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ABSTRACT

CRYPTOGRAPHIC FOUNDATIONS FOR CONTROL AND OPTIMIZATION:

MAKING CLOUD-BASED AND NETWORKED DECISIONS ON ENCRYPTED DATA

Andreea B. Alexandru

George J. Pappas

Advances in communication technologies and computational power have determined a tech-

nological shift in the data paradigm. The resulting architecture requires sensors to send local

data to the cloud for global processing such as estimation, control, decision and learning,

leading to both performance improvement and privacy concerns. This thesis explores the

emerging field of private control for Internet of Things, where it bridges dynamical systems

and computations on encrypted data, using applied cryptography and information-theoretic

tools. Our research contributions are privacy-preserving interactive protocols for cloud-

outsourced decisions and data processing, as well as for aggregation over networks in multi-

agent systems, both of which are essential in control theory and machine learning. In these

settings, we guarantee privacy of the data providers’ local inputs over multiple time steps, as

well as privacy of the cloud service provider’s proprietary information. Specifically, we focus

on (i) private solutions to cloud-based constrained quadratic optimization problems from

distributed private data; (ii) oblivious distributed weighted sum aggregation; (iii) linear and

nonlinear cloud-based control on encrypted data; (iv) private evaluation of cloud-outsourced

data-driven control policies with sparsity and low-complexity requirements. In these scenar-

ios, we require computational privacy and stipulate that each participant is allowed to learn

nothing more than its own result of the computation. Our protocols employ homomorphic

encryption schemes and secure multi-party computation tools with the purpose of perform-

ing computations directly on encrypted data, such that leakage of private information at

the computing entity is minimized. To this end, we co-design solutions with respect to both

control performance and privacy specifications, and we streamline their implementation by

exploiting the rich structure of the underlying private data.
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Chapter 1

Introduction

1.1 Motivation

Following the Internet of Things (IoT) revolution, billions of interconnected sensors and

actuators are deployed in every aspect of our daily lives: in intelligent infrastructure and

transportation systems, medical monitoring devices, industrial manufacturing and robotics.

This increase in the number of available sensors and generated data has led to an increase in

the required computational capacity for decision-making and global processing that involves

estimation, control and learning.

One solution is to outsource the computations from low-power platforms to powerful

remote cloud servers that offer on-demand storage, aggregation and processing capabilities.

Apart from storing and processing databases, cloud computing has been employed for ma-

chine learning applications in e.g., healthcare monitoring and social networks, smart grid

control and autonomous vehicle control, and integration with the IoT paradigm [46, 189].

Alternatively, distributed architectures where agents jointly carry out computations over a

communication graph are preferred at the edge level [157].

This emerging paradigm makes privacy a fundamental issue in both cloud-based and

distributed applications, due to the sensitive nature of the collected data, e.g., individual lo-

cation, healthcare information or energy consumption. The privacy concerns of outsourced

computing include tampering with the stored data and interfering with the computation,
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which can be maliciously or unintentionally exploited by the cloud service or other tenants of

the service. Recent examples of data leakage and abuse by cloud servers have drawn atten-

tion to the risks of storing data in the clear and urged more measures against untrustworthy

participants [17, 119, 191]. Moreover, concerns about intellectual property may prevent

competitors from pooling their data or models together, and thus hinder the development of

better solutions for customers. Under these circumstances, securing communication chan-

nels between the participants is necessary but not sufficient to protect the users’ data; we

also need to address corrupt participants and secure the data.

As seen from the surge in smart infrastructure and widespread robotics, these new trends

are also arising in control systems and require transitioning to cloud-based and networked

algorithms. Furthermore, the paradigm of data-driven decision, which lies at the core of

adaptive control solutions, is reimagined and demanded for in the era where the collection,

transmission and processing of data is no longer a technological bottleneck.

Since networked control systems are a fundamental layer in critical infrastructure such

as electric power, transportation, and water distribution networks, cyberattacks have been

common in this context too. Well-known examples are the malwares Stuxnet, Duqu, Indus-

troyer, or Triton [61], as well as inference attacks using smart meters as surveillance devices

[109, 168]. Furthermore, stealth, false-data injection, replay, covert, and distributed denial-

of-service (DDoS) attacks were identified [181]. Cyberattacks on control systems can be

highly critical. Unlike attacks on classical IT systems, attacks on control systems may influ-

ence physical processes through digital manipulations [207] and cause substantial damage.

In conclusion, there is a major industrial need for both cloud-based and distributed

algorithms which can perform estimation, control and optimization tasks while maintaining

the privacy of the user data.

1.2 Overview of the thesis

An overarching theme in this thesis is achieving privacy for structured data, i.e., data which

is connected by models or optimality conditions. Control and optimization problems, as
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well as training and inference over neural networks, involve time-series data in instances

of dynamical systems. Knowledge regarding the evolution and control of such systems can

be advantageous in providing security, however, the structure of dynamical systems raises

challenges, such as preserving privacy over multiple time steps and iterations, or efficiently

deploying security measures for constrained devices with fast response times. This is unlike

the data in one-shot computations in static databases, for which many privacy techniques

have been already developed.

General problem statement. Given a dynamical system which generates privacy-

sensitive data, we design algorithms for cloud-based or networked decision-making which ef-

ficiently meet privacy requirements. Specifically, we stipulate that each participating party

is only allowed to learn its own result of the computation and no other partial information.

In this thesis, we design multi-disciplinary solutions which ensure the privacy of struc-

tured data arising from critical infrastructure and user-related sensitive queries, weaving

together knowledge of optimization, systems and control engineering, with modern crypto-

graphic tools such as homomorphic encryption and secret sharing. The goal is to ensure

that everything other than prior knowledge about the structure of the data remains private.

The threat model assumed in this thesis is of passive adversaries that do not tamper with

the data, but try to infer information from it.

Optimization and control foundations. In the following, I will give an overview of

the problems investigated in the thesis, emphasizing the targeted foundational concepts. In

Chapter 2, we provide the reader with a basis on the cryptographic notions we will use in

this thesis. Chapter 3 is devoted to providing protocols that securely evaluate the most com-

mon optimization problems arising in control systems synthesis (and other decision-making

algorithms from machine learning): quadratic optimization problems with or without con-

straints, with or without regularization. These solutions provide foundations for solving more

general optimization problems in a private manner. In Chapter 4, we review and explain

the concept of private sum aggregation, where an actor obliviously aggregates the individ-

ual contributions of other actors, and we expand it to the more complex, but widespread

3



scenario of private weighted sum aggregation, with proprietary weights. Securely evaluating

such affine laws is essential in distributed and federated computation, such as consensus,

control, averaging and learning. From Chapter 5 onward, we focus on control-theoretic

fundamental algorithms. We start with linear control policies, which are one of the pillars

of control systems theory. Despite their pervasiveness and elementary formulation, under

privacy requirements on the system’s signals and control parameters, they bring significant

challenges. To illustrate secure solutions, we consider a linear estimation problem, a linear

optimal regulator and structured distributed linear control. The latter is based on the pri-

vate weighted aggregation described in Chapter 4. We further consider a nonlinear control

policy in Chapter 6, in particular, an optimal receding horizon controller. The private so-

lution builds on the quadratic programs from Chapter 3, as well as on the solution from

Chapter 5. In Chapter 7, we explore data-driven control problems, where the decisions

have to be privately computed from input-output data, without prior knowledge of the sys-

tem parameters. This framework comes with extra complexity, compared to a system with

known model. The solutions presented in this chapter build on all the previous chapters, in

terms of private optimization algorithms, insights on streamlining private computations and

reducing complexity from aggregation and linear control, and connections to the nonlinear

control. Finally, in Chapter 8, we complement the research contributions in this thesis with

a discussion on future research directions targeting malicious adversaries that do not follow

the prescribed protocols, secure preprocessing for end-to-end private control procedures, and

more specialized and complex private algorithms.

1.3 Related work

Secure control for networked systems has been intensively studied in the literature during

the last decade. Comprehensive surveys can be found in [53, 67, 137, 181, 207]. Most

existing work focuses on the integrity and availability of networked control schemes using

various defense mechanisms. For example, control-related concepts such as detectability and

identifiability of deception attacks are investigated in [181] and game-theoretic approaches to
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deal with DDoS attacks are considered in [110, 150]. Nevertheless, interdisciplinary solutions

are required to secure control systems.

The emerging field of encrypted control primarily aims for confidentiality of sensitive

system states, control actions, controller parameters, or model data in the entire control

loop. More generally, an encrypted controller can be defined as a networked control scheme

that simultaneously ensures control performance and privacy of the client system(s), as well

as privacy for the service provider’s proprietary information, through specialized crypto-

graphic tools. In the framework of networked control, attacks compromising confidentiality

such as eavesdropping might seem less critical since they do not immediately cause phys-

ical misbehavior. However, “passive” spying often precedes “active” attacks compromising

data integrity and availability [67]. Abstractly speaking, encrypted control is realized by

modifying conventional control schemes such that they are capable of computing encrypted

inputs based on encrypted states (or encrypted controller parameters) without intermedi-

ate decryptions by the controller. Encrypted control goes beyond secure communication

channels by providing security against curious cloud providers or neighboring agents that,

during controller evaluations, would have access to unsecured data. This is the key dif-

ference between encrypted control and existing secure control schemes focusing on confi-

dentiality [145, 210, 211]. Meeting these privacy demands under real-time restrictions is

non-trivial and requires a co-design of controllers and suitable cryptosystems. We further

survey encrypted control in [200].

Among the tools used in the literature to protect the privacy of the data computed

upon, we mention homomorphic encryption and secure multi-party computation [119], and

differential privacy [84], that we survey below.

Secure Multi-Party Computation (SMPC) encompasses a range of cryptographic

techniques that facilitate joint computation over secret data distributed between multiple

parties, which can be both clients and servers. The goal of SMPC is that each party is only

allowed to learn its own result of the computation, and no intermediary results such as inputs

or outputs of other parties or other partial information. The concept of SMPC originates
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from [230], where a secure solution to the millionaire’s problem was proposed. Surveys

on SMPC can be found in [74]. SMPC involves communication between parties and can

include individual or hybrid approaches between techniques such as secret sharing [29, 184,

201], oblivious transfer [172, 186], garbled circuits [30, 106, 230], (threshold) homomorphic

encryption [49, 75, 171, 177], etc.

Homomorphic Encryption (HE), introduced in [190] as privacy homomorphism, refers

to a secure computation technique that allows evaluating computations on encrypted data

and produces an encrypted result. HE is best suited when there is a client-server scenario

with an untrusted server: the client simply has to encrypt its data and send it to the

server, which performs the computations on the encrypted data and returns the encrypted

result. The first HE schemes were partial, meaning that they either allowed the evaluation

of additions or multiplications, but not both. Then, somewhat homomorphic schemes were

developed, which allowed a limited number of both operations. One of the bottlenecks

for obtaining an unlimited number of operations was the accumulation of noise introduced

by evaluating operations, which could eventually prevent the correct decryption. The first

fully homomorphic encryption scheme that allowed the evaluation of both additions and

multiplications on encrypted data was developed in [102], where, starting from a somewhat

homomorphic encryption scheme, a bootstrapping operation was introduced. Bootstrapping

allows to obliviously evaluate the scheme’s decryption circuit and reduces the ciphertext

noise. Other fully homomorphic encryption schemes include [50, 51, 62, 91, 103]. For a

thorough history and description of HE, see the survey [159]. For multiple users, the concept

of functional privacy is required, which can be attained by functional encryption [43], which

was developed only for limited functionalities. Privacy solutions based on HE were proposed

for genome matching, national security and critical infrastructure, healthcare databases,

machine learning applications and control systems [19, 22, 188], etc. Of particular interest

to us are the the works in control applications with HE, see [6, 11, 92, 108, 134, 170,

198], to name a few. Furthermore, there has been a soaring interest in homomorphically

encrypted machine learning applications, from statistical analysis and data mining [22] to
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deep learning [188].

The privacy definition for SMPC stipulates that the privacy of the inputs and interme-

diary results is ensured, but the output, which is a function of the inputs of all parties, is

revealed. For applications such as smart meter aggregation [2], social media activity [194],

health records [81], deep learning [1], and where input-output privacy is valued over output

accuracy, the SMPC privacy definition is not enough [238] and needs to be augmented by

guarantees of differential privacy.

Differential Privacy (DP) refers to methods of concealing the information leakage from

the result of the computation, even when having access to auxiliary information [84, 86].

Intuitively, the contribution of the input of each individual to the output should be hidden

from those who access the computation results. To achieve this, carefully chosen noise is

added to each entry such that the statistical properties of the database are preserved [87],

which introduces a trade-off between utility and privacy. When applied in a distributed

system [85, 212], DP provides a problematic solution for smaller number of entries in the

dataset, as all parties would add noise that would completely drown the result of the com-

putation. Several works combine SMPC with DP in order to achieve both computation

privacy and output privacy, for instance [58, 185, 187, 202, 213]. An intuitive compari-

son between privacy-preserving centralized and decentralized computation approaches, with

different privacy goals and utilities is given in Table 1.1.

Model Utility Privacy Who Holds the Data
Fully Homomorphic
(or Functional)
Encryption

any desired query everything (except
possibly the result
of the query)

original users or dele-
gates/untrusted server
holds encrypted data

Secure Multi-Party
Computation

any desired query everything other
than the result of
the query

original users or dele-
gates

Centralized
Differential Privacy

statistical analysis
of dataset

individual-specific
information

trusted curator

Multi-Party
Differential Privacy

statistical analysis
of dataset

individual-specific
information

original users or dele-
gates

Table 1.1: Comparison between centralized and multi-party privacy-preserving approaches [213].
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1.4 Research contributions

Dynamical data challenges. Cryptographic solutions were developed for the most part

for static data, such as databases, or independent data. However, dynamical systems are iter-

ative processes that generate structured and dependent data. Moreover, output data at one

iteration/time step will often be an input to the computation at the next one. Hence, special

attention is needed when using cryptographic techniques in solving optimization problems

and implementing control schemes. For example, values encrypted with homomorphic en-

cryption schemes will require ciphertext refreshing or bootstrapping if the multiplicative

depth of the algorithm exceeds the multiplicative depth of the scheme; when using garbled

circuits, a different circuit has to be generated for different iterations/time steps of the same

algorithm; the controlled noise added for differential privacy at each iteration/time step will

accumulate and drown the result etc. Furthermore, privacy is guaranteed as long as the

keys and randomness are never reused, but freshly generated for each time step; then, the

(possibly offline) phase in which uncorrelated randomness is generated, (independent from

the actual inputs), has to be repeated for a continuously running process. In this thesis, we

design solutions with all these issues in mind.

The research contributions in this thesis concern cloud-based decision and data process-

ing solutions that guarantee privacy of the users’ local data over multiple time steps, as well

as privacy of the service provider’s proprietary data; and private computation and aggre-

gation over networks in multi-agent systems. In all these scenarios, we stipulate that each

participating party is only allowed to learn its own result of the computation and no other

partial information. The idea is to leverage cryptographic tools which allow the evaluation of

computations on encrypted data, ensuring in this way that the privacy of the encrypted data

is never violated. This approach achieves strong privacy guarantees, which are highly desir-

able in a wide range of applications, from critical infrastructure to now ubiquitous Internet

of Things devices. Such a privacy goal can be accomplished using SMPC, which encom-

passes a range of cryptographic techniques that facilitate joint computation over secret data
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distributed between multiple parties. In this thesis we employ, among others, homomorphic

encryption, secret sharing and oblivious transfer.

Private cloud-based optimization and control

A fundamental control scenario for large systems involves a client outsourcing to a cloud

service the computation of the control decisions, using model predictive control with control

input constraints. Without privacy requirements, the cloud controller could solve the prob-

lem locally through an optimization algorithm. With privacy requirements on the states

and control actions, and possibly on the system model, the cloud controller should not in-

fer anything about this private data during and after the computations. This fits in the

paradigm of encrypted computations. A popular solution is to have the cloud perform the

computations on the client’s encrypted data, without the need of decryption. This can

be achieved via additively homomorphic encryption (AHE), which allows the evaluation of

affine transformations on encrypted data. However, there are two subproblems that cannot

be privately solved using solely AHE: constrained optimization and iterated multiplications.

Based on the solutions to these two problems, which are described below, we show how to

achieve cloud-based encrypted model predictive control with private input constraints in

Chapter 6 (following the work presented in [9, 11]).

Privately solving constrained optimization problems. More generally, consider an

optimization problem based on private costs and constraints from data providers, that needs

to be solved at a cloud service and the solution given to a requesting party. Satisfying the

constraints requires iteratively projecting the private optimization variables on the feasible

space. The first challenge is that the cloud is unable to perform this nonlinear projection

operation using only the native affine operations allowed by AHE. Another challenge is to

only provide the solution to the optimization problem, and nothing else, despite publicly

known optimality conditions that connect the private data and can reveal private auxiliary

information. We solve both challenges using blinded communication and oblivious transfer

between the cloud and the requesting party, which allow the evaluation of the projection

operation on the homomorphically encrypted data of the providers in Chapter 3. This

9



guarantees no information is leaked, even under collusions with data providers [10, 13].

Estimation and control with encrypted model and encrypted signals. In most

of the literature on encrypted control, the dynamics model is considered public. In Chapter 5

(based on the work in [6]), we propose a protocol for linear state estimation and linear

control of a dynamical system, while enabling privacy for both its model and signals. This

introduces the challenge of computing fast multiplications between encrypted values, with

little communication, and of continuing the encrypted computations over multiple time

steps. We require that the majority of the work for estimation and control be delegated to

the cloud controller, while the system, comprised of individual subsystems, and the actuator

do minimal work. We exploited the dynamics of the data by leveraging labeled homomorphic

encryption, which associates a label to each message, and uses secret shares based on the

labels and AHE to enable multiplication between two encrypted messages. We used the time

steps associated to the measurements as labels so that there is a natural synchronization

between the subsystems and the actuator. We also proposed an extension to obtain the

online encrypted evaluation of higher order polynomials, at the cost of offline communication

and storage. Thus, we were able to privately compute the estimation over measurements

from multiple subsystems, then privately compute the optimal control action, all in real-

time.

Private data-driven Control as a Service. Control as a Service is becoming a

reality, particularly in the case of building automation and smart grid management. Often-

times, it is required to control the client’s system without assuming knowledge of its model.

Consequently, large quantities of input-output data collected from the client are uploaded

to a cloud server. The goal is to privately outsource data-driven decision and control to

cloud services. We optimize the control algorithm used on this privacy-sensitive data for

both efficiency and privacy. The idea is to focus on the encryption-aware co-design of a

data-driven control algorithm, so that the privacy of the client’s uploaded data, desired

reference and control actions are maintained. We achieve privacy by using a leveled fully

homomorphic encryption scheme to enable the cloud to perform complex computations on
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the client’s encrypted data. We achieve efficiency by manipulating the tasks required by

the control algorithm, including matrix inversion, such that they only involve a cheap low-

depth arithmetic circuit, as well as by exploiting parallelization and ciphertext packing [15].

We thoroughly redesign arithmetic matrix operations and introduce redundancy inside the

ciphertexts (copies of elements) to enable low-depth representation, and, perhaps counter-

intuitively, to require less total memory [14].

In the same context, we also investigate a sparse data predictive control problem, run at

a cloud service to control a system with unknown model, using `1-regularization to limit the

behavior complexity, which can be written as a Lasso problem [16]. The input-output data

collected for the system is privacy-sensitive, hence, we design a privacy-preserving solution

using homomorphically encrypted data. The main challenges are the non-smoothness of the

`1-norm, which is difficult to evaluate on encrypted data, as well as the iterative nature of

the Lasso problem. We use a distributed ADMM formulation that enables us to exchange

substantial local computation for little communication between multiple servers. We first

give an encrypted multi-party protocol for solving the distributed Lasso problem, by ap-

proximating the non-smooth part with a Chebyshev polynomial, evaluating it on encrypted

data, and using a more cost effective distributed bootstrapping operation in Chapter 3. For

the example of data-predictive control, we prefer a non-homogeneous splitting of the data for

better convergence. We give an encrypted multi-party protocol for this non-homogeneous

splitting of the Lasso problem to a non-homogeneous set of servers: one powerful server and

a few less powerful devices, added for security reasons in Chapter 7.

Private distributed control and inference

The recent technological advances in communication speed and deployment of millions of

devices have fostered the adoption of distributed computing frameworks. In turn, such

frameworks require aggregating services in order to utilize the data collected for specific

causes. Even as a step in distributed algorithms, aggregation shifts from a decentralized

nature that inherently guarantees more privacy, to a centralized approach that poses severe

privacy challenges.
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The applications of this line of work range from smart grid control and autonomous

vehicle coordination to federated learning and graph neural network inference. The challenge

is to enable the agents, which act as aggregators, to obliviously aggregate the weighted

contributions from their neighbors, with privacy constraints on the local data and proprietary

weights/model, while minimizing communication.

Private weighted sum aggregation. Depending on the application, different parties

could know the associated weights: the agents, the aggregator or neither–a system operator

generates offline proprietary weights and wants to keep them hidden from all participants.

We exploit the information structure in the system to propose solutions that achieve privacy

for the three cases in Chapter 4. In the more complex latter case, we propose using two

compatible layers of encryption, one to protect the weights from the agents and the other to

protect the agents’ individual contributions from the aggregator. In [12], we used one layer

of encryption to be an AHE scheme, and the other to be random masks that sum up to zero,

that can be either precomputed and stored locally or computed online in a fully distributed

manner. The appeal of this solution is its simplicity and relatively small sizes of ciphertexts.

For small to medium weight matrices’ dimensions, we can batch multiple values in a single

ciphertext and redesign the computations accordingly, achieving up to 80% improvement in

computation time and communication [8]. Our second solution [7] embeds a ciphertext in

the error term of a learning with errors sample. This enables specific encoding and batching

properties that can reduce the number of operations and of ciphertexts even further. This

solution has fewer rounds of communication and allows a larger range of functionalities to

be performed locally at the agents, but implies larger ciphertext sizes, and is more suitable

for large weight matrices’ dimensions and more complex distributed aggregation schemes.
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Chapter 2

Cryptographic Preliminaries

This thesis assumes familiarity with control-theoretic and optimization-theoretic notions

and aims to introduce the reader to cryptographic approaches for securing control and

optimization applications in a networked scenario. Therefore, in this chapter, we describe

and provide formal definitions for the cryptographic notions that will be used subsequently

in the thesis, as they will be required in all chapters. On the other hand, we will introduce

as needed the concepts behind the optimization and control algorithms we use in this thesis

in the subsequent chapters.

2.1 Adversarial model

In this thesis we are concerned with adversaries that corrupt parties in order to steal their

private information, but do not intend to disrupt the service offered. Common examples for

this model are database breaches or third-party access, where the adversary plans to sell the

proprietary and/or private data obtained. This model is called semi-honest or honest-but-

curious and is defined in the following.

Definition 2.1.1. (Semi-honest model) A party is semi-honest if it does not deviate from

the steps of the protocol, but may store the transcript of the messages exchanged and process

the data received in order to learn more information than stipulated by the protocol.

This model also holds when considering eavesdroppers on the communication channels.
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The semi-honest model differs from a model that only considers eavesdroppers as adversaries

by the fact that, apart from the untrusted channels, the parties that perform the computa-

tions are also not trusted. Malicious or active adversaries–that diverge from the protocols

or tamper with the messages–are not considered in this thesis but are crucial future research

avenues for the author.

2.2 Security definitions

Definition 2.2.1. A function η : Z≥1 → R is negligible if for every positive c ∈ R>0, there

exists nc ∈ Z≥1 such that for all integers n ≥ nc, we have |η(n)| ≤ n−c.

In what follows, we will use η(·) to represent a negligible function and {0, 1}∗ to define a

sequence of bits of unspecified length. An ensemble X = {Xn}n∈N is a sequence of random

variables ranging over strings of bits of length polynomial in n denoted by poly(n).

Definition 2.2.2. (Statistical indistinguishability [104, Ch. 3]) The ensembles X =

{Xn}n∈N and Y = {Yn}n∈N are statistically indistinguishable, denoted
s≡, if for all

sufficiently large n, the following holds:

1

2

∑
α∈Supp(Xn)∪Supp(Yn)

∣∣Pr[Xn = α]− Pr[Yn = α]
∣∣ < η(n),

where the quantity on the left is called the statistical distance between the two ensembles.

Computational indistinguishability is weaker than the statistical version, as follows:

Definition 2.2.3. (Computational Indistinguishability [104, Ch. 3]) The ensembles X =

{Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable, denoted
c≡, if for

every probabilistic polynomial-time algorithm D : {0, 1}∗ → {0, 1}, called the distin-

guisher, and all sufficiently large n, the following holds:

∣∣Prx←Xn [D(x) = 1]− Pry←Yn [D(y) = 1]
∣∣ < η(n).

The previous definition is relevant when defining the privacy goals to be guaranteed by
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a protocol: two-party privacy of the sensitive data of the parties. The intuition is that a

protocol privately computes a functionality if nothing is learned after its execution, i.e.,

if all information obtained by a computationally-bounded party after the execution of the

protocol (while also keeping a record of the intermediate computations) can be obtained

only from the inputs and outputs available to that party.

In the following definitions, we require the notion of view, which captures the information

held by a party during an execution of the protocol. From this information, the respective

party can try to infer more information than stipulated by the protocol.

Definition 2.2.4. (View of a party [105, Ch. 7]) Let Π be a protocol for computing an

arbitrary functionality f on an input x̄. The view of a party P during an execution of Π on

the input x̄, denoted V Π(x̄), is (x, coins,m1, . . . ,mt), where x is the input of the party P ,

coins represents the outcome of party P ’s internal coin tosses, and mj represents the j-th

message it has received.

In this manuscript, we deal with deterministic functionalities, hence, we will present the

simplified definitions of privacy in the semi-honest model for deterministic functionalities.

For the more general case of probabilistic functionalities, as well as for a description of

privacy definitions in the semi-honest and malicious models, we direct the reader to the

tutorial [152].

Definition 2.2.5. (Two-party privacy w.r.t. semi-honest behavior [105, Ch. 7]) Let f :

{0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, and f1(x1, x2), f2(x1, x2) denote the

first and second components of f(x1, x2), for any inputs x1, x2 ∈ {0, 1}∗. Let Π be a two-

party protocol for computing f . Denote the view of the i-th party (i = 1, 2) as V Π
i (x1, x2).

For a deterministic functionality f , we say that Π privately computes f if there exist

probabilistic polynomial-time algorithms, called simulators, denoted Si, such that:

{Si(xi, fi(x1, x2))}x1,2∈{0,1}∗
c≡ {V Π

i (x1, x2)}x1,2∈{0,1}∗ .

This definition assumes the correctness of the protocol, i.e., the probability that the
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output of the parties is not equal to the result of the functionality applied to the inputs is

negligible. For semi-honest adversaries, this requirement is easy to check.

The next definition concerns security in the multi-party computation setup considering

coalitions of a number of parties. Essentially, it extends Definition 2.2.5 and states that

a multi-party protocol privately computes the functionality it runs if everything that a

coalition of parties can obtain from participating in the protocol and keeping records of the

intermediate computations can be obtained only from the inputs and outputs of these parties.

Definition 2.2.6. (Multi-party privacy w.r.t. semi-honest behavior [105, Ch. 7]) Let

f : ({0, 1}∗)n → ({0, 1}∗)n be a n-ary functionality, where fi(x1, . . . , xn) denotes the i-

th element of f(x1, . . . , xn). Denote the inputs by x̄ = (x1, . . . , xn). For I = {i1, . . . , it} ⊂

[n] = {1, . . . , n}, we let fI(x̄) denote the subsequence fi1(x̄), . . . , fit(x̄), which models a

coalition of a number of parties. Let Π be a n-party protocol that computes f . Denote the

view of the i-th party during an execution of Π on the inputs x̄ by V Π
i (x̄), and denote the

view of a coalition by V Π
I (x̄) = (I, V Π

i1
(x̄), . . . , V Π

it
(x̄)). For a deterministic functionality f ,

we say that Π privately computes f if there exist simulators S, such that, for every

I ⊂ [n], it holds that, for x̄t = (xi1 , . . . , xit):

{S(I, (x̄t), fI(x̄t))}x̄∈({0,1}∗)n
c≡ {V Π

I (x̄)}x̄∈({0,1}∗)n .

Remark 2.2.7. ([105, Ch. 7],[104, Ch. 4]) Auxiliary inputs, which are inputs that cap-

ture additional information available to each of the parties (e.g. local configurations, side-

information), are implicit in Definition 2.2.5 and Definition 2.2.6.

We can also particularize Definition 2.2.5 to capture the setting of a client-server ap-

plication, when we only require privacy of the client’s input and output with respect to a

semi-honest server.

Definition 2.2.8. (Client privacy w.r.t. semi-honest behavior of server) Let xC be the

private input of a client and xS be the input of a server. The client wants the server to

evaluate a functionality f and return the result f(xC , xS). We will denote by fS(xC , xS) the
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corresponding result at the server. Let Π be a two-party protocol for computing f . Denote

by V Π
S (xC , xS) the view of the server during an execution of Π on the inputs (xC , xS). For

a deterministic functionality f , we say that Π privately computes f w.r.t. to the server

if there exists a probabilistic polynomial-time algorithm, called simulator and denoted SS,

such that, for any inputs xC , xS :

{SS(xS , fS(xC , xS))}xC ,xS∈{0,1}∗
c≡ {V Π

S (xC , xS)}xC ,xS∈{0,1}∗ .

It is common for a server to be only employed for computing a result that is then sent

to the client, and the server has no output formally, i.e., fS(xC , xS) = ∅.

Finally, Definition 2.2.8 can be extended to the setup of a client and n servers, where at

most n− 1 servers are allowed to collude (Definition 3.3.1).

For encryption schemes and ciphers, we look at two definitions which tell us how secure

the resulting ciphertext or code word is: perfect secrecy or information-theoretic security

and semantic security.

Definition 2.2.9. (Perfect secrecy [133, Ch. 2]) An encryption scheme (Gen, Enc, Dec) over

a message space M is perfectly secret if for every probability distribution over M and

every ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m|C = c] = Pr[M = m] or, equivalently, Pr[C = c|M = m] = Pr[C = c].

Definition 2.2.10. (Semantic Security [105, Ch. 5]) An encryption scheme is semantically

secure if for every probabilistic polynomial-time algorithm, A, there exists a probabilistic

polynomial-time algorithm A′ such that for every two polynomially bounded functions f, h :

{0, 1}∗ → {0, 1}∗ and for any probability ensemble {Xn}n∈N, |Xn| ≤ poly(n), for any positive

polynomial p and sufficiently large n:

Pr [A(Enc(Xn), h(Xn)) = f(Xn)]− Pr
[
A′(h(Xn)) = f(Xn)

]
< η(n),
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where Enc(·) is the encryption primitive.

Semantic security is equivalent to the cryptosystem having indistinguishable encryptions,

which, in essence, means that an adversary that has the plaintext messages a and b cannot

distinguish between the encryptions Enc(a) and Enc(b).

An encryption scheme has a computational security parameter κ if all known attacks

against the scheme, including breaking the encryption or distinguishing between the en-

cryptions of different messages, take 2κ bit operations. In practice, at least 128 bits of

security are preferred [5].

The strength of a cryptosystem relies on the computational intractability of retrieving

the private key from the public information–an adversary holding the public information

cannot find the private key by brute force computations.

2.3 Pseudorandom objects

A pseudorandom generator (PRG) is an efficient deterministic function that expands short

seeds into longer pseudorandom bit sequences, which are computationally indistinguishable

from truly random sequences.

A pseudorandom function (PRF) is a family of efficiently-computable keyed functions

that produce an output which is computationally indistinguishable from the output of a

random function. More details can be found in [104, Ch. 3], [133, Ch. 3].

Pseudorandom functions can be constructed from pseudorandom generators. In practice,

pseudorandom functions are instantiated from block ciphers AES [76], or cryptographic hash

functions like SHA-3 or newer sponge-based functions [37].

2.4 Secret sharing

Secret sharing [184, 201] is a tool that distributes a secret message to a number of parties, by

splitting it into random shares. Specifically, t-out-of-n secret sharing splits a secret message

into n shares and distributes them to different parties; then, the secret message can be

reconstructed by an authorized subset of parties, which have to combine at least t shares.
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The t-out-of-n secret sharing is called polynomial secret sharing, while n-out-of-n secret

sharing is usually called additive secret sharing.

One common scheme is the additive 2-out-of-2 secret sharing scheme, which splits a secret

message m in a message space M into two shares by: generating uniformly at random an

element s ∈M, adding it to the message and then distributing the shares s and m+s ∈M.

(The message space is a finite abelian group.) Both shares are needed in order to recover

the secret. This can be also thought of as a one-time pad [31, 220] variant onM.

Additive blinding is a weaker scheme than secret sharing, but sufficient for many appli-

cations. For a message m ∈ M of l bits, s will be uniformly sampled from (0, 2l+λ), where

λ is the statistical security parameter. The statistical security parameter can take values of

around 80 bits.

Theorem 2.4.1. (a) Additive secret sharing is perfectly secret when s ∈M [74];

(b) Additive blinding is λ-statistically secure when s ∈ (0, 2l+λ).

Since M is a finite abelian group, addition in M involves wrap-around, which ensures

that the distributions of m and m+ s are identical. This proves (a).

The proof of (b) follows from computing the advantage an adversary has for distinguish-

ing between m + s ∈ (0, 2l+λ + 2l) and a uniformly sampled random value r ∈ (0, 2l+λ),

which is 1/2 + 2−λ (the statistical distance between the two sets is 2−λ).

2.5 Homomorphic encryption schemes

Let Enc(·) denote a generic encryption primitive, with domain the space of private data,

called plaintexts, and codomain the space of encrypted data, called ciphertexts. Enc(·) also

takes as input the public key, and probabilistic encryption primitives also take a random

number. The decryption primitive Dec(·) is defined on the space of ciphertexts and takes

values on the space of plaintexts. Dec(·) also takes as input the private key. Asymmetric or

public key cryptosystems involve a pair of keys: a public key that is disseminated publicly,

and which is used for the encryption of the private messages, and a private key which is

known only to its owner, used for the decryption of the encrypted messages.
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The decryption primitive of a homomorphic encryption scheme is a homomorphism from

the space of ciphertexts to the space of plaintexts. An encryption scheme is called partially

homomorphic if it supports the encrypted evaluation of either a linear polynomial or a

monomial.

Specifically, additively homomorphic schemes satisfy the property that there exists an

operator ⊕ defined on the space of ciphertexts such that:

Enc(a)⊕ Enc(b) ⊂ Enc(a+ b), (2.5.1)

for any plaintexts a, b supported by the scheme. We use set inclusion instead of equality be-

cause the encryption of a message is not unique in probabilistic cryptosystems. Intuitively,

equation (2.5.1) means that by performing this operation on the two encrypted messages,

we obtain a ciphertext that is equivalent to the encryption of the sum of the two plain-

texts. Formally, the decryption primitive Dec(·) is a homomorphism between the group of

ciphertexts with the operator ⊕ and the group of plaintexts with addition +, which justifies

the name of the scheme. It is immediate to see that if a scheme supports addition between

encrypted messages, it will also support subtraction, by adding the additive inverse, and

multiplication between an integer plaintext and an encrypted message, obtained by adding

the encrypted messages for the corresponding number of times.

Multiplicatively homomorphic schemes satisfy the property that there exists an operator

⊗ defined on the space of ciphertexts such that:

Enc(a)⊗ Enc(b) ⊂ Enc(a · b), (2.5.2)

for any plaintexts a, b supported by the scheme.

Furthermore, an encryption scheme is called somewhat or leveled homomorphic if it

supports the encrypted evaluation of a polynomial with a finite degree. In other words, it

satisfies both (2.5.1) and (2.5.2) but only for a limited amount of operations

Finally, an encryption scheme is called fully homomorphic if it supports the encrypted
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evaluation of arbitrary polynomials, i.e., it satisfies both (2.5.1) and (2.5.2) for an unlimited

amount of operations. Leveled homomorphic encryption schemes can be turned into fully

homomorphic encryption schemes if a bootstrapping operation is enabled, which can refresh

the ciphertext after the levels were consumed, such that further operations are allowed while

still guaranteeing correct decryption.

Remark 2.5.1. A homomorphic cryptosystem is malleable, which means that a party that

does not have the private key can alter a ciphertext such that another valid ciphertext is

obtained. Malleability is a desirable property in order to achieve third-party outsourced

computation on encrypted data, but allows ciphertext attacks. In this work, we assume

that the parties have access to authenticated channels, therefore an adversary cannot alter

the messages sent by the honest parties.

In the rest of the thesis, we will slightly abuse the notation Enc(·) to describe encrypting

vectors and matrices (i.e. each element is individually encrypted).

2.5.1 Additively homomorphic encryption

Additively homomorphic encryptions schemes, abbreviated as AHE, can be instantiated by

various schemes such as [80, 107, 130, 177]. Let AHE =(KeyGen,E,D,Add, cMlt) be an

instance of an asymmetric additively homomorphic encryption scheme, withM the message

space and C the ciphertext space. We will use the following abstract notation: ⊕ denotes

the addition on C and ⊗ denotes the multiplication between a plaintext and a ciphertext.

1. KeyGen(1σ): Takes the security parameter σ and outputs a public key pk and a private

key sk.

2. E(pk,m): Takes the public key and a message m ∈M and outputs a ciphertext in C.

3. D(sk, c): Takes the private key and a ciphertext c ∈ C and outputs the message that

was encrypted m′ ∈M.

4. Add(c1, c2): Takes ciphertexts c1, c2 ∈ C and outputs ciphertext c = c1 ⊕ c2 ∈ C such

that: D(sk, c) = D(sk, c1) + D(sk, c2).
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5. cMlt(m1, c2): Takes plaintext m1 ∈ M and ciphertext c2 ∈ C and outputs ciphertext

c = m1 ⊗ c2 ∈ C such that: D(sk, c) = m1 ·D(sk, c2).

The Paillier cryptosystem [177] is an asymmetric additively homomorphic encryption

scheme. The private data are elements of the ring of integers modulo N , denoted by ZN ,

where N is a large integer of σ bits, called the Paillier modulus. The ciphertexts take values

in the multiplicative group of integers modulo N2, denoted by Z∗N2 . Paillier is a probabilistic

encryption scheme, which means that the encryption primitive also takes as an argument a

random number which, for simplicity, we omit in this notation. For compactness, we will

denote the Paillier encryption of a message a ∈ ZN by [[a]] as a shorthand notation for

E(pk, a), for an instance of the random number. For readability, we will use throughout the

manuscript the following abstract notation for the operations on the encrypted space:

[[a]]⊕ [[b]]
d
= [[a+ b]], b⊗ [[a]]

d
= [[ba]], for plaintexts a, b ∈ ZN , (2.5.3)

where d
= means that the equality holds after applying the decryption primitive on both sides.

The pair of keys corresponding to this cryptosystem is (pk, sk), where the public key is

pk = (N, g) and the secret key is sk = (γ, δ). N called the modulus and is the product of

two large prime numbers p, q of the same bit length, and g is an element of order N in Z∗N2 ,

commonly selected to be N + 1, which we also prefer here. Furthermore,

γ = φ(N) = (p− 1)(q − 1), δ = φ(N)−1 mod N,

where φ is Euler’s totient function. For a plaintext a ∈ ZN , the Paillier encryption is:

[[a]] = garN mod N2, (2.5.4)

where r is a random nonzero element in ZN , which makes Paillier a probabilistic encryption
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scheme. The decryption primitive is the following:

a =
[[a]]γ mod N2 − 1

N
δ mod N, (2.5.5)

which uses the fact that (1 +N)a = 1 +Na mod N2.

In the Paillier scheme, in order to obtain addition between plaintexts, the operation

between ciphertexts is modular multiplication, which was denoted by ⊕ in the text:

[[a]] · [[b]] = garN · gbr′N mod N2 = ga+b(rr′)N = [[a+ b]] mod N2. (2.5.6)

The multiplication between a plaintext value c and an encrypted value [[a]], which was

denoted by c⊗ [[a]] in the text, is obtained in the following way:

[[a]]c = gac(rc)N mod N2 = [[ca]]. (2.5.7)

It follows that negation is achieved by modular inverse.

Theorem 2.5.2. The Paillier cryptosystem is semantically secure [177] under the Decisional

Composite Residuosity assumption.

The Decisional Composite Residuosity hardness problem is described in Appendix A.1.

The DGK cryptosystem. In [77, 78], Damgård, Geisler and Krøigaard describe a

protocol for secure comparison. Motivated by that functionality, they propose the DGK

additively homomorphic encryption scheme, in which it is efficient to determine if a given

ciphertext is an encryption of zero. This property is useful for comparisons and when working

with bits.

The plaintext space for DGK is Zu, where u is a small prime divisor of p− 1 and q − 1,

p and q are large, same size prime numbers, and N = pq. The parameters vp and vq are

t-bit prime divisors of p − 1 and q − 1. The numbers g and h are elements of Z∗N of order

uvpvq and vpvq. The DGK encryption scheme has public key pkDGK = (N, g, h, u)DGK

and skDGK = (p, q, vp, vq)DGK. In order to distinguish a DGK ciphertext from a Paillier
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ciphertext we use the notation [·]. For a plaintext x ∈ Zu, a DGK encryption is:

[a] = gahr mod N,

where r is a random 2t-bits integer. We use this encryption scheme with the purpose of

encrypting and decrypting bits that represent comparison results, therefore, for decryption,

we only need to check if the encrypted value is 0. For this, it is enough to verify:

[a]vpvq mod p = 1

to see if a = 0. DGK is additively homomorphic so the following holds:

a+ b = D([a] · [b] mod N), −a = D([a]−1 mod N). (2.5.8)

We will use again ⊕ and ⊗ to abstract the addition between and encrypted values, respec-

tively, the multiplication between a plaintext and an encrypted values.

Theorem 2.5.3. The DGK cryptosystem is semantically secure [77, 78], under the hardness

of factoring assumption.

Remark 2.5.4. We also notice the additive blinding scheme from Preamble 2.4 can be viewed

as a one-time symmetric key-homomorphic and message-homomorphic encryption, as long

as there is no overflow: E′(m) = m−s, D′(E′(m)) = E′(m)+s = m, with s being the secret-

key. This symmetric cryptosystem is compatible with the Paillier and DGK cryptosystems,

in the sense that the two encryptions commute: D(D′(E(E′(m)))) = m by using E(s) instead

of s for decryption D′, where E′(m) is performed on the message space of the cryptosystem,

and similarly D′(D(E(m)⊕ E(s))) = m.

2.5.2 Somewhat homomorphic encryption

Somewhat Homomorphic Encryption (SHE) schemes generally allow many to unlimited

homomorphic addition operations and a limited number of sequential homomorphic multi-

plications. SHE differs from leveled HE in the following sense: from their construction, SHE
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schemes support a fixed number of sequential multiplications (e.g., one or two), whereas lev-

eled HE take as a parameter the number of multiplications when instantiating the scheme

and can be even made to support a different number of multiplications by bootstrapping.

Labeled Homomorphic Encryption (LabHE) is a SHE scheme that allows unlim-

ited additions and one multiplication between ciphertexts. This scheme assumes that the

decryptor knows the program to be executed on the encrypted data. The encryptor assigns

a unique label to each message and sends the encrypted data along with the corresponding

encrypted labels to the server.

Denote by M the message space. An admissible function for LabHE f : Mn → M is

a multivariate polynomial of degree 2 on n variables. A program that has labeled inputs is

called a labeled program [27]:

Definition 2.5.5. A labeled program P is a tuple (f, τ1, . . . , τn), where f :Mn →M is

an admissible function on n variables and τi ∈ {0, 1}∗ is the label of the i-th input of f .

LabHE is constructed from an AHE scheme with the requirement that the message space

must be a public ring in which one can efficiently sample elements uniformly at random.

In what follows, we will use the Paillier cryptosystem as the underlying AHE scheme. The

idea is that an encryptor splits their private message as described in Preamble 2.4 into a

random value (secret) and the difference between the message and the secret. For efficiency,

instead of taking the secret to be a uniformly random value, we take it to be the output of

a pseudorandom function applied to the corresponding label. The label acts like the seed

of the pseudorandom function. The encryptor then forms the LabHE ciphertext from the

encryption of the first share along with the second share, yielding Ê(m) = (m − b, [[b]]),

as described in Step 1 in the following. This enables us to decrypt one multiplication of

two encrypted values, using the observation (2.5.9). The AHE scheme allows computing

(m1 − b1)⊗ [[b2]], (m2 − b2)⊗ [[b1]] and [[(m1 − b1) · (m2 − b2)]], for plaintexts (mi − bi),

i = 1, 2. Hence, we can obtain the AHE encryption of one multiplication [[m1 ·m2−b1 ·b2]]

from Ê(m1) and Ê(m1), described in Step 4 in the following. Decryption, described in

Step 5, requires that the decryptor knows the private key of the AHE scheme, and bi, such
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that it can compute m1 ·m2 = D[[m1 ·m2 − b1 · b2]] + b1 · b2.

m1 ·m2 − b1 · b2 = (m1 − b1) · (m2 − b2) + b1 · (m2 − b2) + b2 · (m1 − b1). (2.5.9)

LetM be the message space of the AHE scheme, L ⊂ {0, 1}∗ denote a finite set of labels

and F : {0, 1}k × {0, 1}∗ → M be a pseudorandom function that takes as inputs a key of

size k polynomial in σ the security parameter, and a label from L. LabHE is defined as a

tuple LabHE = ( ˆInit, ˆKeyGen, Ê, ˆEval, D̂):

1. ˆInit(1σ): Takes the security parameter σ and outputs master secret key msk and

master public key mpk for AHE.

2. KeyGen(mpk): Takes the master public key mpk and outputs for each user i a user

secret key uski and a user public key upki.

3. Ê(mpk,upk, τ,m): Takes the master public key, a user public key, a label τ ∈ L and

a message m ∈ M and outputs a ciphertext C = (a, β). It is composed of an online

and offline part:

• Off-Ê(usk, τ): Computes the secret b← F (usk, τ) and outputs Coff = (b, [[b]]).

• On-Ê(Coff ,m): Outputs C = (m− b, [[b]]) =: (a, β) ∈M× C.

4. ˆEval(mpk, f, C1, . . . , Ct): Takes the master public key, an admissible function

f : Mt → M, t ciphertexts and returns a ciphertext C. ˆEval is composed of the

following building blocks:

• M̂lt(C1, C2): Takes Ci = (ai, βi) ∈ M× C for i = 1, 2 and outputs C = [[a1 · a2]] ⊕

(a1 ⊗ β2)⊕ (a2 ⊗ β1) = [[m1 ·m2 − b1 · b2]] =: α ∈ C.

• ˆAdd(C1, C2): If Ci = (ai, βi) ∈ M × C for i = 1, 2, then outputs C = (a1 + a2,

β1 ⊕ β2) =: (a, β) ∈ M × C. If both Ci = αi ∈ C, for i = 1, 2, then outputs

C = α1 ⊕ α2 =: α ∈ C. If C1 = (a1, β1) ∈ M × C and C2 = α2 ∈ C, then outputs

C = (a1, β1 ⊕ α2) =: (a, β) ∈M× C.
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• ˆcMlt(c, C ′): Takes a plaintext c ∈ M and a ciphertext C ′. If C ′ = (a′, β′) ∈ M× C,

outputs C = (c · a′, c⊗ β′) =: (a, β) ∈ M× C. If C ′ = α′ ∈ C, outputs C = c⊗ α′ =:

α ∈ Ĉ.

5. D̂(msk, usk1,...,t,P, C): Takes the master secret key, a vector of t user secret keys, a

labeled program P and a ciphertext C. It has an online and an offline part:

• Off-D̂(msk,P): Parses P as (f, τ1, . . . , τt). For i ∈ [t], it computes the secrets bi =

F (uski, τi), b = f(b1, . . . ,bt) and outputs mskP(msk,b).

• On-D̂(skP , C): If C = (a, β) ∈ M × C: either output (i) m = a + b or (ii) output

m = a+ D(msk, β). If C ∈ C, output m = D(msk, C) + b.

The cost of an online encryption is the cost of an addition in M. The cost of online

decryption is independent of P and only depends on the complexity of D.

Theorem 2.5.6. ([27]) LabHE satisfies correctness (the probability of the scheme not cor-

rectly evaluating the allowed class of functions is negligible), succinctness (the ciphertexts

have polynomial length in the security parameter), semantic security (the ciphertexts are

indistinguishable from one another) and context-hiding (decrypting the ciphertext does not

reveal anything about the inputs of the computed function, only the result of the function on

those inputs).

2.5.3 Leveled fully homomorphic encryption

Recall that leveled homomorphic encryption schemes allow the evaluation of a multivari-

ate polynomial on encrypted data. The common term for such a multivariate polynomial

functionality is arithmetic circuit and the logarithm of the degree of the polynomial is the

multiplicative depth of the circuit.

The newer generations of leveled/fully HE schemes are based on lattices and rely on the

Ring Learning with Errors [4, 156] hardness problem, described in Appendix A.2. Each

operation evaluated on ciphertexts introduces some noise, which, if it overflows, can prevent

correct decryption. Multiplications introduce the most noise, so we focus on the number of
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sequential multiplications allowed in an instance of a leveled homomorphic scheme, which

we call multiplicative budget. Correct decryption is only guaranteed for the evaluation of

circuits of smaller multiplicative depth than the multiplicative budget.

The CKKS scheme (Cheon-Kim-Kim-Song [62]) is a leveled homomorphic encryption

scheme. CKKS can perform operations on encrypted real numbers with a smaller error than

other leveled homomorphic schemes. Each real number is multiplied by a positive integer

scaling factor and truncated, as commonly done, and one can remove the extra scaling factor

occurring in the result after a multiplication, through the rescaling procedure, at very little

error. This manages the magnitude of the underlying plaintexts, which could otherwise

cause overflow in a large depth circuit.

A ciphertext’s size grows with the number of sequential multiplications it supports.

Each ciphertext, respectively plaintext, is characterized by a level, a scaling depth and a

number of moduli. A new ciphertext (freshly encrypted, rather than obtained as the result

of operations on other ciphertexts) is on level L, scaling depth 1 and has as many moduli as

the multiplicative budget minus one. The number L minus the current level corresponds to

the number of rescaling operations previously performed on the ciphertext and scaling depth

corresponds to the number of multiplications without rescaling that have been performed.

After a multiplication followed by a rescaling procedure, the number of levels decreases

by one, the scaling depth remains the same and one modulus is dropped. To avoid some

technicalities and parallel the notion of circuit depth, in the rest of the manuscript, when

we refer to the depth of a ciphertext, we refer to the multiplicative depth of the arithmetic

circuit used in order to obtain that ciphertext. If rescaling is done after every multiplication,

then the depth will be the scaling depth minus one.

In the CKKS scheme, plaintexts and ciphertexts are polynomials in the ring of integers of

a cyclotomic field. Intuitively, this enables us to encode multiple scalar values in a plaintext

or ciphertext. Hence, we obtain ciphertexts that contain the encryption of a vector. This is

a standard practice in lattice-based homomorphic encryption that allows performing single

instruction multiple data (SIMD) operations, and can bring major computation and storage
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improvements when evaluating an arithmetic circuit. We can pack multiple values in one

plaintext/ciphertext–packing can be thought of as the ciphertext having multiple indepen-

dent data slots. Abstracting the details away, the SIMD operations that can be supported

are addition, element-wise multiplication by a plaintext or ciphertext and data slot per-

mutations that can achieve ciphertext rotations (e.g., used for summing up the values in

every slot). However, once the values are packed, extractions of individual values from the

ciphertexts can require multiplicative masking and increase the circuit multiplicative depth.

More specifically, let M be a power of two, and let ΦM (X) denote the M -th cyclotomic

polynomial of degree N := φ(M)/2, i.e., XN + 1. The plaintext space is the ring of poly-

nomials R := Z[X]/〈ΦM (X)〉. N is also called the ring dimension for the plaintext space.

Define the residue ring Rl := R/QlR = ZQl [X]/〈ΦM (X)〉, where Ql is the ciphertext mod-

ulus corresponding to level l. The ciphertext space for level l is the ring Rl×Rl. The CKKS

scheme supports an efficient packing of up to N/2 real values in a single plaintext, respec-

tively a single ciphertext. A real-valued message in CN is encoded in a plaintext in R via

the inverse canonical embedding map and rounding, which corresponds to evaluation of the

inverse Discrete Fourier Transform (with the primitive M -th roots of unity exp(−2πi/M)).

The decoding procedure is given by the forward Discrete Fourier Transform.

We next sketch the algorithms in the basic CKKS scheme. There are several optimiza-

tions available that employ the Residue Number System detailed in [40, 64, 117].

1. Setup(1κ, QL) Given the security parameter κ, for the largest ciphertext modulus QL,

output the ring dimension N . Set the small distributions χkey, χerr, χenc over R for

the secret, error and encryption.

2. KeyGen(R, χkey, χerr, χenc): Sample a secret s ← χkey, a random a ← RL and error

e← χerr. Set the secret key sk← (1, s) and output the public key pk← (b, a) ∈ R2
L,

where b← −as+ e(modQL).

3. KSGensk(R, χkey, χerr, χenc): For s′ ∈ R, sample a random a′ ← R2L and error

e′ ← χerr. Output the switching key swk ← (b′, a′) ∈ R2
2L, where b′ ← −a′s +
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e′ + QLs
′(modQ2L). Output the evaluation key evk ← KeyGensk(s2). Output the

rotation key rk(κ) ← KeyGensk(s(κ)), for rotation index κ.

4. Epk(m): For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output ct← v · pk + (m+

e0, e1)(modQL).

5. Dsk(ct): For ct← (c0, c1) ∈ R2
l , output m̃ = c0 + c1 · s(modQl).

6. CAdd(ct, c): For ct = (c0, c1) ∈ R2
l and c ∈ R, output ctCAdd ← (c0 + c, c1)(modQl).

7. Add(ct1, ct2): For ct1, ct2 ∈ R2
l , output ctAdd ← ct1 + ct2(modQl).

8. CMult(c, ct): For ct ∈ R2
l and c ∈ R, output ctCMult ← c · ct(modQl).

9. Multevk(ct1, ct2): For cti = (bi, ai) ∈ R2
l , for i = 1, 2, let (d0, d1, d2) = (b1b2, a1b2 +

a2b1, a1a2)(modQl). Output ctMult ← (d0, d1) + bQ−1
L · d2 · evke(modQl).

10. Rotaterk(κ)(ct): For ct = (c0, c1) ∈ R2
l and rotation index κ, output ctrot ← (c

(κ)
0 , 0)+

bQ−1
L · c

(κ)
1 · rk(κ)e(modQl).

11. ReScale(ct, p): For a ciphertext ct ∈ R2
l and an integer p, output ct′ ← b2−p ·

cte(modQl/2
p).

Theorem 2.5.7. The CKKS scheme is semantically secure [62] assuming the parameters

are selected so the Decisional Ring Learning with Errors problem is computationally hard.

2.6 Oblivious transfer

Oblivious transfer is a technique used when one party wants to obtain a secret from a set of

secrets held by another party [105, Ch. 7]. Party A has k secrets (σ0, . . . , σk−1) and party

B has an index i ∈ {0, . . . , k − 1}. The goal of A is to transmit the i-th secret requested

by the receiver without knowing the value of the index i, while B does not learn anything

other than σi. This is called 1-out-of-k oblivious transfer. There are many constructions

of oblivious transfer that achieve security as in the two-party version of the simulation
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definition (Definition 2.2.6). Many improvements in efficiency, e.g., precomputation, and

security have been proposed, see e.g., [21, 128, 174].

We will use an 1-out-of-2 oblivious transfer, where the inputs of party A are [[σ0]], [[σ1]]

and party B holds i ∈ {0, 1} and the secret key and has to obtain σi. We will denote this

by σi ← OT([[σ0]], [[σ1]], i, sk). We will also use a variant where party A has to obliviously

obtain the AHE-encrypted [[σi]], and A has [[σ0]], [[σ1]] and party B holds i, for i ∈ {0, 1},

and the secret key. We will denote this variant by [[σi]]← OT′([[σ0]], [[σ1]], i, sk).

The way the variant OT′ works is that A chooses at random r0, r1 from the mes-

sage space M, and sends shares of the messages to B: [[v0]] := Add([[σ0]], [[r0]]), [[v1]] :=

Add([[σ1]], [[r1]]). B selects vi and sends back to A the encryption of the index i: [[i]] and

Add([[vi]], [[0]]), such that A cannot obtain information about i by comparing the value it

received with the values it sent. Then, A computes:

[[σi]] = Add
(

[[vi]], cMlt
(
r0,Add([[i]], [[−1]])

)
, cMlt(−r1, [[i]])

)
.

Proposition 2.6.1. [[σi]]← OT′([[σ0]], [[σ1]], i, sk) is private w.r.t. Definition 2.2.5.

The proof is given in Appendix A.3.

We will use this oblivious transfer functionality for protocols in Chapters 3 and 6.

2.7 Private two-party comparison

Consider a two-party computation problem under an encryption scheme that does not sup-

port comparison between encrypted data. A large number of secure comparison protocols on

private inputs owned by two parties have been proposed in the literature, see [77, 98, 140,

153], with a survey of the state of the art given in [73]. In [77, 78], Damgård, Geisler and

Krøigaard describe a protocol for secure comparison using the DGK additively homomorphic

encryption scheme described in Preamble 2.5.1, whose ciphertexts are denoted as [·].

Consider two parties A and B, each having a private value α and β. Using the binary

representations of α and β, the two parties exchange l blinded and encrypted values such

that each of the parties will obtain a bit δA ∈ {0, 1} and δB ∈ {0, 1} that satisfy the following
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relation: δA Y δB = (α ≤ β), after executing Protocol 2.7.1, where Y denotes the exclusive

or operation. The protocol is described in [221, Protocol 3], where an improvement of the

DGK scheme is proposed. By applying some extra steps, as in [221, Protocol 2], one can

obtain a protocol for private two-party comparison where party A has two encrypted inputs

with an AHE scheme [[a]], [[b]], with a, b represented on l bits, using the fact that the most

significant bit of (b− a+ 2l) is the bit that indicates if (a ≤ b), shown in Protocol 2.7.2.

Proposition 2.7.1. ( [77, 221]) Protocol 2.7.2 for secure two-party comparison is private

in the semi-honest model w.r.t. Definition 2.2.6.

Protocol 2.7.1: Private two-party comparison with plaintext inputs using DGK

Input: A: α; B: β, skDGK

Output: A: δA; B: δB such that δA Y δB = (α ≤ β)

1: B: send the encrypted bits [βi], 0 ≤ i < l to A.

2: for each 0 ≤ i < l do

3: A: [αi Y βi]← [βi] if αi = 0 and [αi Y βi]← [1]⊕ (−1)⊗ [βi] otherwise.

4: end for

5: A: Choose a uniformly random bit δA ∈ {0, 1}.

6: A: Compute the set L = {i|0 ≤ i < l and αi = δA}.

7: for each i ∈ L do

8: A: compute [ci]← [αi+1 Y βi+1]⊕ . . .⊕ [αl Y βl]) .

9: A: [ci]← [1]⊕ [ci]⊕ (−1)⊗ [βi] if δA = 0 and [ci]← [1]⊕ [ci] otherwise.

10: end for

11: A: generate uniformly random nonzero values ri of 2t bits (see [78]), 0 ≤ i < l.

12: for each 0 ≤ i < l do

13: A: [ci]← ri ⊗ [ci] if i ∈ L and [ci]← [ri] otherwise.

14: end for

15: A: send the values [ci] in random order to B.

16: B: if at least one of the values ci is decrypted to zero, set δB ← 1, otherwise set δB ← 0.
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Protocol 2.7.2: Private two-party comparison with encrypted inputs using DGK

Input: A: [[a]], [[b]]; B: sk, skDGK

Output: B: (δ = 1) ≡ (a ≤ b)

1: A: choose uniformly at random r of l + 1 + λ bits, compute [[z]] ← [[b]] 	 [[a]] ⊕ [[2l + r]] and

send it to B. Then compute α← r mod 2l.

2: B: decrypt [[z]] and compute β ← z mod 2l.

3: A,B: execute Protocol 2.7.1.

4: B: send [[z ÷ 2l]] and [[δB ]] to A.

5: A: [[(β < α)]]← [[δB ]] if δA = 1 and [[(β < α)]]← [[1]]	 [[δB ]] otherwise.

6: A: compute [[δ]]← [[z ÷ 2l]]	 ([[r ÷ 2l]]⊕ [[(β < α)]]) and send it to B.

7: B: decrypts δ.

2.8 Notation

We denote vectors by lower-case bold letters, e.g., x and matrices by upper-case bold letters,

e.g., A. Rm×n represents the set ofm×n matrices with real elements and Sn++ represents the

set of symmetric positive definite n× n matrices. Z denotes the set of integers, ZN denotes

the additive group of integers modulo N and Z∗N denotes the multiplicative group of integers

modulo N . The notation x ← X means that x is uniformly drawn from a distribution X.

Pr denotes the probability taken over a specified distribution. We refer to algorithms that

are run interactively by multiple parties as protocols.

