
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2021 

Accelerated Risk Assessment And Domain Adaptation For Accelerated Risk Assessment And Domain Adaptation For 

Autonomous Vehicles Autonomous Vehicles 

Matthew O'kelly 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Computer Sciences Commons, Electrical and Electronics Commons, and the Robotics 

Commons 

Recommended Citation Recommended Citation 
O'kelly, Matthew, "Accelerated Risk Assessment And Domain Adaptation For Autonomous Vehicles" 
(2021). Publicly Accessible Penn Dissertations. 3855. 
https://repository.upenn.edu/edissertations/3855 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3855 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F3855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=repository.upenn.edu%2Fedissertations%2F3855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F3855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F3855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3855?utm_source=repository.upenn.edu%2Fedissertations%2F3855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3855
mailto:repository@pobox.upenn.edu


Accelerated Risk Assessment And Domain Adaptation For Autonomous Vehicles Accelerated Risk Assessment And Domain Adaptation For Autonomous Vehicles 

Abstract Abstract 
Autonomous vehicles (AVs) are already driving on public roads around the US; however, their rate of 
deployment far outpaces quality assurance and regulatory efforts. Consequently, even the most 
elementary tasks, such as automated lane keeping, have not been certified for safety, and operations are 
constrained to narrow domains. First, due to the limitations of worst-case analysis techniques, we 
hypothesize that new methods must be developed to quantify and bound the risk of AVs. 
Counterintuitively, the better the performance of the AV under consideration, the harder it is to accurately 
estimate its risk as failures become rare and difficult to sample. This thesis presents a new estimation 
procedure and framework that can efficiently evaluate and AV's risk even in the rare event regime. We 
demonstrate the approach's performance on a variety of AV software stacks. Second, given a framework 
for AV evaluation, we turn to a related question: how can AV software be efficiently adapted for new or 
expanded operating conditions? We hypothesize that stochastic search techniques can improve the naive 
trial-and-error approach commonly used today. One of the most challenging aspects of this task is that 
proficient driving requires making tradeoffs between performance and safety. Moreover, for novel 
scenarios or operational domains there may be little data that can be used to understand the behavior of 
other drivers. To study these challenges we create a low-cost scale platform, simulator, benchmarks, and 
baseline solutions. Using this testbed, we develop a new population-based self-play method for creating 
dynamic actors and detail both offline and online procedures for adapting AV components to these 
conditions. Taken as a whole, this work represents a rigorous approach to the evaluation and 
improvement of AV software. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Electrical & Systems Engineering 

First Advisor First Advisor 
Rahul Mangharam 

Subject Categories Subject Categories 
Computer Sciences | Electrical and Electronics | Robotics 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3855 

https://repository.upenn.edu/edissertations/3855


ACCELERATED RISK ASSESSMENT AND
DOMAIN ADAPTATION FOR AUTONOMOUS VEHICLES

Matthew O’Kelly

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Rahul Mangharam, Associate Professor of Electrical and Systems Engineering,
University of Pennsylvania

Graduate Group Chairperson

Victor Preciado, Associate Professor of Electrical and Systems Engineering,
University of Pennsylvania

Dissertation Committee:

Rajeev Alur, Zisman Family Professor of Computer and Information Science,
University of Pennsylvania

Pratik Chaudhari, Assistant Professor of Electrical and Systems Engineering,
University of Pennsylvania

Rahul Mangharam, Associate Professor of Electrical and Systems Engineering,
University of Pennsylvania

Russ Tedrake, Toyota Professor of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology



ACCELERATED RISK ASSESSMENT AND

DOMAIN ADAPTATION FOR AUTONOMOUS VEHICLES

c© COPYRIGHT

2021

Matthew Edward O’Kelly



for Nana Liu, who helped me finish, and Morton and Susan O’Kelly, who helped me start

iii



ABSTRACT

ACCELERATED RISK ASSESSMENT AND

DOMAIN ADAPTATION FOR AUTONOMOUS VEHICLES

Matthew O’Kelly

Rahul Mangharam

Autonomous vehicles (AVs) are already driving on public roads around the US; however,

their rate of deployment far outpaces quality assurance and regulatory efforts. Consequently,

even the most elementary tasks, such as automated lane keeping, have not been certified

for safety, and operations are constrained to narrow domains. First, due to the limitations

of worst-case analysis techniques, we hypothesize that new methods must be developed to

quantify and bound the risk of AVs. Counterintuitively, the better the performance of the

AV under consideration, the harder it is to accurately estimate its risk as failures become

rare and difficult to sample. This thesis presents a new estimation procedure and framework

that can efficiently evaluate and AV’s risk even in the rare event regime. We demonstrate the

approach’s performance on a variety of AV software stacks. Second, given a framework for

AV evaluation, we turn to a related question: how can AV software be efficiently adapted for

new or expanded operating conditions? We hypothesize that stochastic search techniques

can improve the naive trial-and-error approach commonly used today. One of the most

challenging aspects of this task is that proficient driving requires making tradeoffs between

performance and safety. Moreover, for novel scenarios or operational domains there may be

little data that can be used to understand the behavior of other drivers. To study these

challenges we create a low-cost scale platform, simulator, benchmarks, and baseline solutions.

Using this testbed, we develop a new population-based self-play method for creating dynamic

actors and detail both offline and online procedures for adapting AV components to these

conditions. Taken as a whole, this work represents a rigorous approach to the evaluation

and improvement of AV software.
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CHAPTER 1 : Introduction

1.1. Motivation

Many of the devices integral to our daily lives are imbued with the capacity to observe and

engage the physical world. The design and analysis of such systems is characterized by the

challenges arising from the interplay of digital computation, networked communication, and

continuous evolution of the combined physical state of both the device and environment.

Today, the degree of autonomy afforded to such cyber-physical systems varies based both

on the availability of performance guarantees and the consequences of failures; thus, the

use of automation in safety critical settings remains limited. In fact, in many applications

the primary barrier to the deployment of highly automated functions is the inability to

demonstrate that the software is trustworthy (Wing, 2020).

The development of automated verification (Baier and Katoen, 2008) and synthesis (Gulwani

et al., 2017) methods has long been proposed as a means to temper the risks of safety-

critical software by mechanizing either its evaluation or production. Verification is the

process of establishing that a particular software artifact satisfies its specification. By this

definition, a verification method generally certifies whether a model of the program and

environment is correct or not. In deterministic methods such as model checking (Clarke,

2008), any specification violation is sufficient to falsify the program’s correctness. In contrast

to verification, synthesis methods begin with a specification capturing the programmer’s

intent encoded as a logical formula, a set of input-output examples, or a test environment.

The goal is to automatically generate software which satisfies the specification.

1.1.1. Verification

Most verification methods developed for the analysis of cyber-physical systems are concerned

with the evaluation of specifications which map the signals produced by the system to a

Boolean value which captures whether a particular performance criteria is met. For example,
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consider the trajectory of poses produced by a mobile ground robot. For each state in the

trajectory, the bounding box of the robot can be checked against a map of the environment

and the poses of other agents for collision; thus, reducing the trajectory of poses to a binary

measure of whether the robot crashed. A deterministic verification method exhaustively

searches the space of trajectories to certify that no execution of the system exists in which

the robot crashes. If a trajectory is found in which the robot crashes the method terminates

and returns the counterexample.

However, the concept of binary correctness can be problematic when applied to cyber-

physical systems. In the verification setting it may be impossible to provide a complete

specification of the system that separates failures from adversarial inputs of the environment.

Currently accepted applications of automation like a caged factory robot or a 747 autopilot

rarely encounter this challenge, as the operational domain is highly predictable, bounded,

and easy to observe. In this thesis we instead expect cyber-physical systems to interact

with complex open worlds inhabited by other uncontrollable decision makers whose states

are only partially observable. Given this assumption, we must consider what should be

done about adversarial and ambiguous situations such as: a diabetes patient who doesn’t

accurately track their carbohydrate intake and is dosed with too much insulin by an artificial

pancreas, an autonomous car which collides with a wrong-way driver, or a security robot

which has been pushed into a fountain by disgruntled patrons. The long tail of scenarios

like these all but guarantee that the systems can’t be perfectly safe and plague attempts to

evaluate autonomy via worst-case analysis.

If the wrong-way driver in the example above is included in the model of the environment

against which an autonomous car will be evaluated, then even before the verification process

begins we know that the end result will be a counterexample rather than a proof of safety. In

this sense, the inability to distinguish between failures and adversarial cases short-circuits the

verification process without revealing critical information about the quality of the system.

One way to distinguish between executions of the system-under-test that have the same

2



Boolean value is to evaluate how robustly a system execution satisfies a given specification

by measuring how close the trajectory gets to a violation. Other mechanisms, which assign

blame in the event of a failure, are also useful in differentiating whether the system-under-test

upheld social norms or legal responsibilities. While specification robustness (Fainekos and

Pappas, 2006) and blame (Shalev-Shwartz et al., 2017) can guide search mechanisms towards

critical regions and encode the severity of system failures, neither inherently captures an

important facet of the systems performance: the frequency of undesirable or unsafe events.

Why should we be concerned with the frequency of unsafe events? Consider the case of a

robo-taxi that will drive you to work each morning. Suppose that it is guaranteed to never

have an accident for which it is legally liable; however, everyday it is rear-ended (but not

at fault) at a four-way stop on the route. A measurement of the systems safety and quality

should consider the frequency of such occurrences. No skilled human driver would have such

frequent collisions, and perhaps more importantly no riders would choose to use such an

inconvenient and dangerous mode of transportation. In this thesis, we view the problem

of system evaluation through the lens of statistical model checking methods, which, unlike

deterministic model checking, seek to estimate the probability of failure rather than certify

its (non-)existence. The end result is that catastrophic failures (regardless of fault) which

are predicted to occur frequently must be addressed because they imply that the system

exceeds an acceptable risk threshold.

1.1.2. Synthesis

Thus far, we have assumed that the system-under-test has been simply given to the verifier

to evaluate. In reality the development of autonomous systems which can be meaningfully

considered for deployment is a time-consuming and expensive task. Suppose an instance of

the system has been through the verification and validation process. The second part of

this thesis is concerned with how the components of the existing system can be leveraged

to solve similar problems in variations of the original operational domain. For example,

we would like to update a pacemaker for use in a new country, modify an orbital rocket
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recovery system to land on a moving barge instead of a launchpad, or adapt a highway

autopilot system designed for a sedan for use on a semi-truck.

Fortunately, many cyber-physical systems contain a common, modular core of perception,

planning, and control components that can be adapted or reused with relatively small para-

metric rather than structural modifications. The challenge is that the design and tuning

of the system level code is ad-hoc and time-consuming. Moreover, small isolated changes

can have far-reaching consequences across modules and manifest as unsafe or undesirable

behavior. As a result it is beneficial to evaluate and modify the modules as a system rather

than independently. We hypothesize that extensions of inductive synthesis and reinforce-

ment learning techniques have the potential to address the challenges of domain adaptation

by jointly-optimizing the performance of existing software components.

Approaches to synthesis can be broadly categorized in terms of the specification type, search

space description, and search method (Gulwani et al., 2017). Specifications may be logical

formulas, examples of correct input-output behavior, or a reward function. Today, the line

between synthesis and reinforcement learning is becoming increasingly blurry. Both rein-

forcement learning and inductive synthesis techniques leverage the fixed structure of existing

software modules (e.g. a particular neural network architecture or a program sketch) to con-

strain the search space. From a reinforcement learning perspective, this approach introduces

significant inductive bias into the learning process. Because we suppose that the modules

chosen are already proficient at solving related tasks, this bias is well-founded. However, one

of the downsides of using arbitrary programs to constrain the search space is that they do

not necessarily enjoy useful properties like differentiability, which enable end-to-end train-

ing of specialized models like deep neural networks commonly used in supervised learning.

Thus, in this work we aim to develop highly parallel stochastic search techniques capable

of adapting autonomy components to improve system level performance while maintaining

safety.
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1.2. Autonomous Vehicles

This work is focused on how concepts from verification and synthesis methods may be

extended to assess and mitigate the risk of autonomous vehicles (AVs). AVs are already

driving on public roads around the US; however, their rate of deployment far outpaces

quality assurance and regulatory efforts. Consequently, even the most elementary tasks, such

as automated lanekeeping, have not been certified for safety, and operations are constrained

to narrow domains. While the potential benefits of AVs range from lower accident rates

to faster commutes and reduced pollution, well-publicized crashes, including at least half-

a-dozen fatalities, have already happened. Today, there is no accepted method to quantify

and bound the risk that an AV poses to its passengers and to other traffic participants.

If unchecked, AV manufacturers could face significant liability precluding the widespread

introduction of the technology. Furthermore, if too many accidents occur without clear

evidence that the technology is safe, the public excitement regarding AVs may soon turn to

distrust. In short, for AV technology to reach the market, we will need both evidence that

the probability of AV failure is vanishingly small, and a means to correct or refine the AV

system if and when failures are discovered or the operational domain is expanded.

In Section 1.1.1 we hypothesized that measuring the risk of cyber-physical systems like

AVs is necessary when absolute safety cannot be guaranteed. Informally, risk measures the

exposure to an event which has an associated loss where there exists both some source of

randomness and a decision-making capability. The challenge is that evaluating the risk of

an AV in the real world is expensive, slow, and dangerous. In response, this thesis develops

methods for rare-event simulation in order to estimate, efficiently, the probability of system

failure. Utilizing these methods at scale requires additional components. In response we also

create a framework for: (1) learning complex generative models which capture the possible

behaviors of the other drivers and (2) running many simulations of the AV system in parallel

on the cloud.

In Section 1.1.2 we hypothesized that synthesis-based techniques can enable the adaptation
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of existing autonomy software modules to new operational domains. In the context of AV de-

velopment, one of the most challenging aspects of this task is that proficient driving requires

a balance of performance and safety. In particular, current AV technology still struggles in

competitive multi-agent scenarios, such as merging onto a highway, where both maximizing

performance (negotiating the merge without delay or hesitation) and maintaining safety

(avoiding a crash) are important. Just as in the setting of risk-evaluation, it is preferable to

leverage simulation for cost, efficiency, and safety reasons. However, for novel scenarios or

operational domains there may be little data which can be used to learn a generative model

of the other drivers. In this thesis we propose a self-play based methods to learn a diverse

set of agent behaviors which can be used both in an offline learning or synthesis setting and

for online planning. Through these techniques we can automatically tune AV systems to

achieve better performance without sacrificing safety.

1.3. Overview and Contributions

The contributions of this thesis are divided into two parts. In Part I we focus on the task of

evaluation, that is assessing the risk that an AV poses, both to its own occupants and other

drivers, by measuring the frequency of dangerous events. In Part II we consider adapting

existing AV planning and control methods to improve their performance (and thus reduce

their risk) for the operational environment which they will be deployed. In what follows we

give an overview of each chapter and its contributions.

1.3.1. Part I: Accelerated Risk Assessment

Data-driven and learning-based approaches are widely utilized to enable robots and au-

tonomous systems that intelligently interact with unstructured environments. Unfortu-

nately, evaluating the performance of the closed-loop system is challenging, limiting the

success of such methods in safety-critical settings. Today, even if we produce autonomous

systems better than a human at driving, flying a plane, or performing surgery, we have no

tractable way to certify the system’s quality. Counterintuitively, the better the performance
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of the agent under consideration, the harder it is to rigorously compute statistics about it

because failures are rare and difficult to sample.

Chapter 2 explores the applicability of a subset of formal methods, namely, verification and

falsification, to the problem of evaluating autonomous vehicle safety. We develop a formal

approach for defining an AV’s operational domain and conduct a series of experiments in

order to understand the relative strengths and weaknesses of verification and falsification

tools. We find that falsification methods can quickly identify examples of failures of a mini-

mally abstracted AV system model, but they do not guarantee coverage of all failure modes.

In contrast, verification methods do provide coverage but require careful consideration of

the environment model to avoid trivial failures which are not caused by the AV’s design.

Moreover, verification methods require significant abstraction of the system-under-test and

scale poorly with operational domain complexity (e.g. the number of agents). Chapter 2

concludes by motivating the risk-based approach pursued in the remainder of Part I.

In Chapter 3 we formalize the problem of risk assessment for autonomous vehicles and

develop a method for creating generative models of the vehicle’s operational domain. Moti-

vated by the challenges underlying real-world testing and formal verification, we consider a

probabilistic paradigm—which we call a risk-based framework—where our goal is to evaluate

the probability of an accident under a base distribution representing standard traffic behav-

ior. Formally, we let P0 denote the base distribution that models standard traffic behavior

and X ∼ P0 be a realization of the simulation (e.g. weather conditions and driving policies

of other agents). For an objective function f : X → R that measures “safety”—so that low

values of f(x) correspond to dangerous scenarios—our goal is to evaluate the probability of

a dangerous event

pγ := P0(f(X) ≤ γ) (1.1)

for some threshold γ. Our risk-based framework is agnostic to the complexity of the ego-

policy, and views it as a black-box module. Such abstraction allows, in particular, deep-

learning based perception systems that make formal verification methods intractable. As
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serious accidents are rare (pγ is small), we view this as a rare-event simulation problem;

naive Monte Carlo sampling methods require prohibitively many simulation rollouts to gen-

erate dangerous scenarios and estimate pγ . To accelerate safety evaluation, we use adaptive

importance-sampling methods to learn alternative distributions Pθ that generate accidents

more frequently. The primary contribution of Chapter 3 is a demonstration of a framework

for large-scale risk estimation which uses data-driven generative models.

In Chapter 4 we propose a novel method for rare-event simulation. Problem (1.1) is often

solved in practice by naive Monte Carlo estimation methods, the simplest of which explore

the search space via random samples from P0. These methods are unbiased and easy to

parallelize, but they exhibit poor sample complexity. Naive Monte Carlo can be improved by

adding an adaptive component exploiting the most informative portions of random samples

drawn from a sequence of approximating distributions P0, P1, . . . , PK . However, standard

adaptive Monte Carlo methods (e.g. Cérou and Guyader, 2007), though they may use first-

order information on the distributions Pk themselves, fail to use first-order information

about f to improve sampling; we explicitly leverage this to accelerate convergence of the

estimate through optimization. The primary contribution of Chapter 4 is a provably efficient

non-parametric method for risk estimation which can leverage first-order information. A

major focus of this work is empirical, and accordingly, we demonstrate the superiority of

our method over competing techniques in a variety of applications: (i) we perform model

comparisons for two learning-based approaches to autonomous navigation, (ii) we evaluate

a state-of-the-art autonomous driving stack which has driven over 20 million miles on public

roads.

1.3.2. Part II: Domain Adaptation

Given a framework for AV evaluation, we turn to a related question: how can AV software be

efficiently adapted for new or expanded operating regimes? We hypothesize that stochastic

search techniques can improve the naive trial-and-error approach commonly used today. To

study these challenges we first create a low-cost scale autonomous racing platform, simulator,
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benchmarks, and baseline solutions. While the platform has all the features of a general

purpose AV, we use the challenge of autonomous racing to sharpen the tradeoff between

performance and safety. Scenarios faced by racing drivers (and autonomous racers) force

the development of technology which must operate safely in both nominal conditions and,

more importantly, at the limits of vehicle performance.

Chapter 5 details the F1TENTH autonomous racing platform, an open-source evaluation

framework for training, testing, and evaluating autonomous systems. With 1/10th-scale

low-cost hardware and multiple virtual environments, F1TENTH enables safe and rapid

experimentation of AV algorithms even in laboratory research settings. We present three

benchmark tasks and baselines in the setting of autonomous racing, demonstrating the flex-

ibility and features of our evaluation environment. The primary contributions of Chapter 5

are simulators that serve as a virtual evaluation environment, enabling rapid implementa-

tion and dissemination of algorithms. In addition we develop the low-cost, 1/10th scale

vehicle and standardized software infrastructure that supplements our virtual benchmark-

ing tools, enabling the use of a wide range of reinforcement learning algorithms in reality.

Finally, we describe three benchmarks in our environment, spanning continuous control and

reinforcement learning methods.

Chapter 6 explores the problem adapting an autonomous racecar to a new track by jointly

optimizing the racing strategy, planning components, control algorithms, and vehicle param-

eters. The primary contribution is a toolchain called TunerCar. This toolchain includes

target hardware, modular software, a calibrated simulator, and an algorithm which searches

for high performance vehicle configurations. We validate our solution with both real and

simulated experiments on the AV software stack and 1/10th-scale open-source vehicle de-

scribed in the previous chapter. We compare the performance of our approach against the

existing F1TENTH baselines and to hand-tuned solutions submitted by over 30 interna-

tional teams, comprised of graduate students working in the field of autonomous vehicles.

For all tested tracks, our method provides the lowest lap time.

9



Chapter 7 investigates the challenge of balancing performance and safety in order to deploy

autonomous vehicles in multi-agent environments. Again, we study autonomous racing, a

domain that penalizes safe but conservative policies, highlighting the need for robust, adap-

tive strategies. Current approaches either make simplifying assumptions about other agents

or lack robust mechanisms for online adaptation. This work makes algorithmic contribu-

tions to both challenges. First, to generate a realistic, diverse set of opponents, we develop a

novel method for self-play based on replica-exchange Markov chain Monte Carlo. Second, we

propose a distributionally robust bandit optimization procedure that adaptively adjusts risk

aversion relative to uncertainty in beliefs about opponents’ behaviors. We rigorously quan-

tify the tradeoffs in performance and robustness when approximating these computations in

real-time motion planning, and we demonstrate our methods experimentally on autonomous

vehicles that achieve scaled speeds comparable to Formula One racecars.
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Part I

Accelerated Risk Assessment
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CHAPTER 2 : Formal Methods for Autonomous Vehicle Validation and Verification

2.1. Chapter Overview

Elements of this chapter have been adapted from “APEX: Autonomous Vehicle Plan Execu-

tion and Verification” in the proceedings of the SAE 2016 and “Computer-aided Design for

Safe Autonomous Vehicles” in the proceedings of Resilience Week 2017. These papers were

joint work with Houssam Abbas, Shinpei Kato, Shin’ichi Shirashi, Sicun Gao, and Rahul

Mangharam.

2.2. Introduction

The electronic design automation industry has a long history of successfully managing the

complexity of semiconductor development by providing tools that enable easy design entry,

modular design, abstraction, formal equivalency checking between abstractions, automated

test generation, formal verification, and the re-use of tests and other artifacts across abstrac-

tions. In this chapter we explore the applicability of a subset of these formal techniques,

namely, verification and falsification, to the problem of evaluating autonomous vehicle safety.

The novelty of the AV domain is that AVs need to operate in a variety of scenarios (e.g. park-

ing and merging). Because the AV will execute different controllers depending on the sce-

nario, it must be verified across a broad cross-section of representative situations. Each

scenario may have an infinite variety of instantiations (highways with different curvatures,

intersections with different traffic signage); therefore, it is also important to obtain good

coverage of a given scenario. Safety-criticality implies that coverage must be rigorously

measured or bounded, rather than set by an arbitrary timeout on the duration of verifi-

cation. In order to concertize the concepts of representative scenarios, coverage, and the

necessity of a formal guarantee we begin with a motivating example.
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2.2.1. Motivating Example

What type of evidence should we require before deploying an autonomous vehicle? To answer

this question, consider the situations presented in Figure 1, all of which are variations on

a lane change scenario. Every car in the scenario is characterized by its state, x. In this

example, we use a 7-dimensional state. To simulate the scenario, we select initial values

for these variables, i.e., an initial state x(0) (which we call a configuration). The initial

state can have any value in a bounded set: e.g. , in Figure 1, the initial position (sx, sy)

of the ego vehicle is in [0, 1] × [0, 1], and the velocity v is in [24, 33]m/s. There are two

distinct sources of performance variation for an AV within a given scenario: first, the ego

vehicle will have to perform a lane change under a variety of initial states. Simulating it

under only one initial state is clearly insufficient, because we expect the outcome of the

scenario when the two cars start 0.5m apart to differ from its outcome when the two cars

start 5m apart. The second source of variation comes from errors in perception such as

localization and velocity estimate. Even if we wish to start the simulation in a particular

state, inaccuracies in measurements mean that the car’s state cannot be exactly known. So

while the algorithms which control the AV assume a given starting state, in reality the car

may actually begin from anywhere in a set containing the state estimate. Thus, it is also

important to verify that these measurement errors do not cause unsafe situations.

The question then becomes: how many simulations should we perform, and which simu-

lations should we perform? Ideally, we would simulate all configurations that produce an

unsafe outcome; we will return to this idea in Chapters 3 and 4. For now, we will assume

that attaining coverage of failure modes either algorithmically or via domain knowledge is a

challenging problem. Even experienced engineers might not think of corner cases, especially

given the size of the vehicles configuration space. Moreover, if we naively test the system,

as in Figure 1 where we show a lane change scenario which has been simulated a 1000 times,

we have no way to know whether the system is safe or if we have just been unlucky and sam-

pled only easy tests. In our example it is the last, non-simulated, situation that reveals the
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Figure 1: Simulation is not sufficient to fully verify a lane change. After a large number of
simulations, the unsafe scenario at the bottom may still not be detected as simulation-based
testing is not exhaustive and leaves a verification gap.

collision: the ego vehicle must start with a positive orientation and yaw rate, and attempt

to change lanes while the other vehicle is slowing down. It is only through the combination

of small errors and the presence of particular environment behavior that the ego vehicle can

deviate from the planned reference trajectory in a dangerous manner.

What is clear is that attempts to attain coverage via methods like grid search, where the con-

figurations are sampled from hypercubes of parameters, are not scalable solutions. Suppose

we decide to sample only 10 points in the range of every state variable, and each simulation

represents 10 seconds of driving. For our 7D model, and with 2 cars, this yields a total of

1014 simulations. If each simulation runs in real-time, we require 10 ∗ 1014 seconds = 30

million years of computation with no guarantee that a bug has not been missed. Thus, in

both this chapter and the rest of the thesis, we develop and evaluate methods that enable

more efficient exploration of search space, leverage massive parallel computation, and seek

algorithmic guarantees of failure mode coverage.

2.2.2. Outline

In Section 2.3 we formalize the definitions of safety and robustness that we will use through-

out this chapter. Given this definition of safety, Section 2.4 describes a formal model of

scenarios from which we can sample closed loop executions of an AV’s interaction with its

14



environment or use to perform verification. In Section 2.5 we briefly describe tools for the

two methods of safety analysis: verification and falsification. For each tool chain we provide

experimental results in Section 2.6 and discuss the relative strengths and weaknesses of each

approach. In particular, while falsification methods can quickly find examples of failures of

the AV system they do not guarantee coverage of all failure modes. In contrast, verification

methods do provide coverage but require careful consideration of the environment model to

avoid trivial failures that are not caused by the AV’s design. Moreover, verification methods

scale poorly as more agents are added and the time horizon of the scenario is extended.

Section 2.7 concludes the chapter by proposing a simple modification to our definition of a

scenario that enables a re-framing of the safety assessment problem.

2.3. Measuring Safety

The guidance issued by the National Highway Traffic Safety Administration (NHTSA) on

the elements of a safety assurance case for AVs (NHTSA, 2016) is a starting point for

standardizing the type of safety and correctness evidence needed for deployment of AVs.

However, it does not prescribe how such evidence should be obtained, nor at which point

of the design cycle analysis should be performed. Our starting point for the development of

evaluation tools is that AV correctness (including safety) is a spectrum: i.e., we should be

able to order vehicles according to how safe they are relative to each other, and compare one

AV’s performance across different scenarios. This is routinely done for human-driven cars,

which receive safety ratings based on their crash performance. For AVs, such a continuous

measure of correctness can and should be obtained at design time, and measured throughout

the design cycle as the vehicle model is refined and as more components are implemented.

Moreover, it is not just a measure of safety, but more generally a measure of how robustly

the AV satisfies potentially complicated requirements.

To understand the approach, consider the T-Junction scenario in Figure 2. The ego-vehicle,

which is the AV under test, must make a right turn while satisfying the following require-

ments: 1. At all times, stay at least 2 m from any obstacle. 2. If the ego-vehicle is already in
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the intersection and the approaching vehicle from the left is closer than 3 m, reach a speed

of 25 mph within 6 seconds. 3. Either reach the green rectangle within 1 min or stay at the

starting position until the road is clear.

These requirements increase in complexity: the first is a static no-collision requirement, the

second adds a reactive time-constrained element, and the third adds a purely temporal ele-

ment. What are meaningful continuous measures of correctness for these three requirements?

For requirement 1, a meaningful measure ρ would be the minimum distance between the

vehicle and any fixed obstacle over the course of the simulation. For requirement 2, things

are more complicated because of the two possibilities. Nonetheless, it is reasonable to say

that the correctness measure ρ in this case equals either the minimum distance between

the two cars if it is above 3 m (so the minimum speed requirement is irrelevant), otherwise

it equals the difference between the maximum car speed and 25 mph over the 6 second

window. Intuitively, in the first case the correctness measure indicates how close the other

car actually got to colliding, while in the second case what is important is whether the

ego-vehicle reacted correctly, and this is measured by how fast it actually got above the

minimum threshold of 25mph.

What about the third requirement? Things are even more complicated because of the tem-

poral ‘until’ component: should the correctness measure reward entering the intersection

earlier? Should it differentiate between two different behaviors after the road clears? And

what if all three requirements are part of the vehicle specification? How do we balance

between all of them? It becomes clear that we need a systematic way of calculating this

correctness measure for arbitrary specifications involving reactive, spatio-temporal require-

ments. Such a systematic measure of correctness is provided by the robustness function of

Metric Temporal Logic (MTL) specifications (Koymans, 1990).

The tools proposed in this thesis are compatible with requirements as a formula ϕ in MTL,

which is a formal mathematical language for writing temporal specifications. The robustness

ρϕ(x) of the MTL specification ϕ is computed relative to a given system execution x. The
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robustness ρϕ(x) is a real number that measures two things (Fainekos and Pappas, 2009):

its sign tells whether x satisfies the specification (ρϕ(x) > 0) or violates it (ρϕ(x) < 0).

Moreover, the trajectory x can be disturbed by an amount |ρϕ(x)| without changing its

truth value (e.g., if it is correct, the disturbed trajectory is also correct). Thus, robustness

is a continuous measure of correctness of the AV with the desired properties.

2.4. Scenario Description Language

The Scenario Description Language (SDL) allows the user to quickly specify a driving sce-

nario with the following components. A scenario S consists of a set of agents, A, that

includes the ego-vehicle and other vehicles and the road, a set of traffic laws L, a goal Φ to

be achieved by the ego-vehicle in this scenario, exit conditions E that define when a scenario

is over (otherwise the verification tools might not know when to terminate), and a set of

states Init that captures the initial states of all vehicle agents.

S = (A,L,Φ, Init, E)

Rather than define these formally, it is best to illustrate them using the T-Junction scenario

depicted in Figure 2.

STOP

ɸ: Mobility Goal

ℇ: Scenario 
End

!: Laws

a1: Ego-Vehicle

t >tf

a2:  Environment Vehicle

Init

a3:  Road

Gap Sensor

Figure 2: The T-Junction Scenario.
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Agents (A): There are 3 agents: the ego-vehicle (a1), environment-vehicle (a2), and

the road (a3). It is unrealistic to assume perfect knowledge of the environment vehicle’s

intentions and dynamics. Thus, the latter must be modeled non-deterministically, e.g. ẋ =

vx, v̇x ∈ [0, 1]m
s2
. Roads are described as finitely-parameterized curves: e.g., straight lines

(with parameter: length) and cubic splines (parameters: length, curvatures). Thus when

the scenario is verified, the results are applicable to all modeled behaviors of the environment

vehicles and roads, not just one arbitrarily fixed behavior or road.

Law Set (L): The laws are fixed in a given scenario and expressed in Metric Temporal

Logic (MTL) (Koymans, 1990). In Figure 2, one law imposes a speed limit of 50 over for

the duration T of the scenario: l1 = Always[0,T ](v < 50). Other laws encode that the vehicle

must not collide, l2 = Always[0,T ](distance(a1, a2) > 0), and that the vehicle must stop at

the stop sign, l3 = Eventually[0,T ]((distance(a1, stop) < 0) ∧ (v < 0.1)).

Goal (Φ): The goal Φ of the ego vehicle is always of the form “Ego must reach some region

within T time units”. In Fig. 2, the goal region is the green rectangle, expressing that the

vehicle should turn onto the main road within some bounded time horizon.

Initialization (Init): An AV estimates its state x0 to within some bounded error (because

of measurement imprecision), and so it only knows that x0 is in some set Inita. Thus, it

is necessary at verification time to verify that whatever actual value x0 has in Inita, the

scenario will not lead to a collision or to a requirement violation. The set Init is the product

of all vehicles’ initial sets: Init = Πa∈AInita. The initial sets of the 2 cars are shown in

light grey in Figure 2.

Exit Condition (E): Finally, the scenario ends either when the ego vehicle leaves the region

defined by the T-Junction (the green region in Figure 2) and proceeds to the next navigation

task, or a timeout occurs (e.g. the vehicle is stuck in the red region in Figure 2). The SDL

enables the user to describe these elements of a scenario in a consistent and structured
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Scenario

A :  Parallel composition of agent objects
L :  Traffic Laws
� :  Goal to be achieved

Init :  Initialization 
E :  End conditions 

Scenario [Off Ramp]

A

Agent [Hybrid Automaton]

X
Xinit

L

E

⇧

Agent [Road]

Agent [Environment Vehicle]

Agent [Ego Vehicle]
L
�

Init

E

Trajectory Tracker 

Motion Planner 

Behavioral Planner 

:  Continuous States
:  Set of Initial States
:  Discrete Modes
:  Transitions
:  Output Function

:  Ego-Vehicle, Environment, Road
:  Speed Limit,  Maintain Spacing
:  Exit Highway
:  Agent Poses, Ramp Length, etc.
:  Goal Region and Timeout

Pseudocode [Ego Vehicle]

Figure 3: Scenario structure. An unfilled arrow indicates class inheritance. The Off-ramp
scenario automaton is the product of all vehicle agents’ automata.

manner, and handles many low-level details like maintaining a global clock, monitoring

for important events like scenario end, type and dimensionality checking, and sharing of

variables to model one AV perceiving another.

