
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2020

Off-Policy Temporal Difference Learning For Robotics And Off-Policy Temporal Difference Learning For Robotics And

Autonomous Systems Autonomous Systems

Heejin Jeong
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Jeong, Heejin, "Off-Policy Temporal Difference Learning For Robotics And Autonomous Systems" (2020).
Publicly Accessible Penn Dissertations. 3836.
https://repository.upenn.edu/edissertations/3836

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3836
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=repository.upenn.edu%2Fedissertations%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3836?utm_source=repository.upenn.edu%2Fedissertations%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3836
mailto:repository@pobox.upenn.edu

Off-Policy Temporal Difference Learning For Robotics And Autonomous Systems Off-Policy Temporal Difference Learning For Robotics And Autonomous Systems

Abstract Abstract
Reinforcement learning (RL) is a rapidly advancing field with implications in autonomous vehicles,
medicine, finance, along with several other applications. Particularly, off-policy temporal difference (TD)
learning, a specific type of RL technique, has been widely used in a variety of autonomous tasks. However,
there remain significant challenges that must be overcome before it can be successfully applied to
various real-world applications. In this thesis, we specifically address several major challenges in off-
policy TD learning.

In the first part of the thesis, we introduce an efficient method of learning complex stand-up motion of
humanoid robots by Q-learning. Standing up after falling is an essential ability for humanoid robots yet it
is difficult to learn flexible stand-up motions for various fallen positions due to the complexity of the task.
We reduce sample complexity of learning by applying a clustering method and utilizing the bilateral
symmetric feature of humanoid robots. The learned policy is demonstrated in both simulation and on a
physical robot.

The greedy update of Q-learning, however, often causes overoptimism and instability. In the second part
of the thesis, we propose a novel Bayesian approach to Q-learning, called ADFQ, which improves the
greedy update issues by providing a principled way of updating Q-values based on uncertainty of Q-belief
distributions. The algorithm converges to Q-learning as the uncertainty approaches zero, and its efficient
computational complexity enables the algorithm to be extended with a neural network. Both ADFQ and its
neural network extension outperform their comparing algorithms by improving the estimation bias and
converging faster to optimal Q-values.

In the last part of the thesis, we apply off-policy TD methods to solve the active information acquisition
problem where an autonomous agent is tasked with acquiring information about targets of interests. Off-
policy TD learning provides solutions for classical challenges in this problem -- system model
dependence and the difficulty of computing information-theoretic cost functions for a long planning
horizon. In particular, we introduce a method of learning a unified policy for in-sight tracking, navigation,
and exploration. The policy shows robust behavior for tracking agile and anomalous targets with a
partially known target model.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Electrical & Systems Engineering

First Advisor First Advisor
Daniel D. Lee

Second Advisor Second Advisor
George J. Pappas

Keywords Keywords
Bayesian Inference, Deep Reinforcement Learning, Information Acquisition, Machine Learning,

Reinforcement Learning, Robotics

Subject Categories Subject Categories
Artificial Intelligence and Robotics | Computer Sciences | Robotics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3836

https://repository.upenn.edu/edissertations/3836

OFF-POLICY TEMPORAL DIFFERENCE LEARNING FOR ROBOTICS AND

AUTONOMOUS SYSTEMS

Heejin Jeong

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2020

Daniel D. Lee, Co-Supervisor of Dissertation
Professor

George J. Pappas, Co-Supervisor of Dissertation
Professor

Victor Preciado, Graduate Group Chairperson
Professor

Dissertation Committee

Manfred Morari (Chair), Professor in Electrical and Systems Engineering
Daniel D. Lee, Professor in Electrical and Computer Engineering, Cornell University
George J. Pappas, Professor in Electrical and Systems Engineering
Pieter Abbeel, Professor in Electrical Engineering and Computer Science, University of
California, Berkeley

OFF-POLICY TEMPORAL DIFFERENCE LEARNING FOR ROBOTICS ANDAUTONOMOUS

SYSTEMS

COPYRIGHT

2020

HEEJIN JEONG

Acknowledgment

This work would not have been possible without the support and help from many people.
First and foremost, I would like to thank my thesis advisors, Prof. Daniel D. Lee and
Prof. George J. Pappas, for their guidance and advice during my Ph.D. program. With
their continued direction and involvement, I learned how to critically think and approach
challenging problems, and was able to work on exciting topics and applications.

I also thank Prof. Manfred Morari for serving on my thesis committee as the chair, for
always providing his valuable insights on my research, and for being excited and willing
to learn about my work. In addition to our technical discussions, I also always enjoyed
our conversations about different topics. I would like to thank Prof. Pieter Abbeel for
being in my committee, for wanting to learn about my ideas, and for reviewing my work.
Even though we are at different universities, I always enjoyed our conversations at various
conferences.

Many thanks to my collaborators, Prof. Hamed Hassani, Clark Zhang, Brent Schlotfeldt,
and participants of DARPA Robotics Challenge Finals and RoboCup 2015. I learned a lot
from their instrumental feedback and comments, and our efforts towards the same goals kept
me motivated.

Being a member of GRASP Lab has been a wonderful experience. I was able to interact
with bright students from different fields and different labs, and learned more things from
them than textbooks. I would like to thank many past and current GRASP members for
sharing their knowledge and for making the environment intellectually stimulating.

I would like to thank the current and past Ph.D. students in the department of Electrical
and Systems Engineering, and the current and past members in both Daniel D. Lee and
George J. Pappas groups for the times we spent working on homework together, for discussing
research ideas, and for pondering about the future.

I thank my close friends for their tremendous support and for listening to my complaints
especially during the tough times of my Ph.D.

I would like to thank Blake Bleier for always being there for me and for his endless
support and encouragement. This journey would not have been possible without him. I

iii

thank him for his selfless help and for being so caring, loving, and kind through the ups and
downs in this journey. I also thank John and Loretta Bleier for their continued support.

Lastly, I thank my dad, mom, and sister. Even though I selfishly left Korea to pursue
my own interests, they have been nothing but supportive. I especially want to recognize my
dad and honor him for his endless devotion to the family and for his support. Unfortunately
and tragically, he passed away in 2018 in Korea and I was not able to spend much time with
him in his last years. Even though he was sick and struggling so much with his illness, he
always ensured me that he was okay, to keep me from worrying and to focus on my work.
I could not have been here without his lessons, advice, support and love. As painful as the
loss, it enlightened me in great values in my life. I am privileged to be who I am because of
my dad, mom, and sister, and I will do good for people and help people remembering him.

iv

ABSTRACT

OFF-POLICY TEMPORAL DIFFERENCE LEARNING FOR ROBOTICS AND

AUTONOMOUS SYSTEMS

Heejin Jeong

Daniel D. Lee, George J. Pappas

Reinforcement learning (RL) is a rapidly advancing field with implications in autonomous

vehicles, medicine, finance, along with several other applications. Particularly, off-policy

temporal difference (TD) learning, a specific type of RL technique, has been widely used

in a variety of autonomous tasks. However, there remain significant challenges that must

be overcome before it can be successfully applied to various real-world applications. In this

thesis, we specifically address several major challenges in off-policy TD learning.

In the first part of the thesis, we introduce an efficient method of learning complex

stand-up motion of humanoid robots by Q-learning. Standing up after falling is an essential

ability for humanoid robots yet it is difficult to learn flexible stand-up motions for various

fallen positions due to the complexity of the task. We reduce sample complexity of learning

by applying a clustering method and utilizing the bilateral symmetric feature of humanoid

robots. The learned policy is demonstrated in both simulation and on a physical robot.

The greedy update of Q-learning, however, often causes overoptimism and instability.

In the second part of the thesis, we propose a novel Bayesian approach to Q-learning,

called ADFQ, which improves the greedy update issues by providing a principled way of

updating Q-values based on uncertainty of Q-belief distributions. The algorithm converges

to Q-learning as the uncertainty approaches zero, and its efficient computational complexity

enables the algorithm to be extended with a neural network. Both ADFQ and its neural

network extension outperform their comparing algorithms by improving the estimation bias

and converging faster to optimal Q-values.

In the last part of the thesis, we apply off-policy TD methods to solve the active informa-

tion acquisition problem where an autonomous agent is tasked with acquiring information

about targets of interests. Off-policy TD learning provides solutions for classical challenges

v

in this problem – system model dependence and the difficulty of computing information-

theoretic cost functions for a long planning horizon. In particular, we introduce a method

of learning a unified policy for in-sight tracking, navigation, and exploration. The policy

shows robust behavior for tracking agile and anomalous targets with a partially known target

model.

vi

Contents

Abstract v

Contents vii

List of Figures x

1 Introduction 1
1.1 Outline and Contributions . 5

2 Reinforcement Learning : A Brief Overview 8
2.1 Markov Decision Process . 8
2.2 Dynamic Programming . 10

2.2.1 Policy Iteration . 10
2.2.2 Value Iteration . 11

2.3 Temporal Difference Methods . 12
2.4 Value Function Approximation . 15
2.5 Deep Reinforcement Learning . 17

3 Efficient Learning of Stand-up Motion for Humanoid Robots 20
3.1 Introduction . 20
3.2 Representative States and Actions by Clustering 23
3.3 Reward Function for Stand-up Motion . 26

3.3.1 Reward Variables . 26
3.3.2 Reward Function . 27

3.4 Bilateral Symmetric Feature of Humanoid Robots 28
3.5 Learning in Symmetric Spaces . 29

3.5.1 Updating Symmetric State-Action Pairs in Learning 29
3.5.2 Learning Rate For Representative States and Actions 30

3.6 Experiments . 31
3.6.1 Experimental System Details . 31
3.6.2 Generating Clusters . 32
3.6.3 Results and Evaluation . 33

3.7 Summary . 35

4 Assumed Density Filtering Q-learning 37
4.1 Introduction . 37

vii

4.2 Related Work . 39
4.3 Belief Updates on Q-values . 43
4.4 Assumed Density Filtering on Q-Belief Updates 47

4.4.1 Assumed Density Filtering . 47
4.4.2 Online Belief Update . 48
4.4.3 Convergence to Optimal Q-values . 48

4.5 Analytic ADF Parameter Estimates . 50
4.5.1 Analytic Approximation of Posterior . 50
4.5.2 Approximate Likelihood . 52
4.5.3 Convergence of ADFQ . 54

4.6 A Concrete Demonstration in a Discrete MDP 54
4.7 Experiments in Discrete MDPs . 56

4.7.1 Algorithms . 56
4.7.2 Domains . 57
4.7.3 Results . 57

4.8 Fast ADFQ . 58
4.9 Summary . 61

5 ADFQ with Neural Networks 64
5.1 Introduction . 64
5.2 Related Work : Neural Networks to Q-learning 65
5.3 Deep ADFQ . 67
5.4 Experiments . 68

5.4.1 Cartpole : Deterministic and Stochastic Environments 69
5.4.2 Atari 2600 Environments . 70

5.5 Summary . 74

6 Reinforcement Learning Approach to Active Information Acquisition 75
6.1 Introduction . 75
6.2 Related Work . 77
6.3 Active Information Acquisition . 78

6.3.1 Problem Formulation . 78
6.3.2 Active Information Acquisition as a Markov Decision Process 79

6.4 Application: Active Target Tracking . 80
6.5 Experiments . 82

6.5.1 Single Target Tracking . 85
6.5.2 Multi-Target Tracking . 87

6.6 Summary . 87

7 Learning to Track Agile Targets in a Partially Known Environment 88
7.1 Introduction . 88
7.2 Active Target Tracking Network . 91
7.3 Target Tracking Environment . 93

7.3.1 Target Model . 93
7.3.2 Agent and Observation Models . 95
7.3.3 Belief Update . 95

viii

7.4 Experiments . 96
7.4.1 Algorithms . 96
7.4.2 Training Setup . 97
7.4.3 Evaluation Setup for Single-Target Domains 99
7.4.4 Results in Single-Target Domains . 100
7.4.5 Unseen Environments . 105
7.4.6 Results in Two-Target Domains . 106

7.5 Discussion . 107
7.5.1 Learning with Uncertainty . 107
7.5.2 Stochasticity of Tasks . 108
7.5.3 United Policy . 109

7.6 Summary . 109

8 Conclusion 110

Appendices 115

A Mathematical Derivation of Posterior Distribution of Q-beliefs 116
A.1 Derivation of the Posterior Distribution of Q 116
A.2 Mean and Variance of the Posterior Distribution of Q 117

A.2.1 Moment Generating Function . 117
A.2.2 Moments of the Posterior Distribution 118

B Q-beliefs with Gaussian White Noise 120
B.1 Expected Likelihood for |A| = 2 . 120
B.2 Asymptotic Limits . 121
B.3 Approximate Likelihood . 123

C Proofs 124
C.1 Lemma 1 . 124
C.2 Theorem 1 . 125
C.3 Theorem 2: Convergence of ADFQ . 129

D Mathematical Derivation of Fast ADFQ 131
D.1 Normalization . 132
D.2 Mean . 133
D.3 Variance . 134

E Experimental Details 136
E.1 Deep ADFQ in Atari games . 136

E.1.1 Neural Network Architecture and Details 136
E.1.2 Initialization . 136

E.2 Deep ADFQ in cart-pole balancing tasks . 137
E.2.1 Neural Network Architecture and Details 137
E.2.2 Initialization . 137

Bibliography 138

ix

List of Figures

1.1 Reinforcement Learning Framework . 1
1.2 Successful reinforcement learning appliation examples. Left: Parker Prothers

Frogger (Atari2600), Middle: Backgammon computer game, Right: Game of
Go . 2

2.1 Backup diagrams of dynamic programming (DP), Monte-Carlo (MC), and
temporal difference (TD(0)) methods. The white and black circles indicate
states and actions independently, and the square in MC represents a terminal
state. The nodes in the blue shaded areas are considered at each update step
for the corresponding methods. 12

3.1 Robot falls during the DRC Finals: Team IHMC (left) and Team THOR (right). 21
3.2 Symmetric poses for the DarwIn-OP robot . 28
3.3 (Shown as converted by PCA(3)) The continuous data we collected by gen-

erating random motions from the robot (Left). The centroids of the final
clusters before adding MF and MB (red(F) and blue(B)) with their symmet-
ric centroids (green(F) and black(B)) (Right) 32

3.4 Assigned state(or action) indicies in state(or action) spaces 33
3.5 Left : Initial Q values, Right : Final Q values 33
3.6 Evaluation on speed of performed motions with the real robot (red: LS, green:

Manually designed Stand-up motion, blue: non-LS(28), black: non-LS(46)) . 34
3.7 Evaluation on speed of performed motions with the real robot (red: LS, green:

Manually designed Stand-up motion, blue: non-LS(28), black: non-LS(46)) . 35
3.8 A sequence of a successful stand-up motion of a real-robot experiment example

(from top left to bottom right). 35

4.1 An example of the belief update in Eq.4.2 when |A| = 3, r = 0.0, γ = 0.9
and prior (+ green) has µs,a = 0.0, σ2

s,a = 1.0. Each column corresponds to a
subsequent state and action pair, (a) b = 1: µs′,b = −2.0, σ2

b = 2.0, (b) b = 2:
µs′,b = −2.0, σ2

b = 0.5, (c) b = 3: µs′,b = 4.5, σ2
b = 0.5. The first row presents

how µ̄τ,b and σ̄τ,b are determined from prior and a part of the likelihood. The
second row shows how cτ,b (y-axis of the dot) is assigned by TD error (δτ,b,
x-axis of the dot) and a joint uncertainty measure σ2

s,a + γ2σ2
s′,b. The third

row shows a softmax-like behavior of the product of CDFs. 46

x

4.2 Relationship between σ2
s,a;k and its updated value, σ2

s,a;k+1 for |A| = 2. Each
solid curve represents a different set of parameters. Left: Differing values of
µs′,2 − µs′,1. Right: Differing values of σ2

s′,1/σ
2
s′,2 49

4.3 A simple MDP with stochastic rewards . 54
4.4 ADFQ update example for st+1 = s0, at+1 = a0, (left) rt = 5, (right) rt = −5

in the simple MDP . 55
4.5

∑
s∈S,a∈AQt(s, a) during learning in the simple MDP of |A| = 2 (left) and an

MDP |A| = 10 (right), averaged over 10 trials. The solid lines and markers
represent mean performance and the shaded areas represent the standard
deviation across trials. The black horizontal line is the average of the optimal
Q-values in each case,

∑
s∈S,a∈AQ

∗(s, a). 56
4.6 Loop and Maze domain diagrams . 57
4.7 Root Mean Square Error (RMSE), ||Q − Q ∗ ||2 or ||µ − Q∗||2, of ADFQ,

Q-learning, and KTD-Q. Left: deterministic, Right: stochastic, Top: Loop,
Bottom: Maze. 59

4.8 Semi-greedy evaluation of ADFQ, Q-learning, and KTD-Q during learning
smoothed by a moving average with window 4. Left: deterministic, Right:
stochastic, Top: Loop, Bottom: Maze. 60

4.9 Top: Root Mean Square Error (RMSE), ||µ−Q∗||2, of ADFQ and Fast ADFQ
in deterministic (left) and in stochastic (right) Maze. Bottom: Greedy eval-
uation plots of ADFQ and Fast ADFQ during learning. The curves were
smoothed by a moving average with window 4 in deterministic (left), stochas-
tic (right) Maze. 62

5.1 A neural network model for ADFQ . 67
5.2 Cart-pole simulation environment in OpenAI Gym. 68
5.3 Performance of ADFQ, DQN, and Double DQN during learning in the Ope-

nAI gym CartPole-v0 environment (Left: Deterministic, Right: Stochastic).
The curves are smoothed by a moving average with window 6. The solid lines
and markers represent mean performance and the shaded areas represent the
standard deviation across 5 trials. 69

5.4 Examples of Atari games. From left to right, Asterix, Enduro, Breakout. . . . 71
5.5 Performance of ADFQ, DQN, and Double DQN during learning in Atari

games. The curves are smoothed by a moving average with window 6. The
solid lines and markers represent mean performance and the shaded areas
represent the standard deviation across 3 trials with different random seeds. . 72

5.6 Average predicted Q-values at each evaluation of ADFQ, DQN, Double DQN
in Atari games. Performance of ADFQ, DQN, and Double DQN during learn-
ing in Atari games. The curves are smoothed by a moving average with win-
dow 6. The solid lines and markers represent mean performance and the
shaded areas represent the standard deviation across trials. 73

6.1 Illustration of the dynamics in active information acquisition with RL. 80
6.2 Cumulative − log det Σt per trajectory of ADFQ, DQN, and Double DQN

during learning compared with ARVI. 85

xi

6.3 Demonstrations of learned ADFQ-TS policies in the obstacle environment
with a single target (first row) as well as the empty environment with three
target (second row). The time step increases from left to right. Blue triangle:
xt, Blue dot: x1:t−1, Red dot (big): yt, Red dot (small): y1:t, Green circle: ŷt,
Green shaded area: Σt. 86

7.1 Illustration of the active target tracking network architecture. 91
7.2 An example of the effect of ζ(·) in Eq.7.4 at different target positions in the

grid. Each arrow corresponds to the velocity components of ζ, [atτ cos(θrot,t), atτ sin(θrot,t)]
T

when τ = 0.5, vmax = 3.0, rmargin = 0.1, rmin = 1.0. The blue arrows are for
vt = 3.0 and the red arrows are for vt = 1.0. The black blocks are obstacles
and the target orientation are −3π/4 [rad] for all. 93

7.3 Obstacle polygons for generating a random map. (a) Obstacles used during
training, (b) Unseen obstacles, (c) An example map of a randomly generated
map. 98

7.4 Illustration of the three initialization configurations. The black figure cor-
responds to the robot with a range-bearing sensor on top. The blue dotted
circle is the sensing radius and the faded blue sector indicates a covered area
by the sensor. Targets are represented with the red figures. The green figures
are beliefs with uncertainty represented as the faded green circles. The black
cuboid is an obstacle occluding the target and the belief in the configuration B. 99

7.5 J̄ (solid line) and η (dotted line) of ATTN (blue) and ARVI (yellow) in
environments with different q and νmax values. The error bars represent
the standard deviation across 10 episodes. The mean values are averaged
values over different seeds and 10 episodes. Left: νmax = 3.0[m/s] and
q ∈ {0.02, 0.1, 0.2, 1.0, 2.0}. Right: q = 0.2, νmax ∈ {2.5, 2.75, 3.0, 3.25, 3.5} . . 101

7.6 Examples of ATTN (top) and ARVI (bottom) when the robot loses the target.
The left figures are a few steps after the robot loses the target, and the right
figures are after 10 steps passed. The blue triangle is the robot and the red
circle is the current target position. The blue and red dots are paths of the
robot and target so far. The green circle indicates the belief position. The
green and purple shaded circles represent the position and velocity uncertainty
of the belief, respectively. The circular sector is the sensing area. In the top
figures, visited cells are filled with gray color based on λc,t in Eq.7.2, and the
five blue squares indicate areas in the local map input. 102

7.7 Density plots of belief positions in the agent frame during 10 episodes with
different values for q and νmax. The red triangle is the robot position (0.0,
0.0) and the horizontal and vertical red dotted lines are x and y axis of the
agent frame, respectively. x ∈ (−2.0, 8.0) and y ∈ (−5.0, 5.0)[m]. 103

7.8 Performance evaluation for Discovery and Navigation tasks. Left: Evaluated
in 10 different environments randomly generated by obstacles used in training.
Right: Evaluated in 10 different environments randomly generated by unseen
obstacles during training. 104

xii

7.9 Density maps of scanned areas by the robot’s sensor over single episode (top)
and 20 episodes (bottom). The white circle are the initial position of the
robot. The red filled circles in the top figures are the initial target positions,
and the red hollow circles in the top figures are the initial belief positions. In
the bottom figures, the target is randomly initialized in the area between the
red dotted circles. 105

7.10 Performance evaluation on N = 2 targets. Left: The normalized mean of log
determinant of belief covariances averaged over 10 episodes and the error bars
indicate standard deviations. Right: Standard deviation of log determinant
of belief covariances averaged over 10 episodes and the error bars indicate
their standard deviations. 106

7.11 The relation between average distance between two targets during an episode
and J̄ . 107

xiii

Chapter 1

Introduction

Reinforcement learning stems from psychological and neuroscientific perspectives on the

decision-making process of humans and animals [115]. In this framework, a learning subject

seeks an optimal or near-optimal behavior through trial-and-error interaction with a dy-

namic environment (Fig.1.1). Therefore, it is a general mathematical framework for learning

sequential decision-making tasks. There have been numerous studies in neuroscience and

psychology linking reinforcement learning to decision making because of its resemblance to

human and animal learning behavior [23, 24, 69, 86, 115]. It has been shown that there

is a connection between temporal-difference (TD) learning, a specific type of reinforcement

learning technique, and neural signals that occur during decision-making [108, 115]. The

TD algorithm [122] is a model-free method that estimates the expected value of cumulative

Figure 1.1: Reinforcement Learning Framework

1

Figure 1.2: Successful reinforcement learning appliation examples. Left: Parker Prothers Frogger
(Atari2600), Middle: Backgammon computer game, Right: Game of Go

future rewards of the current state by bootstrapping. Model-free methods in reinforcement

learning directly learn near-optimal policies or value functions without explicitly estimating

the dynamics of an environment. This contrasts with model-based methods in reinforce-

ment learning that learn a model of a dynamic environment and use the model to estimate

near-optimal policies. Therefore, model-free methods are often simpler to implement and

can handle more complex environments where learning their models are infeasible. Such

model-free methods have been applied in a wealth of complex tasks such as computer games

[92], board games (TD Gammon [123], AlphaGo of Google Deepmind [116]), resource man-

agement [87], robotics applications [28, 43, 61, 71] and so on.

In reinforcement learning for control problems, we consider two types of policies – be-

havior policy and target policy. The behavior policy is a policy to choose an action during

the interaction with the environment. The target policy is a policy used for evaluating

the current value estimates. On-policy methods set these two policies to be identical, and

therefore, a learning agent must choose an action based on the current policy it has been

updating. Sarsa, a TD learning algorithm, and policy-based methods are examples of on-

policy reinforcement learning. On the other hand, the behavior and target policies can be

different in off-policy methods. Therefore, off-policy can be desirable when the safety of

the behavior policy must be guaranteed (robotics examples). We can also re-use previously

generated samples for the current value update. However, off-policy does not always provide

a convergence guarantee when it is used with TD learning and function approximation [7].

Further details of TD learning and off-policy are explained in Sec.2.3.

2

Despite the lack of convergence guarantees, the recent success of deep neural networks en-

abled reinforcement learning to be applied to diverse and complex tasks showing human-level

performance in some domains such as the game of Go, Atari games, and Dota [92, 93, 100].

However, there remain significant challenges that must be overcome before it can be suc-

cessfully applied to various real-world tasks beyond video games. The challenges include

sample complexity, fast reinforcement learning, continual learning, partial observability, un-

certainty, and design of reward functions. In this thesis, we specifically address three of

these major challenges – sample complexity, uncertainty, and partial observability.

Unlike supervised learning, reinforcement learning requires to interact with a dynamic

environment. In general, obtaining direct interaction experience from an environment is

expensive, and thus, it is desired to have a simulation environment that can generate an

infinite number of sample experiences. However, simulation programs often differ from real

environments causing issues in transferring a learned policy. For some tasks such as the game

of Go, Dota, dialogue generation, rewards are supposed to be given by (somewhat) experts

in tasks such as humans which is extremely expensive. Some methods tried to alleviate

such issues by using self-play or adversarial techniques, but it can easily diverge if a reward

function is not well-structured [81, 93, 100]. Robotics is another important field where sample

complexity is crucial. Most robotic control tasks require to handle continuous variables,

and thus, they face the curse of dimensionality issue. Previously, discretization or simple

function approximation methods have been applied to solve several robotics tasks. However,

they were not able to be scaled or were limited to very specific models or tasks [28, 95].

Deep reinforcement learning methods alleviate such limitations by providing generalized

frameworks but demand a significant number of samples. As robotic tasks require physical

interactions with real environments, it is difficult to collect millions of data points or learn

real-time using a real robot unless enough resources are available [80]. Even in a simulation

program, accurately simulating complex dynamics of a robot and environment requires high

computation time, and thus repeating a training-evaluation process with millions of examples

at a time is extremely time-consuming. There have been numerous studies in order to reduce

3

the sample complexity of reinforcement learning. Meta learning is a method of learning to

learn which experiences diverse environments during learning and is able to quickly adapt

to a new environment in testing [34, 35]. Some studies leverage human demonstration to

reduce the number of samples [17, 48].

Another major stumbling block for reinforcement learning to move into real-world tasks

is addressing the uncertainty of learning parameters. In reinforcement learning, uncertainty

comes from three sources – stochastic state transition, stochastic reward, and bootstrapping

values (for TD learning). Many of recent benchmark environments for reinforcement learn-

ing algorithms are deterministic, but this is hardly valid in practice. Most tasks in the real

world, especially in autonomous systems, contain a greater range of randomness. Standard

reinforcement learning considers the expected values of the stochastic features, and therefore,

learning can be inefficient in highly stochastic environments. Moreover, relying on a single

best guess rather than considering different uncertainty measures for different beliefs is nat-

urally inefficient. It has been pointed out by numerous studies that one of the most popular

reinforcement learning algorithms, Q-learning, often suffers from overoptimism especially in

a stochastic environment due to its greedy value evaluation [50, 51, 127, 129]. Bayesian rein-

forcement learning is one of the approaches in reinforcement learning that deploys Bayesian

inference to incorporate new information into prior information for learning parameters by

explicitly quantifying the uncertainty of parameters. Therefore, it provides a principled way

of handling one of the major challenges in reinforcement learning, exploration-exploitation

trade-off. Additionally, it enables us to use a previously learned distribution as an informed

prior during learning or for a new learning problem in shared structures or appropriately

transformed structures [134]. This can potentially lead to more sample efficient methods.

As we will study in the later chapter, a proposed algorithm, ADFQ, in this thesis, utilizes

explicit uncertainty measures not only in exploration but also in value updates by consider-

ing all possible next action with their uncertainty measures instead of greedily choosing the

best next action. This is, in fact, one of the essential components of probabilistic approaches

[125] – A learning agent must consider possible outcomes and weigh them differently based

4

on their uncertainties.

The last important challenge in reinforcement learning that will be discussed in this

thesis is partial observability. In general, an autonomous agent solves its tasks based on

information collected through its sensors. Such sensors include an RGB-D camera, LiDAR,

GPS, IMU, and so on. Since the information is not directly obtained by the agent and it

passes through a sensor, some part of the information can be missing or noisy. Although

learning robotics tasks directly from RGB camera images have shown promising results with

a full observability assumption in recent years [67, 80, 106], no hardware is considered as

noise-free and perfect in practice. It is crucial to always consider sensor noise, physical

limitations, and failure. Information gathering is one of the fields in which accounting

partial observability plays a key role in the agent’s controls since its main objective is to

minimize the uncertainty about surroundings or a target of interests through information

acquired by its noisy sensors. As we do not have access to the ground truth, this problem

is a partially observable task. When targets are mobile, an agent must keep tracking the

targets to maintain low uncertainty. Therefore, having a good belief distribution on targets

is helpful. Existing approaches for such active target tracking tasks rely on knowledge on

system models which limit their practicality in real-world tasks. An additional complication

arises from their computational complexity tied with a planning horizon. It is desirable to

plan with a long planning horizon rather than use a myopic approach, especially for dynamic

targets [2, 21, 59, 74]. However, most existing search- and sampling-based planning methods

require sacrificing non-myopic behavior in order to achieve computational efficiency or vice

versa. Therefore, reinforcement learning is a desirable solution for such tasks as it maximizes

an objective over an infinite horizon and it is a method for finding an optimal policy when

a complete knowledge on a model is not available.

1.1 Outline and Contributions

In Chapter 2, we briefly overview reinforcement learning focusing on TD learning.

• In Chapter 3, we study an efficient method of learning stand-up motion for humanoid

5

robots that are flexible to various fallen positions using Q-learning. Instead of using a

complex function approximation that requires a large number of training examples, we

define finite representative states and actions, and learn an optimal policy using the

standard Q-learning directly in an open-source 3D robot simulator. With the policy,

a humanoid robot is able to successfully stand up from different initial fallen positions

both in simulation and on a physical humanoid robot.

• In Chapter 4, we introduce a novel Bayesian counterpart algorithm of Q-learning, As-

sumed Density Filtering Q-learning (ADFQ), which provides a principled way for a

non-greedy value update using the uncertainty of learning parameters. ADFQ main-

tains beliefs on state-action values, Q, and updates them through an online Bayesian

inference method known as assumed density filtering. The uncertainty measures not

only are used in exploration during learning but also give a natural regularization for

the Q-value update reducing the estimation bias of Q-learning. We prove that ADFQ

converges to Q-learning as the uncertainty of the beliefs approach zero and suggest

that ADFQ is a general form of Q-learning. Experimental results in finite state-action

domains demonstrate that ADFQ not only improves the estimation bias of Q-learning

but also achieving the optimal Q-values and optimal policies faster than all comparing

algorithms.

• One of the major drawbacks of existing Bayesian reinforcement learning methods is

their high computational complexities, and thus, they struggle to be used with a

complex function approximator such as a neural network. ADFQ is computationally

efficient and is extended with a neural network – Deep ADFQ – in Chapter 5. Similar

to the experimental results in the finite domains in Chapter 4, Deep ADFQ outper-

forms Deep Q-network [92] and Double Deep Q-network [129] in most domains of

continuous control problems and Atari 2600 games. Especially, its improvements are

more significant in domains with a large action space and/or stochastic domains. It

also empirically shows that Deep ADFQ improves the Q-value estimation overall.

