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ABSTRACT 

 

PHENOTYPIC AND GENOTYPIC HETEROGENEITY IN AUTISM SPECTRUM 

DISORDER 

Caitlin C. Clements 

Robert T. Schultz 

Many genetic events can cause autism spectrum disorder (ASD). One specific 

genetic event involves deletion or duplication of approximately 50 genes, 22q11.2 

Deletion/Duplication Syndrome, and leads to ASD in 10-40% of cases. Chapter 1 

describes an effort to identify a critical region that confers ASD risk within those ~50 

genes and reports that the Low Copy Repeat-A to B region shows the strongest 

association. Next, we explore ‘background genetics’ - the remainder of the genome, 

almost entirely inherited from one’s parents - that interact with genetic events such as 

22q11.2 deletions/duplications. Quantifying a heritable phenotype in one’s parents can 

indirectly quantify the phenotype encoded in one’s ‘background genetics.’ Heterogeneity 

among individuals with 22q11.2 Deletion/Duplication Syndrome, therefore, can be 

partially explained by heterogeneity among their parents’ phenotypes. An ideal heritable 

trait in which to explore this framework is one of the most studied and understood 

constructs in psychology: IQ. However, few studies measure parental IQ due to the 

prohibitive cost and inconvenience of current IQ assessments. Chapter 2 reports the 

optimal methods for using small sample sizes to develop and calibrate a large, computer 

adaptive item pool for a new IQ assessment. The method described can be used to 

develop an online IQ test to facilitate data collection from families and understanding of 
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‘background genetics.’ Chapter 3 tests whether ‘IQ’ holds the same meaning for children 

with autism when assessed with the Differential Ability Scales, 2nd Edition (DAS-II) 

compared to the normative, standardization sample and reports that while verbal and 

nonverbal reasoning scores do function similarly between groups, the spatial composite 

score does not. Taken together, these three chapters advance our understanding of IQ 

assessment in autism and provide one example of a genetics-first sample in which these 

insights can be applied. Given the importance of IQ for predicting outcomes and its 

heterogeneity within genetically homogenous samples, the rapidly evolving field of ASD 

behavioral genetics stands to benefit from an efficient, valid online IQ assessment of 

verbal and nonverbal reasoning, which hold the same meaning for individuals with 

autism and typical individuals on the commonly used DAS-II.  
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GENERAL INTRODUCTION 

 Since the 1970s, scientists understood from studying relatives with varying 

degrees of biological relatedness that genetics play a significant role in psychiatric 

disorders. Until the 2000s, however, the genes underlying autism, schizophrenia, 

depression, and other disorders loomed a black box. In the past decade, the etiology of 

Autism Spectrum Disorder (ASD) has come into focus. We now have 91 high confidence 

or strong candidate autism risk genes identified through exome sequencing, genome-wide 

association studies, and other methods (SFARI Gene Database, 2019). We are beginning 

to understand the relative contributions of common variants (single nucleotide 

polymorphisms or SNPs, which account for approximately 50% of autism risk (Gaugler 

et al., 2014)), and rare variants, including both small single nucleotide variants (SNVs) 

and large copy number variants (CNVs). We also now have an ASD polygenic risk score 

that quantifies an individual’s autism risk from SNPs (Grove et al., 2019). We know a 

rare genetic event is present in approximately 10-30% of all autism cases (Vortsman et 

al., 2017).  

Identifying specific genes associated with ASD 

Given the prevalence of rare variants in autism, some of which cause genetic 

syndromes, it has been thought that understanding autism in genetic syndromes could 

generalize to an understanding of ‘idiopathic’ autism, or autism with unknown etiology. 

Autism and related phenotypes have been well characterized in several syndromes (e.g., 

Fragile X, Prader-Willi (15q11-q13), 16p11 Deletion Syndrome, 22q11.2 Deletion 

Syndrome, CHD8, DRK1A, etc.), and all characterizations describe significant 



2 
 

phenotypic heterogeneity. In one instance, deep probing into the biology of the gene and 

its different mutations uncovered a biological mechanism (different mutations resulted in 

opposing effects on a neuronal sodium channgel) that explained the presence or absence 

of an autism diagnosis among individuals with the same mutated gene, SCN2A (Ben-

Shalom et al., 2017). Such progress in mapping phenotypic heterogeneity to specific 

genotypes was possible with the SCN2A gene, but has not yet been possible with copy 

number variant syndromes, which contain dozens of genes, each which may or may not 

contribute to the autism phenotype. Thus, after our group identified the presence of 

autism in a newly discovered syndrome involving ~50 genes, 22q11.2 Duplication 

Syndrome, and characterized vast phenotypic heterogeneity among individuals with 

autism and 22q11.2DupS (Wenger et al., 2016), we quickly endeavored to zero in on 

genes contributing to the ASD phenotype. We successfully narrowed the genetic 

association with ASD down to a smaller region of approximately 25 genes. This research 

is described in Chapter 1 (Clements et al., 2017).  

Assessing IQ heterogeneity in individuals with ASD 

Heterogeneity and importance of IQ. A suspected source of phenotypic 

heterogeneity among individuals with genetic syndromes such as 22q11.2 Deletion or 

Duplication Syndrome is ‘background genetics,’ which is the colloquial term for the 

remainder of the genome outside the rare CNV or other event. Almost all of the 

‘background genetics’ are inherited from one’s parents. Thus, quantifying a heritable 

phenotype in one’s parents can indirectly quantify the phenotype encoded in one’s 

‘background genetics.’ Heterogeneity among individuals with a syndrome, therefore, can 
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be partially explained by heterogeneity among their parents’ phenotypes. An ideal 

heritable trait in which to explore this framework is one of the most studied and well-

understood constructs in all of psychology: IQ. Even more importantly, IQ is strongly 

associated with future outcomes including employment, higher education and vocational 

training, independent living, and quality of peer relationships (Billstedt, Gillberg, & 

Gillberg, 2005; Howlin, Goode, Hutton, & Rutter, 2004; Howlin, Savage, Moss, 

Tempier, & Rutter, 2010). Understanding causes of the heterogeneity in IQ among 

individuals with autism and 22q11.2Dup/DS could facilitate prediction of outcomes such 

as independent living. Such understanding would also be useful for ‘idiopathic’ ASD, as 

well.  

Parental IQ as a determinant of child IQ and obstacles to ascertainment. IQ 

is a familial trait with heritability estimates of 46%-80% across the lifespan (Polderman 

et al., 2015) with convergence on 50% (Plomin & Stumm, 2018). Parental IQ could 

substantially improve our ability to predict offspring IQ and thus future outcomes, as well 

as improve our understanding of pleitropic effects of genes on both IQ and ASD. 

However, few studies include parental IQ due to major practical barriers of prohibitive 

cost and inconvenience.. Most current IQ assessments require in-person administration by 

a masters-level clinician, use of expensive materials, and usually over an hour of time. To 

remove these obstacles and facilitate inexpensive, remote online, self-administered IQ 

assessment for whole families, we designed and piloted an online computer-adaptive IQ 

test developed with item response theory.  
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Developing an alternative IQ assessment with minimal resources. We 

encountered major challenges in the development of this assessment, which was 

originally intended for use by individuals ages 6-70 of all abilities. Briefly, these 

challenges included lack of literature on optimal models to calibrate item parameters with 

‘small’ sample sizes (i.e., less than 1000 participants per age group), model convergence 

due to the relatively large range of ability between young children and adults completing 

the assessment, optimizing the number and quality of common items in a nonequivalent 

groups anchor test (NEAT) design, choosing the optimal method of vertical score scaling 

to translate scores on the common IQ scale (N(100,15)) given the ‘small’ sample sizes 

and NEAT design, optimal method for linking response sets (e.g., concurrent or separate 

calibration), assessing effort put forth by anonymous online child and adult research 

participants who completed iterations of the assessment, and addressing suboptimal 

correlations between our assessment and gold-standard IQ tests during a small validation 

study, among other challenges. Many of these challenges stemmed from a deficit in the 

current assessment literature on ‘small’ (N<1000 per group) sample sizes, as many 

relevant studies rely on large educational datasets (e.g., state achievement tests, national 

college and graduate admissions tests, etc.). Chapter 2 strives to fill this gap by 

investigating the feasibility of developing a computer adaptive testing (CAT) item pool 

without extensive corporate resources. We manipulated different design and analytic 

methods to test the feasibility of using 300 and 500 examinees per group, and report that 

while using 300 examinees per group results in a high risk of failed model convergence, 

500 examinees per group in combination with particular design and analytic choices can 
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produce acceptably low quantities of linking error in item and ability parameters. Simply 

put, with a specific type of data analysis, sample sizes of 500 examinees become tenable 

for developing a large CAT item pool. 

The meaning of IQ scores in autistic individuals 

The development of an IQ assessment for use with both autistic and non-autistic 

individuals begged the question of whether the construct of IQ holds the same meaning 

across these two populations. Chapter 3 answers this question by asesssing measurement 

invariance of a traditional IQ test, the Differential Ability Scales, Second Edition (DAS-

II), in a large sample of autistic children (n=1316) compared to the normative sample 

(n=2000). A previous group explored a similar question and identified a social context 

factor in a high-functioning autism sample (Goldstein et al., 2008). We found that the 

DAS-II verbal and nonverbal reasoning subtests appear to hold the same meaning for the 

autistic sample and the normative sample, but that the spatial subtests do not. We 

conclude that spatial subtest scores for autistic individuals likely reflect measurement 

artifacts and bias.  

Conclusion 

 Taken together, these three chapters advance our understanding of intelligence 

assessment in autism and provide one example of a genetics-first sample in which these 

insights can be applied. Given the importance of IQ for predicting outcomes and its 

heterogeneity within genetically homogenous samples, the rapidly evolving field of 

behavioral genetics in autism stands to benefit from an efficient, valid online IQ 
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assessment of verbal and nonverbal reasoning, which hold the same meaning for 

individuals with autism and typical individuals on the commonly used DAS-II.  
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Abstract 

Previous studies have reported no clear critical region for medical comorbidities 

in children with deletions or duplications of 22q11.2. The purpose of this study was to 

evaluate whether individuals with small nested deletions or duplications of the LCR-A to 

B region of 22q11.2 show an elevated rate of Autism Spectrum Disorder (ASD) 

compared to individuals with deletions or duplications that do not include this region. We 

recruited 46 patients with nested deletions (n=33) or duplications (n=13) of 22q11.2, 

including LCR-A to B (ndel=11), LCR-A to C (ndel=4), LCR-B to D (ndel=14; ndup=8), 

LCR-C to D (ndel=4; ndup=2), and smaller nested regions (n=3). Parent questionnaire, 

record review, and, for a subset, in-person evaluation were used for ASD diagnostic 

classification. Rates of ASD in individuals with involvement of LCR-B to LCR-D were 

compared with Fisher’s Exact Test to LCR-A to LCR-B for deletions, and to a previously 

published sample of LCR-A to LCR-D for duplications. The rates of medical 

comorbidities and psychiatric diagnoses were determined from questionnaires and chart 

review. We also report group mean differences on psychiatric questionnaires. Individuals 

with deletions involving LCR-A to B showed a 39-44% rate of ASD compared to 0% in 

individuals whose deletions did not involve LCR-A to B. We observed similar rates of 

medical comorbidities in individuals with involvement of LCR-A to B and LCR-B to D 

for both duplications and deletions, consistent with prior studies. Children with nested 

deletions of 22q11.2 may be at greater risk for autism spectrum disorder if the region 

includes LCR-A to LCR-B. Replication is needed. 
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Background 

22q11.2 deletion syndrome (22q11.2DS), also known as DiGeorge or 

velocardiofacial syndrome, is the most common microdeletion syndrome in humans. The 

3 Mb region most frequently affected in 22q11.2DS can also be duplicated, resulting in 

22q11.2 duplication syndrome (22q11.2DupS; McDonald-McGinn, Emanuel, & Zackai, 

1999). Previous studies suggested a prevalence of 1 in 4000 live births for 22q11.2DS, 

but a recent study of consecutive pregnancies found an incidence of 1 in 992 live births – 

similar to that of trisomy 21 (Grati et al., 2015). The incidence of 22q11.2DupS was 

found to be 1 in 850 (Grati et al., 2015).  

The 22q11.2 region includes low copy repeats (LCRs or segmental duplication 

blocks) interspersed throughout the region that frequently result in “breakpoints” for a 

duplication or deletion. The most commonly duplicated or deleted region spans LCR-A 

to LCR-D (hereafter - “classic” deletion/duplication). However, smaller nested deletions 

occur in 15% of affected individuals and usually stretch from only LCR-A to LCR-B, or 

from LCR-B to LCR-D, but can also span LCR-A to LCR-C or LCR-C to LCR-D 

(McDonald-McGinn et al., 1999). In other cases, deletions include the area upstream of 

LCR-A or extend past LCR-D (see figure 1). The diagnoses of 22q11.2DS or 

22q11.2DupS can refer to patients with either a classic or nested deletion/duplication.  

The phenotypes of 22q11.2DS and 22q11.2DupS overlap with one another and 

show significant individual differences (Kobrynski & Sullivan, 2007; Wentzel, 

Fernström, Öhrner, Annerén, & Thuresson, 2008). The syndromes can affect almost any 

organ system, and individuals can present with diverse constellations of medical issues 
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and structural malformations, as well as a wide range of severity. Common medical 

comorbidities include congenital heart disease, hypocalcemia, renal abnormalities, 

immune deficiencies, and neuropsychiatric differences (McDonald-McGinn, Emanuel, & 

Zackai, 1999). There is a recognizable facial gestalt in 22q11.2DS but no recognizable 

gestalt has been identified in 22q11.2DupS. The rate of medical problems is much lower 

in 22q11.2DupS (Wenger, Miller et al.., 2016). 

The 22q11.2 region has also been associated with elevated rates of autism 

spectrum disorder (from now on referred to as “ASD”), attention deficit/hyperactivity 

disorder (ADHD), and most notably, schizophrenia. A recent large study of 22q11.2DS 

reported psychosis in 41% of adults and ADHD in 37% of children (Schneider et al., 

2014), although a psychiatric registry-based study found lower rates (Hoeffding et al., 

2017). Interestingly, there are no reported individuals with 22q11.2DupS with 

schizophrenia, and one group even suggested that it may be protective for schizophrenia 

(Rees et al., 2014). In contrast, an elevated risk of ASD is found in both 22q11.2DS and 

22q11.2DupS. As many as 50% of individuals with 22q11.2DS and 38% with 

22q11.2DupS have received community diagnoses of autism spectrum disorder; however, 

fewer meet strict diagnostic criteria in research settings with reported rates of 0-18% in 

22q11.2DS (Angkustsiri et al., 2014; Ousley et al., 2017; Vorstman et al., 2006) and 14-

25% in 22q11.2DupS (Wenger, Miller et al., 2016).  

Despite significant heterogeneity in the 22q11.2 phenotype (Michaelovsky et al., 

2012), little is known about critical regions that may confer risk for any specific part of 

the phenotype beyond schizophrenia, cleft palate, and cardiac anomalies. Prior reports 
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point to TBX1, CRKL, and MAPK1 as contributors to the cardiac (Bengoa-Alonso et al., 

2016; Guo et al., 2011; Guris, Fantes, David, Druker, & Imamoto, 2001; Lindsay et al., 

2001) and cleft palate phenotypes (Herman et al., 2012) in 22q11.2DS. Other research 

linked schizophrenia risk in 22q11.2DS to hyperprolinemia associated with lowered 

expression of PRODH (proline dehydrogenase; Jacquet et al., 2005; Raux et al., 2006). 

Some studies reported an association between schizophrenia risk in 22q11.2DS and the 

lower activity Met allele of COMT (catechol-O-methyltransferase; Gothelf et al., 2005; 

Raux et al., 2006; Vorstman et al., 2009), but larger cohort studies found no evidence 

(Baker, Baldeweg, Sivagnanasundaram, Scambler, & Skuse, 2005; Bassett, Caluseriu, 

Weksberg, Young, & Chow, 2007; Murphy, Jones, & Owen, 1999; for review, see Basset 

& Chow, 2008). These risk genes span the 22q11.2 region, with COMT, PRODH, and 

TBX1 lying between LCR-A and LCR-B, while CRKL lies between LCR-C and LCD-D, 

and MAPK1 lies between LCR-D and LCR-E.  

Recent research identified two genes as potential mediators of the ASD risk in 

22q11.2DS. Radoeva et al. reported that in a sample of 87 individuals with 22q11.2DS, 

individuals with ASD were more likely to carry both the low-activity alleles of COMT 

and PRODH (leading to high levels of proline) than individuals without ASD (Radoeva 

et al., 2014). Neither gene individually showed a significant direct relationship with ASD, 

although the pattern trended in that direction. Hidding et al. further demonstrated a 

quantitative relationship between ASD symptom severity and the combination of COMT-

Met genotype and high proline levels in 45 individuals with 22q11.2DS with and without 

ASD (Hidding, Swaab, Sonneville, Engeland, & Vorstman, 2016). Both results suggest 



14 
 

that the interaction between COMT and PRODH, which lie in the LCR-A to B region, 

may increase ASD risk in individuals with 22q11.2DS.  

The purpose of the present study was to leverage a novel study design to 

determine whether risk for autism can be narrowed to the LCR-A to LCR-B region within 

22q11.2. Owing to the rarity of these nested structural variants, this is the first study to 

our knowledge that attempts to collect and phenotype large enough samples to test this 

hypothesis. We hypothesized that individuals harboring deleted LCR-A to LCR-B would 

show higher rates of ASD (Wenger, Kao et al., 2016); in addition to this region harboring 

COMT and PRODH, it also contains RANBPI, a gene involved in the metabotropic 

glutamate receptor (mGluR) gene network that we previously hypothesized could play a 

role in ASD in 22q11.2DS/DupS (Wenger, Kao et al., 2016). In addition, we describe two 

case studies (one from our cohort and one from the literature) with much smaller, atypical 

duplications within the LCR-A to B region to gain hints as to the role of specific genes.  

 

Methods 

Participants 

Participants with nested 22q11.2 duplications or deletions. Participants 

included 43 individuals with a nested duplication (n=13) or deletion (n=30) of 22q11.2 

that lay entirely within LCR-A to LCR-D but was not completely inclusive of LCR-A to 

LCR-D (see Table 1). The only exception to this was one participant who carried a 

duplication of LCR-B to LCR-D and also a very small duplication between LCR-E and 

LCR-F. Participants were recruited from a specialty clinic at The Children’s Hospital of 
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Philadelphia (CHOP) or were referred from a similar specialty clinic at another 

institution. The CHOP “22q and You” Clinic represents the largest single-site 22q11.2 

clinic in the world and maintains a large catchment area across the eastern US, with 

patients concentrated within a few hundred mile radius of CHOP. The sample includes 

probands who came to clinical attention, as well as their affected siblings (n=2 with 

duplication and n=3 with deletion) and parents (n=2 with duplication and n=2 with 

deletion) whose 22q11.2DS or 22q11.2DupS was identified after the proband’s 

diagnostic process. The duplication or deletion was confirmed using single nucleotide 

polymorphism (SNP) microarray or Multiplex Ligation Probe Amplification (MLPA).  

Samples whose CNVs were tested by MLPA were examined using the SALSA 

P250 DiGeorge diagnostic probe kit (MRC-Holland, Amsterdam, the Netherlands). 

