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ABSTRACT

STATISTICAL INFERENCE FOR HIGH DIMENSIONAL MODELS IN GENOMICS AND

MICROBIOME

Jiarui Lu

Hongzhe Li

Human microbiome consists of all living microorganisms that are in and on human body. Large-

scale microbiome studies such as the NIH Human Microbiome Project (HMP), have shown that this

complex ecosystem has large impact on human health through multiple ways. The analysis of these

datasets leads to new statistical challenges that require the development of novel methodologies.

Motivated by several microbiome studies, we develop several methods of statistical inference for

high dimensional models to address the association between microbiome compositions and certain

outcomes.

The high-dimensionality and compositional nature of the microbiome data make the naı̈ve appli-

cation of the classical regression models invalid. To study the association between microbiome

compositions with a disease’s risk, we develop a generalized linear model with linear constraints

on regression coefficients and a related debiased procedure to obtain asymptotically unbiased and

normally distributed estimates. Application of this method to an inflammatory bowel disease (IBD)

study identifies several gut bacterial species that are associated with the risk of IBD. We also con-

sider the post-selection inference for models with linear equality constraints, where we develop

methods for constructing the confidence intervals for the selected non-zero coefficients chosen

by a Lasso-type estimator with linear constraints. These confidence intervals are shown to have

desired coverage probabilities when conditioned on the selected model.

Finally, the last chapter of this dissertation presents a method for inference of high dimensional

instrumental variable regression. Gene expression and phenotype association can be affected by

potential unmeasured confounders, leading to biased estimates of the associations. Using genetic

variants as instruments, we consider the problem of hypothesis testing for sparse IV regression

models and present methods for testing both single and multiple regression coefficients. A multiple

testing procedure is developed for selecting variables and is shown to control the false discovery
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rate. These methods are illustrated by an analysis of a yeast dataset in order to identify genes that

are associated with growth in the presence of hydrogen peroxide.
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CHAPTER 1

INTRODUCTION

1.1. Human Microbiome and its Relation to Human Health

Human microbiome consists of all living microorganisms that are in and on human body. They

could be found on the skin, in the gut, oral cavity, lung etc. These microorganisms that colonize

human body form a complex ecosystem, which is rich in both the amount of cells and species-

diversity (Gilbert et al., 2018). The number of genes they carry as a result is far more than the

number of human genes. There are also within and interpersonal heterogeneity of the distributions

of the bacteria. For example, the dominate phylum on the skin is Actinobacteria while in the esoph-

agus Firmicutes has a relative abundance of more than 50%. The compositions of microbiome

on the same anatomical site may also be different (Cho and Blaser, 2012). The study of human

microbiome dates back to nineteenth century but not until the recent development of DNA-based

analysis, could people gain more insights about the compositions and functions of the bacteria and

how they interact with host in the content of diets and environmental factors.

Large-scale microbiome studies such as the NIH Human Microbiome Project (HMP), have shown

that this complex ecosystem has huge impact on human health through multiple ways, including ex-

changing molecules with human cells, interacting with human genetics and interacting with immune

systems etc (Research Network Consortium, 2019). For example, studies reveals the associations

between gut microbiome compositions and inflammatory bowel diseases including Crohn’s disease

and ulcerative colitis (Lloyd-Price et al., 2019). Researches also demonstrate the contribution of

microbiome to cancer (Schwabe and Jobin, 2013), cardiovascular disease (Jie et al., 2017), cystic

fibrosis (Surette, 2014) and many other microbiome-linked health states. This ecosystem also has

impact on brain through exchanging chemicals among gut microbiota, immune cells and Vagus

nerve (Cryan and Dinan, 2012). The interaction between gut microbiota and innate immune sys-

tem also contributes to obesity, Type I diabetes, non-alcoholic fatty liver diseases etc (Thaiss et al.,

2016). Literatures also demonstrate how microbiota interact with the brain through the gut-brain

axis and relate to anxiety and depression (Carabotti et al., 2015; Foster and Neufeld, 2013). With

the evidences that human microbiome is closely related to human health, it is important to further

1



investigate the specific roles of microbiome in initiation and progression of diseases.

1.2. Analysis of Microbiome Compositional Data

Advanced sequencing technologies such as 16S sequencing and shotgun metagenomic sequenc-

ing, provide powerful methods to quantify the relative abundance of bacterial taxa in or on human

body of a large set of individuals (Xia et al., 2011). Since only the relative abundances are avail-

able, the resulting data are compositional with a unit sum constraint. The compositional nature of

the data requires additional care in statistical analysis, including linear regression analysis (Shi,

Zhang, and Li, 2016) and two-sample tests (Cao, Lin, and Li, 2018).

We conduct a simple simulation to illustrate the impact of observing the compositional data only.

We simulate the true abundances of bacterial taxa for control and case groups. The difference in

these two groups is the abundance of the second taxon (labeled as “bac2” in figure 1.1). The rest

of the taxa share the same distribution between the two groups. As shown in figure 1.1 (A), the

1

2

3

0.50 0.75 1.00 1.25 1.50
bac1

b
a

c2

A

0.3

0.4

0.5

0.15 0.20 0.25
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b
a

c2

B

1

2

3

0.8 1.0 1.2
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b
a

c2

C

group case control

Figure 1.1: Scatter plots of two bacterial taxa for control and case group. The first panel (A) is the
true abundances, the second panel (B) is the observed compositions and the third panel (C) is the
relative abundance comparing to a reference taxon.

true abundance of the “bac1” is the same between the two groups. However, as we mentioned

previously, the true abundances are never observed and the observed compositions are shown in

figure 1.1 (B). A problem naturally rises when we conduct simple hypothesis tests comparing the

mean compositions of taxa between the two groups. From the observation data only we would

detect differential abundance in both “bac1” and “bac2” while we know from the simulation setup

2



that only “bac2” is different. This indicates that statistical analysis may lead to false information

without taking care of the compositional nature of the data. As suggested by Aitchison (1982), a

way to account for this issue is to use the ratio of bacterial taxa comparing to a reference bacteria.

As demonstrated in figure 1.1 (C), the pattern remains normal again once using the reference taxon.

In this case one will not detect a difference in “bac1” and would only find difference in “bac2”. A

reference bacteria is usually defined as a taxon that has the same distribution in the population of

interests. In practice, the selection of the reference group is a problem that needs extra care.

In the context of regression framework, Aitchison and Bacon-shone (1984) proposed the log-

contrast linear model:

y =

p−1∑
i=1

βi log
Xi

Xp
+ ε,

where the p-th bacteria is assumed to be the reference group. Instead of using the abundances

of the bacteria as covariates, Aitchison used the log-ratio. Statistical methods related to linear

regression could naturally applied to this model.

As an extension, Lin et al. (2014) proposed the log-contrast linear regression model with con-

straints.

y =

p∑
i=1

βi logXi + ε, subject to

p∑
i=1

βi = 0.

From a mathematical point of view, these two models are equivalent. But applying the constraints

could bring extra benefits when imposing regularization in high-dimensional settings. Removing

the reference group brings symmetrical structure to the model, which leads to the property that the

model is scale invariant, permutation invariant and selection invariant (see Lin et al. (2014) for more

details). The necessity and benefits of applying sum-zero constraints have been widely discussed in

past literatures. Imposing such constraints, however, brings extra challenges in statistical analysis.

This motivates us to develop novel methods for analyzing models with linear constraints.

3



1.3. Integrative Analysis of Multi-omics Data

Along with the metagenomics data, omics data from other sources are also closely related to hu-

man health. The joint analysis of gene expression and genetic variants data is one of the most

important methods to reveal the link between human genes and phenotypes of interests. Among

various methods, association analysis between gene expression and phenotype such as differ-

ential gene expression analysis has been widely reported. Such studies have shown that gene

expressions are associated with many common human diseases, such as liver disease (Romeo

et al., 2008; Speliotes et al., 2011) and heart failure (Liu et al., 2015). However, there are possibly

many unmeasured factors that affect both gene expressions and phenotypes of interest (Hoggart

et al., 2003; Leek and Storey, 2007). The existence of such unmeasured confounding variables

can cause correlation between the error term and one or some of the independent variables and

lead to identifying false associations. Particularly, the independence assumption between gene ex-

pressions and errors are required in linear regression in order to obtain valid statistical inference of

the effects of gene expressions on phenotype. If this assumption is violated, standard methods can

lead to biased estimates (Fan and Liao, 2014; Lin, Feng, and Li, 2015). To account for the existence

of such unmeasured confounding variables, certain novel statistical methods are needed.

1.4. Organization of the Thesis

My thesis mainly focused on the analysis of metagenomics data and joint analysis of genetic vari-

ates, gene expression and phenotypical data. In Chapter 21, we developed a generalized linear

model with linear constraints to study the association between microbiome compositions and a dis-

ease’s risk. A group of linear constraints on the regression coefficients are imposed to account

for the compositional nature of the data and to achieve subcompositional coherence. The regres-

sion coefficients were estimated by a constrained L1-penalized likelihood method computed via

a generalized accelerated proximal gradient algorithm. A de-biased procedure was developed to

obtain asymptotically unbiased and normally distributed estimates, which leads to valid confidence

intervals of the regression coefficients. Simulation results showed the correctness of the coverage

probability of the confidence intervals and smaller variances of the estimates when the appropriate

linear constraints are imposed. Application of this method on the PLEASE study identified several
1This part of the thesis is based on paper Lu, Shi, and Li (2019)
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gut bacterial species that are associated with the risk of IBD.

In Chapter 32, we considered the post-selection inference method for models with linear equal-

ity constraints. We developed methods for constructing the confidence intervals for the selected

non-zero coefficients chosen by a Lasso-type estimator with linear constraints. These confidence

intervals were proofed to have desired coverage probabilities when conditioned on the selected

model. Simulations were conducted to demonstrate the validity of our method in providing valid

confidence intervals after variable selection step. We applied this procedure to a UK Twins mi-

crobiome dataset identifying several key bacterial genera whose compositions are associated with

chronological age.

Finally, the last chapter this dissertation presents a method for inference of high dimensional in-

strumental variable regression3. Gene expression and phenotype association can be affected by

potential unmeasured confounders from multiple sources, leading to biased estimates of the asso-

ciations. Since genetic variants largely explain gene expression variations, they can be used as

instruments in studying the association between gene expressions and phenotype in the frame-

work of high dimensional instrumental variable (IV) regression. However, because the dimensions

of both genetic variants and gene expressions are often larger than the sample size, statistical infer-

ences such as hypothesis testing for such high dimensional IV models are not trivial and have not

been investigated in literature. The problem is more challenging since the instrumental variables

(e.g., genetic variants) have to be selected among a large set of genetic variants. We consider

the problem of hypothesis testing for sparse IV regression models and present methods for testing

single regression coefficient and multiple testing of multiple coefficients, where the test statistic for

each single coefficient is constructed based on an inverse regression. A multiple testing procedure

is developed for selecting variables and is shown to control the false discovery rate. Simulations are

conducted to evaluate the performance of our proposed methods. These methods are illustrated

by an analysis of a yeast dataset in order to identify genes that are associated with growth in the

presence of hydrogen peroxide.

2This part of the thesis is based on the submitted paper Lu and Li (2020b).
3This part of the thesis is based on the submitted paper Lu and Li (2020a).
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CHAPTER 2

GENERALIZED LINEAR MODELS WITH LINEAR CONSTRAINTS FOR MICROBIOME

COMPOSITIONAL DATA

2.1. Introduction

In this chapter, we considered the general regression problems where the covariates include com-

position of a set of bacterial taxa. The goal of such regression analysis is to identify a subset of

the bacteria whose relative abundances are associated with a response variable. The main chal-

lenges of analyzing compositional data are to account for the unit sum structure and to achieve

subcompositional coherence (Aitchison, 1982), which requires that the same results are obtained

regardless of the way the data is normalized into proportions based on the whole compositions

or only a subcomposition. To explore the association between a response and the compositional

data, Aitchison and Bacon-shone (1984) proposed a linear log-contrast model to link the response

and the log of the compositional data for continuous and normally distributed response variable.

This model was further extended by Lin et al. (2014) and considered variable selection problem

by a `1-penalized estimation procedure. To achieve subcompositional coherence, Shi, Zhang, and

Li (2016) extended the linear regression model by imposing a set of linear constraints. Lin et

al. (2014) and Shi, Zhang, and Li (2016) showed the connection between these models and the

regression models with centered log-ratio transformed proportions (Aitchison and Bacon-shone,

1984) as covariates and showed that the logarithmic transformation of the proportions is necessary

for subcompositional coherence.

In this chapter, the generalized linear regression models (GLMs) with linear constraints in the re-

gression coefficients were proposed for microbiome compositional data, where a group of linear

constraints were imposed to achieve subcompositional coherence. In order to identify the bacterial

taxa that are associated with the response, a penalized estimation procedure for the regression

coefficients via a `1 penalty was introduced. To solve the computational problem, a generalized

accelerated proximal gradient method was developed, which extended the standard accelerated

proximal gradient method (Nesterov, 2013) to account for linear constraints. The proposed method

could efficiently solve the optimization problem of minimizing the penalized negative log-likelihood
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subjects to a group of linear constraints.

Previous works on the inference of Lasso for the generalized linear models include Bühlmann and

Van De Geer (2011), which provided properties of the penalized estimates such as bound for `1

loss and oracle inequality. However, the methods cannot be applied directly to the setting with linear

constraints. Furthermore, it is known that the `1 penalized estimates are biased and do not have

a tractable asymptotic distribution. In order to correct such biases, works have been done for the

Lasso estimate, including Zhang and Zhang (2014), who proposed a low-dimensional projection

estimator to correct the bias and Javanmard and Montanari (2014), who used a quadratic program-

ming method to carry out the task. Geer et al. (2014) considered an extension to generalized linear

models. However, these methods still cannot be directly applied to our problem due to the linear

constraints.

In order to make statistical inference on the regression coefficients, we propose a bias correction

procedure for GLMs with linear constraints by extending the method of Javanmard and Montanari

(2014). Such a debiased procedure provided asymptotically unbiased and normal distributed es-

timates of the regression coefficients, which can be used to construct confidence intervals. Our

simulations results showed the correctness of the coverage probability of the confidence intervals

and smaller variances of the estimates when the appropriate linear constraints are imposed.

2.2. GLMs with Linear Constraints for Microbiome Compositional Data

2.2.1. GLMs with linear constraints

Consider a microbiome study with outcome yi and a p dimensional compositional covariates Xi =

(xi1, · · · , xip) with the unit sum constraint
∑
j xij = 1 for i = 1, · · · , n, where xij represents the

relative abundance of the jth taxon of the ith samples. To account for compositional nature of the

covariates, Lin et al. (2014) proposed the linear model with constraint:

yi = Z>i β + εi, subject to 1>β = 0, (2.1)

where Zi = {log(xij)} ∈ Rn×p and 1 = (1, 1, . . . , 1)>. Such a zero-sum constraint ensured that

the regression coefficients are independent of an arbitrary scaling of the basis count from which

a composition is obtained, and remain unaffected by correctly excluding some or all of the zero
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components (Lin et al., 2014). This subcompositional coherence property is one of the principals of

compositional data analysis (Aitchison, 1982). Because of the linear constraints, the interpretation

of a given βj has to be in the context of other none-zero βs.

Shi, Zhang, and Li (2016) further developed this method to allow r linear constraints by specifying

the p× r constraint matrix C. For example, if we are interested in studying whether the composition

of taxa that belong to a given taxon at a higher rank is associated with the response, in which case

subcompositions of taxa under a given high rank are calculated. Suppose r taxa at a given rank

are considered with mg taxa at the lower rank that belong to taxon g. We define the subcomposition

of these mg taxa, which is simply a subvector of the p dimensional compositions, rescaled so that

its components sum to unity. Specifically, let Xgs be the relative abundance of the sth taxon that

belong to the gth taxon at a higher rank, for g = 1, · · · , r, s = 1, · · · ,mg such that

mg∑
s=1

Xgs = 1, for g = 1, · · · , r.

Suppose we have n samples and let n×mg matrix Xg represents n samples of the subcomposition

of mg taxa. Shi, Zhang, and Li (2016) proposed to associate the subcompositions to a continuous

response Y via the following linear model,

Y =

r∑
g=1

Zgβg + ε,

such that 1>mgβg =

mg∑
s=1

βgs = 0 for g = 1 · · · , r, (2.2)

where Zg = (Zg1, . . . , Zgmg ) = (logXg1, . . . , logXgmg ) ∈ Rn×mg , and βg = (βg1, · · · , βgmg )>. For

a given group of species that belong to the g-th genus, the regression coefficient βgs has to be

interpreted together with other species that belong to the g-th genus. In other words, the expected

response depends on the subcomposition via the parameter vector βg, not just simply a single

component of βg. The parameter vector βg determines how the expected response changes as the

subcomposition moves away from the center of the mg − 1 dimensional simplex.

For general outcome, we extended the linear model (2.1) to the generalized linear model with its
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density function specified as

f(yi|β,Zi) = h(yi) exp {ηiyi −A(ηi)} , ηi = Z>i β,

Eyi = OηiA(ηi) ≡ µ(β,Zi), Varyi = O2
ηiA(ηi) ≡ v(β,Zi),

(2.3)

where β = (β1, β2, . . . βp)
> ∈ Rp and satisfies C>β = 0, and Z>i = (Zi1, Zi2, . . . , Zip). For simplicity,

we assumed the intercept being zero, though our formal justification will allow for an intercept.

Although Model (2.3) does not explicitly include other covariates, it can handle covariates by simply

including columns of all zeros in the C matrix that correspond to these covariates. All the results

in the rest of the Chapter still hold with covariates. For binary outcome and logistic regression, we

have

A(η) = log(1 + eη), µ(β,Zi) =
eZ
>
i β

1 + eZ
>
i β
, v(β,Zi) =

eZ
>
i β

(1 + eZ
>
i β)2

.

2.2.2. `1 penalized estimation with constraints

The log-likelihood function based on model (2.3) is given by

`(β|Y,Z) =

n∑
i=1

log h(yi) + Y>Zβ −
n∑
i=1

A(Z>i β), (2.4)

with score function and information matrix:

Oβ`(β|Y,Z) = {Y − µ(β,Z)}>Z, O2
β`(β|Y,Z) = −Z>V(β,Z)Z,

where V(β,Z) = diag{v(β, Z1), . . . , v(β, Zn)}. The constraints on β are given by C>β = 0, where

C is a p × r matrix. Without lose of generality, the columns of C are assumed to be orthonormal.

Define PC = CC>, Z̃ = Z(Ip − PC) and Z̃i = (Ip − PC)Zi, then under the constraints of C>β = 0,

all the Z and Zi can be replaced by Z̃ and Z̃i because Zβ = Z̃β.

In high-dimensional settings, β is assumed to be s-sparse, where s = #{i : βi 6= 0} and s =

o(
√
n/ log p). The `1 penalized estimates of β is given as the solution to the following problem:

β̂n = argmin
β

[
− 1

n

{
Y>Z̃β −

n∑
i=1

A(Z̃>i β)

}
+ λ||β||1

]
subject to C>β = 0, (2.5)
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where λ is a tuning parameter.

2.2.3. Generalized accelerated proximal gradient method

Due to the linear constraints in the optimization problem (2.5), the standard coordinate descent

algorithm cannot be applied directly. We develop a generalized accelerated proximal gradient algo-

rithm. Specifically, define g, h as following

g(β) = − 1

n

{
Y >Z̃β −

n∑
i=1

A(Z̃>i β)

}
, h(β) = λ||β||1

so the optimization problem (2.5) becomes

β̂n = argmin
β
{g(β) + h(β)} subject to C>β = 0.

Since g is convex and differentiable and h is convex, the standard accelerated proximal gradient

method (Nesterov, 2013) is given by the following iterations:

β(k) = proxtkh
(
y(k−1) − tk∇g(y(k−1))

)
,

y(k) = β(k) +
k − 1

k + r − 1
(β(k) − β(k−1)),

where tk is the step size in the k-th iteration and r is a friction parameter. The proximal mapping of

a convex function h, which is the key ingredient of this algorithm, is defined as:

proxh(x) = argmin
u

{
h(u) +

1

2
||x− u||22

}
.

We generalize this method to handle the linear constraints. Denote SC = {β ∈ Rp | C>β = 0}, a

linear subspace of Rp. The generalized accelerated proximal gradient method becomes

β(k) = argmin
β∈SC

{
λtk‖β‖1 +

1

2
||y(k−1) − tk∇g(y(k−1))− β||22

}
, (2.6)

y(k) = β(k) +
k − 1

k + r − 1
(β(k) − β(k−1)). (2.7)
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The minimization of (2.6) can be solved by soft thresholding and projection:

β(k) = ΠSC

(
Stkλ

(
y(k−1) − tk∇g(y(k−1))

))
,

where linear operator ΠSC (u) projects u onto space SC . Since C> is a matrix and can be regarded

as a linear mapping from Rp 7→ Rr, we have SC = ker(C>). Denote up = ΠSC (u), we have:

C>(u− up) = C>u.

