns with a time step of 1fs. The temperature was kept 

constant at 300 K using a Nosé-Hoover thermostat. To make the model simple and because 

of mechanical stiffness of WS2, we fixed WS2 atoms. The interatomic interactions between 

He and WS2 were modeled by the well-known Lennard-Jones (LJ) potential. Using 
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Lorentz-Berthelot combining rules, the parameters for the LJ potentials are chosen as εW-

He=√6	𝑚𝑒𝑉,	εS-He=√8.5	𝑚𝑒𝑉 and σW-He=3.3	Å,	σS-He=3.2	Å. The parameters for W and S 

can be found in reference50, with further details about the MDS method in reference181.   

 
Characterization of Pristine WS2: 

The quality of as-grown monolayer WS2 flakes was extensively characterized using 

electron and optical microscopy. Selected area electron diffraction (SAED) of suspended 

flakes confirmed the monocrystallinity and 2H phase of the pristine material (see 

Supplementary Figure S2). Atomic-resolution images were used to quantify intrinsic defect 

densities, which can result from imperfections and dopants during the CVD growth and/or 

transfer process. Multiple (> 50) AC-HAADF STEM images of monolayer WS2 flakes 

transferred onto holey carbon TEM grids were sampled over to obtain an intrinsic transition 

metal defect density of 0.013%.  During imaging, electron knock-on and radiolysis damage 

was minimized with a low electron acceleration voltage (80 kV) and beam current (20 pA). 

No discernible defect creation during STEM imaging was observed. Due to their strong 

optoelectronic absorption and direct visible-range band gap, monolayer TMDs can also be 

characterized through photoluminescence (PL) spectroscopy. Obtained PL spectra for 

monolayer flakes indicate spectral weight percentages that are consistent with previously 

reported values for high-quality WS230 . 

 

Characterization of Pristine and Irradiated WS2: 

Monolayer WS2 membranes were exposed to energetic 30 keV Ga+ ions in a focused ion 

beam (FIB) as outlined in Supplementary Figure S1. The 30 keV energy of impinging Ga+ 
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ions is above the displacement threshold of W atoms (~ 20-25 eV), resulting in atomic 

defects. Afterwards, defects in the monolayer WS2 flakes were characterized again using 

aberration-corrected STEM (AC-STEM) imaging. Quantitative statistics for average defect 

size and density were obtained by averaging over multiple STEM images. For an 

irradiation dose of 5.07x1013 ions/cm2, an average defect density of 7.9x10-2 % (± 2.2x10-

2 %) and size of 1.2x10-1 nm2 (± 5.5x10-2 nm2) are observed. Since AC-STEM images also 

contain mass contrast information, the atomic configurations of various defects were 

analysed. Based on the contouring bright metal atoms in the image, their relative 

frequencies for each defect site were assessed from several TEM images for the histogram 

in Figure 1d. However, the accessible pore areas for transport of He atoms is expected to 

be much lower than pure geometric area (see below, Effective pore size calculations). 

Additionally, the uncertainty with TEM imaging in finding the S atoms on the defect edge 

would largely influence the effective area. While no changes in the Raman spectra of 

irradiated membranes were seen under a 532 nm excitation, photoluminescence 

spectroscopy revealed an increase in defect-induced midgap states (XD).   

Effective pore size calculations: 

The accessible effective area of the aperture for a gas molecule (in our case, He gas with 

kinetic diameter ~ 0.26 nm) is calculated based on the van der Waals radii of the terminal 

atoms on the WS2 defect edges. For example, in 1W+6S site, the center-to-center distance 

between opposite W sites on the pore, Dw-w = 0.63 nm. The van der waals diameter of W 

atom, dvdw = 0.42 nm. The effective pore size between W atoms excluding the collision 

cross section is calculated using the formula209 (4) 

Dvdw = DW-W  - (dvdw)/	√2,  
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which gives Dvdw for (1W+6S) = 0.33 nm. We have also simulated electron density 

isosurfaces using density functional theory and calculated edge-to-edge distance between 

two adjacent W atoms of the aperture. Both values are almost equal and indicate that the 

effective area is lower than the geometric area and that the He transport is in the steric 

regime. 

