
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2020 

Role Of Soluble Fibrin And Fibrin Degradation Products On Role Of Soluble Fibrin And Fibrin Degradation Products On 

Platelet Signaling During Trauma Platelet Signaling During Trauma 

Christopher Verni 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Biomedical Commons, and the Chemical Engineering Commons 

Recommended Citation Recommended Citation 
Verni, Christopher, "Role Of Soluble Fibrin And Fibrin Degradation Products On Platelet Signaling During 
Trauma" (2020). Publicly Accessible Penn Dissertations. 4176. 
https://repository.upenn.edu/edissertations/4176 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4176 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/267?utm_source=repository.upenn.edu%2Fedissertations%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=repository.upenn.edu%2Fedissertations%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4176?utm_source=repository.upenn.edu%2Fedissertations%2F4176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4176
mailto:repository@pobox.upenn.edu


Role Of Soluble Fibrin And Fibrin Degradation Products On Platelet Signaling Role Of Soluble Fibrin And Fibrin Degradation Products On Platelet Signaling 
During Trauma During Trauma 

Abstract Abstract 
Platelets and coagulation proteins work in concert to maintain proper blood flow through the vasculature. 
When an injury occurs, this hemostatic system must respond efficiently by sealing the wound to prevent 
excessive bleeding. Deviations from normal hemostasis arise in the clinic frequently; one such condition 
that is characterized by uncontrolled bleeding is known as trauma-induced coagulopathy (TIC). Severe 
platelet dysfunction is one key contributing factor to TIC, though its mechanistic causes are still yet to be 
fully understood. In order to investigate biological explanations for platelet dysfunction during trauma, 
various cell-based assays were designed and conducted in both healthy and patient populations. 
Specifically, intracellular calcium mobilization and other fluorescently tracked biomarkers were used as 
dynamic indicators of platelet activation in response to common agonists. Microtiter well plates prepared 
with liquid handling systems enabled high-throughput data collection and minimal manual pipetting. 
Significant platelet dysfunction in response to 31 unique stimulation conditions spanning several 
signaling pathways was observed in a cohort of trauma patients and tracked at multiple timepoints after 
initial hospital admission. In experiments designed to interrogate plasma effects on healthy platelet 
function, patient-derived plasma imparted significant inhibition which implied the presence of a unique 
soluble plasma species with downregulatory effects on endogenous and transfused platelets. With 
established knowledge of coinciding coagulant and lytic states during trauma, strategic addition of 
agonists to healthy platelet suspensions led to generation of soluble fibrin species and desensitization to 
agonist stimulation through glycoprotein VI (GPVI). Downstream platelet dysfunction was only observed 
when thrombin was added to the system to polymerize fibrin, whereas stimulation with other agonists or 
inhibition of various stages of coagulation had no effect on subsequent GPVI function. Maximal inhibition 
(~95%) was attained when tissue plasminogen activator (tPA) was also incorporated to lyse fibrin 
polymers into fibrin degradation products (FDP). Concentrations of a small FDP called D-dimer were 
elevated in trauma patient samples and inversely correlated with a quantitative measure of platelet 
function. Finally, preliminary results indicate potential binding affinity between platelet receptors and D-
dimer. These results shed light on specific biological entities that may be responsible for platelet 
dysfunction in trauma patients. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Chemical and Biomolecular Engineering 

First Advisor First Advisor 
Scott L. Diamond 

Keywords Keywords 
coagulopathy, D-dimer, fibrin, platelet, trauma 

Subject Categories Subject Categories 
Biomedical | Chemical Engineering 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4176 

https://repository.upenn.edu/edissertations/4176


ROLE OF SOLUBLE FIBRIN AND FIBRIN DEGRADATION 
PRODUCTS ON PLATELET SIGNALING DURING TRAUMA 

 
Christopher C. Verni 

 
A DISSERTATION 

 
in 
 

Chemical and Biomolecular Engineering 
 

Presented to the Faculties of the University of Pennsylvania 
 

in 
 

Partial Fulfillment of the Requirements for the  
 

Degree of Doctor of Philosophy 
 

2020 
 
 

Supervisor of Dissertation 
 
_______________________ 
 
Scott L. Diamond 
 
Professor, Department of Chemical and Biomolecular Engineering 
 
 
 
Graduate Group Chairperson 
 
_______________________ 
 
John C. Crocker 
 
Professor, Department of Chemical and Biomolecular Engineering 
 
 
 
Dissertation Committee 
 
Talid R. Sinno, Professor, Department of Chemical and Biomolecular Engineering 
 
Ravi Radhakrishnan, Professor, Department of Chemical and Biomolecular Engineering 
 
Lawrence F. Brass, Professor, Department of Medicine 



ROLE OF SOLUBLE FIBRIN AND FIBRIN DEGRADATION 
PRODUCTS ON PLATELET SIGNALING DURING TRAUMA 

 
 

COPYRIGHT 
 

2020 
 

Christopher C. Verni 
 



iii 
 

ACKNOWLEDGMENTS 
 

 My journey through graduate school has certainly been influenced by many 

people, several of whom deserve recognition. Firstly, I’d like to send thanks and 

appreciation to my thesis advisor, Dr. Scott L. Diamond. I can’t imagine working under 

anyone else over the past five years, and I attribute the success of my research largely to 

his guidance and support. Dr. Diamond’s advising method, a balance between guided 

suggestions and permission of individual exploration, perfectly fit my learning style and 

facilitated my growth as an independent researcher. In the same light, the rest of my 

committee—Dr. Talid R. Sinno, Dr. Ravi Radhakrishnan, and Dr. Lawrence F. Brass—

provided helpful advice and encouragement throughout the course of my project. 

 Next, I would like to thank the other members of the Diamond Lab who will remain 

lifelong friends. During my first months in the lab, I grew close with Mei Yan Lee, Shu Zhu, 

and Brad Herbig who trained me on various pieces of lab equipment and helped establish 

the foundation of my work. The core years were shared with Jason Rossi, Xinren Yu, 

Jason Chen, and Evan Tsiklidis, each of whom has aided me in some capacity, both in 

and out of the lab. More recently, I have had the pleasure of working with Mike DeCortin, 

Kevin Trigani, Daniel Zhang, Jen Crossen, Yue Liu, and Kaushik Shankar. Lastly, I’d like 

to thank our phlebotomist and lab manager, Huiyan Jing. Without Jing, experiments with 

fresh blood from our donors (who also merit a shout-out) would not be possible. 