To perform rigorous reachability analysis on the scenario (an approach to verification),

it is necessary to map the scenario description to a formal internal representation of the

the agents in the scenario, i.e. a representation with unambiguous mathematical seman-

tics. While several AV simulators exist with more complex models than presented above

(e.g. rendering engines, and sensors), the fact that they lack this internal formal represen-

tation means that it is not possible to run any formal tools on them. Agents have both
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discrete switching dynamics in the BP and continuous dynamics in the TP and TT. Thus

the appropriate formal model is the hybrid automaton (Alur et al., 1995). Every agent in a

scenario is modeled as a hybrid automaton, and the overall scenario model is the product

of all these automata, as shown in Figure 3. Further details are given in Section 2.6.1.

2.5. Tools

In chapter we investigate two formal techniques for AV evaluation: falsification and ver-

ification via bounded reachability analysis. In both approaches, for a given scenario, we

wish to understand whether there exist conditions, such as initial positions and velocities

of all vehicles, and particular curvatures of the road, that lead to a violation of the (MTL)

requirement ϕ.

First we consider falsification. The scenario description language presented in Section 2.4

enables the translation of the symbolic scenario description to a format which enables tra-

jectories to be sampled by S-TaLiRo (Annapureddy and Fainekos, 2010). S-TaLiRo is

a tool for automatic test generation for cyber-physical systems. S-TaLiRo searches X0

for an x0 that yields a trajectory x of minimum robustness ρϕ(x). If ρϕ(x) is negative,

then x is actually a requirement violation. The results are then returned to the designer

to visualize and debug. If a violating x0 exists, then S-TaLiRo will find it in the long run

with probability approaching 1. In practice, S-TaLiRo can find errors more quickly than

verification methods, as will be shown in the experiments. It is important to stress that

the complexity and hybrid nature of an AV scenario requires testing tools, like S-TaLiRo,

that go beyond traditional randomized testing for software. As explained in Section 2.3,

S-TaLiRo computes the robustness of the scenario, which allows us to estimate how badly

a requirement is violated (or how well it is satisfied) enabling low robustness samples to

both guide the selection of interesting test cases, and also be reported for further analysis.

The scenario description language can also be translated to hybrid automaton in a format

that can be processed by dReach (Kong et al., 2015b), which answers the verification question
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exhaustively. Namely: if dReach returns that the scenario is SAFE, then no initial condition

exists for which the model violates the specification, and if it returns that it is δ-UNSAFE,

it provides an example of a violation for debugging. If a scenario is δ-UNSAFE, then this

means that a δ-sized perturbation of the scenario’s trajectories can reach a slightly expanded

unsafe set. In fact there is a strong theoretical connection between δ-satisfiability and the

robustness of the scenario (cf. Abbas et al., 2017); however, for brevity we omit further

discussion here. In practice, such a system should be considered as unsafe, and its design

made more robust. Unlike S-TaLiRo, which might be interrupted before finding a violation

that does exist, dReach’s answer is definitive, but it usually runs for much longer and scales

poorly with the complexity of the scenario being evaluated. The properties of the falsification

and exhaustive verification methodologies described above are complementary, and it what

follow we describe and leverage their individual strengths.

2.6. Experiments

In this section we briefly introduce and expand on the lane change scenario introduced

in Section 2.2 and check its safety using a bounded time reachability analysis. Next, we

consider the more complex T-Junction scenario described in Section 2.4 and apply both

falsification and reachability tools to analyze its safety.

2.6.1. Case Study: Simple Lane Change Controller

The following example describes a lane change scenario in the context of a mission and

mobility goals. We seek to verify both that all possible individual trajectories which occur

in the execution of the plan are safe and that the mobility goal is achieved. We consider two

variants of the lane change scenario shown in Figure 4. In Scenario 1 we will demonstrate

a dangerous condition that could have been missed under testing or simulation. In Scenario

2 we will show how a refinement in the requirements on the perception system as well as a

more conservative behavioral controller can lead to a provably safe maneuver.

We first outline the architecture of the ego vehicle software. The planning and control of the
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vehicle is hierarchical in nature. Each successive layer performs a task over a shorter time

horizon. At the top level a mission planner is given a mobility goal. Such a goal is typically

expressed as a (location, destination) pair. Given this pair the mission planner finds an

optimal (or feasible) route through the road network. In the next layer, the behavioral

planner makes local decisions about how to navigate the road network. For example, if the

mission planner informs the behavioral planner that at the next intersection it will need to

turn left, the behavioral planner will use a set of rules to determine that the ego vehicle

must be in the left lane. The behavior planner then provides a sequence of waypoints,

or intermediary destinations, to the lower-level local planner. Finally, the local planner

produces a trajectory that connects the vehicle’s current pose to the target pose at the

next waypoint. Here pose refers to the combined position, heading, and velocity of the

vehicle. Specifically, given a goal pose relative to the vehicle’s current pose, the local planner

computes a set of candidate smooth trajectories that can lead to the goal pose or near it,

then selects a single trajectory and sends it to the vehicle. The vehicle then uses a PID

controller to track the selected trajectory. Our objective is to verify whether a model (see

O’Kelly et al., 2016, for additional details) of the AV system described above successfully

completes a lane change without crashing for a given set of initial conditions.

Figure 4: A lane change scenario. This scenario is unsafe for certain inter-vehicle spac-
ings and velocities. Reachability analysis is used to identify these conditions and update
requirements for the state estimation system and vehicle controllers.

Scenario 1 (A simple lane change and goal). As shown in Figure 4, the ego vehicle is driving

in the right lane of a unidirectional two lane road network. Another car is driving in front of

the ego vehicle at a lower speed. We include the extreme case where the environmental vehicle

stops. We highlight that when there is significant uncertainty regarding the ego vehicle’s

orientation and that it may deviate (initially) from the reference trajectory while the tracking
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controller recovers.

Table 1 describes the parameterization of the scenario and Figure 5 details the behavior

controller, where LC means “Lane Change" and LF means “Lane Follow". When the ego

vehicle approaches the lead car with a positive difference in speed it enters the LC mode and

tracks a lane change trajectory. When the lane change has been completed the ego vehicle

returns to lane following mode. Using dReach we attempt to show that there is no execution

of the system which can lead to a collision. However, because the system is incorrectly

designed dReach returns δ-UNSAFE and a counterexample.

Figure 5: An automaton describing a simplistic behavior planner for lane changes

The counterexample is generated by a configuration of the scenario in which the environment

vehicle stops in the lane and the ego vehicle’s initial state estimate is poor. The combination

of the sudden stopping behavior of the lead car and large initial trajectory tracking error

cause the ego vehicle to clip the rear left bumper of the other vehicle.

Using this counterexample to inform a refinement of the scenario, we adjust the behavior

controller to require a greater separation between the ego and environment vehicle. In ad-

dition we posit an abstract improvement to the state estimation system such that the ego

vehicles initial pose is more accurate.

Scenario 2 (A more conservative behavioral controller). We begin with Scenario 1. In order

to ensure the forward safety of the vehicle we propose a small modification to the behavioral

controller of the vehicle, and furthermore require that the ego vehicle’s state estimation sys-

tem return estimates with less uncertainty. Namely, we first increase the size of the buffer
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between the ego vehicle and environment, so that the ego vehicle is forced to initiate a lane

change maneuver earlier. Secondly, we also decrease the size of the state estimation error.

Speed, v, now starts anywhere in [10.9, 11] and lateral position, sy, starts in [0.0,0.05].

With these changes, dReal returns SAFE, meaning that no trajectory of the system violates

the constraints. The result of each scenario’s verification run is provided in Table 1. To per-

form verification, we employ dReach version 3.15.10.02 on a Mac OSX laptop with Intel(R)

Core i7(R) 2.60GHz CPU and 16 GB memory.

Table 1: Lane change scenario verification results

Symbol Scenario 1 Scenario 2

Lane Width, w 3.7 3.7
Buffer, B 15 20
Numerical Tolerance, δ 0.1 0.1
Speed, vego [10.8, 11.1] [10.8, 11]
Lead Vehicle Speed, venv [0.0,11.1] [0.0,11.1]
Longitudinal Position, sxego [0.0, 0.5] [0.0, 0.5]
Lateral Position, syego [0.0, 0.1] [0.0, 0.05]
Orientation, Ψ [0.0, 0.1] [0.0, 0.1]
Verification Time (s) 30.821 373.924
Result δ-UNSAFE SAFE

There are several important facts to note about these verification results. First, the effects

of perception errors enter the model of the AV in an abstract way via non-determinism.

Both the complexity of the perception components themselves (e.g. large neural networks),

and the challenge of creating a formal model of the image formation process (e.g. real-time

rendering engines) limit the use of verification tools on AV models which include perception.

Second, in order to verify the lane change scenario it was necessary to make the ego vehicle

behave more conservatively. In Part II of this thesis we explore tradeoffs like this in a

principled manner. Third, as the number of modes in the behavior control layer grows the

complexity of bounded reachability analysis can grow exponentially because the tool must

explore each possible mode sequence. The discrete modes in the lane change scenario are

extremely simple limiting the number of possible mode sequences. Empirically (in this and
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other experiments), we have observed two regimes for verification. In the first regime the

computation time behaves like a random variable drawn from a bi-modal distribution with

one mode for unsafe scenarios and another for safe scenarios. In the second regime, scenarios

of sufficient complexity time out without ever returning an answer. In one instance a we

allowed a verification run to continue for over a month with no progress.

2.6.2. Case Study: T-Junction

The second case study investigates a more complex T-Junction scenario, illustrated in Fig-

ure 2. It demonstrates the challenges of modeling the environment vehicles without being

overly restrictive or overly permissive. Specifically, it reveals that the non-deterministic

dynamics of the environment vehicle may be under-constrained, allowing it to rear-end the

ego-vehicle, and causing the verification process to terminate with a counterexample.

Scenario 3 (T-Junction). The T-Junction instance encodes a driving scenario in which the

ego vehicle reaches a stop sign and must turn right onto a two lane bidirectional road. The

oncoming traffic is not required to stop. Thus, the ego vehicle must first come to a stop

and then execute a sequence of trajectories such that it reaches the goal state of the scenario

without colliding with any other object or traffic.

Table 2 describes the parameterization of the scenario, and Figure 6 details the behavior

controller. The scenario contains three agents: an ego vehicle, an environment vehicle, and

a T-Junction road network with a stop sign. The ego vehicle begins in mode Drive (`1),

traveling towards the stop sign obeying relevant traffic laws. When it reaches the region

where the roads connect it enters mode Pause (`2) and comes to a stop. Once there is a

sufficiently large gap in the traffic the ego vehicle begins the turn right (mode Turn Prefix,

`3). Finally, when it has reached the main road it switches to mode Turn Predicate (`4)

and aligns itself with the centerline. We begin our analysis of the T-Junction scenario by

running the falsification tool S-TaLiRo with the goal of quickly finding and understanding

specification violations.
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Figure 13: T-Junction Transitions and Resets
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Figure 6: T-Junction: scenario automaton (left) and corresponding guards and resets (right).

Figure 7: Analysis of samples generated by robust testing of the T-Junction scenario that the
behavioral controller design fails in cases where the environment vehicle starts relatively far
away at a velocity similar to the speed limit and accelerates into the back of the ego-vehicle
(1,000 runs)

Figure 8: Scenario 3. Top: collision due to under-constrained environment vehicle. Bottom:
collision due to incorrect transitions.
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Table 2: Verification Results for the T-Junction Scenario. δ-UNSAFE means a δ-sized perturbation
leads to collisions

State
Variable Description Controller

Error
Corrected
Controller

Additional
Uncertainty

sxenv Environment X-position m [8,60] [8,60] [8,60]
venv Environment Velocity [5,15] [5,15] [5,15]

v̇env ∈ F (`) Environment Velocity Noise [-0.5,0.5] [-0.5,0.5] [-0.5,0.5]
ṡxenv ∈ F (`) Environment X-Position Noise [0, 0] [0,0] [-0.5,0.5]
Runtime (s) 2.6 GHz Intel Core i7, 16 GB RAM 83.622 41.985 542.344

Result δ = 0.1 δ-UNSAFE SAFE SAFE

Figure 7 shows sampled robustness values as a function of the initial environment vehicle

position and velocity. The figure illustrates that incorrect behaviors (yellow-to-red dots) are

interspersed in-between correct behavior (green dots). Thus, the testing of complex systems

cannot simply be a matter of testing the so-called corner cases or extreme configurations. In

contrast, the specification-guided testing methodology incorporated in S-TaLiRo is able to

efficiently identify such failure modes. The failure modes found by S-TaLiRo can be traced

back to the dynamics of the environment: the latter could accelerate behind the ego vehicle

and rear-end it (see the visualization in the top panel of Figure 8). In an accident of this

nature, the liability usually but not always, falls on the trailing vehicle’s operator rather

than the ego vehicle being tested. For the purposes of verifying this scenario we will assume

that this behavior is undesirable, but in Chapters 3 and 4 we develop methods which do not

require such subjective judgments of blame.

This undesirable environment behavior can be excised by adding a new exit condition,

which is triggered before the environment vehicle rear-ends the ego vehicle, to the scenario

automaton (the composition of all agents’ hybrid automata). Following this update, another

failure mode is identified by S-TaLiRo (see the bottom panel of Figure 8). In this case, the

ego vehicle fails to yield to an accelerating vehicle. While dReach is capable of identifying

this failure mode in approximately 84 seconds (Table 2, 3rd column), S-TaLiRo produces

many variations of the crash in only 8 seconds. In order to correct this failure, the guard in

Pause is refined to ensure that there is a large enough gap for the ego vehicle to complete
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the maneuver.

Upon updating the ego vehicle’s controller, dReach exhaustively verified the scenario to

be SAFE in 41.98 seconds (Table 2 column ‘Corrected Controller’.) Additionally, dReach

certified the scenario as SAFE even with added non-determinism in the environment vehicle’s

dynamics. Still there are serious limitations to scaling verification due to its computational

complexity; as expected, additional T-Junction experiments with larger initial sets or more

agents all timed out without returning any results.

2.7. Conclusions

In summary, for safety and correctness certification, AV manufacturers will have to provide

rigorous and transparent guarantees (Arnold and Scheutz, 2016) that the AV will perform

correctly under a number of scenarios, regardless of initial configuration. Where applicable,

formal methods can provide such rigorous guarantees. Thus, in this work we developed a

tool chain for performing safety assessments of AVs via both verification and falsification

techniques. The case studies show that scenarios which capture AV operational domains

can be analyzed as hybrid systems; however, they also serve to demonstrate the limitations

of such approaches.

For the AV verification problem, formal methods are subject to fundamental computational

barriers. This fact means that current tools are limited to very short time-horizons, during

which a crash might not arise, or to handling individual components (Nilsson et al.), dis-

cretized dynamics (Humphrey et al., 2014), or highly abstract models (Loos et al., 2011)

all of which may result in overly conservative conclusions (Pavlic et al., 2011) and doubtful

applicability to the physical car.

More specifically, a primary concern of all model-based design methods is that any evidence

gathered is a statement about the model, which may differ significantly from the real system.

Although this reality-gap is not exclusive to the verification-based methods, it is exacerbated

in the verification setting. Put plainly, the actual artifacts which constitute AV software and
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AV simulation environments are not written in a formalism suitable for verification tools.

While it may technically possible to express a rendering engine, optimization routine, or

sensor model as a hybrid system, the discrete modes of the scenario object would be so com-

plex that verification is unrealistic. Thus, abstraction of key AV components, particularly

perception, trajectory generation, and localization systems, is more than just convenience:

it is necessary for any practical verification effort.

In the falsification regime, modeling decisions still result in a gap between the evidence

generated by the toolchain and performance in reality; however, the nature and cause of this

gap is quite different. Falsification approaches only require that we can sample an execution

of the system; the structure of the system model itself is not integral to the analysis method,

as it is in verification. Thus, there is no need to abstract complex software modules in the

simulator or the AV stack; the real implementation can still be used. The primary difficultly

is instead the fidelity of the model for the “physical” portion of the system, e.g. the vehicle

dynamics, behaviors of human actors, and the textures and geometry of the world. The

“cyber” portion of the model, that is the software controlling the system under test, is

largely untouched. Therefore, in terms of modeling effort and model expressivity there are

clear benefits to the falsification-based family of approaches. Thus, in the remainder of this

thesis, maintaining the ability to consider the system-under-test as a black-box from which

simulated executions may be sampled will be a requirement of methods which we propose.

Despite the need for abstraction in the verification regime, it has many favorable character-

istics. When a verification method terminates, we know either that the model satisfies its

specification, or that there exists a counterexample. In contrast falsification-based methods

can make no such assurance, and the computational budgets which define their run-time

are arbitrary. While the tools we utilize in this chapter for verification do not “simulate”

the system-under-test explicitly, precluding a measurement of efficiency in terms of number

of simulations, we do know that they will terminate. Therefore, if we are to seek methods

which can analyze black-box system models (as in falsification) we would like to add an
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additional requirement that the number of simulations necessary to terminate the run be

quantifiable.

Still, the verification and falsification approaches we have presented lack a key capability.

In both regimes we do not recover the likelihood of a counterexample. The reasons are

two-fold: first, the representations of the system-environment model are impoverished, non-

determinism is used to express uncertainty about executions of the system rather than

defining a probability space. From a formal modeling perspective the required changes are

small. Instead of considering a hybrid automaton, we can define the underlying structure of

the system-under-test to be a hybrid automaton with parametric uncertainty (Wang et al.,

2015). While we will not explicitly write models in this formalism in the remainder of this

thesis, the underlying assumption is that we are able to sample executions from such an

object.

Updating the model to include a probabilistic description of the initial conditions of the

system does little to change the situation if the verifier or falsifier are still tasked with

searching for the existence of a failure. In this case, positing a uniform distribution over

initial conditions would have no different result than Gaussian. Instead, we must also

change the problem we are trying to solve from: “Does there exist a failure?” to “What is

the probability of a failure?”. It is from this set of desiderata that we begin Chapter 3.
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CHAPTER 3 : Risk-based Framework

3.1. Chapter Overview

This chapter is adapted from “Scalable End-to-end Autonomous Vehicle Testing via Rare-

event Simulation”, which appeared in the Proceedings of Neural Information Processing

Systems 2018 as joint work with Aman Sinha, Hongseok Namkoong, John Duchi, and Russ

Tedrake.

3.2. Introduction

Recent breakthroughs in deep learning have accelerated the development of autonomous

vehicles (AVs); many research prototypes now operate on real roads alongside human drivers.

While advances in computer-vision techniques have made human-level performance possible

on narrow perception tasks such as object recognition, several fatal accidents involving AVs

underscore the importance of testing whether the perception and control pipeline—when

considered as a whole system—can safely interact with humans. Unfortunately, testing AVs

in real environments, the most straightforward validation framework for system-level input-

output behavior, requires prohibitive amounts of time due to the rare nature of serious

accidents (Shalev-Shwartz et al., 2017). Concretely, a recent study (Kalra and Paddock,

2016) argues that AVs need to drive “hundreds of millions of miles and, under some scenarios,

hundreds of billions of miles to create enough data to clearly demonstrate their safety.”

Alternatively, formally verifying an AV algorithm’s “correctness” (Kwiatkowska et al., 2011;

Althoff and Dolan, 2014; Seshia et al., 2015; O’Kelly et al., 2016) is difficult since all driving

policies are subject to crashes caused by other drivers (Shalev-Shwartz et al., 2017). It is

unreasonable to ask that the policy be safe under all scenarios. Unfortunately, ruling out

scenarios where the AV should not be blamed is a task subject to logical inconsistency,

combinatorial growth in specification complexity, and subjective assignment of fault.

Motivated by the challenges underlying real-world testing and formal verification, we con-
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sider a probabilistic paradigm—which we call a risk-based framework—where the goal is

to evaluate the probability of an accident under a base distribution representing standard

traffic behavior. By assigning learned probability values to environmental states and agent

behaviors, our risk-based framework considers performance of the AV’s policy under a data-

driven model of the world. To efficiently evaluate the probability of an accident, we imple-

ment a photo-realistic and physics-based simulator that provides the AV with perceptual

inputs (e.g. video and range data) and traffic conditions (e.g. other cars and pedestrians).

The simulator allows parallelized, faster-than-real-time evaluations in varying environments

(e.g. weather, geographic locations, and aggressiveness of other cars).

Formally, we let P0 denote the base distribution that models standard traffic behavior and

X ∼ P0 be a realization of the simulation (e.g. weather conditions and driving policies of

other agents). For an objective function f : X → R that measures “safety”—so that low

values of f(x) correspond to dangerous scenarios—our goal is to evaluate the probability of

a dangerous event

pγ := P0(f(X) ≤ γ) (3.1)

for some threshold γ. Our risk-based framework is agnostic to the complexity of the ego-

policy and views it as a black-box module. Such an approach allows, in particular, deep-

learning based perception systems that make formal verification methods intractable.

An essential component of this approach is to estimate the base distribution P0 from data; we

use public traffic data collected by the US Department of Transportation (US Department

of Transportation – FHWA, 2008). While such datasets do not offer insights into how AVs

interact with human agents—this is precisely why we design our simulator—they illustrate

the range of standard human driving behavior that the base distribution P0 must model.

We use imitation learning (Russell, 1998; Ross and Bagnell, 2010; Ross et al., 2011; Ho and

Ermon, 2016; Baram et al., 2017) to learn a generative model for the behavior (policy) of

environment vehicles; unlike traditional imitation learning, we train an ensemble of models

to characterize a distribution of human-like driving policies.
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Figure 9: Multi-lane highway driving on I-80: (left) real image, (right) rendered image from
simulator

As serious accidents are rare (pγ is small), we view this as a rare-event simulation (Asmussen

and Glynn, 2007) problem; naive Monte Carlo sampling methods require prohibitively many

simulation rollouts to generate dangerous scenarios and estimate pγ . To accelerate safety

evaluation, we use adaptive importance-sampling methods to learn alternative distributions

Pθ that generate accidents more frequently. Specifically, we use the cross-entropy algo-

rithm (Rubinstein and Kroese, 2004) to iteratively approximate the optimal importance

sampling distribution. In contrast to simple classical settings (Rubinstein and Kroese, 2004;

Zhao et al., 2018) which allow analytic updates to Pθ, our high-dimensional search space

requires solving convex optimization problems in each iteration (Section 3.3). To address

numerical instabilities of importance sampling estimators in high dimensions, we carefully

design search spaces and perform computations in logarithmic scale. Our implementation

produces 2-20 times as many rare events as naive Monte Carlo methods, independent of the

complexity of the ego-policy.

In addition to accelerating evaluation of pγ , learning a distribution Pθ that frequently

generates realistic dangerous scenarios Xi ∼ Pθ is useful for engineering purposes. The

importance-sampling distribution Pθ not only efficiently samples dangerous scenarios, but

also ranks them according to their likelihoods under the base distribution P0. This capa-

bility enables a deeper understanding of failure modes and prioritizes their importance to

improving the ego-policy.

As a system, our simulator allows fully distributed rollouts, making our approach orders
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of magnitude cheaper, faster, and safer than real-world testing. Using the asynchronous

messaging library ZeroMQ (Hintjens, 2013), our implementation is fully-distributed among

available CPUs and GPUs; our rollouts are up to 30P times faster than real time, where P is

the number of processors. Combined with the cross-entropy method’s speedup, we achieve

10-300P speedup over real-world testing.

In what follows, we describe components of our open-source toolchain, a photo-realistic

simulator equipped with our data-driven risk-based framework and cross-entropy search

techniques. The toolchain can test an AV as a whole system, simulating the driving policy

of the ego-vehicle by viewing it as a black-box model. The use of adaptive-importance

sampling methods motivates a unique simulator architecture (Section D.5) which allows real-

time updates of the policies of environment vehicles. In Section 3.5, we test our toolchain

by considering an end-to-end deep-learning-based ego-policy (Bojarski et al., 2016) in a

multi-agent highway scenario. Figure 9 shows one configuration of this scenario in the real

world along with rendered images from the simulator, which uses Unreal Engine 4 (Games,

2015). Our experiments show that we accelerate the assessment of rare-event probabilities

with respect to naive Monte Carlo methods as well as real-world testing. We believe our

open-source framework is a step towards a rigorous yet scalable platform for evaluating

AV systems, with the broader goal of understanding how to reliably deploy deep-learning

systems in safety-critical applications.

3.3. Rare-event simulation

To motivate our risk-based framework, we first argue that formally verifying correctness of

a AV system is infeasible due to the challenge of defining “correctness.” Consider a scenario

where an AV commits a traffic violation to avoid collision with an out-of-control truck

approaching from behind. If the ego-vehicle decides to avoid collision by running through

a red light with no further ramifications, is it “correct” to do so? The “correctness” of the

policy depends on the extent to which the traffic violation endangers nearby humans and

whether any element of the “correctness” specification explicitly forbids such actions. That
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is, “correctness” as a binary output is a concept defined by its exceptions, many elements of

which are subject to individual valuations (Bonnefon et al., 2016).

Instead of trying to verify correctness, we begin with a continuous measure of safety f : X →

R, where X is space of traffic conditions and behaviors of other vehicles. The prototypical

example in this paper is the minimum time-to-collision (TTC) (see Appendix A.1 for its

definition) to other environmental agents over a simulation rollout. Rather than requiring

safety for all x ∈ X , we relax the deterministic verification problem into a probabilistic one

where we are concerned with the probability under standard traffic conditions that f(X)

goes below a safety threshold. Given a distribution P0 on X , our goal is to estimate the

rare event probability pγ := P0(f(X) ≤ γ) based on simulated rollouts f(X1), . . . , f(Xn).

As accidents are rare and pγ is near 0, we treat this as a rare-event simulation problem;

see (Bucklew, 2013; Asmussen and Glynn, 2007, Chapter VI) for an overview of this topic.

First, we briefly illustrate the well-known difficulty of naive Monte Carlo simulation when

pγ is small. From a sample Xi
i.i.d.∼ P0, the naive Monte Carlo estimate is

p̂N,γ :=
1

N

N∑
i=1

1 {f(Xi) ≤ γ} .

As pγ is small, we use relative accuracy to measure our performance, and the central limit

theorem implies the relative accuracy is approximately

∣∣∣∣ p̂N,γpγ − 1

∣∣∣∣ dist≈
√

1− pγ
Npγ

|Z|+ o(1/
√
N) for Z ∼ N(0, 1).

For small pγ , we require a sample of size N & 1/(pγε
2) to achieve ε-relative accuracy, and if

f(X) is light-tailed, the sample size must grow exponentially in γ.

Cross-entropy method As an alternative to a naive Monte Carlo estimator, we con-

sider (adaptive) importance sampling (Asmussen and Glynn, 2007), and we use a model-

based optimization procedure to find a good importance-sampling distribution. The opti-
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mal importance-sampling distribution for estimating pγ has the conditional density p?(x) =

1 {f(x) ≤ γ} p0(x)/pγ , where p0 is the density function of P0: as p0(x)/p?(x) = pγ for all

x satisfying 1 {f(x) ≤ γ}, the estimate p̂?N,γ := 1
N

∑N
i=1

p0(Xi)
p?(Xi)

1 {f(Xi) ≤ γ} is exact. This

sampling scheme is, unfortunately, de facto impossible, because we do not know pγ . Instead,

we use a parameterized importance sampler Pθ and employ an iterative model-based search

method to modify θ so that Pθ approximates P ?.

The cross-entropy method (Rubinstein and Kroese, 2004) iteratively tries to find θ? ∈

argminθ∈ΘDkl (P ?||Pθ), the Kullback-Leibler projection of P ? onto the class of parame-

terized distributions P = {Pθ}θ∈Θ. Over iterations k, we maintain a surrogate distribution

qk(x) ∝ 1 {f(x) ≤ γk} p0(x) where γk ≥ γ is a (potentially random) proxy for the rare-event

threshold γ, and we use samples from Pθ to update θ as an approximate projection of Q onto

P. The motivation underlying this approach is to update θ so that Pθ upweights regions

of X with low objective value (i.e. unsafe) f(x). We fix a quantile level ρ ∈ (0, 1)—usually

we choose ρ ∈ [0.01, 0.2]—and use the ρ-quantile of f(X) where X ∼ Pθk as γk, our proxy

for the rare event threshold γ (see Homem-de Mello (2007) for alternatives). We have the

additional challenge that the ρ-quantile of f(X) is unknown, so we approximate it using

i.i.d. samples Xi ∼ Pθk . Compared to applications of the cross-entropy method (Rubinstein

and Kroese, 2004; Zhao et al., 2018) that focus on low-dimensional problems permitting

analytic updates to θ, our high-dimensional search space requires solving convex optimiza-

tion problems in each iteration. To address numerical challenges in computing likelihood

ratios in high-dimensions, our implementation carefully constrains the search space and we

compute likelihoods in logarithmic scale.

We now rigorously describe the algorithmic details. First, we use natural exponential families

as our class of importance samplers P.

Definition 1. The family of density functions {pθ}θ∈Θ, defined with respect to base measure

µ, is a natural exponential family if there exists a sufficient statistic Γ such that pθ(x) =

exp(θ>Γ(x)−A(θ)) where A(θ) = log
∫
X exp(θ>Γ(x))dµ(x) is the log partition function and
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Algorithm 1 Cross-Entropy Method
1: Input: Quantile ρ ∈ (0, 1), Stepsizes {αk}k∈N, Sample sizes {Nk}k∈N, Number of itera-

tions K
2: Initialize: θ0 ∈ Θ
3: for k = 0, 1, 2, . . . ,K − 1 do
4: Sample Xk,1, . . . , Xk,Nk

i.i.d.∼ Pθk
5: Set γk as the minimum of γ and the ρ-quantile of f(Xk,1), . . . , f(Xk,Nk)
6: θk+1 = argmaxθ∈Θ

{
αkθ

>Dk+1 + (1− αk)θ>∇A(θk)−A(θ)
}

Θ := {θ | A(θ) <∞}.

Given this family, we consider idealized updates to the parameter vector θk at iteration k,

where we compute projections of a mixture of Qk and Pθk onto P

θk+1 = argmin
θ∈Θ

Dkl (αkQk + (1− αk)Pθk ||Pθ)

= argmax
θ∈Θ

{αkEQk [log pθ(X)] + (1− αk)Eθk [log pθ(X)]}

= argmax
θ∈Θ

{
αkθ

>EQk [Γ(X)] + (1− αk)θ>∇A(θk)−A(θ)
}
. (3.2)

The term EQk [Γ(X)] is unknown in practice, so we use a sampled estimate. For

Xk,1, . . . , Xk,Nk
i.i.d.∼ Pθk ,

let γk be the ρ-quantile of f(Xk,1), . . . , f(Xk,Nk) and define

Dk+1 :=
1

Nk

Nk∑
i=1

qk(Xk,i)

pθk(Xk,i)
Γ(Xk,i) =

1

Nk

Nk∑
i=1

p0(Xk,i)

pθk(Xk,i)
1 {f(Xk,i) ≤ γk}Γ(Xk,i). (3.3)

Using the estimate Dk+1 in place of EQk [Γ(X)] in the idealized update (3.2), we obtain Algo-

rithm 1. To select the final importance sampling distribution from Algorithm 1, we choose θk

with the lowest ρ-quantile of f(Xk,i). We observe that this choice consistently improves per-

formance over taking the last iterate or Polyak averaging. Letting θce denote the parameters

for the importance sampling distribution learned by the cross-entropy method, we sample

Xi
i.i.d.∼ Pθce and use p̂N,γ := 1

N

∑N
i=1

p0(Xi)
pθce (Xi)

1 {f(Xi) ≤ γ} as our final importance-sampling
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estimator for pγ .

In the context of our rare-event simulator, we use a combination of Beta and Normal dis-

tributions for Pθ. The sufficient statistics Γ include (i) the parameters of the generative

model of behaviors that our imitation-learning schemes produce and (ii) the initial poses

and velocities of other vehicles, pedestrians, and obstacles in the simulation. Given a current

parameter θ and realization from the model distribution Pθ, our simulator then (i) sets the

parameters of the generative model for vehicle policies and draws policies from this model,

and (ii) chooses random poses and velocities for the simulation. Our simulator is one of the

largest-scale applications of cross-entropy methods.

3.4. Simulation framework

Two key considerations in our risk-based framework influence design choices for our sim-

ulation toolchain: (1) learning the base distribution P0 of nominal traffic behavior via

data-driven modeling, and (2) testing the AV as a whole system. We now describe how

our toolchain achieves these goals.

3.4.1. Data-driven generative modeling

While our risk-based framework (cf. Section 3.3) is a concise, unambiguous measure of system

safety, the rare-event probability pγ is only meaningful insofar as the base distribution P0 of

road conditions and the behaviors of other (human) drivers is estimable. Thus, to implement

our risk-based framework, we first learn a base distribution P0 of nominal traffic behavior.

Using the highway traffic dataset NGSim (US Department of Transportation – FHWA,

2008), we train policies of human drivers via imitation learning (Russell, 1998; Ross and

Bagnell, 2010; Ross et al., 2011; Ho and Ermon, 2016; Baram et al., 2017). Our data

consists of videos of highway traffic (US Department of Transportation – FHWA, 2008), and

our goal is to create models that imitate human driving behavior even in scenarios distinct

from those in the data. We employ an ensemble of generative adversarial imitation learning

(GAIL) (Ho and Ermon, 2016) models to learn P0. Our approach is motivated by the
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observation that reducing an imitation-learning problem to supervised learning—where we

simply use expert data to predict actions given vehicle states—suffers from poor performance

in regions of the state space not encountered in data (Ross and Bagnell, 2010; Ross et al.,

2011). Reinforcement-learning techniques have been observed to improve generalization

performance, as the imitation agent is able to explore regions of the state space in simulation

during training that do not necessarily occur in the expert data traces.

Generically, GAIL is a minimax game between two functions: a discriminator Dφ and a

generator Gξ (with parameters φ and ξ respectively). The discriminator takes in a state-

action pair (s, u) and outputs the probability that the pair came from real data, P(real data).

The generator takes in a state s and outputs a conditional distribution Gξ(s) := P(u | s)

of the action u to take given state s. In our context, Gξ(·) is then the (learned) policy

of a human driver given environmental inputs s. Training the generator weights ξ occurs

in a reinforcement-learning paradigm with reward − log(1 − Dφ(s,Gξ(s))). We use the

model-based variant of GAIL (MGAIL) (Baram et al., 2017) which renders this reward fully

differentiable with respect to ξ over a simulation rollout, allowing efficient model training.