So u − up is given by least square estimates: u − up = (CC>)†CC>u, where A† is the Moore-

Penrose pseudo inverse of a matrix A. Hence,

ΠSC (u) = u− (CC>)†CC>u.

The step size tk can be fixed or chosen by line search. The procedure of line search consists of the

following iterations: we start with a initial t = tk−1 and repeat t = 0.5t until the following inequality

holds:

g(y − tGt(y)) ≤ g(y)− t∇g(y)>Gt(y) +
t

2
‖Gt(y)‖22,

where y = y(k−1). For the friction parameter r, Su, Boyd, and Candes (2014) suggested that r > 4.5

will lead to fast convergence rate and is set to 10.

2.3. De-biased Estimator and its Asymptotic Distribution

2.3.1. A de-biased Estimator

Since β̂n in equation (2.5) is a biased estimator for β due to `1 penalization, we propose the follow-

ing de-biased procedure, detailed as Algorithm 1, to obtain asymptotically unbiased estimates of β.

This algorithm has the same general steps but differs from that for linear models (Shi, Zhang, and

Li, 2016) in two aspects: (1) the Σ̂ matrix defined in our algorithm (Step 2) is different from that for

linear models, which is simply the sample covariance matrix. The matrix Σ̂ is the information ma-

trix that involves the Lasso-estimated regression coefficients, which makes the theoretical analysis

harder. (2) The final de-biased estimator (Step 6) is different, where the mean of Y is a non-linear
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function of the Lasso-estimated coefficients.

Algorithm 1 Constructing a de-biased estimator

Input: Y, Z, β̂n, and γ. Output: β̂u

1: Let β̂n be the regularized estimator from optimization problem (2.5).
2: Set Z̃ = Z(Ip − PC), Σ̂ = (Z̃>V(β̂n, Z̃)Z̃)/n.
3: for i = 1, 2, . . . , p do
4: Let mi be a solution of the convex program:

minimize m>Σ̂m

subject to ||Σ̂m− (Ip − PC)ei||∞ ≤ γ.
(2.8)

where ei ∈ Rp is the vector with one at the i-th position and zero everywhere else.
5: Set M = (m1, . . . ,mp)

>, set
M̃ = (Ip − PC)M. (2.9)

6: Define the estimator β̂u as follows:

β̂u = β̂n +
1

n
M̃ Z̃>(Y − µ(β̂n, Z̃)). (2.10)

From the construction of β̂u, it is easy to check that β̂u still satisfies C>β̂u = 0. To provide insights

into this algorithm, using the mean value theorem, there exists β0
i such that

µ(β̂n,Zi)− µ(β,Zi) = v(β0
i ,Zi)Z

>
i (β̂n − β), i = 1, 2, . . . , n.

Define Σ̂0 = (Z̃>V(β0, Z̃)Z̃)/n, where V(β0, Z̃) = diag{v(β0
1 , Z1), . . . , v(β0

n, Zn)}, we have

√
n
(
β̂u − β

)
=
√
n
{

(Ip − PC)− M̃Σ̂0
}

(β̂n − β) +
1√
n
M̃ Z̃>(Y − µ(β, Z̃)), (∗)

≡ ∆ +R.

Define Σ = (Z̃>V(β, Z̃)Z̃)/n and Σβ = EΣ = E(v(β, Z̃1)Z̃1Z̃
>
1 ), and suppose Σβ = VβΛβV

>
β is

the eigenvalue decomposition of Σβ. Since (Vβ, C) is full rank and orthonormal, we have

Σβ = (Vβ, C)

 Λ 0

0 0

 (Vβ, C)>, Ωβ = (Vβ, C)

 Λ−1
β 0

0 0

 (Vβ, C)>,
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which implies

ΣβΩβ = (Vβ, C)

 Ip−r 0

0 0

 (Vβ, C)> = VβV
>
β = Ip − PC .

So Step 4 of Algorithm 1 approximates Ωβ by rows.

2.3.2. Asymptotic distribution

In order to derive the asymptotic distribution of the de-biased estimator β̂u, several regularity con-

ditions are required.

C1. ‖Ip − PC‖∞ ≤ k0 for a constant k0 that is free of p.

C2. The diagonal elements of Ip − PC are greater than zero.

Conditions C1 and C2 have been used in Shi, Zhang, and Li (2016) and naturally hold in our setting

as well. In addition, define Z̃∗ = DZ̃, where D ∈ D̃ab is defined as:

D̃ab = {D ∈ Rn×n : diag(d1, d2, . . . , dn), a ≤ di ≤ b, 0 < a < b}.

For any matrix A ∈ Rn×m, the upper and lower restricted isometry property (RIP) constant of order

k, δ+
k (A) and δ−k (A), are defined as:

δ+
k (A) = sup

(
‖Aα‖22
‖α‖22

: α ∈ Rm is k-sparse vector

)
,

δ−k (A) = inf

(
‖Aα‖22
‖α‖22

: α ∈ Rm is k-sparse vector

)
.

We assume the following RIP condition:

C3. infD̃01

{
(3τ − 1)δ−2s(Z̃

∗/
√
n)− (τ + 1)δ+

2s(Z̃
∗/
√
n)
}
≥ 4τφ0 for some constant φ0.

Condition C3 is slightly stronger than the one used for linear regression, which here we require the

inequality holds uniformly over a set of matrices. The following theorem quantifies the difference

between β̂n and β in `1 norm.

Theorem 1. Let β̂n be the solution for (2.5), where β is s-sparse. If Conditions C1-C3 hold, and
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the tuning parameter λ = τ c̃
√

(log p)/n, then

P
(
‖β̂n − β‖1 ≥

sλ(k0 + 1/τ)

φ0

)
≤ 2p−c

′
,

where c′ =
c̃2

2K2
− 1 and K = maxi

√
(Z̃>Z̃/n)i,i.

In order to establish the asymptotic distribution of the de-biased estimates, additional conditions

are required:

C4. There exist uniform constants Cmin and Cmax such that 0 < Cmin ≤ σmin(Σβ) ≤ σmax(Σβ) ≤

Cmax <∞.

C5 |ΩβΘ|∞ <∞.

C6 The variance function v(β,Zi) satisfies Lipschitz condition with constant C;

C7 There exists a uniform constant κ > 0 such that ‖Ω1/2Z̃k‖ψ2 ≤ κ for all k = 1, . . . , n.

In Condition C7, the sub-Gaussian norm of a random vector Z ∈ Rn is defined as

‖Z‖ψ2 = sup
(
‖Z>x‖ψ2 : x ∈ Rn and ‖x‖2 = 1

)
,

and the sub-Gaussian norm for a random variable X, is defined as

‖X‖ψ2
= sup

q≥1
q−1/2(E|X|q)1/q.

Conditions C4 and C7 are bounded eigenvalue assumption and bounded sub-Gaussian norm that

are widely used in the literature of inference with respect to Lasso type estimator (Javanmard and

Montanari, 2014; Shi, Zhang, and Li, 2016). Condition C5 eliminates extreme situations on |ΩβΘ|∞,

which actually can be relaxed to hold in probability. For logistic regression, similar conditions are

used in Ning and Liu (2017). Condition C6 is a Lipschitz condition on the variance function, which

holds for many of the GLMs including logistic regression.

The following Lemma shows that if the tuning parameter γ in the optimization problem (2.8) is

chosen to be c
√

(log p)/n, then Ωβ is in the feasible set with a large probability.
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Lemma 1. Denote Θ = EZ̃1Z̃
>
1 . Suppose Conditions C1-C7 hold, then for any constant c > 0, the

following inequality holds:

P
(
|ΩβΣ̂− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
≤ 2p−c

′′
1 + 2p−c

′′
2 ,

where c
′′

1 = c2Cmin/(24e2Cmaxκ
4) − 2 and c

′′

2 = ĉ2/2K2 − 1, with ĉ = cφ0/C|ΩβΘ|∞s(k0τ + 1) and

K = maxi

√
(Z̃>Z̃/n)i,i.

The following Theorem provides the bound on ‖∆‖∞ and also the asymptotic distribution of the

de-biased estimates.

Theorem 2. For ∆ =
√
n
{

(Ip − PC)− M̃Σ̂0
}

(β̂n − β), if conditions C1-C7 hold, then for n large

enough,
√
n(β̂u − β) = R+ ∆,

where R|Z→ N(0, M̃Σ̂M̃>) in distribution and ‖∆‖∞ converge to 0 as n, p→∞, i.e.,

P
(
‖∆‖∞ >

cc̃k0(k0τ + 1)

φ0
· s log p√

n

)
≤ 2p−c

′
+ 2p−c

′′
1 + 6p−c

′′
2 ,

for some constants c′, c′′1 and c′′1 defined in Theorem 1 and Lemma 1.

This theorem allows us to obtain the confidence intervals for the regression coefficients, which can

be used to further select the variables based on their statistical significance. Proofs of Lemma 1,

Theorem 1 and Theorem 2 will be included in the supplementary materials.

2.3.3. Selections of tuning parameters

The tuning parameter λ in (2.5) can be selected using extended Bayesian information criterion

(EBIC) (Chen and Chen, 2008), which is an extension of the standard BIC in high dimensional

cases. Specifically, denote β̂nλ the solution of (2.5) using λ as the tuning parameter, the EBIC is

defined as

EBIC(β̂nλ) = −2`(β̂nλ |y,Z) + ν(β̂nλ) log n+ 2ν(β̂nλ)ξ log p,

where ν(s) is the number of none zero components of s. The choice of ξ is to solve for p = nδ and

set ξ = 1 − 1/(2δ) as suggested by Chen and Chen (2008). The optimal λopt is to minimize the
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EBIC

λopt = argmin
λ

EBIC(β̂nλ). (2.11)

over λ1, λ2, . . ., with ν(β̂nλi) = i. Tunning parameter γ in (2.8) is chosen as 0.01λopt. Chen and

Chen, 2012 showed that EBIC is variable selection consistent under generalized linear models.

2.4. Applications to Gut Microbiome Studies

The proposed method was applied to a study aiming at exploring the association between pediatric

inflammatory bowel disease (IBD) and the gut microbiome conducted at the University of Pennsyl-

vania (Lewis et al., 2015). This study collected the fecal samples of 85 IBD cases and 26 normal

controls and conducted a metagenomic sequencing for each sample, resulting a total of 97 bac-

terial species identified. Among these bacterial species, 77 had non-zero values in at least 20

percent of the samples and were used in our analysis. The zero values in the relative abundance

matrix were replaced with 0.5 times the minimum abundance observed, which is commonly used in

microbiome data analyses (Cao, Lin, and Li, 2018; Kurtz et al., 2015). The composition of species

is then computed after replacing the zeros and used to fit the regression model.

2.4.1. Identifying bacterial species associated with IBD

The proposed method was applied to the logistic regression analysis between IBD and log-transformed

compositions of the 77 species as covariates. To be specific, let y be the binary indicator of IBD and

log(Xk) is the logarithm of the relative abundance of the k-th species. We consider the following

model

logit {Pr(y = 1)} = β0 +

77∑
k=1

βk log(Xk), where
77∑
k=1

βk = 0.

Our goal was to identify the bacteria species that are associated with IBD and to evaluate how well

one can predict IBD based on the gut microbiome composition.

Figure 2.1(a) shows the Lasso estimates, de-biased estimates and 95% confidence intervals of the

regression coefficients in the model. Five bacteria were selected using our methods with the 95%

CI not including zero, including Prevotella copri, Ruminococcus bromii, Clostridium leptum, Es-

cherichia coli and Ruminococcus gnavus. The estimated coefficients and the corresponding 95%

CIs are summarized in Table 2.1. Among them, Prevotella copri, Ruminococcus bromii, Clostrid-
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Figure 2.1: Analysis of the IBD microbiome data using a single constraint on regression coeffi-
cients. (a) Lasso estimates, de-biased estimates and 95% confidence intervals of the regression
coefficients. Species selected based on the CIs are annotated. (b) Boxplots of log-relative abun-
dances of the five identified species. The red and blue boxplots correspond to controls and case
samples, respectively. (c) Fitted probability plot. (d) Selection stability plot.

ium leptum are negatively associated with the risk of IBD, indicating possible beneficial effects on

IBD. On the other hand, Escherichia coli and Ruminococcus gnavus are positively associated with

IBD. Figure 2.1(b) plots the log-relative abundances of the five identified species in IBD children

and in controls, indicating the identified bacterial species indeed showed differential abundances

between IBD cases and controls. Figure 2.1(c) shows the fitted probability curve using the esti-

mated regression coefficients of the identified species, indicating that the model fits the data well.

Our results were confirmed from other studies. Kaakoush et al. (2012) showed healthy people have

high level of Prevotella copri within their fecal microbial compared to Crohn’s disease patients.
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Ruminococcus bromii and Clostridium leptum (Kabeerdoss et al., 2013; Mondot et al., 2011; Sokol

et al., 2009) were also shown to be negatively associated with the risk of IBD. Furthermore, Rhodes

(2007) pointed out the association of an increase of Escherichia coli and IBD. Matsuoka and Kanai

(2015) also indicated the abundance of Ruminococcus gnavus is higher in IBD patients.

To assess the sensitivity to zero replacement, we also performed the same analysis by replacing

the zeros in the relative abundance matrix by 0.1 times the minimum non-zero abundance. The

same set of species were identified and their estimated coefficients were almost unchanged (See

Table A.1 in Appendix).

Table 2.1: Selected bacterial species and their corresponding phylum, estimated coefficients (stan-
dard errors in the parenthesis) and 95% confidence intervals. Model 1: regression analysis with the
compositions of 77 bacterial species as covariates. Model 2: regression analysis with the subcom-
positions of bacterial species that belong to different genera as covariates.

Bacteria name Phylum β (se) CI
Model 1: one constraint on regression coefficients

Prevotella copri Bacteroidetes −0.15(0.042) (−0.23,−0.064)
Ruminococcus bromii Firmicutes −0.22(0.043) (−0.31,−0.18)
Clostridium leptum Firmicutes −0.15(0.052) (−0.25,−0.048)
Escherichia coli Proteobacteria 0.14(0.035) (0.074, 0.21)
Ruminococcus gnavus Firmicutes 0.13(0.045) (0.043, 0.22)

Model 2: multiple constraints on regression coefficients
Prevotella copri Bacteroidetes −0.12(0.040) (−0.20,−0.047)
Ruminococcus bromii Firmicutes −0.20(0.038) (−0.27,−0.12)
Bacteroides cellulosilyticus Bacteroidetes 0.087(0.044) (0.0011, 0.17)
Clostridium leptum Firmicutes −0.14(0.051) (−0.24,−0.043)
Clostridium symbiosum Firmicutes 0.12(0.056) (0.012, 0.23)
Ruminococcus gnavus Firmicutes 0.17(0.042) (0.091, 0.26)

2.4.2. Identifying bacterial species using subcompositions and multiple constraints

We also performed an analyses by considering multiple constraints. Particularly, we considered

the subcomposition of bacterial species that belong to the same genus, for a total of 13 genera

with multiple species. This led to fitting a logistic regression model with 13 constraints, where

for each genus, the sum of the coefficients corresponding to the subcompositions of the bacteria

classified under this genus is constrained to be zero. Our goal is to identify the species whose

subcompositions are associated with IBD.

Figure 2.2(a) shows the Lasso estimates, de-biased estimates and the 95% confidence inter-

vals of the regression coefficients using multiple constraints. The model identified six species
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Figure 2.2: Analysis of the IBD microbiome data using multiple constraints. (a) Lasso estimates,
de-biased estimates and 95% confidence intervals of the regression coefficients. Species selected
based on the CIs are annotated. (b) Boxplots of log-relative abundances of the six identified
species. The red and blue boxplots correspond to controls and cases samples respectively. (c)
Fitted probability plot. (d) Selection stability plot.

with confidence intervals not covering zero, including Prevotella copri, Ruminococcus bromii, Bac-

teroides cellulosilyticus, Clostridium leptum, Clostridium symbiosum and Ruminococcus gnavus.

Compared to the results with using a single constraint, Bacteroides cellulosilyticus and Clostrid-

ium symbiosum were identified to be positively associated with IBD while Escherichia coli became

less significant. The estimated regression coefficients and confidence intervals for the species

identified by both models were only slightly different.

Figure 2.2(b) plots the log-relative abundances of the six selected species, showing differential

abundance between IBD cases and normal controls. The positive association between Clostrid-
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ium symbiosum and IBD was also reported in Lozupone et al. (2012). Finally, Figure 2.2(c) shows

the fitted probability curve using the estimated regression coefficients of the identified species,

indicating that the model fits the data well.

2.4.3. Stability and prediction evaluation

To assess how stable the results are, we performed stability selection analysis (Meinshausen and

Bühlmann, 2010) by sample splitting. Among the 50 replications, each time we randomly sampled

two third of the data including 56 cases and 16 controls and fitted the model using different tuning

parameters. Figure 2.1(d) and Figure 2.2(d) show the selection probability for each of the bacteria

versus values of the tuning parameter for models with a single constraint and multiple constraints,

respectively. The selected species from both models had the highest stability selection probabilities,

indicating that the species selected were very stable.

To evaluate the performance of prediction of IBD based on bacterial composition, we randomly

split the data into a training set of 56 cases and 16 controls to estimate the parameters and a

testing set of 28 cases and 8 controls to evaluate the prediction performance. Models with a single

constraint or multiple constraints were fitted on the training data sets and were used to predict

the IBD status in the testing set. The prediction was evaluated using area under the ROC curve

(AUCs and was repeated 50 times. The average AUC (se) for model with a single constraints were

0.92(0.049) , 0.93(0.043) and 0.93 (0.051) based on Lasso, debiased Lasso and de-biased Lasso

using only the selected bacterial species. The corresponding average AUC (se) for model with

multiple constraints were 0.94(0.036) , 0.94(0.038) and 0.94 (0.038). The result indicates that the

model can predict IBD very well. Finally, as a comparison, the Random Forests using the same

training/testing samples gave an AUC (se) of 0.97 (0.026), slightly better than those from the linear

logistic regression models. This is not surprising given the non-linear nature of Random Forests.

2.5. Simulation Studies

We evaluate the performance of the proposed methods through a set of simulation studies. In order

to simulate covariate Z and outcome Y , we simulate the true bacterial abundances W , where each

row of W is generated from a log-normal distribution lnN(µ,Σ), where Σij = ζ |i−j| with ζ = 0.2

is the covariance matrix to reflect the correlation between different taxa. Mean parameters are set
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as µj = p
2 for j = 1, . . . , 5 and µj = 1 for j = 6, . . . p. The log-compositional covariate matrix Z is

obtained by normalizing the true abundances

Zij = log

(
Wij∑p
k=1Wik

)
,

for i = 1, 2, . . . , n and j = 1, 2, . . . , p. The true parameter β is

β = (0.45,−0.4, 0.45, 0,−0.5, 0, 0, 0, 0, 0,−0.6, 0, 0.3, 0, 0, 0.3, 0, . . . 0)

and β0 = −1. Based on these covariates, we simulate the binary outcome Y based on the logistic

probability pi = expit(Z>i β + β0) and obtained the number of cases and controls at a 2:3 ratio.

Different dimensions and sample sizes are considered and simulations are repeated 100 times

for each setting. The true regression coefficients β are assumed to satisfy the following linear

constraints:
10∑
i=1

βi = 0,

16∑
i=11

βi = 0,

20∑
i=17

βi = 0,

23∑
i=21

βi = 0,

30∑
i=24

βi = 0,

32∑
i=31

βi = 0,

40∑
i=33

βi = 0,

p∑
i=41

βi = 0.

2.5.1. Simulation results

We evaluate the performance of the simulation by comparing the coverage probability, length of

the confidence interval and the true positive and false positive of selecting variables based on the

confidence interval. We compare the results of fitting the models with no constraint, one constraint,

true constraint and misspecified constraints specified below,

4∑
i=1

βi = 0,

12∑
i=5

βi = 0,

23∑
i=13

βi = 0,

30∑
i=24

βi = 0,

p∑
i=31

βi = 0.

Figure 2.3 shows that the coverage probabilities are closer to 95% and the length of CIs decrease

as sample size becomes larger. In addition, the coverage probabilities under true constraints are

closer to the correct coverage probability (95%) especially when n is relatively larger(n = 200, 500).