Annealing before Gas Measurements: 

All the devices including controls are annealed at 350 °C for four hours in 10% H2 / 90% 

Ar atmosphere. Gas measurements are performed soon after the annealing of devices. 

Annealing helps in unclogging of devices from atmospheric hydrocarbons and other 

adsorbing gases. However, this annealing step has not increased the gas flux by further 

widening the atomic apertures or damaging the WS2 membranes in control samples. 

 

Gas Flow Measurements: 

Helium (He) gas permeation was measured using a mass spectrometer (helium-leak 

detector, Leybold phoenix L300i). The SiNx/Si wafer with monolayer WS2 membrane was 

clamped between O-rings (Kalrez) to separate two chambers (Figure S5). At first, both the 

chambers were evacuated using a bypass loop connected to a vacuum pump. Then, He gas 

was released into one of the chambers with controlled pressure P, and detected from the 

other chamber connected to the mass spectrometer as it flows through membrane with 

atomic defects. It was found that the gas flux detected by the mass spectrometer increased 

linearly with He gas pressure (main Figure 2). Since the diameter of the pores in the 

membrane are much smaller than the mean free path of He atoms (~140 nm at room 

temperature), the flux (QK) through these angstropores can be described by equation (1). 
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For temperature variation experiments, we used a heating tape (Hemiheating AB) wound 

around the two chambers. A PID temperature controller (HTC-5500) interfaced with the 

tape, controlled the temperature with an accuracy of ± 2 °C. At each temperature, we waited 

~5 min for stabilization before measuring the gas flow. 

Ionic current measurements: 

Ionic current measurements and experimental details are performed with parameters as in 

reference24. Briefly, Ag/AgCl electrodes and a patch-clamped amplifier are used to monitor 

ionic current as voltage is applied across the irradiated WS2 suspended membranes. The 

data in this figure correspond to 0.1 M KCl and 1 M KCl solutions with a buffer (10 mM 

EDTA and 1 mM Tris).  The pH was 8.7. Irradiated membranes were first annealed at 300 

°C in an Ar-H2 (10% H2 in argon) for 90 minutes, then they were immersed in 50% water-

ethanol for 30 minutes or longer to aid in wetting of membranes in KCl solutions. Wetting 

of sub-nm pores is a well-acknowledged problem in nanopore measurements, and therefore 

some pores may not contribute to ionic conductance. Maximum applied voltage was ± 0.1 

V to minimize the possibility of membrane dielectric breakdown and pore enlargement 

during repeated measurements. 

We observed several faulty devices with tears in our fabrication process (Figure S6). These 

devices result in excessive flow (in both ionic current measurements and gas flow) and 

therefore are included as failed/leaky devices.  Another signature of these leaky devices, 

after annealing, they have showed much increased flux compared to their initial flux. 
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Gas flow through apertures – analysis: 

Equation (1) is derived from the kinetic theory, and described by Knudsen as a solution for 

gas flow through infinitely thin apertures37. For apertures with diameters far less than the 

mean free path λ, the probability of intermolecular collisions near the vicinity of the 

aperture goes down drastically, and the free molecular transport can be described by 

effusion. There are several models (e.g., BKT model, dual region model) for rarefied gas 

flows with Knudsen numbers 0.1 £ Kn  £ 10 taking the slip, adsorption of the molecules to 

the walls, drag etc., into account. Previous studies on carbon nanotubes, cylindrical, and 

slit-like pores with finite length, showed enhanced flow compared to Knudsen estimates, 

which was attributed to specular reflection of gas molecules off the atomically smooth 

graphite walls or pore surfaces217,218. In graphene slit-pores, ballistic flow of He was 

observed due to specular reflections, while MoS2 slit-pores showed diffusive reflections84 

. However, here our atomic-scale apertures are within essentially infinitesimally thin 

membranes and these can be approximated as orifices, hence effusion-based mechanism 

seems the most suitable to describe the flow27,93, 181. The effusion mechanism depends on 

the impingement of gas molecule and can be quantified as Q =  u Dn/4, where u = 

sqrt(8RT/πM) is the mean velocity of the molecule, Dn is the gas number density. 