Since the bulk of my PhD work has relied on a relationship with the Penn Acute 

Research Collaboration, I would like to acknowledge a few people who have proven to be 

especially important. Dr. Carrie A. Sims served as the main PI of the project, while Antonio 

Davila Jr. and Steve Balian more closely facilitated my work through granting access to 

lab space and coordination of patient sample collection, respectively. It has been a 

pleasure learning from them and having the opportunity to work directly with patient blood. 



iv 
 

The friendships I have developed outside the classroom and the lab have also 

been crucial, especially during inevitable struggles and frustration. Despite being one of 

the smallest incoming cohorts over the past several years, we were able to become close 

during our course-heavy first year and “gather” every so often during the later years. To 

Jason, Paul, Sean, Giuseppe, and Emily: thanks for all the laughs and distractions from 

everyday PhD life. I wish you all nothing but the best in your future endeavors. 

I also feel responsible to extend gratitude to everyone that shaped my early 

academic career. From my early days at Medway High School where I was originally 

introduced to the wonders of science and mathematics, especially by Mrs. Pereira and Mr. 

Ryan, I look back on those four years with appreciation and satisfaction. Choosing 

Lafayette for my undergrad studies will always be one of the best decisions of my life, as 

I was able to obtain a strong engineering education while still focusing on other interests 

like foreign language and extracurricular activities. I still enjoy coming back to visit and 

knocking on professors’ doors, specifically Dr. Lindsay Soh, my Honors Thesis advisor, 

and Dr. Michael Senra, who really steered me towards pursuing a PhD in the first place. 

To all my teachers and professors over the past few decades, thank you for everything. 

Finally, my acknowledgment would be remiss without thanking my Mom and sister 

Erin for being my primary support system from day one. I greatly appreciate your active 

interest in the status of my work, reminders to take time for myself and have fun, and 

encouragement to work hard and think outside the box. I must also thank my Dad, who I 

know has been watching over me from above and whose battle with lung cancer is my 

primary inspiration to pursue a career in biomedical research. My last, but certainly not 

least, thank you goes to my incredibly special and amazing girlfriend, Alicia. The support 

and motivation you’ve given me can’t be overstated, and you push me to be the best 

version of myself every day. The past five years with you have been absolutely perfect, 

and I can’t wait to see what countless more years have in store.     



v 
 

ABSTRACT 
 

ROLE OF SOLUBLE FIBRIN AND FIBRIN DEGRADATION 
PRODUCTS ON PLATELET SIGNALING DURING TRAUMA 

 
Christopher C. Verni 

 
Scott L. Diamond 

 
 

 Platelets and coagulation proteins work in concert to maintain proper blood flow 

through the vasculature. When an injury occurs, this hemostatic system must respond 

efficiently by sealing the wound to prevent excessive bleeding. Deviations from normal 

hemostasis arise in the clinic frequently; one such condition that is characterized by 

uncontrolled bleeding is known as trauma-induced coagulopathy (TIC). Severe platelet 

dysfunction is one key contributing factor to TIC, though its mechanistic causes are still 

yet to be fully understood. In order to investigate biological explanations for platelet 

dysfunction during trauma, various cell-based assays were designed and conducted in 

both healthy and patient populations. Specifically, intracellular calcium mobilization and 

other fluorescently tracked biomarkers were used as dynamic indicators of platelet 

activation in response to common agonists. Microtiter well plates prepared with liquid 

handling systems enabled high-throughput data collection and minimal manual pipetting. 

Significant platelet dysfunction in response to 31 unique stimulation conditions spanning 

several signaling pathways was observed in a cohort of trauma patients and tracked at 

multiple timepoints after initial hospital admission. In experiments designed to interrogate 

plasma effects on healthy platelet function, patient-derived plasma imparted significant 

inhibition which implied the presence of a unique soluble plasma species with 

downregulatory effects on endogenous and transfused platelets. With established 

knowledge of coinciding coagulant and lytic states during trauma, strategic addition of 
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agonists to healthy platelet suspensions led to generation of soluble fibrin species and 

desensitization to agonist stimulation through glycoprotein VI (GPVI). Downstream platelet 

dysfunction was only observed when thrombin was added to the system to polymerize 

fibrin, whereas stimulation with other agonists or inhibition of various stages of coagulation 

had no effect on subsequent GPVI function. Maximal inhibition (~95%) was attained when 

tissue plasminogen activator (tPA) was also incorporated to lyse fibrin polymers into fibrin 

degradation products (FDP). Concentrations of a small FDP called D-dimer were elevated 

in trauma patient samples and inversely correlated with a quantitative measure of platelet 

function. Finally, preliminary results indicate potential binding affinity between platelet 

receptors and D-dimer. These results shed light on specific biological entities that may be 

responsible for platelet dysfunction in trauma patients. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Hemostasis, Thrombosis, and Bleeding 

Following blood vessel injury, the body’s normal response to prevent excessive 

blood loss and restore fluid flow throughout the vasculature is known as hemostasis [1]. 

Though it is an incredibly complex process involving cells, proteins, and other biological 

entities, the hematology community generally classifies two main mechanisms: primary 

and secondary hemostasis [2]. Primary hemostasis relies on the functionality and activity 

of platelets to report to the injury site and aggregate into a “platelet plug” [2]. Initial platelet 

adhesion to the vessel wall takes place as a result of binding affinity between platelets 

and subendothelial collagen and von Willebrand Factor (vWF), both of which become 

exposed post-injury [2]. Several biophysical and biochemical events, notably the change 

of platelet cytoskeletal configuration from discoid to pseudopodia-rich shapes [3] and the 

release of intracellular granule contents [4], further potentiate the recruitment and 

activation of other circulating platelets. Located within platelet dense granules, adenosine 

diphosphate (ADP) and thromboxane A2 (TXA2) act as autocrine activators upon release 

and are among the most important contributors to positive feedback signaling and 

secondary platelet aggregation [4].  

Concurrent with the initial platelet response to a wound, oncoming blood flow is 

exposed to tissue factor (TF), which serves as a cofactor for the serine protease Factor 

VIIa (FVIIa) and subsequently triggers a series of reactions known as the coagulation 

cascade [5]. Coagulation can be TF-mediated, known as the extrinsic pathway, or 

activated through surface contact, referred to as the intrinsic pathway, but both routes lead 

to the generation of thrombin [2]. Thrombin is the most critical enzyme in secondary 

hemostasis, as it cleaves and polymerizes the plasma protein fibrinogen to an insoluble 

polymer aptly called fibrin [2]. Once sufficiently polymerized and cross-linked, fibrin acts 
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as a stabilizing mesh for the platelet aggregate and strengthens the clot to completely seal 

the damaged vasculature [6].  

