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ABSTRACT

OPERATIONS MANAGEMENT IN THE PRESENCE OF STRATEGIC AGENTS

Jingxing Gan

Advisor: Gerry Tsoukalas

My dissertation develops stylized models using analytical and numerical tools to understand

innovative business models in the context of operations management.

In the first chapter1, using airlines as a backdrop, I study optimal overbooking policies with

endogenous customer demand, when customers internalize their expected cost of being

bumped. I first consider the traditional setting in which compensation for bumped passen-

gers is fixed and booking limits are the airline’s only form of control. I provide sufficient

conditions under which demand endogeneity leads to lower overbooking limits in this case.

I then consider the broader problem of joint control of ticket price, bumping compensation,

and booking limit. I show that price and bumping compensation can act as substitutes,

which reduces the general problem to a more tractable one-dimensional search for optimal

overbooking compensation and effectively allows the value of flying to be decoupled from

the cost of being bumped. Finally, I extend our analysis to the case of auction-based com-

pensation schemes and demonstrate that these generally outperform fixed compensation

schemes. Numerical experiments that gauge magnitudes suggest that fixed-compensation

policies that account for demand endogeneity can significantly outperform those that do

not and that auction-based policies bring smaller but still significant additional gains.

In the second chapter2, I study the design of an emerging fundraising method for Blockchain-

based startups, Initial Coin Offerings (ICOs), with a particular focus on capped ICOs. I

propose a simple model of matching supply and demand with ICOs by companies involved

in production of physical goods, aka inventory/asset “tokenization”. I examine how ICOs

1Work in this chapter leads to the paper Gan et al. (2019).
2Work in this chapter leads to the paper Gan et al. (2020).
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should be designed—including optimal token floating and pricing for both utility and equity

tokens (aka, security token offerings, STOs)—in the presence of moral hazard, production

risk and demand uncertainty, make predictions on ICO failure, and discuss the implications

on firm operational decisions and profits. I show that in the current unregulated envi-

ronment, ICOs lead to risk-shifting incentives (moral hazard), and hence to agency costs,

underproduction, and loss of firm value. These inefficiencies, however, fade as product

margin increases and market conditions improve, and are less severe under equity (rather

than utility) token issuance. Importantly, the advantage of equity tokens stems from their

inherent ability to better align incentives, and hence continues to hold even in unregulated

environments.

In the third chapter, I aim to understand how uncapped ICOs can fund service platforms

under network effects. I propose an infinite horizon model that incorporates the interac-

tion between the firm, speculators, service providers and customers. I find that both the

platform’s service capacity and service providers’ profitability are enhanced by stronger

network effect, larger customer base, and/or lower unit service cost. Moreover, I show that

uncapped ICO is successful if and only if the cost of building the platform does not exceed

the total service cost per period. I also extend the base model to account for firm’s moral

hazard and show that under loose regulation, uncapped ICO can still be successful if the

firm charges the right amount of service fee.
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CHAPTER 1 : Overbooking with Endogenous De-

mand

1.1. Introduction

Overbooking is the practice of selling more capacity than is available. It is commonly

used by service companies whose capacity is perishable and whose customers sometimes

fail to show up for service. Without overbooking, these no-show customers leave unutilized

capacity that might have been sold to others. With overbooking, companies can serve more

customers and increase revenues.

The practice is attractive to companies, and it is widely used in the air travel, hotel, and

car rental industries. In the air travel industry – the focus of our analysis – its origins

can be traced back to the 1940s, when it was discovered that overselling a flight, even

by mistake, could be an effective way to address no-shows and be a viable money-making

strategy (Mihm, 2017). The benefits for airlines can be quite significant. Smith et al. (1992),

for example, mention no-show rates of 15% for sold-out flights (absent overbooking), while

Curry (1990) reports that overbooking can generate an additional 3-10% of gross passenger

revenues for airlines.

At the same time, overbooking has a downside. When the number of no-shows is smaller

than expected, the company doing the overbooking must refuse service to – or bump –

some customers, and both the customers and the provider incur costs. Customers suffer

the disutility of extra time spent waiting in the airport, a missed connection, a late arrival

at the destination, the need to be “walked” to another hotel. The company that does the

bumping typically needs to use substitute capacity – either its own or that of a competitor –

to fulfill its service obligation, and it also often provides a voucher or some form of monetary

compensation to those who are bumped.
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In addition to the direct costs associated with the bumping of specific passengers, there

also exist indirect costs associated with the practice: the prospect of this type of service

failure reduces the value that customers expect to obtain from buying a ticket or making a

reservation and can therefore adversely affect customer demand. What’s more, this indirect

cost is especially relevant in today’s world in which customers can more freely obtain access

to relevant information. The US Bureau of Transportation Statistics (BTS), for example,

publishes the total numbers of boarded and bumped passengers for each major US-based

airline on a monthly basis (BTS, 2018). The resulting bumping probabilities – the summary

measures of quality of service (QoS) – are, in turn, reported by both mainstream media

outlets and by specialty sites devoted to air travel, such as thepointsguy.com (2018) and

travelersunited.org (2018). For savvy travelers, specialized search engines, such as the

KVS Availability Tool, let customers check availability and infer bumping probabilities for

individual flight routes (kvstool.com, 2018).

The now infamous 2017 case of a passenger being dragged off of a United Airlines flight has

turned a spotlight on the practice of bumping and its costs. This incident drew outrage on

social media, attracting the attention of more than 550 million users on the micro-blogging

site Weibo (Hernandez and Li, 2017), and had widespread consequences, prompting United

and other airlines to rethink how to better manage this element of QoS. In response, United

has increased the maximum compensation it offers to bumped passengers, now a $10,000

voucher, and it has developed an auction-based system to identify which passengers to bump,

an analogue of a system that Delta Airlines has used for a number of years (Martin, 2017;

Zhang, 2017). Both the increase in compensation and the change of payment mechanism

reflect the importance of secondary demand effects associated with overbooking.

Existing research on overbooking does not address demand effects associated with bumping

in a realistic operational setting. While the focus of the traditional overbooking literature

has been on deriving optimal overbooking policies in increasingly realistic (and complex) op-

erational environments (Chatwin, 1996; Karaesmen and van Ryzin, 2004; Kunnumkal et al.,

2



2012), we are not aware of any papers that account for demand endogeneity. This is all the

more surprising given empirical evidence of airline customers’ strategic buying behavior (Li

et al., 2014). Conversely, there have been several recent papers in the economics literature,

such as Fu et al. (2012), Ely et al. (2017), and Sano (2017), that explicitly model demand

effects associated with overbooking. These papers take a mechanism-design approach at the

expense of using highly stylized models that render booking limits superfluous, however. In

contrast, booking-limit control is broadly useful in our more detailed operational setting.

Recent papers in the revenue management (RM) and operations management (OM) liter-

ature, such as Gallego et al. (2008), Gallego and Şahin (2010), Alexandrov and Lariviere

(2012), and Cachon and Feldman (2018), consider related problems in advanced selling,

though they only tangentially address traditional questions related to overbooking and do

not seek to examine the differences between fixed and auction-based overbooking policies.

We provide a more detailed review of the relevant literature in §1.2.

We consider the demand effect in the context of a model that captures important operational

and customer details. Our approach follows the spirit of Dana and Petruzzi’s (Dana Jr and

Petruzzi, 2001) analysis of inventory problems with QoS-sensitive demand. In our case,

however, the inventory level is a fixed number of seats on an aircraft, and the control vari-

ables include the booking limit, the price, and the compensation for bumped customers.

To squarely focus on customer response to overbooking, we consider a model in which cus-

tomers are homogeneous in their valuation of the flight itself and heterogenous in their

disutilities of being bumped. Section 1.3 defines our operational and customer model, de-

scribes the equilibria that emerge from bumping-sensitive demand, and defines the airline’s

optimization problem. We then analyze and compare two distinct compensation schemes

for bumped customers.

The first scheme is consistent with that traditionally found in the OM literature and assumes

that all bumped customers receive the same compensation. Section 1.4.2 analyzes a setup

in which ticket price and bumping compensation are fixed a priori, and the booking limit

3



represents the airline’s only available control. We call these booking-limit policies and begin

by characterizing the optimal booking limit and customer response in a traditional analysis,

in which the airline ignores potential demand effects of bumping. We then compare the

results for this “myopic” policy to those for a setting in which the airline recognizes the

demand effect that stems from bumping and calibrates its booking limit accordingly. We

characterize conditions that are sufficient to imply that demand-dependent booking limits

are no larger than those of traditional ones that ignore bumping-sensitive demand. These

conditions are complex and depend on customers’ expected utility of purchasing a ticket

without bumping, together with the form of the distribution of their disutility of being

bumped.

Section 1.4.3 expands the analysis of the fixed-compensation scheme by considering a

broader set of controls in which the airline sets the ticket price and bumping compensation

along with the booking limit. We call these overbooking policies. Here, we demonstrate

that, in fact, the ticket price and bumping compensation act as substitutes and that, for

any given booking limit, there exists an infinite set of price-compensation pairs that ob-

tain the same customer equilibrium and expected airline profit. These results have two

important implications. First, when solving the broader overbooking problem, the airline

need only consider a price that allows it to decouple the expected value customers obtain

for the flight from the compensation they must be offered in the event of being bumped.

In this case, the bumping compensation acts as a direct, rather than an indirect, control

of customer demand. Second, for any given level of bumping compensation, the optimal

booking limit is an analogue to that of the myopic booking-limit policy of §1.4.2 and can be

found via closed-form expression. In turn, the optimal price, compensation, and booking

limit can be found as via a simple line search over potential compensation levels.

In Section 1.5 we introduce an auction scheme for compensating bumped passengers and

compare its performance to that of the optimal fixed-compensation schemes identified in

§1.4.3. The auction can be viewed as a multi-unit auction with single-unit demand, a setting

4



for which a so-called uniform-price scheme induces customers to truthfully reveal their

preferences and is efficient, allocating seats to customers with the highest disutility of being

bumped. For this scheme, the optimal price is, again, one that allows the airline to decouple

the expected value customers obtain from the flight from their potential compensation. An

upper-bound “cap” on auction payouts – such as the $10,000 limit publicized by United –

provides the airline with a similar, direct control over the distribution of demand and allows

us to compare straightforwardly the performance of the auction and the fixed-compensation

schemes. We further show that, for any fixed-compensation scheme identified in §4, there is

an analogous capped auction that performs at least as well. Finally, we identify conditions

under which expected airline profits are increasing in the cap, so that the optimal auction-

based overbooking policy has only a single active control, the booking limit.

In Section 1.6, we report the results of numerical experiments that assess the magnitude

of the demand effect. We find that fixed-compensation policies that account for demand

endogeneity can significantly outperform those that do not and that the use of auction-based

policies brings smaller but significant additional gains. These numerical results suggest that

the demand effect can have a first-order impact on both overbooking policies and expected

revenues.

1.2. Literature Review

Our work is related to the RM and economics literatures on overbooking, as well as to the

OM literature on strategic consumers. We discuss each in turn.

The vast majority of the RM literature on overbooking does not focus on the issue of

demand endogeneity. For overviews, see Chapter 4 in Talluri and van Ryzin (2004) and

Chapter 5.2 in Belobaba et al. (2015). Here we describe only a few of the relevant papers,

many of which themselves include useful references. Among the earliest works is a static

single-fare-class model developed by Beckmann (1958) in which an airline minimizes lost

revenue by reducing unused capacity or cost of overselling. Rothstein (1971) focuses on the

dynamic aspect of the overbooking problem, deriving a policy that depends on time to flight

5



and current reservations. Chatwin (1996), Karaesmen and van Ryzin (2004), Kunnumkal

et al. (2012), and Lan et al. (2015) consider overbooking with multiple customer classes.

Klophaus and Pölt (2010) study dynamic booking policies when customer willingness to

pay can change over time. In contrast to these papers, our focus is on understanding how

the airline’s overbooking policy can affect consumer demand ex ante.

At the same time, empirical evidence of strategic consumer behavior has been well docu-

mented in the specific context of the airline industry. von Wangenheim and Bayón (2007, p.

36) document that “customers who experience negative consequences of revenue manage-

ment significantly reduce the amount of their transactions with the airline.” Li et al. (2014)

use a structural model to estimate the fraction of consumers in the air-travel industry who

delay a purchase, anticipating lower future prices, and show that a non-trivial portion of

customers engages in this strategic behavior.

More broadly, strategic consumer behavior has been widely studied in operations manage-

ment, the most relevant stream of work focusing on the setting of inventory levels (Dana Jr

and Petruzzi, 2001; Su and Zhang, 2008; Cachon et al., 2018). Closest in spirit to our

work, are Dana Jr and Petruzzi (2001), who analyze the impact of demand endogeneity in

a newsvendor-type model and show that a firm that recognizes strategic consumer behavior

implements a higher inventory level because greater availability increases one’s willingness

to pay. Also closely related is Alexandrov and Lariviere (2012), who allow for overbook-

ing when modeling strategic responses to restaurants’ reservation policies. Here, however,

no-show behavior is a fluid function of the booking limit, and customers never need to be

bumped.

Although the link between firm inventory levels and demand has been extensively stud-

ied in these contexts, we are not aware of analogous work that focuses specifically on the

overbooking problem. Furthermore, we make relatively weak assumptions regarding con-

sumers’ knowledge. Unlike most of the previously cited work, our model does not require

the inventory level to be observable; that is, customers need not directly observe either the

6



plane’s capacity or the airline’s booking limit. Customers in our model similarly need not

be informed about the distributions of aggregate demand or bumping disutility.

The use of auctions to determine bumping compensation has become increasingly popular

in practice, and a few recent papers in the economics literature use highly stylized models

to analyze this mechanism. Fu et al. (2012) consider overbooking controls that exclude

booking limits and rely only on price and bumping compensation. Similarly, Ely et al.

(2017) consider initial price and refund policies for airlines when passengers are uncertain

of their eventual willingness to pay at the time of ticketing, and Sano (2017) extends the

analysis to multi-unit demand. These papers, like this one, argue in favor of auction-based

compensation schemes. Unlike this paper, however, they do not do not capture essential

operational details that affect booking limit controls and do not seek to characterize the

effect and magnitude of demand endogeneity on the optimal overbooking policy.

1.3. Overbooking with Fixed Bumping Compensation

In this section we formally define the overbooking problem for the case in which the com-

pensation paid to bumped customers is fixed. At the start of §1.5, we provide the details

of an analogous model for an auction-based compensation scheme, and we note there the

differences between that setup and the model we define here.

We first define our model’s primitives and the associated customer equilibrium, and we high-

light important informational assumptions that we make. We then introduce the airline’s

expected profit maximization problem and define relevant ranges for its policy parameters.

1.3.1. Model Primitives

We consider a monopolist airline that offers a flight with a single fare class and k ≥ 1

available seats. The airline sets the ticket price, p, a booking limit, b, that acts as an upper

bound on the number of tickets it will sell, and a compensation amount, c, paid to each

bumped customer. If more than k paying customers show up for the flight, the airline

randomly selects a subset to bump and re-book on a subsequent flight. The expected cost

7



of re-booking a customer on an alternative flight, r, is exogenously defined. Hence, under

the fixed compensation scheme, the total cost of bumping each customer is (c+ r). We call

the triple (p, b, c) the airline’s overbooking policy.

Potential demand for a flight is uncertain. For example, the number of people who consider

traveling from the flight’s origin to its destination on a particular date can be random, and

we represent potential demand as a random variable, Q. We denote the cumulative distri-

bution function (CDF) of demand as F (q), with support 0 ≤ q < q ≤ ∞ and
∫ q
q dF (q) <∞.

We analyze overbooking policies that use fixed compensation by differentiating relevant ex-

pressions, and for analytical convenience we therefore model Q as continuous, with density

f(q) > 0 over its support. Thus, individual customers are infinitesimal.

Customers have three critical attributes: the value they derive from flying, their no-show

probabilities, and the disutility they incur from being bumped. We assume that they are

homogeneous along the first two dimensions. They share a common value from flying,

v, either on the original flight or, if bumped, on their re-booked flight. Customers who

purchase tickets also have an identical no-show probability, α ∈ (0, 1). The focus of our

interest is the third dimension, customers’ disutilities of being bumped, which we call their

hassle costs. We assume that hassle costs are heterogeneous across the population, and by

sorting them from smallest to largest, we can model them as the cumulative distribution,

G(w), of a random variable, W , with support 0 ≤ w < w ≤ ∞. Again, for analytical

convenience we assume G(w) is continuous, with density g(w) > 0 over its support.

1.3.2. Model Equilibrium

Taken together, a plane with capacity k, an airline overbooking policy, (p, b, c), potential

demand, Q, and a set of customer attributes, (v, α, W ), induce an equilibrium outcome.

Individual customers decide whether or not to buy tickets, depending on the expected value

of the purchase. In turn, each ticket holder shows up for the flight with probability 1− α,

and if the number of customers who do show is greater than the plane’s capacity, excess

customers are bumped. In equilibrium there is a set of customers who decide to purchase,
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a complementary set who do not, and a corresponding probability that a customer who

shows up for the flight is bumped.

To formally describe the equilibrium, we begin with the customer purchase decision. Sup-

pose customers share a common belief regarding the endogenous probability of being bumped

in equilibrium, and denote this probability by β ∈ [0, 1). Then the expected value obtained

by a customer with hassle cost w, drawn from W , who buys a ticket is

U(β,w) = −p+ (1− α)v + (1− α)β(c− w). (1.1)

Here, the first term to the right of the equality is the ticket’s purchase price, and the second

is the expected value of flying, given the no-show probability α. The last term represents

the expected value that the customer obtains from the possibility of being bumped: with

probability (1−α)β she shows up for the flight and is bumped; in turn, the value she obtains

from being bumped is the compensation less her hassle cost, c− w. When c > w the value

of being bumped is a net reward, and when c < w it is a net cost.

We assume that customers have an outside option whose value we normalized to zero.

Given an equilibrium bumping probability, β, a passenger with hassle cost w who considers

purchasing a ticket will buy one if and only if the expected value of the purchase is non-

negative: U(β,w) ≥ 0.

An equilibrium β then induces an equilibrium customer demand response via U(β,w). For

β = 0, which can happen for instance when b ≤ k and there is no bumping, U(β,w) ≥ 0 if

and only if p ≤ (1 − α)v. That is, with no bumping any customer will buy a ticket if and

only if the price does not exceed the expected value of flying. For β > 0, U(β,w) is strictly

decreasing in w. In all cases, we can define the equilibrium threshold hassle cost, ŵ, at or
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below which a customer buys a ticket, and above which she does not, as follows:

ŵ =


w, if U(β,w) ≤ 0;

{w |U(β,w) = 0}, if w < w < w; and

w, if U(β,w) ≥ 0.

(1.2)

Throughout the chapter, we also refer to ŵ using interchangeably the terms marginal cus-

tomer’s hassle cost, customers’ equilibrium response, and customers’ response.

From (1.1) and (1.2) we see that G(ŵ) represents the fraction of potential customers who

obtain non-negative value from purchasing a ticket. Thus, when ŵ = w, G(ŵ) = 0 and no

one is willing to buy a ticket, and when ŵ = w, G(ŵ) = 1 and everyone is willing to buy.

We are often most interested in the interior case, in which ŵ ∈ (w,w) so that U(β, ŵ) = 0

and G(ŵ) ∈ (0, 1), but in some parts of our analysis the boundary cases, U(β,w) ≤ 0 and

U(β,w) ≥ 0, can also be important.

Having defined the manner in which an equilibrium β induces an equilibrium ŵ, we turn to

the mechanism by which an equilibrium ŵ induces an equilibrium β. To this end, we first

characterize the number of tickets sold.

Recall that the potential demand for a flight is a random variable, Q. As in Dana Jr

and Petruzzi (2001), we assume that, for any demand realization, q, the distribution of

customers’ hassle costs follows G(w). That is, we assume that W is effectively independent

of Q. Potential customers with hassle costs w ≤ ŵ then buy tickets, and those with hassle

costs w > ŵ do not, effectively thinning the potential demand. Given the booking limit

b and the potential demand realization q, we can define the number of tickets sold as

s = min{b, q G(ŵ)}, where the term qG(ŵ) represents the “thinned” demand for the flight.

In turn, we define the random variable

S = min{b,QG(ŵ)} (1.3)
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as the equilibrium number of tickets sold.

From here, we can derive the bumping probability, β, in three steps. First, the sale of s

tickets results in a smaller number of customers who show up for the flight. We denote that

random number, N(s, α) ∈ [0, s], as function of s and α, and for the moment, we leave the

explicit dependence on s and α undefined. In turn,

N ≡ N(S, α) (1.4)

is the equilibrium number of customers who show up for the flight. Second, not all of those

who show are bumped, and we let

(N − k)+ ≡ (N(S, α)− k)+ = max{0, N(S, α)− k} (1.5)

denote the equilibrium number of customers who are bumped. Finally, we can use the

numbers of shows and of bumped customers to calculate the bumping probability as the

ratio of expectations

β = E[(N − k)+]/E[N ]. (1.6)

Thus, from ŵ we obtain β.

Given potential demand, Q, and customer attributes, (v, α, W ), an overbooking policy (p,

c, b) yields an equilibrium if there exist β and ŵ that simultaneously satisfy (1.2) and (1.6).

In Section 1.3.3, we discuss the informational demands that such an equilibrium requires

and discuss the use of β as a measure of bumping probability. In §1.3.4 we then define the

airline’s optimization problem and detail the parameter range to be considered for (p, c, b).

1.3.3. Information Required to Obtain an Equilibrium

Our equilibrium model requires that, in choosing an overbooking policy (p, b, c), the airline

is aware of all relevant demand and customer data: the demand distribution, F (q); the

value customers derive from the flight, v, the no-show rate, α, and the hassle-cost distribu-
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tion, G(w). The airline must also understand the calculation of S and N , along with the

equilibrium equations (1.2) and (1.6).

The informational requirements for customers are lower. In using (1.1) to decide whether

or not to buy a ticket, each potential customer need know only her own attributes (v, α, w),

the airline’s price and bumping compensation, (p, c), and the bumping probability β. In-

terestingly, we show in §1.4 and §1.5 that the problem can be reduced to a form that does

not require the customer know or estimate β.1 Furthermore, the customer need not know

the distribution of demand, F (q), the hassle cost distribution, G(w), the flight’s capacity,

k, or the airline’s booking limit, b, and she need not be able to calculate (1.6).

Rather, customers can obtain an estimate of (1.6) from statistics published by the US

Bureau of Transportation Statistics (BTS, 2018) and reported by many media outlets. More

formally, suppose the airline runs a sequence of independent and identically distributed

(i.i.d.) flights i ∈ {1, . . . ,m} with fixed overbooking policy (p, b, c). Let Ni denote the

random number of customers who show up for flight i and (Ni − k)+ denote the random

number of customers who are bumped that flight. Then, after m flights, the reported

fraction of passengers who are bumped, β̂, is

β̂ =

∑m
i=1(Ni − k)+∑m

i=1Ni
=

1
m

∑m
i=1(Ni − k)+

1
m

∑m
i=1Ni

−−−−→
m→∞

E[(N − k)+]

E[N ]
= β, (1.7)

by the law of large numbers. As the introduction notes, BTS reports the building blocks of

β̂,
∑m

i=1Ni and
∑m

i=1(Ni−k)+, for each airline as a whole on a quarterly and annual basis,

and while BTS does not report analogous data for specific routes, specialty sites can provide

additional flight-specific data. This definition of β in is the ex post fraction of passengers

who are bumped, an analogue of the fill rate in inventory theory.

An alternative that could be considered is the ex ante probability of bumping, β′ = E[N −

k)+/N ], which is the expectation of the ratio of customers bumped, rather than the ratio

1We defer the relevant discussion to those sections.
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of expectations and would be estimated as

β̂′ =
1

m

m∑
i=1

(
(Ni − k)+/Ni

)
−−−−→
m→∞

E
[
(N − k)+/N

]
= β′. (1.8)

Note that β and β′ need not be the same. We believe that, in our specific context of

airline overbooking, β is the measure that is more practically relevant and more realistically

accessible to customers.

We briefly describe our reasoning here and provide supporting details and analysis in Ap-

pendix A.1.1. First, while β can be readily estimated from published aggregate data, an

analogous estimate of β′ would require customers to obtain bumping fractions from individ-

ual flights, data that are not published and are not typically disclosed by airlines to their

passengers. Second, suppose that, nevertheless, customers wished to estimate β′ based their

initial estimates of bumping on the publicly available statistic, β. Even if individual-flight

data were available and customers used them to update their initial beliefs, differences be-

tween β and β′ are small enough that a customer would have to take hundreds or (more

typically) thousands of flights to distinguish the latter from the former. Third and finally,

although differences between the β and β′ are typically small – on the order of 10−3 or less

– it can be shown that β ≥ β′, a relationship that suggests that an equilibrium based on

an initial estimate of β will be stable: customers for whom β is too high to fly will never

fly and will not collect the data needed to change their initial estimate; conversely those

for whom β is low enough to fly will continue flying even if, after thousands of flights, their

estimates slip from β to β′.

1.3.4. Airline’s Optimization Problem

Having defined the model’s primitives and equilibrium expressions, we can now concisely for-

mulate the airline’s associated optimization problem. Given an overbooking policy (p, b, c)

that yields a customer equilibrium, the airline earns revenue p for each ticket sold and pays
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bumping compensation c and rerouting cost r for each customer bumped, netting profits

Π(p, b, c) = pS − (c+ r)(N − k)+. (1.9)

In principal, the airline chooses p, c, and b to maximize expected profits subject to (1.1)–

(1.6).

This problem statement is not complete, however, because it does not ensure the existence

of a relevant equilibrium for each (p, b, c). Below we define ranges for policy parameters that,

in most cases, do induce equilibria, and in §1.4.1 we explicitly note remaining, boundary

cases for which equilibria do not exist.

First, we discuss lower bounds. We assume that both p and c are non-negative, so the

airline does not give potential customers money to fly, and it does not charge customers for

the pleasure of being bumped. In turn, given p ≥ 0, we assume that b ≥ k, since the airline

will not benefit by forcing itself to fly with empty seats.

Next we discuss upper bounds. As we noted in §1.3.2, for β = 0 all customers are willing

to buy a ticket whenever p ≤ (1 − α)v, and no customer is willing to buy a ticket when

p > (1− α)v, since the ticket price exceeds the expected value of flying. For cases in which

β > 0, we similarly limit p ≤ (1− α)v to exclude cases in which customers only buy tickets

because of a potential benefit of being bumped. Given p ≤ (1−α)v and c ≤ w, U(β,w) ≥ 0

for all β ∈ [0, 1]. Therefore, we can also require that c ≤ w since, there is no need to

consider higher levels of bumping compensation.

We call overbooking policies that fall within these bounds, admissible and summarize their

properties as follows.

Definition 1.1. (Admissible Overbooking Policies)

Admissible overbooking policies have: (i) 0 ≤ p ≤ (1− α)v; (ii) b ≥ k; and (iii) 0 ≤ c ≤ w.

We label the set of admissible policies Ξ, and we call individual admissible policies ξ ∈ Ξ.
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In §1.4.1 we characterize the equilibria of interest for Ξ.

The airline then searches for an admissible overbooking policy that maximizes expected

profits:

max
ξ∈Ξ

E
[
Π(p, b, c)

]
(1.10)

subject to (1.1), (1.2), (1.3), (1.6).

1.4. Analysis of Fixed-Compensation Schemes

In this section, we analyze a set of schemes that pay bumped customers a fixed, pre-

determined level of compensation, as defined in §1.3. We begin in §1.4.1 with a preliminary

analysis that characterizes the expected number of bumped customers and the equilibria

of interest. We then use this foundation to analyze two sets of overbooking policies of

increasing complexity.

In §1.4.2, we analyze booking-limit policies, that is, single-control policies of the booking

limit, b, that assume an exogenously specified price, p, and bumping compensation, c. As a

benchmark, we first analyze the traditional myopic policy considered in the RM literature,

one that assumes the booking limit does not affect demand, and we develop a simple char-

acterization of the optimal booking limit for this case. We then perform a more delicate

analysis of booking-limit control that recognizes the endogeneity of demand, and we develop

equilibrium conditions under which optimal demand-dependent booking limits are stricter

than those suggested by the benchmark myopic policy.

Equation (1.1) highlights the fact that demand is in fact affected by all three controls,

(p, b, c), and in §1.4.3 we analyze overbooking policies’ joint use of price, bumping compen-

sation, and booking limit to maximize expected profit. The first part of our analysis shows

that, in fact, price and bumping compensation act as substitutes and that it is sufficient to

consider policies that set price equal to the expected value of flying and then use bumping
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compensation and booking limit as controls. Furthermore, in this setting the intensity of

demand becomes a direct outcome of the bumping compensation and can be decoupled

from the booking limit.

1.4.1. Preliminary Analysis

In this section, we provide two sets of preliminary results that we require to conduct a full

analysis of the overbooking problem. First, we define the properties of a simple loss function

that models the conditional expectation of the number of bumped customers, given some

realization of the number of tickets sold, and we show that commonly used distributions of

numbers of customers who show up for the flight generate a loss function with the desired

properties. Second, we characterize the set of equilibria to be considered in our analysis.

Modeling the Expected Number of Bumped Customers

Much of the analysis below requires that we differentiate expressions, such as (1.6), that

include expected numbers of bumped customers, and we sometimes find it analytically

convenient to work with the conditional expectation, given a sales realization s. To that

end, we use the conditional expectation to characterize here both the expected number of

customers who show up for a flight and the expected number of bumped customers.

Suppose s tickets are sold. Given each customer has a no-show probability of α, we call

the indicator function of the event “customer i shows up,” 1{ i shows }, and need make no

additional assumptions to show that

E[N(s, α)] = E

[
s∑
i=1

1{i shows}

]
= (1− α)s, (1.11)

so that E[N ] = (1− α)E[S].

If we further assume that individual customers’ no-show behavior is i.i.d., then N(s, α) ∼

B(s, 1 − α), a binomially distributed random variable with probability of success (1 − α)

and number of samples s. In turn, a normal distribution, N (µ, σ), with mean µ = (1−α)s

and standard deviation σ =
√
α(1− α)s represents a simple continuous approximation to
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the binomial B(s, 1− α).

In the same spirit, we can characterize the expected number of bumped customers by first

conditioning on the number of tickets sold, and we let

`(s, k, α) = E[(N(s, α)− k)+] (1.12)

define a loss function that is a direct analogue of that used in inventory theory. To ease

notational burden, we will sometimes write partial derivatives of this function using a prime

symbol and the variable of interest: for example `′(s) ≡ ∂`(s,k,α)
∂s .

We make minimal assumptions regarding the loss function.

Definition 1.2. (Loss Function)

(i) `′′(s) ≥ 0;

(ii) `(s, k, α) = 0 for all s ≤ k and `′(s) = 0 for all s < k;

(iii) `′(s) ∈ (0, 1− α) for all s ∈ [k,∞); and

(iv) lims→∞ `
′(s) = 1− α.

We note that the discrete analogues of `′(s) ≥ 0 and `′′(s) ≥ 0 are `(s)− `(s− 1) ≥ 0 and

`(s+ 1)− `(s) ≥ `(s)− `(s− 1), respectively.

Properties (i) and (ii) are common. Typically loss functions are convex, and loss can never

be incurred when sales fall below the plane’s capacity k. The upper limit in properties (iii)

and (iv) follow the fact that each ticket sold has only a probability of (1 − α) of turning

into a customer who shows up for the flight. Only for very large s do marginal sales lead to

additional shows who will nearly certainly be lost, each with a show probability of (1− α)

for each new ticket sold.

As expected, the definition’s properties are generally satisfied by both the binomial and

normal distributions described above.

Lemma 1.3. (Properties of Loss Function Satisfied)
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For a plane with k seats and loss function `(s, k, α) = (N(s, α)− k)+:

(i) N(s, α) ∼ B(s, 1 − α) satisfies the discrete analogue of properties (i)–(iv) of Defini-

tion 1.2; and

(ii) N(s, α) ∼ N
(

(1− α)s,
√
α(1− α)s

)
satisfies properties (i), (iii), and (iv) of Defini-

tion 1.2.

The proof of this and all results can be found in Appendix A.1.2.

Note that, because of its infinite support below k, the normal approximation does not satisfy

the loss function’s property (ii). We emphasize that this does not affect our theoretical

results, which only depend on the definition of `( · ) and not the specific distributional form

of N . We do use the normal approximation to the binomial in our numerical examples,

however. When we do, we truncate the normal distribution at k and renormalize the

probabilities over the support above k to sum to one.

Equilibria and Policies of Interest

Here, we characterize the set of equilibria we will consider when analyzing the airline’s

problem (1.10). We also further characterize policies of interest: those that make positive

expected profits.

We begin with the equilibria.

Lemma 1.4. (Existence and Uniqueness of Equilibria)

(i) For overbooking policies with p = (1− α)v, b > k, and c ≤ w there is no equilibrium.

(ii) For all other overbooking policies ξ ∈ Ξ, there exists at least one equilibrium.

(iii) For the policies in part (ii), if g′(w) ≤ 0, ∀w ∈ [c, w], then ∃ a unique equilibrium

{β, ŵ}.

The policies identified in part (i) of the lemma have a price, p = (1 − α)v, that leaves no

consumer surplus, and a bumping compensation, c ≤ w, that adequately compensates no

bumped customer. If there were no overbooking, so that b = k, then β = 0 independently

of ŵ, any w would obtain U(0, w) = 0, and ŵ = w would be consistent with β = 0. With
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b > k, however, there is the potential for bumping customers, and there is no consistent

(β, ŵ) pair: β = 0 induces ŵ = w, which in turn induces β > 0, which then induces ŵ = w,

and so on.