6

• In Chapter 6, we introduce a framework of applying reinforcement learning to active

information acquisition where an agent is tasked with acquiring information about tar-

gets of interests. Major challenges of existing methods in active information acquisition

for mobile agents and targets are the trade-off between computational complexity and

non-myopic behavior as well as a strong dependency of their methods on system mod-

els. In contrast, reinforcement learning provides solutions for these challenges as the

length of its effective planning horizon does not affect the computational complexity,

and it drops the strong dependency of an algorithm on system models. We discuss

the potential benefits of the proposed framework and compare the performance of the

novel algorithm to an existing information acquisition method for multi-target tracking

scenarios.

• Utilizing the advantages of using reinforcement learning, we tackle more challenging

problem settings in Chapter 7 and relax assumptions considered in previous studies.

In particular, complete knowledge on a target model is no longer available and target

motion is highly agile and anomalous. We introduce Active Tracking Target Network

(ATTN), a unified reinforcement learning policy that is capable of solving major sub-

tasks of active target tracking – in-sight tracking, navigation, and exploration. The

policy shows robust behavior for tracking dynamic targets with a partially known tar-

get model. Additionally, the same policy is able to navigate in obstacle environments

to reach distant targets as well as explore the environment when targets are positioned

in unexpected locations.

This thesis closes with conclusions and potential future directions in Chapter 8.

7

Chapter 2

Reinforcement Learning : A Brief

Overview

In this chapter, we will briefly overview important parts of reinforcement learning focusing

on model-free value-based methods. Yet there exist many different fields and recent studies

in reinforcement learning, and the field has been growing quickly. A reader who wants to

learn more about fundamentals of reinforcement learning is recommended to read the latest

version of [122].

2.1 Markov Decision Process

Reinforcement learning problems can be formulated in terms of an Markov Decision Process

(MDP). MDP is a stochastic process with the Markov assumption which the future state is

independent from the past states given the present state. More formally, if X = (Xt : t ≤ 0)

is a stochastic process under the Markov assumption then,

P (Xt+1|X1, · · · , Xt) = P (Xt+1|Xt)

This conditional independence dramatically simplifies computations of the stochastic pro-

cess. In this thesis, we will only consider finite-time MDPs.

An MDP is described by the tuple, M = 〈S,A,P,R, γ〉 where S and A are the state

8

and action spaces, respectively. P : S × A × S → [0, 1] is the state transition probability

kernel and R : S × A → IR is a reward function. The reward function can be a function

of state only or of state, action, and the next state. γ ∈ [0, 1) is a discount factor of future

rewards. γ closer to 0 desires a myopic policy. A policy can be defined as a stochastic policy,

π : S × A → [0, 1] or as a deterministic policy, π : S → A. At each time step t, an agent

takes an action at using its policy π from its state st and then receives an reward rt. We

define a return, Gt, which is a sum of discounted future rewards from time t:

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T

T <∞ for episodic tasks and T =∞ for continuing tasks. The value function is defined as

an expected return, which is

V π(s) =Eπ[

∞∑
t=0

γtrt(st, at)|s0 = s]

=Eπ[G0|s0 = s] ∀s ∈ S

In other words, the value function for state s is an expected value of cumulative future

rewards starting at s and following π thereafter. The state-action value (Q) function is

defined as the value for a state-action pair,

Qπ(s, a) = Eπ[
∞∑
t=0

γtrt(st, at)|s0 = s, a0 = a] ∀s ∈ S, a ∈ A

The value function can be re-written as a self-consistent equation, which means,

V π(s) =
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ

[
G0

∣∣s0 = s′
]]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γV π(s′)

]
= E

[
r + γV π(s′)

]
(2.1)

9

This is the Bellman equation for vπ. The equation represents that the value of the current

state s is a function of the value of the subsequent state s′.

The objective of a learning agent in reinforcement learning is to find an optimal policy

π∗ = argmaxπ V
π. Finding the optimal values, V ∗(·) and Q∗(·, ·), requires solving the

Bellman optimality equation:

Q∗(s, a) = Es′∼P (·|s,a)[R(s, a) + γmax
a′∈A

Q∗(s′, a′)] ∀s ∈ S ∀a ∈ A (2.2)

V ∗(s) = max
a∈A(s)

Q∗(s, a) ∀s ∈ S (2.3)

If Q∗ is known for all s ∈ S, a ∈ A, we can find a deterministic optimal policy. π∗(s) =

argmaxa∈AQ
∗(s, a).

2.2 Dynamic Programming

When an MDP is simple and fully known, we can solve the MDP using a dynamic program-

ming (DP) algorithm. If the MDP is unknown or too complicated to be solved by a DP

method, we can use a reinforcement learning approach. In this section, we will study two

DP methods for solving an MDP – Policy iteration and Value iteration.

DP is a method of solving complex problems by breaking down in to sub-problems,

solving the sub-problems, and combining the solutions for the main problem. It has been

applied to many different problems including scheduling and bioinformatics. Dynamic pro-

gramming can be also applied to an MDP since the Bellman equation Eq.2.1 is a recursive

decomposition.

2.2.1 Policy Iteration

One way to find an optimal policy using a DP algorithm is policy iteration. In policy

iteration, policy evaluation and policy improvement steps are iterated until the values and

the policy converge. A policy π can be evaluated using the Bellman equation Eq.2.1. At

10

Algorithm 1 Policy Iteration
Initialize randomly V (s) and π(s) ∀s ∈ S
repeat

Policy Evaluation
repeat

∆ = 0
for each s ∈ S do

v ← V (s)
V (s) =

∑
s′,r p(s

′, r|s, π(s)) [r + γV (s′)]
∆← max(∆, |v − V (s)|)

end for
until ∆ < a small positive number
Policy Improvement
for each s ∈ S do

a← π(s)
π(s)← argmaxa

∑
s′,r p(s

′, r|s, a) [r + γV (s′)]
end for

until a = π(s)
return V and π

the kth iteration,

V π
k+1(s) =

∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γV π

k (s′)
]

Using the estimated values, the policy is improved by acting greedily, π′(s) = argmaxaQ
π(s, a).

The principle of optimality theorem guarantees that the convergence of policy iteration to

the optimal policy. In practice, policy iteration often converges within a few iterations. Its

algorithm is presented in Algorithm 1 [122].

2.2.2 Value Iteration

In value iteration, the policy improvement step is proceeded after only one sweep of the

policy evaluation step. In other words,

V π
k+1(s) = max

a

∑
s′

∑
r

p(s′, r|s, a)
[
r + γV π

k (s′)
]

Value iteration often converges faster than policy iteration as it does not wait until the

values converge under a suboptimal policy before the policy improvement step. It can be

11

Algorithm 2 Value Iteration
Initialize randomly V (s) ∀s ∈ S
repeat

∆ = 0
for each s ∈ S do

v ← V (s)
V (s) = maxa

∑
s′,r p(s

′, r|s, π(s)) [r + γV (s′)]
∆← max(∆, |v − V (s)|)

end for
until ∆ < a small positive number
return π∗ = argmaxa

∑
s′,r p(s

′, r|s, a) [r + γV (s′)]

also interpreted with the Bellman optimality equation instead of the Bellman expectation

equation. The complete algorithm is presented in Algorithm 2 [122].

2.3 Temporal Difference Methods

In the previous section, we studied two dynamic programming methods which solve the Bell-

man equation with a known MDP,M. However, when we do not have complete knowledge

of the model, those methods cannot be applied. Model-free reinforcement learning methods

aim to solve a unknown MDP by directly learning either V ∗, Q∗, or π∗. The difficulty of

solving the Bellman equations without model knowledge is from the computation of the

expectation. Monte-Carlo methods solve the difficulty by sampling sequences of states, ac-

tions, and rewards following a policy from a simulated or real environment and averaging

them out. Similar to policy iteration framework, the policy is evaluated by collecting sam-

ples from the interactions and improved by the averaged value. As they require a complete

Figure 2.1: Backup diagrams of dynamic programming (DP), Monte-Carlo (MC), and temporal
difference (TD(0)) methods. The white and black circles indicate states and actions independently,
and the square in MC represents a terminal state. The nodes in the blue shaded areas are considered
at each update step for the corresponding methods.

12

Algorithm 3 Sarsa, on-policy TD(0) control

Initialize Q(s, a) for all s ∈ S, a ∈ A.
for each episode do

Initialize s← s0

Choose an action a for s using the current policy derived from Q
repeat each step of episode

Execute a, and observe r and st+1

Choose a′ for s′ using the current policy derived from Q
Q(s, a)← Q(s, a) + α (r + γQ(s′, a′)−Q(s, a))
s← s′ and a← a′

until s is terminal
end for

return, they are limited to episodic tasks.

On the other hand, temporal difference (TD) methods bootstrap like DP methods instead

of sampling until a final outcome. Therefore, one can view TD methods as a combination

of Monte-Carlo methods (sampling) and DP methods (bootstrapping). Fig.2.1 shows the

differences of the backup diagrams of the three methods. The simplest TD method uses

a sample after one step, < st, at, rt, st+1 > and is called as TD(0). In other words, a

learning agent at state st performs an action at and receives rt and st+1. We can then use

rt + γV (st+1) as a stochastic sample of the Bellman equation 2.1 and update the values

through stochastic ascent.

V (st)← V (st) + α (rt + γV (st+1)− V (st))

where α ∈ [0, 1) is a step-size parameter or learning rate. Since it updates toward (rt +

γV (st+1), we call this as the TD target, and the error between the TD target and the

current estimate, rt + γV (st+1)− V (st) as the TD error and is denoted as δt.

In order to use the TD prediction in control problems, we implement the idea of gen-

eralized policy iteration. During learning, all of them should be repeatedly visited by the

agent to evaluate the values for all state and action pairs. However, in order to increase the

sum of future outcomes, the agent should exploit at some point and chooses optimal actions

only based on her current policy. This is called as exploration-exploitation trade-off and it

13

is one of the major challenges in reinforcement learning. There are two methods to ensure

the agent to explore all the state and action pairs in a control problem – on-policy control

and off-policy control. In general, we call a policy used in choosing an action as behavior

policy and a policy learned as target policy. On-policy control methods use the same policy

for both target and behavior policy while off-policy control methods have different policies

for them.

The TD target of on-policy TD(0) control algorithm is, therefore, rt + γQ(st+1, at+1)

where at+1 is chosen by the current behavior policy. This algorithm is called Sarsa since it

uses the quintuple of events, < st, at, rt, st+1, at+1 >, in its update. The complete algorithm

is presented in Algorithm 3.

The off-policy TD(0) control is known as Q-learning, one of the most popular reinforce-

ment learning algorithms. In Q-learning, the TD target directly approximates the Bellman

optimality equation (Eq.2.2) and its update rule is:

Q(st, at)←Q(st, at) + α · TD error

←Q(st, at) + α (rt+1 + γV (st+1)−Q(st, at)) (2.4)

As mentioned above, any policy can be chosen for the behavior policy since it is an off-policy

method. The algorithm is presented in Algorithm 4. The convergence of the algorithm to

the optimal Q-values have been proved under a specific conditions [131].

Theorem 1. Given bounded rewards |rt| <∞, learning rates 0 ≤ αt < 1, and

∞∑
t=1

αt =∞,
∞∑
t=1

(αt)
2 <∞ (2.5)

then Qt(s, a)→ Q∗(s, a) as t→∞, ∀s, a with probability 1.

The proof is presented in [131]. A common choice of the learning rate is a function that

output value decreases with the number of visits to a corresponding state-action pair.

14

Algorithm 4 Q-learning, off-policy TD(0) control

Initialize Q(s, a) for all s ∈ S, a ∈ A.
for each episode do

Initialize s← s0

repeateach step of episode
Choose an action a for s using a behavior policy derived from Q
Execute a, and observe r and st+1

Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s′, a′)−Q(s, a))
s← s′

until s is terminal
end for

2.4 Value Function Approximation

So far we have only considered finite state and action spaces, and we learn the values or

Q-values for all states and actions. Since we can represents the values in a table, we refer this

as a tabular case. When the number of finite states and/or actions is very large or the state

and/or action space is continuous, it is infeasible to represent and learn values and a policy

for all possible states and actions. This issue is stated as a curse of dimensionality problem

and is one of the major challenges in reinforcement learning. One solution for large and

continuous MDPs is value function approximation where we represent the value or Q-value

using a function with parameters θ:

V̂ (s; θ) ≈V π(s)

Q̂(s, a; θ) ≈Qπ(s, a)

For example, suppose that a task of a learning agent is to escape a maze navigating among

obstacles in two-dimensional environment. We define a state as the xy-coordinate, st =

[xt, yt] and xt ∈ IR, yt ∈ IR. Intuitively, value at s = [3.0, 3.0] should be close to s =

[3.05, 3.0]. Therefore, in value function approximation, we learn the parameters of a function

approximator instead of the exact values for all states and actions.

The input for the function can be either s or (s, a), and the output of the function can

be V (s), [Q(s, a1), · · ·Q(s, an)], or Q(s, a). There are many possible function approximators

15

including linear combinations of features, neural network, decision tree, nearest neighbor,

and fourier basis. For differentiable function approximators such as neural network and

linear combinations, we can use stochastic gradient descent to find the optimal values for

approximation parameters, θ∗. The objective here is minimizing the mean square value

error:

J(θ) = Es∼µ(·)

[(
V π(s)− V̂ (s; θ)

)2
]

(2.6)

where µ(·) is a state distribution and often chosen to be the fraction of time spent in a

certain state. The gradient of J(θ) with respect to θ is

∂J(θ)

∂θ
= 2Es∼µ(·)

[
V π(s)− V̂ (s; θ)

] (
−∇θV̂ (s; θ)

)
(2.7)

when V̂ (s; θ) is differentiable. Then, we update θ with the direction of minimizing the error,

∆θ = −1

2
α∇θJ(θ) (2.8)

where α is a positive step-size. 1/2 is multiplied here in order to cancel the factor 2 in Eq.2.7.

However, computing the exact expected value in Eq.2.7 is often challenging and inefficient.

Instead, we use stochastic gradient descent (SGD) to minimize the error by adjusting the

parameters θ with a small amount after each example is observed. In other words,

θ ← θ − α
(
V π(s)− V̂ (s; θ)

)(
−∇θV̂ (s; θ)

)
(2.9)

Mathematically, its expected update is identical to the full gradient update.

The simplest function approximator is a linear function, a linear combination of features

φ(s) = [φ1(s), · · · , φn(s)]T . The value function is represented by

V̂ (s; θ) = φ(s)T θ

16

Then, the gradient of J(θ) is now linear in θ,

∆θ = α
(
V π(s)− φ(s)T θ

)
φ(s)

and SGD converges on global optimum. However, what is the value for V π(s) in the above

equation? This is again a target value for the update, and as we have seen in the classical

reinforcement learning algorithms, we can use a sampled value for the target such as Monte-

Carlo target or TD target. For TD(0) learning, the update becomes:

∆θ = α
(
rt + γV̂ (st+1; θ)− φ(s)T θ

)
φ(s)

For control problems, the same approximation techniques are applied to Q functions

instead of V , for example, Q̂(s, a; θ) ≈ Qπ(s, a). For on-policy TD(0) control, the update is:

∆θ = α
(
rt + γQ̂(st+1, at+1; θ)− φ(s)T θ

)
φ(s)

and for off-policy TD(0) control, the update is:

∆θ = α

(
rt + γmax

a′
Q̂(st+1, a

′; θ)− φ(s)T θ

)
φ(s)

MC control, Sarsa, and Q-learning guarantee to converge to optimal values in the tabular

cases. However, with a linear function approximator, MC control and Sarsa chatters around

near-optimal values, and Q-learning is not guaranteed to converge. Moreover, none of them

is guaranteed to converge to optimal values with non-linear function approximator such as

neural network.

2.5 Deep Reinforcement Learning

Despite the convergence issue, neural networks have been successfully applied to reinforce-

ment learning contributing to the field, deep reinforcement learning. One of the early suc-

cesses in this application is TD-Gammon [123] which combined the TD(λ) algorithm [122],

17

a model-free TD learning, and a multi-layer neural network for the game of backgammon

and achieved near the level of the world’s best grandmasters. However, the TD-Gammon

method failed to be successful in other applications. The major challenges of applying deep

learning methods to reinforcement learning are 1) noisy, sparse, and delayed reward, 2)

correlated data samples, and 3) changes in the data distribution. Deep Q-network (DQN),

which combines Q-learning with a deep convolutional neural network or multi-layer neural

network, solves these challenges by using experience replay, a fixed target Q-network, and

normalized rewards [92, 93]. DQN is the first deep reinforcement learning algorithm that

achieved near-human performance in 49 different Atari 2600 games with raw sensory in-

puts. As it uses the raw sensory inputs, it requires extended training stages, but it drops

the dependency of the algorithm on the design of feature vectors. Following this success,

numerous studies have introduced deep reinforcement learning algorithms (mostly scaling

up prior work in reinforcement learning) or applied them to interesting applications such

as complex video games and robotic controls. AlphaGo, an artificial intelligence machine

trained by using both supervised and reinforcement learning, defeated a grandmaster of the

game of Go [116]. Double DQN extends Double Q-learning [51] applying similar techniques

used in DQN and improves the stability and estimation bias of DQN through a use of a dou-

ble estimator [129]. Dueling DQN extends the DQN architecture by learning networks for

the value function, V π, and the advantage function, Aπ where Aπ(s, a) = Qπ(s, a)− V π(s),

instead of Qπ [130]. Besides these algorithms, many studies improve DQN with various ap-

proaches, and the Rainbow algorithm combines improvements of different DQN extensions

[54].

Deep learning has also been applied to other types of reinforcement learning such as

policy search and actor-critic methods. Trust region policy optimization (TRPO) optimizes

a local approximation to the expected return of the policy proving monotonic improvement

[113]. Proximal Policy Optimization (PPO) optimizes a surrogate objective function using

stochastic gradient ascent [114]. It improves TRPO in a way that it is simpler to imple-

ment and empirically shows better sample complexity. Deep Deterministic Policy Gradient

18

(DDPG) is an actor-critic method that learns a Q-network (critic network) as well as a

policy network. It extends the DQN algorithm with a policy gradient method and also pro-

poses a soft target network update [82]. As it is learning a policy network separately, it is

applicable to continuous action space problems. Normalized Advantage Functions (NAF) is

another continuous variant of DQN which applies a simple and effective adaptive exploration

method with an actor-critic architecture [44]. The Asynchronous Advantage Actor-Critic

(A3C) algorithm uses multiple learning agents where each agent has its own network and

asynchronously interacts with a learning environment [91]. It can be faster and more robust

than similar algorithms as it employs the diversification of knowledge of multiple agents.

Deep reinforcement learning is a fast-growing field as of the time of this writing. However,

most empirical results or demonstrations of algorithms in this field are limited in simulation,

and efforts towards real-world applications such as meta reinforcement learning and transfer

learning have received increasing attention lately. It has also been pointed out that the

reproducibilities of popular algorithms remain in question. As discussed in this paper [53], it

is important for authors to check reproducibility, to use proper experimental techniques, and

to report details of procedures when proposing a new algorithm and claiming improvements

over existing methods.

19

Chapter 3

Efficient Learning of Stand-up

Motion for Humanoid Robots

3.1 Introduction

There has been much interest in using humanoid robots for tasks in various applications

such as disaster response, personal assistance, and education. In these scenarios, robots are

required to walk around and complete complex tasks while alternating between different

body poses. This requires complicated motions exposing the robots to situations where

they are likely to fall down. For example, twenty-four teams recently competed in Defense

Advanced Research Project Agency (DARPA) Robotics Challenge Final. The mission of the

challenge was to complete a course of eight tasks related to disaster response. Most of the

robots that competed were humanoid since the environment was designed to be similar to

human environments. However, many robots fell during the competition (Fig.3.1), and only

one robot from Team Tartan was able to stand up after falling. Although the robot spent

considerable time to stand up, it was able to resume the remaining tasks without restarting

the challenge. Other robots may have been able to complete each individual task, but did

not have the opportunity since they could not stand up and had to restart the challenge

after falling. This example shows that having more efficient and versatile stand-up motions

20

is clearly important for humanoid robots.

Stand-up motions for humanoid robots have previously been studied with a number of

different types of robots. Stückler et. al. suggested four episodic phases in each stand-

up motion from the prone and supine positions, respectively [121]. Hirukawa et. al. also

developed a stand-up motion for the HRP-2P human-size humanoid robot [56]. However,

such stand-up motions cannot be easily implemented to other robot models because of

their high dependency on specific robots. Moreover, they are only applicable under strict

conditions and they consist of only one or two courses of actions with constant joint angles.

This significantly limits the number of fallen body configurations available. Humanoid robots

can be damaged by executing their fixed stand-up motion sequences regardless of what their

current body configurations are. It had not been a major problem because most humanoid

robots were designed to perform only a few specific tasks using either their upper bodies

only (e.g. manipulator robots) or their lower bodies only (e.g. robot soccer). However,

as the DARPA Robotics Challenge example shows, humanoid robots are now expected to

perform various tasks using their both upper and lower bodies simultaneously increasing the

possibility of falling with numerous postures. Thus, it is necessary to find stand-up motions

which can be safely applied to different body configuration of humanoid robots, can be easily

implemented to different types of humanoid robots, and can be extended to more complex

environments.

One possible approach to finding such stand-up motions is learning the motions using

reinforcement learning. Reinforcement learning enables robots to learn their optimal course

Figure 3.1: Robot falls during the DRC Finals: Team IHMC (left) and Team THOR (right).

21

of actions by interacting with their environment [122]. One major benefit of using rein-

forcement learning rather than supervised learning is that there is no need for having a

knowledgeable external supervisor. In other words, humans are not always correct about

which courses of actions are optimal for many different initial fallen poses. Reinforcement

learning has been applied to many robotic tasks, and due to complexities such as con-

tinuous, high-dimensional state and action spaces, various learning approaches have been

introduced and evaluated on robotic systems [71]. Peters et. al. introduced the Natural

Actor-Critic algorithm and applied the algorithm to learning nonlinear motor primitives for

arm movements of a humanoid robot [105]. The algorithm has also been applied to other

humanoid robotics applications [45, 128]. Morimoto and Doya proposed a stand-up motion

of a three-link-two-joint robot obtained using Hierarchical reinforcement learning [95]. They

used Q-learning with discrete states and actions for the upper level and TD(λ)-learning

with actor-critic method with continuous states and actions for the lower level. However,

stand-up motions of a full body humanoid robot (having both legs and arms) requires one

to consider movements of all its joints and thus these previous approaches may not be ap-

plicable to learning stand-up motions. Mordatch et. al. presented a method for motion

control of humanoid robots [94]. They used a model-based policy search with trajectory

optimization and neural network for high-level commands, and a model-free technique for

low-level joint control. They demonstrated their method on a physical robot, but complex

tasks such as standing up were only tested in simulation.

In this chapter, we introduce a method for learning stand-up motion for humanoid robots.

In Sec 3.2, we define representative states and actions using a clustering technique instead

of applying a function approximation method. A reward function is designed by considering

various key features which affect stand-up motion. Our reward function for stand-up motions

enables our low cost biped platform, DarwIn-OP humanoid robot, to receive feedback from

the environment without requiring additional sensors such as a force sensor detecting ground

contact [94]. Additionally, we present the LS (Learning in Symmetric spaces) method which

utilizes the bilateral symmetric feature of humanoid robots and learns more efficiently. We

22

learned the policy in simulation using Q-learning and were able to efficiently update Q values

using the symmetric state-action pairs.

This chapter is based on the papers presented in Thirtieth AAAI Conference on Artificial

Intelligence (AAAI) and 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) [61, 62].

3.2 Representative States and Actions by Clustering

In order for a state to correspond a certain pose or a group of poses of a humanoid robot,

it must contain the information of all joint positions and body attitude angles of the robot.

Degrees of freedom of most full body humanoid robots range from 18 to more than 50.

Thus, if we define a state space with all these variables, the state space will be continuous

with at least twenty components. Function approximation techniques have been employed

in many reinforcement learning problems in continuous domains. The simplest function

approximator for a value function is a linear function approximator with a basis functions

such as polynomial, Gaussian, radial, and Fourier basis. Although it has been widely used in

reinforcement learning and has shown reasonable results, dimension of feature vectors from

these basis functions is still large because of the dimension of the original state space is large.

For example, for nth order Fourier expansion in d dimension, the function approximation

requires (n+ 1)d basis functions [73].

Instead of using a function approximation method, we define representative states by

discretizing continuous raw input data of a robot (all joint positions and body attitude

angles) using a clustering method, Expectation-Maximization (EM) algorithm for Gaussian

Mixtures [62]. EM is powerful learning algorithm to find the maximum likelihood for mod-

els with hidden variables [11]. This iterative algorithm optimizes the marginal likelihood

by alternating two steps, called the E step and M step. Each centroid of clusters, then,

represents a class of poses that can be visited by the robot during standing up after falling.

The algorithm is presented in Algorithm 5.

23

Algorithm 5 Expectation-Maximization for Gaussian Mixtures [11]
1: Initialize the means, µk, covariances, Σk, and mixing coefficients, πk for k = 1, · · · ,K

where K is the total number of clusters.
2: Given a data set of observations X = {x1, · · · , xN}
3: Evaluate the initial log likelihood : ll = log p(X|µ,Σ, π)
4: repeat
5: E step: Evaluate the responsibilities for n = 1, · · · , N and k = 1, · · · ,K:

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

6: M step: Re-estimate the parameters using γ(znk) (where Nk =
∑N

n=1 γ(znk)):

µnewk =
1

Nk

N∑
n=1

γ(znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnewk)(xn − µnewk)T

πnewk =
Nk

N

7: Evaluate the log likelihood llnew = log p(X|µnew,Σnew, π)
8: until |llnew − ll| < ∆

First, we define a continuous input vector, u:

u = [q1, q2, · · · , qNJ , ϕ, θ]
T , u ∈ U =(NJ+2)

where NJ is the number of joints of a robot, qi ∈ [−π, π] is ith joint angle (rad), and ϕ, θ ∈

[−π, π] represent roll and pitch of the robot with respect to the global frame, respectively.

We do not include yaw angle of the robot since how much the robot is rotated around

the gravity axis does not affect to describe its pose under the assumption. However, yaw

angle should be included in more complex environment such as inclined surface and obstacle

environments. Since it is obvious that there is no reason to explore forward actions when the

robot falls down backward and vice versa, we consider the stand-up as two separate cases:

standing up from chest-down fallen body positions (θpitch ≥ 0 subscript F) and standing up

from back-down fallen body positions (θpitch < 0 subscript B).

24

We collect continuous pose data points, mathbfu, by randomly generating random mo-

tions from numerous fallen position (details are discussed in the experiment section). Ap-

plying EM with initial spherical covariance matrices and priors in uniform frequency to the

collected continuous data, we construct Nc number of clusters where Nc,F clusters are for the

chest-down fallen position case and Nc,B clusters are for the other case (Nc = Nc,F +Nc,B).

Let zk be the centroid vector of the kth cluster. Then, its first NJ components correspond

to joint positions and the last two components correspond to body roll and pitch angles. In

practice, some centroids cannot describe static poses or cause self collisions, so it is necessary

to modify values of such centroids to values of their closest static poses. The representative

states are defined by the centroids as:

st = s(i) if i = argmin
1≤k≤Nc

‖zk − ut‖2

and its state space, S, is defined as:

s(i) ∈ S = SF ∪ SB, for i = 1, · · · , Nc

where SF and SB are subspaces corresponding to the forward and backward regions, respec-

tively. States in their intersection, SF ∩ SB, are finalizing states, close to neutral postures

with ϕ = 0, which can be reached from both cases.

Representative action is defined as a transition to a state, and thus, each action corre-

spond to one of the states in S. Each centroid vector of the clusters defines goal positions

of all the joints at each action as:

a(k): Move all joints to goal positions, q(k)
goal

(q
(k)
goal)j = (zk)j for j = 1, · · · , NJ

Similar to the state space, the action space, A, consists of two subspaces with finalizing

25

actions in AF ∩AB:

a(i) ∈ A = AF ∪AB, for i = 1, · · · , Nc

3.3 Reward Function for Stand-up Motion

3.3.1 Reward Variables

A reward function in reinforcement learning informs a learning agent whether executing an

action at a current state is beneficial for achieving a goal [122]. When the goal of the robot

is to learn appropriate stand-up motions, the following five factors are affected by stand-up

motions [62]. At step t when st = s(i), at = a(j), the reward variables (ξ1,t, · · · , ξ5,t) are:

• Accumulated body angular acceleration differences

ξ1,t =
m−1∑
k=1

‖(ω(τk+1)− ω(τk))‖2
τk+1 − τk

where τ1 = τ(t), τm = τ(t+ 1) are real time (sec) at step t and step t+ 1, respectively,

when each joint moves with m linear interpolation.

• Height Difference,

ξ2,t = Ht+1 −Ht

where Ht is the height of the center of mass of the robot before it executes the action

at.

• Body Pitch difference

ξ3,t = |θt| − |θt+1|+ cθ(sgn(θt+1θt)− 1)

• Body Roll difference

ξ4,t = |ϕt| − |ϕt+1|+ cϕ(sgn(ϕt+1ϕt)− 1)

26

• Difference from goal attitude of a(j)

ξ5,t =
∥∥[zj,nJ+1, zj,nJ+2]Tgoal − [ϕ, θ]Tt+1

∥∥
If the angular acceleration of the body is too high, the robot can potentially hit the

ground with too large impact force, fall down again, or execute a very unstable movement.

This enables us to evaluate motions in low-cost humanoid robot platforms such as Darwin-

OP without requiring force sensors. Moreover, intuitively, the height of the robot should

be increased and its body pitch and roll angles have to be closer to 0 over time in order to

stand up. Thus, ξ2,t is positive if its height has been increased, and ξ3,t and ξ4,t are positive

if the body pitch and roll become closer to zero. The last terms of the third and fourth

equations represent penalties of moving to the opposite side (e.g. moving from θt = 60 to

θt+1 = 10 is better than moving from θt = 60 to θt+1 = −10). ξ5,t represents how close the

robot is to its goal by executing the action at the current state.

However, none of them can determine a proper reward value by itself. For example, ξ1,t

will be high when the robot moves from its current pose to a good pose omitting intermediate

poses. Similarly, it is not always beneficial to increase its height. It is possible that it moves

its head to a lower position and its feet at a higher position. Therefore, we consider the

trade-off between those variables.

3.3.2 Reward Function

The total reward function is defined as :

rt =
5∑
i=1

ri =
5∑
i=1

wi(tanh
(
ci(ξi,t − νi)

)
+ bi)

where wi, ci, νi, and bi are constants which determine the trade-off between the effects of the

five variables. Hyper tangent function is used to saturate too small or too large values. For

example, we ignored small angular velocity differences and assigned the maximum penalty,

-1, for values above a threshold. ξ1 and ξ5 are used only for penalty and others are used for

27

Figure 3.2: Symmetric poses for the DarwIn-OP robot

reward as well as penalty (ri ∈ [−1, 0] for i = 1, 5 and ri ∈ [−1, 1] for i = 2, 3, 4).

3.4 Bilateral Symmetric Feature of Humanoid Robots

In general, humanoid robots have bilateral symmetry. Thus if there is a course of actions,

{a1, · · · , an}, which enables a robot to stand up from a certain fallen positionm, the robot is

also able to stand up from a fallen position symmetric tom by performing a course of actions

symmetric to {a1, · · · , an} (Fig.3.2). This means that one can obtain two optimal motions

for two symmetric fallen positions with just one side. In addition, a robot can attempt

more actions during learning which may allow the robot to find a better action, especially in

cases with discrete actions. Therefore, we defined another state space, X, symmetric to S

excluding some states in S bilaterally symmetric to themselves. Let s̄ denote the symmetric

state of the state s, then X = XF ∪XB and XF ∩XB = ∅ where

XF = {x(i)|x(i) = s̄(i) non-bilaterally symmetric ∀s(i) ∈ SF }

XB = {x(i)|x(i) = s̄(i) non-bilaterally symmetric ∀s(i) ∈ SB}

XF and XB do not share any state unlike SF and SB do because the finalizing states are

bilaterally symmetric to themselves.

