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ABSTRACT

AFFORDANCES AND CONTROL OF A SPINE MORPHOLOGY FOR ROBOTIC

QUADRUPEDAL LOCOMOTION

Jeffrey Duperret

Daniel E. Koditschek

How does a robot’s body affect what it can do? This thesis explores the question with

respect to a body morphology common to biology but rare in contemporary robotics: the

presence of a bendable back. In this document, we introduce the Canid and Inu quadrupedal

robots designed to test hypotheses related to the presence of a robotic sagittal-plane bending

back (which we refer to as a “spine morphology”). The thesis then describes and quanti-

fies several advantages afforded by this morphological design choice that can be evaluated

against its added weight and complexity, and proposes control strategies to both deal with

the increase in degrees-of-freedom from the spine morphology and to leverage an increase

in agility to reactively navigate irregular terrain. Specifically, we show using the metric of

“specific agility” that a spine can provides a reservoir of elastic energy storage that can be

rapidly converted to kinetic energy, that a spine can augment the effective workspace of

the legs without diminishing their force generation capability, and that – in cases of direct-

drive or nearly direct-drive leg actuation – the spine motors can contribute more work in

stance than the same actuator weight used in the legs, but can do so without diminishing

the platform’s proprioceptive capabilities. To put to use the agility provided by a suitably

designed robotic platform, we introduce a formalism to approximate a set of transitional

navigational tasks over irregular terrain such as leaping over a gap that lend itself to doubly

reactive control synthesis. We also directly address the increased complexity introduced by

the spine joint with a modular compositional control framework with nice stability proper-

ties that begins to offer insight into the role of spines for steady-state running. A central

theme to both the reactive navigation and the modular control frameworks is that analytical

tractability is achieved by approximating the modes driving the environmental interactions

with constant-acceleration dynamics.

iv



Contents

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 : Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions and organization . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 : Overview of the Canid and Inu research platforms . . . . . . . . . . 13

2.1 Canid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Inu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CHAPTER 3 : Spines and transitional behaviors . . . . . . . . . . . . . . . . . . . 21

3.1 Specific agility and spine elastic energy storage . . . . . . . . . . . . . . . . 21

3.2 Volumetric workspace augmentation . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Proximal vs distal work production with direct-drive legs . . . . . . . . . . 36

3.4 Doubly-reactive planning of short time-horizon transitional maneuvers . . . 39

3.5 Appendix to Chapter 3: Energy and Power Density for Legged EM Actuators 58

CHAPTER 4 : Bounding with a locked back . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Hybrid periodic orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Empirical Demonstration of Controller . . . . . . . . . . . . . . . . . . . . . 107

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.8 Appendix to Chapter 4: Controller Stability Lemmas . . . . . . . . . . . . . 117

4.9 Appendix to Chapter 4: Control gain selection procedure . . . . . . . . . . 122

4.10 Appendix to Chapter 4: Fixed point calculations . . . . . . . . . . . . . . . 123

4.11 Appendix to Chapter 4: Proof of Lemma 1 . . . . . . . . . . . . . . . . . . 133

4.12 Appendix to Chapter 4: Proof of Lemma 2 . . . . . . . . . . . . . . . . . . 136

4.13 Appendix to Chapter 4: Proof of Lemma 3 . . . . . . . . . . . . . . . . . . 141

CHAPTER 5 : Running with an unlocked back . . . . . . . . . . . . . . . . . . . . 148

5.1 Sagittal-plane reduced-order model of a spined quadruped . . . . . . . . . . 148

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4 Beginnings of formal analytical results for spined running . . . . . . . . . . 159

CHAPTER 6 : Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.1 Contributions summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

vi



List of Tables

1 Metrics comparing the Canid and Inu robots . . . . . . . . . . . . . . . . . 20

2 Table of terms, part I used in the locked-back steady-state analysis . . . . . 65

3 Table of terms, part II used in the locked-back steady-state analysis . . . . 66

4 Minimum and maximum state values along locked-back bounding orbit . . . 89

5 Parameter values used in locked-back bounding experiments . . . . . . . . . 109

vii



List of Figures

1 The Canid robot along with its predecessor XRL . . . . . . . . . . . . . . . 14

2 Energetic characterization of a spine leaf spring on Canid . . . . . . . . . . 15

3 Canid’s fourbar leg mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Inu robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Annotated rendering of Inu’s spine mechanism . . . . . . . . . . . . . . . . 18

6 The specific agility of forward leaping on Canid and XRL . . . . . . . . . . 26

7 Canid leaping ability across different spine stiffnesses . . . . . . . . . . . . . 28

8 Simplified model of sagittal spine workspace augmentation . . . . . . . . . . 31

9 The different Inu leg lengths used in perching experiments . . . . . . . . . . 32

10 Leg force-generation versus workspace-volume kinematic trade-off . . . . . . 33

11 Experimental results of Inu leaping from an isolated perch . . . . . . . . . . 34

12 Experiments comparing Inu’s spine and leg motor-work contribution . . . . 37

13 Reactive navigation controller overview . . . . . . . . . . . . . . . . . . . . 40

14 Reactive navigation problem setup . . . . . . . . . . . . . . . . . . . . . . . 48

15 Hopper and boom used in reactive control experiments . . . . . . . . . . . . 52

16 Linear-dynamics anchoring results at slow speed on hopper . . . . . . . . . 53

17 Linear-dynamics anchoring results at higher speed on hopper . . . . . . . . 54

18 Reactive navigation experimental results . . . . . . . . . . . . . . . . . . . . 55

19 Simplified model of sagittal quadrupedal bounding . . . . . . . . . . . . . . 68

20 Hybrid dynamical system representing simplified quadrupedal bounding . . 70

21 Decoupled hybrid dynamics of quadrupedal bounding . . . . . . . . . . . . 82

viii



22 Traces of a locked-back bounding hybrid periodic orbit . . . . . . . . . . . . 91

23 Numerical slices of bounding controller basin of attraction . . . . . . . . . . 105

24 Parametric robustness of bounding controller 1 . . . . . . . . . . . . . . . . 106

25 Parametric robustness of bounding controller 2 . . . . . . . . . . . . . . . . 108

26 Experimental results of in-place locked-back bounding controller . . . . . . 111

27 Experimental results of full locked-back bounding controller . . . . . . . . . 112

28 Empirical leg position traces illustrating kinematic speed limit . . . . . . . 113

29 Simplified model of a sagittal-plane spine morphology . . . . . . . . . . . . 150

30 Inu bounding with spine: experimental trajectories . . . . . . . . . . . . . . 153

31 Inu bounding with spine: experimental orbit projections . . . . . . . . . . . 154

32 Inu transitioning to spined bound: experimental trajectories . . . . . . . . . 156

33 Inu transitioning to spined bound: experimental orbit projections . . . . . . 157

34 Correspondence between Inu’s spined bound transition and simulated model 158

ix



CHAPTER 1

Introduction

Legged robots capable of rapid, efficient performance in any way comparable to that of

their biological counterparts – especially over uneven, broken, or unstable terrain that is

inaccessible to wheeled or tracked vehicles – would radically benefit applications ranging

from search-and-rescue operations to the transportation of goods and services. Yet decades

of work on legged platforms [228] has thus far largely yielded designs that attach legs to

single rigid-bodies, despite the abundance of morphological diversity in biology such as tails

and spines that contribute to locomotion prowess. In particular, locomotion using a flexible

trunk is poorly understood in robotics despite its fundamental role in biological legged

locomotion [87]. Throughout this thesis we use “trunk”, “core”, and “spine” equivalently

to refer to actuated degrees of freedom that connect the front and rear legs; actuated

degrees of freedom that are proximal to (rather than distal from) the mass center. A

better understanding of robotic core actuation – particularly for quadrupedal running and

transitional maneuvers where core actuation is commonly used in biology – is needed to

quantify its advantages and disadvantages for designers.

1.1. Contributions and organization

The remainder of Chapter 1 outlines the contributions and organization of the thesis and

provides relevant background information, specifically on the role of spines for locomotion

and an introduction to modeling legged locomotion for the purposes of control.

Chapter 2 presents an overview of the Canid and Inu research platforms which form the ex-

perimental foundation of the subsequent chapters. Both are quadrupedal robots equipped

with a parallel elastic-actuated spine that bends in the sagittal plane. To the best of

the authors’ knowledge, they remain (at the time of writing) the only power-autonomous

1



sagittal-bending spined quadrupeds that have been documented in the academic litera-

ture performing dynamic locomotion tasks. Canid (Chapter 2.1) – created from the RHex

robot [103] and containing identical motors and electronics to it – provides a platform for

morphological comparison with its predecessor. We describe lessons learned using this ma-

chine that motivated the creation of the Inu platform (Chapter 2.2), which has a similar

spine mechanism to Canid but adds a degree of freedom to each leg.

Chapter 3 discusses the role of a spine morphology for achieving agile transitional (non-

steady-state) maneuvers. The metric of specific agility is introduced (Chapter 3.1), and is

used to quantify three affordances provided by a spine morphology for transitional behaviors:

the ability to rapidly convert stored elastic energy to kinetic energy (Chapter 3.1), the

ability to augment the leg’s volumetric workspace without diminishing their force generation

capabilities (Chapter 3.2), and – when using direct-drive legs – the ability to generate more

work in stance than could be done using the same actuator weight instead in the legs, making

it more than worth its added weight in terms of work production all without diminishing

the platforms proprioceptive capabilities (Chapter 3.3). We then consider how one might

apply a suitably designed agile platform for transitional maneuvers, a concept still poorly

understood in the field. We introduce a formalism to approximate a set of transitional

navigation tasks over irregular terrain, such as gap leaping, involving constant-acceleration

interactions with the environment that lends itself to doubly reactive control synthesis along

with a natural and intuitive Lyapunov function (Chapter 3.4).

Chapter 4 provides analytical insight into sagittal-plane bounding with a locked back, the

beginnings of a formalism we believe can be applied to bounding with an unlocked spine

(we leverage the locked-back analysis for insight into spined running in Chapter 5.4). This

formalism is modular and – like in Chapter 3.4 – utilizes constant-acceleration dynamics

that drive environmental interaction to obtain analytical tractability. A hybrid dynamical

systems model of locked-back sagittal bounding is introduced (Chapter 4.2), followed by an

analysis of a hybrid periodic orbit (Chapter 4.3) and a discussion of its stability (Chapters

2



4.4, 4.8). The controller is then demonstrated on the Inu platform using a locked back

(Chapter 4.5).

Chapter 5 introduces the beginnings of steady-state running utilizing the spine. We intro-

duce a simplified model containing a spine joint (Chapter 5.1) and demonstrate a correspon-

dence between experimental data of Inu running with an unlocked spine – to our knowledge,

the first such documentation of power-autonomous spined bounding in the literature – with

a controlled simulation of the simplified model (Chapters 5.2 and 5.3). The relationship

between the experimental work bounding with a spine and the locked-back formal analysis

of Chapter 4 is then discussed (Chapter 5.4).

Chapter 6 provides concluding remarks, discusses possible future work, and considers the

implications of the contributions of this thesis.

1.2. Background

1.2.1. Morphological affordances

Morphology influences behavior and performance [7, 116] as it is a mechanism to take ad-

vantages of the complex relationship between a physical agent and its environment. By

morphology, we mean an agent’s structure [137] (its body), including any measurable as-

pects of its physiology [13]. This complex relationship between body, environment, and

performance is expressed by Gibson’s notion of an affordance [95]. “The affordances of the

environment are what it offers the animal, what it provides or furnishes...It implies the

complementarity of the animal and the environment.” [95, p. 127], or – more succinctly –

they are an opportunity for action [107, p. 290], [181, p. 1]. We are most familiar with

the usage of legs as a morphology to traverse our environment, however nature is full of

examples of creative ways of using body morphology to move [71]: different numbers of

legs [91], or the use of tails [145], fins, and wings to name a few [7]. Such benefits can be

energetic, related to stability, or many other performance metrics that influence fitness [7].

3



In biology, clever usage of body-environment interaction can offer enormous benefits, the

oft-used example of the albatross being one of the most impressive: soaring on the ocean’s

atmospheric shear layer close to the water’s surface reduces metabolic cost-of-transport so

much for these birds that – remarkably – flying is not the primary energy expenditure when

foraging over vast distances [17]. Well studied examples of affordance utilization include

geckos’ ability to leverage the quantum dynamics phenomenon of van der Waals forces in

their feet to exhibit impressive climbing ability [21,22], and cockroaches’ encoding of running

and obstacle navigation control into the mechanical aspects of their bodies [117,203].1

As robotic locomotion is likewise a synergy of morphology and environment, the literature

on animal morphological affordances contains some general principles useful to roboticists:

Natural physical dynamics must be contended with or leveraged – despite the fact they

are often complex and emergent [161], indeed as Marc Raibert (whose seminal work [175]

arguably launched the careful study of dynamical legged machines) has been quoted: the

central control authority “can only make ‘suggestions’ which are reconciled with the physics

of the system and the task” [51, p. 556]. Environments can constitute energy landscapes as

related to movement [200]. Computation (and even cognition itself [221] which is thought

by some to perhaps require “grounded” embodiment [24]) may be offloaded from an agent

to its body and environment [135], providing analog computation of sorts that can result

in “unexpected simplifications of the control problem” [52, p. 12812] and “opportunities

for neural control” [51, p. 553], for example affording “cheap and efficient tricks for gen-

erating situation-appropriate action on the fly” [221, p. 628].2 But robotic morphological

design is a difficult, largely unsolved problem, and one should be careful to apply the prin-

ciples underlying biomechanism success towards bioinspiration rather than descending into

1Cockroaches have been measured running fast enough through obstacle fields and perturbations that
the time it takes for a full brain-neural computation “loop” to be effected can be much longer than the
observed perturbation correction [178], and even “fast” reflexes can take half of a stance duration to begin
their effect [203].

2This may seem abstract to many readers and is worth clarifying with an example many are familiar
with: catching a ball. It’s been observed that baseball players run to the correct location on the field so as
to catch a ball not by doing calculus in their heads to estimate where the ball will land, but instead with
the simple rule of running such that the ball stays at the same spot in their field of view [157].
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blind biomimicry as: “the relationship between morphology and performance can be nonlin-

ear, context-dependent, and sometimes surprising...small changes in morphology or simple

changes in size can lead to novel functions, while in other cases changes in form can oc-

cur without performance consequence” [137, p. 501], and because biological and synthetic

materials are often vastly different.3

Legged morphologies are of particular interest to robot designers as they afford movement

over irregular, discontinuous terrain; they not beholden to the presence of infrastructure (as

typical to wheels) nor uncluttered open space (as typical to quad-rotors). The affordances

of robotic legs in various environments is a research field in its own right [181] and is

beginning to indicate complex and nuanced interactions;4 of particular interest to us is the

understanding that the properties of a legged robot’s body proximal to the mass-center –

meaning the morphology not including the (necessarily distal) legs or other appendages that

directly interact with the ground – appear to greatly influence environmental interaction.

For example, Karl Murphy famously observed that a quadrupedal robot will naturally

bound in a stable fashion with a mass distribution close (which he quantified) to the mass

center when the legs simply kick downwards in stance, providing a robust behavior without

necessitating subtle control [175, p. 193], a properties which also appears to have a biological

correspondence [168]. Legged robotics is still in its nascent beginnings – locomotion prowess

even approaching the albatross is clearly still science fiction – and we cannot ignore the

powerful principles demonstrated by morphological affordances in biology.

3For example: simplified models of muscle dynamics [106] resembling that of electromagnetic motor
actuation [19] hold only in tightly controlled conditions of a small regime of muscle operation [219], and the
“framing” costs of adding additional muscle to an agent appear vastly superior to that of adding additional
motors [197, 219]. Not to mention that animals use their muscles in a wide variety of roles beyond what is
traditionally considered “actuation” in robotics [71].

4An early result of this was the creation of passive dynamic walking machines [154]. These machines
convert gravitational energy into kinetic energy to walk down slight inclines without the use of motors [54],
and their study has led to robots able to walk ultra-marathons with only small reserve of onboard power [32].
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1.2.2. The role of spines for legged locomotion

Core actuation in biology

Muscular spine morphologies have a long evolutionary history in quadrupeds [128, 184],

as evolutionary evidence suggests that core actuation is the primordial engine of much of

terrestrial locomotion [189]. Animal tetrapods have a 400 million year history [174] of which

only very little was spent developing “emancipated” therian legs [86]. Instead, vertebrate

legs had a long prelude in which they appeared as struts and the body was primarily

actuated by strong, segmented, undulatory trunks responsible for propulsion as animals

emerged from the sea [87].

Animals today still derive locomotion prowess from their ancestral prime mover. It is gen-

erally accepted that many quadrupedal mammals obtain their highest locomotion speeds

through a bounding or galloping gait [111] during which spine bending is often observed

[93, 156]. For example, the cheetah – considered the fastest running mammal on earth –

and the greyhound, both with similar lean musculoskeletal structures, make extensive use

their spine during high speed running [30, 34, 104]. In these animals, the flexion excitation

of the spine systematically coordinated with the swing of the legs provide kinematic advan-

tages in increased stride length [105], flight leg-swing acceleration [93,104,156], and (when

accelerating at higher speeds [220]) power production [217].

The biological literature on sagittal5 core actuation offers many careful studies regarding

its low-level mechanics [12,47,82,85,88,92,101,102,126,172,186,188–191,217] (see [112] for

additional references) and its proposed role as a mechanical energy storage in gaits [4,6,33].

These suggest that the core can: directly contribute to propulsion and produce useful me-

chanical work both in running and leaping [112], increase mammalian leg retraction velocity,

increase running speed through an increase in stride length (in small therian mammals, the

5Transverse and horizontal-plane spine bending have been studied carefully in the literature (ex: [28,45,
179]), although such work is outside the scope of this thesis. There is also a large literature on the sagittal
role of spines in primate brachiation and upright postures that doesn’t fit in the thesis’ focus.
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spine has been observed contributing up to half of the stance length [85, 188, 191]), reduce

metabolic cost-of-transport up to half via elastic energy storage (primarily through strain

energy stored in back tendon, but the elasticity of vertebrae play a role as well [156]), reg-

ulate body stiffness [180], and reduce the vertical oscillation amplitude of the mass-center.

Spine morphologies appear in diverse ranges of stiffnesses and range of motion [101, 102].

They are hypothesized to have other roles perhaps not pertinent to contemporary robotics

such as allowing animals to curl up to allow for better heat retention (especially in smaller

mammals with larger surface-area to volume ratios) [101] and to drive oscillations in chest

cavity volume so as to assist with respiration (in the process phase-locking breathing and

stride frequency in quadrupeds) [41,42,225].

Core actuation in robotics

Probably the very first flexible-spined bounding robot was the boom-supported “Planar

Quadruped” developed in Raibert’s Leg Lab [142], which achieved speeds of up to ∼70

cm/s in a ∼90 cm long body powered by off-board hydraulic actuators. Subsequent research

has focused on the role of bioinspired gaits in flexibly spined legged platforms. For exam-

ple, ELIRO-II incorporates a two degree-of-freedom spine to promote study of salamander

walking gait control [134, 165]. Salamander locomotion has also inspired the development

of central pattern generators (CPGs) and reflex controllers for multi-locomotor gaits such

as swimming, crawling, and walking [11,43,115], as well as purely leg-driven flexible spined

gaits [205]. Other more mammalian bioinspiration for quadrupedal robots with articulated

spinal mechanical joints include GEO-II [143, 144] and BISAM [29], used to develop and

explore CPG controllers. The pneumatically actuated robots [209, 226] were used for gait

studies, and [129] was an interesting purely passive, gravity drive spined quadruped that

bounded downhill. In contrast to our focus on robot energetics in this work, none of these

rigid-link spinal-joint mechanisms are designed for operation in regimes of high kinetic en-

ergy: aside from the purely passive [129] they do not incorporate mechanisms for recycling

energy absorbed into the articulated trunk from locomotive contact with the environment,
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and appear limited to operation in a quasi-static regime.

After decades of work on higher-energy rigid-body legged platforms [228], robotics re-

searchers have begun to demonstrate [1] and document [49, 89] designs for spine-actuated

quadrupedal runners intended for locomotion at faster speeds. Experimental results have

suggested increased running speed [133] using off-board power and gait transition stabil-

ity [209], however power-autonomous empirical results are notably absent in the literature

and even some mechanical designs seem to be accompanied only by simulation data [89].

Dynamical machines using spines in the horizontal and transverse planes exist [187], but as

far as the author is aware, there have not been any instances of empirical power-autonomous

dynamic locomotion utilizing a sagittal-plane bending spine with the notable exception of

Boston Dynamics’ Wildcat: a hydraulically actuated quadrupedal robot – utilizing a com-

bustion engine to power its hydraulic compressor – which was demonstrated in 2013 running

up to speeds of 8.9 m/s and (as far as we know) had an actuated spine joint [1]. It is not

documented in the academic literature and there is little publicly available information re-

garding the spine design, the extent it was used, or how the designers believed it benefited

the platform. Nevertheless, the robot’s performance is quite remarkable even compared to

platforms today in 2019.

There is also a sizable literature on simulating robotic core actuation, largely focusing on

steady-state running gaits. Simulation studies of reduced-order models suggest that core

actuation and compliance can provide increased speed, stability, and apex height while

running [61, 171, 223, 227]. Self-stabilizing gaits and decreased energetic cost of transport

have been found with purely passive core compliance [46], yet verifying these models on

power-autonomous physical machines remains open.

1.2.3. Models for controlling legged locomotion

Legged locomotion involves the making and breaking of contact between a body and its en-

vironment. Discontinuous contact is necessitated by the fact that legs have finite reach and

8



must recirculate, but this allows for locomotion over intermittent footholds which gives legs

an advantage in highly unstructured environments over more continuous forms of contact

such as wheels. Oftentimes – but certainly not always – legged environmental interaction

is dominated by reaction forces generated at the environmental contact points, and can be

approximated by assuming the leg is a simple kinematic chain connecting a rigid body (rep-

resenting the robot or animal) to a point stationary in space (representing the environmental

contact point).

Newtonian physics lends itself to describing legged locomotion using this formulation, par-

ticularly the field of mechanics [16,97] and – more specific to robotics in particular – theories

of rigid body manipulation [159] (which directly applies to locomotion through the idea of

self-manipulation [124] being dual to that of manipulation). Mechanics models of legged

locomotion considered in this text are assumed to be deterministic and take the form of or-

dinary differential equations [14]. This allows us to apply the wealth of tools from dynamical

systems theory [100] (and its foundations in differential topology [141]) to analyze legged

locomotion physics models [2, 5] and make formal statements about model behavior [109].

Frequently these statements take the form of asymptotic behavior (are a set of initial con-

ditions guaranteed to eventually do the “intended” task while avoiding “bad” regions) and

robustness (do nearby initial conditions or even “nearby” model formulations [15, ch. 3]

themselves behave in similar ways).

However, the intrinsically discontinuous nature of legged locomotion due to making and

breaking ground contact complicates this formalism, as a single set of differential equations

is typically insufficient to describe different permutations of leg-ground interaction. Hybrid

dynamical systems theory [23] is a popular tool to deal with this complexity, where multiple

instances of continuous dynamics describe the model. The instances of continuous dynamics

can have regions (called guards) that – when reached – initiate a transition (called a reset)

to another instance of continuous dynamics. Usually these guards and resets occur when a

leg touches down or lifts off. In this work we use the notation of [122, Section 3] to represent
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hybrid dynamical systems. Results in hybrid dynamical systems are more difficult to come

by, however they can allow for sufficiently expressive behavior so as to model many of the

salient features of legged locomotion.

Transitional vs. steady-state tasks

Many tasks in legged robotics can broadly be classified as either steady-state or transitional.

Steady-state tasks are repetitive, often cyclic tasks such as walking and running that can

be encoded by some asymptotic behavior. What we call transitional (often called transient

or non-steady-state) tasks are those that can’t be described by a repetitive asymptotic

behavior.

Roboticists are becoming increasingly successful at both implementing [1, 114, 196] and

analyzing [67] dynamic steady-state legged robotic tasks such as running. Underlying this

success is the mathematical understanding that many useful steady-state behaviors can

be encoded as stable limit cycles of the controlled hybrid dynamics of the system. The

dynamical systems literature [100] has given engineers a wealth of strategies for encoding and

controlling the asymptotic properties of such systems – for example, to recast the problem

of generating stable locomotion as manipulating the Jacobian of an appropriate Poincaré

map of the system to have eigenvalues with magnitude less than unity at a designated

fixed point. We believe this understanding has played a large role in the past decades’ slow

trickle of dynamical legged robots growing to a stream of academic [228] and commercial [1]

advances yielding an emerging set of design and control principles sufficient for steady-state

locomotion [11,98,109,135,166,196,204].

In contrast, tasks such as leaping, turning, and dodging [40,70,72,125,145,210] have no well-

agreed upon mathematical description that lends itself to synthesis. These tasks – which

we refer to as transitional and intuitively think of as exhibiting agility – are inherently not

steady-state but represent, nevertheless, a canonical motivating setting for legged locomo-

tion, for example in operation over unstructured or irregular terrain such as leaping from
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foothold to foothold in rubble during disaster response. The inherently transient nature

of these maneuvers does not seem well-suited to straightforward encoding via asymptotic

dynamical properties and seems to call for alternative formulations.

Several techniques exist in the literature for achieving transitional tasks in hybrid systems,

albeit for limited classes of legged models. Implicit model predictive control [140, 152] has

been used to great effect, for example, by recourse to quadratic programming [164] over a

finite horizon for leaping over obstacles. Such methods recompute a solution at every step

even in a static environment and are generally sensitive to their cost functions, which often

are constrained to take an artificial form due to the optimization methods available and

may not readily express the designer’s underlying intent or handle gracefully the inherent

nonlinearity of a given problem. Exciting work in sum-of-squares verification [149, 206]

allows reactive local controllers via Lyapunov functions but thus far appear to be fragile

in the face of model uncertainty as they can incur vanishingly small basins of attraction

and it remains to be demonstrated that actuator saturation – perhaps the predominant

constraint in legged locomotion – can be elegantly incorporated. Reactive techniques taking

the form of sequential composition [44] such as [18, 57] can be very robust and incorporate

actuator constraints, however methods are typically conservative and often require the by-

hand deployment of local controllers in the environment instead of in an automated, doubly-

reactive fashion. Classical sequential composition techniques also provide guarantees over

an infinite time horizon, which can be overly restrictive for transitional tasks that may

be as quick in duration as a single stride. The reachability literature’s notion of maximal

controlled invariant sets – the largest subset of state space for which a control input exists to

achieve a safety specification – and the corresponding least restrictive safe controller – the

set of all controls that make this set invariant – offer an interesting approach to achieving

transitional tasks in hybrid systems [147] and can be thought of as computing the set of all

reactive control solutions, however in general computation of these sets is NP-hard [55].
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Compositional methods

The task of making formal statements about a legged locomotion task – be it steady-state

or transitional – quickly becomes one of choosing a model sufficiently simple to yield a

tractable analysis while complex enough to express the desired behavior. This is because

the initial value problem in differential equations cannot be explicitly solved for except in

the most trivial of circumstances, relegating designers to making “qualitative” (but still

quite useful) statements about their models of the likes of quantifying asymptotic behavior,

instead of explicitly describing exactly how the model will evolve. But even qualitative

statements require sufficiently simple models to meaningfully apply the tools that hybrid

dynamical systems theory currently provides.

Various techniques have been developed to deal with this complexity, for example the idea of

templates and anchors [90]. Classically, a template-anchor relationship is one between two

models (one being the template and the other the anchor) of differing complexity, specifically

in which the template is an attracting invariant sub-manifold of the anchor. This allows

the roboticist to design behaviors in the reduced template space and need only anchor the

dynamics of the robot body to the template to inherit the template’s stability properties,

for example: [185]. This way of understanding complexity has also proven fruitful in the

field of biology – due to both the necessity of making sense of complicated phenomenon and

the inherently many-to-one mapping from form to function [207,212,213]. Roboticists and

biologists have jointly “discovered” several canonical templates which appear to describe

salient features of many modalities of locomotion such as the spring-loaded inverted pen-

dulum (SLIP) [10,37,94,194,195], illustrating how work in this multi-disciplinary field can

contribute to understanding both robotics and biology [60, 215]. The fields have also be-

gan to organize notions of composition beyond hierarchical template-anchor relationships;

particularly sequential compositions [44, 58] and parallel compositions [67, 68]. These are

further discussed in Chapter 4, which introduces the use of cascade compositions to models

of quadrupedal running.
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CHAPTER 2

Overview of the Canid and Inu research platforms

This section provides the reader with an overview of the Canid and Inu spined quadrupedal

research platforms used in this document. We also offer lessons learned from our experience

in designing and using the robots in experiments. At the time of publication – to the best

of the authors’ knowledge – they remain the only power-autonomous sagittal-plane-bending

spined quadrupeds that have been documented in the academic literature performing dy-

namic locomotion tasks.6

2.1. Canid

The Canid robot was the first legged platform built with a spine morphology at the Univer-

sity of Pennsylvania’s Kodlab. Using the same motors and electronics as the XRHex-Lite

(XRL) robot, it was created to test comparative morphological hypotheses related to spined

locomotion with respect to the RHex family of robots, as well as to demonstrate the ubiq-

uity of the RHex “laboratory on legs” architecture [103]. The robot – shown in Figure 1

with its predecessor XRL – consists of a front and a rear body segment with RHex-style

C-shaped legs driven by fourbar linkages, as well as a cable-driven spine. The front and

rear body segments house the electronics and motors while the spine holds the two batteries

(not depicted in Figure 1) between adjacent vertebrae. A table of metrics for the robot is

given in Table 2.2.

Canid was created in collaboration between the U.S. Army Research Laboratory (ARL) and

the University of Pennsylvania under support from the Robotics Collaborative Technology

6Boston Dynamics’ Wildcat is a hydraulically actuated quadrupedal robot from 2013 that ran up to
speeds of 8.9 m/s and – as far as we know – had an actuated spine joint [1]. It is not documented in the
academic literature and there is little publicly available information regarding the spine design, the extent
it was used, or how the designers believed it benefited the platform. Nevertheless, the robot’s performance
is quite remarkable compared to platforms even today in 2019.
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Figure 1: The Canid research platform (left) and its predecessor, the XRL robot (right).

Alliance (R-CTA). The machine was designed and built by Clark Haynes and Ryan Knopf

while they were at the University of Pennsylvania, as well as by Jason Pusey at ARL. They

also began the first behavioral experiments beginning to tune isolated leaps as documented

in [103]. Jeff Duperret began working on the project as Clark and Ryan were leaving in 2012

and was responsible for behavior and gait generation – still in collaboration with ARL’s

Jason Pusey – as well as the in-house fabrication and characterization of the fiberglass leaf

springs used for the spine [173].

Canid’s spine consists of a rectangular fiberglass leaf spring which is actuated in parallel

by a cable system driven antagonistically by two geared motors (which are identical to

the leg motors) that pitch the spine up and down with one actuated degree of freedom.

One motor in the rear body segment pitches the spine upwards while the other motor in

the front body segment pitches the spine downwards. Care must be taken in the robot’s

control code to ensure that the spine motors do not fight each other; one always lets slack

out as the other takes slack in. Vertebrae connect the fiberglass leaf spring and cables to

constrain the bending curvature. Different fiberglass leaf springs of varying thickness can

be inserted into the spine, allowing the user to use differing spine compliances as required

by the experiments. The leaf springs are well-approximated as Hooke’s law springs over

their regime of operations, an example of which is depicted in Figure 2. The rectangular

geometry of the fiberglass leaf spring prevents Canid’s front and rear body segments from
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yawing with respect to each other, however nothing directly prevents one body segment

from rolling with respect to another. We found that this mode of movement wasn’t a

problem with bounding gaits where the left and right legs act in unison. During these gaits

it seems that the natural damping in the system was enough to prevent this mode from

being excited and leading to instability.
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Figure 2: Energetic characterization of a Canid spine typical of those used in the leaping
experiments described in Chapter 3.1. The results indicate that the spine elastic energy
storage is well-described by a Hooke’s law quadratic polynomial fit.