Commercially available software, Gene Marker from SoftGenetics (State College, PA), 

was used to analyze the data. Gene Marker has developed a completely integrated 

application for MLPA analysis with integrated functions specific for the analysis of data 

derived from MLPA reactions. Samples whose CNVs were identified by SNP array were 

analyzed using the Affymetrix SNP Array 6.0 platform following the manufacturer’s 

instructions (Affymetrix, Santa Clara, CA, USA). Quality control values were calculated 

in Affymetrix Genotyping Console (Affymetrix) and any samples with Contrast QC 

greater than 0.4 or mean absolute pairwise difference (MAPD) greater than 0.35 were 

excluded from further analysis. The B allele frequency and log R ratio plots were 

visualized using the Affymetrix Chromosome Analysis Suite to support CNV calls. 
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Three additional patients who carried very small and rare atypical duplications are 

included in this paper in a descriptive manner (in the Case Studies section), but are not 

combined with the other groups in tables, figures, or statistical analyses. One patient 

carried a very small duplication within LCR-A to LCR-B. The other two patients (who 

were related to three patients in the main LCR-B to D duplication group) carried a small 

duplication nested between LCR-E and LCR-F.  

All 43 participants were included in the medical history chart review. Nine 

participants were excluded from the ASD and psychiatric symptom analyses (n=34; see 

Figure 2) for two types of reasons: 1) ASD classification could not be determined (n=2; 

see below), or 2) if they presented with another medical issue likely to affect brain 

development (n=2 extreme prematurity and/or birth weight <5th centile; n=2 with 

CEDNIK syndrome; n=1 with 16p11.2 deletion which is independently associated with 

ASD; n=2 history of hypoxic brain injury; Snyder et al., 2016; Fuchs-Telem et al., 2011; 

D’Angelo et al., 2016; Dudova et al., 2014). Participant characteristics of the sample 

excluding these 9 cases are described in Table 2. Please note that some ages differ from 

those in the medical record review (Table 1) because a review of updated records 

pertinent to ASD classification, when available, was conducted three years later to allow 

for infants to reach the age (3 years) at which ASD symptoms would be present.  

Rates of autism were analyzed separately for individuals with nested deletions 

and duplications. Only one individual per family (the proband) was included to avoid 

confounding autism rates with risk factors shared by related individuals. In one family 

with B-D duplication, we included an affected family member instead of the proband 
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because the proband harbored a 16p11.2 deletion. For deletions, 20 individuals were 

included after excluding 5 parents and younger siblings (2 B-D, 2 C-D, 1 A-B; see Table 

3). For duplications, 5 individuals were included after excluding 4 parents and younger 

siblings (4 B-D; see Table 3). No individuals presented with nested duplications 

involving LCR-A to LCR-B or -C.  

Comparison cohorts. We compiled comparison questionnaire data from four 

cohorts. Detailed results of medical systems chart review, neuropsychiatric 

questionnaires, ASD symptoms, and adaptive functioning of these four comparison 

groups have been published elsewhere (Wenger, Miller et al., 2016). Two cohorts were 

drawn from patients at the same clinic who had a confirmed classic (LCR-A to LCR-D) 

22q11.2 duplication (n=29) or deletion (n=70). A non-syndromic ASD cohort (n=70) and 

typically developing control cohort (n=73) were drawn from other studies of 

neurodevelopment at the CHOP Center for Autism Research. These four cohorts were 

age- and sex- matched to one another but were not as well matched to either of the small 

nested samples described above to allow for inclusion of all eligible individuals with a 

nested CNV.  

Informed consent was obtained for all 22q11.2 participants, as well as for all 

participants in the comparison cohorts (Institutional Review Board protocols #13-101307, 

#09-007275, #07-005689, #10-007622). 

Procedures 

We collected data from record review, questionnaires administered remotely, and, 

for a subset, an autism-specific evaluation. Record review included the participant’s 
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electronic health record at CHOP whenever possible, as well as external medical and 

educational records (e.g., IEP evaluations) provided by families for individuals who did 

not receive routine medical care at our institution.  

Medical Record and Developmental History Review. Medical and 

developmental history was obtained from a questionnaire completed by the participant. A 

licensed pediatrician and medical geneticist (TLW) reviewed clinic notes, progress 

reports, radiology reports, laboratory reports, etc. in each participant’s record to confirm 

key components reported by participants. Psychiatric and neurodevelopmental diagnostic 

history was documented in this process as it is routinely collected during clinical visits. 

Families were contacted by phone to resolve questions or discrepancies.  

ASD diagnostic classification. 

Sources of diagnostic information. Given that our hypotheses concerned rates of 

ASD, particular care was given to the ASD classification process. We assigned diagnostic 

status after a thorough record review of clinical, research and educational records 

provided by families and available in the CHOP electronic health record. Participants 

differed in the frequency with which they received documented CHOP care. Continuous 

longitudinal data from CHOP developmental pediatricians and psychiatrists existed for 

individuals who lived locally, whereas records of individuals who lived further away or 

moved sometimes contained only the initial “22q and You” clinic evaluation. Participants 

were also asked to provide external medical and educational records. 

All families were invited for an in-person ASD evaluation using the Autism 

Diagnostic Observation Schedule (ADOS and ADOS-2), parent interview, and IQ testing 
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to complete a DSM-5 (Diagnostic and Statistical Manual of Mental Illness, 5th edition) 

checklist (American Psychiatric Association, 2013; Lord, Rutter, DiLavore, & Risi, 

1999). However, since many of our families lived far away, this proved unfeasible for a 

large percentage of the cases. Families who could not complete an in-person evaluation 

were invited for an hour-long parent phone interview with a clinician asking follow up 

questions to Social Communication Questionnaire, Lifetime (SCQ) responses to complete 

an accurate DSM-5 checklist (Rutter, Bailey, & Lord, 2003). 

“ASD” group. We assigned participants to the “ASD” group if there was 

documentation of an ASD diagnosis (n=5 deletions, n=1 duplications). Five individuals 

had a diagnostic evaluation in their record; one did not, but had frequent references to the 

ASD diagnosis throughout the record. All participants scored above threshold (15) on the 

SCQ. 

“No ASD” group. We assigned “No ASD” (n=20 deletions, n=8 duplications) if 

ASD had been considered but specifically ruled out (n=13 deletions, n= 3 duplications), 

or if there was no indication of ASD concerns in the available records (n=7 deletions, 

n=5 duplications). Two individuals (both LCR-B to D deletions) were excluded because a 

referral for an ASD evaluation had been recommended recently but not completed.  

The absence of parental or professional concern about ASD is not routinely 

documented. Thus, we further investigated this group to determine whether there was a 

true absence of concern, or a lack of information. We studied parent/spouse report, 

provider report, behavioral descriptions, and referral history. The 22q clinic routinely 

refers to developmental behavioral pediatrics or psychiatry if parents indicate relevant 
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concerns during intake, but parents without those concerns would not have had these 

appointments scheduled. The 22q clinic also routinely questions parents regarding 

developmental history and previous concern of psychiatric diagnoses from school or 

medical professionals, as this population is at high risk for psychosis and other 

psychiatric disorders. Any concerns and prior assessments are documented in detail. 

Therefore, we feel confident that families were routinely asked about developmental 

concerns, and thus that a lack of referrals and text about concerns was a reasonably robust 

indicator of a lack of ASD concerns.  

Neuropsychiatric questionnaires. We collected neuropsychiatric questionnaire 

data from participants under age 18. Questionnaires included a measure of adaptive 

functioning (Vineland Adaptive Behavior Scales – 2nd Edition, “Vineland-II,” completed 

for participants 0-18 years old; Sparrow, Cicchetti, & Balla, 2005), a screener for 

psychiatric disorders based on DSM-IV checklists (Child and Adolescent Symptom 

Inventory-4R, “CASI-4R,” completed for participants 5-18 years old depending on 

disorder; Gadow & Sprafkin, 2005), and two measures of social behavior and autistic 

symptoms (Social Communication Questionnaire - Lifetime, “SCQ,” completed for 

participants 4 and above (Rutter, Bailey, & Lord, 2003), and the Social Responsiveness 

Scale or Social Responsiveness Scale, 2nd edition, “SRS-2” for participants 2.5-18 years 

old; Constantino & Gruber, 2012a; Constantino & Gruber, 2012b). Every questionnaire 

offers excellent psychometric properties and all but the Social Communication 

Questionnaire provide standardized scores based on a large, representative norming 
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sample. Please see Appendix, Tables s1-s4 for characteristics of subsamples that 

completed each questionnaire.  

Analysis. 

ASD rate. To test our hypothesis that the LCR-A to LCR-B region might confer 

increased risk of ASD in 22q11.2 duplication and deletion syndromes, we compared ASD 

rates among individuals whose deletion affected the LCR-A to LCR-B region (“AB/AC 

group:” LCR-A to B, or LCR-A to C) to individuals whose deletion did not affect the 

LCR-A to LCR-B region (“BD/CD group:” LCR-B to D, and LCR-C to D). Thus, our 

first analysis compared the “AB/AC group” to the “BD/CD group” for deletions only. In 

a second, more conservative analysis, we compared only individuals with deletions of 

LCR-A to B to those with LCR-B to D (excluding cases with deleted LCR-A to C or 

LCR-C to D) to match the groups on approximate size and number of genes in the 

deletion.  

Rates were compared using a one-tailed Fisher’s Exact Test to account for cells 

with n<5. An odds ratio (OR) cannot be computed when certain cells contain 0 

observations; in these cases, we present 95% confidence intervals and p values from 

Fisher’s Exact Test and effect sizes as chi-square statistics.  

Our sample included no individuals with nested duplications involving LCR-A to 

B (i.e., no “AB/AC” group for duplications). Thus, we compared the BD/CD duplication 

group to individuals with the classic LCR-A to D duplication, which does involve LCR-A 

to B. These results are provided for descriptive purposes only due to the sample size of 
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the nested duplications, which although is one of the largest reported, remains quite 

small.  

Psychiatric symptoms (standardized questionnaires). In our dimensional analysis 

of psychiatric symptoms using questionnaire data, we analyzed raw scores on the SCQ, 

age-normed scores on the Vineland-II and SRS-2, and symptom composite scores on the 

CASI-4R. For deletions, we compared individuals in the “BD/CD” group to the 

“AB/AC” group. For duplications, we compared individual in the “BD/CD” group to the 

comparison cohort of classic duplications because our sample included no AB/AC 

duplications. We also compare the “AB/AC” deletion group to the classic deletion group 

as this information might prove directly useful clinically. Our interpretations focus on the 

size of the effect and its confidence interval, as opposed to inferential statistics, to avoid 

making overly strong statements based on a small sample, as suggested by many recent 

position papers, e.g., Button et al. (2013) and Cumming et al. (2014). We present the 

effect sizes for each analysis and make our data available upon request so that the data 

generated here can be leveraged in any future meta-analyses to test our hypothesis 

directly.  

Medical and psychiatric diagnoses. We present rates of psychiatric and medical 

comorbidities by nested region separately for individuals who did and did not receive 

recommended screening. All analyses are descriptive and for characterization purposes 

only. Statistical significance was not tested due to small sample sizes within each nested 

region.  
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Results 

Higher rates of ASD when LCR-A to B involved 

We observed a trend toward a higher rate of ASD among probands with deletions 

in the AB/AC group (41.7%, or 5 in 12 individuals with LCR-A to B, or LCR-A to C) 

compared to the BD/CD group (0%, or 0 in 8 individuals with LCR-B to D, or LCR-C to 

D; χ= 4.4, p=0.051, CI: 0.99, Inf; see Table 3). In a more conservative analysis that 

matched groups on approximate size of deleted region, we continued to observe similar 

rates of ASD within each group (44.4%, or 4 of 9 individuals with deletions of LCR-A to 

B, and 0%, or 0 in 6 individuals with deletions of LCR-B to D; χ=3.64, p=0.092, CI: 

0.702, Inf). The rate of ASD did not change meaningfully when related individuals were 

included to increase sample size; the increased sample size provided more statistical 

power and revealed significant results (n=25; 38.5% rate in AB/AC group, 0% in BD/CD 

group; χ=5.77, p=0.024, CI: 1.39, Inf). Thus, the LCR-A to B region may confer 

increased risk of ASD diagnosis but a larger sample without related individuals is needed 

to confim.  

Among duplications, individuals with the classic and BD/CD duplications showed 

similar rates of ASD (24.1% rate or 7 of 29 in classic group, 20% rate or 1 of 5 in 

BD/CD; OR=0.79, p=0.764, CI: 0.03, Inf). Results did not change meaningfully when 

related individuals were included to increase sample size (21.4% rate in classic group, 

11.1% rate or 1 of 9 in BD/CD; OR=0.40, p=0.65, CI: 0.02, Inf), but this analysis in 

particular would benefit from a larger sample. 
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Our categorical analysis was supported by quantitative reports of autistic 

symptoms in the SRS-2 and SCQ (see Figure 3). A subset of each group (BD/CD 

deletions, AB/AC deletions, BD/CD duplications, classic duplications, classic deletions) 

completed the SCQ, including both individuals with and without ASD diagnoses. For 

deletions, the BD/CD group showed less autistic symptoms than the AB/CD group with 

large effect sizes (d’s of 1.01 and 1.20). For duplications, the difference was small-to-

medium (d’s of 0.27 and 0.50) between the BD/CD group and the classic group. No 

effects reached statistical significance (see Table 5). 

Moderately lower adaptive and social functioning when AB region involved 

We computed effect sizes for differences in autistic symptoms, psychiatric 

symptoms, and adaptive behavior skills (see figures 2 and 3, table 4, additional file 2). 

For duplications, the differences were usually small between the “BD/CD” group and the 

classic duplication group (see Table 4, “Classic Duplication” rows). For deletions, the 

“BD/CD” group showed less impairment than the “AB/AC” group across most measures 

with medium or large effect sizes that did not reach statistical significance. We also 

calculated effect sizes for group differences between the AB/AC deletions and classic AD 

deletion groups and observed small or medium differences (see Table 4, “Classic 

Deletion” rows). We observed negligible differences between these two groups on most 

adaptive functioning scales. The classic deletion group showed slightly lower levels of 

autistic symptoms compared to the AB/AC group – small to medium effect sizes on the 

SRS-2 and SCQ – that were not statistically significant.  

Increased rates of psychiatric disorders 
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In individuals with nested duplications or deletions, we observed elevated rates 

compared to population means in nearly every psychiatric disorder reported, including 

ADHD, OCD, mood dysregulation disorders, ODD and related behaviors, depression, 

language disorders, global developmental delay, and intellectual disability. See table 5 for 

observed rates of disorders by type of nested deletion or duplication.  

Higher rates of medical comorbidities  

We documented presence or absence of having received an appropriate screening 

test, and whether or not an abnormality was identified, in individuals with nested 

deletions and duplications between LCR-A and D (see Table 6). In order to calculate 

conservative estimates for the prevalence of each medical comorbidity in each group, we 

report both the percentage of screened individuals and the percentage of total individuals.  

Case Study 1 

Isolating specific genes: An individual with ASD and tiny duplication 

involving RANBP1 and COMT, not TBX1. One individual in our sample came to 

attention of clinical geneticists due to autism spectrum disorder and was found to have a 

small, 300kb microduplication within the LCR-A to B region that included RANBP1 and 

COMT but not TBX1. Detailed clinical evaluation and all recommended medical 

screening for individuals with 22q11.2 related disorders revealed none of the medical 

issues or dysmorphic features characteristic of the syndrome. However, the individual 

met diagnostic criteria for ASD, anxiety, and ADHD after evaluation by a 

neurodevelopmental pediatrician and standardized neuropsychiatric evaluation. The 

inheritance of this microduplication is unknown because paternal testing was not 
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possible. To our knowledge, no relatives carry an autism diagnosis but none have 

received formal evaluation. The individual’s SNP array showed no other pathogenic 

variants. This individual was not included in group analyses because the duplication did 

not encompass the full LCR-A to B region.  

Case Study 2 

The role of background genetics: a family with LCR-B to D duplication and 

distal E-F duplication and autism and face processing deficits. The only individual in 

our analyses with autism in the BD/CD group carried a duplication of LCR-B to D. She 

had one sibling with the same LCR-B to D duplication, and two siblings with a 

duplication of TOP3B (in a small region between LCR-E and F). One of the siblings with 

the TOP3B duplication had a history of an autism diagnosis but did not currently present 

with significant autism symptoms. Furthermore, the proband and the sibling with LCR-B 

to D duplication both showed decreased face processing abilities on the Benton Facial 

Recognition Test (mildly impaired in the proband, clinically impaired in the sibling). 

Face processing difficulties have not been reported in 22q syndromes before, and we do 

not posit that they are central to the syndromes, but rather that the family history of 

possible ASD and the genetic complexity of the family raises the question that other 

genetic factors may have contributed to the proband’s autism. Future studies of autism in 

nested 22q11.2 should evaluate family members for ASD, and evaluate probands for 

phenotypes seen in other family members, to better understand the contribution of 

background genetics.  
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Discussion 

To our knowledge, this study includes the largest group of individuals with nested 

deletions and duplications of 22q11.2 to be compared prospectively to classic deletions 

and duplications with standardized measures. These data suggest that individuals with 

deletion of the LCR-A to B region may have a higher rate of ASD (39-44%) than those 

without involvement (0%); the pattern was not replicated for duplications. Taken in 

conjunction with Case Study 1, these findings are consistent with our hypothesis that 

LCR-A to B may confer risk for ASD in 22q11.2 related disorders. However, we offer 

this evidence as preliminary support that requires further exploration with additional 

samples.  

It is notable that the nested deletions of all individuals with ASD involved LCR-A 

to B, and that we observed negligible differences between this group and the classic 

deletion spanning LCR-A to D in adapative functioning. These results suggest that LCR-

A to B could be contributing to the autistic phenotype in individuals with classic 

22q11.2DS, as well as to decreased adaptive functioning. It is also notable that we 

observed no duplications of LCR-A to B or LCR-A to C in our full sample of 43 

individuals, although such individuals are mentioned in much larger studies (Hadley et 

al., 2014). Thus, it remains to be tested in larger samples whether these individuals are as 

likely to present with ASD as those with the classic A-D duplication.  

Implications for medical screening 

Prior studies have suggested that individuals with nested deletions have similar 

types of medical problems to those with classic deletions and should receive similar 
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clinical treatment. The medical chart review of our patients supported this hypothesis. It 

also suggested that our patients are representative of other previously reported patients 

with nested deletions with regard to the frequency and types of medical problems. It is 

notable that there appeared to be fewer medical problems in individuals with LCR-C to 

D. However, this region is much smaller, encompassing fewer genes than the other 

regions. In size and total number of genes, LCR-A to LCR-B and LCR-B to LCR-D are 

roughly equivalent, and the rates of medical comorbidities are similar. We also observed 

higher rates of some medical comorbidities in several of the nested groups as compared 

to individuals with full LCR-A to LCR-D deletions (e.g., cervical spine anomalies in 

100% of screened individuals with LCR-A to LCR-B deletion), but our sample sizes are 

too small to determine if this is due to chance or truly represents a higher risk subgroup. 