In order to prevent excessive clot buildup, down-regulatory mechanisms exist to 

control the generation and activity of thrombin. Serine protease inhibitors (SERPINs), such 

as antithrombin and heparin cofactor II, and other circulating species like protein C, which 

elicits anticoagulant properties when activated by thrombin, are examples of naturally 

occurring inhibitors of the coagulation process [7]. Fibrinolysis is another reactive process 

which targets already existing fibrin networks. The plasma protein plasminogen circulates 

as an inactive zymogen until encountering endothelial-released tissue plasminogen 

activator (tPA), upon which it becomes activated to plasmin and is capable of dissolving 

polymerized fibrin [7,8].  

These antithrombotic mechanisms sometimes progress defectively, which has the 

potential to lead to bleeding in the case of insufficient clotting, or thrombosis, a condition 

characterized by excessive clot development and blockage of blood flow upon vessel 

occlusion [2]. Thrombi produced in arteries and veins typically exhibit different 

compositions, which are associated with different risk factors. Venous clots are comprised 

mostly of fibrin and red blood cells, whereas arterial clots are usually platelet-rich due to 

higher shear rates and ruptured atherosclerotic plaque [9]. Without proper identification 

and treatment, pathologic thrombi can lead to several life-threatening clinical 

presentations, including myocardial infarction (MI), stroke, venous thromboembolism 

(VTE) or pulmonary embolism (PE) [9]. On the other hand, bleeding presents its own set 

of concerns, though it is often more easily diagnosed than thrombosis. Despite the fact 

that most bleeding disorders are genetically inherited (e.g. hemophilia and Von Willebrand 

disease) [2], others can be developed as a result of coagulopathic behavior. One such 

example is trauma-induced coagulopathy (TIC), which commonly presents in patients who 

have experienced major injuries. This condition is known to be extremely complex, but is 
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broadly identified by impaired clotting activity, hyperfibrinolysis, and platelet dysfunction 

[10]. Understanding mechanisms of TIC has been a grand challenge over the years, and 

any significant progress has the potential to alter the treatment strategies currently 

employed in the clinic.        

 

1.2 Platelet Activation 

1.2.1 Platelets 

 The three main types of blood cells are red blood cells, white blood cells, and 

platelets. While the others feature nuclei and are larger in size, platelets are anucleate 

cells that typically range between 2-4 µm in diameter [11]. Also known as thrombocytes, 

platelets are generated through a process called thrombopoiesis which takes place in the 

bone marrow. After hematopoietic stem cells differentiate into megakaryocytes (among 

several other subclasses of blood progenitor cells) and with the aiding action of 

thrombopoietin, long protruding fragments called proplatelets are released from the 

cytoplasm and further divided into platelets [11]. Once introduced to the circulation, 

platelets have an average lifespan of about 7-10 days before being cleared by the spleen 

and liver. Younger platelets tend to exhibit higher responsiveness to stimuli than older 

platelets, primarily due to higher RNA content, but platelets of all ages can still participate 

in hemostasis and become activated by a plethora of signals and mechanisms [11]. 

 

1.2.2 Surface Receptors 

Platelets are decorated with numerous surface receptors, each of which is 

engaged by one or more specific ligands. Some receptors are involved in the initial 

adhesion process to a prothrombotic surface (e.g. damaged vessel wall), while others are 

called into action to bind soluble agonists or interact with other platelets. The variety of 

functions also pertains to subclasses of receptors that lead to either inhibitory or activating 
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processes, which work in concert to keep the level of platelet activation under control 

[12,13]. 

 For the studies in this work, receptors that trigger activating networks will be the 

primary focus. Receptors that initiate the platelet activation process are often classified 

into two main groups: immunoreceptor tyrosine-based activation motif (ITAM)-coupled 

receptors and G-protein coupled receptors (GPCR) [13]. Examples of ITAMs include 

FcRγ, which complexes with glycoprotein VI (GPVI) and GPIb-IX-V, and FcγRIIa, which is 

associated with the integrin αIIbβ3 and GPIb-IX-V, as well as C-type lectin-like receptor 2 

(CLEC-2) [13]. GPVI and GPIb-IX-V are each responsible for initial platelet recruitment 

and binding to endothelial-exposed collagen and vWF, respectively. Integrin αIIbβ3, also 

termed GPIIb/IIIa, attracts the plasma protein fibrinogen to link individual platelets together 

and strengthen the developing platelet mass. CLEC-2 is stimulated by the transmembrane 

protein podoplanin, which is commonly expressed on the surface of lymphatic endothelial 

cells (LEC), and is important for maintaining natural barriers between blood flow and the 

lymphatic system [13,14]. In addition to these naturally occurring receptor activators, lab-

based ligands have been discovered and developed, including convulxin for GPVI [15] 

and rhodocytin for CLEC-2 [16]. Different from GPCRs, which are discussed next, ITAM 

receptors are essential for maintaining vascular integrity at sites of inflammation in addition 

to promoting platelet function [14]. 

 The majority of platelet receptors that are activated by binding of soluble agonists 

to the cell surface belong to the GPCR family. Though GPCRs come in a variety of flavors, 

they are all composed of seven transmembrane domains that transmit intracellular signals 

upon activation by the appropriate ligand [13]. Most platelet agonists activate Gαq 

receptors—thrombin, the essential protease for coagulation described previously, also 

has platelet activation capability through its affinity for the two protease activated receptors 

1 and 4 (PAR-1,4) in human blood, and ADP and TXA2, important for secondary platelet 
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activation, bind the P2Y1 and TP receptors, respectively. Often, lab analogs with higher 

specificity and stability are substituted for these natural ligands. For example, the PAR-

specific peptide chains Ser-Phe-Leu-Leu-Arg-Asn (SFLLRN) and Ala-Tyr-Pro-Gly-Lys-

Phe (AYPGKF) are used to study PAR-1 and PAR-4, respectively [17,18], while U46619 

is a synthetic agonist for the TP receptor [19]. Gαi-coupled receptors, which include 

another ADP receptor called P2Y12, and the Gαs-coupled receptors, such as the inhibitory 

prostaglandin I2 (IP) receptor, round out the most well-studied platelet surface receptors 

and will be discussed at length throughout this work [13]. Recently, GPCRs and 

associated intracellular signaling pathways have gained interest as targets for drug 

development due to their involvement in the amplification of the platelet activation process 

[20]. This strategy enables initial platelet function to adequately seal a wound, but prevents 

excessive platelet activity which could lead to restriction of blood flow and other 

complications of thrombosis.   