Canid was able to bound forwards in a halting manner that did not maintain significant

kinetic energy between strides [173], as well as catapult itself forwards in a bounding leap

utilizing stored elastic potential energy in the spine in parallel with spine-motor actuation.

These isolated leaps greatly outperform its RHex predecessors in terms of leaping distance

and energetics [74], and are described more in-depth in Chapter 3.1.

The biggest limitation to achieving steady-state gaits and transitional maneuvers in a variety

of environments on Canid was the fixed leg trajectories imposed by the fourbar mechanism

as depicted in Figure 3. The mechanism was introduced to give the robot user a way of

selecting an appropriate leg trajectory for a task while maintaining a relatively constant

motor shaft speed, a feature not necessary on the ancestral RHex robot because the presence
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Figure 3: Toe path trajectory imposed by Canid’s fourbar kinematics, which can be modified
between experiments to achieve various shapes. The reference clock in the upper right gives
a correspondence between the angle of the dark-red crank-shaft at the motor’s gearbox
output and the toe position.

of more legs obviated the need for large sweeping leg trajectories. The inability on Canid

to vary the leg trajectory shape at “execution-time” of a behavior caused several problems

that motivated the creation of the Inu robot. One primary function of a robot’s legs is to

generate frictional and normal forces at the “toes”7 so as to apply a wrench on the mass

center, thus the legs’ ability to vary this wrench as part of a feedback loop is critical. Canid’s

one degree-of-freedom legs made it very difficult to regulate both the generated frictional

and normal forces at the same time, resulting in seemingly needing the halting nature of

its bounding gait as a strategy to correct disturbances for which Canid lacked the control

affordance to actively cancel out. The lack of control authority in varying the ground-

reaction force also made it very difficult to stay within the friction cone during leaps. We

tried giving Canid “claws” to greatly increase its coefficient of friction, which worked well on

neoprene mats in a lab environment. But when Canid was attempting leaps across drainage

7We refer to the point of leg-ground contact as the “toe” in this work.
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gaps at the Fort Indiantown Gap Army Post, it was unable to use the same trajectories

without slipping. This experience made clear the need for additional degrees-of-freedom in

the legs when conducting agile quadrupedal maneuvers.

2.2. Inu

The Inu robot – successor to the Canid robot – was created primarily to address the need for

a spined quadrupedal platform having more than one actuated degree of freedom in its legs,

so as to better utilize the spine mechanism. Inu’s two degree-of-freedom (2-DOF) legs do

not utilize springs and instead rely on high bandwidth and proprioceptive capabilities of its

direct-drive [19] leg motors to achieve artificial compliance and high-fidelity ground-contact

sensing [132,196]. Its spine is functionally similar to Canid’s but has some features that make

it lighter and easier to use as described below. Inu also departs from the RHex electronics

architecture and instead uses custom lab electronics similar to that of the Minitaur robot.

A more detailed comparison of the Inu and Canid platforms is given in Table 2.2.

Figure 4: The Inu robot.

Inu’s legs are similar to that of the Minitaur platform [132] in that the linkage configuration
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is a parallelly actuated five-bar, however – different from Minitaur – Inu’s leg linkage has the

motors placed in a co-planar fashion rather than co-radially. This increased the mechanical

simplicity of mounting the motors to the robot body and decreased the width of the robot

at the expense of reducing the workspace volume of the leg linkage. The bottom row of

Chapter 3.2’s Figure 10 depicts both the workspace of Inu’s legs as well as the averaged

squared singular values of the leg linkage’s forward kinematic Jacobian over the workspace.

Most of the lost workspace occurs above the robot, which is very useful to have if the robot

flips over on its back because it can allow the robot to run symmetrically upside-down,

however behaviors like this were outside the mandate of the Inu research platform.

We found that Inu’s 2-DOF direct-drive legs function much better than Canid’s geared

1-DOF legs for achieving steady-state gaits, as was expected. However, they lack the force

affordance to generate as powerful of leaps as Canid could. While the spine is able to

compensate some for this, as described in Chapter 3.3, the platform would still be able to

leap further if the legs were geared. But this would would come at the cost of reduced

proprioceptive capabilities and would make investigating the role of a spine morphology for

steady-state gaits – where the ability to easily detect ground contact is a great virtue –

more difficult.

Figure 5: Annotated rendering of Inu’s spine mechanism.
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Inu’s spine was designed based on lessons learned from the Canid robot, although func-

tionally it is quite similar to Canid’s. The mechanism was made significantly lighter by

removing many steel and aluminum components, and the cable system was replaced by a

belt-drive system which we found easier to work with. Perhaps most significantly, Inu’s two

spine motors together act in parallel on the same sprocket shaft to drive the belt, so that

during extension or contraction the spine is always using both motors to do useful work.

The system is designed so that when the motors pull on the belt from one direction, they

in doing so let out a sufficient amount of slack in the other direction so as not to impede

bending. Two motors were used to provide the spine module the same available power as

each leg module. The final major difference was that latches were installed on the vertebrae

for easy removal. This greatly decreased the time required to swap out fiberglass leaf springs

as compared to in Canid, where each vertebrae needed to be disassembled by removing all

of its bolts to change a spine spring.
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Canid Inu

Body weight (w/ batteries) 11.3 kg 6.8 kg
Body length 78 cm 70 cm
Spine leaf-spring length/width 44.0 cm / 7.6 cm 34.0 cm / 7.6 cm
Hip-to-hip length 47 cm 47 cm
Maximum hip-height 29 cm 33 cm

Total number of motors 6 8
Motors per leg 1 2
Motors in spine 2 2
Motor type Maxon EC-45, 50 W Tiger Motor U8-16, 100

kv
Leg motor gearing 28:1 Maxon planetary

gearbox
None

Batteries 2 5-cell Thunderpower
TP2250-5SP30 batteries

1 4-cell Thunderpower
TP6400-4SRP80 battery

Nominal bus voltage 37V 14.8V
Sensing Motor shaft encoders,

IMUs on front and rear
body segments

Motor shaft encoders,
IMUs on front and rear
body segments

Inertial measurement unit
(IMU)

3DM-GX3-35 MicroS-
train

InvenSense MPU6000

Table 1: Metrics comparing the Canid and Inu robots.
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CHAPTER 3

Spines and transitional behaviors

Chapters 3.1, 3.2, and 3.3 describe and quantify affordances that can be provided by a

spine morphology for transitional maneuvers. To assist in making statements of compar-

ative morphology in these sections, we introduce the metric of specific agility in Chapter

3.1. Chapter 3.1 discusses elastic energy release in the spine, Chapter 3.2 deals with how

the spine can augment the leg’s workspace, and Chapter 3.3 goes over benefits of adding

actuation proximal to the mass center (via the spine) rather than distal from it (via the

legs) on a machine with direct-drive legs. Finally, we end on the topic of what can be done

with a machine possessing significant agility; in Chapter 3.4 we offer the beginnings of a

computationally tractable method for executing doubly reactive transitional maneuvers to

navigate irregular terrain. This marks the first instance in this document of obtaining ana-

lytical simplicity by having environmental interaction be driven by dynamics approximated

by constant acceleration, a theme that will be further explored in Chapter 4.

3.1. Specific agility and spine elastic energy storage

3.1.1. The metric of specific agility

We are still in the early stages of understanding how to characterize legged agility. In this

passage we propose a measure for nimble legged transitions that help organize a suite of

experiments designed to test hypotheses about the comparative benefits of specific morpho-

logical features [74]. Following the tradition of the more mature aircraft [162], aquatic [216],

and wheeled [53] vehicle literatures (wherein variously dimensioned agility and maneuver-

ability measures are introduced for different purposes and at different operating points), we

explore the utility of a dimensional measure (m2/s2) that at the very least proves useful for

comparing legged leaps from rest of different machines. Given its (rough) invariance across
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animal leaping maneuvers, this measure may also have relevance for probing biological en-

ergetics. Most immediately, we aim to apply insights provided by the empirical support or

refutation of our stated hypotheses toward the design of more agile machines.

Notwithstanding the many informative and inspiring studies of legged animal performance,

e.g. [26,27,121,158,167,183,214], we have not been able to find any previous formalization

of the notion of legged agility suitable for comparing robots of different morphologies and

different sizes over different tasks. Perhaps the most common measure for acceleration

and leaping used in the legged biology literature is specific power (watts per kilogram

taken over a gait cycle of leg power output relative to leg muscle mass or body mass)

[155, 182, 183, 220] but it is not scale invariant as we observe in Chapter 3.5. Specific work

has been proposed as a measure for legged leaping with respect to muscle mass [183], and this

seems closest to the body-mass normalized measure we will introduce shortly. In contrast,

characterizing directional aspects of agility performance seems trickier. Animal turning

maneuvers have been studied in robotics [110] as well as biology [120] yielding a variety of

useful associated performance measures such as turning radius at speed, leg effectiveness,

linear maneuverability number [119], and usage of braking/acceleration forces [118]. But it

is not clear to us how to generalize such measures for reasons we will discuss below as well.

Many intuitive measures for a legged platform involving, say, jumping height or the magni-

tude of linear acceleration, are equivalent to a change in kinetic and gravitational potential

energy during the stance phase of locomotion. Thus, we focus our proposed measure on the

change in what we term the extrinsic body energy, the sum of the mass center’s kinetic and

gravitational potential energy, relative to the natural unit over which a legged platform can

adjust it, a single, isolated stance. We use the qualifier “extrinsic” to distinguish this notion

from the body energy introduced in [173] that is sensitive to the state of a platform’s inter-

nal mechanical springs. Catapult-like elastic energy storage used to augment muscle power

in leaping from rest has been shown to occur in animals across widely different scales [20,27]

and, intuitively, we feel such use of initially stored spring energy should not count against
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the agility of a transition. We also avoid the notion of “stride” which connotes a regularity

of stance and swing that may not prevail in sudden legged maneuvers characterized by

combinatorial sequences of leg contacts [125]. Instead, we construe “stance” as the dimen-

sionless event characterized by some number of legs in ground contact, punctuated either

by a prior or subsequent aerial phase (or both).

Thus we find it useful to introduce a working notion of specific agility during stance in

terms of the mass-normalized change in extrinsic body energy:

α :=
∆W

m
/stance event, (3.1)

where ∆W is the extrinsic body energy (the sum of the mass center’s kinetic and grav-

itational potential energy) at the end of stance minus the extrinsic body energy at the

start stance, and m is the mass of the agent. The SI units of α are (m/s)2 and can be

interpreted as mass-specific work in the equivalent units of (J/kg). Note that steady-state

motions such as running or hopping that can be approximated with Hamiltonian systems

will have negligible agility according to our metric in accordance with biological observations

that these motions require significantly less muscle power output as compared to leaping

accelerations [155,183].

As we have tried to suggest in our brief survey of the extensive literature, and seems

most carefully summarized in [216], it does not appear straightforward to find a single

dimensionless group capable of capturing all relevant aspects of maneuverability and agility.

We tolerate the lack of a dimensionless measure in our quantification of agility because

mass-specific work seems to be the fundamental quantity of interest — at least for changes

in velocity magnitude. For example, measuring work done on the body during stance

is sensitive to accelerations along a velocity vector fixed in the inertial frame and takes

into account the operating point, capturing the greater energetic cost of accelerating a

given amount at higher relative to lower speeds (such energetic costs are consistent with
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biological observations of animal accelerating and braking [220]). However, it does not

reward purely directional changes even though, intuitively, rapid turns ought to represent a

similarly important concomitant of any comprehensive “agility” measure. Any attempt to

reconcile nimble turning with energetic expressions of performance must address the fact

that fixed rate circular motion entails no work since the direction of motion is orthogonal

to the force.

The proposed measure (3.1) does appear to confer some scale invariance. In biology, this is

predicted by arguments found in [192] and empirical observations of vertical jumping height

known as Borelli’s law [65]. This “law” is demonstrated in animals across eight orders of

magnitude mass variation which are shown to have vertical jumping heights (proportional to

specific agility if air resistance is neglected) within a factor of three — ranging from around

20 to 60 cm or a specific agility of around 2 to 6 m2/s2. Similar arguments about the scale

invariance of this measure with electromagnetic actuators in a robotic leg are detailed in

Chapter 3.5.

Spine elastic energy release

The first benefit potentially afforded by a spine morphology (assuming a suitable design im-

plementation) that we discuss is the rapid release of stored elastic energy that the spine can

contribute to forward leaping energetics. We show from comparative empirical observation

a case where the usage of parallel actuation to guide this spine elastic energy release for

forward leaping is an energetically better usage of actuator weight than actuating additional

legs.

We use the metric of specific agility to compare the performance of Canid [173] and XRL

[103] – two comparably powered but morphologically different robots that are shown in

Figure 6 – in the open-loop leaping-from-rest task, a transitional behavior of near ubiquitous

value, e.g. in gap crossing or rapid preparation [44] of high energy steady-state gait basins

[94]. We use this comparison to examine the relevant benefit of distal versus core actuation
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as the quadrupedal Canid uses two motors to actuate its spine while the hexapedal XRL uses

these two motors to actuate a pair of additional legs. This comparison seems particularly apt

because of the close relationship between the two machines described in [103]: both robots

have the same electronics, use similar motors and gearing, and are capable of comparable

(respecting speed and specific resistance) steady-state locomotion as partially documented

in [173]. Disregarding the spine, the platforms differ primarily in their mass — Canid

weighs 11.3 kg while XRL weights 7.3 kg — and leg actuation as Canid’s four hip actuators

drive their C-legs through a four-bar linkage while XRL directly actuates its six C-legs. It is

worth noting the enabling role the specific agility measure plays in allowing this comparison

that requires somehow normalizing for the very different actuation strategies used by these

two nominally similar machines during forward leaping. Canid only uses three of its six

motors to generate work (actuating its rear two legs and the top spine cables), while XRL

uses four of its six motors (two are not used since they contribute little to leaping [125]).

We pause to briefly introduce the concept of endurance. The operational utility of an agile

motion will generally depend on the number of times n it can be performed in succession

– which we term endurance. Given resource constraints present in executing a movement,

we expect endurance to decrease with increasing specific agility. For example a robot that

heats its motors to its thermal limits in a single leap cannot immediately perform the same

leap on the next step; it must wait until its motors cool before completing the action again,

giving it an n of one. A robot capable of performing an agile motion an infinite number of

times (unlikely with current technology given limited energy storage) would have an n of

∞. Although “stance event” was introduced as taking integer values, we find it convenient

to recast the measure as taking (extended) real values. Thus we will consider the ordered

real pair (α, n) when evaluating agile motions in an experimental setting. Further details

regarding the calculation of endurance are given in [74].

Canid leapt 11 times under a motion capture system,8 including five times across an 85

8 Vicon motion capture data is used to back out the kinetic and potential energy of the robots. Neglecting
air resistance, the apex specific extrinsic body energy minus the starting specific extrinsic body energy gives

25



0 1 2 3 4 5 6 7 8
2

2.5

3

3.5

4

4.5

Predicted endurance (number of leaps)

S
p

e
c
if
ic

 a
g

ili
ty

 (
m

2
/s

2
)

Specific agility vs. predicted endurance of Canid and XRL in forward leaping

 

 

Canid

XRL

Figure 6: The Canid (left image, upper right) and XRL (left image, bottom left) robots.
Their specific agility vs. predicted endurance during forward leaping is shown on the right.
The methods used for calculating these quantities are explained in Footnote 8.

cm gap which is close to the observed limit of its repeatable leaping ability from standstill

(leaps over gaps up to 1 m across have been achieved however not in a repeatable fashion).

XRL leaping data was taken from [123] during which parameters for quadrupedal forward

leaping were systematically varied to search for various high extrinsic body energy forward

leaps. The best XRL forward leap crossed a 50 cm gap, which is likely very close to the

limit of its leaping ability from standstill.

The resulting specific agility and endurance for each Canid and XRL leap is shown in

Figure 6. Canid has a better maximum observed specific agility than XRL at a comparable

endurance, despite using one fewer actuator. Although it is likely that we could tune both

machines to perform incrementally better, such adjustments would likely further advantage

Canid, since this was the very first leaping experiments with Canid whereas XRL leaping

has already benefited from extensive past study and tuning [123]. These results indicate

that at least one of the salient morphological differences between Canid and XRL confers

upon Canid a significant agility advantage, particularly in light of its reduced (one fewer)

a very close approximation to the specific agility (3.1) of the leap. The method used to calculate endurance
is given in [74].
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number of actuators used during liftoff.

Additional experiments summarized in Figure 7 were conducted on Canid to quantify the

relative agility benefit conferred by Canid’s parallel elastic actuated spine (rather than its

four-bar leg transmission) while leaping. Forward leaping data was collected on Canid

using five different spine stiffnesses varying from rigid to negligible stiffness. Zero agility is

recorded in the case where the robot was unable to achieve an aerial phase due to insufficient

spine power. For each spine stiffness, Canid was run multiple times while systematically

varying its spine motor current limit from 15 A to 0 A in increments of 5 A — always from

the same initial condition for every run (except for the rigid case) characterized by a spine

preloaded to the same angular displacement prior to its release with lowered current limit

reset at the onset of leaping. While successively more compliant spines afford the possibility

of successively greater spine pre-loading by a given actuator, we chose to fix the pre-loading

angle because: (1) this avoids the confounding effects of varied initial posture (and attendant

variations in control strategy); and (2) the spine motors are capable of breaking the elastic

fiberglass plate and it is not yet clear at which point plastic deformation begins. The spine

stiffness is approximated by empirical data fit to a torsional Hooke’s law spring as discussed

in Chapter 2. Current limits above 15 A are tenable in principle for our actuators, but

do not result in substantially different results in any of these cases because the rapidly

extending spine quickly brings them into the no-load regime.

The results in Figure 7 indicate that — all else being equal — replacing a rigid back with a

sufficiently powered spine mechanism (either through releasing initially stored elastic energy

or through actuation) can provide a significant morphological advantage for forward leaping

agility. We can directly account for energy initially stored in the elastic spine contributing to

leaping kinetic energy, as the k = 1.82 Nm/rad spine with no actuation outperforms the fully

actuated negligible stiffness k = 0.14 Nm/rad spine as well as the rigid spine (both of which

initially store a negligible amount of initial elastic energy). Also, the monotonic average

increase in agility with increased spine actuation power indicates that the spine motors
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Figure 7: (Left) Canid leaping agility with a variety of spine stiffnesses and spine motor
current limits. A total of 80 runs are shown. Canid was allowed to pre-load its spine to the
same angular displacement in every run (except for the rigid case) before setting the lower
spine current limit and leaping. Zero agility is recorded in the case where the robot was
unable to achieve an aerial phase due to insufficient spine power.
(Right) Energetic efficiency of the experiments shown in Figure 7. Energetic efficiency
was calculated by dividing the total change in extrinsic body energy during the leap by
the combined mechanical energy output of the motors (comprising of Canid’s two rear leg
motors and the spine motor actuating the top spine cables). This motor energy output is
calculated at the output shaft before the gearbox and thus doesn’t directly take into account
gearbox or transmission inefficiencies.
*The k = ∞ case is approximated and was not empirically measured for fear of damaging
the spine. Rigidity was achieved by locking the spine mechanism with minimal added mass.

are directly contributing to forward leaping agility irrespective of spine elastic stiffness —

except for of course in the rigid case. The greatest observed forward leaping performance

was achieved with the k = 0.91 Nm/rad and k = 1.82 Nm/rad spines using the highest

spine actuator current limits, averaging a specific agility of 4.7 m2/s2. This is likely because

the nature of parallel elastic-actuations allows the release of the elastic energy stored in the

spine to augment the spine motor power during the leap, supporting our claim that using

parallel elastic spine actuation outperforms both a purely actuated and purely elastic spine

in forward leaping. However if efficiency is deemed more important than raw agility then the

performance using the unactuated k = 1.82 Nm/rad spine shown in Figure 7 demonstrates

that a sufficiently stiff spine, if properly pre-loaded in stance (either by motors or by a prior

maneuver) may offer almost similar agility with considerably greater efficiency. Further

details regarding the analysis of these experiments are given in [74].
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We note that sufficiently-powered core actuation substantially increases rear leg loading

in forward leaping. Specifically, the more than two-fold increase in average specific agility

between the rigid back (2.1 m2/s2) and the best spined runs (4.8 m2/s2) must have been

accompanied by a more than two-fold increase in average rear leg forces given the nearly

constant stance duration during the runs. Canid avoids torque-saturating the rear leg

motors with spine forces by operating the rear legs near their kinematic singularity when

the spine is doing work. Similar consideration of rear-leg kinematics is advised in general

if a spine is added to a legged machine, a concept explored more carefully when using

direct-drive legs in Chapter 3.3.

In summary, leaping experiments suggest that a significant specific agility benefit is con-

ferred by adding a four-bar and a parallel elastic actuated spine [173] to the base XRL

robot at no cost to endurance. Canid uses fewer actuators to leap significantly further.

Further investigation into characterizing the isolated benefit of the spine concluded that —

all else being equal — replacing a rigid back with a sufficiently powered spine mechanism

(either through releasing initially stored elastic energy or through actuation) can provide

a significant morphological advantage for forward leaping agility. There was a measurable

individual specific agility contribution from both spine actuation and releasing stored elastic

energy in the spine. Furthermore, a parallel-elastic actuated spine confers a larger specific

agility benefit to forward leaping than does a purely actuated or purely passive spine.

3.2. Volumetric workspace augmentation

For legged robots operating in unstructured environments, workspace volume and force gen-

eration are competing, scarce resources. In this section we demonstrate that introducing

core actuation (i.e., proximal to rather than distal from the mass center) increases the legs’

effective workspace volume without decreasing their force generation capabilities, in some

respects circumventing this trade-off [80]. These effects are analytically quantifiable up to

modest assumptions, and are demonstrated empirically on the Inu robot perching on an iso-

lated foothold – an archetypal feature of unstructured terrain expected in disaster scenarios,
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on which contemporary quadrupedal robots typically are incapable of self-manipulation.

It is desirable for the limb kinematics to produce high forces for given motor torques.

Increasing force generation by decreasing lever arm length, however, trades away workspace

size. Larger workspaces are highly beneficial in unstructured environments; they afford

better access to intermittent footholds and improved body self-manipulation over a wider

range of postures. A small workspace runs the risk of the robot becoming high-centered

and losing balance on smaller footholds. We explicitly show the trade-off between leg force

generation and workspace volume confronting the designer by considering a simple scaling of

a nominal leg linkage design by a scaling factor λ, assuming a fully actuated leg interacting

with the ground through a point contact. Let the forward kinematic map of the nominal

leg linkage with a point toe and origin at the hip be given by f : Q → Rn, where q ∈ Q

denotes the actuated joint positions. Consider a uniform scaling transformation applied to

this linkage, scaling the length of all vectors by a factor of λ ∈ R+, and let fλ(q) := λf(q)

denote the forward kinematic map of the scaled linkage. The nominal leg linkage has a

workspace volume given by V :=
∫
f(Q) Ω, where Ω indicates the standard volume form

on Rn [159]. The forces F generated at the toe from motor torques τ is then given by

F (q) := Df−T (q)τ assuming the leg linkage is not at singularity, where Df := ∂f
∂q . Denoting

the workspace volume of the scaled linkage by Vλ :=
∫
fλ(Q) Ω and the forces generated at

the toe by Fλ(q) := Df−Tλ (q)τ , we have that

Vλ =

∫
λf(Q)

Ω =

∫
...

∫
λf(Q)

dx1...dxn =

∫
...

∫
f(Q)

λdy1...λdyn

= λn
∫
...

∫
f(Q)

dy1...dyn = λnV

and

Fλ(q) = (λDf(q))−T τ =
1

λ
Df−T (q)τ =

1

λ
F (q),

so that increasing scale has the dual effect of decreasing end effector force magnitude for a
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given motor torque vector while increasing workspace volume.9

To quantify the effect of the spine on the legs, we use a typical quadrupedal model –

depicted in Figure 8(a) – as a rigid body with common distances between the hips and

mass center [164, 170]. Following [46, 61, 89, 171], we add core actuation to this model

by introducing an actuated revolute joint to the body, depicted in Figure 8(b) (note that

alternative formulations exist, such as [227]).

Figure 8: (a) Simplified sagittal-plane three-degree-of-freedom model of a rigid body
quadrupedal platform. (b) Simplified sagittal-plane four-degree-of-freedom model of a
spined quadrupedal platform possessing an actuated revolute joint proximal to the mass
center. The models have a simple parametrization (mass, moment of inertia, and body
segment length) shown in green, and their degrees of freedom (mass center position, aver-
age body pitch, and – for the spined model – the difference between the pitch of the front
and rear) are in blue. Spine bending augments the nominal leg workspace (depicted in teal
for a nominal annulus leg workspace) and provides an additional source of actuation to do
useful work on the mass center. The core can be geared without affecting the direct-drive
leg transparency, as discussed in Chapter 3.3.

Core actuation allows the body to move the leg hip with respect to the mass center, thereby

augmenting the leg workspace volume. Consider the simplified case of an annulus leg

workspace with inner radius r1 and outer radius r2. The volume of the workspace is given

9An established metric for evaluating the ability of a direct-drive limb to generate forces is thermal cost
of force (for a normalized motor constant) given by the mean of the squared singular values of the forward
kinematic Jacobian [19, page 48], [132]. As shown in the analysis above, in general smaller singular values
are achievable by decreasing the length of lever arms in the (possibly parallel) kinematic chain to gain a
greater mechanical advantage.
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by V = π(r2
2−r2

1). Assuming core bending can translate the center of this annulus a distance

d̄ with respect to the mass center and that d̄ ≥ r1, the augmented workspace provided by

core actuation is V̄ = πr2
2 + 2r2d̄, a volume increase of 2r2d̄+ πr2

1. This is depicted in teal

in Figure 8.

Figure 9: A version of Inu with longer legs (left) is compared with a version with shorter
legs (right) in leaping from an isolated foothold, as well as from level ground in experiments
described in Chapter 3.3.

To empirically illustrate the sensitivity to workspace size when operating on isolated footholds,

Inu executed leaps off of a 20 cm-tall, 9 cm-wide perch as depicted in Figure 11. These

leaps were performed with the longer legs shown in Figure 9 without spine bending to illus-

trate task performance without workspace constraints, and with shorter legs to introduce

workspace constraints. Spine bending was then used with the shorter legs shown in Figure 9

to evaluate if the workspace benefit provided by the spine yielded a significant performance

advantage. Each leaping configuration (long legs without spine bending, short legs without

spine bending, and short legs with spine bending) was run 6 times using a feed-forward

control strategy. As this experiment didn’t not focus on the energetic contribution of this

parallel compliance, a thin fiberglass plate storing minimal elastic energy was used. Further

experimental details are available in [80].

The leg kinematics used in the experiments were chosen as follows. The ratio between the

lengths of the distal and proximal link, shown in Figure 10, was found in numerical study to

approximately maximize vertical leaping height over a range of scaling factors. The scaling
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Figure 10: The leg kinematics (left) are shown for two different sets of linkage lengths
used in the experiments of Chapters 3.2 and 3.3. The longer legs have a larger workspace
(middle) while the shorter legs are able to generate higher forces for a fixed motor torque
(right), as indicated by the smaller average of the squared singular values of the forward
kinematic Jacobian for given motor shaft angles φ1, φ2, or equivalently, thermal cost of
force [19, page 48] for a normalized motor constant.

factor of the distal and proximal links for the shorter legs was chosen near the smallest

that allowed for balancing on the isolated foothold (specifically, to yield a minimal but

non-empty intersection of the front and rear leg workspaces without core bending, allowing

both legs to “grasp” the same point), and for the longer legs was chosen to be 1.5 times

the shorter legs—a large enough increase to reasonably expect a significant performance

difference compared to the shorter legs while keeping the extended leg length less than the

hip-to-hip length as we were wary of avoiding excessive pitching when accelerating from

rest caused by long legs [220].

Balancing on and leaping from a 20 cm-tall, 9 cm-wide foothold was successful using the

longer legs of Figure 10 without core bending. With shorter legs and without core bend-
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Figure 11: Leaping off a 9 cm-wide isolated foothold succeeded without core bending
using longer legs (top-left, bottom blue), failed without core bending using shorter legs
(top-center, bottom red), and succeeded with core bending using shorter legs (top-right,
bottom green). These qualitative results suggest that core bending provides a benefit to
the robot’s kinematic workspace, allowing a successful leap using shorter legs than would
be possible without core bending.

ing, the robot balanced on the foothold despite all four legs being near the edge of their

workspace, but attempts at leaping failed. Specifically, the front legs were unable to push

backwards during the leap, and any forward motion of the body moved the foothold out of

the front legs’ workspace. The result was that the robot cantilevered on the back legs and

pitched downwards, causing the front body segment to impact the ground. On the other

hand, with shorter legs and with core bending the robot successfully leaped, aided by the

increased workspace volume provided by the spine bending. The mass center trajectories

during the leaps are plotted in Figure 11. The robot achieved an average horizontal leap

distance of 0.80 m using the long legs without the spine and 0.59 m using the short legs
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with the spine. We attribute this difference to several contributing factors. First, the longer

legs provide a larger kinematic extension than the shorter legs, which directly increases the

distance they push the mass center. Second, the previous analysis indicates that the spine

successfully augments the workspace but the longer legs still provide a greater contribution

to accomplish the workspace-sensitive task. Finally, we still do not fully understand how

to apply the entire energetic contribution of the spine to the mass center using hand-tuned

leaps – a difficulty that is only compounded when leaping from a perch.

The results of the experiments in leaping from a small isolated foothold qualitatively indicate

that the core is able to increase the legs’ workspace with respect to the mass center to

accomplish a useful task. This benefit allows for the leap to be completed using shorter

legs capable of generating higher forces—as indicated by the singular values of Figure 10—

than if no spine was used. Analytically quantifying the increased workspace conferred by

the spine is confounded by the complex workspace geometry of the legs and their lack of

rotational symmetry. We can estimate this increase, however, by making the approximation

d1 = 0 for the leg kinematics shown in Figure 10 such that the linkage becomes the annulus

analyzed in Figure 8 with an inner radius r1 = d3 − d2 and outer radius r2 = d3 + d2.

Under this approximation, the longer leg linkage represents a scaling of the shorter leg

linkage by a scaling factor of 1.5. The spine can move one hip a distance d̄ = 10 cm with

respect to the center of mass, satisfying d̄ ≥ r1 for the shorter legs. Thus, the volume

for the shorter-legs-without-spine configuration is 0.25 m2, for the shorter-legs-plus-spine

configuration is 0.34 m2, and for the longer legs is 0.57 m2. The perching experiments show

that—while the volumetric benefit provided by the spine is not greater than that provided

by the longer legs—this approximately 36% increase in workspace volume provided by the

core allows successful self-manipulation on the perch. We believe that improved balance

and leap performance on isolated footholds is just one example of many possible uses of

core actuation in unstructured terrain.
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3.3. Proximal vs distal work production with direct-drive legs

The usage of back-drivable direct-drive leg actuators (as on Inu) provides proprioception

[132, 196], however this typically comes at the expense of stance work generation. Here we

show how the addition of a spine to an otherwise direct-drive platform can be more than

worth its added weight from a purely work-generation standpoint without diminishing the

leg’s proprioceptive capabilities [80].