We were somewhat surprised to find that many patients had not completed portions of the 

recommended medical screening for individuals with 22q11.2 related disorders. It is 

unclear if this is due to a perception by providers that individuals with nested deletions do 

not need as aggressive screening as those with full deletions or duplications. Overall, we 

observed rates of each of the medical comorbidities in the LCR-A to LCR-B and LCR-B 

to LCR-D subgroups that are comparable to rates in individuals with full LCR-A to LCR-

D deletions or duplications. Although the rate of medical problems appears lower in the 

LCR-C to LCR-D deletion and duplication groups, the sample sizes are extremely small, 

and therefore no strong conclusions can be made about the validity of an altered 

screening protocol for these patients. 

RANBP1 as a potential ASD candidate gene 
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The LCR-A to B region associated with ASD risk in our sample involves 

approximately 25 genes, including COMT, PRODH, and TBX1. Prior research implicates 

the interaction of low activity COMT and PRODH alleles in ASD risk (Radoeva et al., 

2014; Hidding et al., 2016). Other genes in the region may also confer ASD risk, and 

indeed the risk could be additive. We propose another possible candidate gene, Ran-

binding protein 1 (RANBP1), which could not be examined given our study design and 

might warrant further investigation. We base this speculation on five circumstantial 

pieces of evidence.  

First, we cite the involvement of RANBP1 in the metabotropic glutamate receptor 

(mGluR) gene network (Hadley et al., 2014), which is disrupted in two other syndromic 

forms of ASD, fragile X syndrome and tuberous sclerosis complex (Auerbach, Osterweil, 

& Bear 2011). Second, we previously observed a 10-fold increase in ASD rate among 

individuals with 22q11.2DS with a “second hit” in an mGluR network gene compared to 

individuals without a “second hit” (5 affected in 25 individuals with 22q11.2 compared to 

1 in 50; Wenger, Kao et al., 2016). Third, two teratogens associated with increased rates 

of ASD – valproate and thalidomide – both decrease expression of RANBP1 (Christinen 

et al., 2013; Ingram, Peckham, Tisdale, & Rodier, 2000; Meganathan et al., 2012). 

Fourth, the important link between RANBP1 and expression in human brains was 

demonstrated by Meechan et al. (2006), who showed higher RANBP1 expression in 

developing fetal brains compared to adult brains during a peak in neurogenesis. Finally, 

several studies in the 22q11.2 animal literature highlight RANBP1 as important for neural 

development in 22q11.2 (e.g., Meechan et al., 2006; Meechan, Tucker, Maynard, & 
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LaMantia, 2009; Paronett, Meechan, Karpinski, LaMantia, & Maynard, 2014). Taken 

together, these disparate pieces of literature converge on a role of RANBP1 in brain 

development, and potentially in ASD. Like other genes and gene families recently 

associated with ASD, RANBP1 serves a general function within the cell (metabolizing 

GTP and regulating material transport to the nucleus; Zhang, Arnaoutov, & Dasso, 2014). 

RANBP1 has not been identified previously as an ASD candidate gene in large ASD 

studies; of the approximately 25 genes in the 22q11.2 LCR-A to LCR-B region, previous 

genome-wide association studies or whole exome sequencing studies have idenfied 

PRODH as a candidate gene with suggestive evidence and TBX1 and GNB1L as 

candidate genes with minimal evidence at this time (SFARI gene database 

https://gene.sfari.org/database/human-gene/). It is not yet clear whether genes in this 

region modify ASD risk in the general population, or in the context of 22q11.2 

syndromes alone.  

Insights from two case studies involving TBX1 and RANBP1 

Individuals with very small nested duplications and deletions offer a unique 

method of studying the associations between isolated regions or genes and individual 

features of the 22q11.2DS phenotype. In the present study, we could not tease apart the 

contributions of individuals genes to portions of the phenotype, as the LCR-A to B region 

includes 25 genes. Here we contrast two case studies, Case Study 1 and a prior case study 

by Weisfeld-Adams and colleauges (Weisfeld-Adams, Edelmann, Gadi, & Mehta, 2012), 

with a very small duplication including either TBX1 or RANBP1, but not both, to provide 

some insight into the possible relative contributions of TBX1 and RANBP1 to the 
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phenotype in a descriptive fashion. Weisfeld-Adams et al. described a patient and sibling 

with duplication of six genes including TBX1 but not RANBP1. This proband showed 

complex medical problems, but neither the 19-month-old proband nor the 3-year-old 

sibling showed any symptoms of autism or neurodevelopmental delay besides mild motor 

delay. (Although no concern for ASD was noted at 19 months of age, we caution against 

over-interpretation because ASD can be missed in toddlers when symptoms are not 

severe. However, by 19 months of age most children with 22q11.2DS show significant 

delays, little speech, and aloof social behavior, so the lack of delay suggests social 

development was on course.) In contrast, in Case Study 1 we described an individual with 

microduplication involving RANBP1 but not TBX1 who had ASD but no medical 

comorbidities. Both our patient, who had a purely psychiatric phenotype and duplication 

that does involve RANBP1, and the case presented by Weisfeld-Adams et al. – a purely 

medical phenotype that does not involve RANBP1 – provide preliminary suggestive 

evidence that RANBP1, not TBX1, specifically might confer risk for ASD and other 

psychiatric diagnoses. Both microduplications include COMT and exclude PRODH, so 

we cannot speculate about the roles of these genes based on case studies. 

Limitations 

The two primary limitations of our study lie in the phenotyping and the sample 

size. This single-site study relied primarily on questionnaires and chart review, 

supplemented by in-person evaluation when feasible for the family. Thus the 

phenotyping, while accurate, could be improved with systematic prospective evaluations. 

Our sample size was small, owing to the rarity of individuals with nested duplication or 
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deletions in the 22q11.2 region. Our study would benefit from replication with a multi-

site study that combines clinics around the world to improve statistical power.  

Another limitation includes the unknown role of background genetics. We were 

unable to account for other contributors to ASD risk, such as common variants or known 

pathogenic variants occurring outside 22q11.2 that would be identified with whole exome 

sequencing, not clinical genetic testing with MLPA and SNP arrays. However, this risk is 

likely to affect all groups equally. Furthermore, we believe this unknown potential risk is 

likely to be small compared to the known, larger ASD risk of carrying 22q11.2DS or 

DupS.  

Future directions might involve whole-exome sequencing of 22q11.2 samples to 

identify other factors that contribute to ASD risk. Such a study should include an analysis 

leveraging the sequencing of PRODH, COMT, RANBP1, and TBX1 in individuals with 

nested 22q11.2 deletions and duplications to isolate the influence of these mutations on 

the ASD phenotype.  

Conclusions 

We present data on medical and psychiatric issues in 44 individuals with nested 

duplications and deletions within the LCR-A to D region, along with two additional 

siblings with tiny duplication of TOP3B, the largest cohort of this type to be studied 

prospectively. We found increased rate of ASD among individuals with deleted LCR-A 

to B, compared to individuals whose nested deletions did not involve that region. We 

tentatively speculate that RANBP1 could provide a potential mechanistic explanation for 

increased rates of ASD based on this finding, our reported case study, environmental 
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ASD risk factors that also alter RANBP1 expression, RANBP1’s role in the mGluR 

network, and the role of the mGluR network in other syndromic forms of ASD. We also 

conclude from our observation of the full spectrum of medical issues in each group that at 

this time, there is insufficient evidence to limit medical screening in individuals with 

nested duplications or deletions within the 22q11.2 region.  
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Tables 

Table 1.  

Descriptive characteristics of all participants in study 

Region N % de novoa Age 

mean(sd) 

Age range 

(years) 

% Male 

Total 46 60% 10.8(10.1) 0.8-39 52% 

AB/AC del 

group 

15 86% 8.9 (4.2) 2-15 53% 

  A-B Deletion  11 80% 7.8(3.8) 2-15 55% 

  A-C Deletion 4 100% 11.8(4.4) 5-14 50% 

  A-B 

Duplicationb 

1 unknown 7.0 - 0% 

BD/CD del 

group 

18 69% 11.1(10.7) 1-38 50% 

  B-D Deletion  14 77% 10.4(9.0) 1-38 43% 

  C-D Deletion 4 33% 13.6(16.9) 0.8-36 75% 

BD/CD dup 

group 10 13% 14.5(15.2) 1-39 60% 

  B-D Duplication 8 0% 16.5 (16.6) 1-39 63% 

  C-D Duplication 2 50% 6.5(2.0) 5-7 50% 

  E-F Duplicationb 2 0% 6.6(2.8) 4-8 50% 
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Note. Participant characteristics for all individuals with a nested deletion or duplication of 

22q11.2, including 3 case studies with atypical nested duplications. 

 a of individuals with known inheritance, bCase studies not included in statistical analysis, 

medical chart review, or AB/AC and BD/CD group totals. 
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Table 2.  

Descriptive characteristics of participants included in psychiatric diagnosis rates 

Region N % de novoa Age  

mean(sd) 

Age 

range 

(years) 

% Male 

AB/AC del group 13 83% 10 (4.2) 5-18 54% 

  A-B Deletion  10 78% 8.9 (3.6) 5-15 60% 

  A-C Deletion 3 100% 13.7 (4.8) 9-18 33% 

BD/CD del group 12 50% 14.2 (12.7) 3-42 50% 

  B-D Deletion  8 57% 13.4 (12.1) 4-42 38% 

  C-D Deletion 4 33% 15.9 (15.5) 3-37 75% 

BD/CD dup group 9 14% 16.9 (14.7) 5-39 56% 

  B-D Duplication 7 0% 19.4 (15.9) 5-39 57% 

  C-D Duplication 2 50% 8 (4.1) 5-11 50% 

Total 34 55% 13.3 (11) 3-42 53% 

Note. Participant characteristics for the subset of individuals with a nested deletion or 

duplication of 22q11.2 included in description of psychiatric diagnosis rates. 

a of individuals with known inheritance. 
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Table 3.  

ASD rates among probands 

Region N 

n ASD 

(male) % de novo a 

Age 

mean(sd) 

Age 

range 

(years) % Male 

AB/AC del 12 5(3) 90% 10.0 (4.4) 5-18 58% 

  A-B 9 4(3) 90% 8.7 (3.7) 5-15 67% 

  A-C 3 1(0) 100% 13.7 (4.8) 9-18 33% 

BD/CD del 8 0 60% 10.5 (4.8) 5-18 25% 

  B-D 6 0 70% 10.2 (3.8) 6-17 17% 

  C-D 2 0 0% 11.6 (9.1) 5-18 50% 

Classic AD dup 29 7(5) 67% 7.1 (3.4) 2-13 75% 

BD/CD dup 5 1(0) 30% 12.7 (10.4) 5-31 60% 

  B-D 3 1(0) 0% 15.8 (13.1) 7-31 67% 

  C-D 2 0 50% 8.0 (4.1) 5-11 50% 

Note. Participant characteristics and autism diagnosis for all probands with a nested 

deletion of 22q11.2. Individuals harboring a AB or AC deletion presented with ASD at 

41.6%. Case studies are excluded from this table. 

a of individuals with known inheritance. 

 



46 
 

Table 4.   

Group means and effect sizes of group differences on neuropsychiatric questionnaires 

 

N Mean (SD) d 

95% Confidence 

Interval 

SRS-2 T score  50 (10)   

 BD/CD deletion 9 53.4 (13.6)   

 AB/AC deletion 10 68.5 (15.7) 1.01 (-0.07, 2.11) 

 Classic deletion 61 63 (12.6) -0.41 (-1.11, 0.27) 

 BD/CD duplication 6 59.5 (16.6)   

 Classic duplication 28 64 (16.3) 0.27 (-0.67, 1.22) 

SCQ raw total  cut-off: 15   

 BD/CD deletion 7 5.7 (4.9)   

 AB/AC deletion 8 15 (9.3) 1.20 (-0.11, 2.52) 

 Classic deletion 52 10.8 (7.3) -0.54 (-1.32, 0.23) 

 BD/CD duplication 4 7.2 (9.5)   

 Classic duplication 22 12.4 (10.3) 0.50 (-0.67, 1.68) 

Vineland Composite  100(15)   

 BD/CD deletion 5 103.8 (19.6)   

 AB/AC deletion 10 85.7 (24.0) -0.79 (-2.11, 0.52) 

 Classic deletion 57 87.1 (15.9) 0.08 (-0.61, 0.78) 

 BD/CD duplication 6 92.6 (18.7)   

 Classic duplication 27 89.4 (19.4) -0.16 (-1.11, 0.78) 
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Vineland Communication  100(15)   

 BD/CD deletion 5 106 (21.7)   

 AB/AC deletion 10 83 (18.5) -1.17 (-2.55, 0.20) 

 Classic deletion 58 89.7 (18.1) 0.36 (-0.32, 1.06) 

 BD/CD duplication 6 92.1 (20.2)   

 Classic duplication 27 91.2 (18.5) -0.04 (-0.99, 0.90) 

Vineland Daily Living  100(15)   

 BD/CD deletion 5 96.4 (14.6)   

 AB/AC deletion 10 86.9 (26.2) -0.40 (-1.69, 0.87) 

 Classic deletion 57 88.4 (15.1) 0.08 (-0.60, 0.78) 

 BD/CD duplication 6 91.8 (23.0)   

 Classic duplication 28 93.6 (21.2) 0.08 (-0.86, 1.02) 

Vineland Socialization  100(15)   

 BD/CD deletion 5 107.6 (19.6)   

 AB/AC deletion 10 91.0 (27.4) -0.65 (-1.96, 0.65) 

 Classic deletion 57 90.1 (16.5) -0.04 (-0.74, 0.64) 

 BD/CD duplication 6 98.1 (18.3)   

 Classic duplication 27 90.8 (21.2) -0.35 (-1.30, 0.60) 

CASI ADHD     

 BD/CD deletion 2 2.5 (1.3)   

 AB/AC deletion 7 3.4 (1.4) 0.63 (-1.56, 2.83) 

 Classic deletion 43 2.7 (1.2) -0.52 (-1.36, 0.32) 
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 BD/CD duplication 4 2.7 (2.1)   

 Classic duplication 20 2.8 (1.3) 0.09 (-1.09, 1.27) 

CASI Anxiety     

 BD/CD deletion 2 1.3 (0.7)   

 AB/AC deletion 7 1.9 (1.1) 0.49 (-1.68, 2.67) 

 Classic deletion 43 2.3 (1.3) 0.30 (-0.53, 1.14) 

 BD/CD duplication 4 1.9 (1.5)   

 Classic duplication 20 1.8 (1.6) -0.05 (-1.24, 1.12) 

CASI ASD     

 BD/CD deletion 1 n/a   

 AB/AC deletion 4 1.0 (1.0) n/a n/a 

 Classic deletion 37 0.5 (0.4) -0.83 (-1.94, 0.27) 

 BD/CD duplication 4 0.6 (0.4)   

 Classic duplication 16 0.8 (0.8) 0.26 (-0.98, 1.5) 

CASI Schizoaffective     

 BD/CD deletion 1 n/a   

 AB/AC deletion 3 0.5(0.5) n/a n/a 

 Classic deletion 6 0.5(0.2) -0.09 (-0.78, 0.61) 

 BD/CD duplication 0 n/a   

 Classic duplication 4 0.5(0.2) n/a n/a 

CASI Behav. Regulation     

 BD/CD deletion 2 0.9 (0.4)   
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 AB/AC deletion 7 0.9 (0.6) 0.06 (-2.08, 2.21) 

 Classic deletion 43 1.0 (0.6) 0.16 (-0.67, 1.00) 

 BD/CD duplication 4 0.3 (0.3)   

 Classic duplication 20 1.0 (0.8) 0.78 (-0.42, 2.00) 

CASI Depression     

 BD/CD deletion 2 0.4 (0)   

 AB/AC deletion 7 0.6 (0.7) 0.33 (-1.82, 2.50) 

 Classic deletion 43 0.5 (0.7) -0.15 (-0.99, 0.67) 

 BD/CD duplication 4 0.2 (0.4)   

 Classic duplication 20 0.4 (0.4) 0.48 (-0.70, 1.68) 

Note. Group means on neuropsychiatric questionnaires. We show 95% confidence 

intervals of effect sizes as Cohen’s d, which can be interpreted as follows: 0.2 as small, 

0.5 as medium, and 0.8 as large (Cohen, 1988). Means and standard deviations for each 

group are presented, as well as the mean and SD for each measure to aid in interpretation. 

We derived SRS T-scores using the updated SRS-2 norms for all participants, regardless 

of the version the participant completed. We averaged CASI-4R raw item scores on 

similar subscales instead of using T-scores because we encountered a strong ceiling effect 

when using CASI-4R T-scores because CASI-4R norms collapse all high raw scores into 

a T-score of 70, and thus population-normed means and standard deviations are not 

available for comparison. For example, all items from the dysthymia subscale and major 

depression subscales were averaged into a “Depression” composite, after accounting for 

the number of items in each subscale so that both scales were weighted equally in the 
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composite. The composites are interpreted as ‘3’ indicating that on average, the parent 

endorsed symptoms in the domain as occurring ‘very often,’ 2 as ‘often’, 1 as 

‘sometimes,’ and 0 as ‘never.’ Vineland = Vineland Adaptive Behavior Scales, 2nd 

Edition; CASI = Child and Adolescent Symptom Inventory-4R; SCQ = Social 

Communication Questionnaire; SRS-2 = Social Responsiveness Scale, 2nd Edition 

 



Table 5.  

Psychiatric disorder rates from parent and adult self-report and chart review 

Total (n) No 

Eval 

Had 

Eval 

GDD Lang Dx ADH

D 

ID ODD OCD Anxiety MDD 

AB/AC Del 13 7.7% 92.3% 30.8% 0.0% 53.8% 0.0% 7.7% 23.1% 23.1% 0.0% 

A-B Deletion 10 10% 90% 30% 0% 50% 0% 10% 20% 20% 0% 

 <3 yrs 1 1 0 0 0 0 0 0 0 0 0 

3-14yrs 8 0 8 2 0 4 0 0 1 1 0 

15+yrs 1 0 1 1 0 1 0 1 1 1 0 

A-C Deletion 3 0% 100% 33.3% 0% 66.7% 0% 0% 33.3% 33.3% 0% 

3-14yrs 1 0 1 1 0 0 0 0 0 0 0 

15+yrs 2 0 2 0 0 2 0 0 1 1 0 

BD/CD Del 12 4 8 2 1 1 3 1 3 3 0 

B-D Deletion 8 12.5% 87.5% 37.5% 0% 12.5% 12.5% 0% 0% 25% 25% 
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<3 yrs 1 1 0 0 0 0 0 0 0 0 0 

3-14yrs 5 0 5 3 0 1 1 0 0 0 0 

15+yrs 2 0 2 0 0 0 0 0 0 2 2 

C-D Deletion 4 75% 25% 0% 0% 25% 0% 25% 25% 25% 25% 

<3 yrs 2 2 0 0 0 0 0 0 0 0 0 

15+yrs 2 1 1 0 0 1 0 1 1 1 1 

BD/CD Dup 9 3 6 2 0 0 4 0 1 1 1 

B-D

Duplication 

7 42.9% 57.1% 28.6% 14.3% 28.6% 0% 0% 0% 14.3% 14.3% 

<3 yrs 1 1 0 0 0 0 0 0 0 0 0 

3-14yrs 3 0 3 2 1 1 0 0 0 1 0 

15+yrs 3 2 1 0 0 1 0 0 0 0 1 

C-D

Duplication 



3-14yrs 2 0 2 2 0 0 0 0 0 0 0 

Total Sample 34 23.5% 76.5% 32.3% 2.9% 32.3% 2.9% 5.9% 11.8% 20.6% 11.8% 

Note. We observed elevated rates of psychiatric diagnoses among individuals with nested duplications or deletions relative to 

population base rates using parent- and self- report data confirmed in medical records. Among the full sample, 77% had received a 

psychiatric evaluation. The most commonly reported diagnoses in our sample included ADHD and Global Developmental Delay 

(GDD), which may reflect the sample’s skew toward younger ages (see table 2 for sample characteristics). We present rates for group 

totals, and we present n’s for age bins based roughly on when documentation of diagnosis would be expected (i.e., GDD and language 

disorders are frequently diagnosed before age 3, ADHD and ID are usually diagnosed in childhood after age 3, and depression and 

anxiety frequently onset during adolescence or adulthood) to facilitate interpretation of overall group rates because rates for disorders 

that frequently appear in adolescence (e.g., anxiety and depression) are likely underestimates. Abbreviations: Eval =evaluation; 

ADHD =Attention Deficit/Hyperactivity Disorder; ID = Intellectual Disability; OCD =Obsessive Compulsive Disorder; GDD = 

Global Developmental Delay; Lang Dx = Language Disorder, receptive or expressive; ODD = Oppositional Defiant Disorder; MDD 

= Major Depressive Disorder; Del = Deletion; Dup = Duplication;yrs= years 
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Table 6.  