A state at step t, therefore, is determined by finding the closest cluster to its continuous

28

input data at t as follow:

st = min(s(i), s̄(j))

where i = argmin1≤k≤Nc ‖zk − ut‖2

j = argmin1≤k≤|X| ‖z̄k − ut‖2

There also exists the symmetric action space, B = BF ∪BB and BF ∩BB = ∅ where

BF = {b(i)|b(i) = ā(i) non-bilaterally symmetric ∀a(i) ∈ AF }

BB = {b(i)|b(i) = ā(i) non-bilaterally symmetric ∀a(i) ∈ AB}

3.5 Learning in Symmetric Spaces

In order to find the optimal policy for standing up motions, Q-learning, an off-policy TD

control algorithm, is used (γ = 0.9) with the Boltzmann action policy with τ = 0.3 [122].

The learning algorithm is summarized in Algorithm 6.

3.5.1 Updating Symmetric State-Action Pairs in Learning

In this learning algorithm, we applied the bilateral symmetric feature of humanoid robots

to learn quicker than an algorithm with the same number of states and actions but without

the symmetric feature. Moreover, it can learn more flexible motions than ones learned by

an algorithm with only S and A. In reinforcement learning, policy π defines the behavior

of a learning agent (the robot in this case). In this framework, a state-action pair has the

same policy with its symmetric pair.

π(s(i), a(j)) = π(s̄(i), ā(j)) and π(s(i), ā(j)) = π(s̄(i), a(j))

29

Algorithm 6 Learning in Symmetric Spaces with Q-learning
1: Initialize Q(s, a) ∀s ∈ S, ∀a ∈ A
2: for each step t do
3: Input: ut = [q1(t), · · · , qJ(t), φ(t)θ(t)]T

4: Assign st = s(i) where i = argminl∈Z ∪ Z̄ ‖zl − ut‖2
5: Choose at = a(j) from πaction

6: Execute at and observe ut+1, st+1 = s(k), rt = fr(st, at, st+1)
7: if st ∈ X then
8: s = s̄(i), a = ā(j)

9: else
10: s = s(i), a = a(j)

11: end if
12: if st+1 ∈ X then
13: s′ = s̄(k)

14: else
15: s′ = s(k)

16: end if
17: Q-Update: Q(s, a)← Q(s, a) + αt

[
rt + γ ·maxa′∈AQ(s′, a′)−Q(s, a)

]
18: end for

Therefore, instead of updating Q values once for each of the four different pairs, we can

update the values of the two different pairs twice. This allows us to reduce the size of

the Q matrix. Thus, instead of having (|S| + |X|) × (|A| + |B|) parameters to learn, we

have |S| × (|A| + |B|) parameters. From line 7 to 16 in Algorithm 6 show a procedure of

transferring a state-action pair to its symmetric pair to update a corresponding Q value at

the step t.

3.5.2 Learning Rate For Representative States and Actions

We used a modified learning rate related to the clustering method for the Q-update:

αt = α(st, at,ut) = c · p(ut|st) ·
1

(1 + visits(st, at))

where c is a scaling constant and p(u|s) is the probability density function of having the

discrete state s given the continuous input u. This probability can be considered as a weight

of the learning rate. If the current continuous input is far from the assigned cluster centroid,

its learning result affects to the corresponding Q value less. Since EM for Gaussian Mixtures

30

is used for clustering, we define this probability follows the Gaussian distribution with mean

z and a spherical covariance σ2.

p(ut|st = s(k)) =
1√

2πσ2
exp

(
−
‖ut − zk‖22

2σ2

)
This learning rate satisfies Watkins’ theorem on convergence of Q-values [131] with selecting

proper values for σ and c. Using σ = 0.2 and c = 0.5, the upper bound can be proved as

following:

α =
c√

2πσ2
exp

(
−
‖u− z‖22

2σ2

) 1

(1 + visits(s, a))

≤ c√
2πσ2

1

(1 + visits(s, a))
≤ c√

2πσ2
< 1

The lower bound is simply proved since the constant terms and 1/(1+visits(s, a)) are larger

than 0 and the exponential function is always larger than 0. This learning rate significantly

improves the learning performance.

3.6 Experiments

3.6.1 Experimental System Details

We applied our method to the DarwIn-OP humanoid robot. The robot consists of twenty

MX-28 servo motors - three for each arm, six for each leg, and two for its neck. We did not

use the neck joints for stand-up motions. Yi developed two stand-up motions for prone and

supine fallen positions of this robot using direct joint level control [136]. The motions consist

of five and seven motion sequences, respectively, and each sequence is a set of constant joint

positions as similar to other approaches mentioned in the introduction. We denote these

two motion sequences as MF and MB, respectively. They are used for prior knowledge as

well as for a comparison when evaluating the result of the proposed learning method.

31

3.6.2 Generating Clusters

In order to find reasonable representative states by clustering, we generate random motions

of a robot from many different fallen positions by randomly choosing one of left arm, right

arm, left leg and right leg to move as well as its direction. Self-collisions and joint limits

are used as constraints. By doing this, we can collect continuous data with the form of the

input vector, u which informs many possible poses that the robot can make while standing

up.

We constructed 14 clusters (Nc,F = 10, Nc,B = 8) from the collected dataset (Fig.3.3).

Then, we added the motion sequences in MF and MB as centroids of additional clusters.

They are not included in X and B since their motions are bilateral symmetric. We regarded

two motion sequences which were in both MF and MB as finalizing states/actions. The

subspaces and state (action) numbers are summarized in Fig.3.4.

In order to improve the learning efficiency further, we can use our prior knowledge for

the initial Q values. Since executing an action in AB is obviously not an optimal solution

when the robot has a state in SF , and vice versa, a negative value is assigned to the initial

Q values of this case. The initial Q values we used are shown in Fig.3.5.

Figure 3.3: (Shown as converted by PCA(3)) The continuous data we collected by generating random
motions from the robot (Left). The centroids of the final clusters before addingMF andMB (red(F)
and blue(B)) with their symmetric centroids (green(F) and black(B)) (Right)

32

Figure 3.4: Assigned state(or action) indicies in state(or action) spaces

3.6.3 Results and Evaluation

In order to evaluate the significance of using the symmetric feature in LS method, two

different non-LS methods were also tested. These methods do not consider the symmetric

feature in the same model including the reward function and the initial Q values. The first

method learned an optimal policy with states and actions only in S and A. Therefore, the

number of states and the number of actions were 28 for each (non-LS(28)). The second

method used the same state and action space definitions with LS method but did not

include the symmetric features during learning. Therefore, the robot learned for 46 by 46

state-action pairs (non-LS(46)). Fig.3.5 shows the Q values (z axis) of all state-action pairs

at t = 850 updated by LS method. The n umber of learning steps is determined by the

number of visits to state-action pairs. A lot of states are not reachable from other states, so

Figure 3.5: Left : Initial Q values, Right : Final Q values

33

Figure 3.6: Evaluation on speed of performed motions with the real robot (red: LS, green: Manually
designed Stand-up motion, blue: non-LS(28), black: non-LS(46))

the actual steps (samples) required is far less than |S| × (|A|+ |B|).

As a result, the policy of the non-LS(28) method resulted 7 failures among 15 trials

while the policy of the LS method resulted 2 failures among 15 trials. One major reason

of the failure in the non-LS(28) method is its limited number of action choices. Moreover,

the robot almost exploits to such actions rather than explores other actions. In addition

to the success/failure test, we also evaluated how fast the robot was able to stand up in

trials where both of the policies succeeded (8 trials among 15 trials, the plot in Fig.3.6).

The y-axis of the plot is the reciprocal of the number of transitions in each trial (higher is

faster). As the figure shows, LS method is faster than non-LS(28) method in 5 trials and

equal to the method in 1 trial. We applied these policies learned in the simulation as well

as the manually designed stand-up motion, denoted as MS, to the real physical robot, and

tested them with five different initial fallen poses. The bottom plot in Fig.3.7 shows the

speed efficiencies of each method in each trial. Cases where the robot failed to stand up

are not plotted. Thus, only LS method succeeded in all the trials and faster or equal to

other methods which succeeded in each trial. Fig.3.8 is a sequence of screenshot images of

an example result of the LS method.

34

Figure 3.7: Evaluation on speed of performed motions with the real robot (red: LS, green: Manually
designed Stand-up motion, blue: non-LS(28), black: non-LS(46))

Figure 3.8: A sequence of a successful stand-up motion of a real-robot experiment example (from
top left to bottom right).

3.7 Summary

In this chapter, we studied a new method of learning stand-up motions for humanoid robots

using Q-learning and utilizing their bilateral symmetry. We first defined discrete repre-

sentative states and actions applying EM for Gaussian Mixtures to high dimensional and

35

continuous robot pose information data. Then, we defined their symmetric states and ac-

tions and incorporated this symmetry when updating the value function. We demonstrated

our method by implementing it on DarwIn-OP humanoid robot. The result shows that

the stand-up motion learned by our method has less number of motion transitions as well

as much higher successful rate on standing up from various initial fallen poses than other

stand-up motions - manual stand-up motions and non-LS methods.

Although the kinematic model of the robot was required in order to measure its height

and to check self-collisions since we used low-cost biped without using any additional sen-

sor, our method can be easily implemented to any type of humanoid robots. Moreover, this

reinforcement learning approach enables the stand-up motions to be extended to more com-

plex environment applying other learning methods such as transfer learning and Hierarchical

reinforcement learning.

36

Chapter 4

Assumed Density Filtering Q-learning

4.1 Introduction

Despite the recent success of reinforcement learning, there remain several key questions.

First, one of major challenges in reinforcement learning is the exploration-exploitation trade-

off. When is the appropriate time for a learning agent to stop exploring and choose the best

action for each state according to its current knowledge? Or should the learning agent con-

tinue exploring new actions in order to find a better policy? If it should continue exploring,

which action should the learning agent select to explore? Second, some prior knowledge

might only be partially known for certain states and/or actions, or might be known with

different uncertainties. How can we incorporate this knowledge into a learning process so as

to provide a good baseline?

One approach that can provide answers to these questions is Bayesian reinforcement

learning. Bayesian reinforcement learning is one of the approaches in reinforcement learn-

ing that deploys Bayesian inference in order to incorporate new information into prior in-

formation. It explicitly quantifies the uncertainty of learning parameters unlike standard

(frequentist) reinforcement learning which uses point estimates of the parameters. There-

fore, an explicit quantification of the uncertainty can optimize the exploration-exploitation

trade-off by exploring actions with larger uncertainty more often than actions with smaller

uncertainty. Moreover, prior knowledge on learning parameters can be utilized in the up-

37

date based on its uncertainty when there is a new example [134]. In the off-policy temporal

difference learning, this problem is related to the overoptimism issue of Q-learning which

have been discussed in a number of papers [50, 51, 127, 129]. The greedy max operator in

Q-learning 2.4 leads to overestimated Q-values in the early stage of learning. It has been

shown that it becomes especially problematic when combined with a function approximation

method and/or when used for stochastic MDPs. Double Q-learning [51] improves the over-

estimation issue by having two estimators and using one for selecting the subsequent action

and the other one for estimating the value of the subsequent state. However, as it is pointed

out in the original paper, Double Q-learning is not a full solution of the overestimation issue

of Q-learning and it sometimes underestimates the values. The double estimator still does

not contain the degree of the prior knowledge of the learning agent on Q-values.

A number of algorithms have been proposed in both model-based Bayesian reinforcement

learning [25, 30, 46, 107, 120] and model-free Bayesian reinforcement learning [20, 26, 32,

33, 36, 37]. However, Bayesian approaches to off-policy temporal difference (TD) learning

have been less studied compared to alternative methods due to difficulty in handling the

max non-linearity in the Bellman optimality equation. Dearden’s Bayesian Q-Learning [26],

Kalman Temporal Difference Q-learning (KTD-Q) [36], and Gaussian Process Q-learning

(GPQ) [20] are perhaps the closest Bayesian counterparts to Q-learning. Dearden’s ap-

proach assumes that Qs,a follows a Gaussian distribution and updates the distribution by

numerically compute the moments. Although it outperforms Q-learning in several finite

domains utilizing the uncertainty for exploration during learning, it does not guarantee the

convergence to an optimal policy. Moreover, the computation of the algorithm is notoriously

taxing. GPQ models Qs,a as a Gaussian Process and its convergence to optimal Q-values are

provided. However, as a common limitation of the Gaussian Process, it does not scale to the

high-dimensional state space. KTD-Q uses the unscented Kalman filter scheme. By analyti-

cally updating the mean and covariance of learning parameters, it requires less computation

time than the Dearden’s method. However, the Cholesky decomposition in the unscented

transform demands high computational complexity. Additionally, the convergence of KTD-

38

Q to optimal Q-values is only shown in a deterministic environment (Further details of these

algorithms are explained in Sec.4.2). These limitations prevent the algorithms from being

used in practical settings and being extended to more complex environments. Yet off-policy

TD methods in standard reinforcement learning such as Q-learning [131] have been widely

used in standard reinforcement learning, including extensions integrating neural network

function approximations such as Deep Q-Networks (DQN) [92].

In this chapter, we introduce a novel approximate Bayesian Q-learning algorithm, de-

noted as ADFQ, which updates belief distributions of Q (action-value function) and ap-

proximates their posteriors using an online Bayesian inference algorithm known as assumed

density filtering (ADF). In order to reduce the computational burden of estimating pa-

rameters of the approximated posterior, we propose a method to analytically estimate the

parameters. Unlike Q-learning, ADFQ considers all possible actions for the next state, and

returns a soft-max behavior and regularization determined by the uncertainty measures of

the Q-beliefs. This can alleviate the overoptimism and instability issues from the greedy

update of Q-learning. We prove the convergence of ADFQ to the optimal Q-values by show-

ing that ADFQ becomes identical to Q-learning as all state and action pairs are visited

infinitely often. We demonstrate the performance of the algorithm in a set of deterministic

and stochastic finite MDPs. In Chapter 5, we extend ADFQ with a neural network and

show its promising performance in continuous state domains and Atari 2600 games.

This chapter is based on the paper [64] published in the proceedings of the 28th Inter-

national Joint Conference on Artificial Intelligence. The ADFQ source code can be found

in https://github.com/coco66/ADFQ.

4.2 Related Work

In this section, we will review some of Bayesian reinforcement learning algorithms that

correspond to Q-learning in the classical reinforcement learning. This will help the readers

to understand how Bayesian methods are integrated into the update of Q-values and how

the uncertainty measures can be used to accelerate the learning.

39

Dearden et al. has proposed Bayesian Q-Learning (Dearden’s BQL) assuming that the

total discounted future reward, denoted as Rs,a when executing action a at state s, is a Gaus-

sian random variable with mean µs,a and precision τs,a [26]. The conjugate prior of Rs,a,

p(µs,a, τs,a), is a normal-gamma distribution with parameters < θs,a, λs,a, αs,a, βs,a >. By

the definition of the action-value function in reinforcement learning, Qs,a = E[Rs,a] = µs,a

and is normally distributed with mean θs,a and precision λs,aτ [27]. Among the four learn-

ing algorithms suggested in the paper, Myopic-VPI action selection with Mixture updating

(VPI+Mix) led to the best overall performance. The Myopic-VPI selection considers quan-

tity of policy improvement when selecting an action. The value of perfect information (VPI)

is defined as the expected gain:

V PIs,a =

∫ ∞
−∞

Gains,a(µ
∗
s,a = x)Pr(µs,a = x)dx

where the gain of choosing action a at state s when the true mean, , is given is defined as:

Gains,a(µ
∗
s,a) =

E[µs,a2]− µ∗s,a if a = a1 and µ∗s,a < E[µs,a2]

µ∗s,a − E[µs,a1] if a 6= a1 and µ∗s,a > E[µs,a1]

0 otherwise

a1 and a2 are the best and the second best actions, respectively. Then, an action is chosen

to maximize V PIs,a − expected cost, a∗ = argmaxa{V PIs,a − (maxa′ E[Qs,a′]−E[Qs,a])} =

argmaxa{V PIs,a+E[Qs,a]}.In the Mixture updating, the posterior distribution over µs,a, τs,a

is updated after an immediate reward, r, and is observed as:

pmixr,s′ (µs,a, τs,a) =

∫ ∞
−∞

p(µs,a, τs,a|r + γx)p(Rs′ = x)dx

where Rs′ is equal to Rs′,π∗(s′) assuming that it follows the apparently optimal policy π∗.

The distribution does not have a simple closed form, so they approximated it to the closest

normal-gamma distribution using KL-divergence.

40

Although Dearden’s BQL with VPI+Mix has been successfully implemented by other

researchers [42, 88], it has limitations on theories and implementation. First, the Myopic-

VPI selection does not guarantee that µs,a will converge to the true Q-value since it may not

try each action infinitely often. It always selects an optimal action according to its current

knowledge rather than occasionally selecting a suboptimal action. Second, the assumption on

the distribution over Rs,a and the Mixture updating does not satisfy the Bellman optimality

equation. The maximum of Gaussian random variables with different means and variances

does not have a Gaussian distribution. Additionally, r+γmaxa′ E[Rs′,a′] has to be considered

in the Mixture updating instead of r + γRs′ according to the Bellman optimality equation.

Third, the assumption on Rs′ = Rs′,π∗(s′) ignores the stochasticity of choosing the best

action at state s′ according to his belief. Finally, the implementation of this approach is

nontrivial, especially due to the numerical integration of pmixr,s′ (µs,a, τs,a).

Gaussian Process model of the value function learning, denoted as GPQ, is an off-policy

Bayesian non-parametric approximate reinforcement learning algorithm which models a true

action-value function, Q∗s,a, as a Gaussian Process with mean m∗s,a and positive semi-definite

covariance kernel k([s, a], [s′, a′]) [20]. The paper presents two GPQ algorithms in batch and

online settings–Batch GPQ and Online GPQ.

Let the current estimate of the mean of the Q-function be Q̂(s, a) = m̂(s, a). In Batch

GPQ, at each step, the model of Q̂(s, a) is updated with observed data as Q̂(st, at) =

r(st, at) + γmaxa′(Q̂(st+1, a
′)). In Online GPQ, the method used in Batch GPQ cannot be

applied because of its expensive computational requirements for the convergence. Therefore,

they suggested a modified algorithm online GP which chooses a basis vector to be added in

the active bases set using the sparse online GP algorithm [22]. This online GPQ algorithm

uses ε-greedy method for its exploration strategy which is simple but efficient. Therefore,

they suggested another exploration strategy, called optimistic online GPQ, that chooses

an action that are greedy with respect to a upper confidence tail, m(s) + 2Σ(sτ+1), while

updating GP as Q̂(st, at) = r(st, at) + γmaxa′(Q̂(st+1, a
′) + 2Σ(st+1, a

′)).

The online GPQs with the ε-greedy and with the optimistic exploration strategies were

41

tested in three domains - Gridworld(5×5), Inverted pendulum, and Puddle World. The

optimistic GPQ showed the best performance in the first two domains, less complex problems

than the Puddle World domain. In the last domain, pervious Q-learning variants showed

better performance because the wide range of values around the puddle made it difficult to

place basis. The authors concluded that GPQ performs almost as well as their best case

with less information and far outperforms their worst-case results. However, the challenges

in basis placement may provide a significant limitation when we apply the algorithm to

complex domains.

Kalman Temporal Difference algorithm, denoted as KTD, approximates the value func-

tion using the Kalman filtering scheme. It considers parameters of the value function as

hidden states and tracks them through indirect observations, or rewards from the environ-

ment.

Let θt be the hidden variables (or function approximation parameters) at time t. Then,

from the one-step look ahead sample of the Bellman optimality equation, rt can be expressed

as

rt = V̂θt(st)− γV̂θt(st+1)

or,

rt = Q̂θt(st, at)− γmax
a′∈A

Q̂θt(st+1, a
′)

In KTD, rt is considered as an observed variable and replaced by a function of the pa-

rameters, gt(θ). The idea behind KTD is to express value function approximation

as a filtering problem: the parameters are the hidden state to be tracked (modeled as

random variables following a random walk), the observation being the reward linked to the

parameters through a Bellman equation. And the variables are defined as:

θt = θt−1 + vt rt = gt(θt) + nt

where the evolution noise, vt, is white, independent and of variance matrix Σvt , and the

observation noise, nt, is also white, independent and of scalar variance, σnt . Given deter-

42

ministic transitions, this model noise arises because the solution of the Bellman equation

does not necessarily exist in the hypothesis space induced by the parameterization:

• random vector, θt and its estimation:

θ̂t|t−1 = E[θt−1 + vt|r1:t−1] = θ̂t−1|t−1

r̂t|t−1 = E[gt(θt) + nt|r1:t−1] = E[gt(θt)|r1:t−1]

• variance:

Pt|t = cov(θt − θ̂t|t|r1:t)

= Pt|t−1 −KtPrtK
T
t

Note that this variance matrix encodes the uncertainty over parameter estimates, and

not the intrinsic uncertainty of the considered MDP. It is not the variance of the

random process from which the value function is the mean.

KTD-Q is the extension of KTD to Q-learning. They handle the nonlinearity of the max-

operator in the update by the unscented transform. However, KTD, KTD-Sarsa, and KTD-

Q are defined under the deterministic assumption of an MDP (which transition probabilities

between states are either 0 or 1). XKTD and XKTD-Sarsa are proposed separately as

extensions of the original algorithms for the stochastic case. However, KTD-Q was failed to

be extended to the stochastic case (the section 4.3.2 in [36]). Another limitation of KTD-Q

is that it requires many parameter values to be chosen and it is computationally expensive.

4.3 Belief Updates on Q-values

We defineQs,a as a Gaussian random variable with mean µs,a and variance σ2
s,a corresponding

to the action value function Q(s, a) for s ∈ S and a ∈ A. We assume that the random

variables for different states and actions are independent and have different means and

variances, Qs,a ∼ N (µs,a, σ
2
s,a) where µs,a 6= µs′,a′ if s 6= s′ or a 6= a′ ∀s ∈ S,∀a ∈ A.

43

According to the Bellman optimality equation in Eq.2.2, we can define a random variable

for V (s) as Vs = maxaQs,a. In general, the probability density function for the maximum

of Gaussian random variables, M = max1≤k≤N Xk where Xk ∼ N (µk, σ
2
k), is no longer

Gaussian:

Pr (M ≤ x) =

N∏
i=1

Pr(Xi ≤ x) =

N∏
i=1

Φ

(
x− µi
σi

)
p (M = x) =

d

dx
(Pr (M ≤ x))

=
N∑
i=1

1

σi
φ

(
x− µi
σi

) N∏
i 6=j

Φ

(
x− µj
σj

)
6= Gaussian (4.1)

where φ(·) is the standard Gaussian probability density function (PDF) and Φ(·) is the

standard Gaussian cumulative distribution function (CDF).

For one-step Bayesian TD learning, the beliefs on Q = {Qs,a}∀s∈S,∀a∈A can be updated

at time t after observing a reward rt and the next state st+1 using Bayes’ rule. In order to

reduce notation, we drop the dependency on t denoting st = s, at = a, st+1 = s′, rt = r,

yielding the causally related 4-tuple τ =< s, a, r, s′ >. We use the one-step TD target with

a small Gaussian white noise, r + γVs′ + W where W ∼ N (0, σ2
w), as the likelihood for

Qs,a. The noise parameter, σw, reflects stochasticity of an MDP. Thus, a larger value is

required for σw for higher stochasticity in the reward function or the state transition. We

will first derive the belief updates on Q-values with σw = 0 and then extend the result to

the general case. The likelihood distribution can be represented as a distribution over Vs′ ,

p(r+ γVs′ |q, θ) = pVs′ ((q− r)/γ|s
′, θ) where q is a value corresponding to Qs,a and θ is a set

of mean and variance of Q. From the independence assumptions on Q, the posterior update

is reduced to an update for the belief on Qs,a:

p̂Qs,a(q|θ, r, s′) ∝ pVs′
(
q − r
γ

∣∣∣∣ q, s′, θ) pQs,a(q|θ)

According to the Bellman optimality in Eq.2.2, Vs′ follows the distribution presented in

Eq.4.1. The resulting posterior distribution is given as follows (derivation details in Ap-

44

pendix A.1):

p̂Qs,a(q|θ, r, s′) =
1

Z

∑
b∈A

cτ,b
σ̄τ,b

φ

(
q − µ̄τ,b
σ̄τ,b

) ∏
b′∈A
b′ 6=b

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
(4.2)

where Z is a normalization constant and

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b

φ

(r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b

 (4.3)

µ̄τ,b = σ̄2
τ,b

(
µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b

)
1

σ̄2
τ,b

=
1

σ2
s,a

+
1

γ2σ2
s′,b

(4.4)

Note that all next actions are considered in Eq.4.2 unlike the conventional Q-learning update

which only considers the subsequent action resulting in the maximum Q-value at the next

step (maxbQ(s′, b)). This can lead to a more stable update rule as updating with only the

maximum Q-value has inherent instability [50, 127]. The Bayesian update considers the

scenario where the true maximum Q-value may not be the one with the highest estimated

mean, and weights each subsequence Q-value accordingly. Each term for action b inside the

summation in Eq.4.2 has three important features. First of all, µ̄τ,b is an inverse-variance

weighted (IVW) average of the prior mean and the TD target mean. Therefore, the Gaussian

PDF part becomes closer to the TD target distribution if it has a lower uncertainty than

the prior, and vice versa as compared in the first row (a) and (b) of Fig.4.1. Next, the TD

error, δτ,b = (r + γµs′,b) − µs,a, is naturally incorporated in the posterior distribution with

the form of a Gaussian PDF in the weight cτ,b. Thus, a subsequent action which results

in a smaller TD error contributes more to the update. The sensitivity of a weight value

is determined by the prior and target uncertainties. An example case is described in the

second row of Fig.4.1 where δτ,1 = δτ,2 > δτ,3 and σs′,1 > σs′,2 = σs′,3. Finally, the product

of Gaussian CDFs provides a soft-max operation. The red curve with dots in the third row

of Fig.4.1 represents
∏
b′ 6=b Φ(q|r+ γµτ,b′ , γστ,b′) for each b. For a certain q value (x-axis), the

term returns a larger value for a larger µs′,b as seen in the black circles. This result has

45

Figure 4.1: An example of the belief update in Eq.4.2 when |A| = 3, r = 0.0, γ = 0.9 and prior (+
green) has µs,a = 0.0, σ2

s,a = 1.0. Each column corresponds to a subsequent state and action pair,
(a) b = 1: µs′,b = −2.0, σ2

b = 2.0, (b) b = 2: µs′,b = −2.0, σ2
b = 0.5, (c) b = 3: µs′,b = 4.5, σ2

b = 0.5.
The first row presents how µ̄τ,b and σ̄τ,b are determined from prior and a part of the likelihood. The
second row shows how cτ,b (y-axis of the dot) is assigned by TD error (δτ,b, x-axis of the dot) and a
joint uncertainty measure σ2

s,a+γ2σ2
s′,b. The third row shows a softmax-like behavior of the product

of CDFs.

a similarity with the soft Bellman equation [139], but the degree of softness in this case is

determined by the uncertainty measures rather than a hyperparameter.

When σw > 0 the likelihood distribution is obtained by solving the following integral:

p(r + γVs′ |q, θ) =

∫ ∞
−∞

p(r + γVs′ + w)pW (w)dw (4.5)

=

∫ ∞
−∞

∑
b∈A

ls′,b
v̄s′,b

φ

(
w − w̄s′,b
v̄s′,b

)∏
b′ 6=b

(
1− Φ

(
w − (q − r − γµs′,b′)

γσs′,b′

))
dw

(4.6)

46

where

ls′,b =
1√

σ2
w + γ2σ2

s′,b

φ

q − (r + γµs′,b)√
σ2
w + γ2σ2

s′,b

 (4.7)

w̄s′,b = v̄2
s′,b

(
q − (r + γµs′,b)

γ2σ2
s′,b

)
1

v̄2
b

=
1

γ2σ2
s′,b

+
1

σ2
w

(4.8)

Then, the posterior distribution of Qs,a is:

p̂Qs,a(q|θ, r, s′) =
1

Z

∑
b∈A

cτ,b
σ̄τ,b

φ

(
q − µ̄τ,b
σ̄τ,b

)
×
∫ ∞
−∞

1

v̄s′,b
φ

(
w − w̄s′,b
v̄s′,b

)∏
b′ 6=b

Φ

(
−
w − (q − (r + γµs′,b′))

γσs′,b′

)
dw (4.9)

where

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b + σ2
w

φ

 (r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b + σ2
w

 (4.10)

µ̄τ,b = σ̄2
τ,b

(
µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b + σ2
w

)
1

σ̄2
τ,b

=
1

σ2
s,a

+
1

γ2σ2
s′,b + σ2

w

(4.11)

Note that cτ,b, µ̄τ,b, and σ̄τ,b in Eq.4.10-4.11 become identical with the ones in Eq.4.3-4.4

when σw = 0.

4.4 Assumed Density Filtering on Q-Belief Updates

The posterior distribution in Eq.4.2, however, is no longer Gaussian. In order to continue the

Bayesian update, we approximate the posterior with a Gaussian distribution using Assumed

Density Filtering.

4.4.1 Assumed Density Filtering

Assumed Density Filtering (ADF) is a general technique for approximating the true posterior

with a tractable parametric distribution in Bayesian networks. ADF has been independently

rediscovered for a number of applications and is also known as moment matching, online

Bayesian learning, and weak marginalization [13, 89, 101]. Suppose that a hidden variable

x follows a tractable parametric distribution p(x|θt) where θt is a set of parameters at time

47

t. In the Bayesian framework, the distribution can be updated after observing some new

data (Dt) using Bayes’ rule, p̂(x|θt, Dt) ∝ p(Dt|x, θt)p(x|θt). In online settings, a Bayesian

update is typically performed after a new data point is observed, and the updated posterior

is then used as a prior for the following iteration.

When the posterior computed by Bayes’ rule does not belong to the original parametric

family, it can be approximated by a distribution belonging to the parametric family. In ADF,

the posterior is projected onto the closest distribution in the family chosen by minimizing

the reverse Kullback-Leibler divergence denoted as KL(p̂||p) where p̂ is the original posterior

distribution and p is a distribution in a parametric family of interest. Thus, for online

Bayesian filtering, the parameters for the ADF estimate is given by

θt+1 = argmin
θ

KL(p̂(·|θt, Dt)||p(·|θ)) (4.12)

4.4.2 Online Belief Update

When the parametric family of interest is spherical Gaussian, it is shown that the ADF

parameters are obtained by matching moments. Thus, the mean and variance of the ap-

proximate posterior are given by those of the true posterior, Ep̂Qs,a [q] and Varp̂Qs,a [q], re-

spectively. It is fairly easy to derive the mean and variance when |A| = 2. The derivation

is presented in Appendix A.2. However, to our knowledge, there is no analytically tractable

solution for |A| > 2.

In the next sections, we prove the convergence of the means to the optimal Q-values for

the case |A| = 2 with the exact solutions for the ADF parameters. Then, we show how to

derive an analytic approximation for the ADF parameters which becomes exact in the small

variance limit.

4.4.3 Convergence to Optimal Q-values

The convergence theorem of the Q-learning algorithm has previously been proven [131].