For a vector x ∈ Rn, its `1-norm is ‖x‖1 =
∑n

i=1 |xi|, its `2-norm is ‖x‖2 =
√∑n

i=1 x
2
i ,

and its `∞-norm is ‖x‖∞ = max(|x1|, . . . , |xn|). The matrix-induced norm, for a matrix

P ∈ Sn++ is ‖x‖P :=
√

xᵀPx. Element-wise inequalities between vectors are denoted by

�,�,≺,�. For square matrices, A � 0 means that A is positive definite and A � 0 means

that it is positive semi-definite, with the converse meaning for ≺,�.

We use the following notation for the different homomorphic encryption schemes:

• For additively homomorphic encryption schemes, in particular for the Paillier scheme,
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we use E(·),D(·),Add(·), cMlt(·),⊕,	,� and [[·]]; see Preamble 2.5.1.

• For the DGK scheme we use [·],⊕,	,�; see Preamble 2.5.1.

• For somewhat homomorphic encryption schemes, in particular for the LabHE scheme,

we use Ê(·), D̂(·), ˆEval(·), ˆAdd(·), ˆcMlt(·), M̂lt(·), ⊕̂, 	̂, �̂, ⊗̂; see Preamble 2.5.2.

• For leveled fully homomorphic encryption schemes, in particular for the CKKS scheme,

we use E(·),D(·),Eval(·),Add(·),CMult(·),Mult(·),Rotate(·); see Preamble 2.5.3.
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Chapter 3

Optimization Problems

3.1 Introduction

The development of large-scale distributed systems has led to the outsourcing of costly

computations to cloud-computing platforms, as well as to concerns about privacy of the

collected sensitive data. In control theoretic applications and machine learning, linear and

quadratic optimization problems arise frequently – e.g., state estimation under minimum

square error, model predictive control, support vector machines – which require privacy

guarantees for the data involved in the computation.

The first part of this chapter develops a cloud-based protocol for a quadratic optimiza-

tion problem involving multiple parties, each holding information it seeks to maintain pri-

vate. The protocol is based on the projected gradient ascent on the Lagrange dual problem

and exploits additively homomorphic encryption and secure multi-party computation tech-

niques. Using formal cryptographic definitions of indistinguishability, the protocol is shown

to achieve computational privacy, i.e., there is no computationally efficient algorithm that

any involved party can employ to obtain private information beyond what can be inferred

from the party’s inputs and outputs only. In order to reduce the communication complexity

of the proposed protocol, we introduced a variant that achieves this objective at the expense

of weaker privacy guarantees. We discuss in detail the computational and communication

complexity properties of both algorithms theoretically and also through implementations.
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We conclude the first part with a discussion on computational privacy and other notions

of privacy such as the non-unique retrieval of the private information from the protocol

outputs.

In the second part of this chapter, we investigate how to securely evaluate another perva-

sive optimization problem, with different characteristics than quadratic programs: the least

squares problem with `1-regularized regressors, called Lasso. Sparsity and compressed sens-

ing have been widely used in signal processing, machine learning and control applications,

especially in the big-data regime and noisy environments [52, 123]. In high-dimensional

problems, it is likely that only a subset of features affects the observations. Hence, pur-

suing sparse representations reduces the model complexity, prevents overfitting and helps

with overall interpretation. Since finding the solution with the minimal number of non-zero

coefficients is NP-hard, `1-regularization has been proposed as a convex method that pro-

motes sparsity. Perhaps one of the most used algorithms for sparse recovery has been the

celebrated Lasso algorithm (least absolute shrinkage and selection operator), which accounts

for both sparsity and potentially noisy data, using `1-regularization. For instance, Lasso has

been used in signal reconstruction for medical imaging, wireless communication and track-

ing; seismology applications; portfolio optimization; text analysis [123, 236]. Many of these

applications are large-scale or involve data coming from multiple data sources. With the

recent widespread availability and development of cloud services, it seems an attractive and

cost effective solution to outsource the computations to the cloud, when the data owner or

querier lacks the computational resources and/or expertise to locally perform them. Given

the privacy-sensitive nature of medical data, financial data, location data, energy measure-

ments etc., on which such problems are computed, and how they can be used to profile users

or mount attacks on critical infrastructure, the computations should not be performed in

the clear at the cloud service.

The main challenges are the non-smoothness of the `1-norm, which is difficult to eval-

uate on encrypted data, as well as the iterative nature of the Lasso problem. We use a

distributed ADMM formulation that enables us to exchange substantial local computation
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for little communication between multiple servers. We give an encrypted multi-party proto-

col for solving the distributed Lasso problem, by approximating the non-smooth part with

a Chebyshev polynomial, evaluating it on encrypted data, and using a more cost effective

distributed bootstrapping operation. Finally, we provide numerical results for our proposed

solutions.

Compared to the first part of the chapter (Section 3.2), in the second part (Section 3.3),

we consider the approximation of a non-smooth nonlinear objective function and use multiple

servers to streamline the complex iterative computation, rather than a two-party computa-

tion, and a more powerful homomorphic encryption scheme to partially replace the blinded

communication necessary at every iteration.

This chapter covers the work presented in [10, 13, 16].

Contributions

In the first part of the chapter, we develop a new tractable optimization protocol to pri-

vately solve constrained quadratic problems. Our protocol relies on cryptographic tools

called encryption schemes. To solve the optimization problem on encrypted data, we use

an additively homomorphic encryption scheme, where, in short, addition commutes with the

encryption function. Thus, a party can process encrypted data without having direct access

to the data. The novelty is how to handle in a privacy-preserving manner the constraints of

the problem that introduce nonlinearities which cannot be supported by additively homo-

morphic encryption schemes. We show that a projected gradient method which operates on

the Lagrange dual problem can alleviate this problem and can be efficiently run on encrypted

data by exploiting communication between the participating parties.

The main contributions of our work are the following:

• We design and formally prove computational security guarantees for such protocols.

The proof relies on applying cryptographic tools to the specific optimization algorithm

that runs over multiple iterations.

• We investigate an alternative protocol which sacrifices some privacy but involves less
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communication overhead.

• We implement the protocols and show the computational and communication com-

plexity produce reasonable running times.

Furthermore, we emphasize the difference between the computational security guarantee

with the non-unique retrieval guarantee that is important in such optimization problems.

In the second part of this chapter, we use a more powerful homomorphic encryption

scheme, which enables polynomial (rather than only affine) computations by the cloud over

encrypted data of the client. However, encrypted Lasso brings new challenges: evaluating

non-smooth functions on encrypted data, as well as continuing computations over multiple

iterations and time steps, which generally requires refreshing the ciphertexts.

A conventional observation is that distributing a large optimization problem to multi-

ple servers improves the execution time by parallelizing smaller subproblems. Apart from

this, we note that distributing the computation allows a streamlined execution of encrypted

iterations. In particular, using multiple servers allows us to perform a refresh operation at

a substantially reduced cost compared to performing it only at one server. This cheaper re-

fresh operation enables us to continue the encrypted computations over multiple iterations,

as well as to use a high degree polynomial to approximate the gradient of the `1-norm.

Specifically, we propose:

• an efficient distributed encrypted solution to Lasso problems using ADMM, offering

computational privacy of all the data, including intermediate results;

• an optimized implementation of the above protocol using an efficient Chebyshev series

evaluation for polynomial approximations and reducing the number of ciphertext levels

and operations.

We also note that the quadratic program outlined in the first part of the chapter can be

formulated in a similar fashion, by having the indicator function of the feasible space in the

objective function. Hence, the solution we give here gives a different solution (in a different

setup of the cloud) to the above problem.
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Related work

Unconstrained optimization problems are commonly used in machine learning applications,

e.g., for linear regression, and several works have addressed gradient methods with partially

homomorphic encryption [120, 122]. However, adding constraints substantially complicates

the optimization problem by restricting the feasible domain. In addition, constraints in-

troduce nonlinear operations in the optimization algorithm, which cannot be handled in-

herently by the partially homomorphic cryptosystems. Examples of works that tackle pri-

vate linear programming problems or machine learning applications with optimization sub-

routines using garbled circuits, secret sharing, and hybrid approaches between the above

are [45, 58, 99, 148, 167] and the references within. Out of these, we inspire our solution

from [45], which tackles linear problems in machine learning, assembling blocks for secure

computation of the arg max of multiple values and dot products, using additively and leveled

homomorphic encryption.

The problem of secure constrained quadratic optimization with additively homomorphic

encryption was addressed in [203], but the authors only guaranteed conditional privacy and

non-unique retrieval of the private data. Specifically, in their case, in order to project the

variable on the feasible space, the cloud multiplicatively blinds the encrypted variable and

sends it to the requester, which decrypts the message, compares it to zero, and sends back

the result of the comparison. This reveals more information than strictly necessary, and in

special cases, can be used by the requester to infer information about the data of the agents.

The usage of ADMM for private distributed optimization is not novel, see e.g., [231, 234],

given its convenient formulation and splitting of the objective function and variables. (For

other distributed gradient based methods, see e.g., [155].) However, our usage of distributed

ADMM substantially differs from previous works in the following: i) we start with centralized

rather than already distributed data, so we split the centralized problem in a way that fits

our privacy and low-power requirements; ii) we assume heterogeneous servers and we split

the computations differently depending on who performs them; iii) the data at each server is

not in the clear, which complicates the computations; iv) the servers do not learn any of the
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data, not even intermediate iterates and results; this requires more complex computations to

privately perform nonlinear operations; v) the `1-regularization term is non-smooth and has

nonlinear gradient, leading to updates of the global primal variable that are incompatible

with the mentioned ADMM works.

The authors in [237] propose a distributed ADMM for a Lasso problem, using an thresh-

old additively homomorphic encryption and SPDZ [79] for computing the nonlinear opera-

tions. In contrast to their work, we do not distribute the data in the clear to the computing

servers, meaning we have less flexibility with respect to the local computations. However,

we can choose to split the data in the most convenient way to have a distributed conver-

gence speed similar to the centralized convergence, which [237] does not discuss. Another

difference is that the tools they use require them to communicate for every nonlinear com-

putation, such as multiplications and comparison operations, which require a number of

communication rounds dependent on the number of bits in the messages. In our case, the

servers only send two messages per iteration and the method we employ also allows us to

batch vectors and perform operations in parallel for all elements of a vector.

In [96, 197], the authors propose distributed/federated training and evaluation with

multi-party fully homomorphic encryption for linear, logistic and neural network models,

using stochastic gradient descent. While we inspired our solution from the multi-party fully

homomorphic encryption tool, their setup is different from ours: the data is either distributed

in cleartext locally at the servers or other data providers perform the preprocessing; and the

computations are different, leading to different optimizations: e.g., [96] uses a combination

of distributed and centralized bootstrapping operations, [197] has only one recurring variable

(the model) to bootstrap.

Finally, examples such as [121, 126, 176, 235] make use of differential privacy techniques

in optimization algorithms. Other lines of work solve optimization problems with ad-hoc

methods, such as transformation approaches, e.g. [97, 195, 214, 225]. These methods are

out of the scope of this chapter, but differential privacy is an avenue for future research in

privately determining parameters of the optimization problem.
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3.2 Secure evaluation of quadratic programs

Organization. We formulate the problem in Section 3.2.1. In Section 3.2.3, we de-

scribe the optimization theory behind the proposed protocol and justify the choice of the

gradient method. Furthermore, we present the main protocol and the subroutines that com-

pose it and in Section 3.2.3.6 that use an additively homomorphic scheme and a masking

procedure, and we show that the protocol achieves privacy of the agent’s data and of the

requester’s result. We discuss possible relaxations of the security guarantees and investigate

a more efficient protocol under these weaker conditions in Section 3.2.4.1. In Section 3.2.4,

we provide a privacy analysis of the problem concerning the input-output relation. We

present the complexity analysis of the protocols and show that the experimental results

point out reasonable running times in Section 3.2.5. Finally, the detailed privacy proofs are

given in Appendix B.

3.2.1 Problem setup

3.2.1.1 Motivating Examples

Quadratic optimization is a class of problems frequently employed in control system design

and operation. As a first motivating example, consider the problem of estimating the state

of a dynamical system from privacy-sensitive sensor measurements. For instance, such a

problem arises in smart houses where the temperature or energy readings of the sensors are

aggregated by a cloud controller and can reveal whether the owners are in the building. In

particular, let the system dynamics and sensor measurements be described by:

xt+1 = Axt + wt, yt = Cxt + vt, (3.2.1)

for t = 0, . . . , T − 1, where wt,vt are process and measurement noise respectively. The

system and sensor parameters A ∈ Rn×n,C ∈ Rp×n can be thought as publicly available

information while the sensor measurements y0, . . . ,yT−1 are privacy-sensitive data. The

untrusted cloud has to collect the measurements and output an initial state estimate x0 of
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the system to a target agent, while maintaining the privacy of the sensor data and final

output. A simple state estimate may be found as the solution to the least squares problem:

min
x0∈Rn

1

2

∑T
t=0

‖yt −CAᵀ x0‖22 =
1

2
‖y −O x0‖22,

where y =

[
yᵀ

0 yᵀ
1 . . . yᵀ

T−1

]ᵀ
, O =

[
Cᵀ (CA)ᵀ . . . (CAT−1)ᵀ

]ᵀ
.

(3.2.2)

O ∈ RTp×n is the system observability matrix. More general state estimation problems may

also include constraints, e.g., the initial state may lie in a polyhedral set Dx0 � b where

the shape of the polyhedron captured by the matrix D is publicly known but its position

and size captured by the vector b is private information.

As a second example, consider a control problem with privacy-sensitive objectives. Sup-

pose we are interested in steering a dynamical system (to track a private reference) starting

from a private initial position while guaranteeing safety state and/or input constraints for

a time horizon. The need for privacy in such problems arises when exploring vehicles are

deployed in uncertain or hazardous environments or when different users compete against

each other and want to hide their tactics. The appropriate controller for this problem is

a model predictive controller, a type of receding horizon control that minimizes a cost on

the deviation of states, measurements and control inputs from the desired references, under

safety or saturation constraints. We thoroughly investigate the secure evaluation of model

predictive controllers for linear systems in Chapter 6, using the solution from this chapter.

3.2.1.2 Problem statement

The above examples can be modeled as constrained quadratic optimization problems with

distributed private data. We consider three types of parties involved in the problem: a

number of agents Ai, i = 1, . . . , p, a cloud server C and a requester R. The purpose of this

setup is to solve an optimization problem with the data provided by the agents and the

computation performed on the cloud and send the result to the requester. The architecture

is presented in Figure 3.1.

Let us consider a strictly-convex quadratic optimization problem, which we assume to
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be feasible (there is at least one point where all constraints are satisfied):

x∗ = arg min
x∈Rn

1

2
xᵀ QC x + cᵀAx

s.t. AC x � bA,

(3.2.3)

where the variables and the parties to which they belong to are described as follows:

Agents A = (A1, . . . ,Ap): The agents are parties with low computational capabilities that

possess the private information bA and cA. The private information is decomposed across

the agents as: bA = (b1, . . . ,bp) and cA = (c1, . . . , cp), with bi ∈ Rmi and ci ∈ Rni being

the private data of agent i such that
∑p

i=1mi = m and
∑p

i=1 ni = n.

Cloud C: The cloud is a party with high computational capabilities that has access to

the matrices QC ∈ Sn++ and AC ∈ Rm×n. When the computation is sophisticated and/or

involves proprietary algorithms, QC and AC are private data of the cloud; otherwise, QC or

AC are public.

Requester R: The requester is a party with more computational capabilities than the

agents that is interested in the optimal solution x∗ of the problem. The requester can be

either one of the data providers or a separate cloud server.

Figure 3.1: Architecture of the problem: Agents are low-resource parties that have private data
that they outsource to a powerful server, called the cloud. The cloud has to solve an optimization
problem on the private data of the agents and send the result to a party called the requester, which
will help with the computations.

Note that in the first motivating example (3.2.2), the matrix QC in (3.2.3) corresponds to

the publicly known matrix OᵀO and the vector cA corresponds to the private vector −Oᵀ y.

For the objective to be strongly convex, we require that rank(O) = n, which also implies
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standard system observability. In the second example, the matrix QC is composed from the

regulating cost matrices, the cost vector cA is formed from the private initial conditions

and steady-state solution for the reference tracking, mixed by the system’s dynamics, and

the constraints vector bA depends on the private state bounds and initial condition (see

Chapter 6, equation (6.2.3)).

In most cloud applications, the service provider has to deliver the contracted service or

otherwise the clients would switch to another service provider. This means that the cloud

cannot alter the data it receives. Moreover, the clients’ interest is to obtain the correct result

from the service they pay for, hence, the agents and target node will also not alter the data.

However, the parties can locally process the data they receive in any fashion they want. This

means that the adversarial model we consider is semi-honest, defined in Definition 2.1.1.

The purpose of this section is to solve Problem (3.2.3) using a secure multiparty com-

putation protocol for semi-honest parties. This protocol takes as inputs the private data of

the agents, as well as the cloud’s data, and involves the parties in exchanging messages and

participating in some specified computations, and eventually outputs to the requester the

solution of the optimization problem. This protocol should guarantee computational secu-

rity, cf. Definition 2.2.6. More specifically, the cloud cannot obtain any information about

the private inputs of the agents and the output of the requester and similarly, the requester

cannot obtain any information about the private inputs of the agents and the cloud, other

than what they can compute using their inputs and outputs and public information, by

running a computationally efficient algorithm after the execution of the protocol.

In this section, we use the popular Paillier encryption, described in Preamble 2.5.1, but

any other additively homomorphic encryption scheme can be employed. In our protocol, the

requester R is the owner of a pair of Paillier keys. For everything that follows, [[·]] denotes

the encryption with the requester’s public key pkR. In addition, we also use an additive

blinding scheme, as described in Preamble 2.4, for reasons that will become apparent in

the protocol, related to hiding the data from the requester. In Remark 2.5.4, we showed

how this additive blinding is compatible with the AHE scheme, and combined, they offer a
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double encryption of the agents’ data.

3.2.2 A simpler problem: secure unconstrained quadratic optimization

Consider the following example of an unconstrained optimization problem:

min
x∈Rn

f(x) =
1

2
xᵀQCx + cᵀAx, (3.2.4)

where the variables have the same meaning as in Problem (3.2.3) described in Section 3.2.1.

The cloud has access to the positive definite matrix QC . Notice that ridge regression prob-

lems min
x∈Rn

1
2‖Qx− c‖22 + λ‖x‖22, for some appropriately sized quantities Q, c and penalty λ

can be cast in the same form as (3.2.4).

Problem (3.2.4) can be solved by setting the optimal solution equal to value that zeroes

the gradient of the objective function:

∇f(x∗) = 0→ x∗ = Q−1
C cA. (3.2.5)

Alternatively, when QC is very large or its inverse is numerically unstable, we prefer to

use an iterative algorithm to reach to the optimal solution, namely, the gradient descent

algorithm. An iteration of the gradient method has the form:

xk+1 = xk − η∇f(xk) = (I− ηQC)xk − ηcA, (3.2.6)

where η > 0 is the step-size chosen by the cloud and k = 0, . . . ,K − 1 for a number of

iterations K. While usually we would check convergence by checking the difference between

the objective function evaluated at consecutive iterations and would stop if this difference is

smaller than some tolerance, this can leak information about the private data (it is problem

dependent whether this leakage is significant or not). Therefore, for privacy reasons, K

needs to be chosen large enough such that convergence is guaranteed with high probability

and the algorithm should be run for this fixed number of iterations.

It is important to notice that for a quadratic objective function, only linear operations
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in the private data cA and {xk}k=0,...,K−1 are required in order to compute the solution,

both in its closed-form (3.2.5) and in its iterative form (3.2.6). Hence, by having the agents

encrypt their data with an additively homomorphic encryption scheme (e.g., the Paillier

scheme described in Preamble 2.5.1) and taking advantage of the additively homomorphic

property (2.5.3), the cloud can locally compute the optimal solution in its closed-form in

the encrypted domain:

[[x∗]] = Q−1
C ⊗ [[cA]], (3.2.7)

or by the gradient descent algorithm in the encrypted domain, for all k = 0, . . . ,K − 1:

[[xk+1]] = (I− ηQC)⊗ [[xk]]⊕ (−η)⊗ [[cA]], (3.2.8)

and send the final point [[x∗]] = [[xK ]] to the requester to decrypt and obtain the desired

result. Such a protocol satisfies the desired security according to Definition 2.2.6 provided in

Preamble 2.2 by the fact that the cloud only has access to data encrypted by a semantically

secure encryption scheme.

We mention also that quadratic problems with linear equality constraints can be solved

using the same tools presented above, assuming the invertibility of the matrix in (3.2.10):

min
x∈Rn

f(x) =
1

2
xᵀQCx + cᵀAx,

s.t. ACx = bA.

(3.2.9)

The closed-form optimal solution for (3.2.9) can be written as:

QC Aᵀ
C

AC 0


x

ν

 =

−cA

bA

 , (3.2.10)

for ν a Lagrange multiplier, which has a unique solution if Q−1
C and (ACQ

−1
C AC)

−1 are

invertible. As before, one can write an iterative algorithm to obtain the optimal solution x∗

without explicitly inverting the matrices.
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One needs to be careful with what kind of privacy is expected from the above kind of

problem. In a trivial example, if AC = I, then upon receiving the solution x∗, the requester

immediately learns the private data bA. The kind of input-output cryptographic privacy

covers this trivial example as well, stating that nothing apart from the knowledge inferred

from the input and output is leaked by a secure protocol.

Encryption schemes are usually defined on finite fields or finite groups, while in practice,

data involved in optimization problems have real values. To this end, we need to employ a

lossy mapping to map real values to a finite set. One common approach is to use fixed-point

representation to map from reals to a finite group of integers: truncate the real values to a

fixed number of integer bits and fractional bits and then multiply by a scaling factor, a large

enough integer value such that the result is an integer in the appropriate range. A subtlety

that arises when evaluating iterative algorithms on encrypted data, when the underlying

data uses fixed-point representation and is not originally an integer, is overflow. Trunca-

tion is not possible over (additively homomorphic) ciphertexts and dealing with consecutive

multiplications implies the accumulation of the scaling factor which leads to overflow: the

underlying plaintext in the resulting ciphertext will be be outside of the finite group and

decryption will become incorrect. The same problems can happen with sequential addi-

tions, but the problem is clearly not as stringent as with sequential multiplications. In the

literature, this is addressed by using, where possible, similarity transformations to integer

matrices [65] or reset the iterate accordingly [170]. In this chapter, we avoid the overflow

problem by exploiting the communication between parties (necessary in order to achieve

more complex operations on encrypted data) in order to privately perform truncation.

3.2.3 Secure constrained quadratic optimization

In this section we introduce our main algorithmic results for securely solving a quadratic op-

timization problem with linear inequality constraints, which introduce nonlinear operations

in the optimization algorithm and cannot be handled inherently by an AHE scheme. Let us

first describe the optimization algorithm used for solving the minimization problem (3.2.3)

on unencrypted data.
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For strongly convex problems, one can resort to duality theory [47, Ch. 5] to compute the

projection on the feasible set, and be able to retrieve the optimal value of the primal problem

from the optimal value of the dual problem. For the quadratic optimization problem (3.2.3),

its dual is also a quadratic optimization problem:

µ∗ = arg max
µ∈Rm

− 1

2
(Aᵀ
Cµ + cA)ᵀQ−1

C (Aᵀ
Cµ + cA)− µᵀbA

s.t. µ � 0. (3.2.11)

The dual objective function is denoted by g(µ) and its gradient is equal to:

∇g(µ) = −ACQ
−1
C (Aᵀ

Cµ + cA)− bA. (3.2.12)

Under standard constraint qualifications, e.g., Slater’s condition [47, Ch. 5], strong du-

ality between the primal and dual holds, which means the optimal objective in the primal

problem (3.2.3) is equal to the objective in the dual problem (3.2.11). Moreover, the opti-

mality conditions (Karush-Kuhn-Tucker) hold and are the following:

QCx
∗ + Aᵀ

Cµ
∗ + cA = 0 (3.2.13)

ACx
∗ − bA � 0, µ∗ � 0 (3.2.14)

µ∗i (a
ᵀ
i x
∗ − bi) = 0, i = 1, . . . ,m. (3.2.15)

For strictly convex problems, i.e., QC ∈ Sn++, the optimal solution of the primal problem

can be obtained from (3.2.13) as

x∗ = −Q−1
C (Aᵀ

Cµ
∗ + cA). (3.2.16)

An algorithm for computing the optimum in problem (3.2.11), which we will show is also

compatible with the AHE scheme, is the projected gradient ascent method. The projected
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gradient ascent is composed by iterations of the following type:

µk+1 = max{0,µk + η∇g(µk)}, (3.2.17)

where η > 0 is the step size and µk+1 is the projected value of µk + η∇g(µk) over the

non-negative orthant. For full rank of ACQ
−1
C Aᵀ

C , the dual problem is strictly convex and

the algorithm converges with a linear rate [173] for a fixed step size η = 1
L , where L =

λmax(ACQ
−1
C Aᵀ

C). For non-strictly convex dual function, the gradient ascent algorithm

converges in sublinear time [173].

3.2.3.1 Projected gradient ascent on encrypted data

As stated in Section 3.2.1, we aim to solve an optimization problem outsourced to the

cloud on private distributed data from the agents and send the result to the requester. To

protect the agents’ data, we use an encryption scheme that allows the cloud to perform

linear manipulations on encrypted data, as described in Preamble 2.5.1. To this end, the

requester generates a pair of keys (pkR, skR) and distributes the public key to the agents

and the cloud, enabling them to encrypt their data, which only the requester will be able to

decrypt, using the private key. We consider that all the data is represented on integers of l

bits and comment on this further in Section 3.2.3.5.

The main difficulty in performing the projected gradient ascent on encrypted data is

performing iteration (3.2.17). We have already seen in the example in Section 3.2.2 that the

update of the iterate in the direction of the gradient ascent can be computed locally by the

cloud directly on the encrypted data (3.2.8). However a first challenge lies in performing the

comparison with zero. Due to the probabilistic nature and modular arithmetic of the Paillier

encryption scheme, comparing ciphertexts does not give any information about the order

between the underlying messages and comparison on encrypted data cannot be performed

locally by the cloud. Notwithstanding, we employ an interactive protocol between the cloud,

which holds the encrypted data, and the requester, which is the owner of the private key

for the Paillier cryptosystem, that achieves the comparison securely. Moreover, after the
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comparison is performed, the update of the encrypted iterate (3.2.17) has to be done in

a private way, so that the result of the maximum operation is not revealed to any of the

parties involved (the cloud and the requester). These two steps are the main computational

bottleneck in the protocol we propose, as both require secure communication between the

cloud and the requester.

We can privately achieve the two steps mentioned above in three stages. First, the

cloud has to randomize the order of the two encrypted variables it wants to compare (Pro-

tocol 3.2.1). Second, the cloud and requester engage in an interactive comparison protocol

that takes as inputs the two randomized variables and outputs the result of the comparison

to the requester (Protocol 2.7.2 in Preamble 2.7). Third, the update of the dual iterate is

achieved through an interactive protocol between the cloud and requester, which takes as

inputs the two randomized variables and the result of the comparison and outputs to the

cloud the updated iterate (Protocol 3.2.2 and Preamble 2.6). Throughout this section, by

comparison we mean element-wise comparison, since the variable µ is a vector.

3.2.3.2 Secure comparison protocol

In order to privately compute (3.2.17), i.e., hide the result from all the parties involved, we

want to keep the result of the comparison of the updated iterate µk + ∇g(µk) with zero

unknown to both the cloud and the requester. The comparison protocol will reveal the result

of the comparison between the two inputs to the requester R. However, if we introduce an

additional step where C randomizes the order of the two values that it wants to compare,

then R does not learn any information by knowing the result of the comparison.

Protocol 3.2.1: Randomization step

Input: C: [[µ̄]], [[0]], where µ̄ := µ + η∇g(µ)

Output: C: [[a]], [[b]]

1: C: choose a random permutation π on two elements

2: C: output [[a]], [[b]]← π([[0]], [[µ̄]]), where the permutation is applied component-wise
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The comparison protocol that will be used in our optimization protocol is as follows. Let

C have two encrypted values under the Paillier scheme [[a]] and [[b]] that it obtained after

running Protocol 3.2.1, and let R have the decryption key. Furthermore, let R also have the

decryption key of the DGK homomorphic encryption scheme. At the end of the protocol

(outlined in Protocol 2.7.2 in Preamble 2.7), R will have the result of the comparison in

the form of one bit δ such that (δ = 1) ⇔ (a ≤ b). Let l denote the number of bits of the

unencrypted inputs a, b.

We will use blinding by random numbers to secure the communication from the cloud

to the requester. To guarantee the security of the DGK scheme, we choose a key-size that

makes factoring hard and set the randomization in the encryption primitive to be of length

greater than 2t bits, for t = 160. See more details in [77, 78].

3.2.3.3 Secure update protocol

Moreover, we need to ensure that when the cloud C updates the value of the dual iterate at

iteration k+ 1 in equation (3.2.17), it does not know the new value. The solution is to make

the cloud blind the values of [[a]] and [[b]] and send them to the requester in this order,

where the latter selects the value accordingly to the comparison result and then sends it

back to the cloud. However, there are two important issues that have to be addressed in

order for the update step to not leak information about the sign of the iterate: the blinding

should be additive and effectuated with different random values, and the ciphertexts should

be refreshed. The reasons are the following: if the blinding is multiplicative, by decrypting

the product, the requester knows which one of the values is zero. Moreover, if the two values

are additively blinded with the same random value, the requester can subtract them and

reveal at least if the value is zero. Re-randomization of the encryptions is necessary so that

the cloud cannot simply compare [[a]] and [[b]] with the received value. This can be done

by adding an encryption of zero or by decryption followed by encryption. Protocol 3.2.2 is

the solution to the update problem. In particular, it is the oblivious transfer procedure OT ′

in Preamble 2.6 applied element-wise for vectors [[a]], [[b]] and selection bits δ.
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Protocol 3.2.2: Secure update of the dual variable

Input: C: [[a]], [[b]]; R: δ such that (δi = 1)⇔ (ai ≤ bi)

Output: C: [[µ]]

1: for each i = 1, . . . ,m in parallel do

2: C: choose two random numbers r, s

3: C: [[ā]]← [[ai]]⊕ [[r]], [[b̄]]← [[bi]]⊕ [[s]]

4: C: send [[ā]] and [[b̄]] to R

5: if δi = 0 then R: [[v]]← [̃[ā]] = [[ā]] + [[0]]

6: else R: [[v]]← [̃[b̄]] = [[b̄]] + [[0]] . Refresh the ciphertext

7: end if

8: R: send [[v]] and [[δi]] to C

9: C: [[µi]]← [[v]]⊕ r ⊗ [[δi]]⊕ [[−r]]⊕ (−s)⊗ [[t]] . µi ← v + r(δi − 1)− sδi

10: end for

3.2.3.4 Protocol for solving strictly-convex quadratic problems

Having defined these protocols, we can now build a protocol that represents one iteration

(3.2.17) of the dual projected gradient ascent method.

Protocol 3.2.3: Secure iteration of the dual projected gradient ascent method

Input: C: AC ∈ Rm×n,QC ∈ Sn++, [[bA]], [[cA]], η > 0, [[µk]]; R: skR

Output: C: [[µk+1]]

1: C: [[∇g(µk)]]← (−ACQ
−1
C Aᵀ

C)⊗ [[µk]]⊕ (−ACQ
−1
C )⊗ [[cA]]⊕ (−1)⊗ [[bA]] . Compute the

encrypted gradient as in (3.2.12)

2: C: [[µ̄k]]← [[µk]]⊕ η ⊗ [[∇g(µk)]] . Update the value in the ascent direction

3: C,R truncate [[µ̄k]] to l bits

4: C execute Protocol 3.2.1: C gets [[ak]], [[bk]] . Randomly assign [[µ̄k]], [[0]] to [[ak]], [[bk]]

5: C,R execute Protocol 2.7.2 element-wise on inputs [[ak]], [[bk]]: R gets δk . Secure comparison

6: C,R execute Protocol 3.2.2: C obtains [[µk+1]] . Secure update ensuring µk+1 = max{µ̄k,0}
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Line 3 ensures that the updated iterate has the required number of bits for the comparison

protocol. This step is achieved by an exchange between the cloud and requester: the cloud

additively blinds the iterate by a random number, sends it to the requester, which decrypts

and truncates the sum and sends it back, where the cloud then subtracts the truncated

random number.

The random numbers used for blinding the sensitive values (in Protocols 2.7.2 and 3.2.2)

are sampled uniformly from the integers in ZN of l+λ bits, where λ is the statistical security

parameter, chosen such that brute-forcing the solution is intractable. In order to guarantee

correctness of the comparison protocol, no overflow must take place, so we must impose

log2N > l + λ+ 1.

The proof of security in the semi-honest model follows similar steps as in the argmax

protocol in [45] and we will address it in Appendix B.1.

Proposition 3.2.1. Protocol 3.2.3 is secure in the semi-honest model, cf. Definition 2.2.5.

Using the building blocks described above, we can finally assemble the protocol that

privately solves the constrained quadratic optimization problem (3.2.3) with private data

and sends the optimal solution to the requester. The public key pkR and bit-length l are

known by all the parties, hence we omit them from the inputs.

Protocol 3.2.4: Privacy preserving algorithm for solving strictly-convex quadratic

optimization problems

Input: Ai=1,...,p: bA = {bj}j=1,...,m, cA = {cj}j=1,...,n; C: AC ∈ Rm×n,QC ∈ Sn++,K; R: skR,K

Output: R: x∗

1: for i=1,. . . ,p do

2: Ai : encrypt the private information msgi ← ([[bi]], [[ci]])

3: Ai : send the encrypted messages to C

4: end for

5: C: Construct the vectors [[bA]] and [[cA]] from the messages

6: C: η ← 1/λmax(ACQ
−1
C Aᵀ

C)

7: C: Choose a random positive initial value µ0 for the dual variable and encrypt it: [[µ0]]
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8: for each k = 0, . . . ,K − 1 do

9: C,R execute Protocol 3.2.3: C gets [[µk+1]] . C,R securely effectuate an iteration of the

dual projected gradient ascent

10: end for

11: C: [[x∗]]← (−Q−1
C Aᵀ

C)⊗ [[µK ]]⊕ (−Q−1
C )⊗ [[cA]] and send it to R . Compute the primal

optimum from the optimal dual solution as in (3.2.13)

12: R: Decrypt [[x∗]] and output x∗

3.2.3.5 Fixed-point arithmetic

The optimization problem (3.2.3) is defined on real variables, whereas the Paillier encryption

scheme is defined on integers. To address this issue, we adopt a fixed-point arithmetic setting,

where we allow for a number to have a fixed number of fractional bits. First, we consider

numbers that have the magnitude between −2li−1 < x < 2li−1. Second, we consider a

value having li bits for the integer part and lf bits for the fractional part. Therefore, by

multiplying the real values by 2lf and truncating the result, we obtain integers. We choose

l = li + lf large enough such that the loss in accuracy is negligible and assume that there is

no overflow. For ease of exposition, we consider this data processing done implicitly in the

protocols described.

The errors in the solution caused by the fixed-point arithmetic operations necessary for

the encryption can be analyzed with the same tools as in [11, 129, 193]. The round-off

errors can be regarded as states in a stable dynamical system with bounded disturbances,

and hence, have a bounded norm that offers a guide on how to choose the number of

fractional bits lf for the fixed-point representation. On the other hand, the overflow and

quantization errors depend on the magnitude of the dual iterates. We considered feasible

and bounded problems–the dual problem (3.2.11) has a finite solution–therefore, one can

select the number of integer bits li in the representation such that no overflow occurs.
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3.2.3.6 Privacy of quadratic optimization protocol

We first provide the statements of the results and the main ideas of the proofs here, and

follow-up with the detailed arguments in Appendix B.

Theorem 3.2.2. Protocol 3.2.4 is secure cf. Definition 2.2.5 for non-colluding parties.

The intuition for the proof is as follows. Consider an iteration of the gradient ascent

in Protocol 3.2.4. Firstly, in the Paillier cryptosystem, two ciphertexts are computationally

indistinguishable to a party that does not have access to the decryption key. Secondly, the

exchanges between the cloud and the requester are additively blinded using a different ran-

dom number uniformly sampled from a large enough range (at least λ bits more over the

values that are desired to be blinded, where the size of λ is chosen appropriately, as discussed

in Preamble 2.4. This means that the blinded message is statistically indistinguishable from

a random number sampled from the same distribution. Thirdly, the ciphertexts are refreshed

(a different encryption of the same value), after each exchange, so a party that does not have

access to the decryption key cannot infer information about the encrypted values by simply

comparing the ciphertexts. Then, none of the parties can infer the magnitude or the sign

of the private variables. However, we need to show that privacy is not broken by running

an iteration multiple times. We prove that storing the exchanged messages does not give

any new information on the private data, using similar arguments. Formally, using Defini-

tion 2.2.5, we construct a probabilistic polynomial-time simulator that randomly generates

messages from the inputs and outputs such that its view and the view of the adversary, on

the same inputs, are computationally indistinguishable. The correctness of Protocol 3.2.4 is

immediate and follows from the correctness of the dual gradient ascent algorithm and the

correctness of the comparison protocol. The proof is given in Appendix B.1.

Let us now consider collusions between the parties in the setup and prove privacy of Pro-

tocol 3.2.4 under coalitions. Definition 2.2.6 states that even under collusions, the protocol

securely computes a functionality, which in this case, is solving a quadratic optimization

problem. No further information is revealed than what can inferred from the coalition’s
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inputs and outputs. However, if all agents and the cloud collude then they have access to

all the information to solve the problem, in which case the above result is rather vacuous.

Similarly, if the cloud colludes with the requester, then it can gain access to all the private

data of the agents. Hence, we consider coalitions that involve either all the agents or the

cloud and the requester to be prohibited (and unrealistic) and only consider coalitions be-

tween a strict subset of the agents and the cloud or between a strict subset of the agents

and the requester. We give a complementary analysis on the information gained from the

inputs and outputs of coalitions in Section 3.2.4.

Theorem 3.2.3. Protocol 3.2.4 is secure cf. Definition 2.2.6 against coalitions.

The proof of Theorem 3.2.3 can be derived from the proof of Theorem 3.2.2 because

the agents only contribute with their inputs to the view of the coalition, and not with new

messages. The proof is given in Appendix B.2.

Remark 3.2.4. When the matrices QC and AC are private, hence, sent to the cloud encrypted,

an additively homomorphic encryption scheme does not suffice anymore. To account for

this and give a private solution to problem (3.2.3), we can update Protocol (3.2.4) to use

a level-1 somewhat homomorphic encryption scheme, like LabHE or leveled fully HE (see

Preamble 2.5.2 and Preamble 2.5.3).

3.2.4 Privacy discussion

3.2.4.1 Alternative quadratic optimization protocol

As explained in Section 3.2.3.2, the major computational and communication overhead of the

above protocol is the secure comparison protocol, required to project dual variables to non-

negative numbers. In this section, we describe a computationally less involved alternative

approach, which bypasses the need for the secure comparison protocol, at the expense of

revealing more information. This approach is developed in more detail in [13, 203].

Specifically, consider a step of the dual gradient algorithm where the cloud maintains

an unprojected gradient ascent step µ̄k = µk − η[ACQ
−1
C (Aᵀ

Cµk + cA) + bA] encrypted

using the public key of the requester. Suppose the cloud multiplies the elements in this
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vector with random scalar values rk uniformly distributed over the positive integers and

sends the products to the requester. The latter can decrypt the message using its private

key and gain access not to the actual unprojected iterate but to the randomly scaled version

of it, which reveals the sign. It can then project it to the non-negative orthant in an

unencrypted fashion: max{0, (rk)i(µ̄k)i} for i = 1, . . . ,m, and finally encrypt the result

using its public key and return it to the cloud. The cloud can divide the result with the

previously selected values rk to compute in an encrypted fashion the elements [[(µk+1)i]] =

(1/(rk)i)⊗ [[max{0, (rk)i(µ̄k)i}]] which is equivalent to the encrypted actual projected step

[[max{0, (µ̄k)i}]] for i = 1, . . . ,m, because division with a positive number commutes with

the max operator.

This alternative solution bypasses the complexity of the secure comparison part. On

the other hand, it reveals more information to the requester than the secure comparison

approach. In particular it reveals a scaled version of the unprojected dual variable which

in turn does not reveal the magnitude of this value but reveals whether this is positive,

negative, or zero.

Implementation-wise, we want the values of rk to be large enough to blind the magnitude

of the elements of µ̄k, so we will randomly sample rk from the values of γ + l bits, where

γ is the security size for the multiplicative blinding. Furthermore, we need to be able to

represent 1/(rk)i on the message space and to have enough precision as to obtain the correct

value of (µk+1)i. Hence, we will perform implicit multiplications and divisions by 2l
′
f , for

l′f > l+ γ. This change shows that, although significantly less communication is required to

perform the projection operation, all the other operations are more expensive, because we

work with larger numbers.

3.2.4.2 Privacy analysis of input-output relation

In this section we discuss privacy aspects that differ from the computational notions of

Definitions 2.2.5 and 2.2.6. Even if a protocol does not leak any information, the known

information in a coalition (e.g., the output and some of the inputs) can be used by the

coalition to infer the rest of the private inputs. More specifically, in our optimization prob-
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lem, the private variables and the optimal solution are coupled via the optimality conditions

(3.2.13)-(3.2.15), which are public knowledge, irrespective of the protocol, and may be used

for the purpose described above.

Consider the following definition that concerns the retrieval of private data from adver-

sarial/known data.

Definition 3.2.5. (Non-unique retrieval) Let p be the private inputs of a problem and let

an algorithm A(p) solve that problem. Let K be the adversarial knowledge of the problem,

which can contain public information, some private information (including some parts of the

input) and the output of algorithm A for the adversary, denoted by AK(p). We say p cannot

be uniquely retrieved by the adversary if there exists a set U , such that p ∈ U , |U| ≥ 2 and:

∀p′ ∈ U : AK(p) = AK(p′).

Definition 3.2.5 can be modified to be stronger by requiring the set U to have an infinite

number of elements.

Meeting the requirements of Definition 2.2.5 and Definition 2.2.6 is equivalent to not

revealing any other information than what is already known to any of the parties, i.e.

inputs, prescribed outputs, if any, and previously known side information. This is a stronger

requirement than guaranteeing that an adversary cannot uniquely retrieve the data of the

honest parties, i.e. Definition 3.2.5. Revealing sensitive information does not always lead

to a unique retrieval of the private data. Nevertheless, any piece of information revealed by

the execution of the protocol, that cannot be obtained only from its inputs and outputs,

leads to the violation of Definitions 2.2.5, 2.2.6, even if the private data cannot be singled

out with this information.

In what follows, beyond the computational security analysis of the previous sections,

we carry out an algebraic analysis on a black-box protocol that given the agent’s private

data bA, cA and the cloud’s matrices QC ,AC , outputs the solution x∗ of Problem (3.2.3)

to the requester. We provide conditions such that a coalition cannot uniquely determine
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unknown private inputs from the output and a set of inputs, in the sense of Definition 3.2.5.

In particular, this analysis applies to Protocol 3.2.4 which, assuming it runs for sufficient

iterations, outputs the desired result x∗ to the requester. We perform this algebraic analysis

in the space of real numbers, which can be further expanded to fixed-point arithmetics for

large enough precision.

Suppose without loss of generality that a coalition between p̄ agents (1 ≤ p̄ < p) has

access to the elements b1, . . . , bm̄ with 0 ≤ m̄ ≤ m, and c1, . . . , cn̄ with 0 ≤ n̄ ≤ n. Then let

us define the decomposition of the matrix AC as:

AC =

 A1

A21 A22

 (3.2.18)

where the matrices A1 ∈ Rm̄×n, A21 ∈ R(m−m̄)×n̄, A22 ∈ R(m−m̄)×(n−n̄).

Proposition 3.2.6. Consider a protocol solving Problem (3.2.3) and a coalition between the

requester and agents with access to m̄ of the values of bA and n̄ of the values of cA. Suppose

the cost and constraint matrices AC, QC are public. Then:

(1) if m̄ < m and there exists a vector γ ∈ Rm−m̄ such that γ 6= 0,γ � 0 and Aᵀ
21γ = 0,

then the coalition cannot uniquely retrieve the value of bA;

(2) if additionally n̄ < n and Aᵀ
22γ 6= 0 then the coalition cannot uniquely retrieve the

value of cA.

The proof is based on the fact that the variables bA, cA, x∗, µ∗ satisfy the optimality

conditions (3.2.13)-(3.2.15). Specifically, these are conditions that the unknown variables

bm̄+1, . . . , bm and cn̄+1, . . . , cn, as well as the optimal dual variables µ∗, must satisfy given

all the rest of the known variables. Hence, if there are multiple such solutions to the KKT

conditions the coalition cannot uniquely determine the private variables. The proof is given

in Section B.3.

Proposition 3.2.7. Consider a protocol solving Problem (3.2.3) and a coalition between the

cloud and agents with access to m̄ of the values of bA and n̄ of the values of cA. Then,
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a coalition that satisfies m̄ < m and n̄ < n cannot uniquely retrieve the values of bA, cA

and x∗.

The proof follows from the fact that QC is a positive definite matrix, hence, the solution

x∗ is finite, and AC does not have any columns or rows of zeros. A coalition between the

cloud and the p̄ < p agents cannot solve (3.2.3) since it lacks all the data to define it (m̄ < m

and n̄ < n), so it cannot uniquely retrieve x∗ and the rest of the agents’ private data.

Propositions 3.2.6 and 3.2.7 give general sufficient conditions for the desired non-unique

retrieval property to hold and are independent of the exact problem instance values. If the

conditions stated are not satisfied, then the previous result in Theorem 3.2.3 still holds.

However, the additional non-unique retrieval property may fail because the inputs and out-

puts of the coalition are sufficient to leak information about the rest of the private inputs.

The above analysis can also be extended to the case where some of the matrices QC ,AC are

private information.

Let us now use Definition 3.2.5 to analyze the alternative protocol in Section 3.2.4.1 and

the effect the release of more information to the requester has on the privacy of the inputs of

the honest agents. We perform the analysis at a setup where the protocol runs for a sufficient

number of iterations and hence the dual variable µk has converged to the true optimal value

µ∗ and the algorithm has also converged to the true optimal primal value x∗. Suppose the

requester has access to the sign of the unprojected optimal dual variable µ∗ + ∇g(µ∗) –

note that this is the case when we employ the alternative solution. In combination with

the solution x∗, this information can be further employed by the requester to infer private

information of the agents.

Proposition 3.2.8. Consider a protocol solving Problem (3.2.3) where the requester has

access to the solution x∗ and also the sign of the unprojected optimal dual variables δ :=

sign(µ∗ + ∇g(µ∗)) ∈ {+1,−1, 0}m. Suppose further the matrix AC is publicly available.

Then the private values bA cannot be uniquely retrieved by the requester if and only if δi < 0

for some i ∈ {1, . . . ,m}.

Here δi < 0 implies that the corresponding optimal dual value is zero, µ∗i = 0. This means
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that the corresponding constraint in problem (3.2.3) is inactive at the optimal solution x∗ [47,

Ch. 5] and the requester cannot uniquely determine the ith element of the corresponding

bound bA. In the opposite case, if all constraints (3.2.14) are either active or redundant at

the optimal solution (µ∗ � 0), this is revealed to the requester because in that case δi ≥ 0,

and the private value bA is uniquely determined by bA = ACx
∗.

Proposition 3.2.9. Consider the setup of Proposition 3.2.8 and the matrix QC is publicly

available. The private values cA cannot be uniquely retrieved from the outputs x∗ and δ of

the requester if and only if δi > 0 for some i ∈ {1, . . . ,m}.

The case δi > 0 corresponds now to the case where the corresponding constraint is active

at the optimal solution x∗. When this fails, all constraints are inactive at x∗ and they do

not play a role. Hence, we have an unconstrained quadratic problem in (3.2.3), i.e., the

optimal solution satisfies the first order condition QCx
∗ + cA = 0, which reveals the value

of cA to the requester. To guarantee privacy with respect to both private values bA, cA we

need both an inactive constraint (δi < 0) as well as an active constraint (δj > 0) for some

i, j ∈ {1, . . . ,m}, leaving some uncertainty in the estimations performed by the requester.

Similar analysis may be performed for collusions, e.g., of the requester and some agents.

3.2.5 Implementation

The efficiency of a secure multi-party protocol is measured in the complexity of the com-

putations performed by each party, along with the rounds of communications between the

parties. While the former is relevant from the perspective of the level of computational

power required, the latter are relevant when communication is slow.

In the setup we considered, the agents are low-power platforms, hence, they are only

required to effectuate one encryption and one communication round, but the cloud and the

requester are platforms with high computational capabilities, e.g., servers.

Let σ be the bit-length of the modulus N . Then, the size of a Paillier ciphertext is 2σ,

regardless of the size of the plaintext in ZN . A Paillier encryption takes one online expo-

nentiation and one multiplication modulo N2, and a decryption takes one exponentiation
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modulo N2 and one multiplication modulo N . The addition of two ciphertexts takes one

modular multiplication modulo N2. A multiplication of a ciphertext with a plaintext of l

bits is achieved as a modular exponentiation modulo N2. A multiplication of two elements

in Z∗N2 can be achieved in O((2σ)1.7). A modular exponentiation in N2 with an l-bit expo-

nent can be computed in O(l(2σ)2) and can be sped up via the Chinese Remainder Theorem

when the factorization of N is known. A DGK encryption takes one modular exponentiation

and one modular multiplication in Z∗NDGK
, and a DGK decryption–checking if the encrypted

message is 0 or not–takes an exponentiation modulo pDGK.

We implemented the protocol proposed in Section 3.2.3.4 in Python 3 and ran it on a

2.2 GHz Intel Core i7 processor. For random instances of the data in Problem (3.2.3), with

σ = 1024 and l = 32 bits, and 0 ms delay for communication, we obtain the average running

times depicted with the dashed gray lines in Figure 3.2 and Figure 3.3.

Figure 3.2 depicts the online execution time of Protocol 3.2.4 with the iterations as

in Protocol 3.2.3. As expected, because we work in the dual space, the time required for

running the iterations varies very little with the number of variables, but increases with the

number of constraints. However, in the case of Figure 3.3, which depicts the online execution

time of Protocol 3.2.4 with the alternative iterations as in Section 3.2.4.1, the time varies

more with the number of variables n and not as much with m as Protocol 3.2.3 does. The

reason is that we work with substantially larger numbers than in the previous case, due to

the large factor with which we have to multiply in order to be able to de-mask the dual

iterate, which amplifies the time difference between problems of different dimensions.

The trade-off between the privacy and communication can be seen when we artificially

add a communication delay of 20 ms between the cloud and the requester, to simulate the

delays that can occur on a communication network. It can be observed in Figures 3.2 and 3.3

that the communication delay has a smaller effect on the less private protocol than on the

fully private Protocol 3.2.3.
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Figure 3.2: Average running time of Protocol 3.2.4 for problem instances with the number of variables
on the abscissa and the number of constraints in the legend, with a 20 ms communication delay
(colored solid) and undelayed (gray dashed). The simulation is run for 30 iterations, a 1024 bit key
and 32 bit messages (16 bit precision). The statistical parameter for additive blinding is 100 bits.
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Figure 3.3: Average running time of Protocol 3.2.4 with the alternative iterations as in Section 3.2.4.1
for problem instances with the number of variables on the abscissa and the number of constraints
in the legend, with a 20 ms communication delay (colored solid) and undelayed (gray dashed). The
simulation is run for 30 iterations, a 1024 bit key and 32 bit messages (16 bit precision). The
statistical parameter for multiplicative blinding is 40 bits.
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3.3 Secure evaluation of Lasso

Organization. We outline the Lasso problem and the unsecure solution using ADMM in Sec-

tion 3.3.1 and we present the privacy requirements for the secure solution. In Section 3.3.2,

we describe the multi-party homomorphic encryption scheme used and justify the choice of

distributed servers and distributed bootstrapping, as well as the method chosen for poly-

nomial approximation. We then detail the challenges for achieving secure Lasso and their

corresponding solutions, and assemble the encrypted protocol. Finally, Section 3.3.4 shows

our implementation results and observations for Lasso problems of varying dimensions. The

proof of privacy for the encrypted protocol is given in Appendix B.5.

3.3.1 Problem formulation

For a covariate matrix A ∈ Rm×n, a vector of outcomes b ∈ Rm, the variable x ∈ Rn and a

penalty parameter λ > 0, the Lasso problem in its Lagrangian form is given by:

min
x

1

2
‖Ax− b‖22 + λ‖x‖1. (3.3.1)

For dependent covariates, there is no closed-form solution to (3.3.1) and many iterative

optimization algorithms have been proposed in the literature [123, Ch. 5]. For example,

Lasso problems can be solved using proximal methods or augmented Lagrangian methods,

such as the Alternating Direction Method of Multipliers (ADMM) [48], [123, Ch. 5]. Splitting

the objective function in the ADMM way, we get:

min
x,z

1

2
‖Ax− b‖22 + λ‖z‖1

s.t. x− z = 0.

(3.3.2)

Let Sα(x) = (x−α1)+−(−x−α1)+ denote the soft thresholding operator. The ADMM
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algorithm for (3.3.2) is:

xk+1 = arg min
x

(
1

2
‖Ax− b‖22 +

ρ

2
‖x− zk + wk‖22

)
= (AᵀA + ρI)−1

(
Aᵀb + ρ(zk −wk)

)
zk+1 = arg min

z

(
λ‖z‖1 +

ρ

2
‖xk+1 − z + wk‖22

)
= Sλ/ρ(x

k+1 + wk)

wk+1 = wk + xk+1 − zk+1.

(3.3.3)

While for general optimization problems, the ADMM might converge slowly, for the

Lasso problem it is known to have a fast convergence of a few (tens of) iterations for a

large range of parameter ρ > 0 [48]. ADMM is a fast choice in the cases where a very high

precision of the optimal result is not required, which is the case in noisy control problems,

like the one we investigate in Chapter 7.3.

Goals and privacy requirements. A client outsources problem (3.3.1) to a cloud

service that has to compute the optimal solution based on the data from the client.

We consider the cloud service to be semi-honest, meaning it does not deviate from the

client’s specifications, but can process the data it receives to extract private information for

its own profit. The cloud service can be a conglomerate ofK servers (see Figure 3.4), possibly

belonging to different organizations, offering the guarantee that not all K servers collude.

Under this adversarial model, we require client data confidentiality, i.e., an adversary

corrupting at most K − 1 of the servers should not be able to infer anything about the

client’s inputs and outputs, which consist of the values of the matrix A and the vector b,

any intermediate values, and solution x∗. The penalty λ and parameter ρ can be chosen by

Figure 3.4: Schematic diagram of the problem, with a client outsourcing its encrypted data to a
cloud service, that is authorized to compute on the data, but not to decrypt it.

65



the cloud service or chosen by the client, but are public. The formal privacy definition can be

particularized from the multi-party privacy Definition 2.2.6 and is given by Definition 3.3.1.

Definition 3.3.1. (Client privacy w.r.t. semi-honest behavior of servers) Let xC be the

private input of a client and xS,i be the input of server i, for i = 1, . . . , n. The client wants

the servers to evaluate a functionality f and return the result f(xC , xS,1, . . . , xS,n). Denote

the inputs by x̄ = (xC , xS,1, . . . , xS,n). Let fS,i(x̄) denote the corresponding result at server i.

For I = {i1, . . . , it} ⊂ [n] := {1, . . . , n}, with |I| < n, we let fS,I(x̄) denote the subsequence

fS,i1(x̄), . . . , fS,it(x̄), which models a coalition of a number of servers. Let Π be a n-party

protocol for computing f . Denote the view of server i on input (x̄) by V Π
S,i(x̄) and denote the

view of a coalition between servers by V Π
I (x̄) = (I, V Π

S,i1
(x̄), . . . , V Π

S,it
(x̄)). For a deterministic

functionality f , we say that Π privately computes f if there exist simulators S, such

that, for every I ⊂ [n], it holds that, for any inputs x̄t = (xS,i1 , . . . , xS,it):

{S(I, (x̄t), fI(x̄t))}x̄∈({0,1}∗)n
c≡ {V Π

I (x̄)}x̄∈({0,1}∗)n .

3.3.2 Background

3.3.2.1 Distributed Bootstrapping for Homomorphic Encryption (HE)

If done locally at a server with no access to the private key, bootstrapping is a very expensive

operation, consuming around 10 levels and introducing more noise (from encrypted approxi-

mation of nonpolynomial functions); see [60, 63] for details. Apart from the computationally

intensive bootstrapping procedure, all the prior and posterior operations are impacted, since

ciphertexts are required to have an extra 10 levels, leading to very large scheme parameters

and ciphertexts size, making centralized bootstrapping undesirable.

Instead of performing bootstrapping locally, a server can ask the client to refresh a

ciphertext on level 0. However, this implies more computation, communication and avail-

ability from the client, which is often prohibitive. A preferable solution is to use two or

more servers for the computation and the refreshing. However, corrupting only two servers

can be attainable by an adversary. Increasing the number of servers decreases the probability
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of an adversary corrupting them all. Distributed bootstrapping trades substantial computa-

tion power to one round of communication and does not introduce as much noise as the

centralized bootstrapping, as described below.

In multi-party HE schemes, the private key is additively secret shared between a num-

ber of servers, meaning that no proper subset of the servers can decrypt. An important

assumption is that an adversary cannot corrupt all servers at once, hence the private key

is never recovered. In [169], a multi-party HE scheme is described, where servers can carry

out the homomorphic computations locally and only need to interact for decryption and

bootstrapping. In our scenario, the decryption will be performed at the client so we are only

interested in distributed bootstrapping. Intuitively, distributed bootstrapping requires each

server to use its local secret share of the private key to perform a partial decryption, mask

this result and send it to the other servers. Summing up all the partial decryptions results

in a refreshed ciphertext with the desired number of levels that can be correctly decrypted

to the original message. The masking needs to provide statistical privacy of the message, so

we require the mask to be > 80 bits larger than the size of messages and that no overflow

occurs (the statistical security parameter is generally smaller than the computational secu-

rity parameter). This means that distributed bootstrapping consumes around 3 levels; see

more details in [96, 169].

In the rest of this chapter, we work with the multi-party version [96] of the leveled HE

scheme CKKS [62]. Specifically, we use the version of the CKKS scheme [62], optimized

to run on machine word size of 64-bit integer arithmetic [64, 117] instead of multiprecision

integer arithmetic. We will denote by Ev0(x) the encryption of the vector x followed by trail-

ing zeros and by Ev∗(x) the encryption of the vector x followed by junk elements (elements

whose value we do not care about).

3.3.2.2 Polynomial approximation and Chebyshev series

As described above, homomorphic encryption can evaluate polynomials on encrypted values.

However, other operations such as trigonometric functions, divisions or comparisons are not

supported. Therefore, we prefer to evaluate a polynomial approximation of the nonpolyno-
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mial functions. We choose to work with the Chebyshev polynomial series rather than the

more common Taylor power series due to better precision and smaller approximation error.

Specifically, the Chebyshev series polynomial interpolation is a near-minimax approximation

of a continuous function on the interval [−1, 1] [160].

However, polynomial approximation is not a panacea: for non-smooth functions, it gives

a reasonable error only on relatively small intervals or using high degree polynomials. We

choose to use this method, rather than other encrypted computation tools that can exactly

evaluate non-smooth functions at the cost of more communication, knowing that we are

dealing with noisy systems, where the small approximation errors are absorbed by noise.

3.3.3 Encrypted distributed Lasso

The setting we consider is the following: the client encrypts its data A,b and secret shares

its private key to a number of servers. The servers are responsible to compute and return

the solution of problem (3.3.2) to the the client.

3.3.3.1 Challenge: Evaluating nonpolynomial functions

In the steps (3.3.3) of the ADMM algorithm for problem (3.3.2), the soft thresholding

function is nonpolynomial, yet we need to evaluate it on encrypted data when computing

zk+1. We deal with this challenge by approximating the soft thresholding function using

a polynomial on a fixed interval via the Chebyshev series (we hardcode the coefficients for

this function). If the interval is not [−1, 1], we first apply a linear transformation to bring

the inputs to this interval.

In the context of encrypted evaluation, a high polynomial degree increases the number of

levels necessary for the computations, as well as the number of homomorphic multiplications

between ciphertexts, which are expensive operations (compared to plaintext-ciphertext mul-

tiplications or additions). While we cannot consume fewer than dlog ne levels to evaluate a

polynomial of degree n, we can reduce the O(n) homomorphic multiplications from the naive

evaluation. Specifically, we implement the Paterson-Stockmayer algorithm [182], which re-

duces the number of homomorphic multiplications to
⌈√

2n+ log n
⌉

+ O(1) by recursively
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evaluating polynomials of smaller degree. We modify the Paterson-Stockmayer algorithm

that works with power series to work with Chebyshev series. The benefit of this algorithm

compared to the naive evaluation is visible after degree 5 and grows with the degree. As

an example, to evaluate a non-monic polynomial of degree 25, we require 5 levels and 11

homomorphic multiplications between ciphertexts.