Part (ii) of the lemma shows that other admissible policies are better behaved and admit

at least one equilibrium. While we cannot rule out the existence of multiple equilibria for

any hassle-cost distribution, G( · ), part (iii) of the lemma provides a sufficient condition

under which there is exactly one, namely when the density of the hassle cost is decreasing

above c, a property that is satisfied by uniform and exponential hassle-cost distributions,

by normally distributed hassle-cost distributions whenever c ≥ E[W ], and more generally

by decreasing failure rate (DFR) distributions.

Even if there do exist multiple equilibria associated with a given policy ξ ∈ Ξ, the following

lemma shows that they are well ordered and suggests that we have good reason to focus on

the unique equilibrium that maximizes the airline’s expected profits.

Lemma 1.5. (Ordering of Equilibria)

Suppose an overbooking policy ξ ∈ Ξ induces multiple equilibria. Pick any two distinct

equilibria from the set, and call them (β1, ŵ1) 6= (β2, ŵ2).

(i) Without loss of generality, we can order the two so that the second equilibrium has a

strictly lower bumping probability and a strictly higher marginal hassle cost: β1 > β2

and ŵ1 < ŵ2.

(ii) Given the ordering in (i), the set of customers with w ≤ ŵ1 is a strict subset of those

with w ≤ ŵ2, and the airline earns strictly higher expected profits in (β2, ŵ2).

Part (i) implies that we can order the equilibria from smallest to largest ŵ and that the

largest of these is unique. Part (ii) further implies that the largest equilibrium maximizes

the number of customers who buy tickets and obtain positive expected value, U(β,w). This

largest equilibrium also maximizes the airline’s expected profits.

At the same time, a larger ŵ is not a Pareto improvement over a smaller one. In particular,
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customers with w < c – those who enjoy a net benefit from being bumped – see their

U(β,w)’s decrease as the equilibrium bumping probability falls from β1 to β2. Nevertheless,

when the equilibrium is (β2, ŵ2), even those customers obtain a positive expected value from

purchasing tickets and remain in the market.

Thus, an airline whose overbooking policy can induce multiple equilibria has an interest

in inducing the largest of them, and if customers can be convinced that the low bumping

probability that’s associated with the highest ŵ is the equilibrium of interest, they will

willingly settle on the largest equilibrium as well. More importantly, in §1.4.3 we show that,

even if an admissible policy induces multiple equilibria, we can also find an alternative that

induces only the largest of them and earns the same expected profit. We will therefore

assume that, if there are multiple possible equilibria, the largest of these is obtained.

Finally, when optimizing over policies ξ ∈ Ξ, we will sometimes simplify our analysis by

excluding equilibria that make no profit. To characterize these we recall from (1.11) that

E[N ] = (1 − α)E[S] and from (1.6) that E[(N − k)+] = βE[N ] = (1 − α)βE[S]. Therefore,

we can substitute (1− α)βE[S] for E[(N − k)+] in (1.10) and rearrange terms to show that

the airline’s expected profits are

E[Π(p, b, c)] = [p− (1− α)β(c+ r)]E[S], (1.13)

where [p− (1− α)β(c+ r)] is the expected margin per customer, and E[S] is the expected

number of units sold. We can then define a profit-making equilibrium as follows.

Definition 1.6. (Profit-Making Equilibrium)

Any profit-making equilibrium has [p− (1− α)β(c+ r)]E[S] > 0.

Note that G(w) = 0 implies that E[S] = E[min{b,QG(w)}] = 0, so ŵ = w is never profit-

making.
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1.4.2. Optimal Booking Limits

In this section, we assume that the price, p, and bumping compensation, c, are exogenously

defined and that the booking limit, b, is the s only form of control. The airline’s booking-limit

problem is then

max
b≥k

E
[
Π(p, b, c)

]
(1.14)

subject to (1.1), (1.2), (1.3), (1.6).

We first consider a benchmark case in §1.4.2, in which the airline myopically overlooks the

effect of the booking limit on demand and treats ŵ as an exogenous factor. This is analo-

gous to the traditional approach taken in the RM literature on overbooking. Subsequently

in §1.4.2, we analyze the demand-dependent case in which the airline strategically takes

customer behavior into account.

Myopic Booking Limits

Suppose the airline does not recognize that the marginal customer’s hassle cost, ŵ, is an

equilibrium reaction to β and, in turn, b. Rather it assumes that ŵ is fixed.

In this case, we can derive the optimal myopic booking limit, b∗m, as the solution to the first

order condition (FOC) with respect to b. That is,

dE[Π]

db

∣∣∣∣
myopic

=
∂E[Π]

∂b
= 0. (1.15)

On the revenue side, a marginal increase in b yields the following change in unit sales:

∂E[S]

∂b
=

∂E [min{b,QG(ŵ)}]
∂b

= P{QG(ŵ) > b}. (1.16)

21



On the cost side,

E[(N − k)+] = E[`(min{b,QG(ŵ)})] =

∫ b
G(ŵ)

0
`(qG(ŵ)) f(q) dq +

∫ ∞
b

G(ŵ)

`(b) f(q) dq,

(1.17)

and differentiating (1.17) with respect to b we have

∂E[(N − k)+]

∂b
=

∂E[`(min{b,QG(ŵ)})]
∂b

= `′(b)P{QG(ŵ) > b}. (1.18)

We then use the results of (1.16) and (1.18) to find the FOC for (1.14), assuming expected

profit is only affected through the booking limit, b, without an effect on ŵ. In particular,

we see that ∂E[Π]
∂b = 0 implies that

pP{QG(ŵ) > b} − (c+ r) `′(b)P{QG(ŵ) > b} = 0 ⇒ p − `′(b) (c+ r) = 0. (1.19)

Note that, in this case, the FOC (1.19) defines the optimal booking limit by trading off

the revenue, p, gained from the marginal customer, should she purchase a ticket, against

the marginal expected bumping cost, (c + r), induced by that marginal customer showing

up. This is, in fact, the assumption that’s made in standard overbooking models, and it is

completely independent of the demand distribution and the customer response ŵ.

Proposition 1.7. (Optimal Myopic Booking Limit)

Given fixed, admissible p and c, the optimal myopic booking limit, b∗m, behaves as follows.

(i) If p− (1−α) (c+ r) ≥ 0, then b∗m =∞, and the airline does not impose a booking limit.

(ii) If p− (1−α) (c+ r) < 0, then there exists a unique optimal b∗m = max
{
`′−1

(
p
c+r

)
, k
}

.

(iii) When b∗m ∈ (k,∞), ∂E[Π]
∂b > 0 for b < b∗m and ∂E[Π]

∂b < 0 for b > b∗m.

The results follow directly from the FOC (1.19). When p− (1−α) (c+ r) > 0, the expected

margin per customer continues to be positive, even when β = 1. In this case the airline

is happy to bump customers, and the optimal booking limit is infinite. In contrast, when

p − (1 − α) (c + r) < 0, the expected margin per customer p − (1 − α)β (c + r) eventually

becomes negative, as β → 1, and the optimal myopic booking limit is finite. Because `(b)
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is increasing convex, the sign of ∂E[Π]
∂b changes from positive to negative as b increases from

b < b∗m to b > b∗m, so that b∗m is the unique solution to the FOC.

While the optimal myopic booking-limit policy is independent of the equilibrium it induces,

customers nevertheless react to the policy to induce a specific equilibrium, (β, ŵ). We can

use the convexity of the loss function, together with the FOC (1.19), to provide some insight

into the nature of the equilibrium.

Proposition 1.8. (Optimal Myopic Booking Limit is Profit-Making)

(i) The equilibrium induced by any ξ ∈ Ξ obtains `′(b) > (1− α)β.

Suppose p > 0.

(ii) If β = 0, or if either p < (1 − α)v or c > w or both, then b∗m induces a profit-making

equilibrium.

Recalling from (1.6) and (1.11) that E[(N − k)+] = βE[N ] = (1 − α)βE[S], part (i) can

equivalently be stated as `′(b)E[S] > E[(N − k)+]. To see that (ii) holds when β = 0,

note the following. For β = 0, we have ŵ = w, so p,E[S] > 0 and E[Π(p, b∗m, c)] =

pE[S]− (c+ r)E[(N − k)+] = pE[S] > 0. To see that (ii) holds when p < (1− α)v or c > w,

take the FOC (1.19), use the inequality from part (i) to substitute for `′(b∗m) and show that

the expected margin per customer is strictly positive: [p − (1 − α)β(c + r)] > 0. In §1.4.3

we address the cases in which p = (1− α)v and c ≤ w.

Strategic Booking Limits

Now suppose the airline is aware that the marginal customer’s hassle cost, ŵ, is in fact

an equilibrium outcome, and call the booking limit that optimally takes the demand effect

into account the strategic booking limit, b∗s. Given b∗s is the airline’s optimal response to

customers’ actions, the expected profits it generates will be trivially (weakly) greater than

those induced by b∗m.

What is perhaps less obvious is how the two equilibrium booking limits, b∗s and b∗m, compare
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to each other. If an airline is aware of the fact that its overbooking policy will affect

customer demand through ŵ – with some customers potentially enjoying a net benefit of

being bumped, while others incurring a net cost – should it overbook more or less than in

the myopic case?

To answer this question, we first consider policy parameters and equilibria that allow us

to develop relevant FOCs. These include policies for which p ∈ (0, (1 − α)v), c ∈ (0, w),

and b∗m ∈ (k,∞). For the same reason, we will assume that the policy (p, b∗m, c) obtains an

interior equilibrium U(β, ŵ) = 0 for which ŵ ∈ (w,w). In §1.4.3 we will explicitly consider

boundary cases.

As before, we consider the FOC. Compared to the myopic FOC in (1.15), differentiation of

expected profits in the strategic case yields extra, complicating terms:

dE[Π]

db

∣∣∣∣
strategic

=
∂E[Π]

∂b
+

∂E[Π]

∂ŵ

dŵ

db
=

dE[Π]

db

∣∣∣∣
myopic

+
∂E[Π]

∂ŵ

dŵ

db
= 0. (1.20)

From Proposition 1.7 part (iii), we know that dE[Π]
db

∣∣∣
myopic

= ∂E[Π]
∂b is positive for b < b∗m, zero

for b∗m, and negative for b > b∗m. Thus, to answer the question of how b∗s compares to b∗m, it

suffices to characterize the sign of the product ∂E[Π]
∂ŵ

dŵ
db as a function of b.

We begin with the first term, ∂E[Π]
∂ŵ , which can be obtained by differentiating (1.3) and

(1.17) with respect to the (interior) ŵ. For the revenues, we have

∂E[S]

∂ŵ
=

∫ b
G(ŵ)

0
g(ŵ) q f(q)dq, (1.21)

and for the costs, we have

∂E[(N − k)+]

∂ŵ
=

∫ b
G(ŵ)

0
`′(q G(ŵ)) g(ŵ) q f(q)dq, (1.22)

so that

∂E[Π]

∂ŵ
=

∫ b
G(ŵ)

0

[
p− (c+ r)`′(q G(ŵ))

]
g(ŵ) q f(q)dq. (1.23)
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From part (ii) of Proposition 1.7 we know that p
c+r = `′(b∗m), and together with the fact

that `(b) is increasing and convex, it implies that, like ∂E[Π]
∂b , the partial derivative ∂E[Π]

∂ŵ is

positive and increasing for b ≤ b∗m and decreasing for b > b∗m.

It follows that it is the sign of the last term in (1.20), dŵ
db , that dictates how b∗m compares

to b∗s. As the proof of the following proposition (in Appendix A.1.2) shows, the expression

for dŵ
db is complex. Nevertheless, we can use it to demonstrate the following relationship

between b∗m and b∗s.

Proposition 1.9. (Optimal Strategic Booking Limit)

Suppose ∃ p ∈ (0, (1 − α)v) and c ∈ (0, w) for which b∗m ∈ (k,∞) induces a profit-making

equilibrium ŵ ∈ (w,w). Then we have the following.

(i) For any given b > k, if β ≥
√

(v − p
1−α) g(ŵ)

G(ŵ) , then dŵ
db < 0.

(ii) In turn, if β >
√

(v − p
1−α) g(ŵ)

G(ŵ) for all b > k, then b∗s < b∗m.

Proposition 1.9 shows that, when bumping probabilities are high enough, an airline that

accounts for customers’ equilibrium response to its policy overbooks less, as compared to

the myopic alternative.

The proposition’s sufficient condition is complex, however. In addition to depending on

problem parameters and distributional assumptions, it requires that a relationship between

the equilibrium quantities β and ŵ is satisfied for any b > k.

Despite this difficulty, we observe that, as p→ (1−α)v, the proposition’s sufficient condition

is in fact trivially satisfied for all b, an insight that motives our analysis below. In particular,

in §1.4.3 we will show that, in the full profit-maximization problem described in (1.10), this

boundary case is optimal at the same time that it allows us to reduce the complexity of our

analysis.

1.4.3. Optimal Overbooking Policies

We now consider the full profit-maximization problem as described in (1.10). To derive

optimal admissible overbooking policies ξ ∈ Ξ, we could naively compute and jointly analyze
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the first order conditions for all three decision variables, (p, b, c). As we have seen in the

equilibrium analysis of §1.4.2, however, even a standard analysis of the first order conditions

for b is delicate. Rather, in this section we will show that we can reduce the complexity

of the analysis by exploiting structural properties of the problem. We begin in §1.4.3 by

characterizing the myopic policy, which ignores the demand effects induced by its parameter

choices. Then in §1.4.3, we develop the structural properties that allow us to reduce the

problem, and in §1.4.3 we characterize optimal strategic policies.

Myopic Overbooking Policies

As in §1.4.2, we begin by considering an airline that does not recognize that the marginal

customer’s hassle cost, ŵ, is an equilibrium reaction to β and, in turn, to (p, b, c). Instead

it believes that ŵ is fixed, and it uses a myopic overbooking policy that maximizes the

objective function of (1.10) without considering the problem’s equilibrium constraints. We

call the associated optimal myopic solution (p∗m, c
∗
m, b

∗
m).

In this case, we find that the airline charges the maximum price and chooses not to com-

pensate bumped passengers at all. More formally we have the following.

Proposition 1.10. (Optimal Myopic Overbooking Policy)

A myopic airline sets p∗m = (1 − α)v and c∗m = 0. When v < r, it selects a finite optimal

booking limit b∗m = max
{
`′−1

(
(1−α)v

r

)
, k
}

. Otherwise, b∗m is infinite.

The rationale for the policy is as follows. For a fixed ŵ, any given choice of b determines

sales S = min{b,QG(ŵ)}, without regard to the value of p or c, and we see from (1.13)

that, by maximizing p and minimizing c, the airline maximizes per-customer contribution

and expected profit. In turn, the optimal myopic booking limit is the same as that in

Proposition 1.7 for p = (1− α)v and c = 0.

The customer equilibrium obtained from the policy, of course, differs. From part (i) of

Lemma (1.4) we see that, when p = (1− α)v and c = 0, myopic solutions that recommend

b∗m > k will not generate a customer equilibrium. In contrast, those that set b∗m = k obtain
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ŵ = w and earn expected profits of E[Π( (1− α)v, k, 0 )] = (1− α)v E[min{k,QG(w)}].

Problem Reduction

In contrast to the myopic policy, above, a strategic overbooking policy considers customer

response when solving (1.10). In this case, we can show that there exist optimal strategic

policies that set p = (1 − α)v, a result that greatly simplifies our analysis and affords a

number of insights. The result holds straightforwardly for overbooking policies that induce

interior equilibria, for which U(β, ŵ) = 0, and we begin by first eliminating boundary cases

from consideration.

Lemma 1.11. (Boundary Equilibria Not Optimal)

Any optimal strategic overbooking policy induces a customer equilibrium with U(β, ŵ) = 0.

To demonstrate the result, we need to rule out two cases. The first, when the equilibrium

is U(β,w) < 0, induces expected sales of zero and is not profit making. Therefore, it is

dominated by any policy that charges a positive price and does not overbook. The second,

more interesting case, occurs when the equilibrium is U(β,w) > 0, so that G(ŵ) = 1

and all customers receive a strictly positive surplus. The lemma’s proof shows that, when

U(β,w) > 0, we must also have p < (1−α)v, and the airline can raise the price a bit without

affecting unit demand and thereby increase expected profits. Thus neither boundary case

can be optimal, and when searching for optimal strategic overbooking policies, we can

consider only policies that induce customer equilibria with U(β, ŵ) = 0.

Conversely, suppose the airline employs an admissible policy (p, c, b) for which U(β, ŵ) = 0.

Then we can use (1.1)-(1.2) to rewrite the equilibrium condition as

p = (1− α)v + (1− α)β (c− ŵ). (1.24)

We see that, for a fixed equilibrium pair (β, ŵ), there is an infinite set of (p, c) pairs that

satisfy the equilibrium equation (1.24). Recalling that N = (1 − α) min{b,QG(ŵ)}, (N −

k)+ = `(min{b,QG(ŵ)}), and β = E[N ]/E[(N − k)+], we see that a given b and ŵ uniquely
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define β, without regard to p or c.

Now consider an airline with an overbooking policy (p, b, c) that obtains equilibrium (β, ŵ).

If the airline maintains the same b, then there will be an infinite set of price-bumping-

compensation pairs, (p′, c′) – including the original (p, c) – that will satisfy the equilibrium

equation (1.24) and maintain the same equilibrium (β, ŵ). Furthermore, if we use (1.24) to

substitute for p in the profit expression (1.13), we see that for any p′ and c′ that satisfies

(1.24), including the original p and c,

E[Π(p′, b, c′)] =
[
(1− α)v + (1− α)β(c′ − ŵ)− (1− α)β(c′ + r)

]
E[S]

= [(1− α)v − (1− α)β(ŵ + r)]E[S] = E[Π((1− α)v, b, ŵ)].

In particular, the substitution of (1 − α)v for p and ŵ for c obtains the same equilibrium

and expected profit. Thus, we have the following result.

Lemma 1.12. (Multiple Equivalent Policies)

For any admissible policy (p, b, c) for which β > 0 and U(β, ŵ) = 0, there exists an infinite

set of alternative policies with the same booking limit, b′ ≡ b, and alternative price and

bumping compensation,

p′ ∈ [max {0, (1− α)(v − ŵβ)} , (1− α)v] and c′ =

(
ŵ − v

β

)
+

(
p′

(1− α)β

)
,

(1.25)

with the same equilibrium (β, ŵ) and expected profits E[Π(p, b, c)] = E[Π(p′, c′, b′)] = E[Π((1−

α)v, b, ŵ)].

Lemma 1.11 shows that an optimal policy induces an interior equilibrium, and Lemma

1.12 in turn shows that the airline can match the performance of such a policy using an

alternative with price p = (1 − α)v. Together, the two imply we need only look at the

following sub-class of admissible policies.

Proposition 1.13. (Problem Reduction)

If there exists an optimal strategic overbooking policy ξ ∈ Ξ, then there exists an opti-
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mal strategic policy that sets p∗s = (1 − α)v, induces an interior equilibrium U(β, ŵ), and

optimizes (1.10).

Thus, in the search for an optimal strategic policy, the airline need only consider p = (1−α)v.

With this insight, we continue our analysis for p = (1− α)v below.

Strategic Overbooking Policies

Proposition 1.13 allows the airline to reduce the complexity of its profit maximization

problem in two ways. It can fix the decision variable p = (1 − α)v in (1.10) and optimize

over only (b, c). In addition, as (1.24) shows, given p = (1 − α)v, any interior equilibrium

must have c ≡ ŵ. This fact, in turn, has four additional implications.

First, whatever c the airline chooses uniquely determines ŵ, without regard to the booking

limit b, thereby eliminating the effect of b on ŵ. From (1.20), we recall that dŵ
db is a source

of significant complication in the analysis of strategic booking limits, and with dŵ
db = 0 we

eliminate this difficulty.

Second, given p = (1 − α)v and a booking limit, b, the choice of c ≡ ŵ effectively sets

a unique equilibrium because E[S], E[(N − k)+], and β = (1 − α)E[S]/E[(N − k)+] are

uniquely determined by b and ŵ. Thus, the sufficient conditions of Lemma 1.4 part (ii) are

no longer necessary: when p = (1 − α)v the uniqueness of interior equilibria holds for any

hassle-cost-distribution G( · ).

Third, from (1.24) we also see that any customer with hassle-cost w ≤ c ≡ ŵ is willing to

buy a ticket – no matter how high the equilibrium β – and is, in fact happy to be bumped,

should she be bumped. Conversely, any customer with hassle-cost w > c ≡ ŵ will never buy

a ticket as long as β > 0, no matter how low. (When b = k then β = 0, ŵ = w.) Thus when

p = (1−α)v, customers do not need to know or carefully estimate β when making purchase

decisions. In additional to their own preference and no-show information, (v, w, α), they

need only know the ticket price, p, whether or not the airline overbooks – whether β = 0 or

β > 0 – and, if it overbooks, what bumping compensation, c, the airline offers, information
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that the airline can credibly communicate to its customers.

Fourth, we can tighten the lower bound for admissible values of c. On the one hand, because

G(w) = 0 effectively shuts down demand, we need never consider c < w. On the other hand,

because there is no need for overbooking when qG(c) ≤ k, we similarly never need consider

c < G−1(k/q). Here, the relevant lower bound would still be c = 0 for q = ∞. Together

with the fact that we are fixing p, we define a subclass of Ξ, which we call reduced admissible

policies, ΞR ⊆ Ξ for which p = (1 − α)v, max{w,G−1(k/q)} ≤ cw, and k ≤ b. We know

that there exists an optimal policy ξ ∈ ΞR.

Therefore, with p = (1 − α)v and c ≡ ŵ, we can further simplify the airline’s original

optimization problem (1.10). Given ŵ ≡ c we define unit sales and loss as direct functions

of b and c,

S = min{b,QG(c)} and (N − k)+ =
(
N(S, α)− k)+

)
, (1.26)

so that the airlines profits are

Π((1− α)v, b, c) = (1− α)v S − (c+ r) (N − k)+ . (1.27)

In turn, the airline can optimize

max
ξ ∈ΞR

E[Π((1− α)v, b, c)], (1.28)

without explicit equilibrium constraints, to identify an optimal strategic overbooking policy.

Given an optimal strategic price, p∗s = (1− α)v, we can differentiate (1.28) with respect to

b,

∂E[Π]

∂b
= (1− α)v P{QG(c) > b} − (c+ r) `′(b)P{QG(c) > b}, (1.29)
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and with respect to c,

∂E[Π]

∂c
= −E[(N − k)+] + g(c)

∫ b
G(c)

0
[(1− α)v − (c+ r)`′(qG(c))] qf(q) dq, (1.30)

and use their first order conditions to identify optimal strategic booking limit, b∗s, and

bumping compensation, c∗s.

The first order condition with respect to b is precisely that in (1.19) but with p = (1−α)v,

and for a given c the results of Proposition 1.7 hold here as well. The following proposition

describes how, as the value c∗s increases, b∗s systematically decreases from ∞ down to k.

Proposition 1.14. (Booking Limit for Optimal Strategic Overbooking Policy)

(i) If c∗s ≤ v − r, then b∗s =∞.

(ii) If v − r < c∗s <
(1−α)v
`′(k) − r, then b∗s = `′−1

(
(1−α)v
c∗s+r

)
.

(iii) If c∗s ≥
(1−α)v
`′(k) − r, then b∗s = k.

Part (i) of the proposition follows directly from part (i) of Proposition 1.7, and parts (ii)

and (iii) of the proposition follow from part (ii) of Proposition 1.7. When b∗s = k, we also

know that c∗s = w, since no one is bumped, and the high compensation ensures maximum

demand. Note that `′(k) < (1− α), so the ordering of c∗s in parts (i)-(iii) is well defined.

Proposition 1.14 is interesting for two reasons. First, it reflects that fact that, for p∗s =

(1 − α)v and a given c∗s, the optimal booking limit is simply calculated as the myopic

optimal booking limit for that p∗s and c∗s. In turn, it shows that an optimal overbooking

policy may be found by a line search over potential values of c.

1.5. Overbooking with a Bumping Auction

We now consider overbooking policies in which the airline compensates bumped customers

using an auction. In this case, whether a passenger is bumped and how much she is com-

pensated depend on the magnitude of her hassle cost, w. We define the primitives of the

auction model and format in §1.5.1.
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Our analysis of the auction-based compensation scheme yields three sets of insights. In

§1.5.2 we show that, given use of an auction without a pre-set limit on bumping compen-

sation, customers are always happy to be bumped, and as with the fixed-compensation

model, there exist effective auction-based schemes in which the ticket price equals the ex-

pected value of flying. Then in §1.5.3 we show that, as expected, the use of auction-based

bumping compensation can discriminate effectively among customers with lower and higher

hassle costs to lower expected bumping compensation, and an auction with a pre-announced

upper limit on its potential bumping compensation, though not necessarily optimal, always

increases the airline’s expected profit in comparison to the analogous fixed-compensation

scheme of §1.4.3. In cases in which the auction’s expected total bumping compensation

is convex in the number of tickets sold, we can characterize the behavior of specific pol-

icy parameters. In §1.5.4 we consider these convex cases, we characterize optimal policy

parameters, and we identify an optimal auction-based overbooking policy.

1.5.1. Primitives for the Auction Model

In most respects, the primitives of our model of overbooking with auction-based bumping

compensation parallel those of the fixed-compensation model defined in §1.4. The airline

operates a flight with k seats. It sells tickets up to booking limit, b, at price, p. If b > k and

customers are bumped, it pays rerouting cost, r, for each customer it bumps. The airline

may decide to impose an upper bound, ca, on the compensation that it is willing to pay to

bumped passengers, an analogue of the fixed compensation, c, paid in §1.4. In the context

of an auction, we will call the upper bound, ca, a cap.

Customer attributes also remain the same. Potential customers are homogenous in the

value they obtain from the flight, v, as well as in their no-show probability, α, and they

are heterogenous in the hassle cost, w. We continue to model hassle costs as i.i.d. samples

drawn from a common random variable, W , over support 0 ≤ w < w ≤ ∞, with CDF G(w)

and density g(w) > 0 over its support.

As before, potential demand, Q, is random, with support 0 ≤ q < q ≤ ∞ and CDF
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F (q). In §1.5.2 and §1.5.3, in which we provide preliminary results regarding auction-

based overbooking policies, we assume that the support of Q, S, and N is integral. In

§1.5.4, in which we further characterize the optimal booking limit, b∗a, and compensation

cap, c∗a, we return to §1.4’s assumption that these random variables are continuous, and

we define an analogous continuous approximation for the expected auction-based bumping

compensation. In both cases, our original definition of S, N , and (N − k)+ in (1.3)–(1.5)

continue to hold.

The auction model differs from that in §1.4 in that, when the number of customers who

show up for the flight, n, exceeds the flight’s capacity, k, the airline does not choose (n−k)

customers to bump at random. Rather, it chooses which passengers to bump using an

auction.

1.5.2. Auction with No Cap

We begin our analysis by analyzing an auction for which the compensation paid to bumped

customers is not limited by a pre-determined cap. As in the fixed-compensation model of

§1.4, the airline must also decide on a ticket price and booking limit.

The auction format is a reverse form of a so-called uniform price, multi-unit auction with

single-unit demand and works as follows. If the number of people who show up for the

flight, n, exceeds the flight’s capacity, k, then each of the n potential passengers is asked

to reveal the minimum compensation, $, she would require to give up her seat and be

rerouted on another flight. We call $ a bid and assume that all n passengers submit

their bids simultaneously and independently. The airline observes the n bids and orders

them from smallest to largest. We describe them using the notation of order statistics:

$1:n ≤ $2:n ≤ . . . ≤ $n:n. The airline then bumps the customers with the n − k lowest

bids and pays each of bumped passenger $n−k+1:n, the lowest bid among those passengers

the airline allows to board the flight.

We have not yet described which customers decide to buy tickets, or not, so we do not yet
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know the distribution of the w’s of those who show up for the flight. Nevertheless, we can

show that this auction format motivates customers who paid for a ticket and show up for

the flight to truthfully bid their hassle costs. This fact, in turn, allows us to characterize

which customers buy tickets and the airline’s optimal price, which we denote as p∗a.

Proposition 1.15. (Properties of the Auction with No Cap)

Suppose that, when n > k customers show up for a flight, the airline runs a reverse, uniform

price, multi-unit auction. Then we have the following.

(i) Customers’ optimal bids match their underlying hassle costs: {$1:n = w1:n, . . . , $n:n =

wn:n}.

(ii) All customers are willing to purchase tickets, irrespective of their hassle cost w ∈ [w,w].

(iii) The airline’s optimal price is p∗a = (1− α)v.

Part (i) of the proposition is well-known. For example, Section 13.4.2 in Krishna (2010)

notes the dominance of truthful bidding and resulting efficiency for this auction format, and

for completeness we provide an explicit proof of the former in the appendix.

For part (ii) we note that, given the optimality of customers’ bidding their true hassle costs,

the airline offers compensation of wn−k+1:n to each of the (n− k) customers who it bumps,

an amount that is, by definition, at least as great as any of their hassle costs. Thus, for

any customer, the expected value of being bumped is always non-negative and, given the

opportunity, any customer will purchase a ticket. This is an analogue of the equilibrium

ŵ ≡ w in the fixed-compensation scheme.

We note that, because customers are happy to be bumped, they need not estimate the

chances of being bumped – a fact we pointed out in the model in §1.4 – and we need not

define or evaluate analogues of the equilibrium expressions, (1.1)–(1.2). Rather, as in (1.26)

we can define S = min{b, QG(w)} = min{b, Q)} and (N(S, α)− k)+ as direct functions of

b and ŵ = w.

Part (iii) of the proposition then follows ŵ ≡ w. In particular, the fact that numbers of pas-

sengers ticketed, S, and bumped, (N(S, α)−k)+, are independent of the price, implies that,

34



to maximize expected profit, the airline should simply increase the price to its maximum,

p∗a = (1− α)v.

Given the same optimal price in both the fixed-compensation and auction-compensation

models, p∗s = (1 − α)v = p∗a, it is natural to ask how the performance of two classes of

overbooking policies compare. On the one hand, the auction format should lower expected

bumping compensation by choosing low-cost customers to bump. On the other hand, when

the optimal level of fixed bumping compensation, c∗s, falls strictly below w, there exists

the possibility of obtaining sample realizations, for which wn−k+1:n > c∗s, a fact that may

drive E[wn−k+1:n] to exceed c∗s. In the next section, we will consider a capped version of the

auction scheme that allows us to make a direct comparison.

1.5.3. Auction with a Cap

An airline that runs the auction scheme described §1.5.2 may potentially end up paying

very high total bumping compensation, depending on the hassle cost distribution and its

sample realizations. One way to limit the payout is to place a cap on the compensation

paid to each customer who is bumped. For example, both United and Delta Airlines have

upper bounds that they publicize, United offering up to $10,000 and Delta up to $9,950

in vouchers that can be applied to the ticket price of future flights (Martin, 2017; Tuttle,

2017).

In this section we consider this form of cap, which works as follows. The airline offers

tickets for a flight at price p and publicly discloses that, when bumping customers, it uses

an auction with cap, ca, on the maximum compensation paid. In the event that n > k

passengers show up for the flight, the airline runs an auction, as before, but now limits

the compensation per bumped customer to min{ca, wn−k+1:n}. We note that the uncapped

auction of §1.5.2 is equivalent to a capped auction with cap ca = w.

The presence of a cap ca < w has the potential to eliminate the dominance of truthful

bidding and to render an analysis of the auction unmanageable. For the special case of a

35



price p = (1− α)v – which we already know is optimal for overbooking policies with fixed-

compensation and for uncapped auction-based policies – the analysis remains tractable,

however. In particular, we have the following.

Proposition 1.16. (Properties of the Auction with a Cap)

Suppose that the airline sets the price p = (1−α)v and b > k. When n > k customers show

up for a flight, it runs a reverse, uniform price, multi-unit auction with compensation cap

ca ≤ w. Then we have the following.

(i) Customers are willing to purchase tickets, if and only if their hassle costs are w ≤ ca.

(ii) Customers’ optimal bids match their underlying hassle costs: {$1:n = w1:n, . . . , $n:n =

wn:n}.

The proposition’s results follow the logic of the fixed-compensation scheme with p = (1−α)v.

In the auction setting, a price of p = (1 − α)v, together with a pre-announced cap of ca,

ensures that customers with w > ca have a surplus of −p + (1 − α)v = 0 on every sample

path on which they are not bumped and a surplus of −p + (1 − α)v + (ca − w) < 0 on

every sample path on which they are, so the expected value of their purchasing a ticket is

negative.

This demonstrates the “only if” statement of part (i). If we then consider a truncated

hassle-cost distribution W (ca) with upper bound w = ca and CDF Gca(w) = G(w)/G(ca),

we return to the setting in §1.5.2 of an auction with no cap, one in which every customer

with hassle cost w ∈ [w,w] is willing to purchase a ticket. The “if” statement of part (i)

and the statement of part (ii) then follow from parts (i) and (ii) of Proposition 1.15.

The cap on the auction’s bumping compensation lets us directly compare this auction for-

mat’s expected profits to those of analogous fixed-compensation policies. As in (1.26) we

can define the number of units sold, S = min{b,QG(ca)}, and in turn number of bumped

customers, (N(S, α) − k)+, as functions of the cap, ca. To define expected bumping com-

pensation, we let PN (n|s) denote the probability that n among s ticketed passengers show

up for the flight, and we let w(ca)n−k+1:n denote the n − k + 1st ordered hassle cost from
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a truncated hassle-cost distribution W (ca). We then define the expected total bumping

compensation, given s tickets are sold, as

C(s, ca) =


0 if s ≤ k, and∑s

n=k (n− k)E[w(ca)n−k+1:n]PN (n|s) otherwise,

(1.31)

a conditional expectation that is an analog to c`(s), the conditional expectation of total

bumping costs in the fixed-compensation scheme. The resulting marginal expression for the

expected bumping compensation, which randomizes (1.31) over S, becomes C(S, ca).

