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ABSTRACT

STATISTICAL ESTIMATION AND INFERENCE FOR PERMUTATION BASED

MODEL

Shaokun Li

Tony Cai

Statistics is a mathematical science pertaining to the collection, analysis, interpretation or

explanation, and presentation of data. People spend lots of time dealing with different kinds

of data sets. The structure of the data plays an important role in statistics. Among different

structures of data, one interesting structure is the permutation, which involves in different

kinds of problems, such as recommender system, online gaming, decision making and sports

tournament. This thesis is motivated by my interest in understanding the permutation in

statistics. Comparing to the wide applications of permutation related model, little is known

to the property of permutation in statistics. There are a variety challenges that arise and

lots of problems waiting for us to explore in the permutation based model. This thesis aims

to solve several interesting problems of the permutation based model in statistics, which

may help us to understand more about the property and characteristic of permutation.

As a result of the various topics explored, this thesis is split into three parts. In Chapter

2, we discuss the estimation problem of unimodal SST model in the pairwise comparison

problem. We prove that the CLS estimator is rate optimal up to a poly(log log n) factor and

propose the computational efficient interval sorting estimator, as a computational efficient

algorithm to the estimation problem. In Chapter 3, we shift our attention to the inference

problem of the permutation based model. We study different kinds of inference problem,

including the hypothesis testing problem in noisy sorting model and confidence set con-

struction problems in generalized permutation based model. Network analysis is another

important topic related to the permutation. In Chapter 4, we study the optimality of local

belief propagation algorithm in the partial recovery problem of stochastic block model. We

prove that local BP algorithm can reach the optimality in a certain regime. Moreover, in

the regime where local BP algorithm may not achieve the optimal misclassified fraction,

we will prove that local BP algorithm can be used in correcting other algorithms and get

optimal algorithm to the partial recovery problem.
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1 Introduction

Statistics is a mathematical science pertaining to the collection, analysis, interpretation or

explanation, and presentation of data. People spend lots of time dealing with different kinds

of data sets. The structure of the data plays an important role in statistics. Among different

structures of data, one interesting structure is the permutation, which involves in different

kinds of problems, such as recommender system, online gaming, decision making and sports

tournament. This thesis is motivated by my interest in understanding the permutation in

statistics. Comparing to the wide applications of permutation related model, little is known

to the property of permutation in statistics. There are a variety challenges that arise and

lots of problems waiting for us to explore in the permutation based model. This thesis aims

to solve several interesting problems of the permutation based model in statistics, which

may help us to understand more about the property and characteristic of permutation.

As a result of the various topics explored, this thesis is split into three parts corresponding

to the topics. In Chapter 2, we discuss the estimation problem in the pairwise comparison

problem. Pairwise comparison is considered to be an important problem led by the advent of

different new internet-scale applications in recent years. By reason of the wide application

across different fields, the pairwise comparison problem gets more and more attention.

Several parametric models have been studied in the pairwise comparison literature, including

Thurstone model and the Bradley-Terry-Luce (BTL) model. Comparing to the traditional

parametric models, nonparametric model shows more flexibility in the pairwise comparison

problem. As a result, nonparametric models have been widely studied in the past five

years. We study the unimodal SST model, one kind of the nonparametric model, in the

thesis. For the estimation problem of the unimodal SST model, we establish the minimax

optimal rate through the CLS estimator. We prove that the CLS estimator is rate optimal

up to a poly(log log n) factor. No other estimator can do much better than CLS estimator

statistically. Though CLS estimator is good in estimation, it is not computationally feasible.

It motivates us to further study the problem and find a computational feasible method to

the estimation problem. We develop the interval sorting estimator, as a computational

efficient algorithm to the estimation problem. Moreover, the interval sorting estimator is

rate optimal up to a poly(log n) factor, which is the best estimator so far we know for
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the estimation problem in the nonparametric models of pairwise comparison problem. The

above discussion is mainly about the estimation problem of the probability matrix. In fact,

the permutation itself also plays an important role in the pairwise comparison problem. We

also discuss the estimation to the permutation problem in this chapter. We construct the

minimax rate for the estimation problem in the SST model.

Lots of efforts have been spent on the estimation of the permutation based models, while

the inference problem has got much less attention in the literature. In Chapter 3, we shift

our attention from the estimation problem to the inference problem of the permutation

based model. We discuss the inference problems to generalized permutation based model

in this chapter. We begin the chapter with the hypothesis testing problem of the prob-

ability matrix in the noisy sorting model. By studying the optimal testing procedure of

the problem, boundary between the detectable regime and non-detectable regime for the

testing problem is constructed. After that, we focus on the inference problem about the

permutation in generalized permutation based model. We discuss the confidence set con-

struction problem for the permutation in different settings. One of the important steps in

the study of confidence set construction problem is to find suitable criterion to judge the

confidence set construction procedure. We will show how to properly set up the criterion

to judge confidence set construction procedure and introduce the optimal confidence set

construction procedure to the problem in different parameter spaces. Finally, we end the

chapter with the study of the hypothesis testing problem to the permutation.

Another important topic related to permutation is network analysis. Network analysis

is one of the most popular topics in recent research. People from different areas do a

lot of work to study network data analysis. In network literature, community detection

problem in stochastic block model (SBM) is the most widely known and studied problem.

In Chapter 4, we study the local belief propagation algorithm, which is used to solve the

partial recovery problem in the stochastic block model. We prove that local BP algorithm

can reach the optimality not just in the balanced case and construct an optimal regime where

the local BP algorithm can reach the optimal expected misclassified fraction. Moreover, in

the regime where local BP algorithm may not achieve the optimal misclassified fraction, we

will prove that local BP algorithm can be used in correcting other algorithms. If we have a

satisfactory initializer, the optimal algorithm can be reached by the initializer and the local

2



BP correction.
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2 Unimodal SST Model Estimation for Pairwise Compar-

ison

2.1 Introduction

2.1.1 Pairwise Comparison Problem

Pairwise comparison is considered to be an important problem led by the advent of different

new internet-scale applications in recent years, including recommender system (Aggarwal

(2016); Koren et al. (2009)), online gaming (Strittmatter et al. (2015)), decision making

(Kou et al. (2016); Zhou et al. (2018)) and biomedical image assessment (Phelps et al.

(2015)). Pairwise comparison problem is also studied in some traditional related fields,

such as sports tournament (Csató (2013); Cattelan et al. (2013)) or teaching assessment

((Heldsinger and Humphry (2010) ). Take sports tournament as an example, the result

of each game can be understood as a result of the comparison between two teams in the

tournament. The comparison results provide us information of the teams, showing that one

of the teams can be better than another. By reason of the wide applications across different

fields, the pairwise comparison problem gets more and more attention.

Several parametric models have been studied in the pairwise comparison literature. Two

famous parametric models to the pairwise comparison problem are the Thurstone model

(Thurstone (1927); Kornbrot (1978)) and the Bradley-Terry-Luce (BTL) model (Bradley

and Terry (1952); Luce (1960)). In these parametric models, it is assumed that each item i

is related to a score qi and the probability that the item i wins a comparison against another

item j can be written as a function of qi and qj . In BTL model, if we compare item i with

item j, the probability that item i wins the comparison is Mij , where Mij is defined as

Mij =
1

1 + exp(−(qi − qj))
(2.1)

In Thurstone model, if we compare item i with item j, the probability that item i wins the

comparison is Mij , where Mij is defined as

Mij = Φ(qi − qj) (2.2)

4



Here, Φ is c.d.f of the standard normal distribution

Φ(z) =
1√
2π

∫ z

−∞
exp(− t

2

2
)dt (2.3)

The BTL model and Thurstone model can be generalized to be a class of parametric models

to pairwise comparison problem, where Mij is defined to be

Mij = g(qi − qj) (2.4)

and g : R → [0, 1] is a strictly increasing cumulative distribution function. In the above

models, we can find that the matrix M plays an important role in the model. We call

the matrix M the probability matrix in pairwise comparison model. The discussion of the

current chapter focuses on the estimation to the probability matrix M .

2.1.2 SST Model

Parametric models, including BTL model and Thurstone model, have been widely studied

in the pairwise comparison literature. The estimation problem in parametric models is

studied in Hajek et al. (2014), where the authors construct the minimax optimal rate for

the estimation of the parametric models.

Though the parametric models are widely used and studied since it was proposed, the strong

assumptions on the structure of parametric model limit its application. In parametric

models, every item has its own score. The probability of item i wins in the comparison

against item j is determined by the score of item i and item j only. In other words, to

determine the parametric models, we need only n parameters. In real application, the

strong parametric assumptions may not hold in many examples. In several cases, we need

richer structure and less assumptions for the pairwise comparison problem.

Instead of using parametric models in pairwise comparison problem, the strong stochastic

transitivity (SST) model is proposed in Shah et al. (2016a). Rather than assuming that

each item has a unique score which characterizes the quality of the item, SST model makes

less assumptions to the model. It assumes that for two different items i and j, if we expect

that i has better quality than j, when we compare them with any other item k, we should

5



expect that the probability of item i wins the comparison (against item k) should be larger

than the probability of item j wins the comparison (against item k). This property is

called strong stochastic transitivity. More precisely, SST matrix class can be stated in the

following form.

Definition 1 (SST class). Let M ∈ [0, 1]n×n to be a matrix satisfied the following assump-

tions:

(i)∀a, b ∈ [n], Mab +Mba = 1

(ii)∃ a permutation π on [n], such that for any triple if (a, b, c), π(a) < π(b), we have

Mac ≥Mbc.

We use Csst to denote the class of SST matrices satisfying the above conditions.

We call the SST model for the pairwise comparison problem if we assume the true probability

matrix is in the SST class Csst. For any matrix M ∈ Csst, let π(M) to be the set of all

permutation satisfied the condition in the definition of SST class. From the definition of

SST class, we know that π(M) is not empty. We use Csst(π) to be the subclass in Csst,

such that Csst(π) = {M ∈ CSST |π ∈ π(M)}.

In SST model, as we make less assumptions than the parametric models, the model is more

flexible. People have studied the estimation problem of pairwise comparison problem in

SST models in the literatue, see Shah et al. (2018, 2016b, 2019); Mao et al. (2018); Shah

and Wainwright (2017); Shah et al. (2016c). SST model plays an important role in the

pairwise comparison problem. It is one of the most widely used nonparametric models in

the pairwise comparison problem and also the foundation of the unimodal SST model we

discuss in the current chapter.

2.1.3 Unimodal SST Model

After introducing the SST model, we introduce the following unimodal SST model to the

pairwise comparison problem.

Definition 2 (Unimodal SST class). Let M ∈ [0, 1]n×n to be a matrix satisfied the following

assumptions:

(i)∀a, b ∈ [n], Mab +Mba = 1

6



Figure 1: Relationship Between Different Models

(ii)∃ a permutation π on [n], such that for any triple (a, b, c), π(a) < π(b), we have Mac ≥

Mbc.

(iii)If π−1(a) < π−1(b), {Ma,π−1(j) −Mb,π−1(j)|j = 1, 2, ..., n} is a unimodal sequence and

the peak of the sequence is between π−1(a) and π−1(b).

We use Cusst to denote the class of unimodal SST matrices.

One key observation is that both BTL model and Thurstone model are special cases of the

unimodal SST model, which shows that to study the estimation problem within unimodal

SST class framework can be a generalization of the study to the parametric models.

Let

CBTL = {M |M(i, j) =
1

1 + exp(−(qi − qj))
, qi > 0}

to be the BTL matrix class. We also assume that

CThurstone = {M |M(i, j) = Φ(qi − qj), qi > 0}

to be the Thurstone matrix class. The following proposition tells us the relationship between

parametric models and unimodal SST model.

Proposition 1.

CThurstone,CBTL ⊂ Cusst

7



The intuition of studying the unimodal assumption in pairwise comparison model comes

from Proposition 1. On the one hand, the SST assumptions assures that if π−1(a) < π−1(b),

{Ma,π−1(j)−Mb,π−1(j)|j = 1, 2, ..., n} is a positive sequence. This sequence can characterize

the differences between item a and item b. On the other hand, unimodality is common in

statistics. Lots of different probability distribution, including normal distribution, Cauchy

distribution, Student’s t-distribution, are unimodal distributions. These reasons motivates

us to assume the sequence {Ma,π−1(j) −Mb,π−1(j)|j = 1, 2, ..., n} is a unimodal sequence.

Comparing to the SST model, unimodal SST model is slightly restrictive, but it still contains

all parametric models as special cases. For unimodal SST model, we will see in the following

sections, though the statistical minimax error is similar to the SST model, there is com-

putational efficient method for the unimodal SST model, which approximately reaches the

statistical lower bound. For SST model, the best known computationally efficient method

cannot match the statistical lower bound. Though we do not know now to find the best

computational efficient algorithm for SST model, we can show that the interval sorting

algorithm, the algorithm we propose for the esimtaion problem in the current chapter, is

rate optimal in the unimodal SST class, which gives us partial answer to the estimation of

pairwise comparison problem for SST class.

The contribution of the results in current chapter is threefold. First, we introduce the

unimodal SST model to the pairwise comparison problem. Comparing to the traditional

parametric models, less assumptions are made to the unimodal SST model.

Second, we establish the minimax optimal rate for estimation of unimodal SST model.

We prove that the CLS estimator is rate optimal up to a poly(log log n) factor. No other

estimator can do much better than CLS estimator statistically.

Third, though CLS estimator is good in statistics, it is not computationally feasible. We

propose the interval sorting estimator in the current chapter. The interval sorting estimator

is computationally efficient and it is rate optimal up to a poly(log n) factor.

2.1.4 Organization

We organize the chapter as follows.

In Section 2.2, we consider the estimation to the unimodal SST model to the pairwise

8



comparison problem. We construct the optimal rate for the estimation problem with CLS

estimator in this section and then introduce the computational efficient interval sorting

estimator. Section 2.3 introduces how we construct the statistical lower bound to the

estimation problem in the current chapter. In Section 2.4, we consider the estimation

problem under the independent design. In 2.5, we construct the minimax optimal rate for

the estimation of permutation in the pariwise comparison problem. Numerical study is

given in Section 2.6. Some discussion to related problems is in Section 2.7. The proof to

the results in this chapter will be in Section 2.8.

2.2 Estimation to the Unimodal SST Model

In this section, we discuss the estimation problem to the unimodal SST model. We begin

this section with the constrained least square (CLS) estimator to the unimodal SST model

estimation problem. The CLS estimator shows good performance to the estimation problem.

Unfortunately, CLS estimator is not a computational efficient estimator. To solve the

computational issue, we propose the interval sorting (IS) estimator in latter part of the

section. The interval sorting estimator is minimax optimal up to a logarithm factor. More

importantly, the interval sorting estimator is computationally efficient.

2.2.1 Statistical Minimax Rate and CLS Estimator

Assume that we have complete observation to all possible pairs of comparison. Suppose that

we observe independent Bernouli random variables Yij ∼ Ber(Mij), i, j ∈ [n]. We denote

that Y = (Yij)1≤i,j≤n to be the observation. We try to solve the estimation problem based

on our observation Y .

We define the CLS estimator as

M̂CLS = argminM∈Csst ‖Y −M‖
2
F (2.5)

If the probability matrix M is in the unimodal SST class, we can see the CLS estimator

shows good performance for the estimation problem. The following theorem provides the

theoretical guarantee for the CLS estimator.

Theorem 1. If probability matrix M ∈ Cusst, we have

9



E‖M̂CLS −M‖2F . n log n(log log n)5.

The idea of the CLS estimator is straightforward. The expectation of the observation Y is

the probability matrix M in our model, to find an estimator of the matrix M , we should

try to find the matrix which is closest to the observation Y in our parameter space Cusst.

Similar idea and result are also established in Shah et al. (2016b) for SST class. Our result

is more precise than the result in Shah et al. (2016b). The result in Shah et al. (2016b) is

optimal up to a log factor. Combining with the statistical lower bound in Theorem 3, our

result is optimal up to a poly(log log n) factor.

Though CLS estimator performs well in statistical estimation, it is not computationally

efficient. The key factor which makes computation of the CLS estimator difficult is that

the parameter space Cusst is not a convex set. From the definition of Cusst, we can see

that it is closely related to the permutation π. In fact, for two matrices M1,M2 ∈ Cusst,

if the corresponding permutation are different, there is no guarantee that M1+M2
2 is in the

unimodal SST class. Non-convexity of the parameter space makes the computation of the

CLS estimator difficult. This motivates us to find a computational efficient estimator to

the problem.

2.2.2 Computational Efficient Method to Unimodal Model Estimation

To introduce the computational efficient method to the unimodal SST model estimation,

we make slightly different assumptions to our observations. We assume that we observe

independent observation Y (l), 1 ≤ l ≤ 3, such that Y
(l)
ij ∼ Ber(Mij),∀1 ≤ i, j ≤ n. The

goal is to estimate the matrix M with the observation Y = Y (l), 1 ≤ l ≤ 3. We should

point out the only reason for us to make the slight change of our observation is to make the

illustration simpler and easier to understand.

The interval sorting algorithm, a computationally efficent algorithm to the estimation of

unimodal SST model, is motivated by the two dimensional sorting (TDS) algorithm pro-

posed in Mao et al. (2018). The algorithm proposed in Mao et al. (2018) consists of two

parts: the ranking estimation and the probability matrix estimation. Simply speaking, the

second step uses the similar idea as the idea for the CLS estimator. The reason that CLS
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estimator is not computational feasible is that we do not know the true permutation. If we

have a good estimation to the ranking, we can estimate the probability matrix efficiently.

In this sense, the estimation to the permutation is crucial in the algorithm. In Mao et al.

(2018), the idea of ranking estimation is to divide the items into blocks according to the

number of times they win against all other items. Then to calculate the number of times

they win against all items in each block. For two items i and j, if there is significant

difference between the number of times they win against all items in any block, it should

be easy for us to tell which item is better.

But the idea in Mao et al. (2018) is not enough. The statistical upper bound constructed

in Mao et al. (2018) is of order n5/4. It is difficult to improve the result and get the

optimal bound of order n with their method. To get better result, we create even more

characteristics to help us understand the relationship between all the items.

We call the number of an item wins against all other items to be the score of the item.

Correspondingly, we call the number of an item wins against all other items in a block to

be the score of the item in the block. We call several consecutive blocks to be an interval

and the number of an item wins against all other items in an interval to be the score of the

item in the interval. The score of the items, the score of the items in different blocks and

the score of the items in different intervals combining together may help us to get a good

estimation to the ranking, which allows us to get a better estimation in the probability

matrix. Our algorithm sorts the items according to these features.

Informally, the algorithm to estimate the order can be stated with the following steps.

• Step 1: Use the samples in Y (1) to estimate the order π̂1.

• Step 2: Use π̂1 to divided all n items into K different blocks, where [n] = ∪Ks=1bls.

• Step 3: Calculate the score, the score of all blocks, the score of all intervals for every

item.

• Step 4: Create a directed graph G based on the score, the score of all blocks, the score

of all intervals.
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• Step 5: Create a topological sort π̂ from G.

• Step 6: Output π̂ as the estimation to the permutation π.

We omit several details in the above formulation of the algorithm in estimating the permu-

tation. The complete algorithm is stated as follows.

Input : observation Y (1), Y (2)

1. ∀j ∈ [n], compute the partial column sum

Sj =

n∑
i=1

Y
(1)
ij , 1 ≤ j ≤ n

Let Sj =
∑n

i=1 Yij . Let π̂1 to be the order on [n], such that Sπ̂1(j) is a non-decreasing

sequence.

2. Let τ = 8
√
n log(n) and K = dn/τe. Partition [n] into K different blocks, such that

bl1 = {j ∈ [n] : S(j) ≤ τ}

blk = {j ∈ [n] : S(j) ∈ ((k − 1)τ, kτ ] for 1 < k < K}

blK = {j ∈ [n] : S(j) > (K − 1)τ}

3. Divide the K blocks into dlog2Ke groups, such that

gt = {s ∈ [K] : 2t−1 ≤ |bls| < 2t}, 1 ≤ t ≤ dlog2Ke

4. For each t ∈ [dlog2Ke], we divide gt = g
(1)
t ∪ g

(2)
t , such that there does not exist

s ∈ [K] and u ∈ {1, 2}, {s, s+ 1} ⊂ g(u)
t .

5. Create a graph G on [n], such that there exist an edge u→ v if and only if there

exists t and u, where g
(u)
t = {s1, ..., sp}, and a < b ∈ [p], such that

b∑
q=a

∑
j∈blsq

Y
(2)
uj −

b∑
q=a

∑
j∈blsq

Y
(2)
vj ≥ 8

√
(b− a+ 1)2t log n

6. Compute a topological sort π̂ of the graph G as our estimation to be the estimator

of π. If there does not exist a topological sort π̂ of the graph G, let π̂ = id.
Algorithm 1: unimodal SST Model Estimation
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Then we construct the interval sorting estimator M̂IS through the following procedure

M̂IS = argminM∈Csst(π̂) ‖M − Y (3)‖2F (2.6)

where the permutation π̂ is computed through Algorithm 1.

Theorem 2. Suppose that we calculate π̂ through Algorithm 1. Then for any matrix M ∈

Cusst, we have

EM‖M̂IS −M‖2F . n(log n)3 (2.7)

Theorem 2 shows the main benefit we gain from studying unimodal SST model. The special

structure of the matrices in the unimodal class make it possible to estimate them correctly

and efficiently. Comparing to the estimation problem in SST model, we can see that we

get a faster convergence rate in studying the estimation of the unimodal SST model for

computational efficient method. In next section,we can also see that the interval sorting

algorithm is rate optimal up to a log factor. It shows that IS algorithm is nearly optimal

for the estimation of the unimodal SST model.