Remark 3.3.2. The “stability” of the ADMM iterations for the Lasso problem allows the

value xk+1 + wk to stay within a fixed interval, given in Lemma 3.3.3. In practice, we

choose this interval from prior simulation.

Lemma 3.3.3. Define M := AᵀA + ρI, n := M−1Aᵀb and c :=
√
nλ/ρ‖2ρM−1 − I‖2 +

‖n‖2. Since σ := ‖ρM−1‖2 is in (0, 1], we have the following bounds for the quantity

‖xk+1 + wk‖∞ in (3.3.3), for all k = 1, . . . ,Kiter:

‖xk+1 + wk‖∞ ≤ σk‖n‖2 +
1− σk

1− σ
c, if σ < 1

‖xk+1 + wk‖∞ ≤ ‖n‖2 + kc, if σ = 1.

(3.3.4)

The proof is given in Section B.4.

3.3.3.2 Challenge: Evaluating iterations

Depending on the precision we choose, the polynomial approximation can have a high de-

gree, implying the need of bootstrapping in order to continue operations in the subsequent

iterations. We resolve this challenge by making use of multiple servers in order to realize

a cheaper bootstrapping compared to a centralized bootstrapping and a less burdensome

solution than requesting action from the client.

To this end, we turn to the distributed version of ADMM [48], such that we use the

servers both to ease the computation of the optimal solution and to ensure privacy through

encrypted computations. We split the matrix A and vector b into K parts, each to be held
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by a server, and rewrite (3.3.2) as:

min
x1,...,xK ,z

1

2

K∑
i=1

‖Aixi − bi‖22 + λ‖z‖1

s.t. xi − z = 0, i = 1, 2, . . . ,K.

(3.3.5)

The ADMM algorithm for problem (3.3.5) is, for i = 1, . . . ,K:

xk+1
i = (Aᵀ

iAi + ρI)
−1
(
Aᵀ
ibi + ρ(zk −wk

i )
)

zk+1 =
1

K
Sλ/ρ

(
K∑
i=1

xk+1
i +

K∑
i=1

wk
i

)

wk+1
i = wk

i + xk+1
i − zk+1.

(3.3.6)

Each server is given ciphertexts corresponding to Ai,bi. We assume that there is a pre-

processing step where servers can precompute convenient ciphertexts that will be used often

in the online iterations, such as 1/ρAᵀ
ibi and ρ (Aᵀ

iAi + ρI)
−1. As in the unencrypted case,

the servers can use the matrix inversion lemma to compute an inversion of a smaller matrix,

which saves in offline computation. Online, each server locally computes the encryptions

of xi and wi, then communicates to the other servers the local sum xk+1
i + wk

i , such that

all servers are then able to compute zk+1. So far, the only communication necessary is the

same as in the unencrypted ADMM.

3.3.3.3 Challenge: Realizing the fewest bootstrapping operations

Distributed bootstrapping requires all parties to start by holding the same ciphertext and

all parties to obtain that refreshed ciphertext. Bootstrapping the ciphertext encrypting

zk+1 seems attractive, because it is global and its evaluation involves the most sequential

multiplications. However, this is not enough: wk+1
i loses levels through xk+1

i , which is the

result of a multiplication; so we would need to bootstrap also before computing zk+1, not

just after.

Instead, we do the following trick. Each server already has to compute and send a

ciphertext encrypting xk+1
i + wk

i to the other servers in order to compute the global iterate
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zk+1. This means that each server can then construct a packed ciphertext ck+1 encrypting[
(xk+1

1 + wk
1)ᵀ(xk+1

2 + wk
2)ᵀ . . . (xk+1

K + wk
K)ᵀ

]
and distributedly bootstrap it. Afterwards,

each server can extract the refreshed ciphertext containing its local value xk+1
i +wk

i , as well

as a refreshed ciphertext containing
∑K

i=1 xk+1
i + wk

i by repeatedly rotating and summing

the refreshed ciphertext ck+1 (this takes O(K) operations). From this value, each server can

locally compute its encrypted iterates wk+1
i and xk+1

i , while doing only one bootstrapping

operation per iteration rather than two.

Apart from xk+1
i +wk

i , the servers send one more message to complete the bootstrapping

operation, so there are two rounds of communication per iteration, one at the smallest

admissible level (dictated by bootstrapping) and the other at the full number of levels

required, computed below.

Assume that offline quantities are refreshed. Define lB to be the number of levels for a

statistically secure distributed bootstrapping and lP to be the number of levels necessary for

the evaluation of Sλ/ρ(·) at a desired precision: this is the degree of the approximation poly-

nomial plus one, coming from the linear transformation to the interval [−1, 1] (we merge the

multiplication by 1/K in the Chebyshev coefficients). Hence, the fresh ciphertexts need to

have L = lB + lP + 1 levels, if we bootstrap once per iteration. Because lP is usually higher

than 5, bootstrapping once every few iterations leads to larger parameters and ciphertexts.

3.3.3.4 Encrypted protocol

Protocol 3.3.1 describes the steps for privately solving the distributed Lasso problem.

We use an optimized diagonal method [115] for encrypted matrix-vector multiplication.

Consider a matrix S ∈ Rn×n and a vector p ∈ Rn. Denote the diagonals of S by di, for

i = 0, . . . , n− 1. Let n1 := d
√
n/2e and n2 := n/n1. The corresponding result q = Sp is:

q =
n−1∑
i=0

di�ρ(p, i) (3.3.7)

=

n2−1∑
j=0

ρ

(
n1−1∑
k=0

ρ(dj·n1+k,−j ·n1)�ρ(p, k); j ·n1

)
. (3.3.8)
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With (3.3.8), we need n1 + n2 = O(
√
n) homomorphic rotations, given ρ(dj·n1+k,−j · n1),

instead of n if we use (3.3.7). In both cases we require n homomorphic multiplications.

For a rectangular matrix, we need extended diagonals but the method is the same. The

header of the function that achieves this is MultDiag(S,p), and we pass the matrix S as

separate ciphertexts encoding diagonals rotated accordingly and the vector p encoded in a

ciphertext with trailing zeros. (In line 9 in Protocol 3.3.1, a masking is performed in order

to satisfy the latter requirement.) We implement MultDiag such that it returns a ciphertext

that encodes the result q with trailing zeros. This method can be parallelized. MultDiag is

performed locally at the servers (lines 3 and 11).

The header ApproxSoftT(p) represents the implementation of the Chebyshev interpo-

lation element-wise for p, for a given set of coefficients that specify the degree of the ap-

proximation and an interval for which the coefficients are valid. Internally, the input is

normalized to the interval [−1, 1] (this also masks the junk elements), such that the output

is a ciphertext encoding the result with trailing zeros. ApproxSoftT is performed locally

(line 8 in Protocol 3.3.1).

DBoot(p) is a distributed protocol, where all servers start with the ciphertext of the

vector p and all servers obtain a ciphertext that contains the refreshed vector p having a

predetermined number of levels (line 6 in Protocol 3.3.1). It implies one round of commu-

nication between all servers, as described in Section 3.3.2.1.

There is also an offline protocol that computes the input as listed in Protocol 3.3.1. We

mention that the client distributes the rows of A and b to the servers and the shares of

the private key. The servers compute mi by multiplication and Mi by the matrix inversion

lemma and a high degree polynomial approximation for the inversion function, and use

rotation and masking in order to obtain the diagonal representation needed. The servers

collaborate to bootstrap the ciphertexts, in order to start Protocol 1 on the desired level.

Theorem 3.3.4. Protocol 3.3.1 achieves client data confidentiality with respect to semi-

honest servers, assuming at least one of the servers is honest.

The proof is given in Section B.5.
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Protocol 3.3.1: Distributed encrypted protocol for (3.3.5) with equal servers and equal

data split

Input: Public parameters: public key pk, number of servers K, number of maximum iterations

Kiter. C: secret key sk. S1, . . . , SK : encryption of Mi = ρ(Aᵀ
i Ai + ρI)−1, encryption of

mi = 1
ρ (Aᵀ

i bi), share of the secret key ski, the Chebyshev coefficients for evaluating Sλ/ρ(·) on

a given interval.

Output: C: x∗.

1: Si=1,...,K : set initial values Ev0(x0
i ), Ev0(w0

i ), Ev0(z0) (the value of zk is previously agreed upon);

2: for k = 0, . . . ,Kiter − 1 do

3: Si=1,...,K : Ev0(xki ) = MultDiag(Mi,mi + zk −wk
i );

4: Si=1,...,K : compute and send to other servers the rotation of the sum Ev0(vi) := ρ(xk+1
i +

wk
i ,−(i− 1)n);

5: Si=1,...,K : assemble Ev∗(v) := Ev∗([v1 v2 . . .vK ]) by summing own ciphertext and all re-

ceived shifted ciphertexts;

6: Si=1,...,K : perform part in the distributed bootstrapping to get Ev∗(v
b) := DBoot(Ev∗(v));

7: Si=1,...,K : extract its refreshed sum of local iterates Ev∗(v
b
i ) = ρ(Ev∗(v

b), (i− 1)n);

8: Si=1,...,K : rotate and sum Ev∗(v
b) to get Ev∗(

∑K
i=1 xk+1

i + wk
i ), then compute Ev0(zk) =

ApproxSoftT( 1
K

∑K
i=1 xk+1

i + wk
i , λ/ρ);

9: Si=1,...,K : Ev0(wk+1
i ) = [1ᵀ

S 0ᵀ]ᵀ � Ev∗(v
b
i )− Ev0(zk);

10: end for

11: S1: compute Ev0(xKiter
1 ) = MultDiag(M1,m1 + zKiter−1−wKiter−1

1 ) and send it to the client C;

12: C: decrypt and extract x∗.

Remark 3.3.5. This distributed setup can be used for the quadratic problem described in

Section 3.2, by using polynomial approximation for the maximum function in the dual

problem (3.2.11). However, unless special conditions on the matrices are given, the projected

gradient iterates do not have the same “stability” property as in Remark 3.3.2. This might

require larger intervals and worse approximation error or very high approximation degree.

Hence, we preferred to exploit the architecture and the capabilities of the requester in
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Section 3.2, and to obtain more precise solutions.

3.3.4 Numerical results

We evaluate Protocol 3.3.1 on Ubuntu 18.04 on a commodity laptop with 8 GB of RAM

and Intel Core i7, implemented using the PALISADE library [178], for three servers using

8 threads. We set the parameters such that we get a security level of 128 bits, i.e., we use

a ciphertext modulus of 436 bits and a ring dimension of 214. We obtain 6 decimal places

precision for the results.
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Figure 3.5: Timing for steps in one online iteration for one server for solving Lasso problems of various
dimensions via encrypted distributed ADMM with three servers (Protocol 3.3.1). The legend shows
the operation that takes the most time in the step.

In Figure 3.5, we show how the time for one ADMM iteration varies with the dimension

of the problem, i.e., number of columns of matrix A in (3.3.2). The blue bar shows the

time for lines 3 and 4 in Protocol 3.3.1, effectively consisting of the matrix-vector multi-

plication. The yellow bar shows the time for lines 5 and 6, representing the preparation

for bootstrapping and the bootstrapping itself. Finally, the red bar represents lines 7–9 of

Protocol 3.3.1, consisting mostly of the polynomial evaluation. We want to stress that the

bootstrapping and polynomial evaluation are made independent from the dimension of the

problem through packing, which represents a great advantage when increasing the dimen-

sion. On the other hand, for large dimensions, the encrypted matrix multiplication takes

most of the computational and memory effort, and other methods that decrease storage and

number of operations at the cost of more levels might be preferable.
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Chapter 4

Weighted Aggregation

4.1 Introduction

As large amounts of data are circulated both from users to a cloud server and between users,

there is a critical need for privately aggregating the shared data. Of particular interest is

the general problem of weighted sum aggregation, that we explore in this chapter, in which

an aggregating party needs to collect and sum contributions from a number of agents–

the contributions consist of some local data weighted by some other relevant quantities.

There is a wealth of examples spanning various research areas that require the computation

of weighted aggregates: (a) Decentralized and cooperative linear control for multi-agent

systems [69, 151, 223]; (b)Graph neural networks [136] and collaborative inference [111, 206];

(c) Average consensus [90, 229]; (d) Federated learning [165, 228], aggregation of linear

inference results; (e) Energy price aggregation and management [68, 222], vehicle tolls

collection [26, 146].

Each of the above examples can pose different privacy requirements on the local data of

the agents, as well as on the corresponding weights. For example, in the context of federated

learning, the model is locally trained by the agents and the aggregating server needs to

compute the mean model without obtaining the local models. In some price collection

instances, the prices can depend on private information known at the aggregator and can

vary dynamically, so the aggregator knows the price weights, while the agents do not. Finally,

75



there are cases where a system operator has invested resources into computing the control

gains for a distributed system and wants to keep them private from both the agents and

the aggregator, who needs to compute a linear control without knowing neither the local

agent’s states nor the gains. Similar privacy requirements are in place for secure inference,

where a service provider has trained a proprietary model on its own data and wants to keep

it private while allowing it to be deployed.

Related work

In the context of (a), linear distributed control with homomorphically encrypted gains was

addressed by [7, 12, 199], with [7] touching also on (b). We will elaborate and improve on

these works in Section 4.3.2. Concerning (c), there is a body of research that targets the

privacy of the local data of the agents achieving consensus, using partially homomorphic

encryption or differential privacy: see [112, 113, 175, 192] and the references within. For

(d) and (e), works such as [2, 41, 89, 142, 147] provide private solutions for private sum

aggregation, touching on a large base of cryptographic tools, such as secret sharing, threshold

homomorphic encryption, differential privacy.

Contributions

This chapter considers the problem of private weighted sum aggregation with secret weights,

where an aggregator wants to compute the weighted sum of the local data of some agents.

Given the wide spread of private weighted sum aggregation problems with different privacy

constraints, our first contribution is to review their solutions and give a unified formulation.

We intend for this chapter to serve as a guide for choosing an efficient particular solution

based on knowledge distribution and privacy demands. Our second contribution is to offer

a private solution for the general case of weighted aggregation, where weights are hidden

from all parties. Our third contribution is to extend these solutions to multi-dimensional

data rather than scalar data and give valuable optimizations. Our fourth contribution is to

implement and extensively demonstrate the runtime and communication improvements of

up to 80% for the problem with hidden weights.
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Organization. In Section 4.2, we outline the three types of problems and the de-

sired security requirements. We first review existing solutions for private sum aggregation

(weights are known by the agents, but not by the aggregator) in Section 4.3.1.1. Most of the

previously mentioned literature falls into this category. Second, we describe private weighted

sum aggregation with centralized weights (weights are known at the aggregator, but not at

the agents), which can be solved from the lens of functional encryption for inner products in

Section 4.3.1.2. Third, we give a solution for the more general case of private weighted sum

aggregation with hidden weights (neither agents nor aggregator know the weights; they are

generated by a system operator, who wants to keep them private) and improve it compared

to previous work in terms of security: larger collusion threshold, communication: fewer

messages exchanged, and runtime: fewer operations, in the multi-dimensional case in Sec-

tion 4.3.2. Finally, we propose a private weighted sum aggregation scheme that uses the

same secret keys for all the time steps of the computation, thus minimizing the number of

communication rounds, and keeps the threshold of colluding agents at the cardinality of all

but one participating agents in Section 4.5. The capabilities of this final scheme could also

allow aggregation of nonlinear functions of private weights.

Our solutions achieve aggregator obliviousness, even under collusion between the par-

ticipants. In order to make the schemes communication efficient, we use packing, which

compresses a vector of messages in one plaintext, respectively one ciphertext. We show

how to astutely perform the operations on the packed ciphertexts to reduce the computa-

tional and communication cost. Different solutions are presented for the different schemes,

exploiting the characteristics of the underlying schemes, and are given in Section 4.4 and

Section 4.6.

This chapter covers work presented in [7, 8, 12].

Special notation for this chapter

For a positive integer n, let [n] := {1, 2, . . . , n}. A quantity (·)i refers to agent i and a

quantity (·)a refers to the aggregator. By x[j], we refer to the j-th element of vector x and

by W[jl], to the element of matrix W on the j-th row and l-th column. κ is the security
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parameter. We denote the Paillier encryption primitive by E(·) and the decryption primitive

by D(·). We denote negligible functions, defined in Definition 2.2.1 by η(·). φ(N) denotes

Euler’s totient function; for N = pq, with p, q primes, φ(N) = (p − 1)(q − 1). A value

x ∈ Qli,lf represents a rational value x = xi.xf with li bits for the integer part and lf bits

for the fractional part.

4.2 Problem statement

We investigate an aggregation problem of weighted contributions, depicted schematically in

Figure 7.1. We consider a system with M agents and one aggregator. Each agent i ∈ [M ]

has some data xi(t) ∈ Rni at time t and the aggregator wants to compute an aggregate of

the data in the system xa(t) ∈ Rna , where Wi ∈ Rna×ni are constant weights designated

for the local data of agent i:

xa(t) =
M∑
i=1

Wixi(t). (4.2.1)

At every time step, each agent i ∈ [M ] has access to its local data xi(t), either by

direct measurement (e.g., location, energy consumption) or by computation (e.g., gradient

of the model, local prediction). We consider three types of privacy requirements for private

weighted sum aggregation.

Private Weighted Sum Aggregation with hidden weights

This case requires the strongest privacy guarantees:

Figure 4.1: Diagram of the private weighted sum aggregation. Some of the participants can be
corrupted and disclose their private data.
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(a) Agent i should not infer anything about the other agents’ local data xj(t), j ∈ [M ]\{i}

or about the aggregator’s result xa(t) or about the weights Wi, i ∈ [M ], including

partial information such as Wixi(t).

(b) The aggregator should only be able to compute xa(t) and should not infer anything

else about the agents’ local data xi(t) or the weights Wi, i ∈ [M ], including partial

information such as Wixi(t).

Private Sum Aggregation

In this case, we replace (a) by:

(a) Agent i knows its corresponding weight Wi and should not infer anything about

the other agents’ local data and weights xj(t),Wj , j ∈ [M ] \ {i}, including partial

information such as Wjxj(t), or about the aggregator’s result xa(t).

Private Weighted Sum Aggregation with centralized weights

In this case, we replace (b) by:

(b) The aggregator knows the weights Wi and should only be able to compute xa(t) and

should not infer anything else about the agents’ local data xi(t), i ∈ [M ], including

partial information such as Wixi(t).

These privacy requirements should hold even under collusion between the aggregator

and at most M − 2 agents, or between M − 1 agents, i.e., a coalition should not be able to

infer the private data of the remaining honest participants.

We consider computationally bounded adversaries that are semi-honest, defined in Def-

inition 2.1.1. Such a model is chosen because the aggregator is interested in obtaining the

correct result of the computation, and for instance, in applications involving pricing, the

agents would be fined in they cheat.

The goal here is to protect the privacy of the inputs and intermediary computations,

but reveal the output to the aggregator. As a side note, all the presented algorithms can

support differential privacy, in case the output should also be protected.
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In describing the rest of this section and the schemes in Sections 4.3.1.1, 4.3.1.2, 4.3.2

and 4.5, we focus on scalar data wi, xi, xa ∈ Z≥0, for i ∈ [M ]. After illustrating the function-

alities, we provide methods for dealing with multi-dimensional rational data in Sections 4.4.1,

4.4 and 4.6.

Aggregator obliviousness for pWSAh

We give a formal description of the privacy requirements from Section 4.2 as a cryptographic

game between an adversary and a challenger, where the adversary A can corrupt agents and

the aggregator. The weights wi∈[M ] are constant over the time steps, so the adversary

is forced to specify constant weights; in particular, the adversary will specify two sets of

weights: wA,0i∈[M ] and w
A,1
i∈[M ]. The security game pWSAO (private Weighted Sum Aggregator

Obliviousness) is as follows:

Setup. The challenger runs the Setup algorithm and gives the public parameters prm to

the adversary.

Queries. The adversary can submit compromise queries and encryption queries that are

answered by the challenger. In the case of compromise queries, the adversary submits

an index i ∈ [M ] to the challenger and receives ski, which means the adversary corrupts

agent i. The set of the corrupted agents is denoted by C. In the case of encryption queries,

the adversary is allowed one query per time step t and per agent i ∈ [M ]. The adversary

submits (i, t, wAi , xi(t)), where w
A
i = {wA,0i , wA,1i }, and the challenger first runs swA,0i =

InitW(prm, i, wA,0i ), swA,1i = InitW(prm, i, wA,1i ) and returns Enc(prm, swA,0i , ski, t, xi(t))

and Enc(prm, swA,1i , ski, t, xi(t)). The set of participants for which an encryption query was

made by the adversary at time t is denoted by E(t).

Challenge. The adversary chooses a specific time step t∗. Let U∗ denote the set of

participants that were not compromised at the end of the game and for which no en-

cryption query was made at time t∗, i.e., U∗ = ([M ] ∪ {a}) \ (C ∪ E(t∗)). The adver-

sary specifies a subset of participants S∗ ⊆ U∗. At this time t∗, for each agent i ∈

S∗ \ {a}, the adversary chooses two plaintext series x0
i (t
∗) and x1

i (t
∗), along with wA,0i

and wA,1i , and sends them to the challenger. If S∗ = U∗ and a /∈ S∗, i.e., the aggrega-
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tor has been compromised, then, the values submitted by the adversary have to satisfy∑
i∈S∗ w

A,0
i x0

i (t
∗) =

∑
i∈S∗ w

A,1
i x1

i (t
∗). The challenger flips a random bit b ∈ {0, 1} and

computes Enc(prm, InitW(prm, i, wA,bi ), ski, t, x
b
i(t
∗)), ∀i ∈ S∗. The challenger then returns

the ciphertexts to the adversary.

Guess. The adversary outputs a guess b′ ∈ {0, 1} on whether b is 0 or 1. The advantage of

the adversary is defined as:

AdvpWSAO(A) :=

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
The adversary wins the game if it correctly guesses b.

Definition 4.2.1. A scheme pWSAh = (Setup,Enc, InitW, AggrDec) achieves weighted

sum aggregator obliviousness if no probabilistic polynomial-time adversary has more than

negligible advantage in winning this security game:

AdvpWSAO(A) ≤ η(κ).

4.3 Private weighted sum aggregation

4.3.1 Review of private sum aggregation

4.3.1.1 Private sum aggregation

Private sum aggregation (pSA), introduced in [187, 202], enables an untrusted aggregator

to compute the sum of the private data contributed by agents, without learning their indi-

vidual contributions. Additionally, it allows noise mechanisms to ensure that the aggregate

is differentially private. Improvements in terms of efficiency and functionality of pSA have

been proposed in [28, 33, 41, 57, 131, 208] and the references within. The formal definition

of aggregator obliviousness that pSA schemes have to satisfy (informally described in Sec-

tion 4.2) was introduced in [202] and is given as a cryptographic game between an adversary

and a challenger, similar to the game we describe in Section 4.2.

When the weights wi are known to the agents, equation (4.2.1) can be computed privately
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with a pSA scheme. Specifically, in every time step, denoted by t ∈ Z≥0, each agent i ∈ [M ]

holds a private value xi(t) and wi. Define vi(t) := wixi(t). The aggregator wants to compute

the aggregate statistics over the private values: xa(t) =
∑

i∈[M ] vi(t).

Let l denote the maximum number of bits of xi(t), wi, ∀i ∈ [M ]. An assumption that

we make for the rest of the chapter is:

Assumption 4.3.1. For each time step t, after discretization, xi(t), wi, wixi(t), xa(t) < N ,

∀i ∈ [M ], i.e., there is no overflow for N specified in each scheme.

The most intuitive pSA scheme involves secret sharing. Each participant will be given

by a trusted dealer at the onset of scheme a secret share of zero for each time step. Each

agent will use this share to mask its local data, like a one-time pad–see Preamble 2.4. The

aggregator will then sum all the contributions it receives and obtain the desired sum, as the

shares of zero will cancel out. The idea of using shares of zero to additively mask private

values in aggregation problems was explored, e.g., in [41, 54, 149, 208].

A private sum aggregation scheme should consist of the following algorithms, pSA1 =

(Setup,Enc,AggrDec):

• Setup(1κ,M,wi∈[M ], T ): take as input the security parameter κ, the number of agents

M and time period T , and output public parameters prm, secret information for

each agent ski, i ∈ [M ] and for the aggregator ska. This happens as follows: let

N = max(κ, 2l +M), then, for each time step t ∈ [T ], generate M + 1 shares of zero:

∑
i∈[M ]∪{a}

si(t) = 0, si(t) ∈ ZN .

Set prm = (κ,M), ski = (si(t), wi), ska = (sa(t)).

• Enc(prm, ski, t, xi(t)): take as input the public parameters, agent i’s secret informa-

tion, the time step and the local private value. Set vi(t) = wixi(t) and compute:

ci(t) = vi(t) + si(t) ∈ ZN .
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• AggrDec(prm, ska, t, {ci(t)}i∈[M ]): take as input the public parameters, the aggrega-

tor’s secret information, the time step and the ciphertexts of the agents for that time

step. The aggregator obtains xa(t) =
∑

i∈[M ] vi(t), as follows:

xa(t) = sa(t) +
∑
i∈[M ]

ci(t) mod N.

The correctness of pSA1 is based on the correct generation of the random shares of zero

in Setup, that cancel out after aggregation. Aggregator obliviousness is based on the perfect

security of masking the private data in Enc by a one-time pad.

The scheme pSA1 requires a different set of shares of zero for every time step (otherwise,

partial information such as differences between private contributions at different time steps

is leaked), which can involve elaborate communication, as we will see in Section 4.3.3. On

the other hand, the pSA2 = (Setup,Enc,AggrDec) scheme from [131], that we describe

next, only requires an initial set of shares of zero. This scheme is based on the Paillier

cryptosystem [177], see Preamble 2.5.1.

• Setup(1κ,M, {wi}i∈[M ], T ): generate p, q to be two equal-size primes and set N = pq

with gcd(φ(N), N) = 1, blog2Nc = κ. Define a hash function that acts as a random

oracle H : Z→ Z∗N2 . Generate M + 1 shares of zero:

sa := −
∑
i∈[M ]

si, si ∈ Z∗N2 .

Set prm = (κ,N,H), ski = (si, wi), ska = (sa).

• Enc(prm, ski, t, xi(t)): set vi(t) = wixi(t) and output:

ci(t) = (1 +N)vi(t)H(t)si mod N2.

• AggrDec(prm, ska, t, {ci(t)}i∈[M ]): take as input the public parameters, the aggrega-

tor’s secret information, the time step and the ciphertexts of the agents for that time
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step. The aggregator obtains xa(t) =
∑

i∈[M ] vi(t), as follows:

V (t) = H(t)sa
∏
i∈[M ]

ci(t) mod N2, xa(t) = (V (t)− 1)/N.

The correctness of this scheme follows from the generation of the secret shares and

from (A.1.1) in Appendix A.1. The aggregator obliviousness property is proved in [131].

Furthermore, [131] shows that the security of the scheme is not impacted when the hash

function H takes values in ZN2 , not in Z∗N2 .

In the pSA2 scheme, the aggregator can decrypt the sum without having access to φ(N),

as opposed to what would be needed for Paillier decryption, see Preamble 2.5.1. This is

crucial for the proof of aggregator obliviousness of pSA2 and explains why we cannot use

the same scheme to obtain the private weighted sum aggregation scheme with hidden weights

when the weights are encrypted with the Paillier cryptosystem.

4.3.1.2 Private weighted sum aggregation with centralized weights

When the aggregator knows the weight wi corresponding to each of the agents (and they are

not identical), but the agents do not know them, we cannot reuse the above private sum

aggregation schemes. We operate under the assumption that the constant weights are not

chosen in an adversarial way and there is an auditor that checks them beforehand. This

way, we ensure that, the weights are not chosen to single out only one piece of local data.

There are two lines of work that investigate this problem. First, in [39], the authors

propose a distributed scenario for aggregation in a graph of agents using a threshold cryp-

tosystem. This implies that after receiving contributions from the agents, the aggregator

would ask for help in decrypting the aggregate value. The second line of work removes

the extra communication required for decryption. Functional encryption [43] is a general-

ization of homomorphic encryption and allows a party to compute a functionality over the

encrypted data of another party and obtain the desired solution without decryption. One

of the few current practical implementations is the functionality of inner products, where

one party holds one input and the other party holds the other [3]. Here, we formulate our
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problem of private weighted sum aggregation with weights known by the aggregator in terms

of functional encryption for inner product: xa(t) = 〈[w1, . . . , wM ], [x1(t), . . . , xM (t)]〉.

The proposed scheme assumes constant weights, as in Section 4.2. The definition of

aggregator obliviousness for this case can be written as a cryptographic game formalizing the

requirements in Section 4.2. Stronger privacy definitions, from the perspective of functional

encryption, can be found in [3].

We modify pSA2 to get a private weighted sum with centralized weights scheme

pWSAc = (Setup,Enc,AggrDec):

• Setup(1κ, {wi}i∈[M ], T ): given the security parameter κ, generate two equal-size prime

numbers p, q and set N = pq such that blog2Nc = κ and gcd(φ(N), N) = 1. The

public key is pk = (N). Sample M values si ∈ Z∗N2 and set:

sa = −
∑
i∈[M ]

wisi. (4.3.1)

Choose a hash function that acts as a random oracle H : Z → Z∗N2 (see [3]). Finally,

set prm = (κ,N,H), ski = (si) and ska = ({wi}i∈[M ], sa).

• Enc(prm, ski, t, xi(t)): For xi(t) ∈ ZN , compute:

ci(t) = (1 +N)xi(t) ·H(t)si mod N2.

• AggrDec(prm, ska, t, {ci(t)}i∈[M ], {wi}i∈[M ]): compute

V (t) = H(t)sa ·
∏
i∈[M ]

ci(t)
wi mod N2, xa(t) = (V (t)− 1)/N.

Correctness follows after expanding V (t): Using the binomial theorem modulo N2, we

can write ci(t) = (1 +N)xi(t)H(t)si mod N2. Then:

V (t) = H(t)sa · (1 +N)
∑
i∈[M ] wixi(t) ·H(t)

∑
i∈[M ] wisi.
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Using sa = −
∑

i∈[M ]wisi, we obtain that (V (t)−1)/N =
∑

i∈[M ]wixi(t) = xa(t), as needed.

Aggregator obliviousness follows from the proof in [131], where the secret of the aggregator

is now sa = −
∑

i∈[M ]wisi instead of −
∑

i∈[M ] si, and the aggregator raises the ciphertexts

of the participants to the respective power wi. A different proof can be found in [3].

Notice that the keys are independent of the time period T . The Setup step can be

performed as follows by a third-party dealer that does not need to know the weights of the

aggregator. The dealer generates M random secrets si and sends one to each agent. The

aggregator generates the public and secret key of an additively homomorphic encryption

scheme, e.g., Paillier [177], encrypts the weights wi, for i ∈ [M ] and sends them to the

dealer. Then, the dealer computes (4.3.1) as:

E(sa) =
∏
i∈[M ]

E(wi)
−si ,

and sends it to the aggregator, which then simply decrypts sa. If using the Paillier scheme,

the modulus corresponding to the aggregator’s scheme has to satisfy Na > N2.

4.3.2 Private weighted sum aggregation with hidden weights

A private weighted sum aggregation scheme for weights unknown to all participants is com-

posed of algorithms pWSAh = (Setup, InitW,Enc,AggrDec). The formal security definition

of aggregator obliviousness is given in Definition 4.2.1 in Section 4.2 as a cryptographic game.

This game mimics the real execution of the scheme, but with a more powerful adversary

that can choose both the local data of the corrupted participants and the local data of un-

corrupted participants. If even in this case, the adversary is not able to break the privacy

of the scheme, then the scheme is private also when multiple participants collude and share

their private information, but cannot set the private data of the honest participants.

In pWSAh, the weight wi should be private from all participants, so one solution is to

encrypt it. Then, agent i has to be able to send an encryption of the masked product wixi(t)

to the aggregator, and the latter has to be able to compute and decrypt the result. This

suggests the outline in Figure 4.2:

86



• wi should be encrypted with an additively homomorphic encryption that the aggrega-

tor knows how to decrypt;

• the layer of encryption introduced in Enc should be compatible with the inner addi-

tively homomorphic layer;

• the aggregator should not be able to decrypt the individual contributions it receives

from the agents, despite having the secret key of the homomorphic encryption scheme.

Figure 4.2: Diagram of the pWSAh functionality and privacy requirements.

To achieve the solution, we use a combination of the two schemes described in Sec-

tion 4.3.1.1. For the outer layer of encryption, we use one-time pads as in pSA1, which are

compatible with the additively homomorphic property. For the inner layer of encryption,

we use an asymmetric additive homomorphic encryption scheme. We instantiate it with the

Paillier cryptosystem [177], due to its simplicity and popularity. More details about this

cryptosystem can be found in Preamble 2.5.1.

Hence, the steps of the algorithms in pWSAh are:

• Setup(1κ,M, T ): given the security parameter κ, get a pair of Paillier keys (pk, sk):

generate two equal-size prime numbers p, q and set N = pq such that blog2Nc = κ and

gcd(φ(N), N) = 1. Set: pk = (N), sk =
(
φ(N), φ(N)−1 mod N

)
. For every t ∈ [T ],

generate M + 1 shares of zero:

sa(t) := −
∑
i∈[M ]

si(t), si(t) ∈ Z∗N .

Finally, set prm = (κ,pk), ski = (si(t ∈ [T ])) and ska = (sk, sa(t ∈ [T ])).

• InitW(prm,M, {wi}i∈[M ]): given the public key of the Paillier scheme pk, encrypt wi
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for i ∈ [M ] and return swi = E(wi) = (1 +N)wirN mod N2, for r randomly sampled

from ZN and such that gcd(r,N) = 1.

• Enc(prm, swi, ski, t, xi(t)): for xi(t) ∈ ZN , compute:

ci(t) = E(wi)
xi(t) · E(si(t)) = E(wixi(t) + si(t)).

• AggrDec(prm, ska, t, {ci(t)}i∈[M ]): compute V (t) =
∏
i∈[M ] ci(t) mod N2 and then set:

xa(t) =
(
D(V (t)) + sa(t)

)
mod N.

Correctness: D(V (t)) =
∑

i∈[M ]wixi(t) + si(t) follows from the correct execution of

Paillier operations in Enc. Then, D(V (t))+sa(t) =
∑

i∈[M ]wixi(t) mod N = xa(t) from the

generation of shares of zero.

Theorem 4.3.2. The pWSAh scheme achieves weighted sum aggregator obliviousness w.r.t.

Definition 4.2.1.

The proof is given in Section C.1.

Remark 4.3.3. Unlike in pSA2, in pWSAh the aggregator has to know the secret key of the

cryptosystem that encrypts the weights. If we would use pSA2, which has a single share

of zero per agent for all time steps, an adversary that corrupts the aggregator and selects

equal contributions at different time steps for an agent in the pWSAO game (described in

Section 4.2) could learn that agent’s secret share.

The above scheme is appealing due to its simplicity, but involves demanding communi-

cation, because secret shares of zero are required at every time step t for every participant,

as motivated by Remark 4.3.3. The Setup is executed by an incorruptible trusted third-

party, called dealer. This dealer cannot be online at every time step to distribute the shares

because, otherwise, this party could act as a trusted aggregator. A more reasonable assump-

tion is that, prior to the online computations, the dealer computes the shares for T time
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steps and sends them to the agents, who have to store them. Alternatively, we also offer

a solution to generate the secret shares of zero in a distributed way, without the need of a

trusted third-party.

4.3.3 Decentralized generation of zero shares

4.3.3.1 One communication round, lower collusion threshold

We first describe a solution with one round of communication but lower collusion thresh-

old. This solution is appealing in the case where the agents are connected by a dense

graph. Specifically, at each time step, each agent would generate and send shares to the

agents in its neighborhood (including the aggregator), then sum up the shares it received

from its neighbors. This guarantees that all participants will hold a share of zero. However,

if the communication graph between the agents is sparse, the collusion threshold drops from

M − 1 participants to the minimum number of neighbors that an agents has.

The scheme for distributedly generating shares of zero for the update computed at agent i

for time t has the following steps:

1. At time t − 1, each agent j ∈ Ni ∪ i sends shares of zero σijl(t) ∈ Z∗N to itself and to

the agents in the intersection of its neighbors and the neighbors of agent i:

∑
l∈(Nj∪j)∩(Ni∪i)

σijl(t) = 0 mod N. (4.3.2)

2. At time t, each agent j ∈ Ni ∪ i sums its own share and the shares it received meant

for the aggregation at i:

sij(t) :=
∑

l∈(Nj∪j)∩(Ni∪i)

σilj(t). (4.3.3)

From (4.3.2), it is clear that:
∑

j∈Ni∪i
∑

l∈(Nj∪j)∩Ni σ
i
jl(t) = 0 mod N. Then, we confirm
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that we obtained shares of zero for agent i and j ∈ Ni:

∑
j∈Ni∪i

sij(t) = 0 mod N.

The idea is inspired from the dining cryptographers problem [59].

Furthermore, the bandwidth overhead can be reduced if, instead of sending the full secret

σ ∈ Z∗N , the agents send only a smaller seed τ ∈ Zw, w << N for a pseudorandom generator

function (e.g. a hash function) H : Zw → Z∗N , that is publicly known. The above scheme

can be modified as follows:

1. At time t − 1, each agent j ∈ Ni ∪ i generates random seeds for each agent l ∈

Nj ∩ (Ni ∪ i): τ ijl(t) ∈ Zw, and computes for itself:

σijj(t) = −
∑

l∈Nj∩(Ni∪i)

H
(
τ ijl(t)

)
mod N.

2. At time t, each agent j ∈ Ni ∪ i sums the outputs of the hash function on the seeds it

received from its neighbors that participated in the computation and its own share:

sij(t) :=
∑

l∈Nj∩(Ni∪i)

H
(
τ ilj(t)

)
+ σijj(t).

For the centralized solution of creating shares of zero considered in Section 4.3.2, the

privacy of one agent j ∈ Ni ∪ i is guaranteed as long as the number of colluding agents is

strictly less than |Ni∪i|−1 (otherwise the share of agent j can be computed from the shares

of the colluding agents). For the decentralized solution, the privacy of one agent j ∈ Ni∪ i is

guaranteed as long as the number of colluding agents is strictly less than (Nj ∪ j)∩ (Ni ∪ i).

Hence, this scheme is more robust the more neighbors an agent has.

In summary, the above solution has the advantage that the agents communicate their

shares in a decentralized fashion, but the disadvantage that the number threshold of collud-

ing parties that can guess a secret share is reduced from the cardinality of the neighbors of
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the aggregating agent to the cardinality of the smallest intersection of the neighborhood of

the aggregator’s neighbors and the aggregator’s neighborhood.

4.3.3.2 Two communication rounds, same collusion threshold

When agents are not sufficiently connected, there are ways of remediating the problem, each

with different trade-offs. If we are able to enforce new communication links between the

agents, we can create dummy connections such that each agent reaches a desired vertex

degree. This keeps the same number of communication rounds as before, but it is debatable

whether the cost of adding new communication links is reasonable. For instance, if the

connections are based on proximity, such a solution is expensive. On the other hand, if we

relax the number of communication rounds such that each agent obtains a valid share of zero

in two rounds, we can retrieve the initial collusion threshold ofM−1 participants. Instead of

sending the shares to each other, the agents will use the aggregator as an intermediate relay

to get to the agents that they are not directly connected to. Specifically, each agent i ∈ [M ]

will generate M + 1 shares and encrypt them with a key known the agent l ∈ ([M ] \ i) ∪ a

(with, e.g., a symmetric encryption like AES). The aggregator will forward the corresponding

shares to its neighbors l 6= i.

1. At time t − 2, each agent and the aggregator i ∈ [M ] ∪ a creates shares of zero

σil(t) ∈ Z∗N for itself and for the rest of the agents:

∑
l∈[M ]∪a

σil(t) = 0 mod N. (4.3.4)

It encrypts them with a key known to agent l ∈ [M ]∪a\ i and sends AES(keyl, σil(t))

to the aggregator.

2. At time t− 1, the aggregator batches the M shares for agent i ∈ [M ] and sends them.

3. At time t, each agent l ∈ [M ] ∪ a sums its own share and the shares it received and
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decrypted from the aggregator:

sl(t) :=
∑

i∈[M ]∪a

σil(t) mod N. (4.3.5)

In order to reduce the load on the aggregator, an agent i can communicate directly to

agents l ∈ Ni∩ [M ], where Ni is the set of neighbors of agent i and only sends the encrypted

shares to the aggregator for the agents l /∈ Ni ∩ [M ].

A technical discussion on sampling the shares of zero is given in Appendix C.2.

4.4 Schemes for multi-dimensional data

4.4.1 Packed Paillier scheme

Assume we have a vector y = [y[1],y[2], . . . ,y[m]], with y[i] ∈ [0, 2l) ∩ Z≥0. We can take

advantage of the fact that N >> 2l, where N is the Paillier modulus by packing m items of

l bits into a plaintext in ZN in the following way:

py =

m∑
i=1

y[i]2l(i−1) = [y[1]|y[2]| . . . |y[m]].

Here, we depict the least significant bits on the left, to show the elements in the order that

they appear in the vector. If we need to perform additional operations on py after packing,

we have to make sure we retrieve the correct elements. Hence, we need to take into account

possible overflows from one “slot” of the ciphertext the another. We do this by padding with

enough zeroes, where δ > l and will be determined based on the computations performed

on py afterwards:

py =
m∑
i=1

y[i]2δ(i−1) = [ y[1]︸︷︷︸
l

0...0︸︷︷︸
δ−l

| y[2]︸︷︷︸
l

0...0︸︷︷︸
δ−l

| . . . |y[m]︸︷︷︸
l

0...0︸︷︷︸
δ−l

]. (4.4.1)

Note that we can perform (4.4.1) as long as mδ < N .

In (4.4.1), we require positive integers. For a value y ∈ Qli,lf , we first construct an
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integer y, and then obtain a positive integer ỹ, for γ > l := li + lf that we will specify later:

y := y2lf ⇒ ȳ ∈ [−2l−1, 2l−1) ∩ Z (4.4.2)

ỹ := y + 2γ ⇒ ỹ ∈ [0, 2γ+1) ∩ Z≥0. (4.4.3)

In Sections 4.4.2.2 and 4.4.2.4, where we do not use packing, instead of (4.4.3) we use

(assuming 2l−1 < N/2):

ỹ :=


ȳ if ȳ ≥ 0

ȳ +N if ȳ < 0

⇒ y ∈ ZN . (4.4.4)

Batching multiple entries into one Paillier ciphertext was first proposed in [100]. No-

tice that after packing multiple plaintexts into one Paillier ciphertext as in (4.4.1), we can

still perform the homomorphisms corresponding to element-wise addition and scalar mul-

tiplication. In the following, we investigate a more efficient way to compute an encrypted

matrix-plaintext vector multiplication, by using only packing, element-wise addition and

scalar multiplication. For a matrix W ∈ Rm×n, denote the jth column by wj , for j ∈ [n].

Then, in order to obtain the product v := Wx, we multiply each column wj by the corre-

sponding element in the vector x[j] and then sum over all the obtained vectors:

v =
n∑
j=1

wjx[j]. (4.4.5)

Figure 4.3 depicts this method.

4.4.2 Multi-dimensional private weighted sum aggregation

4.4.2.1 Multi-dimensional pSA

In the case of pSA1, the messages have small sizes and communication is less of a problem

even for multi-dimensional data. However, in the case of pSA2, messages (ciphertexts) are

larger and we propose a better method than sending a different message for each element of
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Figure 4.3: Diagram of column-packed matrix-vector multiplication. The entries with the same
outer coloring are packed in the same ciphertext.

the resulting vector, by batching the elements in a single ciphertext. The aggregator wants

to obtain xa(t) =
∑

i∈[M ] Wixi(t) =:
∑

i∈[M ] vi(t). In pSA2, the dealer generates the secret

shares the same way as previously, but each agent i ∈ [M ] computes v
[j]
i (t) and uses (4.4.2)

and (4.4.3) to obtain ṽ
[j]
i (t), then computes:

pi(t) =
∑
j∈[ni]

ṽ
[j]
i (t)2δ(j−1), ci(t) = (1 +N)pi(t)H(t)si mod N2.

The aggregator computes V (t) as before, and retrieves:

x̃[k]
a = V (t)//2(na−k)δ mod 2(k−1)δ, k ∈ {2, . . . , na − 1}

and x̃
[1]
a = V (t) mod 2δ, x̃

[na]
a = V (t)//2(na−1)δ, where by // we mean the quotient opera-

tion. From the elements of x̃a(t), the aggregator needs to subtract 2γM and divide by 22lf

each element, in order to obtain xa(t).

Choosing γ = 2l+ 1 and δ = 2l+ 2 + dlog2Me ensures the correctness of the decryption,

as no overflow occurs.

4.4.2.2 Multi-dimensional pWSAc

Here, we cannot use packing to reduce the number of ciphertexts because we would require

rotations and element-wise multiplications, which cannot be performed on packed Paillier
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ciphertexts. Compared to the pWSAh scheme, pWSAc has the advantage that only one set

of secret shares are needed for all time steps, hence, communication due to secret generation

and sharing only happens once.

In the multi-dimensional case, the algorithms change from the ones in Section 4.3.1.1

as described next. The participants prepare their data using (4.4.2) and (4.4.4). In Setup,

naM secrets si ∈ (Z∗N )na are generated and:

s[k]
a = −

∑
i∈[M ]

∑
j∈[ni]

W
[kj]
i s

[j]
i , k ∈ [na].

In Enc, each agent i ∈ [M ] constructs na ciphertexts:

c
[j]
i (t) = (1 + x̃

[j]
i (t)N) ·H(t)s

[j]
i mod N2, j ∈ [ni].

Finally, in AggrDec, the aggregator computes for k ∈ [na]:

V[k](t) = H(t)s
[k]
a ·

∏
i∈[M ]

∏
j∈[ni]

c
[j]
i (t)W̃

[kj]
i mod N2, x̃[k]

a (t) =
(
V[k](t)− 1

)
/N.

The aggregator retrieves the elements of xa(t) from x̃a(t) by subtracting N from the

elements greater than N/2 and dividing all of them by 22lf .

4.4.2.3 Multi-dimensional pWSAh

We consider values on l bits, with log2N >> l, for N ensuring semantic security of the Pail-

lier scheme. Sampling a random value from a large ZN is expensive, but also redundant, since

it masks a much smaller message. To this end, we prefer to sample si(t) ∈ (0, 2λ+2l), ∀i ∈

[M ], for λ the statistical security parameter and to set sa(t) := −
∑

i∈[M ] si(t) in pWSAh.

Masking by si(t) will guarantee λ-statistical security rather than perfect security, see Pream-

ble 2.4. From here on, we use this more efficient approach.
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4.4.2.4 Naive multi-dimensional scheme

This solution was proposed in [12]. The algorithms change compared to Section 4.3.2 as

follows. In Setup, for every t ∈ [T ], M · na shares of zero s
[k]
i (t) ∈ (0, 2λ+2l) are generated

for i ∈ [M ], k ∈ [na]:

s[k]
a (t) = −

∑
i∈[M ]

∑
k∈[na]

s
[k]
i (t).

In InitW, the weights Wi, i ∈ [M ] are processed as in (4.4.2) and (4.4.4) and encrypted

element-wise: E(W
[kj]
i ) = (1 + N)W̃

[kj]
i rN modN2, for r randomly sampled from ZN and

satisfying gcd(r,N) = 1. In Enc, each agent i ∈ [M ] computes:

c
[k]
i (t) =

∏
j∈[ni]

E(W̃
[kj]
i )x̃

[j]
i (t) · E(s

[k]
i (t)) = E

∑
j∈[ni]

W
[kj]
i x

[j]
i (t) + s

[k]
i (t)

 ,∀k ∈ [na].

Finally, in AggrDec, the aggregator computes, for k ∈ [na]:

V[k](t) =
∏
i∈[M ]

c
[k]
i (t) mod N2, x̃[k]

a (t) = D(V[k](t)) + s[k]
a (t).

4.4.2.5 Packed multi-dimensional scheme

We reduce the number of ciphertexts and the corresponding number of operations by using

packing and the more efficient encrypted matrix-plaintext vector multiplication described in

Section 4.4.1.

Assume at the moment that we can pack at least na values in one ciphertext. The

steps we take are: 1) Pre-process the values to be positive and integer; 2) Pack and en-

crypt the columns of the matrix Wi and obtain ni ciphertexts; 3) Perform a scalar multi-

plication of one encrypted column c with the scalar x
[c]
i (t); 4) Sum the ni ciphertexts to get

the encryption of Wixi(t); 5) Add the share of zero and mask the intermediate results; 6)

Sum the M ciphertexts to obtain the encryption of
∑

i∈[M ] Wixi(t); 7) Decrypt, unmask

and unpack the result.

Figure 4.4 indicates possible values for the number of rows, columns and agents depend-
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ing on the plaintext size and statistical security. Denote the maximum number of values we

can pack by m < N/δ. If na > m, we split the columns into dna/me Paillier ciphertexts and

follow the same operations as before, and concatenate the resulting vectors after decryption.
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Figure 4.4: The number of rows m that can be packed in a plaintext of N = 2048 bits, as a function
of the number of columns n, number of agents M , message size l and statistical security λ = 80 bits.

Let pWSAh∗ = (Setup, InitW,Enc,AggrDec) be a packed multi-dimensional scheme for

private weighted sum aggregation with hidden weights, where steps 1) and 2) are performed

by the dealer as part of InitW and the shares of zero for step 5) are generated as part of

Setup, steps 1), 3)–5) are performed by each agent i ∈ [M ] in Enc and steps 6) and 7) are

performed by the aggregator in AggrDec.

The steps and how to choose bit sizes in order to guarantee both correctness and privacy,

as well as the proof of the following theorem, are detailed in Appendix C.3.

Theorem 4.4.1. The packed multi-dimensional scheme pWSAh∗ is correct and achieves

aggregator obliviousness.

4.4.3 Comparison between naive and packed method

In the naive version of the multi-dimensional pWSAh, each agent receives nani ciphertexts

for Wi at the initialization of the protocol, then computes nani ciphertext–scalar multipli-

cations (modular exponentiation), na(ni−1) ciphertext additions (modular multiplications)
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and sends to the aggregator na ciphertexts. In the decentralized way of generating shares,

each agent will have to send out (2l + λ)na bits of randomness to each of the M neighbors

per time step.

Denote by m the number of elements we can pack in a Paillier ciphertext. In the packed

version pWSAh∗, each agent receives dna/meni ciphertexts for Wi at the initialization of

the protocol, then computes dna/meni ciphertext–scalar multiplications, dna/me(ni − 1)

ciphertext additions and sends to the aggregator dna/me ciphertexts. In the decentralized

way of generating shares, each agent will have to send out (2l+ 1 + dne+ dMe)dna/me bits

of randomness to each of the M neighbors per time step.

4.5 LWE-based private weighted aggregation with hidden

weights

To avoid the trust and communication issues introduced by successive symmetric keys, as

described in the previous section, we use a public-key additively homomorphic cryptosystem

(as the inner encryption scheme) to encapsulate the message in a Learning with Errors

ciphertext (the outer encryption scheme). A pSA scheme based on this idea was proposed

in [28] using the Augmented Learning with Errors concept introduced in [88]. We show

how to modify the scheme in [28] such that we obtain a private weighted sum aggregation

scheme and exploit the structure of the problem in order to reduce the number of ciphertexts

communicated and number of operations performed.

The LWE problem essentially amounts to distinguishing random linear equations per-

turbed by small amounts of noise from uniform linear equations. Let κ denote the security

parameter, q = q(κ) a positive prime, l = dlog qe and λ a positive integer, such that λ/l ∈ Z.

The Augmented Learning with Errors (A-LWE) problem [88] encodes a message in the error

from an LWE term. An A-LWE term consists of (A,bᵀ), with bᵀ = sᵀA + eᵀ ∈ Zλq , for a

public matrix A ∈ Zκ×λq , a secret key s ∈ Zκq and error term e ∈ Zλq , which is sampled from

a distribution related to the message we want to encode.

Specifically, let µ be a message and f(·) a function with the property that its output is
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indistinguishable from random (e.g., an encryption mechanism from a semantically secure

scheme). For y = f(µ) ∈ Zλ/lq and for a public matrix G ∈ Zλ/l×λq , the error term e is

sampled from a special error distribution, defined by DΛ⊥y (G),σ, and satisfies Ge ≡ y mod q.

The special error distribution DΛ⊥y (G),σ is a discrete Gaussian distribution with standard

deviation σ over a lattice determined by the matrix G and vector y, see Definition 4.5.1.

Informally, given an A-LWE term (A,bᵀ), one cannot retrieve the secret key s and the

message µ encoded in the error term e, but, given s, one can efficiently recover µ from e,

see Definition 4.5.2.

For the inner layer of encryption, we require a semantically secure public-key additively

homomorphic encryption that allows plaintext-ciphertext multiplication and the operator on

the ciphertext space corresponding to addition is also addition. We will call such a scheme

Packed Additively Homomorphic Encryption (PAHE) for reasons described in Section 4.6.

For the moment, we give a bare-bones description, just to specify the compatibility with

the A-LWE outer ciphertext: Setup() → prm; KeyGen(prm) → (pk, sk); Epk(µ) → c;

Dsk(c)→ µ; and Eval, composed of: Add(c1, c2)← c ≡ c1+c2; CMult(p1, c2)← c ≡ p1 ·c2.

There is an encoding step in the encryption primitive that transforms the given message

into an appropriate plaintext and a decoding step in the decryption primitive that transforms

the obtained plaintext into a message from the desired domain. There exist transformations

between the ciphertext space, which is a ring of polynomials, and Zλ/lq . So, for simplicity,

we say c ∈ Zλ/lq .

Definition 4.5.1. [A-LWE distribution] Let κ, q, p, λ be integers and l := dlog qe. Let

µ ∈ Zp be a plaintext and f : Zp → Zλ/lq be a function with output indistinguishable from

random. Define gᵀ :=

[
1 2 . . . 2l−1

]
∈ Zlq and G := Iλ/l ⊗ gᵀ ∈ Zλ/l×λq . Sample

s
$← Zκq and A

$← Zκ×λq . A sample from the Augmented Learning with Errors distribution

LA-LWE
κ,λ,q (µ) over Zκ×λq × Zλq is obtained as follows: Compute y := f(µ) ∈ Zλ/lq ; Sample

e← DΛ⊥y (G),σ ∈ Zλq ; Return (A,bᵀ), with bᵀ := sᵀA + eᵀ.

Let ρ : R → (0, 1] with ρσ(x) = exp(−x2/σ2). The discrete Gaussian distribution over

the integers DZ,σ samples x ∈ Z with probability ρσ(x)/(
∑

y∈Z ρσ(y)). An efficient sampling
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algorithm of the error term e from the discrete Gaussian distribution DΛ⊥y (G),σ for a general

q, is given by [101]. We remark that we can also use another basis instead of 2 for g.

Definition 4.5.2. [Decisional A-LWE problem] Let κ, q, p, λ be integers and let f be a

function with output indistinguishable from random. The decisional A-LWE problem asks to

distinguish in polynomial time poly(κ) between samples (A,bᵀ)← LA-LWE
κ,λ,q (µ) and uniform

random samples (Ā, b̄ᵀ)
$← Zκ×λq × Zλq .

If the distribution of y is computationally indistinguishable from the uniform distribution

on the same domain, i.e., PAHE is semantically secure, then the decisional A-LWE problem

is hard [28, 88].

Solution of pWSAh problem

The idea of the scheme is as follows. The aggregator generates a pair of PAHE keys. A third

party (responsible also for choosing the weights) encrypts the weights with the public key and

generates a set ofM+1 random keys that sum to zero, then distributes them accordingly to

the agents and aggregator. Each agent computes the product of the encrypted weight with its

local data, which is possible due to the homomorphic properties of the PAHE cryptosystem.

Then, it samples the error term according to its local PAHE ciphertext, creates an A-LWE

ciphertext with its local key and sends it to the aggregator. The aggregator sums all the

A-LWE ciphertexts and obtains the sum of the error terms, which is an encoding of the sum

of the PAHE ciphertexts. Using its PAHE secret key, the aggregator proceeds to decrypt

and obtain the desired weighted sum of the data of the agents in the network.

• Setup(1κ,M, λ, q, σ, w1,...,M , T ): Generate the public parameters At
$← Zκ×λq , for

time steps t = 1, . . . , T . Generate (pk, sk) ← KeyGen. For all agents i ∈ [M ],

draw si
$← Zκq and let sa = −

∑
i∈[M ] si. Broadcast public parameters prm =(

A1,...,T , q, κ, σ, λ,M,pk
)
. To each agent i ∈ [M ], send their secret key si. Send(

sa, sk
)

to the aggregator. Each agent and the aggregator computes the vector

gᵀ =

[
1 2 . . . 2l−1

]
∈ Zlq. The aggregator also computes G = Iλ/l ⊗ gᵀ ∈ Zλ/l×λq .
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• InitW(prm, {wi}i∈[M ]): given the public key of the PAHE scheme pk, encrypt wi for

i ∈ [M ] and return swi = Epk(wi).

• Enc(At,g
ᵀ,pk, σ, si, xi(t), swi): Each agent i computes the chiphertext yi(t) =

CMult(swi, xi(t)) ∈ Zλ/lq and samples the noise term ei(t) ← DΛ⊥
yi(t)

(G),σ ∈ Zλq .

Finally, it computes ci(t) = sᵀiAt + ei(t)
ᵀ ∈ Zλq and sends the ciphertext to the

aggregator.

• AggrDec(At,G, sa, sk, c1,...,M (t)): The aggregator sums the ciphertexts from all the

agents c(t) =
∑

i∈[M ] ci(t). It then computes the aggregated error term e(t) =

c(t) + sᵀaAt. Finally, the aggregated sum of the agents’ data is computed as xa(t) =

Dsk(Ge(t) mod q).

Theorem 4.5.3. The pWSA scheme achieves weighted sum aggregator obliviousness w.r.t.

Definition 4.2.1.

The proof for Theorem 4.5.3 and the correctness of the scheme are given in Section C.4.

Compared to the solution in Section 4.3.2, only one set of secret shares of zero sa =

−
∑

i∈[M ] si have to be generated for all the time steps. In this case, it is reasonable to expect

a trusted third party to generate and distribute them offline or even for the agents and

aggregator to embark in an offline secure multi-party computation algorithm to obtain them.

For the security of the scheme over multiple time steps, we need to use different matrices

A for each time step t, otherwise the aggregator can obtain differences of messages at two

time steps. These matrices At are public and can be broadcasted or posted on a board of

messages, where each participant has access to. For better efficiency, only smaller random

seeds can be sent and stored, e.g., agree on a function that outputs a pseudorandom matrix

and feed in the time steps and a smaller seed. Only one seed s0 should be sent at time zero,

then the agents can construct the seed for time t in a counter block cipher mode st = s0 + t.
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4.6 Packed weighted aggregation with A-LWE

In this section, we show how to extend in an efficient way the scalar weighted sum aggregation

scheme to multi-dimensional data. Compared to the solution in 4.4.2.3, this scheme uses

ciphertexts that allow packing a significantly larger number of values.

We require the packed additively homomorphic encryption scheme (PAHE) scheme to be

semantically secure and to satisfy the requirement from Section 4.5 of ciphertext summation.

This scheme should also allow packing and single instruction multiple data (SIMD) oper-

ations. We draw inspiration from the packed additively homomorphic encryption scheme

used in [132]. PAHE can be instantiated by schemes in e.g., [51, 62]; see Preamble 2.5.3. The

underlying hardness problem is Ring Learning with Errors (R-LWE in Appendix A.2). The

PAHE construction is parameterized by the following constants: the ring dimension 2N , the

plaintext modulus p, the ciphertext modulus q and the standard deviation σ of a discrete

Gaussian distribution. We can pack up to N values in one ciphertext using the Chinese

Remainder Theorem. Packing can be thought of as the ciphertext having N independent

data slots. Using the notation in Section 4.5, N = λ/(2l).

Recall the abstraction of the PAHE primitives: Setup, KeyGen, E, D, Eval. The

operations that can be evaluated during Eval are single instruction multiple data, which

means that they can operate on the whole encoded vector. Specifically, these operations are

SIMDAdd, SIMDCMult and Rotate, i.e. element-wise addition, element-wise multiplication

by a plaintext vector and slots permutations that can achieve rotations:

• SIMDAdd(c1, c2)→ c, such that, if ci = Epk(µi), i = 1, 2, then Dsk(c) = µ1 + µ2.

• SIMDCMult(c,ν) → c′, such that, if c = Epk(µ), then Dsk(c′) = µ ◦ ν, where ◦

denotes element-wise multiplication.

• Rotaterk(π)(c, π) → c′, such that, for a permutation π and c = Epk(µ), we have

Dsk(c′) = [µπ(1), . . . ,µπ(n)], where rk is the associated rotation key.