As for length of CIs, the CIs using the true constraints have the shortest CIs while the length of the

CIs for single constraint and no constraints are relatively wider. We did not compare the length of
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CI for using misspecified constraints because the coverage probability in this case is really poor.

The figure also shows that the coverage probabilities are sensitive to the constraints when sample

size becomes larger and the length is sensitive to the constraints for small sample size. This

is expected as when the sample size is small, we are more likely to obtain wider CI, and using

the correct constraints, which provide more information, would provide shorter CI. While for the

coverage probability, since our algorithm provides an asymptotic CI, the sample size has bigger

effects than the constraints. The coverage probability becomes really poor when the constraints

are misspecified when n = 500.
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Figure 2.3: Coverage probabilities and length of confidence intervals based on 100 simulations for
p = 50 ((a) and (b)) and p = 100 ((c) and (d)) and n = 50, 100, 200, 500 (separated by vertical dashed
lines).

Table 2.2 shows the true positive and false positive rates of selecting the significant variables us-
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ing the 95% confidence interval under multiple, one, no and misspecified constraints for various

dimensions p and sample sizes n. The false positive rates are correctly controlled under 5% for

all models, even when the constraints are misspecified. However, models with correctly specified

linear constraints have higher true positive rates. When the sample size is 500, true positive rate is

greater than 90%, which is the highest among all models considered.

Table 2.2: True /False positive rates of the significant variables selected by the 95% confidence
interval using multiple, one, no and misspecified constraints. p = 50, 100 and n = 50, 100, 200, 500
are considered.

n TP FP TP FP TP FP TP FP
Multi One No Wrong

p = 50
50 0.069 0.034 0.026 0.025 0.029 0.026 0.054 0.036
100 0.260 0.038 0.206 0.031 0.141 0.034 0.299 0.038
200 0.569 0.026 0.549 0.025 0.411 0.030 0.546 0.037
500 0.914 0.038 0.897 0.030 0.840 0.038 0.814 0.058

p = 100
50 0.220 0.045 0.071 0.044 0.109 0.034 0.134 0.046
100 0.103 0.035 0.023 0.016 0.107 0.026 0.154 0.027
200 0.431 0.030 0.389 0.025 0.283 0.029 0.481 0.032
500 0.907 0.032 0.873 0.029 0.801 0.037 0.804 0.042

2.6. Discussion

In this chapter we considered estimation and inference for the generalized linear models with high

dimensional compositional covariates. In order to accounting for the nature of compositional data, a

group of linear constraints were imposed on the regression coefficients to ensure subcompositional

coherence. With these constraints, the standard GLM Lasso algorithm based on Taylor expansion

and coordinate descent algorithm did not work due to the non-separable nature of the penalty

function. Instead, a generalized accelerated proximal gradient algorithm was developed to estimate

the regression coefficients. To make statistical inference, a de-biased procedure was proposed

to construct valid confidence intervals of the regression coefficients. Application of the method

to an analysis of IBD microbiome data identified five bacterial species that were associated with

pediatric IBD with a high stability using a single constraint and six species when imposing multiple

constraints. The identified model had also shown a great prediction performance based on cross-

validation.

The proposed method could be extended to incorporate the phylogenetic tree information in order
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to identify the taxa at different taxonomic levels that are associated with the outcome. At each of

the internal node of the phylogenetic tree, we could create a subcomposition of all the taxa under

this node. We can apply the proposed regression methods that include all these subcompositions

as covariates with sum-zero constraint for the coefficients that correspond to each of the subcom-

positions.
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CHAPTER 3

POST-SELECTION INFERENCE FOR REGRESSION MODELS WITH LINEAR

CONSTRAINTS, WITH AN APPLICATION TO MICROBIOME DATA

3.1. Introduction

In many cases, certain constraints are imposed on the regression coefficients in order to enhance

the interpretability and to reveal the true data generating processes. As we introduced in Chapter

1, Lin et al. (2014) considered linear regression model with microbiome compositional data as

covariates, where a set of linear equality constraints are imposed on the regression coefficients.

The necessity and importance of these constraints have been emphasized in many literatures.

Estimation of the regression coefficients for linear models with constraints can be obtained in a

straightforward way by constrained optimization algorithms, but the inference problem is not trivial

in the presence of linear constraints. In classical settings, the equality constrained least-squares

(ECLS) estimator is known to be an unbiased and normally distributed under certain assumptions.

With the emergence of high-dimensional data, using Lasso-type regularized estimators has become

an effective method for estimating the regression coefficients under the sparsity assumption. In the

setting where the number of covariates p, is potentially larger than n, Lasso (Tibshirani, 1996)

was applied instead of ordinary least square (OLS) for estimation and variable selection. In many

applications, a standard procedure of analyzing the data is to fit a Lasso-type estimator, then to refit

the linear model using the variables selected by Lasso. The inference after this refitting procedure

for the Lasso has been studied in Lee et al. (2016). The confidence intervals proposed in Lee

et al., 2016 are shown to have the desired coverage probability conditioned on the model selected

by Lasso. This is the major difference between this procedure and the refitted confidence interval

based on OLS or the confidence intervals obtained via debiasing (Javanmard and Montanari, 2014;

Zhang and Zhang, 2014).

For models with linear constraints in high-dimensional settings, the inference problem has not been

fully addressed. The presence of the constraints complicates the statistical analysis and ignoring

such constraints causes problem in variable selection and leads to inefficient estimators. In the
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framework of regression models for microbiome data, Shi, Zhang, and Li (2016) and Lu, Shi, and

Li (2019) provided inference for linear model and generalized linear model with a set of linear

constraints. The interpretation of the results is not conditioned on the selected model, hence is

different from that approach that we take. To the best of our knowledge, there has been no published

work on the post-selection inference for models with linear constraints in high-dimensional setting.

In this chapter, we studied the post-selection inference problem for linear models with linear equality

constraints. We established a method to obtain the confidence intervals for the target parameters

conditioned on the selected model using a Lasso-type estimator. By exploring the Karush-Kuhn-

Tucker (KKT) conditions, we obtained an equivalent form for the event of selecting a submodel, in

terms of a group of linear inequalities of the response vector y. Based on this fact, we were able to

obtain the distribution of any linear functional of y conditioned on the selected model and hence to

use it as a pivot for inference of the target parameters. By inverting the pivot we obtained the confi-

dence intervals with desired coverage probabilities. We would like to emphasis that conditioned on

the selected model, our method requires fewer assumptions compared to those debiased inference

procedures.

3.2. Post-selection inference for high dimensional linear models with linear equality

constraints

3.2.1. Linear model with constraints

In this section, we presented a procedure for constructing the post-selection confidence intervals

and their theoretical properties for the linear model with linear equality constraints. One of the mo-

tivating examples includes the regression model for microbiome compositional data, in which the

regression coefficients sum up to zero. As presented in Lin et al. (2014) and Shi, Zhang, and Li

(2016), the zero-sum constraints on the regression coefficients ensure the so-called subcompo-

sitional coherence (Aitchison, 1982; Aitchison and Bacon-shone, 1984) of the model and lead to

more interpretable results. A general version of the model is:

y = Xβ0 + ε, subject to C>β0 = 0, (3.1)
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where ε ∼ N(0, σ2In), y ∈ Rn, β0 ∈ Rp and

C> =



1 · · · 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0 0 · · · 0

...
...

...
...

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1 0 · · · 0


∈ Rr×p. (3.2)

From mathematical and statistical points of view, the specific structure of C may not be essential.

A general form is more desirable but we consider this particular type of C for two reasons: first, this

type of C has a clear biological interpretation; secondly, using a general form requires imposing

many conditions on C that naturally hold in this special case. This form of constraints has two

desired properties:

(A1) C is a full rank matrix with r < p.

(A2) For any set M ⊆ {1, 2, . . . , p}, sub-matrix CM is a full rank matrix such that rank(CM ) < |M |.

For the second property, without abusive of notation, we used CM to represent the active con-

straints, instead of the sub-matrix CM . For example, if the constraints are:

1 1 0 0

0 0 1 1

 ·


β1

β2

β3

β4


= 0

and M = {1, 2}, then the form C>Ma = 0 is

(
1 1

)
·

β1

β2

 = 0

rather than: 1 1

0 0

 ·
β1

β2

 = 0.
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This definition, together with the structure of C, guarantees the condition (A2) always holds. The

choice of C does not limit the application of our method as for other types of C, one only needs to

verify if they satisfy the listed assumptions.

Under the classical setting where p < n is fixed and X is full rank, it is natural to consider the ordi-

nary least square method with the linear equality constraints. The resulting estimator is unbiased

and normally distributed. The result is summarized in the following proposition.

Proposition 1. Assuming X is full rank and r < p, then the linear equality constrained ordinary

least square estimator of model (3.1) is given by:

β̂ = (X>X)−1X>y − (X>X)−1C[C>(X>X)−1C]−1[C>(X>X)−1X>y],

=
[
(X>X)−1X> − (X>X)−1C

(
C>(X>X)−1C

)−1
C>(X>X)−1X>

]
y. (3.3)

The distribution of β̂ is N(β0,Var(β̂)), where Var(β̂) is given by:

Var(β̂) = σ2(X>X)−1
[
Ip −C

(
C>(X>X)−1C

)−1
C>(X>X)−1

]
.

Furthermore, σ2(X>X)−1 � Var(β̂) where σ2(X>X)−1 corresponds to the variance of the ordinary

least square estimator without using any constraints.

Based on Proposition 1, it is easy to obtain a confidence interval Cj for each j = 1, 2, . . . , p such

that P (β0j ∈ Cj) = 1− α for some pre-specified α. It also indicates that such confidence intervals

would have shorter lengths compared to those based on the OLS estimator. This confirms that

ignoring the constraints leads in inefficient estimators.

The idea of post-selection inference is different from this classical method such that the post-

selection confidence intervals have the desired coverage probabilities conditioned on a model-

selection procedure. That is, P (β0j ∈ Cj | M̂ = M) = 1 − α. For the models with constraints,

we considered a similar problem. This type of inference that conditions on the selected model

emphasizes the interpretation of the regression coefficient, which is the effect of a variable on the

outcome, adjusting for all other selected variables.
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3.2.2. Target parameter

One key property of the post-selection inference that distinguishes it from classical inference is that

all the procedures are conditioned on the model selected. Hence, the target parameter depends on

the model selection procedure. For any set M ⊆ {1, 2, . . . , p}, the target parameter corresponding

to the sub-model M is defined as:

βMoracle = argmin
β∈H(M,C)

E‖y −XMβ‖22, (3.4)

here y ∼ N(µ,Σ) with Σ = σ2Ip and H(M,C) = {a ∈ R|M | : C>Ma = 0}. When H(M,C) = ∅,

the target parameter does not exist, we therefore need to impose conditions so that βMoracle always

exists. Without lose of generality, the columns of C are assumed to be orthonormal and we impose

the following two conditions:

(B1) XM is full rank with rank(XM ) = |M | < min(n, p).

(B2) The diagonal elements of Ip −CC> are greater than zero.

For assumption (B1), it not only relates to the existence of the target parameter, but also guarantees

the uniqueness of the Lasso estimator. In practice, the dimension of the selected sub-model |M |

is smaller than min(n, p), the first part of the assumption is not hard to satisfy. Assumption (B2) is

also used in related literature such as Shi, Zhang, and Li (2016) and Lu, Shi, and Li (2019). This

assumption eliminates some trivial constraints such as cjβj = 0 for some j.

Under the assumptions (A2), (B1) and (B2), the solution to (3.4) is given by:

βMoracle =
[
(X>MXM )−1X>M − (X>MXM )−1CM

(
C>M (X>MXM )−1CM

)−1
C>M

(X>MXM )−1X>M
]
µ. (3.5)

Further if µ = Xβ0 and M = supp(β0), then βMoracle could exactly recovers the non-zero elements

of β0. This indicates that under a true linear model and if we could correctly select the subset

(recovers the support of β0), then the target parameter could capture the information of the true

parameter β0. However, for general choices of M , the target parameter of interests βMoracle has

no direct relation with β0. So when studying the inference problem conditioned on the selected
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model, one should notice that the target we are making inference on, which is defined by (3.4), is

the best-linear estimator under the constraints. Under a true linear data generating process (the

case when µ = Xβ0), it is still possible that the target has no relationship with the true β0.

3.2.3. Confidence intervals for target parameter

In the high dimensional setting, when p is potentially larger than n, an estimator of model (3.1) is

given by:

β̂ = argmin
β∈H(C)

1

2
‖y −Xβ‖22 + λ‖β‖1, (3.6)

where H(C) = {a ∈ Rp : C>a = 0}. To guarantee the uniqueness of β̂, we also need an

assumption (B3) that the columns of X are in general position (Tibshirani, 2013). We considered

the post-selection inference for the target parameter βMoracle, conditioned on {M̂ = supp(β̂) = M}.

That is, we would like to find a confidence interval Cj such that for each j ∈M ,

P (βMoracle,j ∈ Cj | M̂ = M) = 1− α.

The key part of post-selection inference is to study the event of selecting certain sub-model M .

For technical reasons, we focus on that event {M̂ = M, ŝ = s} instead of {M̂ = M}, where

ŝ = sign(β̂). The following lemma indicates that the event {M̂ = M, ŝ = s} can be quantified by a

set of inequalities of y.

Lemma 2. Suppose β̂ is defined in (3.6), assumptions (A1)-(A2), (B1)-(B3) hold, then the event

{M̂ = M, ŝ = s} is equivalent to {Ay < b}, where A and b is defined by the following:

A =

A0

A1

 , b =

b0
b1

 ,

30



with:

A1 =− diag(s)(X>MXM )−1×(
X>M −CM

(
C>M (X>MXM )−1CM

)−1
C>M (X>MXM )−1X>M

)
,

b1 =− diag(s)(X>MXM )−1×(
λs−CM

(
C>M (X>MXM )−1CM

)−1 [
λC>M (X>MXM )−1s

])
,

and

A0 =

A01

A02

 , b0 =

b01

b02

 ,

which A01, A02, b01 and b02 are given as following:

A01 = − 1

λ
X>−M

(
I −XM (X>MXM )−1X>M

)
−
[
X>−MXM (X>MXM )−1 · 1

λ
CM−

1

λ
C−M

]
·
[ (

C>M (X>MXM )−1CM

)−1
C>M (X>MXM )−1X>M

]
,

A02 =
1

λ
X>−M

(
I −XM (X>MXM )−1X>M

)
+
[
X>−MXM (X>MXM )−1 · 1

λ
CM−

1

λ
C−M

]
·
[ (

C>M (X>MXM )−1CM

)−1
C>M (X>MXM )−1X>M

]
,

and

b01 = 1 + X>−MXM (X>MXM )−1s−
[
X>−MXM (X>MXM )−1 · 1

λ
CM −

1

λ
C−M

]
·(

C>M (X>MXM )−1CM

)−1 [
λC>M (X>MXM )−1s

]
,

b02 = 1−X>−MXM (X>MXM )−1s+
[
X>−MXM (X>MXM )−1 · 1

λ
CM −

1

λ
C−M

]
·(

C>M (X>MXM )−1CM

)−1 [
λC>M (X>MXM )−1s

]
.

Lemma 2 indicates that the event we conditioned on {M̂ = M, ŝ = s}, is actually a system of linear

inequalities on y. To utilize this fact, we first provided an equivalent form of the event {Ay < b}.

Notice that y ∼ N(µ,Σ), then for any ξ ∈ Rn, define z = (In − cξ>)y, with c = Σξ(ξ>Σξ)−1, it is

easy to verify that z is independent of ξ>y. Hence, based on Lemma 5.1 in Lee et al. (2016), we
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know that:

{Ay < b} = {ν−(z) ≤ ξ>y ≤ ν+(z), ν0(z) ≥ 0},

where

ν−(z) = max
j:(Ac)j<0

bj − (Az)j
(Acj)

(3.7)

ν+(z) = min
j:(Ac)j>0

bj − (Az)j
(Acj)

(3.8)

ν0(z) = min
j:(Ac)j=0

bj − (Az)j

Based on this key fact, the following theorem provides the post-selection confidence intervals of

βMoracle.

Theorem 3. Suppose βMoracle is defined in (3.5) and for each j ∈M , let:

ξ =e>j
[
(X>MXM )−1X>M − (X>MXM )−1CM

(
C>M (X>MXM )−1CM

)−1

C>M (X>MXM )−1X>M
]
,

and let U and L are the unique values defined by:

F ν
−,ν+

L,σ2‖ξ‖2(ξ>y) = 1− α

2
, F ν

−,ν+

U,σ2‖ξ‖2(ξ>y) =
α

2
, (3.9)

where ν− and ν+ are defined in (3.7) and (3.8), and F a,bµ,σ2 is the CDF of a normal distribution

N(µ, σ2) truncated to the interval [a, b], then

P (βMoracle,j ∈ [L,U ] | M̂ = M, ŝ = s) = 1− α

That is, [L,U ] is a (1 − α) × 100% confidence interval for βMoracle,j conditional on the event {M̂ =

M, ŝ = s}. Furthermore,

P (βMoracle,j ∈ [L,U ] | M̂ = M) ≥ 1− α.

This indicates that the resulting confidence interval has the coverage probability above 1− α.
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This theorem provides a way of constructing the post-selection confidence intervals conditioned on

the model and sign. The following corollary provides the confidence interval that only conditioned

on the selected model.

Corollary 1. Suppose βMoracle is defined in (3.5) and for each j ∈ M , ξ is defined as in Theorem

3,and let L̃ and Ũ are the unique values defined by:

F
⋃
s(ν
−
s ,ν

+
s )

L̃,σ2‖ξ‖2
(ξ>y) = 1− α

2
, F

⋃
s(ν
−
s ,ν

+
s )

Ũ,σ2‖ξ‖2
(ξ>y) =

α

2
,

where ν−s and ν+
s are defined in (3.7) and (3.8) with given sign s, and FSµ,σ2 is the CDF of a normal

distribution N(µ, σ2) truncated to a set S, then

P (βMoracle,j ∈ [L̃, Ũ ] | M̂ = M) = 1− α

That is, [L̃, Ũ ] is a (1−α)×100% confidence interval for βMoracle,j conditioned on the selected model

{M̂ = M}.

Comparing the results from Theorem 3 and Corollary 1, there is a trade-off between accuracy and

efficiency. Conditioned only on the selected model is our desired result, which provides a confi-

dence interval with exact coverage probability, but computing
⋃
s(ν
−
s , ν

+
s ) can be time-consuming.

With s runs through all possible 2|M | sign combinations, this will not be feasible with large |M̂ |. In

contrast, confidence intervals conditioned on both the model and the sign is computationally effi-

cient, but the confidence intervals do not have exact coverage probability of 1 − α. In Section 3.5,

we presented simulations to compare these two types of confidence intervals.

Despite this issue, the post-selection confidence interval for linear model with linear constraints still

has many advantages. First, under the assumption of Gaussian error, the confidence interval has

an exact coverage probability that requires no further assumption on n and p and β0. This is the key

difference between our method and the de-biased estimator. In addition, this approach has its own

benefits in interpretation, particularly in applications to the microbiome regression analysis. Due to

the normalization step, studying the sub-model (refitted model) is important after a variable selec-

tion step. When focusing on the sub-models, one should renormalize the data into compositions

and refit the model for further analysis. The advantage of using constraints is that the renormaliza-

tion step is not necessary and the post-selection inference provides a natural interpretation of the
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confidence intervals by emphasizing the model selection procedure.

In Theorem 3 and Corollary 1, the obtained confidence intervals involve the potentially unknown

parameter σ2. In theory, any consistent estimator of σ2 can be used. In Section 3.5, we provided

two different methods of estimating σ2 under different scenarios.

3.3. Optimization algorithm and computational details

3.3.1. Optimization algorithm

The optimization algorithms for (3.6) have been well studied in literature. This type of optimiza-

tion problems belong to the class of convex optimization problems with constraints. We used a

coordinate descent algorithm (Shi, Zhang, and Li, 2016) to estimate the parameters in the model.

In Theorem 3 there is a key step in obtaining the confidence interval that requires to find the unique

value satisfying (3.9). Since F a,bµ,σ2(x) is monotone-decreasing in µ, we used a grid searching

method to find the unique value that satisfies the equalities.

3.3.2. Estimation of σ2 and choice of tuning parameter

As we discussed in Section 3.2, the unknown parameter σ2 need to be estimated. When n is much

larger than p, σ2 could be well-estimated using the residual sum of square:

σ̂2 =
1

n− p− 1
‖y −Xβ̂full‖22.

Here, β̂full is the regression coefficient obtained by fitting a model using all candidate covariates.

When n is smaller than p, the above estimator is not valid. We suggested using scaled Lasso (Sun

and Zhang, 2012) to get an estimate of σ2.