As discussed previously, regulating mechanisms for controlling the extent of 

platelet activation exist in both damaged and healthy vasculatures. In order to maintain 

the normal quiescent state of circulating platelets, intact endothelium releases nitric oxide 

(NO) and prostacyclin (PGI2) as inhibitory signals [12]. Unlike prostacyclin which binds to 

the IP receptor and leads to the production of cyclic adenosine monophosphate (cAMP), 

nitric oxide does not physically bind to platelets. Rather, it suppresses platelet activity 

through the conversion of soluble guanyl cyclase to cyclic guanosine monophosphate 

(cGMP) [12]. Both cAMP and cGMP activate protein kinases (PKA and PKG, respectively), 

which contribute to the phosphorylation of numerous substrates. These phosphorylated 

entities carry inhibitory properties against platelet adhesion, aggregation, and other 

markers of platelet activation [21].  
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1.2.3 Common Signaling Pathways and Markers of Platelet Activation 

Binding or cleavage of platelet surface receptors by physiologic or mimetic ligands 

acts as the initiation step for several intracellular signaling pathways, many of which are 

depicted in Figure 1-1, that eventually lead to platelet activation events. Several receptors 

described in the previous section signal primarily through regulators of G-protein signaling 

(RGS), and each unique G protein can be activated by a multitude of different receptors. 

The vast majority of GCPRs, those that are Gαq-coupled, activate the β isoform of 

phospholipase C (PLCβ) which in turn catalyzes the hydrolysis of phosphatidylinositol 4,5-

biphosphate (PIP2) into the secondary messenger inositol triphosphate (IP3) [13]. The Gαi-

coupled class of receptors tend to signal both through PLCβ as well as against adenylyl 

cyclase (AC), which prevents inhibitory signals from being transmitted. Signaling through 

AC and guanylyl cyclase (GC) for that matter, through either Gαs-coupled receptors or 

nitric oxide donation through the plasma membrane, respectively, trigger inhibitory 

pathways via cAMP and cGMP synthesis as discussed above. Non-GPCRs, such as the 

ITAM receptors, are often associated with tyrosine phosphorylation by Src family kinases 

(SFK) and subsequent binding of spleen tyrosine kinase (Syk) to the intracellular domain 

of the receptor. This event then triggers activation of PLCγ and convergence to IP3 

generation as is observed through Gαq signaling [13].   

The example of ITAM signaling via GPVI activation and Gαq signaling both 

converging on IP3 synthesis exhibits the high degree of crosstalk between individual 

platelet activation pathways. Other examples include ADP signaling through two 

independent GPCR-dependent pathways, PAR4-P2Y12 dimerization, and inside-out 

integrin activation amplifying platelet responses to GPCR agonists [13,22]. This synergy 

and positive feedback is essential for ensuring proper platelet activation during 

hemostasis, as the cooperative effects of multiple pathways can overcome certain 

scenarios in which low levels of specific agonists are present. It is important to note that 
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the pathways outlined here and in Figure 1-1 are only a selection of the countless 

mechanisms of platelet activation. However, for the purposes of this work, analysis of 

these primary pathways will provide a holistic and sufficiently broad understanding of how 

platelets respond to various stimuli throughout the course of the hemostatic response. 

 

 

Figure 1-1. Schematic of common platelet signaling pathways 
The platelet surface (grey box) features several receptors that become activated by specific 
ligands. Certain ligand-receptor pairs lead to activating events (denoted by agonists in blue), while 
others trigger inhibitory signals to prevent excessive platelet activation (denoted by agonists in red). 
The intracellular signaling pathways are rather complex, which is often attributed to crosstalk 
between multiple events. Several markers of platelet activation, including dynamic calcium 
mobilization, phosphatidylserine (PS) exposure, and αIIbβ3 activation, are also indicated (shown in 
green).  

 

In a normal response to injury, there is typically a step-by-step sequence of events 

that leads to clot formation and restoration of blood flow: (1) initial adhesion and activation 

of platelets; (2) amplification of the platelet activation response and recruitment of 
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additional cells; (3) aggregation of activated platelets and stabilization through coagulation 

proteins. Even in this “healthy” process, there are several important players that contribute 

to addressing the issues presented by vessel damage, and understanding the individual 

significance of each signaling event as well as the importance of evidenced interactions 

gives rise to high-dimensional problems. The level of complication only increases when 

hemostasis fails in one way or another, an example being the case of a patient with pre-

existing medical conditions. Identification of specific markers of platelet function that are 

affected by multiple activation mechanisms (e.g. output-input systems) becomes crucial 

in the effort to simplify the study of platelet activation while still maintaining access to the 

inner workings of the aforementioned biochemical signaling processes. The experimental 

setups that are utilized in this work enable the collection of data representative of complex 

signaling situations, whether multiple platelet agonists are present simultaneously or 

sequentially. 

After the successful activation of a platelet through one or more signaling 

pathways, a number of events serve as indicators of the dynamics and extent of the 

activation state. Contained within quiescent platelets, content of intracellular granules 

becomes released as a result of platelet activation. There exist at least three different 

types of granules—α-granules, dense granules, and lysosomes—and each class is known 

to be composed of unique substances. For example, α-granules hold proteins like P-

selectin, vWF, fibrinogen, and other coagulation factors, while dense granules release 

secondary platelet agonists like ADP and serotonin among other non-protein molecules 

[23]. Intracellular granule release can be measured through luminescent assays in 

conjunction with platelet shape change and aggregation [24], and expression of specific 

granule content, notably P-selectin (CD62P), can be detected with monoclonal antibodies 

in a flow cytometry setting [25]. In a similar fashion as P-selectin, other markers on the 

platelet surface can be identified, including CD40L, CD63, activated integrin αIIbβ3, and 
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phosphatidylserine, as well as other entities like platelet-leukocyte aggregates, cross-

linking agent Factor XIII, and platelet-derived microparticles (PMPs) [25]. Finally, a marker 

of platelet activation that remains within the cell and must be probed by dyes that penetrate 

through the plasma membrane is the concentration of intracellular calcium, which is known 

to depend on two distinct but related mechanisms [26,27]. Each of these classical 

biomarkers, along with the specific principles of each assay, will be discussed in more 

detail in Chapter 2.  