With these quantities defined, we can denote auction-based profits for price p = (1−α)v as

Πa((1− α)v, b, ca) = (1− α)v S − r (N − k)+ − C(S, ca), (1.32)

where revenues equal the ticket price times number of tickets sold, re-routing costs equal r

times the number of passengers bumped, and total bumping compensation equals C(S, ca).

Now consider an admissible overbooking policy with p = (1−α)v, b ≥ k, and fixed compen-

sation w < c ≤ w. Given discrete distributions for Q, S, and N in (1.26), we can directly

compare the objective functions (1.27) and (1.32) to show that auction-based bumping

compensation dominates fixed-compensation policies.

Proposition 1.17. (Auction with Cap Dominates Fixed Compensation)

Given any fixed-compensation policy with p = (1− α)v, b > k, w < c ≤ w, and equilibrium

β > 0, an auction-based policy with the same price, p = (1−α)v, the same booking limit, b,

and an analogous cap, ca = c, earns strictly higher expected profits: E[Πa((1− α)v, b, c)] >

E[Π((1− α)v, b, c)].

The fixed-compensation and auction-based policies have the same expected revenues, (1−

α)vE[S], and the same expected rerouting costs, rE[(N − k)+]. While both policies have

the same numbers of bumped passenger, (N − k)+, in any realization for which n > k, the

auction scheme’s compensation is weakly lower by construction: w(c)n−k+1:n ≤ c. Given

37



g(w) > 0 there further exists a positive probability that w(c)n−k+1:n < c, a strict inequality

that carries over to expected profits.

Thus, any strategic overbooking policy with price p = (1 − α)v is outperformed by the

analogous auction-based policy. This includes strategic overbooking policies for which b

and c are optimized for the price p = (1− α)v. Proposition 1.13’s results, that there exist

optimal policies with p = (1 − α)v for continuously distributed S and (N − k)+, suggest

that, in fact, there exists an auction-based compensation scheme that outperforms any

fixed-compensation scheme.

1.5.4. Optimal Policy Parameters for Auctions

In §1.5.2 and §1.5.3 we were able to use relatively elementary arguments to provide two

insights of interest regarding overbooking with auctions. First, as with overbooking policies

with fixed bumping compensation, the optimal price for auctions without a cap on bumping

compensation is p = (1− α)v. Second, given an additional cap on auction-based bumping

compensation, ca, any fixed-compensation policy with price p = (1 − α)v is outperformed

by an analogous auction-based format. When there is a cap, the potential complexity of

passenger bidding behavior when p < (1− α)v prevents us from providing a sharper char-

acterization, however. Nevertheless, by using the same type of continuous approximations

we employed in §1.4, we can differentiate critical expressions to provide additional insight.

Primitives for the Continuous Approximation

As in §1.4, we assume that Q is a continuous random variable with density f(q) > 0

over its support, that S and N(s, α) are likewise continuous, and that the loss function

`(s) = E[(N(s, α)−k)+] is characterized by Definition 1.2. In addition to these assumptions,

we define an analogous continuous approximation to the conditional expectation of the

auction-based bumping compensation, given the number of potential passengers, n.

We continue to let E[w(ca)n−k+1:n] represent the expected value of the order statistic that

determines bumping compensation. Now, however, we assume that the expectation varies
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continuously with a continuously-defined n. Accordingly we let PN (n|s) denote the CDF of

the conditional distribution of N , given s, with support [0, s] and density pN (n|s) > 0 over

its support, so that

C(s, ca) =


0 if s ≤ k, and∫ s
k (n− k)]E[w(ca)n−k+1:n] pN (n|s) dn otherwise,

(1.33)

with analogous total bumping compensation C(S, ca), as in (1.31).

We note that a continuous approximation for E[w(ca)n−k+1:n] can be created in a number of

ways. One longstanding method that works well for relatively large n uses the inverse CDF

of the hassle-cost distribution to map back from the relevant fractile to its w value (Arnold

et al., 2008). Recalling from §1.5.3 that the conditional distribution of the hassle cost, given

a cap ca, is Gca , we have E[w(ca)n−k+1:n] ≈ G−1
ca

(
n−k+1
n+1

)
. For notational simplicity, we

define G̃(ca, n) ≡ G−1
ca

(
n−k+1
n+1

)
.

We emphasize that, as with the loss function, our proofs do not depend on the particular

distribution of the number of customers who show up. We do require, however, that N(s, α)

is stochastically increasing and convex (SICX) in s. (See Section 6.A.1 in Shaked and

Shanthikumar (1994).) In particular, this means that E[ψ(N(s, α))] is increasing in s for

all increasing ψ(·) and increasing convex in s for all increasing convex ψ(·). The binomial

distribution, for example, is SICX in s.

Similarly, our proofs do not depend on the particular form of the approximation for

E[w(ca)n−k+1:n], only on its differentiability with respect to n, the resulting differentiability

of C(s, ca) with respect to s, and the properties of the latter’s derivatives.

As with `(·) we sometimes write partial derivatives with respect to one argument by using

a prime symbol and the variable of interest: for example we let C ′(s) ≡ ∂C(s,ca)
∂s . With this

notation in hand we can state a first result, that expected total bumping costs inherit the

convexity properties of the per-passenger expected bumping cost.
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Lemma 1.18. (Convexity of Auction-Based Expected Bumping Cost)

Suppose N(s, α) is SICX in s.

(i) If ∂E[w(ca)n−k+1:n]/∂n ≥ 0, then C ′(s) > 0.

(ii) If in addition ∂2E[w(ca)n−k+1:n]/∂n2 > 0, then C ′′(s) > 0.

The fact that expected bumping cost per customer, E[w(ca)n−k+1:n] is itself increasing in

the number of customers bumped is not surprising. It can, in fact, be proven for any

distribution using the original, discrete representation of order statistics and a sample-path

argument. Given this fact, the propositions below will not state C ′(s) > 0 as an explicit

assumption.

The convexity of the expected order statistic, however, depends more specifically on the

form of the hassle-cost distribution, G, and we can use the approximation, G̃, defined above

to provide some insight into the types of distributions for which it holds.

Lemma 1.19. (Convexity of the Approximation G̃)

Suppose N(s, α) is SICX in s and we use the specific approximation E[w(ca)n−k+1:n] ≈

G̃(ca, n).

If for any ca ∈ (w,w], g′(w) < 0 for all w ∈ [G−1(G(ca)
k+1 ), ca], then C ′′(s) ≥ 0.

Thus, a sufficient condition for the convexity of the approximation G̃ is a decreasing hassle-

cost density. This is the same condition that part (iii) of Lemma 1.4 showed is sufficient

for the uniqueness of a customer equilibrium. As with Lemma 1.4, we note that DFR

distributions satisfy the condition.

Properties of the Booking Limit

When the airline sets a price of p = (1 − α)v, auction profits (1.32) are well defined, and

we can differentiate expected profits with respect to relevant policy parameters. To develop

the required FOC we begin by differentiating the expectation of (1.32) with respect to b.

dE[Πa]

db
= (1− α)v

dE[S]

db
− r dE[(N − k)+]

db
− dE[C(S)]

db
= 0. (1.34)
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Differentiating the expectation of (1.33) with respect to b we have

dE[C(S)]

db
= C ′(b)P{Q > b}. (1.35)

and from (1.16), (1.18), and (1.35) we can write the FOC in (1.34) as

dE[Πa]

db
= P{Q > b}

[
(1− α)v − r `′(b) − C ′(b)

]
= 0. (1.36)

To ensure that b∗a is a local maximum, we need also to examine the second-order condition

(SOC)

d2E[Πa]

db2
= f(b)

[
(1− α)v − r`′(b)− C ′(b)

]
+ P{Q > b}

[
−r`′′(b)− C ′′(b)

]
. (1.37)

We now have the machinery needed to characterize the optimal booking limit, b∗a. From

the FOC we see that ((1− α)v − r `′(b) − C ′(b)) = 0, which implies that the SOC is

negative whenever [−r`′′(b)− C ′′(b)] < 0. Recalling Definition 1.2, we know that `′′(s) > 0,

so a sufficient condition for d2E[Πa]
db2

to be negative is C ′′(b) > 0. Finally, from Lemma 1.18

we know that C ′′(b) > 0 whenever ∂2E[w(ca)n−k+1:n]/∂n2 ≥ 0.

Proposition 1.20. (Optimal Booking Limit for the Auction)

Suppose p = (1− α)v and C ′′(s) > 0. Then there exists a unique optimal booking limit, b∗a,

with the following properties.

(i) If `′(k) ≥ (1−α)v
r then b∗a = k.

(ii) If `′(k) < (1−α)v
r and ∃ b ∈ (k,∞) s.t. C ′(b) ≥ (v − r)(1 − α), then (1.36) determines

b∗a ∈ (k,∞).

(iii) If C ′(b) < (v − r)(1− α) for all b ≥ k then b∗a =∞.

The proposition’s results follow from the FOC (1.36) and the fact that lims→∞ `(s) = (1−α).

As with the myopic booking limit characterized in Proposition 1.7, the higher the rerouting

and bumping costs, the smaller the booking limit. When expected marginal rerouting costs

are high enough, there is no overbooking. With moderate levels, there is a finite level of

41



overbooking. Finally, given the upper limit of (1− α)r on the marginal expected rerouting

cost, small enough marginal bumping costs can lead to infinite booking limits.

Properties of the Cap

As the airline changes the cap on the maximum bumping compensation, ca < w, it sys-

tematically changes the hassle-cost distribution. In particular, if c1
a < c2

a, then P{W (c1
a) ≤

w} ≥ P{W (c2
a) ≤ w} for all w ∈ [w,w]. That is, W (c2

a) is larger than W (c1
a) in the so-called

usual stochastic order.

This difference helps us to characterize the effect of potential changes to the cap. To

begin, the stochastic order immediately implies that, for any fixed n, expected bumping

compensation, E[w(ca)n−k+1:n] increases with the cap. (See Theorem 1.A.3(b) in Shaked

and Shanthikumar (1994).) In turn, for any underlying hassle-cost distribution, G, the

expected total bumping cost grows more quickly with s.

Lemma 1.21. (Bumping Compensation Grows with the Cap)

For ca ∈ (w,w) and s > k, (i) ∂C(s, ca)/∂ca > 0, and (ii) ∂2C(s, ca)/∂s∂ca > 0.

In addition, when C(s, ca) is convex in s, we can use Lemma 1.21 to characterize how the

optimal booking limit in Proposition 1.20 and expected profits change with the cap.

Proposition 1.22. (Optimal Auction Parameters)

For fixed p, let b∗a(ca) be the optimal booking limit induced by ca. Suppose p = (1 − α)v,

w < ca < w, k < b∗a(ca) <∞ and C ′′(s) > 0. Then we have the following.

(i) The optimal booking limit, b∗a, is decreasing in ca.

(ii) The resulting expected profit, E[Πa], is increasing in ca.

Part (i) of the proposition follows from the FOC and the fact that C ′(s) is increasing in the

cap. It implies that the optimal booking limit for the auction with no cap is the smallest

among those for all auction policies we have considered. Part (ii) implies that, among all

auctions-based policies with price p = (1 − α)v, an auction with no cap – which in the

context of the proposition is the maximal cap – maximizes the airline’s expected profits.
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With analogous continuous-distribution models for both the fixed-compensation and auction-

based overbooking policies, we can now make a direct comparison of the two classes of policy

to conclude the following.

Proposition 1.23. (Optimality of Overbooking Policy)

(i) The optimal overbooking policy uses an auction to determine customers’ bumping com-

pensation.

When N(s, α) is SICX, C ′′(s) > 0, and the auction-based overbooking policy sets p =

(1− α)v, we also have the following.

(ii) The optimal cap on bumping compensation is effectively unbounded: c∗a = w.

(iii)The optimal booking limit b∗a is defined as in Proposition 1.20.

While we have not ruled out the possibility that an auction with cap ca < w and price

p < (1 − α)v could outperform the auctions we have considered, we do know that there

exists a capped auction with price p = (1 − α)v that outperforms all fixed-compensation

policies. Thus, as part (i) states, there is some auction scheme that is optimal, a result that

does not depend on the price or the convexity of C(s). For p = (1−α)v, SICX N(s, α) and

convex C(s), parts (ii) and (iii) highlight that the optimal overbooking policy sets c∗a = w

and requires only a minimal line search for the optimal b.

1.6. Numerical Experiments

Having analyzed how demand endogeneity affects overbooking under both fixed and auction

schemes, a natural question that arises is whether or not the magnitude of the demand effect

is significant. To address this question, we run two sets of numerical experiments that span

a wide range of problem parameters and are meant to capture some typical values for

flight capacities k, no-show rates α, customer valuations v, compensation amounts c, and

rebooking costs r. The results are reported in Table 1 and Table 2.

The first set of experiments considers the demand effect for the narrower set of booking-

limit policies considered in §1.4.2. Here, price, p, and fixed bumping compensation, c, are
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b∗m
b∗s

β∗m
β∗s

E[Π∗s]

E[Π∗m]

Min 1.00 1.00 1.00
Med 1.92 1.60 1.27
Mean 1.64 – 1.27
Max 2.40 ∞ 1.65

Table 1: Myopic vs Strategic Booking
Limits

c∗s
E[C]

b∗a
b∗s

β∗a
β∗s

E[Π∗a]

E[Π∗s]

Min 2.35 1.00 1.00 1.00
Med 4.34 1.02 2.97 1.01
Mean 4.54 1.09 6.24 1.02
Max 9.84 1.38 47.74 1.06

Table 2: Fixed Compensation vs Auction

taken as given, and the airline chooses a booking limit to maximize expected revenues. In

these experiments, we quantify the benefit provided by the strategic booking-limit policies

of §1.4.2, in which the airline recognizes that its booking limit affects customer demand,

beyond that of the benchmark myopic setting of §1.4.2, in which it does not.

The 720 experiments cover parameter ranges designed to test a wide array of contexts, and

we describe their details in Appendix A.1.3. For each of the 720 problem instances, we

find the optimal myopic booking limit, b∗m, and the optimal strategic booking limit, b∗s.

Customers react optimally to each booking limit, and the resulting bumping probabilities,

β∗m and β∗s , as well as the resulting expected profits, E[Π∗m] and E[Π∗m], reflect the resulting

customer equilibrium. For each of the 720 problem instances, we compare the results

obtained from the use of the myopic and the strategic booking limits by calculating relevant

ratios, and for each ratio we sort the results of the 720 problem instances from smallest to

largest and report relevant distributional statistics.

Table 1 reports the summary statistics. The first column reports those for the ratio of the

optimal booking limits, the second displays statistics for the ratio of equilibrium bumping

probabilities, and the third results for the ratio of the expected profits. The table shows that

the demand effect has a significant impact in all three cases. As suggested by Proposition 1.9,

the optimal strategic booking limit is never higher than the myopic analog, and furthermore

the myopic booking limit is on average 1.64 times higher (64% higher) than its strategic

counterpart. The median ratio for the bumping probabilities is 1.60, and the mean is
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unbounded due to cases in which the strategic airline does not overbook, so that β∗s = 0.

Finally, the mean and median ratios for expected profits are 1.27, suggesting the an airline’s

ability to account for demand effects can have a significantly positive impact for its revenue

management.

The second set of experiments considers full control of price, bumping compensation, and

booking limit and compares the optimal strategic fixed-compensation schemes of §1.4.3 to

the optimal auction schemes of §1.5.2. In these auction schemes there is no cap on bump-

ing compensation. We construct 360 problem instances that systematically vary relevant

parameters, and again we describe their details in Appendix A.1.3. In addition to the

statistics reported in Table 1, Table 2 reports analogous summary statistics for the ratio

of the optimal fixed-compensation value to the expected bumping cost associated with the

optimal auction policy, c∗s/E[C].

From Table 2 we see that optimal expected bumping cost per passenger is significantly lower

for the auction-based scheme (mean ratio of 4.54) and that, in turn, this allows the airline to

significantly increase booking limits (mean ratio of 1.09) and bumping probabilities (mean

ratio of 6.24). Optimal expected profits are always higher for the auction-based policies, and

while the improvement in expected profits is relatively modest (mean ratio of 1.02) when

compared to the analogous improvements seen in Table 1, we note that a 2% improvement

itself can be significant in the RM context.

1.7. Managerial Implications and Limitations

Overbooking is widely used in practice and studied in the RM literature. Existing models

of overbooking do not explicitly account for the demand effects that can accompany the

bumping of passengers, however. One possible reason for this absence may be that, despite

the wide adoption of overbooking, bumping probabilities tend to be low, on the order of

tenths of a percent, and managers may assume that there is limited room for revenue in-

creases from policy improvements. Nevertheless, the potential importance of these demand

effects has been highlighted by recent events in the air travel industry, such as the widely

45



publicized 2017 incident of a passenger who was unwillingly dragged off United Express

Flight 3411.

Our numerical experiments confirm that fixed-compensation policies that account for de-

mand endogeneity can, in fact, significantly outperform those that do not and that the use

of auction-based policies brings smaller but still-significant additional gains. These results

suggest that significant benefits may accrue to airlines that incorporate demand effects into

their overbooking models and move to more profitable and customer-friendly auction-based

compensation schemes.

Our work also provides a theoretical basis to support these shifts in policy. In particular, our

analytical results suggest that, in both the fixed and auction-based compensation settings,

an effective means of managing overbooking is to ensure that customers who buy tickets

are always fairly compensated for being bumped. This approach ensures that an airline

maintains the good will of bumped customers and allows customers to decouple their initial

purchase decisions from the possibility of being bumped: when deciding whether to purchase

tickets, they need not know the bumping probability. These policies also allow the airline

to significantly reduce the complexity of its overbooking policies.

These results are based on a relatively rich model of the operational context. We make lim-

ited distributional assumptions regarding customer demand and customer disutility from

being bumped. Similarly, our results hold under relatively limited informational require-

ments on the part of customers, who need only know their own preferences, observable

statistics on the part of the airline and, potentially, an estimate of the bumping probability.

Again, in the context of the families of policies described above, customers who are assured

of fair bumping compensation need not estimate the bumping probability.

At the same time, our model also makes some limiting assumptions that may be interesting

to relax in subsequent work. In particular, our focus on the disutility of being bumped has

motivated us to assume that relevant customer heterogeneity is captured by a hassle cost
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distribution and that customers otherwise share a common valuation v for the flight. It

would be valuable to study the empirical relationship between value and hassle cost to see

how well our assumption fits with practice and to provide a more refined characterization

of the relationship between the two.

Furthermore, while our results suggest that each airline, when considered in isolation, would

do well to move to an auction-based policy, we do not directly model competitive factors that

might drive airlines to choose other overbooking schemes (Netessine and Shumsky, 2005).

Similarly, in practice airlines’ use of multiple fare classes can affect consumer behavior

(Cohen et al., 2019), and it would be useful to extend our analysis to this broader setting.
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CHAPTER 2 : Financing Inventory through Capped

Initial Coin Offerings

2.1. Introduction

Initial Coin Offerings (ICOs) are an emerging form of fundraising for blockchain-based star-

tups in which digital coins, also known as “tokens”, are issued to investors in exchange for

funds to help finance business. In many cases, tokens are generated on existing blockchains

and their core value is backed either by the firm’s future products/services in the case of

“utility” tokens, or by the firm’s future profits in the case of “equity” tokens. This new way

of crowdfunding1 startup projects has gained momentum since 2017 with the total amount

raised skyrocketing to thirty billion dollars by the end of 2019 (source: icobench.com). The

growth of ICOs is also challenging the dominance of traditional means of raising capital.

During Q2 2018, ICO projects raised a total volume of $9.0 billion (Coinschedule, 2018),

which is 56% of the amount raised by the US IPO market ($16.0 billion) or 39% of the

amount raised by the US venture capital markets ($23 billion) during the same period, as

reported by CB Insights (CB Insights, 2018) and PwC (Thomson, 2018).

Research Questions Following this trend, the academic literature on ICOs is also

rapidly growing, particularly in finance and economics, where the focus has been on topics

such as empirically characterizing the drivers of ICO success or on comparing this new form

of financing to more traditional financing methods. There is also a growing literature in

operations management studying the interplay between firm operations and financing deci-

sions (see literature review for details). This chapter seeks to contribute to these literatures

by focusing on ICOs for product market firms facing demand uncertainty, in an unregulated

environment. We ask: How should assets (inventory) be tokenized as a function of prod-

uct, firm and customer demand characteristics? That is, what type of tokens—utility vs.

1We discuss differences between token offerings and other early-stage financing methods in §2.3.7.
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equity—and how many tokens should be issued, and how should they be priced? Further,

how do these choices affect firm inventory decisions, and the odds of ICO failure or suc-

cess? Finally, what are some of the salient features distinguishing ICOs from other forms

of financing?

Properties of ICOs A typical ICO proceeds as follows. A startup first publishes a

white paper with or without a minimum viable product for demonstration and then issues

its platform-specific tokens. The typical white paper usually delivers the key information of

the project, including the token sale model that specifies the token price, the sale period, the

sales cap (if any), etc.2 The tokens can have a variety of uses, but most commonly, they are

either used for consumption of the company’s goods and services once they become available

(utility tokens), or offered as shares of the company’s future profit (equity tokens). During

the crowdsale, investors purchase tokens using either fiat currencies, or, more commonly,

digital currencies such as Bitcoin and Ether.

While some successful ICOs were conducted by service platforms such as Ethereum and

NEO, in this chapter we focus on ICO projects that involve the delivery of physical products

instead; these types of ICOs are more recent, and hence, less well-understood. One striking

example is that of Sirin Labs (Sirin Labs, 2019): a startup that produces smartphones

and other types of hardware and software systems. In 2017, Sirin Labs was able to raise

over $150 million from investors by offering them Sirin tokens (SRN). These tokens could

subsequently be used to purchase the company’s products and participate in its ecosystem,

or be sold in the secondary market. Other relevant examples include Honeypod (Honeypod,

2018) that develops hardware serving as the main hub interconnecting various devices and

providing traffic filtering, and Bananacoin (Bananacoin, 2018) which grows bananas in Laos.

ICOs can have multiple benefits. First, both the startup founders and investors have the

opportunity of high financial gains from the potential appreciation of the tokens. Second,

ICOs allow for faster and easier execution of business ideas because the ICO tokens generally

2We provide a condensed example of a white paper in Appendix A.2.1.
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have secondary-market liquidity, and require less paperwork and bureaucratic processes,

than the regulated capital-raising processes do. Third, ICOs provide the project team

with access to a larger investor base as the stakeholders typically face less geographical

restrictions.

On the other hand, just like the underlying blockchain technology, ICOs are still in their

infancy and have some downsides. First, for the project teams, the failure rate of ICOs is

high and increasing. Despite a rise in the total investment volume, nearly half of all ICOs in

2017 and 2018 failed to raise any money at all (Seth, 2018) and 76% of ICOs ending before

September 2018 did not get past their soft cap (Pozzi, 2018), i.e., the minimum amount of

funds that a project aims to raise. Benedetti and Kostovetsky (2018) claim that only 44.2%

of the projects remain active on social media into the fifth month after the ICO. Second,

the aspect of quick and easy access to funding with loose regulation attracts unvetted

projects and even utter scams, making ICO investments risky. Some entrepreneurs portray

deceiving platform prospects in the white papers in an attempt to raise as much money

as they can before gradually abandoning their projects. In a review of 1450 ICO cases by

the Wall Street Journal, 271 were susceptible to plagiarism or fraud. The profit-seeking yet

ill-informed investors can become easy prey and have claimed losses of up to $273 million

(Shifflett and Jones, 2018). Other disadvantages of ICOs include technical concerns such

as the potential theft of tokens through hacks (Memoria, 2018).

Model To study some of these issues in the context of inventory tokenization, we adopt a

game-theoretic approach with three types of players: a firm (token issuer), speculators (to-

ken traders) and customers (who buy the product). As in the Sirin Labs example mentioned

earlier, the firm seeks to raise funds through an ICO to support the launch of a physical

product it wishes to sell in the face of customer demand uncertainty. We first consider a

utility-based ICO, whereby the tokens issued by the firm are tied to its (future) inventory.

The ICO game develops over three periods. In the first period, the firm announces the total

number of tokens available, the sales cap and the ICO token price, and sells tokens (up to
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the cap) to speculators who make purchase decisions strategically3. In the second period,

the firm, facing uncertain customer demand, can put the funds raised in the ICO towards

production of a single product. Importantly, to reflect the lack of intermediaries and the

lax regulatory environment, we leave the firm with full discretion over what to do with the

raised funds, including the option of fully shirking production and diverting raised funds

to its pockets (moral hazard). In the final period, demand for the product is realized and

customers buy tokens either directly from the firm (if the firm has any tokens remaining)

or from speculators in the secondary market, and redeem these tokens for the product, if

available, at an endogenously determined equilibrium token price. Finally, we compare this

utility-based ICO model to an analogous equity-based ICO model, whereby the firm issues

tokens that are tied to its future profits (if any), rather than to its future inventory.

Our base model assumes that the main source of risk is future demand uncertainty, rather

than manufacturing technology. This setting is motivated by several practical examples,

including the aforementioned case of Sirin Labs: prior to the ICO, the company had secured

Foxconn, a major smartphone manufacturer (which also assembles the vast majority of

Apple iPhones), as its main supplier. As such, the risk of manufacturing failure was arguably

quite low. Indeed, the company went on to successfully produce their products and made

them available to consumers. However, despite successful production and a very impressive

ICO outcome in terms of total funds raised, the company’s token market price dropped

significantly in the months and years post ICO, because customer demand for their product

fell well short of expectations. In other words, demand uncertainty can have a first-order

effect on the token’s market value. Nonetheless, for completeness, we also extend the base

model to consider additional risks in the form of possible production failure.

Contributions Using this relatively simple and flexible model, we derive the optimal

ICO price, token cap and production quantity as a function of operational and demand

3The literature on operational decisions in the presence of strategic agents includes Dana Jr and Petruzzi
(2001), Cachon and Swinney (2009), Papanastasiou and Savva (2016), etc. Su (2010) and Milner and
Kouvelis (2007) consider similar speculative behavior yet with no financing aspect.
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characteristics, for both utility-based and equity-based coin offerings. We find that, despite

rampant moral hazard, both types of ICOs can be successful under the right conditions.

Focusing first on utility ICOs, we show that these are analogous to a form of revenue-sharing

contract between the firm and speculators, and we identify four key factors that are required

for the success of an ICO: i) the existence of a liquid secondary market for the tokens,

which provides an ”exit ramp” for speculators, incentivizing them to participate in the

ICO, even when they might otherwise not be interested in consuming the firm’s products;

ii) a minimum price-cost ratio of 2 (i.e., a 50% margin, or 100% markup) to provide enough

incentive for the company to pursue production; iii) a minimum amount of tokens to be

sold during the ICO, termed the “critical mass” condition, which ensures speculators break

even in expectation; and iv) a maximum amount of tokens to be sold during the ICO,

which defines a “misconduct threshold”. Interestingly, when excessive funds beyond this

threshold are raised (e.g., from over-optimistic investors) the firm is actually discouraged

from pursuing production ex-post given it does not have enough “skin” left in the game.

This provides a possible explanation for the loss of motivation or productivity post ICO

of some well-funded startups in practice. While conditions i)-iv) suffice to prevent total

market breakdown, they do not fully eliminate the adverse effects of moral hazard. Rather,

in equilibrium, these lead to agency costs, underproduction and lower-than-optimal profits

versus first best. Importantly, we show how these inefficiencies fade as the demand for

the product increases and/or becomes less volatile, and as customers’ willingness-to-pay

increases.

We then turn attention to ICOs with equity tokens, which are also commonly known as se-

curity token offerings—STOs4. Although STOs have a relatively smaller market compared

with ICOs, they gained much popularity in 2018, with total volume being almost seven

times that of 2017 (from $65.59 million in 2017 to $434.95 million in 2018) (Blockstate,

2020). Unlike utility tokens that can be exchanged for the firm’s products, equity tokens

4Throughout the chapter, we use “STOs” and “ICOs with equity tokens” interchangeably.
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simply represent a share of an underlying asset, which in our model takes the form of a

profit-sharing contract. Therefore, equity tokens are closely related to traditional equity

stakes, though without voting rights. We show that, even though moral hazard and the

inefficiencies it generates cannot be fully eliminated in this setting, these inefficiencies are

less prominent compared to utility offerings, as long as profit-sharing can be credibly imple-

mented, e.g., using auto-executable smart contracts. Assuming the latter holds, equity-type

ICOs also have the advantage of not requiring a liquid secondary market for the tokens, as

speculators can instead rely on smart contracts to receive their share of future cash flow and

effectively ”exit” the deal. Importantly, the advantage of equity tokens stems from their

inherent ability to better align incentives, and hence continues to hold even in unregulated

environments.5

Finally, we extend the model in two separate dimensions: i) We add the possibility of

production failure to capture situations in which the firm’s technology is risky and manu-

facturing success is not guaranteed. We find that this additional source of risk incentivizes

the firm to keep a fraction of the ICO proceeds in a reserve fund to provide coverage in case

production fails. This, in turn, can significantly exacerbate the moral hazard problem, re-

ducing the chance of ICO’s success. ii) We then consider the case where speculators require

a minimum amount of expected return to invest in the ICO (the base model assumes their

outside option is zero). We show that, consistent with practice, this assumption creates a

wedge between the ICO’s token price and the secondary market price, ex-post production.

ICOs vs Crowdfunding Our model distinguishes ICOs from other early-stage financing

methods by capturing several unique features of ICOs, including the fundraising mechanism

and the issuance of tokens, the existence of a peer-to-peer secondary market, and the nature

of investors. In contrast to reward-based crowdfunding, for instance, there is no interme-

diary platform imposing a fundraising mechanism (e.g., Kickstarter uses and all-or-nothing

mechanism). Rather, firms running ICOs have to determine how many tokens to issue/sell

5In our model, assuming regulation can effectively alleviate moral hazard, both ICOs and STOs reduce
to the first best financing case without frictions.
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during the initial round in addition to how many products to make. Another important

difference that we highlight is that tokens allow the firm to disperse downside risks of fu-

ture demand among the token holders, whereas in crowdfunding, campaign backers share

downside risk only in terms of product failure (not in terms of future demand uncertainty).

Finally, we show that the existence of the secondary market for the tokens is crucial in in-

centivizing investors to participate in utility-type ICOs, an important feature missing from

crowdfunding. We refer the readers to §2.3.7 for a more detailed discussion and Table 3 for

a summary comparison to other financing methods.

Literature Review Broadly speaking, this chapter contributes to the strand of literature

at the interface of operations and finance that studies, among other things, different ways

of financing inventory. Earlier works include Babich and Sobel (2004), Buzacott and Zhang

(2004), Boyabatlı and Toktay (2011), Kouvelis and Zhao (2012), and Yang and Birge (2013),

see Kouvelis et al. (2011) for a review of this literature. More recent papers include Boyabatlı

et al. (2015), Yang et al. (2016), Iancu et al. (2016), Alan and Gaur (2018), Chod et al.

(2019a).

As an alternative to traditional crowdfunding,6 ICOs are understudied in the operations

management literature. However, there are several recent theoretical studies in the finance

literature that examine the economics of ICOs and cryptocurrencies. Most of them focus on

peer-to-peer service platforms that allow decentralized trading. For example, Li and Mann

(2018) and Bakos and Halaburda (2018) demonstrate that ICOs can serve as a coordination

device among platform users. In a dynamic setting, Cong et al. (2018) consider token pricing

and user adoption with inter-temporal feedback effects.

More closely related to our work are papers that model ICOs in business-to-customer set-

tings. Catalini and Gans (2018) propose analysis of an ICO mechanism whereby the token

value is derived from buyer competition. Malinova and Park (2018) suggest a variation on

6Refer to Section 2.3.7 for a discussion on the differences. For recent papers on crowdfunding, see Alaei
et al. (2016), Babich et al. (2019), Belavina et al. (2019), Chakraborty and Swinney (2017), Chakraborty
and Swinney (2018), Fatehi et al. (2017), Xu and Zhang (2018), Xu et al. (2018).
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the traditional ICO mechanism that can mitigate certain forms of entrepreneurial moral

hazard. Chod and Lyandres (2018) compare ICOs to VC financing. We adopt a similar

approach modeling an ICO as a presale of the platform’s partial future revenue, yet with an

emphasis on operational details including demand uncertainty and inventory considerations.

In particular, we incorporate stochastic demand of the products, rather than assuming that

demand is observable before production (Catalini and Gans, 2018; Malinova and Park, 2018)

or infinite (Chod and Lyandres, 2018). We believe ours is the first study to jointly optimize

the operational decisions including sales cap, token pricing and production quantity, in the

presence of strategic investors under demand uncertainty, and compare utility and equity

(STO) token issuance in this context.

More broadly, the chapter contributes to a growing theoretical literature studying the eco-

nomics of blockchain-based systems, see e.g., Biais et al. (2017); Chod et al. (2019b); Cong

et al. (2018); Hinzen et al. (2019); Pagnotta (2018); Pagnotta and Buraschi (2018); Rosu

and Saleh (2019); Tsoukalas and Falk (2019), and references therein.

Here and below, we first develop in §2.2 and solve in §2.3 the case of utility tokens, before

examining equity tokens in §2.4.