Geared core actuation allows otherwise direct-drive machines to augment their inherently

limited ability to exert large sustained forces on the environment. Since the gearing is proxi-

mal rather than distal to the mass center, it does not diminish the leg linkages transparency

that allow sensing of environmental forces. For sufficiently high-powered operation, however,

core actuation requires the legs to operate in a non-transparent region of their workspace

near singularity as large forces generated on the ground by the core must be transmitted

through the torque-limited legs to be usefully applied to the mass center. As commented

on in Chapter 3.1, this phenomenon can occur even with substantial gearing in the legs.

Explicitly, if Fcore is the force generated by the core on a point contact with the ground

through a static leg linkage, the leg motors must apply the torque DfT (q)Fcore, where

Df(q) is the Jacobian of the leg’s forward kinematic chain and q are the leg motor-shaft

positions. For sufficiently large force magnitudes this necessitates operating the legs near

singularity, where a small singular value of Df(q) magnifies a component of the limited

motor torque so the force generated at the core can transmit through the toe. This is a

low-transparency regime of operation for the leg because external forces transferred to the

motor are diminished along the direction corresponding to the small singular value of the

linkage Jacobian. The robot, then, is able to operate in real-time in the continuum between

two modes of operation: a low-force, high-transparency mode where the motors are capable

of high-bandwidth environmental sensing, and a high-force, low-transparency mode where

the geared core is able to perform significant work on the mass center.
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To demonstrate this effect, Inu was recorded leaping on flat ground using the shorter leg

configuration of Chapter 3.2 both with and without spine bending. The energetic results

are shown in in Figure 12, calculated from the extrinsic body energy of the robot.

Figure 12: Leaping from the ground with and without spine bending using an otherwise
identical feed-forward control scheme shows that the spine motors add on average 5.7 J to
the body energy [80] (discounting the 0.5 J stored in initial spine elastic potential energy).
The body energy added is calculated by subtracting the energy at the leap height apex—
indicated by a vertical tick in the sample energetic traces shown in the right figure—from
the starting energy. These results show the spine motors add a disproportionate amount
of work (36% more) during the leap on a per-motor basis as compared with the leg motors
due to their gearing.

Leaping aided by spine bending added an average of 22.8 ± 0.5 J to the body (an average

of 22.3 J when discounting the elastic potential energy separately measured to be stored

in the spine’s fiberglass plate bending) and leaping with an identical strategy but without

bending the spine added an average of 16.6± 0.7 J to the body, 6.2 J less than with spine

bending. After discounting the elastic potential energy stored in the spine, we attribute the

34% increase in energy when using the spine to the spine motors, since they are the only

other source of work available.

The 34% increase in body energy provided by the spine motors during the ground leaping

experiments show that the spine motors add a disproportionate amount of work during the

leap on a per-motor basis as compared with the leg motors. By commanding the spine

motors to do useful work during the leap, the number of work-producing motors increased
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by 25% from 8 to 10. If the spine motors had the same energetic effect as an average leg

motor, then one could reasonably assume a 25% increase in leaping body energy by using

the spine.10 Instead, by increasing the body energy by 34%, each spine motor did 36%

more work on the mass center than the average leg motor did. This is made possible by

the spine gearing which allows the spine motors to rotate through a much greater angular

displacement than the leg motors (2.6π radians in the spine versus an average less than π

radians in the legs) while maintaining a similar torque.11

Under ideal conditions, the spine could likely perform much better. Theoretically, if the

leg motors were used to their full potential at their low-speed torque-limited regime of

operation they would each do πτ Joules of work in a leap or stride, assuming operation

at a torque limit of τ over an angular displacement of π radians. With 8 leg motors used

on a quadrupedal machine this gives 8πτ Joules of available work. Adding 2 spine motors

capable of a conservative angular displacement of 2.5π radians in the same low-speed torque-

limited regime of operation would then increase the total maximum available work in a leap

to 13πτ , a 62.5% increase in body energy in which each spine motor does 2.5 times more

work on the mass center than a leg motor. Our spine experiments saw only slightly more

than half of this theoretical increase in body energy, indicating that further efforts toward

improving the leaping controllers would be required in order to fully exploit the potential

energetic benefits of core actuation.

10This assumes that all the leg motors operate at near constant torque, which is often a reasonable assump-
tion for direct-drive legged-robot motors given their typical low-speed, torque-limited regime of operation.
In these experiments, the motor torque is limited by the power electronics’s 43 A maximum current output,
so a U8-16 motor being driven at 12 V hits the speed-torque curve and becomes power-limited when rotating
faster than 42 rad/sec. The maximum angular velocity observed on the leg motors was less than 30 rad/sec,
so the leg motors never leave their low-speed torque-limited regime of operation.

11Unlike the legs, the spine motors see speeds as high as 62 rad/sec and thus transition from being
torque-limited by the power electronics to being limited by the speed-torque curve. At such high speeds,
the maximum torque output is 76% of the maximum leg torque output. Increasing the voltage driving the
motors would diminish this torque loss. These experiments used a 3-cell battery, and were the motivation
for switching to a 4-cell battery for the experiments in later chapters.
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3.4. Doubly-reactive planning of short time-horizon transi-

tional maneuvers

Once a designer has created an agile machine, it is only natural to want to put it to use.

This section offers the beginnings of how one might utilize an agile machine to transitionally

navigate unstructured terrain. We show that we can approximate a simplified class of legged

transitional tasks such as leaping over a gap in a way that lends itself to doubly reactive

control synthesis. Our empirical implementation of the framework includes a situation

where the reactive control scheme correctly identifies the need to back up to gain a running

start so as to clear a gap, demonstrating that seemingly high-level behavioral autonomy

can be embedded into a low-level reactive control scheme [77].

In contrast to the transitional methods introduced in Chapter 1.2.3, in the following we

explore application of the reachability ideas presented in [31] and the sizable literature it

generated ( [153,176,177] to name a few) that construct controllers for discrete-time systems

to reach some target set in a minimum number of steps, a framework that intersects the

similarly longstanding tradition of pre-image backchaining in the LMT literature [83, 146,

151] as well as explicit model predictive control [3,25]. Particularly, we directly employ the

techniques of [131] which gives the complete class of minimum-time feedback laws to reach

a target set, a modified formulation of which is presented in Theorem 1, computing the

least restrictive safe controller to accomplish the control task [147], made computationally

tractable through linear dynamics with polytopic constraints. To our knowledge, such

techniques have not heretofore been used for reactive control on legged robots.

We connect this theory to legged locomotion by proposing a formal definition of a class of

transitional tasks that we term a discrete navigation problem, which consists of controlling

the state of a discrete-time control system to reach a goal set while in the interim avoiding a

set of obstacle states. Here the passage from the continuous hybrid dynamics of a physical

plant to the discrete-time system is achieved through the imposition of a suitable stance
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Figure 13: Empirical data from two experiments using the hopper introduced in Figure 15
to perform a leap across a gap obstacle subject to a continuous-time within-stance controller
that enforces the linear stance map described in Chapter 3.4.4. The first experiment – left
– uses our new scheme to suggest a degree of behavioral autonomy by forcing the robot
to back up so as to get a sufficient running start to clear the gap. The second experiment
– middle – demonstrates that simply applying a maximum forwards acceleration is not
sufficient to cross the gap. Our algorithm generates a hopping controller guaranteeing that
the abstract representation of the mass center will leap over but not cross through the
the red line segment - a coarse approximate obstacle set derived from the actual terrain
(depicted in black in the two plots on the left). The apex states of both experiments –
right – are plotted on top of the goal set of apices that will cross the gap (green), the
obstacle set of apices will fall into the gap (red), and the set of apex states that can reach
the goal in k steps for some integer k > 0 (light blue) as introduced in Chapter 3.4.2, while
the remaining white set will enter the obstacle regardless of the applied control input and
can be considered “as good as lost.” These sets are explicitly constructed in Chapter 3.4.3
and [76]. The k-step goal-reachable blue sets “funnel” into the goal set and illustrate that
reversing to get a longer running start to clear the gap is required from the robot’s starting
state.

map via an appropriate continuous-time within-stance controller. Our main contribution is

summarized in Figure 13. We empirically demonstrate the efficacy of the control relation

given in Theorem 1 implemented on a physical hopping robot affixed to a boom (controlled

in continuous time in stance to exhibit a linear stance map) for the encoding and execution

of a reactive leap over an obstacle. We formulate this task as a discrete navigation problem

such that — if a task solution exists — application of Theorem 1 is necessary and sufficient

for its solution in a minimum number of steps. The real-time deployment of this reactive

control relation is completely automated, however our understanding of how to effectively

compute it is limited to affine control systems with polyhedral obstacles, goal sets, and

40



control constraints.

3.4.1. Discrete navigation problems

We begin by defining a discrete navigation problem, an abstract notion of a transitional

task. Consider a discrete-time control system qn+1 = f(qn,un), where qn ∈ q ⊂ Rm,

un ∈ U ⊂ Rp, and the continuous map f : D ×U → D is a homeomorphism of D for each

fixed value of the second argument. We are interested in the task of controlling the state

of such system to reach a nonempty goal set G ⊂ D while in the interim avoiding a set of

obstacle states O ⊂ D where O ∩ G = ∅. We call this task a discrete navigation problem

since it is the discrete-time analogue of a continuous-time navigation problem where the

state needs to reach (but not necessarily stay in) the goal set.

To give the reader some intuition for how this task differs from a more traditional task

encoded with a limit-set goal – using an example well beyond the scope of this chapter’s

experiments – consider a running leap to grab a vine or tree branch extending over a deep

gorge so as to swing over it, where we separate the running leap to the vine from the

brachiation task of grasping and swinging from it. The goal state of the running leap might

be designated as requiring an apex state of ballistic flight to be within reaching distance of

the vine while the obstacle would be the gorge. This task differs from encoding limit sets

in that there is no notion of continuing the task indefinitely to reduce error (as missing the

vine goal set over the gorge would be catastrophic) or even remaining in the goal set for

an arbitrary amount of time. Instead, the behavior of the modeled dynamics is irrelevant

(in the encoding) after the goal is reached. In our example the forward flow would enter

the gorge obstacle after task is finished, however phenomena outside the scope of the model

take over. The vine is grasped and used to brachiate across the chasm. The brachiation

itself could be considered a discrete navigation problem which could be composed with its

predecessor.

To provide a framework for deriving a controller for this task we mathematically represent
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the discrete navigation problem as executing (if it exists) a K-step navigation plan starting

from q ∈ D ,q /∈ O ∪ G for some unspecified K ∈ N+ 12. We define a K-step navigation

plan (K ∈ N+) from q0 ∈ D ,q0 /∈ O ∪ G as the ordered pair (q̂, û) where û is the

length K control sequence û = {u0,u1, ...,uK−1},ui ∈ U such that the length (K + 1)

sequence of states q̂ = {q0,q1, ...,qK} given by the execution of the control sequence û

via qi+1 = f(f(...f(q0,u0),u1), ...,ui) has the properties (which we term admissible in the

sequel) qi /∈ O ∪ G for i ∈ {0, ...,K − 1} and qK ∈ G .

We additionally introduce the notion of a candidate K-step navigation plan to assist in the

later proofs, which we define as the ordered pair (q̂, û) that satisfies all the requirements of a

K-step navigation plan except for possibly admissibility. Once admissibility of a candidate

K-step navigation plan has been verified, it is a K-step navigation plan and we say that

it is a solution to the discrete navigation problem, where by definition a candidate K-step

navigation plan completes the discrete navigation task (is a solution) if and only if it is

admissible.

3.4.2. Reactive control for discrete navigation tasks

As shown below, there exists a reactive control relation (given in Theorem 1) that – if a

solution to the task exists – is necessary and sufficient to solve a discrete navigation problem.

Proofs of Proposition 1, Corollary 1, and Theorem 1 are provided in [76].

We inductively define the set of all states Rk for which a control action exists that first

completes the discrete navigation problem in k iterations as

Rk+1 := f−1(Rk,U ) \ (O ∪ G ), R0 := G ,

where we define f−1(S ,V ) := {q ∈ D |f(q, ū) = q̄, q̄ ∈ S , ū ∈ V } on sets S ⊂ D ,V ⊂ U ,

noting that the set R =
⋃
k Rk gives the set of all states which are able to complete the

discrete navigation problem.

12N+ denotes the positive integers.
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Proposition 1. A candidate K-step navigation plan (q̂, û) = ({q0, ...,qK}, {u0, ...,uK−1})

is admissible if and only if for every i ∈ {0, ...,K−1} it holds that qi ∈ RK−i and f(qi,ui) ∈

RK−(i+1) (proof given in [76, Section 1]).

Define the index set Iq as Iq := {i ∈ N+|q ∈ Ri}.

Corollary 1. There exists an admissible K-step navigation plan from q if and only if

K ∈ Iq. If a solution to the discrete navigation problem exists, the minimum number of

steps that it can be completed in from q is min(Iq) (proof given in [76, Section 1]).

We note that the sets Pi = {q ∈ R|i = min(Iq)} for i = 1, 2, ..., together with P0 = R0

form a partition of R, where q ∈ Pi implies that an i-step solution from q exists and that

i is the minimum number of steps that the navigation task can be solved in.

For ease of notation define Uq,k := {u ∈ U |f(q,u) ∈ Rk−1}, k ∈ N+.

Theorem 1. If a solution to the discrete navigation problem exists, then the discrete navi-

gation problem is solved in the minimum number of possible steps if and only if the following

reactive control relation is observed at every step:

u ∈


Uq,min (Iq) Iq 6= ∅,

U else,

(3.2)

where q is the state at any given iteration and u is the chosen control action at that iteration

(proof given in [76, Section 1]).

Solving the discrete navigation problem with this strategy has the practical utility that it

is reactive. It reduces the problem of forming a full navigation plan – which might need to

be re-planned in the case of state disturbance or uncertainty – to that of only choosing the

next step from wherever the current state is.

In general there is no known method for computing Rk, without which computing the

control relation is infeasible and the user is relegated to techniques such as computing
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conservative approximations of these sets [83]. Even if computing a single Rk set is possible

for a particular problem, the set of relevant Rk’s might have infinite cardinality in which

case the algorithm is not guaranteed to terminate.

However, specific cases can admit readily computable Rk sets and there are situations in

which the cardinality of the set of all relevant Rk sets is finite. We show in [76, Section

2.2] a Rk computation method for a linear form of the system dynamics with polyhedral

control constraints which is directly generalizable to affine system dynamics. Regarding

the cardinality problem, if the region of operation D is compact (for example, if the state

space is restricted to be a closed set sufficiently local to the robot) then there are problems

where – for a sufficiently large K – the set
⋃K
i=0 Ri has the property that for any j ∈ N,

Rj ⊂
⋃K
i=0 Ri, allowing the computation to terminate. Even if D is not compact, in

some applications the user is only interested in solutions that complete the task within a

maximum number of steps K (for example, if the task must be performed quickly) in which

case specifying a maximum K guarantees termination. Since transitional maneuvers are

typically local to a robot and must be performed quickly we could in theory adopt either of

these methods but for simplicity we choose to specify a maximum K in our implementation

described in Chapter 3.4.4.

3.4.3. Leaping Over an Obstacle With a Legged Hopper: Formulation as

a Transitional Discrete Navigation Problem

Here we present our method for applying the control relation of Theorem 1 to the generation

of autonomous leaping behavior in a simple sagittal-plane legged hopping model. It entails

the interaction of three distinct abstracted representations of the task, the environment,

and the robot. The terrain height and robot template [90] dynamics representative of the

physical machine are described in what we term the sagittal-hopper model. We make a

local approximation of the sagittal-hopper model called the local ballistic-approach (LBA)

approximation that gives a physically useful criterion for leaping over an obstacle in a way

that is agnostic to the particular stance dynamics at the expense of making solutions slightly
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conservative and allowing a small but well-characterized (and rarely encountered) class of

low-speed obstacle collisions as described more carefully in the third paragraph of this

section’s Local Ballistic-Approach Approximation. From this approximation we form the

task space that forms the basis of a discrete navigation problem suitable for the application

of the control relation in Theorem 1 and consists of the set of ballistic flight apex states

– subsets of which form goal and obstacle sets – along with a control apex map. The

control relation of Theorem 1 is explicitly calculated in [76, Equation 3] to complete the

leap in the task space under the simplified dynamics presented in this section. We use these

calculations as the basis for the physical experiments depicted in Figure 3.4.4.

Note that in this section we will write all set boundaries as closed to avoid the cumbersome

notation of keeping track of which set boundaries are open and closed.

Sagittal-hopper model

Consider a reduced-order point-mass sagittal-plane hopper tasked with leaping over (with-

out falling in or impacting) a simple obstacle such as a gap, wall, or ledge from relatively

flat ground. Denote the location of the hopper mass center by x = (x, y), where x is forward

position and y is vertical height. The robot locomotes over ground represented by some ter-

rain height function h(x) : R→ R. Suppose that the hopper’s template dynamics together

with the terrain height function h admit an apex map qn+1 = f(qn,un), f : R3 ×U → R3

mapping the apex state qn = (xn, yn, ẋn) ∈ R3 at the n-th step to the (n + 1)-th step

according to the control vector un ∈ U ⊂ Rm chosen at step n, where un is representative

of some member of a parametrized family of continuous stance-controllers.

We assume a single obstacle that is some user-specified or pre-sensed feature in the height

function which is encoded with p ∈ N+ closed connected line-segments which the robot

should leap over but not cross through. These line segments are individually denoted

L (xi,O1,xi,O2) in (x, y) space with endpoints xi,O1 = (xi,O1, yi,O1) and xi,O2 = (xi,O2, yi,O2),

where i ∈ {1, ..., p} and by convention we assume xi,O1 < xi,O2 lexicographically. In future
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work we hope to incorporate multiple obstacles but expect interesting issues such as deadlock

to arise where in certain states avoiding one obstacle would make another unavoidable. We

specify which direction the hopper is to cross the obstacle by the variable σ, where σ = 1 if

the hopper is tasked with traversing the obstacle forwards in x and σ = −1 if the hopper is

tasked with traversing the obstacle backwards in x. Without loss of generality, we assume

the hopper is initialized on the proper side of the obstacle so as to cross it in the direction

determined by σ.

Local Ballistic-Approach (LBA) Approximation

Passage from the sagittal-hopper model to the task space is achieved through an approx-

imation called the local ballistic-approach (LBA) approximation. The LBA approximation

uses only the ballistic apex map f and obstacle line segments L (xi,O1,xi,O2), ignoring the

terrain height and continuous hybrid dynamics except for their effect on the apex map. In

place of the actual continuous dynamics we associate with each ballistic apex state q (with

position (xq, yq) and forward velocity ẋq) the parametrized set of configurations in the (x, y)

plane over which the apex evolves under the influence of solely gravity’s acceleration g as

given by φα(q) ≡ φ(q, α) = (x+ ẋα, y − g
2α

2)T where φ : R3 × R→ R2. Such an evolution

gives rise to an orbit M (q) := {(x, y) ∈ R2|(x, y)T = φα(q), α ∈ R}. We write the orbit

as a function of x via y = fq(x) = yq − g
2

(
x−xq
ẋq

)2
or as a function of y for y ≤ yq via the

components x = g−q (y) = xq − ẋq
√

2
g (yq − y) and x = g+

q (y) = xq + ẋq
√

2
g (yq − y), where

g−q corresponds to the time leading up to apex and g+
q to the time subsequent to apex.

In this approximation we deem apex states whose ballistic evolutions pass over the obstacle

line segments in the correct direction as determined by σ as completing the task and ballistic

evolutions that pass through any of the obstacle line segments as immediately failing the

task. More precisely, we define the set of apex states q completing the task as those with

sign(ẋ) = σ whose hypograph of fq contains the line segment endpoints of L (xi,O1,xi,O2)

for all i ∈ {1, ..., p}. We define the set of apex states q immediately failing the task by those
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having the property that, for some i ∈ {1, ..., p}, the hypograph of g−q or g+
q contains one

endpoint of L (xi,O1,xi,O2) and the the epigraph of the same function contains the other

endpoint. In this abstracted representation of the environment there is no accounting for

stance interactions with the obstacle. Settings requiring perfect safety guarantees could

only tolerate this simplification at the expense of dilating the obstacle diameter by the

hopper’s maximal shank length - a badly conservative excess. Instead, we adjoin to the

set of “failing” apex states all those whose (if σ = 1) hypograph of g−q contain any of the

obstacle endpoints or (if σ = −1) epigraph of g−q contain any of the obstacle endpoints so as

to not let the state begin stance before the obstacle in x and end stance after the obstacle

in x. These sets are graphically shown in Figure 14.

The reason for making the LBA approximation is because it provides a convenient method

of approximating task success or failure from the ballistic apex state in a way that is

agnostic to both the continuous stance dynamics and local characteristics of the terrain

height function h. This generality comes at the price of (a) labeling some trajectories

which complete the task in the sagittal-hopper model as failing in the LBA approximation,

and (b) labeling some trajectories which fail the task in the sagittal-hopper model as not

failing in the LBA approximation. Specifically, solutions in the sagittal-hopper model with

ballistic apex q which complete the task but which transition from stance to flight directly

above an obstacle line segment can be labeled in the LBA approximation as failing the

task if M (q) intersects the line segment despite the state never doing so in the sagittal-

hopper model. Additionally, trajectories in the sagittal-hopper model which pass through

an obstacle line segment a nonzero even number of times in stance will be not counted as

immediately failing the task in the LBA approximation. We expect such violations to be at

low kinetic energies because they require a direction reversal13 close to the obstacle and so

we assume the robot structure can tolerate such collisions. In simulation we have observed

such violations when the robot is initialized very close to and slowly moving towards an

13We believe that one of the fundamental constraints of legged robot technology is limited actuation power,
implying a limited affordance to change kinetic energy over the course of a stride.
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Figure 14: Illustration of the problem setup given in Chapter 3.4.3. The sagittal-plane
model in the upper left includes the terrain height (black) and the user-encoded or pre-sensed
obstacle (red) that the mass center (green dot) should leap over in some pre-specified direc-
tion but not pass through. Here the line segment was user-specified to span the horizontal
width of the physical obstacle and to vertically extend beyond the physical obstacle by the
length of the hopper’s leg so as to allow room for the hopper’s leg to clear the physical obsta-
cle in flight. Note that the obstacle can include multiple line segments to better “contour”
the obstacle but a single line segment is used in this work for simplicity. Notional robot
trajectories are given in blue. The local ballistic-approach (LBA) approximation of the
sagittal-plane model in the lower left provides a convenient method of approximating task
success or failure from only the ballistic apex state and obstacle line segments, associating
with each ballistic apex state the parametrized set of configurations over which the apex
evolves solely under the influence of gravity. The task space slice on the right shows the goal
set (green) of apex states whose LBA evolution passes over the obstacle line segment and
the obstacle set (red) of apex states whose LBA evolution parabola either passes through
the obstacle line segment or is past the obstacle. For example, the apex state 1 passes over
the obstacle in the LBA approximation so it is in the goal set. The apex state 2 will hit the
obstacle in the LBA approximation so is in the obstacle set. The apex state 3 has already
passed the obstacle so it is also in the obstacle set. The apex state 4 is before the obstacle
and will neither pass over nor through the obstacle in the LBA approximation and therefore
isn’t in the goal or obstacle set.

obstacle. Thus this formulation is best suited for use in uncluttered environments where

the obstacles are not extremely close to each other so that after navigating one obstacle the

robot will not initialize itself adjacent to the next obstacle.

48



Task Space

The task space is composed of the set of ballistic apex states – which evolve according to

the dynamics of the control apex map f – together with a goal set and obstacle set. For

simplicity in this work we restrict the set of apex heights under consideration to be those

that are higher than the obstacle height, i.e. y > max(yi,O1, yi,O2)∀i ∈ {1, ..., p}, so that

g−q and g+
q are well-defined (if the robot starts below this threshold height we assume it is

able to safely leap to above this threshold on the next leap). Let the goal set G be the set

of apex states which complete the leaping task according to the LBA approximation and

similarly let the obstacle set O be the set of apex states which immediately fail the leaping

task. Explicitly, they are given by:14

G =


(x, ẋ, y) ∈ R3|∀i ∈ {1, ..., p} :



1 σ
√

2
g (y − yi,O1)

−1 σ
√

2
g (y − yi,O1)

1 σ
√

2
g (y − yi,O2)

−1 σ
√

2
g (y − yi,O2)


x
ẋ

 >

xi,O1

−xi,O1

xi,O2

−xi,O2




,

and

Oi =
{

(x, ẋ, y) ∈ R3|
 1

√
2
g (y − yi,O1)

−1 −
√

2
g (y − yi,O2)


x
ẋ

 ≥
 xi,O1

−xi,O2


∨


−1 −

√
2
g (y − yi,O1)

1
√

2
g (y − yi,O2)


x
ẋ

 ≥
−xi,O1

xi,O2


∨


−1

√
2
g (y − yi,O1)

1 −
√

2
g (y − yi,O2)


x
ẋ

 ≥
−xi,O1

xi,O2


∨


 1 −

√
2
g (y − yi,O1)

−1
√

2
g (y − yi,O2)


x
ẋ

 ≥
 xi,O1

−xi,O2


∨

[σ −σ
√

2
g (y − yi,O1)

]x
ẋ

 ≥ σxi,O1

∨
[σ −σ

√
2
g (y − yi,O2)

]x
ẋ

 ≥ σxi,O2

},
where O = ∪pi=1Oi, and where σ = 1 if the obstacle is to be traversed forwards in x and

σ = −1 if the obstacle is to be traversed backwards in x. We note that for a constant

y, G and Oi become polyhedra, a fact we use in the following section. When holding y

14These sets are calculated by solving the inequalities resulting from the hypograph/epigraph of fq, g
−
q , or

g−q containing obstacle line segment endpoints, as explained in this section’s Local Ballistic-Approach (LBA)
Approximation.
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constant, the goal set is described by four halfspace constraints for a given obstacle line

segment. The first two halfspace constraints of the goal set require that M (q) pass over

xi,O1 while the second two require that M (q) pass over xi,O2. The obstacle set is described

by six polyhedra for a fixed y. The first four obstacle set polyhedra correspond to φα(q)

intersecting L (xi,O1,xi,O2). There are four to account for the cases of intersections through

either direction of L (xi,O1,xi,O2) and for intersecting with positive or negative values of

α in φα(q). The point 2 in Figure 14 gives an example of such a case. The last two

polyhedra encode states whose evolution φα(q) with negative α pass under either of the

obstacle endpoints to account for all apex states that have already passed the obstacle. The

point 3 in Figure 14 gives an example of such a case.

Restriction to Linear Apex Map and Polyhedra Goal and Obstacles in Sagittal-

Hopper Model

We restrict our attention to a linear form of the apex map f predicated on the desire for

iterated dynamics simple enough for analysis but complex enough to give physically relevant

sagittal-plane behavior. To achieve such a map, we prescribe our point-mass hopper model

a constant stance time uT during which we apply an average horizontal stance acceleration

uẍ on the mass center – where uẍ is constrained to a closed interval containing zero –

and some vertical force to achieve the (artificially imposed) constant ballistic flight apex

height yn = y. For simplicity we require that the beginning of stance occur when the point

mass drops below a height of yTD and that the hopper lift off from stance into flight at

this height as well. While these assumptions (mainly the assumption of a constant apex

height) severely restricts the behavior of the template, they still yield a reduced-order model

capable of relevant sagittal plane behaviors such as hopping over gaps and onto ledges from

a running start. These restrictions also endow the apex map with a linear form, making

it suitable for the linear programming computations given in [76, Section 2]. We hope in

future work to investigate restricted dynamics with more expressive behaviors that are also

simple enough to be used with a similar algorithm.

50



Let u = uẍ ∈ U = [uẍ,min, uẍ,max] ⊂ R. We treat the constant apex height y and constant

touchdown/liftoff height yTD as parameters, along with the vertical acceleration due to

gravity g. The linear controlled apex map qn+1 = f(qn,un) of such a system is given by:

xn+1 = xn + uT ẋn + (2ẋn + uẍ,nuT )

√
2

g
(y − yTD) +

(
u2
T

2

)
uẍ,n, (3.3)

yn+1 = y

ẋn+1 = ẋn + uẍ,nuT ,

While many continuous stance dynamics could satisfy such an apex map, they can be as

simple as applying a constant horizontal force and piecewise constant vertical force in stance

for a time duration uT to satisfy the desired forwards acceleration and vertical apex height.

3.4.4. Experimental results

A series of running leap experiments using a robotic hopper on a boom were performed to

demonstrate the utility of the control relation given in Theorem 1 under the linear dynamics

assumption at the end of Chapter 3.4.3.

The hopper, shown in Figure 15, consists of a two degree-of-freedom 3.2 kg leg fixed to a

circular boom, constrained to allow translation but not rotation in the sagittal plane. The

hopper leg is a parallel five-bar mechanism [132] actuated by two T-Motor U10-Plus 80 KV

motors15 using Ghost Robotics motor controllers.16 An STM-32 F303VC micro-controller17

performs the control algorithm and sends commands to the motor controllers at 1 kHz.18

The only sensors used by the machine are encoders at the motor shafts to sense the leg

kinematics and two encoders on the boom that sense the polar angle of the boom (used to

calculate forward distance in the sagittal plane) as well as the azimuth angle of the boom

(used to calculate the vertical height in the sagittal plane). No sensing of the obstacle is

15
http://store-en.tmotor.com/goods.php?id=362

16
https://www.ghostrobotics.io/

17
http://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-mcus.html?querycriteria=productId=

SC1169
18The computations of [76] are not constrained to a 1 kHz update rate and are only computed once per

stride.
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necessary as its location is preprogrammed into the algorithm, although future work will

involve its sensing. An off-board 4-cell lithium polymer battery was used to power the

hopper.

Figure 15: The legged hopper (a) is used to empirically demonstrate the utility of the
control relation given in Theorem 1 on a microcontroller to perform a leaping maneuver
with a running start. The fully actuated two degree-of-freedom legs allow the command of
arbitrary-direction sagittal-plane stance forces so as to anchor the linear apex map template
model given in (3.3) for use in the experiments. The experimental setup (b) shows the
hopper constrained to the sagittal plane by a boom in front of the gap obstacle consisting
of pink tape.

The template dynamics given in (3.3) were achieved in stance by applying a constant feed-

forward horizontal force uẍ, a feed-forward piecewise constant vertical force to achieve the

desired deadbeat apex height y, and limiting the stance duration time to uT . Simple pro-

portional derivative control was used as feedback to track the stance trajectory expected

from the feed-forward signals. This anchoring [90] was achieved by mapping force com-

mands to torque commands through the inverse transpose of the kinematic Jacobian, and

saturating the infinity norm of the required torque according to the motor’s torque limits.

A singularity-avoidance controller that applies increasing amounts of torque as the leg ap-

proaches a singular configuration guarantees that the leg won’t travel through a kinematic

singularity during stance. We demonstrate the efficacy of this anchoring on the hopper at

low speeds in Figure 16 and high speeds in Figure 17, although we save an in-depth de-

scription and experimental statistical analysis for future work on the more interesting case
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of a free-running untethered robot.

Figure 16: Boom encoder readings and motor commands (black) from 30 runs of experi-
ments of lower-speed hopper strides, superimposed with the desired trajectory of the robot
(red), show that at slower speeds the linear apex-map template of (3.3) is approximately
achieved – as indicated by the correspondence of the desired and actual trajectories at the
apex events occurring at times 0 and 0.7 seconds. However, work remains to improve the
in-stance anchoring as indicated by the y-trace in which a variety of undesired phenomena
are evident as discussed in Chapter 3.4.4. Note that the blue background indicates stance
while the green background indicates ballistic flight. The data has been shifted in x so
that every run starts from x = 0 as well as in time so that detected stance onset occurs
simultaneously in every run.