For the choice of tuning parameter, there are several approaches that are applicable. For data

driven method, one can use K-fold cross validation and Bayesian information criterion (BIC) to se-

lect the tuning parameter. These are standard procedures for selecting the tuning parameter in the

penalized regression literature. This parameter can also be chosen manually through analyzing the

piecewise-linear solution path or via the stability selection plot (Meinshausen and Bühlmann, 2010).

Since cross-validation or BIC tends to select too many variables, for the purpose of interpretability,
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one may select the variables by plotting the solution path or the stability selection plot and then

select a model of relatively small size.

3.4. Applications: UK twins data

We applied our methods to a UK twins dataset (Goodrich et al., 2016) to associate gut microbiome

with age. The UK twin study includes 13500 twins registered in the database since 1992, of which

over 9000 are actively participating. In our application, data on 1110 pairs of twins with gut mi-

crobiome information are available. We analyzed this dataset aiming at exploring the association

between gut microbiome composition and age. The analysis aims to address the questions of

whether microbiome can serve as a biological marker for true age (Woodmansey, 2007).

We randomly chose one individual from each twin pair and obtained the relatively abundance of

55 bacterial genera after removing the bacterial genera that only appeared in a few samples. We

renormalized the data at genus level and fitted the model with proper constraints. Specifically, we

considered the model

agei = β0 +

55∑
k=1

βk logXik + εi, subject to
∑
k βk = 0,

where Xik is the relative abundance of the kth bacterial in individual i, and βk is the regression

coefficient. Since the scaled Lasso method selects too many variables and hence makes post-

selection inference unfeasible, we presented results based on the tuning parameter selected by

stability selection (Meinshausen and Bühlmann, 2010), as shown in Figure 3.1. Specifically, we

randomly selected 800 subjects and fitted the model with different tuning parameters and recorded

the variables that were selected. This procedure was replicated 500 times. In the stability selection

plots, we showed the probability of each variable being selected under different tuning parameters

and chose the tuning parameter that results in stable variable selection.

Using the stability plot, we chose 6 bacterial genera with the tuning parameter λ = 0.094. In Figure

3.2 and Table 3.1, we provided the post-selection confidence intervals together with the de-biased

Lasso estimates, refitted estimates and their corresponding confidence intervals (the computation

for the post-selection confidence interval for Blautia fails to converge and hence is not shown).

The results show that the relative abundances of Bifidobacterium and Blautia Faecalibacterium
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Figure 3.1: Stability selection plot for UK twin data based on Lasso with a zero sum constraint of
the regression coefficients.

decrease in the elderly, but Actinomyces, Lactobacillus and Methanobrevibacter increase in the

elderly. These results largely agree with the consensus is that the elderly gut has lower counts of

short chain fatty acid producers such as Faecalibacterium and and an increased number of aero-

tolerant and pathogenic bacteria such as Actinomyces and Methanobrevibacter. As expected, the

lengths of the confidence intervals for these 6 regression coefficients are wider than those based on

refitted regression using the selected variables. The post-selection inference identified two bacterial

genera that are statistically significant based on their 95% post-selection confidence intervals, in-

cluding Actinomyces and Bifidobacterium. Both genera appear the top of the stability plot of Figure

3.1. They both belong to phylum Actinobacteria. Bifidobacterium is the most predominant genus of

the breast-fed infant gut microbiota. It has been show that the numbers of this genus substantially

decrease after weaning and continue to decrease with age (Kato et al., 2017; Woodmansey, 2007).

We compared the results with the model without imposing the linear constraint on coefficients.

For a direct comparison, we manually selected the tuning parameter based on the solution path

for Lasso so that it also selects 6 genera. The 6 selected genera are listed in Table 3.1 and

presented in Figure 3.2, only Actinomyces and Lactobacillus are identified by both methods. The
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(b) Model without linear constraints
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Figure 3.2: Estimates and confidence intervals of the regression coefficients for UK twins dataset.
(a): Model with linear constraints; (b): Model without linear constraints

resulting point estimates are also different such that the all the regression coefficients are positive

for the model without constraints. In addition, the post-selection confidence intervals from the model
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Table 3.1: Estimates and confidence intervals of the regression coefficients using different methods
applying to the UK twins dataset. The computation for the post-selection confidence interval for
Blautia fails to converge and hence is not shown.

Genus Post-selection Refitted
Model with a constraint on β:

∑
k βk = 0

Actinomyces 0.80(0.063, 1.51) 0.80(0.49, 1.11)
Bifidobacterium −0.80(−1.50,−0.062) −0.80(−1.11,−0.49)
Blautia −0.71 −0.71(−1.25,−0.17)
Faecalibacterium −0.19(−1.09, 0.59) −0.19(−0.66, 0.28)
Lactobacillus 0.90(−0.44, 1.22) 0.90(0.55, 1.25)
Methanobrevibacter 0.38(−0.072, 0.60) 0.38(0.15, 0.61)

Model without a constraint on β
Actinomyces 0.55(−0.71, 5.15) 0.55(−0.02, 1.13)
Enterococcus 0.25(−0.86, 2.74) 0.25(−0.26, 0.76)
Lactobacillus 0.42(−0.39, 2.61) 0.42(0.05, 0.80)
Slackia 0.62(−0.28, 1.63) 0.62(0.19, 1.05)
Trabulsiella 0.80(−0.43, 3.48) 0.80(0.26, 1.34)
Veillonella 0.46(−0.26, 0.60) 0.46(0.11, 0.82)

with out constraints all include zero. The results indicate the importance of imposing constraint

for compositional covariates, both in term of biological interpretability and in term of identifying

biologically important bacterial genera.

3.5. Simulation studies

3.5.1. Simulation setup

We performed a set of simulations to examine the validity of our methods under different settings.

We consider different sample sizes with n = 100, 200 and 500 and p = 50, 500 (for moderate

and high dimensional settings). For given n and p, the data {yi,Xi}ni=1 is generated as following:

X ∼ N(0, Ip). With given X, yi is generated by yi = X>β0 + εi with εi ∼ N(0, 1). In this setting,

the covariate matrix is fixed across different replications. The methodology we provided does not

require a random design X, hence we fixed it so that the model selection step would be stable. The

true parameter β0 is chosen as:

β0 = (2,−2, 2, 0, 0,−2, 0, 0, 0, 0,−4, 0, 2, 0, 0, 2, 0, . . . , 0) .
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This true parameter satisfies the linear equality constraints:

6∑
i=1

βi = 0,

p∑
i=7

βi = 0.

For any selected model M such that M 6= supp(β0), the βMoracle is computed based on (3.5).

Throughout the simulations, we chose the tuning parameter in Lasso problem (3.6) by setting the

tuning parameter to a fix value. The reason for manually choosing the tuning parameter is that we

need to evaluate the inference conditioned on a selected model. Among all the simulation runs,

the models selected cannot be guaranteed to be the same and we could only use those that are

same so that the inference is made conditioned on the same model. With this requirement, setting

the tuning parameter to certain fixed value allows us to determine which submodel is selected. It

should be emphasized that our method is targeted to the inference after model selection and is

applicable to almost any reasonably chosen tuning parameters. The choice of tuning parameter

determines which model we conditioned on, but has no impact on the inference procedure.

To evaluate the performances of the post-selection confidence intervals, we measured the empirical

coverage probability and average length of the CI for each coefficient. The empirical coverage

probability for each coefficient is defined as, for each j ∈ {1, . . . ,M},

1

N

N∑
i=1

1{βMoracle,j ∈ [Li, Ui] | M̂ = M},

where N is the number of replications. The reported value is averaged over the selected vari-

ables. Since the number of selected variables is small, we do not report the standard errors. The

simulation is replicated until a specific submodel is selected 500 times.

We compared the simulation results for models with different constraints and the performance of

the confidence intervals conditioned on the selected model and signs and those conditioned on

the selected model only. We also examined the impact of estimating the unknown parameter σ2.

Specifically, , when p = 50, we estimated σ2 using the residual sum of square of fitting a full model,

and when p = 500 we used scaled Lasso.
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3.5.2. Simulation results

We considered models with three different constraints on regression coefficients: no constraint, one

single constraint with
∑p
i=1 βi = 0 and true multiple constraints (

∑6
i=1 βi = 0,

∑p
i=7 βi = 0). For

the case of p = 50, we chose the tuning parameter as λ = 0.5n and 2n, λ = 0.5n and n and λ = n

and 2n for n = 500, 200 and 100 respectively. When p = 500, we chose different tuning parameters

for different n and models. To be specific, when n = 500, we considered λ1 = 0.5n and λ2 = 1.5n

for all three models. When n = 200, we chose λ1 and λ2 to be 0.5n, n for models with no and single

constraint, and λ1 and λ2 to be n and 1.5n for model with multiple constraints. For n = 100, we

chose λ1 = n, λ2 = 1.5n for models with no constraint, 1.5n, 3n for model with a single constraint,

and n, 2n for model with multiple constraints. For each n and p setting and each model, there is at

least one tuning parameter that the corresponding selected variables contain the support of β0.

Table 3.2 presents average coverage probabilities of the post-selection confidence intervals under

different (n, p) settings with different parameter constraints using the true σ2 and the estimated

σ2. As we previously suggested, we estimated σ2 using the residual sum of square obtaining

from the full model for p = 50 and using scaled Lasso for p = 500. Results in Table 3.2 indicate

that using the estimated σ2 does not affect the results too much. Overall, we observed that the

coverage probabilities are averaged above the pre-specified 0.95 (α = 0.05) level for all models and

methods, showing the validity of our proposed methods. We observed that the proposed methods

of estimating the variance σ2 work very well for p = 50. When p = 500, there is an inflation

in the coverage probabilities due to the finite-sample estimation bias of the variance parameter

σ2. With the increase of the sample sizes, the bias is reduced and the coverage probabilities are

closer to 0.95. This demonstrates the impact of estimating the unknown variance parameter in

both moderate and high dimensional settings using two different methods. Table 3.2 also shows

that the coverage probabilities are close to 0.95 when conditioned on both the selected model and

signs of the coefficients, which implies that conditioned on selected model and signs can provide a

computationally efficient alternative to the method that only conditions on the selected model.

When comparing the average length of the confidence intervals, we need to consider the target

parameter. Since different model selection leads to distinct target parameter, we can only compare

across the settings where the selected models and the target parameters are the same. When
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n = 500, 200 and 100 and p = 50 with λ = 0.5n, 0.5n and n respectively, the corresponding

estimator recovers the support of β0 and hence their targets are the same. Table 3.3 shows the

lengths of post-selection confidence intervals for the same settings as in Table 3.2. We observed

that the lengths of the confidence intervals for these settings decrease when multiple constraints

are imposed. This is consistent with Proposition 1. Similar to the coverage probabilities, when

p = 500, a increased length of the confidence intervals is observed due to finite sample bias of

the estimated variance. With the increase of the sample sizes, the bias is reduced and the lengths

of the confidence intervals decrease. These results show that using correct constraints leads to

reduction of the length of the confidence intervals.

Table 3.2: Average coverage probabilities of the post-selection confidence intervals obtained by
conditioned on selected model and signs or conditioned only on the selected model. Three different
contraints on coefficients and two different tuning parameters are considered. For each setting,
the first row represents the confidence intervals calculated assuming the variance parameter σ2

is known and the second row represents the confidence intervals calculated when the variance
parameter σ2 is estimated. For p = 500, see text for selection of the tuning parameters λ1 and λ2.

Model and sign Model only
No Single True No Single True

p = 50
n = 500 λ = 0.5n 0.95 0.95 0.95 0.95 0.95 0.95

0.95 0.95 0.95 0.95 0.95 0.95
λ = 2n 0.96 0.95 0.96 0.96 0.95 0.96

0.97 0.95 0.96 0.96 0.95 0.96
n = 200 λ = 0.5n 0.95 0.95 0.95 0.95 0.95 0.95

0.95 0.95 0.95 0.95 0.95 0.95
λ = n 0.95 0.95 0.95 0.95 0.95 0.95

0.95 0.94 0.95 0.95 0.94 0.95
n = 100 λ = n 0.95 0.95 0.95 0.95 0.96 0.95

0.95 0.95 0.95 0.95 0.95 0.95
λ = 2n 0.96 0.96 0.97 0.97 0.96 0.97

0.97 0.95 0.96 0.97 0.95 0.96
p = 500

n = 500 λ = λ1 0.95 0.95 0.95 0.95 0.95 0.95
0.96 0.96 0.96 0.96 0.96 0.96

λ = λ2 0.95 0.95 0.95 0.95 0.95 0.95
0.96 0.96 0.96 0.96 0.96 0.96

n = 200 λ = λ1 0.95 0.95 0.95 0.95 0.95 0.95
0.98 0.97 0.97 0.98 0.98 0.97

λ = λ2 0.95 0.95 0.95 0.96 0.95 0.95
0.97 0.98 0.97 0.98 0.98 0.97

n = 100 λ = λ1 0.95 0.96 0.96 0.96 0.96 0.96
1.00 1.00 1.00 1.00 1.00 1.00

λ = λ2 0.95 0.97 0.95 0.96 0.97 0.95
1.00 1.00 1.00 1.00 1.00 1.00
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Table 3.3: Average length of the post-selection confidence intervals obtained by conditioned on the
selected model and signs or conditioned only on the selected model. Three different contraints
on coefficients and two different tuning parameters are considered. For each setting, the first row
represents the confidence intervals calculated assuming the variance parameter σ2 is known and
the second row represents the confidence intervals calculated when the variance parameter σ2 is
estimated. For p = 500, see text for selection of the tuning parameters λ1 and λ2.

Model and sign Model only
No Single True No Single True

p = 50
n = 500 λ = 0.5n 0.17 0.16 0.15 0.17 0.16 0.15

0.17 0.16 0.15 0.17 0.16 0.15
λ = 2n 0.17 0.16 0.18 0.17 0.16 0.18

0.17 0.15 0.18 0.17 0.15 0.18
n = 200 λ = 0.5n 0.27 0.25 0.23 0.28 0.25 0.23

0.27 0.25 0.23 0.27 0.25 0.23
λ = 2n 0.27 0.25 0.23 0.27 0.25 0.23

0.27 0.25 0.23 0.27 0.25 0.23
n = 100 λ = n 0.38 0.35 0.33 0.38 0.35 0.33

0.38 0.36 0.33 0.39 0.36 0.33
λ = 2n 0.45 0.33 0.30 0.45 0.33 0.30

0.45 0.33 0.30 0.46 0.33 0.31
p = 500

n = 500 λ = λ1 0.17 0.16 0.15 0.17 0.16 0.15
0.18 0.17 0.15 0.18 0.17 0.15

λ = λ2 0.17 0.16 0.15 0.17 0.16 0.15
0.18 0.17 0.15 0.18 0.17 0.15

n = 200 λ = λ1 0.27 0.25 0.23 0.28 0.25 0.23
0.24 0.22 0.20 0.24 0.22 0.20

λ = λ2 0.27 0.25 0.27 0.27 0.25 0.23
0.24 0.22 0.20 0.24 0.22 0.20

n = 100 λ = λ1 0.49 0.50 0.52 0.49 0.49 0.52
0.72 0.74 0.75 0.73 0.71 0.73

λ = λ2 0.47 0.64 0.33 0.45 0.64 0.34
0.64 1.03 0.39 0.61 1.02 0.40

3.6. Discussion

Regression models with constraints raise naturally in field of microbiome research. Imposing con-

straints on the model brings benefits in capturing the true data generating process, which leads

to more efficient estimators. When the number of covariates is potentially larger than the sam-

ple size, Lasso-type estimators are often used for estimation and model selection. In this chapter

we considered the problem of post-selection inference for high-dimensional linear models with lin-

ear constraints and developed a method for obtaining the confidence intervals that have desired

coverage probability conditioned on the selected models using Lasso. We carefully explored the
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statistical properties of the linear-constrained model and used these properties to propose post-

selection confidence intervals. Using the KKT conditions of the constrained Lasso, we found the

equivalent form of the model selection procedure and utilize this form to construct a pivot. Finally,

by inverting the pivotal quantity, we obtained the confidence intervals for the target parameter.

Due to the linear functional form of the target parameter, the confidence intervals we obtained

have an exact coverage probability that does not require any asymptotic assumptions on n and p.

This method emphasizes the refitting procedure that is widely used in the microbiome applications.

Through the simulations we also compared the results of using or not using the constraints, which

indicates that using the constraints would provide more efficient confidence intervals. Lastly, as

commended in Lee et al. (2016), when the signal is weak, the algorithm may not converge and can

fail to provide valid confidence intervals.

A natural extension of our method is to consider the post-selection inference for generalized linear

models (GLM) with constraints. Using the results introduced in this chapter and those of Taylor and

Tibshirani (2018), it is straight forward to make inference on the target parameter for GLMs with

constraints on regression coefficients by applying the iterated weighted least square method.

43



CHAPTER 4

HYPOTHESIS TESTING IN HIGH-DIMENSIONAL INSTRUMENTAL VARIABLES

4.1. Introduction

Many genomic studies collect both germline genetic variants and tissue-specific gene expression

data on the same set of individuals in order to understand how genetic variants perturb gene ex-

pressions that lead to clinical phenotypes. Among various methods, association analysis between

gene expression and phenotype such as differential gene expression analysis has been widely re-

ported. Such studies have shown that gene expressions are associated with many common human

diseases, such as liver disease (Romeo et al., 2008; Speliotes et al., 2011) and heart failure (Liu

et al., 2015). However, there are possibly many unmeasured factors that affect both gene expres-

sions and phenotypes of interest (Hoggart et al., 2003; Leek and Storey, 2007). The existence

of such unmeasured confounding variables can cause correlation between the error term and one

or some of the independent variables and lead to identifying false associations. Particularly, the

independence assumption between gene expressions and errors are required in linear regression

in order to obtain valid statistical inference of the effects of gene expressions on phenotype. If this

assumption is violated, standard methods can lead to biased estimates (Fan and Liao, 2014; Lin,

Feng, and Li, 2015).

One way to deal with unmeasured confounding is to apply instrumental variables (IV) regression,

which has been studied extensively in low dimensional settings (Imbens, 2014). In the context

of our applications, we treat genetic variants as instrumental variables in studying the association

between gene expressions and phenotypes. Standard method to fit the IV models is to apply two-

stage regressions to obtain valid estimation of the true parameters. However, in genetical genomics

studies, the dimensions of both genetic variants and gene expressions are much larger than the

sample sizes, making the classic two-stage regression methods of fitting the IV models infeasible.

To account for high dimensionality, penalized regression methods have been developed to select

the instruments in the first stage and then to select gene expressions in the second stage (Lin,

Feng, and Li, 2015). Lin, Feng, and Li, 2015 provided the estimation error bounds of proposed

two-stage estimators but did not study the related problem of statistical inference.
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For linear regression models in high-dimensional setting, Javanmard and Montanari, 2014 devel-

oped a de-biased procedure to construct an asymptotically normally distributed estimator based

on the original biased Lasso estimator. The asymptotic results can be used for hypothesis test-

ing. Zhang and Zhang (2014) proposed a low-dimensional projection estimator to correct the bias,

sharing a similar idea as Javanmard and Montanari (2014). In a more general framework, Ning

and Liu (2017) considered the hypothesis testing problem for general penalized M-estimator, where

they constructed a decorrelated score statistic in high-dimensional setting. All these methods for

high dimensional linear regression inference require the critical assumption that the error terms are

independent of the covariates, and therefore cannot be applied to the IV models directly.

This chapter presented methods for hypothesis testing for high dimensional IV models, including

statistical test of a single regression coefficient and a multiple testing procedure for variable selec-

tion. The methods build on the work of Lin, Feng, and Li (2015) to obtain a consistent estimator of

the regression coefficients, and the work of Liu (2013) to perform inverse regressions to construct

the bias-corrected test statistics. The idea of inverse regression is first used to study the Gaussian

graphical model, and has been extended to hypothesis testing problem in high dimensional linear

regression (Liu and Luo, 2014). The procedure uses information from the precision matrix so that

the correlations between test statistics become quantifiable. We combine this inverse regression

procedure with the estimation methods in Lin, Feng, and Li, 2015 to propose a test statistic with

desired properties. In addition, in high dimensional setting, the sparsity assumption on the true

regression coefficient results in a small number of alternatives, which leads to conservative false

discovery rate (FDR) control. A less conservative approach is to control the number of falsely

discovered variables (FDV) (Liu and Luo, 2014). The proposed test statistic for single regression

coefficient in IV models is shown to be asymptotically normal and the proposed multiple testing

procedure is shown to control the FDR or FDV.