2.2. Model: ICOs with Utility Tokens

Consider an economy with three types of agents: i) a monopolist firm, ii) investors termed

speculators, and iii) firm’s customers. The economy has three periods: i) The first period,

termed “ICO”, is the fundraising phase containing the firm’s white paper that includes

contract terms and the token crowdsale; ii) the second period, termed “production”, covers

firm’s production decisions in the face of uncertain customer demand; iii) the third period,

termed “market”, covers the realization of customer demand, and market clearing for the

product and any remaining tokens. The firm participates in all three periods. Speculators

participate in the ICO and the market periods. Customers participate only in the market

period.
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Firm The firm has no initial wealth and seeks to finance production through a “capped”

ICO. The firm has a finite supply of m total tokens that are redeemable against its future

output (if any). In the ICO period, the firm maximizes its profits by choosing i) the ICO

“cap”, n ≤ m, that is, the maximum number of tokens to sell to speculators in the ICO

period, and ii) the ICO token price τ (in dollars per token). Subsequently, in the production

period, the firm has the option to use any amount of funds raised through the ICO to finance

the production of its output. To this end, the firm maximizes its total wealth, through a

newsvendor-type production function (Arrow et al., 1951), by choosing quantity Q ≥ 0 of

a product with unit cost c (in dollars per unit) that it can later sell in the market period

at a price p (in tokens per unit), in the face of uncertain customer demand D. To capture

the lack of regulation in the current environment, we assume that the firm could divert all

or a portion of the funds raised through the ICO, rather than engage in production (moral

hazard).

In the final market period, demand is realized and the product is launched. The product

can only be purchased using the firm’s tokens—a restriction that has two consequences: i)

it endows tokens with (potential) value ii) it implies price p represents the exchange rate

between tokens and units (which departs from the traditional newsvendor setting). The

firm competes with speculators to sell any remaining tokens it has post-ICO to product

customers, e.g., through a “secondary” offering round. As opposed to the ICO round, there

is no uncertainty in the secondary offering round as production is finished and demand

is already realized. The equilibrium token price τeq (in dollars per token) as well as the

product price p (in tokens per unit) are then derived through a market clearing condition,

described below. Once the market clears, tokens have no residual value (since there is only

a single production round and the tokens have no use on any other platform) and the game

ends. We provide more details of the tokens’ features and discuss their implications for

speculators and customers in Appendix A.2.1.

To recap, the firm’s decisions are the number of tokens to make available in the ICO to
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speculators n, the ICO token price τ , and production quantity Q.

Speculators Let z denote the total number of speculators with z � m reflecting that

ICOs have low barriers to entry. Speculators are risk-neutral, arrive simultaneously, and

can each try to purchase a single token in the ICO at the price set by the firm, τ , that

they expect to subsequently sell in the market period at an equilibrium price E[τeq], where

E is the expectation operator. If demand for tokens exceeds token supply in the ICO,

speculators are randomly allocated token purchase rights. Speculators’ expected profit u

depends, among other things, on the expected price difference E[τeq] − τ , denoted ∆, and

on the total number of speculators that purchase tokens in the ICO, denoted s; formally:

u(s) =
s

z
∆(s), with ∆(s) = E[τeq(s)]− τ, (2.1)

where the ratio s/z reflects random assignment of token purchase rights. We emphasize

that the number of speculators s will be determined endogenously in equilibrium, and as

we shall show later on, this number depends on the ICO cap n and the ICO token price τ .

A necessary condition for s(τ, n) > 0 speculators to participate in the ICO is

u(s(τ, n)) ≥ 0 (participation constraint). (2.2)

Note, as we show in Appendix A.2.2, assuming sequential rather that simultaneous arrival

of speculators does not impact the results of the chapter. The proofs are written to cover

both cases. Also note that the model readily extends to the case in which speculators are

given the additional option of using their tokens to purchase the firm’s product rather than

selling their tokens to product customers.

Product Customers Customers who join the market after the product launch have a

homogeneous willingness-to-pay v (dollars per unit) for the product that is strictly greater

than the production cost c. As we shall see later on, v plays a critical role in the market
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clearing condition. Customers can buy tokens directly from the firm (if it has any tokens

remaining in the market period) or from speculators, and they can redeem the tokens for

the products. The demand for the product D is stochastic and we denote the cumulative

distribution function of demand by F (·). For ease of analysis, we assume that F (·) is

continuous and F−1(0) = 0.

We summarize the timeline in Figure 1 below.

Figure 1: Sequence of Events

Time

Firm decides τ, n Firm decides Q
Demand realized

buy tokens buy products

White Paper ICO Production Product
Published Starts Starts Launch

Speculators Customers

ICO Period Production Period Market Period

Market clearing Clearing occurs in the market period. Recall that the customers have

a constant willingness-to-pay v (dollars per unit). This means that the dollar-denominated

price of the product charged by the firm, which is equal to the product of the token-

denominated price of the product p (tokens per unit) and the equilibrium market token

price τeq (dollars per token), is at most v. Since the firm is a monopolist, it sets the dollar-

denominated price to be exactly v, i.e., p · τeq = v. Therefore, p and τeq have an inverse

relationship, and we have the following lemma due to the law of supply and demand.

Lemma 2.1. (Equilibrium Prices)

i) The equilibrium token-denominated price of the product is p = m/min {Q,D}.

ii) The equilibrium token price in the market period is given by τeq = v
m min {Q,D}.

Part (i) of Lemma 2.1 implies that there are no idle tokens in the market period—the

total token supply m can be redeemed for an amount min {Q,D} of products. Part (ii)

implies the market clears. Specifically, customers’ valuation for the total token supply
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equals their willingness-to-pay for all products that are purchased using these tokens, i.e.,

τeqm = vmin {Q,D}. This equation addresses one of the most frequently asked questions

regarding utility-based ICOs—what gives tokens their ultimate value? In our model, the

value of platform-specific tokens depends positively on three factors: the quality of the

product reflected by the customers’ willingness-to-pay, the sales volume determined by the

supply and demand for the products and the scarcity of tokens inversely determined by the

total supply, m.

Note, the term vmin {Q,D} resembles the revenue term in the traditional newsvendor setup

where v corresponds to the fixed price. While a traditional newsvendor sells a quantity of

products at a fixed price, the firm in our model sells a fixed number of tokens at (or below,

to satisfy the participation constraint) a market equilibrium token price τeq. However,

the newsvendor form emerges from the fact that τeq is tied to the product sales volume

min {Q,D} via the market clearing condition.7

Firm’s optimization problem The firm maximizes its expected dollar-denominated

wealth at the end of the market period, denoted by Π, which consists of three terms: i) the

total funds raised during the ICO, τs(τ, n), plus ii) the expected total funds raised in the

secondary offering, (m− s(τ, n))E[τeq], minus iii) production costs cQ. The constraints are

i) that production is funded by funds raised in the ICO, i.e., cQ ≤ τs(τ, n) and ii) that

speculators participate in the ICO, i.e., u(s(τ, n)) ≥ 0. Using the market clearing condi-

tion Lemma 2.1(ii), which ties token value τeq to sales min {Q,D}, the firm’s optimization

7Note, if the product had salvage value, this value would need to be included in the market clearing
condition.
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problem can be formally written as:

max
τ, n

{
τ s(τ, n) + max

Q

[
(m− s(τ, n))

v

m
E[min {Q,D}]− cQ

]}
(2.3)

subject to

τ s(τ, n)− cQ ≥ 0, (ICO funds cover production costs)

u(s(τ, n)) ≥ 0. (speculators’ participation constraint)

Recall that s(τ, n) is an equilibrium quantity, and we will show later how it depends on the

firm’s decisions variables, τ and n, and on Q (which itself depends on s, and hence τ and

n).

2.3. Analysis: ICOs with Utility Tokens

In this section, we find the subgame perfect equilibrium using backward induction. We first

consider (§2.3.1) the firm’s last decision, the production quantity for fixed token price τ

and ICO cap n, based on which we examine the speculators’ equilibrium behavior (Section

2.3.2). We then calculate the optimal token price τ∗ and ICO cap n∗ (§2.3.3). Lastly, we

present and discuss the equilibrium results in §2.3.4.

2.3.1. Optimal Production Quantity

We first consider the firm’s last decision—the production quantity Q(τ, n, s(τ, n)), for fixed

token price τ and ICO cap n. Here and below, we drop when possible the fixed arguments

τ and n to ease exposition.

Proposition 2.2. (Optimal Production Quantity)

For a fixed token price τ , ICO cap n and number of speculators s, the firm’s optimal pro-

duction quantity Q∗(s) is as follows.

i) If 0 < s < m
(
1− c

v

)
, then Q∗(s) = min

{
F−1

(
1− cm

(m−s)v

)
, τ sc

}
.

ii) If s = 0 or s ≥ m
(
1− c

v

)
, then Q∗(s) = 0.
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Part (i) of Proposition 2.2 shows that production can occur only if the number of speculators

that purchased tokens in the ICO, is below a fraction
(
1− c

v

)
of all available tokens m. The

first term inside the minimum operator, F−1
(

1− cm
(m−s)v

)
, is the unconstrained optimal

production quantity; interestingly, this term decreases in the number of speculators s. The

second term, τ s
c , captures the firm’s budget constraint, i.e., the production costs cannot

exceed funds raised in the ICO, and this term is increasing in s.

Part (ii) of Proposition 2.2 shows that if more than a fraction
(
1− c

v

)
of all tokens have

been sold in the ICO, the firm prefers not to use any of the funds raised for production,

meaning, the firm “diverts” all money raised to its own pocket. We refer to this fraction as

the firm’s misconduct fraction,

1− c/v. (2.4)

Clearly, as the willingness-to-pay v increases relative to the production cost c, the miscon-

duct fraction increases, making the abandonment of production less likely.

We emphasize that this analysis does not suggest all crypto startups are scammers that

would run away with any amount. Rather, it provides an explanation for the loss of mo-

tivation or productivity of some well-funded startups based on pure profit maximization

reasoning, due to moral hazard in the absence of regulatory controls.

2.3.2. Equilibrium Number of Speculators and Participation Constraint

Having derived the firm’s optimal production quantity for a given ICO design τ, n, we next

examine the implications on speculators.

Lemma 2.3. (Speculator Equilibrium Properties) Given initial token price τ and the sales

cap n,

i) The number of speculators who purchase tokens is s∗(τ, n) = n · 1{u(n)≥0},

ii) s∗(τ, n) ∈
[
0,m

(
1− c

v

)]
such that complete fund diversion does not occur in equilib-

rium.
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iii) Define s0(τ) = max {0 < s ≤ m : u(s) = 0}. If s0(τ) exists, s0(τ) < m
(
1− c

v

)
and

u(s) < 0 for all s > s0(τ).

Lemma 2.3, part i) is a compact way to write that in equilibrium, the number of speculators

purchasing tickets is equal to the ICO cap, as long as speculators’ participation constraint

is satisfied. This is because all speculators have the same expected profit, and hence, either

n speculators will purchase tokens (if this expected profit is ≥ 0), or none will. Note, this

result holds for sequential arrivals as well (see Appendix A.2.2).

Lemma 2.3, part ii) defines a lower and upper bound on the number of speculators that

arises in equilibrium. The lower bound is trivial. The upper bound is a consequence of the

firm’s misconduct threshold derived in Proposition 2.2, and captures the fact that in any

equilibrium, speculators strategically prevent their funds from being completely diverted.

Lemma 2.3, part iii) is a necessary technical condition ensuring speculator participation

constraint holds, and hence, the success of the ICO. In the Sections 2.3.3 and A.2.2, we

show that the existence of s0(τ) depends on τ , which in turn depends on n, and discuss the

implications.

2.3.3. Optimal Token Price and ICO Cap

Given the optimal production quantity (§2.3.1) and speculators’ equilibrium behavior (Sec-

tion 2.3.2), we now examine how the firm sets the profit-maximizing ICO token cap n∗ and

initial token price τ∗.

We show in Lemma 2.3 in Section 2.3.2 that the number of speculators s∗(τ, n) ≤ m
(
1− c

v

)
.

Given the speculators participating in the ICO buy 1 token each, we need not consider the

case in which tokens n > m
(
1− c

v

)
. We will first find the token price τ∗(n) for a given

token cap n ≤ m
(
1− c

v

)
and then maximize profit over the token cap n. The following

Proposition guarantees the existence of a nonzero equilibrium token price τ∗.

Proposition 2.4. (Conditions for ICO Success)
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The ICO succeeds if and only if

i) (critical mass condition) the firm sells more than mc
v tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v >

2c.

Part (i) of Proposition 2.4 shows that the firm should not set the ICO cap too low. Specu-

lators expect non-negative returns only when more than a critical mass of tokens, mc
v , are

sold in the ICO. This quantity increases in the production cost and decreases in customer

willingness-to-pay. Recall from Section 2.3.2 that speculators would not invest more than

the misconduct fraction. Combining these two results, we have that the ICO will only

be successful when the misconduct fraction m
(
1− c

v

)
is above the lower bound mc

v . This

simplifies to the condition in Part (ii) of Proposition 2.4, v > 2c.

Next we find the optimal ICO token price τ∗(n) and the optimal ICO cap n∗ assuming these

two conditions are met. We show that for any fixed ICO cap n in the appropriate range

(n ∈ (mc
v ,m

(
1− c

v

)
)), there exists a unique, positive and finite ICO token price τ∗(n) that

maximizes (A.30) by extracting all utility from the speculators who participate strategically.

Given this result, we obtain a semi-closed-form solution of the optimal ICO cap n∗, and

show that neither a small ICO cap that suppresses the production quantity nor a large cap

that induces idle cash is profit-maximizing for the firm. The optimal ICO cap n∗ allows the

firm to raise just enough funds that can be credibly committed to production. We point

interested readers to Appendix A.2.2 for detailed technical results.

2.3.4. The Equilibrium

Proposition 2.5. (Equilibrium Results)

i) If v ≤ 2c, then the ICO fails.

ii) If v > 2c, then there exists a unique equilibrium where

(a) the ICO cap n∗ satisfies n∗ ∈ (mc
v ,

m
2 ) and
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v n∗

cm E[min
{
D,F−1(1− cm

(m−n∗)v )
}

] = F−1(1− cm
(m−n∗)v ),

(b) the number of speculators is s∗ = n∗,

(c) the ICO token price is τ∗ = v
m E[min

{
D,F−1(1− cm

(m−n∗)v )
}

],

(d) the production quantity is Q∗ = F−1(1− cm
(m−n∗)v ),

(e) the expected market token price equals the ICO token price, i.e., E[τeq] = τ∗,

(f) the firm spends all funds raised through the ICO on production.

Several results are of interest here, starting with the condition v > 2c, which implies that

ICOs may be best suited for products with relatively high willingness-to-pay.8

Part (ii) summarizes the characteristics of the unique equilibrium when v > 2c. Part (a)

links the ICO cap to operational and demand parameters. Although we do not have a

closed-form expression for n∗, our model suggests that it is never optimal for the firm to

sell more than half of its tokens in the ICO (as shown by the upper bound m/2). By

preserving sufficient tokens for itself, the firm can subsequently sell these tokens for profit

in the market period. If the firm were to sell more than m/2 tokens in the ICO, it would

raise more money than what could credibly be committed to production. The firm would

then produce at the unconstrained optimal level and would be left with excess funds that

it diverts to its pockets. However, these excess funds would be gained at the expense of a

lower share of the future revenue (recall, the more tokens the firm sells to speculators in

the ICO, the fewer tokens it leaves in the market period to sell to consumers). Overall, the

firm would produce less and be less profitable. A detailed analysis is provided in Appendix

A.2.3.

The remaining equilibrium quantities depend on the optimal ICO cap n∗. Note that, since

the total number of tokens available is kept constant, the ICO cap n∗ is a proxy for the

8It is interesting to note this condition does not depend on demand characteristics. This is because
this condition stems from the presence of moral hazard: it simply defines the cutoff between an ICO that
will never be able to raise any cash (even when demand risk is low) to one that will raise some cash in
equilibrium (epsilon or more) depending on demand risk, among other things. From that cutoff point
onward, how successful the ICO will be (e.g. how much money it will raise) depends critically on demand
characteristics.
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fraction of tokens sold during the ICO period. Part (b) shows that the ICO cap directly

controls the number of speculators that will take part in the ICO. From parts (c) and (d), we

can see that the more tokens the firm sells in the ICO, the lower the ICO token price and the

firm’s subsequent production quantity. The first effect is a direct consequence of speculators’

participation constraint while the second effect again relates to the fact that the more tokens

are sold to speculators in the ICO, the fewer tokens the firm has available to sell directly to

customers in the secondary market. This understandably lowers its production incentives

after the ICO. Part (e) is a consequence of the break-even condition for speculators.

Finally, part (f) shows that, in equilibrium, the firm puts all raised ICO funds towards pro-

duction. Note that we model an unregulated environment whereby the firm has the option

to divert the funds raised (moral hazard), but the high margin condition prevents such mis-

conduct. The intuition behind this result is as follows. Recall that the firm’s final wealth is

equal to the sum of its token sales revenue both in the ICO and in the secondary market,

less the production cost. When the product is profitable enough (captured by the price-cost

ratio requirement) and the firm has a substantial share of its future revenue (guaranteed by

the misconduct fraction), the firm is better off utilizing its resources on production to gen-

erate more cash later. As such, despite the absence of regulation and intermediaries, utility

ICOs can overcome moral hazard through a combination of the aforementioned factors. We

refer readers to §2.3.7 for continued discussion.

We provide more insights on the equilibrium through numerical experiments in §2.3.6.

2.3.5. ICO Agency Costs

Having analyzed the ICO equilibrium, we compare it to the first-best outcome so as to

quantify agency costs. In this case, the first best refers to ICOs without frictions, i.e., ICOs

with no cash diversion by the firm. While such “first-best” ICOs do not exist given the

loose regulatory environment, by the Modigliani-Miller theorem, they are equivalent to a

traditional newsvendor firm that invests its own money and faces no financial constraint.
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Proposition 2.6. (ICO vs First Best)

i) A traditional newsvendor firm invests when v > c whereas an ICO is only viable when

v > 2c.

ii) A firm financing production through an ICO produces less than first best.

iii) A firm financing production through an ICO makes less profit than first best.

iv) In case of low demand realization, a traditional newsvendor risks loss whereas a firm

financing production through an ICO always earns non-negative profit.

By Proposition 2.6, ICOs have the great advantage of being a low-risk means of financing

for firms, but this comes at a cost of production quantity, profit and flexibility in terms of

margin. We evaluate the extent of these benefits and inefficiencies numerically in §2.3.6.

Our numerical results show that in general, the production and profit gaps between the ICO

firm and first best can reach up to 40% and up to 50%, respectively, but these gaps shrink

when the market is bigger, more stable or (and) with a higher willingness-to-pay. Under

the same market conditions, ICOs lead to lower profit variance, rendering firm profits less

sensitive to demand uncertainty.

Note that the inefficiencies mentioned above disappear in the absence of moral hazard. In

other words, if the firm could credibly commit to spend all funds raised on production,

the optimal ICO design leads to first-best final wealth, and the high margin condition is no

longer needed for ICO success. To see this result, one could simply make the first constraint

in (2.3) binding and conduct similar analysis as in this section.

2.3.6. Numerical Experiments: ICOs with Utility Tokens

In this section, we provide a comparative-statics analysis through numerical experiments9.

In particular, we focus on the impact of the mean and variance of demand and customers’

9In all of our numerical experiments throughout the chapter, demand follows a truncated normal distri-
bution distributed with mean µ, standard deviation σ, lower bound 1, upper bound 2µ. By default, the
parameters are assigned values µ = 500, σ = 166, m = 1000, c = 1 and v = 3. The price-cost ratio in our
numerical experiments was calibrated to be close to the Honeypod example discussed in the introduction.
Our numerical results are qualitatively robust to alternative distributions such as uniform distributions. For
expositional clarity, we focus only on results under normal distributions in the chapter.
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Figure 2: Impact of Mean of Demand

Figure 2 demonstrates that, as mean demand increases, the firm increases the ICO token

price (see Figure 2 (a)) while also selling fewer tokens to speculators, that is, it maintains

a larger share of the tokens (Figure 2 (b)). Overall, the pricing effect dominates, that is,

increasing mean demand allows the firm to raise more cash in the ICO, which, in turn,

allows it to increase production.

Impact of demand volatility

Figure 3 demonstrates that, as volatility increases, the ICO-funded firm reduces production

whereas the traditional newsvendor may stock up (Figure 3 (a)). Such distinction could

well come from the fact that higher uncertainty in the market adversely affects speculators’

confidence in the token, driving the token price down (Figure 3 (b)). When facing high

demand variability, it is also in the firm’s best interest to sell more tokens in the ICO

(Figure 3 (c)). However, the decrease in the token price has a dominating effect on the

funds raised. We find that greater demand uncertainty hurts both the firm’s ability to

produce (Figure 3 (a)) and its profit (Figure 3 (d)). Moreover, the profit gap between ICO

financing and first best widens (Figure 3 (e)) as demand variability increases, suggesting

that ICOs are better suited for products with a more predictable or stable market.

Interestingly, Figures 2 (c) and 3 (f) show that the variance of profits is actually lower

for an ICO-financed firm than for the traditional newsvendor. This is tied to the risk-
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Figure 3: Impact of Standard Deviation (Std) of Demand

sharing property of ICOs mentioned in the introduction, whereby the risk of adverse demand

outcomes is split between the firm and speculators.

Impact of customer WTP

Similar to a higher mean demand, a higher willingness-to-pay boosts the token value (Figure

4 (a)) and allows the firm to raise more funds (Figure 4 (b)) in the ICO while saving a larger

fraction of tokens for the secondary offering (Figure 4 (c)). However, the rate of increase

in funds raised due to a higher v decreases in v whereas that due to a higher mean demand

is almost constant. The reason is that the equilibrium cap on ICO token sales n decreases

drastically in v and the reason that the firm is motivated to save that many tokens for

the secondary offering is to take advantage of the higher profit margin rather than the

higher sales volume. Moreover, a higher willingness-to-pay incentivizes both the traditional

newsvendor and the ICO newsvendor to produce more, while also closing the gap between

them (Figure 4 (b)).

Lastly, both larger demand and higher willingness-to-pay lead to a higher expected profit
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Figure 4: Impact of Willingness-to-Pay

and lower profit gap between ICO financing and the first best (Figure 4 (d)).

2.3.7. Discussion: ICOs vs Other Early-Stage Financing Methods

Our results suggest that ICOs have important differences compared to other forms of early-

stage financing. We summarize some of these differences in Table 3. We also discuss in

detail two distinct features that our results have highlighted, distinguishing ICOs from

other early-stage financing methods: the existence of a secondary market and the issuance

of tokens.

Table 3 contains a large amount of information, and we recommend it be read through

bilateral column comparisons. The high-level takeaway from the table is that ICOs, be it

utility or equity offerings, differ from each of the other alternative forms of financing in at

least one crucial dimension (and more often than not, in several dimensions). We highlight

two of these aspects next.
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Table 3: Comparison of Early-Stage Financing Methods. (A checkmark 3 indicates the feature
is prominent, while 7 indicates it is of second-order or non-existent. The dual notation 37 indicates
that the feature may or may not be of first order, depending on circumstance.)

Bank VC
Crowdfunding Coin Offering
Reward Equity Utility Equity

Upside through Profit Sharing 7 3 7 3 7 3

Upside through Revenue Sharing 7 7 7 7 3 7

Downside Demand Risk Sharing 3 3 7 3 3 3

Heavily Regulated 3 3 7 3 7 37

Voting/Control Rights 37 3 7 7 7 37

Funds from Retail Speculators 7 7 7 3 3 3

Funds from Retail Consumers 7 7 3 3 3 3

Secondary Trading 7 7 7 7 3 3

Implications of the existence of a secondary market

ICOs differ from all other financing methods because of their reliance on a secondary market

for the tokens. This difference has two important implications.

(i) Mitigation of moral hazard The alternative financing methods listed in Table 3

address moral hazard in different ways. Banks, for instance, use interest rates and

covenants (Iancu et al., 2016) and/or leverage collateral. VC firms directly monitor

the progress of the funded company and invest in stages to keep the company under

control (Cherif and Elouaer (2008); Wang and Zhou (2004)). In crowdfunding, moral

hazard is often left unadressed, though more recently, some platforms like Indiegogo

have started to use escrow accounts to mitigate it (Belavina et al., 2019).

In the case of ICOs, there typically exists no third party between the fundraising firm

and its investors. Instead, moral hazard is addressed, among other things, via the

existence of a peer-to-peer secondary market for the tokens. To see this, recall that

in our model, the fraction of tokens sold during the ICO, in equilibrium, is below the

misconduct fraction. This ensures that a rational firm would be active in production

after the ICO. The firm’s production effort is reflected in the secondary market token

price, and the firm always prefers a higher market token price. We show that, when

the willingness-to-pay for the product is high relative to the unit production cost,
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the firm’s dominant strategy is to spend all cash raised on production (i.e., zero cash

diversion), which leads to the highest possible token price. Thus, in contrast to the

alternative financing methods mentioned above, the existence of a secondary market

is crucial in mitigating moral hazard in the context of ICOs.

(ii) The nature of investors The ICO secondary peer-to-peer market allows all own-

ers to jointly sell the tokens to those who desire them. As discussed in Appendix

A.2.1, this implies that the investors (speculators) do not have to be the consumers

of the firm’s products. In contrast, entrepreneurs running traditional crowdfunding

campaigns (e.g., on Kickstarter), pre-sell their products directly to early adopting

customers during the fundraising stage implying that the majority, if not all, backers

in crowdfunding campaigns are the actual product consumers. Given the different na-

ture of investors, it is reasonable to argue that ICOs have access to a larger investor

pool than the crowdfunding projects. Indeed, an average ICO project in 2018 was

able to raise $11.52 million (Cointelegraph, 2019), which is closer to the average VC

deal value in the same year ($14.6 million) (PitchBook, 2019) and far exceeding the

crowdfunding average ($10k) (Kickstarter, 2019).

Implications of the issuance of tokens

While both ICOs and crowdfunding raise funds through retail investors, the issuance of

tokens further differentiates ICOs from crowdfunding. Our model shows that the utility

tokens allow revenue sharing and the equity tokens allow profit sharing among all token

holders. In addition, the tokens dilute the impact of future demand on the firm by allowing

the firm to disperse the downside risks of low demand realization among the investors. On

the contrary, the backers of a crowdfunding campaign do not share such risks because a low

demand in the crowdfunding aftermarket would only hurt the firm’s profit.

2.4. Analysis: Equity Tokens (STOs)

In this section, we consider a different type of ICO—one with equity, rather than utility,

tokens (also referred to as STOs as mentioned earlier). Although most tokens offered so far
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have been utility tokens (through ICOs), STOs have become much more popular since 2018

(Blockstate, 2020). Unlike ICOs, STOs are typically regulated, and in our model, one could

interpret strict regulations as a restriction on the firm’s ability to divert any funds raised.

In turn, this implies the funds will be put towards production, in which case, we can show

that financing frictions are alleviated, and the outcome reduces to that of Proposition 2.6,

where the regulated STO is simply equivalent to the traditional newsvendor.

A more meaningful setting is one in which STOs do not automatically imply the firm

commits funds raised to production. For instance, this could be the case if there is no

way to perfectly monitor the use of all funds, or, if monitoring is prohibitively costly to

implement. A natural question that follows is whether then there is any difference between

a utility ICO and an STO in this case? This section is devoted to answering this question.

2.4.1. Model & Equilibrium

The fund-raising mechanism with equity tokens follows that with utility tokens (Figure

1) but with two main differences. First, the fundamental value of the equity tokens and

the utility tokens are backed by the firm’s future revenue and profit respectively. To see

this, recall from Lemma 2.1 that the value of the utility tokens is equal to the worth of all

products sold. The equity tokens, by definition, entitle the token holders to a pre-specified

share of the firm’s profit as long as the firm is profit-making. Second, the equity tokens

have no utility purposes—in the market period, the firm sells its products for cash and

distributes its profit among the equity token holders in proportion to their token holdings.

As a result, the firm, unlike a utility-token-issuing firm, does not need to sell the remaining

tokens (i.e., tokens unsold in the ICO period) in the market period.

By definition, in the market period, the realized value of each equity token is

τeq,e =
1

m
· (v min{D,Qe} − cQe)

+ . (2.5)

The firm maximizes its expected dollar-denominated wealth at the end of the market period,
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denoted by Πe, which consists of three terms: i) the total funds raised during the ICO,

τe s(τe, ne), plus ii) the expected total profit, v E [min{D,Q}] − cQ, minus iii) total payout

to other token holders, s(τe, ne)E [τeq,e]. The objective function is as follows.

max
τe, ne

{
τe s(τe, ne) + max

Qe

{
(v E [min{D,Qe}] − cQe)−

s(τe, ne)

m
E [v min{D,Qe} − cQe]

+

}}
(2.6)

subject to

τe s(τe, ne)− cQe ≥ 0, (ICO funds cover production costs)

u(s(τe, ne)) ≥ 0. (speculators’ participation constraint)

Again, we find the subgame perfect equilibrium using backward induction.

First, we consider the optimal production quantity Q∗e given fixed token price τe and ICO

cap ne. Let Q∗u(s) denote the optimal production quantity unconstrained by the budget.

Proposition 2.7. (Optimal Production Quantity with Equity Tokens)

For a fixed token price τe, ICO cap ne and number of speculators s ∈ (0,m), the firm’s

optimal production quantity is Q∗e(s) = min
{
Q∗u(s), τe sc

}
, where Q∗u(s) > 0 is the unique

solution of

(m− s)[(1− F (Q∗u(s)) v − c] = s c F
( c
v
Q∗u(s)

)
. (2.7)

We show in the proof of Proposition 2.7 that Q∗u(s) decreases monotonically in s and the

firm, ignoring the budget constraint, would produce at the first best production when

s = 0 as Q∗u(0) = F−1
(
v−c
v

)
. Therefore, for any positive number of speculators, the firm

produces less than the first-best quantity. The other boundary case is Q∗u(m) = 0. Since

Q∗e(m) = min
{
Q∗u(m), τemc

}
= min

{
0, τemc

}
= 0, the firm produces nothing when s = m.

This shows that as long as the firm does not sell out all the tokens during the ICO, i.e.,

s 6= m, it always produces some product if it raises money.
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Recall that the misconduct fraction with utility tokens is 1 − c/v. In the case of equity

tokens, the misconduct fraction is 1. Since 1 > 1− c/v, we argue that with equity tokens,

the firm’s incentives are better aligned with the speculators’, making the firm less likely to

divert cash from funds raised to its own pocket. In other words, STOs reduce moral hazard,

thus having lower agency costs than utility ICOs.

At this point, we make a regularity assumption on the demand distribution10: f(x) <

a2 · f(ax) for a > 2. Using the result of Proposition 2.7, we show next that successful ICOs

with equity tokens require a larger fraction of the tokens to be sold during the ICO than

those with utility tokens.

Proposition 2.8. (Conditions for ICO Success with Equity Tokens)

An ICO that issues equity tokens succeeds if and only if

i) (critical mass condition) the firm sells more than c
v−c m tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v >

2c.

Recall from Proposition 2.4 part (i) that with utility tokens, the minimum number of tokens

needed for production is c
v m. Since c

v−c m > c
v m, part (i) suggests a more stringent critical

mass condition for equity tokens, which translates into a higher ICO cap as shown in §2.4.2.

To understand this result intuitively, let’s consider a firm that aims to produce a fixed

quantity. By the nature of the two tokens (revenue-sharing vs profit-sharing), we know

that the market equilibrium price of the utility token will be higher than that of the equity

token, i.e., τeq > τeq,e. We also know by Proposition A.2(i) (Appendix A.2.2) that for

utility tokens, the firm sets the ICO token price to be exactly equal to the expected market

equilibrium token price, i.e., τ = E[τeq]. For equity tokens, since the speculators would

only purchase the tokens when the ICO token price does not exceed the expected market

equilibrium token value, we must have τe ≤ E[τeq,e]. Therefore, the optimal ICO price of

10This assumption is satisfied by distributions that do not contain sharp peaks such as uniform distribu-
tions and most normal distributions.
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the equity token, τe, must be less than that of the utility token, τ . As a result, to meet

the same production goal, the firm will have to sell more equity tokens than utility tokens.

That being said, we observe numerically that the firm produces more with equity tokens

but the correlation between ICO cap and production quantity is not necessarily positive.

However, the difference in the nature of these two tokens dominates other effects and results

in a higher ICO cap with equity tokens.

Following part (i) and Proposition 2.7 that the firm should not sell all of its equity tokens,

we need c
v−c m < m for the existence of feasible n, which leads to part (ii). Comparing with

Proposition 2.4 part (ii), we see that the price-cost ratio requirement is the same for both

types of tokens. Therefore, while intuitively the equity tokens put an emphasis on “profit”

by definition, they do not require a higher or lower profit margin of the product than the

revenue-sharing utility tokens.

Lastly, we show that when the two conditions given by Proposition 2.8 are met, the firm

sets the ICO token price such that the speculators’ expected profit is zero—a similar result

to Proposition 2.5(ii)(e).

Proposition 2.9. (Optimal ICO Equity Token Price)

When v > 2c, for a given ne ∈ ( c
v−c m, m), there exists a finite positive τ∗e (ne) uniquely

determined by u(s∗(τ∗e (ne))) = 0.

In summary, our analytical results identify two key differences and two similarities between

ICOs and STOs in the absence of regulations: i) STOs are associated with lower agency

costs; ii) STOs require a larger ICO cap to be successful; iii) both require the same high-

margin condition; iv) neither leaves any arbitrage opportunities for speculators. We study

the rest of the equilibrium results numerically in §2.4.2.

2.4.2. Numerical Experiments: Comparing ICOs to STOs

In Sections 2.3 and 2.4.1, we show analytically that ICOs with either type of tokens lead

to underproduction. Through numerical experiments, we find that issuance of equity to-
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Figure 5: Comparison of Production Quantities

kens incentivizes the firm to produce more (Figure 5), ceteris paribus. While good market

conditions (high mean, low variance, high willingness-to-pay) reduce the extent of underpro-

duction in both cases, they push the production level of the firm that issues equity tokens

even closer to that of a traditional newsvendor. This suggests that the first-best is almost

achievable with equity tokens.