 

1.3 Trauma-Induced Coagulopathy (TIC) 

1.3.1 Platelet Dysfunction in Trauma Patients 

Trauma-induced coagulopathy (TIC) is a complex clinical state that is 

characterized largely by a bleeding phenotype. Statistically, about 25% of patients 

admitted to a trauma unit due to severe physical injury will develop TIC, and about 10% 

of all worldwide deaths are linked to trauma [10]. These metrics increase when considering 

military subjects, and about half of trauma-related deaths are caused by immediate, rapid, 

and uncontrollable exsanguination. Though clinicians and emergency response teams 

have developed various treatment regimens for these patients, the mortality rate still 

remains high which presents significant room for improvement. Over the years, several 

groups have set out to understand the underlying biology of TIC in an effort to identify 

potential ways to design new therapies or preventative methodologies. However, one of 

the key obstacles in learning about mechanisms is that each trauma patient typically 

presents with unique conditions; in other words, no single trauma patient is identical to 

another. Previous medical history or medication use, as well as the relative severity of the 

injury, may complicate the analysis. Nevertheless, a great deal of work has identified a 

few key pillars of TIC, each with several contributing factors, that the majority of patients 

will experience due to drastic changes to their blood biochemistry. These contributing 
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factors include platelet dysfunction, decreased clotting factor activity, and 

hyperfibrinolysis, each of which will be discussed in more detail [10]. 

 To start with platelet dysfunction, several previous studies have utilized a variety 

of laboratory assays to characterize the inability of platelets to respond to activating 

stimuli. For example, one group employed thromboelastography with a platelet mapping 

feature to observe sensitivity to ADP stimulation and found about 80% reduction on 

average compared to a control response [28]. A separate study reported impaired 

aggregation potential in response to at least one stimulating agonist in almost half of the 

100 analyzed trauma patients upon admission and upwards of 90% of the patients at some 

point during their stay in the hospital [29]. Previous work from our lab using microfluidic 

technology also showed platelet function defects in terms of impaired deposition onto a 

prothrombotic surface in a majority of the patients studied [30]. Despite all this 

observational work, the community’s identification of specific physiologic events that carry 

direct implications in relation to platelet dysfunction is still lacking.  

Multiple pieces of literature, including those cited above, have confirmed this 

dysfunctional platelet phenotype and some have gone as far to identify it as a potential 

biomarker for TIC or the related traumatic brain injury (TBI) [31,32]. Traditionally, the first 

hypothesized cause of platelet dysfunction has been thrombocytopenia, or decreased 

platelet counts, as correlations between platelet number and survival have been drawn 

previously in various disease states. However, trauma patients largely present with normal 

platelet counts and acceptable levels of P-selectin, an important protein in the platelet 

activation process [33]. This observation sheds light on a few possible explanations: (1) a 

significant fraction of the circulating platelets are simply not functional [31]; (2) platelet pre-

activation upon initial shock results in “exhausted” cells that are unable to respond to 

stimuli upon arrival to the injury site [28]; (3) shedding or internalization of crucial surface 

receptors renders platelets from sequential activation [34,35]. Unfortunately, it has been 
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difficult to confirm or reject any of these hypotheses, though the likelihood of a combination 

of multiple contributing factors is high. In this work, we strive to improve the understanding 

of platelet dysfunction in trauma patients, while taking into consideration the progress 

already established. 

 

1.3.2 Coagulation Abnormalities and Hyperfibrinolysis 

Following the initial stages of hemostasis in which platelet activation and 

aggregation dominate, the effects of coagulation start to take effect. A sequence of serine 

protease-mediated cleavage events eventually concludes with the conversion of the 

inactive zymogen prothrombin into thrombin. In turn, thrombin generation leads to the 

enzymatic cleavage and polymerization of monomeric fibrinogen into its polymeric form 

called fibrin. Fibrinogen is a soluble plasma protein that circulates at ~3 mg/mL and is 

structurally composed of three unique disulfide-linked polypeptide chains, which are 

represented by E- and D-domains. Thrombin activity causes the release of two peptides 

from the central E-domain, called fibrinopeptides A and B (FPA/B), and enables interaction 

between the E-domain of one monomer with a D-domain of a second molecule [8]. This 

interaction begins to form a staggered, overlapping pattern of individual fibrinogen 

molecules. An additional coagulation factor, factor XIII, is also converted to its active form 

through the action of thrombin. Factor XIIIa acts on resulting fibrin polymers by cross-

linking multiple chains together via adjacent lysine residues in D-domains, which ultimately 

stabilizes the clot structure [8]. A simplified visual representation of the fibrin 

polymerization process with depictions of the changing protein structure from monomeric 

fibrinogen to cross-linked fibrin is shown in Figure 1-2.        
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Figure 1-2. Classes of fibrin-related species 
Coagulation begins with the monomeric plasma protein fibrinogen (A), then proceeds to become 

polymerized into soluble fibrin (B) through the enzymatic action of thrombin. Soluble fibrin chains 

are cross-linked into an insoluble polymer mesh (C) via factor XIIIa, which is converted to its active 

form in the presence of thrombin. Fibrin polymers are degraded by plasmin into fibrin degradation 

products of various sizes and compositions (D, E).  

 

Once a stable fibrin aggregate is formed, it has the potential to serve as its own 

cofactor substrate for lysis. Another inactive zymogen, plasminogen, is known to be 

activated by two distinct proteases—tissue plasminogen activator (tPA) and urokinase 

plasminogen activator (uPA)—via different mechanisms [2,8]. Released from activated 

endothelium and understood to exhibit higher affinity for plasminogen, tPA physically binds 

to the fibrin surface with plasminogen to generate active plasmin. In the alternative case, 

uPA is produced by immune cells like monocytes and macrophages and imparts its ability 

to convert plasminogen to plasmin via the uPA receptor on various cell types [2,8]. 