GAIL has been validated by Kuefler et al. (2017) to realistically mimic human-like driving

behavior from the NGSim dataset across multiple metrics. These include the similarity of

low-level actions (speeds, accelerations, turn-rates, jerks, and time-to-collision), as well as

higher-level behaviors (lane change rate, collision rate, hard-brake rate, etc).

Our importance sampling and cross-entropy methods use not just a single instance of model

parameters ξ, but rather a distribution over them to form a generative model of human

driving behavior. To model this distribution, we use a (multivariate normal) parametric

bootstrap over a trained ensemble of generators ξi, i = 1, . . . ,m. Our models ξi are high-

dimensional (ξ ∈ Rd, d > m) as they characterize the weights of large neural networks, so

we employ the graphical lasso (Friedman et al., 2008) to fit the inverse covariance matrix for

our ensemble. This approach to modeling uncertainty in neural-network weights is similar

to the bootstrap approach of Osband et al. (2016). Other approaches include using dropout
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for inference (Gal and Ghahramani, 2016) and variational methods (Graves, 2011; Blundell

et al., 2015; Kingma et al., 2015).

While several open source driving simulators have been proposed (Dosovitskiy et al., 2017a;

Shah et al., 2017; Quiter and Ernst, 2018), our problem formulation requires unique fea-

tures to allow sampling from a continuous distribution of driving policies for environmental

agents. Conditional on each sample of model parameters ξ, the simulator constructs a (ran-

dom) rollout of vehicle behaviors according to Gξ. Unlike other existing simulators, ours

is designed to efficiently execute and update these policies as new samples ξ are drawn for

each rollout.

3.4.2. System architecture

The second key characteristic of our framework is that it enables black-box testing the AV

as a whole system. Flaws in complex systems routinely occur at poorly specified interfaces

between components, as interactions between processes can induce unexpected behavior.

Consequently, solely testing subcomponents of an AV control pipeline separately is insuffi-

cient (Abbas et al., 2019). Moreover, it is increasingly common for manufacturers to utilize

software and hardware artifacts for which they do not have any whitebox model (Heinecke

et al., 2004; Cheah et al., 2016). We provide a concise but extensible language-agnostic

interface to our benchmark world model so that common AV sensors such as cameras and

LIDAR can provide the necessary inputs to induce vehicle actuation commands.

Our simulator is a distributed, modular framework, which is necessary to support the in-

clusion of new AV systems and updates to the environment-vehicle policies. A benefit of

this design is that simulation rollouts are simple to parallelize. In particular, we allow in-

stantiation of multiple simulations simultaneously, without requiring that each include the

entire set of components. For example, a desktop may support only one instance of Unreal

Engine but could be capable of simulating 10 physics simulations in parallel; it would be

impossible to fully utilize the compute resource with a monolithic executable wrapping all
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engines together. Our architecture enables instances of the components to be distributed

on heterogeneous GPU compute clusters while maintaining the ability to perform mean-

ingful analysis locally on commodity desktops. In Appendix A.1, we detail our scenario

specification, which describes how Algorithm 1 maps onto our distributed architecture.

3.5. Experiments

In this section, we demonstrate our risk-based framework on a multi-agent highway scenario.

As the rare-event probability of interest pγ gets smaller, the cross-entropy method learns to

sample more rare events compared to naive Monte Carlo sampling; we empirically observe

that the cross-entropy method produces 2-20 times as many rare events as its naive coun-

terpart. Our findings hold across different ego-vehicle policies, base distributions P0, and

scenarios.

To highlight the modularity of our simulator, we evaluate the rare-event probability pγ

on two different ego-vehicle policies. The first is an instantiation of an imitation learn-

ing (non-vision) policy which uses LIDAR as its primary perceptual input. Secondly, we

investigate a vision-based controller (vision policy), where the ego-vehicle drives with an

end-to-end highway autopilot network (Bojarski et al., 2016), taking as input a rendered

image from the simulator (and LIDAR observations) and outputting actuation commands.

See Appendix A.2 for a summary of network architectures used.

We consider a scenario consisting of six agents, five of which are considered part of the envi-

ronment. The environment vehicles’ policies follow the distribution learned in Section 3.4.1.

All vehicles are constrained to start within a set of possible initial configurations consisting

of pose and velocity, and each vehicle has a goal of reaching the end of the approximately

2 km stretch of road. Fig. 9 shows one such configuration of the scenario, along with ren-

dered images from the simulator. We create scene geometry based on surveyors’ records and

photogrammetric reconstructions of satellite imagery of the portion of I-80 in Emeryville,

California where the traffic data was collected (US Department of Transportation – FHWA,
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2008).

Simulation parameters We detail our postulated base distribution P0. Letting m denote

the number of vehicles, we consider the random tuple X = (S, T,W, V, ξ) as our simulation

parameter where the pair (S, T ) ∈ Rm×2
+ indicates the two-dimensional positioning of each

vehicle in their respective lanes (in meters), W the orientation of each vehicle (in degrees),

and V the initial velocity of each vehicle (in meters per second). We use ξ ∈ R404 to denote

the weights of the last layer of the neural network trained to imitate human-like driving

behavior. Specifically, we set S ∼ 40Beta(2, 2) + 80 with respect to the starting point of the

road, T ∼ 0.5Beta(2, 2) − 0.25 with respect to the lane’s center, W ∼ 7.2Beta(2, 2) − 3.6

with respect to facing forward, and V ∼ 10Beta(2, 2) + 10. We assume ξ ∼ N (µ0,Σ0), with

the mean and covariance matrices learned via the ensemble approach outlined in Section

3.4.1. The neural network whose last layer is parameterized by ξ describes the policy of

environment vehicles; it takes as input the state of the vehicle and LIDAR observations of

the surrounding environment (see Appendix A.2 for more details). Throughout this section,

we define our measure of safety f : X → R as the minimum time-to-collision (TTC) over

the simulation rollout. We calculate TTC from the center of mass of the ego vehicle; if the

ego-vehicle’s body crashes into obstacles, we end the simulation before the TTC can further

decrease (see Appendix A.1 for details).

Cross-entropy method Throughout our experiments, we impose constraints on the

space of importance samplers (adversarial distributions) for feasibility. Numerical stabil-

ity considerations predominantly drive our hyperparameter choices. For model parame-

ters ξ, we also constrain the search space to ensure that generative models Gξ maintain

reasonably realistic human-like policies (recall Sec. 3.4.1). For S, T,W , and V , we let

{Beta(α, β) : α, β ∈ [1.5, 7]} be the model space over which the cross-entropy method

searches, scaled and centered appropriately to match the scale of the respective base dis-

tributions. We restrict the search space of distributions over ξ ∈ R404 by searching over

{N(µ,Σ0) : ‖µ− µ0‖∞ ≤ .01}, where (µ0,Σ0) are the parameters of the base (bootstrap)

42



0.14 0.16 0.18 0.2 0.22 0.24 0.26
2

3

4

5

6

7

8

9

(a) Ratio of number of rare events vs. threshold

0.14 0.16 0.18 0.2 0.22 0.24 0.26

10
-1

10
0

10
1

(b) Ratio of variance vs. threshold

Figure 10: The ratio of (a) number of rare events and (b) variance of estimator for pγ
between cross-entropy method and naive MC sampling for the non-vision ego policy. Rarity
is inversely proportional to γ, and, as expected, we see the best performance for our method
over naive MC at small γ.

Search Algorithm γtest = 0.14 γtest = 0.15 γtest = 0.19 γtest = 0.20

Naive 1300K (12.4±3.1)e-6 (80.6±7.91)e-6 (133±3.2)e-5 (186±3.79)e-5
Cross-entropy 100K (19.8±8.88)e-6 (66.1 ± 15)e-6 (108± 9.51)e-5 (164 ± 14)e-5

Naive 100K (20±14.1)e-6 (100± 31.6)e-6 (132±11.5)e-5 (185±13.6)e-5

Table 3: Estimate of rare-event probability pγ (non-vision ego policy) with standard er-
rors. For the cross-entropy method, we show results for the learned importance sampling
distribution with ρ = 0.01.

distribution. For our importance sampling distribution Pθ, we use products of the above

marginal distributions. These restrictions on the search space mitigate numerical instabili-

ties in computing likelihood ratios within our optimization routines, which is important for

our high-dimensional problems.

We first illustrate the dependence of the cross-entropy method on its hyperparameters.

We choose to use a non-vision ego-vehicle policy as a test bed for hyperparameter tuning,

since this allows us to take advantage of the fastest simulation speeds for our experiments.

We focus on the effects (in Algorithm 1) of varying the most influential hyperparameter,

ρ ∈ (0, 1], which is the quantile level determining the rarity of the observations used to

compute the importance sampler θk. Intuitively, as ρ approaches 0, the cross-entropy method

learns importance samplers Pθ that up-weight unsafe regions of X with lower f(x), increasing
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the frequency of sampling rare events (events with f(X) ≤ γ). In order to avoid overfitting

θk as ρ → 0, we need to increase Nk as ρ decreases. Our choice of Nk is borne out of

computational constraints as it is the biggest factor that determines the run-time of the

cross-entropy method. Consistent with prior works (Rubinstein and Kroese, 2004; Hu and

Hu, 2009), we observe empirically that ρ ∈ [0.01, 0.2] is a good range for the values of Nk

deemed feasible for our computational budget (Nk = 1000 ∼ 5000). We fix the number of

iterations at K = 100, number of samples taken per iteration at Nk = 5000, step size for

updates at αk = 0.8, and γ = 0.14. As we see below, we consistently observe that the cross-

entropy method learns to sample significantly more rare events, despite the high-dimensional

nature (d ≈ 500) of the problem.

To evaluate the learned parameters, we draw n = 105 samples from the importance sampling

distribution to form an estimate of pγ . In Figure 10, we vary ρ and report the relative perfor-

mance of the cross-entropy method compared to naive Monte Carlo sampling. Even though

we set γ = 0.14 in Algorithm 1, we evaluate the performance of all models with respect to

multiple threshold levels γtest. We note that as ρ approaches 0, the cross-entropy method

learns to frequently sample increasingly rare events; the cross-entropy method yields 3-10

times as many dangerous scenarios, and achieves 2-16 times variance reduction depending

on the threshold level γtest. In Table 3, we contrast the estimates provided by naive Monte

Carlo and the importance sampling estimator provided by the cross-entropy method with

ρ = 0.01; to form a baseline estimate, we run naive Monte Carlo with 1.3 · 106 samples. For

a given number of samples, the cross-entropy method with ρ = 0.01 provides more precise

estimates for the rare-event probability pγ ≈ 10−5 over naive Monte Carlo.

We now leverage the tuned hyperparameter (ρ = 0.01) for our main experiment: evaluating

the probability of a dangerous event for the vision-based ego policy. We find that the hyper-

parameters for the cross-entropy method generalize, allowing us to produce good importance

samplers for a very different policy without further tuning. Based on our computational bud-

get (with our current implementation, vision-based simulations run about 15 times slower

44



0.22 0.24 0.26 0.28 0.3

2

4

6

8

10

12

14

16

18

20

(a) Ratio of number of rare events vs. threshold

0.22 0.24 0.26 0.28 0.3
10

-4

10
-2

10
0

(b) Ratio of variance vs. threshold

Figure 11: The ratio of (a) number of rare events and (b) variance of estimator for pγ
between cross-entropy method and naive MC sampling for the vision-based ego policy.

Search Algorithm γtest = 0.22 γtest = 0.23 γtest = 0.24 γtest = 0.25

Cross-entropy 50K (5.87±1.82)e-5 (13.0± 2.94)e-5 (19.0 ± 3.14)e-5 (4.52 ± 1.35)e-4
Naive 50K (11.3±4.60)e-5 (20.6±6.22)e-5 (43.2±9.00)e-5 (6.75±1.13)e-4

Table 4: Estimate of rare-event probability pγ (non-vision ego policy) with standard er-
rors. For the cross-entropy method, we show results for the learned importance sampling
distribution with ρ = 0.01.

than simulations with only non-vision policies), we choose K = 20 and Nk = 1000 for the

cross-entropy method to learn a good importance sampling distribution for the vision-based

policy (although we also observe similar behavior for Nk as small as 100). In Figure 11, we

illustrate again that the cross-entropy method learns to sample dangerous scenarios more

frequently (Figure 11a)—up to 18 times that of naive Monte Carlo—and produces impor-

tance sampling estimators with lower variance (Figure 11b). As a result, our estimator in

Table 4 is better calibrated compared to that computed from naive Monte Carlo.

Qualitative analysis We provide a qualitative interpretation for the learned parameters

of the importance sampler. For initial velocities, angles, and positioning of vehicles, the

importance sampler shifts environmental vehicles to box in the ego-vehicle and increases

the speeds of trailing vehicles by 20%, making accidents more frequent. We also observe

that the learned distribution for initial conditions have variance 50% smaller than that of

the base distribution, implying concentration around adversarial conditions. Perturbing the
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policy weights ξ for GAIL increases the frequency of risky high-level behaviors (lane-change

rate, hard-brake rate, etc.). An interesting consequence of using our definition of TTC from

the center of the ego vehicle (cf. Appendix A.1) as a measure of safety is that dangerous

events f(X) ≤ γtest (for small γtest) include frequent sideswiping behavior, as such accidents

result in smaller TTC values than front- or rear-end collisions. See the Appendix for a

reference to supplementary videos that exhibit the range of behavior across many levels

γtest. The modularity of our simulation framework easily allows us to modify the safety

objective to an alternative definition of TTC or even include more sophisticated notions of

safety, e.g. temporal-logic specifications or implementations of responsibility-sensitive safety

(RSS) (Shalev-Shwartz et al., 2017; Roohi et al., 2018).

3.6. Related work and conclusions

Given the complexity of AV software and hardware components, it is unlikely that any single

method will serve as an oracle for certification. Many existing tools are complementary to

our risk-based framework. In this section, we compare and contrast representative results

in testing, verification, and simulation.

AV testing generally consists of three paradigms. The first, largely attributable to regu-

latory efforts, uses a finite set of basic competencies (e.g. the Euro NCAP Test Protocol

(Schram et al., 2013)); while this methodology is successful in designing safety features

such as airbags and seat-belts, the non-adaptive nature of static testing is less effective in

complex software systems found in AVs. Alternatively, real-world testing—deployment of

vehicles with human oversight—exposes the vehicle to a wider variety of unpredictable test

conditions. However, as we outlined above, these methods pose a danger to the public and

require prohibitive number of driving hours due to the rare nature of accidents (Kalra and

Paddock, 2016). Simulation-based falsification (in our context, simply finding any crash)

has also been successfully utilized (Tuncali et al., 2016); this approach does not maintain a

link to the likelihood of the occurrence of a particular event, which we believe to be key in

acting to prioritize and correct AV behavior.
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Formal verification methods (Kwiatkowska et al., 2011; Althoff and Dolan, 2014; Seshia

et al., 2015; O’Kelly et al., 2016) have emerged as a candidate to reduce the intractability of

empirical validation. A verification procedure considers whether the system can ever violate

a specification and returns either a proof that there is no such execution or a counterexample.

Verification procedures require a white-box description of the system (although it may be

abstract), as well as a mathematically precise specification. Due to the impossibility of

certifying safety in all scenarios, these approaches (Shalev-Shwartz et al., 2017) require

further specifications that assign blame in the case of a crash. Such assignment of blame is

impossible to completely characterize and relies on subjective notions of fault. Our risk-based

framework allows one to circumvent this difficulty by only using a measure of safety that

does not assign blame (e.g. TTC) and replacing the specifications that assign blame with

a probabilistic notion of how likely the accident is. While this approach requires a learned

model of the world P0—a highly nontrivial statistical task in itself—the adaptive importance

sampling techniques we employ can still efficiently identify dangerous scenarios even when

P0 is not completely accurate. Conceptually, we view verification and our framework as

complementary; they form powerful tools that can evaluate safety before deploying a fleet

for real-world testing.

Even given a consistent and complete notion of blame, verification remains highly intractable

from a computational standpoint. Efficient algorithms only exist for restricted classes of

systems in the domain of AVs, and they are fundamentally difficult to scale. Specifically,

AVs—unlike previous successful applications of verification methods to application domains

such as microprocessors (Baier and Katoen, 2008)—include both continuous and discrete

dynamics. This class of dynamics falls within the purview of hybrid systems (Lygeros,

2004), for which exhaustive verification is largely undecidable (Henzinger et al., 1995).

Verifying individual components of the perception pipeline, even as standalone systems,

is a nascent, active area of research (see (Arora et al., 2014; Cohen et al., 2016; Bartlett

et al., 2017) and many others). Current subsystem verification techniques for deep neural
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networks (Huang et al., 2017; Katz et al., 2017; Tjeng and Tedrake, 2017) do not scale to

state-of-the-art models and largely investigate the robustness of the network with respect

to small perturbations of a single sample. There are two key assumptions in these works;

the label of the input is unchanged within the radius of allowable perturbations, and the

resulting expansion of the test set covers a meaningful portion of possible inputs to the

network. Unfortunately, for realistic cases in AVs it is likely that perturbations to the state

of the world which in turn generates an image should change the label. Furthermore, the

combinatorial nature of scenario configurations casts serious doubt on any claims of coverage.

In our risk-based framework, we replace the complex system specifications required for for-

mal verification methods with a model P0 that we learn via imitation-learning techniques.

Generative adversarial imitation learning (GAIL) was first introduced by Ho and Ermon

(2016) as a way to directly learn policies from data and has since been applied to model hu-

man driving behavior by Kuefler et al. (2017). Model-based GAIL (MGAIL) is the specific

variant of GAIL that we employ; introduced by Baram et al. (2017), MGAIL’s genera-

tive model is fully differentiable, allowing efficient model training with standard stochastic

approximation methods.

The cross-entropy method was introduced by Rubinstein (2001) and has attracted interest

in many rare-event simulation scenarios (Rubinstein and Kroese, 2004; Kroese et al., 2013).

More broadly, it can be thought of as a model-based optimization method (Hu and Hu, 2009,

2011; Hu et al., 2012; Zabinsky, 2013; Hu et al., 2014; Zhou and Hu, 2014). With respect

to assessing safety of AVs, the cross-entropy method has recently been applied in simple

lane-changing and car-following scenarios in two dimensions (Zhao, 2016; Zhao et al., 2018).

Our work significantly extends these works by implementing a photo-realistic simulator that

can assess the deep-learning based perception pipeline along with the control framework.

We address the development of improved rare-event simulation methods in Chapter 4.

To summarize, a fundamental tradeoff emerges when comparing the requirements of our

risk-based framework to other AV assessment techniques, such as real-world testing or for-
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mal verification. Real-world testing endangers the public but is still in some sense a gold

standard. Verified subsystems provide evidence that the AV should drive safely even if

the estimated distribution shifts, but verification techniques are limited by computational

intractability as well as the need for both white-box models and the completeness of spec-

ifications that assign blame (e.g. (Shalev-Shwartz et al., 2017)). In turn, our risk-based

framework is most useful when the base distribution P0 is accurate, but even when P0

is misspecified, our adaptive importance sampling techniques can still efficiently identify

dangerous scenarios, especially those that may be missed by verification methods assigning

blame. Our framework offers significant speedups over real-world testing and allows efficient

evaluation of black-box AV input/output behavior, providing a powerful tool to aid in the

design of safe AVs.
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CHAPTER 4 : Gradient-guided Bridge Sampling

4.1. Chapter Overview

Aspects of this chapter have been adapted from “Neural Bridge Sampling for Evaluating

Safety-Critical Autonomous Systems” which appeared in the Proceedings of Neural Infor-

mation Processing Systems 2020 as joint work with Aman Sinha, John Duchi, and Russ

Tedrake

4.2. Introduction

Data-driven and learning-based approaches have the potential to enable robots and au-

tonomous systems that intelligently interact with unstructured environments. Unfortu-

nately, evaluating the performance of the closed-loop system is challenging, limiting the

success of such methods in safety-critical settings. Even if we produce a deep reinforce-

ment learning agent better than a human at driving, flying a plane, or performing surgery,

we have no tractable way to certify the system’s quality. Thus, currently deployed safety-

critical autonomous systems are limited to structured environments that allow mechanisms

such as PID control, simple verifiable protocols, or convex optimization to enable guarantees

for properties like stability, consensus, or recursive feasibility (see e.g. (Doyle et al., 2013;

Borrelli et al., 2017)). The stylized settings of these problems and the limited expressivity

of guaranteeable properties are barriers to solving unstructured, real-world tasks such as

autonomous navigation, locomotion, and manipulation.

The goal of this paper is to efficiently evaluate complex systems that lack safety guarantees

and/or operate in unstructured environments. We assume access to a simulator to test the

system’s performance. Given a distribution X ∼ P0 of simulation parameters that describe

typical environments for the system under test, our governing problem is to estimate the

probability of an adverse event

pγ := P0(f(X) ≤ γ). (4.1)
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The parameter γ is a threshold defining an adverse event, and f : X → R measures the

safety of a realization x of the agent and environment (higher values are safer). In this

work, we assume P0 is known; the system-identification and generative-modeling literatures

(e.g. (Åström and Eykhoff, 1971; Papamakarios et al., 2019)) provide several approaches to

learn or specify P0. A major challenge for solving problem (4.1) is that the better an agent

is at performing a task (i.e. the smaller pγ is), the harder it is to confidently estimate pγ—

one rarely observes events with f(x) ≤ γ. For example, when P0 is light-tailed, the sample

complexity of estimating pγ using naive Monte Carlo samples grows exponentially (Bucklew,

2013).

Problem (4.1) is often solved in practice by naive Monte Carlo estimation methods, the sim-

plest of which explore the search space via random samples from P0. These methods are un-

biased and easy to parallelize, but they exhibit poor sample complexity. Naive Monte Carlo

can be improved by adding an adaptive component exploiting the most informative portions

of random samples drawn from a sequence of approximating distributions P0, P1, . . . , PK .

However, standard adaptive Monte Carlo methods (e.g. (Cérou and Guyader, 2007)), though

they may use first-order information on the distributions Pk themselves, fail to use first-order

information about f to improve sampling; we explicitly leverage this to accelerate conver-

gence of the estimate through optimization.

Naive applications of first-order optimization methods in the estimation problem (4.1)—for

example biasing a sample in the direction −∇f(x) to decrease f(x)—also require second-

order information to correct for the distortion of measure that such transformations induce.

Consider the change of variables formula for distributions ρ(y) = ρ(g−1(y)) · |det Jg−1(y)|

where y = g(x). When g(x) is a function of the gradient ∇f(x), the volume distortion

|det Jg−1(y)| is a function of the Hessian ∇2f(x). Hessian computation, if even defined, is

unacceptably expensive for high-dimensional spaces X and/or simulations that involve the

time-evolution of a dynamical system; our approach avoids any Hessian computation. In

contrast, gradients ∇f(x) can be efficiently computed for many closed-loop systems (Abbas
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et al., 2014; Pant et al., 2017; Yaghoubi and Fainekos, 2018; Leung et al.) or through the

use of surrogate methods (Williams, 1992; Deisenroth and Rasmussen, 2011; Duchi et al.,

2015; Baram et al., 2017).

To that end, we propose gradient-guided bridge sampling, a technique that combines ex-

ploration, exploitation, and optimization to efficiently solve the estimation problem (4.1).

Specifically, we consider a novel Markov-chain Monte Carlo (MCMC) scheme that moves

along an adaptive ladder of intermediate distributions Pk (with corresponding unnormalized

densities ρk(x) and normalizing constants Zk :=
∫
X ρk(x)dx). This MCMC scheme itera-

tively transforms the base distribution P0 to the distribution of interest P0I{f(x) ≤ γ}.

Gradient-guided bridge sampling adaptively balances exploration in the search space (via

∇ log ρ0) against optimization (via ∇f), while avoiding Hessian computations. Our final

estimate p̂γ is a function of the ratios Zk/Zk−1 of the intermediate distributions Pk, the

so-called “bridges” (Bennett, 1976; Meng and Wong, 1996).

Contributions and outline Section 4.3 presents our method, while Section 4.4 pro-

vides guarantees for its statistical performance and overall efficiency. A major focus of this

work is empirical, and accordingly, Section 4.5 empirically demonstrates the superiority of

gradient-guided bridge sampling over competing techniques in autonomous vehicle perfor-

mance evaluation applications: (i) we perform model comparisons for two learning-based

approaches to autonomous navigation (ii) we efficiently evaluate the failure rate of a real

AV system which has driven over 20 million miles on public roads.

4.2.1. Related Work

Safety evaluation Several communities (Corso et al., 2020) have attempted to evaluate

the closed-loop performance of cyber-physical, robotic, and embodied agents both with and

without learning-based components. Existing solutions are predicated on the definition of

the evaluation problem: verification, falsification, or estimation. In this paper we consider

a method that utilizes interactions with a gradient oracle in order to solve the estimation
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problem (4.1). In contrast to our approach, the verification community has developed tools

(e.g. (Kong et al., 2015a; Chen et al., 2013; Althoff, 2015)) to investigate whether any ad-

verse or unsafe executions of the system exist. Such methods can certify that failures are

impossible, but they require that the model is written in a formal language (a barrier for

realistic systems), and they require whitebox access to this formal model. Falsification ap-

proaches (e.g. Esposito et al., 2004; Donzé, 2010; Annpureddy et al., 2011; Zutshi et al.,

2014; Dreossi et al., 2019; Qin et al., 2019) attempt to find any failure cases for the sys-

tem (but not the overall probability of failure). Similar to our approach, some falsification

approaches (e.g. Abbas et al., 2014; Yaghoubi and Fainekos, 2018) utilize gradient informa-

tion, but their goal is to simply minimize f(x) rather than solve problem (4.1). Adversarial

machine learning is closely related to falsification; the key difference is the domain over

which the search for falsifying evidence is conducted. Adversarial examples (e.g. (Madry

et al., 2017; Katz et al., 2017; Sinha et al., 2017; Tjeng and Tedrake, 2017)) are typically

restricted to a p-norm ball around a point from a dataset, whereas falsification considers all

possible in-distribution examples. Both verification and falsification methods provide less

information about the system under test than estimation-based methods: they return only

whether or not the system satisfies a specification. When the system operates in an unstruc-

tured environment (e.g. driving in an urban setting), the mere existence of failures is trivial

to demonstrate (Shalev-Shwartz et al., 2017). Several authors (e.g. O’Kelly et al., 2018;

Webb et al., 2018) have proposed that it is more important in such settings to understand

the overall frequency of failures as well as the relative likelihoods of different failure modes,

motivating our approach.

Rare-event simulation methods When sampling rare events and estimating their prob-

ability, there are two main branches of related work: parametric adaptive importance sam-

pling (AIS) (Marshall, 1954; Oh and Berger, 1992) and nonparametric sequential Monte

Carlo (SMC) techniques (Doucet et al., 2001; Del Moral et al., 2006). Both of these liter-

atures are advanced forms of variance reduction techniques, and they are complementary

to standard methods such as control variates (Rubinstein and Marcus, 1985; Hesterberg
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and Nelson, 1998). Parametric AIS techniques, such as the cross-entropy method (Ru-

binstein and Kroese, 2004), postulate a family of distributions for the optimal importance-

sampling distribution. They iteratively perform heuristic optimization procedures to update

the sampling distribution. SMC techniques perform sampling from a sequence of probabil-

ity distributions defined nonparametrically by the samples themselves. The SMC formalism

encompasses particle filters, birth-death processes, and smoothing filters (Del Moral, 2004).

Our method employs bridge sampling (Bennett, 1976; Meng and Wong, 1996), which is

closely related to other SMC techniques such as umbrella sampling (Chen et al., 2012), mul-

tilevel splitting (Bréhier et al., 2015; Cérou and Guyader, 2007), and path sampling (Gelman

and Meng, 1998). The operational difference between these methods is in the form of the

intermediate distribution used to calculate the ratio of normalizing constants. Namely, the

optimal umbrella sampling distribution is more brittle than that of bridge sampling (Chen

et al., 2012). Multilevel splitting employs hard barriers through indicator functions, whereas

our approach relaxes these hard barriers with smoother exponential barriers. Finally, Path

sampling generalizes bridge sampling by taking discrete bridges to a continuous limit; how-

ever, this approach is difficult to implement in an adaptive fashion.

4.3. Proposed approach

As we note in Section 3.2, naive Monte Carlo measures probabilities of rare events ineffi-

ciently. Instead, we consider a sequential Monte Carlo (SMC) approach: we decompose the

rare-event probability pγ into a chain of intermediate quantities, each of which is tractable

to compute with standard Monte Carlo methods. Specifically, consider K distributions

Pk with corresponding (unnormalized) probability densities ρk and normalizing constants

Zk :=
∫
X ρk(x)dx. Let ρ0 correspond to the density for P0 and ρ∞(x) := ρ0(x)I{f(x) ≤ γ}

be the (unnormalized) conditional density for the region of interest. Then, we consider the

following decomposition:

pγ := P0(f(X) ≤ γ) = EPK

[
ZK
Z0

ρ∞(X)

ρK(X)

]
,

ZK
Z0

=
K∏
k=1

Zk
Zk−1

. (4.2)
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Algorithm 2 Gradient-guided bridge sampling

Input: N samples x0i
i.i.d.∼ P0, MCMC steps T , step size α ∈ (0, 1), stop condition s ∈ (0, 1)

Initialize k ← 0, β0 ← 0, log(p̂γ)← 0
while 1

N

∑
i I{f(xki ) ≤ γ} < s do

βk+1 ← solve problem (4.6)
for i = 1 to N , in parallel

xk+1
i

i.i.d.∼ Mult({ρk+1(xki )/ρk(xki )}) // multinomial resampling
for t = 1 to T

for i = 1 to N , in parallel
xk+1
i ← SplitHMC(xki , θk) // Appendix B.1

log(p̂γ)← log(p̂γ) + log(Zk+1/Zk) //bridge estimate (4.4)
k ← k + 1

log(p̂γ)← log(p̂γ) + log( 1
N

∑
i I{f(xki ) ≤ γ})

Although we are free to choose the intermediate distributions arbitrarily, we will show below

that our estimate for each ratio Zk/Zk−1 and thus pγ is accurate insofar as the distributions

sufficiently overlap (a concept we make rigorous in Section 4.4). Thus, the intermediate

distributions act as bridges that iteratively steer samples from P0 towards PK . One special

case is the multilevel splitting approach (Kahn and Harris, 1951; Bréhier et al., 2015; Webb

et al., 2018; Norden et al., 2019), where ρk(x) := ρ0(x)I{f(x) ≤ Lk} for levels ∞ =: L0 >

L1 . . . > LK := γ. In this paper, we introduce an exponential tilting barrier (Siegmund,

1976)

ρk(x) := ρ0(x) exp
(
βk [γ − f(x)]−

)
, (4.3)

which allows us to take advantage of gradients ∇f(x). Here we use the “negative ReLU”

function defined as [x]− := −[−x]+ = xI{x < 0}, and we assume that the measure of non-

differentiable points, e.g. where ∇f(x) does not exist or f(x) = γ, is zero (see Appendix

B.1 for a detailed discussion of this assumption). We set β0 := 0 and adaptively choose

βk > βk−1. The parameter βk tilts the distribution towards the distribution of interest:

ρk → ρ∞ as βk → ∞. In what follows, we describe an MCMC method that combines

exploration, exploitation, and optimization to draw samples Xk
i ∼ Pk. We then show how

to compute the ratios Zk/Zk−1 given samples from both Pk−1 and Pk. Finally, we describe

an adaptive way to choose the intermediate distributions Pk. Algorithm 2 summarizes the

overall approach.
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MCMC with an exponential barrier Gradient-based MCMC techniques such as the

Metropolis-adjusted Langevin algorithm (MALA) (Rossky et al., 1978; Roberts and Stramer,

2002) or Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2012) use gradients

∇ log ρ0(x) to efficiently explore the space X and avoid inefficient random-walk behav-

ior (Durmus et al., 2017; Chen et al., 2019). Classical mechanics inspires the HMC approach:

HMC introduces an auxiliary random momentum variable v ∈ V and generates proposals

by performing Hamiltonian dynamics in the augmented state-space X × V. These dynam-

ics conserve volume in the augmented state-space, even when performed with discrete time

steps (Leimkuhler and Reich, 2004).

By including the barrier exp
(
βk [γ − f(x)]−

)
, we combine exploration with optimization;

the magnitude of βk in the barrier modulates the importance of ∇f (optimization) over

∇ log ρ0 (exploration), two elements of the HMC proposal (see Appendix B.1 for details). We

discuss the adaptive choice for βk below. Most importantly, we avoid any need for Hessian

computation because the dynamics conserve volume. As Algorithm 2 shows, we perform

MCMC as follows: given N samples xk−1
i ∼ Pk−1 and a threshold βk, we first resample using

their importance weights (exploiting the performance of samples that have lower function

value than others) and then perform T HMC steps. In this paper, we implement split HMC

(Shahbaba et al., 2014) which is convenient for dealing with the decomposition of log ρk(x)

into log ρ0(x) + βk[γ − f(x)]− (see Appendix B.1 for details).

Estimating Zk/Zk−1 via bridge sampling Bridge sampling (Bennett, 1976; Meng and

Wong, 1996) allows estimating the ratio of normalizing constants of two distributions by

rewriting

Ek :=
Zk
Zk−1

=
ZBk /Zk−1
ZBk /Zk

=
EPk−1

[ρBk (X)/ρk−1(X)]

EPk [ρBk (X)/ρk(X)]
, Êk =

∑N
i=1 ρ

B
k (xk−1i )/ρk−1(xk−1i )∑N
i=1 ρ

B
k (xki )/ρk(xki )

, (4.4)

where ρBk is the density for a bridge distribution between Pk−1 and Pk, and ZBk is its asso-

ciated normalizing constant. We employ the geometric bridge ρBk (x) :=
√
ρk−1(x)ρk(x).

In addition to being simple to compute, bridge sampling with a geometric bridge en-

joys the asymptotic performance guarantee that the relative mean-square error scales in-
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versely with the Bhattacharyya coefficient, G(Pk−1, Pk) =
∫
X

√
ρk−1(x)
Zk−1

ρk(x)
Zk

dx ∈ [0, 1]

(see Appendix B.2 for a proof). This value is closely related to the Hellinger distance,

H(Pk−1, Pk) =
√

2− 2G(Pk−1, Pk). In Section 4.4, we analyze the ramifications of this fact

on the overall convergence of our method.