4.2. IV Models and Proposed Methodology

4.2.1. Sparse Instrumental Variable Model

Denote Y ∈ Rn as the n-dimension phenotype vector, X ∈ Rn×p as the gene expression matrix of

p genes and Z ∈ Rn×q as the matrix of q possible instrumental variables such as the genotypes of q

genetic variants. Lin, Feng, and Li (2015) considered the following high dimensional IV regression

45



model:

Y = Xβ0 + η, (4.1)

X = ZΓ0 + E, (4.2)

where β0 ∈ Rp is the vector of regression coefficients that reflects the association between pheno-

type Y and gene expression X, while Γ0 reveals the relationships between the gene expressions X

and the genetic variants Z. Without lose of generality, we assume Z is centered and standardized.

The error terms η = (η1, η2, . . . , ηn)> and E = (ε1, . . . , εn)> are n-dimensional vector and n by p

matrix, respectively. The joint distribution of
(
ε>i , ηi

)
is a multivariate normal distribution with mean

0, covariance matrix Σe and is independent with Z. To emphasize the correlation between Y and

X, we assume that the correlation between εi and ηi is not zero. In this chapter we are interested in

the high-dimensional setting where the dimension of the covariates p and the dimension of potential

instrumental variables q can both be larger than n.

As suggested by Lin, Feng, and Li (2015), estimation of β0 in sparse setting can be performed by a

two-stage penalized least squares method. To be specific, we first estimate the coefficients matrix

Γ0 in (4.2) column by column as the following:

Γ̂·,j = argmin
γ∈Rq

(
1

2n
‖X·,j − Zγ‖22 + λ2j‖γ‖1

)
, j = 1, 2, . . . , p, (4.3)

where λ2j is a tuning parameter. After obtaining an estimate of Γ0, we plug in the predicted value

of X, which is X̂ = ZΓ̂, to the second stage model (4.1) and obtain an estimator of β0:

β̂ = argmin
β∈Rp

(
1

2n
‖Y − X̂β‖22 + λ1‖β‖1

)
, (4.4)

where λ1 is a tuning parameter.

The focus of this chapter is to develop statistical test of H0 : β0i = 0 for a given i and to develop a

procedure for the multiple hypothesis testing problem:

H0i : β0i = 0 vs. H1i : β0i 6= 0, i = 1, 2, . . . , p,
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with a correct control of FDR or FDV.

4.2.2. Hypothesis Testing for a Single Hypothesis Using Inverse Regression

Denote D = ZΓ0, from models (4.1) and (4.2),

Y = µ+ Dβ0 + ξ, (4.5)

where ξ = η + Eβ0. When Z consists of all the valid instruments, D and ξ are independent by the

causal assumptions for a valid instrument and (4.5) can be treated as a standard linear regression.

Using the idea of inverse regression (Liu, 2013; Liu and Luo, 2014), for each i = 1, 2, . . . , p, Di is

regressed on (Y,D·,−i) as:

D·,i = ai + (Y,D·,−i)θi + ζi, (4.6)

where ζi satisfies Eζi = 0 and is uncorrelated with (Y,D·,−i). Based on the properties of multi-

variate normal distribution (Anderson, 2003), the regression coefficient θi is related to the target

parameter β0 by the following equality:

θi = −σ2
ζi

(
−β0i

σ2
ξ

,
β0iβ

>
−0i

σ2
ξ

+ ΩD
−i,i

)
, (4.7)

where σ2
ζi

and σ2
ξ denote the variance of ζi and ξ, respectively, and ΩD = Σ−1

D is the precision

matrix for D. Since Cov(D, ξ) = 0, we have σ2
ζi
β0i = σ2

ξθi1 = θi1Cov(ξ, y) = −Cov(ξ, ζi), therefore,

the null hypothesis H0i : β0i = 0 is equivalent to

H0i : Cov(ξ, ζi) = 0 vs. H1i : Cov(ξ, ζi) 6= 0, i = 1, 2, . . . , p.

Since the data observed are {yk,Xk,Zk, k = 1, 2, · · ·n}, the vector Di in (4.6) is not observed for

any i = 1, 2, . . . , p. One can estimate θi via regularization by replacing D with its estimated value

D̂ = X̂ = ZΓ̂,

θ̂i = argmin
θ

{
1

2n
‖D̂·,i −

(
Y, D̂·,−i

)
θi‖22 + µi‖θ‖1

}
, i = 1, 2, . . . , p, (4.8)
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where µi is a tuning parameter.

The sample correlation between ξ and ζi is then used to construct the test statistic for H0i (Liu,

2013). Using the estimates β̂, D̂ and θ̂i, the estimated residuals are

ξ̂k = yk − Y −
(
D̂k − D̂

)>
β̂,

ζ̂k,i = D̂k,i − D̂i −
(
yk − Y ,

(
D̂k,−i − D̂−i

)>)
θ̂i,

for k = 1, 2, . . . , n and i = 1, 2, . . . , p, where

Y =
1

n

n∑
k=1

yk, D̂ =
1

n

n∑
k=1

D̂k, D̂i =
1

n

n∑
k=1

D̂k,i, D̂−i =
1

n

n∑
k=1

D̂k,−i.

Using the bias correction formula in Liu (2013), for each i, define the test statistic as

Ti =
√
n

(
1

n

n∑
k=1

ξ̂k ζ̂k,i +
1

n

n∑
k=1

ξ̂2
kθ̂1,i +

1

n

n∑
k=1

ζ̂2
k,iβ̂i

)/
σ̂ξσ̂ζi ,

where

σ̂2
ξ =

1

n

n∑
k=1

ξ̂2
k, σ̂2

ζi =
1

n

n∑
k=1

ζ̂2
k,i.

The bias correction formula adds two extra terms to the original sample correlation in order to

eliminate the higher order bias resulting from the bias of the Lasso-type estimator. Using the

transformation theorem in Anderson (2003), the final test statistic for testing H0i : Cov(ξ, ζi) = 0 is

defined as

T̂i =
Ti

1− T 2
i

n 1
(
T 2
i

n < 1
) ,

which has an asymptotic N(0, 1) distribution under the null (see Theorem 4).
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4.2.3. Rejection Regions for Multiple Testing Procedure with FDR and FDV control

After obtaining the test statistic T̂i for H0i, we determine the rejection region for simultaneous tests

of T̂i for H0i for i = 1, · · · , p. Recall that the definitions of FDR and FDV are:

FDR = E


∑
i∈H0

1
(
|T̂i| ≥ t

)
∑p
i=1 1

(
|T̂i| ≥ t

)
∨ 1

 , FDV = E

{∑
i∈H0

1
(
|T̂i| ≥ t

)}
.

Suppose the rejection region for eachH0i is {|T̂i| ≥ t}, by the definition of false discovery proportion

and false discovery rate, an ideal choice of t that controls the FDR below a certain level α is

t0 = inf

0 ≤ t ≤
√

2 log p :

∑
i∈H0

1
(
|T̂i| ≥ t

)
∑p
i=1 1

(
|T̂i| ≥ t

)
∨ 1
≤ α

 .

In practice the quantity
∑
i∈H0

1
(
|T̂i| ≥ t

)
can be estimated by 2p (1− Φ(t)), where Φ(t) is the

cumulative distribution function of the standard normal distribution. Based on this approximation,

the quantity t0 in the multiple testing procedure can be estimated by

t̂0 = inf

0 ≤ t ≤
√

2 log p :
2p (1− Φ(t))∑p

i=1 1
(
|T̂i| ≥ t

)
∨ 1
≤ α

 . (4.9)

We reject the hypothesis H0i if |T̂i| ≥ t̂0 for i = 1, 2, . . . , p.

Similarly, to control the FDV, the rejection region |T̂i| ≥ t̂0 is given by

t̂0 = G−1

(
k

p

)
, (4.10)

where G(t) = 2(1− Φ(t)).

4.2.4. Implementation

The construction of the test statistics involves a set of convex optimizations and selection of the

tuning parameters in order to solve the Lasso regressions (4.3), (4.4) and (4.8). The optimizations

can be efficiently implemented using the coordinate descent (CD) algorithm (Friedman, Hastie, and

Tibshirani, 2010; Lin, Feng, and Li, 2015). The CD algorithm is a well-known and widely used
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convex optimization algorithm for penalized regressions so we omitted the details here.

For tuning parameter selection, we have separate strategies for the two groups of tuning parameters

λ and µ. For the optimization problems (4.3) and (4.4), the tuning parameters λ1 and λ2j , j =

1, 2, . . . , p can be chosen by a K-fold cross-validation (CV) for K = 5 or 10, where λopt
1 and λopt

2j , j =

1, 2, . . . , p are determined by minimizing the CV errors of the corresponding optimization problem.

When both p and q are very large, performing CV can be time-consuming. So in our simulations and

real data applications, we applied an alternative method for selecting these two groups of tuning

parameters that relies on scaled Lasso (Sun and Zhang, 2012), which is computationally more

efficient.

Selection of the tuning parameters for the inverse regression (4.8) is done by a data-driven pro-

cedure as suggested by Liu (2013) and Liu and Luo (2014). To be specific, let δj = j for j =

1, 2, . . . , 100 and µj = 0.02δj

√
Σ̂D
i,i log p/n, where Σ̂D is the sample covariance matrix of D̂. The

choice of the δ is determined by:

δ̂ = argmin
δ

90∑
k=30


∑p
i=1 1

(
|T̂i| ≥ Φ−1 (1− k/200)

)
kp/100

− 1


2

.

The tuning parameter µi in (4.8) is chosen as µ̂i = 0.02δ̂
√

Σ̂D
i,i log p/n.

4.3. Theoretical Results

We provide in this section some theoretical results of the proposed methods. We first restate the

estimation error bounds of Γ0 and β0 in models (4.1) and (4.2) derived in Lin, Feng, and Li (2015),

which are needed in constructing the test statistics. Before stating the results, we first introduce

some assumptions. For any matrix X, we say it satisfies the restricted eigenvalue (RE) condition if

its restricted eigenvalue is strictly bounded away from 0. That is, for some 1 ≤ s ≤ p, the following

condition holds:

κ(s,X) , min
J⊆{1,...,p}
|J|≤s

min
δ 6=0

‖δJc‖1≤3‖δJ‖1

‖Xδ‖2√
n‖δJ‖2

> 0.
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Denote s1 = ‖β0‖0, s2 = maxj ‖Γ·,j‖0, r = maxj ‖θj‖0 and κ is the restricted eigenvalue defined

above. The following assumptions are needed:

(A1) The instrumental variable matrix Z and matrix D = ZΓ0 satisfies the restricted eigenvalue

condition with some constants κ(s2,Z), κ(s1,D) > 0, respectively.

(A2) There exists a positive constant C such that max{‖β0‖1, ‖Γ0‖1, {‖θi‖1}i=1,...,p} ≤ C.

(A3) There exists a positive constant C such that max1≤j≤p
(
Σe
j,j

)
≤ C2.

(B1) In the inverse regression model (4.6), denote Mi = (Y,D·,−i), for i = 1, . . . , p, then Mi

satisfies the restricted eigenvalue condition with some constant κ(r,Mi). In addition, assume

that there exists a positive constant κ(Y,D) such that mini κ(r,Mi) ≥ κ(Y,D).

(C1) The precision matrix ΩD and covariance matrix ΣD satisfies max1≤j≤p
(
ΩD
j,j ,Σ

D
j,j

)
≤ C for

some constant C and Var(Yi) ≤ C.

(C2) The dimensional parameters n, p, q, s1, s2, r satisfy the following asymptotic scaling condition

as n→∞:

max{r
√
s2, s1, s2}

√
log p (log p+ log q)

n
= o(1).

(C3) The precision matrix ΩD satisfies the following condition: for some ε > 0 and δ > 0,

∑
(i,j)∈A(ε)

p
2|ρij,ωD

|
1+|ρij,ωD

|+δ = O(p2/(log p)2),

where ρij,ωD
= ΩD

ij/(Ω
D
iiΩ

D
jj)

1/2 and A(ε) = B((log p)−2−ε) with B(δ) = {(i, j) : |ρij,ωD
| ≥

δ, i 6= j}.

These assumptions play different roles in establishing the asymptotic results. To be specific, as-

sumptions (A1) to (A3) are required to obtain the estimation error bounds for β̂ and Γ̂·,j . These as-

sumptions are similar to those in Bickel, Ritov, and Tsybakov (2009) and are used in Lin, Feng, and

Li (2015). They require that matrix Z and D are well-behaved and `1 norms of the true parameters

β0, Γ0 are bounded away from infinity. Assumption (B1) guarantees that θi can be well estimated.

This assumption is implicitly assumed, though not stated, in Liu and Luo (2014). Assumptions

(C1) and (C2) are needed to obtain the asymptotic distribution of T̂i. Particularly, assumption (C1)
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bounds the entries of the covariance matrix ΣD and precision matrix ΩD and assumption (C2) pro-

vides the relation among the dimension and sparsity parameters n, p, q, s1, s2 and r, where s1, s2

and r control the sparsity of β0, Γ0 and θi respectively. Assumption (C3) is used for controlling the

FDR, which imposes some conditions on the precision matrix (Liu and Luo, 2014). In addition, if we

fix q, which is the number of instruments, then assumption (C2) is equivalent to log p = o(
√
n). This

assumption is often made in the inference results related with Lasso and other high dimensional

models (Gold, Lederer, and Tao, 2017; Javanmard and Montanari, 2014; Ning and Liu, 2017).

4.3.1. Asymptotic distribution of test statistic for single null hypothesis

Since our test statistics rely on the estimation of the parameters in models (4.1) and (4.2), we first

provide a lemma on the estimation errors of Γ·,j and β.

Lemma 3 (Estimation error bounds of Γ·,j and β0 (Lin, Feng, and Li, 2015)). Under assumptions

(A1)-(A3), for each j = 1, 2, . . . , p, if the tuning parameter λ2j is chosen as

λ2j = C̃

√
Σe
j,j (log p+ log q)

n
,

for some C̃ ≥ 2
√

2, then with probability at least 1− (pq)
1−C̃2/8, Γ̂ defined in (4.3) satisfies

‖Γ̂− Γ0‖1 ≤
16C̃C

κ2(s2,Z)
s2

√
log p+ log q

n
,

and

‖Z
(
Γ̂− Γ0

)
‖2F ≤

16C̃2C2

κ2(s2,Z)
s2p (log p+ log q) .

Furthermore, if the set of tuning parameters {λ2j : j = 1, . . . , p} satisfy

λmax(2C + λmax) ≤ κ2(s2,Z)κ2(s1,D)

1024s1s2
,

where λmax = max1≤j≤p λ2j , if λ1 is chosen as:

λ1 = C0

√
s2 (log p+ log q)

n
,
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then with probability at least 1− C1(pq)−C2 , β̂ defined in (4.4) satisfies

‖β̂ − β0‖1 ≤ C3s1

√
s2 (log p+ log q)

n
,

for some positive constants C0 − C3.

In addition, we have the following lemma on the estimation error bound of θi.

Lemma 4 (Estimation error bounds of θi). Under assumptions (A1)-(A3) and (B1), for each i =

1, 2, . . . , p, there exists some positive constants C4, C5, C
∗
5 , if the tuning parameter µi is chosen as

µi =
C∗4

κ(s2,Z)

√
s2(log p+ log q)

n
,

with C∗4 = C∗5 max(C, σζi), then with probability at least 1− C4 (pq)
−C5 , θ̂i in (4.8) satisfies

‖θ̂i − θi‖1 ≤
64C∗4

κ2(Y,D)κ(s2,Z)
r

√
s2(log p+ log q)

n
.

Based on Lemmas 3 and 4, the following theorem provides the asymptotic distribution of the test

statistic T̂i under the null H0i.

Theorem 4 (Asymptotic distribution of T̂i). Under assumptions (A1)-(A3), (B1) and (C1)-(C2), with

the proper choices of the tuning parameters λ1, λ2j and µ as stated in Lemma 3 and 4, for each

i = 1, 2. . . . , p, under the null H0i : β0i = 0,

T̂i  N(0, 1).

This null distribution can be used to test the individual null hypothesis H0i : β0i = 0.

4.3.2. Theoretical results on FDR and FDV

The next theorem shows that the proposed multiple testing procedure controls the FDR.

Theorem 5 (Asymptotic result for multiple testing procedure). Denote FDR= FDR(t̂0), assuming

(A1)-(A3), (B1) and (C1), (C3) hold, p ≤ nc for some c > 0. We further assume a condition stronger

than C2 such as the quantities in the left of assumption C2 are of order o((log p)−
1
2 ) instead of o(1),
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and for some c̃ > 2,

∑
i∈H1

1

 βi√
σ2
ξΩD

i,i

≥
√
c̃ log p/n

→∞, (4.11)

as (n, p) → ∞. Then with the proper choice of all tuning parameters and the threshold t̂0, with a

pre-specified level α, we have

lim
n,p→∞

FDR

αp0/p
= 1.

This theorem indicates that under proper conditions, the empirical FDR is controlled under a pre-

specified level. Notice that in addition to the assumptions previously mentioned, we require a

stronger condition (4.11). This condition indicates that the number of true alternatives needs to

tend to infinity, which is also required in Liu and Luo (2014).

Similar to the result of the FDR but with weaker assumptions, for the FDV control, we have the

following result:

Theorem 6 (Asymptotic results for multiple testing procedure). Assuming (A1)-(A3), (B1) and (C1)

hold, p ≤ nc for some c > 0 and we further assume a condition stronger than C2 such as the

quantities in the left of assumption C2 are of order o((log p)−
1
2 ) instead of o(1). Then with the

proper choice of all tuning parameters and the threshold t̂0, with a pre-specified level k, we have:

lim
n,p→∞

FDV

kp0/p
= 1. (4.12)

Here to control the FDV, we do not need assumption (C3) on the precision matrix and condition

(4.11).

4.4. Simulations

We evaluate the performance of the proposed methods through a set of simulations. Follow-

ing models (4.1) and (4.2), we first generate the instruments matrix Z where Zi ∼ N(0,Σz).

The covariance matrix Σz satisfies (Σz)ij = 0.5|i−j|. For each Γ·,j , we first randomly pick s2

out of q nonzero entries and then each entry is generated randomly from a uniform distribution
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U([−b,−a] ∪ [a, b]) with a = 0.75, b = 1. Parameter β0 is generated similarly where we pick s1

out of p nonzero entries and each entry is generated randomly from U([−0.3, 0.1] ∪ [0.1, 0.3]). As

for the joint distribution of
(
ε>i , ηi

)
, its covariance matrix Σe is generated by: (Σe)ij = 0.2|i−j| for

1 ≤ i, j ≤ p, (Σe)p+1,p+1 = 1 and among (Σe)i,p+1 where i = 1, . . . , p, 10 entires are picked ran-

domly and set to be 0.3. We impose this structure so that ηi is correlated with εi. Covariates X

and response Y are generated based on our model. We consider different values of (n, p, q) with

(n, p, q) = (200, 100, 100), (400, 200, 200), (200, 500, 500) and (s1, s2) = (10, 10). We compare our

methods with the test developed in Liu and Luo (2014) for high dimensional regression analysis

linking Y to X ignoring the fact that X and η are correlated. It should be noted that the independent

error assumption is necessary for the method in Liu and Luo (2014) to work. We evaluated the

performances of hypothesis testing procedures by calculating the empirical type-I errors for testing

single regression coefficients and eFDR, eFDV for multiple testing procedures. We also evaluated

the estimation performances and included the results in the Appendix.

4.4.1. Test of Single Hypothesis

First, to show the validity of the asymptotic distribution of the proposed test statistic T̂i for single

null hypothesis, we present in Figure A.1 of the Appendix the QQ-plots of the test statistics T̂i

for several randomly selected covariates over in 500 replications, showing that when using the

correct two-stage IV model, the test statistic proposed follows a normal distribution under the null

hypothesis (panels (a)-(f)). However, for the covariates with non-zero distribution, the test statistic

has a distribution that clearly deviates from the standard normal distribution (panels (g)-(i)).

To demonstrate the importance of applying the IV model when the covariates and the error terms

are dependent, Figure A.2 of the Appendix shows the QQ-plots of the same set of variables as in

the previous figure for the test statistic of Liu and Luo (2014). For the variables with zero coefficients

(panels (a)-(f)), the null distribution of the test statistic clearly deviates from the standard normal

distribution for some variables, indicating greater chance of identifying wrong variables.

Figure 4.1 shows the box plots of the empirical type I errors for testing the single null hypothesis

for the variables with zero coefficient based on IV models and the standard Lasso regression.

When the errors and covariates are correlated due to unobserved confounding, the naive Lasso

regression may fail to control the type I error for some null coefficients, leading to inflated type I
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Figure 4.1: Box plots of the empirical type I errors for single hypothesis testing based on IV regres-
sion and naive Lasso regression under different settings for α-level of 0.05 (left) and 0.01 (right).

errors. This indicates that the naive method may falsely select some unrelated variables. As a

comparison, the test based on the IV regression controls the type-I errors below the specified level.