Figure 16 shows 30 instances of anchoring a low-speed stride on the hopper. The corre-

spondence of the desired and actual trajectories at the apex events indicate that the linear

apex-map template of (3.3) is approximately achieved, however work remains to improve

the in-stance anchoring as indicated by the the y-trace in which a variety of undesired phe-

nomena are evident. We believe that the larger-than-expected vertical acceleration early

in stance is due to the effect of a singularity avoidance controller activating as the leg ap-

proaches the edge of its workspace. We are also unclear exactly as to why the correct apex

is achieved despite liftoff occurring at too great a height but suspect that some friction-like

effect from the boom is responsible. For now we allow these effects to roughly cancel each

other out but they deserve a more careful treatment in future work when we implement

this controller on an untethered robot unhindered by the dynamics of the boom.

Figure 17 shows 28 runs of attempting to anchor a higher-speed stride on the hopper,
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Figure 17: Boom encoder readings and motor-commands (black) from 28 runs of ex-
periments of higher-speed hopper strides, superimposed with the desired trajectory of the
robot (red), show that at higher speeds the hopper is unable to anchor the linear apex-map
template of (3.3). This appears to be due to the fact that at higher speeds the kinematic
configuration of the leg is such that, in the second half of stance, one of the two motors is
saturated and the other one is doing almost no work as shown in the motor plots on the
right as discussed in Chapter 3.4.4. Note that at these higher speeds the boom dynamics
become more pronounced; ringing oscillations are evident in both the forward and vertical
velocity traces later in the stride.

demonstrating that at higher speeds the hopper is unable to anchor the linear apex-map

template of (3.3). This appears to be due to the fact that at higher speeds the kinematic

configuration of the leg is such that in the second half of stance one of the two motors is

saturated and the other one is doing almost no work, as shown in the motor plots on the

right. This manifests itself in a sharp drop-off in vertical velocity in the second half of stance

so that the hopper is unable to generate enough liftoff velocity to attain the commanded apex

height, indicating that the implementation of this algorithm on an untethered robot would

benefit from a leg configuration that more evenly shares the burden of the motor affordance

while running, bearing in mind that the requirement that the motor-leg kinematics be

designed to support this class of templates will likely decrease the performance of some

other task.
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Figure 18: Experimental results of the robotic hopper introduced in Figure 15 using the
control relation of Theorem 1 to reactively leap over various obstacles from a running start.
Row (a) depicts 15 instances of the hopper leaping onto a ledge immediately preceded by
a gap from various initial conditions, (b) depicts 6 instances of leaping over a simple gap
obstacle, and (c) depicts 5 instances of leaping over a hurdle obstacle. The right column
of the figure shows the sagittal-plane representation of the environment with the terrain
depicted in black and an example controlled robot trajectory from the experiments in blue,
smoothed to filter out measurement noise. The yellow trajectory demonstrates failure when
the robot simply accelerates at maximum. The red line segment is the encoded obstacle to
be avoided by the mass-center. This line segment was user-specified to span the horizontal
width of the physical obstacle and to vertically extend beyond the physical obstacle by the
length of the hopper’s leg so as to allow room for the hopper’s leg to clear the physical
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obstacle in flight. Future work will seek to automate this obstacle detection process from
sensor data such as LiDAR readings. The left column of the figure shows the apex-state
representation of the leaping task where the robot’s apex trajectory is depicted by dark
blue dots sequentially connected by dark blue lines. The set of apex states which result in
immediately passing through the obstacle as-per the approximations of Chapter 3.4.3 are
shown in red and comprise the obstacle set O, while the set of apex states which pass over
the obstacle are shown in green and comprise the goal set G . The lighter blue sets represent
the set of states Rk which can reach the goal in k steps and which “funnel” into G , while
the remaining white area is the set of apex states which flow into O regardless of the applied
control input.

We implement the algorithm on-board the robot by computing the Rk sets up to a k of

20 when the robot initializes and then using the estimated apex state to calculate the

control relation Uq,min (Iq) via [76, Equation 3] once per stride. The hopper then chooses

the forward acceleration uẍ that is both consistent with the control relation and maximizes

the distance of the next apex state to the boundary of the relevant Rk set containing it,

achieving a degree of robustness in an informal sense that is elaborated on in [76, Section

3] . The obstacle location (represented by features in the black line-segment terrain in

the right-hand-side column of Figure 3.4.4) is known a-priori to the control algorithm and

encoded in the sagittal-hopper model using a single line segment (represented by the red

line segments in the right-hand-side column of Figure 3.4.4), which is user-specified to span

the horizontal width of the physical obstacle and to vertically extend beyond the physical

obstacle by the length of the hopper’s leg so as to allow room for the hopper’s leg to clear

the physical obstacle in flight. Future work will seek to automate this obstacle detection

process from sensor data such as LiDAR readings.

Three experiments were performed to demonstrate the applicability of Theorem 1 to a

physical machine using embedded hardware. In the first, the hopper is commanded to

repeatedly leap over a ledge with a gap in front of it from various initial conditions to

demonstrate repeatability. In the second and third, the hopper was commanded to cross

other types of obstacles (a hurdle and a simple gap) to showcase a few of the different
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obstacle types that can be traversed and give a sense of their corresponding sets G and O.

In each case the hopping apex height y was set to 0.65 m, the touchdown and liftoff height

yTD was set to 0.32 m, the stance time uT was set to 200 ms, and the forward acceleration

was limited to the modest uẍ,max = −uẍ,min = 0.5 m/s2 due actuator saturation constraints.

The results of the experiments are shown in Figure 3.4.4. Figure 3.4.4(a) depicts 15 runs of

the hopper leaping onto a ledge immediately preceded by a gap, and demonstrates that the

task can be repeatedly completed from various initial conditions. Figure 3.4.4(b) depicts

5 runs of the hopper leaping over a simple gap obstacle, and Figure 3.4.4(c) depicts 6

runs of the hopper leaping over a hurdle obstacle. The variation in apex trajectories from

similar initial conditions indicates our anchoring scheme of the linear apex dynamics given

in (3.3) remains to be improved (as depicted in Figures 16 and 17), however the task is still

completed.

An additional experiment is shown in Figure 13 which demonstrates a degree of behavioral

autonomy which this reactive control relation can provide. In this set of experiments the

maximum acceleration was set to uẍ,max = −uẍ,min = 1.0 m/s2. The robot is initialized

too close to a gap to directly leap over it and – when using the proposed control scheme –

reverses to gain enough of a running start to clear the gap. Without this direction reversal

(when simply accelerating forwards at uẍ,max) the robot is observed falling into the gap.

Conclusions and Future Work

We propose the notion of a discrete navigation problem – consisting of controlling the state

of a discrete-time control system to reach a goal set while in the interim avoiding a set of

obstacle states – to approximate a class of tasks useful for legged robotic applications such

as leaping. We demonstrated the efficacy of the control relation given in Theorem 1, which

is (assuming a task solution exists) necessary and sufficient to solve a discrete navigation

problem in a minimum number of steps, on a physical hopping robot affixed to a boom

to reactively leap over an obstacle with a running start, controlling the continuous stance
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dynamics to exhibit a linear stance map.

Future work should focus on implementing this algorithm on a pronking quadruped robot

autonomously sensing obstacles with LiDAR. We also plan to apply this algorithm to multi-

ple sequential obstacles in an “obstacle course”-like environment which we expect will raise

interesting issues such as avoiding deadlock. Finally, we hope to be able to make formal

claims on forming various control laws from the proposed control relation as it relates to cri-

teria such as robustness and aggressiveness now that we have an exact representation of the

solution space of discrete navigation problems as opposed to a conservative representation

of it.

3.5. Appendix to Chapter 3: Energy and Power Density for

Legged EM Actuators

Assuming that EM motors produce a magnetic field of uniform density, the motor creates

force by having this field interact with permanent magnets. This interaction occurs over

some area (the air gap) and so is proportional to l2, where l is the characteristic length.

Assuming that the motor does work by rotating through a fixed angle, the transformed

displacement through a leg of arbitrary geometry will scale according to l. The energy

produced by the motor (the work done) is therefore proportional to l3, so for constant

density, specific energy is scale invariant.

Power density scaling is originally presented in [192] pages 176-181, but will be reworked

below with more detailed scaling analysis. Assuming energy density is mass-invariant in an

actuator, the power density scaling will be considered for a hopping task. Neglecting air

resistance the apex height will be constant, and so it follows that the liftoff velocity, vf , will

also be constant. Assuming the system starts crouched at rest, the leg must go through a

fixed extension, l, and accelerate the body to vf . Assuming constant acceleration, a, vf = at

and l = 1
2at

2 where t is the time the system is in contact with the ground. Substituting for

a, l = 1
2vf t. Since vf is constant, t scales according to l. Given constant energy density,
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power density then scales according to l−1. This means that for specific energy to remain

performance limiting, specific power must scale according to l−1. We note that this is in

sharp contrast to [148] where specific power scales according to l0.5 in support of maintaining

dynamic similarity with respect to the pendulous motion of a swinging body characteristic

of certain animal climbers [96].
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CHAPTER 4

Bounding with a locked back

The utility of bounding in the sagittal-plane with a spine must be compared to bounding in

the sagittal-plane with a locked back, a behavior for which there remains a dearth of formal

results. This chapter presents a controlled reduced-order hybrid dynamical system with a

limit cycle that has well-understood stability properties and that well-approximates locked-

backed bounding in the sagittal plane with physical hardware. This chapter begins with a

background on cascade compositions and hybrid transition control in Chapter 4.1. Chapter

4.2 introduces a simplified hybrid dynamical systems model (4.3) representing a bounding

quadruped, with a rigid-bar body and massless legs that exert ground-reaction forces at the

toes. Ground reaction force laws and hybrid transition behaviors are specified that make

the dynamics a cascaded composition of two hybrid dynamical system modules. Simplifying

assumptions (shown in Chapter 4.3 to be approximately valid) give these modules trivial

dynamics. Chapter 4.3 formulates a stride map for a bounding gait, and factors it into a

more easily analyzable half-stride map. A fixed point representing a hybrid periodic orbit

is found, and its properties are examined. Chapter 4.4 formulates control on the hybrid

transitions to make the aforementioned periodic orbit an attracting limit cycle. Control

weights are chosen so that the stride map representing the orbit is infinitesimally deadbeat.

Chapter 4.5 details the empirical instantiation of the controlled model on the Inu robot.

Experimental results indicate reasonably close correspondence to the theoretically predicted

behavior of the simplified model. Chapter 4.6 provides a brief discussion about the ideas

in the chapter, and Chapter 4.7 provides concluding remarks. Proofs and a full stability

analysis are given in the appendices. A table of symbols is provided in Tables 2 and 3.

The modular nature of this approach leads us to believe that it can be used to assist in
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describing running with a spine, the beginnings of which are done in Chapter 5.4.19

4.1. Background

Legged robots exhibit increasingly successful steady-state [1, 114] and transitional [1, 164,

208] behaviors, yet they remain scarce in real-world applications. One challenge impeding

their widespread adoption is the difficulty of developing parametrized families of controllers

that work over identifiable ranges of body and environmental parameters. Today’s most

successful gait control methods for high degree of freedom legged machines generally appeal

to numerical optimization [62,113,138], yielding increasingly impressive controls for specific

mechanisms at specific operating conditions in specific environments. Achieving stable gait

controllers with functional dependence on task and environment parameters that specify

the operating characteristics of useful legged machines is fundamentally hard, owing to the

non-integrability of their high dimensional nonlinear hybrid dynamics. Prior results of this

nature are rare even for three degree-of-freedom mechanisms [8, 50, 66]. The authors are

not aware of any complete stability result for three or higher degree-of-freedom models of

quadrupedal locomotion (where the various appendages do not connect to the body at a

common point in the simplified model).

This paper presents a parametrized family of controllers that stabilize a hybrid dynamical

systems model of quadrupedal bounding arising from a simple three degree-of-freedom sagit-

tal plane representation of a legged robot. The stability guarantees extend over a specified

range of variations in body mass, length, and moment of inertia that dictate the achievable

range of commanded forward running speeds and thereby, in turn, the full set of controller

parameters. These formal results arise from key approximations and a controller structure

that exploits them to afford a decomposition of the full model into the cascade of a two

degree-of-freedom in-place bounding component forward-coupled to drive a one degree-of-

freedom fore-aft component. This model and the resulting controller are simple in the sense

19This chapter has been submitted for publication. An extended version of the submission is available in
technical report form as [78].
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that they encode ground-reaction force laws resulting in trivial continuous body dynamics

and they achieve the family of asymptotically stable limit cycles representing the desired

steady state gait using proportional control on the hybrid transitions. Nevertheless, the

model is sufficiently faithful and the controller is sufficiently robust as to permit empirical

implementation over many repeated trials (accumulating hundreds of body lengths) on a

physical robot, Inu [80].

4.1.1. Cascade Compositions

The use of simplified models for the control of legged running has a rich history of em-

pirical [9, 163, 175] and analytical [169, 204, 218] success. We are particularly interested in

modular approaches that can offer an analytically tractable path to formal results, as they

decouple the stability problem into a composition of lower-dimensional subproblems. For

example, “parallel composition” – approximation in terms of modules operating simulta-

neously in isolation – was pioneered with great success empirically by Raibert [175], and

has been formally redeveloped in recent years for bipedal [66], quadrupedal [67], and more

general [68] legged systems. While empirically very effective, this recent formal analysis

of legged parallel composition uses the framework of hybrid dynamical averaging [69] re-

quiring not only that the neglected “crosstalk” between modules be sufficiently small but

that potentially deleterious components (that cannot be averaged away) be identified and

compensated by feedback.

In this paper, we introduce a cascade composition (4.1) to control quadrupedal bounding,

which – in contrast to parallel compositions – allows for arbitrarily large feed-forward signals

from one module to another cascaded module. From the analytical perspective, the cascade

also achieves an eigenvalue separation property in the stride-map Jacobian that guarantees

local stability of coupled modules so long as they are stable in isolation, providing a sep-

aration of concerns to the designer. Cascade compositions have long been used to reduce

the complexity of adding dimensionality both in continuous-time systems [202, 211] and

iterated maps [139]. However – to the best of our knowledge – their formal consideration
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for simplified models of dynamic quadrupedal locomotion has only been used to “extract”

away fast actuator dynamics [39] or for similar situations with multiple timescales [127] that

reduce to feed-forward cascades in Fenichel normal form [81].

We say an iterated map P : Rn × Rm → Rn × Rm is a cascade composition if it is of the

form:

P (x, y) =

 P1(x)

P2(x, y)

 , (4.1)

where x ∈ Rn, y ∈ Rm, P1 : Rn → Rn, P2 : Rn × Rm → Rm. Such a system has the

block-triangular Jacobian:

DP =

DxP1 0

DxP2 DyP2

 , (4.2)

in which the eigenvalues of DP consist of the eigenvalues of the smaller (n × n) matrix

DxP1 and (m×m) matrix DyP2. The task of showing that the spectral radius of DP has

modulus less than unity for a linearized stability analysis then reduces to establishing the

same property individually for the smaller constituent matrices, DxP1 and DyP2, generally

a much easier task.

4.1.2. Controlling on Hybrid Transitions

The long practiced tradition of achieving control through shaping a hybrid dynamical sys-

tem’s guards and resets (the hybrid transitions) has been used since the earliest days of em-

pirically successful dynamical robots when Raibert used the fact that a robot leg’s angle in

flight could be freely set to affect touchdown conditions and thereby control forward running

speed [175] (inspiring many similarly conceived subsequent speed controllers [67,169,193]).

This insight was generalized by Seyfarth [198], initiating a “swing-leg retraction” literature

(e.g. [108,130]) that occasioned two fundamental observations that bear on our work. First,

minimally sensed stabilization is not only achievable (demonstrated numerically [199] and
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analytically [94]) by control on hybrid transitions, but can afford deadbeat performance20

as well with only a bit more sensing. Specifically, as shown numerically [222] and analyti-

cally [59], proper feed-forward servoing of sagittal leg angle in flight affords control over the

apex height with no sensing required other than the detection of the apex and touchdown

events, even when running over uneven terrain. Second, the implicit function theorem pro-

vides sufficient conditions for the existence of deadbeat control given a sufficiently expressive

input vector using full state feedback [48]. Studies in humans [38] and birds [35,63,64] doc-

ument some combination of feed-forward and feedback hybrid transition control strategies

during biological running, further motivating their study for roboticists.

Previous results on hybrid transition control (particularly the deadbeat literature) are lim-

ited in several ways. The majority of results are limited to simulation and the recent

preliminary experimental work in this area [150, 224] suggest performance is very sensitive

to state estimation error or perhaps model parametric uncertainty, conceivably limiting the

application of deadbeat results to robots in controlled environments such as motion capture

feedback systems. Even methods requiring no sensing aside from the detection of apex

suffer from the fact that the apex event is difficult to precisely detect in practice without

motion capture data.

Noting that previous work controlling hybrid transitions in legged locomotion has been

limited to varying the flight leg angle, we take inspiration from Blickhan’s studies indicating

that humans vary both their leg angle and leg length in flight to affect touchdown conditions

[99, 160] and expand consideration of hybrid transition control to vary flight leg angle and

length. We also allow our hybrid transition controller to affect liftoff conditions. In these

ways, we more fully leverage the affordance inherently provided by making and breaking

contact in sagittal running. Moreover, aiming for greater robustness and avoiding the need

to detect the apex event, we forgo deadbeat control for a linearized version of it and also

use a combination of feed-forward and feedback control – only using feedback on states that

20Here, deadbeat control refers to a strategy resulting in exact correction to perturbations in a finite
(typically minimum) number of steps [48].
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can be accurately measured on-board the robot.

Symbol Description

H := (J , T ,D,F ,G ,R) Hybrid system (4.3), (4.5), (4.6), (4.13), (4.17),
(4.18)

F,D,R Hybrid modes (4.4)
Di, Gi,j , Ri,j , Fi Mode domains (4.7), guards (4.17), (4.24),

resets (4.19), (4.29) and vector fields (4.14)
t Time
y, ϕ, τ Mass-center height, body pitch, mode

timer (4.10), Figure 19
x, xf , xr Mass-center and front/rear toe horizontal

positions (4.11), Figure 19
∆xf = xf − x, ∆xr = xr − x Front and rear horizontal leg-splay distance (4.11),

(4.12), measured from the mass-center

xi := (xI
i
T
,xH

i
T

)T State (4.9) in mode i, with in-place (4.10) and
horizontal (4.11) components

xI := (qI , q̇I , τ)T , qI := (y, ϕ)T In-place state, configuration (4.10)
m, I, g, d Physical model parameters (Figure 19)
∆xAvg, a, l0 Pseudo-physical parameters related to control

parameters (4.22), (4.23), (4.25), (also Figure 19)
GI
i,j In-place components of the guard set (4.24), (4.25)

yfhip(xI ), yrhip(xI ), ẏfhip(xI ), ẏrhip(xI ) Front/rear hip heights and velocity maps (4.28)
gTD(xI

F), gLO(xI
D) Guard “control” functions for touchdown, liftoff

events (4.25), (4.57)

kI = (kI
F
T
,kI

D
T

)T In-place guard control weights (4.25)
yfhip

i0
(xI ), yrhip

i0
(xI ) Front and rear initial hip height in mode i (4.58)

b, bI , bH “Bounding” symmetry map (4.40), with
in-place (4.26) and horizontal (4.32) components

LfV (x) := ∂
∂xV (x) · f(x) Lie derivative (4.27) of scalar field V along vector

field f at point x
RI
i,j , R

H
i,j In-place (4.30), horizontal (4.31) reset function

components
rF,D(xH

F ), rD,R(xH
D ) Reset “control” functions (4.31), (4.62)

kH := (kHF , k
H
D,1, k

H
D,2)T ∈ R3 Reset control weights (4.63)

Table 2: Main symbols, part I used in this work with reference to their equations of
introduction
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Symbol Description

∆xNom Nominal touchdown leg splay for front leg (4.31)
ȳ Mass-center constant-height approximation value

(Approximation 1)
uy ∈ (g2 , g), uxi(x) Vertical (4.16), (4.20), (4.33), horizontal (4.16),

(4.21) (mass-specific) force from each hip

φti(x
I ), φ̂ti(x

H ) In-place (4.34), horizontal (4.35) mode-i flow
ci (y, ϕ) simplified acceleration vector for

mode i (4.34)
CF, CD, CR Matrix components used in the description

of φ̂ti(x
H ) (4.35)

Φi,j , ΦI
i,j , ΦH

i,j Mode map (4.37) from mode i to j, with in-place,

horizontal components (4.38)
T I
i,j(x

I ) Mode i time-to-impact map (4.39) with guard GI
i,j

D̃i := D̃I
i × D̃H

i Reduced domain for stride map with horizontal,
in-place components (4.41)

x̃ := (x̃I T , x̃H T
)T Reduced (stride map) state with in-place and

horizontal components (4.42)
Π(x),Σ(x̃) Projection and lift maps (4.43)

ΠI (xI ), ΣI (x̃I ), ΠH (xH ), ΣH (x̃H ) In-place, horizontal projection and lift maps (4.43)
S,H Stride (4.44) and “flipped” half-stride (4.46) maps˜̄x = (˜̄xI T , ˜̄xH T

)T ∈ D̃F Fixed point of H (4.47)

∆̄xf , ∆̄xr Leg splay components of ˜̄xH
(4.49)

T̄Stance, δx̄Stance Total hip stance duration (4.53) and leg sweep
distance (4.54) on the hybrid periodic orbit

associated with ˜̄xH

x̄ = Σ(˜̄x) ∈ DF Lift of ˜̄x (4.59)
T̄i,j , x̄

I
i0,j Mode i’s duration (4.51) and initial state (4.60)

as it evolves into mode j under the hybrid
execution from x̄I

V I ,ΛI , AI , dI , RI , T I Matrices/vectors used in Lemma 2 (4.77), (4.78)

b̃I , DΦ̃I
i,j Simplified factors of H ’s in-place component (4.72)

k̃
I

F, k̃
I

D Change of variables for kI
F, kI

D (4.73)

AH , dH , RH := (dH , AHdH ) Matrices/vectors used in Lemma 3 (4.84)

Table 3: Main symbols, part II used in this work with reference to their equations of
introduction

4.1.3. Outline

Chapter 4.2 introduces a simplified hybrid dynamical systems model (4.3) representing a

bounding quadruped, with a rigid-bar body and massless legs that exert ground-reaction
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forces at the toes. Ground reaction force laws and hybrid transition behaviors are specified

that make the dynamics a cascaded composition of two hybrid dynamical system modules.

Simplifying assumptions (shown in Chapter 4.3 to be approximately valid) give these mod-

ules trivial dynamics. Chapter 4.3 formulates a stride map for a bounding gait, and factors

it into a more easily analyzable half-stride map. A fixed point representing a hybrid periodic

orbit is found in Proposition 2, and its properties are examined. Chapter 4.4 formulates

control on the hybrid transitions to make the aforementioned periodic orbit an attracting

limit cycle. Control weights are chosen in Proposition 3 so that the stride map represent-

ing the orbit is infinitesimally deadbeat. Chapter 4.5 details the empirical instantiation

of the controlled model on the Inu robot. Experimental results indicate reasonably close

correspondence to the theoretically predicted behavior of the simplified model. Chapter

4.6 provides a brief discussion about the ideas in the paper, and Chapter 4.7 provides con-

cluding remarks. Proofs and lemmas are given in the appendices. A table of symbols is

provided in Tables 2 and 3.

4.2. Model

This section introduces the simplified model shown in Figure 19 of a quadrupedal robot

bounding in the sagittal-plane. The model consists of a rigid bar representing a robot

body with massless legs protruding from the hips that are able to generate ground-reaction

forces at the toes. This basic model has been used to describe sagittal quadrupeds since

Raibert’s work [175, p. 139], typically using torques and radial forces generated at the hips

(equivalent to ours through a change of coordinates). It has been used more recently with

commanded Cartesian ground-reaction forces to model both steady-state and transitional

empirical behaviors [163, 164]. The model should approximately represent the sagittal dy-

namics of physical bounding robots with mass-center roughly halfway between their hips, as

long as the leg inertia is sufficiently less than that of the body so as to satisfy the massless

leg approximation.

Chapter 4.2.1 gives the model’s hybrid dynamical system description for a non-aerial bound
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(because of the actuator limits described in Chapter 4.5.1) as depicted in Figure 20. Chapter

4.2.2 constrains the ground-reaction force laws (4.20), (4.21), and hybrid transitions (4.24),

(4.29) to enact a cascade composition. Chapter 4.2.3 introduces dynamical simplifications

in the form of Approximations 2, 1, and (4.33) that – together with the previous modeling

choices – give the cascaded system the trivial dynamics depicted in Figure 21. These

modeling and control choices yield simple closed form expressions for the flow on the hybrid

modes (4.34), (4.35), that in turn allow a closed form expression for the targeted bounding

limit cycles in Chapter 4.3 and a tractable stability analysis in Chapter 4.4.

4.2.1. Hybrid Dynamical System Description

Figure 19: The simplified massless-leg representation of a quadrupedal robot bounding in
the sagittal-plane. The model’s configuration is shown in blue and is given by the body’s
location in SE(2) with mass-center position (x, y) and body-pitch ϕ, as well as the horizontal
location of the front and rear toes encoded either by their toe positions xi or splay-distance
∆xi from the mass-center, i ∈ {f, r}. The physical parameters shown in green are the
body’s mass m and moment-of-inertia I about its mass-center, the body length d, and
gravity’s acceleration g. Each leg in contact with the ground imparts a vertical (uy) and
horizontal (ux) mass-specific ground-reaction force law at each toe shown in red. Purple
values relate to control parameters. The value l0 is a nominal vertical leg length at the
touchdown and liftoff events (used as a control parameter in (4.25)). In Approximation
1 we introduce ȳ as a representing the approximately-constant mass-center stance height
under a suitable choice of ground-reaction force control laws.

Following the convention of [122], we define the hybrid system H representing the sagittal-

plane massless-leg robot model depicted in Figures 19 and 20 as the tuple:

H := (J , T ,D,F ,G ,R). (4.3)
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The set:

J := {F,D,R} (4.4)

represents the hybrid modes corresponding to front single-support F, double-support D, and

rear single-support R, respectively. No flight mode is given due to the actuator constraints

of the Inu robot as explained in Chapter 4.5.1, but a similar analysis is possible replacing

the double support phase with a flight phase.

The allowed hybrid transitions are given by:

T := {(F,D), (D,R), (R,D), (D,F)}. (4.5)

The set of continuous domains is given by:

D := ti∈JDi, (4.6)

where – to aid with the decoupling introduced in Chapter 4.2.2 – we decompose each

continuous domain into the product:

Di := DI
i ×DH

i , (4.7)

of “in-place” and “horizontal” respective state components that will form the basis for a

cascaded composition (4.1), where:

DI
i := T (R× S)× R, DH

i := T (R)× R2, (4.8)

with state:

xi =

xI
i

xH
i

 , (4.9)

where xI
i represents the “in-place” state components relating to vertical and pitching mo-
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Figure 20: The hybrid dynamical system (4.3) representing the model shown in Figure

19 with state xi = (xI T ,xH
i
T

)T . The state component xI (4.10) gives the state related
to the mass center’s vertical height and pitch states, as well as mode timers; while xH

i

(4.11) gives the mass center’s horizontal position and velocity, as well as the horizontal toe
positions. The guards Gi,j and resets Ri,j are introduced in (4.17) and (4.19), respectively,
and further specified in (4.24)-(4.25) and (4.29)-(4.31) to decouple the hybrid transitions as
shown in Figure 21. Approximation 1 and the choice of force laws (4.21), (4.33) decouple
the continuous dynamics as shown in Figure 21. There is no flight phase due to actuator
limitations when running at speed on the physical machine as described in Chapter 4.5.1,
however accounting for an aerial mode instead of double support would yield a system for
which a similar control strategy as described in Chapter 4.4 could be applied. Note that the
horizontal toe locations indicated by ∆xi and xi, i ∈ {f, r} – unchanged by the continuous
dynamics – are set by the resets as control inputs.

tions, and xH
i represents the “horizontal” state components relating to horizontal motions.

We will drop mode subscripts when appropriate.

The in-place state xI is given by:

xI :=


qI

q̇I

τ

 , qI :=

y
ϕ

 , (4.10)
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representing the configuration and velocity of the mass center’s height y and body pitch

ϕ as depicted in Figure 19, as well as the integrated mode duration τ – appended to the

state so we can use mode duration as a state variable in the guard events (4.25), (4.57).

Intuitively these components represent the state of the robot when it is bounding in-place.

The horizontal state xH
i in mode i ∈ J is given by:

xH
F =



x

ẋ

∆xr

xf


, xH

D =



x

ẋ

xr

xf


, xH

R =



x

ẋ

xr

∆xf


, (4.11)

where – as depicted in Figure 19 – x and ẋ respectively represent the mass center’s horizontal

position and velocity, xf and xr respectively represent the front and rear foot position, and

∆xf and ∆xr respectively represent the relative distance of the front and rear toe to the

mass center according to:

∆xf = xf − x, ∆xr = xr − x. (4.12)

The reason for switching between the ∆xi and xi state representations is simply mathe-

matical convenience as it allows us to represent the continuous evolution of the foot with a

zero vector field in (4.14) (although the behavior on the hybrid resets is more complicated),

where in stance a hip’s toe position xi does not move and in flight a hip’s toe position

relative to its mass center ∆xi does not change.

The continuous dynamics of the system are shown in Figure 20. To represent them as

first-order vector fields, we define the hybrid vector field:

F : D → TD (4.13)
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that restricts to the vector fields Fi := F|Di for each i ∈ J such that:

Fi(x) :=



q̇I

uyi(x)− g
m
I uϕi(x)

1

ẋ

uxi(x)

0

0



, (4.14)

where:

uϕF(x) = y uxF(x) + ∆xf uyF(x), (4.15)

uϕR(x) = y uxR(x) + ∆xr uyR(x),

uϕD(x) = y uxD(x) + (∆xf + ∆xr) uyD(x).

In Chapter 4.2.3, uyi(x) and uϕi(x) will be set to be constant throughout each of the stance

modes. Until then, we use the more general functional form to illustrate in Chapter 4.2.2

that we can achieve a cascaded composition without requiring constant values.

For simplicity, we identify ȳ with the value of fixed point’s height component of (4.15) via

the following approximation. This, along with (the to be introduced) Approximation 2 and

(4.33), will allow an explicit representation of a relevant hybrid periodic orbit derived in

Chapter 4.3:

Approximation 1. In the pitching acceleration components (4.15), we take the stance

height terms y to be the constant ȳ ∈ R+.

Approximation 1 has the effect of replacing y with ȳ in the horizontal force law (4.21).

This assumption is approximately valid in the experiments of Chapter 4.5 as shown by the
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nearly-constant height in Figures 26 and 27. Further implications of this assumption are

discussed in Chapter 4.3.3.

The set of physical parameters is the body length d, gravity’s acceleration g, the body

mass m, and moment of inertia I (also we later introduce ∆xAvg (4.22), a (4.23), and l0

(4.25) as pseudo-physical parameters chosen by the user for the controller that are strongly

influenced by the physical parameters), and the vertical and horizontal (mass-specific) force

laws are respectively:

uyi : Di → (
g

2
, g), (4.16)

uxi : Di → R,

which we later set in (4.21), (4.33). The interval bounds on the codomain of uyi(·) is

artificially imposed both to take into account the actuator constraints of Chapter 4.5.1 and

to give the range of vertical forces over which the hybrid periodic orbit result described in

Proposition 2 holds. Note that uxD(x) is the sum of the double-support force components

from each leg, how this force burden is distributed to the legs is an implementation detail

(e.g., adjusted in case of reduced traction detected at one or another toe). The experiments

of Chapter 4.5 used an even distribution.