2.3 Statistical Lower Bound to the Estimation of Unimodal SST Model

In Section 2.2, we present the upper bound part to the estimation of unimodal SST model,

including studying the performance of CLS estimator and interval sorting estimator. In this

section, we state the corresponding statistical lower bound, which shows the optimality of

the upper bound we constructed in Section 2.2. We begin with talking about the idea and

tool we use in the construction of the lower bound.

Different methods are used in the construction of the statistical lower bound to the estima-

tion of pairwise comparison problem, see for example Shah et al. (2016b, 2019). Most of

the existing ideas can be described as below.

Without loss of generality, we assume that n = 2m. The idea for the case n is odd is

similar. Let all n items be divided into m different groups [n] = ∪mi=1Bi, where Bi =

{2i − 1, 2i}, ∀i ∈ [m]. We assume that in a special case, such that the permutation π

satisfies that π(Bi) = Bi, ∀i and for u ∈ Bi, v ∈ Bj , i ≤ j, we always have Mij = 1. In
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this special case, to estimate the probability matrix M , all we need to do is to estimate

M2i−1,2i, ∀i ∈ [m]. It can be proved that for ∀i, we would make a constant error when we

estimate M2i−1,2i, which leads to an error of order n in terms of the probability matrix M .

To get a better statistical lower bound, we need a better idea than the above. One useful tool

is the Assouad-Le cam’s lemma, which is introduced by Cai and Zhou (2012). The Assouad-

Le Cam’s lemma can help us construct a better statistical lower bound in this problem. The

main idea of Assouad-Le Cam’s lemma is that we can construct a list of hypothesis testing

problems, which can be prove to be difficult to solve. These hypothesis testing problems

show the intrinsic difficulty to the estimation problem, from which Assouad-Le Cam’s lemma

helps us to construct the statistical lower bound.

We consider the following hypothesis testing problem. Suppose that m = blog nc, l = b nmc.

We divide [n] into l+1 different sets Di, 1 ≤ i ≤ l+1, where Di = {(i−1)m+1, · · · , im},1 ≤

i ≤ l and Dl+1 = {lm + 1, · · · , n}. Assume that we know for t ∈ Di, s ∈ Dj , i ≤ j, we

always have Mij = 1
2 + δ and Mji = 1

2 − δ, where δ is a small constant. We try to solve the

following hypothesis testing problems.

H0,i : Mst =
1

2
,∀s, t ∈ Di vs. H1,i : Mst =

1

2
+ δ, ∀s, t ∈ Di, s < t (2.8)

We can prove that to solve the above hypothesis testing problem is difficult. With the above

ideas and Le cam-Assouad’s lemma, we have the following result.

Theorem 3. Suppose that we observe independent Bernouli random variables Yij ∼ Ber(Mij), i, j ∈

[n]. There exists a constant c, such that for any estimator M̂ = M̂(Y ), we have the following

statistical lower bound

inf
M̂

sup
M∈Cusst

E‖M̂ −M‖2F ≥ cn log n

where c is a given constant.

The statistical lower bound constructed in Theorem 3 shows that the rate of convergence

in Theorem 2 is optimal up to a poly(log log n) factor. Comparing to the previous results

14



in pairwise comparisons literature, the poly(log log n) gap is the best known result of the

statistical method, where previously the result is of poly(log n) gap, see for example Shah

et al. (2016c). The lower bound in Theorem 3 also shows that the IS estimator is nearly

optimal computational efficient estimator to the pairwise comparison problem. It is rate

optimal up to a poly(log n) factor, where the known gap of the best computational before

is approximately of order n1/4.

2.4 Independent Design

We have discussed how to estimate the pairwise comparison model when we have complete

observation to all possible pairs. We now extend of our results to a different setting.

In the previous sections, we assume that we have complete observation to all pairs of

comparison. Instead of assuming that we have complete observation to all possible pairs, in

the current section, we assume that we haveN observations, which is a more practical setting

in real life example. For each observation, we observe each possible pair with probability

1

(n2)
independently. More precisely, let ik ∼ Unif[n],jk ∼ Unif[n],k ∈ [N ]. We observe

independent Bernouli random variables Yk ∼ Ber(Mik,jk). The independent case is also

studied in pairwise comparison literature, for example Shah et al. (2016b); Mao et al.

(2017).

2.4.1 Statistical Minimax Rate for Independent Design

We use the similar idea to construct the statistical minimax rate for the independent design.

We construct the CLS estimator for independent design as follows.

We define that T = {(i, j)|∃k ∈ N, ik = i, ik = j}. We define the distance between our

observation Y to the matrix M to be

d(Y,M) =

√ ∑
(i,j)∈T

(Ȳij −Mij)2 (2.9)

where Ȳij = 1
|{k:ik=i,jk=j}|

∑
{k:ik=i,jk=j} Yik,jk . If |{k : ik = i, jk = j}| = 0, we define that

Ȳij = 1
2 .

We introduce the CLS estimator for the independent design as
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M̂ ind
CLS = argminM∈Csst d(Y,M) (2.10)

We can prove the similar result as in the previous section to construct the near optimal rate

for the estimation of probability matrix in the independent case.

Theorem 4. (i)If N ≥ 2n2 log n,the CLS estimator satisfies the following statistical upper

bound for the estimation problem

sup
M∈Cusst

E‖M̂ ind
CLS −M‖2F .

n3 log n(log log n)5

N
.

(ii)For any estimator M̂ = M̂(Y ), we have the following statistical lower bound

inf
M̂

sup
M∈Cusst

E‖M̂ −M‖2F &
n3 log n

N
.

2.4.2 Computational Efficient Method for Independent Design

For the computationally efficient algorithm for independent design case, instead of using

Algorithm 1 directly, we should do several minor revision to the original algorithm so that

it can fit the independent design setting.

We replace Step 2 with the following Step 2’ in the algorithm

Step 2’. Let τ = 8

√
n3 log(n)

N and K = dn/τe. Partition [n] into K different blocks, such

that

bl1 = {j ∈ [n] : S(j) ≤ τ}

blk = {j ∈ [n] : S(j) ∈ ((k − 1)τ, kτ ] for 1 < k < K}

blK = {j ∈ [n] : S(j) > (K − 1)τ}

and replace Step 5 with the following Step 5’
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Step 5’. 5. Create a graph G on [n], such that there exist an edge u→ v if and only if there

exists t and u, where g
(u)
t = {s1, ..., sp}, and a < b ∈ [p], such that

b∑
q=a

∑
j∈blsq

Y
(2)
uj −

b∑
q=a

∑
j∈blsq

Y
(2)
vj ≥ 8

√
n2(b− a+ 1)2t log n

N

Then we construct the estimator M̂ ind
sort through the following procedure

M̂ ind
sort = argminM∈Csst(π̂) d(Y (3),M) (2.11)

where the permutation π̂ is calculated through the revised version of Algorithm 1.

Theorem 5. If N ≥ 2n2 log n,for any matrix M ∈ Cusst, we have

EM‖M̂ ind
sort −M‖2F .

n3(log n)3

N
. (2.12)

The algorithm and theoretical results for independent observations are similar to the corre-

sponding results for complete observation. The major difference for independent observation

cases is that since we do not have the complete observation for all possible pairs, the crite-

rion we use in Step 5 of the algorithm is different. Except for the difference in Step 5, the

interval sorting estimator and the analysis are similar to the case when we have complete

observation.

2.5 Minimax Rate for Estimation of the Permutation

Other than the estimation to the probability matrix M , it is also an interesting problem

to study the estimation of the permutation π(M). In the current section, we construct

the minimax rate for the estimation of permutation. We consider the case when for the

parameter space CSST in this section.

However, to estimate the permutation, the SST assumption is not enough. The reason is

that it is possible that two items are identical even if the SST assumption is satisfied. In

that case, it is impossible for us to tell the difference between these items. So we have the

following assumption on the difference between items, which makes the estimation of the
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permutation possible.

For a fixed λ, we define a class of matrices

Dn(λ) = {M ∈ [0, 1]n×n :

n∑
j=1

|Mij −Mkj | ≥ λ,∀i, k ∈ [n]} (2.13)

In the matrix class Dn(λ), the difference between different items is at least λ in terms of l1

distance for the corresponding columns. We assume that M ∈ Dn(λ) ∩ CSST and consider

the pairwise comparison problem in this parameter space.

Suppose that we observe independent Bernouli random variables Yij ∼ Ber(Mij), i, j ∈ [n].

The goal is to estimate the permutation π(M) with the observation Y = (Yij)1≤i,j≤n,

where π(M) is the permutation corresponds with the probability matrix in the SST class

M ∈ Dn(λ) ∩ CSST .

The minimax rate for the estimation of permutation is constructed in the following theorem.

Theorem 6. The minimax rate for estimation to the permutation with observation Y can

be constructed as

inf
π̂(Y )

sup
M∈Dn(λ)∩CSST

EdKT (π̂, π(M)) � min{n
3/2

λ
, n2} (2.14)

Here, the measure we use for the difference between the estimator to the true permutation

is the Kendall tau distance, which is defined as

dKT (π, σ) =
∑

(i,j):σ(i)<σ(j)

I(π(i) > π(j)) (2.15)

for any permutation π, σ ∈ Sn, where Sn is the set of all permutations on [n].

Theorem 6 shows the minimax rate for the estimation of permutation in the parameter

space Dn(λ) ∩ CSST is of order min{n3/2

λ , n2}. In fact, the upper bound can be simply

achieved by the naive estimator based on the wins of the items in all comparisons. The

estimator π̂naive is defined as follows.
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Figure 2: Numerical Performance for Interval Sorting Estimator

Let Ti =
∑n

j=1 Yij . The estimator π̂naive ∈ Sn is a permutation on [n], such that Tπ̂−1
naive(i)

, 1 ≤

i ≤ n is a non-decreasing sequence. If there exists different permutations satisfy the above

property, we can randomly choose one of them to be the estimator π̂naive.

2.6 Numerical Result

We corroborate our theoretical results with numerical experiments. In this section,we com-

pare the performance of our approach with the previous proposals. We compare the nu-

merical performance of IS estimator with the TDS estimator in Mao et al. (2017), which is

the best known computationally efficient method to the estimation of parametric models in

pairwise comparison problem. First we generate a class of random unimodal SST matrix

as the underlying matrix M through the following procedure.

1 Let bi, 1 ≤ i ≤ n to be independent uniform distributed random variable U [0, 1].

2 Define ci =
∑i

j=1 b[i].

3 For 1 ≤ i < j ≤ n, let Mij = 1
2 +

cn−j+i
2cn

.

4 For 1 ≤ j < i ≤ n, let Mij = 1−Mji.

5 Let Mii = 1
2 ,∀i ∈ [n].

6 Return M = (Mij)1≤i,j≤n as the random concave SST matrix.
Algorithm 2: Generate Random Concave SST Matrix

We can check that the matrix we generate through Algorithm 2 is in the unimodal SST

class. We then generate the observation based on the unimodal SST matrix we generate

through Algorithm 2. The numerical performance is shown in Figure 2.
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We can see from Figure 2 the error of our estimator is of approximately O(n) rate. Moreover,

comparing our estimator to the TDS estimator, we can see that our estimator performs

better in the simulation, which corresponds with the theoretical result: the statistical error

for the TDS estimator is of order n5/4, while the statistical error for the IS estimator has a

error rate of order n.

2.7 Discussion

In this chapter, we present the estimation result for the unimodal SST model in the pairwise

comparison problem. We provide more detailed comparison of our results in the current

chapter to some known results in the literature in this section.

Hajek et al. (2014) discusses the estimation problem in both BTL model and Thurstone

model. The authors provided the minimax rate optimal estimator to the parametric models.

Before comparing it with the result we establish in the current chapter, we should point out

that since we are considering different kinds of models, the estimation targets in the current

chapter and Hajek et al. (2014) are different. In Hajek et al. (2014), we try to estimate

the score for each item, and in the current chapter, we try to estimate the probability

matrix which decides the comparison for all possible pairs. Since in Hajek et al. (2014)

the estimation target is only with n different parameters, while in the current chapter, the

probability matrix have n2 different parameters. If we also consider the estimation of the

probability matrix in the parametric models, with suitable assumptions, we can see that

the estimation in parametric models is better than the estimation to the unimodal SST

model. This is because in the estimation of unimodal SST model, as we give the model

more freedom, should be more difficult.

It is also interesting to compare our results with other results of the nonparametric models

in the pairwise comparison problem. Shah et al. (2016a) established the minimax rate of

convergence of the pairwise comparison problem. The rate is minimax up to a poly(log n)

factor. In the current chapter, we provide a more subtle analysis to the CLS estimator which

proves a better rate of convergence than the result in Shah et al. (2016a). Though the CLS

estimator is rate optimal up to a poly(log n) factor, the computation of CLS is impossible.

The best known computational efficient method to the pairwise comparison problem is

provided in Mao et al. (2018). Mao et al. proves that their method can reach the error
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rate of O(n5/4), which shows a clear gap to the minimax rate in SST class. In the current

chapter, we provide a minimax rate optimal estimator, the interval sorting estimator, to

the estimation of the probability matrix of the unimodal SST model. The interval sorting

estimator has a faster convergence rate than the previously known computational efficient

estimator. Though the parameter space we consider for the IS estimator is unimodal SST

class, we should point out that the difference between unimodal SST class and SST class is

small. It remains interesting to know how to construct rate optimal computational efficient

algorithm for the estimation problem in SST model.

Another related topic we discuss in the current chapter is the estimation of ranking in

pairwise comparison problem. Mao et al. (2017) establish the minimax optimal method in

ranking estimation of the pairwise comparison problem in noisy sorting model. We establish

the similar result for SST model in the current section. We should point out that the method

in Mao et al. (2017) may not help us with the estimation of the matrix in SST model, as

the setting is different in noisy sorting model from the SST model.

2.8 Proof

2.8.1 Proof to Theorem 1 and Theorem 4(i)

Proof. Before proving Theorem 1 and Theorem 4(i), we need the following technical lemma.

Lemma 1.

logN(ε,F2, ‖ · ‖2) ≤ Cε−2(log log(1/ε))5 (2.16)

for an absolute constant C, where F2 is the class of bivariate monotonic function on [0, 1]×

[0, 1].

Proof to Lemma 1. First we describe the method used in proving the statement in Gao and

Wellner (2007). We will prove the result for ε = 2−n for some positive integer n. For general

case, we can bound it by using the monoticity of the entropy number. For each f ∈ F2, we

construct f̄ and f as follows. First, we partition [0, 1)2 into ε−2 cubes of side-length ε. A

cube I0 of side-length ε is selected if ω(f, I0) ≤ 2ε. For each cube that is not selected, we

partition it into 4 cubes of equal size. In general, suppose we have a cube Ii of side length
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2−i−n. If ω(f, I0) ≤ 2i−n, we select the cube; otherwise, we partition the cube into 4 smaller

cubes. This process continues until i = n. In this case, we always select the cube. Clearly,

each point in [0, 1)2 uniquely belongs to one of the selected cubes. Then we define

f = 2i+1−n
⌊

infx∈I f(x)

2i+1−n

⌋
, f̄ = 2i+1−n

⌈
supx∈I f(x)

2i+1−n

⌉

Let S̄ = {f : f ∈ F2} and S̄ = {f : f ∈ F2}. It is clear that we have f ≤ f ≤ f̄ .

Now we are going to estimate ‖f̄ − f‖2. Let ni be the number of not selected cubes in the

i-th step and si be the number of selected cubes in the i-th step, 1 ≤ i ≤ n. Then we are

going to introduce the cut of a function. Let f be any function in F2. We say f defines

a cut in [0, 1)2 based on the procedure we discussed before. Here, the word ’cut’ has two

different meaning:

1 the procedure to cut the large cube into small cubes

2 the set of small cubes generated by this procedure

We use Cf to denote the cut defined by the function f . We further define Cf,i to be the cut

of function f in the i-th step, 1 ≤ i ≤ n. The edges of the cut is defined to be the set of

the edges of selected cubes in the cut. If an edge is further divided into two parts, it is not

included in this set. For example, Figure 1 is a cut defined by a function f. This cut has 20

edges.

Figure 3: Cut by a Bivariate Monotonic Function

A function g is defined to be a function g : C → R, where C is the set of cut of [0, 1)2. Let EC

to be the set of edges of the cut C. Then g(C) =
∑

e∈EC l(e)wf (e), where l(e) is the length

22



of the edge and wf (e) = |f(a) − f(b)|, a and b are two vertices of the edge e. We write

ω(e) = ωf (e) for short, as the function f is fixed throughout the proof.

Lemma 2.

g(Cf ) ≤ 2

Proof. We are going to prove that the function g is not increasing in each step cut.

Suppose we are going to do the i-th step cut. Assume Cubei is the set of cubes not selected

in the i-th step, i.e. all cubes I ∈ Cf,i−1 such that

l(I) = 2−n−i, ω(I) ≥ 2i−n

We say two cubes are adjacent if they have the same size and they share one edge. Assume

Cubei can be written as union of several sets, Cubei = ∪jCubei,j , such that for any I1 ∈

Cubei,j1 and I2 ∈ Cubei,j2 , I1 and I2 are not adjacent; ∀I, I ′ ∈ Cubei,j , we can find I1, ..., It,

such that I = I1, I
′ = It, Is and Is+1,1 ≤ s ≤ t− 1 are adjacent. We are going to prove in

the process of cutting all cubes in each Cubei,j , the function g is not increasing.

In the process of cutting all cubes within Cubei,j , the difference of function g before and

after the cut can be written as

gafter − gbefore = 2−i−n−1(
∑
e∈E2

ω(e)−
∑
e∈E1

ω(e))

Here gafter is the function value of g after the cutting process in the i-th step, gbefore =

g(Cf,i−1), E1 = {e is an edge of I, I ∈ Cubei,j}, E2 = {e is the middle line of I, I ∈ Cubei,j}.

In Figure 2.8.1, we can see that the set E1 is the set of all black edges and E2 is the set of

all red edges.

To prove that the function g is not increasing in the process of cutting within Cubei,j , it is

sufficient to prove that
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Figure 4: Example of the Set E1 and E2

∑
e∈E1

ω(e)−
∑
e∈E2

ω(e) ≥ 0 (2.17)

In order to prove (2.17), we are going to consider the difference of g within each single cube

I ∈ Cubei,j . We define the diagonal edge of a cube I is the blue edge in Figure 2.8.1 and

the middle line of the cube is the red line in Figure 3. The diagonal edges of I are four blue

edges in this figure. The middle lines of I are two red lines in Figure 2.8.1.

Figure 5: Diagonal Edges and Middle Lines in a Cube

As we know that f ∈ F2, we have

∑
e is a middle line of cube I

ω(e) =
∑

e is a diagoanl edge of cube I

ω(e) (2.18)

We should also notice that, for two adjacent cubes I1 and I2, {diagonal edges of I1} ∩
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{diagonal edges of I2} = ∅. In this sense, we will have that

∑
e∈E2

ω(e) =
∑

eis a diagonal edge of cube I,I∈Cubei,j

ω(e) ≤
∑
e∈E1

ω(e) (2.19)

This inequality gives us the proof to (2.17), which tells us that the function g is not increasing

in the process of cutting. Lemma 2 comes from this statement and the fact g ≤ 2 before

we cut the cube [0, 1)2.

Now consider all not selected cubes in the process of cutting. Let N to be the set of all not

selected cubes. Suppose k = |N | and N = {I1, ..., Ik}. We define a cube to be an intrinsic

not selected cubes if I ∈ N and there does not exist I ′ ∈ N , such that I ⊂ I ′, I 6= I ′. Let

Nintrinsic to be the set of intrinsic not selected cubes.

We further defined another set Nspecial ⊂ Nintrinsic. We choose the element in Nspecial with

the following procedure.

(i) Choose all intrinsic not selected cubes with length 2−2n and add them into Nspecial. Set

t = n.

(ii) Choose all intrinsic not selected cubes I whose length is 2−n−t+1, such that there does

not exist I ′ ∈ Nspecial,I0 ∈ N ,I ′ ⊂ I0,I0 and I are adjacent. Add all these cubes into

Nspecial.

(iii)If t=0, end the procedure. Otherwise set t = t− 1 and go back to step (ii).

The reason why we consider the set Nspecial is that the following lemma can control the

number of elements in Nspecial. We can use the number of elements in Nspecial to give an

upper bound for Nintrinsic and N .

Lemma 3.

|Nspecial| ≤ 22n

Proof. We use the procedure similar to the one at the first of this note to cut the cube

[0, 1)2. If a cube I ∈ N , I /∈ Nspecial and there does not exist I0,I ′, such that I0 adjacent

to I, I ′ ⊂ I0 and I ′ ∈ Nspecial, we don’t cut I in the i-th step. With the same argument
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in Lemma 2, we have that g(C) ≤ 2. Here C is the cut we get from this cut procedure. We

should notice that for every I ∈ Nspecial, it appears in this cut.

For each I ∈ Nspecial whose length is 2−n−i, we have ω(I) ≥ 2i−n. So we have

∑
e is an edge of I

ω(e)l(e) ≥ 21−2n (2.20)

Combining this equation and g ≥ 2, we have

2 ≥ 21−2n|Nspecial| (2.21)

which completes the proof to Lemma 3.

Then we are going to bound the number of elements in Nintrinsic.

Lemma 4.

|Nintrinsic| ≤ c22n log n

where c is a universal constant.