Another immediate implication of a higher production level with the issuance of equity

tokens, by Proposition 2.5 (iii), is that the funds raised through the equity token ICO must

surpass that through the utility token ICO, because s(n∗e, τ
∗
e ) · τ∗e ≥ c · Q∗e > c · Q∗ =

s(n∗, τ∗) · τ∗.

Figure 6 shows that the revenue-sharing utility tokens have a higher market value than the

equity tokens as the prices of the equity tokens (both the ICO token price and the expected

market equilibrium token price) are consistently lower. Figure 7 shows that more equity

tokens will be sold than utility tokens, although the gap diminishes under better market

conditions. Since the total ICO proceeds (the product of price and ICO cap) are higher

with equity tokens, the effect of a larger ICO cap outweighs that of lower prices. Moreover,

it can be readily checked that the firm spends all ICO proceeds on production rather than

leaving any funds idle, i.e., s(n∗e, τ
∗
e ) · τ∗e = n∗e · τ∗e = c ·Q∗e. Note that this result with equity

tokens echoes the outcome with utility tokens (Proposition 2.5 (iii)).

Finally, with a closer-to-optimal production quantity, the firm obtains a higher total wealth
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Figure 8: Comparison of Final Wealth

with equity tokens than with utility tokens (Figure 8). In particular, when market conditions

are better, equity tokens allow the firm to achieve near-the-first-best outcome.

2.5. Extensions

While our core model (ICO with utility tokens) is relatively basic, it is flexible enough to

be extended in many ways to fit a variety of practical situations.
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2.5.1. Technology Risk

Motivated by the Sirin Labs example discussed in the introduction, our base model assumes

that the firm is able to successfully produce its product when it incurs the necessary pro-

duction cost. However, recognizing that startups are inherently risky, here, we relax this

assumption, and we add to the base ICO model the risk of production failure.

Let α ∈ (0, 1] denote the probability that the firm’s technology leads to successful production

and suppose that the value of α is common knowledge. The firm either successfully produces

the decided quantity or ends up with zero acceptable products. We also assume that the

firm finds out whether production has been successful at the end of the production period,

after it has paid the necessary production cost for the decided quantity. In other words, the

production cost is sunk regardless of the outcome of production.

Given such risks, the equilibrium token price is given by τeq = (1 − α) · vm min {0, D} +

α · vm min {Q,D}, and thus E[τeq] = α · vmE[min {Q,D}]. The firm optimizes a modified

objective function

max
τ, n

{
τ s(τ, n) + max

Q

[
α (m− s(τ, n))

v

m
E[min {Q,D}]− cQ

]}
(2.8)

subject to

τ s(τ, n)− cQ ≥ 0, (ICO funds cover production costs)

u(s(τ, n)) ≥ 0. (speculators’ participation constraint)

We show next that riskier production intensifies the moral hazard problem.

Proposition 2.10. (Optimal Production Quantity under Risks of Production Failure)

Suppose the firm’s production is successful with probability α ∈ (0, 1]. For a fixed token price

τ , ICO cap n and number of speculators s, the firm’s optimal production quantity Q∗(s) is

as follows.

i) If 0 < s < m(1− c
αv ), then Q∗(s) = min

{
F−1

(
1− cm

α(m−s)v

)
, τ sc

}
.

78



ii) If s = 0 or s ≥ m(1− c
αv ), then Q∗(s) = 0.

Proposition 2.10 shows that, given the same ICO token price and ICO cap, a lower success

probability leads to lower production quantity. The firm is also more likely to give up

production and divert funds when α is smaller because the misconduct fraction, 1− c
αv , is

lower. As a result, we show in Proposition 2.11 that ICOs are less likely to succeed under

higher production risks.

Proposition 2.11. (Conditions for ICO Success under Risks of Production Failure)

Suppose the firm’s production is successful with probability α ∈ (0, 1]. Then, the ICO

succeeds if and only if

i) (critical mass condition) the firm sells more than mc
αv tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v >

2c
α .

To obtain additional insights, we proceed to numerically examine the properties of the

equilibrium under this technology risk extension.

Numerical Experiments: The Impact of Technology Risk

Figure 9 shows that the firm’s final wealth increases in the success probability (Figure 9 (a))

and customers’ willingness-to-pay (Figure 9 (b)). More interestingly, Figure 10 shows that

the firm’s optimal strategy varies for different values of α and v. Recall from Proposition 2.5

(iii) that, when there is no risk (α = 1), the firm invests all money raised in production.

For α < 1, the firm does the same if either the risks are high or the willingness-to-pay is low

(Figure 10 (a,b)). However, under more favorable conditions, i.e., low risk (α < 1 but close

to 1) and high willingness-to-pay, the firm spends part of its funds raised on production and

saves the rest (Figure 10 (c)). Such practice guarantees that the firm ends up with positive

final wealth even if production fails.
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Figure 9: Firm’s Final Wealth under Risks of Production Failure

0.7 0.8 0.9 1

Success Probability

200

300

400

500

$

Total Production Cost
Funds Raised

(a) Funds Usage vs α (v = 3)

0.4 0.5 0.6 0.7 0.8 0.9 1

Success Probability

0

200

400

600

800

1000

1200

$

Total Production Cost
Funds Raised

(b) Funds Usage vs α (v = 6)

2 3 4 5 6 7 8 9 10

Willingness-to-Pay

0

500

1000

1500

2000

2500

$

Total Production Cost
Funds Raised

(c) Funds Usage vs v (α = 0.95)

Figure 10: Funds Usage under Risks of Production Failure

2.5.2. Outside Investment Options

We can account for the existence of other investment options (e.g., a savings account) by

adding a generic investment option that returns k > 0 dollars per dollar investment.

Suppose there exists a generic outside investment option that returns k > 0 dollars per dollar

of investment. The outside option provides a new reference point when the speculators

evaluate their ICO return. Let ∆i(s) denote the expected profit improvement by investing

in an ICO with utility tokens. Then,

∆i(s) = E[τeq(s)]− τ − τ k = E[τeq(s)]− (k + 1) τ, (2.9)

and the speculators expected profit improvement is u(s) = s
z∆i(s). The firm optimizes the

same objective function as in (2.3). Therefore, the misconduct fraction is unaffected by the

presence of the outside option, and the optimal production quantity in the subgame still
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follows that in Proposition 2.2. However, we show below that a higher return of the outside

option makes ICOs harder to succeed as it leads to more stringent success conditions.

Proposition 2.12. (Conditions for ICO Success with an Outside Investment Option)

In the presence of an outside investment option with return k per dollar invested, the ICO

succeeds if and only if

i) (critical mass condition) the firm sells more than (1 + k)mc
v tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v >

(2 + k)c.

Next, we show that the optimal ICO token price leads to zero expected profit improvement,

i.e., the expected return of the tokens is equal to that of the outside investment option. In

this case, since the outside option guarantees positive return, the expected market token

price is higher than the ICO token price.

Proposition 2.13. (Optimal ICO Token Price with an Outside Investment Option)

When v > (2 + k) c, for a given n ∈ ((1 + k)mc
v ,m

(
1− c

v

)
), there exists a finite positive

τ∗(n) uniquely determined by u(s∗(τ∗(n))) = 0.

To obtain additional insights, we proceed to numerically examine the properties of the

equilibrium under this technology risk extension.

Numerical Experiments: The Impact of Outside Investment Options

Intuitively, a better-paying outside option makes ICOs less attractive in comparison. To

incentivize the speculators to participate, the firm needs to make token trading more lu-

crative by either raising the expected market token price or by reducing the ICO token

price. Since the former is difficult to achieve given that the demand distribution remains

unchanged, the firm must do the latter. Our numerical results show that, as k increases,

the token prices drop (Figure 11 (a)) and the firm sells more tokens during the ICO (Figure

11 (b)) to mitigate the loss in funds raised. A higher k also discourages production (Figure

11 (c)) and hurts the firm’s final wealth (Figure 11 (d)).
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Figure 11: Impact of Outside Investment Return on ICOs

In §2.5.2, we show that the optimal ICO token price makes the expected return of the tokens

equal to that of the outside option. This result can be readily checked in Figure 11 (a),

where for any value of k, the difference of the token prices divided by the ICO token price

is exactly k.

2.6. Conclusion

As one of the first academic papers to study the implications of ICOs for operations manage-

ment, the model we develop has of course some limitations that could represent interesting

research opportunities.

For example, it could be interesting to study the multi-period production setting, which

could also involve issues of token resale and inflation control. In practice, many projects

keep a portion of ICO funds and/or tokens to maintain price stability in the future and

protect against negative shocks. Moreover, some entrepreneurs need initial funds for the

design and preparation of an ICO, which requires a different ICO design or even other
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financing solutions. Another interesting direction would be to expand the firm’s decision

space in terms of where it can spend the raised funds, to include other business functions

such as marketing, human capital, etc.

Moreover, several assumptions in our model could be relaxed to capture more realistic

settings. For instance, the tokens could be used for purposes other than to purchase physical

goods; customer willingness-to-pay and demand could be affected by quite a few factors that

we do not capture, including network effects; the success of the ICO could be informative

about future demand in a multi-period setting; investors could have heterogeneous beliefs

about product quality; customers could have different valuations for the same product;

firms, investors and/or customers could be risk averse or risk seeking, etc.

Finally, like some of the extant literature considering strategic customer behavior (Cachon

and Swinney, 2011; Belavina et al., 2019), our model assumes strategic customers with

known and homogeneous willingness-to-pay. In reality, customer wtp could be i) uncertain

and ii) heterogeneous. Our existing model can readily incorporate a relaxation of i) by

replacing v with E[v].11 However, relaxing assumption ii) would generate at least two

complications in our setting that would go beyond the scope of the chapter: the first would

be the need to specify a doubly stochastic model of customer demand, that is, the firm’s

demand beliefs would need to be specified for every possible customer type; the second would

be the need to develop a more elaborate model of secondary market clearing for crypto-

currency exchanges. We believe these, as well as the other aforementioned extensions above,

to be interesting directions for future research.

11This is the case because the token exchange rate is set via the market clearing condition, which occurs
after demand is realized and uncertainty has been resolved.
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CHAPTER 3 : Uncapped Initial Coin Offerings

3.1. Introduction

In the previous chapter, we have studied capped ICOs, in which the maximum amount of

capital raised is fixed. In this chapter, we turn our attention to uncapped ICOs, where there

is no cap on the total ICO proceeds. In fact, some of the most successful ICOs have been

uncapped. For example, the EOS project, an operating system for Blockchain applications,

raised $4.2 billion in one single round of uncapped ICO. The Ethererum project, one of the

most widely-used Blockchain platforms, also started out with an uncapped ICO.

There are two types of uncapped ICOs in terms of structure. The first type sets a fixed

token price but no upper bound on token supply. Examples include Ethereum, where new

tokens are minted as more transactions are completed in addition to an unlimited token

sale, and Sirin Labs, which set its token supply based on the ICO outcome. The second

type does the opposite of what the first type does, setting a fixed token supply but varying

prices. For instance, the Kleros project let the investors decide the token prices via an

auction. The focus of this chapter is on the first type of ICO.

Although uncapped ICOs take different forms, the projects behind them are often service

platforms. These include platforms for transactions and applications (e.g. Ethereum, EOS),

social media (e.g. Telegram, Steem), data storage (e.g. Filecoin), dispute resolution (e.g.

Kleros), etc. All of these platforms bring together service providers and customers, and

are designed to operate for a long time during which both the service capacity and the

customer base (hopefully) grow together. Just like it is in any two-sided market, the value

of service from these platforms rises as the number of users increases, which is what we call

the network effect.

To understand how ICOs can fund service platforms under network effects, we study the

following model in this chapter. There is a firm that builds and operates a service platform
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that brings together two types of users, service providers and customers. Before the platform

is built, the firm raises funds through an uncapped ICO, where utility tokens are sold to

a group of speculators who hope to gain a profit on the tokens by selling them after the

platform launches. Once the platform launches, it allows service providers and customers

to trade through tokens in multiple periods until either party is no longer willing to do so.

We find that both the platform’s service capacity and service providers’ profitability are

enhanced by stronger network effects, larger customer base, and/or lower unit service cost.

Moreover, we show that uncapped ICO is successful if and only if the cost of building the

platform does not exceed the total service cost per period. We also extend the base model

to account for firm’s moral hazard and show that under loose regulation, uncapped ICO

can still be successful if the firm charges the right service fee.

3.2. Model

We model four groups of agents. On the investors’ side, we consider a firm that builds a

service platform and a group of speculators who contribute cash to the development of the

platform. On the users’ side, there are customers and service providers. We consider an

infinite time horizon until any group of these agents quits the game. We now describe each

group of agents and the sequence of events below.

Firm The firm designs a service platform that requires an exogenous setup cost of C

dollars. With no initial cash, the firm raises funds through an uncapped ICO, in which it

sells an unlimited number of tokens at price τ0 (dollars per token) to speculators. These

tokens are utility tokens that are used for (and only for) consumption of service from the

platform. The tokens are also the only viable method of payment for the service provided

through the platform. The platform is designed to handle at most s units of service in each

period.

Suppose the firm sells m tokens during the ICO. If the ICO proceeds exceed the necessary

cost, i.e., τ0 · m ≥ C, the firm successfully develops the platform. Otherwise, the firm
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returns ICO proceeds back to speculators and the game ends. After the platform launches,

it automatically adds z tokens to the existing pool of tokens per period and distributes

them to service providers of that period. Note that z > 0 means that new tokens are

generated, while z < 0 means that tokens are burned. The equilibrium token price in

period t, τt, determined in the secondary market, depends on the service level (# units of

service performed) of the same period, st.

Here, s, τ0 and z are determined by the firm before the ICO, but τt and st are equilibrium

quantities based on decisions of other agents described below.

Speculators A group of risk-neutral speculators arrive sequentially during the ICO and

collectively purchase m tokens at price τ0. If the platform launches, they sell their tokens

to 1st-period customers at the equilibrium token price τ1. Speculators only purchase tokens

during the ICO if they believe they can make a non-negative profit, i.e., τ1 − τ0 ≥ 0, and

stop purchasing when it is no longer profitable to buy more tokens.

Customers There is a finite market size, M , in any single period t. Customers have

idiosyncratic valuation of service, V (dollars), which follows a uniform distribution with

support [0, 1]. Depending on the service level st, each customer pays a service provider

an equilibrium amount of p(st) in the form of tokens. More specifically, a customer buys

p(st)/τt tokens at the beginning of period t and sends these tokens to a service provider

upon completion of service at the end of the same period, where τt = τ(t, st) is the token

price in period t. Every customer enjoys a network benefit B(st) = k · s2
t (dollars), where

k > 0 is the network effect coefficient. One pays for the service if his or her surplus is

non-negative.

Service Providers There exists a large pool of potential service providers (≥M). In any

single period t, each service provider can either provide one unit of service at a fixed cost1

c < 1 or be idle. The platform allows a maximum service capacity of s. Depending on the

number of working service providers, st, each working service provider is paid an equilibrium

1Cost of service is lower than the upper bound of customers’ valuation.
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amount of p(st)/τ(t, st) tokens from customers, and receives (or loses) z/st tokens that are

minted (or burned) by the platform. Service providers of period t sell all remaining tokens

at the beginning of period (t + 1) at the new token price τ(t + 1, st+1). In each period,

a service provider chooses to work only if his or her return is non-negative, and everyone

makes the decision simultaneously. If more service providers are willing to work than the

platform’s capacity, working service providers are randomly chosen.

Sequence of Events

• Period 0

(1) Firm chooses ICO token price τ0, service capacity s, and the policy on token

supply control z. Firm announces C.

(2) Speculators buy m tokens.

(3) Firm raises m · τ0 (suppose m · τ0 ≥ C) and builds the platform.

• Period 1

(1) Period 1 starts with m1 = m tokens in the ecosystem.

(2) Speculators sell m tokens to customers at price τ1.

(3) Service providers deliver s1 units of service to s1 customers.

(4) Each customer pays p(s1)/τ(1, s1) tokens to a service provider.

(5) Each working service provider receives/loses z/s1 tokens.

(...)

• Period t > 1

(1) Period t starts with mt = m+ (t− 1)z tokens in the ecosystem.

(2) Service providers in period (t− 1) sell all of their tokens to customers in period t

at price τt.

(3) Service providers deliver st units of service to st customers.

(4) Each customer pays p(st)/τ(t, st) tokens to a service provider.

(5) Each working service provider receives/loses z/st tokens.

(...)
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We assume that events (2) - (4) in any period t ≥ 1 take place simultaneously.

3.3. Analysis

We now study the subgame perfect equilibrium of the game between all four groups of

agents using standard backward induction. Let’s begin with the equilibrium price of the

service p(st) that clears the market. We assume that customers are price takers, and p(st)

allows st customers with the highest personal valuation of service to be served. That is to

say,

M · P(customer’s surplus = V +B(st)− p(st) ≥ 0) = st, (3.1)

where V is the customer’s random valuation of service and B(st) = k s2
t captures network

benefit. With uniformly distributed V (support [0,1]), (3.1) gives us

p(st) = ks2
t −

st
M

+ 1 (3.2)

given service level st.

On the service providers side, each service provider’s profit in period t is

φ(st) =

(
p(st)

τ(t, st)
+
z

st

)
· τ(t+ 1, st+1)− c. (3.3)

Lemma 3.1. (Equilibrium Prices)

(i) The equilibrium token-denominated price of service is mt/st.

(ii) Given capacity st, the equilibrium token price is τ(t, st) = p(st) · st/mt.

By Lemma 3.1, we can rewrite (3.3) as

φ(st) = p(st+1)
st+1

st
− c. (3.4)

We see that given any service level st+1 > 0, service provider’s profit φ(st) decreases in the
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current service level st. Ignoring the platform’s service capacity, service providers collec-

tively choose a service level that makes everyone’s profit non-negative. Assuming that a

service provider prefers breaking even to not working at all, we have the following.

Lemma 3.2. (Equilibrium Service Level)

Given service capacity st+1 in period (t+1), the equilibrium service level in period t, without

considering the service capacity, is s∗t (st+1) = min{p(st+1) st+1

c ,M, s}.

This shows that as long as the service level in the next period is positive, there exists an

optimal service level in the current period that is also positive. However, since the optimal

service level always depends on future service levels, yet the platform can’t directly set a

service level by putting a cap, only a steady-state service level would allow the platform to

run indefinitely. In other words, the firm needs to make sure that service providers are able

to maintain a consistent service level through all periods. Otherwise, speculators expect

coordination of service to fail in the very first period, which prevents the success of ICO.

Next, we derive steady-state service levels given network effects with different intensity,

ignoring the platform’s service capacity s.

Proposition 3.3. (Steady-State Service Level)

Let s∗ss denote the steady-state service level.

(i) (Weak network effects) When k < c
M2 , s∗ss =

1−
√

1−4M2k(1−c)
2Mk < M and φ(s∗ss) = 0.

(ii) (Moderate network effects) When k = c
M2 , s∗ss = M and φ(s∗ss) = 0.

(iii) (Strong network effects) When k > c
M2 , s∗ss = M and φ(s∗ss) > 0.

Proposition 3.3 shows that in steady state, the platform can serve all customers in the

market under moderate to strong network effects, but not under weak network effects.

Moreover, service providers just break even under weak to moderate network effects, and

only obtain positive profit under strong network effects. Note that on the customers side,

although almost all of them enjoy positive surplus from the service2, they all reap the

2with continuous valuation, customers with zero profit are of measure 0.
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benefits of moderate to strong network effects due to higher service levels. To see this, note

that by (3.1) and (3.2), the surplus of a customer with valuation v is [v +B(st)− p(st)]+ =[
v − F

(
M−st
M

)]+
given service level st, which is increasing in st.

Note that the steady-state service levels in Proposition 3.3 are the highest among all possible

steady-state service levels in the presence of fixed service capacities determined by the

platform. For example, under weak network effects, a service capacity s <
1−
√

1−4M2k(1−c)
2Mk

could also lead to a steady state in which s∗ss = s and φ(s∗ss) > 0. We discuss how the firm

chooses a service capacity that maximizes its profit later.

Finally, we move ahead to consider the investors. By Proposition 3.3 and Corollary 3.5, we

know that the equilibrium token price in period t is τ(t, s∗ss) = c s∗ss
m+(t−1)z . For speculators to

profit, the initial token price τ0 must be less than or equal to τ(1, s∗ss) = c s∗ss
m . Therefore,

for any given initial token price τ0, the speculators do not purchase more than c s∗ss
τ0

tokens

(m ≤ c s∗ss
τ0

).

Recall that successful development of the platform requires cost C, which becomes the

lower bound of speculators’ contribution, m · τ0, if they would like the ICO to succeed.

Suppose speculators prefer non-negative profit to an unsuccessful investment. Then, we

have m · τ0 ≥ C, or m ≥ C
τ0

.

Therefore, a necessary condition for a successful ICO is C ≤ c · s∗ss, and this leads to the

following result.

Proposition 3.4. (Condition for Successful Uncapped ICO)

The uncapped ICO succeeds if and only if the setup cost of the platform does not exceed the

total service cost per period, i.e., C ≤ c · s∗ss.

Suppose the condition in Proposition 3.4 holds. In equilibrium, speculators buy m∗(τ0) =

c s∗ss
τ0

tokens, and the firm’s profit is Π = m∗(τ0) · τ0 − C = c · s∗ss − C. Here, we show that

the firm’s profit is independent of the initial token price and its policy on token supply
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control. However, the firm’s profit does increase in the steady-state service level. We can

then deduce the optimal service capacities of the platform that induce steady-state service

levels according to Proposition 3.3.

Corollary 3.5. (Optimal Service Capacity)

(i) (Weak network effects) When k < c
M2 , s =

1−
√

1−4M2k(1−c)
2Mk ;

(ii) (Moderate to strong network effects) When k ≥ c
M2 , s = M .

3.4. Extensions and Future Work

In our base model, the firm operates the platform free of charge. In practice, service

platforms charge a small fee on most transactions through the platform. However, the base

model can be easily extended to incorporate this feature by transferring part of the service

fee to the firm. This does not affect customers’ surplus function in (3.1) but changes service

providers’ profit function by applying a fraction α ∈ (0, 1) in (3.3) to

φ(st) = α ·
(
p(st)

τ(t, st)
+
z

st

)
· τ(t+ 1, st+1)− c. (3.5)

As a result, the firm obtains (1 − α) ·
(
p(st)
τ(t,st)

+ z
st

)
tokens in period t and sells them in

period (t + 1) at price τ(t + 1, st+1). Let r denote the discount rate for future cash flows.

The firm’s profit under a steady-state service level evaluated in period 0 can thus be written

as follows.

Π = c · s∗ss − C +

∞∑
t=1

(1− α)

(
p(s∗ss)

τ(t, s∗ss)
+

z

s∗ss

)
· τ(t+ 1, s∗ss) · rt

= c · s∗ss − C +
∞∑
t=1

(1− α) · p(s∗ss) · rt

= c · s∗ss − C + (1− α) · p(s∗ss) ·
r

1− r
. (3.6)

Previously, we have also assumed a responsible firm that commits to the development of

the platform as long as enough funds are raised. In reality, due to lack of regulation, the
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firm could abandon the project and run away with the ICO proceeds. This extended model

allows us to account for such moral hazard. In particular, the firm chooses whether or

not to build the platform based on the comparison between its profit with development,

which is given in (3.6), with that without development, which is simply c · s∗ss. Taking the

firm’s strategy into account, the speculators then decide how many tokens to buy, and if to

participate in the ICO at all.
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APPENDIX

A.1. Overbooking with Endogenous Demand

A.1.1. Ex Post versus Ex Ante Bumping Probability

Section 1.3.3, describes our rationale for modeling the customer’s estimate β as the ex post

fill rate rather than the ex ante bumping probability, β′. There are three main reasons

behind this choice:

First, while aggregate ex post statistics such as (1.7) are published by BTS and widely

cited in the news and travel media, the estimation of ex ante statistics such as (1.8) require

reporting of the fractions of customers bumped from individual flights ((Ni − k)+/Ni).

These data are not reported by BTS and airlines do not make them available to passengers.

In fact, anecdotal evidence suggests the opposite. In direct discussions with one of us, a

former airline employee noted that her employer prefer to hide the magnitude of passenger

bumping at the gate, to avoid generating additional customer ill will. This assertion is all

the more plausible, given the public outrage that occurred in the aftermath of the United

Express Flight 3411 incident in 2017.

Second, suppose nevertheless a frequent flyer could observe data on the fraction of cus-

tomers bumped on flights, {((Ni − k)+/Ni) | i = 1, 2, . . .} and wished to estimate the ex

ante statistic, β′. Practically speaking, bumping probabilities are generally low enough

that it would require samples from many hundreds or thousands of flights for the customer

to estimate the probability accurately. For example, among the 12 major US airlines tracked

in the BTS statistics (BTS, 2018), the 2017 annual statistics for β range from 0.00007 to

0.00138, with a weighted average of 0.00054.

Similarly, we have calculated the β and β′ associated with the optimal fixed-compensation

policies evaluated §1.6 and, in absolute terms, differences between the two tend not to be
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large. In the 360 fixed-compensation examples evaluated in Table 2, the absolute difference

between β and β′ ranged from 0.023% to 0.319%, with a median of 0.079% and a mean of

0.095%; this difference would be difficult to infer from a limited numbers of samples.

To give a sense of the number of samples required to differentiate between the two statistics,

we estimate the sample sizes needed to differentiate an alternative hypotheses, H1 = β′,

from the null hypothesis, H0 = β, using one-sided, fixed-sample tests with Type I error

of 0.1 and Type II error of 0.5 (Chow et al., 2008). Note that these are low-significance,

low-powered tests that tend to minimize the required sample size.

Table 4 shows the distribution of results, which range from the low thousands to the several

tens of thousands. If a frequent flyer observed the fraction of customers bumped from one

of our example flights every day, it would take her at least a few years – and possibly several

decades – to disambiguate β′ from β.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1,211 3,212 3,833 4,385 5,112 5,802 9,166 10,873 17,723 23,018 36,405

Table 4: Percentiles of Sample Size Needed to Distinguish H1 = β′ from H0 = β

Third, if we informally consider the equilibrium modelled in this paper as the one-stage

stationary outcome of repeated customer purchase decisions, we can see that, if customers

begin with an initial estimate of bumping that conforms to the published estimate of β,

they will tend to stick with the paper’s equilibrium model. That’s because, although the

equilibrium β and β′ tend to be quite close to each other, one can show that β ≥ β′, a fact

we demonstrate at the bottom of this appendix.

More specifically, suppose customers use β as an initial estimate of β′. Those customer

for whom U(β,w) < 0 will not buy a ticket, even if U(β′, w) ≥ 0. Conversely, those for

whom U(β,w) ≥ 0 do buy tickets and would continue buying as their estimates slip from β

to β′ and their utility increases. Of course, a detailed analysis of sample-path fluctuations

would show that some customers for whom U(β,w) ≥ 0 would erroneously conclude that
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U(β′, w) < 0 and stop buying tickets. (These customer-statisticians might use more highly

powered tests than ours, tests that require larger sample sizes than those we estimate in

Table 4.) and the At the same time, these are second order effects and this type of analysis

is well beyond the scope of our current paper.

Finally we demonstrate that β ≥ β′. We begin by recalling the following result.

Lemma A.1. (Wijsman (1985), Theorem 2)

Let µ be a measure on the real line R and let fi, gi (i = 1, 2) be four Borel-measurable

functions: R → R such that f2 ≥ 0, g2 ≥ 0 and
∫
|figj | dµ < ∞ (i, j = 1, 2). If f1/f2 and

g1/g2 are monotonic in the same direction, then
∫
f1g1 dµ

∫
f2g2 dµ ≥

∫
f1g2 dµ

∫
f2g1 dµ.

Let µ be the cumulative distribution function of N and take f1(N) = (N−k)+

N , f2(N) = (N−

k)+, g1(N) = N
(N−k)+

, and g2(N) = 1. Then f2 ≥ 0, g2 ≥ 0,
∫
|f1g1| dµ =

∫
1 dµ = 1 <∞,∫

|f1g2| dµ =
∫ (N−k)+

N dµ <
∫

1 dµ = 1 <∞,
∫
|f2g1| dµ =

∫
N dµ = E[N ] ≤ E[Q] <∞ and∫

|f2g2| dµ =
∫

(N−k)+ dµ = E[(N−k)+] < E[N ] <∞. We also see that both f1/f2 = 1/N

and g1/g2 = N
(N−k)+

are monotonically decreasing in N . We then apply Lemma A.1 and

get

1 · E[(N − k)+] =

∫
f1g1 dµ

∫
f2g2 dµ ≥

∫
f1g2 dµ

∫
f2g1 dµ = E

[
(N − k)+

N

]
· E[N ]

and thus

β =
E[(N − k)+]

E[N ]
≥ E

[
(N − k)+

N

]
= β′.
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A.1.2. Proofs

Lemma 1.3. (Properties of Loss Function Satisfied)

For a plane with k seats and loss function `(s, k, α) = (N(s, α)− k)+:

(i) N(s, α) ∼ B(s, 1 − α) satisfies the discrete analogue of properties (i)–(iv) of Defini-

tion 1.2; and

(ii) N(s, α) ∼ N
(

(1− α)s,
√
α(1− α)s

)
satisfies properties (i), (iii), and (iv) of Defini-

tion 1.2.

Proof. Recall that Definition 1.2 states that (i) `′′(s) ≥ 0; (ii) `(s, k, α) = 0 for all s ≤ k

and `′(s) = 0 for all s < k; (iii) `′(s) ∈ (0, 1−α) for all s ∈ [k,∞); (iv) lims→∞ `
′(s) = 1−α.

Part (i). We first consider N(s, α) ∼ B(s, 1− α) and verify the properties in the following

order: (i) and (ii), (iv), and (iii).

For properties (i) and (ii) we have the following. As in Section 1.5.4 we note that N(s, α) ∼

B(s, 1−α) is stochastically increasing and convex (SICX) in s. (See Section 6.A.1, including

Example 6.A.2, in Shaked and Shanthikumar (1994).) This implies that E[ψ(N(s, α))] is

increasing in s for all increasing ψ(·) and increasing, convex in s for all increasing, convex

ψ(·). We let ψ(x) = (x − k)+, the maximum of two increasing, convex functions, 0 and

x − k, which implies that ψ(x) is increasing and convex. It then follows that `(s) =

E[(N(s, α)− k)+] = E[ψ(N(s, α))] is increasing and convex in s,
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Now let’s show the discrete analogue of property (iv). Note that

`′(s) = `(s+ 1)− `(s)

= E[(N(s+ 1, α)− k)+]− E[(N(s, α)− k)+]

= (E[N(s+ 1, α)− k] + E[(k −N(s+ 1, α))+])

− (E[N(s, α)− k] + E[(k −N(s, α))+])

= (s+ 1)(1− α)− k + E[k −N(s+ 1, α)|N(s+ 1, α) < k]P(N(s+ 1, α) < k)

− (s(1− α)− k) − E[k −N(s, α)|N(s, α) < k]P(N(s, α) < k)

= 1− α+ E[k −N(s+ 1, α)|N(s+ 1, α) < k]P(N(s+ 1, α) < k)

−E[k −N(s, α)|N(s, α) < k]P(N(s, α) < k). (A.1)

By Chebyshev’s inequality, P(|N(s, α)−µ| > zσ) ≤ 1/z2 where in our case µ = (1−α)s and

σ =
√
α(1− α)s. Therefore, P(N(s, α) < µ−zσ) = P(µ−N(s, α) > zσ) ≤ P(|N(s, α)−µ| >

zσ) ≤ 1/z2. Let k = µ− zσ. Then z = µ−k
σ = (1−α)s−k√

α(1−α)s
. Therefore,

P(N(s, α) < k) ≤ sα(1− α)

((1− α)s− k)2
→ 0 as s→∞. (A.2)

Similarly P(N(s+ 1, 1− α) < k)→ 0 as s→∞. Therefore, by (A.1), we have lim
s→∞

`′(s) =

1− α.

Last, by property (iv) and the fact that `′(s) > 0, we have property (iii).

Part (ii). We now derive properties of interest for `(s) under

N(s, α) ∼ N
(

(1− α)s,
√
α(1− α)s

)
in the order (iv), (i), (iii).

For sales of s and a capacity of k, it is well known that the expected loss – in our case, the

expected number of lost customers – equals σ L(z), where L(z) = φ(z)− z (1−Φ(z)) is the

standard normal loss function, σ =
√
α(1− α)s and z = k−(1−α) s√

α (1−α) s
. (See §12.5 in Cachon

97



and Terwiesch (2013).) Therefore,

`(s) = σ(s)L(z(s)) =
√
α(1− α)sL

(
k − (1− α)s√
α(1− α)s

)
. (A.3)

Noting that L′(z) = Φ(z)−1, σ′(s) = σ(s)
2 s , and z′(s) = −

[
1−α
σ(s) + z(s)

2 s

]
, we can differentiate

with respect to s and collect terms to obtain

`′(s) = σ′(s)L(z(s)) + σ(s)L′(z(s)) z′(s)

=
σ(s)

2 s
(φ(z(s))− z(s) (1− Φ(z(s))) + σ(s) (1− Φ(z(s))

(
1− α
σ(s)

+
z(s)

2 s

)
=

σ(s)

2 s
φ(z(s)) + (1− α) (1− Φ(z(s))). (A.4)

Note, for any s > 0, we have lim
s→∞

`′(s) = (1− α), property (iv).

We can then differentiate (A.4) again with respect to s to find `′′(s).