Regardless of the mechanism, plasmin then proceeds to lyse fibrin at different sites and 

results in the release and circulatory uptake of fibrin degradation products (FDP) from the 

clot. Some examples of FDP generated from either soluble or cross-linked fibrin 

constructs, including D-dimer (the smallest known FDP) are shown in Figure 1-2. Similar 

to the naturally occurring anticoagulant mechanisms in the hemostatic system, there also 

exist regulatory systems to control the level of fibrinolysis and prevent excessive clot 
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degradation. Some key players that inhibit the fibrinolytic system are α2-antiplasmin and 

plasminogen activator inhibitors 1 and 2 (PAI-1, PAI-2), which downregulate the activity of 

plasmin, tPA, and uPA, respectively [2,8]. However, when these serine protease inhibitors 

(SERPINs) fail to function properly or cannot keep up with the rate of plasmin generation, 

a hyperfibrinolytic state may ensue. 

 Along with platelet dysfunction, hyperfibrinolysis is another reported contributing 

factor to the clinical bleeding phenotype commonly observed in TIC patients [10]. This 

observation has been made primarily on the basis of biological understanding as well as 

laboratory measurements of common markers of fibrinolysis. Upon severe tissue injury, a 

multitude of biochemical changes in the blood take place in response to extreme blood 

loss and associated shock. Firstly, several procoagulant mechanisms are upregulated 

which leads to increased potential of thrombin generation [36]. However, many more 

anticoagulant systems are triggered during trauma which contributes heavily to the 

observed coagulopathy in a significant portion of these patients. The existence of thrombin 

in the presence of thrombomodulin results in the activation of protein C (APC), a key 

anticoagulant. The endothelium also becomes highly activated, which leads to the 

shedding of the protective endothelial glycocalyx layer (EGL) and release of a number of 

anticoagulant components like chondroitin sulfate and heparin sulfate [10]. In addition, 

elevated fibrinolytic agents like tPA, and to a lesser degree decreases in PAI-1 levels, are 

crucial to the state of hyperfibrinolysis in several trauma patients [37]. This co-existence 

of procoagulant, anticoagulant, and fibrinolytic states is a perfect recipe for abnormally 

high production of FDP, which has been characterized by several studies, both in trauma 

patients and other related conditions like disseminated intravascular coagulation (DIC), 

and is commonly quantified by measuring the concentration of soluble fibrin or D-dimer in 

whole blood or plasma samples [38–41]. Though this is certainly not an exhaustive 
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discussion of fibrinolysis during trauma, further elaboration will be presented in the 

following chapters of this work.  

 With knowledge of elevated FDP in the blood of trauma patients, consideration of 

the time scales of circulation before clearance becomes important. Unless otherwise 

activated, platelets are known to survive in the bloodstream for 7-10 days before the bone 

marrow produces a new generation of cells [11]. On the contrary, the clearance rate of 

fibrin and FDP is likely faster, though different sources have reported different 

quantifications. One of the first reports studying uptake of coagulation products was 

performed using a rat liver, in which the authors concluded that the clearance half-life for 

FDP was at least 12 hours [42]. Another group set up an investigation in mice and 

considered several variations of FDP through different preparation schemes, as confirmed 

by gel electrophoresis characterization. Using a radio-labeled isotope tag, the authors 

concluded that the fragments ranged from 200-250 minutes in clearance half-life [43]. A 

third study calculated a half-life time of approximately 5 hours in acute myocardial 

infarction (AMI) patients after receiving thrombolytic therapy [44]. Though previous 

findings of FDP clearance have differed, there is relative agreement that the general time 

scale for clearance half-life is several hours, which would correspond to a few days before 

full clearance. It is unclear whether this lingering ability of FDP bears any physiological 

significance, especially in the context of trauma patients.   

  

1.3.3 Efficacy of Transfusion Strategies 

Trauma-induced coagulopathy is one of several conditions associated with major 

bleeding complications, though it may be at the top of the list as far as urgency to treat 

patients. The universally accepted and utilized immediate form of therapy for trauma 

patients is transfusion of a range of blood products depending on the specific components 

that may be most deficient for a given patient. Red blood cells are administered to treat 
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hemorrhaging patients and to aid in oxygen delivery to tissues, which are often common 

conditions in patients with anemia or sickle cell disease. Fresh frozen plasma (FFP) is 

delivered in an effort to promote coagulation and reduce the activity of natural 

anticoagulant mechanisms that may be upregulated. FFP can be further processed by 

centrifugation to yield fibrinogen-rich cryoprecipitate to be given to subjects with 

fibrinogenemia. Finally, fresh platelets from healthy pools are commonly transfused to 

patients with thrombocytopenia or platelet function defects [45]. Blood tests are performed 

upon arrival to the hospital to evaluate the state of the patient at hand and determine the 

best course of action to maximize the probability of survival. However, due to the non-

native sources of these blood products, there are risks associated with transfusions that 

may lead to both infectious and noninfectious complications. For example, allergic 

reactions, lung injury, or circulatory overload are among the most common setbacks that 

may occur as a result of transfusion [45]. Therefore, guidelines for the most effective use 

of blood products as treatment are constantly being amended to prevent these unintended 

life-threatening effects. 

 With more respect to platelets and functional defects that are well-understood as 

a key pillar of the coagulopathic phenotype in trauma patients, analyses of the efficacy of 

platelet transfusions in an attempt to help restore hemostasis have been conducted. In a 

systematic review of several independent studies, Thorn et al. focused on traumatic brain 

injury (TBI) patients that were treated with platelet transfusions, and ended up including 

10 articles in the analysis which amounted to >1000 patients from 14 hospitals [46]. The 

authors tracked several variables across the reports but the key result was comparing 

mortality rates between transfused and non-transfused patient populations. Surprisingly, 

most of the studies showed increased mortality in patients receiving platelet transfusions, 

indicating both lack of efficacy and potential harm with this method of treatment. Though 

it is possible that the higher death rates observed in transfused patients may also be a 
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result of more severe injury conditions, there is clearly a lack of evidence that platelet 

transfusions were effective. In a separate paper, Vulliamy et al. conducted a much smaller 

study inclusive of ~150 trauma patients and investigated the effects of platelet transfusion 

on restoring native platelet function [47]. To summarize the results, there was found to be 

no detectable improvement in the ability of platelets to aggregate or overall platelet count 

in patients receiving transfusions. However, there was a reduction in the level of fibrinolytic 

products in these patients, which may be attributed to corresponding increases in 

plasminogen activator inhibitor-1 (PAI-1).  