The collection of guards is:

G := t(i,j)∈T Gi,j , (4.17)

where Gi,j ⊂ Di for each (i, j) ∈ T . We assume that the robot’s hip is able to retract

its legs in stance to force a flight event and similarly protract its legs in flight to influence

the timing of a stance event, according to intersection with a guard set. The guards are

considered part of the controller and are further specified in (4.24), (4.25) and in Chapter

4.4.1.
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Finally, the hybrid reset map is given by:

R : G → D, (4.18)

which restricts to:

Ri,j := R|Gi,j (4.19)

Ri,j : Gi,j → Dj ,

for each (i, j) ∈ T . The resets – considered part of the controller and specified in (4.29)

and Chapter 4.4.2 – move the horizontal state of the toes instantaneously in flight (taking

advantage of the assumption of massless legs) and reset the mode timer component τ to

zero. To avoid physically unrealistic situations, we require that the resets give all other

states continuous motion across hybrid transitions as these states have associated mass.

4.2.2. Cascaded Composition

We impose a cascaded composition (Chapter 4.1.1) with the following choice of force laws

and hybrid transitions. We first decouple the horizontal state from the in-place continuous

dynamics by choice of horizontal and vertical force laws, giving the in-place acceleration

components ci(·) the form ci(x) = ci(x
I ) ∀i ∈ J . To do so, we specify the vertical force

law to be only a function of in-place state:

uyi(x) = uyi(x
I ), ∀i ∈ J (4.20)
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(which will be set to the constant uyi(x
I ) = uy in Chapter 4.2.3), and let the horizontal

force law be given by:21

uxF(x) =
uy(x

I )

ȳ

(
∆xAvg −∆xf

)
, (4.21)

uxD(x) = −
uyD(xI )

ȳ

(
∆xf + ∆xr

)
,

uxR(x) =
uyR(xI )

ȳ

(
−∆xAvg −∆xr

)
,

which makes the pitch dynamics act as if the only torque on the body were from a vertically

applied uyi(x
I ) associated with a leg splay of:

∆xAvg ∈ R. (4.22)

We choose to set ∆xAvg to equal d2 , representing pitch dynamics that mimic the toes being

directly below the hips – a choice that maximizes the platform’s achievable running speed

as discussed in Chapter 4.3.5. In principle any ∆xAvg could be chosen, and so for generality

we don’t fix ∆xAvg in our mathematical results. The resulting pitch dynamics from the

force law (4.21) are:

ϕ̈F =
2uyF(xI )

da
, ϕ̈D = 0, ϕ̈R = −

2uyR(xI )

da

(which in Chapter 4.2.3 become the constants ϕ̈F =
2uy
da , ϕ̈D = 0, ϕ̈R = −2uy

da with the

choice uyi(x
I ) = uy), where:

a :=
I

md
2∆xAvg

(4.23)

is a dimensionless generalized Murphy number [175, p. 193] induced by the leg splay ∆xAvg

and body parameters.22

21The smallest value of y is physically bounded by the kinematics to be far from zero so the quotient in
(4.21) would never create a problem.

22We define our generalized Murphy number as a := I

m d
2

∆xAvg , where I is the body’s moment of inertia,

d is the body length, and m is the body mass. When the leg splay distance ∆xAvg goes to d
2
, then our

definition agrees with Raibert’s presentation of the Murphy number, which he represented by the symbol j.
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We next decouple the horizontal state from the in-place hybrid transitions. To do so, we

first let only the in-place state components determine the guard intersections:

Gi,j := {x ∈ Di | xI ∈ GI
i,j}. (4.24)

If instead we allowed the horizontal state to enter into the form of the guards, then the

horizontal flow could influence the mode transitions via the time-to-guard-impact map and

thereby affect the the in-place state components, violating the feedforward dependence we

are constructing.

Specifically, we define the mode guard set GI
i,j as when a hip’s height yjhip : DI → R, j ∈

{f, r} is moving in the correct direction for a mode change and is equal to some value

l0 ∈ R+ plus the value of a control function g(xI ) : DI → R as given by:

GI
F,D := {xI ∈ DI

F | yrhip(xI ) = l0 + gTD(xI ) (4.25)

∧ ẏrhip(xI ) < 0},

GI
D,R := {xI ∈ DI

D |yfhip(xI ) = l0 + gLO(xI )

∧ ẏfhip(xI ) > 0},

GI
R,D := {xI ∈ DI

R | bI (xI ) ∈ GI
F,D},

GI
D,F := {xI ∈ DI

D | bI (xI ) ∈ GI
D,R},

where the guard GI
F,D represents the rear leg’s touchdown event that initiates double sup-

port, GI
D,R represents the front leg’s liftoff event that initiates rear stance, GI

R,D represents

the front leg’s touchdown event that initiates double-support, and GI
D,F represents the rear

leg’s liftoff event that initiates front stance.

In (4.25), the function bI : DI → DI is an involutory symmetry map intended to enforce a

“Murphy found that when j < 1 the attitude of the body can be passively stabilized in a bounding gait.
When j > 1, stabilization is not so easily obtained” [175, p. 193]. We use a generalized version of Murphy’s
result because we feel that accounting for a toe not being directly under the hips when bounding in-place
is important, as the user may want to use an arbitrary leg splay. See Figure 24 for a visual depiction of the
Murphy number as it relates to this paper’s simplified model.
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symmetric bound:

bI (xI ) := (y,−ϕ, ẏ,−ϕ̇, τ)T , (4.26)

and the functions gLO, gTD represent the control functions used to modify the touchdown

or liftoff hip height from the nominal value of l0 as a function of state so as to achieve the

desired gait. The control functions are chosen in (4.57) of Chapter 4.4.1, but for now we

require that they go to zero when the state lies on the desired gait and that:

LF I
F
gTD ≥ 0, LF I

D
gLO ≤ 0, (4.27)

so that the hip-height at which touchdown occurs is never decreasing in time during flight

and the hip-height at which liftoff occurs is never increasing in time during stance – condi-

tions that will be used in the proof of Proposition 2 to guarantee the existence of a specific

hybrid periodic orbit. Here F I
F and F I

D represent the in-place components of the vector field

(4.14) in modes F and D, respectively. The value l0 represents the leg length at touchdown

and liftoff on the hybrid limit cycle and should be chosen to be sufficiently far from the

workspace singularity as to have room to implement gLO, gTD to stabilize the gait.

Approximation 2. We use a small-angle approximation on the robot pitch for purposes

of checking guard intersections.

Thus, in the representation of the guards in (4.25), we take the hip heights to be:

yrhip(xI ) := y − d

2
ϕ, yfhip(xI ) := y +

d

2
ϕ, (4.28)

ẏrhip(xI ) := ẏ − d

2
ϕ̇, ẏfhip(xI ) := ẏ +

d

2
ϕ̇.

We expect this to be reasonably valid at lower levels of pitching such as those observed in

the experiments of Chapter 4.5, but expect its validity will deteriorate if limiting behavior

with high pitch is commanded.
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Finally, we give the resets Ri,j the cascaded form (4.1):

Ri,j(x
I ,xH ) =

 RI
i,j(x

I )

RH
i,j(x

I ,xH )

 . (4.29)

There is relatively little choice in how to reset the state components since they are largely

physically determined, however we are free to reset the mode timers τ as they are non-

physical and to reset the horizontal toe positions in flight.

Specifically, we define the in-place resets as:

RI
i,j : GI

i,j →DI
j (4.30)

(qI q̇I , τ) 7→(qI q̇I , 0)

for each (i, j) ∈ T I , where RI
i,j ≡ RI simply zeros the timer component of the state.

The horizontal resets represent the affordance to stabilize the horizontal components of

the model for a bounding gait, in the same manner as the guards for the in-place state

components. In placing the foot horizontally ahead or behind of a nominal touchdown

configuration according to some control function, they function much like Raibert’s neutral
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point controller [175]. They are defined as:

RH
F,D :



x

ẋ

∆xr

xf


7→



x

ẋ

x+ ∆xr + rF,D(xH
F )

xf


, (4.31)

RH
R,D(xH

R ) = bH ◦RH
F,D ◦ bH (xH

R ),

RH
D,R :



x

ẋ

xr

xf


7→



x

ẋ

xr

∆xNom + rD,R(xH
D )


,

RH
D,F(xH

D ) = bH ◦RH
D,R ◦ bH (xH

D ),

where:

bH : R4 → R4 (4.32)

:



x1

x2

x3

x4


7→



x1

x2

x4 − 2∆xAvg

x3 + 2∆xAvg


is an involutory symmetry map intended to enforce a symmetric bound. The control func-

tions rF,D(xH
F ), rD,R(xH

D ) (chosen in (4.62) of Chapter 4.4.2) modify the horizontal foot

placement in flight prior to touchdown, and – like gLO, gTD – we require that they go to

zero when the state lies on the desired gait. The constant value ∆xNom ∈ R (chosen in

(4.50) of Chapter 4.3.3) represents a nominal touchdown leg splay magnitude.

Having removed all influence of the horizontal state from the in-place hybrid dynamics,

we have endowed a feed-forward structure in which the in-place state alone determines the
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in-place hybrid execution and which feeds forward into the horizontal dynamics, making

any suitably chosen Poincaré map for the system have the cascaded architecture (4.1).

4.2.3. Dynamical Simplification

To further simplify the dynamics, we choose the (mass-specific) vertical force component

generated at each foot to be the constant uy:

uyi(x
I ) = uy ∀i ∈ J , (4.33)

giving the in-place state components a mode-i flow φti(x
I ) of the form:

φti(x
I ) =


I tI 0

0 I 0

0 0 1

xI +


t2

2 ci

tci

t

 , (4.34)

cF =

uy − g
2uy
da

 , cD =

2uy − g

0

 , cR =

uy − g
−2uy

da

 .

Approximations 1, 2 and (4.33) result in the simplified cascaded dynamics depicted in

Figure 21. In particular, the choice of a constant vertical force gives rise to affine horizontal

continuous dynamics with mass-center forwards acceleration given by:

Mode F: ẍ =
uy
ȳ

(
∆xAvg −∆xf

)
,

Mode D: ẍ = −uy
ȳ

(
∆xf + ∆xr

)
,

Mode R: ẍ =
uy
ȳ

(
−∆xAvg −∆xr

)
,
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and the corresponding mode-i horizontal-component flow φ̂ti(x
H
i ) of the form:

φ̂tF(xH
F ) = (4.35)

eCFt

x
ẋ

+
(
eCFt − I

)
CF
−1

 0

uy
ȳ

(
∆xAvg − xf

)


∆xr

xf


,

φ̂tD(xH
D ) =

eCDt

x
ẋ

+
(
eCDt − I

)
C−1

D

 0

−uy
ȳ

(
xr + xf

)


xr

xf


,

φ̂tR(xH
R ) =

eCRt

x
ẋ

+
(
eCRt − I

)
C−1

R

 0

uy
ȳ

(
−∆xAvg − xr

)


xr

∆xf


,

where:

CF =

 0 1

uy
ȳ 0

 CD =

 0 1

2uy
ȳ 0

 CR =

 0 1

uy
ȳ 0

 . (4.36)

4.3. Hybrid periodic orbit

The explicit flow representation (4.34), (4.35) – combined with guards (4.25) and resets

(4.31) – yields expressions for the mode maps (4.37) (derived from the implicit function

expressing time to the guard), which are composed in Chapters 4.3.1 and 4.3.2 to form
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Figure 21: Cascaded hybrid dynamics achieved through the choice of force laws and hybrid
guards and resets. The choice of force laws (4.20), (4.21) decouple the continuous dynamics
of the hybrid system (4.3) into the cross product of “in-place” and “horizontal” vector
fields representing the behavior of the “in-place” vertical and pitching states xI as well as
the “horizontal” fore-aft mass-center and toe position states xH . The isolated continuous
dynamics – along with the hybrid guards being purely dependent on the in-place states
(4.24) and the hybrid reset maps having cascaded form (4.29) – endows a feed-forward
relationship between the in-place states and horizontal states in which a linearized stability
analysis of a hybrid periodic orbit’s Poincaré map Jacobian has the separation of eigenvalues
property indicated by (4.2), allowing for a more tractable analysis. A stable limit cycle is
achieved by controlling on the hybrid guards and the resets via (4.25), (4.30), and (4.31).
In the vertical states, this is accomplished on the guards by vertically retracting the leg in
stance to transition to flight and similarly by protracting the leg in flight to affect the onset
of stance. In the horizontal states, this is accomplished on the resets by placing the toe
position horizontally in flight in a similar fashion to Raibert’s neutral point algorithm [175].

a stride map for the model. We take advantage of symmetry to derive a simpler half-

stride Poincaré map, and in Chapter 4.3.3 express a closed-form fixed point (Proposition
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2) representing a hybrid periodic orbit. With the form of the hybrid periodic orbit in

mind, Chapter 4.3.4 revisits the validity of Approximation 1 (assuming a constant mass-

center height in the pitch dynamics), Chapter 4.3.5 discusses a forward-running speed limit

associated with the kinematic limitations of a physical machine, and Chapter 4.3.6 discusses

the actuator cost to enforce the cascaded decoupling of Chapter 4.2.2.

4.3.1. Choice of Poincaré Section

We now introduce a symmetry that expresses the dynamics of the mode F and its transition

into the mode D as a mirror image of mode R and its corresponding transition to D. By

restricting attention to only symmetric bounds, this observation affords a factorization

of the resulting Poincaré map modeling a stride cycle as comprising a pair of successive

half-strides. These considerations in turn motivate our choice of a Poincaré section (with

coordinates denoted by a ∼ superscript) at the image of the guards under the hybrid reset

map of the paired half-strides corresponding to the event of the timer for one being reset

to initiate the timer of the next.

Each hybrid mode has an associated map taking a starting state to its value along the

forward flow intersecting a guard. For convenience we pre-compose this with the appropriate

reset map, so that the hybrid mode-reset composition – which we refer to as the mode map

and denote by Φi,j – maps a starting state in mode i to the reset of where the forward flow

intersects the guard Gi,j . Specifically:

Φi,j :

U I
i,j

DH
i

 ⊂ Di → Dj , (i, j) ∈ T , (4.37)

xI

xH

 7→
 RI ◦ φ

T I
i,j(x

I )

i (xI )

RH
i ◦ φ̂

T I
i,j(x

I )

i (xH )

 ,

(recalling the forms of the resets RI (4.30), RH
i (4.31), the in-place flow φi (4.34), and the
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horizontal flow φ̂i (4.35)) where we denote the separate components of Φi,j as:

Φi,j(x
I ,xH ) =

 ΦI
i,j(x

I )

ΦH
i,j(x

I ,xH )

 , (4.38)

and where:

T I
i,j : U I

i,j → R+ (4.39)

xI 7→ min{t ∈ R+|φti(xI ) ∈ GI
i,j}

denotes the implicit time-to-impact map of the flow with the guard. Here U I
i,j represents

the largest subset of DI
i over which T I

i,j(·) is defined and over which the forward flow does

not first intersect another guard. We show in the proof of Proposition 2 the existence of

points x̄I
F0,D ∈ U I

F,D, x̄I
D0,R ∈ U I

D,R, bI (x̄I
F0,D) ∈ U I

R,D, and bI (x̄I
D0,R) ∈ U I

D,F, hence the sets

U I
i,j are non-empty.

Define the involutory “bounding” symmetry map:

b : D → D (4.40)xI

xH

 7→
 bI (xI )

bH (xH )

 ,

where bI is given by (4.26) and bH is given by (4.32). The map b induces a flow conjugacy

between FF and FR, as well on flows in FD. This, together with the guard symmetry (4.25)

and reset symmetry (4.31), results in b inducing a topological conjugacy between ΦF,D and

ΦR,D, as well as between ΦD,R and ΦD,F.

Define the reduced domains D̃i to equal to the domain Di without mode-timer τ or forward

position x components, so as to be of use in defining a stride map whose Poincaré section

has the property τ = 0 and does not contain a x component so as to permit stride map
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fixed points at speed. Specifically, let:

D̃i := D̃I
i × D̃H

i , i ∈ J , (4.41)

D̃I
i := T (R× S), D̃H

i := R3

(where we sometimes drop the mode subscripts when appropriate), and the reduced state

x̃ ∈ D̃ as:

x̃ :=

 x̃I

x̃H

 , x̃I ∈ D̃I , x̃H ∈ D̃H . (4.42)

Specifically, passage between D̃ and D occurs according to the projection Π : D → D̃ and

lift Σ : D̃ → D maps:

Π(x) :=

 ΠI (xI )

ΠH (xH )

 , (4.43)

ΠI (xI ) :=

qI

q̇I

 , ΠH :



x1

x2

x3

x4


7→


x2

x3

x4 − x1

 ,

Σ(x) :=

 ΣI (x̃I )

ΣH (x̃H )

 ,

ΣI (x̃I ) :=


qI

q̇I

0

 , ΣH :


x1

x2

x3

 7→


0

x1

x2

x3


.
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4.3.2. Stride map

We are interested in the asymptotic behavior of a bounding gait with a periodic hybrid

mode sequence (F,D,R,D, ...). To this end, define the stride map S :

S :

 Ṽ I

D̃H

 ⊂ D̃ → D̃, (4.44)

x̃ 7→ Π ◦ ΦD,F ◦ ΦR,D ◦ ΦD,R ◦ ΦF,D ◦ Σ,

local to some fixed point in the interior of the domain, where Ṽ I ⊂ ΠI (U I
F,D) is the largest

subset of ΠI (U I
F) over which SI is defined. We show in the proof of Proposition 2 the

existence of such a fixed point of SI , so Ṽ I is not empty.

To simplify the analysis, we use the fact that the stride map factors according to:

S =Π ◦ ΦD,F ◦ ΦR,D ◦ ΦD,R ◦ ΦF,D ◦ Σ (4.45)

=Π ◦ (bH ◦ ΦD,R ◦ bH ) ◦ (bH ◦ ΦF,D ◦ bH )◦

ΦD,R ◦ ΦF,D ◦ Σ

=Π ◦ bH ◦ ΦD,R ◦ ΦF,D ◦ bH ◦ ΦD,R ◦ ΦF,D ◦ Σ

=Π ◦ bH ◦ ΦD,R ◦ ΦF,D ◦ (Σ ◦Π) ◦ bH ◦

ΦD,R ◦ ΦF,D ◦ Σ

=(Π ◦ bH ◦ ΦD,R ◦ ΦF,D ◦ Σ)◦

(Π ◦ bH ◦ ΦD,R ◦ ΦF,D ◦ Σ)

=H 2,

where H :

 Ṽ I

D̃H

→ D̃ such that:

H := Π ◦ b ◦ ΦD,R ◦ ΦF,D ◦ Σ (4.46)
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represents a “flipped” (by b) half-stride of the stride map.

4.3.3. Stride Map Fixed Point

A stable fixed point of H is a stable fixed point of S , so we reduce our attention to the

asymptotic behavior of H which is simpler. We note that we are interested in a symmetric

bound so any fixed points of S that we are discarding by virtue of not being fixed points of

H via the symmetry b are not symmetric.

Proposition 2. The maps H and S have a fixed point at:

˜̄x :=

 ˜̄xI

˜̄xH

 , ˜̄xI
:=



ȳ

ϕ̄

˙̄y

˙̄ϕ


, ˜̄xH

:=


˙̄x

∆̄xr

∆̄xf

 , (4.47)

where: 

ȳ

ϕ̄

˙̄y

˙̄ϕ


=



l0 − uy(g−uy)
4a(2uy−g) T̄

2
F,D

− uy(g−uy)
2ad(2uy−g) T̄

2
F,D

g−uy
2 T̄F,D

−uy
ad T̄F,D


, (4.48)

and:

∆̄xf =

(
0 1

)(
eCFT̄F,D − I

)∆xAvg

˙̄x


(

0 1

)(
eCFT̄F,D − I

)1

0


, (4.49)

∆̄xr =∆̄xf − 2∆xAvg +

(
1 0

)(
eCDT̄D,R + I

)−1

(
eCDT̄D,R − I

)(
eCFT̄F,D + I

)∆xAvg − ∆̄xf

˙̄x

 ,
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where (recall (4.36)) CF =

 0 1

uy
ȳ 0

 and CD =

 0 1

2uy
ȳ 0

.

The fixed point ˜̄xH
is parametrized by the physical parameters of the system, the duration

T̄F,D ∈ R+ of the periodic orbit’s evolution in mode F (equal to its duration in mode R),

and the forward speed component ˙̄x of the fixed point. The term ∆xNom in (4.31) is given

by:

∆xNom = ∆̄xr + 2∆xAvg, (4.50)

and the terms ∆̄xrD, ∆̄xfD – defined in (4.49) and used in (4.62) – have the property that:

∆̄xrD = ∆̄xf − 2∆xAvg,

∆̄xfD = −∆̄xr.

Additionally, the duration T̄D,R = T̄D,F of the periodic orbit’s evolution in mode D is equal

to:

T̄D,R = T̄F,D
g − uy
2uy − g

. (4.51)

Proof. See Chapter 4.10.

The form of the fixed point does not give much insight into the nature of the resulting

orbit and how parameter choices (particularly uy and T̄F,D) affect it. As such, we give

the minimum and maximum state variable values along the orbit associated with ˜̄x in

Table 4. Recall that uy ∈ (g2 , g) (4.16) and T̄F,D ∈ R+, where the interval constraint on

uy guarantees a physically realistic double support phase on the hybrid periodic orbit to

capture the actuator constraints of Chapter 4.5.1. Additionally, the mass center height

varies by a value of:
T̄ 2

F,D

8

g − uy
2uy − g

uy (4.52)
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along the orbit.

State Min value along orbit Max value along orbit

y l0 + 1
8 T̄

2
F,D

g−uy
2uy−g (ζ − uy) l0 + 1

8 T̄
2
F,D

g−uy
2uy−g ζ

ζ = 2uy(1− a−1)− g

ϕ − guyT̄ 2
F,D

4ad(2uy−g) ,
guyT̄ 2

F,D

4ad(2uy−g)

ẏ −g−uy
2 T̄F,D,

g−uy
2 T̄F,D

ϕ̇ −uy
ad T̄F,D,

uy
ad T̄F,D

|ẋ|
√

˙̄x2 − ξ, | ˙̄x|

ξ =
uy
ȳ ·max

{
(∆xAvg − ∆̄xf )2, 1

2(∆xNom − ∆̄xf )2
}

∆xr −∆xNom, −(2∆xAvg −∆xNom)

∆xf 2∆xAvg −∆xNom, ∆xNom

Table 4: Minimum and maximum state values along the hybrid periodic orbit
Minimum and maximum state values along the hybrid periodic orbit associated with the
fixed point ˜̄x (defined in Proposition 2) of H (4.46) as determined by the parameters and
“user-specified” selection of uy ∈ (g2 , g) (4.16), T̄F,D ∈ R+, and ˙̄x ∈ R. In practice ˙̄x is not
truly a free variable, as a speed limit (approximated by (4.55)) exists by virtue of a machine’s
inherently limited leg workspace constraining the maximum achievable leg sweep distance.
Both legs sweep a distance of δx̄Stance = |2(∆xNom − ∆xAvg)| during their stance phases,
a complicated expression (due to the form of ∆xNom (4.50)) for which an approximation
is proposed in (4.54). Figure 22 shows the hybrid periodic orbit trajectory when using the
parameters of Table 5, illustrating where in the mode sequence the minima and maxima
occur.

The “user-specified” terms in the form of the hybrid periodic orbit (the terms not deter-

mined by the physical robot parameters) are uy, T̄F,D, and ˙̄x. The (mass-specific) applied

vertical force at the toe uy can be thought of as analogous to a spring constant: increasing

uy decreases vertical height and pitch oscillations,23 as well as total hip stance time (by

23The reason that increasing the stance force uy decreases height y and pitch ϕ variations of the orbit is
because total stance time (4.53) is reduced by an increase in uy, giving the system configuration less time
to change in stance. While the variations in y and ϕ decrease with increasing uy, total energy of the orbit
increases.
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decreasing the double-support time T̄D,R (4.51)), where the total hip’s stance time T̄Stance

is equal to:

T̄Stance := T̄F,D + 2T̄D,R = T̄F,D

(
g

2uy − g

)
. (4.53)

The value of T̄F,D directly sets the single-support stance duration (equal to a hip’s flight

duration) and can be thought of as the dominant determiner of a hip’s total stance time

T̄Stance in cases with shorter double support T̄D,R.24 Larger values of T̄F,D increase vertical

height and pitch oscillations. Smaller values of T̄F,D leaves less time for the leg to reset its

position in flight, and sufficiently small values will be prohibitive for the actuators. The

value of ˙̄x sets the desired speed at mode transitions.

4.3.4. Constant Stance Height Approximation

With an explicit representation for the hybrid periodic orbit’s mass-center height variation

(4.52) in hand, we revisit Approximation 1’s usage of a constant stance height in the pitching

acceleration components of the dynamics (4.15). Approximation 1 will hold on the hybrid

periodic orbit for height variation values of (4.52) that are small compared to the height of

the robot.

For Inu using the experimental parameters of uy = 8.5 m/s2 and T̄F,D = 0.15 seconds as

indicated in Table 5, the height variation of the mass-center along the desired limit cycle is

equal to a deviation of 4 mm, thus the height is only expected to change 1% from its nominal

value of 0.21 meters during the periodic orbit, which begins to approach the noise floor on

our sensors and is thus more than sufficient for a constant approximation assumption. This

is illustrated in the experimental traces of Inu running in Figures 26 and 27, where the

mass-center height is approximately constant both in the experimental data and in the

desired limit cycle.

More generally, the validity of this approximation is strongly dependent on the duration of

24Our regime of operation involves a short double support time T̄D,R, however the double support time
would be longer for very low vertical forces approaching just barely supporting the weight of the robot. In
this case a change of variables to total support time might be more insightful.
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Figure 22: Traces of the hybrid periodic orbit over a full stride using the parameters of
Table 5 at a commanded speed of 1 m/s. The background color indicates the mode (4.4).
Green is F, blue is D, and yellow is R. In the ∆x graph, the blue trace gives ∆xr while the
orange trace gives ∆xf (4.12). Notice that deviations in body height y and forward speed
ẋ are quite small, indicating a valid Approximation 1 as discussed in Chapter 4.3.4 and a
small value of ξ from Table 4.

the hip’s stance but – for the following reasons – we expect it to hold for a large class of

machines. In terms of the duration of the hip’s stance (equal to 205 ms on Inu with the

parameters of Table 5), the mass-center’s height deviation is equal to:

1

8

T̄ 2
Stance

g2
uy(g − uy)(2uy − g),
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which is maximized by uy when uy = g
6(3 +

√
3) ≈ 0.79g, resulting in a mass-center height

deviation of
gT̄ 2

Stance

48
√

3
. Stance durations of approximately 300 ms or less – where 300 ms

is a relatively long stance duration for robots of Inu’s mass scale – result in mass-center

height deviations of 1 cm or less – a small value compared to Inu’s nominal mass-center

height 0.21 meters while running. In biology, the duration of stance has a strong scale

dependence: it generally increases with body mass and animals up to the size of horses

have been documented having stance times of 300 ms or less [84].25 If the same results

were to hold on robots, even when using our antagonistic value of uy we would expect that

larger robots would satisfy Approximation 1 and that smaller robots (with much shorter

stance times) would have an even smaller height deviation for their size.26 Of course,

one could design a robot with an artificially long stance duration to break the validity of

Approximation 1 but this would result in a severely speed-limited robot as discussed in

Chapter 4.3.5.

4.3.5. Speed Limit

The inherently limited workspace of a leg’s kinematic linkage induces a speed limit to

running [136]. In our case, the leg linkage workspace must accommodate the maximum

and minimum values of the leg splays ∆xr and ∆xf in Table 4 to physically instantiate

the periodic orbit associated with the fixed point ˜̄x. This results in a horizontal leg-sweep

distance of δx̄Stance = |2(∆xNom −∆xAvg)|, where recall ∆xNom is speed dependent (4.50).

The sweep distance has a complicated form in terms of the model parameters as ∆xNom

involves the complicated expression ∆̄xr (4.49), however we can understand the dominant

terms using a simple approximation.

Approximate the average forward speed in stance by ˙̄x, which is valid given a small value

of the term ξ in Table 4 relative to ˙̄x2 (this applies to Inu as indicated by the small speed

25In the study, ground contact time was found to be generally proportional to M0.19±0.06 for animals with
body mass M .

26One would also need to reconsider the use of this approximation when using a much more energetic gait
that has a flight phase, but of course this would assume a difference hybrid mode sequence than is considered
in this work.
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deviations in both the hybrid periodic orbit in Figure 22 and the robot’s instantiation of

those orbits in Figures 26, 27). Then the mass center’s (and thus the hip’s) horizontal sweep

distance in stance δx̄Stance is:

δx̄Stance ≈ ˙̄x(T̄F,D + 2T̄D,R) (4.54)

= ˙̄xT̄F,D

(
g

2uy − g

)
(4.53)

= ˙̄xT̄Stance.

A robot with a horizontal leg-stroke distance that is kinematically limited to δxMax
Stance and

with a stance time T̄Stance (limited from below by a value of uy achievable by the actuators)

would physically be able to instantiate an orbit with a maximum running speed magnitude

˙̄xMax of:

˙̄xMax ≈
δxMax

Stance

T̄Stance
= δxMax

Stance

2uy − g
gT̄F,D

, (4.55)

a value of 1.6 m/s for Inu as explained in Chapter 4.5.1.

We now revisit our decision in Chapter 4.2.2 to set ∆xAvg to equal d
2 so as to maximize

forward running speed. The horizontal interval that the legs sweep when operating on the

periodic orbit is centered at a distance of ∆xAvg from the mass center as calculated from

Table 4. Coarsely assume that the leg linkage workspace permits an interval of horizontal

reach centered at the hip. The horizontal leg-sweep interval must be contained in the

leg workspace interval for a physically realizable gait. The maximum speed that can be

physically realized occurs when the horizontal leg-sweep interval and leg workspace interval

are identical, which requires that they be centered at the same point, which requires ∆xAvg

equal d
2 .
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4.3.6. Cost of Enforcing a Cascade

Proposition 2 allows us to revisit the cost of enforcing the cascade composition of Chapter

4.2.2 with the horizontal force law (4.21) along the hybrid periodic orbit. Very often in

robotics, a disadvantage of canceling the natural system dynamics with control is that it

requires significant actuation affordance. However – as we argue below – at lower speeds

the horizontal forces needed to achieve this dynamic decoupling are quite small; they are

only a fraction of the applied constant vertical force.

We quantify this by considering the maximum horizontal leg force magnitude encountered

during a stride on the periodic orbit. This maximum value is obtained when the horizontal

length from the toe to the mass-center is furthest from ∆xAvg (4.21). When operating on

the hybrid periodic orbit, recall that the leg sweeps an interval of length δx̄Stance centered

at a distance ∆xAvg from the mass center (Chapter 4.3.5), thus reaching out a maximum

distance of 1
2δx̄Stance from the centered distance of ∆xAvg and giving the horizontal force

the maximum stance magnitude:27

|uxMax| =
1

2
|δx̄Stance|

uy
ȳ
.