We, therefore, show that the online Bayesian update using ADF with the posterior in Eq.4.2

converges to Q-learning when |A| = 2. We apply an approximation from Lemma 1 in order

48

Figure 4.2: Relationship between σ2
s,a;k and its updated value, σ2

s,a;k+1 for |A| = 2. Each solid curve
represents a different set of parameters. Left: Differing values of µs′,2−µs′,1. Right: Differing values
of σ2

s′,1/σ
2
s′,2

to prove Theorem 2. Proofs for Lemma 1 and Theorem 2 are presented in Appendix C.

Lemma 1. Let X be a random variable following a normal distribution, N (µ, σ2). Then

we have:

lim
σ→0

[
Φ

(
x− µ
σ

)
− exp

{
−1

2

[
−x− µ

σ

]2

+

}]
= 0 (4.13)

where [x]+ = max(0, x) is the ReLU nonlinearity.

Theorem 2. Suppose that the mean and variance of Qs,a ∀s ∈ S, ∀a ∈ A are iteratively

updated by the mean and variance of p̂Qs,a after observing r and s′ at every step. When

|A| = 2, the update rule of the means is equivalent to the Q-learning update if all state-

action pairs are visited infinitely often and the variances approach 0. In other words, at the

kth update on µs,a:

lim
k→∞,{σ}→0

µs,a;k+1 = (1− ατ ;k)µs,a;k + ατ ;k

(
r + γmax

b∈A
µs′,b;k

)

where ατ ;k = σ2
s,a;k/

(
σ2
s,a;k + γ2σ2

s′,b+;k + σ2
w

)
and b+ = argmaxb∈A µs′,b.

Interestingly, ατ approaches 1 when σs,a/σs′,b+ → ∞ and 0 when σs,a/σs′,b+ → 0 for

σw = 0. Such behavior remains when σw > 0 but ατ eventually approaches 0 as the number

of visits to (s, a) goes to infinity. This not only satisfies the convergence condition of Q-

learning but also provides a natural learning rate - the smaller the variance of the next state

49

(the higher the confidence), the more Qs,a is updated from the target information rather

than the current belief.

Fig. 4.2 shows empirical evidence that the contraction condition on variance for Theorem

2 holds. The updated variance is less than the current variance for a large range of different

values for the related parameters. In addition, it is easily shown that 0 is the fixed point of

the variance from Eq.A.5-A.6 in Appendix A.2.

4.5 Analytic ADF Parameter Estimates

When |A| > 2, the update can be solved by numerical approximation of the true posterior

mean and variance using a number of samples. However, its computation becomes unwieldy

due to the large number of samples needed for accurate estimates. This becomes especially

problematic with small variances as the number of visits to corresponding state-action pairs

grows. Therefore, in this section, we show how to accurately estimate the ADF parameters

using an analytic approximation. This estimate becomes exact in the small variance limit.

4.5.1 Analytic Approximation of Posterior

Using Lemma 1, the true posterior in Eq.4.2 is approximated as the following distribution:

p̃Qs,a(q) =
1

Z

∑
b∈A

cτ,b√
2πσ̄τ,b

exp

−(q − µ̄τ,b)2

2σ̄2
τ,b

−
∑
b′ 6=b

[
r + γµs′,b′ − q

]2
+

2γ2σ2
s′,b′

 (4.14)

Each term for b ∈ A inside the summation can then be approximated by a Gaussian PDF.

Similar to Laplace’s method, we approximate each term as a Gaussian distribution by match-

ing the maximum values as well as the curvature at the peak of the distribution. In other

words, the maximum of the distribution is modeled locally near its peak by the quadratic

concave function:

−
(q − µ̄τ,b)2

2σ̄2
τ,b

−
∑
b′ 6=b

[
r + γµs′,b − q

]2
+

2γ2σ2
s′,b

≈ −
(q − µ+

b)2

2σ∗τ,b
2 (4.15)

50

We find µ∗τ,b and σ∗τ,b by matching the first and the second derivatives, respectively (the

coefficient of the quadratic term gives the local curvature):

µ∗τ,b − µ̄τ,b
σ̄2
τ,b

=
∑
b′ 6=b

[
r + γµs′,b′ − µ∗b

]
+

γ2σ2
s′,b′

(4.16)

1

σ∗b
2 =

1

σ̄2
τ,b

+
∑
b′ 6=b

H
(
r + γµs′,b′ − µ∗τ,b

)
γ2σ2

s′,b′
(4.17)

where H(·) is a Heaviside step function. The self-consistent piece-wise linear equation for

µ∗τ,b can be rewritten as follows:

µ∗b =

 1

σ̄2
τ,b

+
∑
b′ 6=b

H(r + γµs′,b′ − µ∗τ,b)
γ2σ2

s′,b′

−1 µ̄τ,b
σ̄2
τ,b

+
∑
b′ 6=b

(r + γµs′,b′)

γ2σ2
s′,b′

H(r + γµs′,b′ − µ∗τ,b)

(4.18)

This is an IVW average mean of the prior, the TD target distribution of b, and other TD

target distributions whose means are larger than µ∗τ,b. The height of the peak is computed

for q = µ∗b ,

k∗τ,b =
cτ,bσ

∗
τ,b

σ̄τ,b
exp

−(µ∗b − µ̄τ,b)
2

2σ̄2
τ,b

−
∑
b′ 6=b

[
r + γµs′,b′ − µ∗b

]2
+

2γ2σ2
s′,b′

 (4.19)

The final approximated distribution is a Gaussian mixture model with µ∗τ,b, σ
∗
τ,b, w

∗
τ,b for all

b ∈ A where w∗τ,b = k∗τ,b/
∑

b′ k
∗
τ,b′ :

p̃Qs,a =
∑
b∈A

w∗τ,b
σ∗τ,b

φ

(
q − µ∗τ,b
σ∗τ,b

)
(4.20)

Finally, we can update the belief distribution over Qs,a with the mean and variance of

Eq.4.20:

Ep̃[q] =
∑
b∈A

w∗τ,bµ
∗
τ,b (4.21)

Varp̃[q] =
∑
b∈A

w∗τ,bσ
∗
τ,b

2 +
∑
b∈A

w∗τ,bµ
∗
τ,b

2 − (Ep̃[q])2 (4.22)

51

Algorithm 7 ADFQ algorithm
1: Initialize randomly µs,a, σs,a ∀s ∈ S and ∀a ∈ A
2: for each episode do
3: Initialize s0

4: for each time step t do
5: Choose an action, at ∼ πaction(st; θt)
6: Perform the action and observe rt and st+1

7: for each b ∈ A do
8: Compute µ∗τ,b, σ

∗
τ,b, k

∗
τ,b using Eq.4.16-4.19

9: end for
10: Update µst,at and σst,at using Eq.4.21 and Eq.4.22
11: end for
12: end for

The final mean is the weighted sum of each individual mean with a weight from k∗τ,b and the

final variance is the weighted sum of each individual variance added to a non-negative term

accounting for the dispersion of the means. The first term of Eq.4.22 is always smaller than

σs,a since στ,b∗ < σs,a. The difference amount depends on the following mean dispersion

term and is determined by various factor such as TD errors, relative distances between

means, variances. However, since µ∗τ,b is an IVW average mean and k∗τ,b is small for a large

TD error and large distance to other TD targets, the mean dispersion part is relatively small.

As shown in Eq.4.19, the weights are determined by TD errors, variances, relative distances

to larger TD targets. It has the TD error penalizing term, cτ,b, and also decreases as the

number of TD targets larger than µ∗τ,b increases. Therefore, the weight provides a softened

maximum property over b.

The final algorithm is summarized in Table.7. Its space complexity is O(|S||A|). The

computational complexity of each update is O(|A|2) which is higher than Q-learning but

only by a factor of |A| and constant in the number of states.

4.5.2 Approximate Likelihood

Similar to the posterior in Eq.4.2, a closed form solution of the expected likelihood in Eq.4.6

is not available when |A| > 2. Thus, we will derive an analytic solution for |A| = 2, and then

generalize it to an arbitrary number of actions by applying the small variance approximation

in Lemma 1. Derivation details are presented in Appendix B.

52

The expected likelihood for |A| = 2 is derived as :

p(r + γVs′ |q, θ) = l1Φ

(
q − µw2
σw2

)
+ l2Φ

(
q − µw1
σw1

)
(4.23)

where

µw2 ≡

(
1− v̄2

1

γ2σ2
s′,1

)−1(
r + γµs′,2 −

v̄2
1

γ2σ2
s′,1

(r + γµs′,1)

)

σw2 ≡

(
1− v̄2

1

γ2σ2
s′,1

)−1√
v̄2

1 + γ2σ2
s′,2

and ls′,b, w̄s′,b, and v̄s′,b are defined in Eq.4.7-4.8.

In an asymptotic limit of σw/σs′,b → 0, ∀b ∈ A and |A| = 2, the expected likelihood

distribution for σw > 0 (Eq.4.23) is similar to p(r + γVs′ |q, θ) with σw = 0 but the variance

of its Gaussian PDF term is γ2σ2
s′,b + σ2

w instead of γ2σ2
s′,b (see Appendix B for details). In

other words, limσw/σs′,b→0 p(r + γVs′ |q, θ) is :

∑
b∈A

γ√
γ2σ2

s′,b + σ2
w

φ

q − (r + γµs′,b)√
γ2σ2

s′,b + σ2
w

 ∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
(4.24)

The posterior distribution, p̂Qs,a(q), derived from this likelihood has the same form with

Eq.4.2 but it uses γ2σ2
s′,b + σ2

w instead of γ2σ2
s′,b in cτ,b, µ̄τ,b, and σ̄τ,b:

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b + σ2
w

φ

 (r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b + σ2
w

 (4.25)

µ̄τ,b = σ̄2
τ,b

(µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b + σ2
w

)
σ̄2
τ,b =

(1

σ2
s,a

+
1

γ2σ2
s′,b + σ2

w

)−1
(4.26)

Again, it becomes identical to the posterior in Eq.4.2 when σw = 0.

Extending this result to the general case (|A| = n for n ∈ N), the posterior distribution

for σw > 0 is same with Eq.4.2 but γ2σ2
s′,b is replaced by γ2σ2

s′,b + σ2
w in cτ,b, µ̄τ,b, and

σ̄τ,b (Eq.4.3-4.4). Therefore, µ∗τ,b, σ
∗
τ,b, and k

∗
τ,b in the ADFQ algorithm (Table.7) are also

changed accordingly.

53

Figure 4.3: A simple MDP with stochastic rewards

4.5.3 Convergence of ADFQ

Theorem 2 extends to the ADFQ algorithm. The contraction behavior of the variances in

the case of Theorem 2 is also empirically observed in ADFQ (Proof in Appendix C).

Theorem 3. The ADFQ update on the mean µs,a ∀s ∈ S, ∀a ∈ A for |A| = 2 is equivalent

to the Q-learning update if the variances approach 0 and if all state-action pairs are visited

infinitely often. In other words, we have :

lim
k→∞,{σ}→0

µs,a;k+1 = (1− ατ ;k)µs,a;k + ατ ;k

(
r + γmax

b∈A
µs′,b;k

)

where ατ ;k = σ2
s,a;k/

(
σ2
s,a;k + γ2σ2

s′,b+;k + σ2
w

)
and b+ = argmaxb∈A µs′,b.

As we have observed the behavior of ατ in Theorem 2, the learning rate ατ again provides

a natural learning rate with the ADFQ update. We can therefore think of Q-learning as a

special case of ADFQ.

4.6 A Concrete Demonstration in a Discrete MDP

To demonstrate the behavior of the ADFQ update, we provides a simple MDP (γ = 0.9)

with stochastic rewards in Fig.4.3. An episode starts at s0 and terminates at either s2 or s3.

At s1, each action returns a stochastic reward with p = 0.2. The optimal deterministic policy

at s1 is a1 and Q∗(s0, ·) = 2.7, Q∗(s1, a0) = 2.0, Q∗(s1, a1) = 3.0, Q∗(s2, ·) = Q∗(s3, ·) = 0.0.

Suppose that a reinforcement learning learner is at (st, at) = (s1, a1) and has visited (s1, a1)

three times with all r = 5 until t − 1 updating its Q-beliefs. The plots in Fig.4.4 show the

54

ADFQ update for Qs0,a0 at t+ 1 when rt = +5 (left) and rt = −5 (right). When it receives

a less expected reward, −5, σs1,a1;t is updated to a larger value than the one in the rt = +5

case. Then, at t + 1, ADFQ considers both Qs1,a0 and Qs1,a1 for updating Qs0,a0 . Due to

the relatively large TD error and variance of Qs1,a1 , a lower value is assigned to w∗τ,b=1. In

this same scenario, Q-learning would update Q(s0, a0) only from Q(s1, a0) and regulate the

update amount with the learning rate which is usually fixed or determined on the number

of visits.

In order to show the benefits of the update rule, we examined ADFQ, Q-learning, Double

Q-learning and KTD-Q for the convergence to the optimal Q-values in the presented MDP

and a similar MDP but with 10 terminating states and 10 actions. Random exploration is

used in order to evaluate only the update part of each algorithm. The averaged results over 10

trials are plotted in Fig.4.5. In both cases, Q-learning and ADFQ converge near the optimal

Q-values. At the early stage of the learning, ADFQ quickly reduces the overestimated

amount compared to Q-learning and converges to the optimal values slightly faster than Q-

learning. Double Q-learning approaches the optimal values as it learns more, but the plots

clearly show its underestimation behavior which causes significantly slower learning than

other algorithms. As the convergence of KTD-Q in a stochastic MDP is not guaranteed, it

failed to converge in both domains.

Figure 4.4: ADFQ update example for st+1 = s0, at+1 = a0, (left) rt = 5, (right) rt = −5 in the
simple MDP

55

Figure 4.5:
∑
s∈S,a∈AQt(s, a) during learning in the simple MDP of |A| = 2 (left) and an MDP

|A| = 10 (right), averaged over 10 trials. The solid lines and markers represent mean performance
and the shaded areas represent the standard deviation across trials. The black horizontal line is the
average of the optimal Q-values in each case,

∑
s∈S,a∈AQ

∗(s, a).

4.7 Experiments in Discrete MDPs

4.7.1 Algorithms

ADFQ is evaluated with two action policies: Thompson Sampling (TS) [124] selects at =

argmaxa qst,a where qst,a ∼ pQst,a(·|θt), and ε-greedy selects a random action with ε proba-

bility and selects the action with the highest mean otherwise. In implementation, we fixed

the initial variance to 100.0 and the variances are bounded by 10−10 since their values

dramatically drop and eventually exceed the precision range of computers.

For comparison, we test Q-learning with ε-greedy and Boltzmann action policies. The

learning rate decreases as the number of visits to a state-action pair increases αt = α0(n0 +

1)/(n0 + t), α0 = 0.5 [76]. Additionally, KTD-Q with ε-greedy and its active learning

scheme are also examined. KTD-Q is an extension of Kalman Temporal Difference (KTD)

[36] and one of the recent influential algorithms for Bayesian off-policy TD learning. KTD

approximates the value function using the Kalman filtering scheme, and handles the non-

linearity in the Bellman optimality equation by applying the Unscented Transform. The

same hyperparameter values as the ones in the original paper are used if presented. All

other hyperparameters are selected through cross-validation (presented in Appendix E).

56

Figure 4.6: Loop and Maze domain diagrams

Further details of KTD are explained in Sec.4.2.

4.7.2 Domains

We test the algorithms in Loop and Maze (γ = 0.95, Fig.4.6) from [26] with and without

stochasticity in the domains for finite learning steps (TH,loop = 10000, TH,maze = 30000).

The Loop domain consists of 9 states and 2 actions (a,b). There are +1 reward at state 4

and +2 reward at state 8. For a stochastic case, a learning agent performs the other action

with a probability 0.1. In Maze, the agent’s goal is to collect the flags "F" and escape the

maze through the goal position "G" starting from "S". It receives a reward equivalent to

the number of flags it has collected at "G". The agent remains at the current state if it

performs an action toward a wall (black block). For a stochastic case, the agent slips with

a probability 0.1 and moves to the right perpendicular direction.

4.7.3 Results

We first examined the convergence to the optimal Q-values using randomly generated fixed

trajectories < s0, a0, r0, s1, · · · > for all algorithms in order to evaluate only the update

part of each algorithm. During learning, we computed the root mean square error (RMSE)

between the estimated Q-values (or means) and the true optimal Q-values, and the results

were averaged over 10 trials. The true optimal Q-values were obtained using the policy

iteration method described in Sec.2.2.1. In addition, we evaluated the performance of each

algorithm with different action policies during learning. At every TH/100 steps, the current

policy was greedily evaluated where the maximum number of steps was bounded by 1.5

57

times of the optimal path length or it was terminated when the goal was reached. The

entire experiment was repeated 10 times for each domain and the averaged results were

plotted in Fig.4.8.

As shown in Fig.4.7, ADFQ converged to the optimal Q-values quicker than all other al-

gorithms including Q-learning. Moreover, ADFQ with ε-greedy and ADFQ with TS showed

similar results and converged to the optimal performance faster than the comparing algo-

rithms in all cases. Q-learning with ε-greedy learned an optimal policy almost as fast as

ADFQ in the deterministic cases, but the performance of ADFQ was improved dramatically

in the stochastic cases. KTD-Q approached to the optimal values in the deterministic Loop

domain, but diverged in others since its derivative-free approximation nature does not scale

well with the number of parameters. It is also proposed under a deterministic environment

assumption. The author proposed XKTD-V and XKTD-SARSA which are extended ver-

sions of KTD-V and KTD-SARSA, respectively, for a stochastic environment. Yet, KTD-Q

was not able to be extended to XKTD-Q (see the section 4.3.2 in [36] for details). Despite the

convergence issue, the KTD-Q with active learning scheme worked better than Q-learning

and converged to an optimal policy in Loop. These results imply that KTD-Q does not

scale with the number of parameters even though it works well in smaller domains, and its

convergence to the optimal Q-values is not guaranteed in stochastic domains.

4.8 Fast ADFQ

In this section, we introduced another approximation approach to the true posterior, Eq.4.2

using a stronger approximation. The major advantage of this method is that it is compu-

tationally as efficient as Q-learning. ADFQ becomes identical with the following algorithm

as variance decreases.

When the variance of a Gaussian random variable, X ∼ N (µ, σ2), approaches 0, we

can approximate its CDF and PDF to a Heaviside step function, H(·) and a dirac delta

function, δ(·), respectively. Suppose that σs,a � 1 for all s ∈ S and a ∈ A. The product of

the Gaussian CDFs in the Eq.4.2 is approximated to 1 if q ≥ r+γµs′,b′ for all b′ ∈ A, b′ 6= b,

58

Figure 4.7: Root Mean Square Error (RMSE), ||Q−Q∗ ||2 or ||µ−Q∗||2, of ADFQ, Q-learning, and
KTD-Q. Left: deterministic, Right: stochastic, Top: Loop, Bottom: Maze.

and 0 otherwise. However, when q = µ̄τ,b, we cannot simply apply the approximation since

the PDF approaches infinity:

lim
σ̄τ,b,σs′,b′
→0

1

σ̄τ,b
φ
(q − µ̄τ,b

σ̄τ,b

)
·
∏
b′ 6=b

Φ
(q − (r + γµs′,b′)

γσs′,b′

)
=∞ · 0 6= 0

We define a function f(·) which is the approximation of the above term inside of the limit

when the term of the product of the Gaussian CDFs approaches to 0 (e.g. q < r + γµs′,b′

for all b′ 6= b).

f(q;µ, σ) =

ε
σφ
(
q−µ
σ

)
for q ∈ [µ− ε, µ+ ε], ε� 1

0 otherwise
(4.27)

Let b+ .
= argmaxb∈A µs′,b and b2+ .

= argmaxb∈A,b6=b+ µs′,b. Then, the true posterior distri-

59

Figure 4.8: Semi-greedy evaluation of ADFQ, Q-learning, and KTD-Q during learning smoothed by
a moving average with window 4. Left: deterministic, Right: stochastic, Top: Loop, Bottom: Maze.

bution in Eq.4.2 is approximated to p̃Qs,a in three different ranges of q.

1. q ∈ (−∞, r + γµs′,b2+)

p̃Qs,a(q) =
1

Z

∑
b

cτ,bf(q; µ̄τ,b, σ̄τ,b) (4.28)

2. q ∈ [r + γµs′,b2+ , r + γµs′,b+)

p̃Qs,a(q) =
1

Z

∑
b6=b+

cτ,bf(q; µ̄τ,b, σ̄τ,b) +
1

Z

cτ,b+

σ̄τ,b+
φ
(q − µ̄τ,b+

σ̄τ,b+

)
(4.29)

3. q ∈ [r + γµs′,b+ ,+∞)

p̃Qs,a =
1

Z

∑
b

cτ,b
σ̄τ,b

φ
(q − µ̄τ,b

σ̄τ,b

)
(4.30)

Applying ADF to the approximated distribution, p̃, we need to find only mean and variance

60

of the distribution. The first and the second moments of p̃Qs,a are:

Eq∼p̃Qs,a (·)[q] ≈
∑

b cτ,bντ,bµ̄b∑
b cτ,bντ,b

Eq∼p̃Qs,a (·)[q
2] ≈

∑
b cτ,bντ,b(µ̄

2
τ,b + σ̄2

τ,b)∑
b cτ,bντ,b

(4.31)

where

ντ,b =

1− (1− ε)H(r + γµs′,b+ − µ̄τ,b) for b 6= b+

1− (1− ε)H(r + γµs′,b2+ − µ̄τ,b) for b = b+

The variance is computed by Eq∼p̃Qs,a (·)[q
2] − (Eq∼p̃Qs,a (·)[q])

2. Note that they are linear

combinations of the IVW average values, µ̄τ,b and σ̄2
τ,b, with weights cτ,b, ντ,b, and its com-

putational complexity for an each update is O(|A|) – which is same with the Q-learning

algorithm. Detailed derivations are presented in Appendix D.

We evaluated the convergence of the algorithm, denoted as ADFQ-V2, to the optimal

Q-values as well as its performance during learning in the Maze domain as we did in the main

paper (Fig.4.9). ADFQ-V2 converged to the optimal Q-values in both cases. In the bottom

row of the figure, we compared the performance of ADFQ-V2 to that of ADFQ. ADFQ-

V2 with ε-greedy showed a similar performance, but ADFQ-V2 with BS showed a slower

convergence to the optimal performance (3.0). This may be due to the stronger assumption

on the variance in the algorithm update. However, ADFQ-V2 is computationally cheaper

than ADFQ, and it sometimes takes less absolute time to reach an optimal performance

than ADFQ in some domains.

4.9 Summary

In this chapter, we studied a Bayesian off-policy TD method called Assumed Density Filter-

ing Q-learning (ADFQ). ADFQ maintains a belief distribution over each Qs,a and updates

the Q-values considering all possible subsequent actions with their corresponding uncertain-

ties rather than taking the best action account. ADFQ demonstrated that it could improve

the overoptimism issue from the greedy update of Q-learning and the underestimation issue

of Double Q-learning by showing the quicker convergence to Q∗ in MDPs with stochastic

61

Figure 4.9: Top: Root Mean Square Error (RMSE), ||µ − Q∗||2, of ADFQ and Fast ADFQ in
deterministic (left) and in stochastic (right) Maze. Bottom: Greedy evaluation plots of ADFQ and
Fast ADFQ during learning. The curves were smoothed by a moving average with window 4 in
deterministic (left), stochastic (right) Maze.

rewards. It also outperformed comparing algorithms in finite MDPs for both deterministic

and stochastic cases. The presented ADFQ algorithm shows several intriguing results.

• Non-greedy Update. Unlike the conventional Q-learning algorithm, ADFQ incor-

porates the information of all possible actions for the subsequent state in the update

with weights depending on TD errors and uncertainty measures (Eq.4.2 and Eq.4.21-

4.22). Therefore, it gives a principled way for a non-greedy update and helps to reduce

the overestimation bias induced by the max operator.

• Regularization with uncertainty. ADFQ provides an intuitive update - a state-

action pair with higher uncertainty in its Q belief has a smaller weight contributing

less to the update. Therefore, we make use of our uncertainty measures not only

in exploration but also in the value update with natural regularization based on the

62

current beliefs.

• Convergence to Q-learning. We prove that ADFQ converges to Q-learning as the

variances decrease and can be seen as a more general form of Q-learning.

• Scalability One of the major drawbacks of Bayesian reinforcement learning approaches

is their high computational and space complexities [26, 36, 38]. The computational

and space complexities of ADFQ are significantly than other Bayesian methods, and

therefore it is extended with a complex function approximator in the next chapter.

63

Chapter 5

ADFQ with Neural Networks

5.1 Introduction

Reinforcement learning had attracted many scientists and engineers due to its connection to

biological decision making. However, it had suffered from the curse of dimensionality when

it is applied to high dimensional or continuous state and/or action domains. Numerous

function approximation methods have been proposed to tackle such limitations, but the

range of application domains was still significantly limited [76, 83, 109, 123]. Deep Q-

network [92] must be the first reinforcement learning algorithm that is applied to very high

dimensional state space without feature engineering and achieved near human performance

in the Arcade Learning Environment (ALE) [10]. Since 2014, most studies in reinforcement

learning have focused on or included reinforcement learning methods with a neural network,

referred to as deep reinforcement learning, and demonstrated in complex sequential decision-

making tasks (see Chapter 2 for further information about deep reinforcement learning).

Despite the significant progress made in deep reinforcement learning in recent years, the

classical Bayesian reinforcement learning algorithms have not been extended with a neural

network. This is mainly due to their high computational and space complexities.

On the other hand, we have shown that ADFQ is computationally efficient in Chapter 4,

and thus it is extended with a neural network and applied to complex environments. There

are previous works that implement Bayesian approaches to deep reinforcement learning by

64

using uncertainty in the neural network weights and show promising performance in several

Atari games [5, 97, 102]. However, their methods can be considered as an application

of Bayesian neural network methods to reinforcement learning rather than approaching a

reinforcement learning problem as a Bayesian perspective. Therefore, they only focus on

exploration, and uncertainty information does not directly apply to update reinforcement

learning parameters.

Our method differs from these approaches as it explicitly computes the variances of the

Q-beliefs and uses them both for exploration and in the value update. Another recent work

[9] proposed a gradient-based categorical DQN algorithm using a distributional perspective.

The value distribution in their work represents the distribution of the random return that

a learning agent receives, while the Q-belief defined in our approach is a belief distribution

of a learning agent on a certain state-action pair. Therefore, ADFQ is not a replacement

algorithm for distributional reinforcement learning methods, rather they can be used syner-

gistically.

In this chapter, we show how to use ADFQ with a neural network and refer the method

as Deep ADFQ. Since ADFQ is a Bayesian counterpart of Q-learning, we use a similar

approach with Deep Q-Network [92]. Deep ADFQ is evaluated in inverted pendulum tasks

as well as several Atari 2600 games and compare the performance with Deep Q-network

and Double Deep Q-network. ADFQ outperforms the comparing algorithms by significant

amounts in most domains and shows more stable learning curves.

This chapter is based on the paper [64] published in the proceedings of the 28th Inter-

national Joint Conference on Artificial Intelligence. The Deep ADFQ source code can be

found in https://github.com/coco66/ADFQ.

5.2 Related Work : Neural Networks to Q-learning

Many attempts to apply neural networks to reinforcement learning as function approxi-

mation had been made to solve tasks with high-dimensional or continuous state inputs

[76, 83, 109, 123]. However, the temporal correlations of online reinforcement learning algo-

65

rithms violates the main assumption on independent, identically distributed samples. As a

learning agent performs an action, moves to the next state, and receives feedback from an

environment, we obtain a sequence of correlated data. Additionally, the sample distribution

constantly changes as samples are generated according to the agent’s policy which is often

updated over time. Deep Q-Network (DQN) solves these limitations by using an experience

replay mechanism [92]. Instead of updating the network parameters online with incoming

samples, it stores samples in a replay buffer and randomly selects samples from the buffer

in training. We refer this sample as an experience, a 4-tuple of e =< s, a, r, s′ >, and the

replay buffer is denoted as D = {e1, · · · , eM}. Another important approach of DQN is the

use of two networks. The temporal difference (TD) target in the loss function is computed

from a different network with parameters ξ′ while it updates a network with parameters ξ.

L(ξ) = E<s,a,r,s′>∼D

[(
E
[
r + γmax

a′
Q(s′, a′; ξ′)

]
−Q(s, a; ξ)

)2
]

(5.1)

The network with ξ′ is often called as a target network. The target network is updated in

every N steps, and N remains as a tuning parameter. Later, an approach that gradually

updates the target network at every step with a certain fraction is proposed [82]: ξ′ ←

(1− τ)ξ′ + τξ for τ � 1.

In practice, a memory capacity of hardware is limited and so as the replay buffer size.

DQN overwrites old samples with new samples to maintain a limited capacity regardless

of how important the samples are. The uniform sampling approach from the replay buffer

during training also ignores such differences among samples in terms of their importance.

Prioritized experience replay [111] is proposed to tackle this limitation while still break-

ing the correlations among samples. In particular, the method prioritizes samples by the

magnitude of their temporal-difference error. To prevent it from losing the diversity of sam-

ples, it employs stochastic prioritization and bias with importance sampling. Although its

performance has been demonstrated in the Atari 2600 benchmark suite, its effect can vary

depending on a task and sometimes harms learning.

Although DQN shows promising results in the Atari 2600 games, it suffers from instability

66

Figure 5.1: A neural network model for ADFQ

in some domains. Hasselt et. al. point out that the overestimation issue of Q-learning

extends to DQN, and proposed Double DQN which is a neural network extension of Double

Q-learning [129]. In Double Q-learning, it updates two Q value estimators and updates one

of the estimators using the greedy estimate of the other estimator. Double DQN utilizes

the feature in DQN that uses two networks, and selects the subsequent greedy action from

a different network. In other word, the TD target in Double DQN is defined as

r + γQ(s′, argmax
a′

Q(s′, a′; ξ); ξ′) (5.2)

Note that this differs from the TD target in Eq.5.1. It is empirically shown that this

decomposition of the max operator into action selection and value evaluation reduces the

overestimation bias occurred in DQN resulting in a better performance in multiple Atari

2600 games.

5.3 Deep ADFQ

As ADFQ is a Bayesian counterpart of Q-learning, we apply the Deep Q-network (DQN)

structure and key ingredients for the neural network extension of ADFQ. ADFQ with a

neural network, called as Deep ADFQ, explicitly estimate both the mean and variance of

Q values for a given state. In other words, the output of the network is mean µ(s, a; ξ)

67

Figure 5.2: Cart-pole simulation environment in OpenAI Gym.

and variance σ2(s, a; ξ) of each action for a given state s where ξ is the set of network

parameters. In practice, we use − log(σs,a) instead of σ2
s,a for the network output in order to

ensure positive values for the variance. As in DQN, we have a train network(ξ) and a target

network(ξ′). Mean and variance for s and s′ from the target network are used as inputs

into the ADFQ algorithm to compute the desired mean, µADFQ, and standard deviation,

σADFQ for the train network. We used the experience replay mechanism and a combined

Huber loss functions, Lδ(·). For each batch sample i, a loss function is:

Li(ξ) = Lδ
(
µADFQ(si, ai, s

′
i, ri; θ

′)− µ(s, a; θ)
)

+ Lδ
(
σADFQ(si, ai, s

′
i, ri; θ

′)− σ(s, a; θ)
)

5.4 Experiments

In order to demonstrate the effectiveness of our algorithm, we tested on a cart-pole balancing

task and six Atari 2600 games from the OpenAI gym simulator [14]. For baselines, we used

DQN and Double DQN with experience replay (prioritized for the Atari games) implemented

in OpenAI baselines [29] with their default hyperparameters for all tasks. We used ε-greedy

action policy with ε annealed from 1.0 to 0.01 for the baselines as well as ADFQ. Additionally,

we examined the Thompson sampling action policy (TS) for ADFQ [124]. Further details

on the network architecture and initialization are provided in the appendix E.