With knowledge of platelet activation defects, hyperfibrinolysis, and potential lack 

of efficacy in restoring cell function through transfusion in trauma patients, we strive to 

further understand the underlying mechanisms that contribute to these clinical 

observations. In this work, we will apply several common lab techniques to characterize 

various aspects of platelet function and simulate different scenarios with strategic 

experimental design. A key aspect of the work will rely on a collaborative effort with Penn 

Presbyterian Medical Center’s Acute Research Collaboration (PARC), through which 

acquisition of blood samples from admitted trauma patients will be possible.  
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CHAPTER 2: PLATELET FUNCTION PHENOTYPING METHODS 
 
 
2.1 Intracellular Calcium Mobilization 

Following initial platelet activation, increases in the level of cytosolic calcium (Ca2+) 

become incredibly important for the amplification of the hemostatic response, as it serves 

as a communicative measure for recruiting additional platelets to the developing thrombus 

[26]. As briefly discussed in Chapter 1, several distinct signaling pathways converge upon 

the intracellular mobilization of calcium ions, which then gives rise to “inside-out” activation 

of other important biological processes. Calcium mobilization is known to occur through 

two primary mechanisms which proceed in a sequential fashion and are depicted visually 

in Figure 2-1 [27]. First, internal stores which contain high concentrations of calcium ions 

in resting platelets release their contents upon agonist-induced activation. The stores 

typically mimic endoplasmic reticulum in other cells and are generally referred to as the 

dense tubular system (DTS). Activation via the binding of GPCR or ITAM ligands leads to 

phospholipase C (PLC)-mediated production of inositol triphosphate (IP3), which facilitates 

transport of Ca2+ through IP3 receptor (IP3R) channels and into the cytosolic space. As 

long as the Ca2+ concentration in the DTS does not become too low, this mechanism is 

prioritized and proceeds without significant interruption. Recirculation of Ca2+ back into the 

DTS to replenish the supply or escape into the extracellular space also occurs; these 

events are largely dependent on the action of sarcoplasmic/endoplasmic reticulum Ca2+ 

ATPases (SERCA) or plasma membrane Ca2+ ATPases (PMCA), respectively [27].  

The second mechanism of calcium mobilization is initiated upon depletion of the 

internal stores and is termed store-operated calcium entry (SOCE). On the surface of the 

endoplasmic reticulum, stromal interaction molecule 1 (STIM1) acts as a sensor for the 

Ca2+ levels present in the stores. Upon failed binding to Ca2+ due to decreased 

concentrations, STIM1 opens SOC channels in the plasma membrane, which have been 
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discovered to be transmembrane proteins called calcium-release activated calcium 

modulator 1 (CRACM1, or the more conventionally used Orai1) [27]. The regulation of 

Orai1 permits additional extracellular calcium to be transported into the cell as a backup 

source for the internal stores. A few other mechanisms of calcium transport within platelets 

exist, but the aforementioned systems are predominantly responsible and are heavily 

studied in the platelet biology community. Since there are multiple entities with distinct 

roles in promoting and regulating calcium mobilization, potential for therapeutic target has 

been proposed and analyzed by several groups, primarily using mouse models. Calcium 

entry has been determined to be critical for thrombus development without direct 

implications on hemostasis [27].    

Calcium mobilization can be thought of as a dynamic flux of ions across physical 

barriers, and has been identified as a process that can be tracked in real time as platelets 

are activated by various stimuli. Harnessing fluorescent technology, several chemical 

calcium indicators have been designed for specific applications [48]. Most commonly used 

for cytosolic detection are high affinity dyes, which include Calcium Green-1, Fluo-3, Fluo-

4, Fura-2, Indo-1, and Oregon Green 488 BAPTA, among others. Each of these indicators 

carries benefits and drawbacks; some are single wavelength dyes for easier excitation, 

some are more suitable for microscopy, some are ratiometric for feasible quantification of 

ion concentrations. However, they all generally function by permeating into the cell of 

interest and binding to free calcium ions to produce fluorescent signals. Literature in the 

platelet biology field tends to highlight the use of Fluo-3, Fluo-4, and Fura-2 in studies of 

platelet function. Fluo-3 is one of the most popular single wavelength dyes and has 

sufficient affinity without risk of cytosolic buffering. Fura-2 is a widely used ratiometric dye, 

but requires dual wavelength excitation. However, in this work we will utilize Fluo-4 due to 

its overall similarity to Fluo-3 with brighter and more photostable properties [48]. Lower 
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dye concentrations are required which results in shorter incubation times during 

experimentation. 

 

 

Figure 2-1. Mechanisms of calcium mobilization in platelets 
Calcium ions are stored in the dense tubular system (DTS) and can transport into the cytosolic 

space upon platelet activation. The generation of IP3 via diverse signaling pathways causes 

outward calcium flux from the internal stores after binding to the IP3 receptor (IP3R). Calcium ions 

can also be transported back into the stores through sarcoplasmic/endoplasmic reticulum Ca2+ 

ATPases (SERCA) or out of the cell via plasma membrane Ca2+ ATPases (PMCA). As the calcium 

concentration in the DTS depletes, a second mechanism called store-operated calcium entry 

(SOCE) is initiated by stromal interaction molecule 1 (Stim1) activation of Orai1 channels on the 

platelet surface. Permeable calcium dyes can be incubated with platelet suspensions to track the 

mobilization of ions over time following stimulation. 

 

Studying calcium signaling in platelets is of interest to several research groups, and 

has been documented in previous reports as well as in our lab over the years. Since 

multiple independent activation events converge upon calcium mobilization, it can be used 

as a single output in high-throughput experiments, and present a great opportunity to apply 

automated technologies in well-plate setups to collect large sets of data. The first evidence 
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of being able to use fluorescent imaging plate readers (FLIPR) with microplate formats to 

study calcium mobilization in platelet samples was provided by Liu et al. [49]. The authors 

employed the Fluo-4 dye and characterized the activation or inhibition potential of a few 

physiologic agents as a proof of principle. A few years later in 2010, our lab presented a 

similar approach but took advantage of the increased capacity of a 384-well plate to unlock 

the ability to observe combinatorial stimulation events [50]. The method is known as 

Pairwise Agonist Scanning and has been used extensively to characterize subject-specific 

platelet function phenotypes, predict increasingly complex stimulation conditions, and 

compare donors or patients based on demographics or clinical states to identify potentially 

hidden trends in hemostatic performance. Though calcium mobilization is certainly a 

reliable metric for measuring the dynamic processes of platelet activation, other methods 

are also traditionally used and should ideally be combined together to generate as 

concrete an understanding of platelet function as possible. 