Proof. For each I ∈ Nintrinsic, we have that either I ∈ Nintrinsic, or there exist I0 ∈ N ,I ′ ∈

Nspecial, such that I ′ ⊂ I0 ,I0 and I are adjacent. Let kspec = |Nspecial|. Without loss of

generality, assume that Nspecial = {I1, ..., Ikspec}. Let Ti = {I ∈ N|Ii ⊂ I, I /∈ Tj , ∀j <

i},1 ≤ i ≤ kspec. Assume that ai = |Ti|. Then we can know that

|Nintrinsic| ≤ 4

kspec∑
i=1

ai (2.22)

For 1 ≤ i ≤ n, all the edges of the not selected cubes with length 2−n−i falls in 2n+i+1

parallel lines, among which 2n+i are vertical and 2n+i are horizontal. For each line, the

difference of the function value is at most 1. So we have

∑
I∈Ni

∑
e is an edge of I

ω(e)l(e) ≤ 2 ∗ 2n+i ∗ 2−n−i < 4 (2.23)
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On the other hand, we also have that

∑
j

∑
I∈Nj

∑
e is an edge of I

ω(e)l(e) ≥
kspec∑
i=1

2ω(Ii)2
−n−li+ai−1 ≥

kspec∑
i=1

2−2n2ai−1 (2.24)

Here li is the length of the cube Ii and we use the fact that ω(Ii) ≥ 2li−n. Combining these

two inequalities we have that
kspec∑
i=1

(2ai − 1) ≤ 8n22n (2.25)

We define ai = 0 for kspec < i ≤ 22n. So

22n(2r − 1) ≤
22n∑
i=1

(2ai − 1) ≤ 8n22n (2.26)

where r = 1
22n
∑22n

i=1 ai.

Use (2.22), we will get that

|Nintrinsic| ≤ 4

kspec∑
i=1

ai = 22n+2r ≤ c22n log n (2.27)

for some constant c.

Now we can bound the number of not selected cubes |N |. The proof in Lemma 5 is similar

to the proof in Lemma 4.

Lemma 5.

|N | ≤ c′22n(log n)3

Proof. Let kintri = |Nintrinsic|. Assume that Nintrinsic = {I1, ..., Ikintri}. The previous

lemma tells us that kintri ≤ c22n log n. Let Ui = {I ∈ N|Ii ⊂ I, I /∈ Uj , ∀j < i},1 ≤ i ≤

kintri. Assume that bi = |Ui|. Then we can know that

|N | ≤
kintri∑
i=1

bi (2.28)
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Similar to the proof in the previous lemma, we will get

kintri∑
i=1

2bi − 1 ≤ 8n22n (2.29)

We further define bi = 0 for kintri < i ≤ c22n log n. By extending the definition of b,

c22n log n(2b − 1) ≤
c22n logn∑
i=1

2bi − 1 ≤ 8n22n

where b = 1
c22n logn

∑
bi. So b < c′′ log n for some constant c′′ and large enough n > N .

Then we have

|N | ≤
c22n logn∑
i=1

bi ≤ c22n log nb ≤ c′′′22n(log n)2 (2.30)

for some constant c′′′.

Use Lemma 5, we can give the bound on ‖f̄−f‖2. Let s to be the number of selected cubes.

Then we have that s ≤ 4|N | ≤ 4c′′′22n(log(n))2. Within a selected cube I whose length is

2−n−i, we have |f̄ − f | ≤ 2i−n. So

∫
I
|f̄ − f |22 ≤ 2−4n (2.31)

So ∫
[0,1]2

|f̄ − f |22 ≤
∑
I∈S

∫
I
|f̄ − f |22 ≤ 4c′′′(log n)22−2n (2.32)

Then we will provide the bound of number of elements in S̄ and S. We are going to prove

the following lemma.

Lemma 6.

log |S̄| ≤ c̄22n(log n)2

where c̄ is a universal constant.

Proof. The number of elements in S̄ is decided by two things: one is the number of possible

ways to cut [0, 1)2 into small selected cubes, another is the number of ways to put in possible
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values in each selected cube.

From what we prove before, we can see that the number of selected cubes for any f is

bounded by 4c′′′22n(log n)2. So the number of possible cut defined by some f ∈ F2 is

bounded by 24c′22n(logn)2 . This is because every cut is uniquely determined by a {0, 1}

sequence with length 4c′22n(log n)2.

Now we consider the number of ways to put in possible values in each selected cubes.

Suppose for 0 ≤ i ≤ n, we divide the cube [0, 1]2 equally into 22i+2n small cubes. Let ri,j

to be the number of selected cubes in the j-th row, 1 ≤ j ≤ 2i+n. Then we have that the

number of ways to assign values of f̄ on these rj cubes is bounded by
(ri,j+2n−i

2n−i+1

)
if ri,j ≥ 2.

Notice that we have the following lemma.

Lemma 7. Let a to be a fix number, then

ha(r) = log

(
r + a

a+ 1

)

is a concave function for x > 0.

Proof. To prove it is a concave function, we are going to prove that

Use Lemma 7, we have that ha(r1) + ha(r2) ≤ 2ha(
r1+r2

2 )

This is because

ha(r1) + ha(r2) = log
Γ(r1 + a− 1)

Γ(a)Γ(r1 − 2)
+ log

Γ(r2 + a− 1)

Γ(a)Γ(r2 − 2)

= 2 log a+ log
1

B(a+ 1, r1 − 2)
+ log

1

B(a+ 1, r2 − 2)

= 2 log a+ log
1

(
∫ 1

0 x
a+1(1− x)r1−2dx)(

∫ 1
0 x

a+1(1− x)r2−2dx)

≤ 2 log a+ log
1

(
∫ 1

0 x
a+1(1− x)(r1+r2)/2−2dx)2

= 2ha(
r1 + r2

2
)

(2.33)
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log
∏
j

(
ri,j + 2n−i

2n−i + 1

)
≤ 2n+i log

(
2n−i + r̄i
2n−i + 1

)
≤ 2n+i(r̄i − 1) + 2n+ir̄i log

2n−i + r̄i
r̄i − 1

(2.34)

Here, r̄i = 2−i−n
∑

j ri,j .

Now we are going to bound
∑

i 2n+ir̄i log 2n−i+r̄i
r̄i−1 . Let A = {i : r̄i ≤ 1

n2 2n−i},B = {i : r̄i ≥
1
n2 2n−i}. Then we have

∑
i∈A

2n+ir̄i log
2n−i + r̄i
r̄i − 1

≤
∑
i∈A

c1
1

n2
22n(n− i) log 2 ≤ c222n (2.35)

∑
i∈B

2n+ir̄i log
2n−i + r̄i
r̄i − 1

≤
∑
i∈B

2n+ir̄i log(3n2) ≤ c322n(log n)3 (2.36)

Here we use that
∑

i 2n+ir̄i ≤ 4c′22n(log n)2. Lemma 6 is proved by using (2.34),(2.35) and

(2.36).

Using similar method, we can also prove that log |S| ≤ c22n(log n)2

Up to now, we already prove the following statement.

(i)For any f ∈ F2, f̄ ≥ f ≥ f .

(ii)‖f̄ − f‖22 ≤ c′(log n)22−2n.

(iii)log |S̄| ≤ c̄22n(log n)3, log |S| ≤ c22n(log n)3.

So we can see that for ε = 2−n,

logN(ε,F2, ‖ · ‖2) ≤ c4ε
2(log log 1/ε)5 (2.37)

for some constant c4. The general statement comes from the monotonicity of the entropy

number. The proof to Lemma 1 is completed.

Now we turn to the proof to Theorem 1 and Theorem 4(i). First we prove Theorem 1.
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Let the class of bivariate isotonic matrices CDIFF to be defined as

CDIFF = {M = M1 −M2|M1,M2 ∈ CSST } (2.38)

LetW = Y −M and Z(t) = supD∈CDIFF ,‖D‖F≤t < D,W >. If we can prove that EZ(t) ≤ t2

2 ,

with the proof of Theorem 1 in Shah et al. (2016b), we have EM‖M̂CLS −M‖2F . t2.

With equation (28) in Shah et al. (2016b) and Lemma 11, we have for t =
√
n log n(log log n)5

EZ(t) ≤ t2

2
(2.39)

which completes the proof to Theorem 2. For the proof to Theorem 4(i), let W = Ȳ −M .

Then the rest of the proof follows the same argument as in the proof to Theorem 1.

2.8.2 Proof To Proposition 1

Proof. Let M ∈ CBTL and Mij = 1
1+exp(qj−qi) for some qi > 0,∀i ∈ [n]. Without loss of

generality, we assume that {qi}ni=1 is a non-decreasing sequence. To prove that M ∈ CBTL,

it is sufficient to prove {Mij −Mi′j |j > i′} is a decreasing sequence for i > i′.

This is because

Mij −Mi′j =
1

1 + exp(qj − qi)
− 1

1 + exp(qj − qi′)

=
exp(qi)− exp(qi′)

exp(qj) + exp(qi) + exp(qi′) +
exp(qi+qi′ )

exp(qj)

(2.40)

Since qi, qi′ ≥ qj , {Mij −Mi′j |j > i′} is a decreasing sequence for i > i′, which shows that

CBTL ⊂ Cusst.

The proof to the argument CThurstone ⊂ Cusst is similar. Assume that M ∈ CBTL and

Mij = φ(qi − qj) for some qi > 0,∀i ∈ [n]. Let ϕ(x) = exp(−x2

2 ) to be the p.d.f of the

standard normal. Then we have

Mij −Mi′j =

∫ qi−qj

qi′−qj
ϕ(x)dx (2.41)
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Since qi, qi′ ≥ qj , {Mij −Mi′j |j > i′} is a decreasing sequence for i > i′, which shows that

CThurstone ⊂ Cusst.

2.8.3 Proof to Theorem 2

Proof. Without loss of generality, we assume that π to be the identical permutation, i.e.

π(i) = i,∀i ∈ [n].

First we try to prove that, with high probability, if s1, s2 ∈ g(u)
t , s1 < s2, j1 ∈ bls1 , j2 ∈ bls2 ,

then π(j1) < π(j2).

Consider the event

E1 = {∃s1, s2 ∈ g(u)
t , s1 < s2, j1 ∈ bls1 , j2 ∈ bls2 , π(j1) > π(j2)}

Let s1, s2, j1, j2 to be fixed. If s1, s2 ∈ g(u)
t , s1 < s2, j1 ∈ bls1 , j2 ∈ bls2 for some (t, u), from

the construction of g
(u)
t , we know that

Sj2 − Sj1 ≥ τ (2.42)

If π(j1) > π(j2), Hoeffding’s inequality tells us

P(
∑
i∈[n]

Yij1 −
∑
i∈[n]

Yij2 ≤ τ) ≤ 2 exp(− τ
2

2n
) (2.43)

which implies that

P(E1) ≤
∑

s1,s2,j1,j2

2 exp(− τ
2

2n
) ≤ 1

n2
(2.44)

Assume that g
(u)
t = {s1, ..., sp}, s1 < .. < sp. Consider the event

E2 = {∃i < i′ ∈ [n], a < b ∈ [p], t ∈ dlog2Ke, u ∈ {1, 2},
b∑

q=a

∑
j∈blsq

Yij −
b∑

q=a

∑
j∈blsq

Yi′j ≥ 8
√

(b− a+ 1)2t log n}
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and

E3 = {∃i > i′ ∈ [n], a < b ∈ [p], t ∈ dlog2Ke, u ∈ {1, 2},
b∑

q=a

∑
j∈blsq

Yij −
b∑

q=a

∑
j∈blsq

Yi′j ≤ 8
√

(b− a+ 1)2t log n}

Once again if we implement Hoefdding’s inequality Vershynin (2018), we know that

P(E2),P(E3) ≤ 1

n2
(2.45)

In the following discussion, we assume that E1, E2, E3 is true. The following discussion is

conditioning on the event E1 ∩ E2 ∩ E3.

Our goal is to construct the upper bound
∑n

i=1

∑m
j=1(Mπ̂(i),j −Mi,j)

2. To see this, we try

to upper bound ∑
s∈g(u)t

∑
j∈bls

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
i∈bls′

(Mπ̂(i),j −Mi,j)
2

for t ∈ [dlog2Ke], u ∈ {1, 2} separately. Here, we say π̂(bls′) < π̂(bls) if and only if there

exists i ∈ bls and i′ ∈ bls′ , such that π̂(i) < π̂(i′).

Now we turn to estimate the upper bound for

∑
s∈g(u)t

∑
j∈bls

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
i∈bls′

(Mπ̂(i),j −Mi,j)
2

. We will first try to bound the above term for each i. For i ∈ bls′ , such that π̂(bls′) <

π̂(bls), t(bls′) > t, let Ti to be the set of the blocks such that s ∈ g(u)
t , π̂(bls′) < π̂(bls). More

concretely, we define that

Ti = {s|s ∈ g(u)
t , π̂(bls′) < π̂(bls)} (2.46)

For i, i′ ∈ bls′ , we have that Ti = Ti′ . We also use the notation T (bls′), where T (bls′) = Ti

for some i ∈ bls′ . For i, we assume that Ti = {s1, ..., sp}. We divide the sum
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∑
s∈g(u)t

∑
j∈bls

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
i∈bls′

(Mπ̂(i),j −Mi,j)
2

into two parts. Let

C1 =
∑
i∈bls′

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

p∑
ind=2

∑
j∈blsind

(Mπ̂(i),j −Mi,j)
2 (2.47)

and

C2 =
∑
i∈bls′

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
j∈bls1

(Mπ̂(i),j −Mi,j)
2 (2.48)

We will construct the upper bound for C1 and C2 separately.

Moreover, we obtain the following bounds

b∑
q=a

∑
j∈blsq

|Mij −Mπ̂(i)j | ≤ 16
√

(b− a+ 1)2t log n (2.49)

for ∀i ∈ [n], which implies that

b∑
q=a

∑
j∈blsq

ci,j ≤ 16
√

(b− a+ 1)2t log n (2.50)

To construct the upper bound for
∑

s∈g(u)t

∑
j∈bls c

2
i,j , we implement Lemma ?? , which

indicates that

C1 ≤ 256n(log n)2 (2.51)

for fixed t and u.

Now we turn to C2. To construct the upper bound for C2, we attempt to use(Mao et al.,

2018, Lemma 8). We further rewrite C2 into

C2 =
∑
s′∈K

∑
i∈bls′

∑
j∈bls1

(Mπ̂(i),j −Mi,j)
2 (2.52)
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and we denote that

C2,s′ =
∑
i∈bls′

∑
j∈bls1

(Mπ̂(i),j −Mi,j)
2 (2.53)

With (Mao et al., 2018, Lemma 8) and the construction of π̂ in Algorithm 1, we know that

C2,s′ ≤ 600 log n|bls′ | (2.54)

which immediately implies that

C2 =
∑
s′

C2,s′ ≤ 600n log n (2.55)

Combine the upper bound for C1 and C2 and then sum over all possible t and u in the

above inequality, it tells us that

n∑
i=1

m∑
j=1

(Mπ̂(i),j −Mi,j)
2 ≤ 856n(log n)3 (2.56)

Theorem 2 is proved with (2.56) and (Mao et al., 2018, Proposition 1).

2.8.4 Proof to Theorem 3 and Theorem 4 (ii)

Proof. We begin the proof with the following lemma.

Lemma 8. Let B ∈ Rn×n to be a matrix in the parameter space Θ1, where Θ1 is defined

as follows.

We divide [n] into m = b n
2 lognc subsets Ti, 1 ≤ i ≤ m, with Ti = {(i− 1)m+ 1, ..., im}. Let

u = bm2 c. Let δ = 1
8 .

The following parameter space Θ1 is defined as

Θ1 = {B(γ,A1, ..., Au)|γ ∈ {0, 1}u, A1, ..., Au are disjoint subsets in {ublog nc+ 1, ..., n},

such that |Ai| = blog nc, 1 ≤ i ≤ u}
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where

B(γ,A1, .., Au)(i, j)

=



1
4 , if i, j ∈ Ts, for some s ∈ [u]

1
4 , if i, j ∈ As, γ(s) = 1, for some s ∈ [u]

1
4 , if ∃s ∈ [u], i ∈ Ts, j ∈ As, γ(s) = 1

1
4 , if ∃s ∈ [u], j ∈ Ts, i ∈ As, γ(s) = 1

1
4 − δ

2, otherwise

If we observe Y ∼ Ber(B),then we have the following lower bound of the estimation to the

matrix B.

max
B∈Θ1

EB‖B̂(Y )−B‖2F ≥
n log n

4096
(2.57)

Proof to Lemma 8. To the construction of the lower bound supB∈Θ1
EB‖B̂(Y ) − B‖2F , for

any estimator B̂(Y ), the tool we use in the construction is Le cam-Assouad method. We

introduce the Le Cam-Assouad Lemma to help us construct the statistical lower bound.

Let X ∼ Pθ, where θ ∈ Θ = Γ ⊗ Λ is the Cartesian product of two components Γ and Λ.

Assume that Γ = {0, 1}r and Λ ⊂ Br for some finite set B ⊂ Rp. For θ = (γ, λ) ∈ Θ,denote

the projection of θ to Γ by γ(θ) = (γi(θ))1≤i≤r and to Λ by λ(θ) = (λi(θ))1≤i≤r.

Lemma 9. (Le Cam-Assouad) For any estimator T of ψ(θ) based on an observation from

a probability distribution in Pθ, θ ∈ Θ, and any s > 0,

max
Θ

2sEθds(T, ψ(θ)) ≥ αr
2

min
1≤i≤r

‖P0,i ∧ P1,i‖

where α is given by

α =
ds(ψθ, ψ(θ̃))

H(γ(θ), γ(θ̃))
.
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The proof to Lemma 9 can be found in Cai and Zhou (2012).

Define Pa,i as

Pa,i =
1

2r−1DΛ

∑
θ

{Pθ : γi(θ) = a}

A simple observation from our construction of the parameter space Θ1 is that

min
{H(γ,γ̃)≥0}

‖B(γ,A1, ..., Au), B(γ̃, Ã1, ..., Ãu)‖2F
H(γ, γ̃)

≥ 2δ2blog nc2 (2.58)

To complete the proof with Le cam-Assouad method, it is sufficient to prove that

min
1≤i≤u

‖P̄0,i ∧ P̄1,i‖ ≥ c0 (2.59)

for some constant c0, where

P̄0,i =
1

2u−1|S|
∑
γ(i)=0

P(γ,A1,..,Au) (2.60)

P̄1,i =
1

2u−1|S|
∑
γ(i)=1

P(γ,A1,..,Au) (2.61)

for which P(γ,A1,..,Au) is the probability measure of Y . With Lemma 4 in Cai and Zhou

(2012), once we can prove that for fixed γ(2), .., γ(u), A2, ..., Au, ‖P0 ∧ P1‖ ≥ c0, (2.59) is

true, where

P0 =
1

|S1|
∑

γ(1)=0,γ(2),γ(u),A2,...,Au

P(γ,A1,..,Au) (2.62)

P1 =
1

|S1|
∑

γ(1)=1,γ(2),γ(u),A2,...,Au

P(γ,A1,..,Au) (2.63)

The last goal in proving the theorem is to prove that ‖P0 ∧ P1‖ ≥ c0. We prove it by

calculating χ2(P1,P0). Notice that when γ(2), ..., γ(u), A2, ..., Au are fixed, if γ(1) = 0,

the probability measure remains the same. We denote it by p. We denote qA1 to be the

probability measure of Y , corresponding to B = B(γ(1) = 1, γ(2), ..., γ(u), A1, ..., Au) when

γ(2), ..., γ(u), A1, ..., Au are all fixed.
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Since A1, ..., Au are disjoint subsets in {ublog nc + 1, ..., n}, if we let C = {ublog nc +

1, ..., n}\ ∪uj=2 Aj , we would have

|C| ≥n− ublog nc − ublog nc

≥n−mblog nc ≥ n

3

(2.64)

for large enough n. Since A1 is a subset in C, with cardinality blog nc, we have that

|S1| =
(

v
blognc

)
, where v = |C|. So

P1 =
1(
v

blognc
) ∑
γ(1)=1,γ(2),γ(u),A2,...,Au

P(γ,A1,..,Au) (2.65)

which implies that

χ2(P1,P0) = EA1,A′1

∫
qA1qA′1
p

(2.66)

where A1, A
′
1 are uniformly chosen from the

(
v

blognc
)

subsets. Let J = |A1 ∩A′1|. From our

construction of the parameter space Θ1, J ∼ Hypergeometric(v, blog nc, blog nc). The χ2

affinity can be upper bounded by

EA1,A′1

∫
qA1qA′1
p

≤E(1 +
16δ4

3
)2Jblognc

≤E exp(
32δ4

3
Jblog nc)

≤ blog nc2

n− blog nc
exp(

log2 n

n
n

32δ4

3 ) ≤ 1 +
1

4

(2.67)

for large enough n and δ = 1
8 , which implies that ‖P1 ∧ P0‖ ≥ 1

2 .

Apply Le cam-Assouad lemma in our parameter space Θ1,

max
B∈Θ1

EB‖B̂ −B‖2F ≥
1

4
δ2blog nc2u

2
≥ n log n

4096
(2.68)

for large enough n, which completes the proof to Lemma 8.

38



Now we can prove Theorem 3 with Lemma 8.