Putting this in terms of forward running speed using the approximation (4.54) gives:

|uxMax| ≈
1

2
| ˙̄x|T̄Stance

uy
ȳ
. (4.56)

This force would be briefly equal to the applied specific vertical force uy in stance at an

average stance speed of ˙̄x = 2ȳ
T̄Stance

. Using a duration of hip-stance of T̄Stance = 0.2 seconds

and an average mass-center stance height of 0.21 meters (Inu’s experimental parameters de-

rived from Table 5) results in a speed of 2.1 m/s where the maximum horizontal and vertical

27The given maximum horizontal force is really a conservative upper bound, as it corresponds to the
double-support mode and a sensible user would not program both the front and rear legs to generate
opposing internal forces of this magnitude, rather they could achieve the same total horizontal force on the
body with much smaller horizontal toe forces to decrease internal forces. The user’s choice of front/rear
force distribution in double support is elaborated on near the end of Chapter 4.2.1
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forces are briefly equal. Inu is kinematically limited to a running speed of approximately

1.6 m/s, so the platform cannot approach the high-cost-of-cascade-enforcement regime. On

a quadruped not kinematically limited, higher speeds than ˙̄x = 2ȳ
T̄Stance

require that the

toes reach sufficiently in front of or behind the hips to the point of causing the horizontal

cascade-enforcement force to briefly eclipse the vertical at the beginning and end of stance.

In these cases we can consider the cascade enforcement to be “expensive” for the actuators.

A shorter stance duration (4.53) would mitigate this cost, achieving this through reducing

T̄F,D would increase the actuator cost of reseting the leg’s position in flight, and achieving

this through increasing uy would also tax the actuators.

The approximate cost of enforcing the cascade is linear in speed (4.56), going to zero when

bounding in-place. Thus at low speeds and small horizontal forces we believe that the

natural dynamics are themselves “almost” a feedforward cascade of the in-place module

with the horizontal bead-on-a-wire dynamics, and that our choice of a horizontal force law

represents only a slight “nudge” to the dynamics so as to complete this decoupling (Figure

21) and provide us with a tractable stability analysis.

4.4. Controller

Control of the system to achieve a symmetric bound occurs on the hybrid guards and resets.

Recall from Chapter 4.2.2 that cascading the dynamics naturally places the in-place control

gains in the guards and the horizontal control gains in the resets. A summary of our control

strategy is as follows.

The in-place controllers perform feedback on the mode timers and hip heights, as time and

kinematic configuration are the most accurately measured aspects of the state as discussed

in Chapter 4.6.1. Instead of controlling on the continuous value of the hip heights, we only

control on their value at the start of the mode. This has the practical benefit of providing

hip-height measurements for the controller even when the hip is in flight (having measured

its value at liftoff), as well as the algebraic benefit of simplifying the stability calculations
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in Chapter 4.4.3 as the hip-height values being controlled on don’t change over the course

of a mode. The fact that six easily measurable quantities exist per half-stride (two modes,

each with one timer and two hip-height measurements) results in six control gains. Four

of the gains are used to place the four poles of the stride map corresponding to the four

in-place components (recall that the presence of the timer coordinate in the dynamics gives

four in-place Poincaré map components, not three), and the remaining two gains are used

to optimize for other performance criteria.

The reset controllers perform feedback on the system’s forward speed and the two toe posi-

tions. This gives three gains (rather than six, as the controllers can only set the horizontal

toe position in flight and not in stance) to place the three poles of the stride map corre-

sponding to the three horizontal components (recall that one component corresponds to

forward speed and the other two correspond to the horizontal toe locations). In principle

the horizontal controller could be chosen to take in additional inputs and thereby allow

the user to optimize for other performance criteria, for example the in-place mode timers

and hip heights, however we found that performance was reasonable without needing to

introduce additional feedback paths.

Chapter 4.4.1 specifies the controller on the guards, which stabilizes the in-place state

components. Chapter 4.4.2 specifies the controller on the resets, which stabilizes the hor-

izontal state components. Chapter 4.4.3 presents the central stability result of the paper.

Specifically, we present a choice of control weights that makes the Poincaré map Jacobian

evaluated at the fixed point nilpotent (Proposition 3), making the closed-loop dynamics

infinitesimally deadbeat.

4.4.1. Hybrid Guard Control

Recall that hybrid guards intersections (4.24), (4.25) require the appropriate hip height

equal some nominal value l0 plus some (to-be-specified) state-dependent guard control func-

tion gLO, gTD : DI → R. Recall from above, we choose to use guard controllers that are
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functions of the mode timers and hip-heights – giving six control gains as shown below in

(4.57) – as mode time and kinematic configuration (hip height) are the most accurately mea-

sured aspects of the in-place state by our robot as discussed in Chapter 4.6.1. Specifically,

we use guard control functions of the following form:

gTD(xI ) := kI
F
T


yrhip

F0
(xI )− yrhip(x̄I

F0,D)

yfhip
F0

(xI )− yfhip(x̄I
F0,D)

τ − T̄F,D

 , (4.57)

gLO(xI ) := kI
D
T


yrhip

D0
(xI )− yrhip(x̄I

D0,R)

yfhip
D0

(xI )− yfhip(x̄I
D0,R)

τ − T̄D,R

 ,

where the vectors kI
F,k

I
D ∈ R3 represent control weights, yfhip , yrhip : DI → R give the

front and rear hip heights (4.28), and the functions yrhip
i0
, yfhip

i0
: DI

i → R, i ∈ J I give the

mode’s initial hip heights (according to the hip heights that occurred when τ = 0) via:

yrhip
i0

(xI ) := yrhip ◦ φ−τi (xI ), (4.58)

yfhip
i0

(xI ) := yfhip ◦ φ−τi (xI ).

The values of x̄I
i0,j in (4.57) are set as follows and represent “target” states for the controller

to track, we choose them so that the control functions vanish by design along the hybrid

orbit associated with a privileged fixed point of H . Denote the lift (4.43) of the stride map

fixed point ˜̄x in Proposition 2 from D̃ to DF by:

x̄ =

 x̄I

x̄H

 := Σ(˜̄x), (4.59)

and set x̄I
i0,j in (4.57) to equal the in-place component of the state of the hybrid execution
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initialized at x̄ as it periodically enters mode i before entering mode j according to:

x̄I
F0,D := x̄I , x̄I

D0,R := ΦI
F,D(x̄I ). (4.60)

Finally, let T̄F,D and T̄D,R in (4.57) agree with the durations of the hybrid trajectory in

modes F and D, respectively.

Let kI Fi and kI Di denote the i’th components of control parameter vectors kI
F and kI

D,

respectively. We impose the requirement that:

kI F3 ≥ 0, kI D3 ≤ 0, (4.61)

so that the hip-height necessary for touchdown is not decreasing in time and the hip-height

necessary for liftoff is not increasing in time, satisfying (4.27).

Intuitively, the guard control functions (4.57) act as proportional controllers and modify

the nominal touchdown or liftoff hip heights according to a weighted sum of errors between

scalar-valued functions of the state and constant “target” values. These scalar-valued func-

tions consist of the hip height values at the start of the mode execution (calculated by

back-flowing the state until the component τ coincides with 0 and examining the hip heights

at that time instance, and physically implemented by measuring the state variables at the

start of the mode) and the current mode duration according to τ . The “target” states were

chosen to force the control functions to zero at the hybrid transitions along the privileged

periodic orbit of Proposition 2, by setting them to equal the state along the orbit when

the evolution initially enters mode i as it evolves to mode j. The control weights kI
F,k

I
D

will be chosen in Chapter 4.4.3 and Chapter 4.8 to make the periodic hybrid trajectory

associated with ˜̄x a stable hybrid limit cycle.
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4.4.2. Hybrid Reset Control

Recall that the in-place components of the hybrid resets simply zero the mode timer variable

τ , while the horizontal components of the reset place the foot horizontally in flight from a

nominal value according to control functions rF,D, rD,R : DH → R (4.31). We choose reset

control functions of the following form:

rF,D(xH
F ) := kHF (ẋ− ˙̄x) , (4.62)

rD,R(xH
D ) :=

(
kHD,1, kHD,2

)∆xr − ∆̄xrD

∆xf − ∆̄xfD

 ,

where:

kH :=

(
kHF kHD,1 kHD,2

)T
∈ R3, (4.63)

are control weight constants that will be chosen to stabilize the horizontal components of

the gait in Chapter 4.4.3 and Chapter 4.8. The values of ˙̄x, ∆̄xrD, ∆̄xfD ∈ R are equal to

the values in Proposition 2 so that the control functions vanish along the privileged fixed

point of the stride map (on the periodic orbit’s intersection with GD,R, ∆̄xrD equals (xr−x)

and ∆̄xfD equals (xf − x)).

Intuitively, the reset control functions (4.62) act as proportional controllers – much like the

guard control functions – to correctly place the foot horizontally in flight so as to control

the horizontal state components. Note that the reset RH
F,D takes place at the touchdown

event, at which time the toe cannot move horizontally without undesirable slipping. Thus,

in the physical implementation of RH
F,D one should apply the control function rF,D(xH

F )

continuously in flight (as in [59]) so that when touchdown does occur the toe is in the

correct position to satisfy RH
F,D.
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4.4.3. Controller Stability Analysis

In the half-stride map H (4.46), the horizontal states have no influence on the in-place

components of H , giving the map the cascade form:

H (x̃) =

 HI (x̃I )

HH (x̃I , x̃H )

 , (4.64)

and endowing a block-diagonal Jacobian (4.2) whose structure we will now take advantage

of. The Jacobian of H is given by:

DH = DΠ ·Db ·DΦD,R ·DΦF,D ·DΣ, (4.65)

where:

DΠ =

DΠI 0

0 DΠH

 , Db =

DbI 0

0 DbH

 ,

DΣ =

DΣI 0

0 DΣH

 ,

with in-place components:

DΠI =

I 0 0

0 I 0

 , DbI =



1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1


, (4.66)

DΣI =


I 0

0 I

0 0

 ,
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and horizontal components:

DΠH =


0 1 0 0

0 0 1 0

−1 0 0 1

 , DbH =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


,

DΣH =



0 0 0

1 0 0

0 1 0

0 0 1


.

The mode-map Jacobians have the form:

DΦi,j

∣∣∣
x

=

DxI ΦI
i,j 0

DxI ΦH
i,j DxH ΦH

i,j

∣∣∣
x
,

where DxI ΦI
i,j ≡ DΦI

i,j is given by (recalling the structure of the flow (4.34) and reset

(4.30)):

DΦI
i,j =


I Ti,j(x

I
i)I 0

0 I 0

0 0 0

+


q̇ + ciTi,j(x

I
i )

ci

0

 ∂Ti,j
∂xI

, (4.67)

and where ΦH
i,j(x) = RH

i,j ◦φ̂
T I
i,j(x

I )

i (xH ) (4.37), with resets RH
i,j (4.31), (4.62), and horizontal

flow φ̂ti (4.35). Note that all the factors of DH are lower block-triangular.

The half-stride map Jacobian DH
∣∣˜̄x has the form:

DH
∣∣˜̄x =

Dx̃IHI 0

Dx̃IHH Dx̃HHH

∣∣∣˜̄x , (4.68)

indicating the eigenvalue separation property discussed in Chapters 4.1.1. Four of the
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eigenvalues are determined from D˜̄xIHI
∣∣˜̄x ≡ DHI

∣∣˜̄xI , given by:

DHI
∣∣∣˜̄xI

= DΠI ·DbI ·DΦI
D,R

∣∣∣
ΦI

F,D(x̄I )
·DΦI

F,D

∣∣∣
x̄I
·DΣI , (4.69)

where ΦI
F,D(x̄I ) simplifies to

(
ȳ, ϕ̄, − ˙̄y, − ˙̄ϕ, 0

)T
. The remaining three eigenvalues

are from D˜̄xHHH
∣∣˜̄x ≡ D˜̄xHHH

∣∣˜̄xI , which has the form:

Dx̃HHH
∣∣˜̄xI =DΠH ·DbH ·DxHRH

D,R ·DxH φ̂
T̄D,R

D ·

DxHRH
F,D ·DxH φ̂

T̄F,D

F ·DΣH , (4.70)

where:

DxH φ̂
T̄F,D

F =


eCFT̄F,D (eCFT̄F,D − I)

0 −1

0 0


0 I

 ,

DxH φ̂
T̄D,R

D =


eCDT̄D,R 1

2(eCDT̄D,R − I)

−1 −1

0 0


0 I

 ,

DxHRH
F,D =


I 01 kHF

0 0

 I

 ,

DxHRH
D,R =


I 0 0 0

−(kHD,1 + kHD,2) 0


 1 0

kHD,1 kHD,2


 ,

and CF and CD are given in (4.36).

We can further simplify the Jacobian block DHI
∣∣∣˜̄xI

. By multiplying the values of ΠI ,ΣI
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through, (4.69) simplifies to:

DHI
∣∣∣˜̄xI

= Db̃I ·DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
·DΦ̃I

F,D

∣∣∣
x̄I
, (4.71)

where:

DΦ̃I
i,j =

I Ti,j(x
I
i)I

0 I

+

q̇ + ciTi,j(x
I
i )

ci

 ∂Ti,j

∂x̃I
, (4.72)

Db̃I =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


,

and – as specified in (4.71) – the points of evaluation for the terms
∂Ti,j
∂x̃I all have in common

that τ = 0. The form of
∂Ti,j
∂x̃I is given in Lemma 1.

We now have explicit expressions for all terms in the iterated map Jacobian DH (4.65) and

can begin analysis of the map’s local stability at ˜̄x. It remains to choose weights kI
F,k

I
D

in the hybrid guards (4.25), (4.57) and weights kH (4.63) in the hybrid resets (4.31), (4.62)

such that the spectral radius of DH
∣∣˜̄x (4.68) is less than unity.

Given the unwieldy form of the Jury stability criteria for fourth-order polynomials we

instead opt to obtain an infinitesimally deadbeat solution, by which we mean that all the

eigenvalues of the Jacobian of the iterated map evaluated at the fixed point are equal to

zero.

Proposition 3. For any operating point ˜̄x (4.47), there exists a choice of gains kI
F, kI

D

(4.57), and kH (4.63) that – conjectured on the conditions (4.82) – make the associated

Poincaré map Jacobian DH
∣∣˜̄x (4.68) nilpotent, endowing the operating point with infinites-

imal deadbeat stability.
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Proof. The Dx̃IHI component of DH
∣∣˜̄x in (4.68) is made nilpotent through the choice of

gains kI
F and kI

D given in Lemma 2 (via the change of coordinates (4.74)), assuming the

invertibility of the matrix (4.79) which we conjecture to be generically invertible.28 The

Dx̃HHH component of DH
∣∣˜̄x is made nilpotent through the choice of gains kH given in

Lemma 3.

The eigenvalues of the block-triangular DH
∣∣˜̄x are given by the union of the eigenvalues

of the diagonal blocks Dx̃IHI and Dx̃HHH . These diagonal blocks are nilpotent, and so

DH
∣∣˜̄x is nilpotent.

The procedure for choosing gains for infinitesimal deadbeat stability is algorithmic in the

sense that the gain choices for kH and kI
F are explicitly given by equations (4.80) (via the

change of coordinates (4.74)) and (4.83), respectively; and equation (4.76) constrains kI
D

to a hypersurface (a hyperplane constraint in the coordinates of (4.73)).

There still exists some freedom in choosing the control parameters as only a hypersurface

constraint on the three-dimensional kI
D is required for infinitesimal deadbeat stability (nine

control gains were used to place seven poles). We chose the remaining control parameters

according to the procedure given in Chapter 4.9. We found that selecting control parameters

kI
D with parametric robustness and transients in mind was important; naively selecting

values during the experiments resulted in poor performance. The numerical values chosen

are shown in Table 5.

Slices of the numerically-derived basin of attraction for the in-place components of the

control scheme are depicted in Figure 23, using parameters given in Table 5 and enforcing

the desired hybrid mode sequence. An enforced hybrid mode sequence is a conservative

assumption compared to physical implementation on our robot where transient hybrid mode

sequences are perfectly acceptable, and so we suspect that the actual basin of attraction

28We numerically verified invertibility of (4.79) when using the values from Table 5.
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Figure 23: Two slices of the numerically-computed basin of attraction when the hybrid
mode sequence is enforced, using parameters given in Table 5 (left - in the (ϕ, y) plane,
right - in the (ϕ̇, ẏ) plane). The blue region indicates the basin, and the center orange dot
corresponds with the fixed point x̄I of the map HI . The enforcement of the hybrid mode
sequence is a very conservative assumption for real-world implementation, as the ability
to move through transient hybrid mode sequences is an inherent affordance of legs that
provides robustness and motivates their use on machines.

without enforcing the hybrid mode sequence is larger.

The robustness of the in-place components of the control scheme to parametric uncertainty

is indicated in Figure 24. While we can measure the majority of the physical parameters of

the robot quite well, we have a difficult time accurately measuring the body’s moment of

inertia which is folded into the generalized Murphy number a, as well as the stance specific

vertical force uy. Here, we show the spectral radius of the Jacobian of HI when the “true”

parameter values are varied from the parameter values used by the controller, evaluated at

the fixed point that results from this parameter perturbation. The results of Figure 24 show

that the controller will only destabilize when our error in estimating these two parameters

is very large.

The basin of attraction for the horizontal components of the controller is global, as the

iterated dynamics HH are affine in x̃H . Of course, because HH is also a function of x̃I ,
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Figure 24: Robustness of deadbeat solution to perturbations in the parameters uy and
the unitless a, as indicated by the value of the spectral radius of the Jacobian of HI when
the true parameter values are varied from the parameter values used by the controller,
evaluated at the fixed point that results from this parameter perturbation. This analysis
uses the numerical parameter values given in Table 5. To give the reader an intuition on
the range of a displayed, below the graph are cartoon representations of the robot for a
generalized Murphy value a of 0.6, 1.0, and 1.4, assuming all the robot mass is equally
distributed at two point masses along the robot. The controller becomes unstable when the
spectral radius exceeds unity, indicated by the red line. The parameters a and uy are the two
parameters which are difficult to measure on the physical robot. The large distance from the
unperturbed case (indicated by the orange dot) to the onset of destabilizing perturbations
(indicated by the red line) suggests a large degree of robustness to uncertainty in these
parameters.

convergence in x̃H is only guaranteed by our local stability analysis once x̃I approaches its

limiting value. We can think of the dynamics of the combined system H as containing an

attracting invariant sub-manifold given by x̃I = ˜̄xI
, on which the dynamics globally attract

to x̃H = ˜̄xH
.
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We see from Figure 25 that the horizontal control scheme has a reasonable degree of robust-

ness to parametric variation. Unlike the in-place control scheme, the horizontal does not

have any free control parameters to optimize performance metrics other than for achieving

infinitesimal deadbeat stability. Thus this control scheme is hostage to whatever transients

emerges as a result of the deadbeat control law Lemma 3, although we didn’t observe large

transients in the experiments of Chapter 4.5. If we had, we could increase the number of

state variables and control coefficients appearing in the input of the control functions (4.62)

– for example, by introducing in-place state components – and then perform an optimiza-

tion similar to the in-place control scheme to limit transients, however this would come at

the cost of added feedback paths along which noise and the negative effects of measurement

uncertainty would grow.

4.5. Empirical Demonstration of Controller

This section documents the implementation of the controller of Chapter 4.4 on the Inu robot.

Chapter 4.5.1 describes the experimental setup and Chapter 4.5.2 gives the experimental

results.

4.5.1. Setup

We demonstrate the controller of Chapter 4.4 implemented on the Inu robot [80], a direct-

drive quadruped that has an articulated spine (held rigid in these experiments). While

the experiments of this paper do not utilize Inu’s flexible spine, we hope in future work

to cascade another module (that encapsulates an added degree of freedom representing

a bendable back) to the modeling composition and thus chose this robotic platform for

continuity with future work.

The robot’s lack of gearing in the legs necessitates operating the actuators far from their

operating point of maximum power (although the lack of gearing provides benefits such

as proprioceptive ground contact detection [132, 196]), which manifests itself in actuator

saturation preventing the platform from achieving an aerial phase when running at faster

107



Figure 25: Slices of the Jacobian spectral radius of HH evaluated at the appropriate fixed
point with parametric perturbations in the parameters ȳ, T̄F,D, and uy – the only parameters
entering into the Jacobian. This analysis uses numerical parameter values given in Table 5 as
the unperturbed values. Here the control is being done using the unperturbed parameters,
showing the robustness of the control scheme to parametric uncertainty. The distance from
the orange dot in the middle-right plot (representing the unperturbed parameter values) to
the red line (indicating slices of the edge of stability) demonstrates that the controller can
withstand sizable perturbations in parameter space before going unstable.

speeds. We decided to forgo an aerial phase at slower speeds as well – hence the choice of

hybrid modes (4.4) – to demonstrate consistent behavior across all feasible running speeds,

and chose commanded vertically applied force and mode durations (uy and T̄F,D in Table
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5) according to what the actuators could achieve at higher speeds.

Inu’s parametric correspondence with the simplified model is given in Table 5. While most

of the simplified model parameters are easily measurable to a high degree of accuracy,

calculating the robot’s moment of inertia about its mass center (and hence its generalized

Murphy number a) and the mass-specific vertically applied force uy are more difficult. Our

lab does not have the equipment to accurately measure these two parameters, however

Figure 24 indicates a wide basin of stability to combined perturbations of these parameters

and so we do not expect to see instability arise from our lack of good measurement capability.

Numerical parameters

Physical and pseudo-physical d 0.47m
parameters l0 0.22m

a 1

∆xAvg d
2

ȳ 0.21m
g 9.81m

s2

Fixed-point parameters uy 8.5m
s2

T̄F,D 0.15s
˙̄x Varies by experiment

Control weights kI
F (0.5443, −0.0815, 0.2990)T

kI
D (0.4267, 0, −0.3139)T

kH (0.2065,−0.1262, 0)T

Table 5: Parameter values used in experiments
Numerical reduced-order model and control parameters used in the experiments as well as
in the calculations of Figures 22, 23, 24, and 25.

The robot is kinematically limited to a horizontal leg stroke distance of 32 cm when using a

nominal touchdown height of 22 cm. Since the hip’s stance time along the limit cycle (4.54)

is equal to 20 ms, we have (as discussed in Chapter 4.3.5) that the forward running speed

is theoretically limited to approximately 1.6 m/s.

Inu executed a bounding run at several speeds to demonstrate the viability of the controller
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on physical hardware, using only its onboard MPU-6000 IMU29 and motor encoders for

sensing. A Vicon motion capture system30 was used to log experimental kinematic data of

Inu’s mass-center and body-pitch trajectories and compare them with the predicted periodic

orbits of the reduced-order model. The raw (unfiltered) trajectory data from motion capture

is provided. In an effort to demonstrate the behavior of the in-place dynamics HI (x̃I ) (4.64)

in isolation, we first ran the robot without implementing the horizontal reset speed controller

– instead using a simple PD loop to dampen out horizontal movement. In a second set of

experiments, we used the full controller to test the behavior at speeds up to the theoretical

limit.

4.5.2. Results

The results of the experiments are summarized in Figures 26 and 27. The in-place con-

troller was run on Inu over the course of approximately 30 strides as shown in Figure 26,

demonstrating a good empirical correspondence between the robot and the predicted orbit

of the in-place controller. The full controller’s implementation in Figure 27 shows a rea-

sonable agreement with the desired limit cycle at lower speeds, although the addition of

the forward speed controller introduces more noise into the orbits as compared with the

in-place controller. The predicted behavior was reliably repeatable over dozens of trials at

many horizontal speed set points, ˙̄x, in the range allowed by (4.55). At higher speeds, we

see the orbit of the pitch degree of freedom inconsistently sag during negative pitch values

corresponding to when the front is in stance. This is due to the motors of the front body

segment saturating when running at speed, the front is slightly inertially disadvantaged

compared to the rear due to the battery weight being carried by the front. Inu can still run

without falling when approaching the speed limit imposed by Inu’s kinematics, however the

legs are commanded to lift off prematurely when they near their kinematic singularity as

shown in Figure 28 which results in inconsistent trajectories.

29https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
30https://www.vicon.com/

110

https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.vicon.com/


Figure 26: The in-place component of the controller implemented on the Inu robot shows
a good correspondence between the actual (blue) and analytically predicted (red) behavior
of the robot over approximately 30 strides (10 seconds) of motion capture data. Here
the horizontal toe position is maintained through the use of a simple PD controller with
relatively high-magnitude derivative term to dampen out fore-aft oscillations.

Inu is able to run up to its theoretical kinematic running speed of 1.6 m/s, but Figure 28

demonstrates that Inu is at the limit of its available workspace at this speed. The robot

wasn’t able to exceed speeds higher than this, and commanding it to do so resulted in the legs

hitting their kinematic singularity earlier in stance. This resulted in the robot stumbling,

the onset of which lowered the running speed substantially. To run faster, either longer legs

would be needed to increase the workspace (which would require greater motor torques via

the increased lever arm) or a shorter stance duration would be required through increasing

the applied vertical stance force. Both are precluded by Inu’s inherently torque-limited

actuation. In future work we will investigate the addition of a spine morphology to provide

this added workspace without detracting from the hips torque generation affordance.

4.6. Discussion

4.6.1. Infinitesimally deadbeat nature of our result

Our stability result is not one that is deadbeat, but rather infinitesimally deadbeat by

achieving a nilpotent stride map Jacobian at the fixed point. As such, local convergence to

the fixed point is not in a finite number of steps but rather super-exponential due to the

vanishing of linear terms in the Taylor approximation of the k-th iterate of the stride map
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Figure 27: Depicted are the actual (blue) and desired (red) orbits and trajectories under
motion capture using the full controller of Chapter 4.4 on the Inu robot over various running
speeds up to Inu’s kinematic speed limit (as discussed in Chapters 4.3.5 and 4.5.1). We
see a reasonable agreement with the desired limit cycle at lower speeds (top), although the
addition of the forward speed controller introduces more noise into the orbits as compared
with the isolated in-place controller shown in Figure 26. At higher speeds (middle) we
see the orbit of the pitch degree of freedom inconsistently sag during negative pitch values
corresponding to when the front is in stance. This is due to the motors of the front body
segment saturating when running at speed, the front is slightly inertially disadvantaged
compared to the rear due to the battery weight being carried by the front. Approaching
the speed limit imposed by Inu’s kinematics (bottom), Inu can still run without falling,
however the legs are commanded to lift off prematurely when they near their kinematic
singularity as shown in Figure 28 which results in inconsistent trajectories. The lower time
durations of the faster experiments are the result of the robot running faster through the
motion capture area.

at the fixed point for some k ∈ N. We believe that finite step convergence often comes with

the price of an increased control burden that – as suggested by the current general lack of
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Figure 28: Toe kinematic trajectories for the front legs in the local hip frame show that
at running speeds of 1.6 m/s, the leg linkage is going close to singularity. This represents
a constraint on maximum running speed, as the leg runs out of workspace to sweep the
leg backwards in stance. Faster running with the control strategy of Chapter 4.2 could
be achieved by either using longer legs to increase the workspace or by achieving shorter
stance durations through increasing the applied vertical stance force. In future work we
will investigate the addition of a spine morphology to provide this added workspace without
detracting from the hip’s torque generation affordance.

deadbeat results “in the wild” without utilizing motion capture – is poorly conditioned to

state/parameter uncertainty.
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Specifically, a k-step deadbeat control law requires the cancellation of all nonlinear terms

in the Taylor series of a system’s k-times composed Poincaré map local to the fixed point.

Regarding state uncertainty, the canceling of the combined effect of these nonlinear terms

can be worse-conditioned to errors in state measurement than only canceling the linear terms

(sometimes much worse). We avoided the possibility of this ill-conditioning by both choosing

not to cancel the nonlinear terms and by designing feedback paths in our control law to

only use states that we felt we can accurately measure: time, kinematic configurations, and

forward speed (which changes relatively slowly) – thus eschewing the common method of

detecting a hip’s apex event in flight as it is typically backed out of the hip’s vertical liftoff

velocity, which we have difficulty measuring in stance due to its quickly changing nature.

We are wary of using these feedback paths for deadbeat stability as state measurement error

inherent to operation in the physical world is still present in states that we can “accurately”

measure, and an ill-conditioned canceling of dynamics can still magnify their adverse effects

to result in a controller with poor empirical performance. Regarding parametric uncertainty,

deadbeat control amounts to inverse dynamics and it is known that cancellation of inertial

terms can lead to poor parametric robustness. Rather, the empirical performance depicted

in Figures 26, 27 demonstrates a reasonable degree of robustness to state measurement error

inherent to operation in the physical world and Figures 24, 25 indicate a reasonable degree

of parametric robustness.

4.6.2. Controlling on the hybrid transitions

In controlling on the guards and resets, we are utilizing a natural affordance provided

by the use of legs. The control affordance provided by hybrid transitions is important

because it is in some sense independent of actuator power constraints: on one hand, we

achieve arbitrarily good pole placement with only modest control gains (Table 5); while

on the other, our specification of desired hybrid periodic orbit (Proposition 2, Chapter

4.3.3) depends strongly on actuator performance but is almost entirely devoid of controller

specification (Chapter 4.4). As we attempt to make more precise below, we believe that
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controlling on the hybrid transitions frees scarce actuator power resources from the task

of shaping the continuous dynamics into the proper “funnel” [56] required for stability,

allowing their application to go instead to accessing dynamical regimes of higher energy

operation. Settings rich in hybrid interactions are ripe for this style of control, and as such

the intrinsic necessity of making and breaking contact that accompanies legged robots is an

opportunity for exploiting the natural hybrid nature of the dynamics to achieve stability.

The costs inherent to our control formulation are twofold. First, the actuator cost is equal to

the enforcement of the (piecewise) Hamiltonian dynamics through generating conservative

potential field force laws at the toes. In the vertical this is a constant force (4.20), in the

horizontal the force is affine with respect to leg horizontal toe position (4.21). Due to the

simple and transparent nature of these force laws (constant and affine), a user can easily

evaluate if they are prohibitively costly at any point in the workspace and – as long as

transients in state are not bad – shouldn’t expect that operation near the hybrid periodic

orbit would be suddenly costly for the actuators. The fact that the Inu robot used in the

experiments is inherently force-limited (Chapter 4.5.1) yet can tolerate using the force laws

even as perturbations are corrected suggest the cost associated with it are not prohibitive.

Second, our hybrid transition control scheme consists of displacing the toe from some nom-

inal location using proportional control. Practically, the toes can only tolerate so much

displacement from the controllers (legs being limited in workspace, or perhaps needing to

avoid a corner of the workspace with unfavorable actuator performance) which we relate

to the tolerable state-error as follows. If one puts interval constraints on the values that a

control function gTD, gLO, rF,D, or rD,R (4.57), (4.62) may take, this is equivalent to being

able to – on the hybrid transitions – tolerate perturbations from the periodic orbit that

satisfy two halfspace constraints (whose hyperplanes are parallel and offset). For example,
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specifying that rD,R ∈ (δrMIN, δrMAX) in (4.62) is equivalent to the requirement that:

δrMIN < kH
D
T

∆xr − ∆̄xrD

∆xf − ∆̄xfD

 < δrMAX,

allowing the user to quantify the state-errors tolerable by the leg mechanisms.

4.6.3. Cascade compositions as attracting invariant submanifolds

Stable fixed points of cascaded iterated maps necessarily have an attracting invariant sub-

manifold. Let D1 and D2 be (respectively) n and m-dimensional differentiable manifolds,

and suppose the iterated map P : D1 ×D2 → D1 ×D2 has the form:

P (x, y) =

 P1(x)

P2(x, y)

 ,

and stable fixed point (x̄, ȳ). Then x̄×D2 is an invariant submanifold, and is attracting due

to x̄ being attracting in P1. In our system, the attracting invariant submanifold is given

by the horizontal dynamics along the in-place limit cycle. It is interesting to note that in

the language of templates and anchors [90], traditionally the dynamics on the attracting

invariant submanifold – called the template dynamics – drive the hybrid transitions, while

in our case it is the dynamics that collapse to the attracting invariant submanifold – called

the anchor dynamics – that do so.