The encryption E endows the ciphertexts with a fresh small noise η0. The operations in

Eval also introduce an amount of noise in the ciphertext, which can overflow and prevent the
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correct decryption. Denote by η the noise level in a ciphertext c. A ciphertext resulted from

SIMDAdd has noise η1 + η2. A ciphertext resulted from SIMDCMult has noise bounded

by ηη×, where η× ≤ p
√
N . A ciphertext resulted from Rotate has noise η + ηπ, where ηπ

is the noise of the permutation operation. The multiplication introduces the largest noise.

In terms of computation cost, the addition is the cheapest, while the rotation is the most

expensive. The parameters of the scheme need to be chosen such that the noise does not

overflow.

4.6.1 Efficient homomorphic matrix-vector multiplication

In this section, we investigate efficient methods for performing the multiplication of an

encrypted matrix W ∈ Rm×n and plaintext x ∈ Rn, i.e., computing the corresponding

ciphertext version of y = Wx. For our target applications of weighted aggregation, the

goals of the computation are, in order of importance:

• minimize the size of the encrypted output that contains y, since this ciphertext has

to be encoded in the noise term and then sent over to the aggregator;

• minimize the noise growth, in order to reduce the parameter size, which in turn also

minimizes both the computational cost and size of the communicated message;

• minimize the computational cost;

• minimize the input ciphertext that packs W.

Sequential SIMDCMult operations should be avoided because of the exponential growth

in the noise. For the input vector packing, we assume that m,n < N . For the input matrix

packing, we assume that nm < N or n2 < N . We pad the rest of the slots up to N with

zeros. If mn > N (or n2 > N), then the number of input ciphertexts will be dmn/Ne

(respectively dn2/Ne). We show in Figure 4.5 the schematic representations of the five

methods considered for computing a matrix-vector multiplication.
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4.6.1.1 Naive method with each row packed in one ciphertext.

The output of a matrix-vector multiplication is given by:

yj = Wjx =
n∑
k=1

Wjk ◦ xk, j = 1, . . . ,m. (4.6.1)

If each row of the matrix W is packed and encrypted in a ciphertext, and x is packed in

a plaintext, then the naive version involves m SIMDCMult operations. For each resulting

vector, we then need n−1 Rotate and n−1 SIMDAdd operations, which creates a ciphertext

j whose first slot contains yj . Using a tree structure to perform these operations, we can

reduce their number to dlog ne Rotate and dlog ne SIMDAdd operations. This creates m

output ciphertexts. In order to obtain only one output ciphertext, we needm SIMDCMult to

mask the ciphertexts by [1|0|0| . . .], thenm−1 Rotate andm−1 SIMDAdd operations. This

sequence of operations introduces a lot of noise, because of the two sequential SIMDCMult

operations.

4.6.1.2 Method with each column packed in one ciphertext.

Denote by Cj the j’th column of the matrix W, j = 1, . . . , n.

y =
n∑
j=1

Cjxj . (4.6.2)

If each Cj is packed and encrypted in a ciphertext, and we pack m copies of xj in a

plaintext, the product can be achieved by n SIMDCMult, n− 1 SIMDAdd operations, and

no permutation, while outputting a single ciphertext.

4.6.1.3 Method with each diagonal packed in one ciphertext.

In the applications mentioned in the Introduction, the matrix W usually satisfies m ≤ n.

We pad the matrix with zeros such that it becomes square W̄ ∈ Rn×n. We can pack and

encrypt every diagonal of the matrix, denoted by dj , j = 1, . . . , n as a separate ciphertext.
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Let ρ(x, j) be the rotation of x to the left by j elements. Then, we have:

y =
n∑
j=1

dj ◦ ρ(x, j − 1). (4.6.3)

If we rotate and pack the plaintext vector x, the product can be achieved by n SIMDCMult,

n− 1 SIMDAdd operations, and no permutation, while outputting a single ciphertext, the

same as in the column method.

Figure 4.5: Diagrams of the various matrix-vector multiplication schemes considered. The entries
with the same outer coloring are packed in the same ciphertext. The inner color is selected to aid
with visualizing the rotations and the corresponding element-wise slot multiplications.

4.6.1.4 Method with hybrid diagonal packing in a ciphertext.

We can combine the naive and the diagonal method by packing into a ciphertext an “extended

diagonal” of the rectangular matrix W, which we denote d̄j for j = 1, . . . ,m. Then, the
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product can be written as:

y =

dn/me∑
i=1

ρ
( m∑
j=1

d̄j ◦ ρ(x, j − 1),m(i− 1)
)
. (4.6.4)

This requiresm SIMDCMult operations, dlog n/me Rotate and dlog n/me+m−1 SIMDAdd.

4.6.1.5 Naive method with all matrix packed in one ciphertext.

Consider that W is packed and encrypted in one ciphertext, row by row. Then we pack m

copies of x in a plaintext and perform one SIMDCMult operation to get:

[W1 ◦ x|W2 ◦ x| . . . |Wm ◦ x| . . .].

We only need to perform dlog ne Rotate and dlog ne SIMDAdd operations to obtain: [y1| ∗

| . . . | ∗ |y2| ∗ | . . . | ∗ |ym| ∗ | . . .]. Notice that this yields only one output ciphertext, and no

further masking is required as long as the aggregator knows which slots to retrieve when

decrypting.

4.6.1.6 Method with all diagonals packed in one ciphertext.

Consider that the n diagonals of W̄ ∈ Rn×n are packed and encrypted in one ciphertext.

Then we can also pack the n rotated versions of x in a plaintext, and then perform one

SIMDCMult operation to get:

[d1 ◦ x|d2 ◦ ρ(x, 1)| . . . |dn ◦ ρ(x, n− 1)| . . .].

As before, we only need to perform dlog ne Rotate and dlog ne SIMDAdd operations to

obtain: [y1|y2|ym| ∗ | ∗ | . . .].

Regardless of how we pack the matrix into one ciphertext (column and hybrid packing

too), the computational cost and noise are the same. The advantage of using the diagonal/

column input matrix packing is that the elements of the output vector will be in the first m

slots of the output ciphertext, rather than spread one every n slots.
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Table 4.1 summarizes the number of operations, noise gain and number of input and

output ciphertexts of the methods we analyzed. Note that η0 grows with the number of

inputs packed inside a ciphertext. These methods point out a trade-off between memory

and computation. The agents have to perform as many multiplications as input ciphertexts

(with the exception of the naive method). At the same time, the maximum number of input

ciphertexts (n) required in the diagonal/column methods does not require any permutation

and has the least amount of noise.

Method Rotate
SIMD
CMult

SIMDAdd Noise # In
ctx

# Out
ctx

Naive mdlog ne+
m− 1

2m
mdlog ne+
m− 1

mη×(nη0η×+
(n−1)ηπ)+(m−1)ηπ

m 1

Diagonal/
Column 0 n n− 1 nη0η× n 1

Hybrid dlog n/me m
dlog n/me+
m− 1

nη0η×+
dlog n/m− 1eηπ

m 1

Matrix
packed dlog ne 1 dlog ne nη0η× + (n− 1)ηπ 1 1

Table 4.1: Table with costs of different methods for computing a ciphertext matrix-plaintext vector
multiplication. η0 represents the noise of the corresponding fresh ciphertext. In the method column,
the naive, diagonal/column and hybrid are input vector packed.

Making a decision between the available methods should take into account the agents’

capabilities and the sizes of n and m. Note that the weights are constant and transmitted

only once at the protocol’s initialization, hence the communication overhead for the input

transmission is not decisive. For a square matrix W, the diagonal method is the same as

the hybrid one and is the default option, as is the column method. For very large n and

n >> m, the hybrid method is preferable. For large n,m with mn comparable to N , the

input matrix packing is preferable.

Remark 4.6.1. When the number of items packed in a ciphertext is less than N and rotations

are performed, some slots in the output ciphertext will reveal partial sums to the decryptor.

An inexpensive solution (one SIMDAdd) to this issue is to add noise to the slots that are

not of interest, in order to prevent information leakage at the decryption. The diagonal and
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column methods with input vector packing do not require the noise treatment.

4.6.2 Multi-dimensional A-LWE based solution

Fot the pWSAh scheme, the Setup phase unfolds as in Section 4.5: the parameters and

keys are generated with respect to the PAHE crypto-system and the weight matrices Wi

are packed and encrypted corresponding to the chosen method from Table 4.1.

In the Enc phase, each agent packs its local vector xi(t) in plaintext corresponding to

the chosen method from Table 4.1 and performs that instead of CMult. Before sampling

ei(t) from yi(t), the agents add noise as indicated in Remark 4.6.1.

In the AggrDec phase, the aggregator takes the same steps as in Section 4.5. Unlike the

packed matrix-vector multiplication at the agent’s side, the multiplication Ge(t) is done as

is. Although the size of the matrix can be large, it is very sparse: G = Iλ/l ⊗ gᵀ, where

gᵀ = [1, 2, . . . , 2l−1], so we only need to multiply chunks of size l. These multiplications can

be efficiently obtained by bit shifting.

Correctness: The correctness of this modified scheme is immediate, given correctly se-

lected parameters such that the noise does not overflow.

Theorem 4.6.2. The pWSA scheme for multi-dimensional problems achieves weighted sum

aggregator obliviousness w.r.t. Definition 4.2.1.

Proof. The proof follows the same steps as the proof of Theorem 4.5.3 and also incorporates

the noise added at the agents’ side such that there is no information leakage from the partial

sums obtained by the aggregator.
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Chapter 5

Linear Control

In this chapter, we explore the secure evaluation of linear controllers, one of the most

widely used type of controllers. Nevertheless, even securely evaluating the most elementary

control policies brings three challenges. First, we want to preserve the privacy of both

signals, such as states, measurements, control inputs, references, estimates, and system

parameters, such as dynamical model parameters, control gains, associated costs. Second,

we are looking at dynamical processes, that operate over multiple time steps; this requires

the secure evaluation protocol to be designed such that privacy and correctness are preserved

at every time step (there are no overflows, decryptions are correct). Third, linear controllers

are often preferred due to their simplicity for fast systems with small sampling times and

low-power platforms. Hence, the secure evaluation protocol has to operate in real-time and

return the desired computation before the sampling period ends, and its computational

overhead has to be compatible with the available system hardware.

In this chapter, we showcase two different linear controllers in two different settings:

a controller composed by a Kalman filter for estimation and a quadratic optimal control

for tracking performance, computed between a cloud controller and an actuator, based on

multiple sensors’ data; and a decentralized generic linear controller, computed between a set

of agents that are interconnected through communication links.

Specifically, in the first part of the chapter, we consider the problem of implementing a
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Linear Quadratic Gaussian (LQG) controller on a system, while maintaining the privacy of

the measurements, state estimates, control inputs and system model. The component sub-

systems and actuator outsource the LQG computation to a cloud controller and encrypt their

signals and parameters. The encryption scheme used is Labeled Homomorphic Encryption,

which supports the evaluation of degree-2 polynomials on encrypted data, by attaching a

unique label to each piece of data and using the fact that the outsourced computation is

known by the actuator. We write the state estimate update and control computation as

multivariate polynomials in the encrypted data and propose an extension to the Labeled

Homomorphic Encryption scheme that achieves the evaluation of low-degree (larger than

two) polynomials on encrypted data. We showcase the numerical results of the proposed

protocol for a temperature control application that indicates competitive online times.

In the second part of the chapter, we propose a secure multi-party computation scheme

that ensures the private computation of the linear control updates of each agent in a dis-

tributed system, without leaking any other information about the states and controls of

their neighbors or themselves. To this end, we make use of additively homomorphic encryp-

tion and private sum aggregation schemes. We analyze the conditions such that a dishonest

agent cannot observe the rest of the network. Finally, we present implementations of the

proposed schemes and showcase their efficiency.

This chapter covers the work presented in [6, 7, 12].

5.1 Secure evaluation of LQG control

5.1.1 Introduction

In the setting of distributed systems with large number of sensors that collect data over large

periods of times, e.g., FitBit data, medical monitoring data or parameters in a plant, the

data from the sensors is aggregated, stored and processed at a powerful server, generically

called cloud. Requesting parties submit the processing algorithms they want to perform on

the data stored at the cloud. Although cloud computing solves the storage and computation

problems, it also raises issues about trust and privacy of the data and results [46]. Users
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agree to participate in the computation if their data is guaranteed to remain concealed

from both the cloud and requester. Similarly, a requesting party desires to keep private the

parameters of its processing algorithms, as well as the result of the computation.

Usually, in cloud-outsourced control and estimation applications, the controller or plan-

ner knows the algorithms that are outsourced to the cloud, for instance, Kalman Filter,

Linear Quadratic (Gaussian) Regulator or Model Predictive Controller. An encrypted Lin-

ear Quadratic Gaussian (LQG) controller can be useful for any application that requires

distributed noisy private data from sensors to be aggregated and steered by a potentially

untrustworthy cloud. Examples of such applications include: power generation regulation,

robots tracking targets in a dangerous environment, temperature regulation in smart build-

ings, packet routing in a private computer network. Since these applications involve multiple

entities, the matrices in the model will depend on local private data. This requires both

sensor data and system parameters to be private. In the rest of the section, we will focus

on the problem of secure implementation of an LQG controller on private data.

General frameworks under the umbrella of Secure Multiparty Computation (SMPC) [74]

have been proposed to solve the problem of private computations with data collected from

multiple parties. While their generality is desirable in some cases, it is also advantageous

to exploit the particularities of the specific architecture and the computation that is per-

formed. Specifically, one of the solutions in the literature called Labeled Homomorphic

Encryption [27], which we will explore in this section, achieves accelerated complex opera-

tions on encrypted data by making use of the knowledge of the algorithm the cloud computes

by the requester party.

5.1.1.1 Related work

There are several recent approaches that explore privacy-preserving filters and controllers,

with the goal of concealing the private information from untrusted parties. Linear encrypted

controllers and filters are presented in [92, 199] using additively homomorphic encryption–

the signals are encrypted but the gains are public; using multiplicatively homomorphic

encryption in [139]–both the gains and signals are encrypted, however the decryptor is able
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to find out not just the final result, but also products of scalars before summation, which can

leak at least which signals or gain entries are zero; and using fully homomorphic encryption

in [134]–both the gains and signals are encrypted and only the final result is revealed, but

the scheme is computationally prohibitive, requiring multiple controllers.

SMPC approaches, based on secret sharing schemes that can be combined with homomor-

phic encryption and/or garbled circuits, are considered in the following works: an encrypted

Extended Kalman Filter was explored in [108], where the encrypted gains are computed by

repeated exchanges between a client and a server that achieve encrypted complex operations;

an encrypted linear Finite Impulse Response filter with plaintext coefficients is computed

in [209]; and in [20], an encrypted multi-sensor information filtering is proposed, where a

grid operator aggregates the encrypted estimates from sensors and sends it to the mobile

agent requesting its location.

A different privacy goal is Differential Privacy (DP), which adds randomness to the

inputs and/or computation, so that the inputs cannot be reconstructed from the resulting

output. Techniques from works such as Kalman Filter with DP [144] and LQG with DP [114]

can be used to augment the output privacy of a secure filter and controller. However, such

techniques reduce the accuracy of the result and stability is difficult to guarantee.

5.1.1.2 Contributions

We develop a protocol that privately performs the estimation and control as described by an

LQG controller, without revealing anything about the private states, gain matrices, control

inputs and intermediary steps, while achieving fast running times. Our contributions are

the following. First, we describe the cryptographic tool Labeled Homomorphic Encryption

and show how the labels can be naturally exploited in estimation and control applications.

Since LQG requires evaluating a polynomial on encrypted data, we propose an extension to

the Labeled Homomorphic Encryption scheme that can evaluate an encrypted polynomial

of degree d ≥ 2 by using offline communication and computation. Second, we propose a

protocol that achieves the fully encrypted execution of an LQG controller on encrypted

model and encrypted data and allows different parties to have different keys. We provide
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two solutions, depending on how much precomputed information is available and on the

architecture of the problem. Finally, we illustrate the performance of the encrypted LQG

on data from a temperature control application.

5.1.2 Problem setup

We consider agents or subsystems in the architecture in Figure 5.1, with local sensors, and

an actuator that needs to apply the control inputs based on the measurements and references

from the agents. The agents and the actuator employ a cloud server to privately compute

an LQG controller, that does not have access to the model of the system, control gains, the

measurements or the desired references. The system has the following model:

xk+1 = Axk + Buk + wk

zk = Cxk + vk, k = 0, . . . , N − 1,

(5.1.1)

where xk,wk ∈ Rn,uk ∈ Rm, zk,vk ∈ Rp. Each subsystem i ∈ [N ] has a partition of

the states xik ∈ Rni , a partition of the control inputs uik ∈ Rmi and a partition of the

measurements zik ∈ Rpi , such that their union forms system (5.1.1). The distributed system

has one proxy entity that facilitates the cloud-computation: a setup entity, which holds the

model of the system, that is not fully known by each individual subsystem. The subsystems

want to conceal their data from the other participants in the computation, hence having

partitions of the data is justified in this context.

We assume that the process and measurement noise vectors are uncorrelated i.i.d. ran-

dom variables with zero mean and known positive semi-definite and respectively, positive

definite covariance matrices: E[wkw
ᵀ
k] = W and E[vkv

ᵀ
k] = V. The initial state is a random

Gaussian variable with a finite mean and covariance matrix. Furthermore, we assume that

{x0,w1, . . . ,wk,v1, . . . ,vk} are mutually independent.

Our first control objective is to achieve stability for the system (5.1.1). The separation

principle [38] allows the optimal control problem to be divided into two successive steps: the

design of an optimal estimator for the system’s state, which is the Kalman Filter under the
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Figure 5.1: Architecture of the cloud-outsourced LQG problem: the subsystems send their mea-
surements and desired references to the cloud. The cloud has to run the LQG algorithm on the
measurements and the system’s matrices and send the result to the actuator. The variables in the
figure are described in equations (5.1.1)–(5.1.4).

assumption that the process and measurement noise vectors have a Gaussian distribution;

and the design of an optimal controller for the system with the perfect information given by

the estimator, which we achieve by minimizing a quadratic cost.

Our second control objective is to steer the system to a reference r for the measurements,

xr for the states and ur for the control inputs, composed by the desired references of each

subsystem. We want to determine the control input uk such that the output deviation

∆zk := zk−r, the state deviation ∆xk := xk−xr and the control deviation ∆uk := uk−ur

are small for all values of k. We can write the system:

∆xk+1 = A∆xk + B∆uk + wk

∆zk = C∆xk + vk, k = 0, . . . , N − 1,

(5.1.2)

For simplicity, we consider the stationary LQG problem in this section, which is often

used in real-time implementations due to the low memory requirements [38]. Assuming that

the process and measurement noise processes are white, Gaussian and stationary, the control-

lability (stabilizability) of the pairs (A,B) and (A,W
1
2 ) and the observability (detectability)
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of the pairs (A,C) and (A,Q
1
2 ), the LQG problem with the cost over a horizon T :

J = E
[
∆zᵀTQ∆zT +

T−1∑
k=0

(
∆zᵀkQ∆zk + ∆uᵀ

kR∆uk
)]
, (5.1.3)

allows an infinite horizon solution [24, 38]:

uk = −K(x̂k − xr) + ur,

x̂k+1 = Ax̂k + Buk + L (zk+1 −C(Ax̂k + Buk)) ,

(5.1.4)

where x̂ is the estimated state. The steady-state Kalman and control gains are obtained

by solving the following discrete algebraic Riccati equations, which converge under the as-

sumptions described above:

L = PCᵀ (CPCᵀ + V)−1 , K = (BᵀSB + R)−1 BᵀSA,

P = AᵀPA−AᵀPCᵀ (CPCᵀ + V)−1 CPA + W, (5.1.5)

S = AᵀSA−AᵀSB (BᵀSB + R)−1 BᵀSA + Q.

The matrices A−BK and A− LCA determine the stability of the closed-loop system

and the quality of the estimation. Notice that an iteration of the LQG (5.1.4) can be written

as a multivariate polynomial in x̂k, uk, xr, ur and A,B,C,K,L.

The LQG control presented can be abstracted in a more general framework. Consider

a cloud server that collects encrypted data from several clients, which in Figure 5.1 were

the subsystems. The data represents time series and is labeled with the corresponding time.

A requester, which in Figure 5.1 was the actuator, makes queries, e.g., an LQG iteration,

that can be written as multivariate polynomials over the data stored at the cloud server and

solicits the result. We allow semi-honest parties, which are parties that follow the preset

protocols, but can locally process the data in order to try to infer private information.

This is a reasonable assumption, as cloud services are reputation based and cannot afford

to tamper with the clients’ data. Furthermore, we consider the classical computational
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privacy definition of an interactive protocol, given in Definition 2.2.6. We assume that only

computations that have been previously agreed upon can be requested, such that the privacy

of the data stored at the cloud server is not broken (e.g. the requester cannot simply ask

for the data).

Our privacy goal is to develop a solution that allows the cloud to efficiently perform the

LQG computation and send the results to the requester, without finding out anything about

the private data and results, as well as preserving the privacy of the input data with respect

to the requester.

5.1.3 Labeled homomorphic encryption and extension

Labeled Homomorphic Encryption, abbreviated as LabHE, was recently introduced in [27]

and is a scheme that allows the computation of multivariate degree-two polynomials on

encrypted data. The appeal of LabHE is that it uses a simple addendum to an additively

homomorphic scheme in order to obtain, apart from unlimited additions between encrypted

values, also a multiplication between two encrypted values. The underlying homomorphic

encryption scheme can be instantiated with most of the existing schemes and inherits their

properties. LabHE exploits the common trait that the party that requests the result of the

encrypted computation knows what the computation is.

LabHE can process data from multiple users with different private keys, as long as the

requesting party has a master key. This scheme makes use of the fact that the decryptor

knows the query to be executed on the encrypted data, which we will refer to as a program.

Furthermore, we want a cloud server that only has access to the encrypted data to be able

to perform the program on the encrypted data and the decryptor to be able to decrypt the

result. To this end, the inputs to the program need to be uniquely identified. Therefore, an

encryptor assigns a unique label to each message and sends the encrypted data along with

the corresponding encrypted labels to the server. Labels can be time instances, locations, id

numbers etc. Denote byM the message space. A program that has labeled inputs is called

a labeled program [27]. The details of this scheme are described in Preamble 2.5.2.

We propose a two-party extension of LabHE that achieves more encrypted multiplica-
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tions at the expense of offline computation and communication. This extension is critical

for the execution of LQG described in Section 5.1.2 in an encrypted manner.

Definition 5.1.1. An admissible function f : Mn → M is a multivariate polynomial of

degree d on n variables, where d = 2 for the original version of LabHE and d ≥ 2 for the

extended version described below.

5.1.3.1 Extension of LabHE to degree d-polynomials

In [55], the authors show how to obtain the evaluation of degree-3 and 4 polynomials over

encrypted data by using, instead of AHE, schemes that are level-2 homomorphic, i.e., already

support encrypted additions and one encrypted multiplication, such as BGN [42]. In general,

higher level homomorphic schemes involve more complex computations than AHE schemes.

The solution proposed in [55] modifies the BGN scheme, and the resulting scheme allows only

a small message space, which is a problem since the secrets generated by the pseudorandom

generator are large and require expensive decryption (solving a discrete logarithm problem).

We propose an alternative extension for LabHE that achieves the evaluation of degree-d

polynomials over encrypted data. The advantage of our method is that the online computa-

tions and communication are replaced by offline computations and communication. However,

for general multivariate polynomials, the offline communication will be exponential in d.

The multiplication of two encrypted values in LabHE is possible because the party that

performs the multiplication has access to [[b1]] and [[b2]] for two ciphertexts C1, C2. We

notice that if a party that wants to perform a multiplication between three ciphertexts

C1 = (m1− b1, [[b1]]), C2 = (m2− b2, [[b2]]), C3 = (m3− b3, [[b3]]) has access to [[b1 · b2]], [[b1 ·

b3]], [[b2 · b3]], then it can compute [[m1 ·m2 ·m3 − b1 · b2 · b3]]:

m1m2m3 − b1b2b3 = (m1 − b1)(m2 − b2)(m3 − b3) + (m1 − b1)b2b3 + (m2 − b2)b1b3+

+ (m3 − b3)b1b2 + (m1 − b1)(m2 − b2)b3 + (m1 − b1)(m3 − b3)b2 + (m2 − b2)(m3 − b3)b1.

We first extend the label program definition from Definition 2.5.5. Given t labeled

programs P1, . . . ,Pt and an admissible function g : Mt → M, the composed program Pg
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is obtained by evaluating g on the outputs of P1, . . . ,Pt, and can be denoted compactly as

Pg = g(P1, . . . ,Pt). The labeled inputs of Pg are all the distinct labeled inputs of P1, . . . ,Pt.

We define the extension of LabHE as the tuple eLabHE = ( ˆInit, ˆKeyGen, Ê, ˆEval1, ˆEval2,

D̂), where the primitives ˆInit, ˆKeyGen, Ê and D̂ are inherited from the LabHE scheme. We

define ˆEval1, that is like an offline part of the ˆEval primitive, and has to be performed by

the decryptor:

4.1) ˆEval1(mpk,msk, upk,P): Takes the master public key, the master secret key, the users’

public keys and the program P = (f, τ1, . . . , τt). Let upk = (upk1, . . . ,upkl). For all

j ∈ [l], it uses the master secret key to get the users’ secret keys uskj ← D(msk, upkj).

Then, it computes bi ← F (uskji , τi), for i ∈ [t], j ∈ [l]. For each monomial of order k

in f , denoted as gk(τT ), for 2 < k < d and T ⊆ [t], |T | = k, it computes bi ← F (K, τi),

i ∈ T . Then, it outputs g̃k(b) =
{[[∏

i∈S bi
]]∣∣S ⊆ T, |S| > 2

}
.

We denote by g̃(b) the vector of all g̃k(b) corresponding to all monomials of order k in f for

2 < k < d. Then, we can overload the primitive ˆEval to compute admissible functions f

that consist of multivariate polynomials of degree d on encrypted data and denote it ˆEval2:

4.2) ˆEval2(mpk, f̃ , C1, . . . , Ct): Takes the master public key, a specification f̃ = (f, g̃(b)),

composed of an admissible function f :Mt →M and the tuple of monomials g̃(b). It

also takes t ciphertexts C1, . . . , Ct and returns a ciphertext C. ˆEval2 is composed of

the following computation blocks:

• M̂lt(C1, . . . , Cd, g̃d(b)): Takes Ci = (ai, βi) ∈ M× C for i ∈ [d] and the corresponding

tuple of monomials g̃d(b) and outputs:

C =
∑
∅6=S⊆[d]

((∏
j∈S

aj
)
⊗
[[ ∏
l∈[d]\S

bl
]])

=
[[ d∏
i=1

mi −
d∏
i=1

bi
]]

=: α ∈ C.

• ˆAdd(C1, C2): If Ci = (ai, βi) ∈ M × C for i = 1, 2, then outputs C = (a1 + a2,

β1 ⊕ β2) =: (a, β) ∈ M × C. If both Ci = αi ∈ C, for i = 1, 2, then outputs
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C = α1 ⊕ α2 =: α ∈ C. If C1 = (a1, β1) ∈ M × C and C2 = α2 ∈ C, then outputs

C = (a1, β1 ⊕ α2) =: (a, β) ∈M× C.

• ˆcMlt(c, C ′): Takes a plaintext c ∈ M and a ciphertext C ′. If C ′ = (a′, β′) ∈ M× C,

outputs C = (c · a′, c⊗ β′) =: (a, β) ∈ M× C. If C ′ = α′ ∈ C, outputs C = c⊗ α′ =:

α ∈ C.

Like LabHE, the extension eLabHE also satisfies correctness, semantic security and

context-hiding. Their definitions and proofs are provided in Appendix D.1.

Theorem 5.1.2. The eLabHE scheme is correct.

Theorem 5.1.3. The eLabHE scheme is semantically secure.

Theorem 5.1.4. The eLabHE scheme is context-hiding.

The LabHE extension we proposed can be used to evaluate degree-d multivariate poly-

nomials over encrypted data from every level-d′ homomorphic scheme, with d′ < d. The idea

is that, as long as the requester knows in advance the polynomial that has to be evaluated

and the labels of the inputs, it can send offline to the cloud the encryptions of the secrets

that the cloud cannot compute, i.e.,
[[∏

i∈T bi
]]
, where d′ ≤ |T | < d.

In what follows, we will compare the proposed extension of LabHE to other secure

methods of achieving the evaluation of a degree-d polynomial on encrypted data.

Consider a party A that has to compute a product of d > 2 encrypted messages

m1, . . . ,md and was given the corresponding ciphertexts C1, . . . , Cd. Party B has the secret

key and should only obtain the resultm1 ·. . .·md. Without the extension we proposed above,

and using a level-1 encryption scheme, party A can only compute encrypted products of two

factors and then has to require B to refresh the encryption, in the following way: A splits

[[mi ·mj − bi · bj ]] = α ∈ C in a secret r and α⊕ [[−r]] and sends the latter to B; B decrypts

and obtains mi ·mj − r, assigns it a different label τ and computes b ← F (K, τ), encrypts

it and sends back C = (a′ = mi ·mj − r − b, β′ = [[b]]) ∈M× C; A reconstructs (a′ + r, β′)

and continues the computation. For a product of d factors, B has to perform d − 1 times
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the additive sharing and merging and send to A d ciphertexts in C online, while B has to

perform d decryptions, d− 1 encryptions and send to A d− 1 ciphertexts inM×C online,

and d− 1 plaintext multiplications offline.

If we use the extension of LabHE proposed in [55], which uses a level-(d− 1) homo-

morphic scheme, A has to perform 2d − 1 encrypted additions, 2d − 2 plaintext-ciphertext

multiplications and 2d − d − 2 encrypted multiplications and send to B the final result in

C online. However, the decryption that B is required to perform is in the level-(d− 1)

homomorphic scheme and has substantially high complexity.

If we use the extended version of LabHE we proposed in this section, A has to perform

2d−1 encrypted additions and 2d−2 plaintext-ciphertext multiplications and then sends to

B only the final result in C online, while B offline computes and sends 2d−d−2 encryptions

in C and performs one online decryption. In conclusion, our extended version of LabHE

replaces the online computations from B and online communication by online computation

at A, offline computation at B and offline communication. However, one can see that for

large degrees d, this scheme loses its practicality, because the required offline communication

increases exponentially with the degree d and the number of monomials.

In particular, computing degree-d univariate polynomials over encrypted variables with

our proposed extension can be done more efficiently than degree-d multivariate polynomials.

Evaluating such polynomials can be very useful in approximating nonpolynomial functions

via Taylor series or Chebyshev series.

We use Newton’s binomial to observe:

md = (m− b+ b)d =

d∑
k=0

(
d

k

)
(m− b)d−kbk.

Namely, for computing the encryption C ′ = [[md − bd]] ∈ C, A has to perform d − 1

encrypted additions and d− 2 plaintext-ciphertext multiplications and then sends to B only

the final result in C online, while B offline computes and sends d − 2 encryptions in C

([[b2]], . . . , [[bd−1]]) and performs one online decryption.
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Comparing this extension for univariate polynomials with a d-leveled homomorphic en-

cryption scheme, the advantages of the LabHE extension are: offline generation and trans-

mission of randomness, and smaller online size of ciphertexts sent from the agents. However,

its disadvantages are that we cannot perform tree multiplication (since once a multiplication

is done, we cannot perform another one) and we still need memory linear in the degree of

the polynomial.

5.1.4 Encrypted execution of LQG

5.1.4.1 Encrypted LQG with public system model

If the state matrices A, B, C, the noise covariances W, V, the costs Q, R can be public,

the setup sends them in plaintext to the cloud controller. Then, the cloud can compute the

Kalman gain L and feedback gain K as in (5.1.5). The subsystems encrypt with the public

key of the actuator their measurements and desired reference, along with the initial state,

and send them to the cloud controller. This case is linear in the encrypted data and AHE

is sufficient to ensure privacy of the measurements, states, reference and control inputs: the

cloud can compute locally, at each time step, the encrypted control input uk as in (5.1.6).

E(uk) = Add(cMlt(−K,Add(E(x̂k),E(−xr))),E(ur)) (5.1.6)

E(x̂k+1) = Add(cMlt(L,E(zk+1)), cMlt(I− LC,Add(cMlt(A,E(x̂k)), cMlt(B,E(uk))))).

After this computation, the cloud sends the encrypted control input to the actuator, which

decrypts it. This setup where the state matrices are public is considered, for example, in [92].

5.1.4.2 Encrypted LQG with private system model

As justified in the Introduction, in many situations it is important to protect not only the

signals (e.g., the states, measurements), but also the system model. To this end, we propose

a solution that uses Labeled Homomorphic Encryption to achieve encrypted multiplications

and the private execution of LQG on encrypted data. LabHE has a useful property called

unbalanced efficiency that can be observed from Section 5.1.3 and was described in [56],
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which states that only the server is required to perform operations on ciphertexts, while

the decryptor performs computations only on the plaintext messages. We will employ this

property by having the cloud perform the more complex operations and the actuator the

more efficient ones.

In Figure 5.2, the actuator holds the LQG query, denoted by fLQG, which describes the

functionality of LQG. Offline, the actuator generates a pair of master keys and distributes

the master public key to the rest of the parties. The setup and subsystems generate their

secret keys and send the corresponding public keys to the actuator. Still offline, these parties

generate the labels corresponding to their data with respect to the time stamp and the size

of the data. As explained in Section 5.1.3, the labels are crucial to achieving the encrypted

multiplications. Moreover, when generating them, it is important to make sure that no two

labels that will be encrypted with the same key are the same. When the private data are

times series, as in our problem, the labels can be easily generated using the time steps and

sizes corresponding to each signal, with no other complex synchronization process necessary

between the actors. This is shown in Protocol 5.1.1.

Figure 5.2: The setup and subsystems send their encrypted data to the cloud. The cloud runs the
LQG algorithm on the private measurements and the private coefficients and sends the encrypted
result to the actuator. The latter then actuates the system with the decrypted inputs received.

Our protocols consist of three phases: the offline phase, in which the computations that

are unrelated to the specific data of the users are performed, the initialization phase, in

which the computations related to the constant parameters in the problem are performed,
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and the online phase, in which computations on the variables of the problem are performed.

The initialization phase can be offline, if the constant parameters are a priori known, and

online otherwise.

The setup sends the LabHE encryptions of the state matrices and control gains to the

cloud controller, once, before the execution begins. The subsystems send the encryptions of

their initial states and desired reference to the cloud controller, also once, at the onset of the

execution. Then, at every time step, the subsystems encrypt their measurements and send

them to the cloud. After the cloud performs the encrypted LQG query for one time step, it

sends the encrypted control input at the current time step to the actuator, which decrypts it

and inputs it to the system. In Protocol 5.1.2, we describe how the encrypted LQG query is

performed by the parties, which involves the actuator sending an encryption of the processed

result back to the cloud such that the computation can continue in the future time steps.

When the state matrices, feedback gains and initial condition are private to the cloud

and are stored in an encrypted form Ê(A), Ê(B), Ê(C), Ê(K), Ê(L), Ê(x̂0), then the depth

of the LQG program in terms of multiplications is higher than two. However, if the cloud

computes the encryption of the coefficients:

Γ1 := (I− LC)(A−BK), Γ2 := (I− LC)BK, Γ3 := (I− LC)B, (5.1.7)

then, the multiplication depth in terms of full LabHE ciphertexts for the state estimate at

iteration 1 is one and for the control input is two. We assume for the moment that the cloud

has access to Ê(Γ1), Ê(Γ2), Ê(Γ3) and discuss how to achieve these products in Section 5.1.5.

For the subsequent time steps k ≥ 1, Protocol 5.1.2 ensures that the actuator receives the

control input at step k, corresponding to the program Pk. For the computation of the state

estimation at time k+1, the cloud needs to have the full LabHE ciphertext of Ê(x̂k) ∈M×C,

but as a result of the polynomial evaluations at time step k, it has the AHE ciphertext

[[x̂k]]. To privately refresh the encryption, which happens in lines 2–4 of Protocol 5.1.2, the

cloud uses a one-time pad rk, as described in Preamble 2.4, and sends [[x̂′k − rk]] to the

actuator, which is possible since the scheme is additively homomorphic. The actuator calls
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the decryption primitive and sends back Ê(x̂k − rk), from which the cloud retrieves Ê(x̂k).

Protocol 5.1.1: Initialization of LQG

Input: Actuator: fLQG; Subsystems: x0,xr,ur; Setup: K,L,Γ1,Γ2,Γ3.

Output: Actuator: u0; Cloud: Ê(x0), Ê(K), Ê(L), Ê(Γ1), Ê(Γ2), Ê(Γ3), [[ũr]], [[x̂Γ]].

Offline:

1: Actuator: Generate (mpk,msk)← ˆInit(1λ) and distribute mpk to the others.

2: Subsystems, Setup: Get (usk, upk)← ˆKeyGen(mpk) and send upk to the actuator.

3: Subsystems, Setup, Actuator: Allocate labels τ1, . . . , τt to the inputs of function fLQG:

Subsystem i: for each measurement at time k ∈ {0, . . . , T − 1}, zik of size pi, generate

the corresponding labels τzik = [kpi kpi + 1 . . . (k + 1)pi − 1]ᵀ; then similarly for

xi0,x
i
r,u

i
r with the labels starting from where the previous signals ended.

Setup: for matrix K ∈ Rm×n, set l = 0, generate τk =

[
l l+1 ... l+n−1
...

...
l+(m−1)n l+(m−1)n+1 ... l+mn−1

]
and update l = mn, then follow the same steps for the rest of the matrices, starting

from l and updating it.

Actuator: follow the same steps as the subsystems and setup, and then generate similar

labels for the state estimates x̂k starting from the last l.

4: Subsystems, Setup, Actuator: Perform the offline part of the LabHE encryption primi-

tive and decryption for the actuator.

5: Cloud: Generate randomness for Protocol 5.1.2.

6: Actuator: Form the program P = (fLQG, τ1, . . . , τt).

Initialization:

7: Setup: Perform the online part of LabHE encryption and send to the cloud: Ê(Γ1),

Ê(Γ2), Ê(Γ3), Ê(K), Ê(L).

8: Subsystems: Perform the online part of LabHE encryption and send to the cloud:

Ê(x0), Ê(xr), Ê(ur).

9: Cloud: Compute [[ũr]] ← Add(M̂lt(Ê(K), Ê(xr)), [[ur]]), [[x̂Γ]] ← Add(M̂lt(Ê(Γ2),

Ê(xr)), M̂lt(Ê(Γ3), Ê(ur))).
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Online:

10: Cloud: [[u0]]← Add(M̂lt(Ê(−K), Ê(x̂0)), [[ũr]]).

11: Cloud: Send to the actuator [[u0]].

12: Actuator: Decrypt u0.

Notice that, technically, the encryptions [[x̂k]] and [[uk]] obtained by the cloud are not

just AHE encryptions of x̂k and uk, but they also contain some products of secrets that

will disappear in the decryption process. In order to not burden the notation, we omit this

distinction in the protocols.

Protocol 5.1.2: Encrypted LQG at time step k

Input: Actuator: msk,mpk,Pk; Cloud: Ê(zk), Ê(x̂k−1), Ê(Γ1), Ê(L), Ê(K), [[ũr]], [[x̂Γ]].

Output: Actuator: uk; Cloud: Ê(x̂k).

Online:

1: Cloud: Compute [[x̂k]]← Add(M̂lt(Ê(Γ1), Ê(x̂k−1)), M̂lt(Ê(L), Ê(zk)), [[x̂Γ]]).

2: Cloud: Send to the actuator [[x̂′k]]← Add([[x̂k]], [[−rk]]), where rk
$←Mn.

3: Actuator: Decrypt [[x̂k − rk]] and send back a LabHE encryption of Ê(x̂k − rk).

4: Cloud: Ê(x̂k)← ˆAdd(Ê(x̂k − rk), rk).

5: Cloud: [[uk]]← Add(M̂lt(Ê(−K), Ê(x̂k)), [[ũr]]).

6: Cloud: Send to the actuator [[uk]] and output Ê(x̂k).

7: Actuator: Decrypt uk.

Protocol 5.1.3: Encrypted LQG

Input: Actuator: fLQG; Subsystems: x0; Setup: Γ1,Γ2,Γ3,K,L.

Output: Actuator: {uk}k=0,...,T−1.

Offline + Initialization:

1: Subsystems, Setup, Cloud and Actuator: Run Protocol 5.1.1.
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Online:

2: for k=1,. . . ,T-1 do

3: Cloud and Actuator: Run Protocol 5.1.2.

4: Actuator: Input uk to the system.

5: Subsystems: Measure zk+1, encrypt and send it to the cloud.

6: end for

In Protocols 5.1.1 and 5.1.2, the actuator does not need to know the system matrices in

order to compute the program and decrypt the results, but only their labels.

Theorem 5.1.5. Protocol 5.1.3 achieves privacy of the encrypted LQG with respect to semi-

honest parties, cf. Definition 2.2.5.

Let us now consider possible coalitions between the parties shown in Figure 5.2. The

cloud and the actuator are not allowed to collude, since the cloud has all the data in the

system encrypted with the actuator’s master key. Furthermore, all the subsystems and

setup cannot be corrupted by an adversary at the same time. Under these assumptions, the

following theorem holds:

Theorem 5.1.6. Protocol 5.1.3 achieves privacy of the encrypted LQG with respect to col-

lusions between semi-honest parties, cf. Definition 2.2.6.

The privacy of Protocol 5.1.3, composed of Protocol 5.1.1 and T−1 runs of Protocol 5.1.2

follows from the semantic security and context-hiding property of LabHE and the perfect

secrecy of the one-time pad. The proofs are given in Section D.2.

5.1.5 Encrypted computation of LQG coefficients

The setup party does not need to be online for the computation of LQG. For a given system,

the encryptions of the system model and gains Ê(A), Ê(B), Ê(C), Ê(K), Ê(L) might have

been given offline to the cloud or distributed among the subsystems. In such cases, the

encryptions of Γ1,Γ2,Γ3 or other polynomial functions of these matrices are not available,
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but they can be computed at the beginning of the protocol by the cloud and actuator as

the output of a program evaluating a degree-3 polynomial, using eLabHE, and stored as

Ê(Γ1), Ê(Γ2), Ê(Γ3). Notice from (5.1.7) that:

Γ3 = B− LCB, Γ2 = Γ3K, Γ1 = A− LCA + Γ2. (5.1.8)

Protocol 5.1.4: Initialization of LQG, extended version

Input: Actuator: fLQG, fΓ1 , fΓ2 , fΓ3 ; Subsystems: x0,xr,ur; Setup: A,B,C,K,L.

Output: Actuator: u0; Cloud: Ê(x0), Ê(K), Ê(L), Ê(Γ1), Ê(Γ2), Ê(Γ3), [[ũr]], [[x̂Γ]].

Offline:

1: Perform lines 1–4 from Protocol 5.1.1.

2: Actuator: Form the programs P = (fLQG, τ1, . . . , τt), PΓ3 = (fΓ3 , τB, τC , τL, τk), PΓ2 =

(fΓ2 , τΓ3 , τk), PΓ1 = (fΓ1 , τA, τC , τL, τk, τΓ3). Compute f̃i ← ˆEval1(mpk,msk,upk,PΓi),

for i = 1, 2, 3, corresponding to (5.1.8) and send it to the cloud. Create labels τΓi for

refreshing Γi.

3: Cloud: Generate randomness for Protocol 5.1.2 and Initialization.

Initialization:

4: Setup: Encrypt matrices and send them to the cloud: Ê(A), Ê(B), Ê(C), Ê(K), Ê(L).

5: Cloud: Compute [[Γ3]]← ˆEval2(mpk, f̃3, Ê(B), Ê(C), Ê(L)), share it and send it to the

actuator a share [[Γ′3]].

6: Actuator: Decrypt Γ′3, allocate it the label τΓ3 and send the LabHE encryption to the

cloud: Ê(Γ′3).

7: Cloud: Reconstruct and obtain Ê(Γ3).

8: Cloud: Compute [[Γ2]] ← ˆEval2(mpk, f̃2, Ê(Γ3), Ê(K)), [[Γ1]] ← ˆEval2(mpk, f̃1, Ê(A),

Ê(C), Ê(L), Ê(K), Ê(Γ3)), share them and send to the actuator the shares [[Γ′2]], [[Γ′1]].

9: Actuator: Decrypt Γi, allocate it the label τΓi and send the LabHE encryptions to the

cloud: Ê(Γ′i), for i = 1,2.
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10: Cloud: Reconstruct and obtain Ê(Γ1), Ê(Γ2).

11: The rest follows as in lines 7–12 in Protocol 5.1.1.

The privacy of Protocol 5.1.4 follows from the context-hiding and semantic security of

the eLabHE scheme described in Section 5.1.3.1 and the perfect privacy of one-time pads.

Remark 5.1.7. We can modify Protocol 5.1.2 such that the cloud sends the control input to

the actuator before requesting a refreshed encryption of the state estimate. Specifically, the

cloud can compute first, in an encrypted fashion:

uk = −KΓ1x̂k−1 −KLzk −K(Γ2xr + Γ3ur) + Kxr + ur,

and then follow with computing the state estimate x̂k. Such a change is recommended when

timing is crucial, because it allows the actuator to send the control input to the plant faster,

at the initial expense of four extra encrypted multiplication Ê(KΓ1), Ê(KΓ2), Ê(KΓ3),

Ê(KL) that can be performed in Protocol 5.1.4.

5.1.6 Numerical results

5.1.6.1 Implementation details

The message space for AHE is discrete and the messages need to be represented on bits.

Hence, we need to quantize the signals and their coefficients. We adopt a fixed-point number

representation, where a value is represented as a signed integer in the two’s complement

format, with one sign bit, li integer bits and lf fractional bits.

Most public space AHE schemes have the ring of integers ZN as message space, where

N is an RSA modulus. To prevent brute force factorization, N is required to be at least

1024 bits. Hence, the message space is large enough to represent messages with precision

of 128 bits, which is the standard quadruple precision. In this case, the quantization and

round-off errors can be considered negligible. Under stability conditions of the quantized

matrices, the stability of quantized Kalman Filter can be proved [205]. The quantization

effects of encryption over control performance are analyzed in [11, 138, 198, 199].
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We assume the channels are reliable and the packets cannot be tampered with. The

memory of the parties is finite, so we cannot consider that Protocol 5.1.3 runs for an infinite

time. In the offline phase, the labels are generated for a fixed number of time steps T . Once

these T time steps elapse, the parties have to generate new labels for the signals (not for

the state matrices and gains, if those are not desired to be changed). This can be done in

parallel with the computations that take place in the first T time steps.

5.1.6.2 Case study

We illustrate the performance of the proposed encrypted LQG controller on the problem of

temperature regulation in a smart building, where a central cloud controller computes the

control inputs in a private manner, based on encrypted data from sensors, so that sensitive

information like the occupancy of the rooms is not revealed.

We consider the data from the HAMLab ISE model in [217], available at [118], which

models the building as one zone. We use a modified model that considers the building to

be split into two zones, which we assume have two different owners, who want different set

points for the temperature in the zones, as well as privacy with respect to their presence

there and desired settings. The state consists of the temperatures for each of the two zones

(indoors air, floor, separating wall, internal facade and external facade temperature), the

control input represents the heating/cooling for the two zones and the disturbances consist of

the outdoors air temperature, the occupancy generated heat and the heat caused by the sun

through the windows for the two zones. The measurements are considered to be the same as

the states. The system has state dimension n = 10 and control input dimension m = 2. We

simulate the results for a sampling time of 420 seconds. Assume the states corresponding to

the indoors air temperature for the two zones have to be steered to 15◦C and 25◦C during

the day (considered between 6 am to 8 pm), and to 10◦C and 20◦C during the night.

Each zone has a local device that generates secret keys for encrypting the labels. The

matrices corresponding to the state model and the corresponding Kalman and control gains

have been encrypted with labels generated by a different secret key by another machine

in the building, called the Setup. The actuator generates a pair of master key and secret
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key and sends the master key to the three parties described so far, which encrypt their

secret keys with the master key and send them to the actuator. The local devices for the

two zones send the corresponding encrypted measurements and encrypted references to the

cloud controller. If the cloud readily receives all the coefficients encrypted from the Setup,

it executes Protocol 5.1.1, and otherwise, it executes Protocol 5.1.4 to obtain full LabHE

encryptions of the gains and rest of the coefficients. The cloud then computes the estimate

of the current state, refreshes the encryption with the help of the actuator, then computes

the control input and sends it to the actuator, as described in Protocol 5.1.2.

We instantiated the AHE scheme with the Paillier scheme [177], for which we chose a

modulus N of 1024 bits. The pseudorandom generator is chosen to be the SHA-3 hash

function with 224 output bits. The protocols were run on a standard MacBook Pro laptop

with a 2.2 GHz Intel Core i7 and 16 GB of RAM.

Figure 5.3 shows the performance of estimation and tracking for a fixed-point represen-

tation with li = 24 integer bits and lf = 24 fractional bits, where r represents the set point,

T iin is the true temperature in zone i and T̂ iin is the temperature estimate.
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Figure 5.3: Performance of the estimation and tracking for encrypted LQG for li = 24, lf = 24.

For a simulation of T = 100 time steps, corresponding roughly to 12 hours with the

chosen sampling period, the offline execution times corresponding to the Protocol 5.1.1

and 5.1.4 and online execution times are shown in Table 5.1. The online time corresponding

130



Time (s) Cloud Actuator Agent1,2 Setup
Offline P. 5.1.1 0.228 5.721 1.138 1.239
Initialization P. 5.1.1 0.156 0 4e-5 0.0024
Offline P. 5.1.4 0.226 33.32 1.131 0.744
Initialization P. 5.1.4 21.417 0.603 4e-5 0.0012
Online for one step 0.219 0.0029 4e-5 0

Table 5.1: Average times for the encrypted LQG computation for li = 24, lf = 24, Nσ = 1024,
224-bit secrets, 100 time steps.

to computing the estimate and control input in a time step are under 0.3 seconds for all

actors. Since the sampling times for buildings are usually large, the encrypted computations

finish much before a new measurement is acquired.
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Figure 5.4: Execution times for Protocol 5.1.3 for different system dimensions, with li = 24, lf = 24,
Nσ = 1024, 224-bit secrets, and 100 time steps.

The execution times for varying system dimensions, considering one agent with all the

states and control inputs for ease of comparison, are presented in Figure 5.4 and Figure 5.5.

Figure 5.4 compares which actor performs the most computational intense task for each

phase of Protocol 5.1.3, while Figure 5.5 shows how much time each actor spends on each

phase using a logarithmic scale for visualization purposes. In order to evaluate the time

performance of the proposed protocols, one should look at the online times for the subsystems

and actuator, since these are the most resource-sensitive actors. We observe that even for
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larger systems of 100 states and 20 inputs, the online time for one iteration for the agent is

0.0005 seconds and 0.27580 seconds for the actuator, which are excellent times.
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Figure 5.5: Execution times on a logarithmic scale for Protocol 5.1.3 for different system dimensions,
with li = 24, lf = 24, Nσ = 1024, 224-bit secrets, and 100 time steps.

Notice that in the initialization phase and in the online iterations, the cloud has the

most computational requirements, which is as desired, since the cloud is a powerful server,

and it has the necessary resources to improve the times. On the other hand, the rest of the

parties are expected to perform more offline computations than the cloud, which correspond

to the label generation and LabHE encryption process. The actuator is not required to do

anything in the initialization phase corresponding to Protocol 5.1.1 and the setup does not

play a role in the online iterations.

For larger system dimensions (n ≥ 50), the offline and initialization phases become

computationally and memory intensive for the execution of Protocol 5.1.4, due to computing

Γ1,Γ2,Γ3 as products of encrypted matrices. As described in Section 5.1.3.1, the actuator

is required to compute the encryptions of products of the monomials in the polynomial

evaluations and transmit them to the cloud, which can take 4 hours on a 2.2 GHz Intel Core

i7 processor. However, the online execution times remain the same as in Figures 5.4 and 5.5.
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5.2 Secure evaluation of distributed linear control

5.2.1 Introduction

The recent drive towards increasing interconnectivity of systems has determined more and

more systems to be operated using distributed control schemes. Examples such as smart

grids, water-supply systems, robot swarms, or intelligent transportation systems benefit from

this distributed computing framework. Applying distributed but cooperative controllers re-

quires communication between the various subsystems or agents. In the resulting networked

control system, sensible data is transmitted via possibly public networks and processed

at neighboring agents, which can pose a privacy threat. Recent examples of data leakage

and abuse in (critical) infrastructures, such as disturbing the normal functionality of power

plants or inferring people’s presence at home from smart meter measurements, have drawn

attention to the risks of sharing data in the clear. The challenge thereby is to solve the

conflict of ensuring individual privacy while simultaneously allowing for cooperation.

5.2.1.1 Related work

Encrypted distributed control calls for slightly different techniques than encrypted cloud-

based control that we saw in the first part of the chapter. Recent works on encrypted

consensus [112, 113, 192], on encrypted distributed optimization [95, 155, 231, 237] and in

smart grid encrypted data aggregation [89, 142, 147] give insights about homomorphically

encrypted distributed computation, but treat different aspects than the ones we are inter-

ested in for this section. It has recently been shown in [199] that encrypted cooperative

control is capable of solving the privacy conflict using homomorphic encryption and allows

secure interaction between the participating agents. However, while [199] demonstrates that

private cooperative control is realizable, their proposed encrypted control scheme reveals

more information about some participants’ private local data than required to evaluate the

local control laws. This results in a privacy leak that is difficult to address with existing

approaches. We discuss more about this in Section 5.2.3.
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5.2.1.2 Contributions

This chapter presents a scheme that we call private control update aggregation (pCUA),

which ensures that an agent learns nothing apart from the unconcealable information, i.e.,

the sum of contributions from its neighbors. As a corollary, we close the identified privacy

leak of the scheme in [199]. Specifically, the values of the states, control actions and control

gains of each agent are hidden from the rest of the participants. To this end, we employ our

private weighted sum aggregation (pWSAh) scheme with hidden weights from Chapter 4.3.2,

where each agent acts as an aggregator for the contributions of its neighbors. The solution

relies on secret sharing and additively homomorphic encryption. We implement the proposed

solution for various connectivity degrees of a network and showcase its efficiency. Finally,

we analyze the observability of the system from the perspective of malicious agents.

5.2.2 Problem setup

We consider a control scheme tailored for multi-agent systems with linear dynamics. Specif-

ically, consider a system with M agents that obey the local dynamics:

xi(t+ 1) = Aixi(t) + Biui(t), xi(0) = xi,0, (5.2.1)

with xi ∈ Rni and ui ∈ Rmi , for every i ∈ [M ]. Assume that the agents are part of a simple,

connected, fixed and undirected communication graph G = (V, E), with vertex set denoted

as V = [M ] and the edge set denoted as E ⊆ V ×V. An edge (i, j) ∈ E specifies that agent i

can communicate with agent j, in which case we say agent i and agent j are neighbors.

In a cooperative structured control, we can use the following local control laws to stabilize

the systems, where Ni := {j ∈ V|(i, j) ∈ E} represents the set of neighbors of agent i:

ui(t) = Kiixi(t) +
∑
j∈Ni

Kijxj(t), (5.2.2)
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These local control laws result from the design of a centralized linear controller of the form:


u1(t)

...

uM (t)

 =


K11 . . . K1M

...
. . .

...

KM1 . . . KMM




x1(t)

...

xM (t)

 (5.2.3)

that takes into account the structural constraints of the communication graph by requiring

Kij = 0 whenever j /∈ Ni ∪ {i}. The stabilizing local control feedback gains Kij can be

designed to take into account the structural constraints of the communication graph, see,

e.g. [151].

5.2.3 Previous solutions for cooperative control

Local control laws of the form (5.2.2) were considered in [7, 12, 199]. Specifically, [199]

introduces a private computation and exchange of the “input portions”:

vij(t) := Kijxj(t) ∈ Rmi . (5.2.4)

to compute the local control input as in (5.2.2).

However, in order to compute the aggregated value xa, the aggregator does not require

access to the individual vij ’s. In fact, if we want to ensure privacy of the data that is

unknown to the aggregator, the best we can do is for the aggregator to only be able to

compute the “aggregated portions”:

ui(t)− vii(t) = vi,Ni(t) :=
∑
j∈Ni

vij(t). (5.2.5)

The “input portions” vi(t) reveal neither the exact local state xi nor the local controller

matrix Wi to the aggregator, but can at least reveal the relative rate of decrease/increase

of some signals of the agents over multiple time steps. More details about the information

leak can be found in Chapter 5.2.5 and in [12], where a solution to the pWSAh problem

that achieves aggregator obliviousness is proposed. The solution in [12] required generating
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fresh secrets at every time step and proposed an online decentralized method that reduced

the collusion threshold between participants.

Finally, [7] proposed a theoretical solution that addressed the two issues of [12] (this

solution is described in Chapter 4.5): it reduced the number of generated secrets, kept the

collusion threshold at M − 1 corrupted participants and reduced the number of messages

exchanged between the agents and aggregator. This comes at the cost of using a lattice-based

homomorphic encryption scheme and augmented learning with error ciphertexts, which can

be larger than Paillier ciphertexts and might require more expensive operations.

In the next section, we use our proposed solution for private weighted aggregation with

hidden weights from Chapter 4.3.2, that provides a compact and efficient private weighted

sum aggregation scheme by packing multiple values in one homomorphic Paillier ciphertext

and an online decentralized method of distributing the secret shares of zero among the agents

without reducing the collusion threshold.

5.2.4 Private control update aggregation and implementation

Each agent i is the aggregator of the contributions of its neighbors Kijxj(t). There is a

system operator that acts as the dealer, who designs and encrypts the control feedback

weights K. Notice that this formulation fits the pattern of weighted aggregation, described

in Chapter 4. Specifically, the private control update aggregation scheme pCUA is composed

of the following algorithms (SetuppCUA, InitWpCUAEncpCUA,AggrDecpCUA):

• SetuppCUA(1κ,V, E ,A,B, T ): The dealer generates the control gain K like in (5.2.3)

using the system parameters A,B. For every agent i ∈ V, run pWSAh∗.Setup and

generate a pair of keys (pki, ski). For every t ∈ [T ], generate and denote by Sij the

matrix of secret shares of zero of agent j has for its contribution to agent i. Set

prm = (κ, {pki}i∈V), ski = (ski,Kii,Sii,Sj∈Ni,i) for i ∈ V.

• InitWpCUA(prm,V, E , {Kij}i∈V,j∈Ni): given the public key of the Paillier scheme for

agent i ∈ V, encrypt Kji column-wise as in pWSAh∗.InitW and return to agent j ∈ V:

swj = {E(pki,Kij)}i∈[Nj ].

136



• EncpCUA(prm, swi, ski, t,xi(t)): For each i ∈ V and j ∈ Ni, computes cj,i(t) as in

pWSAh∗.Enc.

• AggrDecpCUA(prm, ski, t, {cij(t)}i,j∈Ni): For each i ∈ V, aggregate and decrypt the

neighbors ciphertexts as in pWSAh∗.AggrDec then add the local value Kiixi(t) to

obtain ui(t).

In the rest of this section, we will directly apply the methods described in Chapter 4 as

illustrated above and showcase the numerical performance. Specifically, consider a network

of 50 agents, with each agent having local states and local control inputs both of dimension

6. We simulate pWSAh∗ for various values of the average node degree in the network,

obtained by varying the probability of drawing edges between agents. Simulations were run

in Python 3 on a 2.2 GHz Intel Core i7 processor. As usual when operating with encryption

schemes defined on groups of modular residues, we need to use a fixed-point representation

scheme in order to quantize the real values and encode them into integers. The effect of this

quantization on the cooperative control scheme is described in [199]. In the simulations, we

choose the message representation to be on l = 32 bits: 16 integer bits and 16 fractional

bits, the statistical security size to be 80 bits and the Paillier moduli for each agent to have

2048 bits. With these chosen values, all 6 elements of the local contributions can be encoded

into a single Paillier ciphertext in pWSAh∗.

We present the simulation results for the algorithmic solutions described in Sections 4.3.2,

4.3.3.1 and 4.3.3.2, in both naive implementation (Section 4.4.2.4) and using packing (Sec-

tion 4.4.2.5). The running times are averaged over 50 instances and represent the total

time it takes for an agent at a time step to generate and distribute the secret shares for the

computation for itself and its neighbors and to aggregate the contributions of its neighbors

and to compute and send out its own contribution to its neighbors. The shares are locally

encrypted with an AES cipher with 128-bit key–for the offline centralized phase, each agent

has an AES key with the dealer, and each pair of neighbors has their own AES key for

the online decentralized phase. Figures 5.6, 5.7, 5.8 and 5.10 show the times for an agent

with the average connectivity degree, respectively the minimum and maximum connectivity
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degree (represented by the arrows).
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Figure 5.6: Average running times for the pWSAh∗ scheme with the steps described in Section 4.3.2
in a network of 50 agents.

Figure 5.6 compares the running times for the local computation at each agent in a

time step using the scheme with centralized offline generation of the secret shares, be-

tween naive and packed encryption. This method has the smallest online running time for

agents, but the largest offline time for the dealer that generates the shares for all agents,

for many time steps (see Figure 5.9). Figure 5.7 compares the online running times between

naive and packed encryption in the case of the one-step decentralized online generation

of shares and Figure 5.8 for the two-step decentralized online generation of shares. These

methods have roughly an eight-fold increase in the online time compared to the method that

makes heavy use of a trusted dealer, but the dealer has less work to do in the offline phase.