Combining with ideal gas law,  

Q = P A sqrt(1/2πMRT)   ( eq. 1) 

As the gas traverses through the aperture, the main hindrance to the flow is the probability 

of the gas hitting the aperture at a critical angle so as to be able to pass through the pore. 

As per Sun et al. article181, the critical angle of incidence, θ = cos-1(Rm/Rp), where radius 

of the helium molecule Rm = 1.3 Å and radius of the pore Rp ~ 1.6 Å to 3.1 Å in our case. 



 187 

Therefore, θ will be in the range of 35° to 65° for 1W to 3W defect pores. However, from 

our experiments, we observe that the He permeation/flux is within the expected estimates 

of equation (1) which indicates that the steric hindrance is likely not significantly reducing 

the flux. The steric hindrance can lead to a reduction factor of “Rp/Rm” (< 1) from ideal 

flux181 (4). This factor “Rp/Rm” will be >1 for 1W+6S pores and ~0.8 for 2W defects, 

which have pore sizes of ~3.1 Å and ~2 Å respectively. For 2W pores, there can be slight 

reduction of the flow, however, as the number of such pores are relatively small (~22%), 

the reduction of flow if any is not captured well in our measurements.  

 

Let us note that although it is the area of the aperture that is in the equation (1), the shape 

of the defect is also known to influence the resulting Knudsen flux as shown by the unified 

model for slit-like pores with finite length217. For our aperture case, we neglect the 

variations if any, due to the shape of the defect, as the dimensions of the aperture are quite 

close to the He kinetic diameter, and hence the corners of the aperture remain inaccessible. 

New models need to be developed in this new experimental regime to explain the shape 

and end effects and/or the phase transitions of the fluid while passing through such thin 

membranes218. 

 

For flux estimates, we have considered their area by approximating the pore as circular 

(1W defect) or rectangular shape (2W defects) or truncated triangular shape (3W defect). 

The accessible pore sizes and their effective areas are summarized in Figure S4 and Table 

S1.  
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Figure 6.4. Schematic of fabrication process for WS2 single atom aperture devices 
 
(i) CVD-grown monolayer WS2flakes on Si/SiO2 substrates are (ii) spin-coated with 
PMMA and (iii) etched in KOH solution. (iv) The PMMA/WS2 stack is then positioned on 
top of a 200-300 nm diameter hole in a Si/SiNx substrate. (v) The PMMA is subsequently 
removed in acetone and annealed in Ar/H2. (vi-vii) Single atom defects in the WS2 
membrane are formed using Ga+ FIB irradiation (Supplementary Section 1.3). (viii) 
Samples are annealed again prior to gas transport measurements (Supplementary Section 
S3). Top insets, left to right - Optical images of CVD-grown WS2material and a 
PMMA/WS2 stack after positioning onto a sub-micron hole. Bottom insets, left to right - 
Atomic resolution STEM image of single atom apertures in monolayer WS2, optical image 
of final FIB-irradiated WS2 (outlined in black) on a SiNx membrane, and optical image of 
the square, 11-mm-large, Si/SiNx substrate. 
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Figure 6.5. Characterization of CVD-grown pristine WS2 flakes. 
 
(a) Aberration-corrected STEM image of as-grown monolayer WS2 flakes on a holey 
carbon TEM grid. W and S2 atomic sites appear as bright and dim atoms, respectively, in 
a trigonal prismatic (2H) coordination due to the mass-contrast behaviour of high-angle 
annular dark-field (HAADF) imaging. Multiple atomic-resolution STEM images were 
sampled over to obtain quantitative defect statistics (see also Supplementary Figure S3). 
(b) SAED pattern of suspended monolayer WS2. The presence of a single set of six-fold 
symmetric (100) and (110) diffraction spots indicate monocrystalline 2H-phase WS2. (c) 
PL spectrum of a pristine flake on a 150 nm SiO2/Si wafer taken at room temperature with 
a laser excitation wavelength of 532 nm (i.e., green). Spectra were fit to the defect (XD), 
charged trion (XT), and neutral exciton (XO) peaks at 1.88, 1.96, and 2.02 eV, respectively30 
. Pristine WS2 was found to have XD, XT, and XO spectral weight percentages of 0.6%, 44, 
and 55%, respectively. 
 