4.7. Conclusion

This paper considered the problem of stabilizing a three mechanical degree-of-freedom sim-

plified model of quadrupedal bounding in the sagittal plane. By using the continuous stance

forces to effect simple continuous dynamics and a cascade dynamical decoupling giving a use-

ful eigenvalue separation condition in the stride map Jacobian, we analytically showed local

stability by controlling on the guards and resets to obtain an “infinitesimal” deadbeat re-
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sult. The model, while simple, well-approximates physical robot experiments implementing

the running controller. Aside from the contribution of the running controller, we hope this

paper motivates further progress in analytical stability results of three degree-of-freedom

(and higher) legged locomotion models – a currently underdeveloped literature that has the

potential to greatly enhance the empirical performance of legged machines.

4.8. Appendix to Chapter 4: Controller Stability Lemmas

This appendix contains results related to the choice of control gains in Proposition 3 guaran-

teeing infinitesimal deadbeat stability of the half-stride map H (4.46) at the operating point

(4.47). Lemma 1 gives the explicit form of the time-to-impact map Jacobians
∂TF,D

∂x̃I

∣∣∣
τ=0

and

∂TD,R

∂x̃I

∣∣∣
τ=0

. The control weight change-of-coordinates (4.73) is given to assist in expressing

the deadbeat gain expressions, which are presented in Lemmas 2 and 3 below.

Lemma 1. The relevant Jacobians of the time-to-guard-impact functions in (4.72) are given

by:

∂TF,D

∂x̃I

∣∣∣
τ=0

=
1

kIF,3 − sF



1− kIF,1 − k
I
F,2

(−1 + kIF,1 − kIF,2)d2

T̄F,D

−d
2 T̄F,D



T

,

sF = ẏ − d

2
ϕ̇+

(
(1− a−1)uy − g

)
T̄F,D,

∂TD,R

∂x̃I

∣∣∣
τ=0

=
1

kID,3 − sD



1− kID,1 − kID,2

(1 + kID,1 − kID,2)d2

T̄D,R

d
2 T̄D,R



T

,

sD = ẏ +
d

2
ϕ̇+ (2uy − g)T̄D,R.

Proof. See Chapter 4.11.
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We introduce the following coordinate change to simplify the form of the time-to-guard-

impact Jacobians above. Let:

k̃
I

F =


k̃IF,1

k̃IF,2

k̃IF,3

 =
1

kIF,3 − sF


1− kIF,1 − kIF,2

(−1 + kIF,1 − kIF,2)d2

T̄F,D

 , (4.73)

k̃
I

D =


k̃ID,1

k̃ID,2

k̃ID,3

 =
1

kID,3 − sD


1− kID,1 − kID,2

(1 + kID,1 − kID,2)d2

T̄D,R

 ,

such that:

∂TF,D

∂x̃I

∣∣∣
τ=0

= k̃F
I TM I

F, M I
F =


1 0 0 0

0 1 0 0

0 0 1 −d
2

 ,

∂TD,R

∂x̃I

∣∣∣
τ=0

= k̃D
I TM I

D, M I
D =


1 0 0 0

0 1 0 0

0 0 1 d
2

 .

This transformation is invertible via:

kI
F =

T̄F,D

d k̃IF,3


−d

2 1 0

−d
2 −1 0

0 0 0

 k̃
I

F +


1

0

sF +
T̄F,D

k̃IF,3

 , (4.74)

kI
D =

T̄D,R

d k̃ID,3


−d

2 1 0

−d
2 −1 0

0 0 0

 k̃
I

D +


0

1

sD +
T̄D,R

k̃ID,3

 ,

where:

k̃IF,3 6= 0, k̃ID,3 6= 0. (4.75)
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Lemma 2. The following choice of k̃
I

F and k̃
I

D make DHI
∣∣∣˜̄xI

nilpotent assuming the con-

ditions given in (4.82) can be satisfied. Choose k̃
I

D such that:

k̃D
I T


− ˙̄y

− ˙̄ϕ

2uy − g

 = −1, (4.76)

which zeros one eigenvalue of DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
and hence of DHI

∣∣∣˜̄xI
. Denote the resulting

Jordan decomposition of DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
by:

DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
= V IΛIV I−1

, (4.77)

where the zero eigenvalue is placed in the upper-left element of ΛI and the explicit form of

V I and ΛI is given in (4.94) of Chapter 4.12. Let:

AI = T IΛIV I−1

I IT̄F,D

0 I

Db̃IV IT I T , (4.78)

dI = T IΛIV I−1



− ˙̄y

− ˙̄ϕ

uy − g

−2uy
da


,

T I =


0 1 0 0

0 0 1 0

0 0 0 1

 ,

and:

RI =

(
dI AIdI AI 2

dI

)
. (4.79)
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Then choose:

k̃
I

F = −
(

0 0 1

)
RI−1

AI 3
(
M I

FDb̃
IV IT I T

)−1
. (4.80)

Along with the hyperplane constraint (4.76), we require that the choice of k̃
I

D satisfy:

k̃ID,1 6= 0,− 1

2 ˙̄y
, k̃ID,2 6=

d

2
k̃ID,1, k̃ID,3 6= 0, (4.81)

k̃D
I T


˙̄y

− ˙̄ϕ

2uy − g

 6= −1,

det(RI ) 6= 0,

k̃IF,3 6= 0, (dependent on k̃
I

D via (4.80)),

according to (4.75), (4.80), (4.95), (4.97) and to guarantee the invertibility of RI (4.96).

We leave as a conjecture that the constraints:

det(RI ) 6= 0, k̃IF,3 6= 0 (4.82)

from (4.81) don’t produce an empty set of feasible choices for k̃
I

D.

Proof. See Chapter 4.12.

We numerically verified (4.81) when using the values from Table 5.

Lemma 3. The following choice of kH = (kHF , k
H
D,1, k

H
D,2)T makes Dx̃HHH

∣∣˜̄xI nilpotent.
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Let:

 kHF

kHD,1

 =

 cosh
(
T̄F,D

√
uy
ȳ

)
0

−
√

uy
ȳ sinh

(
T̄F,D

√
uy
ȳ

)
1


−1

(4.83)

{ k̃HF

k̃HD,1

−

√

ȳ
uy

sinh
(
T̄F,D

√
uy
ȳ

)
1− cosh

(
T̄F,D

√
uy
ȳ

)
},

kHD,2 = 0,

where:  k̃HF

k̃HD,1

 = −
(
RH−1

AH 2
)T 0

1

 ,

and:

RH =

(
dH AHdH

)
, (4.84)

AH =

 0 1

−1 0

 eCDT̄D,R

{
eCFT̄F,D

0 −1

1 0

+

0 1
2

0 0

}

−

0 0

0 1
2

 ,

dH =

 0 1

−1 0

 eCDT̄D,R

−1
2

0

+

0

1
2

 .

Proof. See Chapter 4.13.
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4.9. Appendix to Chapter 4: Control gain selection proce-

dure

The choice of control gains (4.76), (4.80), (4.83) that grants the system infinitesimal dead-

beat stability fully constrains kH and kI
F, and constrains kI

D to a hypersurface. We chose

where to place kI
D on this hypersurface as follows.

We chose to fix kID,3 as a function of kID,1 and kID,2 via (4.76), explicitly:

kID,3 =
−1 + ˙̄ykID,1 + ˙̄ϕkID,2

2uy − g
.

We then chose to set the value of kID,2 to zero, severing a feedback path in (4.57) that

corresponds to the hip’s usage of its own vertical height measurement in determining liftoff

height. Setting kID,2 to zero was observed in the experiment to improve performance, likely

this feedback path made the controller very sensitive to the sagging of the front body

segment due to actuator saturation when running at faster speeds (depicted in Figure 27).

We chose kID,1 using the following constrained optimization problem in an effort to reduce

transients and control gain magnitudes, and to increase parametric robustness:

min
kID,1

c1||kI ||2 + c2

∣∣∣∣∣∣DHI |˜̄xI

∣∣∣∣∣∣2
F

+ c3

∣∣∣∣∣∣ ∂
∂k̂I

p(k̂I )
∣∣∣∣∣∣2
F

s.t. kID,2 = 0

kID,3 =
−1 + ˙̄ykID,1 + ˙̄ϕkID,2

2uy − g

kI =

kI
F

kI
D


k̂I =

(
kI T g d a l0 uy T̄F,D

)T
,

additionally subject to the constraints (4.76), (4.80), (4.83) granting infinitesimal deadbeat
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stability, and where p(k̂I ) equals the coefficient vector for the characteristic polynomial of

DHI
∣∣∣˜̄xI

. The terms associated with c1 are intended to keep the control inputs relatively

small, the terms associated with c2 are intended to reduce transients, and the terms associ-

ated with c3 are intended to increase robustness to parametric uncertainty and measurement

errors in applying control. We used c1 = 500, c2 = 1.1, c3 = 1.5 and numerically verified

that the resulting control weights satisfied (4.81). The numerical values chosen are shown

in Table 5.

4.10. Appendix to Chapter 4: Fixed point calculations

The following proof of Proposition 2 is given in two parts. The first derives the form of the

fixed point ˜̄xI
for the map HI (·). The second derives the form of the fixed point ˜̄xH

for

the map HH (˜̄xI
, ·) ≡ HH |˜̄xI (·).

Proof of Proposition 2, part 1

Proof. Consider the in-place component of the “flipped” half-stride map (4.46) given by:

HI = ΠI ◦ bI ◦ ΦI
D,R ◦ ΦI

F,D ◦ ΣI .

Recall that the maps ΠI (4.43), bI (4.26), and ΣI (4.43), in HI are simple linear maps while

the mode maps ΦI
i,j (4.38) in HI have the form ΦI

i,j(x
I ) = RI ◦ φ

T I
i,j(x

I )

i (xI ), where φti(x
I )

is the continuous flow (4.34), RI : (qI , q̇I , τ) 7→ (qI , q̇I , 0), and T I
i,j (4.39) is the implicit

time-to-guard-impact map given by T I
i,j(x

I ) = min{t ∈ R+|φti(xI ) ∈ GI
i,j}.

We wish to show that:

˜̄xI
=



l0 − a−1uy(g−uy)
4(2uy−g) T̄ 2

F,D

−a−1uy(g−uy)
2d(2uy−g) T̄ 2

F,D

g−uy
2 T̄F,D

−a−1uy
d T̄F,D
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is a fixed point of HI and additionally that the hybrid execution from this fixed point

spends a duration in mode D equal to:

T̄D,R = T̄F,D
g − uy
2uy − g

.

One could simply solve HI (˜̄xI
) = ˜̄xI

algebraically to obtain this result, however this entails

explicitly expressing the time-to-impact maps which have a complicated form involving

roots of quadratic equations. Instead, it is much cleaner to first take the duration constants

T̄F,D and T̄D,R as surrogates for the time-to-guard-impact maps and algebraically solve for

the fixed point, then secondly verify that the resulting T̄F,D and T̄D,R agree with the values

of time-to-guard-impact maps.

We first solve the equations:

˜̄xI
= ΠI ◦ bI ◦RI ◦ φT̄D,R

D ◦RI ◦ φT̄F,D

F ◦ ΣI (˜̄xI
), (4.85)

l0 = yrhip ◦ φT̄F,D

F ◦ ΣI (˜̄xI
),

which have the expanded form:

q̄I

¯̇qI

 =

Ĩ 0

0 Ĩ

{ T̄ 2
D,R

2 cD

T̄D,RcD

+

I T̄D,RI

0 I

 (4.86)

[I T̄F,DI

0 I

q̄I

¯̇qI

+

 T̄ 2
F,D

2 cF

T̄F,DcF

]},
l0 =

 1

−d2

T (
q̄I + T̄F,D

¯̇qI +
T̄ 2
F,D

2 cF

)
,

for state ˜̄xI
=

q̄I

¯̇qI

 ∈ D̃I
F and T̄D,R ∈ R+. Here Ĩ =

1 0

0 −1

 and both (4.85) and (4.86)

represents the requirement that – starting from ΣI (˜̄xI
) – the flow in F at time T̄F,D satisfies

124



the first predicate of the definition of GI
F,D (4.25). Solving these equations yields:

˜̄xI
=



l0 − a−1uy(g−uy)
4(2uy−g) T̄ 2

F,D

−a−1uy(g−uy)
2d(2uy−g) T̄ 2

F,D

g−uy
2 T̄F,D

−a−1uy
d T̄F,D


,

T̄D,R = T̄F,D
g − uy
2uy − g

,

where we will require that:

T̄D,R ∈ R+, (4.87)

so as to satisfy the domain requirement in (4.39). Notice that
g−uy
2uy−g > 0 in the expression

for T̄D,R as g ∈ R+ and uy ∈ (g2 , g) as specified in (4.16).

The fact that the above computation, which involves the roots of quadratic equations, has a

clean solution is due to the highly symmetric nature of the hybrid trajectory associated with

the fixed point. Specifically, the configuration variables along this trajectory in each mode

– in the case where they undergo a nonzero acceleration – end where they begin, so that

the quadratic formula associated with solving the event time simplifies to a simple rational

function. For example, the form of (4.86) is simplified by the fact that (1,−d
2)q̄I = l0,

which reduces (4.86) to:

T̄F,D

 1

−d
2


T

¯̇qI +
T̄ 2

F,D

2

 1

−d
2


T

cF = 0,

which then, because T̄F,D > 0, further reduces to:

 1

−d
2


T

¯̇qI +
T̄F,D

2

 1

−d
2


T

cF = 0,

which does not possess any quadratic terms.
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It remains to show that that the mode duration constants T̄F,D and T̄D,R agree with the

value of time-to-guard-impact maps, specifically that:

T̄F,D = T I
F,D

∣∣∣
ΣI (˜̄xI

)

= min{t ∈ R+|φtF ◦ ΣI (˜̄xI
) ∈ GI

F,D},

T̄D,R = T I
D,R

∣∣∣
ΦI

F,D◦ΣI (˜̄xI
)

= min{t ∈ R+|φtD ◦ ΦI
F,D ◦ ΣI (˜̄xI

) ∈ GI
D,R},

where the relevant guards (4.25) are:

GI
F,D := {xI ∈ DI

F | yrhip(xI ) = l0 + gTD(xI )

∧ ẏrhip(xI ) < 0},

GI
D,R := {xI ∈ DI

D |yfhip(xI ) = l0 + gLO(xI )

∧ ẏfhip(xI ) > 0},

recalling that the functions gLO, gTD are required to vanish on the hybrid periodic orbit’s

guard intersection.

We first concentrate on T I
F,D

∣∣∣
ΣI (˜̄xI

)
. The flow through mode F given by φtF◦ΣI (˜̄xI

) intersects

the guard GI
F,D when:

yrhip
∣∣∣
φtF◦ΣI (˜̄xI

)
= l0 + gTD

∣∣∣
φtF◦ΣI (˜̄xI

)
∧ ẏrhip

∣∣∣
φtF◦ΣI (˜̄xI

)
< 0. (4.88)
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The terms in (4.88) evaluated at time T̄F,D are:

gTD

∣∣∣
φ
T̄F,D
F ◦ΣI (˜̄xI

)
= 0,

yrhip
∣∣∣
φ
T̄F,D
F ◦ΣI (˜̄xI

)
= yrhip

(


l0 − a−1uy(g−uy)
4(2uy−g) T̄ 2

F,D

−a−1uy(g−uy)
2d(2uy−g) T̄ 2

F,D

−g−uy
2 T̄F,D

a−1uy
d T̄F,D

T̄F,D


)
,

= l0,

ẏrhip
∣∣∣
φ
T̄F,D
F ◦ΣI (˜̄xI

)
= ẏrhip

(


l0 − a−1uy(g−uy)
4(2uy−g) T̄ 2

F,D

−a−1uy(g−uy)
2d(2uy−g) T̄ 2

F,D

−g−uy
2 T̄F,D

a−1uy
d T̄F,D

T̄F,D


)

= −
T̄F,D

2

(
g + (a−1 − 1)uy

)
< 0,

and so the predicates of (4.88) are satisfied and φ
T̄F,D

F ◦ ΣI (˜̄xI
) ∈ GI

F,D.

We still must show that T̄F,D is the minimum positive value of time t at which this pred-

icate is satisfied. It is helpful to note that the rear hip has constant negative-acceleration

dynamics, and thus yrhip ◦ φtF ◦ ΣI (˜̄xI
) has the graph of a downwards-facing parabola. At

both times t = 0 and t = T̄F,D, we have that yrhip ◦ φtF ◦ ΣI (˜̄xI
) = l0, and so (because a

parabola can intersect a line no more than two times) at no other time may the predicate

yrhip ◦φtF|ΣI (˜̄xI
)

= l0 be true. The parabola is downwards-facing, hence on the time interval

(0, T̄F,D) the rear hip height is greater than l0 in value. Since we require that the Lie deriva-

tive of gTD along the vector field not be decreasing (4.27), we have – on the time interval
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(0, T̄F,D) – that gTD

∣∣∣
φtF◦ΣI (˜̄xI

)
≤ 0. Then:

yrhip
∣∣∣
φtF◦ΣI (˜̄xI

)
> l0 + gTD

∣∣∣
φtF◦ΣI (˜̄xI

)
, t ∈ (0, T̄F,D), (4.89)

and so φtF ◦ ΣI (˜̄xI
) /∈ GI

F,D for t ∈ (0, T̄F,D). Thus T I
D,R is indeed the minimum positive

time at which the guard predicate is satisfied, allowing us to conclude that:

T̄F,D = T I
F,D

∣∣∣
ΣI (˜̄xI

)
.

By similar reasoning (omitted for brevity) one can show that:

T̄D,R = T I
D,R

∣∣∣
ΦI

F,D◦ΣI (˜̄xI
)
,

allowing us to conclude that: ˜̄xI
= HI (x̃I ) and T̄D,R is the time-duration spent in mode D of

the hybrid execution from x̄I . Additionally, ˜̄xI
is a fixed point of SI since SI = HI ◦HI .

Proof of Proposition 2, part 2

Proof. We wish to solve for the fixed point ofH , parametrized by its velocity component ˙̄x as

well as the model’s physical parameters and the in-place model’s fixed point parametrization.

Recall that H (4.46) has the form:

H = Π ◦ b ◦ ΦD,R ◦ ΦF,D ◦ Σ, (4.90)

where Π, b, and Σ are simple linear maps (4.43), (4.40), (4.32), while the mode maps ΦD,R

and ΦF,D are given by (4.37). In the form of the mode maps, the horizontal flows are

given by (4.35) and the horizontal resets are given by (4.31), recalling that the otherwise

unspecified control functions rF,D, rD,R in the resets are required to vanish on the hybrid

periodic orbit’s guard intersections.
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The map H has the structure:

H (x̃) =

 HI (x̃I )

HH (x̃I , x̃H )

 , x̃ =

 x̃I

x̃H

 ,

where, by the previous proof, HI has the fixed point ˜̄xI
(4.48). It remains to find a fixed

point ˜̄xH
= ( ˙̄x, ∆̄xr, ∆̄xf )T such that:

˜̄xH
= HH (˜̄xI

, ˜̄xH
) = HH

∣∣˜̄xI (˜̄xH
),

where:

HH
∣∣˜̄xI = ΠH ◦ bH ◦RH

D,R ◦ φ̂
T̄D,R

D ◦RH
F,D ◦ φ̂

T̄F,D

F ◦ Σ.

Finally, to aid in our search, we assume that the forward speed at the fixed point ˙̄x returns

to the same value after the application of each mode map.

Consider:

φ̂T̄F,D ◦ ΣH (˜̄xH
)

=


eCFT̄F,D

0

˙̄x

+
(
eCFT̄F,D − I

)∆xAvg − ∆̄xf

0


∆̄xr

∆̄xf



=



xF

˙̄x

∆̄xr

∆̄xf


,

where xF is the distance traveled horizontally by the mass center in mode F. The system
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of equations given by the first two rows simplify to:

(
eCFT̄F,D − I

)∆xAvg − ∆̄xf

˙̄x

 =

xF

0

 ,

allowing us to solve for xF and ∆̄xf :

xF =

(
1 0

)(
eCFT̄F,D − I

)∆xAvg − ∆̄xf

˙̄x

 ,

∆̄xf =

(
0 1

)(
eCFT̄F,D − I

)∆xAvg

˙̄x


(

0 1

)(
eCFT̄F,D − I

)1

0


.

Letting xD denote the distance traveled horizontally by the mass center at the end of mode
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D, we have that (successively adding on terms):

RH
F ◦ φ̂T̄F,D ◦ ΣH (˜̄xH

) =

(xF, ˙̄x, xF + ∆̄xr, ∆̄xf )T ,

φ̂T̄D,R ◦RH
F ◦ φ̂T̄F,D ◦ ΣH (˜̄xH

) =

(xD, ˙̄x, xF + ∆̄xr, ∆̄xf )T ,

RH
D ◦ φ̂T̄D,R ◦RH

F ◦ φ̂T̄F,D ◦ ΣH (˜̄xH
) =

(xD, ˙̄x, xF + ∆̄xr, ∆xNom)T ,

bH ◦RH
D ◦ φ̂T̄D,R ◦RH

F ◦ φ̂T̄F,D ◦ ΣH (˜̄xH
) =

(xD, ˙̄x, ∆xNom − 2∆xAvg, xF + ∆̄xr + 2∆xAvg)T ,

ΠH ◦ bH ◦RH
D ◦ φ̂T̄D,R ◦RH

F ◦ φ̂T̄F,D ◦ ΣH (˜̄xH
) =

( ˙̄x, ∆xNom − 2∆xAvg, xF + ∆̄xr + 2∆xAvg − xD)T ,

and so:

HH


˙̄x

∆̄xr

∆̄xf

 =


˙̄x

∆xNom − 2∆xAvg

xF + ∆̄xr + 2∆xAvg − xD

 ,

giving us ∆xNom = ∆̄xr + 2∆xAvg and ∆̄xr = ∆̄xf − 2∆xAvg + (xD − xF). As we already

have the form of xF and ∆̄xf , all that remains is to calculate the form of xD so as to obtain

∆̄xr.

The first two rows of:

φ̂T̄D,R ◦RH
F ◦ φ̂T̄F,D ◦ ΣH (˜̄xH

) = (xD, ˙̄x, xF + ∆̄xr, ∆̄xf )T
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give us:

xD

˙̄x

 =eCDT̄D,R

xF

˙̄x


+
(
eCDT̄D,R − I

)−1
2(xF + ∆̄xr + ∆̄xf )

0

 .

Solving for xD gives:

xD =2(1, 0)
(
eCDT̄D,R + I

)−1

eCDT̄D,R

xF

0

+
(
eCDT̄D,R − I

)∆xAvg − ∆̄xf

˙̄x


 .

Plugging the values of xD and xF into ∆̄xr = ∆̄xf − 2∆xAvg + (xD − xF) yields:

∆̄xr =∆̄xf − 2∆xAvg +

(
1 0

)(
eCDT̄D,R + I

)−1

(
eCDT̄D,R − I

)(
eCFT̄F,D + I

)∆xAvg − ∆̄xf

˙̄x

 ,

completing the proof.

Note that xF and xD simplify (in terms of ∆̄xr and ∆̄xr just derived) to:

xF = 2(∆̄xf −∆xAvg),

xD = ∆̄xf + ∆̄xr.

This allows us to conclude that on the periodic orbit at the end of D before the reset is
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applied, the front and rear leg splays (used in (4.62)) are:

∆̄xrD = ∆̄xr − (xD − xF) = ∆̄xf − 2∆xAvg, (4.91)

∆̄xfD = ∆̄xf − xD = −∆̄xr.

4.11. Appendix to Chapter 4: Proof of Lemma 1

Proof. For brevity we only show the calculation of
∂T I

F,D

∂x̃I

∣∣∣
τ=0

, as the calculation of
∂T I

D,R

∂x̃I

∣∣∣
τ=0

is nearly identical.

According to the definition of T I
i,j (4.39) and GI

F,D (4.85), we have that:

T I
F,D(xI ) = min{t ∈ R+|φtF(xI ) ∈ GI

F,D}

= min{t ∈ R+|yrhip ◦ φtF(xI ) = l0 + gTD ◦ φtF(xI )

∧ ẏrhip ◦ φtF(xI ) < 0}.

Differentiating the predicate’s equality term yields:

Dyrhip

∣∣∣
φ
T I
F,D

(xI )

F (xI )
·
{∂φtF(xI )

∂xI
+
∂φtF(xI )

∂t

∂T I
F,D

∂xI

}∣∣∣
xI ,T I

F,D(xI )

=

DgTD

∣∣∣
φ
T I
F,D

(xI )

F (xI )
·
{∂φtF(xI )

∂xI
+
∂φtF(xI )

∂t

∂T I
F,D

∂xI

}∣∣∣
xI ,T I

F,D(xI )
,
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and so:

∂T I
F,D

∂xI
= − 1

sF
{Dyrhip −DgTD}

∣∣∣
φ
T I

F,D
(xI )

F (xI )

∂φtF(xI )

∂xI

∣∣∣
xI ,T I

F,D(xI )
,

sF = {Dyrhip −DgTD}
∣∣∣
φ
T I

F,D
(xI )

F (xI )

∂φtF(xI )

∂t

∣∣∣
xI ,T I

F,D(xI )
.

Then:

∂T I
F,D

∂x̃I
= − 1

sF
{Dyrhip −DgTD}

∣∣∣
φ
T I

F,D
(xI )

F (xI )
(4.92)

∂φtF(xI )

∂x̃I

∣∣∣
xI ,T I

F,D(xI )
,

sF = {Dyrhip −DgTD}
∣∣∣
φ
T I

F,D
(xI )

F (xI )

∂φtF(xI )

∂t

∣∣∣
xI ,T I

F,D(xI )
.

The rest of the proof is concerned with evaluating each of the terms in (4.92) at τ = 0.

As yrhip : xI 7→ y − d
2ϕ (4.28), we have that:

Dyrhip =

(
1, −d

2 , 0, 0, 0

)
,
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and (recalling the structure of the flow (4.34)):

∂φtF(xI )

∂x̃I

∣∣∣
xI ,T I

F,D(xI )
=


I T I

F,D(xI )I

0 I

0 0

 ,

∂φtF(xI )

∂t

∣∣∣
xI ,T I

F,D(xI )
=


q̇I + cFT

I
F,D(xI )

cF

1

 .

The only remaining term in (4.92) is the quantity DgTD

∣∣∣
φ
T I

F,D
(xI )

F (xI )
. Recall that gTD (4.57)

is given by:

gTD(xI ) = kI
F
T


yrhip

F0
(xI )− yrhip(x̄I

F0,D)

yfhip
F0

(xI )− yfhip(x̄I
F0,D)

τ − T̄F,D

 ,

where x̄I
F0,D and T̄F,D are constants, and the maps yrhip

F0
, yfhip

F0
(4.58) are:

yrhip
F0

(xI ) = yrhip ◦ φ−τF (xI ),

yfhip
F0

(xI ) = yfhip ◦ φ−τF (xI ).

For clarity we introduce the following:

φ−τi (xI ) ≡ φ̃i(xI ),

Then:

DgTD

∣∣∣
φ
T I

F,D
(xI )

F (xI )
=
(
kI F1Dy

rhip + kI F2Dy
fhip
)
,

∂φ̃F

∂xI

∣∣∣
φ
T I

F,D
(xI )

F (xI )
+ kI F3

∂τ

∂xI
,
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where:

Dyrhip =

(
1, −d

2 , 0, 0, 0

)
,

Dyfhip =

(
1, d

2 , 0, 0, 0

)
,

∂φ̃F

∂xI
=


I −τI

(
−q̇I + cFτ

)
0 I −cF

0 0 0

 ,

and so (simplifying terms):

∂φ̃F

∂xI

∣∣∣
φ
T I

F,D
(xI )

F (xI )

=


I
(
−
(
T I

F,D(xI ) + τ
)
I
) (
−q̇I + cFτ

)
0 I −cF

0 0 0

 .

We have the form of all terms in (4.92), multiplying them together gives:

∂TF,D

∂x̃I

∣∣∣
τ=0

= − 1

sF



1− kIF,1 − k
I
F,2

(−1 + kIF,1 − kIF,2)d2

T̄F,D

−d
2 T̄F,D



T

,

sF = ẏ − d

2
ϕ̇+

(
(1− a−1)uy − g

)
T̄F,D − kIF,3.

4.12. Appendix to Chapter 4: Proof of Lemma 2

Proof. We aim to choose k̃
I

F, k̃
I

D to make DHI
∣∣∣˜̄xI

nilpotent.
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Recall that DHI
∣∣∣˜̄xI

= Db̃I ·DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
·DΦ̃I

F,D

∣∣∣
x̄I

(4.71), where Db̃I is a simple linear

map (4.72) and:

DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
=

I T̄D,RI

0 I

+



˙̄y

− ˙̄ϕ

2uy − g

0


k̃D

I TM I
D,

DΦ̃I
F,D

∣∣∣
x̄I

=

I T̄F,DI

0 I

+



− ˙̄y

− ˙̄ϕ

uy − g

−2uy
da


k̃F

I TM I
F.

A necessary requirement for nilpotency of DHI
∣∣∣˜̄xI

is that its determinant is zero, and so

one of its factors must have a zero determinant. We find it algebraically convenient to zero
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the determinant of DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
:

detDΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )

= det


I T̄D,RI

0 I

+



˙̄y

− ˙̄ϕ

2uy − g

0


k̃D

I TM I
D


[73, Lem. 1.1]

= det

I T̄D,RI

0 I

·


1 + k̃D
I TM I

D

I −T̄D,RI

0 I




˙̄y

− ˙̄ϕ

2uy − g

0





= 1 + k̃D
I TM I

D

I −T̄D,RI

0 I




˙̄y

− ˙̄ϕ

2uy − g

0



= 1 + k̃D
I TM I

D



− ˙̄y

− ˙̄ϕ

2uy − g

0



= 1 + k̃D
I T


− ˙̄y

− ˙̄ϕ

2uy − g



= 0 ⇐⇒ k̃D
I T


− ˙̄y

− ˙̄ϕ

2uy − g

 = −1. (4.93)
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The choice of k̃
I

D according to (4.93) results in the Jordan decomposition DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
=

V IΛIV I−1
, where:

V I =



− ˙̄y ˙̄y + k̃I
−1

D,1 −
k̃ID,2

k̃ID,1

− k̃
I
D,3(k̃ID,2− d

2 k̃
I
D,1)

k̃I 2D,1T̄D,R

− ˙̄ϕ − ˙̄ϕ 1 0

2uy − g 2uy − g 0 − k̃ID,2

k̃ID,1T̄D,R

0 0 0 T̄−1
D,R


, (4.94)

ΛI =


0 0 0 0

0 1 + k̃ID,1T̄D,R(2uy − g) 0 0

0 0 1 1

0 0 0 1


.

We have that detV I =
2uy−g
k̃ID,1T̄D,R

(1 + 2 ˙̄yk̃ID,1), and so we will require that:

k̃ID,1 6= −
1

2 ˙̄y
, k̃ID,1 6= 0. (4.95)

Nilpotency of a real matrix product is equivalent to nilpotency of the product of any cyclic

permutation of its factors,31 thus achieving our goal of a nilpotent:

DHI
∣∣∣˜̄xI

= Db̃I ·DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I )
·DΦ̃I

F,D

∣∣∣
x̄I

= Db̃I · V I · ΛI · V I−1 ·DΦ̃I
F,D

∣∣∣
x̄I
,

is equivalent to nilpotency of the cyclic permutation:

ΛI · V I−1 ·DΦ̃I
F,D

∣∣∣
x̄I
·Db̃I · V I .