Medial comorbidities in individuals with nested deletions and duplication of 22q11.2 

A to B deletion 

(n=11) 

A to C 

deletion 

(n=4) 

B to D deletion 

(n=14) 

B to D duplication 

(n=8) 

C to D deletion 

(n=4) 

C to D 

duplication 

(n=2) 

Audiologic 

Audiogram 

Abnormal 

Abnormal 

Ratea 

Abnormalities 

11 

6 

55% 

CHL 

4 

1 

25% 

CHL 

14 

2 

14% 

SNHL 

8 

2 

25% 

CHL, CSNHL 

4 

0 

0% 

n/a 

2 

1 

50% 

CHL 

Cardiac 

Echocardiogra

m 

Abnormal 

Abnormal 

Rate 

Abnormalities 

9 

7 

64% (78%) 

Enlarged PA, VR, 

PS, TOF with PS, 

IAA with ARSCA, 

TR, PDA 

4 

3 

75% 

TA, RAA 

with ALSCA, 

dilated aortic 

root, VR, 

ASD/VSD 

11 

7 

50% (64%) 

Aortic root 

dilation, aneurism 

of TV, ASD, PDA, 

PFO, TA, VSD 

5 

1 

12% (20%) 

PFO 

2 

1 

25% (50%) 

TOF with 

Pulmonary valve 

stenosis 

1 

0 

0% 

n/a 

Endocrine 

Bloodwork 

Abnormal 

Abnormal 

11 

6 

55% 

Hypocalcemia 

4 

2 

50% 

14 

6 

43%  
Hypocalcemia 

4 

2 

25% (50%) 

Borderline 

4 

0 

0% 

1 

0 

0% 
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Rate  

Abnormalities 

hypothyroidism 

low vitamin D 

(Each category 

n=2) 

Hypocalcemia (n=2), diabetes 

mellitus, 

borderline HbA1C, 

low growth 

factors, low 

vitamin D, 

hypothyroidism 

abnormal thyroid 

function tests, 

neonatal 

hypoglycemia 

n/a n/a 

GI 

Symptom 

screen 

Abnormal 

Abnormal 

Rate 

Abnormalities 

11 

7 

64% 

GERD (n=7),  

constipation (n=4), 

anal atresia (n=1), 

feeding tube (n=2) 

3 

2 

50% (67%) 

Constipation 

(n=2), GERD 

13 

12 

86% (92%) 

GERD (n=11), 

constipation (n=9), 

feeding tube (n=4) 

6 

5 

63% (83%) 

GERD (n=4), 

eosinophilic 

esophagitis, feeding 

tube 

3 

1 

25% (33%) 

GERD, chronic 

constipation 

2 

2 

100% 

GERD (n=2), 

constipation, 

feeding tube 

Hematologic 

CBC 

completed 

Cytopenias 

Abnormal 

Rate 

11 

3 

27% 

4 

3 

75% 

14 

2 

14% 

8 

0 

0% 

4 

0 

0% 

2 

0 

0% 

Immune 

Bloodwork 

Abnormal 

Abnormal 

9 

2 

18% (22%) 

4 

2 

50% 

11 

4 

29% (36%) 

4 

1 

13% (26%) 

4 

2 

50% 

2 

0 

0% 
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Rate 

Abnormalities 

Low Ig Low Ig, T-cell 

lymphopenia, 

inadequate 

vaccine titers 

Low Ig (n=2), 

absent thymus, 

inadequate vaccine 

response 

Low Ig Low Ig, 

recurrent MRSA 

infections, 

inadequate 

vaccine response 

n/a 

Neurologic 

Seizures 

% Reported 

MRI 

Abnormal 

MRI  

Abnormal 

Rate 

MRI Findings 

3 

27% 

8 

3 

27% (38%) 

Chiari 1, white 

matter lesions, 

pachygyria 

0 

0% 

2 

1 

25% (50%) 

Minimal 

bilateral 

congenital 

optic nerve 

hypoplasia 

2 

14% 

10 

3 

21% (30%) 

Chiari 1, 

hypoplastic corpus 

callosum, 

polymicrogyria 

0 

0% 

4 

2 

25% (50%) 

Prominent 

ventricles, 

subarachnoid 

spaces, choroid 

plexus cysts 

0 

0% 

0 

n/a 

0 

0% 

0 

n/a 

Ophthalmolo

gic 

Ophtho exam 

Abnormal  

Abnormal 

Rate 

Abnormalities 

9 

3 

27% (33%) 

Astigmatism, 

exophoria, 

nystagmus 

4 

2 

50% 

Strabismus, 

minimal ONH 

11 

5 

45% 

Anisocoria, iris 

coloboma, ONH 

nystagmus (n=2), 

retinal detachment, 

strabismus (n=3) 

3 

1 

13% (33%) 

Amblyopia 

4 

0 

n/a 

1 

0 

n/a 
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Palate 

Clinical eval. 

Abnormal 

Abnormal 

Rate 

Abnormalities 

9 

8 

89% (73%) 

SMCP (n=3) VPI 

(n=8) 

4 

3 

75% (27%) 

SMCP (n=1), 

VPI (n=3) 

12 

4 

33% (29%) 

SMCP (n=2), VPI 

(n=4) 

6 

1 

17% (13%) 

High arched palate 

with small uvula 

2 

0 

0% 

n/a 

2 

1 

50% 

VPI 

Renal 

Ultrasound 

Abnormal 

Abnormal 

Rate 

Abnormalities 

9 

3 

27% (33%) 

Bilateral 

pelviectasis, 

nephrocalcinosis 

hydronephrosis 

2 

0 

0% 

n/a 

9 

1 

7% (11%) 

Medullary 

nephrocalcinosis 

6 

4 

50% (67%) 

Duplicated 

collecting system, 

small kidneys (n=3) 

2 

1 

25% (50% 

Solitary, low-

lying kidney 

1 

0 

0% 

n/a 

Spine 

Screening x-

rays 

Abnormal 

Abnormal 

Rate 

Abnormalities 

6 

6 

55% (100%) 

Hypoplastic 

vertebra (n=2), 

vertebral fusion 

(n=4), extra 

lumbar vertebra 

4 

3 

38% (75%) 

Fusion of C2-

C3, 

kyphoscoliosi

s, thickened 

spinous 

process of C2 

4 

2 

14% (50%) 

Scoliosis, C2-C3 

fusion and 

dysmorphic dens, 

upswept C2 

2 

1 

13% (50%) 

Hemivertebra at T9, 

absent rib 

1 

1 

25% (100%) 

6 thoracic ribs 

and 6 lumbar 

vertebrae 

1 

0 

0% 

n/a 



Note. The total number of patients in each group is designated in column headings. Each screened organ system is listed along with 

the number of patients who received the screening recommended for patients with classic 22q11.2 deletions and duplications. We 

present the patients with abnormal findings as percentage of total patients. Many patients did not receive all recommended screening; 

when not all patients were screened, we use parentheses to note the percentage of patients with abnormal findings among those who 

received screening. Abbreviations: ARSCA Aberrant right subclavian artery; ALSCA Aberrant left subclavian artery; ASD Atrial 

septal defect (in Cardiac row only; in remainder of manuscript ASD refers to autism spectrum disorder); CHL Conductive hearing 

loss; C/SNHL Mixed conductive and sensorineural hearing loss; GERD Gastroesophageal reflux disease; HbA1C Hemoglobin A1C; 

IAA Interrupted aortic arch; Ig Immunoglobulins; MRI Magnetic resonance imaging; MRSA Methicillin-resistant Staphylococcus 

aureus; ONH Optic nerve hypoplasia; PA Pulmonary artery; PDA Patent ductus arteriosus; PFO Patent foramen ovale; PS Pulmonic 

stenosis; SMCP Submucous cleft palate; SNHL Sensorineural hearing loss; TA Truncus arteriosus; TR Tricuspid regurgitation; TOF 

Tetralogy of Fallot; TV Tricuspid valve; VPI Velopharyngeal insufficiency; VR Vascular ring; VSD Ventricular septal defect
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Figures 

Figure 1. 22q11.2 diagram. Genes and Low Copy Repeat (“LCR”) regions in the 22q11.2 

region. Red bars depict deletions or duplications of participants. From GENCODE v24 

genes in UCSC genome browser, December 2013 Assembly (genome.ucsc.edu) 
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Figure 2. Participant flow chart. The participants and comparisons included in each 

portion of the study. Group colors correspond to colors in figures 3, 4, and additional file 

2. Abbreviations: AB/AC: deletion or duplication spanning LCR-A to LCR-B, or LCR-A

to LCR-C; ASD: autism spectrum disorder; BD/CD: deletion or duplication spanning 

LCR-B to LCR-D, or LCR-C to LCR-D; d; Cohen’s d effect size; del: typical 22q11.2 

Deletion Syndrome involving LCR-A to D, dup: typical 22q11.2 Duplication Syndrome 

involving LCR-A to D; LCR: Low Copy Repeat region; TDC: typically developing 
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controls 
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Figure 3. Individuals with deleted LCR-A to B show higher levels of autistic symptoms. 

Group means, standard errors, and the effect size of differences on two quantitative 

measures of autistic symptoms, the Social Responsiveness Scale-2 (SRS-2) and the 

Social Communication Scale, Lifetime (SCQ). Each point depicts one individual. Dashed 

lines indicate the threshold above which an individual is considered to screen positive for 

autism and warrant further evaluation. The “BD/CD dup” (light blue) and “BD/CD del” 

(light pink) groups include individuals with duplications or deletions, respectively, of 

LCR-B to D or LCR-C to D. The comparison groups include individuals with duplicated 

or deleted LCR-A to B; for duplications, the “Classic Dup” group (dark blue) includes 

individuals with the classic duplication of LCR-A to D, and for deletions, the “AB/AC 

del” group (red) includes individuals with nested deletions of LCR-A to B or C while the 

“Classic Del” group (dark red) includes individuals with classic deletion of LCR-A to D. 

The groups with involvement of LCR-A to B show higher levels of social impairment, 

with large effect sizes for deletions and small to medium effect sizes for duplications. 

Effect sizes are not significant due to small samples (see table 4). The AB/AC deletion 
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group includes 5 individuals diagnosed with autism; the BD/CD deletion group includes 

zero. Abbreviations: AB/AC: deletion or duplication spanning LCR-A to LCR-B, or 

LCR-A to LCR-C; ASD: autism spectrum disorder; BD/CD: deletion or duplication 

spanning LCR-B to LCR-D, or LCR-C to LCR-D; d; Cohen’s d effect size; del: typical 

22q11.2 Deletion Syndrome involving LCR-A to D, dup: typical 22q11.2 Duplication 

Syndrome involving LCR-A to D; LCR: Low Copy Repeat region; TDC: typically 

developing controls; SCQ: Social Communication Questionnaire, Lifetime; SRS: Social 

Responsiveness Scale
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Figure 4. Individuals with deleted LCR-A to B show modestly lower levels of adaptive 

functioning on the Vineland-II Adaptive Behavior Scales. Group means, standard errors, 

and the effect size of differences on the Vineland-II, a measure of adaptive behavior. 

Each point depicts one individual. Groups include the “BD/CD” deletion group (light 

pink; individuals with nested duplication or deletion involving LCR-B or C to LCR-D), 

the “AB/AC” deletion group in red (individuals with nested deletion of LCR-A to B or 

C), the “Classic Del” group in bar red (individuals with typical deletion spanning LCR-A 

to LCR-D), “ASD” group in black (individuals with non-syndromic autism spectrum 

disorder), and “TDC” group in green (typically developing children). Higher scores on 

the Vineland-II indicate higher levels of functioning across the three domains and 
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composite score, and standard scores are age-normed such that 100 (represented by the 

dashed line) indicates average. The “AB/AC” deletion group shows more impairment 

than the “BD/CD” nested deletions that do not involve LCR-A to B with medium to large 

effect sizes; the “AB/AC” group also shows similar levels of impairment to the classic 

delection group, with small or negligible effect sizes. Abbreviations: AB/AC: deletion 

spanning LCR-A to LCR-B, or LCR-A to LCR-C; ASD: autism spectrum disorder; 

BD/CD: deletion spanning LCR-B to LCR-D, or LCR-C to LCR-D; d; Cohen’s d effect 

size; del: typical 22q11.2 Deletion Syndrome involving LCR-A to D, dup: typical 

22q11.2 Duplication Syndrome involving LCR-A to D; LCR: Low Copy Repeat region; 

TDC: typically developing controls
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CHAPTER 2: FEASIBILITY OF SMALL SAMPLES TO DEVELOP A LARGE 

ITEM POOL FOR COMPUTER ADAPTIVE TESTING, WITH EMPIRICAL 

AND SIMULATED DATA  
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Abstract 

The use of small samples to develop computer adaptive test (CAT) item pools 

would make developing a CAT assessment feasible in small, non-commercial settings. 

This simulation study investigates the possibility of using small samples (N=300, 500) to 

calibrate items for a large CAT item pool. The study answers this question in the context 

of developing an IQ CAT with multiple groups of different mean IQs (n=8 groups) for 

use in psychiatric genetic research, and leverages empirically derived item parameters 

from a previous study. Two study factors were manipulated to examine their effect on 

linking error (the error introduced by linking data across groups): the proportion of 

common items across groups (one-third and one-half), and the type of parameter 

calibration (concurrent vs. separate calibration followed by Stocking-Lord linking). 

Linking error in optimal conditions was compared between small and more traditional 

sample sizes (e.g., N=1000, N=3000). Results indicated that at small samples sizes, 

concurrent calibration resulted in significantly less linking error than Stocking-Lord 

linking, and the proportion of common items used in linking had no appreciable effect. 

However, the N=300 condition resulted in a significantly higher proportion of model fit 

issues, making N=300 per group a risky sample size. Although the choice of study factors 

will depend on cost-benefit analysis and the tolerance for error of individual developers, 

in the present example, one particular condition (N=500, concurrent calibration, 20 

common items) proved superior with regard to model failures, linking error in item and 

ability parameters, and total size number of item pool.
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Introduction 

 A research subject’s general cognitive ability is frequently captured by measuring 

IQ. IQ is arguably one of the most extensively studied and best understood constructs in 

all of psychology, with origins dating back to the turn of the 20th century, when it was 

frequently noted that scores on various cognitive ability tests usually correlated positively 

with one another (Spearman, 1904). The single common factor underlying these 

correlations was defined as g, the general factor of intelligence. Intelligence predicts or 

interacts with many constructs of interest, and is frequently assessed by IQ tests in both 

research and clinical practice, particularly in pediatric settings. Twin and family genetic 

studies long ago demonstrated that IQ is heritable (for review, see Knopik, Neiderhiser, 

DeFries, & Plomin, 2016), and modern methods (e.g., SNP arrays and genome-wide 

association studies (GWAS)) have identified common genetic variants associated with IQ 

(e.g., Zabaneh et al., 2017; Savage et al., 2018; for review, see Plomin & von Stumm, 

2018). The genetic basis of IQ, however, is a highly controversial topic in the media; 

researchers continue to study this important construct with new genomic methods 

(“Intelligence Research Should Not Be Held Back by its Past,” 2017).  

The lack of a reliable, brief, online, and inexpensive IQ assessment severely limits 

modern psychiatric genomic research, where assessment development resources are 

scarce. To the detriment of psychiatric genomic research, it is infeasible to assess very 

large samples using reliable, gold-standard IQ tests such as the Wechsler Abbreviated 

Scales of Intelligence (Wechsler, 2011). Instead, the effort to conduct GWAS on 

cognitive ability to date has relied heavily on the proxy variable of educational attainment 
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(Rietveld et al., 2014; Davies et al., 2016; Lee et al., 2018), which is only weakly 

correlated with IQ (Calvin et al., 2012) and introduces socioeconomic confounds (Bates, 

Lewis, and Weiss, 2013; Braveman et al., 2005). Accordingly, many have cited the need 

for a brief measure of IQ (e.g., Krasileva, Sanders, & Hus Bal, 2017). Computer 

Adaptive Testing (CAT) is particularly useful to this end as it reduces the number of 

items administered by 50% or more (Weiss, 2004), offers better precision than fixed 

length tests, particularly at the high and low ends of the ability range (Wainer, Dorans, 

Flaugher, Green, & Mislevy, 2000), and increases self-reported motivation in low ability 

test takers (Betz, 1977). A computer-adaptive, online IQ assessment could be widely 

administered and, if carefully developed and validated, offer a substantial improvement 

in reliability and validity over educational attainment and other metrics with 

unestablished psychometric properties currently in use.  

The authors attempted to develop such a tool, and found that most relevant 

methodological literature relies on large samples that are untenable for assessment 

development by a small, non-commerical research group. The sample size issue is 

exacerbated when the assessment requires multiple nonequivalent groups, or groups with 

different mean abilities. The proposed psychiatric genetic IQ assessment requires data 

collection from nonequivalent groups because cognitive ability changes with age (Deary 

et al., 2009; Hedden & Gabrieli, 2004) and ages are usually binned for IQ scoring 

(Wechsler, 2011). Many existing studies of CATs for nonequivalent groups leverage 

NEAT designs (NonEquivalent groups with Anchor Test), referring to patchwork designs 

in which every group receives a subset of items, with some common items across groups, 
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and one group is chosen as the reference group or anchor test (see Figure 1 for example). 

Many existing CAT studies also use large educational datasets (e.g., Measures of 

Academic Progress: Wang, McCall, Jiao, & Harris, 2012) and require sample sizes that 

are prohibitively large for small resource settings. This study explores potential solutions 

to the challenges encountered so that small research groups can develop CATs that reap 

the benefits of large item pools, including for assessing IQ for psychiatric genetics 

research. 