`′′(s) =
2 s σ′(s)− 2σ(s)

4 s2
φ(z(s)) +

σ(s)

2 s
φ′(z(s)) z′(s) − (1− α)φ(z(s)) z′(s)(A.5)

We next recall that φ′(z) = −z φ(z). We use this identity, along with those for σ′(s) and

z′(s), to substitute out terms with derivatives in (A.5). Collecting terms, we have

`′′(s) =
[
(σ(s)z(s) + 2s(1− α))2 − σ2(s)

] φ(z(s))

4 s2σ(s)
. (A.6)

To ensure that `′′(s) > 0, we need σ(s)z(s) + 2s(1 − α) − σ(s) > 0, which is equivalent to

k − (1 − α)s + 2s(1 − α) >
√
α (1− α) s. Squaring both sides, this is k2 + 2ks(1 − α) +

s2(1− α)2 − α(1− α)s > 0. The same inequality can be rearranged as

[
k +

(2k − α)(1− α)

2k

]2

+ s2(1− α)2

[
1− (2k − α)2

4k2

]
> 0. (A.7)

A sufficient condition for (A.7) to hold is 1− (2k−α)2

4k2
≥ 0, which can be simplified to k ≥ α

4 .
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We have thus shown that `′′(s) > 0 when k ≥ α
4 , which practically holds given k ≥ 1. We

have thus shown that property (i) holds.

Last, by (A.4), we know that `′(s) > 0. Since `′′(s) > 0 and lim
s→∞

`′(s) = (1 − α), we must

have `′(s) ∈ (0, 1− α) for all s ∈ [k,∞), property (iii).

Lemma 1.4. (Existence and Uniqueness of Equilibria)

(i) For overbooking policies with p = (1− α)v, b > k, and c ≤ w there is no equilibrium.

(ii) For all other overbooking policies ξ ∈ Ξ, there exists at least one equilibrium.

(iii) For the policies in part (ii), if g′(w) ≤ 0, ∀w ∈ [c, w], then ∃ a unique equilibrium

{β, ŵ}.

Proof.

Part (i). The existence of equilibrium means that there exists at least one ŵ such that

U(β(ŵ), ŵ) = −p+ (1− α)v + (1− α)β(ŵ)(c− ŵ) ≥ 0, (A.8)

where, from (1.3)-(1.6) and (1.12),

β(w) =
E [`(min{b,QG(w)})]

(1− α)E [min{b,QG(w)}]
. (A.9)

Consider a policy with c ≤ w, b > k and p = (1− α)v. Suppose there is an equilibrium (ŵ,

β(ŵ)). Then we know that U(β(ŵ), ŵ) = 0 + (1−α)β(ŵ)(c− ŵ) ≤ 0 regardless of the value

of β(ŵ) because ŵ ≥ w ≥ c, From (1.2) we know that this implies ŵ = w. Now we show by

l’Hôpital’s rule that β(w) = 0. By (A.9),

lim
w→w

β(w) = lim
w→w

E [`(min{b,QG(w)})]
(1− α)E [min{b,QG(w)}]

=

lim
w→w

E [`(min{b,QG(w)})]

lim
w→w

(1− α)E [min{b,QG(w)}]
=

lim
w→w

∫ b
G(w)

0 `′(q G(w)) g(w) q f(q)dq

lim
w→w

(1− α)
∫ b
G(w)

0 g(w) q f(q)dq

(A.10)
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by (1.21) and (1.22). The denominator of (A.10) is positive and finite, since E[Q] <∞ and

g(w) > 0 over its support, and the numerator equals 0. Thus, lim
w→w

β(w) = 0. This implies

that U(β(ŵ), ŵ) = U(β(w), w) = 0 and thus ŵ = w. Since w 6= w, this policy does not

yield a consistent ŵ.

Part (ii). We divide the space of admissible overbooking policies into four partitions: 1)

b = k, 2) b > k, w < c ≤ w, 3) b > k, c ≤ w and p < (1 − α)v, 4) b > k, c ≤ w and

p = (1−α)v. Recall that in part (i) we have shown that policies in 4) obtain no equilibrium.

We will now show the existence of ŵ that satisfies (A.8) for all policies in 1), 2) and 3).

1) When b = k, the equilibrium bumping probability is β = 0. By Definition 1.1,

customers obtain non-negative utility from buying a ticket. The corresponding equi-

librium ŵ is w and thus U(β, ŵ) ≥ 0.

2) Next consider policies with b > k and w < c ≤ w. We know that U(β(w), w) ≥ 0

for all w ∈ [w, c]. If U(β(w), w) ≥ 0, then ŵ = w. If U(β(w), w) < 0, then since

U(β(c), c) ≥ 0, by the Intermediate Value Theorem, there exists at least one ŵ ∈ (c, w]

such that U(β(ŵ), ŵ) = 0.

3) Finally, consider policies with b > k and c ≤ w and p < (1− α)v, we have c− ŵ ≤ 0

and −p + (1 − α)v > 0. When w = w, β(w) = 0 and thus U(β(w), w) > 0. If

U(β(w), w) ≥ 0 for all w ∈ (w,w], then ŵ = w. Otherwise, by the Intermediate Value

Theorem, there exists at least one ŵ ∈ (w,w] such that U(β(ŵ), ŵ) = 0.

Part (iii). Let U(β(w), w) = −p + (1 − α)v + (1 − α)h(w) where h(w) = β(w)(c − w)

and β(w) is defined as in (A.9). Note, if U(β(w), w) ≥ 0 for all w, then the unique

equilibrium ŵ is w. Otherwise, by contradiction suppose that there are multiple solutions

(zeros of U(β(w), w)) and (ŵ1, β1), with (ŵ2, β2) being two of them, (ŵ1, ŵ2 ∈ [c, w]).
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Because U(β(ŵ1), ŵ1) = U(β(ŵ2), ŵ2) = 0, there must exist some w ∈ [ŵ1, ŵ2] such that

dU(β(w),w)
dw = (1− α)dh(w)

dw = 0. Therefore, we can show that, if dh(w)
dw < 0 for all w ∈ [c, w],

then ŵ is unique. Note that, from the definition of h(w) and (A.9), we have

dh(w)

dw
=

dβ

dw
(c− w) + β · (−1)

=

β g(w)
∫ b
G(w)

0 q f(q) dq

E[S]
−
g(w)

∫ b
G(w)

0 `′(qG(w))q f(q) dq

E[N ]

 (w − c)− β

≤ β
g(w)

∫ b
G(w)

0 q f(q) dq

E[S]
(w − c)− β

< β
g(w)

G(w)
(w − c)− β

= β

[
g(w)

G(w)
(w − c)− 1

]
. (A.11)

If g(w)
G(w)(w−c)−1 ≤ 0 for w ∈ [c, w], then U(β(w), w) decreases in w and therefore has at most

one zero. In this case, min
w∈[c,w]

U(β(w), w) = U(β(w), w) and max
w∈[c,w]

U(β(w), w) = U(β(c), c).

Note that U(β(c), c) ≥ 0. If U(β(w), w) ≥ 0, then ŵ = w. Otherwise, there exists exactly

one w that satisfies U(β(w), w) = 0, and that w is ŵ.

The uniqueness condition derived from as (A.11) can be rewritten as

ψ(w) ≡ w − G(w)

g(w)
≤ c. (A.12)

Taking the derivative of ψ(w) w.r.t. w, we have ∂ψ(w)
∂w = G(w)

g2(w)
g′(w). Since ψ(c) = c− g(c)

G(c) <

c, as long as g′(w) ≤ 0, ∂ψ(w)
∂w ≤ 0 for w ∈ [c, w], and (A.12) is satisfied.

Specific Distributions

If the hassle cost is uniformly distributed, then g′(w) = 0 and ∂ψ(w)
∂w = 0 and (A.12)

always holds. Equation (A.12) also holds for exponentially distributed hassle cost because

g′(w) < 0. Now consider normally distributed hassle cost, W ∼ N (µ, σ2). When w > µ,

g′(w) < 0 and thus ψ′(w) < 0. (A.12) is automatically satisfied since c > c− g(c)
G(c) = ψ(c) ≥
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ψ(w) = w − g(w)
G(w) for all w ≥ c. When w < µ, g′(w) > 0 and thus ψ′(w) > 0. Thus, (A.12)

holds if c > ψ(µ) = µ − g(µ)
G(µ) because ψ(µ) ≥ ψ(w) for all w ≥ c. Therefore, we conclude

that, for normally distributed W , the uniqueness condition holds if c > µ− g(µ)
G(µ) .

Lemma 1.5. (Ordering of Equilibria)

Suppose an overbooking policy ξ ∈ Ξ induces multiple equilibria. Pick any two distinct

equilibria from the set, and call them (β1, ŵ1) 6= (β2, ŵ2).

(i) Without loss of generality, we can order the two so that the second equilibrium has a

strictly lower bumping probability and a strictly higher marginal hassle cost: β1 > β2

and ŵ1 < ŵ2.

(ii) Given the ordering in (i), the set of customers with w ≤ ŵ1 is a strict subset of those

with w ≤ ŵ2, and the airline earns strictly higher expected profits in (β2, ŵ2).

Proof.

Part (i). Our proof proceeds in five steps.

First, suppose (β1, ŵ1) and (β2, ŵ2) are distinct equilibria. Then without loss of generality,

we can assume w ≤ ŵ1 < ŵ2 ≤ w. This is because β can be expressed as a function of ŵ,

as in (A.9), so ŵ1 = ŵ2 implies β1 = β2.

Second, we show that U(β, ŵ1) = 0. Since w ≤ ŵ1 < ŵ2 ≤ w, we have ŵ1 < w, and from

(1.2) we know this implies U(β1, ŵ1) ≤ 0. By contradiction, suppose that U(β1, ŵ1) < 0.

Then from (1.2) we also know that ŵ1 = w, and as in (A.10) we can show that this implies

β1 = 0. At the same tim, since ξ ∈ Ξ is admissible, p ≤ (1 − α)v, and since β1 = 0,

(1.2) implies that U(β1, ŵ1) = −p + (1 − α)v + (1 − α)β1(c − ŵ1) = −p + (1 − α)v ≥ 0, a

contradiction.

Third, we show that, if there exist multiple equilibria, then we must have β1 > 0. By

contradiction, suppose not. Then we have w ≤ ŵ1 < ŵ2 ≤ w and, because β1 = 0, (1.1)
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shows that U(β1, w) = −p+ (1− α)v + (1− α)β1(c− w) ≥ 0, for all w ∈ [w,w], including

w > ŵ1. Thus ŵ1 < w is not an equilibrium threshold customer response, so U(β1, ŵ1) = 0

is not an equilibrium, a contradiction.

Fourth, we show that, if β1 > 0 then β2 > 0 as well. If we look at the definition of β in

(A.9), we see that the numerator, E[`(min{b,QG(ŵ)], is increasing in ŵ. Thus, we have

0 < E[`(min{b,QG(ŵ1)] < E[`(min{b,QG(ŵ2)]. While we do not know how the ratio in

(A.9) that determines β changes, we do know that β2 > 0.

Finally, we now have p ≤ (1− α)v, w ≤ ŵ1 < ŵ2 ≤ w, β1, β2 > 0, and

0 = U(β1, ŵ1) = −p+(1−α)v+(1−α)β1(c−ŵ1) ≤ −p+(1−α)v+(1−α)β2(c−ŵ2) = U(β2, ŵ2),

so that β1(c−ŵ1) ≤ β2(c−ŵ2). Note that ŵ1 < ŵ2 implies that c−ŵ1 > c−ŵ2. Furthermore,

U(β1, ŵ1) = 0 and p ≤ (1 − α)v imply that c − ŵ1 ≤ 0, so we have c − ŵ2 < c − ŵ1 ≤ 0.

Given c− ŵ2 < 0, β1, β2 > 0, and β1(c− ŵ1) ≤ β2(c− ŵ2), we then have

β2

β1
≤ c− ŵ1

c− ŵ2
=
ŵ1 − c
ŵ2 − c

< 1.

Thus for any two distinct equilibria, we can order them so that β1 > β2 and ŵ1 < ŵ2.

Part (ii). Let Πi = pE[Si]− (c+ r)E[(Ni − k)+] = E[Si](p− (1− α)(c+ r)βi) for i = 1, 2.

ŵ1 < ŵ2 leads to E[N1] < E[N2] and β1 > β2 gives −(c + r)β1 < −(c + r)β2. Therefore,

Π1 < Π2.

Proposition 1.7. (Optimal Myopic Booking Limit)

Given fixed, admissible p and c, the optimal myopic booking limit, b∗m, behaves as follows.

(i) If p− (1−α) (c+ r) ≥ 0, then b∗m =∞, and the airline does not impose a booking limit.

(ii) If p− (1−α) (c+ r) < 0, then there exists a unique optimal b∗m = max
{
`′−1

(
p
c+r

)
, k
}

.

(iii) When b∗m ∈ (k,∞), ∂E[Π]
∂b > 0 for b < b∗m and ∂E[Π]

∂b < 0 for b > b∗m.
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Proof. Recall the FOC given by (1.19): p − `′(b) (c+ r) = 0.

Part (i). By Definition 1.2 part (iii), p− `′(b) (c+ r) > p− (1−α) (c+ r). Therefore, when

p − (1 − α) (c + r) ≥ 0, the marginal increase in profit is always positive and the airline is

incentivized to overbook as much as possible.

Part (ii). When p−(1−α) (c+r) < 0, if p−`′(k) (c+r) > 0, the FOC (1.19) has a solution by

the Intermediate Value Theorem. By Definition 1.2 part (iii), `′(b) increases monotonically

in b for b ≥ k from 0 to 1 − α, hence the solution is unique. If p − `′(k) (c + r) ≤ 0, then

b∗m = k.

Part (iii). We know that ∂Π
∂b = [p−`′(b)(c+r)]P{QG(ŵ) > b} and p−`′(b∗m)(c+r) = 0. By

Definition 1.2 part (i), p− `′(b)(c+ r) > 0 for b < b∗m and p− `′(b)(c+ r) < 0 for b > b∗m.

Proposition 1.8. (Optimal Myopic Booking Limit is Profit-Making)

(i) The equilibrium induced by any ξ ∈ Ξ obtains `′(b) > (1− α)β.

Suppose p > 0.

(ii) If β = 0, or if either p < (1 − α)v or c > w or both, then b∗m induces a profit-making

equilibrium.

Proof.

Part (i). Because β = E[(N−k)+]
E[N ] = E[(N−k)+]

(1−α)E[S] and `(b) > (1 − α)β, it is sufficient to show

that `′(b)E[S] > E[(N − k)+]. Expanding this expression, this is equivalent to showing

`′(b)

(∫ b
G(ŵ)

0
qG(ŵ) f(q) dq +

∫ ∞
b

G(ŵ)

b f(q) dq

)
>

∫ b
G(ŵ)

0
`(qG(ŵ)) f(q) dq +

∫ ∞
b

G(ŵ)

`(b) f(q) dq.

(A.13)
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Rearranging (A.13) gives

∫ b
G(ŵ)

0
[qG(ŵ)`′(b) − `(qG(ŵ))] f(q) dq +

∫ ∞
b

G(ŵ)

[b`′(b) − `(b)] f(q) dq > 0. (A.14)

Note that `(b) =
∫ b

0 `
′(t)dt <

∫ b
0 `
′(b)dt = b`′(b) for all b > k and `(b) = b`′(b) = 0 for all

b ≤ k. Therefore, the second integral of (A.14) is positive. To see that the first integral of

(A.14) is non-negative, note that by the convexity of `(·), qG(ŵ)`′(b) ≥ qG(ŵ)`′(qG(ŵ)) for

q ≤ b
G(ŵ) . Therefore, qG(ŵ)`′(b) − `(qG(ŵ)) ≥ qG(ŵ)`′(qG(ŵ)) − `(qG(ŵ)) for q ≤ b

G(ŵ) .

Again by `(b) ≤ b`′(b) for any b, we know that qG(ŵ)`′(qG(ŵ)) − `(qG(ŵ)) ≥ 0.

Part (ii). For β = 0, we have ŵ = w, so p,E[S] > 0 and E[Π(p, b∗m, c)] = pE[S] − (c +

r)E[(N − k)+] = pE[S] > 0. Otherwise, taking the FOC in (1.19) p − `′(b∗m)(c + r) =

0 and using the inequality from part (i) to substitute for `′(b∗m), we immediately have

[p − (1 − α)β(c + r)] > 0, where β is the equilibrium bumping probability induced by

b∗m. Since c > w or p < (1 − α)v, the ŵ induced by b∗m must be greater than w and

thus E[S] =
∫ b∗m
G(ŵ)

0 qG(ŵ) f(q) dq +
∫∞
b∗m
G(ŵ)

b∗m f(q) dq > 0. By Definition 1.6, the result

follows.

Proposition 1.9. (Optimal Strategic Booking Limit)

Suppose ∃ p ∈ (0, (1 − α)v) and c ∈ (0, w) for which b∗m ∈ (k,∞) induces a profit-making

equilibrium ŵ ∈ (w,w). Then we have the following.

(i) For any given b > k, if β ≥
√

(v − p
1−α) g(ŵ)

G(ŵ) , then dŵ
db < 0.

(ii) In turn, if β >
√

(v − p
1−α) g(ŵ)

G(ŵ) for all b > k, then b∗s < b∗m.

Proof. We continue to consider policy parameters and equilibria that allow us to develop

relevant FOCs. These include policies for which p ∈ (0, (1−α)v), c ∈ (0, w), and b ∈ (k,∞).

For the same reason, we will assume that the policy (p, b, c) obtains an interior equilibrium

U(β, ŵ) = 0 for which ŵ ∈ (w,w).
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Part (i). Since U(β, ŵ) = 0, by (1.1) we can express the break-even hassle cost as

ŵ = c+

(
v − p

1− α

)
1

β
. (A.15)

Note that since b > k, we have β > 0 and thus 1/β is well-defined.

Differentiating ŵ with respect to b according to (A.15),

dŵ

db
=

(
v − p

1− α

)
E[(N − k)+]dE[N ]

db − E[N ]dE[(N−k)+]
db

E[(N − k)+]2

=

(
v − p

1− α

)
E[(N − k)+]∂E[N ]

∂b − E[N ]∂E[(N−k)+]
∂b

E[(N − k)+]2

+

(
v − p

1− α

)
E[(N − k)+]∂E[N ]

∂ŵ − E[N ]∂E[(N−k)+]
∂ŵ

E[(N − k)+]2
dŵ

db
. (A.16)

Rearranging (A.16) and applying (1.6), (1.16), (1.18), (1.21) and (1.22), we have

dŵ

db
=

(
v − p

1−α

) [
(1− α)β ∂E[S]

∂b − ∂E[(N−k)+]
∂b

]
β2E[N ]−

(
v − p

1−α

) [
(1− α)β ∂E[S]

∂ŵ − ∂E[(N−k)+]
∂ŵ

]
=

(
v − p

1−α

)
P{QG(ŵ) > b} [(1− α)β − `′(b)]

β2E[N ]−
(
v − p

1−α

)
g(ŵ)

∫ b
G(ŵ)

0 [(1− α)β − `′(qG(ŵ))] qf(q)dq

=

(
v − p

1−α

)
P{QG(ŵ) > b} [(1− α)β − `′(b)]

β2E[N ] +
(
v − p

1−α

)
g(ŵ)

∫ b
G(ŵ)

0 [`′(qG(ŵ)) − (1− α)β] qf(q)dq

=

(
v − p

1−α

)
P{QG(ŵ) > b} [(1− α)β − `′(b)]

E[(N−k)+]2

E[N ] +
(
v − p

1−α

)
g(ŵ)

∫ b
G(ŵ)

0

[
`′(qG(ŵ)) − (1− α)E[(N−k)+]

E[N ]

]
qf(q)dq

=

(
v − p

1−α

)
P{QG(ŵ) > b} [(1− α)β − `′(b)]

E[(N−k)+]2

E[N ] +
(
v − p

1−α

)
g(ŵ)
E[N ]

∫ b
G(ŵ)

0 [E[N ]`′(qG(ŵ))− (1− α)E[(N − k)+]] qf(q)dq

.(A.17)

The numerator of (A.17) is negative by Proposition 1.8 part (i), therefore dŵ
db < 0 if and

only if the denominator of (A.17) is positive. Note that the integral in the denominator∫ b
G(ŵ)

0
(E[N ]`′(qG(ŵ))− E[(N − k)+](1− α)) qf(q)dq
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=

∫ b
G(ŵ)

0

(
E[N ]`′(b)− E[(N − k)+](1− α)

)
qf(q)dq

+

∫ b
G(ŵ)

0

(
E[N ]`′(qG(ŵ))− E[N ]`′(b)

)
qf(q)dq, (A.18)

and the first integral of (A.18) is positive by Proposition 1.8 part (i). Therefore, it suffices

to have

E[(N−k)+]2

E[N ] +
(
v − p

1−α

)
g(ŵ)
E[N ]

∫ b
G(ŵ)

0 [E[N ]`′(qG(ŵ))− E[N ]`′(b)] qf(q)dq ≥ 0, which is equiv-

alent to

(
v − p

1− α

)
g(ŵ)

∫ b
G(ŵ)

0

[
`′(b)− `′(qG(ŵ))

]
qf(q)dq ≤ E[(N − k)+]2

E[N ]
. (A.19)

By Definition 1.2 part (iii), we know that `′(b)− `′(qG(ŵ)) < 1−α for q ≤ b
G(ŵ) . Then, the

left-hand side of (A.19) is(
v − p

1− α

)
g(ŵ)

∫ b
G(ŵ)

0

[
`′(b)− `′(qG(ŵ))

]
qf(q)dq

<

(
v − p

1− α

)
g(ŵ)

∫ b
G(ŵ)

0
[1− α] qf(q)dq

=

(
v − p

1− α

)
g(ŵ)

G(ŵ)
[1− α]

∫ b
G(ŵ)

0
qG(ŵ)f(q)dq

<

(
v − p

1− α

)
g(ŵ)

G(ŵ)
[1− α]

[∫ b
G(ŵ)

0
qG(ŵ)f(q)dq +

∫ ∞
b

G(ŵ)

bf(q)dq

]

=

(
v − p

1− α

)
g(ŵ)

G(ŵ)
[1− α]E[S]

=

(
v − p

1− α

)
g(ŵ)

G(ŵ)
E[N ]. (A.20)

By (A.20), a sufficient condition to satisfy (A.19) is
(
v − p

1−α

)
g(ŵ)
G(ŵ)E[N ] ≤ E[(N−k)+]2

E[N ] .

Recall that β = E[(N − k)+]/E[N ]. Therefore, the sufficient condition for (A.19) to hold is

β(b, ŵ) ≥
√

(v − p
1−α) g(ŵ)

G(ŵ) .

Part (ii). As a first step, we will show that ∂E[Π]
∂ŵ > 0 for all policies as described at
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the beginning of the proof that are profit-making. Rearranging (A.15), we express the

equilibrium β in terms of ŵ as

β =
v − p/(1− α)

ŵ − c
. (A.21)

Since p < (1 − α)v and β > 0, we must have ŵ > c. Substituting the expression for β in

(A.21) into (1.13) and differentiating with respect to ŵ, we have

∂E[Π]

∂ŵ
=

[
(c+ r)

(1− α)v − p
(ŵ − c)2

]
· E [min{b,QG(ŵ)}]

+

[
p− (c+ r)

(1− α)v − p
ŵ − c

]
· g(ŵ)P{QG(ŵ) < b}E[Q | QG(ŵ) < b]

=

[
(1− α) (c+ r)β

ŵ − c

]
· E[min{b,QG(ŵ)}]

+ [p− (1− α) (c+ r)β] g(ŵ) P{QG(ŵ) < b}E[Q | QG(ŵ) < b]. (A.22)

The first term of (A.22) is positive. Since the equilibrium is profit-making, by Definition

1.6, we must have p − (1 − α) (c + r)β > 0 as well. Therefore, the second term of (A.22)

is positive. Hence, we know that ∂E[Π]
∂ŵ > 0.

Now note that any optimal b satisfies dΠ
db = ∂E[Π]

∂b + ∂E[Π]
∂ŵ

dŵ
db = 0. Since ∂E[Π]

∂ŵ > 0, ∂E[Π]
∂ŵ

dŵ
db < 0

when dŵ
db < 0. The optimal myopic booking limit, b∗m, satisfies dΠ

db |b=b∗m = ∂E[Π]
∂b |b=b∗m +

∂E[Π]
∂ŵ

dŵ
db |b=b∗m = 0 + ∂E[Π]

∂ŵ
dŵ
db |b=b∗m < 0. Hence, dΠ

db = 0 only when ∂E[Π]
∂b > 0. By Proposition

1.7 part (iii), ∂E[Π]
∂b > 0 for all b < b∗m, and ∂E[Π]

∂b > 0 for all b > b∗m, so the optimal strategic

booking limit, b∗s, is smaller than b∗m.

Proposition 1.10. (Optimal Myopic Overbooking Policy)

A myopic airline sets p∗m = (1 − α)v and c∗m = 0. When v < r, it selects a finite optimal

booking limit b∗m = max
{
`′−1

(
(1−α)v

r

)
, k
}

. Otherwise, b∗m is infinite.

Proof. When the airline takes ŵ as an exogenous quantity, it believes that neither the

price nor the fixed compensation affects the demand. Therefore, it charges the highest price,

p = (1− α)v, and offers the lowest compensation, c = 0.
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When p = (1 − α)v and v ≥ r, by Definition 1.2 part (iii), p − `′(b) r > p − (1 − α) r ≥ 0.

Therefore the marginal change in profit is always positive and the airline is incentivized to

overbook as much as possible.

When v < r, p−(1−α)r = (1−α)v−(1−α)r < 0 and either p−`′(k)r ≤ 0 or p−`′(k)r > 0.

If p − `′(k)r > 0 or `′−1
(

(1−α)v
r

)
> k, then (1.19) has a solution b∗m = `′−1

(
(1−α)v

r

)
by

the Intermediate Value Theorem. Furthermore, by Definition 1.2 part (i), `′(b) increases

monotonically in b for b ≥ k; hence the solution is unique. When p − `′(k)r ≤ 0 or

`′−1
(

(1−α)v
r

)
≤ k, the monotonicity of `′(b) ensures that the marginal increase in profit is

always negative and hence the airline does not overbook, i.e., b∗m = k.

Lemma 1.11. (Boundary Equilibria Not Optimal)

Any optimal strategic overbooking policy induces a customer equilibrium with U(β, ŵ) = 0.

Proof. The only equilibria for which U(β(ŵ), ŵ) 6= 0 are U(β(ŵ), w) ≥ 0 and U(β(ŵ), w) ≤

0, and it suffices to show that any strategic overbooking policy that leads to either U(β(ŵ), w) <

0 or U(β(ŵ), w) > 0 is not optimal.

First consider the policy that induces U(β(ŵ), w) < 0. In this case, U(β(ŵ), w) < 0 for

all w because U(β(ŵ), w) decreases strictly in w. Therefore, the equilibrium marginal

customer’s response is ŵ = w, and the airline thus obtains zero demand and zero profit.

The overbooking strategy that results in U(β(ŵ), w) < 0 is strictly dominated by any policy

that charges a positive price and does not overbook.

Next consider the policy that induces U(β(ŵ), w) > 0. Here we know that U(β(ŵ), w) > 0

for all w and ŵ = w. Since any admissible policy has c ≤ w, in this case we must have p <

(1−α)v. Therefore, the airline can raise the price without affecting demand and ultimately

increase profits. Thus, the original policy with p < (1− α)v cannot be optimal.

Lemma 1.12. (Multiple Equivalent Policies)
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For any admissible policy (p, b, c) for which β > 0 and U(β, ŵ) = 0, there exists an infinite

set of alternative policies with the same booking limit, b′ ≡ b, and alternative price and

bumping compensation,

p′ ∈ [max {0, (1− α)(v − ŵβ)} , (1− α)v] and c′ =

(
ŵ − v

β

)
+

(
p′

(1− α)β

)
,

(1.25)

with the same equilibrium (β, ŵ) and expected profits E[Π(p, b, c)] = E[Π(p′, c′, b′)] = E[Π((1−

α)v, b, ŵ)].

Proof. We complete the proof in three steps. First, recall that the original policy (p, b, c)

induces the equilibrium (β, ŵ) and that, given fixed b and ŵ, the expression for β in (A.9) is

independent of p and c. As long as b does not change, we need only show β to be consistent

with p, c, and ŵ through the equilibrium equation (1.2).

Second, we use (1.2) to find consistent (p′, c′) pairs. Specifically, from (1.2) we have

U(β, ŵ) = −p′+ (1−α)v+ (1−α)β(c′− ŵ) = 0. Given b′ ≡ b, β > 0, and some admissible

p′, we can solve (1.2) for c′, to derive the definition of c′ in (1.25). Equation (1.25)’s bounds

on p′ then follow from the definition of an admissible policy. Given c′ ≤ w, we can set

c′ = w and solve (1.2) for p′ to see that p′ ≤ (1−α)v+(1−α)β(w− ŵ), which is looser than

the direct bound, p′ ≤ (1 − α)v. Similarly, given c′ ≥ 0, we can set c′ = 0 and solve (1.2)

for p′ to see that p′ ≥ (1−α)v+ (1−α)β(0− ŵ) = (1−α)(v−βŵ). While the lower bound

may be larger or smaller than the direct bound, 0 ≤ p′, it is always (weakly) lower than the

upper bound, p′ ≤ (1− α)v. Thus, we have max{0, (1− α)(v − βŵ)} ≤ p′ ≤ (1− α)v.

Third we show that, for any (p′, c′, b′) that is consistent with (p, b, c), the airline earns the

same expected profits. To demonstrate this fact, we recall the definition of expected profits

in (1.13), E[Π(p′, b′, c′)] = [p′ − (1− α)β(c′ + r)]E[S]. From (1.3) we know that, given b and

ŵ, E[S] is independent of p′ and c′. Furthermore, we can use the definition of c′ in (1.25)
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to substitute out c′ in the definition of margin per customer to show that

[p′ − (1− α)β(c′ + r)] = [(1− α)v − (1− α)β(ŵ + r)].

Thus any (p′, c′, b′) that is consistent with (p, b, c) yields the same expected profit as well.

Proposition 1.13. (Problem Reduction)

If there exists an optimal strategic overbooking policy ξ ∈ Ξ, then there exists an opti-

mal strategic policy that sets p∗s = (1 − α)v, induces an interior equilibrium U(β, ŵ), and

optimizes (1.10).

Proof. For any optimal policy (p∗s, c
∗
s, b
∗
s) with β > 0, Lemma 1.12 implies that there exists

a policy with p = (1 − α)v that generates the same equilibrium and expected profit, and

the result follows. Now suppose there exists an optimal policy with β = 0. Then from (1.2)

and Lemma 1.11, we see that U(β, ŵ) = −p+ (1− α)v + 0(c− ŵ) = 0. Thus, p = (1− α)v

here as well.

Proposition 1.14. (Booking Limit for Optimal Strategic Overbooking Policy)

(i) If c∗s ≤ v − r, then b∗s =∞.

(ii) If v − r < c∗s <
(1−α)v
`′(k) − r, then b∗s = `′−1

(
(1−α)v
c∗s+r

)
.

(iii) If c∗s ≥
(1−α)v
`′(k) − r, then b∗s = k.

Proof. The proof of the proposition can be found in the main text.

Proposition 1.15. (Properties of the Auction with No Cap)

Suppose that, when n > k customers show up for a flight, the airline runs a reverse, uniform

price, multi-unit auction. Then we have the following.

(i) Customers’ optimal bids match their underlying hassle costs: {$1:n = w1:n, . . . , $n:n =

wn:n}.
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(ii) All customers are willing to purchase tickets, irrespective of their hassle cost w ∈ [w,w].

(iii) The airline’s optimal price is p∗a = (1− α)v.

Proof.

Part (i). We will show that, in the kth-price reverse auction problem outlined above,

bidding the true hassle cost is a dominant strategy for customers. Consider a customer

with hassle cost w. Assume that other customers bid in some arbitrary way.

1. Suppose the customer can board if she bids her true hassle cost w, i.e., w ≥ wn−k+1:n.

Then bidding higher than w still allows her to board whereas bidding lower than w

may result in bumping with compensation wn−k:n. Since wn−k:n < w, bidding lower

than w is dominated by bidding w.

2. Suppose the customer is bumped if she bids her true hassle cost w, i.e., w < wn−k+1:n.

In this case, she gets positive utility wn−k+1:n−w. If she were to bid lower than w, she

would still be bumped and receive wn−k+1:n, and this does not improve her utility. If

she bids w′ > w, then one of the following two cases holds. If w < w′ ≤ wn−k+1:n, then

she is still bumped and receive wn−k+1:n. If she bids w′ > wn−k+1:n, then she isn’t

bumped. In this case she ends up receiving no compensation and is strictly worse off

because 0 < wn−k+1:n−w. Therefore, bidding higher than w is dominated by bidding

w.

Considering both cases, we see that bidding w is a dominant strategy for the customer.

Part (ii). By construction of the kth-price auction, we know that every bumped customer

is more than fairly compensated: wn−k+1:n ≥ wi:n for i ∈ {1, 2, ..., n − k}. Therefore, all

customers receive non-negative utility from buying a ticket under any admissible policy,

and ŵ = w.
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Part (iii). From part (ii), we know that demand is not thinned by the airline’s profit-

maximizing overbooking strategy since G(ŵ) = G(w) = 1. Therefore, the airline should

maximize profit per customer and set p∗a = (1− α)v.

Proposition 1.16. (Properties of the Auction with a Cap)

Suppose that the airline sets the price p = (1−α)v and b > k. When n > k customers show

up for a flight, it runs a reverse, uniform price, multi-unit auction with compensation cap

ca ≤ w. Then we have the following.

(i) Customers are willing to purchase tickets, if and only if their hassle costs are w ≤ ca.

(ii) Customers’ optimal bids match their underlying hassle costs: {$1:n = w1:n, . . . , $n:n =

wn:n}.

Proof.