68

Figure 5.3: Performance of ADFQ, DQN, and Double DQN during learning in the OpenAI gym
CartPole-v0 environment (Left: Deterministic, Right: Stochastic). The curves are smoothed by a
moving average with window 6. The solid lines and markers represent mean performance and the
shaded areas represent the standard deviation across 5 trials.

5.4.1 Cartpole : Deterministic and Stochastic Environments

The reinforcement learning state of this task consists of the 1-D position, x, and the velocity,

ẋ, of the cart, and the rotational angle and its velocity of the pole, θ and θ̇, respectively (see

Fig.5.2). The action space is defined with two discrete actions A = {−10, 10}[N] where an

action is a horizontal directional force to the cart. An episode ends if the pole has fallen, or

it receives +1 reward. Therefore, the goal of a reinforcement learning policy is to choose a

sequence of actions that keeps balancing the pole on the cart. The episode ends after 200

steps, and thus the maximum cumulative reward at each episode is 200. This environment

is deterministic.

Additionally, we formulate a stochastic cart-pole environment by adding randomness to

the actions. The force applied to the cart with an action a is defined as:

F = a(n+ 0.5) nt ∼ U(0, 1) (5.3)

All algorithms are trained for 200,000 steps. Every 2000 steps, the learning is paused and

the current policy is evaluated for 5 episodes with ε-greedy policy with ε = 0.05. Note that

an action policy differs from a final deterministic policy (a∗ = π∗(s) = argmaxaQ(s, a)),

69

and we use the final deterministic policy for the evaluation during learning. Each learning

is repeated 5 times with different random seeds, and the average performance results during

learning are presented in Fig.5.3.

In the deterministic environment (the left figure in Fig.5.3), DQN and Double DQN

reach the highest reward, 200, faster than ADFQ. However, the performances drop shortly

after and continue with unstable results. On the other hand, ADFQ with ε-greedy and

ADFQ with TS stay in the optimal performance after reaching the point even though they

reach the point slower than DQN and Double DQN. We see a similar result in the stochastic

environment. The right figure of Fig.5.3 displays the performance of the algorithms in the

stochastic environment. Both DQN and Double DQN show highly unstable performance,

and they fail to reach the optimal performance. On the other hand, the evaluation results of

the ADFQ policies are stable, and they reach the optimal performance even slightly faster

than the ones in the deterministic environment.

Since all the network parameters are initialized near 0.0 (except for the final layer of

ADFQ corresponding to the variance outputs, see details in the appendix E), the errors of

initial Q estimates are relatively large. All algorithms in both environments experience a

major decline period in the early stage of learning. First, the action policies are updated

over time and samples are generated from the policies. Second, the range of cumulative

episode reward is 0 to 200. Therefore, the network can be quickly overfit by large losses

from initially collected sample in the replay buffer, and it eventually needs a correction

period as it encounters more diverse examples sampled from the replay buffer.

5.4.2 Atari 2600 Environments

We test the algorithms on six Atari games, Boxing (|A| = 18), Kung-Fu Master (|A| = 14),

Enduro (|A| = 9), Asterix (|A| = 9), Pong (|A| = 6), and Breakout (|A| = 4), from

the OpenAI gym simulator [14]. As emphasized and demonstrated in Chapter 4, ADFQ

updates the Q-values considering all available actions for the subsequent state with their

uncertainties and TD errors, instead of the greedy update in Q-learning. Therefore, the

effect of the algorithm can be expected to be more significant when the size of the action

70

Figure 5.4: Examples of Atari games. From left to right, Asterix, Enduro, Breakout.

space is larger. Therefore, we select the games to have various numbers for available actions,

|A|.

The total number of simulation steps is TH = 10M (5M for Pong), and the networks are

trained every 4 steps (1.25M training steps for Pong and 2.5M training steps for the others).

Each learning is greedily evaluated at every epoch (TH/100 steps) for three different episodes,

and their averaged results are presented in Fig.5.5. The entire experiment is repeated for 3

random seeds for each algorithm. Rewards are normalized to {−1, 0, 1} and different from

raw scores of the games.

Both ADFQ with TS and with ε-greedy notably surpass DQN and Double DQN in En-

duro, Boxing, Asterix, and Kung-Fu Master and show similar results in Pong. Additionally,

ADFQ showed more stable performance in all domains overcoming DQN’s instability. ADFQ

with TS achieved slightly higher performance than the ε-greedy method utilizing the uncer-

tainty in exploration. In the Breakout game which has the least number of actions, Double

DQN shows the best performance among the tested algorithm. Although DQN achieves the

highest performance during learning, the performance quickly drops and reveals unstable

progress.

Fig.5.6 presents average estimated Q-values (µ for ADFQ) for sampled experiences during

learning in four Atari games in which ADFQ outperformed both DQN and Double DQN by

a significant amount. In the original paper of Double DQN [129], Double DQN constantly

71

Figure 5.5: Performance of ADFQ, DQN, and Double DQN during learning in Atari games. The
curves are smoothed by a moving average with window 6. The solid lines and markers represent
mean performance and the shaded areas represent the standard deviation across 3 trials with different
random seeds.

72

Figure 5.6: Average predicted Q-values at each evaluation of ADFQ, DQN, Double DQN in Atari
games. Performance of ADFQ, DQN, and Double DQN during learning in Atari games. The curves
are smoothed by a moving average with window 6. The solid lines and markers represent mean
performance and the shaded areas represent the standard deviation across trials.

estimates lower Q-values than DQN and showed better performance in most Atari 2600

games. Similarly, the averaged estimated Q-values by DQN are significantly higher than the

other algorithms in most cases. In all plots, the estimated values by DQN rapidly increase

in the early stage of learning and the model corrects the bias after reaching a maximum

value resulting in a decrease in overestimation value with time. Interestingly, even though

Double DQN persistently estimates lower Q-values than DQN, it shows the same trend in

three out of four cases. As discussed in Chapter 4, even though the Double Q-learning

method guarantees to estimate lower values than Q-learning by using two estimators, it

may underestimate the values, or it may not correct the overestimation bias enough since

73

it still greedily select the value with the other estimator. In contrast, ADFQ do not show

a rapid increase in the value estimation in any of the cases. It suggests that updating the

values with a non-greedy approach based on uncertainty, TD error, and TD target provides

a principled way to solve the overestimation bias.

5.5 Summary

In this chapter, we extend the Assumed Density Filtering Q-learning (ADFQ) algorithm

introduced in Chapter 4 to ADFQ with a neural network function approximator. We apply

the similar architectures and training mechanisms with the ones of DQN. Both the mean and

variance of Q values are directly estimated as outputs of a neural network. The empirical

results in the deterministic and stochastic continuous domains as well as the Atari 2600

games support that the contributions of ADFQ hold in the extended algorithm with a

neural network.

We would like to highlight the fact that ADFQ is a Bayesian counterpart of Q-learning

and is orthogonal to most other advancements made in deep reinforcement learning. ADFQ

merely changes the loss function and we compare with basic architectures here to provide

insight as to how it may improve the performance. ADFQ can be used in conjunction with

other extensions and techniques applied to Q-learning and DQN.

74

Chapter 6

Reinforcement Learning Approach to

Active Information Acquisition

6.1 Introduction

Active information acquisition is a challenging problem with diverse applications from med-

ical diagnosis to robotics [4, 68, 75, 104, 117]. It is a sequential decision making problem

where agents are tasked with acquiring information about a certain process of interest, called

as target, through their on-board sensors. The objective function for such problems typically

takes on the information-theoretic form such as mutual information and Shannon entropy.

The theory of optimal experiment design also studies cost functions based on the trace, de-

terminant, or eigenvalues of the information matrix that describes the current information

state.

A major challenge in active information acquisition problems is the computation of cost

functions that are difficult to compute for arbitrary probability distributions and a long

planning horizon. Therefore, existing planning algorithms require prior knowledge on target

models and often need to approximate a cost function online, which requires additional

assumptions to make the computation tractable [21, 59, 74]. Myopic policies have been

proposed to lessen the computational burden. However, they are susceptible to local minima

75

resulting in inefficient planning trajectories or failing to achieve the optimal performance.

For instance, in an active target tracking scenario, an agent should maintain enough distance

from a mobile target instead of tightly following it, especially when the target drastically

changes its direction often. This increases the chance of capturing the target when it moves

unexpectedly. To improve the limitation of the greedy actions, approximate non-myopic

algorithms are presented and they reduce the complexity of obtaining an optimal policy while

providing strong performance guarantees [2, 112]. An iterative sampling-based algorithm was

also proposed, increasing efficiency under a given budget constraints [58]. The complexity

of their methods, however, are still not free from the planning horizon.

In this chapter, we tackle the active information acquisition problem with reinforcement

learning (RL). We formulate the active target tracking problem as a Markov decision process

(MDP) with an information-theoretic objective function where the value function is a dis-

counted sum of future mutual information between target states and measurement history.

One of the major advantages of using RL is its non-myopic behavior by its nature. A learned

policy is executable online, and its computational complexity is independent of the planning

horizon. Therefore, even though RL-based approaches demand an extended training stage,

they dramatically extend the available problem domains, for example, running a robotics

system in real-time. Moreover, we can avoid over-dependence on system models, providing

flexibility in the choice of target process and state estimation methods such as particle filters

[57] and learning-based estimations for highly non-linear systems [49, 90, 99].

In Sec.6.3, we first formally state the active information acquisition problem with mu-

tual information as its objective. Then, we formulate the problem as a Markov decision

process (MDP). Sec.6.4 presents details of applying off-policy temporal difference methods

for learning a policy for the MDP in an active target tracking scenario. The performance

of the learned policies are evaluated and compared with an existing search-based planning

algorithm in Sec.6.5.

This chapter is based on the papers 2019 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS) [63].

76

6.2 Related Work

The field of active target tracking has been explored by various domains such as state

estimation, sensor management, active perception, planning, and machine learning. Previous

works that are closely related to this study are search-based target tracking algorithms for

dynamic targets, Reduced Value Iteration (RVI) and Anytime Reduced Value Iteration

(ARVI) [2, 112]. Both algorithms formulate the active information acquisition problem as a

deterministic optimal control problem and compute an open-loop policy that maximizes a

mutual information objective. With known system models of an agent, targets, and sensors

(observation), they build a search tree of the possible trajectories of the agent and apply

a pruning method to reduce the size of the search tree and to ensure finite execution time

while guaranteeing suboptimality. ARVI improves RVI by eliminating the need to tune

pruning parameters in RVI while reducing the computation time by re-using computations

from prior iterations. Although the algorithm shows promising results in simulation and

is demonstrated in real robot experiments, it requires adequate knowledge of a true target

model. Since the search tree is built with a predicted target trajectory by a Kalman filter,

inaccurate knowledge of the target model can lead to a path where the target does not exist.

In many cases, however, target models may not be known resulting in practical limitations.

While learning-based methods have not been extensively studied in the problems of

dynamic targets, numerous studies have integrated machine learning methods into tasks

with static objects. They mainly focus on complications of target objects such as arbitrarily

deforming objects, self-occluded objects, and semantic understanding [39, 79, 119]. The

recent substantial achievement of deep learning in computer vision and perception enable

solutions to track more sophisticated objects or to study complex scenarios. Following the

trend of using data-driven approaches, some of the recent literature in active perception

apply deep RL methods to directly learn a control policy from raw sensory inputs [60, 84,

132, 137]. Zhang et. al. proposed a RL method for visual tracking in videos that uses

REINFORCE [133] and a recurrent convolutional neural network. Jayaraman et. al. also

proposed a deep RL solution which learns an exploratory behavior for active completion

77

of panoramic natural scenes and 3D object shapes. Imitation learning is also applied for

information gathering tasks [19, 52]. These are supervised learning methods which train

a policy to mimic the provided expert trajectories, and thus, require a large and labeled

dataset. This method could be more sample efficient than reinforcement learning, but it is

limited to problems having a access to labeled datasets.

6.3 Active Information Acquisition

6.3.1 Problem Formulation

We are interested in a problem where both an agent and a target are mobile following

discrete-time dynamic models. We consider a single agent and N targets, and denote their

states at time t as xt and yt = [yT1,t, · · · , yTN,t]T , respectively, where yi,t is an individual

target state for i = 1, · · · , N . xt can be defined in a different form depending on its degree

of freedom or its type. For instance, xt ∈ R2×SO(2) for a ground robot and xt ∈ R3×SO(3)

for a quadrotor where SO(n) is the special orthogonal group in dimension n. The goal of

the agent is to maximize the cumulative mutual information for a time horizon T between

the belief states at t and a measurement history z1:t. The subscript notation t1 : t2 indicates

a collection of data from time t1 to time t2. More formally, the objective of the problem is

to find a sequence of control inputs to the robot, u1:T , which satisfies,

maximizeu0:T−1

∑
t=1,··· ,T

I(yt; z1:t|x1:t) (6.1)

s.t. xt+1 = f(xt, ut) t = 0, · · · , T − 1

yi,t+1 = g(yi,t) t = 0, · · · , T − 1

zi,t = h(xt, yi,t) t = 1, · · · , T

where f(·) and g(·) are dynamic models of the agent and the targets, respectively, and

h(·) is an observation model. Since the agent does not have access to the ground truth of

78

the target states, the agent infers the target states from its internal belief distributions. We

denote the belief distribution for the i-th target as B(yi,t) = p(yi,t|z1:t, x1:t) and its predicted

distribution for the subsequent step as B̄(yi,t+1) = p(yi,t+1|z1:t, x1:t). The belief distribution

is updated by a Bayes filter from a given prior distribution, B(y0):

Prediction: B̄(yt) =

∫
p(yt|yt−1)B(yt−1)dyt−1 t = 1, · · · , 1 (6.2)

Update: B(yt) = Z−1p(zt|yt, xt)B̄(yt) t = 1, · · · , T (6.3)

6.3.2 Active Information Acquisition as a Markov Decision Process

In order to solve the active information acquisition problem using reinforcement learning, we

formulate the problem as an MDP. Information about the target states is essential for the

agent to make an optimal decision. The exact target states, however, are unknown to the

agent, resulting in the problem being formulated as a partially observable Markov decision

process (POMDP) [65]. Unfortunately, it is known that finding an optimal solution for a

general POMDP is intractable [103, 122]. Instead, we explicitly include the parameters of

belief distributions on the targets in the RL state, st, and solve it as an MDP. The target

states evolve with their own dynamics independently from the agent’s actions. Thus, the

agent’s decision at time t should be based on predicted target states for t + 1 rather than

the current target states. Therefore, we define a function, fs, that maps the agent state and

the belief prediction given map information, M , to the RL state, st = fs(xt, B̄(yt+1);M).

The goal of solving the MDP is to find an optimal policy π∗ that maximizes the cu-

mulative mutual information in Eq.6.1. By defining rt+1 = R(st, at) = I(yt; zt|xt), we

approximate the objective as a discounted sum. In other words, the value function is :

V π(s) = Eπ[

T−1∑
t=0

γtI(yt; zt|xt)|s0 = s] (6.4)

The action space, A, is defined as a set of motion primitives for available control inputs.

The procedure of the problem with RL in discrete-time is illustrated in Fig.6.1. At each

79

Figure 6.1: Illustration of the dynamics in active information acquisition with RL.

step t, the agent state, xt, and its prediction on the targets, B̄(yi,t+1), are mapped to the

RL state st. Then, the agent chooses a control input, ut, according to the RL policy, π to

maximize the objective (6.1). At the same time, the target states will evolve to the next

step. Then, the robot receives measurements, zt+1, from the sensor. If some targets are

observed, the corresponding belief distributions are updated with the new measurements.

During learning, the updated posterior belief distributions are used to compute a reward

and the policy is updated according to the reward. This process is repeated at every step.

Note that we do not study mapping and localization in this chapter and assume that the

map and the exact odometry of the robot are known to the robot.

6.4 Application: Active Target Tracking

In this section, we present a specific reinforcement learning approach to the active informa-

tion acquisition problem by focusing on the target tracking application in two-dimensional

environment with Gaussian belief distributions. Assuming yt+1 is independent of x1:t, the

optimization problem in Eq.6.1 can be reduced to minimizing the cumulative differential en-

tropy, H(yt+1|z1:t, x1:t) [2]. Furthermore, when the belief is Gaussian B(yi,t) = N (ŷi,t,Σi,t)

and the targets are independent to each other, the joint Gaussian belief on yt is expressed as

B(yt) = N (ŷt,Σt) where ŷt = [ŷT1,t, · · · , ŷTN,t]T and Σt = diagi=1,··· ,N (Σi), and the entropy

is:

H(yt|z1:t, x1:t) =
1

2
log
(
(2πe)N det(Σt)

)
(6.5)

80

and the optimization problem is reduced to:

minimize
∑

t=1,··· ,T
log det(Σt) (6.6)

Therefore, the reward after executing an action at at st is defined as:

rt+1 = R(st, at) = −κm
∑
i

log det Σi,t+1 − κdSDi[log det Σi,t+1]− κoo−2
r,t+1 (6.7)

The extra terms, SDi[log det Σi,t+1] and o−2
r,t+1, are added to the mutual information

objective in order to assist the learning process. In practice, we found that it was able to

learn a near-optimal policy without the extra terms, but the terms helped to accelerate the

learning. The first two terms penalizes the overall uncertainty of the target beliefs and their

dispersion (as standard deviation). The dispersion term prevents the robot from tracking

only a few targets when not all the targets are within its sensing range at time. The second

term discourages the robot to approach toward obstacles or a wall. κm, κd, and κo are

constant factors, and κo is set to 0 if no obstacle is detected.

We define a non-geographical feature vector φt:

φt = [φT1,t, · · · , φTN,t, (o
(xt)
t)T]T (6.8)

φi,t is composed of the predicted belief state for the i-th target in the agent’s current frame,

its covariance, and the observability of the true i-th target :

φi,t ≡ [(ŷ
(xt)
t+1|t)

T , log det Σi,t+1|t, I(yi,t ∈ O(xt))]
T (6.9)

O(x) is an observable space from the robot state x and I(·) is a boolean function which

returns 1 if its given statement is true and 0 otherwise. o(xt)
t is a coordinate of the closest

obstacle point to the agent in the agent frame. This feature vector is used as st.

We suggest off-policy temporal difference methods such as DQN, Double DQN, and

81

Algorithm 8 Learning a Q-network for Active Target Tracking
1: Randomly initialize a train Q-network, Q(s, a|ξ)
2: Initialize a target Q-network, Q(s, a|ξ′) with weights ξ′ ← ξ
3: Initialize a replay buffer D
4: for episode =1:H do
5: Randomly initialize x0, yi,0, ŷi,0, Σi,0 for i = 1, · · · , N
6: Predict B̄(y1)
7: Initialize the RL state: s0 = fs(x0, B̄(y1);M))
8: for step t = 0 : T − 1 do
9: Choose an action at ∼ π(st)

10: Update the agent state xt+1 = f(xt, at)
11: for i = 1 : N do
12: Update the i-th target state yi,t+1 = g(yi,t)
13: Observe the i-th target zi,t+1 = h(xt+1, yi,t+1)
14: if zi,t+1 exists then
15: B(yt+1) = Z−1p(zt+1|xt+1, yt+1)B̄(yt+1)
16: end if
17: end for
18: Compute a reward rt+1 = R(B(yt+1))
19: Predict target states B̄(yt+2)
20: Update the RL state: st+1 = fs(xt+1, B̄(yt+2);M)
21: D ← D ∪ {< st, at, rt+1, st+1 >}
22: Train the Q-network
23: end for
24: end for

ADFQ in order to learn an optimal policy for the problem. Although any reinforcement

learning algorithms can be used in this framework, such off-policy temporal difference al-

gorithms are known to be more sample efficient than policy-based reinforcement learning

methods [96]. Moreover, an action policy can be different from the update policy in off-policy

methods which allow a safe exploration during learning. The algorithm is summarized in

Table.8. Note that the reinforcement learning agent does not require any knowledge on the

system models as long as it can observe its state and a reward. Additionally, the reinforce-

ment learning update is independent from the Bayes filter and it can leverage various state

estimation methods.

6.5 Experiments

To demonstrate the proposed framework, we evaluate it with ADFQ, DQN, and Double

DQN in target tracking problems with different numbers of targets (N = 1, 2, 3). ε-greedy

action policy is used with ε annealed from 1.0 to 0.01 for all algorithms. For ADFQ, we

82

additionally used its Thompson sampling (TS) action policy using its uncertainty estimate

for Q-values.

Furthermore, we compare with the Anytime Reduced Value Iteration (ARVI), an open-

source target tracking algorithm, which we use as a baseline. The ARVI uses a linear

system model and the Kalman Filter to predict a target trajectory, and then evaluates

the mutual information over a search tree with some pruning to ensure finite execution

time. The performance of ARVI has been verified in target tracking simulations and real

robot experiments in [112]. The aim is to show the reinforcement learning outperforms this

approach, but rather that it achieves a comparable performance while featuring a much

more general problem formulation.

A robot is governed by the following differential drive dynamics:

x1,t+1

x2,t+1

xθ,t+1

 =

x1,t

x2,t

xθ,t

+

ντsinc(ωτ2) cos(xθ,t + ωτ

2)

ντsinc(ωτ2) sin(xθ,t + ωτ
2)

τω

 (6.10)

where τ is a sampling period, and x1,t, x2,t, xθ,t correspond to the elements of xt in x-axis,

y-axis and polar coordinate at time t, respectively. We discretized the action space with

pre-defined motion primitives, A = {(ν, ω)| ν ∈ {0, 1, 2, 3} m/s, ω ∈ {0,−π/2, π/2} rad/s}.

The objective of the robot is to track the positions and velocities of targets which follows

double integrator dynamics with Gaussian noise:

yi,t+1 = Ayi,t + wi,t, wi,t ∼ N (0,W) (6.11)

where

A =

I2 τI2

0 I2

 , W = q

τ3/3I2 τ2/2I2

τ2/2I2 τI2

q is a noise constant factor. When the target is close to a wall or an obstacle, it reflects

its direction with a small Gaussian noise. We assumed that the target model is known to

83

the robot and updated the target belief distributions using the Kalman Filter. Note that

the Kalman Filter can be simply replaced by other Bayes filters or learning-based state

estimation methods within the proposed reinforcement learning framework.

The observation model of the sensor for each target is:

zi,t = h(xt, yi,t) + vt, vt ∼ N
(

0, V (xt, yi,t)

)
(6.12)

where

h(x, y) =

r(x, y)

α(x, y)

 :=

 √
(y1 − x1)2 + (y2 − x2)2

tan−1((y2 − x2)(y1 − x1))− xθ

To be used in the Kalman Filter, this model is linearized by computing the Jacobian matrix

of h(y, x) with respect to y:

∇yh(x, y) =
1

r(x, y)

 (y1 − x1) (y2 − x2) 01x2

− sin(xθ + α(x, y)) cos(xθ + α(x, y)) 01x2

In the experiments, the sensor has a maximum range of 10 meters and its field of view is

120 degree. We assume that the sensor is able to distinguish targets or obstacles (or walls).

x0 is randomly initialized within the given map and the position components of y0 is also

randomly initialized within the maximum offset of 8 meter from the initial robot state. The

velocity is initialized to 0.0. The belief target state follows Gaussian. In order to design the

experiment more realistic, the mean position is randomly initialized to have the maximum

offset of 5 meter from the target and the covariance, Σ, is initialized to 30.0I4. We use

τ = 0.5 and a constant observation noise, V = diag(σr, σb) with σr = 0.2, σb = 0.01.

For neural network architecture, we used 3 layers with 128 units and a learning rate

0.001 for a single target, and 3 layers with 256 units and a learning rate 0.0005 for multiple

targets. The target Q network is updated every 50 training steps. The batch size and the

size of the replay buffer are 64 and 1000, respectively.

All experiments are obtained with 5 different random seeds for the learning algorithms

and 10 random seeds for ARVI. The results are plotted in Fig.6.2. The darker lines show the

84

Figure 6.2: Cumulative − log det Σt per trajectory of ADFQ, DQN, and Double DQN during learning
compared with ARVI.

mean over seeds and the shaded areas represent standard deviation. The current learned

policies from ξt were semi-greedily evaluated with ε = 0.05 for 5 times after trained with

a single trajectory (every two trajectories for multi-target experiments). The curves are

smoothed by a moving average with window 4.

6.5.1 Single Target Tracking

We tested the single target problem in an empty domain (100× 100[m2]) where there is no

obstacle, and therefore, the behavior of the target is more predictable (as there is far less

reflection behavior of the target with noise). We also tested a domain with four obstacles

as in the first row of Fig.6.3. The noise parameter for the target model is set to q = 0.01 for

both cases and the length of a trajectory is T = 100 steps.

The first plot in Fig.6.2 shows that both ADFQ with TS and ADFQ with ε-greedy

85

Figure 6.3: Demonstrations of learned ADFQ-TS policies in the obstacle environment with a single
target (first row) as well as the empty environment with three target (second row). The time step
increases from left to right. Blue triangle: xt, Blue dot: x1:t−1, Red dot (big): yt, Red dot (small):
y1:t, Green circle: ŷt, Green shaded area: Σt.

achieved the baseline performance after learning with 13 trajectories. ADFQ-TS showed

a more stable performance outperforming the baseline toward the end. Since the belief

state mean can quickly diverge from the true state while its covariance is quite small, explo-

ration methods based on state-action uncertainty such as Thompson sampling leads a better

performance than ε-greedy. ADFQ achieved the near baseline performance in the obstacle

environment as well. An example case of a learned policy by ADFQ-TS is presented in the

first row of Fig.6.3. As shown, even though it missed the target at t = 15 and the belief

became inaccurate, it quickly adjusted its direction and followed the target keeping it in its

range.

DQN and Double DQN failed to reach the baseline performance in both environments.

Although their performances increased with the number of learning trajectories in the empty

environment, their performances dramatically dropped in the obstacle environments. This

is due to the high stochasticity of the environment as the target changes its path abruptly

with noise when it faces an obstacle.

86

6.5.2 Multi-Target Tracking

We tested the cases of two and three targets in an empty domain (27×27[m2]) with q = 0.001.

A longer trajectory, T = 150, is used in order to evaluate cases where targets diverge and a

robot has to keep traveling to minimize the covariances. As shown in Fig.6.2, the mean of

both ADFQ algorithms outperformed the mean of baseline after 13 trajectories of learning.

For N = 3, ADFQ with ε-greedy reached the similar performance with the baseline and

ADFQ with TS outperformed the baseline. Additionally, the baseline showed large variances

in its performance in both cases while ADFQ algorithms showed fairly lower variances across

the trials.

The most challenging part of these experiments is when not all targets are observable at

time. The results indicate that the reinforcement learning methods can learn a policy which

makes a near-optimal decision on when to keep traveling to track all the targets or when

to exploit to close targets. The learned policy of ADFQ-TS is demonstrated in the second

row of Fig.6.3. When the targets are not simultaneously observable but not too far from

each other, the robot must choose to visit each target sequentially to maintain its belief

distribution for every target.

6.6 Summary

In this chapter, we introduced a novel reinforcement learning approach for the active infor-

mation acquisition problem and developed a detailed approach for solving the active target

tracking problem with a Q-network-based reinforcement learning algorithm. The experi-

mental results demonstrated that the reinforcement learning-based methods can achieve or

sometimes outperform the existing search-based planning algorithm.

As an initial approach, we assume that the target model is mostly known to the Bayes

filter (except when it collides into an obstacle) and use a relatively simple environment

setup that is used in previous works. In the next chapter, we will extend this approach to

a non-linear and partially known target model in more complex environments.

87

Chapter 7

Learning to Track Agile Targets in a

Partially Known Environment

7.1 Introduction

Active target tracking is an information gathering task where a mobile agent makes a se-

quence of control decisions to track targets of interest using its on-board sensors. For

instance, a camera angle can be controlled to find an exit in a room, or an autonomous

vehicle can move to view and identify an occluded object. Its various applications include

surveillance [55, 110], search-and-rescue task [75], active perception [60, 84, 119, 137], and

environmental monitoring [18, 31].

Problems in active tracking for dynamic targets tackle challenges associated with target

motions such as estimation of target states, planning horizon, cost function, and stochasticity

of the targets, rather than placing the weight on processing and inferencing sophisticated

raw sensory data. Previous studies applied various techniques from Bayesian estimation,

information theory, and optimal control to solve a spectrum of problems.

One major limitation of previous works is a strong dependency of their methods on a spe-

cific problem formulation and system models. Due to such dependencies, they have focused

on settings where the prior knowledge of targets are sufficiently accurate and/or the targets

88

are located near the sensing range [2, 21, 112]. However, such prior conditions considerably

simplify the problem as the main task becomes tightly following a target. In real-world

examples, tracking dynamic targets with partial information in a large environment requires

more than chasing targets within the range of a sensor. When targets are initially located

far from the agent or when they are occluded by obstacles, the agent must navigate through

any obstacles in the domain to reach the targets – Navigation. Additionally, an initial belief

about a target can be inaccurate, leading to issues when the agent searches for a target near

its incorrect belief location. Thus, the agent should be able to explore the environment until

it discovers the targets – Discovery. These capabilities are also required when targets move

quickly or when a target model in the beliefs is highly inaccurate. In such cases, the agent

often loses the targets and needs to explore the domain while navigating until it rediscovers

them. We hereafter refer to tracking within the range of a sensor as in-sight tracking, and

consider in-sight tracking, navigation, and discovery as sub-tasks of active target tracking.

Exploratory behavior for information gathering has long been studied in robotics. Var-

ious approaches have been presented including heuristic methods [40, 135], formal decision

theory [1], and planning [12, 72, 78]. Many of the studies aim to increase the accuracy in

building maps in unknown environments. Myopic approach is studied which maximizes the

expected Shannon information gain of an occupancy map as well as minimizes the uncer-

tainty of the vehicle pose and map feature uncertainty [12]. It is also solved as a sequential

decision making problem, formulated as a POMDP. Kollar and Roy [72] applied policy

search dynamic programming [6] to find an optimal trajectory for improving accuracy of

a map by minimizing the number of sensor measurements for map features. An approach

proposed in [78] solves a POMDP with sequential monte carlo optimization. They use a

sampling-based approximate mutual information for its reward function. More recently,

learning-based approaches have been presented to solve exploration tasks. Chen et. al. used

imitation learning to pre-train an exploration policy, and then applied a policy gradient

algorithm to further optimize the policy. Similar to our approach, they use egocentric maps

for the network inputs. Their reward function includes a coverage measure as well as a

89

collision penalty with fine-tuned parameters. Our goal for exploration is to find dynamic

objects, and differs from these previous works which aim to construct accurate information

about static surroundings.

Navigation tasks of mobile robots have also been paid increasing attention from the

learning community [39, 47, 66]. Gupta et. al. proposed an architecture that builds a belief

map of a world and trains a mapper and a planner to reach a goal [47]. However, one of the

challenges for applying such navigation approaches to target tracking scenarios is that a goal

position continuously changes as targets move. Re-planning its path for a new goal every

step is computationally expensive. Another challenge is that a goal position is not always

identical to a belief position. For instance, in a situation with two targets, the optimal goal

position for the agent is located somewhere in between the targets and is also dependent on

their uncertainties.