Challenges of developing a CAT item bank with minimal resources 

 The proposed assessment will feed questions from a calibrated item pool into the 

CAT of a verbal IQ assessment. The verbal IQ assessment consists of multiple choice 

vocabulary items, since vocabulary subtests of traditional IQ tests show high factor 

loadings on the general intelligence factor g (λ=0.74, Wechsler, 2008). A large, calibrated 

CAT item pool requires multiple samples of examinees to respond to subsets of items, 

since no single examinee can sustain attention to respond to all items in the target bank 

size of 300 items. Smaller item sets administered to independent examinee samples are 

pieced together to form the total item bank. CAT item bank developers then face the 

challenge of linking, or translating all item parameters onto a common scale. This 

problem arises because each group of examinees that completes responses for a set of 

items has a unique ability distribution, but each calibration typically assumes the same 

normal distribution N(0,1), rendering not only ability but also item parameter estimates 

from each sample incomparable because they are on different scales. All items in the 

final pool require one common scale. To link the item sets and samples, several ‘common 
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items’ are administered across groups. Then, one group is chosen as the reference group 

with a normal distribution N(0,1) of estimated abilities, and other group parameters are 

transformed onto this single common scale using items common across all groups. Each 

of these design decision points and computational steps introduces bias, which different 

study conditions may disproportionately magnify in the small sample sizes of a non-

commerical setting. 

Feasibility of very small sample sizes 

 Much prior research describes how larger sample sizes improve model fit and 

decrease error in item parameters (discrimination, difficulty, and guessing) and examinee 

ability parameters (θ). Lord (1968) reported difficulties with model convergence using 

SAT data and a single group, and recommended studies use a minimum of 1000 

examinees. However, the common wisdom that fitting a three-parameter model requires 

1,000 (Lord, 1968) or 1,500 (Kolen & Brennan, 2010) examinees is prohibitive for many 

non-commerical research endeavors. Few studies exist on smaller samples (e.g., 300 per 

group), but such small samples could make developing a CAT accessible to smaller 

research groups. It may be possible to offset the increased bias of very small sample sizes 

by optimizing other study factors such as the proportion of common items, the NEAT 

design, and the calibration method. This study investigates whether small sample sizes 

(e.g., 300 per group) may be tenable if other study factors are optimized to minimize bias. 

Optimizing the proportion of common items 

One study factor that could be leveraged to minimize bias is the proportion of 

common items. During item bank calibration, each sample of examinees responds to a 
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fixed number of items, and a set of common items appears on all tests to facilitate linking 

onto a single scale. The relationship between the proportion of common items and 

parameter bias has been the subject of much study. Hanson and Beguin (2002) found 

linking error decreased when the number of common items was increased from 10 to 20 

on a 60-item test administered to nonequivalent groups, although a sample size increase 

from 1,000 to 3,000 showed a much larger effect on decreasing bias. Kang and Petersen 

(2012) reported in a simulation study of a 50-item test with 10, 20, or 40 linking items 

that linking performance improved with higher proportions of common items, but 20% 

may be sufficient to obtain tolerable amounts of error. Arai and Mayekawa (2011) tested 

4, 8, and 12 common items in a 40-item test length: the 12 common item condition 

performed best, but the extent of the benefit depended on other study factors (namely, 

design and calibration). Of note, they concluded from their sample of nonequivalent 

groups—with mean differences similar to those in the present study—that linking error 

was minimized when common items were shared by all groups. Thus to minimize linking 

error in the present study, we presented the same set of common items to all groups, 

instead of presenting overlapping items to adjacent groups in a patchwork fashion.  

Higher proportions of common items result in smaller total item banks because 

examinees can only sustain attention for a fixed number of items and limited resources 

often dictate the total possible number of examinees. Thus, CAT bank developers must 

balance the decreased bias from a higher proportion of common items with the cost of 

additional examinees to calibrate additional items to fill the bank.  

Optimizing the calibration method 
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There are two primary methods to establish a common scale for different item sets 

administered to nonequivalent groups. In the first method, concurrent calibration, all 

groups are calibrated simultaneously, with one group being specified as a reference 

group. In the second method, all groups are calibrated separately, then each group’s 

parameters are linearly transformed onto a common scale. Linear transformation 

constants can be obtained via mean/sigma (Marco, 1977), mean/mean (Loyd & Hoover, 

1980), and characteristic curve methods (Kolen & Brennan, 2014). The Stocking Lord 

characteristic curve method (Stocking & Lord, 1983) has been demonstrated to yield 

more accurate estimates than alternative methods across a variety of conditions similar to 

those in the present study (Hanson & Beguin, 2002; Kim & Kolen, 2006), so it was 

chosen for comparison to concurrent calibration.  

Other study factor conditions such as sample size and proportion of common 

items affect whether concurrent or separate calibration yields smaller linking error. Kim 

and Cohen (1998) reported that concurrent and separate calibration yielded similar results 

unless the study design had a small proportion of common items. Hanson and Beguin 

(2002) used ACT Math subtest data and reported that the unique items for the non-

reference group had higher linking error for separate calibration, compared to concurrent. 

They observed improvement by increasing sample size (from 1,000 to 3,000), but not by 

increasing the proportion of common items (from 10/60 to 20/60). Kim and Kolen (2006) 

also found that concurrent calibration produced lower error, closely followed by Stocking 

Lord, then by other linking methods such as the Haebara (1980) characteristic curve 

method, mean/mean, and mean/sigma methods. This study relied on simulated data based 
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on empirical data from a large educational test, with a sample size of 2000 examinees. It 

remains unknown how calibration method interacts with proportions of common items in 

small sample sizes.  

Present study 

The current study investigates whether small samples could be used to develop a 

large CAT item bank with nonequivalent group data by minimizing linking error with 

other study factors. This question is particularly relevant for developers in minimal 

resource settings as small samples could facilitate and expedite development of 

assessment tools, such as an IQ assessment, which is desperately needed for psychiatric 

genetic research. Using empirical parameters and simulated response data, this study 

compares concurrent and separate group calibration with different sample sizes and 

different proportions of common items to identify the set of conditions that would 

minimize linking error and thereby optimize the accuracy of a nonequivalent group 

assessment developed with the smaller sample sizes available to most researchers. The 

study factors evaluated are:  

1. Sample size (N=300, 500, 1000, 3000), as smaller samples decrease cost 

2. Proportion of common items (1/3 and 1/2), as administering fewer common items 

per group allows more unique items to be developed for the same cost (but may 

increase linking error 

3. Concurrent or separate calibration followed by Stocking Lord linking  

 

Methods 

Simulation study design 
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Sample size. Four sample sizes were examined: 300, 500, 1000, and 3000 

examinees per group. Samples of 300 and 500 were selected to assess the feasibility of 

calibrating parameters with small samples. Samples of 1000 and 3000 were selected as 

control conditions to compare to the small samples and for comparability with existing 

literature (e.g., Hanson & Benguin, 2002).  

Proportion of common items. Two proportions of common items were evaluated 

in a nonequivalent group common item design: 20 and 30 common items in a test length 

of 60 items (Figure 1). The test length administered to each examinee was maintained 

constant at 60 items in both conditions. Consequently, total item bank size varied across 

conditions such that the 30/60 common item condition had 270 total items (30 common, 

and 8x30 unique to each group) while the 20/30 common item condition had 340 total 

items (20 common and 8x40 unique to each group).  

 Calibration. Two procedures were compared for linking item parameters and 

vertically scaling scores from nonequivalent groups onto a single scale: concurrent 

calibration implemented with BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003), 

and separate calibration implemented with BILOG-MG followed by Stocking-Lord 

linking implemented with STUIRT (Kim & Kolen, 2004).  

Data generation 

 Nonequivalent group distributions. Eight nonequivalent groups were created to 

approximate eight age groups from 18-70 with different means and standard deviations 

(Table 1) to reflect the growth and decay of verbal intelligence across these age groups. 

Age-group design was loosely based on age groups used for scoring in the WASI-II 
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(Wechsler, 2011). Group means and standard deviations were derived from the WASI-II 

vocabulary T-scores for each age group. 

Examinee data. Using WinGen (Han, 2007), 200 samples of 3000 examinees for 

each age group were randomly drawn from each distribution (100 primary samples, 100 

back-up samples). The first 300, 500, 1000, and 3000 examinees from each group were 

used for each respective sample size condition. One response pattern was generated for 

each set of examinees using WinGen. Thus, a different, independent sample and its 

corresponding response pattern were used for each replication, to facilitate generalization 

of results over different future sample data.  

Item parameter data. Parameters from empirical data were used. The response 

dataset contained online responses from anonymous individuals to subsets of over 500 

multiple choice vocabulary items developed in consultation with a linguist. Response 

data were analyzed with concurrent calibration with quadrature points and strong priors 

to promote convergence. The same item parameter set was used for every replication, as 

the focus of this study was to develop a CAT item bank.  

Study endpoints 

 In total, this study presents 16 conditions (4 sample sizes x 2 common item 

proportions x 2 vertical scaling methods). In the concurrent calibration condition, we fit 

eight total models, one for each condition; in the separate calibration condition, we fit 64 

models, one for each of eight age groups in each condition. We analyzed one hundred 

replicates of each condition, which involved dropping and replacing a dataset if one of 
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the primary 100 datasets failed to converge or calibrate an item. All endpoint analyses 

were implemented in R v3.5.2 (R Core Team, 2018).  

 Number of dropped replications. Replications were dropped and replaced for 

three reasons: the model failed to converge; an item could not be calibrated; or the 

standard error of an item parameter was not reported. We recorded the number of 

dropped replications out of all 200 runs for each condition, and counted a replication as 

dropped if it failed for any model in the condition. For the final analysis, any replication 

that was dropped from any condition was excluded from all conditions so that the same 

100 datasets were used for all conditions to facilitate comparison.  

Theta recovery. Each condition was evaluated on four metrics of theta recovery. 

First, absolute theta bias was computed for each examinee as the absolute difference 

between the true theta and the estimated theta (Equation 1). Where i represents an 

examinee and R=100 replications 

Equation 1 

 

Second, signed theta bias was computed as the difference between the true theta 

and the estimated theta (equation 2). Where i represents an examinee and R=100 

replications  

Equation 2 
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Third, the standard error (SE) was computed for each examinee (Equation 3). 

Where i represents an examinee and R=100 replications  

Equation 3 

 

where . 

Fourth, the Root Mean Square Error (RMSE) was computed for each examinee 

(Equation 4). Where i represents an examinee and R=100 replications 

Equation 4 

 

Each endpoint was evaluated for all examinees, and by group. Each endpoint was 

averaged across all examinees (N=300, 500, 1000, or 3000) to obtain mean absolute bias, 

signed bias, SE, or RMSE for the condition.  

Item parameter recovery. Each condition was evaluated on absolute and signed 

mean conditional bias in threshold (b), slope (a), and guessing parameters (c) (Equations 

5-6). Where i represents an item and R=100 replications, conditional slope absolute bias 

for one item can be represented as:  

Equation 5 
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and conditional slope signed bias for one item can be represented as: 

Equation 6 

 

Conditional absolute or signed bias was then averaged across all items (N=270 or 340) to 

obtain mean absolute bias or mean signed bias for the condition.  

Statistics 

 Study endpoints were compared across conditions using ANOVA with the 

conservative Bonferroni correction for multiple comparisons (8 or 16) within each study 

factor (sample size, calibration type, and proportion of common items). Instead of 

ANOVA, a chi square test was used to compare proportions of dropped replicates 

between conditions.  

 

Results 

Theta and item parameter recovery 

Sample size. As expected, absolute bias in estimates of both ability and item 

parameters decreased as sample size increased (Tables 2, 3 and Figures 2, 3). However, 

bias did not improve linearly with sample size; rather, the improvement between N=300 

and N=500 conditions was similar or larger than the improvement between N=500 and 

N=1000, despite the latter representing a much more costly increase in sample size.  

Proportion of common items. Increasing common items from 20 to 30 produced 

no significant improvement in absolute theta bias within each sample size of the 
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concurrent conditions, after correction for multiple comparisons (p’s 0.009-0.508; Figure 

2a). In the separate calibration condition, no differences between 20 and 30 common item 

levels were observed in absolute theta bias for sample sizes of 300 or 500, but sample 

sizes of 1000 (t(99)=3.23, p=0.002) and 3000 (t(99)=4.09, p<0.001) showed significant 

improvements in absolute theta bias for the 30 common item level. The separate, 30 

common item condition outperformed all other conditions with regard to absolute theta 

bias, but also showed the highest standard error.  

Item parameter recovery. Absolute bias in discrimination and item difficulty 

parameters was nearly identical for both common item levels within each sample size and 

within each calibration type (all p’s > 0.10; Figure 3c and 3d).  

Calibration type. With regard to absolute theta bias, separate calibration 

significantly outperformed concurrent calibration at all sample sizes except n=300 (300: 

F(3,396)=0.69, p=0.56; 500: F(3, 396)=5.9, p=0.001; 1000: F(3, 396)=12.4, p<0.001; 

3000: F(3, 396)=20.82, p<0.001). In contrast, concurrent calibration showed significantly 

less signed theta bias at all sample sizes (all p’s<0.001). Comparisons on RMSE, which 

accounts for both bias and SE, demonstrated superiority of the concurrent condition for 

sample sizes of 300 and 500, but no differences between concurrent and separate 

conditions with 30 common items for sample sizes of 1000 and 3000. 

Item parameter recovery. Absolute bias in discrimination and difficulty 

parameters showed negligible differences between calibration types (p’s>0.13; Figure 3c 

and 3d). Common items showed significantly less absolute bias in discrimination and 

difficulty parameters with concurrent calibration for all conditions (p’s<.01) in all cases 
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except difficulty parameters with N=3000 (p=0.0340; Figure 3a and 3b; Table 3). The 

concurrent condition also demonstrated superior performance with regard to signed bias 

(Figure 3e and 3f; Table 3). Separate calibration followed by Stocking-Lord linking 

showed larger underestimation than concurrent calibration for both difficulty and 

discrimination parameters with samples N=300 (difficulty: F(3,1216)=7.76, p<0.001; 

discrimination: F(3,1216)=28.59, p<0.001) and N=500 (difficulty: F(3,1216)=6.96, 

p<0.001; discrimination: F(3,1216)=14.61, p<0.001), and for discrimination for N=1000 

(difficulty: F(3,1216)=2.81, p=0.038; discrimination: F(3,1216)=4.7, p<0.003). Signed 

bias showed no differences across conditions at the 3000 sample size (difficulty: 

F(3,1216)=0.38, p=0.768; discrimination: F(3,1216)=1.2, p=0.309). The concurrent 

conditions showed almost no signed difficulty bias.  

Differences by group and ability level. Across all conditions the youngest group 

(group 18-19 years, distribution N -0.83, 0.86) showed substantially higher theta bias 

than all other groups (Table 2, Fig 4). In both calibration conditions, older groups showed 

larger absolute theta bias and younger groups showed smaller absolute bias.  

Across the ability range, absolute theta bias performed as expected in every 

condition. Bias remained low and near its minimum for approximately two standard 

deviations outside the mean (Figure 5), and increased toward the tail ends of the 

distribution where there were fewer examinees and items.  

A closer look at small sample sizes 

Within sample size N=300, the two concurrent conditions resulted in the smallest 

linking error in item and ability parameters. There was no significant difference between 
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20 and 30 common items within the concurrent condition. When these two optimal 

N=300 conditions were compared to N=500 conditions, on some outcomes the best 

N=300 conditions showed smaller linking error than the worst N=500 conditions (e.g., 

theta RMSE). In general, as expected, the best N=500 conditions outperformed the best 

N=300 conditions, with significant differences in absolute theta bias, absolute difficulty 

bias, and absolute discrimination bias. Other outcomes showed no significant differences. 

On the majority of outcomes for sample sizes of 300 or 500, the concurrent condition 

minimized linking error, without significant differences between 20 and 30 common 

items.  

Dropped replications 

 The separate calibration condition resulted in many more dropped replications 

than the concurrent calibration condition (χ2(1)=21.22, p<0.001). Conditions with 300 

subjects per group demonstrated the highest drop rate (40/800 replications; Table 2). 

Surprisingly, the conditions with a higher proportion of linking items showed a higher 

number of dropped replications for almost every sample size, although this result was not 

statistically significant (χ2(1)=1.33, p=0.25).  

 

Discussion 

 This simulation study assessed the feasibility of using small sample sizes and a 

large proportion of common items to develop a large CAT item bank. A significant 

improvement in several endpoints was observed for 500 examinees compared to 300, and 

the improvement was often equal to or greater than the improvement between 500 and 
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1000 examinees. At sample sizes of N=300 and 500, the concurrent calibration conditions 

outperformed or showed negligible difference from separate calibration with Stocking 

Lord linking. For 300 and 500 examinees per group, the one-third common item 

condition performed only slightly worse than the one-half condition, while increasing the 

total items calibrated from 270 to 340; in a minimal resource setting, the substantial 

increase in item bank size may outweigh the relatively small decrease in parameter 

recovery accuracy.  

Sample size 

The use of small samples to develop a large CAT item pool could make CAT 

development more accessible to small, non-commerical research groups. Few studies 

have investigated the feasibility of N≤500 in a common-items nonequivalent groups 

design, despite interest in small sample sizes. This study investigated the feasibility of 

small samples (N=300 per group) under ideal conditions: 50% common items, the same 

common items administered to all examinees, >50-item test length, low likelihood of 

construct drift, and concurrent calibration. Even under such favorable conditions, the 300 

sample size showed high levels of error. The sample size of 500 examinees, however, 

shower lower and more acceptable error, particularly in absolute bias of theta, all, items, 

and common items. Thus, a minimum sample of 500 may be necessary to achieve more 

tolerable levels of bias and error.  

Calibration method 

Separate calibration followed by Stocking-Lord linking slightly outperformed 

concurrent calibration in theta recovery for large sample sizes (N=1000 and 3000 per 
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group). However, in all other regards, results support the use of concurrent calibration. 

First and foremost, separate calibration resulted in more difficulties with model fit. For 

N=300 examinees, nine percent of replications dropped in the separate calibration 

condition; this high incidence of model failure is undesirable in a low resource setting 

where data cannot easily be replaced. Of the 35 dropped replications, only one model 

failed to converge; the remaining 34 replications were dropped because individual items 

could not be calibrated and would require pruning in an empirical study. Thus, 

researchers employing separate calibration with a small sample are recommended to 

include more items to allow for pruning to improve model fit. Separate calibration may 

show more dropped replications than concurrent calibration because it requires fitting 

eight times more models (one per group), so there are simply more opportunities for 

model fit issues to arise.  

Concurrent methods showed small but clear advantages over separate calibration 

in signed theta bias (e.g., 0.03 improvement for N=300). The concurrent conditions 

slightly underestimated thetas (mean -0.004), while the separate conditions more 

substantially overestimated thetas (mean 0.020). The concurrent conditions also 

outperformed the separate conditions in common item parameter bias and theta RMSE.  

Nonequivalent groups 

The group with the largest difference from the reference group N(0,1) was group 

18-19 years N(-0.83, 0.86), which showed significantly higher bias than all other groups. 

This finding is likely due to the difference in both mean and standard deviation, which 

made scoring more challenging. Other studies of nonequivalent groups have not reported 
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comparable bias, even among studies with larger mean differences between groups (e.g., 

Li & Lissitz, 2012; Kang & Petersen, 2012). Further research could explore the 

boundaries of this issue of significant bias in nonequivalent groups.  