For any M ∈ Cusst, we define a matrix B = M(B), such that ∀i, j ∈ [n],

Bij = MijMji

. For any estimator M̂ ∈ [0, 1]n×n, we define an estimator B̂ of B with M̂ , such that

B̂ij = M̂ijM̂ji

From the construction of the estimator B̂, we know that the error of B̂ can be controlled

by the error of the estimator M̂ . This is because

‖B̂ −B‖2F

=

n∑
i=1

n∑
j=1

(B̂ij −Bij)2

=
n∑
i=1

n∑
j=1

(M̂ijM̂ji −MijMji)
2

=
n∑
i=1

n∑
j=1

((M̂ij −Mij)M̂ji +Mij(M̂ji −Mji))
2

≤2
n∑
i=1

n∑
j=1

(M̂ij −Mij)
2 + (M̂ji −Mji)

2

=4‖M̂ −M‖2F

(2.69)

It implies that

sup
M∈Cusst

EM‖M̂(Y )−M‖2F

≥1

4
sup

M∈Cusst
EM‖B̂(Y )−B‖2F

≥1

4
sup
B∈Θ′

EB‖B̂(X)−B‖2F

(2.70)

where Θ′ = {M(B)|M ∈ Cusst}, Y ∈ [0, 1]n×n to be a random matrix, such that Xij =

YijYji, ∀i, j ∈ [n]. It is easy to check that Xij are independent random Bernoulli variables,

Xij ∼ Ber(Bij),∀1 ≤ i < j ≤ n.
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We prove that Θ1 ⊂ Θ′. We prove this result through a construction of a matrixM(γ,A1, .., Au) ∈

Θ, such that M(γ,A1, .., Au)(B) = B(γ,A1, .., Au).

For (γ,A1, ..., Au), we define a label l : [n]→ [n], such that for i ∈ Tj or i ∈ Aj , if γ(j) = 1,

l(i) = j. If i /∈ ∪j:γ(j)=1(Tj ∪Aj), l(i) = u+ 1. We define M(γ,A1, .., Au) to be

M(γ,A1, .., Au)

=



1
2 , if l(i) = l(j)

1
2 + δ, if l(i) < l(j)

1
2 − δ, if l(i) > l(j)

It is easy to check that M(γ,A1, .., Au) ∈ Θ and M(γ,A1, .., Au)(B) = B(γ,A1, .., Au). So

Θ1 ⊂ Θ′.

The rest of the Theorem can be proved with Lemma 8.

The proof to Theorem 4 (ii) comes from the fact

χ2(Pind1 ,Pind0 ) =
N

n2
χ2(P1P0) (2.71)

and the same argument for the proof in Theorem 3, where Pind1 ,Pind0 is the probability

measure for the corresponding independent case.

2.8.5 Proof to Theorem 5

Proof. Without loss of generality, we assume that π to be the identical permutation, i.e.

π(i) = i,∀i ∈ [n].

First we try to prove that, with high probability, if s1, s2 ∈ g(u)
t , s1 < s2, j1 ∈ bls1 , j2 ∈ bls2 ,

then π(j1) < π(j2).

Consider the event

E4 = {∃s1, s2 ∈ g(u)
t , s1 < s2, j1 ∈ bls1 , j2 ∈ bls2 , π(j1) > π(j2)}
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Fixed j ∈ [n]. Let m = bN3 c. For 1 ≤ k ≤ m, let

Zk =


0, if jk 6= j

Yik,j , if jk = j

(2.72)

From our construction, EZk = 1
n2

∑
i∈[n]Mij . Since PZk 6= 0 = 1

n and Zk ≤ 1, we know

that EZ2
k ≤

1
n , ∀k. Use Berstein’s Inequality,

P(|
N∑
i=1

Zi −
N

n2

∑
i∈[n]

Mij | ≥ t) ≤ 2 exp(− t2

N
n + t

3

) (2.73)

Let t = 6
√

N
n log n. With our assumption, we know that t

3 ≤
N
n . So

2 exp(− t2

N
n + t

3

) ≤ 2

n18
(2.74)

which implies that

P(|n
2

N

∑
k∈[m]

: jk = jYik,j −
∑
i∈[n]

Mij | ≥ 6

√
N log n

n
) ≤ 2

n17
(2.75)

∀j ∈ [n]. So P(E4) ≤ 2
n17 .

Assume that g
(u)
t = {s1, ..., sp}, s1 < .. < sp. Consider the event

E5 = {∃i < i′ ∈ [n], a < b ∈ [p], t ∈ dlog2Ke, u ∈ {1, 2},
b∑

q=a

∑
j∈blsq

Yij −
b∑

q=a

∑
j∈blsq

Yi′j ≥ 8

√
(b− a+ 1)2tn3 log n

N
}

and

E6 = {∃i > i′ ∈ [n], a < b ∈ [p], t ∈ dlog2Ke, u ∈ {1, 2},
b∑

q=a

∑
j∈blsq

Yij −
b∑

q=a

∑
j∈blsq

Yi′j ≤ 8

√
(b− a+ 1)2tn3 log n

N
}
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One again if we implement Hoefdding’s inequality, we know that

P(E5),P(E6) ≤ 2

n17
(2.76)

In the following discussion, we assume that E4, E5, E6 is true. The following discussion is

conditioning on the event E4 ∩ E5 ∩ E6.

Our goal is to construct the upper bound
∑n

i=1

∑m
j=1(Mπ̂(i),j −Mi,j)

2. To see this, we try

to upper bound ∑
s∈g(u)t

∑
j∈bls

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
i∈bls′

(Mπ̂(i),j −Mi,j)
2

for t ∈ [dlog2Ke], u ∈ {1, 2} separately. Here, we say π̂(bls′) < π̂(bls) if and only if there

exists i ∈ bls and i′ ∈ bls′ , such that π̂(i) < π̂(i′).

Now we turn to estimate the upper bound for

∑
s∈g(u)t

∑
j∈bls

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
i∈bls′

(Mπ̂(i),j −Mi,j)
2

. We will first try to bound the above term for each i. For i ∈ bls′ , such that π̂(bls′) <

π̂(bls), t(bls′) > t, let Ti to be the set of the blocks such that s ∈ g(u)
t , π̂(bls′) < π̂(bls). More

concretely, we define that

Ti = {s|s ∈ g(u)
t , π̂(bls′) < π̂(bls)} (2.77)

For i, i′ ∈ bls′ , we have that Ti = Ti′ . We also use the notation T (bls′), where T (bls′) = Ti

for some i ∈ bls′ . For i, we assume that Ti = {s1, ..., sp}. We divide the sum

∑
s∈g(u)t

∑
j∈bls

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
i∈bls′

(Mπ̂(i),j −Mi,j)
2

into two parts. Let
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C3 =
∑
i∈bls′

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

p∑
ind=2

∑
j∈blsind

(Mπ̂(i),j −Mi,j)
2 (2.78)

and

C4 =
∑
i∈bls′

∑
π̂(bls′ )<π̂(bls),t(bl′s)>t

∑
j∈bls1

(Mπ̂(i),j −Mi,j)
2 (2.79)

We will construct the upper bound for C3 and C4 separately.

We obtain the following bounds

b∑
q=a

∑
j∈blsq

|Mij −Mπ̂(i)j | ≤ 96

√
(b− a+ 1)2tn3 log n

N
(2.80)

for ∀i ∈ [n], which implies that

b∑
q=a

∑
j∈blsq

ci,j ≤ 96

√
(b− a+ 1)2tn3 log n

N
(2.81)

To construct the upper bound for
∑

s∈g(u)t

∑
j∈bls c

2
i,j , we implement Lemma ?? , which

indicates that

C3 ≤ 1536
n3(log n)2

N
(2.82)

for fixed t and u.

Now we turn to the upper bound for C4. To construct the upper bound for C4, we attempt

to use (Mao et al., 2018, Lemma 8). We further rewrite C4 into

C4 =
∑
s′∈K

∑
i∈bls′

∑
j∈bls1

(Mπ̂(i),j −Mi,j)
2 (2.83)

and we denote that

C4,s′ =
∑
i∈bls′

∑
j∈bls1

(Mπ̂(i),j −Mi,j)
2 (2.84)
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With (Mao et al., 2018, Lemma 8) and the construction of π̂ in Algorithm 1, we know that

C4,s′ ≤ 3600 log n|bls′ | (2.85)

which immediately implies that

C4 =
∑
s′

C2,s′ ≤ 3600
n3(log n)2

N
(2.86)

Combine the upper bound for C3 and C4 and then sum over all possible t and u in the

above inequality, it tells us that

n∑
i=1

m∑
j=1

(Mπ̂(i),j −Mi,j)
2 ≤ 4000

n3(log n)3

N
(2.87)

The theorem is proved with (2.87) and (Mao et al., 2018, Proposition 1).

2.8.6 Proof to Theorem 6

Proof. We divide the proof to Theorem 6 into lower bound part and upper bound part. We

begin with the upper bound part.

To prove the upper bound part, we are going to prove that

EdKT (π̂naive, π
∗) ≤ C min{n

3/2

λ
, n2} (2.88)

∀M ∈ Dn(λ)∩CSST and some constant C. From the definition of Kendall tau distance, we

can see that

EdKT (π̂naive, π
∗) =

∑
πM (i)<πM (j)

P(π̂naive(i) > π̂naive(j)) (2.89)

With Hoeffding’s inequality and the assumption M ∈ Dn(λ), we have
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∑
πM (i)<πM (j)

P(π̂naive(i) > π̂naive(j)) ≤n
n∑
k=1

exp(−k
2λ2

n
)

=n[

l∑
k=1

exp(−k
2λ2

n
) +

n∑
k=l+1

exp(−k
2λ2

n
)]

≤n(l +
n∑

k=l+1

n

k2λ2
)

≤n(l +
n

lλ2
) ≤ 3n3/2

λ

(2.90)

where l = d
√
n
λ e. So the upper bound for Theorem 6 is proved, as dKT (π̂naive, π

∗) ≤ n2 is

trivial.

Then we turn to the lower bound part. For the proof of the lower bound part, we need the

following lemma.

Lemma 10. If n < r ≤ n2

4 , there exists a subset Q ⊂ Sn, such that

(i)log |Q| ≥ n2

30r ,

(ii)dKT (π1, π2) ≥ r
96 ,

(iii‖π − id‖22 ≤ r.

Here ‖π − id‖22 =
∑n

i=1(π(i)− i)2.

Proof to Lemma 10. Let m = b rnc,k = b nmc and v = bk3c. Using the well-celebrated

Varshamov-Gilbert bound, there exists a set S of v-sparse vectors in {0, 1}k, such that

log |S| ≥ k
15 and any two two distinct vectors in S are separated by at least v/2 in the

Hamming distance.

We define Q through a map from S to Sn . Let Ii = {(i − 1)m, ...im}, 1 ≤ i ≤ k, Ik+1 =

[n]\ ∪ki=1 Ii. For s = (t1, ..., tk), we define the corresponding permutation πS to be

πs(j) = j, if j ∈ Il and tl = 0.

πs(j) = (2l − 1)m+ 1− j, if j ∈ Il and tl = 1.
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πs(j) = j, if j ∈ Il and l = k + 1.

Then all conditions are satisfied by chooseing Q = {πs|s ∈ S}, which completes the proof

for Lemma 10.

With Lemma 10, we can finish the proof of the lower bound. We assume that n = 2m. The

proof to the case when n is add is similar. Let Mλ to be a matrix defined by

Mij =
1

2
,Mi+m,j+m =

1

2
, 1 ≤ i, j ≤ m

Mi,j+m =
1

2
+
jλ

2n
,Mi+m,j =

1

2
− iλ

2n
, 1 ≤ i, j ≤ m

If m < r ≤ m2

4 for some integer r which we will choose later, with Lemma 10, we can

construct a set Q ⊂ Sm, such that all conditions in Lemma 10 are satisfied. For ∀π ∈ Q,

we define Mπ to be a matrix, such that

Mπ
ij =

1

2
,Mπ

i+m,j+m =
1

2
, 1 ≤ i, j ≤ m

Mπ
i,j+m =

1

2
+
π(j)λ

2n
,Mπ

i+m,j =
1

2
− π(i)λ

2n
, 1 ≤ i, j ≤ m

Let π1, ..., π|Q| to be the elements of Q and define π0 = id. Let Pk to be the joint probability

of Y under M = Mπk . By Lemma 10, we have

D(Pk,P0) ≤ 8rλ2

n
(2.91)

So we have

1

|Q|

|Q|∑
k=1

D(Pk,P0) ≤ 8rλ2

n
≤ 1

16
log |Q| (2.92)

if we choose r = b n3/2
√

3840λ
c.
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If n is sufficiently large, we always have r > m. If λ ≥ 1
10
√
n

, we will have that r < m2

4 .

With Fano’s lemma, we have

inf
π̂(Y )

sup
M∈Dn(λ)∩CSST ,π∗

EdKT (π̂, π(M)) ≥ Cn
3/2

λ
(2.93)

for some constant C. If λ < 1
10
√
n

, choose r = n2
√

38400
, we have

inf
π̂(Y )

sup
M∈Dn(λ)∩CSST ,π∗

EdKT (π̂, π(M)) ≥ Cn2 (2.94)

for some constant C. The proof of the lower bound part is completed by combining (2.93)

and (2.94).
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3 Statistical Inference For Permutation Based Model

3.1 Introduction

Lots of efforts have been spent on the estimation of the permutation-based models, while

the inference problem has got much less attention to the permutation based models. We

study the estimation problem of unimodal SST model in pairwise comparison problem in

Chapter 2. In the current chapter, we are going to study the inference problem related to

the permutation based model.

In the permutation based model, there are usually two key factors: the probability matrix

and the permutation. We will discuss the inference problem for both the probability matrix

and the permutation in this chapter. We begin the section with the hypothesis testing

problem of the probability matrix in the noisy sorting model. The noisy sorting model is first

proposed by Braverman and Mossel (2008). It is used and studied in the pairwise comparison

problem. The minimax rate of estimation in the noisy sorting model is established in Mao

et al. (2017). Based on the results in Mao et al. (2017), a natural question is to establish

the minimax detection level of the signal strength in the hypothesis testing framework.

In the current chapter, we propose a testing procedure to the hypothesis testing problem

and prove it is optimal, from where we establish the minimax detection level of the signal

strength in the noisy sorting model.

Other than the probability matrix, permutation is another important topic in the permu-

tation based model. After studying the hypothesis testing problem about the probability

matrix in noisy sorting model, we focus on the inference problem about the permutation.

We consider the confidence set construction problem for the permutation in the permuta-

tion based model with different settings. One challenge in the study of the confidence set

construction problem is to find a suitable criterion in judging the confidence set procedure.

We will show how to properly set up the confidence set construction problem and propose

the near optimal confidence set construction procedure in different kinds of permutation

based model. We also study the hypothesis testing problem of permutation in the current

section. As the close relationship between the confidence set construction problem and the

hypothesis testing problem, we can see that the results are similar for both problems in the
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same setting.

3.1.1 Organization

The rest of the chapter organizes as follows. In Section 3.3.2 we mainly talked about

the hypothesis testing problem for the probability matrix. In Section 3.3.1, we consider

the confidence set construction problem under different settings. The hypothesis testing

problem for the permutation is studied in Section 3.3.2. We have more discussion to the

relationship between the inference problem and estimation problem for permutation based

model in Section 3.4. The proofs of the results in the current chapter will be in Section 3.5.

3.2 Statistical Inference for Probability Matrix

In this section, we discuss the inference problem in of probability matrix in the noisy sorting

model. The noisy sorting model is first proposed by Braverman and Mossel (2008). The

noisy sorting model is often used in the pairwise comparison problem. The estimation to

the permutation problem is studied in in Mao et al. (2017), where the minimax rate for the

estimation to the permutation in the noisy sorting problem is constructed .

We state the the noisy sorting model as follows. Fix an unknown permutation π∗ ∈ Sn,

which determines the underlying order of n items. More precisely, π∗ orders the items from

the weakest to the strongest, so that item i is in the π∗(i)-th weakest among the n items.

For a fixed λ ∈ (0, 1/2), we define a class of matrices

Mn(λ) = {M ∈ [0, 1]n×n : Mi,i =
1

2
,Mi,j ≥

1

2
+ λ if i > j,Mi,j ≤

1

2
− λ if i < j

Mii =
1

2
,Mij +Mji = 1,∀k,Mik ≤Mjk if i < j}

To model pairwise comparisons with noisy sorting model, fix M ∈ Mn(λ) for some λ and

let Mπ∗(i),π∗(j) denote the probability that items i wins the comparison against item j, so

that a stronger item beats a weaker item with probability at least 1
2 + λ. As a result, λ

captures the signal strength of the problem. We assume that we observe the comparison

result to all possible pairs. To be more concrete, we have

Yij ∼ Ber(Mπ∗(i),π∗(j)), 1 ≤ i ≤ j
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with all Yij , 1 ≤ i, j ≤ n are independent random variables. Let Y = (Yij)1≤i,j≤n.

Though the estimation problem in noisy sorting model has been well studied, little is known

to the inference problem in the noisy sorting problem. One natural question for the inference

problem is to establish the minimax detection level of the signal strength of λ.

We consider the problem of testing the following statistical problem.

H0 : M = M0 vs. Ha : M ∈Mn(λ) (3.1)

where M0 ∈ Rn×n is the matrix defined as M0(i, j) = 1
2 ,∀i, j ∈ Rn×n.

It is clear that the difficulty of the testing problem between H0 and Ha depends on λ. If λ

is large, the problem would be easy, while the problem becomes difficult when λ is small.

Our interest is to find the boundary that separates the testable regime. We want to know

the smallest signal strength λ such that the hypothesis testing problem (3.1) is solvable.

In Section 3.2.1, we introduce the testing procedure to the hypothesis testing problem. We

first introduce the test statistic, followed by the study of the testing procedure to show that

the hypothesis testing problem can be solved if λ & n−
3
4 . Then Section 3.2.2 shows that

the hypothesis testing problem is impossible to solve if λ . n−
3
4 .

3.2.1 Test Statistic

For 1 ≤ i ≤ n, let Si =
∑n

j=1 Yij . Define test statistic

W =
4

n

n∑
i=1

(Si −
n

2
)2 (3.2)

The test statistic W shows the deviation of the observation Y from the true probability

matrix M0. We can see that under the null, we have ESi = n
2 ,∀i ∈ [n]. In this sense, W

comes from the variance of the model. Under the alternative, for most i ∈ [n], ESi 6= n
2 . In

that scenario, not just the variance but also the bias contributes to W . To our intuition,

we should reject the null hypothesis if W is large.

We specify our rejection region as follows. We reject the null hypothesis if and only if

|W − n| ≥ C
√
n log 2

α , where α ∈ (0, 1) is a constant to control the Type I error and C is a
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constant. We could define the test as the following

ψ(Y ) = I(|W − n| ≥ C
√
n log

2

α
) (3.3)

Here, I(·) is the indicator function. Then we have the following result for the testing

procedure (3.3).

Theorem 7. (i)With suitable choice of constant C,the testing procedure (3.3) is a level-α

test to the testing problem (3.1).

(ii)For any given constant 0 < β < 1, if the signal strength λ satisfies λ ≥ 8
√
C((log 2

α)1/4 +

(log 2
1−β )1/4)n−

3
4 , the power of the test (3.3) is at least β. That is, ∀π∗ ∈ Sn,M∗ ∈Mn(λ)

Eπ∗,M∗ψ ≥ β

Theorem 7 shows that if λ ≥ O(n−
3
4 ), the testing procedure (3.3) can solve the testing

problem (3.1) properly. It can control both the Type I and Type II error, which shows it

has good performance under the null and alternative.

One interesting question to ask is that what happens in the case when λ is smaller than

O(n−
3
4 ). We will show in the following that the rate n−

3
4 is optimal: if λ < cn−

3
4 for some

constant c, to solve the testing problem (3.1) is impossible.

3.2.2 Lower Bound

Now we turn to the establishment of lower bound for λ. Theorem 7 shows that the testing

procedure (3.3) works well under both null and alternative cases if λ is at least of order

n−
4
3 . In the following theorem, we will see that the rate n−

4
3 is indeed optimal.

Theorem 8. For given 0 < α < 1 and any β ∈ (α, 1), there exists a constant c = c(α, β),

such that if the signal strength λ satisfies

λ ≤ cn−
3
4
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for any level-α test ψ to the testing problem (3.1), we have

inf
π∗∈Sn,M∗∈Mn(λ)

Eπ∗,M∗ψ ≤ β

To construct of the lower bound, we try to construct a mixture in the alternative, so that

the mixture is close enough to the null. As we can see, for all possible matrices in Mn(λ),

the following matrix M∗n(λ) is the closest one to the null probability matrix M0, where

M∗n(λ) is defined as

[M∗n(λ)]ij =



1
2 + λ, if i > j,

1
2 − λ, if i < j,

1
2 , if i = j.

(3.4)

We consider the mixture probability in the case when the probability matrix to be M∗n(λ)

and the permutation to be a random permutation chosen from all permutation in Sn. We

can prove that with the above construction, the mixture of the probability distribution

cannot be distinguished from the null hypothesis. So the hypothesis testing problem is

impossible to solve. We leave the details of the proof fin Section 3.5.

Theorem 8 shows that for λ . n−
3
4 , the hypothesis testing problem (3.1) is not solvable.

Together with the upper bound in Theorem 7, it characterizes the separation boundary

between the testable and non-testable regions for λ. This separation boundary can then

be used as a minimax benchmark for the evaluation of the performance of a test in this

asymptotic regime.

3.3 Statistical Inference for Permutation

In the previous section, we discuss the statistical inference problem for the probability

matrix. In this section, we study the inference problem for the permutation. We will

consider different kinds of inference problems of permutations, including hypothesis testing

and confidence set construction problems, in the current section.
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We begin the section with introducing generalized permutation based model. In the previous

section, we focus more in the pairwise comparison problem, which is one of the specific

case for permutation based problems. In the current section, to gain more insight for the

permutation related data, we study the generalized permutation based model.

Consider a crowdsourcing system that consists of d workers and n questions. We assume

every question has two possible answers, denoted by {−1, 1}, of which exactly one is correct.

Without loss of generality, we assume that the correct answer to the question is always 1.