As expected, less security, in terms of reducing the collusion threshold, yields better online

time (Figure 5.7 vs. Figure 5.8).

In the centralized offline share generation scheme, packing decreases the maximum online

time between 64% and 71%. In the online decentralized cases, where the agents are also

responsible for generating, encrypting, sending and decrypting the shares, packing reduces

the maximum online running time between 76% and 80%. Overall, we see that in the packed

version, the sampling time needs to be at most 1.1 seconds.
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Figure 5.7: Average running times for the pWSAh∗ scheme with the steps described in Section 4.3.3
in a network of 50 agents.

Second, the communication load is reduced when using packing: one Paillier ciphertext

of 0.256 KB is sent from the neighboring agents to the aggregating agent, instead of six

ciphertexts amounting to 1.536 KB, and each agent sends four batches of 16 bytes AES-

encrypted shares to each neighbor, instead of seven batches of 16 bytes.
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Figure 5.8: Average running times for the pWSAh∗ scheme with the steps described in Section 4.3.3.2
in a network of 50 agents.

A third substantial advantage of packing is decreasing the offline time, consisting of the

weights encryption and the share generation and encryption at the system operator, depicted
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Figure 5.9: Offline setup phase running times for the pWSAh∗ scheme as in Section 4.3.2 in a network
of 50 agents with shares generated for 100 time steps. The offline setup times for the decentralized
share generation schemes in Section 4.3.3 consist only of the gain encryption times.
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Figure 5.10: Average running times for the pWSAh∗ scheme with the steps described in Sec-
tion 4.3.3.2 in a network of 25 agents.

in Figure 5.9. Specifically, we see up to 80% improvement in the offline running time when

using packing.

To further illustrate the efficiency of packing, we show in Figure 5.10 how the performance

improves with the number of control inputs, i.e., the number of values that are packed into

one value, in the case of decentralized online share generation. We simulate a network of
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25 agents with an average network connectivity degree of 10. Each agent has a local state

of dimension 10 and local control input of dimension varying between 2 and 10, which are

packed in one Paillier ciphertext. The online running time remains almost the same in the

packed version, despite having more control inputs, compared to the increasing online time

in the naive case.

5.2.5 Observability analysis

This section motivates the benefits of aggregation for the privacy of the agents from a

system-theoretic point of view.

5.2.5.1 Available information without aggregation

In the encrypted control scheme [199], agent i has access to the input portions vij(t) of all

neighboring agents j ∈ Ni. Thus, it can use (5.2.4) and stored data to estimate the matrices

Kij or the neighboring states xj(t). Under the assumption that mi ≤ ni, the corresponding

system of equations:

[
vij(0) . . . vij(t)

]
= Kij

[
xj(0) . . . xj(t)

]
(5.2.6)

is underdetermined for every t. However, taking application-related restrictions on Kij and

xj into account, it might be possible to reconstruct the constant matrix Kij . Moreover,

especially for systems with similar agents, such as robot swarms, agent i might obtain

information about the dynamics of agent j in terms of Aj and Bj . The ability to reconstruct

xj from observations vij given Kij , Aj , and Bj then becomes an observability problem. In

fact, observing xj requires full rank of the observability matrix:

Vij :=


KijA

0
j

...

KijA
nj−1
j

 .
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5.2.5.2 Available information with aggregation

In the aggregated case described in Section 5.2.4, less data is available to agent i. The

system of equations (5.2.6) becomes:

[
vi,Ni(0) . . . vi,Ni(t)

]
= Ki,Ni

[
xNi(0) . . . xNi(t)

]
,

with Ki,Ni :=
[
Kij1 . . .Kij|Ni|

]
, xNi :=

[
xᵀ
j1
. . . xjᵀ|Ni|

]ᵀ
, and Ni = {j1, . . . , j|Ni|}. For

|Ni| > 1, the degree of freedom here is significantly higher than in (5.2.6). Still, it might

again be possible to infer the constant matrix Ki,Ni . In addition, agent i might know the

neighboring dynamics: ANi := blkdiag(Aj1 , . . . ,Aj|Ni|
). However, the observability of xNi

now requires full rank of:

Vi,Ni :=


Ki,NiA

0
Ni

...

Ki,NiA
nj−1
Ni

 .

The relation Ki,NiA
k
Ni =

[
Kij1A

k
j1
. . . Kij|Ni|

Ak
j|Ni|

]
, combined with an analysis of the

|Ni| column-blocks of Vi,Ni and the Cayley-Hamilton theorem lead to the following result.

Lemma 5.2.1. The full rank of Vi,Ni implies the full rank of Vij for every j ∈ Ni.

Lemma 5.2.1 states that observability in the aggregated case implies observability in the

unaggregated case. In other words, observability in the aggregated case is less likely, which

increases the privacy of the agents. Note that the converse statement of Lemma 5.2.1 is, in

general, not true.
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Chapter 6

Model Predictive Control

This chapter explores the privacy of cloud outsourced Model Predictive Control (MPC) for

a linear system with input constraints. In our cloud-based architecture, a client sends the

private states to the cloud who performs the MPC computation and returns the control in-

puts. In order to guarantee that the cloud can perform this computation without obtaining

anything about the client’s private data, we employ homomorphic cryptosystems and obliv-

ious communication tools. In the first part of the chapter, we consider an MPC application

where only signals such as the states and control inputs are required to be private, but the

constant parameters and costs can be public. We propose protocols using an additively

homomorphic encryption scheme for two cloud-MPC architectures motivated by the current

developments in the Internet of Things: a client-server architecture and a two-server archi-

tecture. In the first case, a control input for the system is privately computed by the cloud

server, with the assistance of the client. In the second case, the control input is privately

computed by two independent, non-colluding servers, with no additional requirements from

the client. We prove that the proposed protocols preserve the privacy of the client’s data and

of the resulting control input. Furthermore, we compute bounds on the errors introduced

by encryption. We present numerical simulations for the two architectures and discuss the

trade-off between communication, MPC performance and privacy.

In the second part of the chapter, we consider a more restrictive MPC application where
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both signals and the constant parameters are required to be private. Moreover, we consider

the system to be split into multiple untrusted subsystems, and neither the cloud controller,

nor the actuator can be trusted. We propose a protocol that extends the above private two-

server protocol to work with somewhat homomorphic encryption and we prove it achieves

privacy even under collusions between the participants.

This chapter covers the work presented in [9, 11].

6.1 Introduction

Model Predictive Control (MPC) is a powerful scheme that is successfully deployed in prac-

tice [162] for systems of varying dimension and architecture, including on cloud platforms.

In competitive scenarios, such as energy generation in the power grid, domestic scenarios,

such as heating control in smart houses, or time-sensitive scenarios, such as traffic control,

the control scheme should come with privacy guarantees to protect from eavesdroppers or

from an untrustworthy cloud. For instance, in smart houses, client-server setups can be

envisioned, where a local trusted computer aggregates the measurements from the sensors,

but does not store their model and specifications, and depends on a server to compute the

control input or reference. The server can also posses other information, such as the weather.

In a heating application, the parameters of the system can be known by the server, i.e., the

energy consumption model of the house, but the data measurements and how much the

owner wants to consume should be private. In traffic control, the drivers are expected to

share their locations, which should remain private, but are not expected to contribute to the

computation. Hence, the locations are collected and processed at the server’s level, which

then sends the result back to the cars or to traffic lights.

Contributions

We investigate a privacy-preserving cloud-based Model Predictive Control application, which

at a high level, requires privately computing additions, multiplications, comparisons and

oblivious updates. Our solution encompasses several SMPC techniques: homomorphic en-

cryption, secret sharing, oblivious transfer.
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In Section 6.2, we discuss the implicit MPC computation for a linear system with input

constraints, where we privately compute a control input, while maintaining the privacy of

the state, using an additively homomorphic cryptosystem. In the first case we consider, the

control input is privately computed by a server, with the help of the client. In the second

case, the computation is performed by two non-colluding servers. The convergence of the

state trajectory to the reference is public knowledge, so it is crucial to not reveal anything

else about the state and other sensitive quantitities. Therefore, we use a privacy model that

stipulates that no computationally efficient algorithm run by the cloud can infer anything

about the private data, or, in other words, an adversary doesn’t know more about the private

data than a random guess. Although this model is very strict, it thoroughly characterizes

the loss of information.

This work explores a fundamental issue of privacy in control: the trade-off between com-

putation, communication, performance and privacy. Our main contributions are two privacy-

preserving protocols for MPC and the analysis of the errors induced by the encryption.

In Section 6.3, we extend the results from Section 6.2 to account for more privacy re-

quirements of the data in the system: we require the private computation of the control

input, while maintaining both the privacy of the state and the privacy of the system model

and MPC parameters. Furthermore, we consider that the system to be controlled is com-

prised of multiple subsystems and there is no client that holds all the information in the

clear. By using a somewhat homomorphic encryption scheme that allows multiple keys, we

can securely evaluate the MPC functionality on the data coming from separate subsystems,

without revealing private information.

Related work

In control systems, ensuring the privacy of the measurements and control inputs from eaves-

droppers and from the controller has been so far tackled with differential privacy, homo-

morphic encryption and transformation methods. Kalman filtering with DP was addressed

in [144], current trajectory hiding in [141], linear distributed control [224], and distributed

MPC in [233]. The idea of encrypted controllers was introduced in [139] and [92], using
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AHE, and in [134] using FHE. Kalman filtering with AHE was further explored in [227].

Recent work in [198] has tackled the problem of privately computing the input for a

constrained linear system using explicit MPC, in a client-server setup. There, the client

performs the computationally intensive trajectory localization and sends the result to the

server, which then evaluates the corresponding affine control law on the encrypted state using

AHE. Although explicit MPC has the advantage of computing the parametric control laws

offline, the evaluation of the search tree at the cloud’s level is intractable when the number

of nodes is large, since all nodes have to be evaluated in order to not reveal the polyhedra

the in which the state lies, and comparison cannot be performed locally on encrypted data.

Furthermore, the binary search in explicit MPC is intensive and requires the client to store

all the characterization of the polyhedra, which we would like to avoid. Taking this into

consideration, we focus on implicit MPC.

The performance degradation of a linear controller due to encryption is analyzed in [138].

In our work, we investigate performance degradation for the nonlinear MPC control.

Special notation for this chapter

Given a real quantity x ∈ R, we use the notation x̄ for the corresponding quantity in

fixed-point representation on one sign bit, li integer and lf fractional bits.

6.2 Secure evaluation of MPC with public parameters

6.2.1 Problem setup

We consider a discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) + Bu(t), (6.2.1)
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with the state x ∈ X ⊆ Rn and the control input u ∈ U ⊆ Rm. The Model Predictive

Control (MPC) is the optimal control receding horizon problem with constraints written as:

J∗N (x(t)) = min
u0,...,uN−1

1

2

(
xᵀ
NPxN +

N−1∑
k=0

xᵀ
kQxk + uᵀ

kRuk

)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1; x0 = x(t);

uk ∈ U , k = 0, . . . , N − 1,

(6.2.2)

where N is the horizon length and P,Q,R � 0 are cost matrices. We consider input

constrained systems: X = Rn, 0 ∈ U = {lu � u � hu}, and impose stability without

a terminal state constraint, Xf = Rn, but with appropriately chosen costs P,Q,R and

horizon N such that the closed-loop system has robust performance to bounded errors due

to encryption. A survey on the conditions for stability of MPC is given in [163]. We

chose the input constrained formulation for reasons related to error bounding, explained in

Section 6.2.4.

Through straightforward manipulations, (6.2.2) can be written as a quadratic program

(see details on obtaining the matrices H and F in [44, Ch. 8,11]) in the variable U :=[
uᵀ

0 uᵀ
1 . . . uᵀ

N−1

]ᵀ:
U∗(x(t)) = arg min

U∈U

1

2
UᵀHU + UᵀFᵀx(t). (6.2.3)

For simplicity, we keep the same notation for the augmented constraint set U . After

obtaining the optimal solution, the first m components of U∗(x(t)) are applied as input to

the system (6.2.1): u∗(x(t)) = {U∗(x(t))}1:m. This problem easily extends to the case of

following a reference.

6.2.1.1 Solution without privacy requirements

The constraint set U is a hyperbox, so the projection step required for solving (6.2.3) has

a closed form solution, denoted by ΠU (·) and the optimization problem can be efficiently
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solved with the projected Fast Gradient Method (FGM) [173], given in (6.2.4):

For k = 0 . . . ,K − 1

tk ←
(

IMm −
1

L
H

)
zk −

1

L
Fᵀx(t) (6.2.4a)

uk+1 ← ΠU (tk) (6.2.4b)

zk+1 ← (1 + η)uk+1 − ηuk (6.2.4c)

where z0 ← u0. The objective function is strongly convex, since H � 0, therefore we can

use the constant step sizes L = λmax(H) and η = (
√
κ(H)− 1)/(

√
κ(H) + 1), where κ(H)

is the condition number of H. Warm starting can be used at subsequent time steps of the

receding horizon problem by using part of the previous solution uK to construct a feasible

initial iterate of the new optimization problem.

6.2.1.2 Privacy objectives

The unsecure cloud-MPC problem is depicted in Figure 6.1. In this section, the system’s

constant parameters A,B,P,Q,R, N are considered public, motivated by the fact the pa-

rameters are intrinsic to the system and hardware, and could be guessed or identified;

however, the measurements, control inputs and constraints are not known and should re-

main private. Nevertheless, in Section 6.3.2, we provide a secure solution when the system’s

constant parameters are desired to be private, motivated in the context of critical infrastruc-

ture. The goal of this work is to devise private cloud-outsourced versions of (6.2.4) such that

the client obtains the control input u∗(t) for system (6.2.1) with only a minimum amount

of computation. The cloud (consisting of either one or two servers) should not infer any-

thing else than what was known prior to the computation about the measurements x(t), the

control inputs u∗(t) and the constraints U . We tolerate semi-honest servers, meaning that

they correctly follow the steps of the protocol but may store the transcript of the messages

exchanged and process the data received to try to learn more information than allowed.

The purpose of the section is to design protocols with the functionality of (6.2.4) that
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Figure 6.1: Unsecure MPC: the system model A,B, horizon N and costs P,Q,R are public. The
state x(t), control input u∗(t) and input constraints U are privacy-sensitive.

satisfy client data confidentiality for one or two servers, as described in Definition 2.2.8 or

Definition 3.3.1. To this end, we use the additively encryption scheme defined in Pream-

ble 2.5.1. We discuss in Section 6.2.4 how we connect the domain of the inputs in the Paillier

encryption scheme with the domain of real numbers needed for the MPC problem. In Sec-

tions 6.2.2 and 6.2.3, we address two private cloud-MPC solutions that present a trade-off

between the computational effort at the client and the total time required to compute the

solution u∗(t), which is analyzed in Section 6.2.5.

6.2.2 Client-server architecture

To be able to use the Paillier encryption, we need to represent the messages on a finite set of

integers, parametrized byNσ, i.e., each message is an element in ZNσ . Usually, the values less

thanNσ/3 are interpreted to be positive, the numbers between 2Nσ/3 andNσ to be negative,

and the rest of the range allows for overflow detection. In this section and Section 6.2.3, we

consider a fixed-point representation of the values and perform implicit multiplication steps

to obtain integers and division steps to retrieve the true values. We analyze the implications

of the fixed-point representation over the MPC solution in Section 6.2.4.

We introduce a client-server model, depicted in Figure 6.2a. We present an interactive

protocol that privately computes the control input for the client, while maintaining the

privacy of the state in Protocol 6.2.1. The client generates the public key pk and secret
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key sk of a Paillier encrypted scheme and encrypts its data. The cloud will thus perform

computations on the encrypted data of the client.

The Paillier encryption is not order preserving, so the projection operation cannot be per-

formed locally by the server. Hence, the server sends the encrypted iterate [[tk]] for the client

to project it. Then, the client encrypts the feasible iterate and sends it back to the cloud.

We drop the (̄·) from the iterates in order to not burden the notation.

Protocol 6.2.1: Encrypted projected Fast Gradient Descent in a client-server

architecture

Input: C: x(t),Kc,Kw, li, lf , Ū ,pk, sk; S: H̄f , F̄, η̄,Kc,Kw, li, lf ,pk, cold-start, [[Uw]]

Output: C: u = (UK(x(t)))1:m

1: C: Encrypt and send [[x(t)]] to S

2: if cold-start then

3: S: [[U0]] = [[0Nm]]; C, S: K ← Kc

4: else

5: S: [[U0]] =
[
[[(Uw)m+1:Nm]], [[0m]]

]
; C, S: K ← Kw

6: end if

7: S: [[z0]] = [[U0]]

8: for k=0. . . ,K-1 do

9: S: [[tk]] = (INm − H̄f )⊗ [[zk]]⊕ (−F̄ᵀ
f )⊗ [[x(t)]] and send it to C

10: C: Decrypt tk and truncate to lf fractional bits

11: C: Uk+1 = ΠŪ (tk) . Projection on Ū

12: C: Encrypt and send [[Uk+1]] to S

13: S: [[zk+1]] = (1 + η̄)⊗ [[Uk+1]]⊕ (−η̄)⊗ [[Uk]]

14: end for

15: C: Decrypt and output u = (UK)1:m

Theorem 6.2.1. Protocol 6.2.1 achieves privacy as in Definition 2.2.8 with respect to a

semi-honest server.

Proof. The initial value of the iterate does not give any information to the server about the
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result, as the final result is encrypted and the number of iterations is a priori fixed. The

view of the server, as in Definition 2.2.8, is composed of the server’s inputs, the messages

received {[[Uk]]}k=0,...,K , which are all encrypted, and no output. We construct a simulator

which replaces the messages with random encryptions of corresponding length. Due to the

semantic security of the Paillier cryptosystem, which was proved in [177], the view of the

simulator is computationally indistinguishable from the view of the server.

(a) Private client-server MPC setup for a plant. (b) Private two-server MPC setup for a plant.

Figure 6.2: Secure MPC solution.

6.2.3 Two-server architecture

Although in Protocol 6.2.1 the client needs to store and process substantially less data than

the server, the computational requirements might be too stringent for large values of K and

Nσ. In such a case, we outsource the problem to two servers, and only require the client

to encrypt x(t) and send it to one server and decrypt the received the result [[u∗]]. In this

setup, depicted in Figure 6.2b, the existence of two non-colluding servers is assumed.

In Figure 6.2b and in Protocol 6.2.2, we will denote by [[·]] a message encrypted with

pk1 and by [{·}] a message encrypted by pk2. The reason we use two pairs of keys is so the

client and support server do not have the same private key and do not need to interact.

As before, we need an interactive protocol to achieve the projection. We use the ideas

from the private solution for a quadratic optimization problem outlined in Section 3.2, but

we work in the primal problem rather than in the dual. We use the DGK comparison

protocol, proposed in [77, 78], such that, given two encrypted values of l bits [[a]], [[b]] to
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S1, after the protocol, S2, who has the private key, obtains a bit (β = 1) ≡ (a ≤ b), without

finding anything about the inputs. Moreover, S1 finds nothing about β. We augment this

protocol by introducing a step (in line 11 of Protocol 6.2.2) before the comparison, in which

S1 randomizes the order of the two values to be compared, such that S2 does not know the

significance of β with respect to the inputs. Furthermore, by performing a blinded exchange,

S1 obtains the minimum (respectively, maximum) value of the two inputs, without any of the

two servers knowing what the result is. This is achieved via the oblivious transfer described

in Preamble 2.6. The above procedure is performed in line 13 in Protocol 6.2.2.

The comparison protocol works with inputs that are represented on l bits. The variables

we compare are results of additions and multiplications, which can increase the number of

bits, thus, we need to ensure that they are represented on l bits before inputting them to

the comparison protocol. This introduces an extra step in line 10 in which S1 communicates

with S2 in order to obtain the truncation of the comparison inputs: S1 adds noise to tk and

sends it to S2 which decrypts it, truncates the result to l bits and sends it back. S1 then

subtracts the truncated noise.

In order to guarantee that S2 does not find out the private values after decryption, S1

adds a sufficiently large random noise to the private data. The random numbers used for

blinding are chosen from (0, 2l+λσ) ∩ ZNσ , which ensures the statistical indistinguishability

between the sum of the random number and the private value and a random number of

equivalent length [45], where λσ is the statistical security parameter.

Lines 10–14 and lines 17–19 of Protocol 6.2.2 are performed element-wise on the en-

crypted vectors.

Protocol 6.2.2: Encrypted projected Fast Gradient Descent in a two-server architecture

Input: C : x(t),pk1,2, sk2; S1 : H̄f , F̄, η̄,Kc,Kw, li, lf ,pk1,2, cold-start, [[Uw]]; S2 : Kc,Kw, li, lf ,

pk1,2, sk1, cold-start

Output: C: u = (UK(x(t)))1:m

1: C: Encrypt and send [[x(t)]], [[hu]], [[lu]] to S1

2: if cold-start then
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3: S1: [[U0]]← [[0Nm]]; S1, S2:K ← Kc

4: else

5: S1: [[U0]]←
[
[[(Uw)m+1:Nm]], [[0m]]

]
; S1, S2:K ← Kw

6: end if

7: S1: [[z0]]← [[U0]]

8: for k=0. . . ,K-1 do

9: S1: [[tk]]← (INm − H̄f )⊗ [[zk]]⊕ (−F̄ᵀ
f )⊗ [[x(t)]]

10: S1, S2: [[tk]]← truncate [[tk]]

11: S1: ak,bk ← randomize [[tk]], [[hu]]

12: S1, S2: perform Protocol 2.7.2 s.t. S2 obtains (βk = 1) ≡ (ak ≤ bk)

13: S1, S2: [[Uk+1]]← OT′ ([[ak]], [[bk]],βk Y 1,msk). S1 receives [[Uk+1]]

. Uk+1 ← min(tk,hu)

14: S1, S2: Redo 11–13 to get [[Uk+1]]← max(Uk+1, lu)

15: S1: [[zk+1]]← (1 + η̄)⊗ [[Uk+1]]⊕ (−η̄)⊗ [[Uk]]

16: end for

17: S1: Pick ρ and send [[(UK)1:m]]⊕ [[ρ]] to S2

18: S2: Decrypt, encrypt with pk2 and send to S1: [{u + ρ}]

19: S1: [{u}]← [{u + ρ}]⊕ [{−ρ}] and send it to C

20: C: Decrypt and output u

Theorem 6.2.2. Protocol 6.2.2 achieves privacy as in Definition 3.3.1, as long as the two

semi-honest servers do not collude.

The proof is given in Appendix E.1.

Remark 6.2.3. One can expand Protocols 6.2.1 and 6.2.2 over multiple time steps, such that

U0 is obtained from the previous iteration and not given as input, and formally prove their

privacy. The fact that the state will converge to a neighborhood of the origin is public

knowledge, and is not revealed by the execution of the protocol.

Through communication, encryption and statistical blinding, the two servers can pri-

vately compute nonlinear operations. However, this causes an increase in the computation
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time due to the extra encryptions and decryptions and communication rounds, as will be

pointed out in Section 6.2.5.

6.2.4 Fixed-point arithmetics MPC

The values that are encrypted or added to or multiplied with encrypted values have to be

integers. We consider fixed-point representations with one sign bit, li integer bits and lf

fractional bits and multiply them by 2lf to obtain integers.

Working with fixed-point representations can lead to overflow, quantization and arith-

metic round-off errors. Thus, we want to compute the deviation between the fixed-point

solution and optimal solution of (6.2.4). The bounds on this deviation can be used in an

offline step prior to the online computation to choose an appropriate fixed-point precision

for the performance of the system.

Consider the following assumption:

Assumption 6.2.4. The number of fractional bits lf and constant c ≥ 1 are chosen large

enough such that:

(i) Ū ⊆ U : the fixed-point precision solution is still feasible.

(ii) The eigenvalues of the fixed-point representation H̄f are contained in the set (0, 1],

where Hf := H̄/(cL̄) and L̄ := λmax(H̄). The constant c is required in order to

overcome the possibility that (1/L̄)H̄ has the maximum eigenvalue larger than 1 due

to fixed-point arithmetic errors.

(iii) The fixed-point representation of the step size satisfies:

0 ≤
(√

κ(H̄)− 1

)/(√
κ(H̄) + 1

)
≤ η̄ < 1.

Item (i) ensures that the feasibility of the fixed-point precision solution is preserved,

item (ii) ensures that the strong convexity of the fixed-point objective function still holds

and item (iii) ensures that the fixed-point step size is such that the FGM converges.
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Overflow errors: Bounds on the infinity-norm on the fixed-point dynamic quantities of

interest in (6.2.4) were derived in [129] for each iteration k, and depend on a bounded set

X0 such that x(t) ∈ X0 and x̄(t) ∈ X̄0:

‖Ūk+1‖∞ ≤ max{‖̄lu‖∞, ‖h̄u‖∞} = RŪ

‖z̄k+1‖∞ ≤ (1 + 2η̄)RŪ =: ζ,

‖t̄k‖∞ ≤ ‖INm − H̄f‖∞ζ + ‖F̄f‖∞RX̄0
,

where Ff = F̄/(cL̄) and RS represents the radius of a set S w.r.t. the infinity norm. We

select from these bounds the number of integer bits li such that there is no overflow.

6.2.4.1 Difference between real and fixed-point solution

We want to determine a bound on the error between the fixed-point precision solution and the

real solution of the MPC problem (6.2.3). The total error is composed of the error induced

by having fixed-point coefficients and variables in the optimization problem, and by the

round-off errors. Specifically, denote by UK the solution in exact arithmetic of the MPC

problem (6.2.3) obtained after K iterations of (6.2.4). Denote by ŨK the solution obtained

after K iterations but with H,F,x(t),U , L, η replaced by their fixed-point representations.

Finally, denote by ŪK the solution of Protocols 6.2.1 and 6.2.2 after K iterations, where the

iterates [[tk]], [[Uk]] have fixed-point representation (truncations are performed). We obtain

the following upper bound on the difference between the solution obtained on the encrypted

data and the nominal solution of the implicit MPC problem (6.2.3) after K iterations:

‖ŪK −UK‖2 ≤ ‖ŨK −UK‖2 + ‖ŪK − ŨK‖2.

We present the derivation of the bounds of these accumulated errors in Appendix E.2.

Denote by ε1 the bound on the quantization errors and by ε2 the bound on the arithmetic

round-off errors. As lf →∞, ε1 → 0 and ε2 → 0. The persistent noise in (E.2.2) and (E.2.4),

which is composed by quantization errors and round-off errors, becomes zero when the
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number of fractional bits mimics a real variable. This makes systems (E.2.2) and (E.2.4)

input-to-state stable.

6.2.4.2 Choice of error level

The error bound ε := ε1 + ε2 can be computed as a function of the number of fractional

bits lf . We can incorporate these errors as a bounded disturbance d(·) in system (6.2.1):

d(t) = Bξ(t), where ξ(t) = u∗(t)− ū(t). Then, we can design the terminal cost as described

in [180], such that the controller achieves inherent robust stability to process perturbations

‖d(t)‖2 ≤ δ, and choose: ε ≤ δ
‖B‖ . Alternatively, we can incorporate the error in the

suboptimality of the cost and assume that we obtain a cost J̄N (x(t), ŪK) ≤ J∗N (x(t)) + ε′,

and compute ε such that asymptotic stability is achieved as in [164].

In the offline phase, the fixed-point precision of the variables is chosen such that there

is no overflow and one of the conditions on ε is satisfied. Note that these conditions can

be overly-conservative. This ensures that the MPC performance is guaranteed with a large

margin, but the computation is slower because of the large number of bits. Once li and lf

have been chosen, we can pick Nσ such that the there is no overflow in Protocol 6.2.1 and

Protocol 6.2.2, respectively. In Protocol 6.2.1, truncation cannot be done on encrypted data

by the server, thus, the multiplications by 2lf are accumulated between zk and tk, which

means that tk is multiplied by 23lf . Hence, we choose Nσ such that li+3lf +2 < log2(Nσ/3)

holds. For Protocol 6.2.2 we pick Nσ such that li + 3lf + 3 + λσ < log2(Nσ/3) holds, where

λσ is the statistical security parameter. If the Nσ that satisfies these requirements is too

large, one should use the simple gradient method, which will have multiplications up to 22lf .

Remark 6.2.5. Instead of the FGM, we can use the simple gradient descent method, where

fewer errors accumulate, and less memory is needed, but more iterations are necessary to

reach to the optimal solution.

6.2.5 Numerical results and trade-off

The number of bits in the representation is crucial for the performance of the MPC scheme.

At the same time, a more accurate representation slows down the private MPC computation.
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In Figure 6.3, for a toy model of a spacecraft from [94] based on [124], we compare

the predicted theoretical error bounds from Theorems E.2.1 and E.2.3 and the norm of the

actual errors between the control input obtained with the client-server protocol and the

control input of the unencrypted MPC. The simulation is run for a time step of MPC with

18 iterations, with three choices of the number of fractional bits: 16, 24 and 32 bits. The

results are similar for the two-server protocol. We can observe that the predicted errors are

around two orders of magnitude larger than the real errors caused by the encryption, and

even for 16 bits of precision, the actual error is small.
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Figure 6.3: Predicted and actual errors for the control input computed in Protocol 6.2.1 for the
Problem (6.2.3). The y-axis shows the errors (predicted and actual) as a percentage of the norm of
the true iterate Uk.

Furthermore, we implemented the above two protocols for various problem sizes, where n

is the number of states and m is the number of control inputs, with a horizon fixed to 7.

Table 6.1 shows the computation times for Protocols 6.2.1 and 6.2.2 for li = 16 integer bits

and lf ∈ {16, 32} fractional bits. We fix the number of iterations to 50. The times obtained

vary linearly with the number of iterations, so one can approximate how long it would take

to run a different number of iterations. The size of the Nσ for the encryption is chosen to

be 512 bits. The computations were effectuated on a 2.2 GHz Intel Core i7.

The larger the number of fractional bits, the larger is the execution time, because the
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computations involve larger numbers and more bits have to be sent from one party to an-

other in the case of encrypted comparisons. Communication is the reason for the significant

slow-down observed in the two-server architecture compared to the client-server architec-

ture. Performing the projection requires l communication rounds, where l is the number of

bits of the messages compared. Privately updating the iterates requires another communi-

cation round. However, the assumption is that the servers are powerful computers, and the

execution time can be greatly improved using parallelization.

lf
n = 2
m = 2

n = 5
m = 5

n = 10
m = 10

n = 20
m = 20

n = 50
m = 30

CS 16 1.21 4.08 13.38 39.56 84.28
CS 32 1.33 5.20 15.46 53.48 105.84
SS 16 23.27 59.81 123.19 261.75 457.87
SS 32 31.21 91.74 170.62 372.42 579.38

Table 6.1: Average execution time in seconds for Protocols 6.2.1, 6.2.2.

To summarize, privacy comes at the price of complexity: hiding the private data requires

working with large encrypted numbers, and the computations on private data require com-

munication. Furthermore, the more parties that need to be oblivious to the private data

(two servers in the second architecture compared to one server in the first architecture), the

more complex the private protocols become.

6.3 Secure Evaluation of MPC with private parameters

In this section, we change the problem setting from Section 6.2. The system in (6.2.1) is

considered to be partitioned in subsytems for i ∈ [M ], xi(t) ∈ Rni ,
∑M

i=1 ni = n and ui(t) ∈

Rmi ,
∑M

i=1mi = m, such that x(t) =
[
x1(t)

ᵀ
. . . xM (t)

ᵀ
]
, u(t) =

[
u1(t)

ᵀ
. . . uM (t)

ᵀ
]
.

The privacy-absent cloud-MPC problem is depicted in Figure 6.4. The system (6.2.1)

is composed of M subsystems, that can be thought of as different agents, which measure

their states and receive control actions, and of a setup entity which holds the system’s

model and parameters. The control decision problem is solved at the cloud level, by a cloud

controller, which receives the system’s model and parameters, the measurements, as well
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as the constraint sets imposed by each subsystem. The control inputs are then applied by

one virtual actuator. Examples of such architecture include a smart building temperature

control application, where the subsystems are apartments and the actuator is a machine in

the basement, or the subsystems are robots in a swarm coordination application and the

actuator is a ground control that sends them waypoints.

Figure 6.4: Cloud-based MPC problem for a system composed of a number of subsystems that
measure their states and a setup entity which holds the system’s model and parameters. The
control action is computed by a cloud controller and sent to a virtual actuator.

6.3.1 Privacy objectives and overview of solution

The system model and MPC costs A,B,P,Q,R are known only to the system, but not to the

cloud and actuator, hence, the matrices H,F in (6.2.3) are also private. The measurements

and constraints are not known to parties other than the corresponding subsystem and should

remain private, such that the sensitive information of the subsystems is concealed. The

control inputs should not be known by the cloud.

The goal of this work is to design a private cloud-outsourced version of the fast gradient

method in (6.2.4) for the model predictive control problem, such that the actuator obtains

the control action u∗(t) for system (6.2.1), without learning anything else in the process

and with only a minimum amount of computation. At the same time, the cloud controller

should not learn anything other than what was known prior to the computation about the

measurements x(t), the control inputs u∗(t), the constraints U , and the system model H,F.

We consider that all parties are semi-honest, but they are allowed to collude. Specifically,
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coalitions between M − 1 subsystems and the controller or between M − 1 subsystems and

the actuators are allowed. Then, we require the protocol that implements the above satisfy

multi-party privacy, as defined in Definition 2.2.6.

As a primer to our private solution to the MPC problem, we briefly mention here the

cryptographic tools used to achieve privacy. We will encrypt the data with a labeled homo-

morphic encryption scheme, which allows us to evaluate an unlimited number of additions

and one multiplication over encrypted data, denoted as Ê(·). The labeled homomorphic

encryption builds on top of an additively homomorphic encryption scheme, which allows

only the evaluation of additions over encrypted data, denote as [[·]] or E(·), a secret sharing

scheme, which enables the splitting of a message into two random shares, that cannot be

used individually to retrieve the message, and a pseudorandom generator that, given a key

and a small seed, called label, outputs a larger sequence of bits that is indistinguishable

from random. The right choice of labels is essential for a seamless application of labeled

homomorphic encryption on dynamical data, and we choose the labels to be the time steps

at which the data is generated. These tools ensure that we can evaluate polynomials on

the private data. Furthermore, the computations for determining the control action also

involve projections on a feasible hyperbox. To achieve this in a private way, we make use of

two-party private comparison that involves exchanges of encrypted bits between two parties,

and oblivious transfer, that allows us to choose a value out of many values when the index

is secret. These cryptographic tools are be described in detail in Chapter 2, and our private

cloud-based MPC solution that incorporates them will be presented in Section 6.3.2.

6.3.2 MPC with encrypted model and encrypted signals

Notice that the setting is similar to the secure evaluation of LQG, presented in Chapter 5.1,

but for a non-linear control policy, given by MPC, which require extra computations. To this

end, we propose a solution that uses Labeled Homomorphic Encryption to achieve encrypted

multiplications and the private execution of MPC on encrypted data. LabHE has the useful

property called unbalanced efficiency and we will employ this property by having the cloud

perform the more complex operations and the actuator the more efficient ones.
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Our protocols consist of three phases: the offline phase, in which the computations that

are independent from the specific data of the users are performed, the initialization phase,

in which the computations related to the constant parameters in the problem are performed,

and the online phase, in which computations on the variables of the problem are performed.

The initialization phase can be offline, if the constant parameters are a priori known, or

online otherwise.

Figure 6.5 represents the private version of the MPC diagram from Figure 6.4, where the

quantities are briefly described next and in more detail in Section 6.3.2.1. The actuator holds

the MPC query functionality, denoted by fMPC. Offline, the actuator generates a pair of

master keys, as described in Preamble 2.5.2 and publishes the master public key. The setup

and subsystems generate their secret keys and send the corresponding public keys to the

actuator. Still offline, these parties generate the labels corresponding to their data with

respect to the time stamp and the size of the data, similarly to the solution in Chapter 5.1.

This is shown in Protocol 6.3.1.

The setup entity sends the LabHE encryptions of the state matrices and costs to the

cloud controller before the execution begins. The subsystems send the encryptions of the

input constraints to the cloud controller, also before the execution begins. Online, at every

time step, the subsystems encrypt their measurements and send them to the cloud. After

the cloud performs the encrypted MPC query for one time step, it sends the encrypted

control input at the current time step to the actuator, which decrypts it and inputs it to

the system. In Protocol 6.3.2, we describe how the encrypted MPC query is performed by

the parties, which involves the actuator sending an encryption of the processed result back

to the cloud such that the computation can continue in the future time steps.

We now show how to transform the FGM in Equation (6.2.4) into a private version, using

Labeled Homomorphic Encryption and private two-party comparison. The message space

M of the encryption schemes we use is ZN , the additive group of integers modulo a large

value N . This means that, prior to encryption, the values have to be represented as integers.

Assume that this preprocessing step has been already performed; see Remark 6.3.3.
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Figure 6.5: The setup and subsystems send their encrypted data to the cloud. The cloud has to run
the MPC algorithm on the private measurements and the system’s private matrices and send the
encrypted result to the actuator. The latter then actuates the system with the decrypted inputs.

First, let us write tk in (6.2.4a) as a function of Uk and Uk−1:

tk =

(
IMm −

1

L
H

)
zk −

1

L
Fᵀx(t) =

(
IMm −

1

L
H

)
[(1 + η)Uk − ηUk−1]− 1

L
Fᵀx(t)

= Uk + η(Uk −Uk−1)− 1

L
HUk −

η

L
H(Uk −Uk−1)− 1

L
Fᵀx(t).

If we consider the composite variables 1
LH, η

LH, 1
LF and variables Uk,Uk−1,x(t), then tk

can be written as a degree-two multivariate polynomial. This allows us to compute [[tk]]

using LabHE. Then, one encrypted iteration of the FGM, where we assume that the cloud

has access to Ê
(
− 1
LH
)
, Ê
(
− η
LH
)
, Ê
(

1
LFᵀ

)
, Ê(x(t)), [[hu]], [[lu]] can be written as follows.

Denote the computation on the inputs mentioned previously as fiter. We use both ˆAdd and

⊕̂, 	̂, M̂lt and ⊗̂ for a better visual representation.

[[tk − ρk]] = M̂lt

(
Ê

(
−1

L
Fᵀ
)
, Ê(x(t))

)
⊕̂M̂lt

(
ˆAdd

(
IMm, Ê

(
1

L
H

))
, Ê (Uk)

)
⊕̂

⊕̂M̂lt

(
ˆAdd

(
Ê(η)⊗ IMm, Ê

(
−η
L

H

))
,
(
Ê(Uk)	̂Ê(Uk−1)

))
, (6.3.1)

where ρk is the secret obtained by applying fiter on the LabHE secrets of the inputs of fiter.

When the actuator applies the LabHE decryption primitive on [[tk − ρk]], ρk is removed.

Hence, for simplicity, we will write [[tk]] instead of [[tk − ρk]].
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Second, for (6.2.4b), we have to perform the projection of tk over the feasible domain

described by hu and lu, where all the variables are encrypted, as well as the private update

of Uk+1 with the projected iterate. Since the comparison needs to be done between AHE

ciphertexts and not LabHE ciphertexts, the solution for this is very similar to the solution

in the first part of the chapter, given in Section 6.2.3.

Finally, because the next iteration can proceed only if the cloud has access to the full

LabHE encryption Ê(Uk+1), instead of [[Uk+1]], the cloud and actuator have to refresh the

encryption. Specifically, the cloud secret-shares [[Uk+1]] in [[Uk+1 − rk+1]] and rk+1, and

sends [[Uk+1 − rk+1]] to the actuator. The actuator decrypts it, and, using a previously

generated secret, sends back Ê(Uk+1 − rk+1) =
(
Uk+1 − rk+1,

[[
bUk+1

]])
. Then, the cloud

recovers the LabHE encryption as Ê(Uk+1) = ˆAdd(Ê(Uk+1− rk+1), rk+1). In what follows,

we will outline the private protocols obtained by integrating the above observations.

6.3.2.1 Private protocol

Assume that K,N are fixed and known by all parties. Subscript Si stands for the i-th

subsystem, for i ∈ [M ], subscript Set for the Setup, subscript A for the actuator and

subscript C for the cloud.

Protocol 6.3.1: Initialization of encrypted MPC

Input: Actuator: fMPC; Subsystems: U i; Setup: A,B,P,Q,R.

Output: Subsytems: mpk,upkSi ,uskSi , τSi ,bSi , [[bSi ]],RSi ; Setup: H,F, η, L, mpk, upkSet,

uskSet, τSet,bSet, [[bSet]],RSet; Actuator: usk,upk, τA,bA, [[bA]],RA; Cloud: mpk, Ê
(
− 1
LH
)
,

Ê
(
− η
LH
)
, Ê
(

1
LFᵀ

)
, Ê(η), [[hu]], [[lu]], RC .

Offline:

1: Actuator: Generate (mpk,msk) ← Init(1σ) and distribute mpk to the others. Also generate a

key usk for itself.

2: Subsystems, Setup: Each get (usk,upk)← KeyGen(mpk) and send upk to the actuator.

3: Subsystems, Setup, Actuator: Allocate labels to the inputs of function fMPC: τ1, . . . , τv, where

v is the total number of inputs, as follows:

Subsystem i: for xi(t) of size ni, where i denotes a subsystem, generate the corresponding labels
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τxi(t) = [0 1 ni . . . ni − 1]ᵀ.

Setup: for matrix H ∈ RMm×Mm, set l = 0, generate τH and update l = M2m2, then follow the

same steps for F, starting from l and updating it.

Actuator: follow the same steps as the subsystems and setup, and then generate similar labels

for the iterates Uk starting from the last l, for k = 0, . . . ,K − 1.

4: Subsystems, Setup, Actuator, Cloud: Generate randomness for blinding and encryptions R.

5: Subsystems, Setup, Actuator: Perform the offline part of the LabHE encryption primitive. The

actuator also performs the offline part for the decryption. The parties thus obtain b, [[b]].

6: Actuator: Generate initializations for the initial iterate U′0.

7: Actuator: Form the program P = (fMPC, τ1, . . . , τv).

Initialization:

8: Setup: Compute H and F from A,B,P,Q,R and then L = λmax(H) and η = (
√
κ(H) −

1)/(
√
κ(H)+1). Perform the online part of LabHE encryption and send to the cloud: Ê

(
− 1
LH
)
,

Ê
(
− η
LH
)
, Ê
(

1
LFᵀ

)
, Ê(η).

9: Subsystems: Perform the online part of LabHE encryption and send to the cloud, which aggre-

gates what it receives into: [[hu]], [[lu]].

Protocol 6.3.2: Encrypted MPC step

Input: Actuator: fMPC; Subsystems: xi(t), U i; Setup: A,B,P,Q,R.

Output: Actuator: u(t)

Offline + Initialization:

1: Subsystems, Setup, Cloud, Actuator: Run Protocol 6.3.1.

Online:

2: Cloud:
[[

1
LFᵀx(t)

]]
← M̂lt

(
Ê
(

1
LFᵀ

)
, Ê(x(t))

)
.

3: Actuator: Send the initial iterate to the cloud: Ê(U′0).

4: Cloud: Change the initial iterate: Ê(U0) = ˆAdd
(

Ê (U′0) , r0

)
.

5: Cloud: Ê (U−1)← Ê (U0).

6: for k = 0, . . . ,K − 1 do

7: Cloud: Compute [[tk]] as in Equation (6.3.1).

8: Cloud: ([[ak]], [[bk]])← randomize ([[hu]], [[tk]]).
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9: Cloud, Actuator: Execute comparison protocol 2.7.2; Actuator obtains δk.

10: Cloud, Actuator: [[Uk+1]]← OT′ ([[ak]], [[bk]], δk,msk).

11: Cloud: ([[ak]], [[bk]])← randomize ([[lu]], [[Uk+1]]).

12: Cloud, Actuator: Execute comparison protocol 2.7.2; Actuator obtains δk.

13: if k!=K-1 then

14: Cloud, Actuator: [[Uk+1]]← OT′ ([[ak]], [[bk]], δk Y 1,msk). Cloud receives [[Uk+1]].

15: Cloud: Send to the actuator
[[

U′k+1

]]
← Add ([[Uk+1]] , [[−rk]]), where rk is

randomly selected fromMMm.

16: Actuator: Decrypt
[[

U′k+1

]]
and send back Ê(U′k+1).

17: Cloud: Ê (Uk+1)← ˆAdd
(

Ê
(
U′k+1

)
, rk

)
.

18: else

19: Cloud, Actuator: u(t)← OT ([[ak]]1:m, [[bk]]1:m, {δk}1:m Y 1,msk). Actuator

receives u(t).

20: end if

21: end for

22: Actuator: Input u(t) to the system.

Lines 3 and 4 ensure that neither the cloud nor the actuator knows the initial point of the

optimization problem.

Assumption 6.3.1. An adversary cannot corrupt at the same time both the cloud controller

and the virtual actuator or more than M − 1 subsystems.

Theorem 6.3.2. Under Assumption 6.3.1, the encrypted MPC solution presented in Pro-

tocol 6.3.2 achieves multi-party privacy, cf. Definition 2.2.6.

The proof is given in Appendix E.3.

We can also have the private MPC scheme run for multiple time steps. Protocol 6.3.1

can be modified to also generate the labels and secrets for T time steps. Protocol 6.3.2 can

be run for multiple time steps, and warm starts can be included by adding two lines such

that the cloud obtains Ê
({

Ut
K

}
m+1:M

)
and sets Ê(Ut+1

0 ) =
[
Ut
K

ᵀ
0ᵀ
m

]ᵀ
.
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Remark 6.3.3 (Analysis of errors). The same discussion related to the errors arising from

using a fixed-point representation as in Section 6.2.4 applies here. The bounds on these

deviatiosn can be used in an offline step to choose an appropriate fixed-point precision for

the desired performance of the system.

6.3.3 Discussion on efficiency

Secure multi-party computation protocols require many rounds of communication in general,

and the amount of communication depends on the amount of data that needs to be concealed.

This can also be observed in Protocol 6.3.2. Therefore, in order to be able to use this

protocol, we need fast and reliable communication between the cloud and the actuator.

In the architecture we considered, the subsystems are computationally and memory

constrained devices, hence, they are only required to generate the encryptions for their

measurements. The setup only holds constant data, and it only has to compute the matrices

in (6.2.4) and encrypt them in the initialization step. Furthermore, we considered the

existence of the setup entity for clarity in the exposition of the protocols, but the data held

by the setup could be distributed to the other participants in the computation. In this

case, the cloud would have to perform some extra steps in order to aggregate the encrypted

system parameters (see [6] for a related solution). Notice that the subsystems and setup

do not need to generate labels for the number of iterations, only the actuator does. The

actuator is supposed to be a machine with enough memory to store the labels and reasonable

amount of computation power such that the encryptions and decryptions are performed in

a practical amount of time (that will be dependent on the sampling time of the system),

but less powerful than the cloud. The cloud controller is assumed to be a server, which has

enough computational power and memory to be capable to deal with the computations on

the ciphertexts, which can be large, depending on the encryption schemes employed.

If fast and reliable communication is not available or if the actuator is a highly con-

strained device, then a fully homomorphic encryption solution that is solely executed by the

cloud might be more appropriate, although its execution can be substantially slower.

Compared to the two-server MPC with private signals but public model from Section 6.2,
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where only AHE is required, the MPC with private signals and private model we considered

in this chapter is only negligibly more expensive. Specifically, the ciphertexts are augmented

with one secret that has the number of bits substantially smaller than the number of bits in an

AHE ciphertext, and each online iteration only incurs one extra round of communication, one

decryption and one encryption. All the other computations regarding the secrets are done

offline. This shows the efficiency and suitability of LabHE for encrypted control applications.
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Chapter 7

Data-driven control

In this chapter, we investigate a Control as a Service scenario, where a client employs a spe-

cialized outsourced control solution from a service provider. Control as a Service (CaaS) is

becoming a reality–particularly in the case of building automation and smart grid manage-

ment. Often, the control algorithms in CaaS focus on controlling the client’s system directly

from input-output data; the privacy-sensitive model parameters of the client’s system are

either not available or variable. Therefore, large quantities of data collected from the client

need to be uploaded to a cloud server. This data can be used by a malevolent cloud ser-

vice provider to infer sensitive information about the client and mount attacks. Hence, we

require the service provider to perform data-driven control in a privacy-preserving manner

on the input-output data samples from the client. To this end, we co-design the control

scheme with respect to both control performance and privacy specifications. First, we for-

mulate our control algorithm based on recent results from the behavioral framework, and

we prove closeness between the classical formulation and our formulation that accounts for

noise and precision errors arising from encryption. Second, we use a state-of-the-art leveled

homomorphic encryption scheme to enable the service provider to perform high complexity

computations on the client’s encrypted data, ensuring privacy. Finally, we streamline our

solution by exploiting the rich structure of data, and meticulously employing ciphertext

batching and rearranging operations to enable parallelization.
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The first part of the chapter studies the data-based predictive control under an `2-

regularization, while the second part of the chapter considers an `1-regularization. This

slight difference leads very different solutions.

This chapter covers the work presented in [14–16].

7.1 Introduction

As cloud services become pervasive, inspiring the term “Everything as a Service” [23], pri-

vacy of the underlying data and algorithms becomes indispensable. Distributed systems

coordination and process control enterprises can benefit from such services by commission-

ing cloud servers to aggregate and manipulate the increasing amounts of data or implement

reference governors. For example, in the context of smart building automation, Control as

a Service (CaaS) businesses offer high-performance algorithms to optimize a desired cost,

while achieving the required control goals. Clients like hospitals, factories, commercial and

residential buildings might prefer such specialized outsourced solutions rather than invest-

ing in local control solutions. However, the data that is outsourced, stored and processed

at a CaaS provider’s cloud server consists of privacy-sensitive measurements such as user

patterns, energy and temperature measurements, occupancy information etc. Nowadays,

data can be monetized and used to disrupt the normal functionality of a system, leading

to frequent database leakages and cyberattacks. This compels researchers and practitioners

to design decision algorithms that are optimized for both efficiency and privacy. In this

chapter, we provide prototypes for such private cloud-based control algorithms.

In a client-server context, homomorphic encryption provides an appealing tool that al-

lows one server to evaluate a functionality over the encrypted data of the client without the

need to decrypt the data locally, at independently specified precision and security levels. As

discussed in [215], private single client computing can be enabled using homomorphic encryp-

tion schemes. Moreover, this technology has matured enough for it to be deployed in prac-

tice, especially in the healthcare [127] and financial [161] sectors. Since its genesis in [102],

fully homomorphic encryption (FHE) has been developed substantially, in terms of more
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theoretically efficient leveled constructions [50, 62, 103], bootstrapping methods [60, 63],

computational and hardware optimizations. There are many libraries that implement var-

ious FHE schemes and capabilities [66, 115, 166, 178] and a tremendous number of papers

that build on them.

Related work

Encrypted control, surveyed in [200], has been recently gaining momentum, due to the strong

privacy guarantees it offers even when the controller is located on an untrusted platform.

These works can be classified with respect to the type of control algorithms they implement

and the cryptographic tools they use. Linear control algorithms with public model and gains

are considered in most works and are implemented using partially homomorphic encryption

(PHE) schemes. Nonlinear control algorithms with public model are considered in [11, 198],

where PHE is combined either with secure multiparty computation schemes or the client

partakes in the computation. In [6, 134], somewhat or fully homomorphic encryption schemes

are preferred, either to guarantee more privacy for the system parameters (that are still

known at the client) or to achieve more complex control algorithms. The work in [204]

is based on data-driven techniques and uses leveled homomorphic encryption. There, the

cloud computes the value function in a reinforcement learning task over multiple time steps

in a one-shot way, while we collect encrypted data from the client at every time step and

compute on it iteratively.

In the case of controlling a system with known model and linear controller parameters,

the line of work [65, 135] has shown how to perform the computations at subsequent time

steps without the need of bootstrapping or ciphertext reset. In contrast, we deal with both

unknown model matrices and nonlinearities, which prevent the application of their methods.

As mentioned before, most private cloud-based control schemes assume that the model

of the system is known to the client or public. However, the model might not be al-

ways available and has to be computed from data. Identification and data-driven con-

trol of unknown systems have been extensively studied in classical and recent literature

[25, 35, 70, 82, 93, 154, 158, 196, 216, 226]. These methods are usually designed with the
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objective of sample-efficiency and control performance, without considering a private im-

plementation. For example, the standard system identification-certainty equivalence control

architecture might require solving non-convex problems [232] or might involve Singular Value

Decomposition (SVD) [216], which are prohibitive from an encrypted evaluation perspective.

On the other hand, the behavioral framework [35, 36, 70, 72, 82, 83, 158, 219, 226], which

has received renewed interest recently, is more compatible with modern encryption tools

and allows us to use less costly encrypted operations. The idea of the behavioral framework

is that the state representation can be replaced by a data-based representation which only

uses the trajectories of the system, bypassing the need for system identification.

Contributions

Our goal is to perform online data-based predictive control on encrypted data, while main-

taining the privacy of the client’s uploaded input-output data, desired setpoint and control

actions. In the context of private implementation, we need to depart from the typical

techniques used in the non-private versions and make compromises between tracking per-

formance and privacy. Our controller is based on the behavioral framework and the control

performance is captured by the LQR cost.

In the first part of the chapter, we consider two versions and adapt them to account

for an encrypted implementation: i) an offline version, where precollected data from the

system is encrypted and handed to the cloud to compute an offline feedback control law,

and ii) an online version, where the cloud server computes the control at every time step

based on both the offline precollected data and on the encrypted measurements received

from the client. We employ a new leveled homomorphic encryption scheme optimized for

efficiency and precision as the powerful base tool for encrypting and evaluating the private

data on the untrusted cloud machine. To account for noisy data and changes incurred by

encryption, we employ `2-regularization. At the same time, we rewrite the computation of

the control input as a low-depth arithmetic circuit by using mathematical tools such as the

Schur complement to facilitate matrix inversions, and carefully batching the private values

into ciphertexts. Specifically, our contributions are the following:

171



• Present the first solution for encryption-aware control in the case of an unknown linear

system model.

• Formulate a setpoint tracking problem that learns the control action from the available

data at every time step and is amenable to encrypted implementation.

• Prove the closeness between this formulation and a data-driven LQR problem.

• Extend this approximation to allow the online collection and incorporation of samples

to improve robustness and adaptation to new data and to errors arising from the use

of encryption.

• Design storage and computation efficient encrypted versions of the offline and online

data-driven problems, by carefully encoding the values to facilitate parallelization and

re-engineering the way the operations are performed.

• Implement the algorithms for a standard security parameter and realistic client and

server machines. Present the results for a temperature control problem and show-

case the storage and complexity improvements compared to a more intuitive but less

efficient implementation.

We note that the work presented in the first part of the chapter enhances and im-

proves [15] in the following aspects: we propose a new encrypted solution that reduces more

than twofold the time and the memory requirements of the previous solution, allowing us to

simulate more realistic and more secure scenarios; we prove the close relationship between

the standard data-driven LQR and our reformulation; and we present many more extensions.

In the second part of the chapter, we investigate a sparse data-predictive control problem,

run at a cloud service to control a system with unknown model, using `1-regularization

to limit the behavior complexity. Specifically, our goal is to control an unknown system

using only the privacy-sensitive input-output data that are potentially noisy. In the case of

noisy data, inspired by [70, 83], we reformulate the data-based predictive control as a Lasso

problem. We propose:
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• a distributed encrypted solution for `1-regularized data predictive control, using an

optimized implementation;

• a non-homogeneous splitting of the data for better convergence;

• a customized distributed encrypted solution for this non-homogeneous splitting to a

non-homogeneous set of servers: one powerful server and a few less powerful devices,

added for security reasons.

We emphasize that the techniques for performing the encrypted computations efficiently

are one of main contributions of this chapter. These tools can easily be generalized and used

in implementing other related problems in an encryption-friendly way, such as learning and

adaptive control algorithms, recursive least squares, sequential update of inverses etc.

Special notation for this chapter

For a vector x ∈ Rn, we denote by x[i] the i’th element of the vector. The vector ei is the

vector of all zeros, except for position i− 1 where it has 1.

We will use + and � for Single Instruction Multiple Data (SIMD, see Preamble 2.5.3)

addition and multiplication between vectors and ρ(x, i) to denote the row vector x rotated

to the left by i positions (i < 0 means rotation to the right).

We denote by Ev0(x) the encryption of the vector x followed by trailing zeros in one

ciphertext and by Ev∗(x) the encryption of the vector x followed by junk elements (elements

whose value we do not care about, usually obtained through partial operations). We denote

by Evv(x) the encryption of the vector x repeated [x x . . .] in one ciphertext. Finally, we

also define the encryption of a vector repeated element-wise: for x =
[
x[1] x[2] . . . x[n]

]
, this

encryption is Evr0(x) =
[
x[1] . . . x[1] x[2] . . . x[2] . . . x[n] . . . x[n] 0 0 . . .

]
, where each element

is repeated for a specific number of times. Similarly, we use the notation Evr∗(·) when the

repeated elements are followed by junk elements.
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7.2 Data-driven LQR on encrypted data

Organization. We formulate the data-based predictive control problem and state the goals

for a private solution in Section 7.2.1. In Section 7.2.2, we present the reformulations for an

offline feedback and an offline feedback solutions, taking into account the encryption char-

acteristics, and we prove that the solution to reformulation is close to the solution to the

original problem. In Section 7.2.2.4 we describe the main challenges and corresponding solu-

tions. Then, we outline the private protocol for the offline feedback control in Section 7.2.3

and for the online feedback control in Section 7.2.4, along with optimizations that make an

efficient solution possible. Finally, extensive simulations are presented in Section 7.2.5.

7.2.1 Problem formulation

Let x ∈ Rn,u ∈ Rm,y ∈ Rp be the state, control input and measurement of a linear system.

A client contracts a cloud service to provide the control for system (7.2.1):

xt+1 = Axt + But, yt = Cxt, (7.2.1)

as depicted in Figure 7.1. A private CaaS should solve the control problem that mini-

mizes the cost associated to setpoint tracking while satisfying the unknown system’s dy-

namics (7.2.1).

Figure 7.1: Client-server diagram for data-based predictive control.

Control requirements. Assume we are given a batch of offline input-output data for

system (7.2.1). Then, at every time t, given u0:t−1 and y0:t−1 we want to compute in a

private and receding horizon fashion u∗,t ∈ RNm in order to track the reference rt, for some
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costs Q̄, R̄, which is the solution of the LQR optimization problem:

min
u,y

1

2

N+t−1∑
k=t

(
‖yk − rk‖2Q̄ + ‖uk‖2R̄

)
s.t. xk+1 = Axk + Buk, yk = Cxk,

(7.2.2)

with no prior knowledge about the system model A,B,C. We also want (7.2.2) to perform

well under unknown small process and measurement noise and bias.

In this section, we focus on investigating an approximation of problem (7.2.2) without

hard constraints on the inputs or outputs of the system. In Section 7.2.2, we describe a

data-driven reformulation of (7.2.2) that is encryption-friendly.

Privacy requirements. In the scenario we consider, the cloud service should not be able

to infer anything about the client’s private data, which consists of the input signals u, the

output signals y, the model A,B,C and state x (the last four quantities being unknown

in a data-driven control problem), and any intermediate values. The costs Q̄, R̄ can be

chosen by the cloud, as part of the CaaS service or chosen by the client. The cloud service

is considered to be semi-honest, as defined in Definition 2.1.1, which means that it does not

deviate from the client’s specifications. We assume this to be the case because the cloud

server is under contract.

The formal privacy definition is captured by Definition 2.2.8, i.e., all information ob-

tained by the server after the execution of the protocol (while also keeping a record of the

intermediate computations) on the client’s private data and its own data is indistinguishable

from what can be obtained solely from the inputs and outputs available to the server.

Efficiency requirements. The computation time of the control action at the current time

step should not exceed the sampling time, which is the time until the next measurement is

fetched. In the private case, we expect a large overhead for complex controllers and consider

applications with sampling time of the order of minutes. Moreover, we require the client to

be exempt from heavy computation and communication, and the bulk of the computation

(in the allowable time) should be performed at the server side.
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7.2.2 Encryption-aware formulation

We can formulate this control problem inspired by the behavioral and subspace identification

frameworks explored in [35, 70, 82, 158, 226]. First, we introduce some preliminary concepts.

A block-Hankel matrix for the input signal u =
[
uᵀ

0 uᵀ
2 . . . uᵀ

T−1

]ᵀ
∈ RmT and a positive

integer L ≤ T is given by the following:

HLU :=



u0 u1 . . . uT−L

u1 u2 . . . uT−L+1

...
. . .

...

uL−1 uL . . . uT−1


. (7.2.3)

Furthermore, the signal u is persistently exciting of order L if HLU ∈ RmL×(T−L+1) is full

row rank.