Limitations and future directions 

 One limitation concerns group distributions, which were empirically derived from 

an existing IQ assessment to represent change in cognitive ability over adulthood. More 

systematic variation in mean and standard deviation may have improved the applicability 

of these results to other projects. However, we believe that the results contained herein 

are likely to apply to development of other adult scales. Educational achievement 

assessments routinely employ multigroup methodology, but adult assessments often treat 

adults as a unitary group with a normally distributed latent trait. Many latent traits 

besides IQ change between ages 18 and 70, and small between-group differences could 

be accounted for with multgroup designs such as this one.  

 In addition, the common item proportions were both fairly moderate (1/2 and 1/3). 

Previous studies of other study conditions have demonstrated the potential feasibility of 

fewer common items. A large difference in common items results in a large difference in 

item bank size. In the present study, 350 verbal items were available, and the number of 

groups was fixed at 8; accordingly, common item proportions of 20 and 30 were selected, 

which resulted in total item banks of 270 and 340 items, respectively. Further simulations 

that alter other variables affecting item bank size (i.e., number of groups and test length) 

could investigate whether fewer common items are necessary to achieve the desired bank 

size and tolerable bias level.  
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Conclusions 

 Specific recommendations are not appropriate because a future developer’s 

selection of study conditions will depend on their tolerance for error and bias. With 

regard to the present study, an optimal balance between bias and number of examinees 

was achieved with a) concurrent calibration, which generally outperformed separate 

calibration, b) 20 common items, as 30 common items offered minimal improvement in 

bias but a significant decrease in total item pool, and c) 500 examinees per group. 

Smaller sample sizes save valuable resources but the relationship between additional 

subjects and error is nonlinear. Although the 300 sample size resulted in high levels of 

error, the addition of just 200 examinees per group led to large improvements in many 

outcomes and brought linking error to tolerable levels. The resulting IQ CAT will 

strengthen current efforts to understand the genetic basis of IQ through improved 

reliability and validity.  
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Tables 

Table 1.  

Nonequivalent groups  

Group Age group Mean SD 

1 18-19 -0.3 0.86 

2 20-24 -0.2 0.89 

3 25-29 -0.1 0.93 

4 30-34 0.0 1.00 

5 35-44 0.0 1.04 

6 45-54 0.0 1.07 

7 55-64 0.0 1.14 

8 65-70 0.1 1.18 
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Table 2.  

Theta recovery 

By group θ signed bias 

N 

Subjects 

n 

Com-

mon 

Items 

Calibra-

tion 

n 

Dropped 

replica-

tions 

θ 

mean 

SE 

θ 

mean 

RMSE 

θ 

absolute 

bias 

θ 

signed 

bias 18-19 20-24 25-29 30-34 35-44 45-54 55-64 65-70 

300 20 C 2 1.047 1.079 0.254 -0.001 -0.179 0.023 0.022 0.021 0.024 0.023 0.023 0.030 

S 15 1.072 1.102 0.253 0.029 0.011 0.029 0.027 n/a 0.034 0.034 0.030 0.037 

30 C 3 1.049 1.081 0.252 -0.003 -0.186 0.018 0.018 0.024 0.025 0.022 0.028 0.031 

S 20 1.071 1.102 0.251 0.023 -0.011 0.025 0.023 n/a 0.031 0.030 0.032 0.029 

500 20 C 0 1.057 1.088 0.251 -0.006 -0.184 0.019 0.017 0.017 0.019 0.021 0.020 0.028 

S 2 1.076 1.105 0.250 0.021 0.008 0.021 0.019 n/a 0.025 0.026 0.021 0.030 

30 C 1 1.052 1.082 0.247 -0.003 -0.187 0.018 0.019 0.023 0.022 0.023 0.025 0.030 

S 3 1.065 1.094 0.245 0.019 -0.017 0.022 0.023 n/a 0.025 0.025 0.026 0.025 
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1000 20 C 0 1.055 1.085 0.246 -0.006 -0.184 0.018 0.019 0.017 0.017 0.021 0.019 0.024 

S 0 1.067 1.095 0.244 0.020 0.015 0.019 0.019 n/a 0.018 0.023 0.019 0.025 

30 C 0 1.052 1.082 0.245 -0.004 -0.186 0.018 0.019 0.020 0.021 0.022 0.025 0.027 

S 1 1.057 1.084 0.240 0.015 -0.031 0.020 0.021 n/a 0.020 0.021 0.023 0.022 

3000 20 C 1 1.060 1.089 0.243 -0.007 -0.184 0.016 0.017 0.016 0.017 0.019 0.021 0.024 

S 0 1.069 1.097 0.241 0.021 0.046 0.017 0.016 n/a 0.016 0.017 0.019 0.021 

30 C 1 1.056 1.085 0.243 -0.005 -0.190 0.016 0.018 0.020 0.022 0.022 0.024 0.027 

S 0 1.055 1.082 0.237 0.014 -0.023 0.018 0.019 n/a 0.020 0.019 0.019 0.020 

θ absolute bias 

300 20 C 0.321 0.232 0.236 0.235 0.240 0.250 0.255 0.261 

S 0.296 0.239 0.241 n/a 0.243 0.252 0.256 0.262 

30 C 0.322 0.225 0.231 0.236 0.240 0.248 0.252 0.261 

S 0.296 0.232 0.237 n/a 0.242 0.252 0.255 0.259 

500 20 C 0.321 0.227 0.232 0.233 0.237 0.245 0.252 0.258 

S 0.298 0.232 0.237 n/a 0.240 0.247 0.252 0.258 
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30 C 0.320 0.222 0.227 0.232 0.234 0.243 0.246 0.253 

S 0.290 0.227 0.231 n/a 0.236 0.244 0.247 0.251 

1000 20 C 0.319 0.222 0.228 0.229 0.232 0.240 0.246 0.251 

S 0.297 0.224 0.231 n/a 0.233 0.239 0.245 0.248 

30 C 0.320 0.219 0.225 0.230 0.232 0.239 0.243 0.249 

S 0.283 0.222 0.227 n/a 0.231 0.239 0.242 0.245 

3000 20 C 0.321 0.220 0.225 0.227 0.230 0.237 0.242 0.246 

S 0.312 0.221 0.226 n/a 0.228 0.235 0.239 0.242 

30 C 0.321 0.218 0.223 0.228 0.230 0.238 0.240 0.245 

S 0.286 0.219 0.224 n/a 0.227 0.235 0.237 0.240 
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Table 3.  

Parameter recovery 

Absolute bias Signed bias 

Absolute bias,  

common items 

N 

Subjects 

n 

Common 

Items Calibration a b c a b c a b c 

300 20 C 0.203 0.184 0.027 0.014 -0.005 0.002 0.123 0.121 0.027 

S 0.208 0.185 0.028 -0.049 -0.027 -0.013 0.193 0.191 0.025 

30 C 0.198 0.178 0.026 0.003 -0.010 -0.001 0.112 0.112 0.027 

S 0.204 0.183 0.027 -0.049 -0.035 -0.013 0.184 0.175 0.027 

500 20 C 0.180 0.154 0.027 -0.010 -0.007 0.003 0.105 0.099 0.025 

S 0.187 0.156 0.028 -0.056 -0.025 -0.011 0.173 0.160 0.025 

30 C 0.175 0.145 0.027 -0.008 -0.002 0.001 0.091 0.091 0.027 

S 0.180 0.149 0.028 -0.045 -0.023 -0.011 0.163 0.146 0.027 
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1000 20 C 0.151 0.120 0.027 -0.022 -0.002 0.004 0.080 0.078 0.023 

S 0.156 0.118 0.028 -0.051 -0.012 -0.008 0.137 0.117 0.024 

30 C 0.148 0.117 0.027 -0.021 0.000 0.001 0.073 0.076 0.024 

S 0.150 0.115 0.028 -0.039 -0.013 -0.009 0.127 0.107 0.026 

3000 20 C 0.118 0.086 0.025 -0.044 -0.008 0.002 0.067 0.056 0.020 

S 0.120 0.083 0.026 -0.056 -0.004 -0.005 0.092 0.074 0.022 

30 C 0.116 0.087 0.025 -0.038 -0.004 -0.001 0.061 0.058 0.020 

S 0.112 0.082 0.026 -0.040 -0.004 -0.006 0.085 0.073 0.025 
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Figures 

Figure 1. Nonequivalent groups Anchor Test (NEAT) design for 30 common item 

conditions. Group 4 (in bold and with asterisks) served as the reference group. The 

approximated age range (e.g., 30-34 year olds) and distribution (e.g., mean=0.0 and 

standard deviation=1.00) were derived from the Wechsler scoring tables. 
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Figure 2. Theta bias and error 
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Figure 3. Item parameter bias 
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Figure 4. Absolute theta bias by group
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Figure 5. Mean absolute theta bias by binned ability level, replication 001 
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CHAPTER 3: DOES THE FACTOR STRUCTURE OF IQ DIFFER BETWEEN 

THE DAS-II NORMATIVE SAMPLE AND AUTISTIC CHILDREN? 

This work originally appeared in Autism Research (2020).  

Key Words: autism spectrum disorders, intelligence, educational psychology, factor 

analysis, validity
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Abstract 

The Differential Abilities Scales, 2nd edition (DAS-II) is frequently used to assess 

intelligence in autism spectrum disorder (ASD). However, it remains unknown whether 

the DAS-II measurement model (e.g., factor structure, loadings), which was developed on 

a normative sample, holds for the autistic population or requires alternative score 

interpretations. We obtained DAS-II data from 1,316 autistic individuals in the Simons 

Simplex Consortium and 2,400 individuals in the normative data set. We combined ASD 

and normative data sets for multigroup confirmatory factor analyses to assess different 

levels of measurement invariance, or how well the same measurement model fit both data 

sets: "weak" or metric, "strong" or scalar, and partial scalar if full scalar was not 

achieved. A weak invariance model showed excellent fit (Confirmatory Fit Index [CFI] > 

0.995, Tucker Lewis Index [TLI] > 0.995, root mean square error of approximation 

[RMSEA] < 0.025), but a strong invariance model demonstrated a significant 

deterioration in fit during permutation testing (all p's<0.001), suggesting measurement 

bias, meaning systematic error when assessing autistic children. Fit improved 

significantly, and partial scalar invariance was achieved when either of the two spatial 

subtest (Recall of Designs or Pattern Construction) intercepts was permitted to vary 

between the ASD and normative groups, pinpointing these subtests as the source of bias. 

The DAS-II appears to measure verbal and nonverbal-but not spatial-intelligence in 

autistic children similarly as in normative sample children. These results may be driven 

by Pattern Construction, which shows higher scores than other subtests in the ASD 

sample. Clinicians assessing autistic children with the DAS-II should interpret verbal and 
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nonverbal reasoning composite scores over the spatial score or General Composite 

Ability.  

Abbreviations  

ADHD: Attention Deficit/Hyperactivity Disorder; AIC: Akaike information criterion; 

ASD: Autism Spectrum Disorder; CFI: Confirmatory Fit Index; DAS-II: Differential 

Abilities Scales, 2nd Edition; ID: Intellectual Disability; IQ: Intelligence quotient; GCA: 

General Conceptual Ability; NVIQ: Nonverbal IQ; RMSEA: Root Mean Square Error of 

Approximation; SD: Standard deviation; Seq. & quant Reasoning: Sequential & 

quantitative reasoning; SNC: Special Nonverbal Composite; SRMR: Standardized Root 

Mean Square Residual; SSC: Simons Simplex Consortium; TLI: Tucker Lewis Index; 

VIQ: Verbal IQ
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Introduction 

Intellectual disability (ID) commonly co-occurs with autism spectrum disorder 

(ASD): approximately 50% of autistic individuals meet criteria for ID (Charman et al., 

2011). To assess ID in school-age autistic children, clinicians frequently use the DAS-II 

(Differential Ability Scales, 2nd Edition, Elliott, 2007a) to measure cognitive ability. 

However, it remains unknown whether the DAS-II functions similarly in autistic and 

neurotypical children (Wicherts, 2016). The DAS-II measurement model (i.e., the 

relationship between subtests and the latent constructs of verbal, nonverbal, and spatial 

intelligence which is described by the factor structure, factor loadings, covariances, etc.) 

was developed with a nationally representative normative sample, and has never been 

tested in a large autistic sample to our knowledge. If the DAS-II measurement model fails 

to hold for autistic children, alternative methods and score interpretations will be needed 

for measuring cognitive ability and informing ID assessments. 

Research has shown that the measurement models of some intellectual 

assessments perform differently in some subgroups. For example, the DAS-II 

measurement model showed small differences for a sample of African Americans (Trundt 

et al., 2018), the WISC-IV measurement model showed differences for a sample with 

ADHD (Thaler et al., 2015), and a factor analysis of the WAIS-R, WAIS-III, WISC-R, 

and WISC-III in a sample of high functioning autism identified a ‘social context’ factor 

not present in the normative sample (Goldstein et al., 2008). When a measurement model 

performs differently in a particular subgroup, this suggests that measurement bias affects 

scores for individuals in that subgroup such that their measured scores do not reflect their 
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true scores on the latent trait (e.g., nonverbal intelligence) in the same way that scores for 

the normative group do, whether driving measured scores up or down (Reynolds & 

Lowe, 2009). Please note that throughout this article, the terms ‘nonverbal intelligence’ 

or NVIQ are used instead of fluid reasoning (gf) for consistency with DAS-II 

nomenclature (Elliott et al., 2018, p. 347). 

Clinicians have long discussed “IQ splits” in individuals with ASD, and recent 

research lends more support to this observed phenomenon. Siegel and colleagues (1996) 

initially reported that in 45 high-functioning autistic individuals, 36% of participants 

showed unusually large differences (i.e., 12 IQ points in standard scale of mean 100, SD 

15) between their nonverbal IQ and verbal IQ scores (20% NVIQ > VIQ, 16% VIQ >

NVIQ). Many other researchers reported similar data, and an analysis of the largest 

known sample of DAS-II data on autistic children (n = 2,110; the Simons Simplex 

Consortium) confirmed the ‘splits’ finding with 32% of individuals showing DAS-II 

Early Years NVIQ > VIQ discrepancies of at least 16 points, and 20% showing the same 

discrepancy on DAS-II School Age (Nowell et al., 2015). At present, it is unclear 

whether these ‘splits’ reflect true differences between verbal and nonverbal intelligence, 

or are better attributed to measurement bias due to a poor fit of the DAS-II measurement 

model in autistic children. This question can be answered by testing measurement 

invariance.  

Measurement invariance is a method to determine whether an assessment such as 

the DAS-II measures the same latent construct with the same precision in multiple 

populations. In other words, it tests whether the observed test score of an individual - 
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who has a certain true score on the latent construct - is independent of that individual’s 

group membership (Thompson, 2016). Different levels of measurement invariance are 

tested sequentially with increasing strictness. At the first level, the same confirmatory 

factor model is fit to each group separately. This level of invariance merely demonstrates 

that the same model can be fit to each group, but does not rule out measurement bias in 

the relationship between one group’s test scores and true ability. At the second or “weak” 

factorial invariance level, configural invariance, a multigroup model is fit to the 

combined datasets; this model requires that the same items load on the same factors for 

each group, but imposes no between-group constraints on factor loadings or any other 

parameters. At the third level, also referred to as “weak” factorial invariance, factor 

loadings are constrained to be equal in both groups, but no other between-group 

constraints are imposed. At the fourth level, scalar or “strong” factorial variance is 

required to conclude that between-group differences in mean scores are entirely due to 

true group differences in latent abilities and not measurement bias. Scalar invariance 

requires equality between groups on intercepts, and permits estimation of differences 

between group factor means by no longer setting factor means equal to 0 as in metric and 

configural invariance. In one final level, residual or “strict” invariance, residuals are 

constrained to be equal in both groups. However, this level of factorial invariance is not 

necessary; it is widely accepted that scalar or “strong” invariance is sufficient for use of a 

measure with a particular population, such as autistic children. If scalar invariance is 

achieved between the autistic and normative samples, then it can be concluded that group 

differences in nonverbal, verbal, and spatial intelligence scores reflect true group 
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differences in ability. If scalar invariance is not achieved, then group differences might be 

due to measurement bias and artifacts rather than true differences in intelligence; thus an 

autistic child’s DAS-II score would be biased compared to the normative sample.  

The objective of this study is to determine whether DAS-II scores are biased for 

autistic children. 

Methods 

Participants 

The ASD sample was drawn from the Simons Simplex Collection (SSC), which 

was a multi-site study of 2,110 children ages 4-18 who met gold-standard diagnostic 

criteria for ASD. Participants completed a comprehensive diagnostic and behavioral 

testing battery that included the DAS-II School Age core subtests. For additional 

information on SSC data collection, recruitment, diagnoses and inclusion criteria, see 

Fischbach and Lord, 2010. SSC participants were included in the present study if they 

had a DAS-II School Years subtest score (n = 1,316; see Table 1). Over 90% of 

participants had complete data on all six core DAS-II subtests.  

The control sample consisted of the nationally representative DAS-II School Age 

normative sample ages 6-17 (n = 2,400; see Table 1) and was provided by Pearson, 

publisher of the DAS-II. For additional information on this sample, see the DAS-II 

Technical Manual (Elliott, 2007b).  

This study was approved by The Children’s Hospital of Philadelphia Institutional 

Review Board and adheres to the legal requirements of the United States.  

Data Analysis 
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Missing data. Eight of 2,400 individuals in the normative dataset were missing 

data on one subtest. The ASD sample showed significantly more missing data (119 of 

1,316 participants). While each nonverbal and spatial subtest had data from > 99% of 

ASD participants, both verbal subtests were missing for 8.1% of participants (n = 106). 

Data were not missing at random: the 106 participants with verbal subtest missingness 

showed substantially lower verbal abilities on other measures (Verbal Communication 

score on the Autism Diagnostic Interview – Revised, t(120) = -7.08, p < 0.001, mean 

missing = 19.0, mean nonmissing = 16.3) and module selected for the Autism Diagnostic 

Observation Schedule, which is based on language level and age (χ2(3) = 586.0, p < 

0.001). The ASD sample showed a very wide ability range with and without these 106 

participants, and in fact the range of General Composite Ability remained the same (40-

167). 

All analyses were conducted on the full datasets that included all participants, 

including those missing subtest score(s) which were imputed by Full Information 

Maximum Likelihood, following the guidelines provided by Newman (2014). Then, in an 

effort to explore any bias introduced by the missing data from 119 ASD participants, we 

conducted sensitivity analyses to determine whether meaningful differences resulted. 

First, we reconducted analyses excluding participants with missing data (i.e., listwise 

deletion). Second, we adjusted imputed values by subtracting and adding arbitrary values 

(implemented with the mice package in R (van Buuren & Groothuis-Oudshoorn, 2011)), 

then we reconducted analyses with the new datasets. Third, we tested the base oblique 

model in the ASD dataset alone using an auxiliary variable related to verbal 
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communication: the parent report ADI-R (Autism Diagnostic Interview – Revised) verbal 

communication total score. Auxiliary variable analysis and Full Information Maximum 

Likelihood were implemented in Mplus v8.2 (Muthen & Muthen, 1998).  

Confirmatory factor analysis. First, we determined the base model for 

invariance testing by fitting the same confirmatory factor model separately to the 

normative data and to the ASD data to ensure the most basic measurement model fit both 

samples. In selecting the target model, we consulted the DAS-II Technical Manual, 

which reported two models.  The first model, a correlated three-factor (“oblique”) model, 

uses the 6 core subtests, similar to our dataset (Elliott, 2007b, p. 159). The correlated 

three-factor model allows correlations between the 3 factors (verbal, nonverbal reasoning, 

and spatial) and does not include a higher order general (g) factor (Figure 1). The 

Technical Manual describes a second model, the higher-order model, which uses both the 

6 core subtests and the less frequently used 6 diagnostic subtests (Elliott, 2007b, p. 157). 