4.4.2. FDR Controlling for Multiple Testing

To exam the performance of the proposed multiple testing procedure, the empirical FDR, defined

as

eFDR = average(FDR) where FDR =

∑
i∈H0

1
(
|T̂i| ≥ t̂0

)
∑p
i=1 1

(
|T̂i| ≥ t̂0

)
∨ 1

, (4.13)

is calculated. Similarly, the mean and standard deviation of the power defined as

power =

∑
i∈H1

1
(
|T̂i| ≥ t̂0

)
|H1|

. (4.14)

The α-level is chosen to be α = 0.05, 0.1, 0.2. Table 4.1 shows the empirical FDR for the proposed

procedure using IV regression and the method of Liu and Luo (2014) using naive high dimensional

regression models. The proposed multiple test procedure can indeed control the FDR at the correct

level. In contrast, test based on naive high dimensional regression fails to control the FDR.

We similarly evaluated the procedure for controlling the number of falsely discovered variables. The

empirical FDV is defined as

eFDV = average(FDV) where FDV =
∑
i∈H0

1
(
|T̂i| ≥ t̂FDV

)
,
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Table 4.1: Simulation results based on 500 replications. The eFDR and power for multiple test-
ing procedure based on IV regression and naive high dimensional linear regression for different
combinations of (n, p, q) and different α levels.

(n, p, q) α-level eFDR power (sd) eFDR (naive)

(n, p, q) = (200, 100, 100)
0.05 0.044 0.547 (0.15) 0.198
0.10 0.075 0.58 (0.15) 0.239
0.20 0.134 0.622 (0.15) 0.296

(n, p, q) = (400, 200, 200)
0.05 0.026 0.752 (0.13) 0.153
0.10 0.060 0.781 (0.12) 0.197
0.20 0.124 0.814 (0.12) 0.268

(n, p, q) = (200, 500, 500)
0.05 0.074 0.390 (0.12) 0.055
0.10 0.129 0.427 (0.13) 0.103
0.20 0.224 0.472 (0.14) 0.197

Table 4.2: Simulation results based on 500 replications. The eFDV and power for multiple test-
ing procedures based on IV regression and naive high dimensional linear regression for different
combinations of (n, p, q) and and different k levels.

(n, p, q) k-level eFDV power (sd) eFDV (naive)

(n, p, q) = (200, 100, 100)
2 1.35 6.35 (1.5) 4.11
3 1.94 6.57 (1.4) 4.87
4 2.49 6.71 (1.4) 5.55

(n, p, q) = (400, 200, 200)
2 1.27 8.16 (1.1) 4.18
3 1.94 8.31 (1.1) 5.13
4 2.59 8.42 (1.1) 5.96

(n, p, q) = (200, 500, 500)
2 2.21 4.93 (1.3) 2.04
3 3.19 5.17 (1.4) 3.01
4 4.13 5.39 (1.4) 3.98

and its power is given by

power =
∑
i∈H1

1
(
|T̂i| ≥ t̂FDV

)
.

We consider the k-level of 2,3 and 4. Table 4.2 shows that the proposed procedure also controls

the FDV at the specified level. However, naive test that ignoring the covariate-error dependence

can result in failing to control the FDV.

It is worth noting that for p = 500, the performance of our proposed method is very similar to the

naive test. The reason is that by our construction of the covariance matrix of the error terms, the

dependency between covariates and errors becomes very week for large p, in which case the two

methods are expected to perform similarly.
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Figure 4.2: Analysis of yeast eQTL data sets, showing the histogram of the number of genotypes
associated with each gene expression (left plot) and the histogram of the estimated regression
coefficients in the first stage (Γ̂) based on Lasso regressions (right plot).

4.5. Application to a Yeast Data Set

We demonstrate our method using a data set collected on 102 yeast segregants created by cross-

ing of two genetically diverse strains (Brem and Kruglyak, 2005). The data set includes the growth

yields of each segregant grown in the presence of different chemicals or small molecule drugs (Perl-

stein et al., 2007). These segregants have different genotypes represented by 585 markers after

removing the markers that are in almost complete linkage disequilibrium. The genotype differences

in these strains contribute to rich phenotypic diversity in the segregants. In addition, 6189 yeast

genes were profiled in rich media and in the absence of any chemical or drug using expression

arrays (Brem and Kruglyak, 2005). Using the same data preprocessing steps as Chen et al., 2009,

we compiled a list of candidate gene expression features based on their potential regulatory effects,

including transcription factors, signaling molecules, chromatin factors and RNA factors and genes

involved in vacuolar transport, endosome, endosome transport and vesicle-mediated transport. We

further filtered out the genes with s.d ≤ 0.2 in expression level, resulting a total of 813 genes in our

analysis.

We are interested in identifying the genes whose expression levels are associated with yeast growth

yield after being treated with hydrogen peroxide by fitting the proposed two-stage sparse IV model.

Figure 4.2 shows the histogram of the number of SNPs selected for each gene expression and the

histogram of the estimated regression coefficients (Γ0) from Lasso. These results show that genetic

variants are strongly associated with gene expressions and therefore can be used as instrument

variables for gene expressions.
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Using these selected genotypes as the instrumental variables for each of the gene expressions,

we obtained the fitted expression values and applied Lasso with these fitted expressions as pre-

dictors and yeast growth yield as the response. For each gene j, we tested the null of βj = 0

and obtained its p-value. The 15 significant genes at a nominal p < 0.05 are presented in Table

4.3. At FDR< 0.10, three genes were selected. These genes are related with resistance to chemi-

cals, competitive fitness and cell growth, partially explaining their association with the yeast growth

in the presence of hydrogen peroxide. For example, among the genes with negative coefficient,

over-expression indicates decreased yeast growth. RRM3 gene is involved in DNA replication, and

over-expression of the gene leads to abnormal budding and decreased resistance to chemicals.

Over-expression of POP5 and FUN26 genes causes decreased vegetative growth rate of yeast

(https://www.yeastgenome.org).

The three selected genes using FDR< 0.10 all had positive coefficients, indicating over-expression

of these genes led to increased yeast growth in the presence of hydrogen peroxide. Among these,

BDP1 is a general activator of RNA polymerase III transcription and is required for transcription

from all three types of polymerase III promoters (Ishiguro, Kassavetis, and Geiduschek, 2002), and

over-expression of this gene is expected to increase the yeast viability and growth. PET494 is a mi-

tochondrial translational activator specific for mitochondrial mRNA encoding cytochrome c oxidase

subunit III (coxIII) (Marykwas and Fox, 1989). Finally, null mutant of ARG4 gene shows decreased

resistance to chemicals (https://www.yeastgenome.org) and therefore segregants with higher ex-

pression of this gene are expected to have increased resistance to chemicals and increased growth

yield.

As a comparison, we also applied Lasso regression with 813 gene expressions as the predictors

without using the genotype data. The same statistical test was applied to each of the genes. At

a nominal p-value of 0.05, 34 genes were selected by Lasso. However, no gene was selected

after adjusting for multiple comparisons with FDR< 0.10. This suggests that by effectively using

the genotype data, we were able to identify biologically meaningful genes that are associated with

yeast growth in the presence of hydrogen peroxide.

We further compared the model fits by calculating the R2 statistics in three different scenarios. The

first scenario is to use the 15 genes selected using our proposed multiple testing method and refit a

linear model with the estimated X̂. The second scenario is use the 34 genes identified by naive test
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Table 4.3: Results from analysis of yeast growth yield data. Table shows the selected genes using
single test statistics (p < 0.05) and multiple testing procedure with FDR< 0.10 and FDV< 2(marked
by ∗). The gene names and estimated regression coefficients and refitted values are listed.

Gene id Gene name β̂ Refitted β̂
Negative coefficient

YHR031C RRM3 -3.82 -5.00
YAL033W POP5 -0.22 -0.69
YLR275W SMD2 -0.20 -0.31
YNL236W SIN4 -4.67 -5.63
YNL138W SRV2 -0.63 -1.68
YNL146W YNL146W -0.24 -0.12
YAR035W YAT1 -1.74 -2.79
YAL022C FUN26 -2.89 -4.79
YHL018W YHL018W -0.79 -2.29

Positive coefficient
YNL331C AAD14 0.07 0.17
YHR014W SPO13 0.47 2.20
YHR018C∗ ARG4 0.22 0.34
YHR097C YHR097C 0.06 0.15
YNL039W∗ BDP1 1.82 3.96
YNR045W∗ PET494 0.70 0.86

R^2= 0.664

−0.25

0.00

0.25

0.50

−0.3 0.0 0.3 0.6 0.9
Observed

F
it
te

d

R^2= 0.637

−0.4

−0.2

0.0

0.2

0.4

0.6

−0.3 0.0 0.3 0.6 0.9
Observed

F
it
te

d

R^2= 0.608

−0.2

0.0

0.2

0.4

0.6

−0.3 0.0 0.3 0.6 0.9
Observed

F
it
te

d

(a) (b) (c)

Figure 4.3: Scatter-plots of the fitted versus the observed yeast growth yield. (a): refitted model
using the estimated expression levels of the 15 genes selected by our proposed method; (b): refitted
model using expression levels of 34 genes selected using naive test; (c): the refitted model using
expression levels of genes selected based on Lasso.

and refit a linear model using the original X. The last scenario is use the genes selected by Lasso

using X and refit a linear model with the original X. Figure 4.3 shows that our method provides the

highest R2 value among the three, with a value of 0.664, indicating that using refitted X can lead to

better fit of the data.
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4.6. Discussion

We have developed methods for exploring the association between gene expression and phenotype

in the framework IV regression when there are possible unmeasured confounders. Here the genetic

variants are used as possible instrumental variables. We have constructed a test statistic using the

idea of inverse regression and derived its asymptotic null distribution. We have further developed a

multiple testing procedure for the high-dimensional two stage least square methods and provided

the rejection region of multiple testing that controls the false discovery rate or number of falsely

discovered variables. Both theoretical results and simulations have shown the correctness of our

procedure and improved performance over the Lasso regression.

For the yeast genotype and gene expression data, our two-stage regression method was able to

identify three yeast genes whose expressions were associated growth in the presence of hydro-

gen peroxide. In contrast, using gene expression data alone and Lasso regression did not identify

any growth associated genes. Since growth yield is highly inheritable (Perlstein et al., 2007), us-

ing genotype-predicted gene expressions in our two-stage estimation can help to identify the gene

expressions that might be causal to the phenotype. For model organisms such as yeast, the condi-

tional independence assumption between the genotypes and the outcome given gene expression

levels is expected to hold. However, for human studies, one should be cautious of such an assump-

tion since genetic variants can affect phenotype via other mechanisms such as changing protein

structures.

One possible application of the proposed two-stage regression is to identify gene expressions that

cause diseases by jointly analyzing genotype and gene expression data. This is similar in spirit to

PredXscan (Gamazon et al., 2015) that aims to identify the molecular mechanisms through which

genetic variation affects phenotype. PredXscan builds gene expression prediction models using

reference eQTL data. In contrast, our method requires that the genotype and gene expression data

are measured on the same set of individuals.

Potential extensions of this method include detecting and accounting for the existence of weak in-

strumental variables and developing methods that are robust to the residual distributions. Recent

papers such as Chatterjee and Lahiri (2010) and Dezeure, Bühlmann, and Zhang (2017) developed

bootstrapping inference methods for Lasso estimator. It is possible to apply such ideas to the high
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dimensional IV model considered in this chapter. Besides the two-stage least square method we

developed here, an alternative to estimating the parameters in IV model is by estimating equations.

The two-stage least square methods provides optimal estimator under proper model assumptions

while the estimating equation is expected to be robust. The problem of testing a single parame-

ter using estimating equation under high-dimensional setting has been explored by Neykov et al.

(2018). It is interesting to consider the multiple testing procedure when estimating equations are

used for estimating the parameters in high-dimensional IV models. Another potential direction of

extension is to consider the existence of invalid instruments. As far as we knew, there are existing

paper considering the problem of having potential invalid instrument Kang et al. (2016). But in their

paper the number of covariates is fixed and small, which is different from our setup. It would be

interesting to extend their methods to high-dimensional covariates and multiple testing problem.
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CHAPTER 5

DISCUSSION

In this thesis, we considered several research problems related to genomics and microbiome. Sta-

tistical inference methods were developed for high-dimensional models and were applied to large-

scale and complex-structured datasets. In Chapter 2 and Chapter 3, we focused on the inference

problem for regression models with linear constraints on the regression coefficients. A de-biased

and post-selection inference procedure were introduced respectively. These methods were applied

to the PLEASE study and UK twins study. And in Chapter 4, we proposed a statistical testing pro-

cedure for the high dimensional IV model. This model is often applied to explore the association

between gene expression and phenotype using genetic variants as instruments.

For further research projects, I have two direction of interests. The first one is the covariance matrix

estimation problem for multi-omics data. With the observed compositional data, naive sample co-

variance matrix is biased towards to true covariance matrix obtained via the true unobserved abun-

dance. Cao, Lin, and Li, 2019 introduced a composition-adjusted thresholding method to estimate

the true covariance matrix. There is a similar problem when estimating the joint covariance matrix

of compositional data and data from other sources (for example, gene expression data or metabolic

data). The existing method, however, is not applicable to estimate the partial covariance matrix

(off-diagonal part). By applying centered log-ratio transformation, there is a connection between

the true partial covariance matrix and its sample version obtained via the transformed data. This

connection could be used to develop new methods. The second is the modeling of microbiome data.

Currently the most common way of studying the microbiome is through the compositional data. Cer-

tain transformation is applied to the compositional data (such as the central-log-transformation) and

statistical analysis may need special care (such as imposing constraints). There are some known

problems with these approaches including handling zero-values and existing methods haven’t fully

characterized the geometry structures of microbiome data. The compositional nature of the data

links it to statistical literature such as spherical data analysis, non-Euclidian data, phylogenetic-tree-

based models and topological data analysis. This motivates me to consider alternative methods

of modeling the microbiome data which might gain extra benefits by imposing more complex struc-

tures.
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APPENDIX

PROOFS AND ADDITIONAL SIMULATIONS

A.1. Proofs for Chapter 2

We provided proofs for the main theorems in this Chapter. Before that, we first introduced a lemma.

Lemma 5. If Conditions C1 and C2 hold, then for any matrix A,

|(Ip − PC)A|∞ ≤ k0|A|∞.

The proof for this lemma is in the appendix of Shi, Zhang, and Li (2016).

Proof of Lemma 1. We first provided a bound for Σ. Notice that:

ΩβΣ− (Ip − PC) =
1

n

n∑
k=1

(
Ωβv(β, Z̃k)Z̃kZ̃

>
k − (Ip − PC)

)
,

=
1

n

n∑
k=1

(
Ω

1/2
β Ω

1/2
β v(β, Z̃k)Z̃kZ̃

>
k Ω

1/2
β Σ

1/2
β − (Ip − PC)

)
.

The last equality is true as Σ
1/2
β Ω

1/2
β Z̃k = (Ip − PC)Z̃k = Z̃k for k = 1, 2 . . . , n. Then notice that

EΩβv(β, Z̃k)Z̃kZ̃
>
k = EΩβΣβ = Ip − PC , so define:

v
(ij)
k = Ω

1/2
i,· Ω

1/2
β v(β, Z̃k)Z̃kZ̃

>
k Ω

1/2
β (Σβ)

1/2
·,j − (Ip − PC)i,j ,

we know that Ev(ij)
k = 0 for k = 1, 2 . . . , n and any i, j. Then by the proof of Lemma 6.2 in Javanmard

and Montanari (2014), we have:

‖v(ij)
k ‖ψ1 ≤ 2‖Ω1/2

i,· Ω
1/2
β v(β, Z̃k)Z̃kZ̃

>
k Ω

1/2
β (Σβ)

1/2
·,j ‖ψ1 ,

≤ 2v(β, Z̃k)‖Ω1/2
i,· Ω

1/2
β Z̃k‖ψ2

‖(Σβ)·,jΩ
1/2
β Z̃k‖ψ2

,

≤ 2‖(Σβ)·,j‖2‖Ω1/2
i,· ‖2 · ‖Ω

1/2
β Z̃k‖ψ2

‖Ω1/2
β Z̃k‖ψ2

,

≤ 2
√
Cmax/Cminκ

2 ≡ κ′1.

Then by inequality for centered sub-exponential random variables from Bühlmann and Van De Geer
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(2011), we have:

P

(
1

n
|
n∑
k=1

v
(ij)
k | ≥ γ

)
≤ exp

[
−n

6
min

{( γ

eκ′

)2

,
( γ

eκ′

)}]
.

Pick γ = c
√

(log p)/n with c ≤ eκ′1
√
n/(log p), we have:

P

(
1

n
|
n∑
k=1

v
(ij)
k | ≥ c

√
log p

n

)
≤ 2p−c

2/(6e2κ′21 ) = 2p−c
2Cmin/(24e2Cmaxκ

4). (A.1)

Since (A.1) is true for all i, j, we have:

P
(
|ΩβΣ− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
≤ 2p−c

2Cmin/(24e2Cmaxκ
4)+2 = 2p−c

′′
1 .

Then by the following inequality:

P
(
|ΩβΣ̂− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
≤ P

(
|ΩβΣ− (Ip − PC)|∞ + |Ωβ(Σ− Σ̂)| ≥ c

√
(log p)/n

)
≤ P

(
|ΩβΣ− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
+ P

(
|Ωβ(Σ− Σ̂)| ≥ c

√
(log p)/n

)

Notice that:

∣∣∣Ωβ(Σ− Σ̂)
∣∣∣
∞

=
1

n

∣∣∣∣∣
n∑
k=1

(
Ωβ

(
v(β, Z̃k)− v(β̂n, Z̃k)

)
Z̃kZ̃

>
k

)∣∣∣∣∣
∞

≤ 1

n

∣∣∣∣∣
n∑
k=1

(
C‖β̂n − β‖1ΩβZ̃kZ̃>k

)∣∣∣∣∣
∞

As
1

n

n∑
k=1

(
ΩβZ̃kZ̃

>
k

)
→ EΩβZ̃1Z̃

>
1 = EΩβΘ,

together with the result we obtain from theorem 1,

P
(
|Ωβ(Σ− Σ̂)|∞ ≥ c

√
(log p)/n

)
≤ P

(
1

n

∣∣∣∣∣
n∑
k=1

(
C‖β̂n − β‖1ΩβZ̃kZ̃>k

)∣∣∣∣∣
∞

≥ c
√

(log p)/n

)

≤ 2p1−ĉ2/(2K2) = 2p−c
′′
2
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where ĉ = cφ0

C|ΩβΘ|∞s(k0τ+1) . So finally:

P
(
|ΩβΣ̂− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
≤ P

(
|ΩβΣ− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
+ P

(
|Ωβ(Σ− Σ̂)|∞ ≥ c

√
(log p)/n

)
≤ 2p−c

′′
1 + 2p−c

′′
2

Proof of Theorem 1. By the definition of β̂n and (2.5), we have:

− 1

n

{
Y >Z̃β̂n −

n∑
i=1

A(Z̃>i β̂
n)

}
+ λ||β̂n||1 ≤ −

1

n

{
Y >Z̃β −

n∑
i=1

A(Z̃>i β)

}
+ λ||β||1. (A.2)

Denote h = β̂n−β, and Sh be the set of index of the s largest absolute values of h. Then rearrange

(A.2), we get:

λ(‖β‖1 − ‖β̂n‖1) ≥ − 1

n

[
Y >Z̃h−

n∑
i=1

{
A(Z̃>i β̂

n)−A(Z̃>i β)
}]

. (A.3)

Notice that,

‖β‖1 − ‖β̂n‖1 =‖βsupp(β)‖1 − ‖β̂nsupp(β)‖1 − ‖β̂
n
supp(β)c‖1,

≤‖βsupp(β) − β̂nsupp(β)‖1 − ‖hsupp(β)c‖1,

≤‖hSh‖1 − ‖hSch‖1. (A.4)

Furthermore, for each i applied the mean value theorem to A defined in 2.3, there exists β̃i
0

such

that A(Z̃>i β̂
n)−A(Z̃>i β) = µ(β̃, Z̃i)Z̃

>
i h+

1

2
v(β̃i

0
, Z̃i)

(
Z̃>i h

)2

. Then we have:

− 1

n

[
Y >Z̃h−

n∑
i=1

{
A(Z̃>i β̂

n)−A(Z̃>i β)
}]

(A.5)

≥ − 1

n

{
Y >Z̃h− µ(β, Z̃)>Z̃h

}
,

≥ − 1

n
(Y − µ(β, Z̃))>Z̃h,

≥ − 1

n
‖Y − µ(β, Z̃)>Z̃‖∞ · ‖h‖1 = − 1

n
‖(Y − µ(β, Z̃))>Z̃‖∞ · (‖hSh‖1 + ‖hSch‖1).
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When the event ‖(Y − µ(β, Z̃))>Z̃‖∞ ≤
nλ

τ
holds, we have:

λ(‖β‖1 − ‖β̂n‖1) ≥ − 1

n
· nλ
τ
· (‖hSh‖1 + ‖hSch‖1). (A.6)

So by (A.3), (A.4) and (A.6) we have:

λ(‖hSh‖1 − ‖hSch‖1) ≥ λ(‖β‖1 − ‖β̂n‖1) ≥ −λ
τ
· (‖hSh‖1 + ‖hSch‖1).