Adaptive intermediate distributions Because we assume no prior knowledge of the

system under test, we exploit previous progress to choose the intermediate βk online; this

is a key difference to our approach compared to other forms of sequential Monte Carlo

(e.g. (Neal, 2001, 2005)) which require a predetermined schedule for βk. We define the

quantities

ak :=
∑N

i I{f(xki ) ≤ γ}/N, bk(β) :=
∑N

i=1 exp
(
(β − βk)[γ − f(xki )]−

)
/N. (4.5)

The first is the fraction of samples that have achieved the threshold. The second is an

importance-sampling estimate of Ek+1 given samples xki ∼ Pk, written as a function of β.

For fixed fractions α, s ∈ (0, 1) with α < s, βk+1 solves the following optimization problem:

maximize β s.t. {bk(β) ≥ α, ak/bk(β) ≤ s}. (4.6)

Since bk(β) is monotonically decreasing and bk(β) ≥ ak, this problem can be solved efficiently

via binary search. The constant α tunes how quickly we enter the tails of P0 (smaller α

means fewer iterations), whereas s is a stop condition for the last iteration. Choosing βk+1

via (4.6) yields a crude estimate for the ratio Zk+1/Zk as α (or aK−1/s for the last iteration).

The bridge-sampling estimate Êk+1 corrects this crude estimate once we have samples from

the next distribution Pk+1.
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4.4. Performance analysis

We can write the empirical estimator of the function (4.2) as

p̂γ =
K∏
k=1

Êk
1

N

N∑
i=1

ρ∞(xKi )

ρK(xKi )
, (4.7)

where Êk is given by the expression (4.4). We provide guarantees for both the time com-

plexity of running Algorithm 2 (i.e. the iterations K) as well as the overall mean-square

error of p̂γ . For simplicity, we provide results for the asymptotic (large N) and well-mixed

MCMC (large T ) limits. Assuming these conditions, we have the following:

Proposition 1. Let K0 := blog(pγ)/ log(α)c. Then, for large N and T , s ≥ 1/3, and

pγ < s, the total number of iterations in Algorithm 2 approaches K a.s.→ K0 +I{pγ/αK0 < s}.
Furthermore, the asymptotic relative mean-square error E[(p̂γ/pγ − 1)2] is

2

N

K∑
k=1

(
1

G(Pk−1, Pk)2
− 1

)
− 2

N

K−1∑
k=1

(
G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
− 1

)
+

1− s
sN

+ o

(
1

N

)
. (4.8)

In particular, if the inverse Bhattacharyya coefficients are bounded such that 1
G(Pk−1,Pk)2

≤

D (with D ≥ 1), then the asymptotic relative mean-square error satisfies E[(p̂γ/pγ − 1)2] ≤

2KD/N .

See Appendix B.2 for the proof. We provide some remarks about the above result. Intu-

itively, the first term in the bound (4.8) accounts for the variance of Êk. The denominator

of Êk−1 and numerator of Êk both depend on xki ; the second sum in (4.8) accounts for

the covariance between those terms. Furthermore, the quantities in the bound (4.8) are

all empirically estimable, so we can compute the mean-square error from a single pass of

Algorithm 2. In particular,

G(Pk−1, Pk)
2 =

ZBk
Zk−1

ZBk
Zk

,
G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
=
ZCk
Zk

Zk
ZBk

Zk
ZBk+1

, (4.9)

where ZCk /Zk = EPk
[
ρBk (X)ρBk+1(X)/ρk(X)2

]
. The last term in the bound (4.8) is the
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relative variance of the final Monte Carlo estimate
∑

i I{f(xKi ) ≤ γ}/N .

Overall efficiency The statistical efficiency outlined in Proposition 1 is pointless if it is

accompanied by an overwhelming computational cost. We take the atomic unit of compu-

tation to be a query of the simulator, which returns both evaluations of f(x) and ∇f(x);

we assume other computations to be negligible compared to simulation. As such, the cost

of Algorithm 2 is N(1 +KT ) evaluations of the simulator.

Our method can exploit two further sources of efficiency. First, we can employ surrogate

models for gradient computation and/or function evaluation during the T MCMC steps.

For example, using a surrogate model for a fraction d ≤ 1 − 1/T of the MCMC iterations

reduces the factor T to Ts := (1− d)T in the overall cost. Surrogate models have an added

benefit of making our approach amenable for simulators that do not provide gradients. The

second source of efficiency is parallel computation. Given C processors, the factor N in the

cost drops to Nc := dN/Ce.

The overall efficiency of the estimator (4.7)—relative error multiplied by cost (Hammersley

and Handscomb, 1964)—depends on pγ as log(pγ)2. In contrast, the standard Monte Carlo

estimator has cost N to produce an estimate with relative error 1−pγ
pγN

. Thus, the relative

efficiency gain for our estimator (4.7) over naive Monte Carlo is O(1/(pγ log(pγ)2)): the

efficiency gains over naive Monte Carlo increase as pγ decreases.

4.5. Experiments

We evaluate our approach on a variety of autonomous vehicle policies, showcasing its use in

efficiently evaluating the safety of autonomous systems. We begin with a synthetic problem

to illustrate the methodology concretely as well as highlight the pitfalls of using gradients

naively. Then we consider an example of using gradient-guided bridge sampling as a tool for

engineering design in high-dimensional settings comparing two algorithms which solve the

OpenAI Gym CarRacing environment (Klimov, 2016). In particular, we demonstrate how

our method may be used to compare the frequency of extreme failures in order to differentiate

59



between two reinforcement learning policies which achieve similar average reward. As our

concluding experiment we identify and estimate the probability of failure modes of a real

autonomous vehicle system which has driven 20 million miles on public roads. In Part III

we highlight the use of the framework and methods developed in this chapter for evaluation

problems beyond AV evaluation.

We compare our method, gradient-guided bridge sampling (GGB), with naive Monte Carlo

(MC) and adaptive multilevel splitting (AMS) (Bréhier et al., 2015; Webb et al., 2018;

Norden et al., 2019). All methods are given the same computational budget as measured

by evaluations of the simulator. This varies from 50,000-100,000 queries to run Algorithm 2

as determined by pγ (see Appendix B.3 for details of each experiment’s hyperparameters).

Despite running Algorithm 2 with a given γ, we evaluate estimates p̂γtest for all γtest ≥ γ.

Note that, larger γtest require fewer queries to evaluate p̂γtest (as Algorithm 2 terminates

early). Thus, we adjust the number of MC queries accordingly for each γtest. Independently,

we calculate the ground-truth values pγtest for the non-synthetic problems using a fixed, large

number of MC queries.

Synthetic problem We consider the two-dimensional function f(x) = −min(|x[1]|, x[2]),

where x[i] is the ith dimension of x ∈ R2. We let γ = −3 and P0 = N (0, I) (for which

pγ = 3.6·10−6). Note that∇2f(x) = 0 almost everywhere, yet∇f(x) has negative divergence

in the neighborhoods of x[2] = |x[1]|. Indeed, gradient descent collapses xi ∼ P0 to the

lines x[2] = |x[1]|, and the ill-defined nature of the Hessian makes it unsuitable to track

volume distortions. Thus, simple gradient-based transformations used to find adversarial

examples (e.g. minimize f(x)) should not be used for estimation in the presence of non-

smooth functions, unless volume distortions can be quantified.

Figure 4.12(a) shows the region of interest in pink and illustrates the gradual warping of

ρ0 towards ρ∞ over iterations of Algorithm 2. Figures 4.12(b) and 4.12(c) indicate that

all adaptive methods outperform MC for pγtest < 10−3. For larger pγtest , the overhead of

the adaptive methods renders MC more efficient (Figure 4.12(c)). The linear trend of the
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Figure 12: Experiments on a synthetic problem. 10 trials are used to calculate the 99%
confidence intervals in (b) and variance ratios in (c). All adaptive methods perform similarly
in this well-conditioned search space.
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Figure 13: CarRacing experiments. MC cannot distinguish between the policies below
γtest = 160. GGB’s high-confidence estimates enable model comparisons at extreme limits
of failure. Low-dimensional visualization of the failure modes shows that the algorithms fail
in distinct ways.

yellow MC/GGB line in Figure 4.12(c) aligns with the theoretical efficiency gain discussed

in Section 4.4. Finally, due to the simplicity of the search space and the landscape of f(x),

the benefits of gradients are not drastic. Specifically, as shown in Figure 4.12(c), all adaptive

methods have similar confidence in their estimates except at very small pγtest < 10−5. The

next example showcases the benefits of gradients in a more complicated search space.

Car racing The CarRacing environment (Figure 4.13(a)) is a challenging reinforcement-

learning task with a continuous action space and pixel observations. Similar observation

spaces have been proposed for real autonomous vehicles (e.g. (Bansal et al., 2018; Luo et al.,

2018; Wang et al., 2019a)). We compare two recent approaches, AttentionAgentRacer (Tang

et al., 2020) and WorldModelRacer (Ha and Schmidhuber, 2018a) that have similar average

performance: they achieve average rewards of 903 ± 49 and 899 ± 46 respectively (mean
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± standard deviation over 2 million trials). Both systems utilize one or more deep neural

networks to plan in image-space, so neither has performance guarantees. We evaluate the

probability of getting small rewards (γ = 150).

The 24-dimensional search space P0 parametrizes the generation of the racing track (details

are in Appendix B.3). This environment does not easily provide gradients due to presence

of a rendering engine in the simulation loop. Instead, we fit a Gaussian process surrogate

model to compute ∇f(x) (see Appendix B.3). As these experiments are extremely expensive

(taking up to 1 minute per simulation), we only use 2 million naive Monte Carlo samples

to compute the ground-truth failure rates. Figure 4.13(b) shows that, even though the two

models have very similar average performance, their catastrophic failure curves are distinct.

Furthermore, MC is unable to distinguish between the policies below rewards of 160 due to

its high uncertainty, whereas GGB clearly shows that WorldModelRacer is superior. Note

that, because even the ground-truth has non-negligible uncertainty with 2 million samples,

we only report the variance component of relative mean-square error in Table 5.

We visualize the modes of failure (defined by γtest = 225) via PCA in Figure 4.13(c). The

dominant eigenvectors involve large differentials between radii and angles of consecutive

checkpoints that are used to generate the racing tracks. AttentionAgentRacer has two

distinct modes of failure, whereas WorldModelRacer has a single mode.

OpenPilot The OpenPilot environment (Figure 4.14(a)) integrates the TestPilot fork (Nor-

den et al., 2019) of the OpenPilot driver assistance system with the Carla simulator (Doso-

vitskiy et al., 2017b). We utilize the same search space as (Norden et al., 2019) to evaluate

the performance of the OpenPilot system on highway driving tasks. In particular we sample

initial positions for 6 vehicles (including the system-under-test) on a 1 KM section of road

which includes both straight and curved portions. In addition each vehicle is given an initial

velocity and orientation. The environment vehicles also select a driving policy from a dis-

tribution of agent models. Unlike the previous example which makes decisions based on an

abstract model of the environment, OpenPilot extracts features from images produced by a

62



(a) The environment (b) Failure rates

-4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

4

(c) Failure modes

Figure 14: OpenPilot experiments.

Table 5: Relative mean-square error E[(p̂γ/pγ − 1)2] over 10 trials

Synthetic AttentionAgentRacer WorldModelRacer TestPilot

MC 0.9456 1.0866 0.9508 1.9613
AMS 0.0138 1.0211 0.8177 0.9331
GGB 0.0098 0.9030 0.7837 0.8758

pγ 1.0 · 10−5 ≈ 2.5 · 10−5 ≈ 9.5 · 10−6 ≈ 1.4 · 10−4

front-facing dash camera; thus, weather conditions can significantly affect its performance.

In order to capture such effects we also sample cloud cover, sun angle, precipitation, and

ground precipitation parameters. See Appendix A of (Norden et al., 2019) for details.

As in the previous experiment, each simulation of the system is expensive taking approxi-

mately 20 seconds; moreover, generating simulated camera images and executing the models

contained in the perception component of OpenPilot requires the utilization of GPU server

instances. Evaluating the system naively is not only time-consuming, but also expensive.

The ground truth failure rate is estimated by sampling 150,000 simulations of the combined

system. As in Chapter 3 we use the minimum TTC over the simulation as the safety metric.

The results, see Figure 4.14(b) and Table 5, demonstrate that AMS and GGB both signifi-

cantly reduce the relative mean-squared error of the failure rate estimate when compared to

MC with equal computation budget. In Figure 4.14(c) we also demonstrate that GGB (like

AMS, see (Norden et al., 2019)) is able to identify four distinct failure modes with no prior

knowledge of their existence (unlike the parametric approach presented in Chapter 3).
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4.6. Conclusion

There is a growing need for rigorous evaluation of safety-critical systems which contain

components without formal guarantees (e.g. deep neural networks). Scalably evaluating the

safety of such systems in the presence of rare, catastrophic events is a necessary component in

enabling the development of trustworthy high-performance systems. Our proposed method,

gradient-guided bridge sampling, employs three concepts—exploration, exploitation, and

optimization—in order to evaluate system safety with provable statistical and computational

efficiency. We demonstrate the performance of our method on a variety of reinforcement-

learning and robotic systems, highlighting its use as a tool for continuous integration and

rapid engineering design. In future work, we intend to investigate how efficiently sampling

rare failures—like we propose here for evaluation—could also enable the automated repair

of safety-critical reinforcement-learning agents.

4.7. Current state-of-the art

Following the completion of this work, Sinha et al. (2020) extended the methods described

in this chapter. Although, the theoretical efficiency of the method is unchanged, significant

empirical performance was gained. In particular, the accuracy of bridge sampling depends

on the overlap between intermediate distributions Pk. Simply increasing the number of in-

termediate distributions is inefficient, because it requires running more simulations. Instead,

Sinha et al. (2020) employ a technique known as warping, where intermediate distributions

map to a common reference distribution (Voter, 1985; Meng and Schilling, 2002).

Specifically, Sinha et al. (2020) use normalizing flows (Rezende and Mohamed, 2015; Kingma

et al., 2016; Papamakarios et al., 2017, 2019), which efficiently transform arbitrary distribu-

tions to standard Gaussians through a series of deterministic, invertible functions. Recently,

Hoffman et al. (2019) explored the benefits of using normalizing flows for reparametrizing

distributions within MCMC; the method proposed in Sinha et al. (2020) encompasses this

benefit and extends it to the SMC setting.
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Given, this modification, Sinha et al. (2020) show that the cost of Algorithm 2 is N(1 +

KT ) evaluations of the simulator without warping and N(1 + KT ) + 2KN with warping.

Thus, the relative burden of warping is minimal, because training the normalizing flows to

minimize DKL(Qk‖N (0, I)) requires no extra simulations. In contrast, directly minimizing

DKL(Qk−1‖Qk) would require extra simulations at each training step.

The results of Sinha et al. (2020) show that, qualitatively, if the system-under-test has

irregular failure modes with pathological curvature, HMC is difficult for AMS and GGB

(Betancourt, 2017). Quantitatively, the effect can be observed in poor mixing of the chain

and adversely affects the performance of AMS and GGB.
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Part II

Domain Adaptation
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CHAPTER 5 : F1TENTH

5.1. Chapter Overview

This chapter is adapted from “F1TENTH: An Open-source Evaluation Environment for

Continuous Control and Reinforcement Learning” which appeared in the Post-proceedings

of Neural Information Processing Systems 2019 as joint work with Hongrui Zheng, Dhruv

Karthik, and Rahul Mangharam.

5.2. Introduction

Unlike supervised learning tasks, the minimal evaluation environment for reinforcement

learning-based (RL) approaches to robotics must include more than a labeled dataset. We

propose that RL evaluation environments should incorporate: (1) accurate and efficient

simulators to reduce the time and cost of testing, (2) accessible hardware to correlate sim-

ulation results with real-world performance, and (3) adaptable benchmarks which include

strong baselines supported by competition to drive innovation and reduce overfitting. While

others (e.g. Brockman et al., 2016) have described a subset of these requirements, their

efforts classify the validation, realism, and accuracy of simulation tools, and availability

of hardware as future goals rather than necessary components. In response, we create an

open-source RL evaluation environment (simulator, hardware, benchmarks, baselines, and

competitions) based on a scaled autonomous vehicle situated in a racing environment.

Accurate simulation is a necessary component of any practical evaluation system, as

real-world evaluations are dangerous, expensive, and time consuming. A number of other

studies note the sensitivity of RL-based agents to simulation details (cf. Lewis et al., 2019;

Henderson et al., 2018). Indeed, like all simulators, ours fails to capture agent vehicle

dynamics with perfect fidelity. However, we follow classical system identification methods

to actively quantify and minimize this discrepancy with respect to performance on a real

hardware platform. Additionally, we propose simple methods to more accurately simulate a
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2D LIDAR, IMU and cameras in a photorealistic environment.

Hardware-based experiments must support simulation-based evaluation in order to en-

sure that an approach performs well in reality. As noted by (Yang et al., 2020), the hardware

platform used must not limit potential solutions. However, similar benchmarks such as (Bal-

aji et al., 2019) impose sensor configuration and training method restrictions, whereas others

(Goldfain et al., 2019) are too expensive to be used widely. In contrast, we offer a full-fledged

Open-AI Gym API for controlling a real world vehicle with the ability to redefine step/reward

functions in an intuitive manner for numerous sensor configurations. Furthermore, running

experiments does not require a special track, as our carefully tuned SLAM packages use the

onboard LIDAR to create maps of tracks (e.g. a corridor loop), and seamlessly use those

maps within simulation. Finally, our hardware is open-source, documented, affordable, and

supported by an active community.

In addition to simulation and hardware environments we also define a set of benchmark

tasks by which to standardize evaluations. The context of these tasks, autonomous rac-

ing, aids in the definition of evaluation metrics; unlike day-to-day driving, each episode has

a clear winner and is likely to expose the agent to the most difficult regimes of the dy-

namics. Importantly, the benchmarks naturally include both single agent and multi-agent

formulations which are of interest to multiple communities.

Contributions and Organization: In Section 5.3, we compare our simulation environ-

ment and hardware support with existing platforms. In Section 5.4, we describe in detail the

simulators that serve as a virtual evaluation environment, enabling rapid implementation

and dissemination of algorithms in an environment where reproducibility is enforced. In

Section 5.5, we describe the low-cost, 1/10th scale vehicle and standardized software infras-

tructure that supplements our virtual benchmarking tools, enabling the use of a wide range

of RL algorithms in reality. In Section 5.6 and 5.7, we describe three benchmarks in our

environment, spanning continuous control and RL methods.
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5.3. Related work

It is still unknown how deep RL will be used in autonomous vehicles; however, a recent

survey (Kiran et al., 2020) highlights numerous promising directions. Nevertheless, the goal

of this work is not to describe autonomous driving methods, but rather to build tools which

enable a community wide effort. As such, one closely related body of literature includes

autonomous vehicle simulators (e.g. Shah et al., 2017; Dosovitskiy et al., 2017a; Quiter and

Ernst, 2018; LG Electronics, Inc., 2019). Although these tools are widely used in deep RL

research, none specifically include a corresponding vehicle platform. More general simulation

environments used within the RL community (e.g. Todorov et al., 2012; Coumans and Bai,

2016) utilize multi-body physics. In contrast, our simulator is narrow; it uses simple car-like

vehicle dynamics described as continuous ODEs. While our domain of interest is targeted,

the task is still challenging due to the non-holonomic behavior of the robot, the use of

high-dimensional measurements, and interactions with external dynamic agents.

Other related work includes open-source implementations of full-scale autonomous vehicle

stacks (Baidu Apollo Team, 2017; Kato et al., 2018). Our approach differs because we pri-

oritize the use of scaled, inexpensive hardware that does not require special permission or

insurance for operation. Of course, there are now many scaled autonomous vehicle projects

available to the community (cf. Fishberg et al., 2019; Gonzales et al.; Roscoe, 2019; Srinivasa

et al., 2019; Goldfain et al., 2019). The F1TENTH hardware is most similar to RACECAR,

and in fact shares some low-level drivers; however, F1TENTH differs in its simulation ca-

pabilities which are more easily extended beyond pedagogical settings. Our goal of creating

a standardized evaluation system is shared with (Balaji et al., 2019). While the Deep-

Racer platform has a lower upfront cost, the lack of sensing modalities such as LIDAR,

non-standard hardware acceleration for neural network components, and closed nature of

the simulation system limit the use of DeepRacer in research settings.
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5.4. Simulation Tools

In this section we describe the containerized simulation engine for the 1/10th scale vehicle

platform of Section 5.5. We note that simulated environments include a reality gap which

is characterized by the discrepancy between the performance of the system obtained in

simulation relative to the deployed performance. We describe how our simulator design can

mitigate and control factors which influence the reality gap.

5.4.1. Simulator design

The simulator can operate in two modes: (1) a ROS-based mode designed for software-

in-the-loop (SIL) testing and (2) an OpenAI Gym (Brockman et al., 2016) mode designed

for distributed training. The OpenAI Gym simulator mode supports the additional option

to generate photo-realistic camera observations which enables the testing and training of a

computer vision pipeline.

The SIL-oriented simulator is a plug-and-play replacement for the 1/10th scale platform

itself. The response of the vehicle to control commands is captured using the single track

model described in (Althoff et al., 2017). The simulator also replaces the sensors used on

the actual vehicle (see Section 5.5). Synthetic sensors mimic odometry information from

the electronic speed controller and laser scans from LIDAR. The same message types and

ROS publisher subscriber mechanisms are used to communicate the sensor observations.

The primary use-case for this simulation mode is debugging shortly before deployment as

implementation errors related to ROS and the vehicles interface can be found safely.

The training-oriented simulator is created with the RL community’s needs in mind. In con-

trast to the SIL mode, training mode explicitly steps time with the given action input in

order to create deterministic rollouts. Since the simulator is capable of simulating multiple

vehicles and their sensor observations, the API is designed such that all agents are stepped

simultaneously. Determinism has two benefits; first, experiments are repeatable, a feature

useful both for debugging and in service of our stated goal of creating fair and accurate
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evaluations. Second, the explicit stepping enables the physics engine to take advantage of

faster than real-time execution (up to a 6x speedup per-worker on commodity cloud in-

stances). In addition, we provide a containerized executable of the simulator which includes

a ZeroMQ (Hintjens, 2013) interface implementing the MapReduce pattern (Dean and Ghe-

mawat, 2008) for scaling distributed training algorithms. Finally, we implement a bridge to

the vehicle’s ROS interface which enables easy deployment after training has completed, see

Figure 5.16(c). Unlike other work (Balaji et al., 2019) our system is open source and can

be deployed on any cloud-service.

Depending on the sensor payload carried on board the vehicle it may be necessary for the

simulator to simulate a camera. Thus, the training-oriented simulator can also provide syn-

thetic images; our implementation utilizes Unreal Engine 4 which we access via a plugin,

UnrealCV (Qiu et al., 2017). We discuss the specifics of our modeling choices via an ex-

ample environment which mimics a track instance used for experiments (see Figure 15) in

Section 5.4.2. A benchmark and baseline implementation for the training mode simulator

with synthetic image generation is described in Section 5.7.2.

5.4.2. Addressing the reality gap

In this section we consider two sources of error in simulated evaluations of vehicle perfor-

mance. The first source is the vehicle dynamics model itself. The simulator provides variable

vehicle model parameters including: mass, center of mass, moment of inertia, dynamic fric-

tion coefficient between the four tires and the environment surface, cornering stiffness, and

maximum acceleration/deceleration rates. In order to address the reality gap from a system

dynamics perspective, the simulator contains parameters for the vehicle and test environ-

ment identified (see Figure 5.16(b)) using the methods outlined in (O’Kelly et al., 2019).

The second source of error, sensor model fidelity, especially the synthetic camera is a more

pernicious factor. We utilize natural image statistics (Kundu, 2016), a measure of the spa-

tial complexity and color content of an image, to quantify the distributional shift between

simulation and reality. In order to minimize the gap, we adjust the renderer’s lighting tem-
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Figure 15: (a) Left: reality, right: simulation (b) DR via rendering parameters (Tempera-
ture) (c) DR via texture replacement (d) DR via static obstacle generation (e) Tuning the
rendering parameters (temperature) with natural image statistics

perature. In addition, our plugin implements a variety of domain randomization techniques

(Tobin et al., 2017) which include renderer settings, texture replacement, and procedural

generation of obstacles in order to improve generalization in the real-world . Finally, issues

of the environment geometry mismatch are addressed by including a state-of-the-art SLAM

front end which enables the capture of maps (Hess et al., 2016). Figure 15.(a) compares the

same hallway in reality and in the simulation; (b), (c), and (d) in Figure 15 shows different

strategies of domain randomization (DR), and Figure 15.(e) details the statistics of real

images collected on the vehicle relative to a variety of simulation settings.

5.5. Hardware Specification and Middleware

The hardware platform, shown in Figure 5.16(a), consists of two halves: a widely available

1/10-th scale RC car modified to accommodate autonomous control inputs as well as a

sensor and compute platform which enables autonomous decision making. The first half,

known as the base chassis has 1. A high torque brushless DC motor. 2. An electronic speed
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(a) Vehicle components (b) System Identification (c) Onboard Gym API

Figure 16: Major components of the F1TENTH platform and SystemID procedure.

controller (VESC) based on an open source design (Vedder, 2015) to convert speed input

into motor RPM. 3. A servo motor for controlling the Ackermann steering, 4. A Lithium

Polymer (LiPo) battery pack.

The second half is called the sensor and compute platform; it consists of the sensor payload,

power management board, and the on-board computer.

The power management board provides a stable voltage source for the compute unit and

its peripherals since the battery voltage varies as the vehicle is operated. The sensor suite

includes a Hokuyo UST-10LX LIDAR, selected for its durability and high maximum scan

frequency of 40Hz. The platform includes options to mount an Intel RealSense D435i which

provides RGBD images and an integrated a IMU. Odometry is provided by the VESC. The

default compute unit is the Jetson TX2, and there is additional support for the Xavier and

Nano variant of the Jetson. The TX2 is mounted on a carrier board to reduce the form

factor.

Finally, the platform also includes an open source middleware stack comprising: a driver

that provides the interface between on-board ROS nodes and the hardware in order to

obtain sensor information and actuate the vehicle; configuration files that define the lower

level motor actuation and odometry estimation; and an OpenAI Gym interface as shown in

Figure 5.16(c) that enables quasi-deterministic stepping and resetting of the physical car.
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5.6. Benchmark Tasks and Competitions

The autonomous driving task encompasses a subset of general navigation and locomotion

problems. Through the lens of autonomous racing (AR) we further partition the navigation

problem into three distinct settings of increasing complexity. Note that our benchmark

environments allow the use of alternate rewards for training, but submitted solutions are

measured by a simple, sparse reward: lap time.

Benchmark 1: Static Kinodynamic Planning: The first benchmark environment in-

volves a known race-track and a single vehicle; the objective of the autonomous vehicle is

to navigate the track in a minimal amount of time; the task is considered successful only

if the trajectory is collision free. Many planning algorithms assume that it is possible to

observe the vehicle’s full state and identify accurate polyhedral representations of obstacles.

In practice, an accurate map and localization system can justify the assumption in this task.

We describe a baseline solution based on evolution strategies implemented in Section 5.7.1.

Benchmark 2: Online Kinodynamic Planning: The importance of hardware-based

benchmarks (at least as motivation for assumptions) is made more clear if we consider

a relaxation of Benchmark 1; the map or equivalently the location of obstacles (still

polyhedral) is not known prior to runtime. The agent must detect and avoid static obstacles

in real time. Furthermore, due to occlusions and sensor properties the vehicle’s pose restricts

a precise representation of the full map. We describe an imitation learning-based baseline

for this problem in Section 5.7.2.

Benchmark 3: Multi-agent Racing: Another advantage of the AR setting is that it

naturally extends to multi-agent robotics problems. In the third benchmark task we consider

two or more agents driving simultaneously on the same map. We detail a suite of control

theoretic baselines in Section 5.7.3.

We curate hardware-tested baseline solutions to the described benchmarks by organizing

biannual competitions (Mangharam et al., 2018a,b, 2019a,b). Each competition includes
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races (Benchmark 1,3) and qualification rounds (Benchmark 2). We support entrants

by providing tools (described in this paper) and teaching material (Agnihotri et al., 2020).

5.7. Baseline Solutions

5.7.1. Benchmark 1: Kinodynamic planning

In Benchmark 1, the environment consists of the racetrack encoded as a map, a random

starting position, and a reward function which measures lap-time. The agent, through inter-

actions with the environment, tunes a parameterized model of its dynamics, strategy, and

controller, with the objective of finding an assignment of these parameters that minimizes

the lap-time. We employ the covariance matrix adaptation evolutionary strategy (CMA-

ES) (Hansen et al., 2003) optimizer due to the non-smooth objective function landscape.

This baseline straddles continuous control and RL methods; the parameters of the vehicle’s

model predictive controller are tuned based on the results of rollouts which evaluate a candi-

date solution’s quality. A detailed discussion of the learning problem and approach is given

in Chapter 6.

The results comparing simulated lap times and the actual lap times are shown in Table 6.

In all the experiments, the lap times measured on hardware rollouts are higher than the

simulated lap times. Several factors contribute to this discrepancy: the friction coefficient

between the driving surface and the tires is not constant, the steering delay is time-varying,

and the accuracy of localization varies depending on the vehicle’s location in the map.

Each of these factors causes the ego-vehicle to deviate from the optimal trajectory found in

simulation. Importantly, however, the local planning and feedback control methods which

are presented in greater detail within Section 5.7.3 allow the solutions found in simulation

to remain feasible in the real-world. Moreover, the difference in lap times between sim and

real is small, 0.61% for the test track, demonstrating the accuracy of the simulator.
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Table 6: Best Solution Lap Times in Sim vs. Real

Method Lap Time (s, sim) Lap Time (s, real)

TunerCar 16.2376± 0.2161 16.19
Pure Pursuit 17.2307± 0.0620 17.00

5.7.2. Benchmark 2: Online kinodynamic planning

In Benchmark 2, a random number of static obstacles are dispersed around the track which

the agent will navigate. The agent does not have prior knowledge of the static obstacles’

positions in the map before being deployed. Our baseline implementation for this benchmark

illustrates a method to transfer a reactive LIDAR based obstacle avoidance policy to a vision

based policy via self-supervised imitation learning (SSIL). The oracle policy, based on the

follow the gap method (FGM) (Sezer and Gokasan, 2012) uses the most recent LIDAR scan

to avoid the nearest obstacle and steer toward the largest gap. We define I as the stack of

input images, S as the snapshot of the current laser scan, ao as the steering angle output from

the oracle policy at time t, and av as the steering angle output generated by the vision-based

agents at time t. We utilize the network architecture described in (Bojarski et al., 2016) and

trained on tuples (I, ao). Given a trajectory (I0, S0, av,0), (I1, S1, av,1) . . . (IT , ST , av,T ) we

use St and FGM to relabel each av,t to ao,t. The relabeled trajectories are used to iteratively

correct, via DAgger (Ross et al., 2011), the policy as the vehicle explores the state space.

In the simulated training phase, every rollout occurs in a domain randomized environment

where obstacle placement, simulator asset textures, and lighting temperature are varied.

Following the simulation-based training phase; the vehicle is deployed in the environment

and trained in the same manner in situ. After the agent is capable of completing the

real track without any collision, it is evaluated in the same environment with the learned

vision only policy. We show the resulting average lap times of the imitation policy and the

oracle policy on the same Philadelphia Track in 5.7.1 in Table 7. SSIL DAgger produces

an average lap time 5% slower than that of the FGM Oracle Policy, indicating that the

vision-based policy mimics the LIDAR based policy after sufficient DAgger iterations.
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Future baselines should explore the ability of imitation learning approaches to exceed the

performance of oracle policies.

Table 7: Performance of SSIL and DAgger on Benchmark 2

Method Avg. Lap time (s, sim) Avg. Lap time (s, real)

SSIL DAgger 22.625± 0.1092 26.71
FGM (Oracle) 21.55± 0.0967 18.24

5.7.3. Benchmark 3: Multi-agent racing

For Benchmark 3 we evaluate reactive, randomized, and model predictive approaches

to multi-agent racing. The reactive method uses the same FGM policy described in Sec-

tion 5.7.2. The probabilistic planning method is based on rapidly-exploring random trees

(RRT) (LaValle, 1998). The RRT planner randomly samples points in the workspace of

the vehicle and then expands a tree to find a path between the car’s current position and

goal position. We also demonstrate a variant of RRT, RRT* (Karaman and Frazzoli, 2011),

which rebuilds the tree structure based on the path traversal cost such that the selected

path asymptotically approach the global minimum cost. The solutions provided by RRT

and RRT* are not inherently dynamically feasible; thus, an additional trajectory tracking

controller (Coulter, 1992) is utilized. The model predictive control approach, lattice plan-

ning, and has been demonstrated on full scale autonomous vehicles (Urmson et al., 2008).

The formulation of the MPC trajectory generation component in the planner is described

in (McNaughton, 2011). Online, the lattice planner samples a set of goal poses in the

ego-vehicle’s moving reference frame, for each sample a trajectory, parameterized a cubic

polynomial, which drives the vehicle from its current state to the goal is computed. Given

the set of sampled trajectories, each is evaluated for feasibility and progress. This process

repeats in a receding horizon fashion.

Table 8 reports the average lap times, crash rate, and win rate of baseline solutions on

Benchmark 3. Unlike the baseline provided in the previous section, the algorithms in-

vestigated all originate from motion planning and continuous control. In these methods
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the opponent is treated as a dynamic obstacle rather than an adversarial agent. Thus, al-

though all the baselines have win rate higher than 50%, they all have non-zero crash rates

due to their relatively unsophisticated prediction mechanisms as compared to RL and game-

theoretic approaches (e.g. Liniger and Lygeros, 2019). Further work, presented in Chapter 7,

extends the multi-agent benchmark to balance safety and performance within our evaluation

environment.