 

Figure 6.6. Characterization of FIB-irradiated WS2 flakes. 
 
 
(a,b) Aberration-corrected HAADF STEM images of monolayer WS2 flakes after exposure 
to 5.1x1013 ions/cm2 of 30 keV Ga+ focused ion beam irradiation. Single defects appear as 
the absence of contrast at transition metal lattice sites. Multiple atomic-resolution STEM 
images were sampled over to obtain quantitative defect statistics (see also Supplementary 
Figure S2). (c) PL spectrum of a monolayer WS2 flake suspended on a holey carbon film 
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after exposure to 5.07x1013 ions/cm2 of FIB irradiation. The 1.6% spectral weight 
percentage of the defect peak (XD) to 1.6% suggests that FIB irradiation causes a slight 
increase in the PL midgap states localized at transition metal defect sites. 

 

Figure 6.7. Atomic apertures. 

Typical apertures created on WS2 monolayer upon the irradiation dose (~5.1 x 1013 
ions/cm2) with FIB are shown here with simulated isosurfaces. The aperture sizes were 
calculated using DFT based on accessible area after the electron density contours from iso-
surfaces (a and b indicate the width and length of the defect respectively as depicted on 
images). Effective areas of the defect sites, one tungsten defect sites (1W with area, A1* 
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and 1W+6S with area, A1), two tungsten defect sites (2W+2S with area, A2* and 2W+6S 
with area, A2), and three tungsten defect sites (3W+6S with area, A3* and 3W+12S with 
area, A3) were approximated based on their close match with regular shapes and values 
were presented in Table S1. Single W vacancy with no sulfur vacancies is likely non-
conducting due to its extremely small accessible pore size (~1 Å) compared to Helium size 
(2.6 Å).  
 

 

Table 6.1. Effective areas of atomic-scale apertures in WS2 monolayer membrane for 
transport of He 
 

 

Figure 6.8. Helium flow measurement 

Schematic representation of gas permeation measurement setup using mass spectrometer 
(Leybold phoenix L300i). In this setup, the only pathway between the top and bottom 
chambers is through the one-atom defects in WS2 membranes, i.e., atomic apertures. 

Pump 
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Figure 6.9. Tears in SEM analysis 

(a) Optical image of the device after WS2 transfer with PMMA. The image shows nine 
large pre-drilled holes in the centre of the chip, onto which the WS2monolayers are 
deposited. (b) Scanning Electron Microscope image of sub-micron tears within the WS2 
monolayer membranes, indicated by dashed yellow markers in five out of the nine holes.   

 

Figure 6.10. Current-voltage (I-V) analysis 

(a) I-V of device showing negligible ionic currents (< 100 pA) up to ± 0.1 V applied voltage 
(conductance ~ 0.65 nS), in 0.1 M KCl. This device had nine FIB-drilled holes (with 
diameters in the range of 250 to 300 nm) onto which the 2D membrane was suspended. 
The atomic apertures were created with Ga ion irradiation dose = 5.1 x 1013 ions/cm2. The 
defects with size of about < 0.6 nm are not expected to conduct ions based on MD 
simulations, and the observed small conductance could be due to one or two pores of the 
size < 1 nm. One single pore of the size, ~1 nm in a TMD membrane showed a conductance 
of ~ 1 nS in 1 M KCl190, which can further indicate upper limit on pore sizes in this sample. 
(b) Device showing high conductance ~ 443 nS in 1 M KCl indicative of membrane tears. 
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6.6 Discussion on Gas Permeance in literature and Conclusion 
 