We model the question-answering problem via an unknown matrix M∗ ∈ [0, 1]n×d whose

(i, j)-th entry, M∗ij , represents the probability that worker i answers question j correctly.

Otherwise, with probability 1−M∗ij , worker i gives the incorrect answer to question j.

We denote the response of worker i to question j by a variable Yij ∈ {−1, 1}, where we set

Yij to the answer (−1 or 1) provided by the worker. We also make the standard assumption

that given the values M , the entries of Y are all mutually independent. In summary, we

observe a matrix Y which has independent entries distributed as

Y =


1,with probability Mij

−1,with probability 1−Mij

(3.5)

Several assumptions to the structure of the model is necessary. Otherwise, our observation

becomes independent Bernouli random variables, which will not provide us much informa-

tion to the true probability matrix M . For permutation based model, we usually assume

that there exists a specific order for the abilities of the workers π : [d] → [d], such that if

π(i) < π(j), ∀k ∈ [n], we have

Mi,k ≥Mj,k (3.6)

The model we construct above is called the permutation based model for the crowdsourcing

problem. In this section, we are going to consider inference problems within this framework.

For the permutation based model, we introduce the following parameter space Cperm(n, d).

First we introduce the parameter space Cperm(n, d, π). Let Cperm(n, d, π) defined by
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Cperm(n, d, π) = {M ∈ [0, 1]n×d : Mi,π−1(1) ≥Mi,π−1(2) ≥ · · ·Mi,π−1(d), ∀i,

min
1≤k≤d−1

n∑
i=1

(Mi,π−1(k) −Mi,π−1(k+1))
2 > 0}

We define the parameter space Cperm(n, d) as the union of all Cperm(n, d, π) for all permu-

tations π on [d]

Cperm(n, d) = ∪π∈SdCperm(n, d, π)

The parameter space Cperm(n, d) is important in the permutation based model, as it char-

acterizes the basic property in the model. We will study the problem in Cperm(n, d)

and some other parameter spaces which are closely related to Cperm(n, d). In the cur-

rent section, we focus on the case when n and d has similar magnitude. We assume that

max{log n, log d} < min{
√
n,
√
d} throughout the section.

3.3.1 Confidence Set Construction for Permutation

We begin with the discussion of confidence set construction problem in the permutation

based model. We consider the following question: how to construct a confidence set for the

best worker? More specifically, we want to construct a set Ŝ in [d] with our observation,

such that with high probability, π−1(1) ∈ Ŝ.

One important issue with confidence set construction problem is that how to define the

smallest set with certain coverage probability. One natural way to define a set to be

small is that the expect size of the confidence set is small. We try to solve the prob-

lem inf Ŝ∈CS(α,Cperm(n,d)) supM∈Cperm(n,d) EM |Ŝ|, where CS(α,Cperm(n, d)) is the set of all

confidence sets with coverage probability at least 1− α .

Unfortunately, the above way to find the best confidence set is not good. This is because

the simple way does not capture the characteristic of confidence set construction problem.

If we consider the problem with the above rule to determine the optimal confidence set
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construction procedure, it will lead to the result

inf
Ŝ∈CS(α,Cperm(n,d))

sup
M∈Cperm(n,d)

EM |Ŝ| = O(d) (3.7)

This result is trivial, as any procedure can reach the upper bound. It suggests us that we

should consider the problem in a different way. Instead, we are going to introduce different

criteirons for the confidence set construction. Though the criterion is not as natural as

the size of the confidence set, it does provide evidence to show us that it can help us to

understand the intrinsic difficulty of the problem.

The discussion for confidence set construction problem divides into three parts. We begin

by discussion the confidence set construction problem in Cperm(n, d), where we do not put

any assumptions in the parameter space. Then we will consider the same problem but with

unimodal assumption in Section 3.3.1. We close the discussion with the discussion of the

problem with s-modal assumption. We will see that the s-modal assumption describes the

intrinsic difficulty of the confidence set construction problem for permutation based model.

Confidence Set Construction in Cperm

Assume that M ∈ Cperm(n, d) and we observe Y ∼ Ber(M), i.e. we have independent

Bernouli random variables Yij ∼ Ber(Mij). We are going to construct the confidence set Ŝ,

such that

PM (π−1(1) ∈ Ŝ(Y )) ≥ 1− α

for any M ∈ Cperm(n, d). We define the set CS(Cperm(n, d), α) to be

CS(Cperm(n, d), α) = {Ŝ : Ŝ = Ŝ(Y ), ∀M ∈ Cperm(n, d),PM (π−1(1) ∈ Ŝ) ≥ 1− α)} (3.8)

CS(Cperm(n, d), α) is the set of all confidence set construction procedure which has the

coverage probability at least 1− α for all matrix in Cperm(n, d).

Before going deep into the confidence set construction problem, it is important to find a

suitable criterion for the choice of good confidence set construction procedure. Our goal

of confidence set construction procedure is to find a small confidence set. In this sense,
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the natural way to find the best confidence set construction procedure Ŝ which minimizes

supM∈Cperm(n,d) EM |Ŝ|.

However, we find that

sup
M∈Cperm(n,d)

EM |Ŝ| = O(d) (3.9)

∀Ŝ ∈ CI(α,Cperm(n, d)). So it is not reasonable to simply use the size of the confidence set

as the criterion to choose the optimal confidence set construction procedure.

To illustrate the criterion of choosing the optimal procedure in confidence set construc-

tion, we introduce the following definition of optimal radius, which help us to describe the

difficulty in the construction of the confidence set in the current problem.

For M ∈ Cperm(n, d), assume that π(M) is the corresponding permutation to the columns

of the matrix. Let γ(M, r) to be defined as

γ(M, r) = |{j ∈ [d] :

n∑
i=1

(Mi,π−1(1) −Mi,j)
2 ≤ r}| (3.10)

We would use γ(M, r) as a criterion to choose the best confidence set construction procedure.

If a confidence set construction procedure is good, the expected size of the confidence set

should be upper bounded by γ(M, r) for some specific r. The confidence set construction

procedure is good if the radius r we need to upper bound the expected size is small. The

major difference between the parameter space we use with simply considering the expected

size is the radius parameter r. This parameter shows the difficulty of the construction of

confidence set. It can measure the size of the confidence set and the size of the confidence

set relate to the same radius may be different, according to the difficulty of the problem.

Now we introduce the confidence set construction procedure for the parameter space Cperm(n, d).

Consider the following confidence set construction procedure. We construct the confidence

set for the best worker as
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Ŝ1 = {j ∈ [d] : max
i∈[d]

∑
k∈[n]

Yik − Yjk ≤
√
n log

d

α
} (3.11)

The following theorem shows that the above procedure Ŝ1 is optimal to the confidence set

construction procedure according to our criterion.

Theorem 9. (i)Ŝ1 ∈ CS(Cperm(n, d), α). The expected size of Ŝ1 can be controlled by

EM |Ŝ1| ≤ 1 + γ(M, 2
√
n log d), (3.12)

∀M ∈ Cperm(n, d).

(ii)For any confidence set construction procedure Ŝ, such that

PM (π−1(1) ∈ Ŝ(Y )) ≥ 1− α

for any M ∈ Cperm(n, d). We can find M ∈ Cperm(n, d), such that

γ(M,

√
n log d

40
) = 1,EM |Ŝ| ≥

d

2
(3.13)

Theorem 9 shows that the confidence construction procedure Ŝ1 is optimal for the parameter

space Cperm(n, d). It shows that for any confidence set construction procedure should have

a expected size at least as large as the number of workers whose distance is no more than

O((n log d)
1
4 ) from the best worker. Here, the distance between different workers is defined

as the l2 distance of the vectors corresponding to the workers. Otherwise, it is impossible

that the confidence set construction procedure would have a correct coverage probability in

Cperm(n, d). In this sense, the confidence construction procedure Ŝ1 is optimal.

Confidence Set Construction with Unimodal Assumptions

Previously, we discuss the confidence set construction problem in Cperm(n, d). We also

discussed about the unimodal assumption in the estimation of pairwise comparison problem

before. One question raises after the study to the confidence set construction problem in
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Cperm(n, d): whether the confidence set construction problem is different with unimodal

assumption?

We consider the same confidence set construction problem with the unimodal assumption,

to see whether it makes significant difference in the confidence set construction problem. In

fact, we can see with the unimodal assumption, the size of the confidence set can be much

smaller.

First we define the parameter space with unimodal assumption Cuperm(n, d, π).

Let Cuperm(n, d, π) defined by

Cuperm(n, d, π) = {M ∈ Cperm(n, d, π) : ∀j, j′, such thatπ(j) < π(j′), {ωj,j′(M)} is a unimodal sequence}

where {ωj,j′(M)} is defined as

ωj,j
′
(M)(i) = Mij −Mij′ , i ∈ [n].

For all permutations π on [d]

Cuperm(n, d) = ∪π∈SdC
u
perm(n, d, π)

The confidence set construction problem we consider here is identical with the problem we

consider before. The only difference is that now we consider the parameter space Cuperm(n, d)

instead of Cperm(n, d). Similarly, we define the set CS(Cuperm(n, d), α) to be

CS(Cuperm(n, d), α) = {Ŝ : Ŝ = Ŝ(Y ),∀M ∈ Cuperm(n, d),PM (π−1(1) ∈ Ŝ) ≥ 1−α)} (3.14)

We introduce the construction procedure Ŝ2 as follows to be the confidence set construction

procedure for the parameter space Cπperm(n, d).
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Define

Tmin(j) = min
k∈[d],T∈A

∑
i∈T Yi,j − Yi,k√

|T |

where A is a subclass of subsets in [n], defined as

A = {{a, a+ 1, ..., b}|1 ≤ a < b ≤ n}.

The confidence set construction procedure Ŝ2 is

Ŝ2 = {j ∈ [d] : Tmin(j) ≥ −2

√
2 log(

2nd2

α
)} (3.15)

We can show that the confidence set construction procedure Ŝ2 is nearly optimal.

Theorem 10. (i)Ŝ2 ∈ CS(Cuperm(n, d), α). The expected size of Ŝ2 can be controlled by

EM |Ŝ2| ≤ 1 + γ(M, 9 log n log
nd2

α
), ∀M ∈ Cuperm(n, d). (3.16)

(ii)For any confidence set construction procedure Ŝ, such that

PM (π−1(1) ∈ Ŝ(Y )) ≥ 1− α (3.17)

for any ∀M ∈ Cuperm(n, d). We can find M ∈ Cuperm(n, d), such that

γ(M,
1

25
log(nd2)) = 1,EM |Ŝ| ≥

d

2
. (3.18)

Theorem 10 shows that the confidence set construction procedure Ŝ2 is optimal up to

a log factor for the parameter space Cuperm(n, d). It shows that for the optimal confi-

dence set, it should include all workers whose distance to the best worker is at most
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O(
√

log d+ log n). Otherwise, it cannot promise the correct coverage probability in the

parameter space Cuperm(n, d). Meanwhile, the expected size of Ŝ2 can be controlled by the

number of workers whose distance is no more than O(
√

log n(log d+ log n)) to the best

worker. It means that the confidence set construction procedure is nearly optimal, up to a

log factor of the radius.

Comparing the results in Theorem 9 and Theorem 10, we can clearly see that the confidence

set construction problem is much easier with the unimodal assumption, in the sense that the

optimal size of the confidence set is smaller. However, in many cases we do not really know

whether the unimodal assumption is true or not. It remains unknown when can we assume

the unimodal assumption is true. We will continue the discussion with a more generalized

assumption than the unimodal assumption.

Multimodal Assumption and Adaptivity

We have discussed the confidence set construction problem in two different parameter spaces.

In the first part of Section 3.3.1, we discussed the problem when we do not input further

assumption other than the monoticity and construct the optimal confidence set construction

procedure for Cperm(n, d). Then we assume the unimodal difference assumption is true and

study the problem for Cuperm(n, d).

We are moving forward and consider a more general setting than the setting we considered

in Section 3.3.1 and Section 3.3.1. We consider the following parameter space for the

confidence set construction problem.

Let

Cmperm(s, n, d, π) =

{M ∈ Cperm(n, d, π) : ∀j, j′, such thatπ(j) < π(j′), {ωj,j′(M)} is a s -modal sequence}

(3.19)

where {ωj,j′(M)} is defined as

ωj,j
′
(M)(i) = Mij −Mij′ , i ∈ [n].
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Here, the s-modal sequence is defined as follows.

Definition 3. For a sequence {ai}ni=1, we say {ai}ni=1 is a s-modal sequence if and only if

the there exists 1 = α0 < α1 < · · · < αs = n, such that ∀i ∈ [s], {aj}αij=αi−1 is a unimodal

sequence.

We define the s-modals permutation class to be

Cmperm(s, n, d) = ∪SdC
m
perm(s, n, d, π) (3.20)

It is not difficult to see that the parameter space Cperm(n, d) is a special case of Cmperm(s, n, d).

We consider the confidence set construction problem for the parameter space Cmperm(s, n, d).

The confidence set construction procedure we propose here is the procedure Ŝ2, which is the

one we propose for the parameter space Cuperm(n, d). The following theorem shows that the

confidence set construction procedure Ŝ2 is nearly optimal to the confidence set construction

problem in Cmperm(s, n, d).

Theorem 11. (i)Ŝ2 ∈ CS(Cmperm(s, n, d), α). The expected size of Ŝ2 can be controlled by

EM |Ŝ2| ≤ 1 + γ(M, 9s log n log
nd2

α
),∀M ∈ Cmperm(s, n, d). (3.21)

(ii)For any confidence set construction procedure Ŝ, such that

PM (π−1(1) ∈ Ŝ(Y )) ≥ 1− α

for any ∀M ∈ Cmperm(s, n, d). We can find M ∈ Cmperm(s, n, d), such that

γ(M,
s

25
log(

nd log 4
3

2s2 log n
)) = 1,EM |Ŝ| ≥

d

2
.

if s < c
√

min{n,d}2
logn for a constant c.

Theorem 11 shows that the confidence set construction procedure Ŝ2 is not just optimal
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under the unimodal assumption, it is also optimal up to a log factor for the s-modal assump-

tions. This shows that the s-modal assumptions plays an important role for the confidence

set construction problem. If the true matrix M is in the parameter space Cmperm(s, n, d),

no other confidence set construction procedure can do much better than the confidence

set construction procedure Ŝ2. More importantly, within the confidence set construction

procedure, we do not need any information for the crucial parameter s.

Theorem 11 tells us that the parameter s can describe the difficulty of the confidence

set construction problem well. Compare with the result in Theorem 9, the above results

gives much detailed characteristic of the problem than the parameter space Cperm(n, d).

It unveils the reason for us to study the problem with multimodal assumption. For the

unimodal assumption, we do not know when to assume it is true in practice. For multimodal

assumption, as the confidence set construction procedure Ŝ2 is optimal and adaptive in the

parameter space Cmperm(s, n, d). The adaptivity makes the mulimodal assumption more

useful to the confidence set construction problem in real applications.

3.3.2 Hypothesis Testing for Permutation

We discussed the confidence set construction problem for permutation based model in Sec-

tion 3.3.1. In fact, similar result can be constructed for the hypothesis testing problem,

because of the duality between the hypothesis testing problem and confidence set construc-

tion problem. In the current section, we consider the following hypothesis testing problem

H0 : π(i0) = 1 vs. Ha : π(i0) 6= 1, ‖µπ−1(1) − µi0‖2 ≥ ν (3.22)

We will focus in the case with unimodal assumption M ∈ Cuperm(n, d).

Upper Bound in Hypothesis Testing

We begin with introducing the hypothesis testing procedure to the testing problem (3.22).

The test statistic we used in the hypothesis testing is

Tmin = min
j∈[n],T∈A

∑
k∈S Yk,i0 − Yk,j√

|T |
(3.23)
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where A is a subclass of subsets in [n], defined as

A = {{a, a+ 1, ..., b}|1 ≤ a < b ≤ n}.

For any α ∈ (0, 1), a level-α test based on Tmin is given by

ψ = I(Tmin ≤ −2

√
2 log(

2nd2

α
)) (3.24)

Here, I(·) is the indicator function. We reject the null hypothesis if and only if Tmin ≤

−2
√

2 log(2nd2

α ).

First, we consider the performance of the test under null hypothesis. We prove that the

test (3.24) is a level-α test.

Theorem 12. The testing procedure (3.24) is a level-α test to the hypothesis testing problem

(3.22). We have that

sup
M∈H0

PM (ψ = 1) ≤ α

.

Theorem 12 shows that if the null hypothesis is true, then with probability at least 1− α,

we do no reject the null hypothesis. Then we turn to consider the alternative case. As we

previously mentioned, the key factor to determine the difficulty of the hypothesis testing

problem is the gap ν between the best worker to the worker i0 over the alternative. If ν is

large, the problem should be easy to solve, while if ν is small, the testing problem becomes

impossible. The following result quantifies how large the gap ν should be to make the test

(3.24) have good performance over the alternatives.

Theorem 13. If ν ≥
√

28(log d+ 1) log 2nd2

α , the Type II error of the test can be controlled

by α, we have

sup
M∈Ha,ν

PM (ψ = 0) ≤ α

Theorem 12 and Theorem 13 combined showed that the testing procedure (3.24) works both
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under the null and alternatives if ν ≥
√

28(log d+ 1) log 2nd2

α .

Lower Bound

Previously, we discuss the hypothesis testing procedure for the problem. Now we turn to

consider the lower bound part of the hypothesis testing problem. We establish a lower bound

for the separation ν and prove that the hypothesis testing problem (3.22) is impossible to

solve in the following scenario.

Theorem 14. If ν ≤
√

1
25(log n+ 2 log d), for any test ψ = ψ(Y ) to the hypothesis testing

problem we have

sup
M∈H0

PM (ψ = 1) + sup
M∈Ha,ν

PM (ψ = 0) ≥ 1

2

The proof to Theorem 14 comes directly from the proof to Theorem 10. Theorem 14 shows

that if ν ≤
√

1
25(log n+ 2 log d), no test performs well in the hypothesis testing problem

(3.22). The lower and upper bounds together characterize the separation boundary of the

hypothesis testing problem (3.22). Our testing method (3.24) can solve the problem when

ν ≥
√

28(log d+ 1) log 2nd2

α , while ν ≤
√

1
25(log n+ 2 log d) the problem is impossible to

solve. A log gap exists between the lower and upper bound.

3.4 Discussion

In Mao et al. (2018), the authors discuss the estimation problem in the permutation based

model. They focus on estimating a bivariate isotonic matrix with unknown permutations

acting on its rows and columns. In the paper, the authors mainly discussed the problem in

Cperm. The assumption made in the paper about the matrix structure is that the matrix

is monotonic along both directions. We can see the result is optimal in terms of max-row-

norm approximation error but suboptimal in terms of Frobenius estimation error. But with

suitable assumption on the matrix class, we can see the picture is different. If we assume

the unimodal assumption is true, the corresponding estimation error is much smaller than

the case without unimodal assumption. The estimation results are established in Chapter

2. The results for estimation in different parameter space are listed in Table 1. Here, we

use the notation Õ to denote the rate of the error up to poly(log) factors.

In the current chapter, we discuss the inference problem in the similar framework. We can
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Class Cperm Class Cuperm
Lower bounds Efficient Algorithm Lower bounds Efficient Algorithm

Frobenius
estimation error

Ω(n) Õ(n5/4) Ω(n) Õ(n)

Max-row-norm
approximation error

Ω(n1/4) Õ(n1/4) Ω(1) Õ(1)

Table 1: Estimation Rates for Different n×n Matrices Classes of Permutation Based Model.

see that the unimodal assumption and s-modal assumption makes a significant difference

for statistical inference problem in permutation-based model. The results of the inference

problem shows that the estimation problem and the inference problem are highly correlated.

If we compare the result of the optimal radius for the confidence set construction, we can see

that it compromises with the max-row-norm approximation error in Table 1. It shows highly

similarity between the result for optimal estimation with max-row-norm approximation error

and the corresponding inference problem.

3.5 Proof

3.5.1 Proof to Theorem 7 and Theorem 8

First we prove Theorem 7.

Proof. We begin the proof with part (i). To prove that the testing procedure is a level-α

test, we will prove that under the null,

P(|W − n| ≥
√
n log

2

α
) ≤ α (3.25)

To prove it, we should first get the expectation of W under the null, which is

EW =
4

n

n∑
i=1

E(Si −
n

2
)2 = n (3.26)

Then we have that

‖Ai‖ψ1 =
4

n
‖(Si −

n

2
)2‖ψ1

≤ 4

n
‖Si −

n

2
‖2ψ2

= 1

(3.27)
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where Ai = 4
n(Si − n

2 )2. With Berstein’s Inequality, we have that there exists a constant

C ′, such that

P(|
n∑
i=1

Ai − n| ≥ t)

≤2 exp(−C ′min(
t2

n
, t))

=2 exp(−C ′t2α) = α

(3.28)

where t =
√
ntα and tα =

√
1
C′ log 2

α . So part (i) is proved with the selection C =
√

1
C′ .

Then we turn to the part (ii) of Theorem 7, which considers the performance of the testing

procedure under the alternative. To prove the performance under the alternative, we have

that for 1 ≤ i ≤ n
4 , we have ESi ≥ n

2 + nλ
2 , which implies that

EW =
4

n

n∑
i=1

E(Si −
n

2
)2

≥ 4

n

n

4
(
nλ

2
)2 =

n2λ2

4

(3.29)

With the Berstein Inequality and the assumption on λ, we have that

P(|W − n| < C

√
n log

2

α
) ≤ β (3.30)

which completes the proof to part (ii).

Now we trun to the proof of Theorem 8.

Proof. Let P0 to be the probability distribution related to the probability matrix M0 and

the permutation π = id.