Table 8: Performance of Local Planners on Multi-agent benchmark

Method Avg. Lap time (s) Crash Rate Win Rate

FGM 18.647± 2.65 50% 50%
RRT 17.14± 2.11 45% 55%
RRT* 13.91± 0.64 35% 65%

Lattice Planner 15.59± 1.22 30% 70%

5.8. Conclusion

This chapter details the F1TENTH platform, an open-source evaluation framework with

virtual environments and a low-cost hardware counterpart which enables safe and rapid

experimentation suitable for laboratory research settings. We present three benchmark

tasks and baselines in the setting of autonomous racing, demonstrating the flexibility and

features of our evaluation environment. A limitation of this work is the relatively small

sample size of algorithms included in our baseline examples; however, the goal of releasing

this environment is to generate a wider variety of community submitted solutions. In what

follows we utilize the platform developed in this chapter in order to address the domain

adaptation problem. In Chapter 6 we present a solution for Benchmark 1, and in Chapter 7

we present a solution for Benchmark 3.
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CHAPTER 6 : TunerCar

6.1. Chapter Overview

This chapter is adapted from “TunerCar: A Superoptimization Toolchain for Autonomous

Racing,” which appeared in the Proceedings of the International Conference on Robotics

and Automation 2020 as joint work with Hongrui Zheng, Achin Jain, Joseph Auckley, Kim

Luong, and Rahul Mangharam.

6.2. Introduction

Since its inception, racing has been a key driver of new technology in the automotive in-

dustry. Some domains, such as powertrain engineering, are obvious beneficiaries of racing

development. However, the goals of racing – fast and aggressive driving – are seemingly

orthogonal to the safety-oriented specifications of the autonomous vehicle industry. Never-

theless, scenarios faced by racing drivers (and autonomous racers) force the development of

technology which must operate safely in both nominal conditions and, more importantly, at

the limits of vehicle performance.

The objective of developing an optimal autonomous racer is motivated by the desire to cre-

ate safe and reusable core autonomy components, namely vehicle and environment agnostic

planning and control software. Racing, in this context, is a mechanism to create a competi-

tive environment where the quality of the chosen vehicle configuration has a clear measure –

Figure 17: The TunerCar toolchain which jointly optimizes racing strategy, planning
methods, control algorithms, and vehicle parameters for an autonomous racecar.
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lap time. While nominal conditions may be handled even with poorly integrated components

(e.g. a pure pursuit controller which works even when accidentally used on the wrong robot

(Coulter, 1992)), racing conditions severely punish sub-optimal vehicle dynamics, racing

strategy (path and speed selection) and controller parameters.

This paper introduces the notion that component reuse and adaptation is analogous to cre-

ating a compiler-like tool that targets computational, physical, and external environmental

details of a robot’s operational domain. In general, the goal of a compiler is to validate

and then transform a source program from one language to another (usually lower-level e.g.

assembly) which is suitable for the target domain (Aho et al., 1986). Modern optimizing

compilers (Lattner, 2002) also seek to improve the performance of the transformed program.

To concretize the analogy, we define the source program as a parameterized description of

the vehicle dynamics, tracking controllers, and local planning method which we wish to

transform to perform safely and efficiently in the operational environment represented by a

map, physical laws, and sensing capabilities.

We propose a solution to this parameter search problem which is related to the concept of

superoptimization (Schkufza et al., 2013; Massalin, 1987; Solar-Lezama, 2013; Liang et al.,

2010), a technique that searches the space of equivalent and correct programs for the most

performant instance rather than applying a sequence of optimization passes which attack

specific performance bottlenecks. Despite the success of superoptimization approaches in

narrow domains (Vasilache et al., 2018; Ragan-Kelley et al., 2013), viewing the autonomous

vehicle as the compilation target creates entirely new issues due to the cyber-physical nature

of the platform. First, no simulator or model can perfectly emulate the target thus creating a

noisy performance measure and potentially falsifying correctness claims. Second, addressing

this reality gap by instead executing the proposed program transformations on the vehicle is

dangerous, slow, and expensive. The vehicle may get damaged due to aggressive strategies,

tests cannot proceed faster than real-time, and evaluations cannot be easily parallelized. In

response to these challenges, our solution provides a validated, deterministic, and parallel
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simulation environment as well as a method of adapting derived strategies to reality via an

efficient online optimization component.

This work has three primary contributions. First, we provide a toolchain for superoptimiza-

tion of autonomous racers called TunerCar (see Figure 17). This toolchain includes target

hardware, modular software, and a calibrated simulator. Second, we describe a methodology

for tuning a high-dimensional set of hyperparameters spanning control, planning, dynamics,

and strategy. Finally, we validate our solution on an AV software stack and 1/10th-scale

open-source vehicle described in Chapter 5.

In what follows, we demonstrate that TunerCar achieves improvement in lap time relative

to other approaches tested given a fixed computation budget, and that our solution exceeds

the performance of crowd-sourced expert solutions by up to 21%. Section 6.3 describes the

problem setup and optimization pipeline. Section 6.4 places our solution in context with

previous approaches. Section 6.5 describes the modular autonomy stack, simulator, and

hardware utilized for large-scale experiments detailed in Section 6.6.

6.3. Methodology

6.3.1. Problem statement

Our goal is to determine the best vehicle parameters, racing strategy, and controller settings

that minimize lap time for a given racing track (also referred to as map). Mathematically,

we define the objective function as the lap time, f(Θ) : Rn → R. Here lap time is computed

by simulating the system producing a trajectory. The search space parametrized by Θ is

the concatenation of three components – vehicle dynamics, racing strategy, and controller.

Note that in this work we utilize a simulator (black-box) where the resulting scalar measure

is deterministic given an assignment of parameters θ ∈ Θ but may be noisy relative to

in situ executions. We do not make any other assumptions such as the existence of a

gradient. Our approach is shown in Figure 17. In what follows we define a parameterization

of the autonomous racer, describe an evaluation criteria, and detail a method to sample and
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optimize realizations of the parameters.

6.3.2. Search space

The physical parameters Θp are defined as the mass, m, the location of the center of gravity

in the longitudinal direction, lg, the friction coefficient, µs, the height of the center of gravity,

hg, front cornering stiffness, Cαf , and rear cornering stiffness, Cαr . We limit the range of

these parameters such that they are physically achievable without major modifications. The

nominal values and their ranges are based on system identification performed on the actual

vehicle, for further details see Appendix C.0.1.

The strategy parameters Θs are defined by the nominal path (x, y) and the velocity profile

(vx, vy); the size varies depending on the track, for example, Θs ∈ R260 on Philadelphia Track

A. The path and velocity profile combined represent the largest portion of the search. To

improve the convergence of our proposed optimization method, we note that a deterministic

assignment of the optimal velocity profile is possible given a path x, y, reducing the size

of the search space by 1/3. Specifically, the optimal velocity profile can be computed in

polynomial time by solving a convex minimum-time parametric optimization problem. We

refer the reader to (Lipp and Boyd, 2014) and Appendix C.0.2 for full details of the minimum

time path traversal formulation.

Finally, the driver parameters Θd represent aspects of the control algorithms used. Ma-

nipulating these parameters affects how the vehicle tracks the raceline. There are three

components: the waypoint lookahead gain gw, the planning horizon dl, and the speed gain

vg (a precise definition is given in Section 6.5.3).

6.3.3. Evaluation criteria

For a given set of parameters, θ, i.e. waypoints with velocities, vehicle dynamics and con-

trollers, we calculate the lap time, f(θ), using our simulator detailed in Section 6.5. When

the simulator receives a new sample, the parameters are updated, the environment is reset,
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and the virtual vehicle attempts to traverse the track. The result, simulated lap time, is used

as the objective function which sorts a set of samples (or population) into quantiles. Solu-

tions are determined to be feasible if the trajectory does not intersect with the boundaries

of the track (accounting for the car’s length and width). Infeasible solutions are rejected

and replaced at the sampling stage described in the next subsection.

6.3.4. Optimization

Our proposed optimization problem is high-dimensional, non-convex, non-smooth, and lacks

a closed-form expression of the dynamics. Thus, we use gradient-free black-box optimization

techniques. A potential pitfall of heuristic optimization methods applied to this class of

problem is the inherent tension between exploration of the search space and exploitation

of solutions due to the potential existence of local minima. We utilize a method known

as covariance matrix adaptation evolution strategies (CMA-ES), (Hansen and Ostermeier,

2001); our implementation is described in Algorithm 3. CMA-ES is known to perform well

in challenging regimes with many local minima because it explicitly balances exploration

with hill-climbing. CMA-ES adapts the covariance matrix (increases the L2 norm) of the

proposal distribution when the top performers of the population are far from the rest of the

population, and conversely narrows the spread of the proposal distribution as the population

becomes less diverse. Additionally, this approach also allows massively parallel evaluation

of solutions, the most computationally expensive aspect of this pipeline.

As described in Algorithm 3, we first randomly initialize a population of feasible solutions

using uniform sampling. Once the population has been evaluated, the top µλ solutions are

isolated. In Section 6.6, we detail the results of a grid search to identify high-performing,

generalizable settings for µ and the population size, λ. The top quantile of solutions is

used to fit a multivariate Gaussian distribution from which the next generation of samples

is drawn. We repeat this process, terminating when the L2-norm of the covariance matrix,

Cg, is less than ε = 0.01 (see Section 6.6 and (Hansen and Ostermeier, 2001)).
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Algorithm 3 Covariance matrix adaptation evolution strategy (CMA-ES) (Hansen and
Ostermeier, 2001)
1: input: population size λ, parent number µ
2: randomly initialize population: θk for k = 1, ..., λ
3: calculate population means θ̂g of the parameters
4: while termination criterion not met do
5: evaluate current population θg using f(θ)
6: sort θ from smallest to largest objective, f(θ)
7: isolate top K = µλ individuals: θk for k = 1, ..,K
8: estimate the covariance matrix C(g+1) using θ̂g

9: calculate the means θ̂(g+1) of θk for k = 1, .., µ
10: sample a new population of λ individuals via θ̂(g+1) and C(g+1)

11: end while

6.4. Related Work

This paper presents an approach to heterogeneous component integration and optimization

suitable for robotic systems that interact with a physical environment. A complete discussion

of the general superoptimization and compiler literature has been omitted. However, specific

approaches such as program sketching, population-based training, and program synthesis

are of interest to the robotics community. We also consider a narrower view of this work

relative to numerous methods for optimizing specific vehicle components and software within

the racecar engineering community.

Sketching (Solar-Lezama, 2013) utilizes fragments of programs which capture macroscopic

details about the structure of the solution in order to synthesize the low-level details. In

contrast, program synthesis (Piterman et al., 2006) attempts to construct a correct program

from scratch using only formal specifications. Neither approach inherently considers opti-

mality, only correctness. Examples of sketching (Campos et al., 2019) and program synthesis

(Liu et al., 2013) techniques applied to robotics generally fail to address the gap between

models of robotic systems and realizable interactions between the program and the world.

Even still, a variety of computational complexity and undecidability results (Alur et al.,

2000) remain a barrier to applying these methods to realistic systems. Another closely re-

lated approach, population-based training (PBT) (Jaderberg et al., 2017) has recently been
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utilized to search for efficient neural network designs; however, earlier work (Cheney et al.,

2014) focused only on physical robot design, a subset of the problem addressed in this pa-

per. Likewise, (Ha and Schmidhuber, 2018b) directly addresses the synthesis of a controller

and planner interface but does not address the real-world applicability of the approach,

specifically with respect to the (lack-of) realism in the simulator and vehicle dynamics. Like

(Ha and Schmidhuber, 2018b) the approach presented in Section 6.3 utilizes a black-box

optimization method, CMA-ES (Hansen, 2016).

In general, race car optimization has historically been divided into two main categories:

vehicle parameter optimization and racing trajectory optimization. The former uses a fixed

track and fixed trajectory while varying the car parameters while the latter uses a fixed

track and a fixed car while varying the trajectories. In (Kasprzak et al., 1998), 500 pairs

of roll stiffness and weight distribution values are evaluated using Pareto minimum analysis

to optimize for the fastest lap time. More recently, (Hacker et al., 2000; Castellani and

Franceschini, 2003; Hayward, 2007), feature expanded design spaces, parallel computation,

and utilize simple genetic algorithms.

In raceline optimization, several approaches have been proposed. An iterative two-step

algorithm that separates the longitudinal and lateral control components is explored in

(Kapania et al., 2016). Alternatively, in this paper, we use a population-based guided

search using CMA-ES to determine the best raceline. In this process, we use the result

from (Lipp and Boyd, 2014) that calculates both lateral and longitudinal forces required to

minimize time to traverse a fixed trajectory. Concurrent work uses Bayesian optimization

in place of CMA-ES (Jain and Morari, 2020). An alternative approach (Liniger et al.,

2015), attempts to separate the autonomous racecar performance into two steps. First an

approximate solution to the high-level path planning problem is computed then the lap

time is minimized using a model predictive controller (MPC) in a receding horizon fashion.

Similarly (Rosolia and Borrelli, 2019) formulates raceline optimization as an MPC problem

using a learned dynamics model. Like these works we also perform system identification
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Figure 18: Target 1/10th scale vehicle.

and incorporate model predictive control; however, we generalize the raceline optimization

problem to explicitly consider the system as a whole.

6.5. Simulator and Hardware

TunerCar includes a complete set of system components which are utilized to demon-

strate the approach. In this section we outline the vehicle hardware, simulator, and vehicle

software. The target hardware, an open-source 1/10th scale autonomous vehicle created by

the authors, is mapped to a validated, deterministic simulator capable of modeling both the

dynamics and sensors included on the vehicle. The simulator includes a wrapper which en-

ables a distributed approach to optimization of the source program with low communication

overhead. In addition, the toolchain provides performance oriented implementations of the

core algorithms (see Section 6.5.3) and a method to update their parameters.

6.5.1. Hardware

The vehicle, shown in Figure 18, is designed around a ready-to-run RC car chassis. A power

board used to manage the onboard compute and sensors as well as mounting plate design

are provided. All aspects – hardware, mechanical design, software – of these additional parts

are open source. Computation occurs on the onboard NVIDIA TX2, a modern embedded
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system on a chip (SoC) which contains a conventional multicore ARM CPU in addition

to a power-efficient GPU. The main sensor is a planar laser scanner (or LIDAR) which can

capture range measurements. The LIDAR enables the vehicle to localize, estimate odometry,

and create maps. Due to the operating environment (typically corridors with few features),

we supplement the LIDAR measurements with additional odometry information from the

electronic speed controller (Vedder, 2015). An optional RGB-D camera provides additional

sensing modalities, but is not used in these experiments.

6.5.2. Simulator

The simulator uses a lightweight 2D physics engine written in C++ which implements the

single track vehicle model described in (Althoff et al., 2017). System identification was per-

formed to determine vehicle parameters – mass, center of mass moment of inertia, friction co-

efficient, cornering stiffness, and maximum acceleration/deceleration rates, Appendix C.0.1

contains further details. The moment of inertia was estimated using the bifilar (two-wire)

pendulum method (Soule and Miller, 1934). Tire parameters were found using the PAC2002

Magic-formula model. A force scale was used to measure the kinetic friction coefficient be-

tween the rubber tires and linoleum floor as the vehicle was dragged laterally at a constant

velocity. In addition to modeling vehicle dynamics, the simulator detects collisions between

the vehicle and obstacles in the environment in linear-time using a pre-computed lookup

table of range measurements (Felzenszwalb and Huttenlocher, 2012). This method is also

used to simulate the vehicle’s LIDAR.

The simulator differs significantly from existing ROS-based tools. To create deterministic

rollouts, the C++ executable is wrapped in the OpenAI Gym (Brockman et al., 2016) envi-

ronment which explicitly steps time when all inputs have been computed. A further benefit

of this approach is the ability to take advantage of faster than real-time execution. On

commodity hardware, simulations proceed at approximately 6x real-time. Finally, the sim-

ulation environment provides a method for the members of the vehicle dynamics parameter

class to be modified by TunerCar at the beginning of each rollout. Last, the simulation
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Figure 19: MapReduce pattern of the search implementation.

toolchain include a front end for generating random maps and pre-processing occupancy

grid maps created using SLAM.

The TunerCar toolchain employs a MapReduce (Dean and Ghemawat, 2008) messag-

ing pattern implemented using ZeroMQ (Hintjens, 2013), a high-performance asynchronous

messaging library. Figure 19 shows many ‘workers’ spawned in parallel, each equipped with

a simulator, velocity optimizer, and full vehicle stack. Samples from the CMA-ES search

node are then broadcast to a pool of worker nodes. On receipt of a new sample, the worker

instantiates vehicle and environment parameters and simulates a rollout to compute the lap

time. In order to update the searcher’s sampling distribution, the worker simply transmits

the lap time and task index to a sink node which collects the worker results and synchronizes

the search epochs.

6.5.3. Vehicle Software

Some algorithms are considered adaptable; others such as the simultaneous localization and

mapping package (SLAM) are only used offline to create a model of the environment and,

thus, are not tuned. The complete set of non-adaptable algorithms and software includes
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Figure 20: Adjusting the horizon of the path planner shifts the lattice of samples (blue
markers), the green marker represents the pure pursuit trackers selected lookahead distance.

Google Cartographer (Hess et al., 2016) for SLAM, a particle filter for pure localization

(Walsh and Karaman, 2017), and a behavior controller which manages communication be-

tween the planning nodes and the motor controller.

TunerCar compiles optimizes versions of two processes on the vehicle: a geometric path

tracking controller based on pure pursuit (Coulter, 1992; Snider, 2009) and a path planning

module which utilizes a sampling-based non-linear model predictive control (Howard, 2009;

McNaughton, 2011). In addition TunerCar supplies a reference raceline and adjusts the

vehicle’s physical configuration.

Path Tracker

The goal of path tracker is to compute steering inputs which allow the autonomous vehicle

to follow a sequence of waypoints defined in the map frame. Performance of a path tracker is

measured by the feasibility of the inputs, heading error, and lateral offset between the path

and vehicle’s position (Snider, 2009). We utilize the pure pursuit path tracker (Coulter,

1992), a geometric method which has been shown to be effective if properly tuned for the

expected operating conditions. In particular, the lookahead distance, which is used to select

a point on the path ahead of the vehicle significantly affects the performance. Too small of
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a lookahead and the vehicle oscillates; too large and corners are cut. Thus, the lookahead

distance of the path tracker computed as gwdl (where the tracking lookahead gain is gw < 1

to ensure the tracking lookahead doesn’t exceed the path planning horizon, dl), is included

in the search space as a tuneable parameter.

Path Planner

The goal of the path planner is to generate kinematically and dynamically feasible trajec-

tories that can take the vehicle from its current pose to a sampled set of goal poses, see

Figure 20. Each trajectory is represented as a set of cubic spirals, p = [s, a, b, c, d] where s is

the total arc length of the trajectory and (a, b, c, d) are equispaced knot points encoding the

path curvature. For each trajectory, gradient descent is used to find spline parameters which

minimize the error between the goal pose and the calculated end point given by a forward

simulation of the vehicle dynamics. Real-time performance of the system is improved by

creating a dense lookup table of pre-computed goal, solution pairs as described in (Urmson

et al., 2008). Thus, online, once a goal point has been chosen, all that remains is to sample

N equidistant points corresponding to the spline parameters stored in the lookup-table and

check them against an occupancy grid for feasibility. In order to adapt the method to the

operational domain the horizon of the planner is adjusted to account for track geometry.

6.6. Experiments

In our experiments we explore the assignment of hyperparameters of the CMA-ES algorithm

as well as the effectiveness of the method in both simulation and reality. As noted in Sec-

tion 6.3, CMA-ES requires only three hyperparameters: ε, the threshold of the L2 norm

of the covariance matrix for the sampling distribution, λ, the population size, and µ, the

quantile of samples to retain between epochs. Figure 21 shows an experiment in which ε is

determined. We repeat this experiment on multiple hyperparameters selections, observing

that the lowest lap time does not decrease significantly after the L2 norm reaches the de-

termined threshold for all experiments. Figure 22 shows the performance of the CMA-ES
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population for a selection of quantiles µ and population sizes λ. We observe that the best

final minimum lap time is achieved as λ increases and µ decreases. We omit results from

some combinations of hyperparameters for the sake of clarity in Figures 21 and 22. Based

on these experiments we select a µ of 0.01 and λ of 10000 for best overall performance in

terms of lap time (here, convergence rate is less of a concern due to the offline nature of our

approach).

Figure 21: Convergence of L2 norm of covariance matrix to determine the threshold ε. The
termination threshold for the norm is reached when the optimization converges to a local
minimum.

Figure 22: Effect of population size λ and quantile µ on performance. The combination of
λ at 10000, and µ at 0.01 has the best performance in terms of the balance between best
lap time and convergence rate.

To further evaluate the CMA-ES implementation in TunerCar, we compare the mean and

variance of the top 100 lap times relative to a naive random sampling for fixed computational
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Figure 23: Performance on Philadelphia Track A with fixed computation.

budgets between 10,000 and 200,000 simulations. The results, shown in Figure 23 show that

our methodology converges to a set of solutions with lap times significantly lower than that

of naive random sampling.

We designed three sets of experiments to evaluate the effectiveness of our toolchain. First, we

conducted experiments to validate the results of our approach using the hardware detailed

in Section 6.5. These experiments are conducted on Philadelphia Track A, B which are

challenging due to the 90 degree turns and narrow drivable surface areas (as seen in Fig. 24).

The list of physical car parameters to tune was limited to an easily modifiable subset that

avoided major structural changes to the car’s components: total car mass and longitudinal

location of the car’s center of mass. After the pipeline has computed an optimal trajectory

and set of parameters, we physically modified the car’s parameters and deployed the tuned

system, using the optimized waypoints and velocities.

Our second set of experiments was conducted in simulation and compared against historical

racing times recorded in the environments. We chose to run the optimization process on a

set of two tracks – Porto (Mangharam et al., 2018b) and Torino (Mangharam et al., 2018a)

– where we have hosted competitive racing events in order to benchmark the performance

of TunerCar relative to hand-tuned solutions. Due to the variety of modifications various

entrants utilized (e.g. springs, suspension, geometry, and custom chassis), we do not restrict
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Figure 24: Comparison of simulated versus real performance: (A) Philadelphia Track A, (B)
Philadelphia Track B

Table 9: TunerCar performance in simulation and reality

Philadelphia Track A

Method Lap Time (s, sim) Lap Time (s, real)

TunerCar 16.2376± 0.2161 16.19
Pure Pursuit 17.2307± 0.0620 17.00

Expert Solutions N/A 22.2291 ± 3.5958

Philadelphia Track B

Method Lap Time (s, sim) Lap Time (s, real)

TunerCar 13.2424± 0.7782 14.03
Pure Pursuit 13.8256± 0.8848 16.80
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Figure 25: Agent solutions on the tracks: (A) Porto, (B) Torino

Table 10: TunerCar vs. expert-tuned agents in simulation

Method Lap Time (Porto, s) Lap Time (Torino, s)

TunerCar 8.11± 0.7372 17.96± 0.1214
Pure Pursuit 11.9± 0.8342 20.52± 0.1367

Best Expert Solution 9.37 19.19

the set of physical parameters.

Lastly, we evaluate the reality gap in light of the proposed online optimization strategy by

comparing vehicle performance in simulation to that which was achievable in reality. Fig-

ure 25 and Table 10 details the solutions found by TunerCar which exceed expert tuning-

performance on (8.A) Torino and (8.B) Porto. Figure 24 and Table 9 show a comparison

of the relative performance between top solutions deployed on the car and in the simulator

on (9.A) Philadelphia Track A and (9.B) Philadelphia Track B as well as a comparison to

expert engineered controllers (both crowd-sourced and created by the authors)
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6.7. Conclusions

We introduce TunerCar, a superoptimization toolchain for jointly optimizing racing strat-

egy, vehicle parameters, planning methods, and control algorithms for an autonomous race-

car. We detail the target hardware, software, simulators, and systems infrastructure nec-

essary for implementation. Our methodology deploys a modern evolution strategy onto a

massively parallelized software stack that enables simulations to proceed 6x times faster

than real-world rollouts, achieving up to 21% faster lap times compared to expert solutions

on real world race tracks. We validate our solution on an AV software stack and 1/10th-scale

open-source vehicle developed in Chapter 5.

While the method as described in this chapter has not been rigorously tested in head-

to-head racing, the online path-planning component is capable of navigating the vehicle

in the presence of other agents. Chapter 7 investigates the feasibility of deploying this

methodology utilizing an expanded search space that encodes the behaviors of other racers.

A clear limitation of the presentation of this work is a lack of comparisons to other black-

box optimizations, we mitigate this deficiency by measuring the toolchains performance

against a variety of hand-tuned solutions entered in F1TENTH competitions. Given that

the experimental results show that we can find significant performance improvements over

the other competition entries, it is important to explore whether other search strategies can

create even faster agents.

95



CHAPTER 7 : FormulaZero

7.1. Chapter Overview

Elements of this chapter have been adapted from “FormulaZero: Distributionally Robust

Online Adaptation via Offline Population Synthesis,” which appeared in the Proceedings of

the International Conference on Machine Learning 2020 as joint work with Aman Sinha,

Hongrui Zheng, Rahul Mangharam, John Duchi, and Russ Tedrake.

7.2. Introduction

Current AV technology still struggles in competitive multi-agent scenarios, such as merging

onto a highway, where both maximizing performance (negotiating the merge without delay

or hesitation) and maintaining safety (avoiding a crash) are important. The strategic im-

plications of this tradeoff are magnified in racing. During the 2019 Formula One season,

the race-winner achieved the fastest lap in only 33% of events (Federation Internationale de

l’Automobile, 2019). Empirically, the weak correlation between achieving the fastest lap-

time and winning suggests that consistent and robust performance is critical to success. In

this paper, we investigate this intuition in the setting of autonomous racing (AR). In AR,

an AV must lap a racetrack in the presence of other agents deploying unknown policies. The

agent wins if it completes the race faster than its opponents; a crash automatically results

in a loss.

AR is a competitive multi-agent game, a general setting challenging for a number of reasons,

especially in robotics applications. First, failures are expensive and dangerous, so learning-

based approaches must avoid such behavior or rely on simulation while training. Second, the

agents only partially observe their opponent’s state, and these observations do not uniquely

determine the opponent’s behavior. Finally, the agents must make decisions online; the

opponent’s strategy is a tightly-held secret and cannot be obtained by collecting data before

the competition.
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Problem: We frame the AR challenge in the context of robust reinforcement learning. We

analyze the system as a partially-observed Markov decision process (POMDP) (S,A, Psa,O, r, λ),

with state space S, action space A, state-action transition probabilities Psa, observation

space O, rewards r : O → R, and discount factor λ. Furthermore, we capture uncertainty in

behaviors of other agents through an ambiguity set P for the state-action transitions. Then

the AV’s objective is

maximize inf
Psa∈P

∑
t

λtE[r(o(t))]. (7.1)

The obvious price of robustness (Bertsimas and Sim, 2004) is that a larger ambiguity set

ensures a greater degree of safety while sacrificing performance against a particular opponent.

If we knew the opponent’s behavior, we would need no ambiguity set; equivalently, the

ambiguity set would shrink to the nominal state-action transition distribution. Our goal is

to automatically trade between performance and robustness as we play against opponents,

which breaks down into two challenges: parametrizing the ambiguity set to allow tractable

inference and computing the robust cost efficiently online.

Contributions: The paper has three contributions: (i) a novel population-based self-play

method to parametrize opponent behaviors, (ii) a provably efficient approach to estimate

the ambiguity set and the robust cost online, and (iii) a demonstration of these methods on

real autonomous vehicles. The name of our approach—FormulaZero—alludes both to the

Formula One racing league and the fact that we use self-play (and no demonstrations) to

learn competitive behaviors, similar to the approach of AlphaZero (Silver et al., 2018).

Section 7.2.1 gives context to our learning problem, including connections to classical control

techniques. In Section 7.3, we describe the first challenge: learning how to parametrize the

ambiguity set P. Rather than directly consider the continuous action space of throttle and

steering outputs, we synthesize a library of “prototype” opponent behaviors offline using

population-based self-play. When racing against a particular opponent, the agent maintains

a belief vector w(t) of the opponent’s behavior patterns as a categorical distribution over

these prototype behaviors. We then parametrize the ambiguity set as a ball around this
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nominal belief w(t).

The second challenge, presented in Section 7.4, is an online optimization problem, wherein

the agent iteratively updates the ambiguity set (e.g. updates w(t)) and computes the robust

cost of this set. In other words, the agent attempts to learn the opponent’s behavior online

to maximize its competitive performance. Since this optimization occurs on a moving vehicle

with limited computational resources, we provide convergence results that highlight tradeoffs

of performance and robustness with respect to these budgets. Finally, Section 7.6 details

the practical implications of the theoretical results, emergent properties of the method, and

the experimental performance of our approach.

7.2.1. Related work

Reinforcement learning (RL) has achieved unprecedented success on classic two-player games

(e.g. Silver et al., 2018), leading to new approaches in partially-observable games with con-

tinuous action spaces (Arulkumaran et al., 2019; Berner et al., 2019). In these works, agents

train via self-play using Monte Carlo tree search (Browne et al., 2012; Sutton and Barto,

2018) or population-based methods (Jaderberg et al., 2017, 2019). The agents optimize ex-

pected performance rather than adapt to individual variations in opponent strategy, which

can lead to poor performance against particular opponents (Bansal et al., 2017). In contrast,

our method explicitly incorporates adaptivity to opponents.

Robust approaches to RL and control (like this work) explicitly model uncertainty. In RL,

this amounts to planning in a robust MDP (Nilim and El Ghaoui, 2005) or a POMDP (Kael-

bling et al., 1998). Early results Bagnell et al. (2001) and Nilim and El Ghaoui (2005) de-

scribe solutions for robust planning in (PO)MDPs with tabular state/action spaces. Equiv-

alent results in control are analytical formulations applicable to uncertainty in linear time-

invariant systems (Doyle et al., 1988; Vinnicombe, 1993; Zhou et al., 1996). Recent works (Tamar

et al., 2014; Pinto et al., 2017; Mandlekar et al., 2017; Gleave et al., 2019) describe minimax

and adversarial RL frameworks for nonlinear systems and continuous action spaces. Like our
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approach, these methods fall broadly under the framework of robust optimization. Unlike

these works, which consider worst-case planning under a fixed uncertainty distribution, our

approach updates the distribution online.

Our approach is designed to adjust the agent’s evaluation of short-term plans relative to

uncertainty in the opponent’s behavior rather than provide worst-case guarantees. Com-

plementary to and compatible with our approach are techniques which provide the latter

guarantees, such as robust model predictive control (Bemporad and Morari, 1999). Ex-

tensions of robust control for nonlinear systems and complex uncertainty models are also

compatible (e.g.Majumdar and Tedrake (2013); Althoff and Dolan (2014); Gao et al. (2014)).

In contrast to formal approaches which explicitly guarantee robustness, some authors have

proposed multitask or meta-learning approaches (e.g. Caruana, 1997; He et al., 2016; Finn

et al., 2018) can implicitly learn to play against multiple opponents. However, such tech-

niques do not explicitly model uncertainty or quantify robustness, which we deem necessary

in the high-risk, safety-critical regime.

Planning in belief space is closely related to our approach and is well-studied in robotics (see

e.g. Kochenderfer, 2015). Specifically in the AV domain, Galceran et al. (2015) and Ding

and Shen (2019) use a Bayesian approach to plan trajectories for AVs in belief space; like this

work, both of these approaches characterize the other agent’s behavior in the environment

categorically. Also similar to this work, Van Den Berg et al. (2011) use a sampled set of

goals obtained by planning from other agents’ perspectives. The main difference in this

work from standard belief-space planning formulations is inspired by recent results from

distributionally robust optimization (DRO) in supervised-learning settings (Ben-Tal et al.,

2013; Namkoong and Duchi, 2017). These methods reweight training data to reduce the

variance of the training loss (Namkoong and Duchi, 2017). While others apply DRO to

episodic RL for training offline (Sinha et al., 2017; Smirnova et al., 2019), we reweight the

belief online.

Online methods for control fall under the umbrella of adaptive control (Kumar, 1985; Åström
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and Wittenmark, 2013). Dean et al. (2018) and Agarwal et al. (2019) establish regret bounds

for adaptive control methods applied to LTI systems, tightening the relationship to online

learning. Due to the more general nature of our problem, we draw from the adversarial

multi-armed bandit framework of online learning (Abernethy and Rakhlin, 2009; Bubeck

et al., 2012; Shalev-Shwartz et al., 2012).

Our belief state corresponds to a categorical distribution of polices governing an opponent’s

next action; the goal is to predict which strategy the opponent is using and compute the

best response. This approach is similar to game-theoretic methods for AR and AV decision

making that use the standard heuristic of iterated best response. Our work is distinct

from previous work, which either assumes that all agents act with respect to the same cost

function, simplifying the structure of the game (Liniger and Lygeros, 2019; Wang et al.,

2019b); or, without this simplifying assumption, that uses demonstrations to learn possible

sets of policies (Sadigh et al., 2016; Williams et al., 2017). In contrast, we learn the set of

policies without demonstrations and use DRO to robustly score the AV’s plans.

We convert the problem of predicting opponent behavior in a continuous action space into

an adversarial bandit problem by learning a set of cost functions that characterize a discrete

set of policies. As a result, we would like the opponent models to be both near-optimal

and diverse. We use determinantal point processes (DPPs) (Kulesza et al., 2012) to sample

diverse configurations of the parameter space. However, first we must learn a DPP kernel,

which requires that we efficiently sample competitive cost functions from the larger config-

uration space. Since we assume no structure to the set of competitive cost functions, we

employ a Markov-chain Monte Carlo (MCMC) method. Complementary methods include

variational-inference (e.g. Arenz et al. (2018)) and evolutionary (e.g. Mouret and Clune

(2015)) approaches, which can be challenging to scale up to unstructured, high-dimensional

settings of which we have little prior domain knowledge. In our approach, we update the clas-

sic simulated tempering method (Marinari and Parisi, 1992) with a novel annealing scheme

(Kirkpatrick et al., 1983; Černỳ, 1985) designed for population diversity. We describe this
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approach next.