That is,

‖hSch‖1 ≤
τ + 1

τ − 1
‖hSh‖1. (A.7)

Then by the KKT condition of optimization problem (2.5), we have:

‖Z̃>(Y − µ(β̂n, Z̃)) + Cη‖∞ ≤ nλ, (A.8)

for some η ∈ Rr. Then by Lemma 1,

‖(Ip − PC)
(
Z̃>(Y − µ(β̂n, Z̃)) + Cµ

)
‖∞ ≤ k0‖Z̃>(Y − µ(β̂n, Z̃)) + Cµ‖∞ ≤ k0nλ. (A.9)

Then as

(Ip − PC)(Z̃>(Y − µ(β̂n, Z̃)) + Cµ) = (Ip − PC)Z̃>(Y − µ(β̂n, Z̃)) + (Ip − PC)Cµ,

= Z̃>(Y − µ(β̂n, Z̃)).

with the the assumption that ‖(Y − µ(β, Z̃))>Z̃‖∞ ≤
nλ

τ
, we have:

‖Z̃>(µ(β̂n, Z̃)− µ(β, Z̃))‖ ≤ ‖Z̃>(Y − µ(β̂n, Z̃))‖∞ + ‖Z̃>(Y − µ(β, Z̃))‖∞ ≤ k0nλ+
nλ

τ
.

As ‖Z̃>(µ(β̂n, Z̃)− µ(β, Z̃))‖ = ‖Z̃>V(β0, Z̃)Z̃h‖∞, we get

‖Z̃>V(β0, Z̃)Z̃h‖∞ ≤ k0nλ+
nλ

τ
.

Since V(β0, Z̃) is a diagonal matrix with all its nonzero elements greater than zero, define Z̃v =
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V
1
2 (β0, Z̃)Z̃, where V

1
2 (β0, Z̃) = diag{(v(β0, Z1))

1
2 , . . . , (v(β0, Zn))

1
2 }. So Z̃>v Z̃v = Z̃>V(β0, Z̃)Z̃.

Using Lemma 5.1 in Cai and Zhang (2013), we have:

|〈Z̃vhSh , Z̃vhSch〉| ≤ θs,s(Z̃v)‖hSh‖2 ·max(‖hSch‖∞, ‖hSch‖1/s)
√
s,

≤
√
sθs,s(Z̃v)‖hSh‖2 ·

τ + 1

τ − 1
‖hSh‖1/s,

≤ τ + 1

τ − 1
θs,s(Z̃v)‖hSh‖22.

Then,

(k0nλ+
nλ

τ
)‖hSh‖1 ≥ ‖Z̃>V(β0, Z̃)Z̃h‖∞‖hSh‖1 ≥ 〈Z̃>v Z̃vh, hSh〉,

= 〈Z̃vhSh , Z̃vhSh〉+ 〈Z̃vhSh , Z̃vhSch〉,

≥ ‖Z̃vhSh‖22 −
τ + 1

τ − 1
θs,s(Z̃v)‖hSh‖22,

≥
(
δ−2s(Z̃v)−

τ + 1

τ − 1
θs,s(Z̃v)

)
‖hSh‖22,

≥
(

3τ − 1

2(τ − 1)
δ−2s(Z̃v)−

τ + 1

2(τ − 1)
δ+
2s(Z̃v)

)
‖hSh‖21/s. (A.10)

So from (A.10) we have:

‖hSh‖1 ≤
s

(
k0nλ+

nλ

τ

)
(

3τ − 1

2(τ − 1)
δ−2s(Z̃v)−

τ + 1

2(τ − 1)
δ+
2s(Z̃v)

) ,

≤ s
k0nλ+

nλ

τ
2nτφ0/(τ − 1)

. (A.11)

So combine (A.7) and (A.11), we have:

‖β̂n − β‖1 = ‖hSh‖1 + ‖hSch‖1 ≤
2τ

τ − 1
‖hSh‖1 ≤

sλ(k0 + 1/τ)

φ0
.
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Take λ = τ c̃
√

(log p)/n, so we have:

P
(
‖β̂n − β‖1 ≤

sλ(k0 + 1/τ)

φ0

)
≥ 1− P

(
‖(Y − µ(β, Z̃))>Z̃‖∞ >

nλ

τ

)
≥ 1−

p∑
i=1

P
(
|((Y − µ(β, Z̃))>Z̃)i| >

nλ

τ

)

≥ 1− 2

p∑
i=1

exp

(
− (
√
nλ/τ

2K2

)
≥ 1− 2p1−c̃2/(2K2)

Proof of Theorem 2. As we obtained in lemma 1, Ωβ is in the feasible set with a large probability.

That is, event |MΣ̂− (Ip − PC)|∞ ≥ c
√

(log p)/n happens with large probability. Further more,

P
(
|(Ip − PC)−MΣ̂0|∞ ≥ c

√
(log p)/n

)
≤ P

(
|MΣ̂− (Ip − PC)|∞ ≥ c

√
(log p)/n

)
+ P

(
|M(Σ̂0 − Σ̂)|∞ ≥ c

√
(log p)/n

)
.

The bound for the first term on the RHS is the result from lemma 1. Applying the similar method to

the second term, notice that ‖β̂0 − β‖1 ≤ ‖β̂n − β‖1, hence, P(|M(Σ̂0 − Σ̂)|∞ ≥ c
√

(log p)/n) ≤

4p−c
′′
2 . So,

P
(
|(Ip − PC)−MΣ̂0|∞ ≥ c

√
(log p)/n

)
≤ 2p−c

′′
1 + 6p−c

′′
2

Finally,

‖∆‖∞ ≤
√
n
∣∣∣(Ip − PC)− M̃Σ̂0

∣∣∣
∞
‖β̂n − β‖1

=
√
n
∣∣∣(Ip − PC)

(
(Ip − PC)− M̃Σ̂0

)∣∣∣
∞
‖β̂n − β‖1

≤ k0

√
n|(Ip − PC)−MΣ̂0|∞‖β̂n − β‖1

69



We have:

P
(
‖∆‖∞ >

cc̃k0(k0τ + 1)

φ0
· s log p√

n

)
≤ P

(
‖β̂n − β‖1 ≥

sλ(k0 + 1/τ)

φ0
=
sc̃(k0τ + 1)

√
(log p)/n

φ0

)

+ P
(
|(Ip − PC)−MΣ̂0|∞ ≥ γ = c

√
(log p)/n

)
≤ 2p−c

′
+ 2p−c

′′
1 + 6p−c

′′
2

So we have finished the proof.

A.2. Additional simulation results for Chapter 2

A.2.1. Sensitivity analysis to zero replacement

Table A.1 compares the parameter estimates by replacing zeros with 0.5 or 0.1 times the minimum

nonzero abundance.

Table A.1: Comparisons of parameter estimates and CIs using two different methods of replacing
zeros. Selected bacteria and their estimated coefficients (standard errors in the parenthesis) and
95% confidence intervals.

0.5 0.1
Bacteria name β(se) CI β(se) CI
Prevotella copri −0.15(0.042) (−0.23,−0.064) −0.13(0.036) (−0.20,−0.061)
Ruminococcus bromii −0.22(0.043) (−0.31,−0.18) −0.20(0.038) (−0.27,−0.12)
Clostridium leptum −0.15(0.052) (−0.25,−0.048) −0.12(0.043) (−0.20,−0.033)
Escherichia coli 0.14(0.035) (0.074, 0.21) 0.13(0.029) (0.066, 0.18)
Ruminococcus gnavus 0.13(0.045) (0.043, 0.22) 0.11(0.039) (0.036, 0.19)

From the result we could see that the two methods of replacing zeros are consistent in variable

selection. And their estimates together with the confidence intervals are very closed to each other.

This indicates that the estimating procedure is robust to the replacing method.
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A.3. Proofs for Chapter 3

A.3.1. Proof of Lemma 2

Consider the KKT conditions of the optimization problem (3.6). Any solution of (3.6) satisfies the

following:

X>(Xβ̂ − y) + λν + Cη = 0,

C>β̂ = 0,

νj = sign(βj), if βj 6= 0,

νj ∈ [−1, 1], if βj = 0.

Hence, there exists w and u such that:

X>M (XMw − y) + λs+ CMη = 0, (A.12)

X>−M (XMw − y) + λu+ C−Mη = 0, (A.13)

C>Mw = 0, (A.14)

sign(w) = s, (A.15)

‖u‖∞ < 1. (A.16)

From (A.12) we solved for w as:

w = (X>MXM )−1(X>My − λs−CMη). (A.17)

Plugging (A.17) into (A.13) we could solve for u:

u =
1

λ

(
−X>−MXMw + X>−My −C−Mη

)
,

=
1

λ

(
−X>−MXM (X>MXM )−1(X>My − λs−CMη) + X>−My −C−Mη

)
,

=
1

λ
X>−M

(
I −XM (X>MXM )−1X>M

)
y + X>−MXM (X>MXM )−1

(
s+

1

λ
CMη

)
− 1

λ
C−Mη.

(A.18)
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Also plugging (A.17) into (A.14) we could solve for η:

C>M (X>MXM )−1(X>My − λs−CMη) = 0,

which implies

η =
[
C>M (X>MXM )−1CM

]−1 [
C>M (X>MXM )−1X>My − λC>M (X>MXM )−1s

]
. (A.19)

So the KKT conditions reduced to (A.15) and (A.16). For condition (A.15),

{sign(w) = s} = {diag(s)w > 0}

= {diag(s)(X>MXM )−1(X>My − λs−CMη) > 0}.

Replacing η with (A.19):

{diag(s)(X>MXM )−1(X>My − λs−CMη) > 0}

= {diag(s)(X>MXM )−1

(
X>My − λs−CM

[
C>M (X>MXM )−1CM

]−1 [
C>M (X>MXM )−1X>My

−λC>M (X>MXM )−1s
])

> 0}

Reorganizing the above inequality gives:

{diag(s)w > 0} = {A1y < b1}, (A.20)

where A1 and b1 is given as following:

A1 = −diag(s)(X>MXM )−1

(
X>M −CM

[
C>M (X>MXM )−1CM

]−1
C>M (X>MXM )−1X>M

)
(A.21)

b1 = −diag(s)(X>MXM )−1

(
λs−CM

[
C>M (X>MXM )−1CM

]−1 [
λC>M (X>MXM )−1s

])
(A.22)

For condition (A.16),

{‖u‖∞ < 1} = {−1 < u < 1}
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Replacing u with (A.18) and reorganizing the inequality gives:

{−1 < u < 1} = {A0y < b0},

where

A0 =

A01

A02

 , b0 =

b01

b02


and A01, A02, b01 and b02 are given as following:

A01 = − 1

λ
X>−M

(
I −XM (X>MXM )−1X>M

)
−
[
X>−MXM (X>MXM )−1 · 1

λ
CM −

1

λ
C−M

]
·[ (

C>M (X>MXM )−1CM

)−1
C>M (X>MXM )−1X>M

]
,

A02 =
1

λ
X>−M

(
I −XM (X>MXM )−1X>M

)
+
[
X>−MXM (X>MXM )−1 · 1

λ
CM −

1

λ
C−M

]
·[ (

C>M (X>MXM )−1CM

)−1
C>M (X>MXM )−1X>M

]
,

and

b01 = 1 + X>−MXM (X>MXM )−1s−
[
X>−MXM (X>MXM )−1 · 1

λ
CM −

1

λ
C−M

]
·(

C>M (X>MXM )−1CM

)−1 [
λC>M (X>MXM )−1s

]
,

b02 = 1−X>−MXM (X>MXM )−1s+
[
X>−MXM (X>MXM )−1 · 1

λ
CM −

1

λ
C−M

]
·(

C>M (X>MXM )−1CM

)−1 [
λC>M (X>MXM )−1s

]
.

So we have finished the proof.

A.3.2. Proof for Theorem 3

We know that:

{Ay < b} = {ν−(z) ≤ ξ>y ≤ ν+(z), ν0(z) ≥ 0},
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where ν− and ν+ are defined in (3.7) and (3.8). Since z is independent of ξ>y, we know that

ν−(z), ν+(z) and ν0(z) are all independent of ξ>y. So for any ξ ∈ Rn, we have:

[
ξ>y | Ay ≤ b, z

]
=
[
ξ>y | ν−(z) ≤ ξ>y ≤ ν+(z), ν0(z) ≥ 0

]
,

=
[
ξ>y | ν−(z) ≤ ξ>y ≤ ν+(z)

]
,

∼ TN(ξ>µ, σ2‖ξ‖2, ν−(z), ν+(z)). (A.23)

So applying probability integral transformation theorem (Casella and Berger, 2002) to (A.23), we

know that for F = F
ν−(z),ν+(z)

ξ>µ,σ2‖ξ‖2 defined in Theorem 3,

[
F (ξ>y) | Ay ≤ b, z

]
∼ unif(0, 1).

Further integrating over z, we know that

[
F (ξ>y) | Ay ≤ b

]
∼ unif(0, 1). (A.24)

As our target parameter is given in (3.5), let

ξ = e>j
[
(X>MXM )−1X>M − (X>MXM )−1CM [C>M (X>MXM )−1CM ]−1C>M (X>MXM )−1X>M

]
, (A.25)

from (A.24) we have:

[
F
ν−(z),ν+(z)

βMoracle,j ,σ
2‖ξ‖2(ξ>y) | M̂ = M, ŝ = s

]
∼ unif(0, 1). (A.26)

This indicates that F ν
−(z),ν+(z)

βMoracle,j ,σ
2‖ξ‖2(ξ>y) is actually a pivot. So by inverting the pivot, based on the

fact that the truncated Gaussian distribution has monotone likelihood ratio in the mean parameter

(see proofs in Lee et al. (2016)), we know

P (βMoracle,j ∈ [L,U ] | M̂ = M, ŝ = s) = 1− α,
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with L and U defined in (3.9). Furthermore, notice that:

P (βMoracle,j ∈ [L,U ] | M̂ = M) =
∑
s

P (βMoracle,j ∈ [L,U ] | M̂ = M, ŝ = s)P (M̂ = M | ŝ = s)

≥
∑
s

(1− α)P (M̂ = M | ŝ = s) = 1− α.

So we have finished the proof.

A.4. Proofs for Chapter 4

In the section we provided the proofs for the lemmas and theorems in Chapter 4. We refer the proof

of Lemma 1 to Lin, Feng, and Li (2015). Before proving lemma 4, we first state a useful proposition.

Proposition 2. Denote D̂i as defined previously, M̂i as
(
Y, D̂·,−i

)
for i = 1, 2. . . . p. Further for

each l = 1, 2, . . . p, we use Mi,l and M̂i,l to be the l-th column of the matrix Mi and M̂i respectively

(Notice that Mi is a matrix so Mi,l is a column vector, not the (i, l)−th element of matrix M). Then

under the assumptions stated in lemma 3, with the same choice of the tuning parameters λ2i, with

probability at least 1− (pq)
1−C2/8 for some C ≥ 2

√
2, we have:

‖D̂i −Di‖2 ≤
4
√
n
√
s2λ2i

κ2(s2,Z)
, i = 1, 2, . . . , p,

‖M̂i,l −Mi,l‖2 ≤
4
√
n
√
s2λ2i

κ2(s2,Z)
, i = 1, 2, . . . , p,

In addition, the estimated M̂i satisfies the RE condition with some constant κ(ri, M̂i) which satisfies

κ(ri, M̂i) ≥
1

2
κ(ri,Mi).

Proof of proposition 2. Notice that for i = 1, 2, . . . , p,

‖D̂i −Di‖2 =
∥∥∥Z(Γ̂0,i − Γ0,i

)∥∥∥
2
≤

4
√
n
√
s2λ2i

κ(s2,Z)
,

where the last inequality follows from Bickel, Ritov, and Tsybakov (2009).
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For the second inequality, notice that M̂i =
(
Y, D̂·,−i

)
, so there exists some i0 such that:

‖M̂i,l −Mi,l‖2 =


0 if l = 1,∥∥∥Z(Γ̂0,i0 − Γ0,i0

)∥∥∥
2
.

So similarly we have:

‖M̂i,l −Mi,l‖2 ≤
4
√
n
√
s2λ2i

κ(s2,Z)
.

Furthermore, according to Lin, Feng, and Li (2015), they proved that ZΓ̂ satisfies the RE condition

with κ(s1, ZΓ̂) ≥ 1

2
κ(s1,D). Using the relationship between Mi and D, it is straightforward that

κ(ri, M̂i) ≥
1

2
κ(ri,Mi).

Then we provided the proof of lemma 4.

Proof of lemma 4. Without lose of generality, we assume ai = 0. For each i = 1, 2, . . . , p, by the

definition of θ̂i in (4.8), we have:

1

2n
‖D̂i − M̂iθ̂i‖22 + µi‖θ̂i‖1 ≤

1

2n
‖D̂i − M̂iθi‖22 + µi‖θi‖1. (A.27)

For the left hand side (LHS), notice that:

1

2n
‖D̂i − M̂iθ̂i‖22 =

1

2n
‖D̂i −Di‖22 +

1

2n
‖Di − M̂iθ̂i‖22 −

1

n

(
D̂i −Di

)> (
Di − M̂iθ̂i

)
,

=
1

2n
‖D̂i −Di‖22 +

1

2n
‖ζi‖22 +

1

2n
‖M̂i(θ̂i − θi)‖22 +

1

2n
‖(M̂i −Mi)θi‖22,

− 1

n
ζ>
(
M̂iθ̂i −Miθ

)
+

1

n
θi

(
M̂i −Mi

)>
M̂i

(
θ̂i − θi

)
,

− 1

n

(
D̂i −Di

)> (
Di − M̂iθ̂i

)
. (A.28)
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While for the right hand side(RHS), similarly,

1

2n
‖D̂i − M̂iθi‖22 =

1

2n
‖D̂i −Di‖22 +

1

2n
‖Di − M̂iθi‖22 −

1

n

(
D̂i −Di

)> (
Di − M̂iθi

)
,

=
1

2n
‖D̂i −Di‖22 +

1

2n
‖ζi‖22 +

1

2n
‖(M̂i −Mi)θi‖22 −

1

n
ζ>i

(
M̂i −Mi

)
θi,

− 1

n

(
D̂i −Di

)> (
Di − M̂iθ̂i

)
. (A.29)

Combining (A.28), (A.29) and (A.27) we have:

1

2n
‖M̂i(θ̂i − θi)‖22 ≤

1

n
ζ>i M̂i

(
θ̂i − θ

)
− 1

n
θi

(
M̂i −Mi

)>
M̂i

(
θ̂i − θi

)
,

+
1

n

(
D̂i −Di

)>
M̂i

(
θ̂i − θi

)
+ µi

(
‖θi‖1 − ‖θ̂i‖1

)
,

≤
∥∥∥∥ 1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)∥∥∥∥
∞
‖θ̂i − θi‖1,

+ µi

(
‖θi‖1 − ‖θ̂i‖1

)
.

We first show that the event
∥∥∥∥ 1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)∥∥∥∥
∞
≤ µi

2
happens

with large probability.