In the higher-order model, the 6 core subtests load onto 3 factors (verbal, nonverbal 

reasoning, and spatial), which in turn load onto a general (g) factor; the diagnostic 

subtests load onto 3 separate factors that in turn load onto g (Figure S1). Of note, for the 

6-core subtest battery, the Technical Manual reports fit statistics for the correlated three-

factor and not the higher-order model. The Technical Manual does not describe fitting the 

higher-order model to the 6-core subtest battery alone, which is most commonly used 

clinically and in our ASD dataset. Note that we use the classical definition of the term 

‘higher-order model’ to refer to the model in Figure S1, which is sometimes called by the 

name of the more general category to which it belongs, ‘hierarchical model.’ 
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In addition, we fit bifactor models demonstrated by previous research to fit the 

normative data (e.g., Canivez & McGill, 2016; Dombrowski, Golay, McGill, & Canivez, 

2018; Dombrowski, McGill, Canivez, & Peterson, 2019). A bifactor model includes the 

general factor and group factors (i.e., verbal, nonverbal, and spatial) and assumes that the 

general factor is orthogonal to the group factors. Note that we use the classical definition 

of the term ‘group factor’ to refer to verbal, nonverbal, and spatial factors (sometimes 

referred to as specific factors). We fit two bifactor models: a 3-factor bifactor model with 

verbal, nonverbal, and spatial group factors and g as suggested by Canivez and McGill 

(2016), and a 2-factor bifactor model with verbal and spatial group factors, and the two 

nonverbal reasoning subtests loading directly on g instead of a nonverbal factor (Figure 

S2) as reported by Dombrowski et al. (2018). In the bifactor models, we fixed 

correlations between all factors at 0, and fixed equality between the two factor loadings 

on each group factor, which decreases the number of parameters being estimated and thus 

allows model identification. Finally, we also fit a simple unidimensional model that 

allowed the six subtests to load directly on g.  

 Measurement invariance. Next, we combined the normative and ASD datasets 

into one multigroup dataset. We used the best model established in the previous step to 

test sequentially stricter levels of measurement invariance: configural, metric (weak), 

scalar (strong), then residual (strict). If invariance was not achieved, we ran partial 

invariance tests to identify the locus of misfit.  

Comparisons between measurement invariance models were made in accordance 

with recommendations by Jorgensen and colleagues (2018) to assess statistical 
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significance rigorously via permutation testing, rather than cut-offs established by Chen 

(2007), which have inconsistent Type I error rates. In each permutation, group 

membership was randomly assigned; a distribution was built from 1000 replications then 

used to determine whether true group membership differed significantly from what would 

be expected under the null hypothesis, as evidenced by the size of change among fit 

indices during the replications.  We rejected models with p < 0.05 on multiple fit indices 

in favor of the simpler model in the comparison.  

All primary factor analyses were implemented in Mplus version 8.2 (Muthen & 

Muthen, 1998). Permutation testing, effect size estimation, sensitivity analyses, and all 

remaining analyses were implemented in R version 3.5.2 (R Core Team, 2018) using 

packages lavaan (Rosseel, 2012) and semTools (Jorgensen, Pornprasertmanit, 

Schoemann, & Rosseel, 2019). All models were estimated with maximum likelihood with 

robust standard errors (implemented with MLR) due to significant non-normality of 

every subtest in both datasets according to the Shapiro-Wilk test (all W > 0.95, all p < 

0.02). 

Results 

Confirmatory Factor Analysis 

 First we fit a correlated 3-factor model as reported in the Technical Manual for 

the 6-subtest core battery. The model demonstrated excellent fit with the data, as 

expected. See tables 2, 3, and S1 for complete fit statistics for all eight models and 

intersubtest correlations. The higher-order model yielded a factor loading > 1.0 of the 

nonverbal factor on g for both the normative (1.005) and ASD (1.045) datasets (Table 
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S1). These results suggest that the nonverbal factor contributes no specific variance. In 

other words, the general factor absorbs all variance in the nonverbal factor. We next 

attempted to fit a three-factor bifactor model that allows subtests to load on both group 

and general factors. The three-factor bifactor model did not converge for either the 

normative or ASD datasets. After removing individuals with missing data, however, the 

model converged for the normative dataset and yielded a factor loading of 1.00 for the 

nonverbal factor on g, indicating persistence of nonverbal factor variance issues. 

Additionally, the three-factor bifactor model did not converge at all for the ASD dataset. 

A bifactor model with two group factors (verbal and spatial) and g loaded by all six core 

subtests (i.e., the nonverbal subtests did not form a general factor) converged for both 

datasets and showed excellent fit. The unidimensional model demonstrated poor fit for 

each group (TFI and CLI < 0.94 for both ASD and Norm groups; Table 3) and did not 

merit further exploration.  

An acceptable base solution must be adequate in terms of both model fit and 

psychological interpretation (Jöreskog, 1969). The higher-order and bifactor models with 

three first-order and group factors, respectively, were psychologically interpretable but 

produced improper solutions or failed to converge (Diamantopoulos & Siguaw, 2003), 

making them inappropriate for consideration as base models for invariance testing. The 

three-factor oblique model and the two-factor bifactor model without a separate 

nonverbal group factor both exhibited acceptable model fit although the oblique model 

showed slightly better fit than the two-factor bifactor model on many indices (χ2, p, CFI, 

TLI, SRMR, and for ASD only, RMSEA), particularly for the ASD dataset.  Although 
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the two-factor bifactor model could reasonably be selected as the base model, the 

correlated three-factor model was identified by the publisher, and its results are more 

easily interpreted by clinicians because the three factors translate directly to the three 

DAS-II composite scores of verbal, nonverbal reasoning, and spatial, whereas the two-

factor bifactor model lacks the nonverbal reasoning factor. Consequently, the correlated 

three-factor model was chosen as the base model to test measurement invariance between 

the ASD and normative groups. The final model was tested with the ADI-R verbal 

communication auxiliary variable, and results did not change meaningfully.  

Measurement Invariance 

 Full invariance. We used the correlated three-factor model to test measurement 

invariance between the ASD and normative groups. Results indicated that configural and 

metric invariance were achieved (see table 3 and 5). Scalar invariance was not achieved: 

on all fit indices, permutation testing showed a significant deterioration in fit (all p’s < 

0.001, Table 5). Traditional metrics also provided evidence of poor scalar model fit: CFI, 

TLI, and RMSEA showed change beyond acceptable limits and RMSEA rose over the 

0.05 threshold (Chen, 2007).  

 Partial invariance. Partial scalar invariance was assessed by allowing single 

subtest intercepts to vary between groups. We observed little change in the model when 

verbal factor subtests (word definitions or verbal similarities) or nonverbal factor subtests 

(matrices or sequential and quantitative reasoning) were allowed to vary, suggesting that 

the model easily accommodates equality between ASD and normative intercepts on these 

subtests; group differences in verbal and nonverbal factor scores are due to true group 
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differences in verbal and nonverbal abilities, not bias. This pattern was not true for the 

subtests loading on the spatial factor (pattern construction and recall of designs). When 

either of these intercepts was freed to vary between groups, the model fit improved 

significantly on all indices. This partial scalar invariance model (i.e., with the recall of 

designs intercept freed) was then tested for partial strict invariance, or holding residuals 

equal between groups. Partial strict invariance was not achieved (5 of 6 fit indices with 

p’s<0.01, Table 5).  

A closer look at the full scalar model revealed that the Recall of Designs subtest 

intercept was 49.3 when held equal between groups; when freed to vary between groups, 

the Recall of Design intercept was 50.0 for the normative group and 46.6 for the ASD 

group (Table 4, Figure 2), suggesting that autistic children are expected to have a lower 

Recall of Designs score than neurotypical children with the same true spatial ability. The 

opposite pattern was observed for the other spatial subtest, Pattern Construction: when 

freed, the intercept was 50.0 for the normative group and increased to 53.8 for autistic 

children, indicating that they have a higher Pattern Construction score than neurotypical 

children of the same ability. For comparison, the four verbal and nonverbal subtest 

intercepts showed much smaller changes, and remained within 0.6 points of the 

normative group intercept when freed (Table S3). Unlike the verbal and nonverbal 

factors, spatial factor group differences are not only due to true group differences in 

spatial ability; some of the difference is also due to measurement bias. For additional data 

and factor loadings, see supplemental tables. 
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Factor mean differences. As expected, we observed mean between-group 

differences on all three factors (Table 4). Autistic children showed unstandardized factor 

scores that were 0.64, 0.50, and 0.34 lower than normative verbal, nonverbal, and spatial 

scores, respectively. Unfortunately, we can interpret only the direction, not the size, of 

these mean differences because they were obtained with the scalar model, which showed 

a poor fit with the data. The mean factor differences changed in the partial scalar models, 

but the direction always remained the same.  

Missing data. Sensitivity analyses conducted with adjustments to imputed values 

showed no meaningful differences from primary measurement invariance analyses (i.e., 

minimal or zero change in fit indices, factor loadings, means, or intercepts).  

Discussion 

 Our findings indicate that the DAS-II School Age measures verbal and nonverbal 

intelligence in autistic children similarly to how it measures these constructs in 

neurotypical children, but the same is not true of spatial intelligence. Weak measurement 

invariance (metric and configural) was achieved for the DAS-II in a multigroup 

confirmatory factor analysis using a correlated three-factor model, but strong (scalar) 

measurement invariance was not achieved. Without scalar invariance, group mean 

differences in DAS-II scores do not reflect true group differences in intelligence alone, 

but also unique aspects due to being autistic (i.e., measurement bias). Since partial scalar 

invariance was achieved only when the spatial subtest intercepts were free to vary, we 

attribute failed scalar invariance to group bias or artifacts in the spatial subtests.  

Interpreting DAS-II spatial subtest scores for children with ASD 
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The two spatial subtests showed large changes in intercepts, in opposite 

directions, when the intercepts were free to vary between groups. The Recall of Designs 

intercept for autistic children fell 3.4 points below the normative intercept, while the 

Pattern Construction intercept rose 3.8 points above the normative intercept. These 

results indicate that for each subtest, an autistic child’s score is expected to be below or 

above, respectively, the score of a neurotypical child with the same true spatial ability. 

Simply put, Recall of Designs underestimates an autistic child’s true ability, and Pattern 

Construction overestimates it. The large differences in opposite directions for the spatial 

subtests should not be interpreted as ‘cancelling each other out’ because it is likely that 

different (and unknown) proportions of each subtest’s change are due to measurement 

bias. Although some methods exist for quantifying bias (Nye & Drasgow, 2011), they are 

more readily applied to unidimensional models than to our three factor model.  

The Pattern Construction subtest may be driving the problematic fit: the average 

autistic participant performed much better on this subtest than on any other. On average, 

the ASD sample scored around 46 points on all other subtests (45.5-46.7 points; Table 1), 

but almost 3 points higher on Pattern Construction (48.9 points). In contrast, the 

normative sample showed nearly identical mean scores on all subtests (50.0-50.2 points). 

Put another way, the normative sample showed a 0 point difference between Pattern 

Construction and Recall of Designs, while the autistic sample showed a 3.3 point 

difference on these two spatial subtests. These different patterns may explain why the 

normative model did not fit the ASD data to achieve strong measurement invariance. 

Consequently, the spatial score does not hold the same meaning for children from the 
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ASD and normative samples. For autistic children, the spatial subtests may be tapping 

different abilities.  

The failed measurement invariance is not attributable to group mean differences. 

As expected, the ASD group showed average lower scores on every subtest, and every 

factor. Clinicians administering the DAS-II to autistic children might consider placing 

more emphasis on the verbal and nonverbal reasoning composite scores instead of the 

spatial or composite GCA (General Conceptual Ability). Historically, some ASD 

clinicians and researchers have relied upon the SNC (Special Nonverbal Composite) 

instead of the GCA because the SNC excludes the verbal composite. The logic is that 

verbal subtests may be poor indicators of intelligence of an autistic person, given the 

communication difficulties inherent in the diagnosis. However, our results suggest that 

the spatial score, not the verbal score, poses validity issues. We suggest that clinicians 

avoid interpreting the SNC and GCA and instead defer to the verbal and nonverbal 

reasoning standardized scores when utilizing the DAS-II. For example, an autistic child 

with a true spatial intelligence of 95 could record a DAS-II spatial composite score of 92, 

or 98; their true spatial intelligence could be over- or under-estimated, depending on the 

pattern of their Pattern Construction and Recall of Designs subtest scores. Since it is not 

possible at this time to quantify and predict how each autistic child’s true spatial ability 

would be misrepresented by the DAS-II Spatial Composite score, we recommend 

avoiding interpretation of the DAS-II Spatial composite score for autistic children, and 

consequently their SNC and GCA scores.  

Implications for ‘IQ splits’ in ASD 
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These results suggest that the oft discussed autistic verbal-nonverbal ‘IQ splits’ 

are likely to be real, and not an artifact of the DAS-II functioning differently in autistic 

children than normative sample children. The ASD IQ splits refer to differences between 

the verbal and nonverbal reasoning scores and do not include the spatial score. Even 

when such studies of IQ splits have used the DAS-II, such as Nowell and colleagues’ 

(2015) investigation of splits in the present ASD dataset, the authors analyzed only the 

verbal and nonverbal composite scores, not the spatial composite score. The verbal and 

nonverbal composite scores reflect true differences in verbal and nonverbal abilities, 

according to the partial scalar invariance achieved in the present analysis.  

Issues with modeling the nonverbal reasoning factor 

 Surprisingly, with the six core subtests we were unable to fit properly the higher-

order factor model that the publisher emphasizes. The published documentation only 

provides higher-order model results for the infrequently used full battery of 6 core and 6 

diagnostic subtests. The problem in fitting the higher-order model to the 6 core subtests 

lay in the nonverbal factor loading entirely onto the general factor and providing no 

specific variance. This issue resurfaced when we attempted to fit a 3-factor bifactor 

model, which differs from the higher-order model in that the general factor is orthogonal 

to the group factors and not permitted to correlate with them. Both nonverbal subtests 

loaded directly onto g, not the nonverbal factor. The issues were even more salient in the 

ASD dataset, where the nonverbal factor showed an even higher and more improbable 

loading (1.045) onto the general factor in the higher-order model, and the 3-factor 

bifactor model failed to converge at all. Thus, the issue of the nonverbal factor not 
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existing independently of g seems intrinsic to the DAS-II and not specific to a particular 

dataset. Eliminating either the general factor (correlated 3-factor model) or the nonverbal 

factor (2-factor bifactor model) resolved the convergence issue and the resulting models 

showed excellent fit. We are not the first to report that the nonverbal factor may be 

absorbed entirely by the general factor (Dombrowski et al., 2018), and that second-order 

factors may provide little additional specific variance over and above g (Canivez & 

McGill, 2016; Dombrowski et al., 2019). However, it merits mention that when 

additional DAS-II subtests enter into the model, such as all 20 subtests, other groups have 

replicated the publishers’ reported higher-order model (Dombrowski et al., 2019; Keith, 

Low, Reynolds, Patel, & Ridley, 2010).  

Limitations 

 The primary limitation of this study concerns the depth at which we can 

understand the bias. The partial invariance methods used here allow us to identify which 

factor(s) shows bias, and the directionality of the bias for each subtest. We cannot, 

however, transform differences in intercepts to differences in DAS-II subtest points and 

suggest a correction. We also do not know why the bias occurs in these particular 

subtests. Future research to answer these questions would involve an item-level analysis 

of differential item functioning between the normative and autistic samples.  

A second limitation concerns the missing verbal subtest data in the ASD dataset, 

which was systematically missing for individuals with lower verbal abilities on other 

auxiliary verbal variables. Much autism research excludes individuals with low verbal 

abilities (Russell et al., 2019), and we wanted our results to generalize to this very 
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understudied population. Thus we included individuals with missing verbal data in the 

analyses, and the missing data may have affected model fit. To address this limitation, we 

reran all invariance analyses twice: with complete cases only and with imputed missing 

data for these subtests. In both alternative analyses, we found no meaningful change in 

results. 

Finally, the SSC autistic sample used in this analysis, while large and diverse in 

terms of race and ethnicity, includes only simplex individuals, meaning individuals with 

no first degree relatives with ASD. If simplex ASD is found to be qualitatively different 

than multiplex ASD (where ASD is present in one or more first degree relatives), then 

these results may not generalize to multiplex ASD. At present, this limitation does not 

cause concern because no studies have identified significant differences in the pattern of 

cognitive abilities between simplex and multiplex ASD, to our knowledge.  

Future directions 

Measurement invariance for autistic individuals has not been investigated in other 

IQ assessments, such as the Wechsler or Stanford Binet scales, to our knowledge. Our 

DAS-II findings suggest that such future analyses may be important. Furthermore, future 

studies might test measurement bias in commonly used ASD measures by sex as larger 

datasets of females with ASD become available; measurement invariance can be detected 

with as few as 200 participants per group (Finch & French, 2016). Finally, DAS autistic 

norms could be developed to improve interpretability of the spatial subtest scores for 

autistic populations.  

Conclusions 
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 The DAS-II Spatial standardized score should be interpreted with caution for 

autistic children. This score likely includes measurement bias or artifacts present for 

autistic children that are absent in the normative sample children. The verbal and 

nonverbal reasoning standardized scores do hold the same meaning for both autistic and 

neurotypical children, according to these results from the largest samples analyzed to 

date. 
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Tables 

Table 1.  

Participant demographics 

 Normative 

sample 

ASD 

sample 

Normative 

sample 

with 

complete 

data 

ASD 

sample 

with 

complete 

data 

N 2400 1316 2388 1197 

% male a 50.0 87.4 50.0 87.9 

Age in years, mean[SD] 12.0[3.5] 10.5[3.7] 12.0[3.5] 10.5[3.7] 

DAS-II Global Composite 

Ability 

99.9[15.2] 94.3[19.8] 99.9[15.2] 94.4[19.7] 

DAS-II Nonverbal 

Composite 

99.8[14.8] 93.4[19.1] 99.8[14.8] 95.0[18.6] 

DAS-II Verbal Composite 100.0[15.1] 92.9[22.6] 100.0[15.1] 93.0[22.5] 

DAS-II Spatial Composite 99.8[14.9] 95.1[18.2] 99.9[14.9] 96.3[18.1] 

Subtest 

Matrices (n) 50.2[10.2] 46.7[12.3] 50.2[10.2] 47.5[12.1] 

Pattern construction (s) 50.0[9.9] 48.9[11.6] 50.0[9.9] 49.6[11.7] 

Recall of designs (s) 50.0[9.9] 45.6[11.6] 50.0[9.9] 46.4[11.4] 

Seq. & quant. Reasoning (n) 50.2[10.3] 45.8[12.9] 50.2[10.3] 46.9[12.6] 
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Verbal similarities (v) 50.2[9.9] 46.2[13.9] 50.2[9.9] 46.3[13.8] 

Word definitions (v) 50.1[9.8] 45.5[14.7] 50.1[9.8] 45.5[14.7] 

Note. All DAS-II values show mean [SD] of the standard score; Lowercase letters in 

parentheses denote composite in which subtest is scored. 

a Missing for 56 individuals with ASD 
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Table 2.  