7.3. Offline population synthesis

The goal of offline population synthesis is to generate a diverse set of competitive agent

behaviors. Formally, we would like to sample pairs (x, θ) ∈ X×Θ that are both diverse as well

as achieve small values for a function f(x, θ). In our AV application, θ parametrizes a neural

network used to sample trajectories to follow, x is a weighting of various cost functions that

the vehicle uses to select trajectories from the samples, and f is the simulated lap time. With

this motivation, we treat the method in more generality assuming (as in our application) that

while we can differentiate f(x, θ) with respect to θ, x represents hyperparameters and admits

only function evaluations f(x, θ) rather than first-order developments. The key challenge

is that we do not a priori know a metric with which to evaluate diversity (e.g., a kernel

for a DPP) nor do we know a base value of f that is deemed acceptable for competitive

performance.

We make this problem more tractable via temperature-based Markov-chain Monte Carlo

(MCMC) and annealing methods (Matyas, 1965; Hastings, 1970; Kirkpatrick et al., 1983;

Černỳ, 1985; Ingber, 1993; Hu and Hu, 2011). Our goal is to sample from a Boltzmann

distribution g(x, θ;β(t)) ∝ e−β(t)f(x,θ), where β(t) is an inverse “temperature” parameter

that grows (or “anneals”) with iterations t. When β(t) = 0, all configurations (x, θ) are

equally likely and all MCMC proposals are accepted; as β(t) increases, accepted propos-

als favor smaller f . Unlike standard hyperparameter optimization methods (Bergstra and

Bengio, 2012; Jaderberg et al., 2017) that aim to find a single near-optimal configuration,

our goal is to sample a diverse population of (x, θ) achieving small f(x, θ). As such, our

approach—annealed adaptive population tempering (AAdaPT)—maintains a population

of configurations and employs high-exploration proposals based on the classic hit-and-run

algorithm (Smith, 1984; Bélisle et al., 1993; Lovász, 1999).
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7.3.1. AAdaPT

AAdaPT builds upon replica-exchange MCMC, also called parallel tempering, which is a

standard approach to maintaining a population of configurations (Swendsen andWang, 1986;

Geyer, 1991). In parallel tempering, one maintains replicas of the system at L different tem-

peratures β1 ≥ β2... ≥ βL (which are predetermined and fixed), defining the density of the

total configuration as
∏L
i=1 g(xi, θi;βi). The configurations at each level perform standard

MCMC steps (also called “vertical” steps) as well as “horizontal” steps wherein particles are

swapped between adjacent temperature levels (see Figure 26). Horizontal proposals consist

of swapping two configurations in adjacent temperature levels uniformly at random; the pro-

posal is accepted using standard Metropolis-Hastings (MH) criteria (Hastings, 1970). The

primary benefit of maintaining parallel configurations is that the configurations at “colder”

levels (higher β) can exploit high-exploration moves from “hotter” levels (lower β) which

“tunnel” down during horizontal steps (Geyer, 1991). This approach allows for faster mix-

ing times, particularly when parallel MCMC proposals occur concurrently in a distributed

computing environment.

Maintaining a population: In AAdaPT (Algorithm 4), we maintain a population of D

configurations at each separate temperature level. Note that this design always maintains D

individuals at the highest performance level (highest β). The overall configuration density is∏L
i=1

∏D
j=1 g(xi,j , θi,j ;βi(t)). Similar to parallel tempering, horizontal proposals are chosen

uniformly at random from configurations at adjacent temperatures (see Appendix D.1). We

get the same computational benefits of fast mixing in distributed computing environments

and a greater ability to exploit high-temperature “tunneling” due to the greater number

of possible horizontal exchanges between adjacent temperature levels. The benefit of the

horizontal steps is even more pronounced in the RL setting as only vertical steps require

new evaluations of f (e.g. simulations).

High-exploration vertical proposals: Another benefit of maintaining parallel popu-

lations is to improve exploration. We further improve exploration by using hit-and-run
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Algorithm 4 AAdaPT
input: annealing parameter α, vertical steps V , horizontal exchange steps E, temperature levels
L, population size d, initial samples {xi,j , θi,j}j∈{1,D}i∈{1,L} , iterations T
Evaluate f(xi,j , θi,j)
for t = 1 to T

for j = 1 to L do anneal βL−j+1(t) (problem (7.2))
for k = 1 to V asynchronously, in parallel

for each population i asynchronously, in parallel
Sample x̂i,j according to hit-and-run proposal
Evaluate f(x̂i,j , θi,j)
Apply MH criteria to update xi,j
Train θi,j via SGD

for e = 1 to E do horizontal swaps (Appendix D.1)

proposals (Smith, 1984; Bélisle et al., 1993; Lovász, 1999) for the vertical MCMC chains.

Namely, from a current point (x, θ) we sample a uniformly random direction û and then

choose a point uniformly on the segment X ∩ ({x+R · û}×{θ}). This approach has several

guarantees for efficient mixing (Lovász, 1999; Lovász and Vempala, 2003, 2006). Note that

in our implementation the MCMC steps are only performed on x, while θ updates occur via

SGD (see below).

Adaptively annealed temperatures: A downside to parallel tempering is the need to

determine the temperature levels βi beforehand. In AAdaPT. we adaptively update tem-

peratures. Specifically, we anneal the prescribed horizontal acceptance probability of particle

exchanges between temperature levels as αt/(L−1) for a fixed hyperparameter α ∈ (0, 1). De-

fine the empirical acceptance probability of swaps of configurations between levels i− 1 and

i as

pi−1,i :=
1

D2

D∑
j=1

D∑
k=1

(yj,ki−1,i)
βi−1−βi

yj,ki−1,i := min
(

1, ef(xi−1,j ,θi−1,j)−f(xi,k,θi,k)
)
.

Then, at the beginning of each iteration (in which we perform a series of vertical and

horizontal MCMC steps), we update the βi(t) sequentially; we fix βL(t) := βL = 0 and for
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Figure 26: Illustration of AAdaPT. Vertical MCMC steps (jagged black arrows) occur
in parallel for xi,j , followed by gradient descent for trainable parameters θi,j (magenta ar-
rows) and horizontal MCMC configuration swaps between populations (curved black arrows).
Temperatures βi(t) are then updated by problem (7.2).

a given βi, we set βi−1 by solving the following convex optimization problem:

minimize
{βi−1≥βi, pi−1,i≤α

t
(L−1) }

βi−1, (7.2)

using binary search. This adaptive scheme is crucial in our problem setting, where we a

priori have no knowledge of appropriate scales for f and, as a result, β. In practice, we

find that forcing βi to monotonically increase in t yields better mixing, so we set βi(t) =

max(βi(t− 1), β̂i(t)), where β̂i(t) solves problem (7.2).

Evaluating proposals via self-play: We apply AAdaPT to a multi-agent game. It is
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only possible to evaluate f(x, θ) in the context of other agents, but we consider the setting

where demonstrations from potential opponents are either difficult to obtain or held secret.

Thus, we iteratively evaluate f via self-play. For each configuration (x, θ), we perform a race

in the simulated environment between two vehicles with the same policy (with f(x, θ) being

the lap time of the agent that starts behind the other). Vertical MCMC steps propose new

x, which are then accepted according to MH criteria. After a number of vertical iterations,

a stochastic gradient descent (SGD) step is applied to θ (which maximizes the likelihood

of the trajectories chosen by the agent with cost functions parametrized by x). Following

this process, the updated agents in adjacent temperature levels are exchanged via horizontal

MCMC steps. Although we choose f(x, θ) as the laptime, explicit entropic terms can also be

included to further encourage diversity within a single vertical chain or across the population.

At the conclusion of AAdaPT, we use the coldest population of D agents at inverse tem-

perature β1(T ) to build a DPP sampler. Specifically, define the matrix H via configurations

x1,· at the lowest temperature

Hab = ‖x1,a − x1,b‖. (7.3)

Then we define the DPP kernel K as Kab = exp
(
−H2

ab/σ
2
)
with a scale parameter σ = 0.5,

and we sample d ≤ D configurations from this DPP.

7.4. Online learning with computation budgets

Now we exploit the population of d learned prototype behaviors to enable robust perfor-

mance. The agent’s (our) goal is to act robustly against uncertainty in opponent behaviors

and adapt online to a given opponent. We parametrize the agent’s (stochastic) policy as

follows. At each time step, we sample goal states (consisting of pose and velocity) via a

generative model G(θ) parametrized by θ (as in Section 7.3). For a given goal state, we

compute the parameters of a cubic spline that reaches the goal by solving a nonconvex tra-

jectory optimization problem (McNaughton, 2011); on this proposed trajectory we evaluate

a collection of cost functions (such as the maximum curvature or minimum acceleration along
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the path) weighted by the vector x (recall Section 7.3), similar to Sadat et al. (2019) (see

Appendix 7.5 for a description of all costs). Finally, we choose the sampled goal trajectory

with minimum robust cost and perform an action to track this trajectory.

Some of the costs that evaluate the utility of a goal state involve beliefs about the opponent’s

future trajectory. For a goal p, we rewrite the performance objective at time t with respect

to a prototype opponent i as a receding-horizon cost

ci(t; p) := −
∑
s>t

λs−tE[r(o(s); p)],

where we omit dependence on the agent’s cost weights x for convenience. We parametrize

the agent’s belief of the opponent’s behavior as a categorical distribution of beliefs over

the prototypes. Specifically, let w(t) ∈ ∆ be a weight vector at a given time t, where

∆ := {a ∈ Rd+ | aT1 = 1}, and let P0(t) := Categorical(w(t)). Then P0(t) is the nominal

distribution describing the agent’s belief about the opponent. Furthermore, we consider

ambiguity sets P(t) defined by divergence measures on the space of probability measures

over ∆. For a convex function φ with φ(1) = 0, the φ-divergence between distributions P

and Q is Df (P ||Q) =
∫
φ(dPdQ)dQ. We use sets P(t) := {Q : Df (Q||P0) (t) ≤ ρ} where ρ > 0

is a specified constant. Our implementation employs the χ2-divergence φ(t) = t2 − 1.

Having defined the ambiguity set P(t) and the cost with respect to each prototype oppo-

nent, we rewrite the robust performance objective (7.1) to clearly illustrate the optimization

problem. Let C(t; p) be a random variable representing the expected cost with respect to

the belief of the opponent (and goal state p). Then the robust cost at time t is

sup
Q∈P(t)

EQ[C(t; p)] = sup
q:
∑
i wiφ(

qi
wi

)≤ρ

∑
i

qici(t; p). (7.4)

When ρ = 0, this is the expected cost under P0; larger ρ adds robustness. Solving the

convex optimization problem (7.4) first requires computing the costs ci(t). Using λ ≥ 0 for
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the constraint Df (Q||P0) ≤ ρ, a partial Lagrangian is

L(q, λ) =
∑
i

qici(t)− λ
(∑

i

wiφ (qi/wi)− ρ
)
.

The corresponding dual function is v(λ) = supq∈∆ L(q, λ), and minimizing v(λ) via bi-

section yields the solution to problem (7.4). Maximizing L(q, λ) with respect to q for a

given λ requires O(d) time using a variant of median-based search (Duchi et al., 2008) (see

Appendix D.2). Thus, computing an ε-suboptimal solution uses O(d log(1/ε)) time.

The supremum in the robust cost (7.4) is over belief ambiguity. Thus, our approach gen-

eralizes beyond the goal-sampling and trajectory-optimization approach presented at the

beginning of this section; it is compatible with any policy that minimizes a cost ci(t) with

respect to a parametrization for opponent i’s policy. In this way, it is straightforward to

combine our framework with robust model predictive control formulations that have rigorous

stability guarantees.

In order to perform competitive actions, the agent updates the ambiguity set P(t) and

computes the robust cost (7.4) on an embedded processor on board the vehicle in real-time

(e.g. within 100 milliseconds). In the next two subsections, we describe how to perform both

operations in the presence of a severely limited computational budget, and we quantitatively

analyze the implications of the budget on the robustness/performance tradeoff.

7.4.1. Approximating the robust cost

For a large library of prototypical opponents (large d), computing every ci in the objective

(7.4) is prohibitively expensive. Instead, we consider an empirical approximation of the

objective, where we draw Nw indices Jk
i.i.d.∼ P0(t) (where Nw < d) and consider the weighted

sum of these costs cjk . Specifically, we define the empirical approximation PNw := {q :
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Df (q||1/Nw) ≤ ρ} to P and solve the following empirical version of problem (7.4):

maximize
q∈PNw

∑
k

qkcjk(t; p). (7.5)

This optimization problem (7.5) makes manifest the price of robustness in two ways. The

first involves the setup of the problem—computing the cjk . First, we denote the empirical

distribution as ŵ(t) with ŵi(t) =
∑Nw

k 1{jk = i}/Nw. Even for relatively small Nw/d,

ŵ(t) concentrates closely around w(t) (see e.g. Weissman et al. (2003) for a high-probability

bound). Thus, when the vehicle’s belief about its opponent w(t) is nearly uniform, the jk

values have few repeats. Conversely, when the belief is peaked at a few opponents, the

number of unique indices is much smaller than Nw, allowing faster computation of cjk . The

short setup-time enables faster planning or, alternatively, the ability to compute the costs

cjk with longer horizons. Therefore, theoretical performance automatically improves as the

vehicle learns about the opponent and the robust evaluation approaches the true cost.

The second way we illustrate the price of robustness is by quantifying the quality of the

approximation (7.5) with respect to the number of samples Nw. For shorthand, define

the true expected and approximate expected costs for goal p and distributions Q and q

respectively as

R(Q; p) := EQ[C(t; p)], R̂(q; p) :=
1

Nw

Nw∑
k=1

qkcjk(t; p).

Then, we have the following bound:

Proposition 2 (Approximation quality). Suppose C(t; p) ∈ [−1, 1] for all t, p. Let Aρ =

2(ρ+1)√
1+ρ−1

and Bρ =
√

8(1 + ρ). Then with probability at least 1 − δ over the Nw samples

Jk
i.i.d.∼ P0, ∣∣∣∣ sup

q∈PNw
R̂(q; p)− sup

Q∈P
R(Q; p)

∣∣∣∣ ≤ 4Aρ

√
log(2Nw)

Nw
+Bρ

√
log 2

δ

Nw

See Appendix D.2 for the proof. Intuitively, increasing accuracy of the robust cost requires
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more samples (larger Nw), which comes at the expense of computation time. Similar to

computing the full cost (7.4), ε-optimal solutions require O(Nu log(1/ε)) time for Nu ≤ Nw

unique indices jk. In our experiments (cf. Section 7.6), most of the computation time involves

the setup to compute the Nu costs cjk .

7.4.2. Updating the ambiguity set

To maximize performance against an opponent, the agent updates the ambiguity set P as

the race progresses. Since we consider φ-divergence balls of fixed size ρ, this update involves

only the nominal belief vector w(t). As with computation of the robust cost, this update

must occur efficiently due to time and computational constraints.

For a given sequence of observations of the opponent oHopp(t) := {oopp(t), oopp(t−1), ..., oopp(t−

h+ 1)} over a horizon h, we define the likelihood of this sequence coming from the ith pro-

totype opponent as

lhi (t) = log dP
(
ohopp(t)|G(θ1,i)

)
, (7.6)

where G(θ1,i) is a generative model of goal states for the ith prototype opponent. Letting l̄

be a uniform upper bound on lhi (t), we define the losses Li(t) := 1− lhi (t)/l̄.

If we had enough time/computation budget, we could compute Li(t) for all prototype oppo-

nents i and perform an online mirror descent update with an entropic Bregman divergence

(Shalev-Shwartz et al., 2012). In a resource-constrained setting, we can only select a few of

these losses, so we use EXP3 (Auer et al., 2002) to update w(t). Unlike a standard adver-

sarial bandit setting, where we pull just one arm (e.g.compute a loss Li(t)) at every time

step, we may have resources to compute up to Nw losses in parallel at any given time (the

same indices Jk discussed in Section 7.4.1). Denote our unbiased subgradient estimate as

γ(t):

γi(t) =
1

Nw

Nw∑
k=1

Li(t)

wi(t)
1{Jk = i}. (7.7)

Algorithm 5 describes our slightly modified EXP3 algorithm, which has the following ex-
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Algorithm 5 EXP3 with Nw arm-pulls per iteration
Input: Stepsize sequence ηt, w(0) := 1/d, steps T
for t = 0 to T − 1

Sample Nw indices Jk
i.i.d.∼ Categorical(w(t))

Compute γ(t) (Equation (7.7))
wi(t+ 1) := wi(t) exp(−ηtγi(t))∑d

j=1 wj(t) exp(−ηtγj(t))

pected regret.

Proposition 3. Let z := d−1
Nw

+ 1. Algorithm 5 run for T iterations with stepsize η =√
2 log(d)
zT has expected regret bounded by

∑T
t=1 E

[
γ(t)T (w(t)− w?)

]
≤
√

2zT log(d).

See Appendix D.2 for the proof. This regret bound looks similar to that if we simply ran

Nw standard EXP3 steps per iteration t (in which case z = d/Nw). However, our approach

enables parallel computation which is critical in our time-constrained setting. Note that the

“multiple-play” setting we propose here has been studied before with better regret bounds

but higher computational complexity per iteration (Uchiya et al., 2010; Zhou and Tomlin,

2018). We prefer our approach for its simplicity and ability to be easily combined with the

robust-cost computation.

7.5. Agent Design

This section gives describes the design of autonomous racing agents which we use to demon-

strate population synthesis and online adaptation. Figure 27 gives a graphical overview.

Online, each agent measures the world using onboard sensors such as a planar LIDAR.

Using the sensor measurement the vehicle performs opponent prediction via the use of a

masked autoregressive flow and simultaneously selects motion planner goals using an in-

verse autoregressive flow. Given the set of goals, a trajectory is generated for each. The set

of trajectories are then evaluated within our DRO framework, the best goal is chosen, and

a new control command is applied to the vehicle. In what follows we describe each of these

components in detail.
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Figure 27: FormulaZero agent design

7.5.1. Sampling behavior proposals

The agent software uses a hierarchical planner similar to Ferguson et al. (2008). One key

difference is the use of neural autoregressive flows. Whereas Ferguson et al. (2008) use a

deterministic lattice of points to sample future motions, our vehicle draws samples from

a neural autoregressive flow. There are two advantages to using a neural autoregressive

flow in our planning framework. First, each agent in the population weights the individual

components of its cost function differently; the flow enables the goal generation mechanism to

learn a distribution which places more probability mass on the agent’s preferences. Second,

as planning takes place in the context of the other agent’s actions, the ego-agent’s beliefs can

be updated by inverting the flow and estimating the likelihood of the other agent’s actions

under a given configuration of the cost function.

The goal-generation process utilizes an inverse autoregressive flow (IAF) (Kingma et al.,

2016). The IAF samples are drawn from a density conditioned on a 101-dimensional obser-

vation vector composed of a subsampled LIDAR scan and current speed. Each sample is a 6

dimensional vector: ∆t, the perpendicular offset of the goal pose from the track’s centerline;

∆s, the arc-length along the track’s centerline relative to the vehicle’s current pose; ∆θ,

the difference between the goal pose’s heading angle and the current heading angle; three
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velocity offsets from the vehicle’s current velocity at three equidistant knot points along the

trajectory.

The second benefit of using a generative model for sampling behavior proposals is the ability

to update an agent’s beliefs about the opponent’s policy type. As noted in the overview of

the agent design, masked (Papamakarios et al., 2017) and inverse autoregressive flows (MAF

and IAF respectively) have complementary strengths. While sampling from a MAF is slow,

density estimation using this architecture is fast. Thus, we use a MAF network trained to

mimic the samples produced by the IAF for this task.

Each population member has a dedicated IAF model, which is trained iteratively accord-

ing to the AAdaPT algorithm described in Section 7.3 using the hyperparameters given

in Section 7.6. We initialize each IAF with a set of weights which approximate an identity

transformation for random pairs of samples from a normal distribution and simulated ob-

servations. In addition, each population member also has a MAF model, which is trained

using the same hyperparameters as the IAF but only after AAdaPT has finished.

7.5.2. Trajectory generation

Given a set of goals sampled from the IAF, the trajectory generator is used to compute

kinematically and dynamically feasible trajectories. The trajectory generator combines ap-

proaches from (Howard, 2009; Nagy and Kelly, 2001; Kelly and Nagy, 2003; McNaughton,

2011). Each trajectory is represented by a cubic spiral with five parameters p = [s, a, b, c, d]

where s is the arc length of the spiral, and (a, b, c, d) encode the curvature at equispaced

knot points along the trajectory. Powell’s method or gradient descent can be used to find

the spline parameters that (locally) minimize the sum of the Euclidean distance between the

desired endpoint pose and the forward simulated pose. Offline, a lookup table of solutions

for a dense grid of goal poses is precomputed, enabling fast trajectory generation online.

Each trajectory is associated with an index which selects the ∆x, ∆y, and the ∆θ of the

goal pose relative to the current pose (where positive x is ahead of the vehicle and postive y
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Table 11: The resolution and ranges of the Trajectory Generator Look-up Table

Index Resolution Min Max

∆x 0.1 m -1.0 m 10.0 m
∆y 0.1 m -8.0 m 8.0 m
∆θ π/32 rad −π/2 rad π/2 rad
κ0 0.2 rad/m -1.0 rad/m 1.0 rad/m

Figure 28: Sample trajectories from the look-up table

is to the left), and κ0, the initial curvature of the trajectory. The resolution and the range

of the table is listed in Table 11. Figure 28 shows a selection of trajectories. The point on

the left of the figure is the starting pose of the vehicle, and the collection of goal poses is

shown as the points on the right of the figure.

7.5.3. Trajectory Cost Functions

Each of the generated trajectories is evaluated as the weighted sum of the following cost

functions. Note, in order to ensure safety, goals which would result in collision result in infi-

nite cost and are automatically rejected prior to computing the robust cost, which operates

only on finite-cost proposals.

1. Trajectory length: cal = s, where 1/s is the arc length of each trajectory. Short

and myopic trajectories are penalized.

2. Maximum absolute curvature: cmc = maxi{|κi|}, where κi are the curvatures at
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each point on a trajectory. Large curvatures are penalized to preserve smoothness of

trajectories.

3. Mean absolute curvature: cac = 1
N

∑N
i=0 |κi|, the notation is the same as cmc and

the effect of this feature is similar, but less myopic.

4. Hysteresis loss: Measured between the previous chosen trajectory and each of the

sampled trajectories, chys = ||θ[n1,n2]
prev −θ[0,n2−n1]||22, where θprev is the array of heading

angles of each pose on the previous selected trajectory by the vehicle, θ is the array

of heading angles of each pose on the trajectory being evaluated, and the ranges

[n1, n2] and [0, n2 − n1] define contiguous portions of trajectories that are compared.

Trajectories dissimilar to the previously selected trajectory are penalized.

5. Lap progress: Measured along the track from the start to the end point of each

trajectory in the normal and tangential coordinate system, cp = 1
send−sstart , where

send is the corresponding position in the tangential coordinate along the track of the

end point of a trajectory, and sstart is that of the start point of a trajectory. Shorter

progress in distance is penalized.

6. Maximum acceleration: cma = maxi |∆vi∆ti
| where ∆v is the array of difference in

velocity between adjacent points on a trajectory, and ∆t is the array of corresponding

time intervals between adjacent points. High maximum acceleration is penalized.

7. Maximum absolute curvature change: Measured between adjacent points along

each trajectory, cdk = maxi |∆κi∆ti
|. High curvature changes are penalized.

8. Maximum lateral acceleration: cla = maxi{|κ|iv2
i }, where κ and v are the ar-

rays of curvature and velocity of all points on a trajectory. High maximum lateral

accelerations are penalized.

9. Minimum speed: cms = 1
(mini{vi})+ . Low minimum speeds are penalized.

10. Minimum range: cmr = mini{ri}, where r is the array of range measurements
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(distance to static obstacles) generated by the simulator. Smaller minimum range

is penalized, and trajectories with minimum ranges lower than a threshold are given

infinite cost and therefore discarded.

11. Cumulative inter-vehicle distance short:

cdyshort =


∞, if d(egoi, oppi) ≤ thresh∑Nshort

i=0 d(egoi, oppi), otherwise

Where the function d() returns the instantaneous minimum distance between the two

agents at point i, Nshort is a point that defines the shorter time horizon for a trajectory

of N points. Trajectories with infinite cost on the shorter time horizon are considered

infeasible and discarded.

12. Discounted cumulative inter-vehicle distance long:

cdylong =
∑Nlong

i=Nshort
0.9i−Nshort 1

d(egoi,oppi)
, where Nlong is a point that defines the longer

time horizon for a trajectory of N points. Note that Nshort < Nlong < N . Lower

minimum distances between agents on the longer time horizon are penalized.

13. Relative progress: Measured along the track between the sampled trajectories’ end-

points and the opponent’s selected trajectory’s endpoint, cdp = (sopp_end − send)+,

where sopp_end is the position along the track in tangential coordinates of the end-

point of the opponent’s chosen trajectory. Lagging behind the opponent is penalized.

7.5.4. Path tracker

Once a trajectory has been selected it is given to the path-tracking module. The goal of the

path tracker is to compute a steering input which drives the vehicle to follow the desired

trajectory. Our implementation uses a simple and industry-standard geometric tracking

method called pure pursuit (Coulter, 1992; Snider, 2009). Due to the decoupling of the

trajectory generation and tracking modules it is possible for the tracker to run at a much
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Figure 29: Components of the 1/10-scale vehicle

higher frequency than the trajectory generator; this is essential for good performance.

7.6. Experiments

In this section we first describe the AR environment used to conduct our experiments.

Next we explore the hyperparameters of the algorithms in Section 7.3 and 7.4, identifying a

preferred configuration. Then we consider the overarching hypothesis: online adaptation can

improve the performance of robust control strategies. We show the statistically significant

results affirming the theory and validate the approach’s performance on real vehicles.

The experiments use an existing low-cost 1/10th-scale, Ackermann-steered AV (Figure 29).

Additionally, we create a simulator and an associated OpenAI Gym API (Brockman et al.,

2016) suitable for distributed computing. The simulator supports multiple agents as well

as deterministic executions. We experimentally determine the physical parameters of the

agent models for simulation and use SLAM to build the virtual track as a mirror of a real

location (see Figure 31).
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7.6.1. Offline population synthesis

We run AAdaPT with L = 5 populations, D = 160 configurations per population, and

T = 100 iterations. For vertical MCMC steps, we randomly sample 16 configurations

per population and perform V = 2 iterations of 5 hit-and-run proposals. Furthermore, we

perform E = DL2/αt/(L−1) horizontal steps (motivated by the fact that “tunneling” from the

highest-temperature level to the coldest takes O(L2) accepted steps). Finally, for training

θ, we use Adam (Kingma and Ba, 2014) with a learning rate of 10−4.

Figure 30 shows results with 5 choices for the most influential hyperparameter, the annealing

rate: α ∈ {0.75, 0.80, 0.85, 0.90, 0.95}. Figure 30(a) displays 95%-confidence intervals for the

mean laptime in the coldest level. The annealing rates α ∈ {0.75, 0.80, 0.90} all result in

comparable performance of 22.95± 0.14 (mean ± standard error) seconds at the end of the

two-lap run. Figure 30(b) illustrates a metric for measuring diversity, the Frobenius norm of

the Mahalanobis distance matrix (7.3). We see that α = 0.9 results in the highest diversity

while also attaining the best performance. Thus, in further experimentation, we use the

results from the run conducted with α = 0.9.

Figure 31 illustrates qualitative differences between cost functions. Figure 31(a) displays

trajectories for agents driven using 5 cost functions sampled from the learned DPP. The

cornering behavior is quite different between the trajectories. Figure 31(b) displays the

trajectories chosen by all 160 agents in the population at β1(T ) at various snapshots along

the track. There is a wider spread of behavior near turns than areas where the car simply

drives straight.

7.6.2. Simulated experiments

We conduct a series of tests in simulation to determine the effects of distributional robustness

and adaptivity on overall safety and performance. For a given robustness level ρ/Nw ∈

{0.001, 0.025, 0.2, 0.4, 0.75, 1.0} (with Nw = 8 for all experiments), we simulate 40 two-

lap races against each of the d = 10 diverse opponents sampled from the DPP. For fair
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Figure 30: Hyperparameter selection for AAdaPT. (a) 95%-confidence intervals for f(x, θ)
in the coldest temperature level. (b) Frobenius norm of the Mahalanobis distance matrix H
(7.3). The value α = 0.9 achieves the best performance and diversity.

comparisons, half of the races have the opponent starting on the outside and the other half

with the opponent on the inside of the track. Importantly, these experiments involve only

the most elite policies from the temperature level β1(T ). Since the physical characteristics

of the vehicles are identical, win rates between elite policies significantly greater than 0.5

are meaningful. In contrast, against a set of weaker opponents sampled via DPP from the

3rd temperature level β3(T ), the win-rate (fraction of races that our agent from the coldest

temperature wins) is 0.848± 0.012.

Effects of distributional robustness We test the hypothesis that distributional robust-

ness results in more conservative policies. For every race both agents have a fixed robustness

level ρ and no adaptivity. To measure aggressiveness/conservativeness, we consider instanta-

neous time-to-collision (iTTC) of the vehicles during the race (see Appendix D.5.5). Smaller

iTTC values imply more dangerous scenarios and more aggressive policies. In Table 12, we

track the rate at which iTTC < 0.5 seconds. As expected, aggressiveness decreases with

robustness (the rate of small iTTC values decreases as ρ increases). The trend is a+b log(ρ),

where a = 5.16± 0.34 and b = −0.36± 0.10 (R2 = 0.75).

Effects of adaptivity Now we investigate the effects of online learning on the outcomes

of races. Figure 32(a) shows that Algorithm 5 identifies the opponent vehicle within approx-
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(a) Rollouts from 5 agents

(b) Snapshot trajectories

Figure 31: Qualitative illustrations of multimodal behavior in the learned population of
cost functions

imately 150 timesteps (15 seconds), as illustrated by the settling of the regret curve.1 Given

evidence that the opponent model can be identified, we investigate whether adaptivity im-

proves performance, as measured by win-rate. Table 13 displays results of paired t-tests for

multiple robustness levels (with a null-hypothesis that adaptivity does not change the win-

rate). Each test compares the effect of adaptivity for our agent on the 400 paired trials (and
1We omit 3 of the regret lines for clarity in the plot.
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Table 12: The effect of distributional robustness on aggressiveness

Agent % of iTTC values < 0.5s

ρ/Nw = 0.001 7.86± 0.90
ρ/Nw = 0.025 6.46± 0.78
ρ/Nw = 0.2 4.75± 0.65
ρ/Nw = 0.4 5.41± 0.74
ρ/Nw = 0.75 5.50± 0.82
ρ/Nw = 1.0 5.76± 0.84

Table 13: The effect of adaptivity on win-rate

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.593± 0.025 0.588± 0.025 0.84
ρ/Nw = 0.025 0.593± 0.025 0.600± 0.024 0.77
ρ/Nw = 0.2 0.538± 0.025 0.588± 0.025 0.045
ρ/Nw = 0.4 0.503± 0.025 0.573± 0.025 0.0098
ρ/Nw = 0.75 0.513± 0.025 0.593± 0.025 0.0013
ρ/Nw = 1.0 0.498± 0.025 0.590± 0.025 0.00024

the opponents are always nonadaptive). Adaptivity significantly improves performance for

the larger robustness levels ρ/Nw ≥ 0.2. As hypothesized above, adaptivity automatically

increases aggressiveness as the agent learns about its opponent and samples fewer of the

other arms to compute the empirical robust cost (7.5). This effect is more prominent when

robustness levels are greater, where adaptivity brings the win-rate back to its level without

robustness (ρ/Nw = 0.001). Thus, the agent successfully balances safety and performance

by combining distributional robustness with adaptivity.

7.6.3. Real-world validation

The real world experiments consist of races between agents 22 and 33; we examine the trans-

fer of the opponent modeling approach from simulation to reality. In Figure 32(b) we plot

33’s cumulative regret; it takes roughly 4 times as many observations relative to simulation-

based experiments to identify the opponent (agent 22). We demonstrate the qualitative

properties of the experiments in a video of real rollouts synchronized with corresponding

simulations.2 State estimation error and measurement noise drive the gap between simu-
2https://youtu.be/7Yat9FZzE4g
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(a) Simulation (b) Real

Figure 32: 95%-confidence intervals for regret using Nw = 8 arms in (a) simulation and (b)
reality. The legend in (a) denotes opponent id and the opponent in (b) has id 22. Our agent
has id 33.

lated and real performance. First, both vehicle poses are estimated with a particle filter,

whereas simulation uses ground-truth states. Since we infer beliefs about an opponent’s

policy based on a prediction of their actions at a given state, pose estimation error neg-

atively impacts the accuracy of this inference. Second, the simulator only captures the

geometry of the track; in reality glass and metal surfaces significantly affect the LIDAR

range measurements, which in turn impact the MAF and IAF networks. The convergence

of the cumulative regret in Figure 32(b) reflects that, despite the simulation/reality gap,

our simulation-trained approach transfers to the real world. Diminishing the effect of the

simulation/reality gap is the subject of future work (see Appendix D.5).

7.6.4. Approximation analysis

Sampling Nw indices Jk
i.i.d.∼ P0(t) allows us to quickly compute the approximate robust

cost (Section 7.4.1) and perform a bandit-style update to the ambiguity set (Section 7.4.2).

Now we analyze the time-accuracy tradeoff of performing this sampling approximation rather

than using all d prototypical opponents at every time step. Figure 33(a) shows the difference

in regret for the same experiments as in Figure 32(a) if we perform full online mirror-descent

updates. Denoting the simulations in Figure 32(a) as S and those with the full mirror descent
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(a) Difference in regret (b) Difference in planning time

Figure 33: 95%-confidence intervals for the (a) difference in regret and (b) percent difference
in cumulative planning time when using sampling approximations vs. online mirror descent.
Online mirror descent yields lower regret at the expense of longer planning times.

update as M , we compute difference as RegretS − RegretM . As expected, the difference is

positive, since receiving the true gradient is better than the noisy estimate (7.7). Similarly,

Figure 33(b) shows the percent increase in cumulative planning time for the same pairs

(sampling vs. full online mirror descent), where percent increase is given by 100(TimeM −

TimeS)/TimeS . As the agent learns who the opponent is, it draws many repeats in the Nw

arms, whereas the full mirror descent update always performs d computations. As a result,

the percent increase in cumulative iteration time approaches a constant of approximately

1.5×. All of these comparisons are done in simulation, where the agent is not constrained

to perform actions in under 100 milliseconds. Performing a full mirror descent update is

impossible on the real car, as it requires too much time.