Let us construct block-Hankel matrices for the “past” and “future” input and output

data, u ∈ RmT , respectively, y ∈ RpT , for M samples for the past data and N samples for

the future data, and S := T −M −N + 1:

Up :=

[
ImM 0mM×mN

]
·HM+NU ∈ RmM×S

Uf :=

[
0mN×mM ImN

]
·HM+NU ∈ RmN×S

Yp :=

[
IpM 0pM×pN

]
·HM+NY ∈ RpM×S

Yf :=

[
0pN×pM IpN

]
·HM+NY ∈ RpN×S .

(7.2.4)

7.2.2.1 Offline feedback data-based predictive control problem

Assume that we are given precollected input and output data, with Up,Yp,Uf ,Yf the

respective past and future Hankel matrices, for some past and future horizonsM,N . Assume

also that the precollected input is persistently exciting.

Assumption 7.2.1 (Data richness). We assume the offline precollected input trajectory u
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is persistently exciting of order M +N + n, where n is the order of the system [226].

Informally, the Fundamental Lemma in [226] says that under Assumption 7.2.1, the

behavior of a controllable linear system can be replaced by a data-based representation

which only uses the trajectories of the system, specifically, the column span of the block-

Hankel matrix for input-output trajectories, composed of Up,Yp,Uf ,Yf .

Fix a time t and let ūt = ut−M :t−1 be the batch vector of the last M inputs. The batch

vector of the lastM outputs ȳt is defined similarly. IfM ≥ n, then the standard LQR prob-

lem (7.2.2) can be re-formulated as the following data-based predictive control problem [70]:

min
g,u,y

1

2

N+t−1∑
k=t

(
‖yk − rk‖2Q̄ + ‖uk‖2R̄

)

s.t.



Up

Yp

Uf

Yf


· g =



ūt

ȳt

u

y


,

(7.2.5)

where the state representation has been replaced with the precollected data and g repre-

sents the preimage of the system’s trajectory with respect to the precollected block-Hankel

matrices. Note that u∗,t[1:m], the first m elements of u∗,t, will be input into the system in a

receding horizon fashion, and y∗,t is the predicted output.

We now depart from the behavioral control problem (7.2.5) considered in the existing

literature and explore a more encryption-friendly form.

First, we rewrite (7.2.5) as a minimization problem depending only on g by enforcing

u = Ufg and y = Yfg. Second, in practice, there will be noise affecting the output

measurement, as well as precision errors induced by encryption, which might prevent an

exact solution to the equality constraint of (7.2.5). Hence, we prefer a least-squares penalty

approach to the equality constraint in (7.2.5) with regularization weights λy and λu. Finally,

to reduce overfitting and precision errors due to encryption, we also penalize the magnitude

of g through `2-norm regularization. We opt for two-norm regularizations to obtain better
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efficiency for the encrypted algorithm, as well as more robustness with respect to noise,

and uniqueness of the solution g∗,t. We note that `2-norm regularization corresponds to

the two-norm robustness with respect to the output noise and is preferred also in works

that only consider the performance of the algorithm, and not its privacy, e.g. [35, 125].

(We will address a `1-norm regularization of the model surrogate in Section 7.3.) The

above consideration yield the following formulation, where Q = blockdiag(Q̄, . . . , Q̄) and

R = blockdiag(R̄, . . . , R̄) and we reuse the notation rt for the batch reference signal:

min
g

1

2

(
‖Yfg − rt‖2Q + ‖Ufg‖2R + λy‖Ypg − ȳt‖22 + λu‖Upg − ūt‖22 + λg‖g‖22

)
. (7.2.6)

Note that the resulting problem (7.2.6) is an approximation of (7.2.5). Finally, (7.2.6) can

be written as a quadratic program in (7.2.7), with M ∈ RS×S defined in (7.2.8):

min
g

1

2
gᵀMg − gᵀ

(
Yf ᵀQrt + λyY

pᵀȳt + λuU
pᵀūt

)
, (7.2.7)

M := Yf ᵀQYf + Uf ᵀRUf + λyY
pᵀYp + λuU

pᵀUp + λgI. (7.2.8)

Since (7.2.7) is a strongly convex optimization problem (ensured by the regularization

term λgI), we can find the optimal value for g by zeroing the gradient of the objective

function:

g∗,t = M−1
(
Yf ᵀQrt + λyY

pᵀȳt + λuU
pᵀūt

)
. (7.2.9)

Going back to the control input for the current time step we want to compute, we obtain

from (7.2.9):

u∗,t = UfM−1
(
Yf ᵀQrt + λyY

pᵀȳt + λuU
pᵀūt

)
, (7.2.10)

from which we select the first m elements and input them to the unknown system.

As seen from (7.2.10), the controller has the form of a dynamic output-feedback law,

where the feedback terms are computed using only the offline precollected data.
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7.2.2.2 Closeness between approximate and original problems

We prove that if we select small enough regularization coefficient λg and large enough penalty

coefficients λy, λu, then the solution of the approximate problem (7.2.6) is very close to the

minimum norm solution of the behavioral control problem (7.2.5). The main challenge in

the proof of Theorem 7.2.2 is that the past and future Hankel matrices are rank-deficient.

Hence the behavioral control problem (7.2.5) involves singular matrices in both the objective

and the constraints, and has multiple optimal solutions. This requires an involved analysis,

where we deal with pseudo-inverses and subspaces, that we show in Appendix F.1. To

formally state the result we need two definitions. The set of optimal solutions of (7.2.5) is

denoted by Gopt:

Gopt := {g : g solves (7.2.5)} . (7.2.11)

The minimum norm element of Gopt is defined as

gmin := arg min
g∈Gopt

‖g‖2. (7.2.12)

Theorem 7.2.2. Consider the original behavioral control problem (7.2.5) and its approx-

imation (7.2.6), with penalty coefficient λy = λu = λ > 0 and regularization coefficient

λg > 0. Let gmin be the minimum norm solution of the behavioral problem (7.2.5) as defined

in (7.2.12). Let g∗ be the optimal solution of the approximate problem (7.2.6). Then:

‖gmin − g∗‖2 → 0, (7.2.13)

as (λg, λ)→ (0,∞) restricted on the set λg > 0, λ > 0.

Although the behavioral problem has infinite solutions, due to the regularization term the

approximate problem (7.2.6) will only return a solution close to the minimum norm one gmin.
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7.2.2.3 Online feedback data-based predictive control problem

To satisfy Assumption 7.2.1, it is necessary that the precollected input signal has length at

least (m + 1)(M + N + n) − 1, cf. [70]. In practice, Assumption 7.2.1 might be violated

if less precollected data is available. Another issue with the precollected data is that it

can be affected by perturbations, e.g., measurement noise. To alleviate these issues, we

prefer an online algorithm, where the Hankel matrices HM+NU and HM+NY are updated

at each time step for another T̄ steps with the used control input and the corresponding

output measured (while keeping the block Hankel form). This approach empirically ensures

richness of the data and robustness to perturbations. However, it is important that T̄ is not

too large, in order to prevent overfitting.

Note that the precollected and the online data in this online algorithm belong to different

trajectories. For this reason, we must compute the Hankel matrix for each data set sepa-

rately, then append them in a single matrix [218]. This means that the online adaptation of

the matrices Up,Uf ,Yp,Yf can only start at time t = M +N − 1, when we obtain enough

data u0,y0, . . . ,uM+N−1,yM+N−1 to fill the first Hankel matrix column for the online data

set. We call this phase between t = M − 1 and t = M +N − 1 trajectory concatenation.

The data-driven LQR algorithm is given in Algorithm 7.2.1.

Algorithm 7.2.1: Online data-based predictive control algorithm

Input: ūt, ȳt, Up, Uf , Yp, Yf , Q, R, λy, λu, λg, S = T −M −N + 1, T̄ .

Output: ut for t = 0, 1, . . ..

1: for t = 0, 1, . . . ,M − 1 do

2: Randomly select and input ut and measure the output yt.

3: end for

4: Construct ūM = u0:M−1 and ȳM = y0:M−1.

5: for t = M,M + 1, . . . ,M +N + T̄ − 1 do

6: Solve (7.2.7) for g∗,t and obtain (7.2.9).

7: Compute u∗,t = Ufg∗,t and obtain (7.2.10).

8: Input to the system ut = ut,∗[1:m] and measure the output yt.
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9: Update ūt and ȳt to be the last M components of
[
ūᵀ
t uᵀ

t

]ᵀ
and

[
ȳᵀ
t yᵀ

t

]ᵀ
, respectively.

10: if t = M +N − 1 then

11: Add u0:t and y0:t to the S+ 1’th column of the trajectory Hankel matrices HM+NU and

HM+NY.

12: else if t > M +N − 1 then

13: Set S = S + 1. Use ut, respectively yt, to add a new column to HM+NU, respectively

HM+NY, while keeping the block Hankel matrix form.

14: end if

15: end for

16: while t ≥M +N + T̄ do

17: Execute lines 6–9.

18: end while

7.2.2.4 Co-design of encrypted controller

According to the requirements in Section 7.2.1, the challenges for the encrypted data-based

predictive control can be summarized as:

• The computations are iterative and not readily formulated as low-depth arithmetic

circuits.

• The problem is computationally intensive: it requires large storage, large matrix in-

versions and many consecutive matrix multiplications.

• The precision loss due to encrypted computations might affect the control performance.

To deal with these challenges, we design an encrypted version of the closed-form solu-

tion (7.2.9) of the control problem stated in Section 7.2.1 and manipulate the computations

involving matrix inverses to reduce the multiplicative depth needed. We employ the CKKS

homomorphic scheme described in Preamble 2.5.3 to address the precision challenge.

First, we approximate problem (7.2.5) into optimization problem (7.2.7), as shown in

Section 7.2.2, to simplify the encrypted computations and to avoid infeasibility due to noise

and encryption errors. Second, we aim to write the computation of the solution of (7.2.7)
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as a low-depth arithmetic circuit. Despite being preferable to an iterative algorithm for

solving the optimization problem (7.2.7) (that would increase the depth at every iteration),

the closed-form solution (7.2.9) involves the encrypted inversion of a matrix, which cannot

be generally written as a low-depth arithmetic circuit. This is not a problem in the offline

feedback version of the problem (7.2.7), because this matrix inversion is required only once

and such complex computations can be all performed offline, leaving only three encrypted

matrix-vector multiplications to be performed at each time step, as shown in Section 7.2.3.

However, in the online feedback version of the problem, this matrix inversion and many

consecutive matrix-vector multiplications are required at every time step. Nevertheless, we

leverage the special structure of the matrix to be inverted by using Schur’s complement [32,

Ch. 0] to reformulate the inverse computation as some lower multiplicative depth matrix-

vector multiplications and one scalar division. Furthermore, to avoid performing the division,

which is costly on encrypted data, the server sends to the client the denominator such that

the client can return its inverse to the server, turning division into multiplication.

We also perform further valuable optimizations in terms of ciphertext packing, adding

redundancy in the encoded values, and manipulating the computations to be performed in

a SIMD mode, which are crucial to the tractability of the solution.

The multiplicative depth of the arithmetic circuit computing u∗,t[0:m−1] can be reduced

through reordering of the intermediate operations. Given a circuit that computes x and a

circuit that computes y, with multiplicative depth d(x) and d(y), the multiplicative depth

of the circuit that evaluates them in parallel and then computes their product is: d(xy) =

max(d(x), d(y))+1. The multiplicative depth should not be confounded with the number of

multiplications. Judiciously choosing the order in which to perform the multiplications can

reduce the multiplicative depth of the result. For example, consider we want to compute

y = x1x2x3x4, where d(xi) = 0. If we sequentially perform the multiplications, we obtain

d(y) = 3. However, if we perform y = (x1x2)(x3x4), we obtain d(y) = 2. In turn, this means

that the ciphertext encrypting the resulting quantity y will have 2 consumed levels. Note

that the fewer the number of levels necessary in the computation, the cheaper the operations
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on ciphertexts are. We will use this trick in Section 7.2.4.

As explained in Preamble 2.5.3, each ciphertext is created with a number of levels cor-

responding to the depth of multiplications it can support before the underlying plaintext

is corrupted by noise. After each multiplication and rescaling, a level is removed from the

ciphertext, leading to more efficient computations. We exploit this fact in our solution, by

making sure we compute each operation on ciphertexts that have the minimum required

number of moduli.

7.2.3 Offline feedback encrypted solution

Recall the closed-form solution of the optimization problem (7.2.7). We now compute the

multiplicative depth of the quantities of interest for consecutive time steps. First, the quan-

tities ū0, ȳ0, the reference signal and measurements are freshly encrypted at every time

step t, hence they are inputs to the circuit that computes ut and have a multiplicative

depth of 0. This means, ∀t ≥ 0, d(yt) = d(rt) = d(ū0) = d(ȳ0) = 0. Second, we as-

sume that all the quantities obtained offline will have multiplicative depth 0. We do not

address the offline computations here; since these computations depend only on the of-

fline data and are one-time, expensive secure solutions can be used, e.g., the cloud could

perform the encrypted computations, then perform bootstrapping to refresh the cipher-

texts [60, 63]. Hence, the cloud has fresh encryptions of the following products: Ar :=[
Im 0(N−1)m

]
UfM−1Yf ᵀQ ∈ Rm×pN , Ay :=

[
Im 0(N−1)m

]
UfM−1λuY

pᵀ ∈ Rm×pM ,

Au :=
[
Im 0(N−1)m

]
UfM−1λuU

pᵀ ∈ Rm×mM , and the underlying messages are inputs to

the circuit and they have multiplicative depth 0. Then:

ut = Arrt + Ayȳt + Auūt. (7.2.14)

For t = 0, we obtain d(u0) = max(d(r0) + 1, d(ȳ0) + 1, d(ū0) + 1) = 1. Generalizing:

d(ut) = d(ūt) + 1, t ≥ 0. (7.2.15)

At time t+ 1, ūt+1 will be updated by ut.
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We next present three encrypted methods of computing (7.2.14), that exhibit trade-offs

in depth, memory and communication.

If we individually encrypt each element of the quantities in (7.2.14) in a separate cipher-

text (the inputs to the circuit computing ut will be all elements, rather than three vectors

and three matrices), ūt+1 will have the multiplicative depth of ut and d(ut) = t + 1, but

memory-wise, a step will require (m+ 1)(pN + pM +mM) ciphertexts.

It is more efficient from both storage and computation points of view to encode a vec-

tor instead of a scalar in a ciphertext and perform the matrix-vector multiplications by a

diagonal method. This vector encoding requires a different analysis.

7.2.3.1 Diagonal method

We explore a method for efficient matrix-vector multiplication where the diagonals of the

matrix are encrypted in separate ciphertexts (the notion of diagonal is extended for rectan-

gular matrices) [7, 132].

Tall matrix. Consider we want to multiply a tall matrix S ∈ Ru×v, u ≥ v, by a vector

p ∈ Rv. To this end, we extract the extended diagonals di of S such that di will have as

many elements as the number of rows u, for i = 0, . . . , v − 1. The corresponding result

q = Sp is computed as follows, where p̃ is p concatenated with itself as many times such

that p̃ ∈ Ru:

q =
v−1∑
i=0

di � ρ(p̃, i).

This way of computing the encrypted matrix-vector multiplication is highly efficient

when using ciphertext batching. Specifically, we encrypt each extended diagonal of S in one

ciphertext, which gives us a storage of only v ≤ u ciphertexts and we encrypt p repeatedly

in one ciphertext. We can compute the necessary rotations in an efficient way using hoisted

rotations [116]. The encrypted result is then computed as:

Ev0(q) =
v−1∑
i=0

Ev0(di)� ρ(Evv(p), i). (7.2.16)
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Wide matrix. In the case of a wide matrix S ∈ Ru×v with u ≤ v, instead of using

extended diagonals, we use reduced diagonals. One reduced diagonal d̃i, for i = 0, . . . , v− 1

will have as many elements as the number of rows u. The storage is not as efficient since

we have to encrypt v ≥ u ciphertexts for the diagonals. Apart from this, the computation

is identical to (7.2.16) and produces Ev0(q).

We can improve the storage (at the cost of some extra rotations) when the number of

columns divides the number of rows. We extract the extended diagonals di ∈ Rv for i =

0, . . . , u− 1. The computation of the matrix-vector multiplication takes the following form:

z =
u−1∑
i=0

di � ρ(p, i), q =

[
z +

dlog(v/u)e∑
j=1

ρ
(
z, u · 2dlog(v/u)e−j

)]
[0:u−1]

,

and produces Ev∗(q) instead of Ev0(q). When u << v, it is useful to append rows of zeros

such that u divides v, and then use this method.

Let us return to (7.2.14). In general, Ar,Ay,Au are wide matrices, but there can exist

particular cases when m >> p or when we want to compute all u∗,t, leading to tall matrices.

We assume that at the onset of time step t, the cloud server has Ev0(ūt),Ev0(ȳt),Ev0(rt).

The cloud server also has Ev0(diagiAr), Ev0(diagiAy), Ev0(diagiAu), i.e., each extended di-

agonal (whose exact definition varies with the shape of the matrix: tall or wide) of the

matrices Ar,Ay,Au is encrypted in a separate ciphertext. In order to be able to use

the diagonal methods, the cloud server first obtains Evv(ūt),Evv(ȳt),Evv(rt) by rotating

and adding Ev0(ūt),Ev0(ȳt),Ev0(rt). This vector packing substantially reduces memory:

3 + max(m, pN) + max(m, pM) +mM ciphertexts in the worst case and 3 + min(m, pN) +

min(m, pM) + m in the best case, depending on the shape of the matrix and the type of

diagonal chosen, but will require an extra level. From these quantities, the cloud server com-

putes and sends back to the client one ciphertext containing Ev0(ut) or Ev∗(ut), depending

on the type of diagonals chosen. Assume the cloud server obtained Ev0(ut). After that, the

cloud server has to create Evv(ūt+1) from Ev0(ūt) and Ev0(ut), so it:

• rotates Ev0(ūt) by m positions to the left;
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• rotates Ev0(ut) to the right by (M−1)m positions, then adds it to ρ(Ev0(ūt),m). This

yields Ev0(ūt+1) + Ev0([0 0 . . . 0 (ūt)[0:m−1]]), the last part appearing because of the

rotation to the left;

• masks the result in order to truly obtain Ev0(ūt+1) (otherwise, the summing and

rotation would not produce the correct result);

• repeatedly rotates and adds to obtain Evv(ūt+1).

Because of the CKKS encoding through the Discrete Fourier Transform, (which enables

SIMD multiplications, unlike other possible encodings), the masking operation needs to

consume a level in order to preserve precision [62]. The reason is that, in order to not lose

precision when performing the rounding of the inverse FFT in the canonical embedding, the

masking vector has to also be scaled upon encoding by a large positive scaling factor, which

then should be removed after the multiplication by a rescaling operation, which consumes

a level. Obtaining Ev∗(ut) instead of Ev0(ut) does not change the analysis, since the same

masking applied in the third step also removes the junk elements in Ev∗. Furthermore, the

analysis (not shown here) of other less efficient matrix-vector multiplication methods, such

as row and column methods, also require an extra masking.

For t ≥ 1, equation (7.2.15) becomes: d(ut) = d(ūt)+1 = d(ut−1)+2 = 2t+1. Evv(ȳt+1)

can be updated the same way Evv(ūt+1) is updated. However, it is the same cost for the

client to encrypt Ev0(yt) and Evv(ȳt+1), so it can encrypt and send the latter. Whenever

the allocated multiplicative budget is exhausted, the server can ask the client to send a fresh

encryption of ūt, at little extra cost.

Nevertheless, a reasonable and inexpensive option is to ask the client to send along with

the encryption of ȳt a fresh encryption of ūt at every time step. This implies that d(ut) = 1,

i.e., a multiplicative budget of only 1 is required for computing the control input for no

matter how many time steps.

Theorem 7.2.3. The encrypted offline data-based predictive control algorithm in Sec-

tion 7.2.3 achieves client privacy with respect to the server, cf. Definition 2.2.8.
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The proof is given in Appendix F.4.

7.2.4 Online feedback encrypted solution

7.2.4.1 Computing the solution using arithmetic circuits

Being capable of evaluating polynomials via homomorphic encryption theoretically gives us

the possibility of evaluating any function arbitrarily close (using Taylor series for example).

In practice, the multiplicative depth and loss of precision of these approximations limit the

types of functions we can evaluate. Consequently, division is still prohibitive. Furthermore,

large matrix inversion should be judiciously performed, in order to avoid computing products

of as many factors as the number of rows.

In this section, we will use the following shorter notation:

HU :=

Up

Uf

 , HY :=

Yp

Yf

 , hu :=

up

uf

 , hy :=

yp

yf

 ,
where up,f ,yp,f are vectors added at the end of the Hankel matrices Up,f ,Yp,f . We will

drop the time subscripts t for conciseness, using prime to denote the next time step.

Let us investigate the inversion of matrix M. For step t = 0, all the values involved

in computing u∗ in (7.2.10), are precollected and can be computed offline. This includes

the inverse M−1 and other matrix products. However, at the next time step, cf. line 13 in

Algorithm 7.2.1:

HU′ :=

[
HU hu

]
, HY′ :=

[
HY hy

]
(7.2.17)

The last m elements on the last column of HU′, respectively of hu, are the values of ut at

the previous time step.

Then, the matrix M′ ∈ R(S+1)×(S+1):

M′ := HY′
ᵀ

λyI
Q

HY′ +HU′
ᵀ

λuI
R

HU′ + λgI (7.2.18)
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is a rank-1 update of matrix M. Let

µ := hyᵀ

λyI
Q

hy + huᵀ

λuI
R

hu + λg, (7.2.19)

m := hyᵀ

λyI
Q

HY + huᵀ

λuI
R

HU. (7.2.20)

Specifically, M′ will have the following form:

M′ =

M mᵀ

m µ

 . (7.2.21)

Schur’s complement [32, Ch. 0] gives an efficient way to compute M′−1 from M−1 (assum-

ing M−1 exists), by inverting a scalar s and computing a few matrix-vector multiplications:

s := µ−mM−1mᵀ, (7.2.22)

M′−1
=

M−1 + 1
sM

−1mᵀmM−1 −1
sM

−1mᵀ

−1
smM−1 1

s

 . (7.2.23)

To avoid performing the division 1/s on encrypted data, the server will ask the client to

perform it on plaintext and send back an encryption of result.

7.2.4.2 Reducing memory and depth of the arithmetic circuit

In this chapter, for simplicity, we consider diagonal cost matrices Q and R. Otherwise, the

multiplication by these matrices requires more complicated encrypted operations.

At a given time, the cloud server has (in an encrypted form) HU, HY, ū, ȳ and M−1,

along with the unencrypted costs Q,R, penalties λg, λu, λy and reference signal r. The
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cloud has to compute the equivalent formulation of (7.2.10):

u =

[
0mM Im 0(N−1)m

]
HU′M′−1

Z,

Z = HY′
ᵀ

λyI
Q


ȳ

r

+HU′
ᵀ

λuI
R


ū

0

 . (7.2.24)

There is a vast number of parameters to tune in the encrypted implementation, such as

the packing method from the messages into the plaintexts, the storage redundancy, the order

of performing the operations and choice of refreshing some ciphertexts. The trade-offs that

these different versions bring are in terms of ciphertext storage, key storage (especially per-

mutation key storage), type and number of operations, precision at the end of the operations

and total multiplicative depth of the resulting circuit; these goals are intricately intertwined.

For example, designing the circuit to have a lower multiplicative depth reduces the size of

the ciphertexts and reduces the encryption load at the client, but might involve storing more

ciphertexts and performing more computations at the server, compared to a version with a

higher multiplicative depth. Thus, the main difficulty in making the computations tractable

is to astutely batch the vectors and matrices into ciphertexts in order to reduce the memory,

and manipulate the operations in order to reduce depth, number of operations and storage.

We describe here how to change the flow of operations in (7.2.20)–(7.2.23) in order to

minimize the number of ciphertexts representing the relevant quantities: HU, HY, M−1,

m, µ, ū, ȳ, u, and the number of operations, while keeping the depth to a minimum. We

make use of the feature of lattice-based homomorphic encryption schemes of encoding a

vector of values into a single plaintext, which is then encrypted in a single ciphertext. Since

we are also dealing with matrices, we explored several options of how to encode the matrices

in ciphertexts: columns, rows, (hybrid) diagonals, vectorized matrix.

Note that the same linear algebraic operation, implemented for different encodings, leads

to a different number of stored ciphertexts, multiplicative depth of circuit, and number of

SIMD operations. For the problem we tackle here, we found that encoding each column of

a matrix into a separate ciphertext minimizes the number of stored ciphertexts and number
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of operations, while keeping the same depth as when each element is encoded in a different

ciphertext and the usual (unencrypted) method of performing the operations is used, as

stated in Proposition 7.2.4. However, not all the matrices’ columns are encoded in the same

fashion, as we will see next. In summary, having some redundancy inside the ciphertexts,

i.e., having some values encoded multiple times, helps optimize the depth and complexity.

The following proposition summarizes the complexity of the online feedback algorithm,

when carrying out the steps in this section. The proof of Proposition 7.2.4 is constructive

and is given in the remaining of this subsection and Appendix F.2.

Proposition 7.2.4. We evaluate the arithmetic circuit for the online feedback algorithm

on encrypted data corresponding to Algorithm 7.2.1 for one time step with O((S + t)2)

operations, O(S + t) ciphertexts and O(S + t) rotation keys, at depth 2t + 4, where S is

the number of columns of the offline generated block-Hankel matrix and t is the number of

online samples accumulated so far.

Figure 7.2a shows how to obtain an inner product between two encoded vectors using

SIMD multiplications, rotations and additions. Due to rotations, the resulting vector will

have the relevant scalar in its first slot, and junk (partial sums) in the following slots. Fig-

ure 7.2b shows the most efficient way (in terms of required number of operations) to obtain

the product between a matrix and a vector when the matrix is encoded as separate columns.

Specifically, we need the elements of the vector to be repeated and separately encoded.

Once we have each column of M−1 encoded in a ciphertext, we want to also obtain the

columns of M′−1 from (7.2.23) encoded each in a ciphertext. To minimize the multiplica-

tive depth and number of operations, this suggests that we need to obtain M−1mᵀ and

M−1mᵀmM−1 encoded as columns.

Let us look first at M−1mᵀ. In order to use the efficient method outlined in Figure 7.2b,

we need to have a separate ciphertext that encodes each element of m, repeated as many

times as the number of columns in M−1. In turn, this suggests that we should use the method

outlined in Figure 7.2c when computing m as in (7.2.20), rather than the method outlined

in Figure 7.2a which would require extra masking and rotations afterwards. Specifically, we
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(a) Inner product of two vec-
tors.

(b) Inner product of a matrix and a vector.

(c) Inner product of two vectors with repeated result.

Figure 7.2: Inner product methods for encrypted data.

have to repeat each element of hy for S times, encode the resulting vector in a ciphertext

and do the same for each column of HY and the elements in the diagonal matrix Q and

λy. Then, we perform an element-wise multiplication between the ciphertext encoding hy

and the ciphertext encoding the elements of Q and λy, and then perform the inner product

with the encoded columns of HY. The same steps are taken for hu, HU,R and λu.

Remark 7.2.5. To account for all the time steps where new samples will be collected, when-

ever we encode values repeatedly, we need to encode from the beginning S+ T̄ copies of the

elements, where S is the initial number of columns in M and T̄ is the total number of new

samples intended to be collected.

One of the main realizations that makes this more efficient computation possible is how

to compute each column coli((mM−1)ᵀ(mM−1)) at a depth d(M−1) + 2 (when d(M−1) 6=

0), with O(S) storage and O(S2) operations. Define M̃ := (mM−1)ᵀ(mM−1). Then:
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∀i = 0, . . . , S − 1:

z :=

S−1∑
k=0

colk(M
−1)�


m[k]

...

m[k]

 , wi :=
S−1∑
k=0

colk(M
−1)�




m[k]

...

m[k]

� ei

 ,

coli(M̃) = z�
S−1∑
j=0

ρ (wi, i− j) .

(7.2.25)

The next piece is to compute s as follows:

s = µ−
S−1∑
i=0

[
m[i] . . . m[i]

]ᵀ
� ρ(M−1mᵀ, i).

The server asks the client to invert s. After the server receives from the client 1/s, it can

compute 1
sM̃, as required in (7.2.23), by replacing ei in (7.2.25) by 1/s ei.

Finally, we construct the columns of M′−1 by adding at the end of columns of 1
sM̃ the

corresponding extracted elements of −1
sM

−1mᵀ. The new column that expands the matrix

is obtained by adding 1/s at the end of the column −1
sM

−1mᵀ.

Regarding the computation of the control input u, we again need to reorder the opera-

tions in order to have the smallest depth possible, i.e., d(M′)+1. For that, we also encode ū

and ȳ with repeated elements, so we can compute the inner product as in Figure 7.2c, for the

elements of Z in (7.2.24) stored repeatedly. We also prefer some redundancy in storage to

avoid online processing, by having a ciphertext for the first m rows of Uf ′, encoded without

repetition. This allows us to compute, for i = 0, . . . ,m− 1:

υi =

S∑
j=0

S∑
k=0

colkM
′−1 �

(
rowiU

f ′ � Z[j]

)
u[i] = (Uf ′M′−1

Z)[i] = 1ᵀυi.

(7.2.26)

To send only one ciphertext for the result u (instead of m ciphertexts), while avoiding

an extra masking, the server will pack the vectors υi (which have an encoding with trailing
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zeros, whereas the encoding of u[i] does not) into one ciphertext and ask the client to perform

the corresponding summation.

The cloud service performs the encrypted version of (7.2.20)–(7.2.23), taking the steps

outlined in this subsection, which we describe in detail in Appendix F.2 in equation (F.2.2)–

(F.2.4), along with the specific encoding of each quantity.

After the T̄ steps elapsed, we finish adapting and the server stores the encrypted values

of M−1
t , HUt, HYt. The server can store the encryptions of ȳt, ūt and update them at the

subsequent time steps with the received encryptions of yt,ut, as done in the adaptation

phase. However, we prefer the client to send Evr0(ȳt),Evr0(ūt) instead of Evr0(yt),Evr0(ut),

in order to avoid future refreshing, see Remark F.2.1.

7.2.4.3 Precision discussion

Scaling. As described in Preamble 2.5.3, every encrypted operation introduces some noise

that corrupts the least significant bits of the encrypted values, which accumulates with the

depth of the circuit. This implies that values with a smaller magnitude are affected more by

this noise. In the problem we address, the smallest values are found in M−1
t , hence scaling it

by a positive integer factor α and accordingly changing the computations such that at every

time step we obtain αM−1
t and αut (such that the client can remove the scaling) allows us

to increase the precision of the result. In order to incorporate this scaling without increasing

the depth, the server has to perform more operations than before, e.g., recomputation from

scratch of some quantities. The scaling factor should be selected by the client, and if its

magnitude is sensitive, it can be sent as a ciphertext to the cloud server. We can modify

the circuit such that this scaling does not affect the depth.

Precision loss when computing the Schur complement. Given the particularity

of the matrix that has to be inverted, at each time step, some precision bits of the Schur

complement are lost (depending on the regularization parameter and the magnitude of the

measurements), which incurs a loss in precision in the subsequent computations.

Without the regularization term λgI added to the objective function of (7.2.6), the

resulting matrix M does not have full rank in the noiseless case (noise helps, but the inverse
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is not numerically stable). This suggests that the Schur complement (7.2.22) will have the

same order of magnitude as λg, regardless of the values in M, which we show in the following.

Let Hᵀ :=
[
HYᵀ HUᵀ

]
and hᵀ :=

[
hyᵀ huᵀ

]
be a new column obtained by adding new

samples, as described in Section 7.2.4.1, and P := blkdiag(λyI,Q, λuI,R). Then,

s = µ−mM−1mᵀ = λg + hᵀPh− hᵀPH(HᵀPH + λgI)−1HᵀPh. (7.2.27)

We now show that, in the noiseless case, the Schur complement has the same order of

magnitude as λg. Formally:

Lemma 7.2.6. The following statements characterize the relation between s and λg:

(a) lim
λg→0

s = 0.

(b) lim
λg→0

s
λg

= 1 + hᵀP1/2(HᵀP1/2)†(P1/2H)†P1/2h.

(c) lim
λg→∞

s
λg

= 1.

(d) The function f(λg) = s
λg

is monotonously decreasing on [0, ∞).

The proof is given in Appendix F.3. The term in (b) hᵀP1/2(HᵀP1/2)†(P1/2H)†P1/2h

is small for slowly varying systems. Under small random noise, the results in Lemma 7.2.6

are not exact, but empirically follow closely.

This analysis is important from an encrypted implementation perspective. Lemma 7.2.6

shows that, for fixed cost values in P but regardless of the values in H and h, i.e., the values

of the y measurements and of the u control actions, s will be close to the regularization pa-

rameter λg. In the encrypted computations, we will compute µ = λg+hᵀPh and mM−1mᵀ

each with a fixed precision of x bits. For large values of the measurements, we obtain that

s ≈ λg << hᵀPh, which means that there will be a cancellation in the most significant bits

(e.g., the first y MSBs), leading to a loss of precision in s, which will now have only x−y bits

of precision. This is particularly crucial since such a cancellation of the MSBs will happen

at every time step we accumulate new data samples, leading to a cascading loss of precision.

Furthermore, due to using the Residue Number System implementation of the encryption
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scheme, which improves the efficiency by orders of magnitude by using native sizes of 64 bits

to store the “residue ciphertexts” rather than multi-precision arithmetic of arbitrary size, the

precision cannot be increased indefinitely (see [64, 117] for technical details).

As a side note, decreasing or increasing the values in the cost matrix P independently

from λg does not solve this precision issue, because it implies changing the problem (it is

equivalent to increasing or decreasing λg).

The conclusion of this discussion is that, apart from the role it has for regularization and

noise robustness, the parameter λg also affects the precision of the solution (meaning the

difference between the encrypted solution and the unencrypted solution), which suggests we

need to pick λg to not be too small. This introduces a precision versus accurate convergence

trade-off. We will comment more on this trade-off in Section 7.2.5.2.

7.2.4.4 Considerations for continuous running

Accumulating new samples serves to robustify the algorithm and adapt to new disturbances.

However, an important caveat is that adding too many new samples damages the perfor-

mance of the algorithm, both because of overfitting and because of the problem becoming

intractable as the number of variables in (7.2.7) grows. In future work, we will investigate

this issue more, along with having a sliding window of sample collection.

Nevertheless, there are cases where the number of new samples to be collected leads

to a circuit of a depth higher than the preselected multiplication budget. Our options for

continuing the computations are:

(i) Restore the initial precollected Hankel matrices which bypasses the refreshing step

altogether. Advantages: no extra computations needed. Disadvantages: this causes oscilla-

tions in the control actions.

(ii) Stop adding new information to the matrices after the multiplication budget is ex-

hausted. Advantages: no extra computations needed. Disadvantages: the multiplicative

budget has to be large enough such that enough samples are collected.

(iii) Pack the matrix into a single ciphertext as described in (7.2.28) and ask the client
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to refresh it.

Ev0(M−1
t ) =

S+t−1∑
i=0

ρ
(
Ev0(coliM

−1
t ),−i(S + t− 1)

)
. (7.2.28)

Advantages: the server can continue collecting values for any desired time, without extra

multiplication depth. Disadvantages: the client has to decrypt, encrypt and send another

ciphertext; the rotation keys necessary for packing can occupy a lot of storage (but compared

to [15], here we only need S + t such rotations, not (S + t)2/2).

(iv) Bootstrap the ciphertext of M−1
t . The computation advancements [60] regarding

the bootstrapping procedure suggest that it is likely to locally resolve the refreshing step.

Advantages: the server can continue collecting values for any desired time without the

client’s intervention. Disadvantages: the initial multiplication budget has to be larger to

also allow for the bootstrapping circuit.

Increasing the multiplicative depth of the circuit also increases the ring dimension in

order to ensure a fixed security level. Capping the maximum circuit depth (encouraging

refreshing or bootstrapping) is desirable. In the solution we implemented, we chose option

(iii). This gives us flexibility on the maximum multiplicative depth of the circuit, which will

now be 2trefresh + 4, at little extra cost for the client.

We can pack as many values as half the ring dimension ringDim in one ciphertext. Then,

the number of ciphertexts the server can pack M−1
t into is d(S+t)(S+t)/(ringDim/2)e. This

is viable since the ring dimension is in general large (e.g. ≥ 2048), in order to accommodate

a reasonable multiplicative budget, plaintext precision and standard security parameter.

The client only has to decrypt, re-encrypt and send back this number of ciphertexts. The

server then uses one extra level to perform the reverse of (7.2.28) to unpack Ev0(M−1
t )

into ciphertexts Ev0(coli(M
−1
t )). These multiplications can be absorbed in the same initial

multiplicative depth.

Theorem 7.2.7. The encrypted online data-based predictive control algorithm in Sec-

tion 7.2.4 achieves client privacy with respect to the server, cf. Definition 2.2.8.

The proof is given in Appendix F.4.
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Extensions

We now briefly describe extensions and possible modifications to the online algorithm.

7.2.4.5 Inputting blocks of control inputs

For simplicity of exposition, we illustrated the encrypted computations outline for when the

server sends only the first component of u∗,t to the client. In practice, it is common that

more consecutive components from the N computed control inputs are applied. This is also

beneficial for the encrypted solution, since the most expensive computations, the inversion

of Mt and its subsequent update, need to be computed only once for multiple time steps.

Similarly, the communication rounds between the client and the server would be reduced.

We recommend this for larger systems.

7.2.4.6 Batch collection of new samples

We can still use the Schur complement to compute the inverse of a rank-x update of the

matrix Mt, where x is how many new data samples we want to accumulate at once. The

server then packs the matrix representing the Schur complement into one ciphertext and

asks the client to invert it and send it back. The circuit depth will increase accordingly.

7.2.4.7 Sliding window of sample collection

In order to manage the growth in the number of variables, i.e., number of columns of HUt

and HYt, after collecting a sample and updating M−1
t , we would like to remove the first

sample collected. We can again achieve this by using Schur’s complement and the Woodbury

matrix inversion lemma. We revert to the notation used in Section 7.2.2.4 for simplicity of

the exposition and we show how to remove the first sample, i.e., the first row and first

column of M′ (for removing rows and columns inside the matrix, we will have to multiply

by permutation matrices). Given M′−1, we would like to extract N−1:

M′ =

M mᵀ

m µ

 =:

 ν n

nᵀ N

 .
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The Schur complements expressions for the two matrices are:

M′/M := µ−mM−1mᵀ = mS , M′/N := ν − nN−1nᵀ, M′/ν := N− nᵀν−1n.

This gives the expression in (7.2.23) and the following equal expression for (M′)−1:

M′−1
=

 (M′/N)−1 −(M′/N)−1nN−1

−N−1nᵀ(M′/N)−1 (M′/ν)−1

 =:

 l1 L2

Lᵀ
2 L3.

 .
By the matrix inversion lemma,

L3 = N−1 + N−1nᵀ(M′/N)−1(M′/N)(M′/N)−1nN−1 = N−1 + Lᵀ
2l
−1
1 L2

N−1 = L3 − Lᵀ
2l
−1
1 L2.

Removing a sample after collecting one sample incurs an increase by two in the total

depth of the computation and asking the client to perform the division of l1.

7.2.4.8 Reducing accumulated noise

As discussed in Section 7.2.4.3, noise accumulates in the stored ciphertexts of M−1
t at the

server, because of the fixed precision imposed by the native dimension of 64 bits (in the

Residue Number System implementation of the encryption scheme). However, before the

noise grows too much, the server could try to keep track of it and reduce it by using the fact

it can also easily compute Mt as in (7.2.18). Denote the error on M−1
t by X. Then:

Λ := Mt(M
−1
t + X) = I + MtX

(M−1
t + X)(Λ− I) = X−XMtX.

(7.2.29)

It is safe to assume ‖X‖∞ ≤ ε‖Mt‖∞, with ε < 1. If it is true that ε satisfies the relation

ε‖Mt‖2∞ ≤ 1, then ‖XMtX‖∞ ≤ ‖X‖∞. This would mean that the server can compute

a better approximation of M−1
t than M−1

t + X as M−1
t + XMtX. However, this second

approximation would imply a larger depth for M−1
t , so the best option is for the server to
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compute this approximation right before it asks the client to refresh the ciphertext.

7.2.4.9 Function privacy

The algorithm run at the CaaS service provider might be proprietary. In that case, the

client should not get extra information about that algorithm, apart from what it agreed

to receive. This notion is captured by the function privacy property of a homomorphic

encryption scheme, which states that a ciphertext should not expose information about

the function that was evaluated in order to create that ciphertext. Inherently, the CKKS

scheme does not preserve function privacy because of the partial information stored in the

junk elements. The common ways to achieve function privacy is for the server to mask

out the irrelevant slots before handing a ciphertext to the client to decrypt, either by a

multiplicative mask (zeroing out the junk elements) or by adding large enough randomness

to them. The multiplicative mask increases the depth by one, whereas the randomness

masking can lead to an increase in the plaintext modulus since the randomness has to be

large enough to drown the relevant information.

In our scenario, the client is allowed to obtain the numerator and denominator of the

control input at every time step and also the inverse matrix M−1, which is only determined

from the inputs and outputs that the client knows. The server can zero out the extra

slots in Evr∗(st) and Ev∗(υt). This masking would add one extra level to the respective

ciphertext, but the level increase would not build up, since these masks are not used in

posterior computations. Further investigation on keeping the service provider’s algorithm

and costs private from the client will be subject to future work.

7.2.5 Implementation and evaluation

We use the version of the CKKS scheme [62], optimized to run on machine word size of

64-bit integer arithmetic [64, 117] instead of multiprecision integer arithmetic.

We focused on testing out our proposed algorithms on a temperature control problem,

because first, smart buildings can support flexible encryption methods for the collected

data, and second, the sampling time is of the order of minutes, which allows for complex
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computations and communication between the client and the server to take place.

7.2.5.1 Comparison with [15]

We first want to underline the improvements in both runtime and memory that the algo-

rithm presented here brings compared to the algorithm in our previous work [15], that used

a “hybrid” encoding and is briefly described in Appendix F.2. For the same parameters

considered in the zone temperature problem exemplified in [15], which had one input and

one output, used a ring dimension of 212 and 21 levels in the ciphertext, we used the same

commodity laptop with Intel Core i7, 8 GB of RAM and 8 virtual cores at 1.88 GHz fre-

quency. We obtained an improvement of 2.4x in terms of memory: 2.25 GB compared to

5.48 GB. We obtained an improvement of 4x in terms of total running time, and specifically,

the maximum runtime per step dropped from 308.8 s (previous algorithm) to 75 s (current

algorithm). Some of the changes (e.g., in terms of better thread parallelization) we applied

to our current algorithm can also be applied to the algorithm in [15], but the difference is

made mostly by a more efficient encoding and computation reorganization. These improve-

ments allowed us to simulate the encrypted control for larger systems with better security

parameters, as described in the next parts.

7.2.5.2 2x2 system with 73 bits of security

Setup. We considered a temperature control problem for a building with two zones. The

sampling time is of Ts = 420 s. The system parameters are: n = 2,m = 2, p = 2,M =

4, N = 4, T = 32 and the system is stable. To mimic a realistic example, we considered two

types of disturbances: unknown, characterized by zero mean Gaussians for the process noise

(covariance 0.001I) and for the measurement noise (covariance 0.01I), and known, slowly

varying disturbances caused by the exterior temperature and the ground temperature, which

we simulate as varying uniformly between [24.5◦, 25.5◦] and [9.5◦, 10.5◦], respectively. We

choose the cost matrices and regularization terms Q = I,R = 10−3I, λg = 5, λy = λu = 1.

For the offline data collection, we assume a different initial point than for the online

computation, and randomly sample the offline input trajectory so that the corresponding

200



output trajectory lies in the interval [10◦, 40◦]. The M,N and T parameters mean that

we start from 25 columns in the Hankel matrices. We note that, due to noise, the offline

feedback control algorithm has suboptimal performance for these parameters–see Figure 7.3.

Thus, we collect data online for 15 more time steps, which means adding another 15 columns

to the Hankel matrices. Afterwards, we run the system with fixed gains. Figure 7.3 shows

the performance of the setpoint tracking with these parameters and under noise and dis-

turbances. To make the comparison meaningful, we use the same noise sequence for both

schemes, in both the encrypted and unencrypted runs of the algorithms.
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Figure 7.3: Tracking performance of the online versus offline feedback in the presence of noise. The
first vertical dashed line marks the first M time steps, corresponding to the initial offline data,
the second vertical dashed line marks the following N time steps, corresponding to the trajectory
concatenation, and the last vertical dashed line marks the end of sample collection.

Implementation details. For better benchmarking capabilities (less variability be-

tween runs), for these experiments we used an AWS EC2 c5.2xlarge machine, with 8 virtual

cores, 3.4GHz frequency and 16 GB of RAM. We implemented the encrypted solutions using

the PALISADE library [179].

We use a ring dimension of 214 and 15 levels (for a refresh step after 5 collected samples,

corresponding to depth 14). The resulting ciphertext modulus of a fresh ciphertext is of

760 bits (the first plaintext modulus has 60 bits and the following plaintext moduli have 50

bits). This gives a security size of 73 bits, according to the LWE estimator [4]. Choosing

a smaller refreshing time increases the communication rounds between the client and the

server (one extra exchange at every 35 minutes in this case), but at the same time decreases
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the multiplicative depth of the circuit, reducing the computational complexity and the size

of the parameters.

Precision. Figure 7.3 shows the tracking performance for the encrypted and unen-

crypted versions of the online and offline feedback algorithms. Due to the precision loss

incurred by working with a deep circuit on encrypted data, we see a small offset in the

measured output compared to the unecrypted measured output for the online feedback al-

gorithm. Since the offline feedback algorithm is a very shallow circuit (depth 1) when the

client returns a fresh encryption of the control input to the server, it incurs no precision loss.

We obtain a maximum magnitude of 0.129◦C and an average of 0.045◦C for the difference

between the unencrypted measured output and the encrypted output during the online

simulation of a noisy process. For the control input, the maximum difference is 0.248 kWatts

and an average difference of 0.053 kWatts. A typical such sample is depicted in Figure 7.3.

Notice that the maximum magnitude of the difference is smaller than the variation in the

disturbances and does not affect the performance and stability of the control algorithm. One

can increase the plaintext modulus in order to reduce the error introduced by encryption

(e.g., 53 bits instead of 50 bits in the moduli will lead to an almost tenfold decrease in

the differences). However, if we keep the ring dimension constant, this reduces the security

level to 69 bits. In Section 7.2.5.3, we show results for better precision at a standard

security level. As described in Section 7.2.4.3, the loss of precision can be alleviated by a

larger regularization parameter λg. For example, keeping all other parameters the same but

increasing λg = 10 will lead to a maximum magnitude of the difference in the measurements

of 0.037◦ and the maximum magnitude of the difference in the inputs of 0.043 kWatts, but

the tracking performance is slightly reduced (from 0.06◦C to 0.12◦C deviation from the

reference in the noiseless case).

Offline. The encrypted offline feedback algorithm is very fast, since it has only depth 1

when the client sends to the server encryptions of ūt and ȳt. A ring dimension of 212 gives

a security parameter of 126 bits, and a ciphertext has 110 KB. The peak online RAM is 42

MB. The average runtime for a time step is 57 ms for the server and 12 ms for the client.
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Online. We now examine the encrypted online control algorithm simulation adding

details that complement the information in Section 7.2.4.

Online - Memory. The peak RAM for both the client and the server incurred during

the three phases for 45 time steps was 6.26 GB, out of which, 3.9 MB is the public key, 2 MB

is the secret key, 15.7 MB is the relinearization key and 4.6 GB are the evaluation rotation

keys (corresponding to a key for each of the 336 rotation indices), generated offline. The

client discards the evaluation keys after it sends them to the server. At every iteration, the

client receives two ciphertexts from the server (the Schur complement and control action)

and sends three ciphertexts (inverse of the Schur complement, measurement, control action–

we assumed here that the setpoint is constant). During the refresh time steps, one extra

ciphertext is sent and received (the inverse matrix). The size of these ciphertexts depends

on the level where the ciphertext is at. Specifically, for our selected parameters described in

the beginning of the subsection, the ciphertexts are 2.77 MB at maximum size and 240 KB

at the minimum size.

Online - Time. The runtimes for the encrypted computation are given in Figure 7.4,

where three different phases are depicted: trajectory concatenation, online sample collection

and static update. The total offline initialization time for key generation and ciphertext

encryption is 60 s for both the client and the server. In all online phases, the client only

performs cheap and fast computations that take less that 0.3 s.

The first online phase is the trajectory concatenation phase from t = M − 1 = 3 to

t = M +N − 1 = 7, where the server computes the encrypted control action only with the

precollected data, as described in Section 7.2.2.3. This is very efficient, despite computing

on the maximum ciphertext sizes, and results in a total computation time for one time step

of 2 s. Before t = M − 1, the client applies random inputs.

The second phase is the online collection of new input-output samples, which implies

modifying the Hankel matrices and computing the inverse matrix via the Schur complement

at every time step M−1
t from step 8 to step 22. This phase is split in as many parts as

the refreshing time dictates. In the simulation depicted in Figure 7.4, this corresponds to

203



5 10 15 20 25 30 35

Time step

10
-2

10
-1

10
0

10
1

10
2

10
3

O
n
lin

e
 t
o
ta

l 
ru

n
n
in

g
 t
im

e
s
 [
s
]

Client

Server

Ts

Figure 7.4: Running times for the computations performed at the client and the cloud server for the
encrypted online control algorithm. The plot is semi-logarithmic and the amounts of time required
by the client and the cloud server are stacked. The first M time steps are not depicted, because the
server has no computational load. The first vertical dashed line marks the following N time steps,
corresponding to the trajectory concatenation, and the second vertical dashed line marks the end of
sample collection.

three parts. At the established refresh times (t = 12, 17), the server packs the matrix M−1
t

into one ciphertext, sends it to the client to re-encrypt it with the maximum number of

moduli, and unpacks it back into component-wise ciphertexts. First, the increase in runtime

between the subsequent time steps 13 and 12, respectively 18 and 17, is given by the fact

the ciphertexts are returned to the maximum number of moduli. Second, the increase in

computation time from the first refresh at time 12 and 13 (47.23 s and 104.6 s) to the

second refresh at time 17 and 18 (63.9 s and 144.2 s) is given by the fact that the server has

to deal with more collected samples ciphertexts than in the beginning of phase two. The

intermediate decrease in the computation time is given by the decrease in the ciphertext

size (we make sure to compute with only the minimal number of moduli required).

The third phase corresponds to the computations after stopping the collection of new

samples, which starts from time step 23 and can go for the rest of the desired simulation

time (accounting for Remark F.2.1 in Appendix F.2). The third phase is only slightly more

computationally intensive than the first. The time for the client halves compared to the

previous two phases, because the client has to decrypt and encrypt ciphertexts with two

moduli. The running time for the server substantially decreases compared to phase two but
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doubles compared to phase one, because we use a less efficient matrix-vector multiplications

in order to minimize the multiplicative depth. Nevertheless, the running time required for

computing the control input at one time step is around 3 s.

7.2.5.3 More security

In practice, the desired security parameter for a cryptographic application is at least 100

bits. The refresh time after 5 time steps (35 minutes) gives a ciphertext modulus of 802

bits and the refresh time after 8 time steps (56 minutes), which means a deeper circuit,

gives a ciphertext modulus of 1120 bits. In Table 7.1, we present simulation results where

we choose the ring dimension 215 such that we satisfy this security requirement for the

chosen ciphertext modulus. We simulate for the above 2x2 system and for a 4x4 system

(where M = 4, N = 4, T = 64 and we again collect 15 more online samples, which gives a

maximum number of 72 unknowns). We use 53 bits of precision for the plaintext moduli,

such that we obtain 0.034◦C and 0.008◦C maximum, respectively average difference between

the encrypted and unencrypted measurements, and 0.05 kWatts and 0.008 kWatts maximum,

respectively average difference for the input.

We use different AWS cloud machines in order to satisfy the RAM and sampling time

requirements. The c5.2xlarge machine (16 GB RAM) used 8 threads, the c5.4xlarge machine

(32 GB RAM ) used 13 threads and the c5.9xlarge machine (72 GB RAM) used 28 threads.

In Table 7.1 we see the trade-off between a longer refresh time (the client refreshes a

ciphertext after more steps, which implies a deeper circuit and less security for the same

ring dimension) and the memory consumption and computation time. The conclusion is that

the refresh time is a tuning knob between security level, communication and computational

complexity which should be determined according to the application’s specifications.

Note that as the performance of the underlying homomorphic encryption library im-

proves, these improvements will reflect in our computation times as well.

205



Experiment System # of steps Security Ciphertext Max. Server
id. dim. until refresh level [bits] modulus RAM [GB] machine
1 2× 2 8 100 1120 17.19 c5.4xlarge
2 2× 2 5 142 802 12.57 c5.2xlarge
3 4× 4 8 100 1120 34.32 c5.9xlarge
4 4× 4 5 142 802 27.29 c5.9xlarge

Experiment Max. runtime Max. runtime Max. runtime
id. phase I [s] phase II [s] phase III [s]

Client Server Client Server Client Server

1 0.88 3.48 0.84 220.2 0.23 4.36
2 0.6 3.23 0.5 298.1 0.17 6.21
3 0.88 4.06 0.84 413.07 0.23 4.94
4 0.6 2.95 0.5 325.72 0.17 4.42

Table 7.1: Simulation results for four experiments of the encrypted online feedback algorithm on
systems of two different sizes, at different security levels and different refresh times. In all entries,
the ring dimension is 215, to ensure a security level of at least 100 bits. The online times for the
client were obtained from a commodity laptop-like machine, c5.2xlarge.

7.3 Sparse data-based predictive control on encrypted data

In Section 7.2.2, we used an `2-regularization for the preimage in (7.2.5). We made this

choice for two reasons: first, it is an accepted and used solution to reduce overfitting due

to noisy data [35, 125], and second, it gives us a ridge regression formulation, that has a

closed-form solution, making it appealing from an encrypted implementation perspective.

On the other hand, `1-regularization is also preferred in the data-based predicted control

literature [70, 71, 83], thanks to a motivation coming from direct system identification tech-

niques, and in a hybrid regularization setting, where it is used alongside `2. More generally,

`1-regularization is widely employed for sparse learning, see [123]. Hence, in this section, we

investigate a private solution to the sparse data-based predictive control.

To summarize, in order to avoid overfitting due to noisy data, we penalize the magnitude

of g through an `1-regularization with penalty parameter λg in (7.3.1). The intuition behind

this choice comes from the fact that in the noiseless data predictive control formulation, the

block-Hankel matrix of the trajectory data has an inherent low-rank structure. Choosing

an `1-regularization acts like a convex relaxation of imposing a low-rank constraint–see [83,
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Thm. 4.6] for more details.

min
g

1

2

(
‖Yfg − rt‖2Q + ‖Ufg‖2R

)
+ λy‖Ypg − ȳt‖22 + λu‖Upg − ūt‖22 + λg‖g‖1. (7.3.1)

Notice that (7.3.1) is a Lasso problem:

min
g

1

2
‖Hg − Jft‖22 + λg‖g‖1, (7.3.2)

with J := blkdiag (2λyI, Q, 2λuI, R)1/2 , ft :=
[
ȳᵀ
t rᵀt ūᵀ

t 0ᵀ
]ᵀ
,H := J

[
Ypᵀ Yf ᵀ Upᵀ Uf ᵀ

]ᵀ.
In the case a hybrid regularization λg‖g‖1 + µg‖g‖22 is preferred, we can use the same

formulation (7.3.2) and appropriately modify H and ft.

Our goal is to provide a solution that outsources to a cloud service the computation

of the optimal solution g∗,t of (7.3.2) and of u∗,t = Ufg∗,t, while ensuring client data

confidentiality for all time steps, as described in Section 7.2.1.

In the rest of this chapter, we apply our cloud-based sparsity framework for encrypted

Lasso problems, developed in Chapter 3.3, to the problem of data-based predictive control.

This framework requires multiple servers for both efficiency and security reasons, compared

to the solution in the first part of the chapter, that used a single server (but asked the

client for refreshing). To alleviate the cost, we will present a solution that involves only one

powerful server, and a few computationally-weaker devices.

7.3.1 Encrypted sparse regularized data predictive control

Following the discussion in Section 3.3.3, we write the problem (7.3.2) as a distributed

problem with split variables, in order to use a distributed ADMM algorithm:

min
g1,...,gK ,z

1

2

K∑
i=1

‖Higi − (Jf)i‖22 + λg‖z‖1

s.t. gi − z = 0, i = 1, 2, . . . ,K.

(7.3.3)

In the context of this data-predictive problem, when we perform a homogenous split

of the data (a split of equal size), the distributed solution converges very slowly to the
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global optimal solution. The reason for that is that the homogeneous sub-problems have a

different optimal solution than the global solution. To gain intuition, consider splitting the

component matrices Up,Uf ,Yp,Yf of H equally between the K servers. This means that

each server solves a local optimization problem for the same system (7.2.1) that generated

the values, but being given fewer samples than necessary to characterize the behaviour of

the system, i.e., losing persistency of excitation (Assumption 7.2.1). The problem remains

when allocating a random set of rows of the equal size to the servers.

To avoid this issue, we prefer to unequally split the problem. Specifically, we designate

Server 1 to have most of the rows and the rest of the servers to hold fewer. Because the local

solution of Server 1 is close to the central solution, the empirical convergence to the optimal

solution is much faster. However, the more servers we add, the slower the convergence

(if we do not weight contributions differently). A valid option is to have only one server

do all the computation, i.e., central ADMM, and request help only for the distributed

bootstrapping from the rest of the servers (recall that we require multiple servers both for

an efficient distributed bootstrapping and for security of the private key). But since the rest

of the servers would be idle while the central server performs the computation, we prefer to

distribute some of the computations to them as well.

Let the matrix H1 denote the first (m+p)M +pN rows of matrix H ∈ R(m+p)(N+M)×S .

We split the remaining rows of H into blocks of mN/(K − 1) rows, denoted Hi for i =

2, . . . ,K. We similarly split HᵀJ ∈ RS×(m+p)(N+M) into H̄1 and H̄2 . . . , H̄K and ft ∈ Rm

into f1,t and f2,t, . . . , fK,t. We prefer to use more of less powerful devices in order to increase

the security threshold (by splitting the secret key into more values) and reduce the cost of

operating the cloud service. To this end, we shift some of the computations from the less

powerful servers to the more powerful Server 1 and remove online communication between

the client and the less powerful servers. Protocol 7.3.1 differs from Protocol 3.3.1 in this

different allocation of computation, described below.

First, we split problem (7.3.3) such that fi,t = 0, for i = 2, . . . ,K, see (7.3.4). Second,

Servers 2, . . . ,K have an easier offline computation, since they have to invert substantially
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smaller matrices than Server 1, using the matrix inversion lemma. The bootstrapping step

is done the same as in Protocol 3.3.1, after all parties broadcast their local sums. However,

we let only the more powerful Server 1 perform the summation
∑K

i=1 gk+1
i + wk

i and the

evaluation of the soft thresholding approximation, and then send the result zk+1 to the other

less powerful servers (the ciphertext zk+1 will have only lB + 1 levels so communication

is cheap; recall lB is the number of levels necessary for a statistically secure distributed

bootstrapping). Then, all servers continue with the computation of wk+1
i and finish the

iteration.

gk+1
1 = (Hᵀ

1H1 + ρI)
−1
(
H̄ᵀ

1f1 + ρ(zk −wk
1)
)

gk+1
i = ρ (Hᵀ

iHi + ρI)
−1

(zk −wk
i ), i = 2, . . . ,K

zk+1 =
1

K
Sλg/ρ

(
K∑
i=1

gk+1
i +

K∑
i=1

wk
i

)

wk+1
i = wk

i + gk+1
i − zk+1, i = 1, . . . ,K.

(7.3.4)

Moreover, because of the way we split the time-varying vector ft, such that the elements

corresponding to Servers 2, . . . ,K are 0, there is no need for them to update with the latest

values of ut and yt. This way, only Server 1 needs to have a connection with the client. The

ciphertexts communicated to the client are on level 0 (the predicted input u∗,t), while the

ciphertexts communicated from the client (ut and yt for assembling f1,t) are on level lB + 2.

Nevertheless, if the servers have different capacity, the more powerful server will likely

have to wait on the other servers for the bootstrapping synchronization (requiring completion

of the computation for gk+1
i ). In the idle time, the more powerful Server 1 can perform

multiple local updates, which heuristically helps with convergence in our problem.

Theorem 7.3.1. Protocol 7.3.1 achieves client data confidentiality with respect to semi-

honest servers, assuming at least one of the servers is honest.

The proof follows from the proof of Proposition 3.3.4, regardless of having the servers

perform different tasks, since all tasks involve computations only on encrypted data.
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Protocol 7.3.1: Distributed encrypted protocol for (7.3.3) with unequal servers and

unequal data split for one time step t

Input: Public parameters: public key pk, parameters of the system and offline trajectory m, p,N,

M, S, the number of servers K, number of maximum iterations Kiter. C: (uτ ,yτ )τ=0,...,t. S1:

encryption of M1 = ρ(Hᵀ
1H1 + ρI)−1, encryption of F1 = 1

ρ (M1H
ᵀ
1J), encryption of Uf ,

encryption of ȳt, rt,ut, share of the secret key sk1, the Chebyshev coefficients for evaluating

the soft threshold function for a given interval and bias λg/ρ. S2, . . . , SK : encryption of Mi =

ρ(Hᵀ
i Hi + ρI)−1, share of the secret key ski, for i = 2, . . . ,K.