Let Pπ to be the probability distribution related to the probability matrix M∗λ and the

permutation π. We define that

Pa =
1

n!

∑
π∈Sn

Pπ (3.31)

We will prove that it is impossible to distinguish P0 and Pa. We are going to calculate the
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χ2 distance between P0 and Pa.

χ2(P0,Pa) =

∫
p2
a

p0
− 1

= Eπ1,π2
∫
pπ1pπ2
p0

− 1

= Eπ1,π2(1 + 4λ2)(
n
2)−dKT (π1,π2)(1− 4λ2)dKT (π1,π2) − 1

≤ Eπ1,π2(1 + 4λ2)(
n
2)−dKT (π1,π2) − 1

≤ E exp(4λ2X)

(3.32)

where X is a random variable, such that X =
(
n
2

)
− 2dKT (π1, π2), π1, π2 ∼ U(Sn).

Let Aij , 1 ≤ i, j ≤ n is defined as follows

Ai,j =


1, if (i, j)has the same order in π1 and π2

−1, otherwise

(3.33)

From the definition of Aij , 1 ≤ i, j ≤ n, we have that X =
∑

i,j Ai,j . Define Bt, 1 ≤ t ≤ n−1

to be

Bt =
∑

i−j≡t (mod n)

Ai,j (3.34)

So we have ‖Bi‖ψ2 ≤
√
n and ‖X‖ψ2 = ‖

∑n−1
t=1 Bt‖ψ2 ≤ n

√
n.

Combine with (3.32), we have E exp(4λ2X) ≤ exp(16λ4n3) and TV (P0,Pa) ≤
√

exp(16λ4n3)− 1,

which completes the proof with the choice c = (log(1+(β−α)2))1/4

2 .

3.5.2 Proof to Theorem 9

Proof. First we prove part (i) in Theorem 9.

Let M to be the true probability matrix. From our assumption, we know that M ∈

Cperm(n, d). Let π to be the corresponding permutation to the matrix, such that

Mi,π−1(1) ≥Mi,π−1(2) ≥ · · ·Mi,π−1(d) (3.35)

67



Without loss of generality, we can assume that π−1(1) = 1.

We prove that with probability at least 1− α, π−1(1) ∈ Ŝ1.

This is because

PM (i /∈ Ŝ1)

≤
d∑
j=2

PM (
n∑
i=1

Yij − Yi1 ≤
√
n log

d

α
)

≤
d∑
j=2

PM ((
n∑
i=1

Yij − Yi1)− (
n∑
i=1

Mij −Mi1) ≤
√
n log

d

α
)

<d exp(− log
d

α
) = α

(3.36)

which means that

PM (1 ∈ Ŝ1) ≥ 1− α (3.37)

Then we turn to the upper bound construction for the size of the confidence. For any given

j ∈ [d], we have Mi,j ≤Mi,1 from our assumption. Using Hoeffding’s inequality, we have

PM (|(
n∑
i=1

Yik − Yij)− (
n∑
i=1

Mik −Mij)| ≥ t) ≤ 2 exp(− t
2

n
) (3.38)

∀t > 0, k ∈ [d].

We are going to prove that if
∑n

i=1Mi1 −Mij ≥ 2
√
n log d, then PM (j ∈ Ŝ1) ≤ 1

d .

This is because

PM (j ∈ Ŝ1)

≤PM (

n∑
i=1

Yi1 − Yij ≤
√
n log d)

=PM ((
n∑
i=1

Yi1 − Yij)− (
n∑
i=1

Mi1 −Mij) ≤
√
n log d− (

n∑
i=1

Mi1 −Mij))

≤PM (|(
n∑
i=1

Yi1 − Yij)− (
n∑
i=1

Mi1 −Mij)| ≥
√
n log d)

≤ exp(− log
d

α
) <

1

d

(3.39)
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So for all j ∈ [d], which satisfies
∑n

i=1Mi1 −Mij ≥ 2
√
n log d, we have PM (j ∈ Ŝ1) ≤ 1

d .

It yields that if
∑n

i=1(Mi1 −Mij)
2 ≥ 2

√
n log d, we have

∑n
i=1Mi1 −Mij ≥

∑n
i=1(Mi1 −

Mij)
2 ≥ 2

√
n log d. Therefore, ∀j /∈ {j ∈ [d] :

∑n
i=1(Mi,π−1(1) −Mi,j)

2 ≤ 2
√
n log d}.

The upper bound for the expected size of the confidence set Ŝ1 can be constructed as follows

EM |Ŝ1| =
∑
j∈[d]

PM (j ∈ Ŝ1)

=
∑

j∈NM (2
√
n log d)

PM (j ∈ Ŝ1) +
∑

j /∈NM (2
√
n log d)

PM (j ∈ Ŝ1)

≤ 1 + γ(M, 2
√
n log d)

(3.40)

which completes the proof to part (i). Then we turn to the proof to part (ii), which is the

lower bound part to the theorem.

To prove part (ii), we consider the following hypothesis testing problem

H0 : M = M0 vs. Ha : M ∼ Pa

where M0 ∈ Rn×d is a matrix, such that M0(i, j) = 1
2 , while the probability distribution Pa

is a defined on the parameter space Cperm(n, d) as follows.

Let W = {T ⊂ n : |T | = l} to be the set of all subsets in [n] with cardinality blc. Thus,

|W | =
(
n
l

)
. We will choose l in the end of the proof. For j ∈ [d] and T ∈ W , we define the

matrix Mj,T as

Mj,T = M0 + δNj,T (3.41)

where
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Nj,T (i, k) =


1, if i = j, k ∈ T

0, otherwise

(3.42)

and δ is a fixed constant which we are going to choose later.

Then the probability distribution Pa is defined as

M ∼ Pa ⇐⇒ M = Mj,T , j
unif∼ [d], T

unif∼ W

Let p0 to be the corresponding probability density function for the observation Y when

M = M0. For j ∈ [d] and T ∈ W , let pj,T to be the corresponding probability density

function. Let pa to be the corresponding probability density function when M ∼ Pa. From

our construction, we have

pa =
1

d
(
n
l

) ∑
j∈[d]

∑
T∈W

pj,T (3.43)

We are going to calculate the χ2 distance between the null hypothesis and alternative

hypothesis
∫ p2a
p0
− 1. We have that

∫
p2
a

p0
− 1

=E
j1,j2

unif∼ [d],T1,T2
unif∼ W

∫
pj1,T1pj2,T2

p0
− 1

(3.44)

We can see that if j1 6= j2,
∫ pj1,T1pj2,T2

p0
− 1 = 0. It implies that

E
j1,j2

unif∼ [d],T1,T2
unif∼ W

∫
pj1,T1pj2,T2

p0
− 1

=
1

d
(E

j
unif∼ [d],T1,T2

unif∼ W

∫
pj,T1pj,T2

p0
− 1)

≤1

d
(E

T1,T2
unif∼ W

(1 + 5δ2)|T1∩T2| − 1)

=
1

d
(Eh∼Hypergeometric(n,l,l)(1 + 5δ2)h − 1)

(3.45)

To finish the proof, we need the following lemma.
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Lemma 11. Let J to be hypergeometric(p, k, k), then

Eexp(tJ) ≤ exp(
k2

p− k
)(1− k

p
+
k

p
exp(t))k

Lemma 11 is proved in (Cai et al., 2017, Lemma 3).

Using Lemma 11, we have for h ∼ Hypergeometric(n, l, l),

E(1 + 5δ2)h ≤ exp(
(2 + 5δ2)l2

n
) (3.46)

So we have

TV (p0, pa) ≤
√
χ2(p0, pa) ≤

√
1

d
(exp(

(2 + 5δ2)l2

n
)− 1)) <

1

3
(3.47)

all the above inequalities hold with the choice δ = 1
5 and l =

√
n log d
2+5δ2

.

This leads to

EM∼Pa |Ŝ| ≥d− dTV (p0, pa) >
d

2
(3.48)

So there exists at least one matrix satisfies the condition we constructed in the Theorem.

3.5.3 Proof to Theorem 10

Proof. We begin the proof with the coverage probability.

We are going to prove that with probability at least 1− α, we have π−1(1) ∈ Ŝ2. Without

loss of generality, we assume that π−1(1) = 1

Otherwise, if 1 /∈ Ŝ2, there exists k ∈ [d], T ∈ A, such that
∑

i∈T Yi,k−Yi,1 ≥ 2
√

2 log(2nd2

α ).

It yields that

PM (1 /∈ Ŝ2) ≤
d∑

k=2

∑
T∈A

PM (
∑
i∈T

Yi,k − Yi,1 ≥ 2

√
2 log(

2nd2

α
)) (3.49)
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With Hoeffding’s inequality, we have

d∑
k=2

∑
T∈A

PM (
∑
i∈T

Yi,k − Yi,1 ≥ 2

√
2 log(

2nd2

α
))

≤
d∑

k=2

∑
T∈A

PM ((
∑
i∈T

Yi,k − Yi,1)− (
∑
i∈T

Mi,k −Mi,1) ≥ 2

√
2 log(

2nd2

α
))

≤dn2 exp(−2

√
2 log(

2nd2

α
)) ≤ α

(3.50)

Combining (3.49) and (3.50), we have that PM (1 /∈ Ŝ2) ≤ α, which completes the proof to

the coverage probability of Ŝ2.

Then we turn to the proof to the size estimation (3.16). We will prove that if ‖µ1−µj‖22 ≥ u2,

PM (j /∈ Ŝ2) ≤ 1
d , where u = 3

√
log n log nd2

α .

Define a list of events

Ek,T = {|
∑
i∈T

Yi,j −Mi,j | >
√
|T |u} (3.51)

∀k ∈ [d] and T ∈ A.

With Hoeffding’s inequality, we have

PM ≤ 2 exp(−u2) (3.52)

Let E = ∪k∈[d],T∈A. Then

PM (E) ≤
∑

k∈[d],T∈A

PM (Ek,T ) ≤ n2d exp(−u2) (3.53)

We then prove that if Ec happens, ∀j ∈ [d] satisfies that

n∑
i=1

(Mi1 −Mij)
2 ≥ 9 log n log

nd2

α
(3.54)
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we will have j ∈ Ŝ2. Otherwise, if j /∈ Ŝ2, we have that

∑
i∈T

Yi1 − Yij ≤
√
|T |u (3.55)

∀T ∈ A. Let {ωi}ni=1 to be the sequence defined by

ωi = Mi1 −Mij (3.56)

From our assumption, we know that ωi ≥ 0 and ω is a unimodal sequence. Assume that j0

is the peak of the unimodal sequence, such that

ω1 ≤ · · · ≤ ωj0 , ωj0 ≥ ωj0+1 ≥ · · ·ωn (3.57)

(3.55) tells us that ∑
i∈T

ωi ≤
√
|T |u (3.58)

Let Il = {j0 + 2l−1, · · · , j0 + 2l − 1},where l = 1, ..., dlog2(n− j0)e − 1. So we have

n∑
i=j0+1

ω2
i

=

dlog2(n−j0)e∑
l=1

∑
i∈Il

ω2
i

≤1 +

dlog2(n−j0)e∑
l=2

∑
i∈Il

|Il−1|(
∑

i∈Il−1
ωi

Il−1
)2 ≤ 1 + 4 log n log

nd2

α

(3.59)

Similarly, we also have that
∑j0−1

i=1 ω2
i ≤ 1 + 4 log n log nd2

α .It yields that
∑n

i=1 ω
2
i , which is

a contradiction with
∑n

i=1 ω
2
i ≥ 9 log n log nd2

α . So that

PM (j ∈ Ŝ2) ≤ E ≤ 1

d
(3.60)

which concludes the proof of (i).

To prove the lower bound part of Theorem , we consider the following probability distribu-
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tion.

Let P0 to be the distribution of observation Y , such that M = M0. We define the probability

distribution Pa as follows.

Let η = log(nd2). Define the class of subsets W ⊂ 2[n] as

W = {{(k − 1)η + 1, ..., kη} : 1 ≤ k ≤ bn
η
c}} (3.61)

Thus, |W | = bnη c. For j ∈ [d] and T ∈W , we define the matrix Mj,T as

Mj,T = M0 + δNj,T (3.62)

where

Nj,T (i, k) =


1, if i = j, k ∈ T

0, otherwise

(3.63)

and δ is a fixed constant which we are going to choose later.

Then the probability distribution Pa is defined as

M ∼ Pa ⇐⇒ M = Mj,s, j
unif∼ [d], s

unif∼ [bn
η
c]

Let p0 to be the corresponding probability density function for the observation Y of prob-

ability distribution P0. For j ∈ [d] and T ∈W , let pj,T to be the corresponding probability

density function. Let pa to be the corresponding probability density function when M ∼ Pa.

From our construction, we have

pa =
1

dbnη c
∑
j∈[d]

∑
s∈bn

η
c

pj,T (3.64)

We are going to calculate the χ2 distance between the null hypothesis and alternative
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hypothesis
∫ p2a
p0
− 1.

∫
p2
a

p0
− 1 ≤Es1,s2,j1,j2

∫
(
pj1,s1pj2,s2

p0
− 1)

≤ 1

dbnη c
(1 + 5δ2)η ≤ exp(5ηδ2)

dbnη c

(3.65)

So if we choose δ = 1
5 , then we have

TV (p0, pa) ≤
√
χ2(p0, pa) ≤

1

3
(3.66)

which means that there exists M , such that

EM |Ŝ| ≥d− dTV (p0, pa) >
d

2
(3.67)

which concludes the theorem.

3.5.4 Proof to Theorem 11

Proof. The proof to the coverage probability part is identity to the part in the proof to

Theorem 10. We begin the proof with the size estimation part. We will prove that for

j /∈ γ(2sψ log n), there exists T0 ∈ A, such that

∑
i∈T0

Mi1 −Mij ≥ 2
√
|T0|ψ (3.68)

where ψ = 9
2 log nd2

α . Otherwise, let {ωi}ni=1 to be the sequence defined by

ωi = Mi1 −Mij (3.69)

From our assumption, we know that ωi ≥ 0. What’s more, we know that there exists

1 = α0 < α1 < · · · < αs = n, such that ∀i ∈ [s], {ωj}αij=αi−1 is a unimodal sequence.

Then we have
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n∑
i=1

(Mi1 −Mij)
2 =

n∑
i=1

ω2
i

≤
s∑

k=1

αk∑
i=αk−1

ω2
i

≤ 2sψ log n

(3.70)

which is a contradiction with our assumption that j /∈ γ(2sψ log n) So we have

PM (
∑
i∈T0

Yi1 − Yij <
√
|T0|ψ)

=PM ((
∑
i∈T0

Yi1 − Yij)− (
∑
i∈T0

Mi1 −Mij) + (
∑
i∈T0

Mi1 −Mij) <
√
|T0|ψ)

≤ PM ((
∑
i∈T0

Yi1 − Yij)− (
∑
i∈T0

Mi1 −Mij) < −
√
|T0|ψ)

≤ exp(−ψ) <
1

d

(3.71)

where the last inequality comes from the Hoeffding’s inequality. This concludes that

EM |Ŝ2| ≤ 1 + γ(9s log n log
nd2

α
) (3.72)

Now we turn to the proof of the lower bound part for Theorem 11.

Let P0 to be the distribution of observation Y , such that M = M0. We define the probability

distribution Pa as follows.

Let η = log.Let z = dnη e,u = d zse. Let V defined as

V = {K ⊂ [z] : |K| = u, forall 1 ≤ i ≤ u,K ∩ {(i− 1)s+ 1, ..., is} = 1} (3.73)

Let W defined as

W = {∪v∈V {(v − 1)η + 1, ..., vη}} (3.74)

For j ∈ [d] and T ∈W , we define the matrix Mj,T as
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Mj,T = M0 + δNj,T (3.75)

where

Nj,T (i, k) =


1, if i = j, k ∈ T

0, otherwise

(3.76)

and δ is a fixed constant which we are going to choose later.

Then the probability distribution Pa is defined as

M ∼ Pa ⇐⇒ M = Mj,s, j
unif∼ [d], T

unif∼ W

Let p0 to be the corresponding probability density function for the observation Y . For

j ∈ [d] and T ∈W , let pj,T to be the corresponding probability density function. Let pa to

be the corresponding probability density function when M ∼ Pa.

We are going to construct the upper bound for TV (p0, pa). The probability distribution

is defined on the space Rn×d. Let pi0 to be the probability distribution on the rows space

between (i− 1)s+ 1, ..., is for 1 ≤ i ≤ s+ 1. Similarly, we define pia for (i− 1)s+ 1, ..., is.

Then we have

pa =
1

dbnη c
∑
j∈[d]

∑
s∈bn

η
c

pj,T (3.77)

We are going to calculate the χ2 distance between the null hypothesis and alternative

hypothesis
∫ p2a
p0

.
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∫
p2
a

p0
− 1 =

∫
∏s+1
i=1

(pia)
2

pi0
− 1

=

s+1∏
i=1

(1 + (

∫
(pia)

2

pi0
− 1))− 1

≤
s+1∏
i=1

(1 +
η

dn
exp(5ηδ2))− 1

≤ exp(
2ηs2

dn
exp(5ηδ2))− 1

(3.78)

if we choose δ = 1
5 and η = 5 log(

nd log 4
3

2s2 logn
).

Then we have

TV (p0, pa) ≤
√
χ2(p0, pa) ≤

1

3
(3.79)

which means that there exists M , such that

EM |Ŝ| ≥d− dTV (p0, pa) >
d

2
(3.80)

This concludes the proof.

3.5.5 Proof to Theorem 12

Proof. We prove that with probability less than α, we reject the null hypothesis when it is

true.

This is because

PM (ψ = 1) =PM (Tmin ≤ −2

√
2 log(

2nd2

α
))

≤
∑
k

∑
T∈A

P(
∑
j∈T

Yk,i0 − Yk,j ≤ −2

√
2|T | log(

2nd2

α
))

(3.81)

From the assumption that H0 is true, we have π−1(i0) = 1. So we have Mk,i0 ≥Mk,j , which
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leads to the fact that

P(
∑
j∈T

Yk,i0 − Yk,j ≤ −2

√
2|T | log(

2nd2

α
))

≤P(
∑
j∈T

Yk,i0 − Yk,j − (Mk,i0 −Mk,j) ≤ −2

√
2|T | log(

2nd2

α
))

(3.82)

With Hoefdding’s inequality, we have

P(
∑
j∈T

Yk,i0 − Yk,j − (Mk,i0 −Mk,j) ≤ −2

√
2|T | log(

2nd2

α
)) ≤ α

nd2
(3.83)

Combining with (3.81), we get that

PM (ψ = 1) ≤ α (3.84)

which concludes the proof.

3.5.6 Proof to Theorem 13

Proof. For M ∈ Cuperm(n, d) ∩Ha,ν , we have

PM (ψ = 0) = PM (Tmin ≥ −2

√
2 log(

2nd2

α
))

≤ PM (min
T∈A

∑
k∈T Yk,i0 − Yk,i1√

|T |
≥ −2

√
2 log(

2nd2

α
))

(3.85)

We prove that if ν ≥
√

28(log d+ 1) log 2nd2

α , then there exists T ∈ A, such that

∑
k∈T

Mk,i1 −Mk,i0 ≥
√
|T |u (3.86)

where i1 = π−1(1) and u = 3
√

2 log(nd
2

α ).

Otherwise, we have that ∑
k∈T

Mk,i0 −Mk,i1 ≤
√
|T |u (3.87)
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∀T ∈ A. Let {ωi}ni=1 to be the sequence defined by

ωi = Mi1 −Mij (3.88)

From our assumption, we know that ωi ≥ 0 and ω is a unimodal sequence. Assume that j0

is the peak of the unimodal sequence, such that

ω1 ≤ · · · ≤ ωj0 , ωj0 ≥ ωj0+1 ≥ · · ·ωn (3.89)

(3.55) tells us that ∑
i∈T

ωi ≤
√
|T |u (3.90)

Let Il = {j0 + 2l−1, · · · , j0 + 2l − 1},where l = 1, ..., dlog2(n− j0)e − 1. So we have

n∑
i=j0+1

ω2
i

=

dlog2(n−j0)e∑
l=1

∑
i∈Il

ω2
i

≤1 +

dlog2(n−j0)e∑
l=2

∑
i∈Il

|Il−1|(
∑

i∈Il−1
ωi

Il−1
)2 ≤ u2 log n

(3.91)

Similarly, we also have that
∑j0−1

i=1 ω2
i ≤ u2 log n,.It yields that

∑n
i=1 ω

2
i ≤ 3u2 log n. So we

have
n∑
k=1

(Mk,j1 −Mk,j0)2 =
n∑
k=1

ω2
k ≤ 2 log nu2 + 1 ≤ ν2 (3.92)

which is a contradiction with our assumption. So that there exists T0 ∈ A, such that

∑
k∈T

Mk,i0 −Mk,i1 ≥
√
|T |u (3.93)
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With Hoeffding’s inequality, we have that

PM (ψ = 0) ≤ PM (min
T∈A

∑
k∈T Yk,i0 − Yk,i1√

|T |
≥ −2

√
2 log(

2nd2

α
))

≤ PM (

∑
k∈T0 Yk,i0 − Yk,i1√

|T |
≥ −2

√
2 log(

2nd2

α
)) ≤ α

(3.94)

which concludes the proof.
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4 Optimality of Local BP Algorithm in Stochastic Block

Model

4.1 Introduction

Network analysis is one of the popular topics in recent research. People from different

areas, including statistics (Gao et al. (2015); Zhang and Zhou (2015); Gao et al. (2016);

Abbe and Sandon (2015); Cai and Li (2015)), computer science (Mossel and Xu (2016);

Chen and Xu (2014)), physics (Decelle et al. (2011); Karrer and Newman (2011); Newman

et al. (2002) ), have done a lot of work to study network data analysis in the past years. In

network literature, community detection problem in stochastic block model (SBM) is the

most widely known and studied problem.