7.6.5. Out-of-distribution opponents

Now we measure performance against two agents—OOD1 and OOD2—that are not in the

distribution developed by our offline population synthesis approach (see Appendix D.5.6 for

details on each agent’s policy). We perform only simulated experiments, as we are unable

to perform further real-world experimentation at the time of writing due to the COVID-19

pandemic. For given robustness levels ρ/Nw ∈ {0.001, 1.0} and Nw = 8 for all experiments,
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Table 14: The effect of adaptivity on win-rate vs. OOD1

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.633±0.036 0.683±0.035 0.280
ρ/Nw = 1.0 0.483±0.037 0.717±0.034 5.721E-6

Table 15: The effect of adaptivity on win-rate vs. OOD2

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.494±0.037 0.589±0.037 0.059
ρ/Nw = 1.0 0.572±0.037 0.739±0.033 0.001

we perform 180 two-lap races against each of the two human-created racing agents. Again,

for fair comparison, half of the experiments have the opponent start on the outside and

half on the inside. Tables 14 and 15 show the results. Overall, the trends match those

of the in-distribution opponents. Namely, adaptivity significantly increases the win-rate

when robustness is high (ρ/Nw = 1.0), whereas for low robustness (ρ/Nw = 0.001) there

is no significant change. Interestingly, adaptivity with robustness not only recovers but

surpasses the win-rate of the non-adaptive non-robust policy. We hypothesize that, because

out-of-distribution opponents do not match any of the learned prototypes, maintaining an

uncertainty over belief automatically helps the agent plan against the “surprising” out-of-

distribution actions. Validation of this hypothesis by comparing performance against more

out-of-distribution opponents is an interesting direction for future work. Overall, we observe

that even against out-of-distribution opponents, we achieve the overall goal of balancing

performance and safety.

7.7. Conclusion

The central hypothesis of this paper is that distributionally robust evaluation of plans rel-

ative to the agent’s belief state about opponents, which is updated as new observations are

made, can lead to policies achieving the same performance as non-robust approaches without

sacrificing safety. To evaluate this hypothesis we identify a natural division of the under-
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lying problem. First, we parameterize the set of possible opponents via population-based

synthesis without requiring expert demonstrations. Second, we propose an online opponent-

modeling framework which enables the application of distributionally robust optimization

(DRO) techniques under computational constraints. We provide strong empirical evidence

that distributional robustness combined with adaptivity enables a principled method auto-

matically trading between safety and performance. Also, we demonstrate the transfer of our

methods from simulation to real autonomous racecars. The addition of recursive feasibility

arguments for stronger safety guarantees could improve the applicability of these techniques

to real-world settings. Furthermore, although autonomous racing is the current focus of our

experiments, future work should explore the generality of our approach in other settings

such as human-robot interaction.
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Outlook
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CHAPTER 8 : Conclusions and Future Work

8.1. Summary

In Part I of this thesis we consider the development of methods for evaluating the per-

formance of AVs. We begin by exploring different paradigms for AV evaluation: formal

verification, falsification, and estimation. In Chapter 2 we demonstrate how verification

and falsification methods may be applied to AV systems. Through several case studies we

highlight why it is necessary to evaluate the risk of failures rather than prove or disprove the

existence of failures and propose desiderata of a statistical framework for model checking

based on (accelerated) Monte Carlo methods.

In Chapter 3 we develop our risk-based evaluation framework and show, by example, a

toolchain which is capable of efficiently evaluating AV systems even when failures are rare.

The toolchain includes a method for learning a generative model of the operational domain;

a particular challenge is how we represent the actions of other vehicles and dynamic agents.

In order to solve this problem we propose developing a population of agents, each trained

via generative adversarial imitation learning. The toolchain also includes an implementation

of the cross-entropy method for adaptive importance sampling, a collection of simulators,

and two ego-vehicle policies. Our experiments show that we accelerate the assessment of

rare-event probabilities with respect to naive Monte Carlo methods as well as real-world

testing.

In Chapter 4 we improve the risk-based framework by proposing a novel method for acceler-

ated AV evaluation. As in previous chapters we compare the performance of sampling meth-

ods by evaluating the variance of the risk estimate under a fixed computation budget. Our

proposed method, gradient-guided bridge sampling, employs three concepts—exploration,

exploitation, and optimization—in order to evaluate system safety with provable statistical

and computational efficiency. We demonstrate the performance of our method on a variety

of reinforcement-learning and robotic systems, including an AV system that has driven over
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20 million miles on public roads, highlighting its use as a tool for continuous integration and

rapid engineering design.

In Part II of this thesis we consider the problem of adapting AV components to new op-

erational domains. Chapter 5 describes an exemplary system which we use to conduct our

investigations: a 1/10th-scale autonomous racing car which includes a hardware design, a

simulator, benchmark tasks, and baseline task solutions. The benchmark tasks form the

basis for the research questions addressed in the following chapters. The hardware and

simulator designs enable in-depth experiments.

In Chapter 6 we explore a simple version of the domain adaptation problem. We are given a

physical robot with some adjustable parameters related to the suspension, tires, and weight

distribution, a set of constraints defining the map on which the vehicle will be deployed,

and a set of planning and control components whose parameters can be adjusted. The goal

is to setup the vehicle to achieve maximum performance within the new environment. In

the single vehicle racing setting that we consider the performance criteria is the laptime,

where lower times are better. As in Part I we compare methods for finding good vehicle

configurations by assigning each method equivalent computation budgets and comparing the

quality of the best solutions found. We concluded the chapter by demonstrating the use of

stochastic search methods on a variety of tracks and performing a real-world experiments

to validate the proposed solution.

In Chapter 7 we consider a more challenging instance of the domain adaptation problem:

multi-agent racing. The central hypothesis of this paper is that distributionally robust eval-

uation of plans relative to the agent’s belief state about opponents, which is updated as new

observations are made, can lead to policies achieving the same performance as non-robust

approaches without sacrificing safety. To evaluate this hypothesis we identify a natural di-

vision of the underlying problem. First, we parameterize the set of possible opponents via

population-based synthesis without requiring expert demonstrations. Second, we propose

an online opponent-modeling framework which enables the application of distributionally
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robust optimization (DRO) techniques under computational constraints. We provide strong

empirical evidence that distributional robustness combined with adaptivity enables a princi-

pled method automatically trading between safety and performance. Also, we demonstrate

the transfer of our methods from simulation to real autonomous racecars.

8.2. Future Work

The success of machine learning in a variety of domains has led to new paradigms of software

development; the growing divide in methodologies has been categorized as “Software 1.0/2.0”.

Software 1.0 involves the explicit design of programs aided by layers of abstraction and

modularity. Generally, an engineer is given a formal specification which describes the correct

behavior of the program, and implements algorithms and data structures that satisfy the

specification. In contrast, Software 2.0 is characterized by the standardization of parametric

program structures– e.g. ResNet or Transformer neural network architectures or any other

program with explicitly identified trainable parameters. This standardization is possible

due to the development of efficient methods to fit the parameters to tasks specified by

input-output data. In turn, there has been a shift in engineering focus to the curation and

acquisition of data, the development of methods which adjust the parameters of the program

in order to perform specific tasks, and the evaluation of model performance.

The problem of data acquisition and curation presents several challenges: which data to

select and how to process it, how to actively find useful data, and what to do when the

available data is known to insufficiently cover the space of possible inputs. In the Software

2.0 paradigm, data is central both to creating software via training and to evaluating the

performance of the derived program. Conceptually, the selection and augmentation of data

should then be informed, continuously, by its effect on the performance of training and

evaluation. In doing so a virtuous cycle can be instantiated. As an AV accumulates miles

and expands its operating domain based on the confidence derived from evaluation of past

experience, new data can be acquired and used to repair model deficiencies.
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The new data will contain both elements which are similar to prior experience as well as new

information. The novel information expands the model of the operating domain and reveals

unknown unknowns. The remaining data serves to calibrate and reify our understanding of

known unknowns. In turn the AV software can be retrained, and more accurate evaluations

in the expanded operating domain are made possible, restarting the cycle. While practical

engineering and development work will need to be undertaken in order to build an efficient

pipeline, there are also two primary research barriers to implementing the virtuous cycle

concept.

First, the cycle’s efficiency and safety (two desiderata that are unfortunately negatively

correlated) is limited by what is observed during the data collection process. It is likely that

the AV could be improved more rapidly if the cycle had greater access to the long tail of

rare scenarios, but capturing this information in the wild may require operating the vehicle

in conditions for which safety is poorly understood. Safe exploration techniques developed

in the reinforcement learning community may offer some guidance in balancing these risks.

Alternatively, suppose, that a known unknown is identified– e.g. heavy snowfall in San

Francisco– a plausible, but unlikely occurrence for which no examples exist from which to

confidently estimate the effect on performance. We could, instead, synthesize simulated

data by specifying desirable characteristics; notably, actual observations of the event need

not be part of this procedure. However, in order to use this synthetic data in an evaluation

framework, it is also be necessary to estimate the likelihood of sampling the data in the wild.

Thus, in the future, further efforts should be made to understand how we can principally

add generative components which have not been observed in the real world.

Second, today, the most powerful tools for Software 2.0 are based on the application of

stochastic gradient descent to differentiable parametric programs like neural networks. Un-

like Software 1.0, when an error is found in the system, it is challenging to excise the behavior

without inducing distribution shifts which may reduce performance or expose the vehicle to

new untested scenarios. Thus, we desire new methodologies to ensure that policy updates
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induce predictable, Pareto-improvements of the system. How such methods will perform

when signals from lagging measures such as catastrophic failures is difficult to obtain will

also be a primary concern.

8.3. Conclusions

This thesis presents both foundational theory and practical methods for efficiently evaluating

and adapting the performance of safety-critical autonomous systems. By definition, such

systems can cause injury or death if they malfunction (Bowen and Stavridou, 1993). Thus,

improving the tools that practitioners have to perform risk-estimation and adaptation has

the potential to provide a strong positive impact. In the case of autonomous vehicles,

Sparrow and Howard (2017) argue that it will be morally wrong not to deploy self-driving

technology once performance exceeds human capabilities. Our work is an important tool

for determining when this performance threshold has been achieved and improving today’s

technology to meet that threshold.

More broadly, the advent of autonomy could spark significant societal changes. While the

widespread availability of autonomy-enabled devices could benefit public health, there are

many external risks to privacy, fairness, and safety associated with their development. Thus,

Benkler (2019) highlights that there is a growing need for the academic community to take

action on defining the performance criteria to which AI applications will be held. Brundage

et al. (2020) and Wing (2020) outline broad research agendas around the ethical development

and use of AI which are necessarily interdisciplinary. Importantly, the methods presented

in this thesis enable the comparison of autonomous systems in a common language—risk—

across the spectrum from engineers to regulators and the public. Still, much more work needs

to be done to empower researchers to influence policy. These efforts will require systemic

initiatives by research institutions and organizations to engage with local, national, and

international governing bodies.
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APPENDIX: Risk-based Framework

A.1. Scenario specification

A scenario specification consists of a scenario description and outputs both pγ (3.1), the ac-

cident rate, and a dataset consisting of initial conditions and the minimum time to collision,

our continuous objective safety measure. Concretely, a scenario description includes

• a set of possible initial conditions, e.g. a range of velocities and poses for each agent

• a safety measure specification for the ego agent,

• a generative model of environment policies, an ego vehicle model,

• a world geometry model, e.g.a textured mesh of the static scene in which the scenario

is to take place.

Given the scenario description, the search module creates physics and rendering engine

worker instances, and Algorithm 1 then adaptively searches through many perturbations of

conditions in the scenario, which we call scenario realizations. A set of scenario realizations

may be mapped to multiple physics, rendering, and agent instantiations, evaluated in par-

allel, and reduced by a sink node which reports a measure of each scenarios performance

relative to the specification.

In our implementation the safety measure is minimum time-to-collision (TTC). TTC is

defined as the time it would take for two vehicles to intercept one another given that they

each maintain their current heading and velocity (Vogel, 2003). The TTC between the

ego-vehicle and vehicle i is given by

TTCi(t) =
ri(t)

[−ṙi(t)]+
, (A.1)

where ri is the distance between the ego vehicle and vehicle i, and ṙi the time derivative of
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this distance (which is simply computed by projecting the relative velocity of vehicle i onto

the vector between the vehicles’ poses). The operator [·]+ is defined as [x]+ := max(x, 0).

We define TTCi(t) =∞ for ṙi(t) ≥ 0.

In this paper, vehicles are described as oriented rectangles in the 2D plane. Since we are

interested in the time it would take for the ego-vehicle to intersect the polygonal boundary

of another vehicle on the road, we utilize a finite set of range and range measurements in

order to approximate the TTC metric. For a given configuration of vehicles, we compute

N uniformly spaced angles θ1, . . . , θN in the range [0, 2π] with respect to the ego vehicle’s

orientation and cast rays outward from the center of the ego vehicle. For each direction

we compute the distance which a ray could travel before intersecting one of the M other

vehicles in the environment. These form N range measurements s1, . . . , sN . Further, for

each ray si, we determine which vehicle (if any) that ray hit; projecting the relative velocity

of this vehicle with respect to ego vehicle gives the range-rate measurement ṡi. Finally, we

approximate the minimum TTC for a given simulation rollout X of length T discrete time

steps by:

f(X) := min
t=0,...,T

(
min

i=1,...,N

si(t)

[−ṡi(t)]+

)
,

where we again define the approximate instantaneous TTC as∞ for ṡi(t) ≥ 0. Note that this

measure can approximate the true TTC arbitrarily well via choice ofN and the discretization

of time used by the simulator. Furthermore, note that our definition of TTC is with respect

to the center of the ego vehicle touching the boundary of another vehicle. Crashing, on the

other hand, is defined in our simulation as the intersection of boundaries of two vehicles.

Thus, TTC values we evaluate in our simulation are nonzero even during crashes, since the

center of the ego vehicle has not yet collided with the boundary of another vehicle.

A.2. Network architectures

The MGAIL generator model we use takes the same inputs as that of Kuefler et al. (2017)—

the dynamical states of the vehicle as well as virtual LIDAR beam reflections. Specifically,
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Figure 34: Depiction of LIDAR sensor input used for GAIL models.

we take as inputs: geometric parameters (vehicle length/width), dynamical states (vehicle

speed, lateral and angular offsets with respect to the center and heading of the lane, distance

to left and right lane boundaries, and local lane curvature), three indicators for collision,

road departure, and traveling in reverse, and LIDAR sensor observations (ranges and range-

rates of 20 LIDAR beams) as depicted in Figure 34. The generator has two hidden layers of

200 and 100 neurons. The output consists of the mean and variance of normal distributions

for throttle and steering commands; we then sample from these distributions to draw a given

vehicle’s action. The discriminator shares the same size for hidden layers. The forward model

used to allow fully-differentiable training first encodes both the state and action through a

150 neuron layer and also adds a GRU layer to the state encoding. A Hadamard product of

the results creates a joint embedding which is put through three hidden layers each of 150

neurons. The output is a prediction of the next state.

The end-to-end highway autopilot model is a direct implementation of Bojarski et al. (2016)

via the code found at the link https://github.com/sullychen/autopilot-tensorflow.

In our implementation of the vision-based policy, this highway autopilot model uses ren-

dered images to produce steering commands. LIDAR inputs are used to generate throttle

commands using the same network as the non-vision policy.
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APPENDIX: Gradient-guided Bridge Sampling

B.1. Split Hamiltonian Monte Carlo (HMC)

In this section, we provide a brief overview of HMC as well as the specific rendition, split

HMC (Shahbaba et al., 2014). Given “position” variables x and “momentum” variables v,

we define the Hamiltonian for a dynamical system as H(x, v) which can usually be written

as U(x) + K(v), where U(x) is the potential energy and K(v) is the kinetic energy. For

MCMC applications, U(x) = − log(ρ0(x)) and we take v ∼ N (0, I) so that K(v) = ‖v‖2/2.

In HMC, we start at state xi and sample vi ∼ N (0, I). We then simulate the Hamiltonian,

which is given by the partial differential equations:

ẋ =
∂H

∂v
, v̇ = −∂H

∂x
.

Of course, this must be done in discrete time for most Hamiltonians that are not perfectly

integrable. One notable exception is when x is Gaussian, in which case the dynamical system

corresponds to the evolution of a simple harmonic oscillator (i.e. a spring-mass system).

When done in discrete time, a symplectic integrator must be used to ensure high accuracy.

After performing some discrete steps of the system (resulting in the state (xf , vf )), we negate

the resulting momentum (to make the resulting proposal reversible), and then accept the

state (xf ,−vf ) using the standard Metropolis-Hastings criterion: min(1, exp(−H(xf ,−vf )+

H(xi, vi))) (Hastings, 1970).

The standard symplectic integrator—the leap-frog integrator—can be derived using the fol-

lowing symmetric decomposition of the Hamiltonian (performing a symmetric decomposition

retains the reversibility of the dynamics): H(x, v) = U(x)/2 +K(v) +U(x)/2. Using simple

Euler integration for each term individually results in the following leap-frog step of step-size
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Algorithm 6 SplitHMC
Input: Sample x, momentum v ∼ N (0, I), scale factor β, step size ε
v ← v − 0.5εβI{f(x) > γ}
x̂← x cos(ε) + v sin(ε)
v̂ ← v cos(ε)− x sin(ε)
v̂ ← v̂ − 0.5εβI{f(x̂) > γ}∇f(x̂)
v ← −v̂
x← x̂ with probability min(1, exp(−H(x̂, v̂) +H(x, v)))
Return x

ε:

v1/2 = vi −
ε

2

∂U(xi)

∂x

xf = xi + ε
∂K(v1/2)

∂v

vf = v1/2 −
ε

2

∂U(xf )

∂x
,

where each step simply simulates the individual Hamiltonian H1(x, v) = U(x)/2, H2(x, v) =

K(v), or H3(x, v) = U(x)/2 in sequence. As presented by Shahbaba et al. (2014), this same

decomposition can be done in the presence of more complicated Hamiltonians. In particular,

consider the Hamiltonian H(x, v) = U1(x) + U0(x) + K(v). We can decompose this in the

following manner: H1(x, v) = U1(x)/2, H2(x, v) = U0(x) + K(v), and H3(x, v) = U1(x)/2.

We can apply Euler integration to the momentum v for the first and third Hamiltonians

and the standard leap-frog step to the second Hamiltonian (or even analytic integration if

possible). For this paper, we have U0(x) = − log ρ0(x) and U1(x) = −β[γ − f(x)]−.

This is summarized in Algorithm 6

HMC and non-smooth functions In Section 4.3, we assumed that the measure of non-

differentiable points is zero for the energy potentials considered by HMC. As discussed by

Afshar and Domke (2015), the inclusion of the Metropolis-Hastings acceptance criterion as

well as the above assumption ensures that HMC asymptotically samples from the correct

distribution even for non-smooth potentials. An equivalent intuitive explanation for this

can be seen by viewing the ReLU function [x]+ as the limit of softplus functions gk(x) :=
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log(1 + exp(kx))/k as the sharpness parameter k → ∞. We can freely choose k such that,

up to numerical precision, Algorithm 6 is the same whether we consider using a ReLU or

sufficiently sharp (e.g. large k) softplus potential, because, with probability one, we will

not encounter the points where the potentials differ. When further knowledge about the

structure of the non-differentiability is known, the acceptance rate of HMC proposals can

be improved (Pakman and Paninski, 2013; Lan et al., 2014; Pakman and Paninski, 2014;

Afshar and Domke, 2015; Chaari et al., 2016).

B.2. Performance analysis

B.2.1. Proof of Proposition 1

We begin with showing the convergence of the number of iterations. To do this, we first

show almost sure convergence of βk in the limit N →∞. We note that in the optimization

problem (4.6), βk is a feasible point, yielding bk(β) = 1. Thus, βk+1 ≥ βk ≥ β0 := 0. Due

to this growth of βk with k, we have

Zk+1

Zk
= EPk

[
ρk+1(X)

ρk(X)

]
≤ 1,

Pk(f(X) ≤ γ) = EPk+1

[
Zk+1

Zk

ρk(X)

ρk+1(X)
I{f(X) ≤ γ)}

]
=
Zk+1

Zk
EPk+1

[I{f(X) ≤ γ)}]

≤ Pk+1(f(X) ≤ γ).

By the uniform convergence of empirical measures offered by the Glivenko-Cantelli Theorem,

the value ak → Pk(f(X) ≤ γ) almost surely. Then, the stop condition can be rewritten as

bk(β) ≥ ak/s → Pk(f(X) ≤ γ)/s ≥ pγ/s. Since bk(β) is monotonically decreasing in the

quantity β − βk, this constraint gives an upper bound for βk+1, and, as a result, all βk are

almost surely bounded from above and below. We denote this interval as B.
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Now, we consider the convergence of the solutions to the finite N versions of problem (4.6),

denoted βNk , to the “true” optimizers βk in the limit as N → ∞. Leaving the depen-

dence on βk implicit for the moment, we consider the random variable Y := g(X;β) :=

exp ((β − βk)[γ − f(X)]−). Then, since β ∈ B is bounded and g is continuous in β, we

can state the Glivenko-Cantelli convergence of the empirical measure uniformly over B:

supβ∈B ‖FN (Y )−F (Y )‖∞ → 0 almost surely, where F is the cumulative distribution func-

tion for Y . Note that the constraints in the problem (4.6) can be rewritten as expectations of

this random variable Y . Furthermore, the function g is strictly monotonic in β (and there-

fore invertible) for non-degenerate f(X) (i.e. f(x) > γ for some non-negligible measure

under P0). Thus, we have almost sure convergence of the argmin βNk+1 to βk+1.

Until now, we have taken dependence on βk implicitly. Now we make the dependence

explicit to show the final step of convergence. In particular, we can write βk+1 as a function

of βk (along with their empirical counterparts), For concreteness, we consider the following

decomposition for two iterations:

|βN2 (βN1 )− β2(β1)| ≤ |βN2 (βN1 )− β2(βN1 )|+ |β2(βN1 )− β2(β1)|.

We have already shown above that the first term on the right hand side vanishes almost

surely. By the same reasoning, we know that βN1 → β1 almost surely. The second term

also vanishes almost surely since βk+1(β) is a continuous mapping. This is due to the fact

that the constraint functions in problem (4.6) are continuous functions of both β and βk

along with the invertibility properties discussed previously. Then, we simply extend the

telescoping series above for any k and similarly show that all terms vanish almost surely.

This shows the almost sure convergence for all βk up to some K.

Now we must show that K is bounded and almost surely converges to a constant. To do

this we explore the effects of the optimization procedure. Assuming the stop condition (the

second constraint) does not activate, the first constraint in problem (4.6) has the effect of

making Zk+1/Zk = α (almost surely), which implies Pk+1(f(X) ≤ γ) = Pk(f(X) ≤ γ)/α.
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In other words, we magnify the event of interest by a factor of 1/α. The second constraint

can be rewritten as Pk+1(f(X) ≤ γ) ≤ s. Thus, we magnify the probability of the region of

interest by factors of α unless doing so would increase the probability to greater than s. In

that case, we conclude with setting the probability to s (since Pβ(f(X) ≤ γ) is monotonically

increasing in β). In this way, we have 0 iterations for pγ ∈ [s, 1], 1 iteration for pγ ∈ [αs, s),

2 iterations for pγ ∈ [α2s, αs), and so on. Then, the total number of iterations is (almost

surely) blog(pγ)/ log(α)c+ I{pγ/αblog(pγ)/ log(α)c < s}.

Now we move to the relative mean-square error of p̂γ . We employ the delta method, whereby,

for large N , this is equivalent to Var(log(p̂γ)) (up to terms o(1/N)). For notational conve-

nience, we decompose Êk into its numerator and denominator:

Ak(X) := ρBk (X)/ρk−1(X), Âk :=
1

N

N∑
i=1

Ak(x
k−1
i )

Bk(X) := ρBk (X)/ρk(X), B̂k :=
1

N

N∑
i=1

Bk(x
k
i ).

By construction (and assumption of large T ), Algorithm 2 has a Markov property that each

iteration’s samples xki are independent of the previous iterations’ samples xk−1
i given βk.

For shorthand, let β0:k denote all β0, . . . , βk. Conditioning on β0:k, we have

Var(Ak) = Var (E[Ak|β0:k]) + E [Var (Ak|β0:k)] .

Since β0:k approaches constants almost surely as N → ∞, the first term vanishes and the

second term is the expectation of a constant. In particular, the second term is as follows:

Var (Ak|β0:k) = E
[
A2
k|β0:k

]
− (E [Ak|β0:k])

2

= EPk−1

[
ρk(X)

ρk−1(X)

]
−
(
EPk−1

[√
ρk(X)

ρk−1(X)

])2

=
Zk
Zk−1

−
(
ZBk
Zk−1

)2

.
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Similarly, Var(Bk|β0:k) = Zk−1/Zk − (ZBk /Zk)
2. Next we look at the covariance terms:

Cov(Ak−1, Ak) = Cov (E[Ak−1|β0:k],E[Ak|β0:k]) + E [Cov (Ak−1, Ak|β0:k)] .

Again, the first term vanishes since β0:k approach constants as N → ∞. By construction,

the second term is also 0 since the quantities are conditionally independent. Similarly,

Cov(Bk−1, Bk) = 0 and Cov(Ai, Bj) = 0 for j 6= i − 1. However, there is a nonzero

covariance for the quantities that depend on the same distribution:

Cov (Bk, Ak+1|β0:k+1) = E [BkAk+1|β0:k+1]− E [Bk|β0:k+1]E [Ak+1|β0:k+1]

= EPk

[√
ρk−1(X)ρk+1(X)

ρk(X)

]
− ZBk+1

Zk

ZBk
Zk

=
ZCk
Zk
− ZBk+1

Zk

ZBk
Zk

.

By the large T assumption, the samples xki and xkj are independent for all i 6= j given βk.

Then we have

Var(Âk|β0:k) = Var(Ak|β0:k)/N, Var(B̂k|β0:k) = Var(Bk|β0:k)/N,

Cov(B̂k, Âk+1|β0:k+1) = Cov(Bk, Ak+1|β0:k+1)/N.

The last term in p̂γ , 1
N

∑N
i=1

ρ∞(xKi )

ρK(xKi )
, reduces to a simple Monte Carlo estimate since ρ∞(X)

ρK(X) =

I{f(X) ≤ γ}. Furthermore, this quantity is independent of all other quantities given β0:K

and, as noted above, approaches s almost surely as N →∞.

Putting this all together, the delta method gives (as N →∞ so that β0:K approach constants

almost surely),

Var(log(p̂γ))→
K∑
k=1

(
Var(Âk)

(ZBk /Zk−1)2
+

Var(B̂k)
(ZBk /Zk)

2

)
− 2

K−1∑
k=1

Cov(B̂k, Âk+1)

ZBk+1Z
B
k /Z

2
k

+
1− s
sN

+ o

(
1

N

)
.
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The Bhattacharrya coefficient can be written as

G(Pk−1, Pk) =

∫
X

√
ρk−1(x)

Zk−1

ρk(x)

Zk
dx =

ZBk√
Zk−1Zk

.

Furthermore, we have

G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
=

ZCk√
Zk−1Zk+1

√
Zk−1Zk

ZBk

√
ZkZk+1

ZBk+1

=
ZCk Zk

ZBk Z
B
k+1

,

yielding this final result

Var(log(p̂γ))→
2

N

K∑
k=1

(
1

G(Pk−1, Pk)2
− 1

)
−

2

N

K−1∑
k=1

(
G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
− 1

)
+

1− s
sN

+ o

(
1

N

)
. (B.1)

We remark that a special case of this formula is for K = 1 and s = 1 (so only the first term

survives), which is the relative mean-square error for a single bridge-sampling estimate Êk.

Now, since G(P,Q) ≥ 0, the terms in the second sum are ≥ −1 so that the second sum

is ≤ 2(K − 1)/N . Furthermore, since s ≥ 1/3, the last term is also ≤ 2/N . Thus, if we

have 1
G(Pk−1,Pk)2

≤ D (with D ≥ 1), then the asymptotic relative mean-square error (B.1)

is ≤ 2KD/N (up to terms o
(

1
N

)
).

B.3. Experimental setups

B.3.1. Hyperparameters

The number of samples N affects the absolute performance of all of the methods tested,

but not their relative performance with respect to each other. For all experiments, we use

N = 1000 for GGB to have adequate absolute performance given our computational budget

(see below for the computing architecture used). Other hyperparameters were tuned on

the synthetic problem and fixed for the rest of the experiments. The hyperparameters were

chosen as follows.

When performing Hamiltonian dynamics for a Gaussian variable, a time step of 2π results
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in no motion and time step of π results in a mode reversal, where both the velocity and

position are negated. The π time step is in this sense the farthest exploration that can occur

in phase space (which can be intuitively understood by recognizing that the phase diagram

of a simple spring-mass system is a unit circle). Thus, we considered T = 4, 8, 10, 12,

and 16 with time steps π/T . We found that T = 10 provided reasonable exploration (as

measured by autocorrelations and by the bias of the final estimator p̂γ) and higher values

of T did not provide much more benefit. We also performed tuning online for the time step

to keep the acceptance ratio between 0.4 and 0.8. This was done by setting the time step

to sin−1(min(1, sin(t) exp((p − C)/2)), where t is the current time step, p is the running

acceptance probability for a single chain and C = 0.4 if p < 0.4 or 0.8 if p > 0.8. This was

done after every T HMC steps.

For the step size of the bridge, we considered α ∈ {0.01, 0.1, 0.3, 0.5}. Smaller α results in

fewer iterations and better computational efficiency. We settled on α = 0.3, which provided

reasonable computational efficiency (no more than 11 iterations for the synthetic problem).

For AMS, we followed the hyperparameter settings of Webb et al. (2018). Namely, we chose

a culling fraction of αAMS = 10%, where αAMS sets the fraction of particles that are removed

and rejuvenated at each iteration (Webb et al., 2018).

Given the above parameters, the number of simulations for each experiment varies based

on the final probability in question pγ (smaller values result in more simulations due to

having a higher number of iterations K). We had runs of 111000, 91000, 101000, and

160000 simulations respectively for the synthetic, AttentionAgentRacer, WorldModelRacer,

and OpenPilot environments. We used these values as well as the ground truth pγ values to

determine the number of particles allowed for AMS, NAMS = 920, 820, 910, 920 respectively,

as AMS has a total cost of NAMS(1+αAMSTKAMS), where KAMS ≈ log(pγ)/ log(1−αAMS).

For the surrogate Gaussian process regression model for CarRacing and OpenPilot, we

retrained the model on the most recent N simulations after every NT simulations (e.g. after

every T HMC iterations). This made the amortized cost of training the surrogate model
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negligible compared to performing the simulations themselves. We used a Matern kernel

with parameter ν = 2.5. We optimized the kernel hyperparameters using an L-BFGS quasi-

Newton solver.

Computing infrastructure and parallel computation Experiments were carried out

on commodity CPU cloud instances, each with 96 Intel Xeon cores @ 2.00 GHz and 85 GB

of RAM. AMS, GGB are designed to work in a Map-Reduce paradigm, where a central

server orchestrates many worker jobs followed by synchronization step. AMS requires more

iterations and fewer parallel worker threads per iteration than GGB. In particular, whereas

GGB performs N parallel jobs per iteration, AMS only performs αAMSNAMS parallel jobs

per iteration. Thus, GGB takes advantage of massive scale and parallelism much more than

AMS.

B.3.2. Environment details

Car Racing

We compare the failure rate of agents solving the car-racing task utilizing the two distinct

approaches ((Ha and Schmidhuber, 2018a) and (Tang et al., 2020)). The car racing task

differs from the other experiments due to the inclusion of a (simple) renderer in the system

dynamics. At each the step the agent receives a reward of −0.1 + Inewtile(1000/N) −

Iofftrack(100) where N is the total number of tiles visited in the track. The environment is

considered solved if the agent returns an average reward of 900 over 100 trials. The search

space P0 is the inherent randomness involved with generating a track. The track is generated

by selecting 12 checkpoints in polar coordinates, each with radian value uniformly in the

interval [2πi/12, 2π(i + 1)/12) for i = 0, . . . 11, and with radius uniformly in the interval

[R/3, R], for a given constant value R. This results in 24 parameters in the search space. The

policies used for testing are described below (with training scripts in the code supplement).
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AttentionAgent Tang et al. (2020) utilize a simple self-attention module to select patches

from a 96x96 pixel observation. First the input image is normalized then a sliding window

approach is used to extractN patches of sizeM×M×3 which are flattened and arranged into

a matrix of size 3M2×N . The self-attention module is used to compute the attention matrix

A and importance vector (summation of each column of A). A feature extraction operation

is applied to the top K elements of the sorted importance vector and the selected features

are input to a neural network controller. Both the attention module and the controller

are trained together via CMA-ES. Together, the two modules contain approximately 4000

learnable parameters. We use the pre-trained model available here: https://github.com/

google/brain-tokyo-workshop/tree/master/AttentionAgent.

WorldModel The agent of Ha and Schmidhuber (2018a) first maps a top-down image

of the car on track via a variational autoencoder to a latent vector z. Given z, the world

model M utilizes a recurrent-mixture density network (Bishop, 1994) to model the distri-

bution of future possible states P (zt+1 | at, zt, ht). Note that ht, the hidden state of the

RNN. Finally, a simple linear controller C maps the concatenation of zt and ht to the ac-

tion, at. We use the pre-trained model available here: https://github.com/hardmaru/

WorldModelsExperiments/tree/master/carracing.
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APPENDIX: TunerCar

C.0.1. System identification

In this section, we describe the procedure used to identify the vehicle parameters, namely

the mass, the location of the center of gravity, the moment of inertia, the friction coefficient,

the cornering stiffness, and the maximum acceleration/deceleration rates.

Mass and center of gravity

The vehicle weighs 3518.6±0.1 g, including the mass of the lithium polymer battery. The

center of gravity is estimated by balancing the vehicle on the edge of a ruler. For a wheelbase

of 0.317 m, the distance of the center of gravity from the front wheels lf and the rear wheels

lr is measured to be 0.147±0.005 m and 0.147±0.005 m, respectively.