Output: C: ut+1

1: C: send to S1 the ciphertexts Ev0(ut), Ev0(yt), Ev0(rt);

2: S1: assemble the ciphertext Ev0(f1,t) = Ev0([ȳᵀ
t rᵀt ūᵀ

t ]
ᵀ
);

3: Si=1,...,K : set initial values Ev0(g0
i ), Ev0(w0

i ), Ev0(z0) (the value of zk is previously agreed upon);

4: for k = 0, . . . ,Kiter − 1 do

5: S1: compute Ev0(gk1) = MultDiag(F1, f1,t) + MultDiag(M1, z
k −wk

1);

6: Si=2,...,K : compute Ev∗(g
k
i ) = MultDiag(Mi, z

k −wk
i );

7: Si=1,...,K : compute and send to the other servers the rotation of the sum Ev0(vi) := ρ(gk+1
i +

wk
i ,−(i− 1)S);

8: Si=1,...,K : assemble Ev∗(v) := Ev∗([v1 v2 . . .vK ]) by summing own ciphertext and all re-

ceived shifted ciphertexts;

9: Si=1,...,K : perform part in the distributed boostratpping to get Ev∗(v
b) := DBoot(Ev∗(v));

10: Si=1,...,K : extract its refreshed sum of local iterates Ev∗(vi) = ρ(Ev∗(v), (i− 1)S);

11: S1: rotate and sum the refreshed Ev∗(v
b) to obtain Ev∗(

∑K
i=1 gk+1

i + wk
i ), then compute

Ev0(zk) = EvalApproxSoftT( 1
K

∑K
i=1 gk+1

i + wk
i , λg/ρ);

12: S1: send to all the other servers Ev0(zk);

13: Si=1,...,K : compute Ev0(wk+1
i ) = [1ᵀ

S 0ᵀ]ᵀ � Ev∗(xi)− Ev0(zk);

14: end for

15: S1: compute Ev0(u∗) = MultDiag(Uf ,gK1 ) and send the result to the client C; . or directly

obtain only the first m components by multiplying by [Im 0]Uf

16: C: decrypt ut+1, plug it in the system to measure yt+1.
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Remark 7.3.2. An interesting remark is related to [134], where the authors propose to use

multiple controllers in parallel that perform asynchronous local bootstrapping to ensure that

at least one has a control input ready at each time step. In our case, we prefer multiple

servers to perform a distributed bootstrapping in order to reduce the time it takes to refresh

the ciphertexts.

7.3.2 Numerical results

We consider a data-driven temperature control of a 4x4 stable system representing a building

with four zones, with sampling time 300 seconds, and M = 4, N = 8, T = 84. We add

process noise and measurement noise, both zero mean Gaussian with covariance 0.01I. We

choose the cost matrices and regularization terms Q = 300I,R = I, λg = 300, λy = λu =

3000. The data was distributed among 3 servers: Server 1 holds 64 rows and Servers 2 and

3 hold 16 rows each. Convergence for the Lasso problem associated to one time step of the

above problem occurred after 20 ADMM iterations, for ρ = 1200. Figure 7.5 reflects the

tracking performance of the data predictive control problem with these parameters.

We evaluate Protocol 7.3.1 on Ubuntu 18.04 on a commodity laptop with 8 GB of

RAM and Intel Core i7, 1.88 GHz, implemented using the PALISADE library [178], using

8 threads. We set the parameters such that we get a security level of 128 bits, i.e., we use

a ciphertext modulus of 436 bits and a ring dimension of 214. We obtain 6 decimal places

precision for the results. The average time for the first iteration is 2.75 seconds and for any

iteration afterwards is 1.98 seconds. The time for Server 1 to assemble the vector f1,t from

the client and to compute the prediction is 0.61 seconds. The client needs 0.07 seconds to

decrypt the control input and to encrypt the new measurement and the input. This gives

a total computation time of 38.44 seconds per solving the optimization problem, not taking

communication into account. The setup takes 4.5 seconds, and is performed once for all

subsequent iterations.

If we artificially add a 150 ms delay of communication (serialization/deserialization and

transport) and assume the machines send the messages sequentially to the other machines,

then the total computation time increases by 6.45 seconds (450 ms delay per iteration, and
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Figure 7.5: Comparison between the tracking performance of the data predictive controller solv-
ing (7.3.2) exactly via the CVX solver, and solving (7.3.2) via distributed ADMM with 3 servers
and approximating the soft thresholding function with a degree-11 polynomial. The vertical dashed
line marks the first M time steps, corresponding to the initial offline data. The curves represent the
temperature measurements in the four rooms of the system.

450 ms delay for communication between Server 1 and Client).

Overall, the maximum amount of memory Server 1 needs to have is 1.22 GB, while Server

2 and 3 need 0.52 GB.

To simulate less powerful devices, we run Servers 2 and 3 on 2 threads instead of 8. The

total time necessary for the 20 iterations increases to 49.96 seconds. The majority of the dif-

ference comes from the final operation of bootstrapping (which can be done asynchronously,

i.e., it occurs after the communication so servers do not have to wait for each other): the

total bootstrapping time increases from 0.91 seconds to 1.48 seconds. The rest of the dif-

ference comes from the fact that computing gk+1
2 and gk+1

3 takes 1.06 seconds compared to

the 0.83 seconds that Server 1 needs to compute gk+1
1 .

Because the servers only need to synchronize in order to bootstrap (Server 2 and 3 also

wait for zk+1 from Server 1, but in our instance this does not create idle time since Server

1 is more powerful), Server 1 can either wait for the other servers to finish the computation

or can perform two local updates of g1 . Heuristically, since the local solution of Server 1 is

closer to the global optimal solution, performing more local iterations helps convergence (in

our example, by needing 18 iterations instead of 20). Nevertheless, the computation of the

control input is still ready in one sixth of the sampling time.
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Chapter 8

Conclusion

Encrypted control is a young research area. In this thesis, I focused on fundamental control

algorithms and on providing proof of concept solutions that achieve both privacy and effi-

ciency. In a sense, these solutions are only scratching the surface. There are many remaining

challenges ranging from the structured nature of the data in control and optimization prob-

lems, to the stability and performance requirements that are potentially disrupted under

encryption, to the possibility of malicious attacks over the controller, the sensors or the

actuator, and to scaling the solutions up to large systems, both in terms of data size and in

terms of number of participating actors. In the following, I will outline some of the future

research areas that complement the problems and solutions covered in this thesis. We have

collected more research directions in the tutorial on encrypted control in [200].

Parameter estimation for encrypted experiments

In this work, as well as in most of encrypted protocols for control and optimization, we as-

sumed knowledge of some bounds on the variables, which can themselves leak information.

In fact, an overarching problem when dealing with algorithms is figuring out the optimal

parameters for a correct and efficient execution: e.g., step size, number of iterations, nor-

malization, ranges etc. In some cases, it is reasonable to consider that all the algorithms

have been run on cleartext data in advance, so the parameters were determined with con-
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fidence. In other cases, proprietary algorithms and proprietary data can be involved in all

steps of the process, including what we usually call “the offline phase”. In such scenarios,

one can still make use of encrypted solutions to obliviously run the algorithms on data and

cross-validate.

An important avenue of research is to design encrypted and differentially private prior

experiments in order to compute differentially private bounds on parameters such as costs,

penalties and number of iterations. The loss in accuracy should not matter for a conservative

choice of parameters. Further, when a company desires to tune its algorithm on represen-

tative offline data from the client, we recommend an approach where the key is shared,

as described in Chapters 3.3 and 7.3. We can involve the client in these experiments, by

having it control a small device with one share of the secret key. In this way, the client can

assess whether the query is too revealing and has to agree on the computation that is being

effectuated to let the experiment continue and decrypt the result.

More general aggregation

In Chapter 4, we discussed an elementary type of aggregation, specifically weighted affine

combinations of private local data, with private weights. However, there are interesting

applications involving more complex aggregation schemes and it is worthwhile to explore

the efficiency of private nonlinear aggregation schemes in the future. For example, the

underlying leveled homomorphic encryption scheme used in Section 4.5 can support more

complex operations, at the cost of larger parameters. More specifically, we could perform

computations such as:

xa(t) =
∑
i∈[M ]

ϕ (Wixi(t)) ,

for a nonlinear function ϕ(·).

Beyond passive adversaries

My previous work assumed passive adversaries, i.e., adversaries that do not tamper with

the data, but try to infer information from it. Many of the agents and IoT devices are
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mobile and autonomous and are soon intended to be deployed as delivery, exploration,

information-providing and first-responder agents. Apart from the crucial aspects of pre-

emptively guaranteeing safety in human-robot and robot-robot interaction, there is also the

aspect of accounting for malicious behavior. One of the significant challenges is that non-

industrial unmanned aerial vehicles (UAVs) and robots can simply be programmed to ignore

any protocol and they can be made non-identifiable (by 3D printing components), thereby

transcending the passive adversary model. This requires setting up an extrinsic software

and hardware infrastructure to deal with otherwise impossible goals.

Dependable cyber-physical systems

A critical avenue of exploration is security research for verification and accountability under

privacy requirements and abuse prevention, for future networks of autonomous agents, such

as UAVs and robots that will carry out daily tasks and can be corrupted or misbehave.

A first part of the solution needs to design a system of granting and revoking privileges

to agents for their tasks, that can be privately locally verified, inspired from e.g., [18], but

accounting for faults and removing the reliance on a trusted certificate provider. Another

part of the solution needs to deal with anonymous reporting, provability and traceability of

unlawful actions, e.g., using tools from [143], without requiring publishing location, identity

information or other privacy sensitive-information related to the tasks carried out. A third

dimension of the solution should focus on competitive-collaborative tasks, where swarms of

autonomous agents need to collaborate to achieve a common goal, while possibly satisfying

their own private local goal. In such scenarios, communicating only encrypted data prevents

unintended privacy loss of the local data and also protects the data of the other participants

when an agent is captured in an adversarial environment and its memory seized. However,

encryption hampers the detection of incorrect and adversarially supplied data, which might

lead to failure in achieving the goal. My aim is to exploit the tight interconnection between

the cyber and physical parts in such systems and use physical information, such as admissible

velocity and location, to bound malicious behavior.
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Zero-knowledge of correct execution in control

Synthesis of control algorithms with provable guarantees is a research field in itself. How-

ever, there are very few works that deal with the verification of a malicious controller that

cheats during the execution of the protocol. A first step would be to address computations

performed unencrypted at a user or a server, through a verifier that checks in zero-knowledge

that the computation was correctly executed. Such a use case is key in industry, where a

company wants to protect its proprietary data and algorithms, but a regulatory agency or

clients should check that laws are being followed (e.g., emission control in autovehicles) or

perform quality control (e.g., concentration of chemical products, faults in batch devices),

without learning proprietary details. In the context of statistical tests, optimization and con-

trol, the challenges lie in designing and adapting the required checks in order to be efficiently

and correctly performed in zero-knowledge, as well as in dealing with the multi-dimensional

nature of the data, such that the verification step does not become a computational burden.

The next steps would be to incorporate malicious adversaries and formal verification in the

setting of control algorithms, in order to ensure that the protocols behave correctly even

under the misbehavior of the other participants in the computation, and crucially, under

privacy requirements and in the required sampling time.

Internet of secure multi-party computation

More than simply being connected and gathering data, the trend for the “things” in the

Internet of Things is to also be computing devices in a heterogeneous computation network.

Blockchains are establishing themselves as distributed solutions for reliable computations,

and new proposals achieve secure, private and anonymous computation on blockchains, even

under malicious faults, e.g., [34]. An interesting research direction is the design of proto-

cols for mapping computations to networks of computing devices and reusing computations

necessary for transaction posting to compute useful functions, while avoiding DDoS attacks.
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Appendix A

More background details

A.1 Decisional Composite Residuosity

Consider the additive group of integers modulo N , ZN , where N = pq is a large modulus

composed of two prime numbers of equal bit-length, p and q, such that gcd(φ(N), N) = 1.

φ(N) = (p− 1)(q− 1) is the order of Z∗N . Now consider the multiplicative group of integers

modulo N2, Z∗N2 . The order of Z∗N2 is Nφ(N). An important subgroup of Z∗N2 is:

ΓN :={(1 +N)α mod N2|α ∈ {0, . . . , N − 1}} = {1 + αN |α ∈ {0, . . . , N − 1}}, (A.1.1)

where the equality follows from the binomial theorem: (1 +N)α = 1 + αN mod N2. Com-

puting discrete logarithms in ΓN is easy [131, 177]: given x, y ∈ ΓN , we can find β such that

y = xβ mod N2 by β = (y − 1)/(x− 1) mod N .

Another important subgroup in Z∗N2 is:

GN :={xN mod N2|x ∈ Z∗N}. (A.1.2)

GN has order φ(N). Computing discrete logarithms in GN is as hard as computing discrete

logarithms in Z∗N [131].
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We also have the modular equalities for x ∈ Z∗N2 :

xφ(N) = 1 mod N, xNφ(N) = 1 mod N2. (A.1.3)

Definition A.1.1. Let N = pq be a product of two large primes. The Decisional Com-

posite Residuosity (DCR) problem in Z∗N2 is to distinguish among the following two

distributions given N = pq:

D0 = {xN mod N2|x ∈R ZN}, D1 = {x ∈R Z∗N2},

where ∈R means drawn at random. The DCR assumption states that the advantage of any

distinguisher D, defined as the distance:

AdvDCR(D) =
∣∣Pr
[
D(y,N) = 1|y = xN mod N2, x ∈R ZN

]
−Pr

[
D(y,N) = 1|y ∈R Z∗N2

]∣∣
where probabilities are taken over all coin tosses, is a negligible function.

The name of the assumption comes from the fact a value y = xN mod N2 is called an

N ′th residue modN2, for a composite modulus N = pq.

Under the DCR assumption (i.e., distinguishing between an element from GN and an

element from Z∗N2 is hard), the Paillier scheme is semantically secure.

A.2 Ring Learning with Errors

Let κ denote the security parameter and q = q(κ) a prime. Consider the ring R =

Z[X]/〈Φ(X)〉, where Φ(x) = xN + 1 is a cyclotomic polynomial with N = 2r, for r > 2, and

the quotient ring Rq = R/qR = Zq[X]/〈Φ(X)〉. A Ring Learning with Errors (R-LWE)

term is composed of:

(ai,bi) ∈ Rq ×Rq, where bi = ai · s + ei, (A.2.1)

219



with ai
$← Rq a polynomial from Rq and the secret s

$← Rq. The error term ei ∈ Rq is

sampled independently according to a discretized Gaussian distribution.

Given polynomially many pairs (ai,bi), the Decisional R-LWE problem asks to de-

termine whether bi were constructed as in (A.2.1) or were randomly sampled from Rq.

Informally, given these pairs, it is infeasible to recover the secret s, see [156].

A.3 Proof of Proposition 2.6.1

We will show in the following proof how to construct the simulators in Definition 2.2.5 in

order to prove the privacy of the oblivious transfer variant we use.

The public key pk and secret key sk of the Paillier scheme are fixed, because the inputs

to party A are Paillier encryptions under these keys. Let us construct the view of A, with

inputs pk, [[σ0]], [[σ1]] and output [[σi]]:

VA(pk, [[σ0]], [[σ1]]) = (pk, [[σ0]], [[σ1]], r0, r1, [[i]], [[vi]], [[σi]], coins) ,

where coins are the random values used for encrypting r0 and r1 and [[−1]]. The view of

party B, that has inputs i,pk, sk and no output, is:

VB(i,pk, sk) = (i,pk, sk, [[v0]], [[v1]], coins) ,

where coins are the random values used for encrypting vi, i and 0.

Now let us construct a simulator SA that generates an indistinguishable view from

party A. SA takes as inputs pk, [[σ0]], [[σ1]], [[σi]] and generates r̃0 and r̃1 as random val-

ues in M. It then selects a random bit ĩ and encrypts it with pk and computes [[ṽi]] =

Add
(

[[σi]], cMlt(−r̃0,Add([[̃i]], [[−1]])), cMlt(r̃1, [[̃i]])
)
. It also generates c̃oins for three en-

cryptions. SA outputs:

SA(pk, [[σ0]], [[σ1]], [[σi]]) =
(

pk, [[σ0]], [[σ1]], r̃0, r̃1, [[̃i]], [[ṽi]], [[σi]], c̃oins
)
.
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First, r̃0, r̃1 and c̃oins are statistically indistinguishable from r0, r1 and coins because they

were generated from the same distributions. Second, [[̃i]] and [[ṽi]] are indistinguishable from

[[i]] and [[vi]] because AHE is semantically secure and has indistinguishable encryptions,

and because [[σi]] is a refreshed value of [[σ0]] or [[σ1]]. This means A cannot learn any

information about i, hence [[i]] looks like the encryption of a random bit, i.e., like [[̃i]].

Thus, VA(pk, [[σ0]], [[σ1]])
c≡ SA(pk, [[σ0]], [[σ1]], [[σi]]).

A simulator SB for party B takes as inputs i,pk, sk and generates two random values

from M, names them ṽ0 and ṽ1 and encrypts them. It then generates c̃oins as random

values for three encryptions. SB outputs:

SB(i,pk, sk) =
(
i,pk, sk, [[ṽ0]], [[ṽ1]], c̃oins

)
.

First, c̃oins are statistically indistinguishable from coins because they were generated

from the same distribution. Second, ṽ0 and ṽ1 are also statistically indistinguishable from

each other and from v0 and v1 due to the security of the one-time pad. Their encryptions

will also be indistinguishable. Thus, VB(i,pk, sk)
c≡ SB(i,pk, sk).
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Appendix B

Technical details for Chapter 3

B.1 Proof of Theorem 3.2.2

For simplicity of the exposition, we avoid mentioning the public data (public keys pkR,

pkDGK, number of iterations K and number of bits l) in the views, since all parties have

access to them. In what follows, we will successively discuss the views of each type of party

participating in the protocol: agents, cloud and requester. As mentioned in Definitions 2.2.5

and 2.2.6, the views of the parties during the execution of Protocol 3.2.4 are constructed

on all the inputs of the parties involved and symbolize the real values the parties get in the

execution of the protocol. We will denote by I the inputs of all the parties:

I = {bA, cA,AC ,QC , skR, skDGK}.

Furthermore, in order to construct a simulator that simulates the actions of a party, we need

to feed into it the inputs and outputs of that respective party.

Simulator for one agent Ai

Agent Ai, for every i = 1, . . . , p, has the following inputs IAi = ({bj}j=1,...,mi , {cj}j=1,...,ni).

To avoid cluttering, we will drop the subscripts j = 1, . . . ,mi and j = 1, . . . , ni. Then agent
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Ai has the following view:

VAi(I) := (bj , cj , [[bj ]], [[cj ]], coins),

where coins represent the random values used for encryption.

The agents are only online to send their encrypted data to the cloud, and they do not

have any role and output afterwards. Hence, a simulator SAi would simply generate the

random values necessary to encrypt its inputs as specified by the protocol and output the

view obtained such:

SAi := (bj , cj , [̃[bj ]], [̃[cj ]], c̃oins),

where by (̃·) we denote the quantities obtained by the simulator, which are different than

the quantities of the agents, but follow the same distribution. Hence, it is trivial to see that

the protocol is secure in the semi-honest model from the point of view of the interaction

with the agents.

Next, we want to prove the privacy of the protocol from the point of view of the interac-

tions with the cloud and the requester. We will construct a sequence of algorithms such that

we obtain that the view of the real parties after the execution of K iterations is the same as

the view of simulators that simply execute K iterations with random exchanged messages.

For the simplicity of the exposition, we will treat all our variables as scalars µ, bA, cA,

AC , QC , x∗ as scalars. The same steps are repeated for every element in the vectors, when

we consider multi-dimensional variables (recall that some of the protocols are performed

element-wise).

Simulator for the cloud C

For clarity, we will form the view of the cloud in steps, using pointers to the lines in Proto-

col 3.2.4. The view of the cloud during the execution of lines 5-7 is:

V −1
C (I) =

(
AC , QC , η, [[bA]], [[cA]], [[µ0]], coins

)
=: I−1

C , (B.1.1)
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where coins represent the random values generated for the Paillier encryption. Furthermore,

we construct the view of the cloud at iteration k = 0, . . . ,K − 1 during the execution of

an instance of Protocol 3.2.3, which will be constructed on the inputs of all parties: the

inputs I and the data the parties had at iteration k− 1. We denote the view of the cloud at

iteration k− 1 by Ik−1
C which, along with I and the view of the requester at iteration k− 1,

denoted by Ik−1
R (B.1.5), will be what the view is constructed on at iteration k.

Īk−1 := I ∪ Ik−1
C ∪ Ik−1

R , (B.1.2)

IkC := V k
C (Īk−1) =

(
Ik−1
C , [[µk]], [[µ̄k]], πk, coins1k︸ ︷︷ ︸

Protocol 3.2.1

, (B.1.3)

ρk, [[δk]],mcompk , coins2k︸ ︷︷ ︸
Protocol 2.7.2

, rk, sk, [[vk]], [[µk+1]], coins3k︸ ︷︷ ︸
Protocol 3.2.2

)
,

where mcompk are messages exchanged in the comparison protocol, and coinsjk, for j = 1, 2, 3

are the random numbers generated in Protocol j. Finally, the view of the cloud after the

execution of line 11 in Protocol 3.2.4 is:

V K
C (ĪK−1) =

(
IK−1
C , [[x∗]]). (B.1.4)

Therefore, the view of the cloud during the whole execution of Protocol 3.2.4 is:

VC(I) := V K
C (ĪK−1).

We first construct a simulator on inputs IC = {AC , QC} that mimics V −1
C (I) in (B.1.1):

(i) Generate n + m random numbers of l bits b̃A, c̃A; (ii) Generate a random positive

initial value µ̃0; (iii) Generate n+m+1 uniformly random numbers for the Paillier encryption

and denote them c̃oins; (iv) Compute [[b̃A]], [[c̃A]], [[µ̃0]]; (v) Compute η following line 6;

(vi) Output Ĩ−1
C := S−1

C (IC) =
(
AC , QC , [[b̃A]], [[c̃A]], η, [[µ̃0]], c̃oins

)
.

Since Protocol 3.2.3 is secure in the semi-honest model (Proposition 3.2.1), we know

that there exists a probabilistic polynomial-time (ppt) simulator for the functionality of
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Protocol 3.2.3 on inputs (AC , QC , [[bA]], [[cA]], η, [[µk]]) and output [[µk+1]]. However, we

need to show that we can simulate the functionality of consecutive calls of Protocol 3.2.3,

or, equivalently, on one call of Protocol 3.2.3 but on the augmented input that contains the

data of the cloud in the previous iterations. Call such a simulator SkC , that on the input

Ik−1
C mimics V k

C (Īk−1) in (B.1.3), for k = 0, . . . ,K − 1:

(i) Compute [[∇g(µk)]] and [[µ̄k]] as in lines 1-2 of Protocol 3.2.3 from [[µk]], [[bA]], [[cA]]

which are included in Ik−1
C ; (ii) Generate a random permutation π̃k and apply it on

([[0]], [[µ̄k]]) as in Protocol 3.2.1; (iii) Follow Protocol 2.7.2 and replace the incoming

messages by DGK encryptions of appropriately sized random values to obtain ρ̃k, m̃compk ;

(iv) Generate random bit δ̃k and its encryption [[δ̃k]]; (v) Generate random values r̃k and s̃k

as in line 1 in Protocol 3.2.2 and their encryptions [[r̃k]], [[s̃k]]; (vi) Obtain [[ṽk]] by choosing

between the elements of π̃k([[0]], [[µ̄k]]) + (r̃k, s̃k) according to the generated δ̃k; (vii) Com-

pute [[µ̃k+1]] as in line 8 of Protocol 3.2.2; (viii) Denote the rest of the random values used for

encryption and blinding by c̃oinsk; (ix) Output ĨkC := SkC(I
k−1
C ) = (Ik−1

C , [[µ̄k]], [[π̃k]], [[z̃k]],

m̃compk , [[δ̃k]], [[r̃k]], [[s̃k]], [[ṽk]], [[µ̃k+1]], c̃oinsk).

Finally, a trivial simulator ĨKC := SKC (IK−1
C ) for V K

C (ĪK−1) is obtained by simply per-

forming line 11 on the inputs.

Proposition B.1.1. SkC(I
k−1
C )

c≡ V k
C (Īk−1), for k = −1, . . . ,K, where Ik−2

C := IC.

Proof. For k = −1, due to the fact that the coins and the initial iterate are generated by the

simulator via the same distributions as specified in the protocol, and due to the semantic

security of the Paillier encryption, which guarantees indistinguishability of encryptions, we

obtain that V −1
C (I)

c≡ S−1
C (IC).

For 0 ≤ k ≤ K − 1, (coins1k, coins2k, coins3k)
s≡ c̃oinsk because they are generated from

the same distributions. Similarly, the ensemble distributions of (π̃k, π̃k([[0]], [[µ̄k]])) and

(πk, πk([[0]], [[µ̄k]])) are the same and π̃k, πk are independent of the other parameters. The

quantities from the DGK protocol ρ̃k
s≡ ρk and m̃compk

c≡ mcompk either due to the semantic

security of the DGK scheme, e.g. [t̃′], [δ̃R], or due to having the same distributions, e.g.

ρ̃k, δ̃C , α̃. The values in the update step r̃k, s̃k are sampled from the same distribution as
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rk, sk, and, finally, [[δ̃k]], [[ṽk]], [[µ̃k+1]]
c≡ [[δk]], [[vk]], [[µk+1]] due to the semantic security of

the Paillier encryption. Thus, Sk(Ik−1
C )

c≡ V k
C (Īk−1).

For k = K, SKC (IK−1
C )

c≡ V K
C (ĪK−1) follows from the fact that the simulator simply

executes the last part of the protocol and from the Paillier scheme’s semantic security.

Hence, we obtained that IkC
c≡ ĨkC , for k = −1, . . . ,K. The essence of the proof of

Proposition B.1.1 is that all the messages the cloud receives are encrypted. Then, thanks

to the semantic security of the Paillier and DGK schemes, the extra information included

in Īk−1 from the previous iterations cannot be used to extract other information about the

values at iteration k. From this, we also have the next corollary:

Corollary B.1.2. SkC(Ĩ
k−1
C )

c≡ SkC(I
k−1
C ), equivalent to Sk+1

C (SkC(I
k−1
C ))

c≡ Sk+1
C (V k

C (Īk−1)),

for any k = 0, . . . ,K − 1.

Finally, we construct a simulator SC(IC) for the execution of Protocol 3.2.4 and we will

show that its view will be computationally indistinguishable from VC(I). To this end, we

define the following sequence of views–obtained as hybrids between the real views and the

views of the simulators:

VC(I) = H−1(I) = V K
C (ĪK−1)

H0(I) = SKC ◦ V K−1
C (ĪK−2)

H1(I) = SKC ◦ SK−1
C ◦ V K−2

C (ĪK−3)

...

HK(I) = SKC ◦ SK−1
C ◦ . . . ◦ S0

C ◦ V −1
C (I)

SC(IC) = HK+1(IC) = SKC ◦ SK−1
C ◦ . . . ◦ S0

C ◦ S−1
C (IC).

By transitivity, H−1 and HK+1 are computationally indistinguishable if:

H−1
c≡ H0

c≡ . . . c≡ Hk
c≡ Hk+1

c≡ Hk+2
c≡ . . . c≡ HK+1.

This result follows from induction on Corollary B.1.2. In conclusion, we obtain that SC(IC)
c≡
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VC(I), which verifies that Protocol 3.2.4 achieves privacy with respect to the cloud.

Simulator for the requester R

We proceed with the same steps in order to show that the consecutive K iterations form

a protocol that is secure in the semi-honest model from the point of view of the requester.

The main difference is that for the cloud we used the semantic security of the Paillier and

DGK cryptosystems, while for the requester we will use the secrecy of the one-time pad

variant used for blinding. The symmetric encryption used in this chapter, as discussed in

Preamble 2.4, to which we refer as blinding, guarantees that a value of l bits additively

blinded by a random value of l+λ bits is statistically indistinguishable from a random value

of l + λ+ 1 bits.

The inputs and output of the requester in Protocol 3.2.4 are IR = (skR, skDGK, x
∗). As

in (B.1.2), Īk−1 represents the inputs of all the parties at iteration k, with Ī−1 = I. Then,

the view of the requester during iteration k = 0, . . . ,K − 1 is:

IkR :=V k
R(Īk−1) = (skR, skDGK, zk, δk,mcompk , coins2k︸ ︷︷ ︸

Protocol 2.7.2

, āk, b̄k, vk, coins3k︸ ︷︷ ︸
Protocol 3.2.2

). (B.1.5)

The view of the requester during the last step of the protocol is:

V K
R (ĪK−1) := (IK−1

R , [[x∗]]). (B.1.6)

As before, the view of the requester during the execution of Protocol 3.2.4 is:

VR(I) := V K
R (ĪK−1).

In order to be able to construct a simulator with indistinguishable view from the view

of the requester, we need to show that the requester is not capable of inferring new relevant

information about the private data (other than what can be inferred solely from its inputs

and outputs) although it knows the optimal solution x∗ and has access to the messages from

multiple iterations.
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Apart from the last message, which is the encryption of the optimization solution [[x∗]],

and the comparison results δk, all the values the requester receives are blinded, with different

sufficiently large values at each iteration. The requester knows that QCx∗ = Aᵀ
CµK − cA

and that µK = vK − r̄K , for some random value r̄K . However, from these two equations,

although it has access to x∗ and vK , the requester cannot infer any new information about

the private data of the agents or about µK , even when QC , AC are public, thanks to the

large enough randomization.

Let ak, bk = πk(0, µ̄k), where πk is a random permutation. From Protocol 2.7.2, the

requester receives zk which is the additively blinded value of bk − ak + 2l, and other blinded

values, denoted in (B.1.5) as mcompk . Hence, provided the blinding noises are refreshed at

every iteration, the requester cannot infer any information, as follows from Preamble 2.4. At

the end of the protocol, it receives the bit δk which is 1 if ak ≤ bk and 0 otherwise. However,

due to the uniform randomization between the order of µ̄k and 0 at every iteration for

assigning the values of ak and bk, described in Protocol 3.2.1, the requester cannot identify

the sign of µ̄k, and by induction, the sign of µ̄K−1 and magnitude of µK . This means that

having access to x∗ = xK does not bring more information about the blinded values from

the intermediary steps.

We now investigate the relation between the messages from consecutive iterations. From

the update protocol 3.2.2, we know:

vk = (ak + rk)(1− δk) + (bk + sk)δk

µk+1 = vk − rk(1− δk)− skδk = ak(1− δk) + bkδk,

The requester knows the values of vk and δk, but πk, µ̄k, rk, sk are unknown to it. Further-

more, let πk+1 be the permutation applied by the cloud at step k + 1 in Protocol 3.2.1,

unknown to the requester. Take for example the case when δk = 0 and δk+1 = 0. Let

Q̃ = I − ηACQ−1
C Aᵀ

C and E = [I 0]. Then:

vk+1 = ak+1 + rk+1 = Eπk+1(0, Q̃(vk − rk)− ηACQ−1
C cA − ηbA) + rk+1.
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The above equation shows the requester cannot construct vk+1 from vk. Similar equations

arise when considering the other values for δk and δk+1. This guarantees that an integer ṽik

obtained by selecting uniformly at random from (2l+λ, 2l+λ+1)∩ZN will have the distribution

statistically indistinguishable from vik. Moreover:

µk+2 = max{0, Q̃µk+1 − ηACQ−1
C cA − ηbA}

= max{0, Q̃(vk − rk(1− δk)− skδk)− ηACQ−1
C cA − ηbA}

= vk+1 − rk+1(1− δk+1)− sk+1δk+1.

Since the blinding noise is different at each iteration and uniformly sampled, the requester

cannot retrieve µk+2 from vk and vk+1. In short, if the requester receives some random

values ˜̄ak, ˜̄bk ∈ (2l+λ, 2l+λ+1) ∩ ZN instead of ak + rk and bk + sk respectively, it would not

be able to distinguish the difference. Similar arguments hold for the blinded messages ci

from the comparison protocol 2.7.1.

Hence, by processing multiple iterations, the requester can only obtain functions of the

private data that involve at least one large random value, which does not break privacy.

We now build a simulator SR that applies the steps of the protocol on randomly generated

values. As before, since Protocol 3.2.3 is secure in the semi-honest model (Proposition 3.2.1),

we know that there exists a ppt simulator for the functionality of Protocol 3.2.3 on inputs

I−1
R = {skR, skDGK}. However, we need to show that we can simulate the functionality

of consecutive calls of Protocol 3.2.3, or, equivalently, on one call of Protocol 3.2.3 but on

inputs (IkR, x
∗). Call such a simulator SkR, that on the inputs (IkR, x

∗) should output a

view that is statistically indistinguishable from V k
R(Īk−1) in (B.1.5), for k = 0, . . . ,K − 1.

We already showed that although the requester has access to the output x∗ and to blinded

messages from all the iterations of Protocol 3.2.4, it cannot extract information from them

or correlate the messages to the iteration they arise from, so x∗ will only be relevant in the

last simulator:

(i) Generate a λ + l-length random integer ρ̃k and add 2l and obtain z̃k; (ii) Generate
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a random bit δ̃k; (iii) Choose a random bit δ̃R. If it is 0, then generate l nonzero values

of 2t bits, otherwise generate l − 1 nonzero random values and one 0 value. Those will be

the m̃compk (see Protocol 2.7.1); (iv) Generate random integers of length l + λ + 1 ˜̄ak and˜̄bk; (v) Compute ṽk according to δ̃k; (vi) Denote all Paillier and DGK generated coins by

c̃oins; (vii) Output ĨkR := SkR(Ik−1
R , x∗) = (Ik−1

R , z̃k, δ̃k, m̃compk , ˜̄ak, ˜̄bk, ṽk, c̃oins).
Finally, a trivial simulator ĨKR := SKR (IK−1

R , x∗) for V K
R (ĪK−1) is obtained by simply

generating an encryption of x∗ and outputting: (IK−1
R , [̃[x∗]]).

Proposition B.1.3. SkR(Ik−1
R , x∗)

c≡ V k(Īk−1), for k = 0, . . . ,K.

Proof. For 0 ≤ k ≤ K − 1, (coins2k, coins3k)
s≡ c̃oinsk because they are generated from the

same distributions. Similarly, z̃k
s≡ zk because ρ̃k

s≡ bk−ak+ρk. From the discussion above,

the same holds for m̃compk and their counterparts mcompk . Furthermore, (δ̃k, ˜̄ak, ˜̄bk, ṽk) are

statistically indistinguishable from (δk, āk, b̄k, vk) due to the way they are generated, and ṽk

being consistent with δ̃k. Thus, Sk(Ik−1
R , x∗)

c≡ V k(Ik−1
R ∪ I).

For k = K, SK(IK−1
R , x∗)

c≡ V K(ĪK−1) trivially follows from the fact that both [[x∗]]

and [̃[x∗]] are decrypted in x∗.

Hence, we obtained that ĨkR
c≡ IkR, for k = 0, . . . ,K. The essence of the proof of

Proposition B.1.3 is that all the messages the requester receives are blinded with large

enough random noise and the comparison bits are randomized. This results in the messages

being statistically indistinguishable from random values of the same length, which means

that the extra information included in (Ik−1
R , x∗) from the previous iterations cannot be used

to extract other information about the current values at iteration k. The next corollary then

follows from Proposition B.1.3:

Corollary B.1.4. SkR(Ĩk−1
R , x∗)

c≡ SkR(Ik−1
R , x∗), equivalent to Sk+1

R (SkR(Ik−1
R , x∗), x∗)

c≡

Sk+1
R (V k(Īk−1), x∗), for any k = 1, . . . ,K − 1.

Finally, we construct a simulator SR(IR) for the execution of Protocol 3.2.4 and we show

that its view will be statistically indistinguishable from VR(I). We define the following
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sequence, from which we drop the input x∗ to the simulators to not burden the notation:

VR(I) = H0(I) = V K
R (ĪK−1)

H1(I, x∗) = SKR ◦ V K−1
R (ĪK−2)

H2(I, x∗) = SKR ◦ SK−1
R ◦ V K−2

R (ĪK−3)

...

HK(I, x∗) = SKR ◦ SK−1
R ◦ . . . ◦ S1

R ◦ V 0
R(I)

SR(IR) = HK+1(IR) = SKR ◦ SK−1
R ◦ . . . ◦ S1

R ◦ S0
R(IR)

By transitivity, H0 and HK+1 are statistically indistinguishable if:

H0
c≡ H1

c≡ . . . c≡ Hk
c≡ Hk+1

c≡ Hk+2
c≡ . . . c≡ HK+1.

The result follows from induction on Corollary B.1.4. In conclusion, we obtain that SR(IR)
c≡

VR(I) which verifies that Protocol 3.2.4 achieves privacy with respect to the requester.

The proof of Theorem 3.2.2 is now complete.

B.2 Proof of Theorem 3.2.3

We will now show that any coalition consistent with the setup of Propositions 3.2.6, 3.2.7

and with the assumption that the cloud and requester do not collude does not gain any new

information about the private data of the honest agents, other than what can be inferred

solely from the inputs and outputs of the coalition. As mentioned in Section 3.2.3.6, the

agents in a coalition only add their inputs to the view of the coalition, but do not have any

messages in the protocol.

Simulator for the cloud C and p̄ agents Ai

Consider the coalition between a set of agents Ai=1,...,p̄ and the cloud C, which has the inputs

({bi}i=1,...,m̄, {ci}i=1,...,n̄,AC ,QC) and no output from the execution of Protocol 3.2.4. Since

p̄ < p, the coalition is not able to compute µ1 by itself, and the semantic security of the
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Paillier cryptosystem is again enough to ensure the privacy of the rest of the sensitive data.

A simulator for this coalition can be constructed following the same steps as in the simulator

for the cloud on the augmented inputs defined above, from the fact that every value the

cloud receives is encrypted by a semantically secure cryptosystem.

Simulator for the requester R and p̄ agents Ai

Consider the coalition between a set of agents Ai=1,...,p̄ and the requester R, which has

the inputs ({bi}i=1,...,m̄, {ci}i=1,...,n̄, skR, skDGK) and output (x∗) from the execution of Pro-

tocol 3.2.4. If both matrices QC ,AC are public, if there exists i ∈ {1, . . . , p̄} such that

aᵀ
i x
∗ < bi, the coalitions finds out µ∗i = 0, which comes from public knowledge in the KKT

conditions (3.2.15). From this, the coalition is able to find some coins of the cloud: rK

and sK associated to element i. However, these values are independent from the rest of the

parameters and do not reveal any information about the private inputs of the parties. Apart

from this, the coalition is not able to compute any private data of the honest parties from

the execution of the protocol, due to the secure blinding. A simulator for this coalition can

be build by following the same steps as described in the simulator for the requester on the

augmented inputs defined above.

The proof is now complete.

B.3 Proof of Proposition 3.2.6

The coalition has access to the following data, which is fixed: AC ,QC ,x
∗, {bi}1,...,m̄, {ci}i,...,n̄.

Proof of (1). We need to address two cases: the non-strict satisfaction of the constraints

and the equality satisfaction of the constraints.

(I) Suppose there exists a solution {bi}m̄+1,...,m and {ci}n̄+1,...,n and µ to the KKT conditions

such that aᵀ
i x
∗ < bi for some m̄+ 1 ≤ i ≤ m. In particular this implies that µi = 0. Define

c′ := cA, µ′ := µ and b′ such that b′j := bj for all j 6= i and b′i to take any value b′i ≥ aᵀ
i x
∗.

The new set of points (b′, c′,µ′) is also a solution to the KKT conditions, by construction.

(II) Alternatively, suppose there exists a solution {bi}m̄+1,...,m and {ci}n̄+1,...,n and µ to the

KKT conditions such that aᵀ
jx
∗ = bj for all j = m̄+ 1, . . . ,m. Consider there exists a vector
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γ that satisfies γ � 0 and Aᵀ
21γ = 0. Compute ε ≥ 0 as: ε = min

(
µk
γk

)
γk>0,k=m̄+1,...,m

.

Then, we construct µ′ := µ− ε
[
0
γ

]
that satisfies µ′ � 0 and µ′i = 0 for some m̄+ 1 ≤ i ≤ m

that is the argument of the above minimum.

Furthermore, define c′ := cA + ε
[

0
Aᵀ

22γ

]
and b′ such that b′j := bj for all j 6= i and b′i

to be any value b′i > bi. Then (b′, c′,µ′) is also a solution to the KKT conditions. More

specifically, the complementarity slackness condition holds for all j = m̄+ 1, . . . ,m:

µ′j (aᵀjx
∗ − b′j) = µ′j(a

ᵀ
jx
∗ − bj︸ ︷︷ ︸
=0

) = 0, j 6= i

µ′i︸︷︷︸
=0

(aᵀi x
∗ − b′i) = 0, j = i.

(B.3.1)

Then we can check the gradient condition:

QCx
∗ + Aᵀ

Cµ
′ + c′ = QCx

∗ + Aᵀ
C

µ− ε

0

γ


+

c + ε

 0

Aᵀ
22γ




= QCx
∗ + Aᵀ

Cµ + cA = 0.

(B.3.2)

Hence, b′ 6= bA satisfies the KKT conditions and the coalition cannot uniquely deter-

mine bA.

Proof of (2). Consider a solution {bi}m̄+1,...,m and {ci}n̄+1,...,n and µ to the KKT condi-

tions. For some ε > 0 define µ′ := µ + ε
[
0
γ

]
and c′ := cA − ε

[
0

Aᵀ
22γ

]
. Define b′ such that

for all j, it holds that b′j = aᵀ
jx
∗. Then (b′, c′,µ′) is also a solution to the KKT conditions.

Specifically, it follows that µ′ ≥ 0. Moreover the complementarity slackness condition holds

by construction of b′, and as before the gradient condition holds. Hence, c′ 6= cA satisfies

the KKT solution, and the coalition cannot uniquely determine cA.

B.4 Proof of Lemma 3.3.3

Let yk := xk + wk−1. Manipulating (3.3.3), we get:

yk+1 = (I− ρM−1)yk + (2ρM−1 − I)zk + n = ρM−1yk + (2ρM−1 − I)(zk − yk) + n.
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The expression of the thresholding operator gives the following bound: −λ/ρ ≤ zki − yki ≤

λ/ρ, for i = 1, . . . , n. Then, using the triangle inequality and submultiplicative property:

‖yk+1‖2 ≤ ‖ρM−1yk‖2 + ‖(2ρM−1 − I)(zk − yk)‖2 + ‖n‖2

≤ ‖ρM−1‖2‖yk‖2 +
√
nλ/ρ‖2ρM−1 − I‖2 + ‖n‖2.

We select z0 = w0 = 0, compress the geometric progression and use ‖yk+1‖∞ ≤ ‖yk+1‖2,

getting the bounds in (3.3.4).

B.5 Proof of Theorem 3.3.4

We use two theoretical results in the proof. First, we need the underlying homomorphic

encryption scheme, CKKS, to be semantically secure, in order to ensure that an adversary

that does not have access to the private key of the scheme cannot decrypt or even distinguish

ciphertexts encrypting different values. This has been proven in [62] and assumes that the

Decisional Ring Learning with Errors problem is computationally hard [156]. We select

the scheme parameters to ensure that this problem is hard in practice, specifically that it

achieves a security level of 128 bits, according to the Learning with Errors estimator of [4].

Second, we need that the interactive part of the multi-party CKKS scheme, in our case, the

distributed bootstrapping protocol, preserves the indistinguishability of the ciphertexts and

does not reveal the private key. This has been proven in [96] and assumes that at least one

servers is honest and that the masks used in DBoot are statistically hiding. Our adversarial

model indeed considers that at most K − 1 servers can be corrupted and we choose the

masks to be 80 bits larger than the messages, while ensuring enough levels such that the

result does not overflow.

In Protocol 3.3.1, the data of the client is sent encrypted to the servers. Since the servers

cannot all collude in order to reveal the private key, and no information about the messages

underlying is leaked by viewing or computing on the respective ciphertexts, Protocol 3.3.1

achieves client data confidentiality.
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Appendix C

Technical details for Chapter 4

C.1 Proof of Theorem 4.3.2

We are going to treat two cases: I, the adversary does not corrupt the aggregator and II,

the adversary corrupts the aggregator:

Pr[b′ = b] =
1

2
Pr[b′ = b|i /∈ C] +

1

2
Pr[b′ = b|i ∈ C].

We will consider the stronger case where S∗ = U∗; the weaker case where S∗ ⊆ U∗

follows.

I. a /∈ C. From the compromise queries, the adversary holds the following information

{κ,pk, {si(t)}i∈C , {wi}i∈C}t∈[T ] and
∑

i∈U si(t) = −
∑

i∈C si(t), for all t ∈ [T ]. From the

encryption queries at time t, the adversary knows {ci(t) = E(wAi xi(t)) + si(t))}i∈E(t). Then,

the adversary chooses t∗ ∈ T and a series of {x0
i (t
∗)}i∈U∗ and {x1

i (t
∗)}i∈U∗ and receives from

the challenger {ci(t∗) = E(wA,bi xbi(t
∗)) + si(t

∗))}i∈U∗ .

Because the adversary doesn’t have the secret key of the Paillier scheme and does not

have the individual secrets of the uncorrupted agents, the following holds, where η1(κ), η2(κ)
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are negligible functions, according to Theorems 2.5.2 and 2.4.1:

Pr[A breaks Paillier scheme] ≤ η1(κ),

Pr[A breaks secret sharing] ≤ η2(κ),

Pr[b′ = b|i /∈ C] ≤ 1

2
+ η1(κ)η2(κ).

(C.1.1)

II. a ∈ C. From the compromise queries, the adversary holds the following information ∀t ∈

[T ]: {κ,pk, {si(t)}j∈C , {wi}i∈C , sk}t∈[T ], and
∑

i∈U si(t) = −
∑

i∈C si(t). From the encryp-

tion queries, and after using sk to decrypt, the adversary knows {pi(t) = wAi x(t)+si(t)}i∈E(t).

Then, the adversary chooses t∗ ∈ T and a series of {x0
i (t
∗)}i∈U∗ and {x1

i (t
∗)}i∈U∗ , such

that
∑

i∈U∗ w
A,0
i x0

i (t
∗) =

∑
i∈U∗ w

A,1
i x1

i (t
∗) and receives from the challenger {ci(t∗) =

E(wA,bi xbi(t
∗)) + si(t

∗)}i∈U∗ . The adversary uses the secret key of the Paillier scheme to

decrypt the individual ciphertexts and obtains pi(t∗) = wA,bi xbi(t
∗) + si(t

∗) mod N , for

i ∈ U∗. Because the secret shares of zero are different for each time t 6= t∗, the adversary

cannot infer information about the challenge query from the previous encryption queries.

Then, the probability that the adversary wins is the probability that the adversary breaks

secret sharing:

Pr[A breaks secret sharing] ≤ η2(κ),

Pr[b′ = b|i ∈ C] ≤ 1

2
+ η2(κ).

(C.1.2)

From (C.1.1) and (C.1.2): AdvpWSAh(A) ≤ η2(κ).

C.2 Further discussion on the secret shares in pWSAh

In this part, we will discuss some details from the pWSAh scheme in Section 4.3.2. There, we

require that si(t) ∈ ZN . With a small probability, si(t) ∈ ZN \Z∗N , i.e., it is a multiple of p or

q. Say si(t) is a multiple of q. This means that psi(t) = 0 mod N . In that case, a strategy

that an adversary that has corrupted the aggregator can try is to multiply wixi(t) + si(t)

by p and then try to find if there is an element in ZN which multiplied by p gives the same
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answer, which has complexity approximately O(p):

γi(t) := wixi(t) + si(t) mod N

pγi(t) = pwixi(t) mod N, if si(t) mod q = 0.

Then, the probability that the adversary decrypts wixi(t) is:

Pr
[
b′ = b|i ∈ C

]
=
N − φ(N)

N

1

O(p) +O(q)
=
p+ q

N

1

O(p) +O(q)
≤ 1

N
,

which is a negligible function in the security parameter κ.

The above bound holds when plaintexts are from ZN , and not only from a smaller

subgroup. In this section, we made no assumptions about the local data. However, in

Section 4.4.2.3 we need plaintexts to be on l bits, where l will almost never be larger than

128, which is less than the number of bits of p and q. Then, solving pz = γ mod N for

some z on l bits and known γ, is easy – it can essentially be solved in Z, as there is no

wrap-around. In this case:

Pr
[
b′ = b|i ∈ C

]
≤ p+ q

N
≈ 2

min(p, q)
.

The aggregator could try the same trick on all combinations of partial sums from the

agents. In this case, the probability that the aggregator learns any partial information is

2/(min(p, q) −M). Nevertheless, for the current acceptable value of bit size for N , which

is 2048 bits, this scheme would still give around 1000 bits of security, which is substantially

larger than what the Decisional Composite Residue gives, or even the possible values the

local data can take.

Nevertheless, we can introduce an extra round of communication to ensure si(t) ∈ Z∗N :

agent i ∈ [M ] verifies if gcd(si(t), N) = 1 and if not, it changes the values σii(t), σai(t) so that

(4.3.4) is still satisfied and gcd(si(t), N) = 1, then sends the new σai(t) to the aggregator.

This works because sa(t) is not used for masking, so it is not required to be in Z∗N .
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C.3 Technical details for packed pWSA

We detail the steps for packing the pWSA scheme from Section 4.4.2.5 and depict the bit

gains due to the operations performed on the packed columns in Figure C.1.

Figure C.1: The operations performed on the packed columns and the corresponding number of bits
of the result, where on the third line ζi(t) =

[
ζ

[1]
i (t) 0 . . . 0 ζ

[2]
i (t) . . . ζ

[na]
i (t) 0 . . . 0

]
and ζ

[k]
i (t) =

s
[k]
i (t) + 2γz

[k]
i (t), for k ∈ [na].

1) Prepare the values to be packed as per (4.4.2), (4.4.3), with γ to be determined later.

2) Construct the packed plaintext pci ; encrypt it in E(Wc
i ):

pci =

na∑
k=1

W̃
[kc]
i 2(k−1)δ.

3) Multiply the encrypted column E(Wc
i ) by a pre-processed scalar x̃

[c]
i (t). One slot of

the ciphertext will now contain (C.3.1) and will be represented on 2γ + 2 bits:

(
W

[kc]
i + 2γ

)(
x

[c]
i (t) + 2γ

)
= W

[kc]
i x

[c]
i (t) + 22γ + 2γ

(
W

[kc]
i + x

[c]
i (t)

)
. (C.3.1)

From (C.3.1), one can retrieve the desired result W
[kc]
i x

[c]
i (t) by taking the lefthand side
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modulo 2γ . But one can also obtain:

W
[kc]
i + x

[c]
i (t) =

⌊
(W̃

[kc]
i x̃

[c]
i (t)− 22γ)//2γ

⌋
, (C.3.2)

which can reveal intermediate information to the decryptor. In order to avoid this infor-

mation leakage, we need to artificially add some noise z
[kc]
i (t) that still allows retrieving

W
[kc]
i x

[c]
i (t). It is more efficient to add this noise in step 5), after summing over ni.

4) Sum the ni ciphertexts to output a ciphertext that contains the vector result of the

matrix-vector multiplication product.

5) For each slot k ∈ [na], an agent i ∈ [M ] selects z
[k]
i (t) ∈ (0, 2l+1+λ+dlog2 nie), such that

a statistical security of λ bits is guaranteed for the private value
∑ni

c=1 W
[kc]
i +x

[c]
i (t). Then,

each agent constructs its ciphertext ci(t) by adding the secret shares of zero such that the

remaining private value
∑ni

c=1 W
[kc]
i x

[c]
i (t) is concealed:

ci(t) := s
[k]
i (t) + 2γz

[k]
i (t) +

ni∑
c=1

W̃
[kc]
i x̃

[c]
i (t)

(C.3.1)
= ni2

2γ + s
[k]
i (t)+

+

ni∑
c=1

W
[kc]
i x

[c]
i (t) + 2γ

(
z

[k]
i (t) +

ni∑
c=1

W
[kc]
i + x

[c]
i (t)

)
. (C.3.3)

Due to the masking with 2γz
[k]
i (t), we can reduce the size of the mask s

[k]
i (t). More specifi-

cally, s
[k]
i (t) can be sampled uniformly at random from (0, 2γ), because it acts like a one-time

pad (perfect secrecy) on
∑ni

c=1 W
[kc]
i x

[c]
i (t) once the decryptor takes equation (C.3.3) modulo

2γ . The whole quantity s
[k]
i (t) + 2γz

[k]
i (t) is used for masking, but we only need to ensure

that
∑

i∈[M ]∪a s
[k]
i (t) = 0.

6) The aggregator obtains c(t) by taking the product of all ciphertexts ci(t) it received.

7) The aggregator decrypts the ciphertext c(t), adds its own secret share of zero sa(t).

It then retrieves the na elements of x̃a(t) by recursively taking the quotient and rest by 2δ,

and from each resulting element, it obtains the elements of xa(t) by taking modulo 2γ and

dividing by 22lf .

We now compute the number of bits and corresponding padding one slot can have such
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that no overflow occurs during the private weighted sum aggregation. We assume that the

values of ni, for i ∈ [M ] are similar and define n := max
i∈[M ]

ni. The value that is packed in

slot k ∈ [na] after step 6) is:

M∑
i=1

(
s

[k]
i (t) + 2γz

[k]
i (t) +

ni∑
c=1

W̃
[kc]
i x̃

[c]
i (t)

)
< 2δ,

from which we obtain that:

δ > max
(
γ + 1, l + λ

)
+ dlog2 ne+ dlog2Me+ γ + 2.

For the correct retrieval of the desired result, we require that:

M∑
i=1

ni∑
c=1

W
[kc]
i x

[c]
i (t) < 2γ . (C.3.4)

From (C.3.4), we choose γ = 2l + 1 + dlog2 ne+ dlog2Me and:

δ = max
(
l + 2 + dlog2 ne+ dlog2Me, λ

)
+ 3l + 4 + 2(dlog2 ne+ dlog2Me). (C.3.5)

Proof of Theorem 4.4.1. The correctness follows from the appropriate padding and packing

to avoid overflow, as stated in (C.3.5). The aggregator obliviousness proof follows from

Theorem 4.3.2, along with the intermediate values masking from (C.3.3).

C.4 Proof of Theorem 4.5.3

Correctness: The aggregator obtains the following:

xa(t) = Dsk

(
Ge(t) mod q

)
= Dsk

(
G (c(t) + sᵀaAt) mod q

)
(C.4.1)

= Dsk

(
G
( ∑
i∈[M ]

ci(t) + sᵀaAt

)
mod q

)
(C.4.2)

= Dsk

(
G
( ∑
i∈[M ]

sᵀiAt + ei(t)
ᵀ + sᵀaAt

)
mod q

)
(C.4.3)
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= Dsk

(
G
( ∑
i∈[M ]

ei(t)
ᵀ
)

mod q
)

(C.4.4)

= Dsk

( ∑
i∈[M ]

Gei(t)
ᵀ mod q

)
= Dsk

( ∑
i∈[M ]

yi

)
(C.4.5)

= Dsk

( ∑
i∈[M ]

Epk (wixi(t))
)

=
∑
i∈[M ]

wixi. (C.4.6)

The correctness of the result follows from construction: (C.4.4) follows from (C.4.3)

because the keys were selected such that sa = −
∑

i∈[M ] si, (C.4.5) follows from (C.4.4) due

to the linearity of G, and the correct transition from the transition from (C.4.1) to (C.4.6)

is allowed by the fact that the PAHE scheme satisfies Dsk(c1 + c2) = Dsk(c1) + Dsk(c2).

From the setup phase, the adversary learns the public parameters At∈[T ], q, λ, κ, σ,M,

gᵀ,pk and constructs G.

We treat two cases: I, the adversary does not corrupt the aggregator and II, the adversary

corrupts the aggregator:

Pr[b′ = b] =
1

2
Pr[b′ = b|a /∈ C] +

1

2
Pr[b′ = b|a ∈ C].

From the compromise queries, the adversary holds the following information:

I. a /∈ C. {si}i∈C , {Epk(wi)}i∈C and
∑

i∈U si = −
∑

i∈C si.

II. a ∈ C. sk, {si}i∈C , {wi}i∈C and
∑

i∈U si = −
∑

i∈C si.

Because At is different at every time step, the adversary cannot obtain meaningful

information from ci(t1)− ci(t2).

From the encryption queries at time t, for which the adversary submits (i ∈ E(t), t, wAi ,

xi(t)), where wAi = {wA,0i , wA,1i }, the adversary knows {ci(t) = sᵀiAt + ei(t)
ᵀ}i∈E(t), such

that Gei(t) mod q ≡ Epk(wAi x
A
i (t)) is satisfied for i ∈ E(t). Because PAHE is not a de-

terministic encryption, the adversary cannot recover information about si from computing

ci(t)−G†Epk(wAi x
A
i (t)) 6= sᵀiAt.

In the challenge phase, the adversary chooses t∗ ∈ T and a series of {x0
i (t
∗)}i∈U∗ and

{x1
i (t
∗)}i∈U∗ , wA,0i and wA,1i .
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II. a ∈ C.
∑

i∈U∗ w
A,0
i x0

i (t
∗) =

∑
i∈U∗ w

A,1
i x1

i (t
∗).

The challenger picks a random bit b and sends {ci(t∗) = sᵀiAt∗ + ebi(t
∗)

ᵀ}i∈U∗ to the

adversary, such that Gebi(t
∗) mod q ≡ Epk(wA,bi xbi(t

∗)) holds for i ∈ U∗. The adversary does

not have the individual secrets of the uncorrupted agents so it cannot recover the individual

error terms or keys from {ci(t∗)}i∈U∗ due to the hardness of A-LWE.

The adversary can sum all the ciphertexts from the encrypted queries and uncompro-

mised set at time t∗, along with the keys from the compromised queries:

∑
i∈E(t∗)

sᵀiAt + ei(t
∗)ᵀ +

∑
i∈U(t∗)

sᵀiAt + ebi(t)
ᵀ +

(∑
i∈C

si

)ᵀ
At∗ =

∑
i∈E(t∗)

ei(t
∗)ᵀ +

∑
i∈U(t∗)

ebi(t)
ᵀ.

(C.4.7)

Multiplying by G, the adversary obtains:

y = Epk

( ∑
i∈E(t∗)

wAi x
A
i (t∗) +

∑
i∈U(t∗)

wA,bi xbi(t
∗)

)
. (C.4.8)

II. a ∈ C. The adversary uses the aggregator’s key sk to decrypt (C.4.8) and obtains p(t∗) =∑
i∈E(t∗)w

A
i x
A
i (t∗) +

∑
i∈U(t∗)w

A,b
i xbi(t

∗). Because
∑

i∈U∗ w
A,0
i x0

i (t
∗) =

∑
i∈U∗ w

A,1
i x1

i (t
∗),

p(t∗) does not reveal any information.

Then, for both I and II, the probability that the adversary wins is the probability that

it solves the A-LWE problem:

Pr[A solves A-LWE problem ] ≤ η(λ),

Pr[b′ = b|i /∈ C] ≤ 1

2
+ η(λ), Pr[b′ = b|i ∈ C] ≤ 1

2
+ η(λ).

where η(λ) is a negligible function, according to Theorem 2 in [88], Theorem 1 in [28] and

the semantic security of the PAHE scheme.

This results in AdvpWSA(A) ≤ η(λ).
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Appendix D

Technical details for Chapter 5

D.1 Further details on LabHE

Let fid : M → M be the identity function and τ ∈ {0, 1}∗ be a label. Denote the iden-

tity program for input label τ by Iτ = (fid, τ). Any labeled program P = (f, τ1, . . . , τn)

(as in Definition 2.5.5) can be expressed as the composition of n identity programs P =

f(Iτ1 , . . . , Iτn).

The definitions of correctness, semantic security, circuit privacy and context-hiding are

taken from [27, 55].

Definition D.1.1. (Correctness) A multi-user Labeled Homomorphic Encryption scheme

correctly evaluates a family of functions F if for all honestly generated keys (mpk,msk)
$←

ˆInit(1λ), all user keys (upkk,uskk)
$← ˆKeyGen(mpk), k ∈ [l], for all f ∈ F , all labels

τ1, . . . , τt ∈ L, messages m1, . . . ,mt ∈ M, any Ci ← Ê(mpk, uskji , τi,mi), ∀i ∈ [t], ji ∈ [l]

and g̃ ← (f, ˆEval1(mpk,msk,upk, (f, τ1, . . . , τt))):

Pr
[
D̂(msk,upk,P, ˆEval2(mpk, g̃, C1, . . . , Ct)) = f(m1, . . . ,mt)

]
> 1− negl(λ),

where the probability is taken over the random choices.