In this chapter, we introduce a method of learning a unified reinforcement learning (RL)

policy that is capable of all three tasks - in-sight tracking, navigation, and discovery. As

we discussed in the previous chapter, one of the benefits of using RL is that we can drop

the dependency of an algorithm on prior conditions and system models – agent dynamics,

target dynamics, and observation model. Therefore, it is able to learn a robust behavior

for a scenario where the agent’s knowledge of the target model considerably differs from

a true target model. We additionally incorporate map information and visit-frequency,

which reflects how recently a certain area has been scanned by the sensor, into an RL

state. This enables an RL policy to learn to navigate and learn to explore. Our model uses

egocentric information with respect to the agent frame, dropping the strong dependency of

a learned policy on its training environment. We demonstrate the proposed method in a

target tracking environment with various scenarios including agile targets, imperfect prior

knowledge on a target model, and inaccurate initial belief.

90

Figure 7.1: Illustration of the active target tracking network architecture.

7.2 Active Target Tracking Network

Numerous papers have pointed out the limitation of RL methods when goals shift. In general,

this requires a complete re-training even though the underlying environment remains the

same. However, in an active target tracking setting, not only is a goal position changed

in every episode, but a goal position can be continuously changed over time because it is

dependent on the uncertainty of beliefs as well as target motions. Since the goal should be

implicitly determined by the policy, simple solutions such as including a goal as a part of

the RL state [138] will not work. Therefore, we use information in the agent’s perspective

for the RL state and reduce the dependency on the training environment.

In Chapter 6, we have defined a non-geographical feature vector φt = [φT1,t, · · · , φTN,t, (o
(xt)
t)T]T .

φi,t is composed of the predicted belief state for the i-th target in the agent’s current frame,

its covariance, and the observability of the true i-th target :

φi,t ≡ [(ŷ
(xt)
t+1|t)

T , log det Σi,t+1|t, I(yi,t ∈ O(xt))]
T (7.1)

91

O(x) is an observable space from the robot state x and I(·) is a boolean function which

returns 1 if its given statement is true and 0 otherwise. o(xt)
t is a coordinate of the closest

obstacle point to the agent in the agent frame.

However, these non-geographical features are not enough for the agent to make an in-

formed decision under all circumstances. As pointed out in the previous sections, the ability

to navigate around obstacles is crucial. To achieve this, we need more information than

just the closest obstacle point. For example, suppose the agent is located in front of an

obstacle and its left corner is closer to the agent than the right corner. It is impossible for

the agent to figure out the shorter path to pass the obstacle only with the closest obstacle

point. Another important capability of the agent is to explore the current domain when

a target is not near the corresponding belief. Note that this exploration means exploring

a given environment with a deterministic policy and differs from the exploration problem

in RL (action exploration) during learning. To learn to explore in the MDP setting, we

build a visit frequency map similar to the occupancy grid mapping. Suppose that λc is a

visit-frequency value for a cell c. At t,

λc,t =

1 if c is scanned

λc,t−1 · c exp
(

v̄tτ
rsensor

)
otherwise

(7.2)

where v̄t is the average speed of the targets from the beliefs, τ is a sampling period, rsensor

is a sensing range of the sensor, and c is a constant factor. Therefore, the most recently

visited cells have the value 1.0 and it decays over time as a function of the current target

speed estimate.

To reduce the dependency of a learned policy on training environments, we use egocentric

maps of the surrounding areas of the current agent position as inputs to the convolutional

neural network (CNN) in our architecture. The flatten output of the CNN is concatenated

by the non-geographic features φt, and then fed to the fully connected network. Fig. 7.1

shows the illustration of the network architecture and the inputs.

92

Figure 7.2: An example of the effect of ζ(·) in Eq.7.4 at different target positions in the grid.
Each arrow corresponds to the velocity components of ζ, [atτ cos(θrot,t), atτ sin(θrot,t)]

T when τ =
0.5, vmax = 3.0, rmargin = 0.1, rmin = 1.0. The blue arrows are for vt = 3.0 and the red arrows are
for vt = 1.0. The black blocks are obstacles and the target orientation are −3π/4 [rad] for all.

7.3 Target Tracking Environment

In this section, we describe details of the target tracking environment. It is designed for

reinforcement learning practice and follows the OpenAI Gym structure, a popular benchmark

simulation environment for the RL community [14]. The source codes can be found at

https://github.com/coco66/ttenv. Notations: The xy-position and the orientation in

SE(2) are represented with a subscript 1, 2, θ, for example, (x1, x2) ∈ R2 and xθ ∈ SO(2),

respectively.

7.3.1 Target Model

We design a target model based on the double integrator with Gaussian noise. In order to

maneuver smoothly around obstacles, we add a non-linear term, ζ(·), that pushes the target

away from a nearby obstacle.

yt+1 = Ayt + wt + ζ(yt;M) wt ∼ N (0,W (q)) (7.3)

93

https://github.com/coco66/ttenv

where yt = [y1,t, y2,t, ẏ1,t, ẏ2,t]
T and

A =

I2 τI2

0 I2

 , W (q) = q

τ3/3I2 τ2/2I2

τ2/2I2 τI2

q is a noise constant and In is an n × n identity matrix. ζ(·) is a function of the current

target state and the map, M , and it directs the target away from its closest obstacle which

polar coordinate with respect to the current target frame is denoted as r(yt)
o , θ

(yt)
o .

ζ(yt;M) = [0, 0, atτ cos(θrot,t), atτ sin(θrot,t)]
T (7.4)

where

at =
νt cos+(θ

(yt)
o)

max(rmin, r
(yt)
o − rmargin)2

(7.5)

θrot,t =

yθ,t + θ

(yt)
o − θrep,t for θ(yt)

o ≥ 0

yθ,t + θ
(yt)
o + θrep,t otherwise

(7.6)

θrep,t =
π

2

(
1 +

1

1 + e−(νt−νmax/2)

)
(7.7)

νt =
√
ẏ2

1,t + ẏ2
2,t (7.8)

rmin and rmargin are design parameters that determine the maximum value of at and a

margin from an obstacle point with the maximum effect, respectively. νmax is the maximum

target speed, and cos+(x) = cos(x) if −π/2 ≤ x ≤ π/2 and 0 otherwise. Fig.7.2 illustrates

the effect of ζ(·) around the obstacle in different positions.

Additionally, if yt+1 in Eq.7.3 causes a collision with an obstacle, its velocity is changed

while its position remains same :

yt+1 = yt + (νt + nt)[0, 0, cos(θrot,t), sin(θrot,t)]
T (7.9)

94

where nt ∼ N (0, 1).

7.3.2 Agent and Observation Models

The agent follows the differential drive dynamics,

x1,t+1

x2,t+1

xθ,t+1

 =

x1,t

x2,t

xθ,t

+

ντsinc(ωτ2) cos(xθ,t + ωτ

2)

ντsinc(ωτ2) sin(xθ,t + ωτ
2)

τω

 (7.10)

controlled by linear and angular velocity commands, v and ω, respectively.

We use a range-bearing sensor which is commonly used in practice in robotics and assume

that the agent can uniquely identify different targets. The observation model of the sensor

for each target is:

zi,t = h(xt, yi,t) + vt, vt ∼ N
(

0, V

)
(7.11)

where V is a observation noise covariance matrix and

h(x, y) =

rx,y
αx,y

 :=

 √
(y1 − x1)2 + (y2 − x2)2

tan−1((y2 − x2)(y1 − x1))− xθ

7.3.3 Belief Update

We use a Kalman Filter to update the beliefs on the targets. While previous works assume

that the target model is known to the agent [2, 112], we release the assumption by allowing

only the partial knowledge, a double integrator with A and W (qb) in Eq.7.3, and excluding

the ζ(·) term. In a domain with obstacles, the effect of ζ(·) is significant, and the belief

update becomes considerably inaccurate leading to a more challenging task.

The observation model in Eq.7.11 is approximated to a linear model in the Kalman filter

and the Jacobian matrix of h(y, x) with respect to y is :

∇yh(x, y) =
1

rx,y

 (y1 − x1) (y2 − x2) 01x2

− sin(xθ + αx,y) cos(xθ + αx,y) 01x2

95

7.4 Experiments

Unlike many benchmark simulation environments in RL, the target tracking environment

is highly stochastic and contains considerable randomness. First, the agent, beliefs, and

targets can be randomly initialized within a large range in a domain. As discussed further

in the following section, different abilities of an agent can be emphasized depending on

initialization. Moreover, the noise components in the target motion, the belief model, and

the observation model provide additional randomness in performance. Lastly, the agent

can discover a target by chance as both the targets and the agent are dynamic and as the

target motion is independent of an agent path. Therefore, it is important to have a learning

environment that provides diverse samples while to carefully design evaluation environments

that reduces a large performance variance across different trials.

We perform experiments in single-target scenarios as well as two-target scenarios. When

there is more than one target, the maximum velocity of the agent should be much higher

than that of targets in order to continuously gather information about the targets while

traveling among them. If targets are too far apart, committing to track nearby targets can

return higher mutual information in a given time than tracking all targets. Therefore, we

use different training and evaluation settings for single-target and two-target environments.

7.4.1 Algorithms

We learn a ATTN policy using Assumed Density Filtering Q-learning, a Bayesian Q-learning

method which has shown promising performance in stochastic environments and tasks with

a large action space [63, 64]. It is an off-policy temporal difference learning, and thus, we

can have an action policy different from the target policy. For the action policy, we use

Thompson sampling [124] which samples Q-values for all actions given a state from the

belief distributions and select an action with the maximum sample value. We use γ = 0.99,

the discount factor, which results in the length of the effective horizon as Teff = 687

(Teff = argmaxt γ
t s.t. γt > 0.001). The dimension of the egocentric map input is 25×25×5,

and the two convolutional layers consist of 20, 4 × 4 filter, with a stride of 3 and 40, 3 × 3

96

filter, with a stride of 2. The following fully connected layers consist of 3 layers with 512

hidden units. The network is trained for 30K steps (or 300 episodes) with three different

random seeds (thus, three models).

We compare the ATTN policy with the Anytime Reduced Value Iteration (ARVI) algo-

rithm, an open-source search-based target tracking algorithm that has been verified in both

simulations and real robot experiments [112]. Details of the algorithm is explained in Sec-

tion 6.2. The algorithm optimizes the same mutual information objective of ATTN. It also

uses the same observation and agent models and the Kalman filter described in Section 7.3.

ARVI finds a near-optimal path at each step given a specified amount of time denoted as

TARV I . Therefore, this allocated planning time is usually equal to or less than the sampling

period or a time interval, τ . In this experiment, we set this value to be TARV I = τ = 0.5

[s]. The planning horizon for ARVI is set to 12 steps following the original paper. Since the

algorithm finds a path in a given time, a longer planning horizon sometimes helps to find a

better path but it can also lead to a worse plan since the search space becomes too large.

We tested with 1, 5, and 10 for the number of controls to be applied at each time step, and

5 showed the best result.

7.4.2 Training Setup

The training environment is designed so that the learning agent can be exposed to various

situations. The system models follow the models described in the previous section with

the following parameters : τ = 0.5, V = diag(0.2, 0.01), rmargin = 1.0, ν0 = 0.0 [m/s].

The maximum sensing range is rsensor = 10 [m] and its field of view is 120 degrees. A

set of motion primitives, or the action space, is A = {(v, ω)|v ∈ {0, 1, 2, 3}[m/s], ω ∈

{0,−π/2, π/2}[rad/s]} and the time horizon of an episode, T is set to 100. In single-target

scenarios, the noise constants of the target model and the belief model are set as q = qb = 0.5,

and the maximum target velocity is set as νmax = 3.5 [m/s]. For two-target scenarios, lower

values are used for training: q = qb = 0.2 and νmax = 1.0 [m/s]. As mentioned above,

it is infeasible for an agent to keep tracking multiple targets that are diverging from each

other with limited dynamic constraints. Additionally, high noise constant of the target

97

Figure 7.3: Obstacle polygons for generating a random map. (a) Obstacles used during training, (b)
Unseen obstacles, (c) An example map of a randomly generated map.

model makes a target to be quickly diverged from its corresponding belief while the agent is

tracking another target (when it is not available to cover both targets at once). While this

requires an ability to explore near the belief when losing the target, it may also result in a

case where committing to one target gives a higher return.

Map. To learn a policy that is robust to various environmental configurations, we ran-

domly generate a map from a set of obstacle candidates as shown in Fig. 7.3 (a). These

obstacles include both convex concave polygons resulting in more challenging navigation

tasks. At each episode, four randomly selected obstacles are placed at the center of each

quadrant of an empty domain with random orientations (see Fig. 7.3(c)). The map resolu-

tion (cell size) is 0.4 [m] and the map dimension is 72.4× 72.4 [m2].

Initialization. For each episode, the robot is randomly initialized in a given domain.

In single-target domains, the initial belief position is randomly chosen within a distance

between 5.0 to 20.0 [m] from the agent, and the initial target position is randomly placed

within (0.0, 20.0)[m] range from the belief. Since the agent may be required to travel between

targets in two-target domains, smaller ranges are used – (5.0, 10.0)[m] range for a distance

between beliefs and the agent, and (0.0, 10.0)[m] range for a distance between a belief and

its corresponding target. These ranges are chosen considering the maximum sensing range

of the agent. Note that having a target placed too far from its corresponding belief can lead

to learning a policy that does not trust the belief.

We added a penalty to the reward function when the agent chooses an action that imme-

98

Figure 7.4: Illustration of the three initialization configurations. The black figure corresponds to the
robot with a range-bearing sensor on top. The blue dotted circle is the sensing radius and the faded
blue sector indicates a covered area by the sensor. Targets are represented with the red figures. The
green figures are beliefs with uncertainty represented as the faded green circles. The black cuboid
is an obstacle occluding the target and the belief in the configuration B.

diately leads to a position within rmargin distance to an obstacle. The penalty accelerated the

learning by a marginal amount, but did not make any noticeable difference in performance.

7.4.3 Evaluation Setup for Single-Target Domains

In single-target domains, different sets of initial positions of the robot, targets, and beliefs

emphasize different abilities of an agent. For example,

• Occlusion of a target and/or its corresponding belief : This requires an ability to

navigate around obstacles.

• The initial distance between yi,t and xt : A larger value requires the ability to navigate

for a long path.

• The initial distance between yi,t and ŷi,t : A larger value requires the ability to explore

the current domain until reaching the target.

Therefore, we consider three different initialization setups to evaluate capabilities of the

99

testing algorithms in the sub-tasks of active target tracking – in-sight tracking, navigation,

discovery – separately.

1. In-sight tracking task: A target and the corresponding belief are randomly initialized

within the sensing range (||yi,t − xt||2 ∈ [3, 10]), and they are located close to each

other (||yi,t − ŷi,t||2 ∈ [0, 3]). The case A in Fig. 7.4 illustrates this initial condition.

We experiment with target model noise level and the maximum target speed limit.

2. Navigation task: Both a target and the corresponding belief are initialized relatively

far from the agent (||yi,t − xt||2 ∈ [15, 20]), and occluded as described in Fig. 7.4 B.

They are located close to each other (||yi,t − ŷi,t||2 ∈ [0, 3]).

3. Discovery task : The initial belief is located within the sensing range (||ŷi,t − xt||2 ∈

[3, 10]), but the target is initialized far from the belief (||yi,t − ŷi,t||2 ∈ [15, 20]) as

illustrated in Fig. 7.4 C. Thus, the agent won’t be able to discover the target by

simply reaching the belief location and scanning around. As the agent has beliefs on

targets, we exclude cases where beliefs are significantly far from real targets.

We first generated a set of 10 episodes for each evaluation task. In each episode, the target

trajectory, initial robot and belief states, and map configuration are randomly generated and

they differ across episodes. Three trained models of ATTN with different random seeds are

evaluated on the evaluation sets. ARVI is also evaluated on the evaluation sets with three

random seeds. To prevent a case where the target approaches the robot and is found by

luck, the target starts to move once it is observed by the robot for the first time in each

episode.

7.4.4 Results in Single-Target Domains

The robustness of the ATTN policy and ARVI is evaluated in the in-sight tracking task. In

particular, we are interested in tracking fast and anomalous targets. Thus, we tested ATTN

and ARVI with different values for both the target noise constant q in the target model

Eq.7.3 and the maximum target speed, νmax. The larger the q value, the more deviated

the belief state is from the target state. Furthermore, q affects how much the target speed

100

evolves over time. If the q value is small, the target may never reach the maximum target

speed in a given time horizon. qb is set to be 0.5 as same as the value used in training.

To quantitatively measure the performance of the algorithms, we consider mutual infor-

mation, or in particular, a normalized sum of negative log of determinant of covariance in

predictions within an episode:

J̄ =
−
∑

t=1,··· ,T log det(Σt+1|t)− Jmin

Jmax − Jmin
∈ [0, 1] (7.12)

The lower bound, Jmin, is found when there is no observation in an episode, and the

belief is updated only by the prediction step in the Kalman filter. The upper bound,

Jmax, is met when the target is observed at every step. According to Theorem 4 in [118],

Jmax = −T log det(W) and Jmin = −
∑

t=1,··· ,T log det(Σt+1) for Σt+1 = AΣtA
T + W . We

additionally evaluate resilience, η ∈ [0, 1], defined as the number of times the target is

re-discovered by the sensor divided by the number of times the target is lost.

The left plot in Fig. 7.5 shows the average performances of both algorithms for q ∈

{0.02, 0.1, 0.2, 1.0, 2.0} and νmax = 3.0, and the right plot shows their average performances

for q = 0.2 and νmax ∈ {2.5, 2.75, 3.0, 3.25, 3.5}. Note that the maximum robot linear speed

Figure 7.5: J̄ (solid line) and η (dotted line) of ATTN (blue) and ARVI (yellow) in environments
with different q and νmax values. The error bars represent the standard deviation across 10 episodes.
The mean values are averaged values over different seeds and 10 episodes. Left: νmax = 3.0[m/s]
and q ∈ {0.02, 0.1, 0.2, 1.0, 2.0}. Right: q = 0.2, νmax ∈ {2.5, 2.75, 3.0, 3.25, 3.5}

101

Figure 7.6: Examples of ATTN (top) and ARVI (bottom) when the robot loses the target. The
left figures are a few steps after the robot loses the target, and the right figures are after 10 steps
passed. The blue triangle is the robot and the red circle is the current target position. The blue
and red dots are paths of the robot and target so far. The green circle indicates the belief position.
The green and purple shaded circles represent the position and velocity uncertainty of the belief,
respectively. The circular sector is the sensing area. In the top figures, visited cells are filled with
gray color based on λc,t in Eq.7.2, and the five blue squares indicate areas in the local map input.

is 3.0 [m/s], and thus, it is likely that the robot will often lose the target when νmax = 3.25

and νmax = 3.5. For both J̄ and η, ATTN outperformed ARVI. As expected, J̄ and η

decrease as the target motion becomes noisier. Surprisingly, νmax did not have a significant

impact on either J̄ or η. This shows that the robot is capable of tracking a target that is

faster than itself. The resilience tracks similarly with J̄ indicating that the resilience is a

significant factor of the performance. ATTN learns to explore near the belief when the target

is not observed at the belief location and the uncertainty is high. In Fig. 7.6, the belief is

102

Figure 7.7: Density plots of belief positions in the agent frame during 10 episodes with different
values for q and νmax. The red triangle is the robot position (0.0, 0.0) and the horizontal and
vertical red dotted lines are x and y axis of the agent frame, respectively. x ∈ (−2.0, 8.0) and
y ∈ (−5.0, 5.0)[m].

located to the left of the robot, but the robot chooses to turn right instead to explore the

surrounding areas. After a few steps, the robot re-discovers the target. On the other hand,

ARVI greedily follows the belief, failing to discover the target even though the uncertainty

is relatively high and no observation is received. Additionally, ATTN does not track the

belief as tightly as ARVI, and instead leaves some buffer space to provide maneuverability

when the target quickly changes its direction. Fig. 7.7 is density plots of belief positions

with respect to the robot during 10 episodes. The red dotted lines are the x-axis and y-axis

of the robot frame, and the x-axis is the robot heading direction. Overall, ATTN results in

scattered density plots while the belief positions in the ARVI plots are mostly concentrated

in a few small areas.

For the navigation and discovery tasks, we measure a discovery rate to evaluate the

performance of the algorithms. This discovery rate is defined as the number of episodes

in which the target is found divided by the number of total episodes (=10). The faster

the robot finds the target, the higher the resulting J̄ . However, J̄ can vary significantly

103

Figure 7.8: Performance evaluation for Discovery and Navigation tasks. Left: Evaluated in 10
different environments randomly generated by obstacles used in training. Right: Evaluated in 10
different environments randomly generated by unseen obstacles during training.

depending on the initial positions of the setup, and therefore is a poor measure for these

tasks.

The results of the navigation task are depicted in the left figure of Fig.7.8. The ATTN

policy finds the target 93% of the time on average (models trained with three different

random seeds). On the other hand ARVI successfully finds the target only 40% of the time.

We observe that ARVI fails to find a path to the target given TARV I when target is located

far from the agent and is occluded by concave polygon obstacles.

Since ARVI use a forward simulation, it guarantees to avoid any collision with a perfect

map information. While ATTN does not provide the guarantee for the collision avoidance,

ATTN results in 0.4 times of collision attempts on average in the navigation task and no

collision attempt in the discovery task.

In the discovery task, as defined earlier, the initial target is placed far from the initial

belief location requiring the robot to explore to find the target. As shown in Fig. 7.8, ARVI

fails to find the target in any of the episodes in this task while ATTN finds it 93% of the

time on average. The four figures in Fig. 7.9 are density maps of areas that the robot’s

sensor has scanned in the global map. The top figures are examples of a single episode

(left: ATTN, right: ARVI) and the bottom figures are examples of 20 episodes with random

104

Figure 7.9: Density maps of scanned areas by the robot’s sensor over single episode (top) and 20
episodes (bottom). The white circle are the initial position of the robot. The red filled circles in
the top figures are the initial target positions, and the red hollow circles in the top figures are the
initial belief positions. In the bottom figures, the target is randomly initialized in the area between
the red dotted circles.

initialization. To solely evaluate the exploration capability, no obstacles are present in the

map. The figures show that ATTN explores the global domain broadly when the target is

not found near the belief while ARVI commits to the incorrect belief and leaves the global

domain unexplored. This difference explains why ATTN achieves an 93% discovery rate

while ARVI never finds the target. The computation time for planning of ATTN is 0.12

[sec] on average, which is much faster than the allocated computation used for ARVI (=0.5

[sec]) while ATNN has a significantly longer planning horizon.

7.4.5 Unseen Environments

Additional to the experiments described in the previous sections, we test the learned ATTN

policy in environments with unseen obstacles during training (see Fig.7.3). The results in

105

Figure 7.10: Performance evaluation on N = 2 targets. Left: The normalized mean of log determi-
nant of belief covariances averaged over 10 episodes and the error bars indicate standard deviations.
Right: Standard deviation of log determinant of belief covariances averaged over 10 episodes and
the error bars indicate their standard deviations.

the right figure of Fig.7.8 shows that the discovery rates of ATTN in both tasks are 93%

and 96%, similar to the results in the training environments. Likewise, ARVI results in

60% and 0% discovery rates. Additionally, ATTN shows 0.4 and 0.0 collision attempts on

average for the navigation and discovery tasks, respectively. These results demonstrate that

the learned policy performs well in unseen environments promoting the benefit of using local

information. Note that ARVI is an online search-based planning algorithm without having

a training stage, and therefore it is not affected by a new set of obstacles.

7.4.6 Results in Two-Target Domains

Unlike the single-target domains (where once the agent is nearby the target, the navigation

and discovery abilities are not much needed), the agent may need to use all three abilities

interchangeably throughout an episode or to use them at the same time. For instance, the

agent must navigate from one target to another one when they are far apart. Moreover, while

the agent is tracking one target, the other belief diverges from its corresponding target which

requires the agent to explore to find the target. Lastly, the agent may explore to discover

one target while tracking the other target when they both are around the agent’s sensing

range. Therefore, instead of evaluating the algorithms in the three subtasks, we evaluate the

algorithms with an initialization similar to the in-sight task in the single-target evaluation

106

Figure 7.11: The relation between average distance between two targets during an episode and J̄ .

at different noise constants q = {0.002, 0.02, 0.2} and vmax = 1.0 [m/s].

The average normalized objective, J̄ , are presented in the left figure of Fig. 7.10. In all

q values, ATTN constantly outperforms ARVI. The right figure shows the average standard

deviation between J̄ of two targets. A lower value for SD(J̄) indicates that the agent tracks

the targets while balancing the objective brought by both targets. The reason of the ARVI

performance is similar to the one in the single target case. ARVI aggressively tracks the

beliefs and it especially harms the performance in a multi-target tracking case since the agent

is often required to travel between two targets and a belief diverges from its corresponding

target while the agent is tracking another one.

Fig.7.11 shows how the performance of ATTN and ARVI in terms of J̄ decreases as a

distance between two targets increases. Although ATTN shows a higher performance than

ARVI, the value drops in general which indicates the difficulty of the problem.

7.5 Discussion

7.5.1 Learning with Uncertainty

Although an RL method requires an extended training stage to obtain a policy, it provides

flexibility in expanding a problem domain or changing system models. The objective of a

107

problem is implicitly included in a reward function, and an optimal policy is learned without

requiring knowledge on models. While we use partial knowledge on a target model and an

observation model to update beliefs using a Kalman filter, we were able to use a target

model that differs from the model known to the beliefs without violating any assumption

or constraint required for an algorithm. Therefore, the target tracking scenarios considered

in this article are more challenging in terms of stochasticity, uncertainty, and imperfect

prior knowledge, compared to scenarios presented in previous works [2, 21, 57, 112]. During

learning, the learning agent is exposed to diverse and challenging training samples and is

able to learn to track with uncertain beliefs, learn to navigate, and learn to explore.

7.5.2 Stochasticity of Tasks

Active target tracking is not a trivial task for RL. The state information of a learning

agent and an environment including targets and obstacles is high-dimensional, continuous,

and stochastic. The recent advancement of deep RL have shown promising results in tasks

where the RL state is continuous or high-dimensional – for example, raw screen image in

video games or joint angles [92, 93, 113]. Yet, the deterministic dynamics of popular deep

RL benchmark environments such as the Arcade Learning Environment (ALE) and Mujoco

has raised concern in the scientific community as the successfully evaluated algorithms can

fail when extended to new domains [85]. In most real-world problems, a transition function

and/or a reward function are likely to be stochastic, resulting in challenges applying such

approaches to more realistic problems. The active target tracking task is highly stochastic.

Even in its simulation setting, the innate partial observability feature brings high stochas-

ticity in the task. A subsequent RL state is determined not only by the current agent action

but also the real yet partially observable or unknown target. Therefore, the same action

can result in very different RL states as the belief can be drastically updated due to a new

measurement if the corresponding target is around as opposed to no target is observed. It

is shown in the previous work [63] that popular benchmark deep Q-learning methods, deep

Q-network and double deep Q-network, failed to achieve optimal performance in relatively

simple settings. Thus, it is important to note that the environment is stochastic and an

108

algorithm capable in such a highly stochastic domain should be considered.

7.5.3 United Policy

One of the key contributions of this study is that we expand the problem domain and tackle

three major capabilities with one united policy. One might argue that we could achieve

similar performance by having three different algorithms for each capability and have an

additional algorithm to heuristically decide which one to use at each step. This not only can

burden the computational cost but can lose the interchangeable flexibility among different

capabilities.

7.6 Summary

In this chapter, we present Active Target Tracking Network (ATTN), an RL method for

active target tracking that learns a unified policy capable of three main tasks - In-sight

tracking, Navigation, and Discovery. To demonstrate, we train an RL policy in a target

tracking environment described in Sec.7.3 where a mobile robot is tasked with tracking mo-

bile targets using noisy measurements from its on-board range-bearing sensor. The learned

ATTN policy shows a robust performance for agile and anomalous target motions, despite

the true target model differing from the target model in the agent belief. Moreover, the

policy was able to navigate through obstacles with a long path to reach the target. Finally,

it learns to explore surrounding areas and reach a target when its belief on the target is

inaccurate, while the existing algorithm failed to do so in all test examples.

109

Chapter 8

Conclusion

Reinforcement learning has attracted much attention due to its roots in psychological and

neuroscientific perspectives on animal decision-making. Unlike supervised learning, it does

not require an external supervisor or labeled datasets, and thus it provides a promising

framework for learning tasks where we do not have an optimal solution and/or must learn

from interacting with an environment. Moreover, the recent achievements in deep rein-

forcement learning proved promising performance in complex domains of which previous

reinforcement learning methods had been incapable. Despite the impressive progress, re-

inforcement learning is not yet practical in most robotics and autonomous systems. To

improve the limitation of reinforcement learning, we must consider sample complexity, con-

tinual learning, partial observability, uncertainty, transfer learning, reward function design,

along with several other topics. This dissertation is inspired by such needs and focuses on

three of the challenges – sample complexity, uncertainty, and partial observability.

Chapter 3 presents a method of using reinforcement learning for learning stand-up motion

of humanoid robots with sample complexity. There have been some deep reinforcement

learning methods that learn stand-up motions of a simple humanoid in the Mujoco simulator

[126]. Although the simulator uses the physics of a dynamic object, it is much simpler than

a simulator for a real-robot. Therefore, such methods requiring millions of samples do not

easily transfer to more realistic robotic simulations. Instead of using function approximators

110

such as a neural network, we discretize the state and action spaces by a clustering method and

apply the standard Q-learning. Furthermore, we utilize bi-symmetric features of humanoid

robots to reduce the state and action space and accelerate the learning. A reinforcement

learning policy is trained with a DarwIn-OP humanoid robot in an open-source 3D robot

simulator and evaluated both in the simulation and on a physical robot. The learned policy

demonstrates successful stand-up motions in various fallen positions surpassing the manually

designed motion.

The second part of this dissertation (Chapter 4 and 5) addresses the uncertainty of learn-

ing parameters in Q-learning. We introduce a novel Bayesian Q-learning method – Assumed

Density Filtering Q-learning. The overestimation of Q-learning has been addressed by many

scholars and studies despite Q-learning being one of the most popular reinforcement learning

algorithms. The issue is caused by the greedy behavior of the max operator in the value

update. To improve the overestimation bias, some studies proposed new methods such as

Double Q-learning. However, even though its estimation values are lower than that of Q-

learning, it can suffer from an underestimation issue or have insufficient correction amounts.

We instead provide a principled way of regularizing the greedy update based on the uncer-

tainty of learning parameters. Unlike having point estimates on Q-values in the standard

Q-learning, we suppose that the agent maintains a Gaussian belief distribution for each state

and action pair. As opposed to distributional reinforcement learning, the goal is not about

learning the underlying value distribution of an environment. Rather, the learning agent

utilizes its belief distributions during learning, and therefore the uncertainty of the beliefs

should approach 0.0 after a sufficient amount of time passed. To solve the non-linearity

brought by the max operator in the Bellman optimality equation, we approximate the non-

Gaussian likelihood to Gaussian using a variational inference method called assumed density

filtering. We further approximate the resulting Gaussian mixture posterior distribution to a

Gaussian distribution and enable an online Bayesian update. As a result, the computational

complexity is only O(|A|2) at each step which is significantly less than most Bayesian rein-

forcement learning algorithms. Moreover, it converges to Q-learning as the uncertainty of the

111

beliefs approach zero. These features of ADFQ are demonstrated in both deterministic and

stochastic domains outperforming Q-learning and an existing Bayesian Q-learning method

and converges faster to optimal Q-values. These improvements are continued with a neural

network function approximator. ADFQ with a neural network, called Deep ADFQ, surpasses

DQN and Double DQN in continuous state domains (both deterministic and stochastic) as

well as in several Atari 2600 games by a significant amount. Additionally, it shows that it

improves some estimation bias of Q-learning and Double Q-learning. The improvements are

more significant in stochastic domains and domains with a large number of actions. Finally,

we utilize the uncertainty information in exploration through Thompson sampling, and it

accelerates learning by efficiently explore the action spaces.