Let us analyze the gas flow in nano- and angstrom-scale pores from the literature, in 

comparison to our atomic vacancy defects presented here. It has been shown in the 

literature that when the pores are less than the size of the gas molecule passing through93, 

activated transport is observed and highly sensitive energy barriers play a major role in the 

transport, and the barrier is usually estimated using combined theoretical and experimental 

efforts. In this work, since the atomic vacancy apertures are only slightly larger than the 

gas molecule (i.e., less than twice the size of helium molecule, 2.6 Å), the flow is governed 

by simple effusion. In general, effusive flow is seen as detrimental and the cause of 

reduction for selectivity between gases in size exclusion. Because of this, an accurate com- 

parison of the observed permeability and value estimated from the Knudsen description for 

the known size of the aperture is often overlooked. Such a comparison made for nanometer-

sized holes showed the validity of the Knudsen description in graphene pores down to ~7 

nm in size, where a N2 permeance of ~0.05 mol m-2s-1Pa-1 was observed89. Angstrom-size 

defects (size, ~0.38 to ~0.43 nm) made by ozone-induced etching in a CVD-grown 

graphene layer were shown to have a H2 permeance of about 10-7 mol m-2s-1Pa-1 27, which 

is only one order higher than the permeability of graphene membrane, 10-8 mol m-2s-1Pa-1 

hosting the defects106. However, the observed gas flow values for atomic defects are still 

much lower than that estimated from the Knudsen description for given defect densities, 

which might be due to the overestimation of the conducting apertures. In our WS2 atomic 

aperture samples, the He gas flow obtained matches the Knudsen estimates within a factor 

of 2 to 3, and the gas flow normalized by the total area of defects translates to ~0.05 to 0.1 

mol m-2s-1Pa-1. From theoretical studies on graphene pores with sizes 3.6 to 4.8 Å, for 



 194 

defect densities up to ~1014 cm-2, large permeance of ~0.1 mol m-2s-1Pa-1 has been 

predicted19,210, which closely matches with our experimental values. These permeance 

values are higher than those typically observed in silica70, zeolite, and metal-organic 

framework membranes, graphene oxide membranes168, which are in the range of ~10-6 to 

10-7 mol m-2s-1Pa-1. Large permeance values are obtained through our WS2 apertures, even 

when normalized with the area of the membrane, i.e., ~10-4 to 10-5 mol s-1mbar-1, which 

indicates that most of the atomic apertures are in the predicted size range and hence 

conductive to gases.  

In conclusion, we demonstrate the fast He transport through quasi-0D atomic-scale 

apertures (~W sites). To our knowledge, this is the first experimental observation on He 

gas transport in such angstrom-scale pores in WS2/TMD monolayers where we attempt to 

evaluate the applicability of the Knudsen equation down to the ultimate limit. Our results 

indicate the necessity of future theoretical models to explore the role of sensitive variation 

of the energy barriers of various gas molecules and their critical dependence on the size of 

the aperture at this atomic limit, especially taking the electron density isosurfaces of atoms 

to account for the enhanced flux. In addition, this work provides a new method for 

corroborating atomic pore formation and their density over large areas via a simple bulk 

measurement technique of measuring gas flow through them. This is analogous to using 

nanoholes (few hundred nanometers in size) as standard leak elements for calibration.70 So 

far, the only way to inspect and confirm the atomic pore formation in the case of atomic 

vacancy defects is by AC-STEM, which is limited to relatively small areas. Conventional 

ionic transport measurements through nanopores are mediated by Hille’s equation156, 

which yields a linear relationship between conductance and total aperture area. However, 
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for pores that are smaller in dimensions than many common salts, ionic conductance 

measurements do not yield a predictable or a measurable signal, leading to the breakdown 

of Hille’s model for atomic aperture limit193. With our study, we would like to highlight 

that once the pore creation is confirmed and calibrated by AC-STEM locally, gas flow 

measurements can act as a standard to test for the presence of these pores and their density 

over large areas. Let us also note that the stability of pore/aperture configuration of these 

atomic scale defects needs further investigation156,215 as the pores could change over time, 

which can be attempted in future experiments by imaging the pores over time. More 

advanced methods including dynamic scanning tunneling microscopy need to be devised 

to locate S atoms146 and also any other atoms such as possible contaminants (C, O, and N) 

to be certain of pore compositions and sizes. Future work may involve efficient gas 

separation investigations using a scaled-up version of such membranes. 
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