Proof. (Theorem 5.1.2) The proof can be easily extended from the proof of correctness

of LabHE. The correctness of the eLabHE scheme holds as long as f(m1, . . . ,mt) ∈ M
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and
∏
i∈[d] bi ∈ M, where d is the degree of f . Consider ciphertexts produced by the Ê

primitive. For every (τ,m) ∈ L ×M, the encryption primitive yields Ê(mpk,upk, τ,m) →

C = (a, β), where a = m − fid(F (usk, τ)) and it follows by the correctness of AHE that

m← D̂(msk, Iτ , C).

Consider ciphertexts produced by ˆEval2. For i ∈ [t], consider any t labeled programs

Pi =
(
fi, τ

(i)
1 , . . . , τ

(i)
ti

)
and t ciphertexts Ci such that mi ← D̂(msk, usk,Pi, Ci). Then,

for any f ∈ F , we want to evaluate f(P1, . . . ,Pt) =: P∗ on ciphertexts C1, . . . , Ct. For

that we run ˆEval1 and obtain g̃ ←
(
f, ˆEval1

(
mpk,msk,upk,

{
τ

(ij)
1 , . . . , τ

(ij)
tij

}
j∈[t]

))
. Denote

the resulting ciphertext as C ← ˆEval2(mpk, g̃, C1, . . . , Ct). By construction, a ciphertext

Ci is either (mi − bi, [[bi]]) or [[mi − bi]], with bi ← fi
(
F
(
usk, τ

(i)
1

)
, . . . , F

(
usk, τ

(i)
ti

))
, ob-

tained from ˆEval2 applied to the inputs of Pi and the corresponding f̃i ←
(
fi, ˆEval1(mpk,

msk,upk, τ
(i)
1 , . . . , τ

(i)
ti

)
)
, i ∈ [t]. It is clear that g̃ will contain f̃i for i ∈ [t]. After the

evaluation of f , we obtain the ciphertext C that is either (f(m1, . . . ,mt) − f(b1, . . . , bt),

[[f(b1, . . . , bt)]]) or [[f(m1, . . . ,mt) − f(b1, . . . , bt)]]. Then, by construction of D̂, correct-

ness of AHE and using P∗ =
(
f1

(
I
τ
(1)
1

, . . . , I
τ
(1)
t1

)
, . . . , ft

(
I
τ
(t)
1

, . . . , I
τ
(t)
tt

))
, we obtain the

correctness of the eLabHE scheme, i.e., D̂(msk,usk,P∗, C)← f
(
m1, . . . ,mt

)
.

The definition of semantic security [107], [105, Ch. 5] is adapted for labeled homomorphic

encryption schemes in [27]:

Definition D.1.2. (Semantic security) Let eLabHE = ( ˆInit, ˆKeyGen, Ê, ˆEval1, ˆEval2, D̂) be

a multi-user labeled homomorphic encryption scheme and A be a PPT adversary. Consider

the following experiment where A is given access to an oracle Ê(mpk,usk, ·, ·), for usk =

(usk1, . . . ,uskl) that on input a pair (τ,m) outputs Ê(mpk,usk, τ,m):

ExpeLabHE,A(λ) : b
$← {0, 1}; (mpk,msk)

$← ˆInit(1λ)

(upk,usk)
$← ˆKeyGen(mpk)

(m0, τ
∗
0 ,m1, τ

∗
1 )

$← AÊ(mpk,usk,·,·)(mpk, upk)

C
$← Ê(mpk, usk, τ∗b ,mb)
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b′ ← AÊ(mpk,usk,·,·)(C)

If b′ = b return 1. Else, return 0.

We say A is a legitimate adversary if it queries the encryption oracle on distinct labels

(each label τ is never queried more than once) and never on the two challenge labels τ∗0 , τ∗1 .

We define the adversary’s advantage as AdveLabHE,A(λ) = Pr[ExpeLabHE,A(λ) = 1] − 1
2 .

Then, we say that eLabHE has semantic security if for any PPT legitimate algorithm A,

the following holds AdveLabHE,A(λ) = negl(λ).

Proof. (Theorem 5.1.3) The scheme eLabHE has the same encryption and decryption prim-

itives as LabHE and identically looking ciphertexts. Hence, the proof follows the semantic

security of the LabHE scheme, which depends on the semantic security of the underlying

AHE scheme and on the pseudorandomness of F .

Semantic security is equivalent to ciphertext indistinguishability [107], [105, Ch. 4], so

we can write it as:

SD[Ê(mpk,usk, τ,m), ˆSim(1λ,mpk,usk)] ≤ negl(λ),

where ˆSim is a PPT simulator that simply outputs a LabHE (or AHE) encryption of zeros.

The same can be written for the secret sharing scheme which has perfect secrecy, with ˆSim

outputting a random value sampled fromM.

Definition D.1.3. (Context-hiding) A multi-user labeled homomorphic encryption scheme

satisfies context-hiding for a family of functions F if there exists a PPT simulator ˆSim and a

negligible function negl(λ) such that the following holds: for any λ ∈ N, any pair of master

keys mpk,msk
$← ˆInit(1λ), any l user keys (upkk,uskk)

$← ˆKeyGen(mpk), k ∈ [l], any

function f ∈ F with t inputs, any tuple of messages m1, . . . ,mt ∈ M, labels τ1, . . . , τt ∈ L,

and ciphertexts Ci
$← Ê(mpk,uskji , τi,mi), i ∈ [t] and ji ∈ [l]:

SD[ ˆEval2(mpk, f̃ , C1, . . . , Ct), ˆSim(1λ,msk, upk,P,m)] ≤ negl(λ),
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where we defined P = (f, τ1, . . . , τt), m = f(m1, . . . ,mt), f̃ = (f, ˆEval1(mpk,msk,upk,P)).

Context-hiding describes the property that a party that decrypts a ciphertext C as

m ← D̂(msk, upk,P, C), with P = (f, τ1, . . . , τt), does not find out anything about the

inputs m′1, . . . ,m′t, except for the fact that m = f(m′1, . . . , m
′
t). In order to prove that

eLabHE is context-hiding, we need to make use of the concept of circuit privacy.

For any admissible linear function f , we can abstract the evaluation primitives in AHE

as Eval(pk, f, C1, . . . , Ct). We will use this notation when defining circuit privacy:

Definition D.1.4. (Circuit privacy) A homomorphic encryption scheme is circuit private

for a family of circuits F if there exists a PPT simulator ˆSim and a negligible function

negl(λ) such that the following holds. For any λ, any pair of keys (pk, sk)
$← KeyGen(1λ),

any circuit f ∈ F , any tuple of messages m1, . . . ,mt ∈ M and m = f(m1, . . . ,mt) and

ciphertexts C1, . . . , Ct satisfying ∀i ∈ [t] : Ci
$← E(pk,mi), then:

SD
[
Eval(pk, f, C1, . . . , Ct), Sim(1λ,pk,m)

]
≤ negl(λ).

The difference between circuit privacy and context-hiding is that in context-hiding, the

decryptor has access to the function, whereas in circuit privacy, it does not.

Proof. (Theorem 5.1.4) The proof relies on the circuit privacy of the underlying AHE

scheme. Let Sim be the simulator for the circuit privacy of AHE. A simulator ˆSim(1λ,

msk,upk, (f, τ1, . . . , τt),m) computes for upk = (upk1, . . . , upkl), uskj ← D(msk, upkj),

j ∈ [l], and bi ← F (uskji , τi), i ∈ [t]. Then, it computes b ← f(b1, . . . , bt). Notice that

ˆSim has the inputs necessary to compute f̃ . If f is a degree-1 polynomial, then ˆSim

outputs C = (m − b,Sim(1λ,mpk, b)). Else, if f is degree-d, with d ≥ 2, ˆSim outputs

C = Sim(1λ,mpk,m − b). Using the circuit privacy of AHE, the outputs of ˆSim are dis-

tributed identically to the corresponding outputs produced by ˆEval2.
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D.2 Privacy of Protocol 5.1.3

Proof of Theorem 5.1.5. We can build simulators for Protocol 5.1.3 from the simulators for

semantic security, context hiding and perfect privacy and contrast them to the views of the

parties, as in Definition 2.2.5.

The view of the actuator is:

VA(fLQG) =
(
fLQG, upk, {ui}i∈0∪[T−1], {x̂i − ri}i∈[T−1], coins

)
.

We build a simulator ˆSimA, that on inputs
(
1λ, fLQR, {ui}i∈0∪[T−1]

)
runs (mpk,msk) ←

ˆInit(1λ), (ũsk, ũpk) ← ˆKeyGen(mpk), samples random values {r̃i}i∈[T−1] ∈ Mn and then

outputs: (
fLQG, ũpk, {ui}i∈0∪[T−1], {r̃i}i∈[T−1], c̃oins

)
.

The indistinguishability between VA(fLQG) and ˆSimA

(
1λ, fLQR, {ui}i∈0∪[T−1]

)
follows from

the context-hiding property of LabHE and perfect secrecy of the one-time pad.

The cloud’s view is:

VC(∅) =
(
Ê(x0), Ê(xr), Ê(ur), Ê(Ω), {Ê(zi)}i∈[T ], {Ê(x̂i)}i∈[T−1], coins

)
,

where Ω is the collection of K,L,Γ1,Γ2,Γ3. We build a simulator ˆSimC that on input (1λ)

runs ˆKeyGen(1λ), generates randomness for the shares, and creates encryptions of random

values for all model parameters and signals received from the subsystems and actuators, and

outputs: (˜̂E(x0),˜̂E(xr),
˜̂E(ur),

˜̂E(Ω), {˜̂E(zi)}i∈[T ], {
˜̂
E(x̂i)}i∈[T−1], c̃oins

)
.

The indistinguishability between VC(∅) and ˆSimA(1λ) follows from the semantic security of

LabHE.

The setup’s view is VS(K,L,Γ1,Γ2,Γ3) = (K,L,Γ1,Γ2,Γ3). We build a simulator ˆSimS

that simply outputs its inputs (K,L,Γ1,Γ2,Γ3), which is trivially indistinguishable from
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VS(K,L,Γ1,Γ2,Γ3). Similarly, the view of each subsystems is VSi(xi0,xir,uir) = (xi0,x
i
r,u

i
r).

We then build simulators ˆSimSi that simply output their inputs (xi0,x
i
r,u

i
r), being trivially

indistinguishable from VSi(x
i
0,x

i
r,u

i
r).

The correctness of Protocol 5.1.3 follows from the correctness of the LQG algorithm and

of the LabHE scheme. The proof is now complete.

Proof of Theorem 5.1.6. The proof of multi-party privacy uses the fact that neither the

cloud nor the actuator can be in a coalition that has all the private data in the system

and they cannot extract any information from the communication between themselves: the

cloud receives encrypted data from the actuator, and does not have access to the key, and

the actuator receives only random shares from the cloud.

A coalition between the cloud and the setup reduces to the case presented in Sec-

tion 5.1.4.1. Consider now a coalition between the cloud, the setup and N̄ subsystems,

where 0 ≤ N̄ < N . Because the data of the non-colluding subsystems is encrypted with

a semantically secure encryption scheme, and the coalition has access neither to the mas-

ter key nor to the secret key of the non-colluding subsystems, the coalitions cannot infer

anything new about the private data of the non-colluding parties.

Similarly, a coalition between the actuator and the setup reduces to the case presented in

Section 5.1.4.1. Consider now a coalition between the actuator, the setup and N̄ subsystems,

where 0 ≤ N̄ < N . The outputs of the actuator consist in uk = −Kx̂k + Kxr + ur, where

K is known because of the collusion with the setup and some entries in xr and ur are

known from the collusion with some subsystems. However, because the communication

with the cloud is additively blinded by large random numbers (the secrets from the shares),

the actuator cannot infer anything more about x̂k than what it can infer solely from the

colluding parties’ data.

With this observations, one can construct simulators on the inputs of coalitions like in

the proof of Theorem 5.1.5.
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Appendix E

Technical details for Chapter 6

E.1 Proof of Theorem 6.2.2

The view of S1 is composed by its inputs and exchanged messages, and no output. All

the messages the first server receives are encrypted. Furthermore, in the oblivious transfer

procedure in line 13, an encryption of zero is added to the quantity S1 receives such that

the encryption is re-randomized and S1 cannot recognize it. Due to the semantic security of

the cryptosystems, the view of S1 is computationally indistinguishable from the view of a

simulator which follows the same steps as S1, but replaces the incoming messages by random

encryptions of corresponding length.

The view of S2 is composed by its inputs and exchanged messages, and no output.

Apart from the comparison bits, the latter are always blinded by noise that has at least

λσ bits more than the private data being sent. For λσ chosen appropriately large (e.g. 100

bits [45]), the following is true: a+ r
s≡ r′, where a is a value of p bits, r is the noise chosen

uniformly at random from (0, 2p+λσ) ∩ ZNσ and r′ is a value chosen uniformly at random

from (0, 2p+λσ+1) ∩ ZNσ . In Protocol 2.7.2, a similar blinding is performed.

Crucially, the noise selected by S1 is different at each iteration. Hence, S2 cannot extract

any information by combining messages from multiple iterations, as they are always blinded

by a different large enough noise. Moreover, the randomization step in line 11 ensures that

S2 cannot infer anything from the values of βk, as the order of the inputs is unknown. Thus,
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we construct a simulator that follows the same steps as S2, but instead of the received

messages, it randomly generates values of appropriate length, corresponding to the blinded

private values, and random bits corresponding to the comparison bits. The view of such a

simulator will be computationally indistinguishable from the view of S2.

A more detailed proof that explicitly constructs the simulators can be adapted from

Appendix B.1.

E.2 Analysis of errors

Quantization errors

We will use the following observation to investigate the quantization error bounds. Define

εa = ā− a and εb = b̄− b. Then: āb̄− ab = āb̄− āb+ āb− ab = εab+ āεb.

Consider problem (6.2.3) where the coefficients are replaced by the fixed-point represen-

tations of the matrices H/(cL),F/(cL), of the vector x(t) and of the set U , but otherwise

the iterates Ũk, t̃k, z̃k are real values. Now, consider iteration k of the projected FGM.

The errors induced by quantization of the coefficients between the original iterates and the

approximation iterates will be:

t̃k − tk =− εHf zk + (INm − H̄f )εz,k − εFx

ξqk+1 := Ũk+1 −Uk+1 = Dq
k(t̃k − tk)

z̃k+1 − zk+1 = εη∆Uk + (1 + η̄)ξqk+1 − η̄ξ
q
k,

(E.2.1)

where we used the notation: ∆Uk = Uk+1 −Uk; εη = η̄ − η; εHf = H̄f −H/(cL); εFx =

F̄ᵀ
f x̄(t)− Fᵀx(t)/(cL) = εᵀFfx(t) + F̄fεx; εx = x̄(t)− x(t); εFf = F̄f − F/(cL).

The error between Ũk+1 and Uk+1 is reduced from t̃k − tk due to the projection on the

hyperbox. Hence, to represent ξqk+1 in (E.2.1), we multiply t̃k − tk by the diagonal matrix

Dq
k that has positive elements at most one.

We set ξq−1 = ξq0. From (E.2.1), we derive a recursive iteration that characterizes the
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error of the primal iterate, for k = 0, . . . ,K, which we can write as a linear system:

Ã(Dq
k) :=

(1 + η̄)Dq
k(INm − H̄f ) −η̄Dq

k(INm − H̄f )

INm 0Nm


B̃(Dq

k) :=

−εHfDq
k εηD

q
k(INm − H̄f )

0Nm 0Nm

 (E.2.2)

ξqk+1

ξqk

 =Ã(Dq
k)

 ξqk

ξqk−1

+ B̃(Dq
k)

 zk

∆Uk−1

− εFx.

We choose this representation in order to have a relevant error bound in Theorem E.2.1

that shrinks to zero as the number of fractional bits grows. In the following, we find an

upper bound of the error using Ã := Ã(INm) and B̃ := B̃(INm).

Theorem E.2.1. Under Assumption 6.2.4, the system defined by (E.2.2) is bounded. Fur-

thermore, the norm of the error between the primal iterates of the original problem and of

the problem with quantized coefficients is bounded by:

‖ξqk‖2 ≤
∣∣∣∣∣∣EÃk

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ξq0

ξq−1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

+ γ
k−1∑
l=0

∣∣∣∣∣∣EÃk−1−lB̃
∣∣∣∣∣∣

2
+ ζ

k−1∑
l=0

∣∣∣∣∣∣EÃk−1−l
∣∣∣∣∣∣

2
=: ε1

γ = (3 + 2η̄)
√
NmRŪ ,

ζ = ‖εFf ‖2R
2
X0

+ 2−lf
√
n‖F̄f‖2,

where E = [INm 0Nm], R2
X0

is the radius of the compact set X0 w.r.t. the 2-norm and

RŪ = max{‖lu‖∞, ‖hu‖∞}.

Proof. The stability of the system is given by the fact that Ã has spectral radius ρ(Ã) < 1

which is proven in Lemma 1 in [129]. The same holds for Ã(Dq
k). Since we want to give a

bound of the error in terms of computable values, we use the fact that ‖Ã(Dq
k)‖2 ≤ ‖Ã‖2

(respectively, ‖B̃(Dq
k)‖2 ≤ ‖B̃‖2) and express the bounds in terms of the latter.

From (E.2.2), one can obtain the following expression for the errors at time k and k− 1,
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for k = 0, . . . ,K − 1:

 ξqk

ξqk−1

 ≤ Ãk

 ξq0

ξr−1

+
k−1∑
l=0

Ãk−1−l

B̃

 zl

∆Ul−1

− εFx

 ,

and the first term goes to zero as k → ∞. We multiply this by E = [INm 0Nm] to obtain

the expression of ‖ξqk‖.

Subsequently, for any 0 ≤ k ≤ K − 1:

∣∣∣∣[zᵀk ∆Uᵀ
k−1

]ᵀ∣∣∣∣
2

= ‖zk‖2 + ‖∆Uk−1‖2 ≤ ‖Uk + η̄∆Uk−1‖2 + ‖∆Uk‖2

≤ RŪ + 2(1 + η̄)RŪ ≤ (3 + 2η̄)
√
Nm(max

i
{liu,hiu})2 := γ

‖εFx‖2 ≤ ‖εFf ‖2‖x(t)‖2 + ‖F̄f‖2‖εx‖2 ≤ ‖εFf ‖2R
2
X0

+ 2−lf
√
n‖F̄f‖2 := ζ.

One can eliminate the initial error ξq0 and its effect by choosing in both exact and

fixed-point coefficient-FGM algorithms the initial iterate to be represented on lf fractional

bits. Therefore, only the persistent noise counts.

Remark E.2.2. In primal-dual algorithms, the maximum values of the dual variables corre-

sponding to the complicating constraints cannot be bounded a priori, i.e., we cannot give

overflow or coefficient quantization error bounds. This justifies our focus on a problem with

only simple input constraints. The work in [183] considers the bound on the dual variables

as a parameter that can be tuned by the user.

Arithmetic round-off errors

Let us now investigate the error between the solution of the previous problem and the

solution of the fixed-point FGM corresponding to Protocols 6.2.1 and 6.2.2. The encrypted

values do not necessarily maintain the same number of bits after operations, so we will

consider round-off errors where we perform truncations. This happens in line 10 in both

protocols. In this case, we obtain similar results to [129], where the quantization errors were

not analyzed, i.e., as if the nominal coefficients of the problem were represented with lf
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fractional bits from the problem formulation. Consider iteration k of the projected FGM.

The errors due to round-off between the primal iterates of the two solutions will be:

t̄k − t̃k =(INm − H̄f )(z̄k − z̃k) + ε′t,k

ξrk+1 :=Ūk+1 − Ũk+1 = Dr
k(t̄k − tk)

z̄k+1 − z̃k+1 =(1 + η̄)ξrk+1 − η̄ξrk.

(E.2.3)

Again, the projection on the hyperbox reduces the error, so Dr
k is a diagonal matrix with

positive elements less than one. For Protocol 6.2.1, the round-off error due to truncation

is (ε′t,k)
i ∈ [−Nm2−lf , 0], i = 1, . . . , Nm. The encrypted truncation step in Protocol 6.2.2

introduces an extra term due to blinding, making (ε′t,k)
i ∈ [−(1 +Nm)2−lf , 2−lf ].

We set set ξr−1 = ξr0. From (E.2.3), we can derive a recursive iteration that characterizes

the error of the primal iterate, which we can write as a linear system, with Ã(·) as before:

ξrk+1

ξrk

 =Ã(Dr
k)

 ξrk

ξrk−1

+ Dr
kε
′
t,k. (E.2.4)

Theorem E.2.3. Under Assumption 6.2.4, the system defined by (E.2.4) is bounded. Fur-

thermore, the norm of the error of the primal iterate is bounded by:

‖ξrk‖2 ≤
∣∣∣∣∣∣EÃk

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ξr0

ξr−1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

+ γ′
k−1∑
l=0

∣∣∣∣∣∣EÃk−1−l
∣∣∣∣∣∣

2
=: ε2,

γ′CS =2−lf (Nm)
3
2 ; γ′SS = 2−lf

√
Nm(1 +Nm).

The proof is straightforward.

As before, one can eliminate the initial error ξr0 and its effect by choosing the same initial

iterate represented on lf fractional bits for both problems.
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E.3 Proof of Theorem 6.3.2

The components of the protocol: AHE, secret sharing, pseudorandom generator, LabHE,

oblivious transfer and the comparison protocol are individually secure, meaning either their

output is computationally indistinguishable from a random output or they already satisfy

Definition 2.2.6. We next build the views of the allowed coalitions and their corresponding

simulators and use the previous results to prove they are computationally indistinguishable.

The cloud has no inputs and no outputs, hence its view is composed solely from received

messages and coins:

VC(∅) =

(
mpk, Ê

(
− 1

L
H

)
, Ê
(
− η
L

H
)
, Ê

(
1

L
Fᵀ
)
, Ê(η), [[hu]], [[lu]],RC , Ê(U′0),

{
Ê(Uk), [[ak]], [[bk]], [[Uk+1]] ,msgPr.2.7.2,msgOT

}
k∈{0,...,K−1}

)
. (E.3.1)

The actuator’s input is the function fMPC and the output is u(t). Then, its view is:

VA(fMPC) =

(
fMPC,mpk,msk, upk,RA,

{
U′k+1,msgPr.2.7.2,msgOT

}
k∈{0,...,K−1}

,u(t)

)
,

(E.3.2)

which includes the keys mpk,msk because their generation involve randomness.

The setup’s inputs are the model and costs of the system and no output after the

execution of Protocol 6.3.2, since it is just a helper entity. Its view is:

VSet(A,B,P,Q,R) =

(
A,B,P,Q,R,mpk, uskSet,RSet

)
. (E.3.3)

Finally, for a subsystem i, i ∈ [M ], the inputs are the local control action constraints

and the measured states and there is no output obtained through computation after the

execution of Protocol 6.3.2. Its view is:

VSi(U i,xi(t)) =

(
U i,xi(t),mpk,uskSi ,RSi

)
. (E.3.4)
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In general, the indistinguishability between the view of the adversary corrupting the

real-world parties and the simulator is proved through sequential games in which some

real components of the view are replaced by components that could be generated by the

simulator, which are indistinguishable from each other. In our case, we can directly make

the leap between the real view and the simulator by showing that the cloud only receives

encrypted messages, and the actuator receives only messages blinded by one-time pads.

In [13], the proof for the privacy of a quadratic optimization problem solved in the same

architecture is given with sequential games.

For the cloud, consider a simulator SC that generates m̃pk, m̃sk ← Init(1σ), gener-

ates ũskj ← KeyGen(m̃pk), for j ∈ {Si, Set, A}, i ∈ [M ] and then (τ̃ , b̃, [̃[b]])j . We

use (̃·) also over the encryptions to show that the keys are different from the ones in the

view. Subsequently, the simulator encrypts random values of appropriate sizes to obtain
˜Ê
(
− 1
LH
)
, ˜Ê
(
− η
LH
)
, ˜Ê
(

1
LFᵀ

)
,˜̂E(η), [̃[hu]], ˜[[lu]],˜̂E(U′0). SC generates the coins R̃C as in

line 4 in Protocol 6.3.1 and obtains Ê(U0) as in line 4 in Protocol 6.3.2. Then, for each

k = {0, . . . ,K − 1}, it computes [̃[tk]] as in line 7 in Protocol 6.3.2 and shuffles [̃[tk]] and

[̃[hu]] into [̃[ak]], [̃[bk]]. SC then performs the same steps as the simulator for party A in

Protocol 2.7.2 and gets m̃sgPr.2.7.2. Furthermore, SC generates an encryption of random bits

δ̃k and of ˜̂E(Uk) and performs the same steps as the simulator for party A as in the proof of

Proposition 2.6.1 (or the simulator for the standard OT) and gets m̃sgOT. It then outputs:

SC(∅) =

(
m̃pk,

˜
Ê

(
− 1

L
H

)
,

˜
Ê
(
− η
L

H
)
,

˜
Ê

(
1

L
Fᵀ

)
,˜̂E(η), [̃[hu]], ˜[[lu]], R̃C ,

˜̂E(U′0),

{˜̂E(Uk),
(

[̃[ak]], [̃[bk]]
)
, ˜[[Uk+1]], m̃sgPr.2.7.2, m̃sgOT

}
k∈{0,...,K−1}

)
. (E.3.5)

All the values in the view of the cloud in (E.3.1)–with the exception of the random values

RC and the key mpk, which are statistically indistinguishable from R̃C and m̃pk because they

are drawn from the same distributions–are encrypted with semantically secure encryptions

schemes (AHE and LabHE). This means they are computationally indistinguishable from

the encryptions of random values in (E.3.5). This happens even when the values from
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different iterations are encryptions of correlated quantities. Thus, VC(∅) c≡ SC(∅).

We now build a simulator SA for the actuator that takes as input fMPC,u(t). SA will

take the same steps as in lines 1, 3–7 in Protocol 6.3.1, obtaining m̃pk, m̃sk, ũpk, ũsk, τ̃A,

b̃A, [̃[bA]], R̃A, Ũ′0 and instead of line 2, it generates ũpkj , ũskj ← KeyGen(m̃pk) itself, for

j ∈ {Si, Set}, i ∈ [M ]. For k = 0, . . . ,K − 1, SA performs the same steps as the simulator

for party B in Protocol 2.7.2 and gets m̃sgPr.2.7.2. Furthermore, SA performs the same steps

as the simulator for party B as in the proof of Proposition 2.6.1 (or the simulator for the

standard OT) and gets m̃sgOT. It then outputs:

SA(fMPC,u(t)) =

(
fMPC, m̃pk, m̃sk, ũpk, R̃A,

{
Ũ′k+1, m̃sgPr.2.7.2, m̃sgOT

}
k∈{0,...,K−1}

,u(t)

)
.

(E.3.6)

All the values in the view of the actuator in (E.3.2)–with the exception of the random

values RA and the keys upk, which are statistically indistinguishable from R̃A and ũpk be-

cause they are drawn from the same distributions and u(t)–are blinded by random numbers,

different at every iteration, which means that they are statistically indistinguishable from

the random values in (E.3.6). This again holds even when the values that are blinded at

different iterations are correlated and the actuator knows the solution u(t), because the

values of interest are drowned in large noise. Thus, VA(fMPC)
c≡ SA(fMPC,u(t)).

The setup and subsystems do not receive any other messages apart from the master

public key (E.3.3), (E.3.4). Hence, a simulator SSet for the setup and a simulator SSi for

a subsystem i can simply generate m̃pk← Init(1σ) and then proceed with the execution of

lines 2–5 in Protocol 6.3.1 and output their inputs, messages and coins. The outputs of the

simulators are trivially indistinguishable from the views.

When an adversary corrupts a coalition, the view of the coalition contains the inputs

of all parties, and a simulator takes the coalition’s inputs and outputs. The view of the
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coalition between the cloud, the setup, and a number l of subsystems is:

VCSl
(
A,B,P,Q,R,{U i,xi(t)}i∈i1,...,il

)
= VC(∅) ∪ VSet(A,B,P,Q,R)∪

∪VSi1 (U i1 ,xi1(t)) ∪ . . . ∪ VSil (U
il ,xil(t)).

A simulator SCSl for this coalition takes in the inputs of the coalition and no output and

performs almost the same steps as SC , SSet, SSi , without randomly generating the quantities

that are known by the coalition. The same argument of having the messages drawn from

the same distributions and encrypted with semantically secure encryption schemes proves

the indistinguishability between VCSl(·) and SCSl(·).

The view of the coalition between the actuator, the setup, and l subsystems is:

VASl
(
fMPC,u(t), A,B,P,Q,R, {U i,xi(t)}i∈i1,...,il

)
= VA(fMPC,u(t))∪

∪VSet(A,B,P,Q,R) ∪ VSi1 (U i1 ,xi1(t)) ∪ . . . ∪ VSil (U
il ,xil(t)).

A simulator SASl for this coalition takes in the inputs of the coalition and u(t) and

performs almost the same steps as SA, SSet, SSi , without randomly generating the quantities

that are now known. The same argument of having the messages drawn from the same

distributions and blinded with one-time pads proves the indistinguishability between VASl(·)

and SASl(·).

The proof is now complete.
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Appendix F

Technical details for Chapter 7

F.1 Proof of closeness

In this section, we present the proof of Theorem 7.2.2. First, we characterize the solution set

of the original behavioral problem (7.2.5). Then, we characterize the solution of the approx-

imate problem (7.2.6). To prove closeness, we make suitable use of the inversion lemma, the

pseudoinverse (denoted by †) limit definition, and Singular Value Decomposition (SVD).

Before we proceed with the proof, we consider the following definitions:

M̂ := Yf ᵀQYf + Uf ᵀRUf + λgI (F.1.1)

M̂0 := Yf ᵀQYf + Uf ᵀRUf , (F.1.2)

where M̂ is matrix M defined in (7.2.8), without the penalty terms. Similarly, M̂0 is matrix

M without any regularization or penalty terms.

For compactness, we denote the matrix of past precollected data as Dp and the vector

of the last M outputs and inputs as dt:

Dp :=

Up

Yp

 , dt :=

ūt

ȳt

 . (F.1.3)
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Both matrices M̂0, Dp are singular. Let the SVD of the past precollected data Dp be:

Dp =

[
E E⊥

]Σ 0

0 0


 Fᵀ

F⊥
ᵀ

 , (F.1.4)

where Σ ∈ Rq×q is an invertible diagonal matrix, containing the nonzero singular values

of Dp with q = rank(Dp), while matrices
[
E E⊥

]
,
[
F F⊥

]
are orthonormal. Recall

that the set of optimal solutions of the original behavioral problem (7.2.5) is denoted by

Gopt–see (7.2.11). The minimum norm element of Gopt is denoted by gmin–see (7.2.12).

For completeness we present some inversion formulae.

Lemma F.1.1. Let K,L,V be matrices of appropriate dimensions. Then:

a) Provided the respective inverses exist:

(K + VᵀLV)−1 = K−1 −K−1Vᵀ(L−1 + VK−1Vᵀ)−1VK−1

(K + VᵀLV)−1VᵀL = K−1Vᵀ(L−1 + VK−1Vᵀ)−1.

b) Let
[
V V⊥

]
be an orthonormal matrix. Then, if L is invertible:

(VᵀL−1V)−1 = VᵀLV −VᵀLV⊥(Vᵀ
⊥LV⊥)−1Vᵀ

⊥LV (F.1.5)

I−V⊥(Vᵀ
⊥LV⊥)−1Vᵀ

⊥L = L−1V(VᵀL−1V)−1Vᵀ. (F.1.6)

Proof. Part a) is standard, also known as the Woodbury matrix identity. To prove (F.1.5),

we use the identity V⊥Vᵀ
⊥ + VVᵀ = I and verify that the properties of the inverse hold.

To prove (F.1.6), we use (F.1.5).

Original behavioral problem

In the following lemma, we characterize the solution set Gopt of the original constrained

behavioral problem (7.2.5). In general, there are infinite optimal solutions since M̂0 and Dp

have low rank.
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Lemma F.1.2. Consider optimization problem (7.2.5). Recall the SVD decomposition of

Dp in (F.1.4). Then:

a) g ∈ Gopt is an optimal solution of (7.2.5) if and only if g lies in the following affine

subspace for some µ ∈ Rq×1, where q is the rank of the past precollected data Dp:

M̂0 F

Fᵀ 0


g

µ

 =

 Yf ᵀQrt

Σ−1Eᵀdt

 . (F.1.7)

b) Vector Yf ᵀQrt lies in the column space of M̂0.

c) The above affine subspace can be equivalently described by the closed form expression:

g = g1 + g2 + g3, (F.1.8)

where gi, i = 1, 2, 3 are orthogonal with each other and, for arbitrary s:

g1 = FΣ−1Eᵀdt (F.1.9)

g2 = F⊥(F⊥
ᵀM̂0F⊥)†F⊥

ᵀ
(
Yf ᵀQrt − M̂0g1

)
(F.1.10)

g3 = F⊥(I− (F⊥
ᵀM̂0F⊥)†F⊥

ᵀM̂0F⊥)s. (F.1.11)

d) As a result, the minimum norm element of Gopt is

gmin = g1 + g2. (F.1.12)

Proof. Proof of a) Since dt lies in the range space of Dp, we can replace the singular

equality constraint Dpg = dt by Fᵀg = Σ−1Eᵀdt, where now F has full rank. If we also

replace u, y with Ufg and Yf respectively, and we ignore the constant terms, then we

obtain the optimization problem:

min
g

1
2gᵀM̂0g − gᵀYf ᵀQrt s.t. Fᵀg = Σ−1Eᵀdt, (F.1.13)
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which is equivalent to (7.2.5). The Lagrangian of (F.1.13) is L = 1
2gᵀM̂0g − gᵀYf ᵀQrt +

µᵀ(Fᵀg − Σ−1Eᵀdt), where µ ∈ Rq are the Lagrange multipliers. The result follows by

applying standard first order optimality conditions.

Proof of b) Observe that M̂0 =
[
Yf ᵀQ1/2 Uf ᵀR1/2

][
Yf ᵀQ1/2 Uf ᵀR1/2

]ᵀ
. It is

clear that Yf ᵀQrt lies in the column space of
[
Yf ᵀQ1/2 Uf ᵀR1/2

]
. Then, using the fact

that for a matrix A, Range(A) = Range(AAᵀ) (the proof easily follows from using SVD on

A), we also show that Yf ᵀQrt lies in the column space of M̂0.

Proof of c) First, we solve subequation Fᵀg = Σ−1Eᵀdt. Since matrix
[
F F⊥

]
is an

orthonormal basis, we can express all solutions g as:

g = FΣ−1Eᵀdt + F⊥ξ = g1 + F⊥ξ, (F.1.14)

where F⊥ξ captures the components of g in the kernel of Fᵀ, and ξ is to be determined.

Second, we solve subequation M̂0g + Fµ = Yf ᵀQrt. Multiplying from the left by the

orthonormal matrix
[
F F⊥

]ᵀ
results in the equivalent system of subequations:

FᵀM̂0g + µ = FᵀYf ᵀQrt (F.1.15)

F⊥
ᵀM̂0g = F⊥

ᵀYf ᵀQrt. (F.1.16)

Equation (F.1.15) determines the Lagrange multiplier µ. Replacing (F.1.14) into (F.1.16)

gives: F⊥
ᵀM̂0F⊥ξ = F⊥

ᵀYf ᵀQrt − F⊥
ᵀM̂0g1. By the standard property of the pseudoin-

verse [32, Ch. 2] and for an arbitrary s, we can write all possible solutions ξ as:

ξ = (F⊥
ᵀM̂0F⊥)†F⊥

ᵀ
(
Yf ᵀQrt − M̂0g1

)
︸ ︷︷ ︸

ξ1

+
(
I− (F⊥

ᵀM̂0F⊥)†F⊥
ᵀM̂0F⊥

)
s︸ ︷︷ ︸

ξ2

, (F.1.17)

The two components ξ1, ξ2 are orthogonal. Combining (F.1.14) and (F.1.17) gives: g =

g1 + F⊥ξ1 + F⊥ξ2, where all components are orthogonal to each other.

Proof of d) Follows from b), orthogonality of the three summands and setting the only

free parameter s to zero.
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Approximate problem

Due to the regularization term, the solution of the approximate problem (7.2.6) is unique–

see (7.2.9). We can show that if we chose large enough λ, then we can show that the solution

of (7.2.6) converges to an intermediate one. Let F̂ := FᵀM̂−1F.

Lemma F.1.3. Consider optimization problem (7.2.6) with λu = λy = λ > 0 and λg > 0

and let g∗ be the optimal solution. Define the intermediate solution:

ḡ := M̂−1FF̂−1Σ−1Eᵀdt +
[
M̂−1 − M̂−1FF̂−1FᵀM̂−1

]
Yf ᵀQrt. (F.1.18)

Then, as λ→∞ and λg → 0+:

‖g∗ − ḡ‖2 ≤ O(λ−1), (F.1.19)

where we used big-O notation to hide quantities which do not depend on λ, λg.

Proof. Step a). Recall that g∗ is given by (7.2.9). We will use the inversion lemma to

bring g∗ in a form closer to ḡ. Using the notation of this section, (7.2.9) can be written as:

g∗ = M−1
(
Yf ᵀQrt + λDp

)
= (M̂ + λFΣ2Fᵀ)−1

(
Yf ᵀQrt + λFΣEᵀdt

)
= (M̂ + λFΣ2Fᵀ)−1

(
Yf ᵀQrt + λFΣ2Fᵀg1

)
,

where the second equality follows from Dᵀ
pDp = FΣ2Fᵀ and the last equality follows from

FᵀF = I. By Lemma F.1.1 a):

(M̂ + λFΣ2Fᵀ)−1 = M̂−1 − M̂−1F
(
λ−1Σ−2 + F̂

)−1
FᵀM̂−1,

(M̂ + λFΣ2Fᵀ)−1FλΣ2 = M̂−1F
(
λ−1Σ−2 + F̂

)−1
.

Step b). Next, define the difference:

∆ :=
(
λ−1Σ2 + F̂

)−1
− F̂−1 = λ−1F̂−1Σ2

(
λ−1Σ2 + F̂

)−1
,
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where the equality follows from A−1 + B−1 = B−1(A + B)A−1. The error g∗ − ḡ can be

written as:

g∗ − ḡ =− M̂−1F∆FᵀM̂−1Yf ᵀQrt + M̂−1F∆Σ−1Eᵀdt.

To complete the proof, it is sufficient to show that the matrices M̂−1FF̂−1,
(
λ−1Σ2 + F̂

)−1
,

and M̂−1Yf ᵀQrt are bounded as λg → 0+, λ→∞.

Step c) Boundedness of M̂−1FF̂−1 follows by Lemma F.1.4.

Step d) The following matrix is always bounded:
∥∥∥(λ−1Σ2 + F̂

)−1 ∥∥∥
2
≤ O(1). It follows

from M̂ � (λg + ‖M̂0‖2)I, which in turn implies: λ−1Σ2 + F̂ � F̂ � (λg + ‖M̂0‖2)−1I.

Step e). The norm of M̂−1Yf ᵀQrt is O(1). From Lemma F.1.2 b), Yf ᵀQrt lies in the

range space of M̂0, which means Yf ᵀQrt = M̂0M̂
†
0Y

f ᵀQrt. Hence, ‖M̂−1Yf ᵀQrt‖2 ≤

O(‖M̂−1M̂0‖2) = O(1), since M̂ = M̂0 + λgI � M̂0, and ‖M̂−1M̂0‖2 ≤ 1.

Proof of Theorem 7.2.2

Consider the intermediate solution ḡ defined in (F.1.18). By the triangle inequality we have:

‖gmin − g∗‖2 ≤ ‖gmin − ḡ‖2 + ‖ḡ − g∗‖2.

In Lemma F.1.3, we show that the second error term decays to zero as fast as λ−1. To

complete the proof, we invoke the following Lemma, which states that the first error term

decays to zero as well.

Lemma F.1.4. Consider the minimum norm solution gmin defined in (7.2.12) and the

intermediate solution ḡ defined in (F.1.18). Let λg > 0. Then:

a) The following limit holds

lim
λg→0+

(F⊥
ᵀM̂F⊥)−1F⊥

ᵀM̂0 = (F⊥
ᵀM̂0F⊥)†F⊥

ᵀM̂0. (F.1.20)
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b) The following matrix is bounded

∥∥∥M̂−1FF̂−1
∥∥∥

2
= O(1). (F.1.21)

c) The intermediate solution converges to the minimum norm solution as λg goes to zero

lim
λg→0+

‖gmin − ḡ‖2 = 0. (F.1.22)

Proof. Proof of a). Let T := M̂
1/2
0 F⊥. Since F⊥

ᵀF⊥ = I:

(F⊥
ᵀM̂F⊥)−1F⊥

ᵀM̂0 = (λgI + TᵀT)−1TᵀM̂
1/2
0 .

The result follows from the pseudoinverse limit definition and T† = (TᵀT)†Tᵀ [32, Ch 1].

Proof of b). Note that the norm remains unchanged if we multiply from the right

by Fᵀ:
∥∥∥M̂−1FF̂−1

∥∥∥
2

=
∥∥∥M̂−1FF̂−1Fᵀ

∥∥∥
2
. By (F.1.6) and the triangle inequality:

∥∥∥M̂−1FF̂−1
∥∥∥

2
=
∥∥∥I− F⊥(Fᵀ

⊥M̂F⊥)−1Fᵀ
⊥M̂

∥∥∥
2

≤ 1 +
∥∥∥F⊥(F⊥

ᵀM̂F⊥)−1F⊥
ᵀM̂
∥∥∥

2
= 1 +

∥∥∥F⊥(F⊥
ᵀM̂F⊥)−1F⊥

ᵀM̂
[
F F⊥

]∥∥∥
2
,

where the last equality follows from the fact that multiplying from the right by
[
F F⊥

]
leaves the norm unchanged. Submatrix F⊥(F⊥

ᵀM̂F⊥)−1F⊥
ᵀM̂F⊥ = F⊥ has bounded

norm. For the other submatrix, since by orthogonality F⊥
ᵀM̂F = F⊥

ᵀM̂0F, we get:

F⊥(F⊥
ᵀM̂F⊥)−1F⊥

ᵀM̂F = F⊥(F⊥
ᵀM̂F⊥)−1F⊥

ᵀM̂0F.

By (F.1.20), we immediately obtain boundedness since:

lim
λg→0+

(F⊥
ᵀM̂F⊥)−1F⊥

ᵀM̂F = (F⊥
ᵀM̂0F⊥)†F⊥

ᵀM̂0F. (F.1.23)

Hence, both submatrices have bounded norm, implying boundedness for the original matrix.
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Proof of c). Using (F.1.6), we can rewrite ḡ in a form that resembles gmin:

ḡ := FΣ−1Eᵀdt − F⊥
ᵀ(F⊥

ᵀM̂F⊥)−1F⊥
ᵀM̂FΣ−1Eᵀdt + F⊥

ᵀ(F⊥
ᵀM̂F⊥)−1F⊥

ᵀYf ᵀQrt.

(F.1.24)

By (F.1.23), the second term converges to −F⊥
ᵀ(F⊥

ᵀM̂0F⊥)†F⊥
ᵀM̂0FΣ−1Eᵀdt. For the

third term, recall from Lemma F.1.2 b), that Yf ᵀQrt lies in the column space of M̂0,

which implies that Yf ᵀQrt = M̂0M̂
†
0Y

f ᵀQrt. Using this identity and (F.1.20), we also

get that the third term converges to F⊥
ᵀ(F⊥

ᵀM̂0F⊥)†F⊥
ᵀYf ᵀQrt. The result follows

by (F.1.12), (F.1.24) and the convergence of the aforementioned terms.

F.2 Implementation details for online solution

Ciphertext packing

Assume without loss of generality that we shift the time axis to the left by M + N , such

that the trajectory concatenation mentioned in Section 7.2.2.3 is performed before t = 0.

This will simplify the circuit depth expression.

In the following, we will address some of the encoding methods we investigated, with the

goals to minimize the depth of the resulting circuit and to reduce the memory consumption

and time complexity. When encoding vectors in plaintexts, we use similar notations as the

vector encryptions: ev0(x), ev∗(x), evv(x), evr0(x) and evr∗(x).

Scalar encoding: each ciphertext only encodes and encrypts a scalar, i.e., element of

a vector or matrix. This version achieves the smallest multiplicative depth compared to the

other packing methods, no rotation key storage, but the largest ciphertext storage and the

largest number of operations. It returns m ciphertexts instead of one to the client, unless

we add more processing to mask and rotate the elements of ut to obtain a single ciphertext.

“Hybrid” encoding: some ciphertexts encode and encrypt individual elements while

other ciphertexts encode and encrypt vectors. Specifically, we pack the input and output

vectors and columns of input and output matrices (without repetitions or other redundancy),
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but hold the entries of the matrix M−1
t and intermediate vectors mt as individual ciphertexts.

This version returns only one vector for the client to decrypt.

The “hybrid” encoding was implemented in our prior work [15]. For the best compromise

of depth versus client computation and communication, we asked the client to send back an

encryption of 1/st, along with an encryption of the input ut and output yt. This gives the

depth expression of the denominator and numerator of ut, for t > 1:

d(Dut) = d(st) = 2t+ 1, d(Nut) = 2t+ 4. (F.2.1)

However, this “hybrid” solution still incurred a large storage: namely O((S+ t)2) cipher-

texts and O((S+ t)2) rotation keys (only O(S+ t) rotation keys when there is no refreshing

and packing of the matrix M−1
t required), and O((S + t)2) computations at the cloud, with

large hidden constants. This suggests the need for a more tractable solution, involving a

more efficient encoding.

Vector encoding: each ciphertext encodes and encrypts multiple values, i.e. a vector

or a column matrix. Via this type of encoding, we aim to keep the minimum possible depth

as in the previous two versions, but minimize the memory requirements for ciphertexts, from

O((S + t)2) to O(S + t). At the same time, we want to decrease the rotation key storage

from O((S + t)2) to O(S + t), and keep the number of computations at O((S + t)2).

With the previous “hybrid” encoding on the inputs we found it preferable to encode

the entries of M−1
t in individual ciphertexts in order to avoid masking when computing

the desired result, which would have increased the depth. However, we found that using

redundancy in the stored variables, i.e., repeating the elements in vector encoding of the

input columns, along with completely rewriting the way the operations are performed, can

alleviate this issue and keep the same depth as before.

We will use the encryption of the repeated elements encoding, Evr0(·), for the columns

of the Hankel matrices HUt and HYt, the vectors ūt, ȳt, the inputs and outputs ut,yt, the

reference rt, and to encode the costs. In the encoding, each element is repeated for S + T̄

times, where T̄ is the maximum number of online collected samples.
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For t = −M−N+1 : 0, follow the steps in the offline feedback solution, cf. Section 7.2.3.

Let S′ := S + t − 1, for t ≥ 1. The following plaintexts and ciphertexts are stored

at the cloud: λy and Q encoded as evr0(λQ) := evr0

([
λy . . . λy q[0] . . . q[pN−1]

])
,

λu and R encoded as evr0(λR) := evr0

([
λu . . . λu r[0] . . . r[mN−1]

])
, λg encoded

as evr0(λg), Evr0(yt), Evr0(ut), Evr0(rt), Evr0(ȳt−1), Evr0(ūt−1) and for i ∈ {0, . . . , S′ + 1}:

Ev0(coli(M
−1
t−1)), Evr0(coli(HYt)), Evr0(coli(HUt)). To avoid some masking operations, the

cloud also stores the rows of Uf
t : Ev0(rowi(U

f
t )) for i ∈ {0, . . . ,mN ]}.

The cloud service then locally computes the following, corresponding to lines 9 and 13

of Algorithm 7.2.1.

Evr0(ȳt) = ρ(Evr0(ȳt−1), p(S′ + 1)) + ρ(Evr0(yt), (1− p)M(S′ + 1))

Evr0(ūt) = ρ(Evr0(ūt−1),m(S′ + 1)) + ρ(Evr0(ut), (1−m)M(S′ + 1))

Evr0(colS′+1HYt) = ρ(Evr0(colS′HYt), p(S
′ + 1)) + ρ(Evr0(yt),−p(M +N − 1)(S′ + 1))

Evr0(colS′+1HUt) = ρ(Evr0(colS′HUt),m(S′ + 1)) + ρ(Evr0(ut),−m(M +N − 1)(S′ + 1))

Ev0(rowi(U
f
t )) = Ev0(rowi(U

f
t )) + ρ(Evr0(colS′+1(HUt))� ei(S+T̄ ), S

′ + 1), i ∈ {0, . . . ,m}

Evr0(ȳt, rt) = Evr0(ȳt) + ρ(Evr0(rt),−pM(S′ + 1)).

The precollected input and output measurements have a multiplicative depth of 0. To

reduce the total circuit depth, at time t + 1, although the cloud service has computed

the encryption of ut, the client sends a fresh encryption of it. This allows us to have,

∀t ≥ 0: d(colsHUt) = d(colsHYt) = d(ūt) = d(ȳt) = d(rt) = 0. The update of the row

representation of Uf needs a masking, so d(rowsUf ) = 1. From the offline computations,

we assume that we have fresh encryptions for the columns of M−1
0 , hence d(colsM−1

0 ) = 0.

The encrypted operations, their flow and motivations are described in Section 7.2.4.2.

Compared to the previous approach in [15] (described in “Hybrid encoding”), we observed

that we can avoid extra computations and a possible extra level in the computations if the

server asks the client to compute 1/st immediately after it computes st. Hence, the server

can compute directly the encryptions of M−1
t and ut instead of the numerators NM−1

t and
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Nut. The encrypted operations are described in (F.2.2)–(F.2.4), which correspond to lines 6

and 7 from Algorithm 7.2.1. EvalSumS+T̄ refers to rotating and summing batches of S + T̄

slots in the ciphertexts and vt := (mtM
−1
t−1)ᵀ.

Evr∗(µt) = EvalSumS+T̄

(
Evr0(colS′+1HYt−1)� evr0(λQ)� Evr0(colS′+1HYt−1)+

+ Evr0(colS′+1HUt−1)� evr0(λR)� Evr0(colS′+1HUt−1) + evr0(λg)

Evr∗(mt[i]) = EvalSumS+T̄

(
Evr0(colS′+1HYt−1)� evr0(λQ)� Evr0(coliHYt−1)+

+ Evr0(colS′+1HUt−1)� evr0(λR)� Evr0(coliHUt−1), i ∈ {0, . . . , S′ + 1}

Ev0(vt) =

S′∑
i=0

Ev0(coli(M
−1
t−1))� Evr∗(mt[i]) (F.2.2)

Evr∗(st) = Evr∗(µt)−
S′∑
i=0

Evr∗(mt[i])� ρ (Ev0(vt), i) .

After receiving a fresh encryption of 1/st from the client:

Ev0(colS′+1(M−1
t )) = (−Ev0(vt) + eS′+1)� Evr0(1/st)

Ev0(wi) =
S′∑
j=0

Ev0(coljM
−1
t−1)�

(
Evr∗(mt[i])� Ev0(1/st ei)

)
Ev0(coli(1/stvtv

ᵀ
t )) = Ev0(vt)�

S′∑
j=0

ρ (Ev0(wi), i− j) , i ∈ {0, . . . , S′ + 1}

Ev0(coli(M
−1
t )) = Ev0(coliM

−1
t )− Ev0(coli(1/st vtv

ᵀ
t ))+ (F.2.3)

+ ρ
(
Ev0(vt)� (−ei � Evr0(1/st)), S

′ + 1
)
, i ∈ {0, . . . , S′ + 2}

Evr∗(Zt[j]) = EvalSumS+T̄

(
Evr0(coljHYt)� evr0(λQ)� Evr0(ȳt, rt)+

+ Evr0(coljHUt)� evr0(λR)� Evr0(ūt)
)
, i ∈ {0, . . . , S′ + 2}

Ev0(υt,i) =

S′+1∑
k=0

S′+1∑
j=0

Ev0(colk(M
−1
t ))�

(
Ev0(rowiU

f
t )� Evr∗(Zt[j])

)
, i ∈ {0, . . . ,m}

Ev∗(υt) =
m−1∑
i=0

ρ
(
Ev0(υt,i, i(S + T̄ )

)
.
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After decryption: ut[i] =

i(S+T̄ )+S′+1∑
j=i(S+T̄ )

υt,i, i ∈ {0, . . . ,m}. (F.2.4)

Following (F.2.2)–(F.2.4), we get the depth expressions for t ≥ 1:

d(M−1
t ) = 2t+ 3, d(ut) = d(υt) = 2t+ 4. (F.2.5)

Remark F.2.1. We make an abuse of notation when writing that we obtain Ev0(·) and Evr0(·)

after the rotation of a ciphertext with trailing zeros. Actually, the initial nonzero values will

be shifted to the end of the encoded vector and we need to maintain a counter on how many

times we can perform these rotations. In the vector packing case, we need the parameters

to satisfy the following rules, before a masking is necessary:

ringDim/2 > max(m, p)(N +M + T̄ )(S + T̄ )

ringDim/2 > (S + T̄ )2

ringDim/2 > max(mM, p(N +M))t(S + T̄ ),

(F.2.6)

where the first line is for the online collection of samples (T̄ is the total number of samples

collected online), the second line is for the correct packing of the matrix into one ciphertext

and the last line is the rule for after finalizing the collection of new samples t ≥ T̄ (instead

of masking, here we can ask the client to prune the junk elements in ū, ȳ).

It is more efficient (and not problematic for the client when M is small) that after the

adaptation ends, the client sends to the server encryptions of ūt and ȳt instead of ut and yt.

Then, the last line of (F.2.6) is not needed and the computation can go on without the need

of refreshing. If the rules in Remark F.2.1 are not satisfied for the desired parameters of an

application, the values can be split into the necessary number of ciphertexts (each packing

up to ringDim/2 values) and the computations can be readily extended to deal with this.

Remark F.2.2. Note that one can use the inverse and forward Fast Fourier Transform (IFFT

and FFT) to multiply a Hankel matrix by a vector using IFFT(FFT(vec(H)) ◦ FFT(v)),
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and reassembling the resulting vector afterwards, where vec refers to vectorizing the Hankel

matrix. Since the CKKS decoding and encoding use IFFT and FFT, we can avoid some

plaintext encoding and decoding operations. However, we need to encode the ciphertext of

the result to be able to further operate on it, which ends up canceling the advantage of the

above observation. For other specific applications, where the resulting ciphertext is the final

output, using the above observation to perform the multiplication would be preferable.

F.3 Proof of Lemma 7.2.6

The following identities can be found in [32, Ch. 1,3]:

lim
δ→0+

A∗(δI + AA∗)−1 = A† (F.3.1)

A† = A∗A†
∗
A†. (F.3.2)

(a) Using (F.3.1), we obtain:

lim
λg→0+

s = hᵀPh− hᵀP1/2
(

lim
λg→0+

P1/2H(HᵀPH + λgI)−1HᵀP1/2
)
P1/2h

= hᵀP1/2
(
I− (P1/2H)(P1/2H)†

)
P1/2h,

Furthermore,
(
I− (P1/2H)(P1/2H)†

)
is orthogonal onto the range of P1/2H. From the

behavioral system definition (under the condition of persistancy of excitation) P1/2h ∈

Range(P1/2H), so lim
λg→0+

s = 0.

(b) We use the L’Hôspital rule (because lim
λg→0+

s = 0):

lim
λg→0+

s

λg
= lim

λg→0+

∂s/∂λg
∂λg/∂λg

= 1 + lim
λg→0+

hᵀPH(HᵀPH + λgI)−2HᵀPh

= 1 + hᵀP1/2(HᵀP1/2)†(P1/2H)†P1/2h,

where we used the pseudoinverse limit definition (F.3.1).
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(c) The second part goes to 0 as λg →∞:

lim
λg→∞

s

λg
= 1 + lim

λg→∞

hᵀPh

λg
− hᵀPH(HᵀPH + λgI)−1HᵀPh

λg
.

(d) The proof is laborious so, for conciseness, we do not present the complete derivations.

We show that f(λg) is decreasing by showing that ∂f(λg)
∂λg

:= −g(λg)
λ2g

takes only negative

values, which we show by proving lim
λg→0+

g(λg) ≥ 0 and ∂g(λg)
∂λg

≥ 0. To this end, we used again

the pseudoinverse limit definitions and that (P1/2H)(P1/2H)† is an orthogonal projection

onto the range of (P1/2H) and hence, its eigenvalues are in {0, 1}.

Let us investigate (b) further. Let h = Hη for some vector η, that in slowly-varying

systems has a small magnitude. Then, by equation (F.3.2), we get that:

lim
λg→0+

∂s/∂λg
∂λg/∂λg

= 1 + ηᵀ(P1/2H)†(P1/2H)η.

(P1/2H)†(P1/2H) is an orthogonal projection operator, i.e., its eigenvalues are in {0, 1},

meaning that the quantity ηᵀ(P1/2H)†(P1/2H)η has a small magnitude. Then, the second

term in (b) is small.

F.4 Privacy of the encrypted algorithms

Our goal is to satisfy client privacy with respect to the semi-honest behavior of the server,

captured in Definition 2.2.8. Recall that xC denotes the input of the client, xS denotes

the input of the server. The functionality f in Definition 2.2.8 represents in this case the

data-driven algorithm, and fS(xC , xS) represents the output of the server after evaluating

the functionality of the given inputs.

Fix a number of time steps T . We want to prove a secure evaluation of the data-driven

control functionality for T steps, after which we assume the protocol ends. In reality, because

the security of the encryption scheme used is based on computational problems, after a long

time (years), it is recommended that the secret key is changed; so that represents a natural

stopping point T and is not restrictive.
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Under the aforementioned condition, the output of the protocol at the server, fS(xC , xS),

is actually the empty set. Furthermore, all the intermediate messages in the view of the

server will be ciphertext encrypted with the client’s public key using the CKKS scheme.

Finally, the ring dimension of the CKKS scheme is selected such that, for the multiplicative

budget of the desired functionality, an adversary cannot brute force the encryption. These

are the main observations that will be used in proving the subsequent theorems.

There is an preprocessing protocol, where the server gets and computes the encrypted

information it will have to use for the online control of the system, i.e., the encrypted

data trajectories, costs and parameters. This preprocessing protocol is proven secure under

the same Definition 2.2.8, hence, there is an ideal functionality Fpre, which is essentially

indistinguishable from the real-world functionality of the preprocessing protocol. We work

in a Fpre-hybrid model, which means that we can securely compose this functionality with

the functionality of the online protocols (see [152] for more details about simulation proofs

in the hybrid model and composition theorems).

Proof of Theorem 7.2.3. At time t ≤ T , the client’s input is HU, HY, u0:t−1, y0:t−1, r0:t−1

and pk, where pk is the public key of the leveled homomorphic scheme used. We assume

that, after the preprocessing protocol, the server has input Q, R, λg, λu, λy, pk and receives

as messages Ev0(diagiAr), Ev0(diagiAy), Ev0(diagiAu). At time t, the server receives from

the client either Evv(ūt),Evv(ȳt),Evv(rt) or Evv(ȳt),Evv(rt). After applying the functionality

as described in Section 7.2.3, the server obtains Ev0(ut) or Ev∗(ut) and sends it to the client.

The proof immediately follows from the fact that the server only receives fresh cipher-

texts from the client. Since the homomorphic encryption scheme is semantically secure,

these ciphertexts are computationally indistinguishable from random encryptions, so we can

construct a simulator for the server that replaces the true messages from the client by ran-

dom encryptions of the same size. The input-output distribution of such a simulator will be

indistinguishable from the input-output distribution of the true protocol.

Proof of Theorem 7.2.7. The input of the client is the same as in the proof of Theorem 7.2.3.
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The input of the server is Q,R, λg, λu, λy,pk and after the preprocessing protocol, it has

the corresponding ciphertexts for HU0, HY0,M
−1
0 ,Uf

0 . At time t < T̄ , while collecting

new samples, the server has ciphertexts corresponding to HUt−1, HYt−1,M
−1
t−1, ūt−1, ȳt−1,

receives from the client Evr0(ut),Evr0(yt),Evr0(rt), then computes Evr∗(st) and receives from

the client Evr0(1/st). The analysis in Section 7.2.4.3 does not reveal private information:

although the cloud server knows λg, it never gets st in cleartext. Finally, after applying the

functionality described in Section 7.2.4 and Section F.2, the server obtains the corresponding

ciphertexts of HUt, HYt,M
−1
t ,Uf

t , ūt, ȳt and Ev∗(υt), and sends the latter to the client,

which decrypts it and computes ut. During the times designated for refreshing M−1
t , the

server packs it into a single ciphertext, sends it to the client and receives Ev0(M−1
t ), which

uses new uncorrelated randomness. After the collection of the new samples ends, i.e., T̄ ≤

t ≤ T , the server only updates the ciphertexts corresponding to the quantities ūt and ȳt,

but otherwise computes the same output.

Since the server only receives fresh encryptions of the private data, we can construct a

simulator for the server that replaces the true messages from the client by random encryption

of corresponding size and apply the server’s functionality. Privacy follows because of the

semantic security of the underlying CKKS scheme.
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