4.1.1 Stochastic Block Model

Holland et al. (1983) proposed SBM as a simple but useful network model. Since then,

people spent lots of effort to understand the community detection problem in this model.

In this chapter, we will consider the community detection problem of binary stochastic block

model. In this model, let n to be the number of vertices. For each vertex, it will be in the

first cluster with probability ρ and it will be in the second cluster with probability 1 − ρ.

For each pair of vertices x and y,

P(there exists an edge from x to y) =


a/n, if x and y are both in the first cluster

b/n, if x and y are in different clusters

c/n, if x and y are both in the second cluster

For different pairs of vertices, the connection between vertices are independent. We use

G = (V,E) to denote the model, where V is the set of the vertices and E is the set of the

edges in the graph. We use σ to denote the labels in the graph, i.e. for every vertex i in

the graph, σi = 1 if the vertex i is in the first cluster and σi = 0 if the vertex i is in the

second cluster.

Most of the research in this area focus in the balanced and symmetric case, i.e. ρ = 1
2 and

a = c. Generally speaking, these results can be partitioned more carefully through different
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recovery goals.

• Correlated recovery. In this kind of recovery problem, we hope to find a recovery

algorithm such that it performs better than random guess. Decelle et al. (2011) put

forward the striking conjecture about the sharp threshold for the regime in which

it is possible or not to get a correlated recovery, which is later proved by Mossel

et al. (2012, 2013) and Massoulié (2014). They proved that the correlated recovery is

possible if and only if (a− b)2 > 2(a+ b).

• Weak recovery(weak consistency). In this kind of recovery problem, we hope to find a

recovery algorithm, such that we can recover the network structure with at most o(n)

vertices to be misclassified. Mossel et al. (2015)and Yun and Proutiere (2014) proved

that we can recover the cluster structure with at most o(n) vertices to be misclassified

if and only if (a− b)2/(a+ b)→∞. Gao et al. (2015) further established the minimax

misclassification proportion rate and proposed a algorithm achieving this rate, which

gave us better understanding to the recovering than just weak consistency.

• Strong recovery(strong consistency). In this kind of recovery problem, we hope to

find a recovery algorithm, such that we can recover every single vertex in the network.

Abbe et al. (2016) and Mossel et al. (2015) focus this kind of problem, which en-

sures every vertex can be clustered correctly . They establish a sharp exact recovery

threshold for strong consistency set up.

If we only care about of the recovery proportion, we can use signal to noise ratio to describe

the picture above. The signal to noise ratio for binary stochastic block model is defined as

SNR =
(a− b)2

2(a+ b)

In the case SNR < 1, even to find a correlated recovery algorithm is impossible. In the case

SNR → ∞, we can find a weak recovery algorithm. The strong recovery problem cannot

be described using SNR. Though lot of work had been done in studying the clustering

problem in SBM, it remains unknown in the regime between correlated recovery and weak

recovery. If SNR is a constant larger than 1, we can find an algorithm which is better than

random guess, but even the best algorithm can only recover a proportion of the vertices.
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What is the best algorithm in this problem? How many vertices we can recover successfully

using the best algorithm? In this chapter, we mainly focus on this kind of problem, which

is called partial recovery problem.

Throughout this chapter, we further assume

a = b+
√
bµ, c = b+

√
bν, b→∞, b = no(1) (4.1)

as n → ∞, where µ and ν are both constants. Without loss of generality, we assume that

µ ≤ ν.

Mossel and Xu (2015) considered the partial recovery problem in the stochastic block model.

They provide a lower bound for the optimal expected misclassified fraction. They also

proved that a local algorithm, local belief propagation(BP) algorithm, can almost reach the

expected misclassified fraction. However, they only prove the optimality in the balanced

case. They conjectured that as long as µ = ν, local BP algorithm can reach the optimal

expected misclassified fraction as well.

The main contribution of this chapter are two folds. First, we prove the conjecture in Mossel

and Xu (2015). We prove that local BP algorithm can reach the optimality not just in the

balanced case. Furthermore,instead of simply proving this conjecture, we provide a much

larger regime, where the local BP algorithm can reach the optimal expected misclassified

fraction. We prove that as long as one of the following conditions holds, the local BP

algorithm can reach the optimal expected misclassified fraction. The condition includes

(i)ρ < 1
4 ,ε ≤ 1 (ii)1

2 < ρ ≤ 3
4 ,ε ≤ 3−4ρ

4ρ−1 , where ε = µ/ν. This result gives us better

understanding to the recovering problem in unbalanced case.

Second, in the regime where local BP algorithm may not achieve the optimal misclassified

fraction, we will prove that local BP algorithm can be used in correcting other algorithms.

If we have a satisfactory initializer, we can see this initializer plus local BP correction will be

an optimal algorithm. For the case we can prove the local BP algorithm is optimal, what we

prove indeed is that random guess plus local BP correction can achieve the optimal expected

misclassified fraction. For the case we cannot prove the local BP algorithm is optimal, the

general reason we cannot prove the optimality is we need better initializer than random
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guess. We will quantify the condition we need for the initializer in Section 4.4.

4.1.2 Organization of the Chapter

The rest of the chapter is organized as follows. Section 4.2 introduces the idea of local BP

algorithm. We study the optimality of local BP algorithm in Section 4.3. In Section 4.4, we

focus on the regime where we cannot prove the optimality in Section 4.3. We will illustrate

the condition we need for a initializer to make the optimal algorithm possible. A discussion

on the results in the current chapter is included in Section 4.5.

4.2 Galton-Watson Tree and Local BP algorithm

In this section, we introduce the idea of local BP algorithm. Before introducing the algo-

rithm itself, it is important for us to have a better understanding of the local structure of

stochastic block model. The introduction of Galton-Watson tree will give us both a clear

picture of the local structure of SBM and a direct intuition of local BP algorithm.

4.2.1 Galton-Watson Tree

Galton-Watson tree is one of the important tools we use in the study of stochastic block

model. The Galton-Watson tree is defined as follows.

Definition 4. For every vertex u, we denote by (Tu, τ) the Poisson two-type branching

process tree rooted at u satisfied the following conditions. Let

τu =


1, with probability ρ

0, with probability 1− ρ

Now recursively for each i in Tu, let Li to be the number of children of i, whose label is 1

and Mi to be the number of children of i, whose label is 0.

Given τi = 1, Li ∼ Poisson(ρa),Mi ∼ Poisson((1− ρ)b)

Given τi = 0, Li ∼ Poisson(ρb),Mi ∼ Poisson((1− ρ)c)

The importance of Galton-Watson tree in this problem comes from Lemma 12, which proves

the existence of the coupling between Galton-Watson tree and binary stochastic block model.

This lemma is proved in Mossel et al. (2012).
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Lemma 12. For t = t(n) such that bt = no(1), there exists a coupling between (G, σ) and

(T, τ) such that (Gt, σGt) = (T t, τT t) with probability converging to 1.

This lemma shows the local structure of the binary SBM model. Locally, a binary stochastic

block model can be seen as a Galton-Watson tree. This idea also inspires us to use local

BP algorithm to solve the partial recovery problem in SBM.

4.2.2 Local Belief Propagation Algorithm

The idea of local BP algorithm is simple: it is a likelihood ratio clustering algorithm on

Galton-Watson tree. Lemma 12 tells us the clustering problem on SBM is locally equivalent

to the clustering problem on Galton-Watson tree. The following message passing method,

which is one part of the local BP algorithm, can be used in calculating the likelihood ratio

on Galton-Watson tree.

Let ∂i denote the set of neighbors of i. Let

F (x) =
1

2
log(

e2xρa+ (1− ρ)b

e2xρb+ (1− ρ)c
)

Let d1 = ρa+ (1− ρ)b and d0 = ρb+ (1− ρ)c denote the expected vertex degree in the first

and second cluster, respectively. Define the message transmitted from vertex i to vertex j

at t-th iteration as

Rti→j =
−d1 + d0

2
+

∑
l∈∂i\{j}

F (Rt−1
l→i) (4.2)

Then we define the belief of vertex u at t-th iteration Rtu to be

Rtu =
−d1 + d0

2
+
∑
l∈∂u

F (Rt−1
l→u) (4.3)

The local BP algorithm is an algorithm based on the above message passing method.
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Input : n ∈ N, ρ ∈ (0, 1), a, b, c,adjacency matrix A ∈ {0, 1}n×n,t ∈ N

Initialization: Set R0
i→j = 0 for all i ∈ [n] and j ∈ ∂i;

iteration =0;

while iteration ≤ t do

Run message passing as in (4.2) to compute Rt−1
i→j for all i ∈ [n] and j ∈ ∂i

end

Compute Rti for all i ∈ [n] by (4.3);

Return σ̂tBP with σ̂tBP (i) = 1{Rti≥ϕ},where ϕ = 1
2 log ρ

1−ρ
Algorithm 3: Local BP algorithm

4.3 The Optimality of Local BP Algorithm

4.3.1 Expected Misclassified Fraction

Before study the result of the optimality of local BP algorithm, we should introduce the

criterion we use to judge whether an algorithm is good or not. We use the expected misclas-

sified fraction as such a criterion. We define the expected misclassified fraction as follows.

Definition 5. For any label estimator σ̂ of the true label σ, we define the expected misclas-

sified fraction of σ̂ as

pG(σ̂) =
1

n

n∑
i=1

P{σi 6= σ̂i} (4.4)

Notice that in our setting, as the first cluster and the second cluster is different (either in

the proportion of vertices or in the edge probability within the clusters), there is no need to

define the expected misclassified fraction with permutation. Let p∗G denote the minimum

expected misclassified fraction among all possible estimators based on G. If an algorithm

can reach the minimum expected misclassified fraction, i.e.

pG(σ̂) = p∗G (4.5)

we say that this algorithm is optimal. If an algorithm can reach the minimum expected

misclassified fraction asymptotically, i.e.

lim
n→∞

pG(σ̂) = lim
n→∞

p∗G (4.6)

we say this algorithm is asymptotic optimal. Our goal is to find the algorithm which is
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asymptotic optimal.

4.3.2 The Optimality of Local BP Algorithm

The following theorem is proved in Mossel and Xu (2015), which provides a lower bound

for the misclassified fraction in the partial recovery problem of SBM model.

Theorem 15. Assume ρ ∈ (0, 1) is fixed and consider the regime (4.1). Let

h(v) = E[tanh(v +
√
vh+ ϕ)], (4.7)

where Z∼ N (0, 1) and ϕ = 1
2 log ρ

1−ρ . Let λ = ρ(µ+ν)2

8 and θ = ρ(µ−ν)2

8 + (1−2ρ)ν2

4 . Define v

and v̄ to be the smallest and largest fixed point of

v = θ + λh(v) (4.8)

respectively. Define (vt : t ≥ 0) recursively by v0 = 0 and vt+1 = θ+λh(vt). Let σ̂tBP denote

the estimator given by local BP algorithm applied for t iterations. Then lim
t→∞

vt = v and

lim
n→∞

pG(σ̂tBP ) = ρQ(
vt + ϕ
√
vt

) + (1− ρ)Q(
vt − ϕ√

vt
)

lim inf
n→∞

p∗G ≥ ρQ(
v̄ + ϕ√

v̄
) + (1− ρ)Q(

v̄ − ϕ√
v̄

)

Theorem 15 constructs a lower bound to the expected misclassified fraction. Unfortunately

Mossel and Xu (2015) fails to prove that the local BP algorithm can reach the optimal

expected misclassified fraction, except for a special case. They prove the optimality of local

BP algorithm in the case when ρ = 1
2 . They also conjecture that in some other cases, the

local BP algorithm reaches the optimality in the case when µ = ν, see (Mossel and Xu,

2015, Conjecture 2.4). We will prove that their conjecture is correct. What’s more, the

local BP algorithm does reach the optimality in a wide regime.

Theorem 16. Let ε = µ
ν . If ρµ 6= (1− ρ)ν, and one of the following condition holds:

(i)ρ < 1
2 ,ε ≤ 1

(ii)1
2 ≤ ρ ≤

3
4 ,ε ≤ 3−4ρ

4ρ−1
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Equation (4.8) has a unique fixed point in [0,∞).

Using Theorem 15 and Theorem 16, we can prove that the local BP algorithm is asymptotic

optimal in this regime.

Corollary 1. If ρµ 6= (1− ρ)ν, and one of the following condition holds:

(i)ρ < 1
2 ,ε ≤ 1

(ii)1
2 ≤ ρ ≤

3
4 ,ε ≤ 3−4ρ

4ρ−1

then

lim
t→∞

lim
n→∞

pG(σ̂tBP ) = lim
n→∞

p∗G (4.9)

For the picture of the optimal regime for the local BP algorithm, we can see it in Figure

6. The optimal regime contained both the previous results and the conjecture in Mossel

and Xu (2015). The impossible curve represents the case when the vertex degree is not

correlated with network structure. It is proved in Kanade et al. (2014) that any local

algorithm cannot reach the optimal misclassified fraction on this curve. From this plot, we

can see if it is somewhere away from the impossible curve, the local BP algorithm can reach

the optimality.

We end this section with the proof to Theorem 16. The idea to prove this theorem comes

from the following two lemmas. Lemma 14 provides a good estimation to the function h,

while the intuition of Lemma 13 comes from proving the Conjecture 2.6 in Mossel and Xu

(2016).

Lemma 13. Let g to be a function defined as

g(v) = E tanh(v +
√
vZ + U)

where Z ∼ N(0, 1), U is a random variable independent of Z, satisfies U = γ with probability

1− α and U = −γ with probability α,γ = 1
2 log 1−α

α , where 0 < α ≤ 1
2 . Then we have

g(v) ≥ v

v + 1

89



Figure 6: Grey area: the optimal regime we proved in Theorem 16. Green line: Mossel and
Xu’s previous result. Red line: Mossel and Xu’s conjecture. Blue curve: local BP algorithm
cannot be optimal on this curve, proved in Kanade et al. (2014).

Lemma 14. Let τ = 2ρ− 1,then we have

h(v) ≥ τ +
(τ + 1)(τ − 1)2v

v + 1− τ2v
(4.10)

The proof to these lemmas are in Section 4.6. We also point out that using Lemma 13,

we could solve another conjecture in Mossel and Xu (2016). In Mossel and Xu (2016), the

authors conjecture that for all |µ| ≥ 2 and α ∈ (0, 1
2), v = µ2g(v)

4 has a unique fixed point.

Conjecture 1. For all |µ| > 2,α ∈ (0, 1
2), v = µ2

4 g(v) has a unique fixed point.

We will prove this conjecture using Lemma 14.

Proof of Conjecture 1. Using Lemma 14, we have

(
g(v)

v
)′ =

g′

v
− g

v2
=
g′v − g
v2

≤ v(1− g)− g
v2

< 0,∀v > 0
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So g(v)
v is a strictly increasing function on (0,∞). As

lim
v→0+

g(v)

v
=∞

and

lim
v→∞

g(v)

v
= 0

we know that v = µ2g(v)
4 has a unique fixed point.

Now we can prove Theorem 16 with Lemma 13, Lemma 14 and Conjecture 1.

Proof of Theorem 16. Using Lemma 14, we have

h(v) ≥ τ +
(τ + 1)(τ − 1)2v

v + 1− τ2v
(4.11)

Let λ̃ = ρ(ε+ 1)2,θ̃ = ρ(ε− 1)2 + 2− 4ρ. So

v = θ + λh(v)⇐⇒ v =
ν2

8
[θ̃ + ρ̃h(v)]

Because ρµ 6= (1− ρ)ν, we can see that

θ̃ + ρ̃h(0) = ρ(ε+ 1)2 + (ρ(ε− 1)2) + 2− 4ρ)(2ρ− 1)

= 2ρ2ε2 + 4ρ(1− ρ)ε+ 2ρ2 − 4ρ+ 2

= 2(ρε− (1− ρ))2 > 0

(4.12)

Let k(v) = θ̃+ρ̃h(v)
v , so we can see that lim

v→0+
k(v) = +∞ and lim

v→∞
k(v) = 0. As long as we

can prove k(v) is strictly increasing on (0,+∞), the lemma is proved. So from now on we

will focus on proving that k(v) is a strictly increasing function.

Notice that

k′ = (
θ̃ + λ̃h(v)

v
)′ =

λ̃h′

v
− θ̃ + λ̃h(v)

v2
=
λ̃vh′ − θ̃ − λ̃h

v2
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We already know that

h′(v) = E(1− tanh(v +
√
vZ + ϕ))(1− tanh2(v +

√
vZ + ϕ)) (4.13)

From (4.13) we can easily see that h′ ≤ 1− h

So we have that

k′ ≤ λ̃v(1− h)− θ̃ − λ̃h
v2

=
λ̃v − θ̃ − λ̃h(v + 1)

v2

Then we will prove that

λ̃v − θ̃ − λ̃h(v + 1) ≤ 0 (4.14)

Using Lemma 14, we have h(v) ≥ τ + (τ+1)(τ−1)2v
v+1−τ2v . Thus we have

λ̃(1 + v)h− λ̃v + θ̃ ≥ λ̃(1 + v)(τ +
(τ + 1)(τ − 1)2v

v + 1− τ2v
)− λ̃v + θ̃

λ̃[(1 + v)(τ +
(τ + 1)(τ − 1)2v

v + 1− τ2v
)− v] + θ̃

= λ̃[(1 + v)
τ + (1− τ2)v

v + 1− τ2v
− v] + θ̃

= λ̃
(1 + v)(τ + (1− τ2)v)− v(v + 1− τ2v)

v + 1 + τ2v
+ θ̃

(4.15)

So we have

λ̃(1 + v)h− λ̃v + θ̃ ≥ λ̃ τ + (τ − τ2)v

1 + (1− τ2)v
+ θ̃

= ρ(ε+ 1)2 τ + (τ − τ2)v

1 + (1− τ2)v
+ ρ(ε− 1)2 + 2− 4ρ

= ρ(ε+ 1)2(
τ

τ + 1
+

τ2

(1 + τ)(1 + (1− τ)2v)
) + ρ(ε− 1)2 + 2− 4ρ

> ρ(ε+ 1)2 2ρ− 1

2ρ
+ ρ(ε− 1)2 + 2− 4ρ

(4.16)
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Using this inequality, we will have that

λ̃(1 + v)h− λ̃v + θ̃ >
1

2
((2ρ− 1)((ε+ 1)2 − 4) + 2ρ(ε− 1)2)

=
1

2
((4ρ− 1)ε2 − 2ε+ 3− 4ρ)

=
1

2
((4ρ− 1)ε+ 4ρ− 3)(ε− 1)

(4.17)

Notice that ε ≤ 1, for ρ < 1
2 ,(4ρ− 1)ε+ 4ρ− 3 < 0. So we have λ̃(1 + v)h− λ̃v + θ̃ ≥ 0.

For 1
2 ≤ ρ ≤

3
4 and ε ≤ 3−4ρ

4ρ−1 , we also have 1
2((4ρ− 1)ε+ 4ρ− 3)(ε− 1) ≥ 0. So λ̃(1 + v)h−

λ̃v + θ̃ ≥ 0.

So when either condition in the theorem holds, we always have that

λ̃(1 + v)h− λ̃v + θ̃ > 0 (4.18)

From (4.18)and k′ = − λ̃(1+v)h−λ̃v+θ̃
v2

,we prove that k′ < 0,∀v > 0, which means that

v = θ + λh(v)

has a unique fixed point.

4.4 Local BP Algorithm: A Road to the Optimality

In Section 4.3, we prove that the local BP algorithm is optimal in a wide regime. Figure 6

provides a direct view of this regime. From Figure 6, we can see that though we prove that

local BP algorithm can be optimal in a certain regime, there are still blanks in the figure.

We know nothing about the local BP algorithm outside the optimal regime: whether it can

reach the optimality or not. From the existence of the impossible curve for local algorithms,

it is not difficult for us to imagine that local BP algorithm cannot reach the optimal expected

misclassified fraction in some regime. In this section, we will introduce how to use local BP

algorithm with a better initializer to reach the optimality.

We need to do some preparation before going deep into the discussion. In the proof of

Theorem 16, we can see the function h plays a central role in the theorem and the prove.

The following lemma shows the concavity of this function.
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Lemma 15. For ∀ϕ > 0, there exists a constant c(ϕ) only depends on ϕ, such that h(v) is

concave on (c(ϕ),∞).

From Lemma 15, we know that (4.8) has at most one fixed point on (c(ϕ),∞). Lemma

15 gives us a strong intuition to use local BP algorithm to improve another clustering

algorithm. From the calculation of the expected misclassified fraction of local BP algorithm

in the balanced case, we can see the intuition more carefully. The calculation can be

described in the following steps. Let {BPt} to be the local BP algorithm with t iterations.

1. We starts with BP0, which is random guess. The expected misclassified fraction if

Q(
√
v0). In this case, v0 = 0.

2. Improve the algorithm BPi with one more step local BP algorithm correction. The

algorithm after i+ 1 steps local BP algorithm correction is BPi+1. Each time after the one

more step correction, the expected misclassified fraction of algorithm is (approximately)

Q(
√
θ + λh(vi)).

3. As t → ∞, the misclassified fraction of local BP algorithm will be Q(
√

lim
t→∞

vt). In the

optimal regime, there is only one fixed point of (4.8), which means that the limit is Q(
√
v∗).