Moment of Inertia

We use the bifilar (two-wire) pendulum method. This method is used to measure the moment

of inertia of symmetric objects, such as airplanes (Soule and Miller, 1934), unmanned air

vehicles (Jardin and Mueller, 2009), and tennis rackets (Spurr et al., 2014). The bifilar

pendulum is a torsional pendulum that consists of the test object suspended by two thin

parallel wires that are equidistant from the center of gravity. A small moment is applied

to the vehicle, and the angular frequency ω is found by recording the period of oscillation

about the vertical axis that goes through the center of gravity. The moment of inertia Iz is

given by

Iz =
mgd2

4Lω2
, (C.1)

where m is the mass of the vehicle, g the acceleration due to gravity, d the distance between

the wires, and L the length of the wires. Equation (C.1) is obtained from the nonlinear

mathematical model of a bifilar pendulum; the derivation can be found in (Kotikalpudi

et al., 2013). Figure 35 shows the setup of the vehicle used in this paper. The moment of
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inertia of the vehicle is estimated to be 0.047 kg·m2.

Friction coefficient and cornering stiffness

The simulator is based on the single-track vehicle model (Althoff et al., 2017). This model

relates the friction coefficient µ, the cornering stiffness coefficient Cs, and the vertical force

Fz by

Ci = µCS,iFz,i, (C.2)

where i = {f, r} for the front and rear axle, respectively. A force scale is used to measure

the kinetic friction coefficient µ between the rubber tires and linoleum floor as the vehicle

was dragged laterally at a constant velocity. µ is estimated to be 0.5230±0.0014. The

cornering stiffness coefficients are CS,f which is estimated to be 4.191±0.002 and CS,r to be

4.8469±0.002.

Figure 35: Identification of the moment of inertia
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Figure 36: The distributions of maximum acceleration and deceleration obtained from 19
speed tests.

Maximum acceleration and deceleration rates

We perform 19 speed tests ranging from 2 m/s to 11 m/s in increments of 0.5 m/s. The

vehicle is commanded to accelerate to a certain speed, maintain that speed for 0.5 s, and

then brake. The position data from the particle filter and velocity data from the vehicle

odometry are recorded for all the tests. The acceleration and deceleration sections are fitted

with separate exponential curves, and the constant speed region is fitted with a linear curve.

We estimate the maximum acceleration and deceleration for each test; the distributions are

shown in Figure 36. The mean for the acceleration curve amax is 9.51 m/s2 while the mean

for the deceleration curve dmax is 13.25 m/s2.

C.0.2. Minimum time path

The objective in autonomous racing is to determine a trajectory that requires minimum

time to traverse a track for known vehicle dynamics. We represent this dynamics by ẋ =

f (x(t),u(t)), where x denotes the state of the vehicle and u the set of control inputs.
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Formally, the problem can be stated as

minimize
T,u(t)

∫ T

0
1dt (C.3)

subject to ẋ = f (x(t),u(t)) ,

x(0) = xS , x(T ) = XF ,

x(t) ∈ X , u(t) ∈ U .

Here, the second set of constraints includes an initial condition for the start line and a termi-

nal condition for crossing the finish line. X and U capture track and actuation constraints,

respectively. Problem (C.3) is an example of a minimum time optimal control problem and

is computationally hard to solve, especially in the presence of nonlinear constraints (Athans

and Falb, 2013).

Now, for a fixed trajectory, calculation of minimum time to traverse and the corresponding

speed profile will require solving (C.3) with an additional constraint that (x, y) must lie on

the trajectory. It turns out when a friction circle model represents the vehicle dynamics;

this new problem is much easier to solve.

The friction circle model with a rear-wheel drive given by

m

ẍ
ÿ

 =

cos(φ) − sin(φ)

sin(φ) cos(φ)


Flong

Flat

 , (C.4)

where m is the mass of the vehicle and φ the orientation of the vehicle defined as a function

of position (x, y) in the global frame. The inputs to the model are a force in the longitudinal

direction Flong and a force in the lateral direction Flat defined in the frame attached to the

vehicle. We enforce a constraint for the friction circle

√
F 2

long + F 2
lat ≤ µsmg, (C.5)
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where µs is the static coefficient of friction, g is the acceleration due to gravity, and a

constraint for the maximum possible force with the rear-wheel drive

Flong ≤
lf

lf + lr
µsmg, (C.6)

where lf and lr are the distance of the center of gravity from the front and the rear wheels

in the longitudinal direction, respectively. The model ignores the effect of tire slips. The

advantage of using the friction circle model is that it requires minimum effort in system

identification with only three parameters to identify, namely m, lf , and lr.

By transforming the optimization problem from a generalized position space to a path co-

ordinate space and subsequently applying the nonlinear change of variables, the problem

of calculating minimum time over a fixed path can be formulated as a convex optimiza-

tion problem (Verscheure et al., 2009). For the friction circle model (C.4) with additional

constraints (C.5) and (C.6), the optimization is still convex (Lipp and Boyd, 2014).
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APPENDIX: FormulaZero

D.1. Offline population synthesis

Here we provide extra details for Section 7.3.

Horizontal steps Horizontal steps occur as follows. Two random particles are sampled

uniformly at random from adjacent temperature levels. This forms a proposal for the swap,

which is then accepted via standard MH acceptance conditions. Because the rest of the

particles remain as-is, the acceptance condition reduces to a particularly simple form (cf. Al-

gorithm 7).

Algorithm 7 Horizontal swap

Sample i ∼ Uniform(1, 2, . . . , L− 1).
Sample j, k i.i.d.∼ Uniform(1, 2, . . . , D).
Sample p ∼ Uniform([0, 1])

Let a = min
(

1, ef(xi,j ,θi,j)−f(xi+1,k,θi+1,k)
)

if p < aβi−βi+1

swap configurations (xi,j , θi,j) and (xi+1,k, θi+1,k)

We ran our experiments on a server with 88 Intel Xeon cores @ 2.20 GHz. Each run of 100

iterations for a given hyperparameter setting α took 20 hours.

D.2. Online robust planning

Here we provide extra details for Section 7.4.

D.2.1. Solving problem (7.5)

We can rewrite the constraint Df (q||1/Nw) ≤ ρ as ‖q− 1/Nw‖2 ≤ ρ/Nw. Then, the partial

Lagrangian can be written as

L(q, λ) =
∑
i

qici(t)−
λ

2

(
‖q − 1/Nw‖2 − ρ/Nw

)
.
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By inspection of the right-hand side, we see that, for a given λ, finding v(λ) = supq∈∆ L(q, λ)

is equivalent to a Euclidean-norm projection of the vector 1/Nw+c(t)/λ onto the probability

simplex ∆. This latter problem is directly amenable to the methods of Duchi et al. (2008).

D.2.2. Proof of Proposition 2

We redefine notation to suppress dependence of the cost C on other variables and just make

explicit the dependence on the random index J . Namely, we let C : J → [−1, 1] be a

function of the random index J . We consider the convergence of

sup
Q∈PNw

EQ[C(J)] to sup
Q∈P

EQ[C(J)].

To ease notation, we hide dependence on J and for a sample J1, . . . , JNw of random vectors

Jk, we denote Ck := C(Jk) for shorthand, so that the Ck are bounded independent random

variables. Our proof technique is similar in style to that of Sinha and Duchi (2016). We

provide proofs for technical lemmas that follow in support of Proposition 2 that are shorter

and more suitable for our setting (in particular Lemmas 1 and 3).

Treating C = (C1, . . . , CNw) as a vector, the mapping C 7→ supQ∈PNw EQ[C] is a
√
ρ+ 1/

√
Nw-

Lipschitz convex function of independent bounded random variables. Indeed, letting q ∈

RNw+ be the empirical probability mass function associated with Q ∈ PNw , we have

1
Nw

∑Nw
i=1(Nwqi)

2 ≤ ρ+1 or ‖q‖2 ≤
√

(1 + ρ)/Nw. Using Samson’s sub-Gaussian concentra-

tion inequality (Samson, 2000) for Lipschitz convex functions of bounded random variables,

we have with probability at least 1− δ that

sup
Q∈PNw

EQ[C] ∈ E

[
sup

Q∈PNw
EQ[C]

]
± 2
√

2

√
(1 + ρ) log 2

δ

Nw
. (D.1)

By the containment (D.1), we only need to consider convergence of

E

[
sup

Q∈PNw
EQ[C]

]
to sup

Q∈P
EQ[C],
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which we do with the following lemma.

Lemma 1 (Sinha and Duchi (2016)). Let Z = (Z1, . . . , ZNw) be a random vector of inde-

pendent random variables Zi
i.i.d.∼ P0, where |Zi| ≤ M with probability 1. Let Cρ = 2(ρ+1)√

1+ρ−1
.

Then

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup

Q∈P
EQ[Z]− 4CρM

√
log(2Nw)

Nw

and

E

[
sup

Q∈PNw
EQ[Z]

]
≤ sup

Q∈P
EQ[Z].

See Appendix D.2.3 for the proof.

Combining Lemma 1 with containment (D.1) gives the result.

D.2.3. Proof of Lemma 1

Before beginning the proof, we first state a technical lemma.

Lemma 2 (Ben-Tal et al. (2013)). Let φ be any closed convex function with domain domφ ⊂

[0,∞), and let φ∗(s) = supt≥0{ts− φ(t)} be its conjugate. Then for any distribution P and

any function g :W → R we have

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w)

= inf
λ≥0,η

{
λ

∫
φ∗
(
g(w)− η

λ

)
dP (w) + ρλ+ η

}
.

See Appendix D.2.4 for the proof.

We prove the result for general φ-divergences φ(t) = tk − 1, k ≥ 2. To simplify algebra, we

work with a scaled version of the φ-divergence: φ(t) = 1
k (tk − 1), so the scaled population

and empirical constraint sets we consider are defined by

P =
{
Q : Df (Q||P0) ≤ ρ

k

}
and PNw :=

{
q : Df (q||1/Nw) ≤ ρ

k

}
.
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Then by Lemma 2, we obtain

E

[
sup

Q∈PNw
EQ[Z]

]
= EP0

 inf
λ≥0,η

1

Nw

Nw∑
i=1

λφ∗
(
Zi − η
λ

)
+ η +

ρ

k
λ


≤ inf
λ≥0,η

EP0

 1

Nw

Nw∑
i=1

λφ∗
(
Zi − η
λ

)
+ η +

ρ

k
λ


= inf
λ≥0,η

{
EP0

[
λφ∗

(
Z − η
λ

)]
+
ρ

k
λ+ η

}
= sup
Q∈P

EQ[Z].

This proves the upper bound in Lemma 1.

Now we focus on the lower bound. For the function φ(t) = 1
k (tk − 1), we have φ∗(s) =

1
k∗ [s]k

∗
+ + 1

k , where 1/k∗ + 1/k = 1, so that the duality result in Lemma 2 gives

sup
Q∈PNw

EQ[Z] = inf
η

{
(1 + ρ)

1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗

+

) 1
k∗

+ η

}
.

Because |Zi| ≤ M for all i, we claim that any η minimizing the preceding expression must

satisfy

η ∈
[
−1 + (1 + ρ)

1
k∗

(1 + ρ)
1
k∗ − 1

, 1

]
·M. (D.2)

For convenience, we first define the shorthand

SNw(η) := (1 + ρ)1/k

(
1

Nw

Nw∑
i=1

[Zi − η]k
∗

+

) 1
k∗

+ η.

Then it is clear that η ≤M , because otherwise we would have SNw(η) > M ≥ infη SNw(η).

Let the lower bound be of the form η = −cM for some c > 1. Taking derivatives of the
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objective SNw(η) with respect to η, we have

S′Nw(η) = 1− (1 + ρ)1/k
1
Nw

∑Nw
i=1 [Zi − η]k

∗−1
+(

1
Nw

∑Nw
i=1 [Zi − η]k

∗
+

)1− 1
k∗

≤ 1− (1 + ρ)1/k

(
(c− 1)M

(c+ 1)M

)k∗−1

= 1− (1 + ρ)1/k

(
c− 1

c+ 1

)k∗−1

.

For any c > cρ,k := (1+ρ)
1
k∗ +1

(1+ρ)
1
k∗ −1

, the preceding display is negative, so we must have η ≥

−cρ,kM . For the remainder of the proof, we thus define the interval

U := [−Mcρ,k,M ] , cρ,k =
(1 + ρ)

1
k∗ + 1

(1 + ρ)
1
k∗ − 1

,

and we assume w.l.o.g. that η ∈ U .

Again applying the duality result of Lemma 2, we have that

E

[
sup

Q∈PNw
EQ[Z]

]
= E

[
inf
η∈U

SNw(η

]
= E

[
inf
η∈U
{SNw(η)− E[SNw(η)] + E[SNw(η)]}

]
≥ inf
η∈U

E[SNw(η)]

− E
[

sup
η∈U
|SNw(η)− E[SNw(η)]|

]
. (D.3)

To bound the first term in expression (D.3), we use the following lemma.

Lemma 3 (Sinha and Duchi (2016)). Let Z ≥ 0, Z 6≡ 0 be a random variable with finite

2p-th moment for 1 ≤ p ≤ 2. Then we have the following inequality:

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2, (D.4a)
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and if ‖Z‖∞ ≤ C, then

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − C

p− 1

p

√
2

n
. (D.4b)

See Appendix D.2.5 for the proof. Now, note that [Z − η]+ ∈ [0, 1+cρ,k]M and (1 + ρ)1/k(1+

cρ,k) =: Cρ,k. Thus, by Lemma 3 we obtain that

E[SNw(η)] ≥ (1 + ρ)1/kE
[
[Z − η]k

∗
+

]1/k∗

+ η − Cρ,kM
k∗ − 1

k∗

√
2

Nw
.

Using that k∗−1
k∗ = 1

k , taking the infimum over η on the right hand side and using duality

yields

inf
η
E[SNw(η)] ≥ sup

Q∈P
EQ[Z]− Cρ,k

M

k

√
2

Nw
.

To bound the second term in expression (D.3), we use concentration results for Lipschitz

functions. First, the function η 7→ SNw(η) is
√

1 + ρ-Lipschitz in η. To see this, note that

for 1 ≤ k? ≤ 2 and X ≥ 0, by Jensen’s inequality,

E[Xk?−1]

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

E[X]k?−1
= 1,

so S′Nw(η) ∈ [1−(1+ρ)
1
k , 1] and therefore SNw is (1+ρ)1/k-Lipschitz in η. Furthermore, the

mapping T : z 7→ (1 + ρ)
1
k ( 1

Nw

∑Nw
i=1 [zi − η]k

∗
+ )

1
k∗ for z ∈ RNw is convex and (1 + ρ)

1
k /
√
Nw-

Lipschitz. This is verified by the following:

∣∣T (z)− T (z′)
∣∣ ≤ (1 + ρ)1/k

∣∣∣∣∣∣
(

1

Nw

Nw∑
i=1

∣∣∣[zi − η]+ −
[
z′i − η

]
+

∣∣∣k∗ ) 1
k∗
∣∣∣∣∣∣

≤
(1 + ρ)1/k

Nw1/k∗

∣∣∣∣∣∣
( Nw∑
i=1

∣∣zi − z′i∣∣k∗ ) 1
k∗
∣∣∣∣∣∣

≤
(1 + ρ)1/k
√
Nw

‖z − z′‖2,
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where the first inequality is Minkowski’s inequality and the third inequality follows from

the fact that for any vector x ∈ Rn, we have ‖x‖p ≤ n
2−p
2p ‖x‖2 for p ∈ [1, 2], where these

denote the usual vector norms. Thus, the mapping Z 7→ SNw(η) is (1+ρ)1/k/
√
Nw-Lipschitz

continuous with respect to the `2-norm on Z. Using Samson’s sub-Gaussian concentration

result for convex Lipschitz functions, we have

P (|SNw(η)− E[SNw(η)]| ≥ δ) ≤ 2 exp

(
− Nwδ

2

2C2
ρ,kM

2

)

for any fixed η ∈ R and any δ ≥ 0. Now, let N (U, ε) = {η1, . . . , ηN(U,ε)} be an ε cover of the

set U , which we may take to have size at most N(U, ε) ≤M(1 + cρ,k)
1
ε . Then we have

sup
η∈U
|SNw(η)− E[SNw(η)]

≤ max
i∈N (U,ε)

|SNw(ηi)− E[SNw(ηi)]|+ ε(1 + ρ)1/k.

Using the fact that E[maxi≤n |Xi|] ≤
√

2σ2 log(2n) for Xi all σ2-sub-Gaussian, we have

E
[

max
i∈N (U,ε)

|SNw(ηi)− E[SNw(ηi)]|
]

≤ Cρ,k

√
2
M2

Nw
log 2N(U, ε).

Taking ε = M(1 + cρ,k)/Nw gives that

E

[
sup
η∈U
|SNw(η)− E[SNw(η)]

]

≤
√

2MCρ,k

√
1

Nw
log(2Nw) +

Cρ,kM

Nw
.
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Then, in total we have (using Cρ ≥ Cρ,k, k ≥ 2, and Nw ≥ 1),

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup

Q∈P
EQ[Z]−

CρM
√

2√
Nw

(
1

k
+
√

log(2Nw) +
1√

2Nw

)
≥ sup

Q∈P
EQ[Z]− 4CρM

√
log(2Nw)

Nw
.

This gives the desired result of the lemma.

D.2.4. Proof of Lemma 2

Let L ≥ 0 satisfy L(w) = dQ(w)/dP (w), so that L is the likelihood ratio between Q and P .
Then we have

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w) = sup∫

φ(L)dP≤ρ,EP [L]=1

∫
g(w)L(w)dP (w)

= sup
L≥0

inf
λ≥0,η

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)

− η
(∫

L(w)dP (w)− 1

)}
= inf
λ≥0,η

sup
L≥0

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)

− η
(∫

L(w)dP (w)− 1

)}
,

where we have used that strong duality obtains because the problem is strictly feasible in its

non-linear constraints (take L ≡ 1), so that the extended Slater condition holds (Luenberger,

1969, Theorem 8.6.1 and Problem 8.7). Noting that L is simply a positive (but otherwise

arbitrary) function, we obtain

sup
Q:Df (Q||P )≤ρ

∫
g(w)dQ(w)

= inf
λ≥0,η

∫
sup
`≥0
{(g(w)− η)`− λφ(`)} dP (w) + λρ+ η

= inf
λ≥0,η

∫
λφ∗

(
g(w)− η

λ

)
dP (w) + η + ρλ.

Here we have used that φ∗(s) = supt≥0{st− φ(t)} is the conjugate of φ and that λ ≥ 0, so

that we may take divide and multiply by λ in the supremum calculation.
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D.2.5. Proof of Lemma 3

For a > 0, we have

inf
λ≥0

{
ap

pλp−1
+ λ

p− 1

p

}
= a,

(with λ = a attaining the infimum), and taking derivatives yields

ap

pλp−1
+ λ

p− 1

p
≥ ap

pλp−1
1

+ λ1
p− 1

p
+
p− 1

p

(
1− ap

λp1

)
(λ− λ1).

Using this in the moment expectation, by setting λn = p

√
1
n

∑n
i=1 Z

p
i , we have for any λ ≥ 0

that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
= E

[∑n
i=1 Z

p
i

pnλp−1
n

+ λn
p− 1

p

]
≥ E

[∑n
i=1 Z

p
i

pnλp−1
+ λ

p− 1

p

]
+
p− 1

p
E
[(

1−
∑n

i=1 Z
p
i

nλp

)
(λn − λ)

]
.

Now we take λ = ‖Z‖p, and we apply the Cauchy-Schwarz inequality to obtain

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p

−
p− 1

p
E

(1−
1
n

∑n
i=1 Z

p
i

‖Z‖pp

)2
 1

2

E

(( 1

n

n∑
i=1

Zpi

) 1
p

− ‖Z‖p

)2
 1

2

= ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 1

2

≥ ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

[(
1

n

n∑
i=1

Zpi

) 2
p

+ E[Zp]
2
p

] 1
2

≥ ‖Z‖p −
p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2,

where the last inequality follows by the fact that the norm is non-decreasing in p.

In the case that we have the unifom bound ‖Z‖∞ ≤ C, we can get tighter guarantees. To
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that end, we state a simple lemma.

Lemma 4. For any random variable X ≥ 0 and a ∈ [1, 2], we have

E[Xak] ≤ E[Xk]2−aE[X2k]a−1

Proof For c ∈ [0, 1], 1/p+ 1/q = 1 and A ≥ 0, we have by Holder’s inequality,

E[A] = E[AcA1−c] ≤ E[Apc]1/pE[Aq(1−c)]1/q

Now take A := Xak, 1/p = 2− a, 1/q = a− 1, and c = 2
a − 1.

First, note that E[Z2p] ≤ CpE[Zp]. For 1 ≤ p ≤ 2, we can take a = 2/p in Lemma 4, so

that we have

E[Z2] ≤ E[Zp]
2− 2

pE[Z2p]
2
p
−1 ≤ ‖Z‖ppC2−p.

Now, we can plug these into the expression above (using VarZp ≤ E[Z2p] ≤ Cp‖Z‖pp),

yielding

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − C

p− 1

p

√
2

n

as desired.

D.2.6. Proof of Proposition 3

We utilize the following lemma for regret of online mirror descent.

Lemma 5. The expected regret for online mirror descent with unbiased stochastic subgradient

γ(t) and stepsize η is

T∑
t=1

E
[
γ(t)T (w(t)− w?)

]
≤ log(d)

η
+
η

2
E

 T∑
t=1

d∑
j=1

wj(t)γj(t)
2

 (D.5)

See Appendix D.2.7 for the proof. Now we bound the right-hand term of the regret bound
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(D.5) in our setting. For this we utilize the following:

E
[
γi(t)

2|w(t)
]

=
1

N2
w

L2
i (t)

w2
i (t)

E

(Nw∑
k=1

1 {Jk = i}
)2 ∣∣∣∣w(t)


=

1

N2
w

L2
i (t)

w2
i (t)

(
Nw(Nw − 1)wi(t)

2 +Nwwi(t)
)
,

where the latter fact is simply the second moment for the sum of Nw random variables
i.i.d.∼ Bernoulli(wi(t)). Then,

d∑
i=1

wi(t)E
[
γi(t)

2|w(t)
]

=

d∑
i=1

Li(t)
2

(
Nw − 1

Nw
wi(t) +

1

Nw

)

≤
d∑
i=1

(
Nw − 1

Nw
wi(t) +

1

Nw

)
=
Nw − 1

Nw
+

d

Nw

=: z.

Plugging in the prescribed η =

√
2 log(d)
zT into the bound (D.5) yields the result.

D.2.7. Proof of Lemma 5

We first show the more general regeret of online mirror descent with a Bregman divergence

and then specialize to the entropic regularization case. Let ψ(w) be a convex fuction and

ψ∗(θ) its Fenchel conjugate. Define the Bregman divergence Bψ(w,w′) = ψ(w) − ψ(w′) −

∇ψ(w′)T (w − w′). In the following we use the subscript ·t instead of (·)(t) for clarity. The

standard online mirror descent learner sets

wt = argmin
w

(
γTt w +

1

η
Bψ(w,wt)

)
.
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Using optimality of wt+1 in the preceding equation, we have

γTt (wt − w∗) = γTt (wt+1 − w∗) + γTt (wt − wt+1)

≤ 1

η
(∇ψ(wt+1)−∇ψ(wt))

T (w∗ − wt+1)

+ γTt (wt − wt+1)

=
1

η
(Bψ(w∗, wt)−Bψ(w∗, wt+1)−Bψ(wt+1, wt))

+ γTt (wt − wt+1).

Summing this preceding display over iterations t yields

T∑
t=1

γTt (wt − w∗) ≤
1

η
Bψ(w∗, w1)

+

T∑
t=1

(
−1

η
Bψ(wt+1, wt) + γTt (wt − wt+1)

)

Now let ψ(w) =
∑

iwi logwi. Then, with w1 = 1/d, Bψ(w∗, w1) ≤ log(d). Now we bound

the second term with the following lemma.

Lemma 6. Let ψ(x) =
∑

j xj log xj and x, y ∈ ∆ be defined by: yi = xi exp(−ηgi)∑
j xj exp(−ηgj) where

g ∈ Rd+ is non-negative. Then

−1

η
Bψ(y, x) + gT (x− y) ≤ η

2

d∑
i=1

g2
i xi.

See Appendix D.2.8 for the proof. Setting y = wt+1, x = wt, and g = γt in Lemma 6 yields

T∑
t=1

γTt (wt − w∗) ≤
log(d)

η
+
η

2

T∑
t=1

d∑
j=1

wj(t)γj(t)
2.

Taking expectations on both sides yields the result.
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D.2.8. Proof of Lemma 6

Note that Bψ(y, x) =
∑

i yi log yi
xi
. Substituting the values for x and y into this expression,

we have ∑
i

yi log
yi
xi

= −ηgT y −
∑
i

yi log

∑
j

xje
−ηgj



Now we use a Taylor expansion of the function g 7→ log
(∑

j xje
−ηgj

)
around the point 0.

If we define the vector pi(g) = xie
−ηgi/

(∑
j xje

−ηgj
)
, then

log

∑
j

xje
−ηgj

 = log(1Tx)− ηp(0)T g+

η2

2
g>
(

diag(p(g̃))− p(g̃)p(g̃)>
)
g

where g̃ = λg for some λ ∈ [0, 1]. Noting that p(0) = x and 1Tx = 1T y = 1, we obtain

Bψ(y, x) = ηgT (x− y)− η2

2
g>
(

diag(p(g̃))− p(g̃)p(g̃)>
)
g,

whereby

−1

η
Bψ(y, x) + gT (x− y) ≤ η

2

d∑
i=1

g2
i pi(g̃). (D.6)

Lastly, we claim that the function

s(λ) =

d∑
i=1

g2
i

xie
−λgi∑

j xje
−λgj
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is non-increasing on λ ∈ [0, 1]. Indeed, we have

s′(λ) =

(∑
i gixie

−λgi
) (∑

i g
2
i xie

−λgi
)

(
∑

i xie
−λgi)

2 −
∑

i g
3
i xie

−λgi∑
i xie

−λgi

=

∑
ij gig

2
jxixje

−λgi−λgj −∑ij g
3
i xixje

−λgi−λgj

(
∑

i xie
−λgi)

2

Using the Fenchel-Young inequality, we have ab ≤ 1
3 |a|3 + 2

3 |b|3/2 for any a, b so gig
2
j ≤

1
3g

3
i + 2

3g
3
j . This implies that the numerator in our expression for s′(λ) is non-positive. Thus,

s(λ) ≤ s(0) =
∑d

i=1 g
2
i xi which gives the result when combined with inequality (D.6).

D.3. Hardware

The major components of the vehicle used in experiments are shown in Figure 37. The

chassis of the 1/10-scale vehicles used in experiments are based on a Traxxas Rally 1/10-

scale radio-controlled car with an Ackermann steering mechanism. An electronic speed

controller based on an open source design (Vedder, 2015) controls the RPM of a brushless

DC motor and actuates a steering servo. A power distribution board manages the power

delivery from a lithium polymer (LiPo) battery to the onboard compute unit and sensors.

The onboard compute unit is a Nvidia Jetson Xavier, a system-on-a-chip that contains 8

ARM 64 bit CPU cores and a 512 core GPU. The onboard sensor for localization is a planar

LIDAR that operates at 40Hz with a maximum range of 30 meters. The electronic speed

controller also provides odometry via the back EMF of the motor.

D.3.1. Mapping

We create occupancy grid maps of tracks using Google Cartographer (Hess et al., 2016). The

map’s primary use is as an efficient prior for vehicle localization algorithms. In addition,

maps serve as a representation of the static portion of the simulation environment describing

where the vehicle may drive and differentiating which (if any) portions of the LIDAR scan

have line-of-sight to other agents.
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Figure 37: Components of the 1/10 Scale Vehicle

D.3.2. Localization

Due to the speeds at which the vehicles travel, localization must provide pose estimates at

a rate of at least 20 Hz. Thus, to localize the vehicle we use a particle filter (Walsh and

Karaman, 2017) that implements a ray-marching scheme on the GPU in order to efficiently

simulate sensor observations in parallel. We add a small modification which captures the

covariance of the pose estimate. We do not use external localization systems (e.g. motion

capture cameras) in any experiment.

D.4. Communication and system architecture

The ZeroMQ (Hintjens, 2013) messaging library is used to create interfaces between the

FormulaZero software stack and the underlying ROS nodes that control and actuate the

vehicle test bed. Unlike in the simulator, some aspects of the FormulaZero planning function

operate non-deterministically and asynchronously. In particular we use a sink node to collect

observations from ROS topics related to the various sensors on the vehicle in order to
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approximate the step-function present in the Gym API. When a planning cycle is complete,

the trajectory is published back to ROS and tracked asynchronously using pure-pursuit as

new pose estimates become available. Because perception is not the primary focus of this

project we simplify the problem of detecting and tracking the other vehicle. In particular,

each vehicle estimates its current pose in the map obtained by its onboard particle filter,

and this information is communicated to the other vehicle via ZeroMQ over a local wireless

network. Since tracking and detection has been well studied in robotics, solutions which

rely less on communication could be explored by other future work which builds upon this

paper.

D.5. Simulation Stack

The simulation stack includes a lightweight 2D physics engine with a dynamical vehicle

model. Then on top of the physics engine, a multi-agent simulator with an OpenAI Gym

(Brockman et al., 2016) API is used to perform rollouts of the experiments.

D.5.1. Vehicle Dynamics

The single-track model in Althoff et al. (2017) is chosen because it considers tire slip influ-

ences on the slip angle, which enables accurate simulation at physical limits of the vehicle test

bed. It is also easily enables changes to the driving surface friction coefficient in simulation

which allows the simulator to model a variety of road surfaces.

D.5.2. System Identification

Parameter identification was performed to derive the following vehicle parameters: mass,

center of mass, moment of inertia, surface friction coefficient, tire cornering stiffness, and

maximum acceleration/deceleration rates following the methods described in O’Kelly et al.

(2019).
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D.5.3. Distributed Architecture

Due to the nature of the AAdaPT algorithm, the rollouts in a single vertical step do not

need to be in sequence. The ZeroMQ messaging library is used to create a MapReduce (Dean

and Ghemawat, 2008) pattern between the task distributor, result collector, and the workers.

Each worker receives the description of the configuration to be simulated, e.g. (x, θ). Then

the workers asynchronously perform simulations and send results to the collector.

D.5.4. Addressing the simulation/reality gap

As noted in Section 7.6 there are several differences between the observations in simulated

rollouts and reality. First, pose estimation errors are not present in the simulator. A

simple fix would be to add Gaussian white noise to the pose observations returned by the

simulator. We avoided this and other domain randomization techniques in order to preserve

the determinism of the simulator. Second, the LIDAR simulation does not account for

material properties of the environment. In particular, surfaces such as glass do not produce

returns, causing subsets of the LIDAR beams to be dropped. We hypothesize that simple

data augmentation schemes which select a random set of indices to drop from simulated

LIDAR observations would improve the robustness to such artifacts when the system is

deployed on the real car; we are currently investigating this hypothesis.

D.5.5. Instantaneous time-to-collision (iTTC)

Let Ti(t) be the instantaneous time-to-collision between the ego vehicle and the i-th environ-

ment vehicle at time step t. The value Ti(t) can be defined in multiple ways (see e.g. Sontges

et al. (2018)). Norden et al. (2019) define it as the amount of time that would elapse be-

fore the two vehicles’ bounding boxes intersect assuming that they travel at constant fixed

velocities from the snapshot at time t. Time-to-collision captures directly whether or not

the ego-vehicle was involved in a crash. If it is positive no crash occurred, and if it is 0 or

negative there was a collision.
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D.5.6. Out-of-distribution agent strategies

In the following sections, we describe the human-created algorithms used in our out-of-

distribution analysis.

OOD1: RRT* with MPC-based Opponent Prediction

This approach exploits the fact that the two-car racing scenario is similar to driving alone

on the track with the only exception being during overtaking the opponent. This approach

uses a costmap-based RRT* (Karaman and Frazzoli, 2011) planning algorithm. The agent

first uses the opponent’s current pose and velocity in the world, and uses Model-Predictive

Control to calculate an open loop trajectory of N optimal inputs resulting in N+1 states

based on a given cost function and constraints. Specifically, the optimization problem is

constrained by a linearized version of the single track model described in Althoff et al.

(2017), and by the boundary values of the inputs and states of the vehicle. The cost function

that the optimization tries to minimize consists of the trajectory length and input power

requirement. The costmap used by RRT* also incorporates this predicted trajectory of the

opponent vehicle by inflating the two-dimensional spline representing the prediction, and

weighting the portion of the spline closer to the ego vehicle higher. RRT* samples the two

dimensional space that the vehicle lies in. The path generated by RRT* is then tracked with

the Pure Pursuit controller (Coulter, 1992).

OOD2: RL-based Lane Switching

The second algorithm is based on a lane-switching planning strategy that uses an RL al-

gorithm to make lane switching decisions, and filters out unsafe decisions using a collision

indicator. First, as shown in 38, different lanes going through numerous checkpoints on the

track are created to cover the entirety of the race track. Then a network is trained to make

lane switching decisions. The state of the RL problem consists of the sub-sampled LIDAR

scans of the ego vehicle; the pose (x, y, θ) of the opponent car with respect to the ego vehicle;
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Figure 38: Lanes that cover the track

velocity (vx, vy) of the opponent vehicle with respect of the ego vehicle; projected distance

from the ego vehicle’s current position to all pre-defined paths. The reward of a rollout is

zero in the beginning. At each timestep, the timestep itself is subtracted from the total

reward. A rollout receives -100 as the reward when the ego agent collide with the environ-

ment or the other agent. And finally, if both agents finish 2 laps, the difference between lap

times (positive if the ego agent wins) of the two agents are added to the reward. Clipped

Double Q-Learning (Fujimoto et al., 2018) is used to estimate the Q function and make the

lane switching decisions. iTTC defined in Appendix D.5.5 is used as an indicator for future

collisions. If any decisions made by the RL network would result in a collision indicated by

the iTTC value, the safety function kicks in and makes the lane switching decision based on

the collision indicator. Finally, ego vehicle actuation is provided by the same Pure Pursuit

controller (Coulter, 1992) tracking the selected lane. We used an existing implementation,

https://github.com/pnorouzi/rl-path-racing, of this algorithm.
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