As

1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)
,

=
1

n
M>

i ζi︸ ︷︷ ︸
T1

+
1

n
(M̂i −Mi)

>ζi︸ ︷︷ ︸
T2

− 1

n
M>

i (M̂i −Mi)θi︸ ︷︷ ︸
T3

− 1

n
(M̂i −Mi)

>(M̂i −Mi)θi︸ ︷︷ ︸
T4

,

+
1

n
M>

i (D̂i −Di)︸ ︷︷ ︸
T5

+
1

n
(M̂i −Mi)

>(D̂i −Di)︸ ︷︷ ︸
T6

,

we label these terms from T1 to T6. To bound term T1, it follows from the union bound and the

Gaussian tail bound:

P(‖T1‖∞ ≥
µi
12

) = P
(∥∥∥∥ 1

n
M>

i ζ

∥∥∥∥
∞
≥ µi

12

)
≤ p exp

{
− n

2σ2
ζi

·
(µi

12

)2
}
. (A.30)
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To bound term T2, noticing that ‖Γ̂0,i − Γ̂0,i‖1 ≤
16s2λ2i

κ2(s2,Z)
,

P(‖T2‖∞ ≥
µi
12

) ≤ P
(∥∥∥∥ 1

n
Z>ζi

∥∥∥∥
∞
≥ µi

12
· κ

2(s2,Z)

16s2λ2i

)
,

≤ qC∗ exp

{
− n

2σ2
ζi

·
(
µi
12
· κ

2(s2,Z)

16s2λmax

)2
}
, (A.31)

for some positive constant C∗. As for term T3, as ‖θi‖∞ ≤ C and by proposition 2,

‖T3‖∞ =

∥∥∥∥ 1

n
M>

i (M̂i −Mi)θi

∥∥∥∥
∞
≤ C max

1≤l,k≤p

∣∣∣∣ 1nM>
i,l(M̂i,k −Mi,k)

∣∣∣∣ ,
≤ C max

1≤k≤p

1√
n

∥∥∥M̂i,k −Mi,k

∥∥∥
2
≤

4C
√
s2λmax

κ(s2,Z)
. (A.32)

For T4, using the result in proposition 2, we have:

‖T4‖∞ =

∥∥∥∥ 1

n
(M̂i −Mi)

>(M̂i −Mi)θi

∥∥∥∥
∞
,

≤ C max
1≤l,k≤p

1

n

∥∥∥(M̂i,l −Mi,l)
∥∥∥

2
·
∥∥∥(M̂i,k −Mi,k)

∥∥∥
2
,

≤ 16Cs2λ
2
max

κ2(s2,Z)
. (A.33)

For T5, similar to T3, we have

‖T5‖∞ =
1

n

∥∥∥M>
i (D̂i −Di)

∥∥∥
∞
≤ max

1≤l≤p

1

n

∣∣∣M>
i,l(D̂i −Di)

∣∣∣ ,
≤ 1√

n
‖D̂i −Di‖2 ≤

4C
√
s2λmax

κ(s2,Z)
. (A.34)

Finally for T6,

‖T6‖∞ =
1

n

∥∥∥(M̂i −Mi)
>(D̂i −Di)

∥∥∥
∞
≤ max

1≤l≤p

1

n

∣∣∣(M̂i,l −Mi,l)
>(D̂i −Di)

∣∣∣ ,
≤ max

1≤l≤p

1

n
‖M̂i,l −Mi,l‖2 · ‖D̂i −Di‖2 ≤

16Cs2λ
2
max

κ2(s2,Z)
. (A.35)

Combining the results from (A.30) to (A.35), there exists some positive constant C4, C5, C
∗
5 , such
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that with the tuning parameter µi chosen as:

µi =
C∗4

κ(s2,Z)

√
s2(log p+ log q)

n
,

with C∗4 = C∗5 max(C, σζi), then with probability at least 1− C4 (pq)
−C5 ,

∥∥∥∥ 1

n
M̂>

i ζi −
1

n
M̂>

i

(
M̂i −Mi

)
θi +

1

n
M̂>

i

(
D̂i −Di

)∥∥∥∥
∞
≤ µi

2
(A.36)

Then under (A.36), we have:

1

2n
‖M̂i(θ̂i − θi)‖22 ≤

µi
2
‖θ̂i − θi‖1 + µi

(
‖θi‖1 − ‖θ̂i‖1

)
. (A.37)

Let Ri be the support of the true parameter θi and without any abuse of using notations, we use

θi,Ri and θ̂i,Ri to represent the subvector of θi and θ̂i restricted on the set Ri. Also let |Ri| = ri.

Adding
µi
2
‖θ̂i − θi‖1 to both sides of (A.37) yields:

1

2n
‖M̂i(θ̂i − θi)‖22 +

µi
2
‖θ̂i − θi‖1 ≤ µi

(
‖θ̂i − θi‖1 + ‖θi‖1 − ‖θ̂i‖1

)
,

= µi

(
‖θi,Ri‖1 − ‖θ̂i,Ri‖1 + ‖θ̂i,Ri − θi,Ri‖1

)
,

≤ 2µi‖θ̂i,Ri − θi,Ri‖1 ≤ 2µi
√
ri‖θ̂i,Ri − θi,Ri‖2. (A.38)

The last two inequalities in (A.38) imply:

1

2n
‖M̂i(θ̂i − θi)‖22 ≤ 2µi

√
ri‖θ̂i,Ri − θi,Ri‖2, (A.39)

µi
2
‖θ̂i − θi‖1 ≤ 2µi‖θ̂i,Ri − θi,Ri‖1, (A.40)

and (A.40) is equivalent to

‖θ̂i,Rci − θi,Rci ‖1 ≤ 3‖θ̂i,Ri − θi,Ri‖1. (A.41)

As stated in proposition 2, M̂i satisfies the RE condition with some constant κ(ri, M̂i) ≥
1

2
κ(ri,Mi),
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together with (A.41) we have:

1

2n
‖M̂i(θ̂i − θi)‖22 ≥

1

2
κ2(ri, M̂i)‖θ̂i,Ri − θi,Ri‖22 ≥

1

8
κ2(ri,Mi)‖θ̂i,Ri − θi,Ri‖22.

Combining with (A.39),

‖θ̂i,Ri − θi,Ri‖2 ≤
16µi
√
ri

κ2(ri,Mi)
, (A.42)

Plugging in the tuning parameter µi gives the final result in lemma 4:

‖θ̂i − θi‖1 ≤ 4‖θ̂i,Ri − θi,Ri‖1 ≤ 4
√
ri‖θ̂i,Ri − θi,Ri‖2,

≤ 64C∗4
κ2(ri,Mi)κ(s2,Z)

ri

√
s2(log p+ log q)

n
,

≤ 64C∗4
κ2(Y,D)κ(s2,Z)

ri

√
s2(log p+ log q)

n
.

Based on the previous results, we provide the proof for the main theorems. First we prove the

asymptotic distribution of the test statistics for a single hypothesis.

Proof of Theorem 4. The form of the test statistic Ti is a de-biased version of the sample correla-

tion. To show it follows a standard normal distribution, we list the following notation. Denote:

ξ̃k = ξk − ξ, ζ̃k,i = ζk,i − ζi,

where ξ =
∑n
k=1 ξk and ζi =

∑n
k=1 ζk,i. Recall that by the previous definition, we have:

ξk = yk − µ−D>k β,

ζk,i = Dk,i − ai − (yk, D
>
k,−i)

>θi,

ξ̂k = yk − Y − (D̂k − D̂)>β̂,

ζ̂k,i = D̂k,i − D̂i −
(
yk − Y ,

(
D̂k,−i − D̂−i

)>)
θ̂i.
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Based on these notations, we have the following decomposition:

1

n

n∑
k=1

ξ̂k ζ̂k,i =
1

n

n∑
k=1

ξ̃k ζ̃k,i −
1

n

n∑
k=1

ξ̃k(ζ̃k,i − ζ̂k,i)︸ ︷︷ ︸
A1

− 1

n

n∑
k=1

ζ̃k,i(ξ̃k − ξ̂k)︸ ︷︷ ︸
A2

+
1

n

n∑
k=1

(ξ̃k − ξ̂k)(ζ̃k,i − ζ̂k,i)︸ ︷︷ ︸
A3

.

For simplicity, denote the second, third and forth term as A1, A2 and A3. Then for A1, we have:

A1 =
1

n

n∑
k=1

ξ̃2
k(θ̂1,i − θ1,i) +

1

n

n∑
k=1

ξ̃k(Dk −D)>β(θ̂1,i − θ1,i),

+
1

n

n∑
k=1

ξ̃k

{
(Dk,i −Di)− (D̂k,i − D̂i)

}
+

1

n

n∑
k=1

ξ̃k(Dk,−i −D−i)
>(θ̂−1,i − θ−1,i),

+
1

n

n∑
k=1

ξ̃k

{
(Dk,−i −D−i)− (D̂k,−i − D̂−i)

}>
θ̂−1,i.

We denote these five terms as A1.1 to A1.5. For A1.2, combining the result in lemma 4 and the fact

that ξ and D are independent, we know that for some positive constant C, there exists some C ′ > 0

such that:

|θ̂1,i − θ1,i| .p r
√
s2(log p+ log q)

n
,

P

(∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk −D)>β

∣∣∣∣∣ ≥ C
√

log p

n

)
= O(p−C

′
).

Hence,

A1,2 ≤

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk −D)>β

∣∣∣∣∣ · |θ̂1,i − θ1,i|,

. Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)
. (A.43)

Similarly for A1.4, as

P

(
max

1≤j≤p

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk,j −Dj)

∣∣∣∣∣ ≤ C
√

log p

n

)
= O(p−C

′
),
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so we have:

A1.4 ≤

∥∥∥∥∥ 1

n

n∑
k=1

ξ̃k(Dk,−i −D−i)

∥∥∥∥∥
∞

· ‖θ̂−1,i − θ−1,i‖1,

. Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)
. (A.44)

Then for A1.3, by the estimation error for Di as we used in proposition 2, we have:

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k(Dk,i − D̂k,i)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
k=1

ξ̃k

(
Zk(Γ̂0,i − Γ0,i)

)∣∣∣∣∣ ,
≤

∥∥∥∥∥ 1

n

n∑
k=1

ξ̃kZk

∥∥∥∥∥
∞

· ‖Γ̂0,i − Γ0,i‖1,

. Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (A.45)

For the last term A1.5, similar to A1.3,

A1.5 . Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (A.46)

Combining the result from (A.43) to (A.46) we know that uniformly for 1 ≤ i ≤ p:

A1 =
1

n

n∑
k=1

ξ̃2
k(θ̂1,i − θ1,i) +Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)

+Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (A.47)

And as for term A2, we have a similar decomposition given by:

A2 =
1

n

n∑
k=1

ζ̃2
k,i(β̂i − βi) +

1

n

n∑
k=1

ζ̃k,i

(
yk − Y ,

(
Dk,−i −D−i

)>)
θi(β̂i − βi),

+
1

n

n∑
k=1

ζ̃k,i
(
Dk,−i −D−i

)>
(β̂−i − β−i) +

1

n

n∑
k=1

ζ̃k,i

[
(D̂k −Dk) + (D̂−D)

]
β̂.
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By using the similar techniques as in A1, we know that uniformly over 1 ≤ i ≤ p,

A2 =
1

n

n∑
k=1

ζ̃2
k,i(β̂i − βi) +Op

(√
log p

n
· s1

√
s2(log p+ log q)

n

)

+Op

(√
log p

n
· s2

√
log p+ log q

n

)
. (A.48)

For the last term A3, the decomposition is given as following:

A3 =
1

n

n∑
k=1

(Dk −D)>(β̂ − β)︸ ︷︷ ︸
B1

+
(

(D̂k −Dk)− (D̂−D)
)>

(β̂ − β)︸ ︷︷ ︸
B2

 ,

·


(

(Dk,i −Di)− (D̂k,i − D̂i)
)

︸ ︷︷ ︸
B3

+
(
yk − Y ,

(
Dk,−i −D−i

)>)
(θ̂i − θi)︸ ︷︷ ︸

B4

+
(

(D̂k,−i − D̂−i)− (Dk,−i −D−i)
)
θ̂i︸ ︷︷ ︸

B5

 .

For simplicity we denote the five terms above as B1 to B5. Then,

A3 = B1(B3 +B4 +B5) +B2(B3 +B4 +B5).

For B1B3, based on the bounds in proposition 2, we have:

B1B3 ≤ ‖β̂ − β‖1 ·

∥∥∥∥∥ 1

n

n∑
k=1

(Dk −D)>
(

(Dk,i −Di)− (D̂k,i − D̂i)
)∥∥∥∥∥
∞

,

. Op

(
s1

√
s2(log p+ log q)

n
·
√
s2(log p+ log q)

n

)
. (A.49)

For B1B4, it follows from the proof in Liu and Luo (2014) that:

B1B4 . Op

(√
log p

n
· s1

√
s2(log p+ log q)

n
· r
√
s2(log p+ log q)

n

)

+Op

(
r

√
s2(log p+ log q)

n
· an

)
,

+Op
(
λmax(ΣD) · a2

n

)
, (A.50)
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where max(‖β̂ − β‖2, ‖θ̂i − θ‖2) = Op(an). For term B2B3, we have:

B2B3 ≤ ‖β̂ − β‖1 ·

∥∥∥∥∥ 1

n

n∑
k=1

(
(D̂k −Dk)− (D̂−D)

)(
(Dk,i −Di)− (D̂k,i − D̂i)

)∥∥∥∥∥
∞

,

≤ ‖β̂ − β‖1 · max
1≤j≤p

∣∣∣∣∣ 1n
n∑
k=1

(
(Dk,j −Dj)− (D̂k,j − D̂j)

)
·
(

(Dk,i −Di)− (D̂k,i − D̂i)
)∣∣∣∣∣ ,

. Op

(
s1

√
s2(log p+ log q)

n
· s2(log p+ log q)

n

)
. (A.51)

Then for B2B4, it follows from the estimator bounds of θ̂,

B2B4 ≤ ‖θ̂i − θi‖1 ·

∥∥∥∥∥ 1

n

n∑
k=1

(β̂ − β)>
(

(D̂k −Dk)− (D̂−D)
)(

yk − Y ,
(
Dk,−i −D−i

)>)∥∥∥∥∥ .
(A.52)

Notice that the second term is in the same order as the term B1B3, so the order of the whole term

B2B4 is actually dominated by the term B1B3. And terms B1B5 and B2B5 are in the same order

as B1B3 and B2B3. So together with the result in (A.49) to (A.52) and summing up the previous

results in (A.47), (A.48) and the form of test statistic Ti, we have:

Ti =
√
n

(
1

n

n∑
k=1

ξ̂k ζ̂k,i +
1

n

n∑
k=1

ξ̂2
kθ̂1,i +

1

n

n∑
k=1

ζ̂2
k,iβ̂i

)
/σ̂ξσ̂ζi ,

=

√
n

σ̂ξσ̂ζi

{
1

n

n∑
k=1

ξ̃k ζ̃k,i −A1 −A2 +A3 +
1

n

n∑
k=1

ξ̂2
kθ̂1,i +

1

n

n∑
k=1

ζ̂2
k,iβ̂i

}
,

=

√
n

σ̂ξσ̂ζi

{
1

n

n∑
k=1

ξ̃k ζ̃k,i +
1

n

n∑
k=1

ξ̃2
kθ1,i +

1

n

n∑
k=1

ζ̃2
k,iβi +

1

n

n∑
k=1

θ̂1,i(ξ̂
2
k − ξ̃2

k)

+
1

n

n∑
k=1

β̂i(ζ̂
2
k,i − ζ̃2

k,i) + order

}
, (A.53)
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where order is the sum of all the reminder terms, which is given by:

order = Op

(√
log p

n
· r
√
s2(log p+ log q)

n

)
+Op

(√
log p

n
· s2

√
log p+ log q

n

)

+Op

(√
log p

n
· s1

√
s2(log p+ log q)

n

)
+Op

(
s1

√
s2(log p+ log q)

n
·
√
s2(log p+ log q)

n

)

+Op

(√
log p

n
· s1

√
s2(log p+ log q)

n
· r
√
s2(log p+ log q)

n

)
+Op

(
r

√
s2(log p+ log q)

n
· an

)

+Op
(
λmax(ΣD) · a2

n

)
+Op

(
s1

√
s2(log p+ log q)

n
· s2(log p+ log q)

n

)
. (A.54)

Define ω̃ii = ΩD
i,i +

β2
i

σ2
ξ

. Notice that:

1

n

n∑
k=1

ξ̃k ζ̃k,i +
1

n

n∑
k=1

ξ̃2
kθ1,i +

1

n

n∑
k=1

ζ̃2
k,iβi,

=

(
1

n

n∑
k=1

ξkζk,i − Eξζi

)
+
(
EξEζi − ξ̄ζ̄i

)
− βi
ω̃ii

(
1−

σ̃2
ξ

σ2
ξ

−
σ̃2
ζi

σ2
ζi

)
,

=

(
1

n

n∑
k=1

ξkζk,i − Eξζi

)
+Op

(
log p

n

)
− βi
ω̃ii

(
1−

σ̃2
ξ

σ2
ξ

−
σ̃2
ζi

σ2
ζi

)
. (A.55)

Denote order An = order +Op
(

log p

n

)
, followed by the argument in Liu and Luo (2014) we know

that:

σ̂2
ξ = σ2

ξ +Op(An +

√
log p

n
), σ̂2

ζi = σ2
ζi +Op(An +

√
log p

n
). (A.56)

In addition, notice that the required assumption λmax(ΣD)a2
n = o(n−

1
2 ) and r

√
s2(log p+ log q)·an =

o(1) are naturally hold for the estimators we are using and under assumptions C1-2. Hence, based

on assumptions C1-2, together with (A.53), (A.54), (A.55) and (A.56) we know that

Ti  N(0, 1).

And further recalls the relation between Ti and T̂i given by:

T̂i =
Ti

1− T 2
i

n
1

(
T 2
i

n
< 1

) .
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So finally Slutsky’s theorem, we know that

Ti  N(0, 1).

So we have finished the proof of theorem 4.

Once we were able to prove that our test statistic follows a standard normal distribution,the proofs

for theorem 5 and 6 become rather straight forward. We refer the details of the proofs to section 5.2

of Liu and Luo (2014). The proofs for ours differ from theirs in the error terms which have already

been shown to be controlled in preferred orders in the proofs of theorem 4.

A.5. Additional Simulation Studies Chapter 4

A.5.1. Evaluation of testing single hypothesis

Figures A.1 and A.2 show additional simulation results for testing single hypothesis.

A.5.2. Sensitivity analysis

We further examine the performance of our method with the existence of direct effects between

potential instruments and outcome of interests. From a theoretical point of view, such effects would

distort all the statistical inference procedures but it is still worthwhile to check the performance via

simulations.

The data is generated in a way similar to the previous simulations but now the potential instruments

Z has direct effects on the response Y such that Yi = Xiβ0 + Ziτ + εi. In the setting of weak

direct effects, only 2 true instruments are related with Y directly with a coefficient of (0.5,−0.5). In

the setting of relatively strong direct effects, 5 true instruments are related with Y directly with a

coefficient of (1, 1, 0.5, 0.5,−0.5). We perform our analysis ignoring the fact that these are actually

invalid instruments and evaluate the results using eFDR and eFDV.

Table A.2 shows the empirical FDR and FDV for the proposed procedure with the presence of direct

effects (invalid instruments). We could see that when the direct effects between the instruments and

outcome is weak, our method could still provide valid inference procedure although the empirical

FDR and FDV are slightly inflated. However, when having strong direct effects, the performance of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: QQ-plots of the test statistic T̂i based on the two-stage IV model for several randomly
selected variables to demonstrate the validity of its asymptotic distribution. The panels in the first
and second row correspond to selected variables whose true value are zero and the third row are
variables that are not zero. For different columns, (a)(d)(g), (b)(e)(h) and (c)(f)(i) correspond to
different (n, p, q) values as (200, 100, 100), (400, 200, 200) and (200, 500, 500).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Selected QQ-plots of the test statistics T̂i developed for fitting naive high dimensional
regression models. The panels in the first and second row corresponds to selected variables whose
true value are zero and the third row are variables that are not zero. For different columns, (a)(d)(g),
(b)(e)(h) and (c)(f)(i) correspond to different (n, p, q) values as (200, 100, 100), (400, 200, 200) and
200, 500, 500).

our method is bad, reflected by the over-inflated values of empirical FDR and FDV. These results

emphasize that necessity of using valid instruments when applying the IV regression methods since

the strength of the direct effects is unknown in real applications.
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Table A.2: Sensitivity analysis results based on 500 replications. The eFDR and eFDV for multiple
testing procedures based on IV regression for different combinations of (n, p, q) and different α, k
levels and weak and strong direct effects.

(n, p, q) α-level eFDR k-level eFDV
Weak direct effects

(n, p, q) = (200, 100, 100)
0.05 0.13 2 2.44
0.1 0.16 3 3.08
0.2 0.23 4 3.82

(n, p, q) = (400, 200, 200)
0.05 0.09 2 2.23
0.1 0.13 3 3.04
0.2 0.21 4 3.76

Strong direct effects

(n, p, q) = (200, 100, 100)
0.05 0.51 2 8.50
0.1 0.54 3 9.51
0.2 0.58 4 10.30

(n, p, q) = (400, 200, 200)
0.05 0.56 2 13.10
0.1 0.60 3 14.49
0.2 0.65 4 15.68
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