Part (i). It is easy to see that customers with hassle costs w ≤ ca are always more than

fairly compensated if bumped. Since p = (1− α)v, buying a ticket always gives them non-

negative utility. For a customer with hassle cost w > ca, her net value of being bumped

is ca − w < 0. As long as her probability of being bumped is positive, her expected value

from purchasing a ticket is negative. Therefore, buying a ticket is dominated by taking the

outside option, which gives her zero utility.

Part (ii). Since ca ≤ w, we have w = ca = ŵ and can apply the proof of Proposition 1.15

part (i).

Proposition 1.17. (Auction with Cap Dominates Fixed Compensation)

Given any fixed-compensation policy with p = (1− α)v, b > k, w < c ≤ w, and equilibrium

β > 0, an auction-based policy with the same price, p = (1−α)v, the same booking limit, b,

and an analogous cap, ca = c, earns strictly higher expected profits: E[Πa((1− α)v, b, c)] >

E[Π((1− α)v, b, c)].
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Proof. Consider a fixed compensation scheme with price p = (1 − α)v, booking limit

b > k, and compensation w ≤ c ≤ w that induces expected profit E[Π(p, b, c)]. We define

the analogous capped auction with the same price and booking limit, the analogous cap

ca ≡ c, and expected profit E[Πa(p, b, c)].

Observe that demand S = min{b,QG(c)} is the same in both cases. In the fixed compen-

sation scheme with p = (1 − α)v, (1.25) shows that ŵ ≡ c. In the capped auction scheme,

Proposition 1.16 part (i) similarly implies that the effective w ≡ ca. Because both schemes

also have identical price, their expected revenues are the same.

Similarly, both schemes have identical numbers of bumped customers, (N(s, α)− k)+, and

rerouting costs per customer. Thus, expected rerouting costs are also the same in both

cases.

Finally, while the number of bumped passengers is, again, the same in both cases, we can

show that the expected per-customer bumping compensation is strictly lower in the auction

scheme. In particular, given continuous W , E[wn−k:n] < c with probability 1. Hence,

E[Πa(p, b, c)] > E[Π(p, b, c)].

Lemma 1.18. (Convexity of Auction-Based Expected Bumping Cost)

Suppose N(s, α) is SICX in s.

(i) If ∂E[w(ca)n−k+1:n]/∂n ≥ 0, then C ′(s) > 0.

(ii) If in addition ∂2E[w(ca)n−k+1:n]/∂n2 > 0, then C ′′(s) > 0.

Proof. For s ≥ k, C(s, ca) =
∫ s
k (n − k)]E[w(ca)n−k+1:n] pN (n|s) dn. Let ψ(x) = (x −

k)+E[w(ca)x−k+1:x]. Then C(s, ca) = E[ψ(N(s, α))]. Since N(s, α) is SICX in s, to show

that C(s, ca) is increasing convex in s, it suffices to show that ψ(x) is increasing convex in

x.

Part (i). Since (x−k)+ is strictly increasing in x for s ≥ k, if E[w(ca)x−k+1:x] is increasing
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in x, i.e.,
∂E[w(ca)x−k+1:x]

∂x ≥ 0, ψ(x) must be increasing in x.

Part (ii). For s ≥ k, ψ′(x) = (x − k)
∂E[w(ca)x−k+1:x]

∂x + E[w(ca)x−k+1:x] and ψ′′(x) =

(x− k)
∂2E[w(ca)x−k+1:x]

∂x2
+ 2

∂E[w(ca)x−k+1:x]

∂x . Therefore, one sufficient condition for ψ′′(x) > 0

is that
∂E[w(ca)x−k+1:x]

∂x ≥ 0 and
∂2E[w(ca)x−k+1:x]

∂x2
> 0.

Lemma 1.19. (Convexity of the Approximation G̃)

Suppose N(s, α) is SICX in s and we use the specific approximation E[w(ca)n−k+1:n] ≈

G̃(ca, n).

If for any ca ∈ (w,w], g′(w) < 0 for all w ∈ [G−1(G(ca)
k+1 ), ca], then C ′′(s) ≥ 0.

Proof. For s ≥ k, C(s, ca) =
∫ s
k (n − k)]E[w(ca)n−k+1:n] pN (n|s) dn. Let ψ(x) = (x −

k)+E[w(ca)x−k+1:x]. Then C(s, ca) = E[ψ(N(s, α))]. If N(s, α) is stochastically increasing

and linear (e.g. binomial), then to show that C(s, ca) is convex in s, it suffices to show that

ψ(x) is convex in x.

Let y(x) = x−k+1
x+1 . Then, G̃(ca, x) = G̃(x) = G−1

ca (y(x)). Here we drop ca in the argument

because we consider a fixed ca. Thus,

G̃′(x) =
k

gca(G−1
ca (y(x)))(x+ 1)2

(A.23)

and

G̃′′(x) = −
g′ca(G−1

ca (y(x)))

gca(G−1
ca (y(x)))

(G̃′(x))2 − 2G̃′(x)

x+ 1
. (A.24)

By (A.23) and (A.24),

ψ′′(x) = −
g′ca(G−1

ca (y(x)))

gca(G−1
ca (y(x)))

(G̃′(x))2(x− k) +
2(k + 1)G̃′(x)

x+ 1
. (A.25)

By (A.25), a sufficient condition for ψ′′(x) ≥ 0 is g′ca(G−1
ca (y(x))) ≤ 0, which is equivalent to

g′(G−1
ca (y(x))) ≤ 0 since gca(x) = g(x)

G(xa) . Note that for x ∈ (k,∞), we have y(x) ∈ ( 1
k+1 , 1).

Therefore, G−1
ca (y(x)) ∈ (G−1

ca ( 1
k+1), ca). Clearly, G−1

ca ( 1
k+1) = G−1(G(ca)

k+1 ). Hence, the
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sufficient condition becomes g′(w) ≤ 0 for w ∈ [G−1(G(ca)
k+1 ), ca].

Proposition 1.20. (Optimal Booking Limit for the Auction)

Suppose p = (1− α)v and C ′′(s) > 0. Then there exists a unique optimal booking limit, b∗a,

with the following properties.

(i) If `′(k) ≥ (1−α)v
r then b∗a = k.

(ii) If `′(k) < (1−α)v
r and ∃ b ∈ (k,∞) s.t. C ′(b) ≥ (v − r)(1 − α), then (1.36) determines

b∗a ∈ (k,∞).

(iii) If C ′(b) < (v − r)(1− α) for all b ≥ k then b∗a =∞.

Proof. By the first-order condition (1.36), an interior b∗a satisfies `′(b) = p−C′(b)
r . Recall

from Definition 1.2 part (i) that `′′(b) > 0 and from Lemma 1.18 part (ii) that C ′′(b) > 0.

Given the convexity of these costs, expected profits are concave in b, and at most one such b∗a

exists. By the second-order condition (1.37), d2Πa
db2

∣∣
b=b∗a

= 0+ P{Q > b} [−r`′′(b)− C ′′(b)] <

0. Therefore, an interior b∗a, if it exists, is a global maximum.

The airline charges price p = (1− α)v, and we prove the results in the order (i), (iii), (ii).

Part (i). `′(k) ≥ (1−α)v
r implies `′(k) ≥ p

r = p−C′(k)
r . Therefore, dΠa

db = p− r`′(b)−C ′(b) ≤

p− r`′(k)− C ′(k) ≤ 0 for all b ≥ k, which implies b∗a = k.

Part (iii). Together, p = (1 − α)v and C ′(b) < (v − r)(1 − α) ∀ b ≥ k imply that

`′(b) ≤ 1− α < p−C′(b)
r and dΠa

db > 0 ∀ b, which in turn means that b∗a =∞.

Part (ii). From parts (i) and (iii) and the Intermediate Value Theorem, the necessary and

sufficient conditions for the existence of an interior b∗a are a) `′(k) < (1−α)v
r and b) ∃ b > k

s.t. C ′(b) ≥ (v − r)(1− α).

Lemma 1.21. (Bumping Compensation Grows with the Cap)

For ca ∈ (w,w) and s > k, (i) ∂C(s, ca)/∂ca > 0, and (ii) ∂2C(s, ca)/∂s∂ca > 0.
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Proof. Since E[w(ca)n−k+1:n] increases in ca, by (1.33), C(s, ca) increases in ca for any

fixed s. Then from (1.33) we have

∂

∂s
C(s, ca) = (s− k)E[w(ca)s−k+1:s]PN (s|s)

+

∫ s

k
(n− k)E[w(ca)n−k+1:n]

dPN (n|s)
ds

dn. (A.26)

Since both E[w(ca)s−k+1:s] and E[w(ca)n−k+1:n] increase in ca, by (A.26), for any fixed s we

have ∂2

∂s∂ca
C(s, ca) > 0.

Proposition 1.22. (Optimal Auction Parameters)

For fixed p, let b∗a(ca) be the optimal booking limit induced by ca. Suppose p = (1 − α)v,

w < ca < w, k < b∗a(ca) <∞ and C ′′(s) > 0. Then we have the following.

(i) The optimal booking limit, b∗a, is decreasing in ca.

(ii) The resulting expected profit, E[Πa], is increasing in ca.

Proof.

Part (i). By Proposition 1.16 part (i), the equilibrium customers’ response is independent

of the booking limit. Therefore, as in (1.34),

d

db
Πa(b) = p

dE[S]

db
− r dE[(N − k)+]

db
− dE[C(S)]

db

= pP{Q > b} − r `′(b)P{Q > b} − C ′(b)P{Q > b}, (A.27)

and the optimal booking limit with ca, b
∗
a(ca), satisfies

p − r `′(b∗a(ca)) − C ′(b∗a(ca)) = 0. (A.28)

Consider c′a > ca. Then by Lemma 1.21 part (ii), C ′(s, c′a)(b
∗
a(ca)) > C ′(s, ca)(b

∗
a(ca)). Since

C ′′ > 0, `′′ > 0 and b∗a(ca) is interior, we must have b∗a(c
′
a) < b∗a(ca).
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Part (ii). Recall that, for a capped auction, ŵ ≡ ca. Suppose the airline always implements

the optimal booking limit b∗a(ca) w.r.t. ca. Then by the Envelope Theorem,

d

d ca
E[Πa(b, ŵ)]

∣∣∣∣
b=b∗a(ca)

=
d

dŵ
E[Πa(b, ŵ)]

∣∣∣∣
b=b∗a(ca)

=
∂

∂ŵ
Πa(b, ŵ)

= p
∂E[S]

∂ŵ
− r ∂E[(N − k)+]

∂ŵ
− ∂E[C(S)]

∂ŵ

= g(ŵ)

∫ b∗a(ca)
G(ŵ)

0

[
p− r`′(qG(ŵ))− C ′(qG(ŵ))

]
qf(q)dq.(A.29)

Since p−r`′(qG(ŵ))−C ′(qG(ŵ)) = 0 for q = b∗a(ca)
G(ŵ) , and since `′(s), C ′(s) > 0, we know that

p − r`′(qG(ŵ)) − C ′(qG(ŵ)) ≥ 0 for q ∈ [0, b∗a
G(ŵ) ]. This shows that d

d ca
Πa(b, ŵ)|b=b∗a > 0,

which concludes the proof.

Proposition 1.23. (Optimality of Overbooking Policy)

(i) The optimal overbooking policy uses an auction to determine customers’ bumping com-

pensation.

When N(s, α) is SICX, C ′′(s) > 0, and the auction-based overbooking policy sets p =

(1− α)v, we also have the following.

(ii) The optimal cap on bumping compensation is effectively unbounded: c∗a = w.

(iii)The optimal booking limit b∗a is defined as in Proposition 1.20.

Proof. Part (i) follows immediately from Proposition 1.17. Part (ii) follows immediately

from Proposition 1.22 part (ii). For Part (iii) See the proof of Proposition 1.20.
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A.1.3. Numerical Experiments

The results reported in Table 1 are based on the optimal booking limits found for the

following primitive parameters.

p = 400 All other parameters are pegged off the ticket price.
c ∈ {0, 100, 200, 400, 800} Bumping compensation ranges from 0 to 2 times the

ticket price.
α ∈ {0.05, 0.1, 0.2} No-show probabilities range from low to high.
k ∈ {50, 100, 200, 400} The plane’s capacity ranges from low to high.
r ∈ {0, 200, 320, 400} Rerouting costs runs from 0 to the ticket price.
v (1− α)− 400 ∈ {0.01, 1, 4} Value set to ensure a small amount of consumer sur-

plus.
F ∼ N (1.2 k, k/3) Support is [1, 2.4 k]; distribution renormalized so prob-

abilities sum to one.
G ∼ N (v, v/3), Support is [0, 2 2 v]; distribution renormalized so prob-

abilities sum to one.

Notes: (1) The range of customers’ expected values of flying v (1 − α) − 400 ∈ {0.01, 1, 4}

is low and reflects the fact that larger v’s generate enough customer surplus that booking

limits become unbounded. This numerical result also suggests that the price should be

roughly p ≈ (1 − α)v. (2) The demand distribution F is scaled to offer slightly more

demand than capacity available. (3) The hassle-cost distribution G is scaled to be on the

order of the value the customer receives from flying.

The results reported in Table 2 are based on the optimal booking limits and bumping

compensation found for the following primitive parameters.

v ∈ {200, 400, 500, 600, 800} Value of flying ranges from low to high.
α ∈ {0.05, 0.1, 0.2} No-show probabilities range from low to high.
p = (1− α)v Optimal prices for both the fixed and uncapped-

auction schemes.
k ∈ {50, 100, 200, 400} The plane’s capacity ranges from low to high.
r ∈ {0, 200, 400, 600, 800, 1000} Rerouting costs run from 0 to very high.
F ∼ N (1.2 k, k/3) Support [1, 2.4 k]; distribution renormalized so proba-

bilities sum to one.
G ∼ N (v, v/3), Support [0, 2 v]; distribution renormalized so probabil-

ities sum to one.
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Notes: (1) The demand distribution F is scaled to offer slightly more demand than capacity

available. (2) The hassle-cost distribution is scaled to be on the order of the value the

customer receives from flying. (3) Hassles costs are normally distributed, and to evaluate

auction-based policies we approximate expected order statistics using results from Harter

(1961), which includes correction terms for the fractile approach of Arnold et al. (2008) we

describe in 1.5.4.

A.2. Capped ICO

A.2.1. Additional Discussions and Results

Utility Tokens and the Token Buyers

In this section, we elaborate on two important features of tokens and the role of the token

buyers (the speculators and the customers).

First, tokens play a dual role: as of today, most tokens in the market have been considered

as both utility and security.1 The “security” aspect results from the tradable feature of the

tokens. The “utility” aspect comes from the fact that the fundamental value of these tokens

lies in the economic value of the products or services that they are redeemable for. However,

most projects do not have any products at the time of the ICO. In 2017, for instance, 87% of

ICOs did not yet have a running product (CryptoGlobe, 2018). To capture these features,

we model tokens that start out as pure securities and only after product launch become

utility tokens. Such tokens appeal to two groups of token buyers: those who see tokens as

securities purchase the tokens in the ICO period (before product launch),2 whereas those

who wish to consume the products buy tokens in the market period (after product launch).

Therefore, we refer to the token buyers in the ICO period and those in the market period

as speculators and customers respectively.

1The regulatory environment is still uncertain but efforts are being made to pass bills that would distin-
guish tokens from securities like stocks (Khatri, 2019).

2Technically, those who see tokens as securities may purchase tokens whenever they feel optimistic about
the potential return. However, we model a firm that plans one round of production and product sale and
the market token price in the market period is an equilibrium quantity that does not change during that
period. Therefore, it only makes sense for this group of token buyers to come in the ICO period.
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The second feature is that the tokens issued by the firm can only be redeemed on the firm’s

own platform and are the only viable method of payment for the its products. By restricting

the method of payment, the firm ties the value of the tokens to the economic value of the

products. This, together with the existence of a secondary market to trade the tokens,

incentivize speculators to purchase tokens in the ICO, even if they are not interested in

subsequently consuming the product themselves.

At the same time, the fact that the tokens have no use on other platforms has a few

implications. First, it means that the token value solely depends on the consumption of

products of this particular platform. Second, after the firm ends production, the speculators

have no reason to hold the tokens and the customers do not buy more tokens than needed.

Third, redeemed tokens retain no value if no further production is planned. Last, since we

only consider one round of production, this suggests that the tokens are for one-time use

only and the firm cannot resell the redeemed tokens for more cash.

Example: Honeypod Whitepaper

Honeypod (Honeypod, 2018) aims to produce a hardware that serves as the main hub that

interconnects various devices and provides traffic filtering. The company claims that they

have mature products that are ready for mass production before token crowdsale.

Parameters captured by our model include

1. Hard cap (m = 200, 000, 000).

2. ICO sales cap/soft cap (n = 40, 000, 000).

3. Fixed token price of during public token sale (τ = $0.05).

4. Customers’ willingness to pay (v = $99).

5. Manufacturing cost (c = $32).

6. Production quantity over 12 months (Q = 50, 000).

Parameters not captured by our model include

1. Four tiers of fixed token prices during private token sale ($0.02, $0.025, $0.03, $0.035).
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2. Other use of funds from the token sale (e.g. 25% on maintenance, R&D).

Parameters in our model that are not mentioned in the white paper include

1. Aggregate demand (D).

A.2.2. Technical Results

Optimal Token Price and ICO Cap

Given the optimal production quantity and speculators’ equilibrium behavior, we now ex-

amine how the firm sets the profit-maximizing ICO token cap n∗ and initial token price

τ∗.

From Lemma 2.3, the number of speculators s∗(τ, n) ≤ m
(
1− c

v

)
, and given speculators

participating in the ICO buy 1 token each, we need not consider the case in which tokens

n > m
(
1− c

v

)
. We will first find the token price τ∗(n) for a given token cap n ≤ m

(
1− c

v

)
and then maximize profit over the token cap n.

For a fixed n, the platform’s optimization problem (2.3) can be written as a maximization

problem over τ subject to speculators’ participation constraint. In particular, the optimiza-

tion problem is

max
τ≥0

Π = τ(n) s∗(τ, n)− cQ∗(s∗(τ, n)) + (m− s∗(τ, n))E[τeq(s
∗(τ, n))], (A.30)

subject to u(s∗(τ, n)) ≥ 0 and Q∗(s∗(τ, n)) = min
{
F−1

(
1− cm

(m−s∗(τ,n))v

)
, τ s

∗(τ,n)
c

}
(from

Proposition 2.2). Proposition 2.4 (see Section 2.3.3) guarantees the existence of a nonzero

equilibrium token price τ∗.

Next we find the optimal ICO token price τ∗(n) assuming the two conditions in Proposi-

tion 2.4 are met. Before stating the proposition, we impose an additional technical condition

on the demand distribution to guarantee equilibrium uniqueness3: f ′(F−1(y)
(f(F−1(y))2

> −3v
c ·k·

1−k
2k−1

3One can readily check analytically or numerically) that this sufficient condition is generally satisfied for
some common distributions such as uniform and normal. All numerical results presented in the paper satisfy
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where k = 1− c
(1−y)v and y ∈ [0, 1− 2c

v ).

Proposition A.2. (Optimal ICO Token Price)

When v > 2c,

i) For a given n ∈ (mc
v , m

(
1− c

v

)
], there exists a finite positive τ∗(n) uniquely deter-

mined by u(s∗(τ∗(n))) = 0.

ii) There exists a unique n̂ ∈ (mc
v ,

m
2 ) such that

• for n ∈
[
mc
v , n̂

)
, τ∗(n) is the unique solution of τ∗(n) = v

m E
[
min

{
D, τ

∗(n)n
c

}]
;

• for n ∈
[
n̂,m

(
1− c

v

)]
, τ∗(n) = v

m E
[
min

{
D,F−1

(
1− cm

(m−n)v

)}]
.

Part (i) of Proposition A.2 shows that when the price-cost ratio is high enough, for any

fixed ICO cap n in the appropriate range as suggested by Proposition 2.4 (i), there exists a

unique, positive and finite ICO token price τ∗(n) that maximizes (A.30) by extracting all

utility from the speculators who participate strategically according to Lemma 2.3. By (2.1),

this implies that the expected equilibrium token price in the market period is equal to the

optimal ICO token price, i.e., E[τeq(s(τ
∗(n), n)] = τ∗(n). We then solve u(s∗(τ∗(n))) = 0

using Lemma 2.1 (ii) and Proposition 2.2 (i) and obtain part (ii) of Proposition A.2. Recall

that the term τ∗(n)n
c reflects the budget constraint and F−1

(
1− cm

(m−n)v

)
is the constrained

optimal production quantity. Therefore, part (ii) of Proposition A.2 suggests that the firm,

upon setting the optimal ICO token price, spends all funds raised on production when the

ICO cap n is small but produces an optimal quantity without using all the funds when n is

large or n
m is closer to the misconduct fraction.

Knowing τ∗(n), s∗(τ∗(n), n) and Q∗(s∗(τ∗(n), n)), the firm’s optimization problem reduces

to a maximization problem over the ICO cap n given by

max
mc
v
<n≤m(1− c

v )
Π = τ∗(n) s∗(τ∗(n), n) − cQ∗(s∗(τ∗(n), n))

+ (m− s∗(τ∗(n), n))E[τeq(s
∗(τ∗(n), n))] (A.31)

this condition.
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where s∗(τ(n), n) = n, Q∗(s∗(τ(n), n)) = min
{
F−1(1− cm

(m−n)v ), τ
∗(n)n
c

}
and τ∗(n) is given

by Proposition A.2 part ii).

This leads to the following result.

Proposition A.3. (Equilibrium ICO Cap) When v > 2c, the unique optimal ICO cap

n∗ ∈ (mc
v ,

m
2 ) equals the threshold n̂ in Proposition A.2 ii), and is the solution to the fol-

lowing equation:

v n∗

cm
E

[
min

{
D,F−1(1− cm

(m− n∗)v
)

}]
= F−1

(
1− cm

(m− n∗)v

)
.

Proposition A.3 tells us that neither a small ICO cap that suppresses the production quan-

tity nor a large cap that induces idle cash is profit-maximizing for the firm. The optimal

ICO cap n∗ allows the firm to raise just enough funds that can be credibly committed to

production, and here we provide a semi-closed-form solution of n∗.

Sequential Arrival of Speculators

In this section, we assume that the z speculators arrive sequentially during the ICO pe-

riod and observe the number of tokens sold before their arrival, rather than showing up

simultaneously. Tokens are sold on a first-come, first-served basis and each speculator buys

either zero or one token based on the expected profit of their purchase. We will show that

while this alternative assumption on the speculators’ arrival changes one of the intermediate

results, it leads to the same equilibrium results as in the rest of the paper.

Suppose the first s speculators will buy one token each. Then anyone who arrives later than

the s− th speculator will not buy any token and thus obtains zero utility. In this section,

we focus on the earliest s arrivers. The expected profit of such a speculator given there s

tokens will be sold by the end of the ICO is given by

u(s) = ∆(s)1{s>0}, (A.32)

124



where ∆(s), by (2.1), Lemma 2.1 and Proposition 2.2, is

∆(s) =
v

m
E

[
min

{
D,F−1

(
1− cm

(m− s)v

)
,
τ s

c

}
· 1{s<m(1− c

v )}

]
− τ. (A.33)

The participation constraint requires that u(s) ≥ 0. From (A.33) we immediately know

that the equilibrium number of speculators will never be m
(
1− c

v

)
or beyond because

u(s) = −τ < 0 for s ≥ m
(
1− c

v

)
. Therefore, the speculators who arrive sequentially would

collectively buy under the misconduct fraction.

Since u(s) and ∆(s) have the same sign for s > 0, Lemma 2.3 part iii) still holds. Lemma

2.3 part iii) tells us that when the speculators arrive sequentially, there will be exactly

s0(τ) speculators without the sales cap n. However, note that s0(τ) is not necessarily the

utility-maximizing s because the early speculators cannot stop those who arrive later from

buying more tokens unless it is no longer profitable to do so.

So far there are two upper bounds of the equilibrium number of speculators s∗: the sales

cap, n, and s0(τ)4. We express s∗ in terms of these two upper bounds in the following

proposition.

Proposition A.4. (Equilibrium Number of Sequentially Arriving Speculators)

Given initial token price τ and the sales cap n, the equilibrium number of speculators is

given by

s∗(τ, n) = min {s0(τ), n} (A.34)

provided that s0(τ) exists and

u(s∗) ≥ 0. (A.35)

If s0(τ) does not exist or u(min {s0(τ), n}) < 0, then there will be no speculators and thus

ICO fails.

4In this section, we assume that s0(τ) exists because its existence is necessary for u(s∗) ≥ 0 for some
s > 0. We show that the existence of s0(τ) depends on both τ and n and discuss the conditions (the critical
mass condition and a high willingness-to-pay) in Section 2.3.3.
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Note that the expression of u(s) with simultaneous arrivals given by (2.1) and that with

sequential arrivals given by (A.32) have the same sign, albeit differing by a scale of s/z for

s > 0. Since the magnitude of the speculators’ profit does not affect their purchase decision

or the firm’s profit, Propositions 2.4 - 2.6 and Proposition 2.5 (iii) hold for both arrival

assumptions. Details can be found in Appendix A.2.3.

Moreover, following Proposition 2.5, we can show that setting a sales cap is not needed

when the customers observe their arrival sequence.

Corollary A.5. When v > 2c, in equilibrium we have n∗ = s0(τ∗(n∗)).

By Corollary A.5, the optimal ICO sales cap is equal to the equilibrium number of specu-

lators who would participate even when the cap is unannounced. Therefore, to reach the

target level of token sales n∗ that eventually induces maximum expected profit, it suffices

to set the ICO token price to be τ∗(n∗).

A.2.3. Proofs

Proof of Lemma 2.1

i) First note that the customers have a fixed willingness-to-pay v that is equal to p · τeq.

Suppose p > m/min {Q,D}, then the demand of tokens p ·min {Q,D} exceeds the supply

of tokens, m. This will drive the price of the token up, resulting in a decrease in the

token-denominated price. In other words, τeq will increase and p will decrease. Similarly,

if p < m/min {Q,D}, then the demand of tokens is less than the supply of tokens, which

induces an increase in p. Therefore, in equilibrium, demand of tokens is equal to its supply,

i.e., p ·min {Q,D} = m.

ii) The result follows immediately from τeq = v/p and Part (i).

Proof of Proposition 2.2
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Taking derivative with respect to Q and applying Lemma 2.1,

dΠ

dQ
= − c+ (m− s) d

dQ

vE[min {Q,D}]
m

= − c+ (m− s) v
m

(1− F (Q))

= [(m− s) v
m
− c ] − (m− s) v

m
F (Q) (A.36)

By (A.36), dΠ
dQ < 0 when (m− s) v

m − c < 0, i.e., s > m
(
1− c

v

)
. On the other hand, when

s ≤ m
(
1− c

v

)
, ignoring the budget constraint and setting dΠ

dQ = 0, we getQ∗unconstrained(s) =

F−1(1 − cm
(m−s)v ). Since d2Π

dQ2 = − (m − s) v
mf(Q) < 0, the profit function is concave in Q

and Q∗unconstrained is a maximum. Hence the firm’s optimal production quantity is given by

Q∗(s) = min

{
F−1(1− cm

(m− s)v
),
τ s

c

}
· 1{s≤m(1− c

v )}. (A.37)

Proof of Proposition 2.4

i) For an ICO to succeed, there must be a positive number of speculators who invest.

Therefore, the firm needs to set a (τ, n) pair that satisfies the speculators’ participa-

tion constraint. Consider a fixed n > 0. A necessary condition for this n to induce a

successful ICO is that there exists τ > 0 such that s∗(τ, n) > 0 and u(s∗(τ, n)) ≥ 0,

which is a necessary condition for the existence of s0(τ). Therefore, we will charac-

terize such n while assuming the existence of s0(τ).

Now, for the fixed n > 0, we divide the space of possible τ into two partitions,

T1 = {τ ≥ 0 : s0(τ) < n} and T2 = {τ ≥ 0 : s0(τ) ≥ n}, and in each partition look for

eligible τ > 0, i.e., s∗(τ, n) > 0 and u(s∗(τ, n)) ≥ 0.

(Simultaneous, T1) When n > s0(τ), with simultaneous arrival s∗ = 0. Therefore,

there is no eligible τ > 0 in T1.

(Simultaneous, T2) Now we consider T2 where 0 < n ≤ s0(τ). First note that when

τ = 0, the firm raises no money and thus produces Q∗ = 0. Therefore u(s∗(0, n)) = 0
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and 0 ∈ T2. To find out if an eligible τ > 0 exists in T2, we need to know how

u(s∗(τ, n)) changes in τ ∈ T2.

Under simultaneous arrivals, by (2.1) and (A.33) we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ

[n
z

∆(n)
]

=
n

z

[
v

m

d

dτ
E[min

{
D,F−1(1− cm

(m− n)v
),
τ n

c

}
]− 1

]
=

n

z

[
v

m

d

dτ
E[min

{
D,

τ n

c

}
] · 1{F−1(1− cm

(m−n)v )≥ τ n
c
}

]
+
n

z

[
v

m

d

dτ
E[min

{
D,F−1(1− cm

(m− n)v
)

}
] · 1{F−1(1− cm

(m−n)v )< τ n
c
} − 1

]
=

n

z

[ v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )}

]
+
n

z

[
v

m
(1− F (F−1(1− cm

(m− n)v
))) · 0 · 1{τ> c

n
F−1(1− cm

(m−n)v )} − 1

]
=

n

z

[ v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )} − 1
]
. (A.38)

By the analysis of T1 and (A.38), for τ > c
nF
−1(1 − cm

(m−n)v ), the speculators’ profit

would either remain the same (if τ ∈ T1) or keep decreasing in τ (if τ ∈ T2) as

du(s∗(τ,n))
dτ |τ∈T2 = −n

z < 0. For τ ≤ c
nF
−1(1 − cm

(m−n)v ), u(s∗(τ, n) is either zero

(if τ ∈ T1) or keeps decreasing in τ (if τ ∈ T2) as (1 − F ( τ nc ) decreases in τ .

Hence, to guarantee a positive number of speculators and thus non-negative profit,

it is necessary and sufficient for the platform to set n such that du(s∗(τ,n))
dτ

∣∣
τ=0

=

n
z

[
v
m (1− F (0·n

c )) nc − 1
]
> 0, i.e., n > mc

v . In this case, ∃τ > 0 s.t. u(s∗(τ, n)) > 0.

Note that by definition of s0(τ), it must be that s∗(τ, n) < s0(τ) and thus n < s0(τ),

which means that this τ is indeed in T2.

(Sequential) Consider the sequential arrivals assumption.

When n > s0(τ), s∗(τ, n) = min {s0(τ), n} = s0(τ) and u(s∗(τ, n)) = 0. Ostensibly,

there exists eligible τ ’s in T1. However, we have assumed the existence of s0(τ) and we

need to make sure that it still holds. The existence of s0(τ) depends on the behavior
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of u(s∗(τ, n)) for τ ∈ T2. By (A.33) and (A.32), we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ
∆(n)

=
v

m
(1− F (

τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )} − 1. (A.39)

Note that (A.39) only differs from (A.38) by a scale of n
z . We then follow a similar

argument as in part (Simultaneous, T2) to show that s0(τ) exists if and only if n > mc
v .

ii) By Part (i), s∗ ≥ mc
v . On the other hand, we showed in Section 2.3.2 that s∗ <

m
(
1− c

v

)
. Therefore, the ICO fails if m

(
1− c

v

)
≤ mc

v , i.e., v ≤ 2c.

Proof of Proposition 2.5

i) Shown by Proposition 2.4.

ii) (a) Shown by Proposition A.3.

(b) By Lemma 2.3, s∗(τ∗, n∗) = n∗ ·1{u(n∗)≥0}. By definition of τ∗ as in Proposition

A.2 part (i), we know that u(n∗) = u(n∗, n∗, τ∗) ≥ 0. The result follows.

(c) By Proposition A.2, we know that there exists a unique n̂ ∈ (mc
v ,

m
2 ) such that

the following holds:

• v n̂
cm E[min

{
D,F−1(1− cm

(m−n̂)v )
}

] = F−1(1− cm
(m−n̂)v );

• F−1(1− cm
(m−n̂)v ) = τ∗(n̂)n̂

c .

We show in the proof of Proposition A.3 that this n̂ is a global maximum point,

which we call n∗. Hence, v n∗

cm E[min
{
D,F−1(1− cm

(m−n∗)v )
}

] = τ∗(n∗)n∗

c , and the

ICO token price is τ∗ = v
m E[min

{
D,F−1(1− cm

(m−n∗)v )
}

].

(d) Following the proof of part (c) and substituting n∗ and τ∗ into Proposition 2.2

part (i), we have Q∗ = min
{
F−1(1− cm

(m−n∗)v ), τ
∗n∗

c

}
= F−1(1− cm

(m−n∗)v ).