In the final part of this thesis (Chapter 6 and 7), we tackle a highly stochastic and

partially observable environment with ADFQ utilizing the benefits discussed above. Active

information acquisition is an essential task in robotics where an agent makes a sequence of

decisions to gather information about targets of interests. Various approaches have been

studied for this problem with different focuses. We particularly focus on cases where both

the agent and the targets are mobile. We learn a unified reinforcement learning policy that

can track targets near the agent with partial knowledge on a target model, navigate through

different shapes of obstacles, and explore a global domain to discover targets when prior

information is inaccurate. Since there is no direct observation of the targets, it is naturally

a partially observable environment. Instead of approaching the problem as a POMDP, we

formulate the problem as an MDP by explicitly including the uncertainty measures on target

states as a part of the reinforcement learning state. The reward function is defined by a

mutual information objective, and thus, a learned policy chooses an action that maximizes

cumulative discounted future rewards over an effective time horizon. We first evaluate poli-

cies learned by ADFQ, DQN, and Double DQN in relatively simple environments similar to

the ones used in previous works – a target model is mostly known to the agent belief, concave

obstacles, slow targets with small randomness. Since the problem is highly stochastic and

partially observable, DQN and Double DQN struggle to achieve near-optimal performance

112

in less than 100 trajectories. On the other hand, ADFQ reaches or sometimes outperforms

the existing search-based planning algorithm in all domains promising its potential bene-

fits. Therefore, we further extend this approach to a much more complex and uncertain

scenario. Particularly, we are interested in a target tracking problem where a target is agile

and anomalous as well as the agent has only partial knowledge about the target. In order to

track targets in practice, not only you need an ability to track the target near your sensing

range, it is required to have navigation as well as exploration abilities. Each ability has been

studied separately, but no method has been presented to do all three tasks with one policy.

The presented method with ADFQ demonstrated its capabilities in all three tasks while a

comparing algorithm often failed to discover targets or to keep tracking them.

In summary, we have explored how to utilize the uncertainty of learning parameters of

an off-policy TD learning and its capabilities to be effectively applied in challenging real-

world problems. We also discussed how we can use reinforcement learning for a task where

acquiring a large number of samples is extremely demanding. Potential extensions and

future works follows:

• As ADFQ is a direct Bayesian counterpart of Q-learning, many existing variation of

Q-learning can be combined with the Bayesian approach. Note that the main idea of

ADFQ is to provide a principled non-greedy value update and to replace the greedy

max operator. Therefore, algorithms that do not use the max operator would not

obtain the same contributions by being combined with ADFQ.

• Uncertainty propagation from state uncertainty to value uncertainty is another inter-

esting future direction that can be extended from ADFQ. As studied in Chapter 6 and

7, a state often contains considerable amount of uncertainty in partially observable

environments. Additionally, we can consider learning a state representation and its

uncertainty using a unsupervised learning method such as variational autoencoder [70]

and utilize the state uncertainty in the value update.

• Adversarial target tracking is an exciting extension of the active target tracking work.

113

We have observed that when target was not allowed to approach the agent within a

certain range (therefore the target motion was not completely independent of an agent

path), without any changes or additions, the agent learns to block the target so that

it can easily keep the target in its sensing range. Similar to Generative Adversarial

Network [41], we can train an intelligent target that adapts its behavior over time to

avoid being tracked by the agent, and the agent should continuously improve its policy

according to the updated target behavior. Such self-supervised reinforcement learning

is an emerging field and has had an increasing interest [8].

• Another natural extension of the active target tracking work is multi-agent target

tracking. As pointed out in Chapter 7, it is physically impossible for a single agent

to track both targets while maximizing overall mutual information when targets are

quickly diverging from each other. As the number of targets increases, either the re-

quired maximum speed of the agent should increase or targets should move slowly or

within a certain range (e.g. a distance constraint among targets). Multi-agent ap-

proaches for target tracking problems have been studied recognizing such limitations

of single-target tracking [3, 16, 79, 90, 112]. Separately, multi-agent reinforcement

learning has been widely studied for various applications including robotics, telecom-

munications, and distributed control [15, 77, 98]. Combining advancements from these

two fields of literature would present an interesting and more practical result in scalable

target tracking problems.

114

Appendices

115

Appendix A

Mathematical Derivation of Posterior

Distribution of Q-beliefs

A.1 Derivation of the Posterior Distribution of Q

In the section 4.4 of the main paper, we have shown that

p̂Qs,a(q|θ, r, s′) =
1

Z
pVs′

(
q − r
γ

∣∣∣∣ q, s′, θ) pQs,a(q|θ)

where Z is a normalization constant. Applying the distributions over Vs′ and Qs,a, the

posterior is derived as:

p̂Qs,a(q) =
1

Z

∑
b∈A

1

σs′,b
φ

(
q − (r + γµs′,b)

γσs′,b

) ∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
1

σs,a
φ

(
q − µs,a
σs,a

)

=
1

Z
√

2πσs,a

∑
b∈A

1

σs′,b
exp

{
−1

2

(µs,a − (r + γµs′,b))
2

σ2
s,a + γ2σ2

s′,b

}
φ

(
q − µ̄τ,b
σ̄τ,b

)
×

∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)

=
1

Z

∑
b∈A

cτ,b
σ̄τ,b

φ

(
q − µ̄τ,b
σ̄τ,b

) ∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)

116

where Z is a normalization constant and

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b

φ

(r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b

µ̄τ,b = σ̄2
τ,b

(µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b

)
σ̄2
τ,b =

(1

σ2
s,a

+
1

γ2σ2
s′,b

)−1

A.2 Mean and Variance of the Posterior Distribution of Q

A.2.1 Moment Generating Function

The mean and variance of the posterior distribution (Eq.4.2) can be analytically found when

|A| = 2. Consider a random variable XM = max1≤k≤N Xk which density function (Eq.4.1)

has a similar form to the posterior distribution. The moment generating function of XM is:

M(t) =

∫ ∞
−∞

etx
∑
i

1

σi
φ
(x− µi

σi

)∏
i 6=j

Φ
(x− µj

σj

)
dx

=
∑
i

ηi(t)

∫ ∞
−∞

1

σi
φ

(
x− µ′i
σi

)∏
i 6=j

Φ

(
x− µj
σj

)
dx

where

ηi(t) = exp

{
µit+

t2σ2
i

2

}
and µ′i = µi + tσ2

i

When N = 2,

M(t) =

∫ ∞
−∞

etx

(
1

σ1
φ
(x− µ1

σ1

)
Φ
(x− µ2

σ2

)
+

1

σ2
φ
(x− µ2

σ2

)
Φ
(x− µ1

σ1

))
dx (A.1)

117

Since the two terms are symmetric, let M(t) = M1(t) + M2(t) and differentiate each term

with respect to µ2 and µ1, respectively. For the first term,

∂M1(t)

∂µ2
= − η1(t)

σ1σ2

∫ ∞
−∞

φ
(x− µ′1

σ1

)
φ
(x− µ2

σ2

)
dx

= − η1(t)σ12√
2πσ1σ2

exp

{
−1

2

(µ′1 − µ2)2

σ2
1 + σ2

2

}∫ ∞
−∞

1

σ12
φ

(
x− µ12

σ12

)
dx

= − η1(t)σ12√
2πσ1σ2

exp

{
−1

2

(µ′1 − µ2)2

σ2
1 + σ2

2

}
(A.2)

where

µ12 = σ2
12

(
µ′1
σ2

1

+
µ2

σ2
2

)
1

σ2
12

=
1

σ2
1

+
1

σ2
2

Then, we integrate Eq.A.2 with respect to µ2,

M1(t) =

∫
∂M1(t)

∂µ2
dµ2

= − η1(t)σ12

σ1σ2

√
σ2

1 + σ2
2

∫
1√

2π(σ2
1 + σ2

2)
exp

{
− (µ′1 − µ2)2

2(σ2
1 + σ2

2)
dµ2

}
= η1(t)Φ

(
µ′1 − µ2√
σ2

1 + σ2
2

)
(A.3)

A.2.2 Moments of the Posterior Distribution

We apply the result in Eq.A.3 to the posterior distribution by replacing the variables in

M1(t) as:

µ1 → µ̄τ,1 σ1 → σ̄τ,1 µ2 → r + γµ2 σ2 → γσ2

and replacing the variables in M2(t) similarly. Then, we obtain the normalizing factor:

Z = cτ,1Φτ,1 + cτ,2Φτ,2 (A.4)

118

where we define the following notations for simplicity:

Φτ,1 ≡ Φ

 µ̄τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

 , φτ,1 ≡
1√

σ̄2
τ,1 + γ2σ2

s′,2

φ

 µ̄τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

and Φτ,2 and φτ,2 are also similarly defined. The exact mean of the posterior distribution is

derived by solving the first derivative of the moment generating function with respect to t

at t = 0:

M ′1(t) = cτ,1η
′
1(t)Φ

 µ̄′τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

+cτ,1η1(t)
σ̄2
τ,1√

σ̄2
τ,1 + γ2σ2

s′,2

φ

 µ̄′τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

Eq∼p̂Qs,a (·)[q] =
1

Z

(
M ′1(t = 0) +M ′2(t = 0)

)
=
cτ,1
Z

(
µ̄τ,1Φτ,1 + σ̄2

τ,1φτ,1
)

+
cτ,2
Z

(
µ̄τ,2Φτ,2 + σ̄2

τ,2φτ,2
)

(A.5)

The variance of the posterior is also derived by solving the second derivative of the moment

generating function:

M ′′1 (t) = cτ,1η
′′
1(t)Φ

 µ̄′τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

+ 2cτ,1η
′
1(t)

σ̄2
τ,1√

σ̄2
τ,1 + γ2σ2

s′,2

φ

 µ̄′τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

+ cτ,1η1(t)

(
−
µ̄′τ,1 − (r + γµs′,2)

(σ̄2
τ,1 + γ2σ2

s′,2)σ̄−2
τ,1

)
σ̄2
τ,1√

σ̄2
τ,1 + γ2σ2

s′,2

φ

 µ̄′τ,1 − (r + γµs′,2)√
σ̄2
τ,1 + γ2σ2

s′,2

Thus, the second moment is:

Eq∼p̂Qs,a (·)[q
2] =

cτ,1
Z

(
(µ̄2
τ,1 + σ̄2

τ,1)Φτ,1 + 2µ̄τ,1σ̄
2
τ,1φτ,1 −

σ̄4
τ,1

σ̄2
τ,1 + γ2σ2

s′,2

(µ̄τ,1 − (r + γµs′,2))φτ,1

)
cτ,2
Z

(
(µ̄2
τ,2 + σ̄2

τ,2)Φτ,2 + 2µ̄τ,2σ̄
2
τ,2φτ,2 −

σ̄4
τ,2

σ̄2
τ,2 + γ2σ2

s′,1

(µ̄τ,2 − (r + γµs′,1))φτ,2

)
(A.6)

and the variance is Eq∼p̂Qs,a (·)[q
2]− (Eq∼p̂Qs,a (·)[q])

2.

119

Appendix B

Q-beliefs with Gaussian White Noise

In order to incorporate stochasticity of an MDP, we add small Gaussian white noise to the

likelihood, r + γVs′ + W where W ∼ N (0, σ2
w), and the likelihood distribution is obtained

by solving the following integral:

p(r + γVs′ |q, θ) =

∫ ∞
−∞

∑
b∈A

1

σs′,b
φ

(
w − (q − (r + γµs′,b))

γσs′,b

)
×
∏
b′ 6=b

Φ

(
−
w − (q − (r + γµs′,b′))

γσs′,b′

)
1

σw
φ

(
w

σw

)
dw

=

∫ ∞
−∞

∑
b∈A

lb
v̄b
φ

(
w − w̄b
v̄b

)∏
b′ 6=b

(
1− Φ

(
w − (q − r − γµs′,b′)

γσs′,b′

))
dw (B.1)

where

lb =
1√

σ2
w + γ2σ2

s′,b

φ

q − (r + γµs′,b)√
σ2
w + γ2σ2

s′,b

 (B.2)

w̄b = v̄2
b

(
q − (r + γµs′,b)

γ2σ2
s′,b

)
1

v̄2
b

=
1

γ2σ2
s′,b

+
1

σ2
w

(B.3)

B.1 Expected Likelihood for |A| = 2

The distribution inside the integral in Eq.4.6 has a similar form with the posterior distribu-

tion Eq.4.2. As mentioned above, a closed form solution for its integral is not available when

|A| > 2. Therefore, we derive an analytic solution of the expected likelihood when |A| = 2

120

and approximate to a simpler form so that it can be generalized to an arbitrary number of

actions.

Using Eq.A.3 for finding the zeroth moment, we obtain:

p(r + γVs′ |q, θ) = l1Φ

− w̄1 − (q − (r + γµs′,2))√
v̄2

1 + γ2σ2
s′,2

+ l2Φ

− w̄2 − (q − (r + γµs′,1))√
v̄2

2 + γ2σ2
s′,1

(B.4)

Inside the CDF term is a function of q:

− w̄1 − (q − (r + γµs′,2))√
v̄21 + γ2σ2

s′,2

=
1√

v̄21 + γ2σ2
s′,2

((
1− v̄21

γ2σ2
s′,1

)
q −

(
r + γµs′,2 −

v̄21
γ2σ2

s′,1

(r + γµs′,1)

))

We define

µw2 ≡

(
1− v̄2

1

γ2σ2
s′,1

)−1(
r + γµs′,2 −

v̄2
1

γ2σ2
s′,1

(r + γµs′,1)

)

σw2 ≡

(
1− v̄2

1

γ2σ2
s′,1

)−1√
v̄2

1 + γ2σ2
s′,2

and express the likelihood distribution Eq.B.4 as:

p(r + γVs′ |q, θ) = l1Φ

(
q − µw2
σw2

)
+ l2Φ

(
q − µw1
σw1

)
(B.5)

Then, we can find the solutions of the posterior mean and variance for σw > 0 when |A| = 2

by replacing r + γµs′,2 and γσs′,2 with µw2 and σw2 , respectively in Eq.A.5 and Eq.A.6.

B.2 Asymptotic Limits

In one asymptotic limit of σw/σs′,b → 0,

lim
σw/σs′,b→0

v̄2
b + γ2σ2

s′,b′ = lim
σw/σs′,b→0

γ2σ2
s′,bσ

2
w

γ2σ2
s′,b + σ2

w

+ γ2σ2
s′,b′ = γ2σ2

s′,b′

lim
σw/σs′,b→0

v̄2
b

γ2σ2
s′,b

= lim
σw/σs′,b→0

σ2
w

γ2σ2
s′,b + σ2

w

= 0

121

and therefore,

lim
σw/σs′,b→0

Φ

− w̄b − (q − (r + γµs′,b′))√
v̄2
b + γ2σ2

s′,b′

 = Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
(B.6)

and the likelihood distribution becomes

∑
b∈{1,2}

1√
σ2
w + γ2σ2

s′,b

φ

q − (r + γµs′,b)√
σ2
w + γ2σ2

s′,b

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
(B.7)

Therefore, the posterior distribution derived from this likelihood has the same form with

Eq.4.2 but it uses γ2σ2
s′,b + σ2

w instead of γ2σ2
s′,b in cτ,b, µ̄τ,b, and σ̄τ,b:

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b + σ2
w

φ

 (r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b + σ2
w

 (B.8)

µ̄τ,b = σ̄2
τ,b

(µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b + σ2
w

)
σ̄2
τ,b =

(1

σ2
s,a

+
1

γ2σ2
s′,b + σ2

w

)−1
(B.9)

It is identical to the posterior of the case when σw = 0.

In the other asymptotic limit,

lim
σs′,b/σw→0

v̄2
b + γ2σ2

s′,b′ = γ2σ2
s′,b + γ2σ2

s′,b′ and lim
σs′,b/σw→0

v̄2
b

γ2σ2
s′,b

= 1

Since we set σw as a small number, σs′,b/σw → 0 infers σs′,b → 0, and therefore, the likelihood

distribution becomes Gaussian :

lim
σs′,b/σw→0

p(r + γVs′ |q, θ) = lim
σs′,b/σw→0

l1Φ

 µs′,1 − µs′,2√
γ2σ2

s′,1 + γ2σ2
s′,2

+ l2Φ

 µs′,2 − µs′,1√
γ2σ2

s′,1 + γ2σ2
s′,2

=

1√
σ2
w + γ2σ2

s′,b+

φ

q − (r + γµs′,b+)√
σ2
w + γ2σ2

s′,b+

 (B.10)

where b+ = argmaxb∈{1,2} µs′,b. Therefore, the posterior distribution becomes Gaussian with

mean at µ̄τ,b+ and variance at σ̄2
τ,b+ in Eq.B.9.

122

B.3 Approximate Likelihood

In order to have closed-form expressions for the ADFQ update, we extend the asymptotic

result for |A| = 2 presented in the previous section to the general case (|A| = n for n ∈ N)

with an assumption of σw � σs′,b ∀b ∈ A. Therefore, the approximate likelihood is:

p(r + γVs′ |q, θ) =
∑
b∈A

γ√
γ2σ2

s′,b + σ2
w

φ

q − (r + γµs′,b)√
γ2σ2

s′,b + σ2
w

 ∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)

Then, the posterior distribution is derived as:

p̂Qs,a(q) =
1

Z

∑
b∈A

γ√
γ2σ2

s′,b + σ2
w

φ

q − (r + γµs′,b)√
γ2σ2

s′,b + σ2
w

×

∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)
1

σs,a
φ

(
q − µs,a
σs,a

)

=
1

Z
√

2πσs,a

∑
b∈A

γ√
γ2σ2

s′,b + σ2
ε

exp

{
−1

2

(µs,a − (r + γµs′,b))
2

σ2
s,a + γ2σ2

s′,b + σ2
w

}

× φ
(
q − µ̄τ,b
σ̄τ,b

) ∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)

=
1

Z

∑
b∈A

cτ,b
σ̄τ,b

φ

(
q − µ̄τ,b
σ̄τ,b

) ∏
b′ 6=b,b′∈A

Φ

(
q − (r + γµs′,b′)

γσs′,b′

)

where Z is a normalization constant and

cτ,b =
1√

σ2
s,a + γ2σ2

s′,b + σ2
w

φ

 (r + γµs′,b)− µs,a√
σ2
s,a + γ2σ2

s′,b + σ2
w

µ̄τ,b = σ̄2
τ,b

(µs,a
σ2
s,a

+
r + γµs′,b
γ2σ2

s′,b + σ2
w

)
σ̄2
τ,b =

(1

σ2
s,a

+
1

γ2σ2
s′,b + σ2

w

)−1

123

Appendix C

Proofs

C.1 Lemma 1

Lemma 1. Let X be a random variable following a normal distribution, N (µ, σ2). Then

we have:

lim
σ→0

[
Φ

(
x− µ
σ

)
− exp

{
−1

2

[
−x− µ

σ

]2

+

}]
= 0 (C.1)

where [x]+ = max(0, x) is the ReLU nonlinearity.

Proof.

lim
σ→0

x− µ
σ

= −∞

124

Let’s define y ≡ (x− µ)/σ,

Φ(y < 0) =

∫ y

−∞

1√
2π
e−

1
2
t2dt

=

∫ 0

−∞

1√
2π

exp

{
−1

2
(y + t′)2

}
dt′

=
1√
2π

exp

{
−1

2
y2

}∫ 0

−∞
exp

{
−
(
y +

t′

2

)
t′
}
dt′

=
1

2
exp

{
−1

2
y2

}∫ 0

−∞
exp

{
−yt′

}
dt′

= − 1

2y
exp

{
−1

2
y2

}
=

1

2|y|
exp

{
−1

2
y2

}

lim
y<0,y→−∞

[
Φ(y)− exp

{
−1

2
y2

}]
= lim

y<0,y→−∞

(
1− 1

2|y|

)
exp

{
−1

2
y2

}
= 0

For x ≥ µ and y ≥ 0 and

lim
σ→0

x− µ
σ

=∞

lim
y→∞

Φ(y) = lim
y→∞

∫ y

−∞

1√
2π
e−

1
2
t2dt = 1 = e0

Therefore,

lim
σ→0

[
Φ

(
x− µ
σ

)
− exp

{
−1

2

[
−x− µ

σ

]2

+

}]
= 0

C.2 Theorem 1

Theorem 1. Suppose that the mean and variance of Qs,a ∀s ∈ S,∀a ∈ A are iteratively

updated by the mean and variance of p̂Qs,a after observing r and s′ at every step. When

|A| = 2, the update rule of the means is equivalent to the Q-learning update if all state-

125

action pairs are visited infinitely often and the variances approach 0. In other words, at the

kth update on µs,a:

lim
k→∞,{σ}→0

µs,a;k+1 = (1− ατ ;k)µs,a;k + ατ ;k

(
r + γmax

b∈A
µs′,b;k

)

where ατ ;k = σ2
s,a;k/

(
σ2
s,a;k + γ2σ2

s′,b+;k + σ2
w

)
and b+ = argmaxb∈A µs′,b.

Proof. For simplicity, we first show the convergence of the algorithm for σw = 0 and then

extend the result to the general case.

For simplicity, we define new notations as:

yb ≡ r + γµs′,b − µs,a, v0 ≡ σ2
s,a, vb ≡ σ2

s,a + γ2σ2
s′,b

In Sec.A.2, we obtained the exact solutions for the posterior mean and variance when |A| = 2

(Eq.A.5 and Eq.A.6). When σs,a, σs′,a1 , σs′,a2 → 0, the posterior mean is approximated as:

µ̄τ,1cτ,1Φτ,1 + µ̄τ,2cτ,2Φτ,2

cτ,1Φτ,1 + cτ,2Φτ,2
(C.2)

Then, using the Lemma.1, cτ,1Φτ,1 is approximated as:

1√
2π(σ2

s,a + γ2σ2
s′,1)

exp

{
−

(r + γµs′,1 − µs,a)2

2(σ2
s,a + γ2σ2

s′,1)
−
[
r + γµs′,2 − µ̄τ,1

]2
+

2(σ̄2
τ,1 + γ2σ2

s′,2)

}

=
1√

2πv1
exp

{
− y2

1

2v1
−

[y2 − α1y1]2+
2v−1

1 (v1v2 − v2
0)

}
where αb ≡

σ2
s,a

σ2
s,a + γ2σs′,b

=
v0

vb
(C.3)

Since the RHS of the equation is a sum of exponential function with the denominator of

the inside term is proportional to a negative inverse variance, Eq∼p̂Qs,a (·)[q] is approximated

to µ̄τ,2 = (1 − α2)µs,a + α2(r + γµs′,a2) if cτ,1Φτ,1 � cτ,2Φτ,2 which is identical with the

Q-learning update. Therefore, proving Theorem 2 is equivalent to proving the following

statement. If µs′,2 > µs′,1, and σs,a, σs′,1, and σs′,2 approach to 0, then cτ,1Φτ,1/cτ,2Φτ,2

126

approaches to 0. From the Eq.C.2 and Eq.C.3,

log

(√
v1

v2

c1Φ1

c2Φ2

)
= − y2

1

2v1
−

[y2 − α1y1]2+
2v−1

1 (v1v2 − v2
0)

+
y2

2

2v2
+

[y1 − α2y2]2+
2v−1

2 (v1v2 − v2
0)

(C.4)

Here, [y2 − α1y1]2+ is 0 if µ̄τ,1 ≥ r+γµs′,2. Likewise, [y1 − α2y2]2+ is 0 if µ̄τ,2 ≥ r+γµs′,1.

We consider the following three cases which determine whether the max function terms are

0 or not.

(i) For µs,a < r + γµs′,1 and µ̄τ,2 < r + γµs′,1,

(RHS) = − y2
1

2v1

(
1 +

v2
0

v1v2 − v2
0

− v1v2

v1v2 − v2
0

)
+

y2
2

2v2

(
1 +

v2
0

v1v2 − v2
0

− v1v2

v1v2 − v2
0

)
=

(
−y

2
1

2
+
y2

2

2

)
· 0

Therefore,
c1Φ1

c2Φ2
=

√
v2

v1
and µ(new)

s,a =
µ̄τ,1
√
v2 + µ̄τ,2

√
v1√

v1 +
√
v2

Since µ̄τ,1 ≥ µs,a and µ̄τ,2 ≥ µs,a, the newly updated mean is located somewhere

between µ̄τ,1 and µ̄τ,2 and always µ(new)
s,a ≥ µs,a. Therefore, if µs,a < r + γµs′,1 and

µ̄τ,2 ≤ r + γµs′,1, then µ
(new)
s,a > µs,a until µ̄τ,2 becomes larger than r + γµs′,1.

(ii) For r + γµs′,1 ≤ µ̄τ,1 < r + γµs′,2 (µ̄τ,2 > r + γµs′,1 from this condition),

(RHS) = − y2
1

2v1
− (y2 − α1y1)2

2v−1
1 (v1v2 − v2

0)
+

y2
2

2v2

= − (y1 − α2y2)2

2v−1
2 (v1v2 − v2

0)

Therefore, (RHS) < 0 and

lim
σs,a,σs′,1,σs′,2→0

c1Φ1

c2Φ2
= lim

v0,v1,v2→0

[√
v2

v1
exp

{
− (y1 − α2y2)2

2v−1
2 (v1v2 − v2

0)

}]
= 0

127

(iii) For µs,a > r + µs′,2 and µ̄τ,1 ≥ r + γµs′,2 (µ̄τ,2 > r + γµs′,1 from this condition),

(RHS) = − y2
1

2v1
+

y2
2

2v2

= − y2
1

2v1

(
1− v1

v2

y2
2

y2
1

)

If y2
2/v2 < y2

1/v1, then (RHS) < 0 with σs,a, σs′,1, σs′,2 → 0, and thus cτ,1Φτ,1/cτ,2Φτ,2

approaches to 0 as the previous case. If y2
2/v2 ≥ y2

1/v1,

c1Φ1

c2Φ2
= C

√
v2

v1
for some constant C

Therefore,

µ(new)
s,a =

µ̄τ,1C + µ̄τ,2
C + 1

Similar to the first case, µ(new)
s,a will be located somewhere between µ̄τ,1 and µ̄τ,2 and

always µ(new)
s,a < µs,a until µ̄τ,1 becomes smaller than or equal to r + γµs′,2.

In conclusion, when the variables satisfy either (i) or (iii), the mean value is contracted to

the range corresponding to (ii) which is identical to the Q-learning update.

For σw > 0, r + γµs′,b′ and γσs′,b′ in the CDF terms are replaced by µwb′ and σwb′ ,

respectively as Eq.B.5. σwb′ approaches 0 as σs,a, σs′,1, σs′,2 → 0 and therefore, the above

proofs are applied. However, the proofs are invalid when σs′,b′/σw = 0 since the CDF terms

in the likelihood distribution are no longer functions of q. As we have shown in Sec.B.2, the

posterior mean is:

µ(new)
s,a = µ̄τ,b+ = σ̄2

τ,b+

(
µs,a
σ2
s,a

+
r + γµs′,b+

γ2σ2
s′,b+ + σ2

w

)

where b+ = argmaxb∈A µs′,b. Thus, the update rule is still identical to the Q-learning update

rule with the following learning rate, ατ :

ατ =
σ2
s,a

σ2
s,a + γ2σ2

s′,b+ + σ2
w

128

C.3 Theorem 2: Convergence of ADFQ

Theorem 2. The ADFQ update on the mean µs,a ∀s ∈ S, ∀a ∈ A for |A| = 2 is equivalent

to the Q-learning update if the variances approach 0 and if all state-action pairs are visited

infinitely often. In other words, we have :

lim
k→∞,{σ}→0

µs,a;k+1 = (1− ατ ;k)µs,a;k + ατ ;k

(
r + γmax

b∈A
µs′,b;k

)

where ατ ;k = σ2
s,a;k/

(
σ2
s,a;k + γ2σ2

s′,b+;k + σ2
w

)
and b+ = argmaxb∈A µs′,b.

Proof. Similar to the proof for the exact update case, we will show that the ratios of the

coefficients, k∗b/k
∗
bmax

becomes 0 ∀b ∈ A, b 6= bmax where bmax = argmaxb µs′,b, and µ
+
b → µ̄b

as σs,a, σs′,b ∀b ∈ A goes to 0. When |A| = 2 and µs′,2 > µs′,1,

k∗1
k∗2

=
σ∗1
σ∗2

σs′,2
σs′,1

exp

{
− y2

1

2v1
+

y2
2

2v2
− (µ∗1 − µ̄τ,1)2

2σ̄2
τ,1

+
(µ∗2 − µ̄τ,2)2

2σ̄2
τ,2

−
[r + γµs′,2 − µ∗1]2+

2γ2σ2
s′,2

+
[r + γµs′,1 − µ∗2]2+

2γ2σ2
s′,1

}

According to the definition of µ+
b ,

µ∗1 − µ̄τ,1 =
σ̄τ,1
γ2σ2

s′,2

[r + γµs,′2 − µ∗1]+

and µ+
b ≥ µ̄τ,b. Therefore,

log

(
k∗1σs′,1σ

∗
2

k∗2σs′,2σ
∗
1

)
= − y2

1

2v1
+

y2
2

2v2
−

[r + γµs′,2 − µ∗1]2+
2γ2σ2

s′,2

(
1 +

σ̄2
τ,1

γ2σ2
s′,2

)

+
[r + γµs′,1 − µ∗2]2+

2γ2σ2
s′,1

(
1 +

σ̄2
τ,2

γ2σ2
s′,1

)

129

When µ+
b < r + γµs′,b′

µ+
b =

(
1

σ̄τ,b
+

1

γ2σ2
s′,b′

)−1(
µ̄τ,b
σ̄τ,b

+
r + γµs′,b′

γ2σ2
s′,b′

)
(C.5)

When µ+
b ≥ r + γµs′,b′ , µ+

b = µ̄τ,b.

For µ∗1 < r + γµs′,2 and µ∗2 < r + γµs′,1, it is also, µs,a ≤ µ̄τ,1 ≤ µ̄τ,2 < r + γµs′,1 <

r + γµs′,2. Then, using Eq.C.5, we have

log

(
k∗1σs′,1σ

∗
2

k∗2σs′,2σ
∗
1

)
= − y2

1

2v1
+− (y2 − α1y1)2

2v−1
1 (v1v2 − v2

0)
+

y2
2

2v2
+

(y1 − α2y2)2

2v−1
2 (v1v2 − v2

0)

which is same with (i) of the proof of Theorem 1. The new mean will be weighted sum of

µ∗1, µ∗2. Since µs,a is smaller than both µ̄τ,1 and µ̄τ,2, µ
(new)
s,a > µs,a until r+ γs′,1 < µ̄τ,2. For

the other cases, the same directions in the proof of Theorem 1 are applied.

We can apply the same proof procedures to the case of σw > 0 using γ2σ2
s′,b+σ2

w instead

of γ2σ2
s′,b in µ̄τ,b, σ̄τ,b, and cτ,b. Therefore, the mean update rule converges to the Q-learning

update and the corresponding learning rate is:

ατ =
σ2
s,a

σ2
s,a + γ2σ2

s′,b+ + σ2
w

130

Appendix D

Mathematical Derivation of Fast

ADFQ

In this chapter, The function f(·) is defined in the Sec.4.8 as the approximation of the below

term when the term of the product of the Gaussian CDFs approaches to 0.