From these steps, we can see for any initializer algorithm, if we use local BP algorithm with

t iterations to improve this initializer, we can construct a sequence {vi}ti=0 to approximately

describe the expected misclassified fraction of the algorithm after correction. The expected

misclassified fraction of the corrected algorithm is approximately Q(
√
vt),where {vi} satisfies

vi+1 = θ+ λh(vi). As long as we can find an initializer such that v1 > c(ϕ), Lemma 15 can

tell us a good initializer with local BP correction is optimal. Now we are going to introduce

how to get a local BP corrected algorithm

Suppose we already have an algorithm A with limited expected misclassified fraction α, i.e.

lim
n→∞

pG(σA) = α, where σA is the label estimator induced by algorithm A. The local BP

corrected algorithm with initializer A is defined as below.
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Input : n ∈ N, ρ ∈ (0, 1), a, b, c,adjacency matrix A ∈ {0, 1}n×n,t ∈ N ,α, σA

Initialization: Set R0
i→j = 1

2 log 1−α
α , if σA(i) = 1;R0

i→j = 1
2 log α

1−α ,if σA(i) = 0 for all

i ∈ [n] and j ∈ ∂i;

iteration =0;

while iteration≤ t do

Run message passing as in (4.2) to compute Rt−1
i→j for all i ∈ [n] and j ∈ ∂i

end

Compute Rti for all i ∈ [n];

Return σ̂tcor with σ̂tcor(i) = 1{Rti≥ϕ},where ϕ = 1
2 log ρ

1−ρ
Algorithm 4: Local BP Corrected Algorithm with initializer A

Now we can state our theorem about the condition of the initializer we need to promise the

optimality.

Theorem 17. If µ 6= ν or ρ 6= 1
2 , suppose we have an algorithm A to the clustering problem,

such that the misclassified fraction of A is α, and it satisfies that

α(1− α)(ρµ− ρ̄ν)2 + ρρ̄(2α− 1)2(ρµ2 + ρ̄ν2)

4[(1− α)ρ+ αρ̄][αρ+ (1− α)ρ̄]
≥ c(ϕ) (4.19)

then Algorithm 4 will achieve the optimal expected misclassified fraction asymptotically.

Theorem 17 tells us in order to use local BP algorithm to get the optimality, we need an

initializer which satisfies (4.19). Though local BP algorithm may be suboptimal in some

cases, the local BP algorithm can work as an optimal machine: if you input a good enough

initializer into the machine, the output will be the optimal algorithm.

We prove Theorem 17 as an end of the section. Let T tu to be the subtree with root u and

depth t. Using Lemma 12, we can see that with probability tends to 1, it is a Galton-Watson

tree. Let τ to be label on the tree and

τ̃i =


τi, with probability 1− α

−τi, with probability α

for any vertex i. Let

Γ̃ti =
1

2
log

P{T ti , τ̃∂T ti |τu = +}
P{T ti , τ̃∂T ti |τu = −}
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Then we have the following lemma.

Lemma 16. Let Z̃t± denote a random variable that has the same distribution as Γ̃tu. For

any t ≥ 1, as n→∞,

sup
x
|P(

Z̃t± ∓ ut√
ut

≤ x)− P(Z ≤ x)| = O(b−
1
2 )

where u1 = α(1−α)(ρµ−ρ̄ν)2+ρρ̄(2α−1)2(ρµ2+ρ̄ν2)
4[(1−α)ρ+αρ̄][αρ+(1−α)ρ̄] and ut+1 = λh(ut) + θ.

We left the proof to Lemma 16 in Section 4.6. After we have Lemma 16, Theorem 17 is a

direct result from Lemma 16.

Proof to the Theorem 17. The proof to Theorem 17 is a combination of Lemma 15 and

Lemma 16. From the proof of Theorem 15, we know that

lim inf
n→∞

p∗G ≥ ρQ(
v̄ + ϕ√

v̄
) + (1− ρ)Q(

v̄ − ϕ√
v̄

)

while Lemma 15 and Lemma 16 tell us that

lim
n→∞

pG(σ̂cor) = ρQ(
v̄ + ϕ√

v̄
) + (1− ρ)Q(

v̄ − ϕ√
v̄

)

where σ̂cor is the corresponding label estimator of Algorithm 4. So we can see that Algorithm

4 can reach the optimality iof the partial recovery problem.

4.5 Discussion

In Theorem 16, we prove that the local BP algorithm can reach the optimality in a certain

regime. We also know that the local BP algorithm is suboptimal if the vertex degrees are

not statistically correlated with the cluster structure, which is not in the optimal regime

we constructed in the current chapter. But even we assume that ρµ 6= (1 − ρ)ν, local BP

algorithm may be suboptimal.

For ρ = 1
2 , the local BP algorithm is always asymptotic optimal in minimizing the fraction

of misclassified. We conjecture that ∀ρ 6= 1
2 , there exist suitable µ and ν such that the local

BP algorithm is suboptimal. Strictly speaking, the conjecture can be stated as
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Conjecture 2. For ∀ρ 6= 1
2 , there exists µ and ν, such that

lim
t→∞

lim
n→∞

pG(σ̂tBP ) 6= lim
n→∞

p∗G

Though we cannot prove the conjecture, we can prove a slightly weaker result: the lower

bound and upper bound provided in Theorem 15 may not match.

Argument 1. For 2
3 < ρ < 1, there exists suitable µ and ν, such that the lower bound in

Theorem 15 does not match the upper bound, i.e.

v̄ 6= v

The proof to the argument is in Section 4.6. It shows that the lower bound and upper

bound provided in Theorem15 may not match.

To make a conclusion, in the current chapter, we discuss the optimality of local BP algorithm

for the partial recovery problem of the SBM model. We prove that in a certain regime, local

BP algorithm is optimal and we provide a condition in Theorem 17, such that with suitable

assumption on the initializer, we can construct the optimal procedure with the local BP

algorithm. We can deduce that other than the impossible cure, there is still other regime

where the local BP algorithm is suboptimal. But it still remains unknown what is the

boundary for the optimal regime and the suboptimal regime of local BP algorithm and it

is interesting to explore the optimal algorithm in the regime where the local BP algorithm

is suboptimal.

4.6 Proof

4.6.1 Proof to Lemma 13

Proof. To begin our proof, we need two arguments in Mossel and Xu (2016). Let Y =

tanh(
√
vZ + v + U). In Mossel and Xu (2016), they prove ∀k > 0,

EY 2k = EY 2k−1
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They also prove that

g′(v) = E[(1− tanh(
√
vZ + v + U))(1− tanh2(

√
vZ + v + U))]

From the expression of g′,

g′ = E[(1− tanh(
√
vZ = v + U)2)]

= 1− 2EY 2 + EY 4

≥ 1− 2g + (EY 2)2

= 1− 2g + g2

= (1− g)2

Let g0 = 1− g, so we will have that −g′0 ≥ g2
0, which means

(
1

g0
)′ = −g

′
0

g2
0

≥ 1

So we have

1

g0
≥ 1

g0(0)
+ v = v +

1

1− (1− 2α)2
≥ v + 1 (4.20)

Lemma 13 is a direct result of (4.20).

4.6.2 Proof to Lemma 14

Proof. Let Q = tanh(
√
vZ + v) and τ = tanh(ϕ) = 2ρ − 1. From the definition of h, we

have

h(v) =E tanh(
√
vZ + v + ϕ)

=E
Q+ τ

1 +Qτ

=
1

τ
+ E(

Q+ τ

1 +Qτ
− 1

τ
)

=
1

τ
+ (τ − 1

τ
)E

1

1 +Qτ

=
1

τ
+ (τ − 1

τ
)E(

∞∑
k=0

(−1)k−1Qkτk)
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Use the fact that ∀k > 0, we have

EQ2k = EQ2k−1

So,

h(v) =
1

τ
+ (τ − 1

τ
)(1 +

∑
k≥1

(τ2k − τ2k−1)EQ2k)

= τ +
∑
k≥1

(τ − 1)2(τ + 1)

τ2
τ2kEQ2k

Using the Holder Inequality,

EQ2k ≥ (EQ2)k (4.21)

Notice that if we choose α = 1
2 in Lemma 13, we will have that

EQ2 = EQ ≥ v

v + 1
(4.22)

Combining (4.21) and (4.22), we will have

EQ2k ≥ (
v

v + 1
)k (4.23)

So we have

h(v) ≥ τ +
∑
k≥1

(τ − 1)2(τ + 1)

τ2
τ2k v

v + 1

2k

= τ +
(τ − 1)2(τ + 1)

τ2

τ2 v
v+1

1− τ2 v
v+1

= τ +
(τ + 1)(τ − 1)2v

v + 1− τ2v

99



4.6.3 Proof to Lemma 15

Proof. Let f(x) = (1− x)(1− x2). From (4.13), we know that

h′(v) = Ef(tanh(v +
√
vZ + ϕ))

Suppose B ∼ N (v, v), then

h′(v) = Ef(tanh(v +
√
vZ + ϕ)) = Ef(tanh(B + ϕ))

=

∫ ∞
−∞

1√
2πv

e−
(b−v)2

2v f(tanh(b+ ϕ))db
(4.24)

To prove this lemma, we hope to find c(ϕ), such that ∀c(ϕ) < v < w,

∫ ∞
∞

(
1√
2πv

e−
(b−v)2

2v − 1√
2πw

e−
(b−w)2

2w )f(tanh(b+ ϕ))db ≥ 0 (4.25)

Without loss of generality, we can always assume that w < v + 1.

Let m(b) = 1√
2πv

e−
(b−v)2

2v − 1√
2πw

e−
(b−w)2

2w , we can see that

m(b) ≥ 0 if and only if b2 ≤ vww − v + logw − log v

w − v

Let b1 =
√
vw
√

w−v+logw−log v
w−v , b2 = −b1. Notice that as v →∞,

1− tanh2(b1 + ϕ) ∼ e−4v

1− tanh2(b2 + ϕ) ∼ e−4v

So there exists a constant C1, such that as long as c(ϕ) > C1,

f(tanh(b1 + ϕ)) < f(tanh(b2 + ϕ))

Let C2 = arctanh 1
3 + ϕ. If c(ϕ) > C2, we will have that

b2 + ϕ < −v + ϕ < −C2 + ϕ = − arctanh
1

3

Notice that f(x) is increasing on (∞,−1
3), we have f(tanh(b+ϕ)) is increasing on (−∞, b2).
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So we can find b3 ∈ (−∞, b2), such that

f(tanh(b3 + ϕ)) = f(tanh(b1) + ϕ)

For b3 < b < b2, we have

m(b) =
1√
2πv

e−
(b−v)2

2v − 1√
2πw

e−
(b−w)2

2w

≥ 1√
2πw

e−
(b−v)2

2v − 1√
2πw

e−
(b−w)2

2w

≥ 1√
2πw

e−
(b−v)2

2v (−(b− v)2

2v
+

(b− w)2

2w
)

=
1√
2πw

e−
(b−v)2

2v
w − v

2

vw − b2

vw

≥ − 1√
2πw

b2e−
(b−v)2

2v
w − v

2

= − 1√
2πw

exp(−(b− v)2

2v
− log b2)

w − v
2

≥ − 1√
2πw

exp(−2v)
v2(w − v)

2

(4.26)

Then we can will get a lower bound for
∫ −ϕ−arctanh 1

3
b3

m(b)(f(tanh(b + ϕ)) − f(tanh(b3 +

ϕ)))db.

∫ −ϕ−arctanh 1
3

b3

m(b)(f(tanh(b+ ϕ))− f(tanh(b3 + ϕ)))db

≥
∫ −ϕ−arctanh 1

3

b3

m0(b)(f(tanh(b+ ϕ))− f(tanh(b3 + ϕ)))db

(4.27)

where

m0(b) =


m(b), b2 ≤ b < −ϕ− arctanh 1

3

− 1√
2πw

exp(−2v)v2w−v
2 , b3 ≤ b < b2

(4.28)

Also notice that for −ϕ− arctanh 1
3 > b > b2

m′(b) =
1√
2πv

v − b
v

e−
(b−v)2

2v − 1√
2πw

w − b
w

e−
(b−w)2

2w > 0

m0(b) is an increasing function on [b3,−ϕ− arctanh 1
3 ].
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A fact is that if f and g are two positive increasing functions on [0, 1], then

∫ 1

0
fg ≥ (

∫ 1

0
f)(

∫ 1

0
g) (4.29)

Using this fact, we have

∫ −ϕ−arctanh 1
3

b3

g0(b)(f(tanh(b+ ϕ)− f(tanh(b3 + ϕ)))db

≥ 1

−ϕ− arctanh 1
3 − b3

(

∫ ϕ−arctanh 1
3

b3

g0(b)db)·

(

∫ ϕ−arctanh 1
3

b3

(f(tanh(b+ ϕ)− f(tanh(b3 + ϕ)))db)

(4.30)

Now we are going to prove that
∫ ϕ−arctanh 1

3
b3

g0(b)db ≥ 0 using (4.26). Suppose Z1 ∼ N (v, v),

Z2 ∼ N (w,w) are two independent random variables.

∫ −ϕ−arctanh 1
3

b2

m(b)db

=P(b2 ≤ Z1 ≤ −ϕ− arctanh
1

3
)− P(b2 ≤ Z2 ≤ −ϕ− arctanh

1

3
)

=P(Z2 ≥ −ϕ− arctanh
1

3
)− P(Z1 ≥ −ϕ− arctanh

1

3
)

=P(Z ≥ −
√
w −

ϕ+ arctanh 1
3√

w
)− P(Z ≥ −

√
v −

ϕ+ arctanh 1
3√

v
)

≥(
√
w −
√
v)(1−

ϕ+ arctanh 1
3√

wv
) exp(−1

2
(
√
w +

ϕ+ arctanh 1
3√

w
)2)

(4.31)

Combing (4.26) and (4.31),

∫ −ϕ−arctanh 1
3

b3

m0(b)db

≥− 1√
2πw

exp(−2v)v2w − v
2

(b2 − b3)

+ (
√
w −
√
v)(1−

ϕ+ arctanh 1
3√

wv
) exp(−1

2
(
√
w +

ϕ+ arctanh 1
3√

w
)2)

(4.32)

As w < v + 1, we have for sufficient large v, the right hand side of (4.32) is positive. So
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these exists C3 such that if w > v > C3,

∫ −ϕ−arctanh 1
3

b3

m0(b)db ≥ 0 (4.33)

which means that

∫ −ϕ−arctanh 1
3

b3

m(b)f(tanh(b+ ϕ)db ≥
∫ −ϕ−arctanh 1

3

b3

m(b)f(tanh(b3 + ϕ)db (4.34)

For b < b3, −ϕ− arctanh 1
3 < b < b1 or b > b1, it is not difficult to see that

m(b)f(tanh(b+ ϕ)) ≥ m(b)f(tanh(b1) + ϕ) (4.35)

Combing (4.34) and (4.35), we will have that

∫ ∞
−∞

m(b)f(tanh(b+ ϕ))db ≥ f(tanh(b1 + ϕ))

∫ ∞
−∞

m(b)db = 0 (4.36)

if w > v > max{C1, C2, C3, 1}. Then c(ϕ) = max{C1, C2, C3, 1} is the constant we need for

the theorem.

4.6.4 Proof to Lemma 16

Proof. From the Lemma 4.2 and Lemma 4.6 in Mossel and Xu (2015), we only need to show

that

sup
x
|P(

Z̃1
± ∓ u1√
u1

≤ x)− P(Z ≤ x)| = O(b−
1
2 ) (4.37)

Let F (x) = 1
2 log e2xρa+ρ̄b

e2xρb+ρ̄c
. For vertex u, let au to be the number of sons of u. We first

consider the case when τu = +. Let X1, ..., Xau be i.i.d random variables, with distribution

X =


F (1

2 log 1−α
α ) = 1

2 log
1−α
α
ρa+ρ̄b

1−α
α
ρb+ρ̄c

, with probability η = ρa(1−α)+ρ̄bα
ρa+ρ̄b

F (−1
2 log 1−α

α ) = 1
2 log

α
1−αρa+ρ̄b
α

1−αρb+ρ̄c
, with probability 1− η

(4.38)

In this case,

Γ̃1
u =
−d+ + d−

2
+

au∑
j=1

Xi (4.39)
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So

EΓ̃1
u =
−d+ + d−

2
+
ηd+

2
(

(1− α)ρ
√
bµ− αρ̄ν

(1− α)ρb+ αρ̄(b+
√
bν)
− 1

2
(

(1− α)ρ
√
bµ− αρ̄ν

(1− α)ρb+ αρ̄(b+
√
bν)

)2)

(4.40)

+
(1− η)d−

2
(
αρ
√
bµ− (1− α)ρ̄

√
bν

αρb+ (1− α)ρ̄c
− 1

2
(
αρ
√
bµ− (1− α)ρ̄

√
bν

αρb+ (1− α)ρ̄c
)2) +O(b−

1
2 )

(4.41)

Denote A = (1−α)ρ
√
bµ−αρ̄ν

(1−α)ρb+αρ̄(b+
√
bν)

,B = αρ
√
bµ−(1−α)ρ̄

√
bν

αρb+(1−α)ρ̄c . Then

A = [(1− α)ρµ− αρ̄ν]
1

((1− α)ρ+ αρ̄)
√
b
[1− αρ̄ν√

b((1− α)ρ+ αρ̄)
] +O(b−

3
2 ) (4.42)

and

B = [αρµ− (1− α)ρ̄ν]
1

((1− α)ρ+ αρ̄)
√
b
[1− (1− α)ρ̄ν√

b((1− α)ρ+ αρ̄)
] +O(b−

3
2 ) (4.43)

Combining these equations, we have

EΓ̃1
u =
−d+ + d−

2
+
ηd+

2
(A− 1

2
A2) +

(1− η)d−
2

(B − 1

2
B2) +O(b−

1
2 )

=
1

4

1

[(1− α)ρ+ αρ̄][αρ+ (1− α)ρ̄]

{2(αρ+ (1− α)ρ̄)((1− α)ρµ− αρ̄ν)[ρµ(1− α)− ρµ(ρ(1− α) + αρ̄)]

− (αρ+ (1− α)ρ̄)((1− α)2ρ2µ2 − α2ρ̄2ν2)

+ 2((1− α)ρ+ αρ̄)(αρµ− (1− α)ρ̄ν)[ρµα− ρµ(ρα+ (1− α)ρ̄)]

− ((1− α)ρ+ α)̄ρ(α2ρ2µ2 − (1− α)2ρ2ν2)

+ 2ρµ[ρµ− ρ̄ν](1− α)ρ+ αρ̄)(αρ+ (1− α)ρ̄)}+O(b−
1
2 )

=
α(1− α)(ρµ− ρ̄ν)2 + ρρ̄(2α− 1)2(ρµ2 + ρ̄ν2)

4[(1− α)ρ+ αρ̄][αρ+ (1− α)ρ̄]
+O(b−

1
2 )

(4.44)

The similar calculation tells us we also have that

Var(Γ̃1
u) =

α(1− α)(ρµ− ρ̄ν)2 + ρρ̄(2α− 1)2(ρµ2 + ρ̄ν2)

4[(1− α)ρ+ αρ̄][αρ+ (1− α)ρ̄]
+O(b−

1
2 )
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Using Lemma A.2 in Mossel and Xu (2015), we prove Lemma 16 in the case when τu = +.

The proof to the case when τu = − is identical.

4.6.5 Proof to Argument 1

Argument 1. For 2
3 < ρ < 1, there exists suitable µ and ν, such that the lower bound in

Theorem 15 doesn’t match the upper bound, i.e.

v̄ 6= v

Proof. To prove this argument, we need to show that if 2
3 < ρ < 1, we can find suitable µ

and ν, such that

v = θ + λh(v)

has more than one fixed point.

If ρ > 2
3 , from the prove of Theorem 16 we can see that

k′(v) =
λ̃vh′ − θ̃ − λ̃h

v2

On the other hand,

λ̃vh′ − θ̃ − λ̃h = ρ(ε+ 1)2vh′ − ρ(ε− 1)2 − 2 + 4ρ− ρ(ε+ 1)2h

= ρ(vh′ − 1− h)ε2 + 2ερ(vh′ + 1− h) + (ρvh′ + 3ρ− 2− ρh)

Notice that

vh′ − 1− h ≤ v(1− h)− 1− h = v − (v + 1)h− 1

Using Lemma 14, we will see that

h(v) ≥ τ +
(τ + 1)(τ − 1)2v

v + 1− τ2v
> 1− 1

2ρ(v + 1)
> 1− 1

v + 1

So ρ(vh′− 1− h) < 0. Let l(ε) = ρ(vh′− 1− h)ε2 + 2ερ(vh′+ 1− h) + (ρvh′+ 3ρ− 2− ρh).

We can see that l is a quadratic form of ε. As limv→0+(vh′ − h) = 0, for any ρ > 2
3 , we can
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find sufficiently small v0, such that

ρv0h
′(v0) + 3ρ− 2− ρh(v0) > 0

So

4ρ2(v0h
′(v0) + 1− h(v0))2 − 4ρ(vh′ − 1− h)(ρv0h

′(v0) + 3ρ− 2− ρh(v0)) > 0

which tells us that

ρ(vh′ − 1− h)t2 + 2tρ(vh′ + 1− h) + (ρvh′ + 3ρ− 2− ρh) = 0

has two different roots, and the product of two root is ρvh′+3ρ−2−ρh
ρ(vh′−1−h) < 0. So we can find

ε0 > 0, which makes

ρ(vh′ − 1− h)ε2 + 2ερ(vh′ + 1− h) + (ρvh′ + 3ρ− 2− ρh)|v=v0,t=t0 > 0

Now fix ε = ε0, we can find k′(v0) > 0. So we can find v1 > 0 and v2 > 0, such that

k(v1) = k(v2). Choose ν to be ν =
√

8
k(v1) . In this case,

v = θ + λh(v)

has at least two fixed points v1 and v2.
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