(e) By definition of τ∗ as in Proposition A.2 part (i), we have E[τeq] = τ∗. We obtain

the result by part (c).

iii) By part (a), (c) and (e) of Proposition 2.5, we have n∗ · τ∗ = Q∗ · c.
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Proof of Proposition 2.6

i) Shown by Proposition 2.5.

ii) By Proposition 2.5, Q∗ICO = F−1(1 − cm
(m−n∗)v ). The optimal production quantity of

a traditional newsvendor is F−1(1 − c
v ). Since m

m−n∗ > 1 and F−1 is an increasing

function, we have F−1(1− cm
(m−n∗)v ) < F−1(1− c

v ).

iii) The ICO newsvendor’s profit is given by ΠICO = τ∗ s∗ − cQ∗ + (m − s∗)E[τeq]. By

Proposition 2.5, τ∗ = E[τeq], therefore

ΠICO = mE[τeq]− cQ∗

= v E[min

{
D,F−1(1− cm

(m− n∗)v
)

}
]− c F−1(1− cm

(m− n∗)v
)

= Πtraditional(F
−1(1− cm

(m− n∗)v
)) (A.40)

where Πtraditional is the profit function of a traditional newsvendor defined as

Πtraditional(Q) = v E[min {D,Q}] − cQ. We know that Πtraditional(Q) is maximized

by F−1(1 − c
v ) which is greater than F−1(1 − cm

(m−n∗)v ) by part (ii). Therefore

Πtraditional(F
−1(1− cm

(m−n∗)v )) < Πtraditional(F
−1(1− c

v )).

iv) The fact that the firm who finances through ICO does not invest its own money makes

sure that it never suffers a loss. Indeed, following (A.40),

ΠICO = v

∫ F−1(1− cm
(m−n∗)v )

0
xf(x)dx + (

cm

m− n∗
−c)F−1(1− cm

(m− n∗)v
) > 0. (A.41)

Proof of Lemma 2.3

i) See the main text.

ii) See the main text.

iii) Fix τ and n. Recall that by (2.1) that u(s) and ∆(s) have the same sign. Therefore,
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we can also express s0(τ) as max {s ≥ 0 : ∆(s) = 0}. We now examine the behavior

of ∆(s) as a function of s:

d∆(s)

ds

∣∣∣∣
s<m(1− c

v )
=

v

m
[1− F (Q∗(s))]

dQ∗(s)

ds

∣∣∣∣
s<m(1− c

v )
, (A.42)

where

dQ∗(s)

ds

∣∣∣∣
s≤m(1− c

v )
=

 −
cm

f(Q∗(s))(m−s)2 v if F−1(1− cm
(m−s)v ) ≤ τ s

c

τ
c otherwise

. (A.43)

Ignoring the sales cap n for the moment, note that for s ∈ [0,m
(
1− c

v

)
], F−1(1 −

cm
(m−s)v ) monotonically decreases in s whereas τ s

c linearly increases in s. Also, F−1(1−
cm

(m−s)v )
∣∣
s=0

= F−1(1 − c
v ) > 0 = τ s

c

∣∣
s=0

and F−1(1 − cm
(m−s)v )

∣∣
s=m(1− c

v ) = 0 <

τ s
c

∣∣
s=m(1− c

v ). Therefore, for any fixed τ , there exists one and only one ŝ(τ) that

satisfies F−1(1 − cm
(m−ŝ(τ)v ) = τ ŝ(τ)

c . By (A.43), Q∗(s) increases in s for s ∈ [0, ŝ(τ))

and decreases in s for s ∈ (ŝ(τ),m
(
1− c

v

)
), and is thus maximized at ŝ(τ). Therefore,

(A.42) is positive for all s ∈ [0, ŝ(τ)) and negative for all s ∈ (ŝ(τ),m
(
1− c

v

)
) and

ŝ(τ) maximizes ∆(s). Now note that ∆(0) = 0− τ = −τ and ∆(m
(
1− c

v

)
) = 0− τ =

−τ . This shows that s0(τ) ∈ [ŝ(τ),m
(
1− c

v

)
) if it exists. Figure 12 illustrates

the relationships between the quantities mentioned above when demand is normally

distributed.

Figure 12: ∆(s) vs s, assuming existence of s0(τ)
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Proof of Proposition A.2

i) First note that by Lemma 2.3 or (A.34), for each τ , it is redundant to consider

n > s0(τ). Therefore, for each n, we can restrict our attention to the set Tr = {τ >

0 : s0(τ) ≥ n}. When n ≤ s0(τ), we have s∗(τ, n) = n. We will first find τ∗(n) ∈ R+

that maximizes (A.30) evaluated at s∗(τ, n) = n and then show that this τ∗(n) is in

Tr. Since Tr ⊂ R+, this τ∗(n) must maximize (A.30) over Tr.

Substituting s∗(τ, n) = n into (A.30) and differentiating with respect to τ ,

dΠ

dτ
= n − c

dQ∗(n)

dτ
+ (m− n)

v

m

d

dτ
E[min {D,Q∗(n)}]

= n − c
dQ∗(n)

dτ
+ (m− n)

v

m
(1− F (Q∗(n)))

dQ∗(n)

dτ

= n + [(m− n)
v

m
(1− F (Q∗(n)))− c ]

dQ∗(n)

dτ

= n + [(m− n)
v

m
(1− F (Q∗(n)))− c ]1{F−1(1− cm

(m−n)v )≥ τ n
c
}
n

c

=

 n + [(m− n) v
m (1− F (Q∗(n)))− c ]nc if F−1(1− cm

(m−n)v ) ≥ τ n
c

n otherwise
.(A.44)

Note that F−1(1− cm
(m−n)v ) ≥ τ n

c means (m−n) v
m (1−F (Q∗(n)))− c ≥ 0. Therefore,

dΠ
dτ > 0 for all τ , implying that for a given n, the optimal initial token price τ∗(n) is

given by

τ∗(n) = max {τ : u(s∗(τ, n)) = E[τeq(Q
∗(n))]− τ ≥ 0}. (A.45)

Consider some n ∈ (mc
v , m

(
1− c

v

)
] and we know by (A.38) that du(s∗(τ,n))

dτ > 0 for

τ ∈ [0, τ̃) for some 0 < τ̃ < c
nF
−1(1 − cm

(m−n)v ) such that du(s∗(τ,n))
dτ

∣∣
τ=τ̃

= 0. Given

that u(s∗(0, n)) = 0, by definition of τ∗ given by (A.45), we must have τ∗(n) > τ̃ >

0. We also know that τ∗(n) < ∞ because by (A.38), the speculators’ profit will

eventually go negative as τ increases given that du(s∗(τ,n))
dτ < 0 when τ > c

nF
−1(1 −

cm
(m−n)v ). Therefore, τ∗(n) = max {τ : u(s∗(τ, n)) = 0}. Since u(s∗(τ, n)) ≥ 0 for all

τ ∈ [0, τ∗(n)] and decreases linearly in τ for τ > τ∗(n), the equation u(s∗(τ, n)) = 0

has one and only one nonzero solution. We can thus simplify the definition by writing
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τ∗(n) = {τ > 0 : u(s∗(τ, n)) = 0}.

Last, this new definition of τ∗(n) makes sure that n ≤ s0(τ∗(n)) because s0(τ∗(n))

is the largest s that gives u(s) = 0 by definition. Therefore, s∗(τ, n) = n still

holds. We can then solve u(s∗(τ, n)) = s∗(τ,n)
z ∆(s∗(τ, n)) or equivalently ∆(s∗(τ, n)) =

v
m E[min

{
D,F−1(1− cm

(m−n)v ), τ nc

}
]− τ = 0.

ii) For a fixed n ∈ (mc
v , m

(
1− c

v

)
], we define

• τ1(n) = v
m E[min

{
D,F−1

(
1− cm

(m−n)v

)}
];

• τ2(n) : {τ > 0 : φ(τ) = v
m E[min

{
D, τ nc

}
]− τ = 0}.

By part (i) we know that τ∗(n) is either equal to τ1(n) or given by τ2(n).

We first show that τ2(n) is finite and unique. Consider φ(τ) = v
m E[min

{
D, τ nc

}
]− τ

and φ′(τ) = v
m

n
c (1 − F ( τ nc )) − 1. Note that φ(0) = 0 and φ′(0) > 0 since n > mc

v .

For large τ , φ′(τ) < 0 as φ′′(τ) = − v
m

n2

c2
f( τ nc ) < 0 for all τ ≥ 0. Therefore, there

exists exactly one 0 < τ < ∞, which is τ2(n), that gives φ(τ) = 0. Also note that

φ′(τ2(n)) < 0 and we will use this result in the proof of Proposition A.3.

Next, let’s find out the expression of τ∗(n) for n ∈ (mc
v , m

(
1− c

v

)
]. Let g(n) =

τ1(n)n
c − F−1

(
1− cm

(m−n)v

)
and note that g(n) > 0 means τ∗(n) = τ1(n). If g(n) = 0,

then F−1
(

1− cm
(m−n)v

)
= τ1(n)n

c and thus E[min
{
D,F−1

(
1− cm

(m−n)v

)}
]

= E[min
{
D, τ2(n)n

c

}
], which by definition implies that τ1(n) = τ2(n) = τ∗(n). Also,

g(n) < 0 means τ∗(n) 6= τ1(n) and thus τ∗(n) = τ2(n). We will first look at n ∈

(mc
v ,

m
2 ] and then n ∈ (m2 , m

(
1− c

v

)
] (v > 2c guarantees that mc

v < m
2 < m

(
1− c

v

)
).

Consider n ∈ (mc
v ,

m
2 ]. Note that g(mc

v ) = E[min
{
D,F−1(v−2c

v )
}

] − F−1(v−2c
v ) < 0

and we now show that g(m2 ) > 0. Let r = v
c and we know that r > 2. Define g̃(r) =

g(m2 ) = v
2c E[min

{
D,F−1

(
1− 2c

v

)}
] − F−1

(
1− 2c

v

)
= r

2 E[min
{
D,F−1

(
1− 2

r

)}
] −

F−1
(
1− 2

r

)
. When r = 2, g̃(2) = 0. For r ≥ 2, g̃(r) increases in r as g̃′(r) =

1
2 E[min

{
D,F−1

(
1− 2

r

)}
] + r

2

[
1− FF−1

(
1− 2

r

)]
d
drF

−1
(
1− 2

r

)
− d

drF
−1
(
1− 2

r

)
=

1
2 E[min

{
D,F−1

(
1− 2

r

)}
] > 0 for r ≥ 2. Therefore, g(m2 ) = g̃(r) > 0 for all r > 2.
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Next note that

g′(n) =
τ1(n)

c
+
v n

cm
(1− FF−1

(
1− cm

(m− n)v

)
)
d

dn
F−1

(
1− cm

(m− n)v

)
]

− d

dn
F−1

(
1− cm

(m− n)v

)
=

v

cm
E

[
min

{
D,F−1

(
1− cm

(m− n)v

)}]
+

2n−m
m− n

d

dn
F−1

(
1− cm

(m− n)v

)
.(A.46)

Since d
dnF

−1
(

1− cm
(m−n)v

)
< 0, when n ≤ m

2 , g′(n) > 0. Therefore, there must ex-

ist a unique n̂ ∈ (mc
v ,

m
2 ) such that g(n̂) = 0. This means that τ∗(n) = τ2(n) for

n ∈ (mc
v , n̂), τ∗(n) = τ1(n) for n ∈ (n̂, m2 ], and τ∗(n) = τ1(n) = τ2(n) when n = n̂.

For n ∈ (m2 , m
(
1− c

v

)
], we have g(m

(
1− c

v

)
) = v−c

c E[min
{
D,F−1(0)

}
] − F−1(0) =

0 and g′(m
(
1− c

v

)
) = 0 + 2n−m

m−n
d
dnF

−1
(

1− cm
(m−n)v

)
< 0 by (A.46). Since we have

shown that g(m2 ) > 0, there must be either zero or more than one n̂ ∈ (m2 , m
(
1− c

v

)
)

such that g(n̂) = 0. To rule out multiple zeros in the range of n ∈ (m2 , m
(
1− c

v

)
], a

sufficient condition is that g′′(n) < 0 for n ∈ (m2 , m
(
1− c

v

)
]. We can find g′′(n) from

(A.46) and, after some algebra, simplify it as

g′′(n) = − cm

f(F−1(y))(m− n)4v

[
3n+

(2n−m)cm

(m− n)v
· f ′(F−1(y)

(f(F−1(y))2

]
, (A.47)

where y = 1− cm
(m−n)v .

Last, we find a sufficient condition for g′′(n) < 0 for n ∈ (m2 , m
(
1− c

v

)
] or equivalently

y ∈ [0, 1 − 2c
v ). By (A.47), to make g′′(n) < 0, it suffices to have 3n + (2n−m)cm

(m−n)v ·
f ′(F−1(y)

(f(F−1(y))2
> 0, or

f ′(F−1(y)

(f(F−1(y))2
> − 3n(m− n)v

(2n−m)cm
. (A.48)

Let n
m = k. Then k = 1− c

(1−y)v and we look at k ∈ (1
2 , 1− c

v ]. Then, the right hand

side of (A.48) is equal to −3v
c · k ·

1−k
2k−1 . Therefore, under our assumption, (A.48)

holds.
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Proof of Proposition A.3

By Proposition A.2, we know that there exists a unique n̂ ∈ (mc
v ,

m
2 ) such that the following

holds:

• v n̂
cm E[min

{
D,F−1(1− cm

(m−n̂)v )
}

] = F−1(1− cm
(m−n̂)v );

• F−1(1− cm
(m−n̂)v ) = τ∗(n̂)n̂

c .

We will first show that this n̂ is a local maximum point. Differentiating the objective

function (A.31) with respect to n, we have

dΠ

dn
=
dτ∗(n)

dn
· n+ τ∗(n) − c

dQ∗(n)

dn
+ (m− n)

dE[τeq(n)]

dn
− E[τeq(n)]. (A.49)

By part (i), we know that τ∗(n) = E[τeq(n)] and consequently simplify (A.49) as

dΠ

dn
= n

dτ∗(n)

dn
− c

dQ∗(n)

dn
+ (m− n)

dE[τeq(n)]

dn

= n
dτ∗(n)

dn
− c

dQ∗(n)

dn
+ (m− n)

v

m
(1− F (Q∗(n)))

dQ∗(n)

dn

= n
dτ∗(n)

dn
+ [(m− n)

v

m
(1− F (Q∗(n)))− c]dQ

∗(n)

dn
. (A.50)

Let’s now evaluate dΠ
dn at n = n̂. We know that τ∗(n̂) = v

m E[min
{
D,F−1(1− cm

(m−n̂)v )
}

]

and Q∗(n̂) = Q∗(τ∗(n̂), n̂) = min
{
F−1(1− cm

(m−n̂)v ), τ
∗(n̂) n̂
c

}
= F−1(1− cm

(m−n̂)v ). Therefore,

(m− n̂) vm(1− F (Q∗(n̂)))− c vanishes. Hence,

dΠ

dn

∣∣∣∣
n=n̂

= n̂
dτ∗(n)

dn

∣∣∣∣
n=n̂

+ 0

=
v n̂

m
(1− F (Q∗(n̂)))

dQ∗(n)

dn

∣∣∣∣
n=n̂

=
c n̂

m− n̂
dQ∗(n)

dn

∣∣∣∣
n=n̂

(A.51)

Q∗(n) is not differentiable at n = n̂ and thus dQ∗(n)
dn

∣∣
n=n̂

does not exist. However, we’ve

shown in the proof of Lemma 2.3 part iii) that given τ∗(n̂), dQ∗(τ∗(n̂),n)
dn

∣∣
n<n̂

> 0 and
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dQ∗(τ∗(n̂),n)
dn

∣∣
n>n̂

< 0. Therefore we know that lim
n→n̂−

dΠ
dn > 0 and lim

n→n̂+

dΠ
dn < 0, suggesting

that n̂ maximizes profit locally.

Last, we will show that n̂ is the global maximum point by showing that (A.50) is negative

for n ∈ (n̂,m
(
1− c

v

)
] and positive for [mc

v , n̂).

For n ∈ (n̂,m
(
1− c

v

)
], we have F−1(1 − cm

(m−n)v ) < τ∗(n)n
c , Q∗(n) = F−1(1 − cm

(m−n)v ) so

(m− n) vm(1− F (Q∗(n)))− c = 0. Since dτ∗(n)
dn = v

m
d
dnE[min

{
D,F−1

(
1− cm

(m−n)v

)}
] < 0,

(A.50) is negative.

Now for n ∈ (mc
v , n̂), we have F−1(1− cm

(m−n)v ) > τ∗(n)n
c and Q∗(n) = τ∗(n)n

c .

dΠ

dn

∣∣∣∣
mc
v
<n<n̂

= n
dτ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

+
[
(m− n)

v

m
(1− F (Q∗(n)))− c

] dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

=
n v

m
[1− F (Q∗(n̂))]

dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

+
[
(m− n)

v

m
(1− F (Q∗(n)))− c

] dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

=
[
(m− n+ n)

v

m
(1− F (Q∗(n)))− c

] dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

= [v [1− F (Q∗(n))]− c] dQ
∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

(A.52)

Note that

v [1− F (Q∗(n))]− c = v [1− F (
τ∗(n)n

c
)]− c

> v [(1− F (F−1(1− cm

(m− n)v
))]− c

=
cm

m− n
− c

> 0. (A.53)

and dQ∗(n)
dn

∣∣
mc
v
<n<n̂

= τ∗(n)
c + n

c
dτ∗(n)
dn

∣∣
mc
v
<n<n̂

. Therefore, to show that (A.52) is positive,

it suffices to show dτ∗(n)
dn

∣∣
mc
v
<n<n̂

> 0. By Proposition A.2, when mc
v < n < n̂, dτ∗(n)

dn =
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v
m(1− F ( τ

∗(n)n
c ))

[
τ∗(n)
c + n

c
dτ∗(n)
dn

]
. Rearranging, we have

dτ∗(n)

dn
= −

v
m(1− F ( τ

∗(n)n
c )) τ

∗(n)
c

v
m(1− F ( τ

∗(n)n
c ))nc − 1

(A.54)

The denominator of (A.54) is equal to φ′(τ∗(n)) where φ is defined in the proof of Propo-

sition A.2 and we’ve shown that φ′(τ∗(n)) < 0. Therefore, (A.54) is positive and this

completes the proof.

Proof of Proposition A.4

The case where s0(τ) does not exist is trivial. Suppose that s0(τ) exists. When n > s0(τ), by

Lemma 2.3 part iii), we know that s∗(τ, n) = s0(τ) under sequential arrival. Now consider

the case n ≤ s0(τ). We show in the proof of Lemma 2.3 part iii) that u(0) < 0 and u(s)

is continuous and crosses zero at most once for s ∈ [0, s0(τ)). Therefore, if u(n) < 0, then

u(s) < 0 for all s ∈ [0, n]. This means that no s ≤ min {s0(τ), n} satisfies the participation

constraint and hence s∗ = 0. On the other hand, if u(n) ≥ 0, then s = n satisfies the

participation constraint.

To see why (A.35) is a sufficient condition for s∗ speculators, let’s first consider the s∗ − th

speculator that arrives after s∗ − 1 other speculators have bought a token each. She knows

that if she buys a token, then she will be the last person to do so — either because there

is no extra token for sale (s∗ = n) or buying tokens after her is no longer attractive (s∗ =

m
(
1− c

v

)
). Therefore, (A.35) guarantees non-negative utility for her. Next, the (s∗−1)−th

speculator knows that even if u(s∗ − 1) < 0, buying a token now would induce the s∗ − th

speculator to buy a token later, eventually resulting in non-negative rewards. By induction,

we see that it is always optimal to buy a token for prior speculators.

Proof of Corollary A.5

Substituting the expression of τ∗ in Proposition 2.5 part c) into part a), we see that n∗
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and τ∗(n∗) satisfy n∗

c τ
∗(n∗) = F−1(1 − cm

(m−n∗)v ). Therefore, given τ∗(n∗), we know that

n∗ = ŝ(τ∗(n∗)) where ŝ(τ) is the unique maximum point of u(τ, s) as defined in the proof

of Lemma 2.3 part iii). Additionally, since u(τ∗(n∗), n∗) = 0, we know that n∗ is the only

value of s such that u(τ∗(n∗), s) = 0. Therefore, by definition of s0, the result follows.

Proof of Proposition 2.7

Let Πe denote the expected final wealth of the firm that issues equity tokens. Ignoring the

budget constraint for the moment and taking derivative of Πe with respect to Q, by (2.6),

dΠe

dQ
= v [1− F (Q)]− c− s

m

d

dQ
E[vmin {Q,D} − cQ]+

= v [1− F (Q)]− c− s

m

d

dQ

[
(v − c)Q [1− F (Q)] +

∫ Q

c
v
Q

(v x− cQ)f(x)dx

]
= v [1− F (Q)]− c− s

m

[
v [1− F (Q)]− c+ c F

( c
v
Q
)]

=
m− s
m

[v [1− F (Q)]− c] − s c

m
F
( c
v
Q
)
. (A.55)

By (A.55), for s ∈ (0,m), dΠe
dQ

∣∣
Q=0

= m−s
m (v−c)−0 > 0 and d2Πe

dQ2

∣∣
Q>0

= m−s
m [−f(Q)v]− s c

m ·
c
v f
(
c
vQ
)
< 0. Therefore, there exists a unique unconstrained optimal production quantity,

denoted by Q∗u(s), such that dΠe
dQ

∣∣
Q=Q∗u(s)

= 0, i.e.,

m− s
m

[v [1− F (Q∗u(s))]− c] =
s c

m
F
( c
v
Q∗u(s)

)
. (A.56)

Next, we show that dQ∗u(s)
ds < 0. Differentiating (A.56) with respect to s, we get

−(v−c)+v F (Q∗u(s))−c F
( c
v
Q∗u(s)

)
=
[
(m− s)v f(Q∗u(s)) + s c f

( c
v
Q∗u(s)

)
· c
v

] dQ∗u(s)

ds
.

(A.57)

By (A.56), the left-hand side of (A.57) equals −m
s [v (1− F (Q∗u(s)))− c, which is negative.

Since the coefficient of dQ∗u(s)
ds on the right-hand side of (A.57) is positive, dQ∗u(s)

ds must be

negative.
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Proof of Proposition 2.8

i) To make the ICO successful, the firm needs to set a (τe, ne) pair such that a positive

number of speculators participate in the ICO, i.e., s(τe, ne) > 0, which requires the

participation constraint.

We first evaluate the behavior of ∆(s(τe, ne)). Now, ∆(s(τe, ne))

= 1
mE[vmin {Q∗e(s(τe, ne)), D} − cQ∗e(s(τe, ne))]+ − τe. For a fixed τe,

d∆(s)

ds
=

1

m

∂

∂Q∗e(s)
E[vmin {Q∗e(s), D} − cQ∗e(s)]+

dQ∗e(s)

ds

=
1

m

{
v [1− F (Q∗e(s))]− c+ c F

( c
v
Q∗e(s)

)} dQ∗e(s)

ds
. (A.58)

Following similar arguments as in Lemma 2.3 (iii) and the regularity assumption that

f(x) < a2 ·f(ax) for a > 2, we can show that v [1−F (Q∗e(s))] − c + c F
(
c
vQ
∗
e(s)

)
> 0

for all s. This, given that dQ∗u(s)
ds < 0, means that there exists a unique ŝ(τe) that

satisfies Q∗u(s) = τe ŝ(τe)
c and ŝ maximizes ∆(s).

Next, following the argument in Proposition 2.4 (i), we have

du(s∗(τe, ne))

dτe

∣∣∣∣
τe∈T2

=
d

dτe

[ne
z

∆(ne)
]

=
ne
z

[
1

m

d

dτe
E[vmin {Q∗e(ne), D} − cQ∗e(ne)]+ − 1

]
=

ne
z

[
1

m

∂

∂Q∗e
E[vmin {Q∗e(ne), D} − cQ∗e(ne)]+

dQ∗e
dτe
− 1

]
=

ne
z

[
1

m

{
v [1− F (Q∗e(ne))]− c+ c F

( c
v
Q∗e(ne)

)} dQ∗e
dτe
− 1

]
. (A.59)

Again, the firm needs du(s∗(τe,ne))
dτe

∣∣
τe=0

= ne
z

[
1
m {v − c+ 0} ne

c − 1
]
> 0, i.e., ne >

c
v−c m.

ii) Since we need ne < m, by part (i), we must have 1 > c
v−c , i.e., v > 2c.

139



Proof of Proposition 2.9

For a fixed ne,
dΠe
dτe

= ∂Πe
∂τe

+ ∂Πe
∂Q∗e

dQ∗e
dτe

= ne + ∂Πe
∂Q∗e

dQ∗e
dτe

. Note that ∂Πe
∂Q∗e

> 0 because Q∗e ≤ Q∗u,

and dQ∗e
dτe

= ne
c or 0. Therefore, we know that dΠe

dτe
> 0. Given that τ∗e must satisfy the

participation constraint, we have u(s∗(τ∗e (ne))) = 0. By (A.59), we know that such τ∗e is

finite. Lastly, since u(s∗(τe, ne) is linear in τe, τ
∗
e (ne) must be unique.

Proof of Proposition 2.10

Differentiate (2.8) with respect to Q,

dΠ

dQ
= [(m− s) α v

m
− c ] − α (m− s) v

m
F (Q) (A.60)

By (A.60), dΠ
dQ < 0 when α(m− s) v

m − c < 0, i.e., s > m(1− c
α v ). On the other hand, when

s ≤ m(1− c
α v ), ignoring the budget constraint and setting dΠ

dQ = 0, we get Q∗unconstrained(s) =

F−1(1− cm
α(m−s)v ). Since d2Π

dQ2 = −α (m− s) v
mf(Q) < 0, the profit function is concave in Q

and Q∗unconstrained is a maximum. Hence the firm’s optimal production quantity is given by

Q∗(s) = min

{
F−1(1− cm

α (m− s)v
),
τ s

c

}
· 1{s≤m(1− c

α v
)}. (A.61)

Proof of Proposition 2.11

i) We substitute the new definition of the market equilibrium token price, τeq = α ·
v
m min {Q,D}, into (2.1), and then follow similar arguments in the proofs of Lemma

2.3(iii) and Proposition 2.4.
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Applying (A.61), we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ

[n
z

∆(n)
]

=
n

z

[α v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

α (m−n)v )} − 1
]
.(A.62)

By the analysis of T1 and (A.62), for τ > c
nF
−1(1− cm

α(m−n)v ), the speculators’ profit

would either remain the same (if τ ∈ T1) or keep decreasing in τ (if τ ∈ T2) as

du(s∗(τ,n))
dτ |τ∈T2 = −n

z < 0. For τ ≤ c
nF
−1(1 − cm

α(m−n)v ), u(s∗(τ, n)) is either zero

(if τ ∈ T1) or keeps decreasing in τ (if τ ∈ T2) as (1 − F ( τ nc ) decreases in τ .

Hence, to guarantee a positive number of speculators and thus non-negative profit,

it is necessary and sufficient for the platform to set n such that du(s∗(τ,n))
dτ

∣∣
τ=0

=

n
z

[
αv
m (1− F (0·n

c )) nc − 1
]
> 0, i.e., n > mc

αv . In this case, ∃τ > 0 s.t. u(s∗(τ, n)) > 0.

Note that by definition of s0(τ), it must be that s∗(τ, n) < s0(τ) and thus n < s0(τ),

which means that this τ is indeed in T2.

ii) By Part (i), s∗ ≥ mc
αv . On the other hand, we showed in §2.5.1 that s∗ < m(1− c

α v ).

Therefore, the ICO fails if m(1− c
α v ) ≤ mc

αv , i.e., v ≤ 2c
α .

Proof of Proposition 2.12

i) We substitute the new definition of the expected profit given by (2.9) into (2.1), and

then follow similar arguments in the proofs of Lemma 2.3(iii) and Proposition 2.4.

Applying (A.37), we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ

[n
z

∆(n)
]

=
n

z

[ v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )} − (1 + k)
]
.(A.63)

By the analysis of T1 and (A.63), for τ > c
nF
−1(1 − cm

(m−n)v ), the speculators’ profit

would either remain the same (if τ ∈ T1) or keep decreasing in τ (if τ ∈ T2) as
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du(s∗(τ,n))
dτ |τ∈T2 = −n

z (1 + k) < 0. For τ ≤ c
nF
−1(1 − cm

(m−n)v ), u(s∗(τ, n)) is either

zero (if τ ∈ T1) or keeps decreasing in τ (if τ ∈ T2) as (1 − F ( τ nc ) decreases in τ .

Hence, to guarantee a positive number of speculators and thus non-negative profit,

it is necessary and sufficient for the platform to set n such that du(s∗(τ,n))
dτ

∣∣
τ=0

=

n
z

[
v
m (1− F (0·n

c )) nc − (1 + k)
]
> 0, i.e., n > mc

v (1 + k). In this case, ∃τ > 0 s.t.

u(s∗(τ, n)) > 0. Note that by definition of s0(τ), it must be that s∗(τ, n) < s0(τ) and

thus n < s0(τ), which means that this τ is indeed in T2.

ii) By Part (i), s∗ ≥ mc
v (1 + k). On the other hand, we showed in §2.5.2 that s∗ <

m
(
1− c

v

)
. Therefore, the ICO fails if m

(
1− c

v

)
≤ mc

v (1 + k), i.e., v ≤ (2 + k)c.

Proof of Proposition 2.13

Since the firm’s objective function remains unchanged by adding the outside option, the

proof of this proposition resembles that of Proposition A.2 (i).

A.3. Uncapped ICO

A.3.1. Proofs

Proof of Proposition 3.1

i) First note that in period t with service level st, the market-clearing dollar-denominated

price the customers pay is p(st) = x · τeq(t, st), where x denotes the token-denominated

price of service. Suppose x > mt/st, then the demand of tokens x · st exceeds the supply of

tokens, mt. This will drive the price of the token up, resulting in a decrease in the token-

denominated price. In other words, τ(t, st) will increase and x will decrease. Similarly,

if x < mt/st, then the demand of tokens is less than the supply of tokens, which induces

an increase in x. Therefore, in equilibrium, demand of tokens is equal to its supply, i.e.,

x · st = mt.

ii) The result follows immediately from τ(t, st) = p(st)/x and Part (i).
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Proof of Proposition 3.2

By Lemma 3.1, we can rewrite (3.3) as φ(st) = p(st+1) st+1

st
−c. We see that given any future

service level st+1 > 0, service provider’s profit decreases in the current service level, i.e.,

dφ(st)
dst

< 0. Since service providers join the market as long as their profit is non-negative,

s∗t = min{max{s ≥ 0 s.t. φ(s) = 0},M}, which simplifies to s∗t = min{p(st+1) st+1

c ,M}.

Proof of Proposition 3.3

A steady-state service level means s∗ss = st+1 = st for all t. Consider some st+1 > 0.

By Lemma 3.2, if st+1 < M , then the steady-state service level must make p(s∗ss) = c,

which means φ(s∗ss) = 0 by (3.4); if st+1 = M , then s∗ss = M , and we will show that

φ(s∗ss) = φ(M) > 0.

Let’s first consider the case where st+1 ∈ (0,M ]. Let y(st+1) = c − p(st+1). By (3.1), we

have

y(st+1) = c−
(
ks2

t+1 −
st+1

M
+ 1
)

= −ks2
t+1 +

st+1

M
− (1− c). (A.64)

After simple algebra, we know that if k ≤ 1
4M2(1−c) , then y(st+1) = 0 at st+1 =

1±
√

1−4kM2(1−c)
2kM ;

if k > 1
4M2(1−c) , then y(st+1) < 0 for all st+1 ∈ (0,M ].

Suppose k ≤ 1
4M2(1−c) and let s1 =

1−
√

1−4kM2(1−c)
2kM and s2 =

1+
√

1−4kM2(1−c)
2kM . We now

compare s1 and s2 with M to see if these zeros of y(·) are in the feasible range of service

levels. It is easy to see that if s1 ≤M , then k ≤ c
M2 . That is to say, k ≤ c

M2 is a necessary

condition for s1 ≤ M . Note that 1
4(1−c) ≥ c for all c, so k ≤ c

M2 is more stringent than

k ≤ 1
4(1−c) . Similarly, a necessary condition for s1 ≤ M is 1

4M2(1−c) ≥ k ≥ c
M2 . However,

these necessary conditions may not be sufficient conditions. We next discuss feasibility of

s1 and s2 under these conditions.

1. k < c
M2 (≤ 1

4M2(1−c)). The necessary condition for s2 ≤ M is violated, so s2 > M .

Now, s1 =
1−
√

1−4kM2(1−c)
2kM <

1−
√

1−4kM2(1−kM2))

2kM = 1−|2kM2−1|
2kM .

• When c ≤ 1
2 , we have kM2 < c ≤ 1

2 , so s1 <
1−|2kM2−1|

2kM = M .
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• When kM2 ≤ 1
2 < c, we have s1 <

1−|2kM2−1|
2kM = M .

• When 1
2 < kM2 < c, we have s1 <

1−|2kM2−1|
2kM = 1−(2kM2−1)

2kM < 1−(1−2kM2)
2kM = M .

Therefore, s∗ss = s1 < M and is thus feasible.

2. k = c
M2 (≤ 1

4M2(1−c)). s1,2 =
1±
√

1−4kM2(1−c)
2kM =

1±
√

1−4kM2(1−kM2))

2kM = 1±|2kM2−1|
2kM .

• When c < 1
2 , we have s1 = 1−|2kM2−1|

2kM = 1−(1−2kM2)
2kM = M . s2 > s1 = M .

• When c = 1
2 , we have s1,2 = 1±|2kM2−1|

2kM = 1
2kM = M .

• When c > 1
2 , we have s1 = 1−|2kM2−1|

2kM = 1−(2kM2−1)
2kM < 1−(1−2kM2)

2kM = M , while

s2 = 1+|2kM2−1|
2kM = 1−(2kM2−1)

2kM = M . In this case, since service providers stop

joining until any higher service level leads to negative profit, the steady-state

service level is s2 = M .

Therefore, in this case s∗ss = M .

3. c
M2 < k ≤ 1

4M2(1−c) . The necessary condition for s1 ≤ M is violated, so s1 > M .

since s2 > s1, we have s2 > M as well. Neither s1 and s2 is feasible.

4. k > 1
4M2(1−c) . Neither s1 and s2 is feasible.

Finally, it is easy to see that y(st+1) < 0 for all st+1 ∈ (0,M ] for k > c
M2 , meaning that for

any st+1 ∈ (0,M), the optimal service level in period t is greater than st+1 by (3.4). M ,

however, is a steady-state service level because s∗t (M) = M by Lemma 3.2. Under s∗ss = M ,

miner’s profit would always be positive (φ(s∗ss) = −y(s∗ss) > 0).
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