1

σ̄τ,b
φ
(q − µ̄τ,b

σ̄τ,b

)
·
∏
b′ 6=b

Φ
(q − (r + γµs′,b′)

γσs′,b′

)

f(q;µ, σ) =

ε
σφ
(
q−µ
σ

)
for q ∈ [µ− ε, µ+ ε], ε� 1

0 otherwise
(D.1)

In order to simplify notations, we define following variables:

• The best action : b+ .
= argmaxb∈A µs′,b

• The second best action : b2+ .
= argmaxb∈A,b 6=b+ µs′,b

• A truncated Gaussian CDF : Φb
a

(q−µ
σ

) .
=
∫ b
a

1
σφ
(q−µ

σ

)
• TD target : tτ,b

.
= r + γµs′,b

131

D.1 Normalization

First, we solve the analytic expression of the normalization factor, Z:

Z =
∑
b 6=b+

cτ,b

{∫ tτ,b+

−∞
f(q; µ̄τ,b, σ̄τ,b)dq + Φ∞tτ,b+

(
q − µ̄τ,b
σ̄τ,b

)}

+ cτ,b+

{∫ tτ,b2+

−∞
f(q; µ̄τ,b+ , σ̄τ,b+)dq + Φ∞tτ,b2+

(
q − µ̄τ,b+
σ̄τ,b+

)}

Z =
∑
b6=b+

cτ,b

{
H(tτ,b+ − (µ̄τ,b + ε)) · ε · Φµ̄τ,b+ε

µ̄τ,b−ε

(
q − µ̄τ,b
σ̄τ,b

)
+ Φ∞tτ,b+

(
q − µ̄τ,b
σ̄τ,b

)}

+ cτ,b+

{
H(tτ,b2+ − (µ̄τ,b+ + ε)) · ε · Φ

µ̄τ,b++ε

µ̄τ,b+−ε

(
q − µ̄τ,b+
σ̄τ,b+

)
+ Φ∞tτ,b2+

(
q − µ̄τ,b+
σ̄τ,b+

)}

=
∑
b6=b+

cτ,b

{
εH(tτ,b+ − (µ̄τ,b + ε))

(
Φ

(
ε

σ̄τ,b

)
− Φ

(
−ε
σ̄τ,b

))
+ 1− Φ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

)}

+ cτ,b+

{
εH(tτ,b2+ − (µ̄τ,b+ + ε))

(
Φ

(
ε

σ̄τ,b+

)
− Φ

(
−ε
σ̄τ,b+

))
+ 1− Φ

(
tτ,b2+ − µ̄τ,b+

σ̄τ,b+

)}

where H(·) is a Heaviside step function which H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise.

Since σ̄τ,b � 1 ∀b ∈ A and ε > 0

Φ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

)
≈ H(tτ,b+ − µ̄τ,b) Φ

(
ε

σ̄τ,b

)
≈ 1

132

Z ≈
∑
b 6=b+

cτ,b

{
εH(tτ,b+ − (µ̄τ,b + ε))−H(tτ,b+ − µ̄τ,b)

}
+ cτ,b+

{
εH(tτ,b2+ − (µ̄b+ + ε))−H(tτ,b2+ − µ̄b+)

}
≈
∑
b 6=b+

cτ,b
(
1− (1− ε)H(tτ,b+ − µ̄τ,b)

)
+ cτ,b+

(
1− (1− ε)H(tb2+ − µ̄τ,b+)

)
≈
∑
b

cτ,bντ,b

where

ντ,b
.
=

1− (1− ε)H(tτ,b+ − µ̄τ,b) for b 6= b+

1− (1− ε)H(tτ,b2+ − µ̄τ,b) for b = b+

.

D.2 Mean

Ep̃Qs,a [q] =
1

Z

∑
b 6=b+

cτ,b

{
εH(tτ,b+ − (µ̄τ,b + ε))

∫ µ̄τ,b+ε

µ̄τ,b−ε

q

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq

+

∫ ∞
tτ,b+

q

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq

}

+
1

Z
cτ,b+

{
εH(tτ,b2+ − (µ̄τ,b+ + ε))

∫ µ̄τ,b++ε

µ̄τ,b+−ε

q

σ̄τ,b+
φ

(
q − µ̄τ,b+
σ̄τ,b+

)
dq

+

∫ ∞
tτ,b2+

q

σ̄τ,b+
φ

(
q − µ̄τ,b+
σ̄τ,b+

)
dq

}

The mean of the two sided truncated normal distribution with the original normal distribu-

tion N (µ, σ2) is :

E[X|a < X < b] = µ+ σ
φ
(a−µ

σ

)
− φ

(b−µ
σ

)
Φ
(b−µ

σ

)
− Φ

(a−µ
σ

)
With a normalization constant, ZE ,

E[X|a < X < b] · ZE = µ

(
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

))
+ σ

(
φ

(
a− µ
σ

)
− φ

(
b− µ
σ

))

133

Therefore,

∫ µ̄τ,b+ε

µ̄τ,b−ε

q

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq = µ̄τ,b

(
2Φ

(
ε

σ̄τ,b

)
− 1

)
+ σ̄τ,b · 0 ≈ µ̄τ,b

and

Ep̃Qs,a [q] =
1

Z

∑
b 6=b+

cτ,b
{
εH
(
tτ,b+ − (µ̄τ,b + ε)

)
µ̄τ,b

+ µ̄τ,b

(
1− Φ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

))
+ σ̄τ,bφ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

)}
+

1

Z
cτ,b+

{
εH
(
tτ,b2+ −

(
µ̄τ,b+ + ε

))
µ̄τ,b+

+ µ̄τ,b+

(
1− Φ

(
tτ,b2+ − µ̄τ,b+

σ̄τ,b+

))
+ σ̄τ,b+φ

(
tτ,b2+ − µ̄τ,b+

σ̄τ,b+

)}
≈ 1

Z

∑
b

cτ,bντ,bµ̄τ,b

D.3 Variance

First of all, the second moment is :

Ep̃Qs,a [q2] =
1

Z

∑
b6=b+

cτ,b

{
εH(tτ,b+ − (µ̄τ,b + ε))

∫ µ̄τ,b+ε

µ̄τ,b−ε

q2

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq +

∫ ∞
tτ,b+

q2

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq

}

+
1

Z
cτ,b+

{
εH(tτ,b2+ − (µ̄b+ + ε))

∫ µ̄b++ε

µ̄b+−ε

q2

σ̄b+
φ

(
q − µ̄b+
σ̄b+

)
dq +

∫ ∞
tτ,b2+

q2

σ̄b+
φ

(
q − µ̄b+
σ̄b+

)
dq

}

The variance of the truncated normal distribution is:

Var[X|a < X < b] = σ2

1 +
a−µ
σ φ(a−µσ)− b−µ

σ φ(b−µσ)

Φ(b−µσ)− Φ(a−µσ)
−

(
φ(a−µσ)− φ(b−µσ)

Φ(b−µσ)− Φ(a−µσ)

)2

134

With a normalization constant, ZV ,

E[X2|a < X < b] · ZV = (µ2 + σ2)

(
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

))
+σ2

(
a− µ
σ

φ

(
a− µ
σ

)
− b− µ

σ
φ

(
b− µ
σ

))
+ 2µσ

(
φ

(
a− µ
σ

)
− φ

(
b− µ
σ

))

Thus, when tτ,b+ ≥ µ̄τ,b + ε,

∫ µ̄τ,b+ε

µ̄τ,b−ε

q2

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq = (µ̄2

τ,b + σ̄2
τ,b)

(
2Φ
(ε

σ̄τ,b

)
− 1

)
− 2εσ̄τ,bφ

(ε

σ̄τ,b

)
≈ µ̄2

τ,b + σ̄2
τ,b

For the second term,

∫ ∞
tτ,b+

q2

σ̄τ,b
φ

(
q − µ̄τ,b
σ̄τ,b

)
dq = (µ̄2

τ,b + σ̄2
τ,b)

(
1− Φ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

))
+ σ̄τ,b(tτ,b+ − µ̄τ,b)φ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

)
+ 2µ̄τ,bσ̄τ,bφ

(
tτ,b+ − µ̄τ,b

σ̄τ,b

)
≈ (µ̄2

τ,b + σ̄2
τ,b)
(
1−H(tτ,b+ − µ̄τ,b)

)
Therefore,

Ep̃Qs,a [q2] ≈ 1

Z

∑
b 6=b+

cτ,b(µ̄
2
τ,b + σ̄2

τ,b)
(
εH(tτ,b+ − (µ̄τ,b + ε)) +

(
1−H(tτ,b+ − µ̄τ,b)

))
+

1

Z
cτ,b+(µ̄2

τ,b+ + σ̄2
τ,b+)

(
εH(tτ,b2+ − (µ̄τ,b+ + ε)) +

(
1−H(tτ,b2+ − µ̄τ,b+)

))
≈ 1

Z

∑
b 6=b+

cτ,b(µ̄
2
τ,b + σ̄2

τ,b)
(
1− (1− ε)H(tτ,b+ − µ̄τ,b)

)
+

1

Z
cτ,b+(µ̄2

τ,b+ + σ̄2
τ,b+)

(
1− (1− ε)H(tτ,b2+ − µ̄τ,b+)

)
≈ 1

Z

∑
b

cτ,bντ,b(µ̄
2
τ,b + σ̄2

τ,b)

Varp̃Qs,a [q] = Ep̃Qs,a [q2]− (Ep̃Qs,a [q])2

135

Appendix E

Experimental Details

E.1 Deep ADFQ in Atari games

E.1.1 Neural Network Architecture and Details

In the all domains, we use the default settings of the OpenAI baselines [29] for DQN and

Double DQN, and made minimal changes for ADFQ. Each network consists of three con-

volution layers followed by a 256 neuron linear layer. The first convolution layer contains

32 filters of size 8 with stride 4. The second convolution layer contains 64 filters of size 4

with stride 2. The final convolution layer contains 64 filters of size 3 with stride 1. We used

ReLU nonlinearities and the Adam optimizer with mini-batches size of 32.

E.1.2 Initialization

Xavier initialization is used for weight variables, and all bias variables are initialized to zero

in all networks. Additionally, for ADFQ, the weights of the final hidden layer are initialized

with 0.0 and its bias variables are initialized with two constant values which correspond to

µ0 and − log(σ0) where µ0 is an initial mean and σ2
0 is an initial variance (e.g. an initial bias

vector of the final layer is ~b = [µ0, · · · , µ0,− log(σ0), · · · ,− log(σ0)]T . We set σ0 = 50.0 for

the Atari games.

136

E.2 Deep ADFQ in cart-pole balancing tasks

E.2.1 Neural Network Architecture and Details

In the all domains, we use the default settings of the OpenAI baselines [29] for all algorithms.

Each network consists of 1 hidden layer with 64 hidden unites.We used ReLU nonlinearities

and the Adam optimizer with mini-batches size of 32.

E.2.2 Initialization

The initialization method described above (Sec.E.1) is used. We set σ0 = 30.0 for these

tasks.

137

Bibliography

[1] Francesco Amigoni and Vincenzo Caglioti. An information-based exploration strategy
for environment mapping with mobile robots. Robotics and Autonomous Systems,
58(5):684–699, 2010.

[2] Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J Pappas. Information
acquisition with sensing robots: Algorithms and error bounds. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 6447–6454. IEEE,
2014.

[3] Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J Pappas. Decen-
tralized active information acquisition: Theory and application to multi-robot slam.
In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages
4775–4782. IEEE, 2015.

[4] Nikolay Atanasov, Bharath Sankaran, Jerome Le Ny, Thomas Koletschka, George J
Pappas, and Kostas Daniilidis. Hypothesis testing framework for active object de-
tection. In 2013 IEEE International Conference on Robotics and Automation, pages
4216–4222. IEEE, 2013.

[5] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient
exploration through bayesian deep q-networks. arXiv preprint arXiv:1802.04412, 2018.

[6] J Andrew Bagnell, Sham M Kakade, Jeff G Schneider, and Andrew Y Ng. Policy search
by dynamic programming. In Advances in neural information processing systems, pages
831–838, 2004.

[7] Leemon Baird. Residual algorithms: Reinforcement learning with function approxi-
mation. In Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

[8] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob Mc-
Grew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula. arXiv
preprint arXiv:1909.07528, 2019.

[9] Marc G Bellemare, Will Dabney, and Remi Munos. A distributional perspective on
reinforcement learning. arXiv preprint arXiv:1707.06887, 2017.

[10] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

138

[11] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[12] Frederic Bourgault, Alexei A Makarenko, Stefan B Williams, Ben Grocholsky, and
Hugh F Durrant-Whyte. Information based adaptive robotic exploration. In
IEEE/RSJ international conference on intelligent robots and systems, volume 1, pages
540–545. IEEE, 2002.

[13] Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes.
In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence,
Berkeley, CA, 1998.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[15] Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multi-
agent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 38(2):156–172, 2008.

[16] Benjamin Charrow, Vijay Kumar, and Nathan Michael. Approximate representa-
tions for multi-robot control policies that maximize mutual information. Autonomous
Robots, 37(4):383–400, 2014.

[17] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for
navigation. In 7th International Conference on Learning Representations, ICLR 2019,
2019.

[18] Han-Lim Choi. Adaptive sampling and forecasting with mobile sensor networks. PhD
thesis, Massachusetts Institute of Technology, 2009.

[19] Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, and Debadeepta Dey. Learn-
ing to gather information via imitation. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 908–915. IEEE, 2017.

[20] Girish Chowdhary, Miao Liu, Robert Grande, Thomas Walsh, Jonathan How, and
Lawrence Carin. Off-policy reinforcement learning with gaussian process. IEEE/CAA
Journal of Automatica Sinica, 1(3):227–238, 2014.

[21] Timothy H Chung, Joel W Burdick, and Richard M Murray. A decentralized motion
coordination strategy for dynamic target tracking. In Proceedings 2006 IEEE Interna-
tional Conference on Robotics and Automation, 2006. ICRA 2006., pages 2416–2422.
IEEE, 2006.

[22] Lehel Csató and Manfred Opper. Sparse on-line gaussian processes. Neural computa-
tion, 14(3):641–668, 2002.

[23] Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Cerebral Cortex,
13:400–408, 2003.

[24] Peter Dayan and Nathaniel D Daw. Decision theory, reinforcement learning, and the
brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4):429–453, 2008.

139

[25] Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration.
In Proceedings of the 15th conference on Uncertainty in artificial intelligence, pages
150–159. Morgan Kaufmann Publishers Inc., 1999.

[26] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In AAAI/I-
AAI, pages 761–768, 1998.

[27] Morris H Degroot. Probability and Statistics (4th Edition). Pearson, 2011.

[28] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search
for robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2011.

[29] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines.
https://github.com/openai/baselines, 2017.

[30] Michael Duff. Optimal learning: Computational procedures for bayes-adaptive markov
decision processes. PhD thesis, University of Massachusetts, Amherst, 2002.

[31] Matthew Dunbabin and Lino Marques. Robots for environmental monitoring: Sig-
nificant advancements and applications. IEEE Robotics & Automation Magazine,
19(1):24–39, 2012.

[32] Yaakov Engel, Shie Mannor, and Ron Meir. Bayes meets bellman: The gaussian pro-
cess approach to temporal difference learning. In Proceedings of the 20th International
Conference on Machine Learning, volume 20, 2003.

[33] Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with gaussian
processes. In Proceedings of the 22nd International Conference on Machine Learning,
pages 201–208, 2005.

[34] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[35] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot
visual imitation learning via meta-learning. In Conference on Robot Learning, pages
357–368, 2017.

[36] Matthieu Geist and Olivier Pietquin. Kalman temporal differences. Journal of artificial
intelligence research, 39:483–532, 2010.

[37] Mohammad Ghavamzadeh and Yaakov Engel. Bayesian policy gradient algorithms.
In Advances in neural information processing systems, pages 457–464, 2007.

[38] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian
reinforcement learning: A survey. Foundation and Trends in Machine Learning, 8(5-
6):359–483, 2015.

140

https://github.com/openai/baselines

[39] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P Rodríguez,
Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni
Di Caro, et al. A machine learning approach to visual perception of forest trails for
mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667, 2015.

[40] Héctor H González-Banos and Jean-Claude Latombe. Navigation strategies for ex-
ploring indoor environments. The International Journal of Robotics Research, 21(10-
11):829–848, 2002.

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[42] Shane Griffith, Kaushik ubramanian, Jonathan Scholz, Charles Isbell, and Andrea L.
Thomaz. Policy shaping: Integrating human feedback with reinforcement learning. In
Advances in neural information processing systems, pages 2625–2633, 2013.

[43] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 3389–3396. IEEE,
2017.

[44] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep
q-learning with model-based acceleration. In International Conference on Machine
Learning, pages 2829–2838, 2016.

[45] Florent Guenter, Micha Hersch, Sylvain Calinon, and Aude Billard. Reinforce-
ment learning for imitating constrained reaching movements. Advanced Robotics,
21(13):1521–1544, 2007.

[46] Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement
learning using sample-based search. In Advances in Neural Information Processing
Systems (NIPS), pages 1071–1079, 2012.

[47] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2616–2625,
2017.

[48] William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru Kuno,
Stephanie Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov,
Nicholay Topin, et al. The minerl competition on sample efficient reinforcement learn-
ing using human priors. arXiv preprint arXiv:1904.10079, 2019.

[49] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop kf:
Learning discriminative deterministic state estimators. In Advances in Neural Infor-
mation Processing Systems, pages 4376–4384, 2016.

141

[50] Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q (λ) with
off-policy corrections. In International Conference on Algorithmic Learning Theory,
pages 305–320. Springer, 2016.

[51] Hado V Hasselt. Double q-learning. In Advances in neural information processing
systems, pages 2613–2621, 2010.

[52] He He, Paul Mineiro, and Nikos Karampatziakis. Active information acquisition. arXiv
preprint arXiv:1602.02181, 2016.

[53] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[54] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[55] Allaa Hilal. An Intelligent Sensor Management Framework for Pervasive Surveillance.
PhD thesis, University of Waterloo, 2013.

[56] Hirohisa Hirukawa, Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, and Takakatsu
Isozumi. The human-size humanoid robot that can walk, lie down and get up. The
International Journal of Robotics Research, 24(9):755–769, 2005.

[57] Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin. Mutual information
methods with particle filters for mobile sensor network control. In Proceedings of the
45th IEEE Conference on Decision and Control, pages 1019–1024. IEEE, 2006.

[58] Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based motion planning for
robotic information gathering. In Robotics: Science and Systems, volume 3. Citeseer,
2013.

[59] Marco Huber. Probabilistic framework for sensor management, volume 7. KIT Scien-
tific Publishing, 2009.

[60] Dinesh Jayaraman and Kristen Grauman. Learning to look around: Intelligently
exploring unseen environments for unknown tasks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1238–1247, 2018.

[61] Heejin Jeong and Daniel D Lee. Efficient learning of stand-up motion for humanoid
robots with bilateral symmetry. In 2016 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 1544–1549. IEEE, 2016.

[62] Heejin Jeong and Daniel D Lee. Learning complex stand-up motion for humanoid
robots. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[63] Heejin Jeong, Brent Schlotfeldt, Hamed Hassani, Manfred Morari, Daniel D Lee, and
George J Pappas. Learning q-network for active information acquisition. In 2019

142

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
6822–6827. IEEE, 2019.

[64] Heejin Jeong, Clark Zhang, George J Pappas, and Daniel D Lee. Assumed density
filtering q-learning. In Proceedings of the 28th International Joint Conference on Ar-
tificial Intelligence, pages 2607–2613. AAAI Press, 2019.

[65] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1-2):99–
134, 1998.

[66] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Plato: Policy learn-
ing using adaptive trajectory optimization. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 3342–3349. IEEE, 2017.

[67] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
Scalable deep reinforcement learning for vision-based robotic manipulation. In Con-
ference on Robot Learning, pages 651–673, 2018.

[68] Vasiliy Karasev, Alessandro Chiuso, and Stefano Soatto. Controlled recognition
bounds for visual learning and exploration. In Advances in neural information pro-
cessing systems, pages 2915–2923, 2012.

[69] Simon Killcross and Etienne Coutureau. Coordination of actions and habits in the
medial prefrontal cortex of rats. Nature Neuroscience, 8:1704–1711, 2005.

[70] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[71] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[72] Thomas Kollar and Nicholas Roy. Trajectory optimization using reinforcement learn-
ing for map exploration. The International Journal of Robotics Research, 27(2):175–
196, 2008.

[73] George Konidaris, Sarah Osentoski, and Philip Thomas. Value function approximation
in reinforcement learning using the fourier basis. In Twenty-fifth AAAI conference on
artificial intelligence, 2011.

[74] Christopher M Kreucher. An information-based approach to sensor resource allocation.
University of Michigan, 2005.

[75] Vijay Kumar, Daniela Rus, and Sanjiv Singh. Robot and sensor networks for first
responders. IEEE Pervasive computing, 3(4):24–33, 2004.

[76] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of
machine learning research, 4(Dec):1107–1149, 2003.

143

[77] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls,
Julien Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach
to multiagent reinforcement learning. In Advances in Neural Information Processing
Systems, pages 4190–4203, 2017.

[78] Mikko Lauri and Risto Ritala. Planning for robotic exploration based on forward
simulation. Robotics and Autonomous Systems, 83:15–31, 2016.

[79] Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth, and Konrad Schindler.
Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv preprint
arXiv:1504.01942, 2015.

[80] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection. The International Journal of Robotics Research, 37(4-5):421–436,
2018.

[81] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky.
Adversarial learning for neural dialogue generation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, pages 2157–2169, 2017.

[82] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[83] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[84] Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou
Wang. End-to-end active object tracking via reinforcement learning. arXiv preprint
arXiv:1705.10561, 2017.

[85] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment: Evalu-
ation protocols and open problems for general agents. Journal of Artificial Intelligence
Research, 61:523–562, 2018.

[86] Tiago V Maia. Reinforcement learning, conditioning, and the brain: Successes and
challenges. Cognitive, Affective, & Behavioral Neuroscience, 9(4):343–364, 2009.

[87] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource
management with deep reinforcement learning. In Proceedings of the 15th ACM Work-
shop on Hot Topics in Networks, pages 50–56, 2016.

[88] Tim Matthews, Sarvapali D. Ramchurn, and Ceorgios Chalkiadakis. Competing with
humans at fantasy football: Team formation in large partially-observable domains. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence, pages 1394–1400,
2012.

[89] Peter S Maybeck. Stochastic models, estimation, and control. Academic press, 1982.

144

[90] Anton Milan, S Hamid Rezatofighi, Anthony Dick, Ian Reid, and Konrad Schindler.
Online multi-target tracking using recurrent neural networks. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[91] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016.

[92] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learn-
ing. In Advances in Neural Information Processing Systems (NIPS) Deep Learning
Workshop, 2013.

[93] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7549):529–533, 2015.

[94] Igor Mordatch, Nikhil Mishra, Clemens Eppner, and Pieter Abbeel. Combining model-
based policy search with online model learning for control of physical humanoids. In
2016 IEEE International Conference on Robotics and Automation (ICRA), pages 242–
248. IEEE, 2016.

[95] Jun Morimoto and Kenji Doya. Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems, 36(1):37–51,
2001.

[96] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the
gap between value and policy based reinforcement learning. In Advances in Neural
Information Processing Systems, pages 2775–2785, 2017.

[97] Brendan O’Donoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncer-
tainty bellman equation and exploration. arXiv preprint arXiv:1709.05380, 2017.

[98] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John
Vian. Deep decentralized multi-task multi-agent reinforcement learning under par-
tial observability. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2681–2690. JMLR. org, 2017.

[99] Peter Ondruska and Ingmar Posner. Deep tracking: Seeing beyond seeing using recur-
rent neural networks. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[100] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[101] Manfred Opper. A bayesian approach to online learning. On-Line Learning in Neural
Networks, 1999.

145

https://blog.openai.com/openai-five/

[102] Charles Blundell Alexander Pritzel Osband, Ian and Benjamin Van Roy. Deep explo-
ration via bootstrapped dqn. In Advances in Neural Information Processing Systems,
pages 4026–4034, 2016.

[103] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987.

[104] Ramesh S Patil, Peter Szolovits, and William B Schwartz. Information acquisition in
diagnosis. In AAAI, pages 345–348, 1982.

[105] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Reinforcement learning for hu-
manoid robotics. In Proceedings of the third IEEE-RAS international conference on
humanoid robots, pages 1–20, 2003.

[106] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 3406–3413. IEEE, 2016.

[107] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution
to discrete bayesian reinforcement learning. In Proceedings of the 23rd International
Conference on Machine Learning, volume 20, pages 697–704, 2006.

[108] Robert A Rescorla, Allan R Wagner, et al. A theory of pavlovian conditioning: Varia-
tions in the effectiveness of reinforcement and nonreinforcement. Classical conditioning
II: Current research and theory, 2:64–99, 1972.

[109] Martin Riedmiller. Neural fitted q-iteration-first experiences with a data efficient
neural reinforcement learning method. In European Conference on Machine Learning.
Springer Berlin Heidelberg, 2005.

[110] Paul E Rybski, Sascha A Stoeter, Michael D Erickson, Maria Gini, Dean F Hougen,
and Nikolaos Papanikolopoulos. A team of robotic agents for surveillance. In Proceed-
ings of the fourth international conference on autonomous agents, pages 9–16, 2000.

[111] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[112] Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar, and George J
Pappas. Anytime planning for decentralized multirobot active information gathering.
IEEE Robotics and Automation Letters, 3(2):1025–1032, 2018.

[113] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897, 2015.

[114] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[115] Wolfram Schultz, Peter Dayan, and P. Read Montague. A neural substrate of predic-
tion and reward. Science, 275(5306):1593–1599, 1997.

146

[116] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–489, 2016.

[117] Robert Sim and Nicholas Roy. Global a-optimal robot exploration in slam. In Pro-
ceedings of the 2005 IEEE international conference on robotics and automation, pages
661–666. IEEE, 2005.

[118] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Michael I
Jordan, and Shankar S Sastry. Kalman filtering with intermittent observations. IEEE
transactions on Automatic Control, 49(9):1453–1464, 2004.

[119] Stefano Soatto. Steps towards a theory of visual information: Active perception,
signal-to-symbol conversion and the interplay between sensing and control. arXiv
preprint arXiv:1110.2053, 2011.

[120] Malcome Strens. A bayesian framework for reinforcement learning. In Proceedings of
the 17th International Conference on Machine Learning, pages 943–950, 2000.

[121] Jörg Stückler, Johannes Schwenk, and Sven Behnke. Getting back on two feet: Reliable
standing-up routines for a humanoid robot. In IAS, pages 676–685, 2006.

[122] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[123] Gerald Tesauro. Temporal difference leaerning and td-gammon. Communications of
the ACM, 38(3):58–68, 1995.

[124] William R Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[125] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics, volume 1.
MIT press Cambridge, 2000.

[126] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012.

[127] John N. Tsitsiklis. On the convergence of optimistic policy iteration. Journal of
Machine Learning Research, 3(Jul):59–72, 2002.

[128] Tsuyoshi Ueno, Yutaka Nakamura, Takashi Takuma, Tomohiro Shibata, Koh Hosoda,
and Shin Ishii. Fast and stable learning of quasi-passive dynamic walking by an
unstable biped robot based on off-policy natural actor-critic. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5226–5231. IEEE,
2006.

147

[129] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[130] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Fre-
itas. Dueling network architectures for deep reinforcement learning. In International
Conference on Machine Learning, pages 1995–2003, 2016.

[131] Christopher JCHWatkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[132] Steven D. Whitehead and Dana H. Ballard. Active perception and reinforcement
learning. In Machine Learning Proceedings 1990, pages 179–188. Elsevier, 1990.

[133] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[134] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforce-
ment learning: A hierarchical bayesian approach. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, Corvallis, OR, 2007.

[135] Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceed-
ings 1997 IEEE International Symposium on Computational Intelligence in Robotics
and Automation CIRA’97.’Towards New Computational Principles for Robotics and
Automation’, pages 146–151. IEEE, 1997.

[136] Seung-Joon Yi, Stephen McGill, Dennis Hong, and Daniel Lee. Hierarchical motion
control for a team of humanoid soccer robots. International Journal of Advanced
Robotic Systems, 13(1):32, 2016.

[137] Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang. Deep reinforcement learn-
ing for visual object tracking in videos. arXiv preprint arXiv:1701.08936, 2017.

[138] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. Target-driven visual navigation in indoor scenes using deep reinforce-
ment learning. In 2017 IEEE international conference on robotics and automation
(ICRA), pages 3357–3364. IEEE, 2017.

[139] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maxi-
mum causal entropy. Ph.D. Thesis, 2010.

148

	Off-Policy Temporal Difference Learning For Robotics And Autonomous Systems
	Recommended Citation

	Off-Policy Temporal Difference Learning For Robotics And Autonomous Systems
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	Abstract
	Contents
	List of Figures
	Introduction
	Outline and Contributions

	Reinforcement Learning : A Brief Overview
	Markov Decision Process
	Dynamic Programming
	Policy Iteration
	Value Iteration

	Temporal Difference Methods
	Value Function Approximation
	Deep Reinforcement Learning

	Efficient Learning of Stand-up Motion for Humanoid Robots
	Introduction
	Representative States and Actions by Clustering
	Reward Function for Stand-up Motion
	Reward Variables
	Reward Function

	Bilateral Symmetric Feature of Humanoid Robots
	Learning in Symmetric Spaces
	Updating Symmetric State-Action Pairs in Learning
	Learning Rate For Representative States and Actions

	Experiments
	Experimental System Details
	Generating Clusters
	Results and Evaluation

	Summary

	Assumed Density Filtering Q-learning
	Introduction
	Related Work
	Belief Updates on Q-values
	Assumed Density Filtering on Q-Belief Updates
	Assumed Density Filtering
	Online Belief Update
	Convergence to Optimal Q-values

	Analytic ADF Parameter Estimates
	Analytic Approximation of Posterior
	Approximate Likelihood
	Convergence of ADFQ

	A Concrete Demonstration in a Discrete MDP
	Experiments in Discrete MDPs
	Algorithms
	Domains
	Results

	Fast ADFQ
	Summary

	ADFQ with Neural Networks
	Introduction
	Related Work : Neural Networks to Q-learning
	Deep ADFQ
	Experiments
	Cartpole : Deterministic and Stochastic Environments
	Atari 2600 Environments

	Summary

	Reinforcement Learning Approach to Active Information Acquisition
	Introduction
	Related Work
	Active Information Acquisition
	Problem Formulation
	Active Information Acquisition as a Markov Decision Process

	Application: Active Target Tracking
	Experiments
	Single Target Tracking
	Multi-Target Tracking

	Summary

	Learning to Track Agile Targets in a Partially Known Environment
	Introduction
	Active Target Tracking Network
	Target Tracking Environment
	Target Model
	Agent and Observation Models
	Belief Update

	Experiments
	Algorithms
	Training Setup
	Evaluation Setup for Single-Target Domains
	Results in Single-Target Domains
	Unseen Environments
	Results in Two-Target Domains

	Discussion
	Learning with Uncertainty
	Stochasticity of Tasks
	United Policy

	Summary

	Conclusion
	Appendices
	Mathematical Derivation of Posterior Distribution of Q-beliefs
	Derivation of the Posterior Distribution of Q
	Mean and Variance of the Posterior Distribution of Q
	Moment Generating Function
	Moments of the Posterior Distribution

	Q-beliefs with Gaussian White Noise
	Expected Likelihood for |A|=2
	Asymptotic Limits
	Approximate Likelihood

	Proofs
	Lemma 1
	Theorem 1
	Theorem 2: Convergence of ADFQ

	Mathematical Derivation of Fast ADFQ
	Normalization
	Mean
	Variance

	Experimental Details
	Deep ADFQ in Atari games
	Neural Network Architecture and Details
	Initialization

	Deep ADFQ in cart-pole balancing tasks
	Neural Network Architecture and Details
	Initialization

	Bibliography