The block structure of the leading factor ΛI guarantees both a zero eigenvalue and that the

31Proof: Let M ∈ Rn×n, A ∈ Rn×m, B ∈ Rm×n, M = AB. Assume there exists a k ∈ N such that Mk = 0
(M is nilpotent). Then (AB)k = 0 and so (BA)k+1 = B(AB)kA = B(0)A = 0. Then the cyclic permutation
BA is nilpotent. Similarly, assume there exists a k ∈ N such that (BA)k = 0 (the cyclic permutation BA is
nilpotent). Then Mk+1 = (AB)k+1 = A(BA)kB = A(0)B = 0. Then M is nilpotent.
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remaining three eigenvalues of the product can only be affected by the lower three-by-three

block matrix of the product. This lower three-by-three block – which we represent by the

matrix N – is given by:

N = T I · ΛI · V I−1 ·DΦ̃I
F,D

∣∣∣
x̄I
·Db̃I · V I · T I T ,

T I =


0 1 0 0

0 0 1 0

0 0 0 1

 .

Expanding DΦ̃I
F,D

∣∣∣
x̄I

results in:

N = AI + dI k̃F
I TM I

FDb̃
IV IT I T ,

AI = T IΛIV I−1

I IT̄F,D

0 I

Db̃IV IT I T ,

dI = T IΛIV I−1



− ˙̄y

− ˙̄ϕ

uy − g

−2uy
da


.

We place the eigenvalues of N at the origin using the standard Ackermann’s formula [201,

p. 611] via:

k̃F
I TM I

FDb̃
IV IT I T = −

(
0 0 1

)
RI−1

AI 3
,

where:

RI =

(
dI AIdI AI 2

dI

)
. (4.96)

Equivalently:

k̃F
I T = −

(
0 0 1

)
RI−1

AI 3
(
M I

FDb̃
IV IT I T

)−1
,
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where:

det
(
M I

FDb̃
IV IT I T

)
=

k̃ID,2 −
d
2 k̃

I
D,1

k̃I 2
D,1T̄D,R

(
1 + ˙̄yk̃ID,1 − ˙̄ϕk̃ID,2 + (2uy − g)k̃ID,3

)
,

introducing the requirements that:

k̃ID,1 6= 0, (4.97)

k̃ID,2 6=
d

2
k̃ID,1,

˙̄yk̃ID,1 − ˙̄ϕk̃ID,2 + (2uy − g)k̃ID,3 6= −1.

The determinant of RI is exceedingly complicated and so we leave as a conjecture that RI

is generically invertible. We verified invertibility numerically using the values from Table

5.

4.13. Appendix to Chapter 4: Proof of Lemma 3

Proof. We desire a value of kH = (kHF , k
H
D,1, k

H
D,2)T that makes Dx̃HHH

∣∣˜̄xI (4.70) nilpotent.

Recall that Dx̃HHH
∣∣˜̄xI has the form:

Dx̃HHH
∣∣˜̄xI =DΠH ·DbH ·DxHRH

D,R ·DxH φ̂
T̄D,R

D ·

DxHRH
F,D ·DxH φ̂

T̄F,D

F ·DΣH ,
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where:

DΠH =


0 1 0 0

0 0 1 0

−1 0 0 1

 , DbH =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


,

DΣH =



0 0 0

1 0 0

0 1 0

0 0 1


,
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and:

DxH φ̂
T̄F,D

F =


eCFT̄F,D (eCFT̄F,D − I)

0 −1

0 0


0 I

 ,

CF =

 0 1

uy
ȳ 0

 ,

DxH φ̂
T̄D,R

D =


eCDT̄D,R 1

2(eCDT̄D,R − I)

−1 −1

0 0


0 I

 ,

CD =

 0 1

2uy
ȳ 0

 ,

DxHRH
F,D =


I 01 kHF

0 0

 I

 ,

DxHRH
D,R =


I 0 0 0

−(kHD,1 + kHD,2) 0


 1 0

kHD,1 kHD,2


 .

Nilpotency of Dx̃HHH
∣∣˜̄xI is equivalent to nilpotency of the product of any cyclic permuta-

tion of the factors of Dx̃HHH
∣∣˜̄xI . Consider the cyclic permutation:

DΣH ·DΠH ·DbH ·DxHRH
D,R ·DxH φ̂

T̄D,R

D ·DxHRH
F,D ·DxH φ̂

T̄F,D

F .
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The product of the final four factors is equal to:

DxH R̂H
D,R :=DΣH ·DΠH ·DbH ·DxHRH

D,R

=



0 0 0 0

0 1 0 0

−(kHD,1 + kHD,2) 0 kHD,1 kHD,2

−1 0 1 0


,

which by inspection is generically rank three but drops to rank two when kHD,2 = 0.

Let kHD,2 = 0. Then:

DxH R̂H
D,R =



0 0 0 0

0 1 0 0

−kHD,1 0 kHD,1 0

−1 0 1 0


= V ΛV −1,

V =



0 1 0 0

0 0 1 0

0 1 0 kHD,1

1 0 0 1


, Λ = diag{0, 0, 1, kHD,1}

s.t. ΛV −1 =



0 0 0 0

0 0 0 0

0 1 0 0

−1 0 1 0


.
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We use these terms to simplify the previous cyclic permutation of Dx̃HHH
∣∣˜̄xI :

DΣH ·DΠH ·DbH ·DxHRH
D,R·

DxH φ̂
T̄D,R

D ·DxHRH
F,D ·DxH φ̂

T̄F,D

F

= DxH R̂H
D,R ·

(
DxH φ̂

T̄D,R

D ·DxHRH
F,D ·DxH φ̂

T̄F,D

F

)
= V · Λ · V −1 ·

(
DxH φ̂

T̄D,R

D ·DxHRH
F,D ·DxH φ̂

T̄F,D

F

)
,

and again cyclically permute it to:

Λ · V −1 ·DxH φ̂
T̄D,R

D ·DxHRH
F,D ·DxH φ̂

T̄F,D

F · V,

which is four-by-four and, by virtue of Λ, has a block lower-triangular form with zeros in

the upper-left two-by-two block. Then only the lower right two-by-two block can affect the

remaining (possibly) non-zero eigenvalues, reducing our consideration to nilpotency of the

two-by-two:

Dx̃H H̃H
∣∣˜̄xI :=

(
0 I

)
· Λ · V −1 ·DxH φ̂

T̄D,R

D ·

DxHRH
F,D ·DxH φ̂

T̄F,D

F · V ·

0

I

 .

Expanding out Dx̃H H̃H
∣∣˜̄xI and simplifying results in:

Dx̃H H̃H
∣∣˜̄xI = 0 1

−1 0

 eCDT̄D,R

eCFT̄F,D

0 −1

1 0

+

0 1

0 0

+

1

2

 0 1

−1 0

 eCDT̄D,R

−1 −1

0 0

+

0 0

1 −1

 ·
k̃HF k̃HD,L

0 1

 ,
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where:

 kHF

kHD,1

 =

 cosh
(
T̄F,D

√
uy
ȳ

)
0

−
√

uy
ȳ sinh

(
T̄F,D

√
uy
ȳ

)
1


−1

{ k̃HF

k̃HD,1

−

√

ȳ
uy

sinh
(
T̄F,D

√
uy
ȳ

)
1− cosh

(
T̄F,D

√
uy
ȳ

)
},

and:

det

 cosh
(
T̄F,D

√
uy

ȳ

)
0

−
√

uy

ȳ sinh
(
T̄F,D

√
uy

ȳ

)
1

 = cosh

(
T̄F,D

√
uy
ȳ

)
,

which never equals zero by virtue of T̄F,D, uy 6= 0.

Then Dx̃H H̃H
∣∣˜̄xI simplifies to:

Dx̃H H̃H
∣∣˜̄xI = AH + dH

 k̃HF

k̃HD,1


T

,

where:

AH =

 0 1

−1 0

 eCDT̄D,R

(
eCFT̄F,D

0 −1

1 0

+

0 1
2

0 0

)

−

0 0

0 1
2

 ,

dH =

 0 1

−1 0

 eCDT̄D,R

− 1
2

0

+

0

1
2

 .

We place the eigenvalues of Dx̃H H̃H
∣∣˜̄xI at the origin using the standard Ackermann’s for-

mula [201, p. 611] via:  k̃HF

k̃HD,1

 = −
(
RH−1

AH 2
)T 0

1

 ,
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where:

RH =

(
dH AHdH

)
,

and:

detRH =
1

8

√
uy
ȳ
e
−
√
uy
ȳ

(T̄F,D+T̄D,R)
(

1 + e

√
uy
ȳ
T̄D,R

)2

(
−1 + e

2
√
uy
ȳ

(T̄F,D+T̄D,R)
)
,

thus RH is invertible, as uy 6= 0 and 2
√

uy
ȳ (T̄F,D + T̄D,R) 6= 0.
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CHAPTER 5

Running with an unlocked back

This chapter provides empirical documentation of steady-state spined quadrupedal bound-

ing at modest speeds utilizing sagittal-plane core actuation on a power-autonomous physical

machine (the first such documentation in the literature to our knowledge) [79]. We compare

this empirical steady-state behavior to the simulation of a simple reduced-order model of

a spined quadruped presented in Chapter 5.1 and show (using the experimental setup of

Chapter 5.2) a rough correspondence between the empirical and simulation results in Chap-

ter 5.3, concluding that the proposed simplified model is sufficiently expressive to describe

realistic bounding limit cycles utilizing core actuation and is thus of interest for robotic

and biological applications, motivating a more formal data-driven and theoretical analysis

for future work. Chapter 5.4 speculates about the relationship between the locked-back

reduced-order model introduced in Chapter 4 and a spined machine.

The work of this chapter represents an experimental characterization of spined running and

– at present – doesn’t include a complete theoretical analysis as discussed in Chapter 5.4.

For this reason, the model used to validate the experiments is simpler than the one used in

Chapter 4. The results of this section motivate the use of an augmented version of the model

presented in Chapter 4 – augmented by composing in a spine-bending degree-of-freedom –

to obtain a formal understanding of the spine’s role in running.

5.1. Sagittal-plane reduced-order model of a spined quadruped

Following [46,61,80,89,171], we propose a reduced-order sagittal-plane spined quadrupedal

model consisting of two bipedal body segments connected by a massless pin joint32 as

shown in Figure 29. We take the state of the model to be given by q = (x, y, φ, ψ)T ∈
32While this is the most common class of robotic core actuation models in the literature, alternatives have

been proposed such as [227].
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D = R2 ×T2 and its time derivative, where x and y respectively denote the horizontal and

vertical displacement of the mass center from the origin, φ denotes the body pitch, and ψ

denotes the angle of the spine (with zero occurring at full extension). Wrenches on the mass

center can be applied by the legs – which are assumed to be massless – when in contact with

the ground, and the spine can apply a torque at the pin joint. For generality we consider

these wrenches to be external to the system even when due to compliance.33

To reduce the parameter space we make the following assumptions: the front and rear body

segments possess identical parameters, each body segment’s mass center is located at the

leg hip, and the body segments individually possess no moment of inertia. The model can

then be parametrized by p = (m, d)T , where m ∈ R+ denotes total mass and d ∈ R+

denotes extended body length. The distance between the front and rear masses d̄ is given

by d̄ = d cos (ψ/2), which we later use as a convenient surrogate for ψ.

The dynamics of the model are represented as

M q̈ + Cq̇ +N = τ,

where

M(q) = diag{m,m, md
2

8

(
1 + cos (ψ)

)
,
md2

32

(
1− cos (ψ)

)
}

is the diagonal inertial matrix,

C(q, q̇) =



0 0 0 0

0 0 0 0

0 0 0 −md2

8 sin (ψ)φ̇

0 0 md2

16 sin (ψ)φ̇ md2

64 sin (ψ)ψ̇


33The advent of virtual compliance in legged drive-trains [114,132] complicates considering compliance as

part of the natural system dynamics.
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gives the Coriolis terms, the effect of gravity is accounted for by

N(q) =

(
0 mg 0 0

)T
,

and τ ∈ R4 is the sum of the external wrenches on the mass center.

Figure 29: The reduced-order sagittal-plane spined quadrupedal model consists of two
bipedal point masses connected by a massless pin joint. The state of the model shown
in (a) is given by q = (x, y, φ, ψ)T ∈ D = R2 × T2 and its time derivative, where q respec-
tively consists of the forward and vertical position of the mass center, the body pitch, and
the spine angle with respect to full extension. The model is parametrized by the total mass
m and extended body length d as shown in (b). The legs are assumed to be massless. The
distance between the front and rear masses d̄ is given by d̄ = d cos (ψ/2), which we use as
a convenient surrogate for ψ.

One potential drawback with this modeling choice is that the inertial matrix loses rank

when the spine is fully extended. We avoid numerical issues in simulation with little loss of

fidelity by controlling the model to extend the spine short of this singularity instead of to

the fully extended configuration.
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5.2. Experimental setup

5.2.1. Bounding Control Strategy

The bounding control strategy used in the experiments builds upon ideas presented in [175]

and [67], and is described below only in brief as the focus is on validating the correspondence

of the spined model with the physical robot. The control algorithm consists of commanding

the front and rear legs to act as modified sagittal-plane Raibert hoppers [175, p. 56] and

actuating the spine according to which hopper is in stance. The front and rear body-

segment controllers share no state information and are only coupled through the physical

dynamics of the body, but this physical coupling is sufficient to give rise to a bounding gait

(as described in [67]).

Specifically, the left and right legs of an individual body segment are commanded as one

“virtual leg” [175, p. 92] to anchor the Spring Loaded Inverted Pendulum (SLIP) template

[36, 185] so as to mimic a radial Hooke’s law spring while in stance. A full description of

the virtual compliance control scheme used to achieve the SLIP anchoring is given in [75].

The virtual legs are vertically energized by applying a radial piecewise-constant leg force to

compress the radial virtual leg spring in the first half of stance and assist its extension in

the second half of stance. Forward-speed control is achieved using Raibert’s neutral-point

technique [175, p. 40-47] to select a desired leg touchdown angle in flight. The forward speed

is further energized by applying a leg torque in stance proportional to the difference between

the actual leg angle and the desired liftoff angle of Raibert’s neutral-point controller. The

reason the controller of Chapter 4 wasn’t used is because the work on bounding with an

unlocked spine of this chapter was done first and motivated work on the analytically stable

controller of the previous chapter. We expect that using an extended version of the previous

chapter’s controller would result in similar behavior to that presented here.

For a bounding gait to emerge from the physical coupling between the hopping front and

rear body segments, we artificially limit the stance duration of the legs to be 190 ms or
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less, after which the legs are retracted to force the body segment into flight. With longer

stance durations, a pronking gait emerges. The causes of this gait bifurcation would be an

interesting subject for future work.

The spine is controlled by commanding a spine retraction to a set angle if the front legs are

the only legs in stance, commanding a full spine extension if the rear legs are the only legs

in stance, and maintaining the spine’s current angle otherwise.

5.2.2. Controller Implementation On-Board the Inu Robot

A stable bounding gait utilizing core actuation was achieved using the above controller

on-board the Inu robot. Controller parameters such as the virtual spring stiffness were

hand-tuned either on the robot or using the simulation described in Chapter 5.2.4 to search

for a limit cycle. User input at runtime consisted of setting the desired speed via joystick.

The only modification made to the algorithm presented in Chapter 5.2.1 was that the

spine extension and retraction were commanded to occur gradually over the course of 100

ms because faster retraction and extension resulted in slippage of the spine belt over the

driving sprocket.

5.2.3. Experiment Design

Two experiments were performed using the robot. In the first (Experiment 1), the robot

was documented bounding with spine bending in steady-state at modest speeds so as to

examine how well the reduced-order model could be fit to describe the empirical data. In

the second (Experiment 2), the robot was recorded bounding at steady-state while keeping

its spine rigid – by setting the spine retraction angle in the controller to be equal to the

spine extension angle – and then transitioning into a bound utilizing core bending. The

purpose of the second experiment is to both demonstrate the stability of the bound over

a range of operating points and evaluate how well the model from Experiment 1 predicts

bounding behavior at these different spine-bending operating points.
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Figure 30: (Top) Three successive still shots taken of Inu bounding using core actuation.
(Bottom) Empirical data of Inu bounding is plotted in blue over the course of 8 strides. Data
of the reduced-order model utilizing a nearly identical controller as physically implemented
is plotted in green. The data show a close agreement in stride frequency – 2.65 Hz for
Inu versus 2.58 Hz for the simulation – as well as vertical height y and body pitch angle
φ. The robot decelerates more in mid-stance than in the simulation and the spine bending
trajectories are slightly different, the latter likely due to the modification of the spine
controller when implemented on the robot to prevent belt slippage as described in Chapter
5.2.2.

Kinematic data of the bounding robot was collected using a Qualisys34 motion capture

system. The kinematic data was fit to the kinematics of the reduced-order model presented

in Chapter 5.1 for comparison with the dynamical simulation of the reduced-order model

described in Chapter 5.2.4.

34http://www.qualisys.com/
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Figure 31: Projections of the robot state from Figure 30 – bounding in steady-state with
core actuation over the course of 8 strides – are plotted in blue. Projections of the simulated
robot state utilizing a nearly identical controller are plotted in green. These projections
illustrate the close agreement between the robot and simulated model in vertical height
y and body pitch angle φ (middle). It is unclear what is causing the Inu robot to slow
down mid-stride (top) but it is likely due to an unmodeled phenomenon such as energetic
losses from leg-ground impacts. The discrepancy in spine trajectory projections (bottom)
is expected due to the the the modification of the spine controller when implemented on
the robot to prevent belt slippage as described in Chapter 5.2.2.

5.2.4. Comparative Bounding Simulation Using the Reduced-Order Model

The reduced-order model presented in Chapter 5.1 was simulated in MATLAB using the

controller introduced in Chapter 5.2.1 for comparison with the robot experimental behav-
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iors described in Chapter 5.2.3. Several simplifications were made to reduce the system

complexity in simulation with the goal of making any future analysis more tractable: linear

damping was applied to the simulated legs in the radial and angular directions to coarsely

account for the physical robot’s motor torque limitations. The spine joint angle was directly

actuated using a proportional derivative controller to achieve the desired spine extension,

avoiding a complicated characterization of the physical spine mechanism. Aside from these

differences, the controller used in simulation was identical to the controller used on the

robot.

The four “free” parameters – the leg radial and angular damping, and the spine propor-

tional and derivative gains – were used as inputs to hand-tune the simulation to correspond

roughly to the data of Experiment 1 of Chapter 5.2.3. This set of parameters was then

used to attempt to predict the robot gait transition of Experiment 2 so as to investigate the

predictive ability of the controlled model at different desired speeds and spine deflections.

5.3. Experimental results

5.3.1. Experiment 1: Steady-State Inu Bounding Documentation and

Model Correspondence

Steady state bounding was achieved using core actuation on the Inu robot as shown in

Figure 30 at a modest average speed of 1.1 m/s, or 2.3 body-lengths per second, and a

stride frequency of 2.65 Hz using a spine retraction distance of d− d̄ = 5 cm, roughly 10%

of the robot’s hip-to-hip length corresponding to a spine angle of ψ = −0.9 rad.

The controlled model shows good correspondence with the physical robot. Figure 30 shows

that when the fitted model is simulated using a nearly identical controller, it has a stride

frequency of 2.58 Hz, only a 3% difference. Projections of the state in Figure 31 illustrate

a close match in the vertical height and pitching of the model with the robot. The spine

trajectories have a different profile, but this is to be expected given the modification of the
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Figure 32: Documentation of the Inu robot transitioning from a bound with a rigid-back to
a bound using core bending. The rigid-back bound was achieved by commanding the spine
controller to prevent core bending, and the bound using core-bending was achieved using
the controller described in Chapters 5.2.1 and 5.2.2. Engaging the core increased speed,
decreased vertical height, and decreased the average pitch angle swept – as is more clearly
illustrated in Figure 33. This data is used in Figure 34 to evaluate the predictive ability of
the model.

spine controller when implemented on the robot to prevent belt slippage as described in

Chapter 5.2.2. The main discrepancy between the simulation and robot is in forward speed.

While the simulation forward speed fluctuates by only ±0.1 m/s, the robot forward speed

fluctuates by ±0.3 m/s as the robot slows down significantly in mid-stride. It is unclear

what exactly is causing this speed decrease but it is likely due to an unmodeled phenomenon

such as energetic losses from leg-ground impacts that could be mitigated with further gait

tuning.
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Figure 33: Projections of the state trajectories shown in Figure 32. When engaging the
core, the robot’s average speed increased by 0.4 m/s to 49% more than its original speed
(top). The average pitch angle swept over the course of a stride decreased by 17% and
vertical height decreased by approximately 3 cm (middle).

5.3.2. Experiment 2: Inu Gait Transition and Model Prediction

Inu is documented in Figure 32 successfully transitioning from a rigid-back bound to a

core-bending bound while running, demonstrating stability of the control strategy over a
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Figure 34: Model predictions (green) versus empirical data (blue) of the bounding Inu robot
transitioning from a bound with a rigid back (left column) to a bound using core bending
(right column). A larger speed increase was gained by using core actuation than was
predicted by the simulation (top row). The predictions of the vertical height, pitch angle,
and spine angle trajectories of the mass center offered by the simulation are relatively poor
(middle and bottom rows). These discrepancies show that while the model appears to be
descriptive enough to capture the limit cycle behavior shown in Figure 31, we are not yet
able to use it predictively over a range of operating points.

range of spine-bending values. The projections of the state during the transition given in

Figure 33 suggest a speed benefit conferred by the spine, as the average speed increased by

0.4 m/s (a 49% increase) when core bending was used. Using core bending also decreased

the average pitch angle swept over the course of a stride by 17% and decreased the average

vertical height by approximately 3 cm.
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The results of Figure 34 show that using the model from Experiment 1 to predict bounding

performance over the range of operating points in Experiment 2 had only limited success.

A slightly larger speed increase was gained by using core actuation than was predicted

by the simulation, and the predictions for the other states were relatively poor. These

discrepancies show that while the model appears to be descriptive enough to capture the

limit cycle behavior shown in Figure 31, we are not yet able to use it predictively over a

range of operating points.

5.4. Beginnings of formal analytical results for spined running

As we discuss in Chapter 6, showing analytical stability for spined running remains an open

problem. However, we can extend the locked-back model results of Chapter 4 to spined

running under a very coarse decoupling approximation to show an increase in the speed

limit (4.55).

Augment the state variables of the model in Chapter 4 to include the spine length d̄, and

denote the resulting dependence of the body’s moment of inertia on d̄ by I(d̄). The spine

generates internal forces on the body which must be transmitted through the toes in the

form of ground reaction forces so as to apply a wrench on the mass-center state variables

x, y, and ϕ. These state variables have the dynamics:

ẍ = ux

ÿ = uy

I(d̄)

m
ϕ̈ = uϕ,

which are coupled to the (unspecified) dynamics of d̄ through the term I(d̄), where ux

is the combined horizontal mass-specific force generated by the toes, uy is the combined

vertical mass-specific force generated by the toes, and uϕ is the combined mass-specific

torque generated by the toes on the body.
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We conjecture that there are parametric and operating regimes where variations of d̄ have

little effect on ϕ̈ and the resulting trajectories of ϕ, just as there are undoubtedly regimes

where the trajectories of ϕ are highly conditioned to variations in d̄. During operation in

the conjectured well-conditioned regimes, we can approximate the functional form of the

body’s moment-of-inertia I(d̄) by a constant I to decouple the states x, y, and ϕ from d̄

and inherit the analytical results of Chapter 4 in these state components. In this case,

the spine dynamics are cascaded with the rest of the system dynamics, but the spine can

still kinematically augment the legs’ workspace volume as discussed in Chapter 3.2. Assume

that along a limit cycle, the spine is able to compress and extend such that – over the course

of a half-stride – the mass-center moves a horizontal distance of δd̄ with respect to the hip

in stance. Then during the course of the stance event, the mass-center moves a distance of

δx̄Stance + δd̄ with respect to the stance toe, rather than a distance of δx̄Stance in the case of

a locked-back spine. Since δx̄Stance is assumed to be kinematically limited to δxMax
Stance, the

added stride length provided by the spine increases the value of the approximated speed

limit presented in Chapter 4. This speed limit, formerly of the form (4.55):

˙̄xMax ≈
δxMax

Stance

T̄Stance
= δxMax

Stance

2uy − g
gT̄F,D

,

becomes:

˙̄xMax ≈
(δxMax

Stance + δd̄)

T̄Stance
= (δxMax

Stance + δd̄)
2uy − g
gT̄F,D

, (5.1)

an increase of (100 δd̄
δxMax

Stance

)% in maximum running speed.
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CHAPTER 6

Conclusions

The final chapter summarizes the contributions of the thesis in Chapter 6.1 and discusses

concluding remarks with a nod to future work in Chapter 6.2.

6.1. Contributions summary

Broadly, the thesis presented insight into how a spine morphology can provide locomotion

affordances for robotic quadrupeds using the Canid and Inu research platforms; providing

designers with both quantifiable advantages afforded by this morphological design choice

that can be evaluated against its added weight and complexity, and giving designers control

strategies both to deal with the increase in degrees-of-freedom from the spine morphology

and to leverage an increase in agility to reactively navigate irregular terrain.

For transitional tasks, the metric of “specific agility” was introduced to quantify how a spine

can provides a reservoir of elastic energy storage that can be rapidly converted to kinetic

energy, that a spine can augment the effective workspace of the legs without diminishing

their force generation capability, and that – in cases of direct-drive or nearly direct-drive leg

actuation – the spine motors can contribute more work in stance than the same actuator

weight used in the legs, and can do so without diminishing the platform’s proprioceptive

capabilities. To put to use the agility provided by a suitably designed robotic platform,

a formalism was introduced to approximate a set of transitional navigational tasks over

irregular terrain, such as leaping over a gap, that lends itself to doubly reactive control

synthesis.

For steady-state tasks, the increased complexity introduced by the spine joint was ad-

dressed with a modular compositional control framework. A locked-back, three mechanical

degree-of-freedom version of bounding was shown to have nice local stability properties,
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a well-understood hybrid periodic orbit, and well-approximate its instantiation in physi-

cal hardware – all necessary steps towards comparing performance with a four mechanical

degrees-of-freedom simplified model of spined bounding so as to ascertain dynamic benefits

and costs associated with utilizing an actuated spine. The model’s compositional nature

suggests that an extension to bounding with the spine unlocked may be possible. Even

in its current form, the model indicates that unlocking the spine can increase the maxi-

mum achievable running speed associated with leg workspace limitations. Empirical data

of Inu running with an unlocked spine was presented and correspondence in state trajec-

tory was verified with a reduced-order model of spined running. A central theme to both

the reactive navigation and the modular control frameworks is that analytical tractability

is achieved by approximating the dynamics driving the environmental interactions to be

constant acceleration.

6.2. Discussion and future work

Hybrid transition control

As discussed in Chapter 4.1, the inherently discontinuous nature of legged locomotion offers

the opportunity for exerting control authority on the hybrid transitions of legged dynamics,

which in our usage seemed to confer benefits in terms of actuator power expenditure. The

notion that richer hybrid interactions present more opportunities for control may explain an

advantage of galloping over bounding gaits. We also found that controlling on the hybrid

transitions simplified the steady-state gait analysis in two ways. First, it allowed removing

all control weights from the expression parameterizing the hybrid periodic orbit. Second, it

constrained the locations of the control weights in the factors of the stride-map Jacobian.

We found the control weights to be very transparent in their effect on the reset map Jacobian

as they are not mixed into the flow expression of the continuous dynamics. The control

weights from the guards do fold into the flow expression of the continuous dynamics, however

they are by-design isolated to a single row vector in the mode-map Jacobian (for example
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(4.67)) as they are contained in the time-to-impact map terms, tempering the analytical

complexity of the mode-map Jacobian.

Work remains to evaluate the relative benefits of continuous control and hybrid transition

control with application to legged locomotion. The advantages above come at the cost

of control being applied inter-mode rather than intra-mode, decreasing the potential re-

sponse time as compared to continuous control where perturbations can be corrected for

immediately. Likely both styles of control would be most effective when used together.

Principles motivating a canonical “division of labor” in their combined implementation to

take advantage of their relative strengths would be an interesting subject for future work.

Dynamical analysis of a four degree-of-freedom spined running model

We would have liked for this thesis to contain a four degree-of-freedom stability analysis of

spined running – the fourth being the addition of a spine joint – however this remains future

work. This would be the first of its kind in the literature on spined machines, but analysis

of four degree-of-freedom mechanisms is generally very difficult given the tools available to

us today in hybrid dynamical systems theory. We hope that the three degree-of-freedom

analysis of Chapter 4 represents useful progress towards the goal.

We anticipate a speed benefit will emerge from this analysis along the lines of (5.1) and

possibly an accounting for mechanical work done by the spine with regards to energetic

cost-of-transport. Especially useful would be if compliance could be modeled in the spine

joint such that energy is recycled over the course of a stride, collecting energy as the spine

collapses in front stance and expending it through spine extension in rear stance to propel

the body forwards. However, it is likely that our hardware platforms from Chapter 2 –

while very useful for the purposes they served as research platforms – are too inefficient

to obtain a meaningfully impressive cost-of-transport result either with the spine locked or

unlocked, and so any empirical illustration of this phenomenon would likely require a much

more energy-efficient machine.
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We also have a notion that the spine is a more efficient “engine” of legged locomotion than

the legs, which we hope can be formalized by a four degree-of-freedom analysis. Specifically,

the spine does work extending and contracting while the legs must use up half of their

“stroke” recirculating with no work production.

The prospect of a “recipe” for compositional analysis

The analysis of Chapter 4 suggests there may be a “recipe” for this style of decoupling

control and compositional synthesis. By using dynamics that have simple and explicit

“closed-form” flow expressions to drive hybrid guard interactions, our parametrizations of

the mode-times have a relatively clean form with which we used to derive a parametrization

of the hybrid periodic orbit and a sufficiently simple stride-map Jacobian expression for

a manageable stability analysis. Since the dynamics driving the hybrid transitions are

simple, composing additional degrees-of-freedom seems to come at a more reduced cost

than if the added states played a role in the transitions. Future work may be able to

generalize this nebulous procedure to apply to other systems; building up complicated

models by composing dynamical modules out from a “heartbeat” transition-driving module

containing trivial dynamics, possibly with other compositions considered in addition to

cascade compositions.

The future of spined robots

The best use-case for spined machines using currently available technology may be in direct-

drive legged robots, where proprioceptive legs can be augmented by a powerful geared core –

that is if the added complexity of the spine is acceptable. Direct-drive machines benefit from

a very minimal mechanical complexity, and while an added spine may increase performance

metrics, it may also violate the integrity of the design philosophy. The benefits of adding a

spine in this use-case would be augmented if the spine designs of Chapter 2 were improved

to be lighter weight, more robust, and mechanically simpler.
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It remains to be seen whether spined robots in other use-cases will be leaving the laboratory

in the near future. The future certainly holds promise for them, but it may be in these

cases that spined robots are ahead of their time. This is due to both the lack of a full

dynamical analysis to provide designers with further insight into the spine’s role in steady-

state running and because contemporary legged robots generally don’t yet appear to have

sufficiently advanced and robust controllers so as to reach the speed regimes where a spine

would provide a speed benefit along the lines of (5.1). There is no doubt that the future

will bring a decrease in actuator framing costs (Boston Dynamics [1] is leading the way

through their impressive usage of scaled-down hydraulic actuation on their Atlas machines),

increased speed regimes achieved by the application of formally understood control schemes,

and more robust and simple mechanical designs – all of which will motivate the usage of

spines in legged machines. But we believe this may still be five or more years away. Research

in spined machines in Kodlab began in the year 2011 and eight years later in 2019 this area

of research still seems as relevant as ever (especially given the ascendence of direct-drive

machines) but work remains before spined robots will likely see widespread usage.
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[176] S. V. Raković, F. Blanchini, E. Crück, and M. Morari, “Robust obstacle avoidance for

constrained linear discrete time systems: A set-theoretic approach,” in Proceedings of

the IEEE Conference on Decision and Control, 2007, pp. 188–193.
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