DAS-II subtest correlations 

Matrices 

Pattern 

construc-

tion 

Recall of 

designs 

Sequential 

and quant. 

reasoning 

Verbal 

similarities 

Word 

definitions 

Matrices 1 0.54 0.48 0.62 0.50 0.49 

Pattern construction 0.62 1 0.55 0.58 0.46 0.44 

Recall of designs 0.58 0.67 1 0.51 0.43 0.42 

Seq. & quant. 

reasoning 

0.72 0.63 0.57 1 0.54 0.54 

Verbal similarities 0.58 0.46 0.45 0.62 1 0.65 

Word definitions 0.57 0.47 0.46 0.64 0.79 1 

Note. The upper set of correlations depicts the normative dataset; the lower set depicts the ASD dataset. 
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Table 3.  

Model fit statistics 

Model df χ2 p CFI TLI RMSEA (90%) SRMR AIC 

Unidimensional 

Normative 9 385.0 0.000 0.934 0.890 0.132 (0.121-0.143) 0.040 101,304.5 

ASD-SSC 9 537.6 0.000 0.864 0.774 0.211 (0.196-0.227) 0.060 56,529.0 

Correlated 3-factor (Oblique) 

Normative 6 4.9 0. 555 1.000 1.000 0.000 (0.000-0.024) 0.005 100,913.6 

ASD-SSC 6 13.3 0.038 0.998 0.995 0.030 (0.007-0.053) 0.009 55,941.3 

Higher-Order  

Normative 6 4.9 0.555 1.000 1.000 0.000 (0.000-0.024) 0.005 100,913.6 

ASD-SSC 6 13.3 0.038 0.998 0.995 0.030 (0.007-0.053) 0.009 55,941.3 

Bifactor, 3 factor 

Normativea 9 23.3 0.001 0.997 0.996 0.026 (0.013-0.039) 0.042 100,518.0 



ASD-SSC 9 -- -- -- -- -- -- -- 

Bifactor, 2 factor 

Normativea 7 5.0 0.654 1.000 1.001 0.000 (0.000-0.020) 0.005 100,911.8 

ASD-SSC 7 22.4 0.002 0.996 0.992 0.041 (0.023-0.060) 0.013 55,949.8 

Measurement Invariance 

Configural  12 18.8 0.094 0.999 0.998 0.017 (0.000-0.032) 0.007 156,854.9 

Metric  15 24.7 0.054 0.999 0.998 0.019 (0.000-0.031) 0.016 156,856.0 

Scalar  18 133.7 <0.001 0.988 0.980 0.059 (0.050-0.068) 0.035 156,968.7 

Partial scalar: 

  Spatialb 

17 29.6 0.030 0.999 0.998 0.020 (0.006-0.032) 0.019 156,857.3 

Partial scalar: 

  Nonverbalb 

17 130.9 <0.001 0.988 0.979 0.060 (0.051-0.070) 0.035 156,967.8 

Partial scalar: 

  Verbalb 

17 131.3 <0.001 0.988 0.979 0.060 (0.051-0.070) 0.033 156,968.3 

a Results from n=2388 with participants with missingness excluded; model did not converge with dataset with missing data (n=2400) 
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b The intercept of one subtest on the respective spatial, nonverbal, or verbal factor is free to vary between groups; model fit is identical 

in the two models of the factor’s two subtests varying 
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Table 4.  

Unstandardized intercepts and means, by model 

Configural Metric Scalar 

Partial 

scalara 

Partial 

scalarb 

Partial 

scalar, stricta 

Factor means Fixed at 0 Fixed at 0 Free Free Free Free 

Factor loadings Free Invariant Invariant Invariant Invariant Invariant 

Factor intercepts Free Free Invariant 5/6 invariant 5/6 invariant 5/6 invariant 

Residuals Free Free Free Free Free Invariant 

Normative 

Verbal 0 0 0 0 0 0 

Nonverbal 0 0 0 0 0 0 

Spatial 0 0 0 0 0 0 
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Matrices (n) 50.2 50.2 50.3 50.3 50.3 50.3 

Pattern construction (s) 50.0 50.0 50.5 50.0 50.0 50.0 

Recall of designs (s) 50.0 50.0 49.3 50.0 50.0 50.0 

Seq. & quant. Reasoning (n) 50.2 50.2 50.1 50.1 50.1 50.1 

Verbal similarities (v) 50.2 50.2 50.3 50.3 50.3 50.3 

Word definitions (v) 50.1 50.1 50.0 50.0 50.0 50.0 

ASD 

Verbal 0 0 -0.64 -0.64 -0.64 -0.65

Nonverbal 0 0 -0.50 -0.50 -0.50 -0.51

Spatial 0 0 -0.34 -0.14 -0.63 -0.14

Matrices (n) 46.6 46.6 50.3 50.3 50.3 50.3 
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Pattern construction (s) 48.9 48.9 50.5 50.0 53.8 50.0 

Recall of designs (s) 45.6 45.6 49.3 46.6 50.0 46.6 

Seq. & quant. Reasoning (n) 45.7 45.7 50.1 50.1 50.1 50.1 

Verbal similarities (v) 45.5 45.4 50.3 50.3 50.3 50.3 

Word definitions (v) 44.6 44.6 50.0 50.0 50.0 50.0 

Note. lowercase letters denote factor onto which subtest loads. See Table S4 for unstandardized intercepts and means for other partial 

scalar invariance models.  

aThe Recall of designs intercept was freed to vary between groups  

bThe Pattern construction intercept was freed to vary between groups  
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Table 5.  

Models compared with permutation testing on multiple fit indices 

χ2 CFI RMSEA TLI AIC SRMR 

Model Comparison 

Configural vs baseline 

Delta 20.2 0.999 0.019 0.998 156,854.9 0.006 

p value >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

Metric vs configural 

Delta 7.1 <0.001 0.002 <0.001 1.09 0.005 

p value 0.13 0.12 0.048 0.064 0.13 0.099 

Scalara vs metric 

Delta 118.7 -0.011 0.041 -0.017 112.7 0.013 

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Partial scalara vs 

metric 

Delta 5.3 0.000 0.001 0.000 1.3 0.001 

p value 0.069 0.066 0.048 0.051 0.069 0.016 
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Partial scalara vs 

scalara 

Delta -113.4 0.010 -0.040 0.017 -111.4 -0.012

p value >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

Partial scalara vs strict partial 

scalara 

Delta 29.1 -0.002 0.008 -0.002 17.1 0.003 

p value <0.001 <0.001 <0.001 <0.001 <0.001 0.1 

aThe Recall of designs intercept was freed to vary between groups  

Note. More complex model being tested appears first. Permutation testing executed using the 

permuteMeasEq function in the semTools R package.  
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Figures 

Figure 1. Correlated three-factor model for normative and ASD samples. Abbreviations: 

VerbSim: Verbal similarities; WordDef: Word Definitions; Pattern: Pattern Construction; 

Recall: Recall of Designs; SeqQuant: Sequential and Quantitative Reasoning
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Figure 2. Change in intercept when no longer constrained equal between groups. 

Abbreviations: Cons: Constrained; VerbSim: Verbal similarities; WordDef: Word 

Definitions; Pattern: Pattern Construction; Recall: Recall of Designs; SeqQuant: 

Sequential and Quantitative Reasoning 
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APPENDIX 

Chapter 1 

Table S1. 

Descriptive characteristics of participants included in neuropsychiatric questionnaires: 

Social Communication Questionnaire, Lifetime 

Region N Age mean(sd) Age range % Male 

AB/AC del group 13 14.5 (10.4) 6-38 46% 

A-B Deletion 10 15.6 (12.9) 6-38 50% 

A-C Deletion 3 12.7 (6.3) 6-18 33% 

BD/CD del group 12 9.5 (5.2) 4-18 50% 

B-D Deletion 8 10 (3.5) 6-14 38% 

C-D Deletion 4 8.9 (7.8) 4-18 75% 

Classic AD del 70 8.7 (3.4) 4-17 77% 

BD/CD dup group 9 7.8 (2.8) 5-11 56% 

B-D Duplication 7 7.7 (2.2) 6-9 57% 

C-D Duplication 2 7.9 (4.3) 5-11 50% 

Classic AD dup 29 8.4 (3.2) 4-14 76% 

ASD 70 7.8 (3.3) 3-14 80% 

TDC 73 7.8 (3.5) 2-14 77% 
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Table S2.  

Descriptive characteristics of participants included in neuropsychiatric questionnaires: 

Social Responsiveness Scale-2 

Region N Age mean(sd) Age range % Male 

AB/AC del group 13 12.4 (10.3) 2-38 46% 

A-B Deletion 10 12.3 (12.1) 2-38 50% 

A-C Deletion 3 12.7 (6.3) 6-18 33% 

BD/CD del group 12 16.2 (14.8) 4-42 50% 

B-D Deletion 8 15.8 (14.9) 6-42 38% 

C-D Deletion 4 16.7 (16.8) 4-40 75% 

Classic AD del 70 7.7 (3.8) 2-16 77% 

BD/CD dup group 9 6.2 (3.4) 2-11 56% 

B-D Duplication 7 5.3 (3.1) 2-9 57% 

C-D Duplication 2 7.9 (4.3) 5-11 50% 

Classic AD dup 29 7.4 (3.5) 3-14 76% 

ASD 70 7.8 (3.3) 3-14 80% 

TDC 73 7.8 (3.5) 2-14 77% 
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Table S3.  

Descriptive characteristics of participants included in neuropsychiatric questionnaires: 

Vineland Adaptive Behavior Scales-II 

Region N Age mean(sd) Age range % Male 

AB/AC del group 13 11.6 (10.4) 2-38 46% 

A-B Deletion 10 11.5 (12.3) 2-38 50% 

A-C Deletion 3 11.7 (5.3) 6-15 33% 

BD/CD del group 12 3 (2.9) 0-8 50% 

B-D Deletion 8 4.1 (3.3) 2-8 38% 

C-D Deletion 4 1.3 (1.3) 0-2 75% 

Classic AD del 70 7.3 (4) 2-16 77% 

BD/CD dup group 9 5.7 (2.7) 2-9 56% 

B-D Duplication 7 5.3 (3.1) 2-9 57% 

C-D Duplication 2 6.4 (2.2) 5-8 50% 

Classic AD dup 29 7.1 (3.4) 3-14 76% 

ASD 70 7.8 (3.3) 3-14 80% 

TDC 73 7.8 (3.5) 2-14 77% 
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Table S4. Descriptive characteristics of participants included in neuropsychiatric 

questionnaires: Child and Adolescent Symptom Inventory, 4th Edition, Revised 

Region N Age mean(sd) Age range % Male 

AB/AC del group 13 11.6 (10.4) 2-38 46% 

A-B Deletion 10 11.5 (12.3) 2-38 50% 

A-C Deletion 3 11.7 (5.3) 6-15 33% 

BD/CD del group 12 3 (2.9) 0-8 50% 

B-D Deletion 8 4.1 (3.3) 2-8 38% 

C-D Deletion 4 1.3 (1.3) 0-2 75% 

Classic AD del 70 7.3 (4) 2-16 77% 

BD/CD dup group 9 5.7 (2.7) 2-9 56% 

B-D Duplication 7 5.3 (3.1) 2-9 57% 

C-D Duplication 2 6.4 (2.2) 5-8 50% 

Classic AD dup 29 7.1 (3.4) 3-14 76% 

ASD 70 7.8 (3.3) 3-14 80% 

TDC 73 7.8 (3.5) 2-14 77% 

Note. Abbreviations: ASD: autism spectrum disorder; d; Cohen’s d effect size; del: 

typical 22q11.2 Deletion Syndrome involving LCR-A to D, dup: typical 22q11.2 

Duplication Syndrome involving LCR-A to D, TDC: typically developing controls; SCQ: 

Social Communication Questionnaire, Lifetime; SRS: Social Responsiveness Scale 
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Figure S1. Patterns in parent-reported psychiatric symptoms across individuals with 

classic or nested 22q11.2 duplications or deletions compared to typically developing 

controls. Group means and standard errors on six composite indices of the CASI-4R, a 

parent-report measure of psychiatric symptoms in DSM-5 diagnoses. Groups include the 



146 

“BD/CD” duplication (light blue) or deletion (pink) groups (individuals with nested 

duplication or deletion involving LCR-B to LCR-C or D), the “AB/AC” deletion group in 

red (individuals with nested deletion of LCR-A to B or C), the “Classic Del” group in 

dark red (individuals with typical deletion spanning LCR-A to LCR-D), “Classic Dup” 

group in dark blue (individuals with typical duplication spanning LCR-A to LCR-D), 

“ASD” group in black (individuals with non-syndromic autism spectrum disorder), and 

“TDC” group in gray (typically developing children). Higher scores on the CASI-4R 

indicate higher symptom levels. The “BD/CD” deletion (pink) and duplication (light 

blue) groups showed similar or lower levels of symptoms compared to the other deletion 

or duplication groups, respectively (see table 4 for details). All 22q11.2 groups show 

higher symptom levels than the typically developing controls. Abbreviations: ASD: 

autism spectrum disorder; CASI-4R: Child and Adolescent Symptom Inventory-4R; del: 

classic 22q11.2 Deletion Syndrome involving LCR-A to D, dup: classic 22q11.2 

Duplication Syndrome involving LCR-A to D, TDC: typically developing controls 
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Chapter 3 

Figure S1. Higher-order model and three-factor bifactor model. In the higher-order 

model, the three specific factors (verbal, nonverbal, and spatial) load onto one higher 

order, general factor g. In the three-factor bifactor model, the model is similar but the 

general factor is assumed to be orthogonal to the specific factors, and the correlations 

between specific factors can be estimated. We fixed the between-factor correlations at 0 

to permit model identification (see Table S1). 
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Figure S2. Two-factor bifactor model. The nonverbal factor is omitted and the nonverbal 

subtests (Recall of Designs and Pattern Completion) load directly on the general factor g. 
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Table S1.  

Standardized factor loadings and correlations for each model 

Correlated 3-

Factor (ie 

Oblique) Higher-order 

3-factor 

Bifactor 

2-factor 

Bifactora 

Normative 

Correlations 

Nonverbal-verbal 0.81 Not estimated 0 0 

Spatial-verbal 0.72 Not estimated 0 0 

Spatial-nonverbal 0.90 Not estimated 0 0 

Loadings 

Verbal similarities (v) 0.82 0.82 0.81 0.47; 0.66 

Word definitions (v) 0.80 0.80 0.81 0.47; 0.65 

Matrices (n) 0.76 0.76 0.78 n/a; 0.76 

Seq. & quant. Reasoning (n) 0.82 0.82 0.80 n/a; 0.82 

Recall of designs (s) 0.70 0.70 0.76 0.33; 0.63 

Pattern construction (s) 0.79 0.79 0.73 0.33; 0.70 

Verbal (g) no g factor 0.81 0.81 Not estimated 
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Nonverbal reasoning (g) no g factor 1.01 1.00 Not estimated 

Spatial (g) no g factor 0.89 0.90 Not estimated 

ASD 

Correlations 

Nonverbal-verbal 0.81 Not estimated -- 0 

Spatial-verbal 0.65 Not estimated -- 0 

Spatial-nonverbal 0.87 Not estimated -- 0 

Loadings 

Verbal similarities (v) 0.88 0.88 -- 0.56; 0.70 

Word definitions (v) 0.90 0.90 -- 0.53; 0.72 

Matrices (n) 0.84 0.84 -- n/a; 0.84 

Seq. & quant. Reasoning (n) 0.87 0.87 -- n/a; 0.88 

Recall of designs (s) 0.79 0.79 -- 0.42; 0.68 

Pattern construction (s) 0.85 0.85 -- 0.42; 0.73 

Verbal (g) no g factor 0.78 -- Not estimated 

Nonverbal reasoning (g) no g factor 1.05 -- Not estimated 

Spatial (g) no g factor 0.83 -- Not estimated 

Note. Lowercase letters in parentheses denote factor onto which subtest loads. 
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a Loading on the specific factor are noted first, followed by a semi-colon and loading on the 

general factor g 
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Table S2.  

Standardized factor loadings and correlations, for measurement invariance models 

Configural Metric Scalar Partial scalara 

Factor means Fixed at 0 Fixed at 0 Free Free 

Factor loadings Free Invariant Invariant Invariant 

Factor intercepts Free Free Invariant 5 of 6 invariant 

Normative 

Correlations 

Nonverbal-verbal 0.81 0.81 0.81 0.81 

Spatial-verbal 0.72 0.72 0.73 0.72 

Spatial-nonverbal 0.90 0.90 0.90 0.90 

Loadings 

Verbal similarities (v) 0.82 0.80 0.80 0.80 

Word definitions (v) 0.80 0.82 0.82 0.82 

Matrices (n) 0.76 0.76 0.76 0.76 

Seq. & quant. Reasoning (n) 0.82 0.82 0.82 0.82 

Recall of designs (s) 0.70 0.71 0.72 0.71 
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Pattern construction (s) 0.79 0.78 0.77 0.78 

ASD 

Correlations 

Nonverbal-verbal 0.81 0.81 0.81 0.81 

Spatial-verbal 0.65 0.65 0.65 0.65 

Spatial-nonverbal 0.87 0.87 0.88 0.87 

Loadings 

Verbal similarities (v) 0.88 0.90 0.89 0.89 

Word definitions (v) 0.90 0.89 0.89 0.89 

Matrices (n) 0.84 0.84 0.84 0.84 

Seq. & quant. Reasoning (n) 0.87 0.87 0.87 0.87 

Recall of designs (s) 0.79 0.78 0.79 0.78 

Pattern construction (s) 0.85 0.85 0.83 0.85 

Note. lowercase letters in parentheses denote factor onto which subtest loads 

aThe Recall of designs intercept was freed to vary between groups  
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Table S3.  

Unstandardized factor means and subtest intercepts for partial scalar invariance models 

Matrices 

Seq. & quant. 

reasoning 

Verbal 

similarities 

Word 

definitions 

Normative 

Verbal 0 0 0 0 

Nonverbal 0 0 0 0 

Spatial 0 0 0 0 

Matrices (n) 50.2 50.2 50.3 50.3 

Pattern construction (s) 50.5 50.5 50.5 50.5 

Recall of designs (s) 49.3 49.3 49.3 49.3 

Seq. & quant. reasoning (n) 50.2 50.2 50.1 50.1 

Verbal similarities (v) 50.3 50.3 50.2 50.2 

Word definitions (v) 50.0 50.0 50.1 50.1 

ASD 

Verbal -0.64 -0.64 -0.67 -0.61

Nonverbal -0.53 -0.46 -0.50 -0.50
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Spatial -0.34 -0.34 -0.34 -0.34

Matrices (n) 50.7 50.2 50.3 50.3 

Pattern construction (s) 50.5 50.5 50.5 50.5 

Recall of designs (s) 49.3 49.3 49.3 49.3 

Seq. & quant. Reasoning (n) 50.2 49.6 50.1 50.1 

Verbal similarities (v) 50.3 50.3 50.7 50.2 

Word definitions (v) 50.0 50.0 50.1 49.6 

Note. lowercase letters denote factor onto which subtest loads. See Table 4 for unstandardized 

intercepts and means for other measurement invariance models. 
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