 

2.2 Flow Cytometry 

Experimentalists are often interested in studying multiple characteristics of cells 

(e.g. size, granularity, receptor expression) simultaneously on a single-cell basis, which 

has led to the development of a technique called flow cytometry. This method is comprised 

of two main components: (1) a fluidic system, which handles dilute cell suspensions and 

orients cells individually through the use of a sheath fluid on either side of the primary 

sample flow path, called hydrodynamic focusing; (2) an optical system, which measures 

light scattering and fluorescence emission as the cells pass through the detection zone in 

a single file fashion [51]. The scattering of light is characterized by both forward and side 

scatter, and provides a representation of the relative size, shape, and other physical 

features of the cell. Fluorescent dyes or biomarkers specific for intracellular or extracellular 

targets of interest are also included in the sample, and are excited by an appropriate laser 
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beam during the data collection process. Many commonly used flow cytometry systems, 

such as the BD Accuri C6, are equipped with as many as four laser configurations to scan 

different wavelengths of transmitted light. A subclass of flow cytometry takes data 

processing a step further by sorting cells based on fluorescent properties, typically referred 

to as fluorescent activated cell sorting (FACS) [51]. Overall, flow cytometry and FACS 

have been used as a high-throughput technique for a variety of applications including 

characterization of cellular processes like apoptosis, expression of soluble regulators like 

cytokines, and phenotyping of blood cell populations. 

Flow cytometry has been used extensively in the hematology community, ranging 

from studies of immune cell markers to blood-related cancers to platelet biology [52]. In 

relation to this work, platelet analysis tends to include both structural and functional 

property assessment. For study of structural features, surface receptor expression and 

overall platelet count can be identified with platelet-bound antibodies to suggest potential 

thrombocytopathies or thrombocytopenias, respectively. Glanzmann thrombasthenia and 

Bernard-Soulier disease are examples of syndromes related to abnormal expression of 

surface glycoproteins important for platelet activation and aggregation, and can be 

detected in this assay by low levels of GPIIb/IIIa or GPIb, respectively [52].  

Markers of platelet activation, as discussed previously, can also be probed in flow 

cytometry [25]. Though GPIIb/IIIa (or integrin αIIbβ3) expression is often identified to 

diagnose or rule out Glanzmann thrombasthenia, the activated form of the molecule is a 

key indicator of outside-in platelet signaling. This active configuration is recognized by the 

PAC-1 monoclonal antibody, originally developed by Shattil et al [53]. P-selectin (CD62P), 

which is expressed on the platelet surface upon activation, is detected with fluorescent 

anti-CD62P antibodies. Phosphatidylserine (PS) exposure to the extracellular surface is 

measured by Annexin V binding to platelets in the presence of calcium, however this 

metric is also indicative of cellular apoptosis. As a result, PS measurements should be 
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conducted in conjunction with other markers to distinguish platelet-specific events. Other 

less common platelet activation markers studied in flow cytometry include platelet-derived 

microparticles (PMPs), platelet-leukocyte aggregates, and the transglutaminase factor XIII 

[25]. Sometimes individual markers are analyzed in simple studies, but the functionality of 

the flow cytometry design permits more complex experiments with multiple activation 

events to be conducted. For example, Jaeger et al. designed an assay with three different 

platelet activation markers in the setting of combinatorial stimulation with an array of 

platelet agonists [54].   

 

2.3 Platelet Aggregometry 

Perhaps a more simplified determination of platelet function is attained through a 

technique known as aggregometry, which was first introduced in the 1960s [55]. The basic 

principles rely on light transmission through a stirred cell suspension, which increases as 

a result of agonist addition [56,57]. Typically, fresh whole blood is split into two aliquots; 

one aliquot is centrifuged at a modest speed to generate platelet-rich plasma (PRP), while 

the other is centrifuged more aggressively to isolate platelet-poor plasma (PPP). The PPP 

sample serves as a reference standard and resembles pure 100% aggregation due to its 

relatively transparent appearance. As the cells in the PRP sample are activated 

exogenously, the transmission increases and approaches that of the PPP control, usually 

quantified on a percent basis [56]. A schematic of the underlying theory for light 

transmission aggregometry (LTA) is shown in Figure 2-2. 

Agonists commonly used for optical aggregometry include collagen, ADP, 

arachidonic acid (AA), epinephrine, and ristocetin. The assay is also often utilized to study 

inhibitory effects of antiplatelet drugs, and to identify dysfunction in surface receptors that 

lead to conditions like von Willebrand disease or Bernard-Soulier syndrome [57]. Certain 

aggregometry-measuring devices, such as Chronolog’s Model 700 aggregometer, are 
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also equipped with luminescence detection. This mode of operation is capable of detecting 

granule release via ATP monitoring with a luminescent tracker [24]. Understanding 

granule performance in conjunction with simultaneous platelet aggregation is important 

because these two concepts are related to each other in the hemostatic process. 

 

 

Figure 2-2. Platelet aggregometry experimental basis   
Whole blood is centrifuged at various speeds to isolate PRP and PPP. The cuvette loaded with 

PRP is also given a magnetic stir bar to agitate the cell suspension before and after agonist 

dispense. The PRP tube is initially cloudy due to dispersity of cells, but after stimulation the clarity 

of the sample increases due to platelet aggregation, allowing more light to pass through the sample. 

The amount of light transmission is compared to the theoretical maximum produced by the control 

PPP cuvette. 

 

Overall, platelet aggregometry has been used as the “gold standard” in studying 

platelet function, but more recently developed techniques are increasing in usage to 

assess activation profiles with more complexity. Additionally, aggregometry lacks in the 

high-throughput category, since only two experimental runs can be performed at the same 

time, and each sample must include hundreds of microliters of pure PRP, which impacts 

the amount of blood initially to be drawn. The calcium mobilization and flow cytometry 

assays described in the previous sections require significantly less whole blood, are 

usually conducted in dilute conditions, and can be run in microtiter well plates, all of which 

increase the quantity of data that can be collected per experiment. In this dissertation, 
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data attained from aggregometry experiments will be reported, but usually in a 

supplemental fashion to provide support to observations made in other assays.     

 

2.4 Thromboelastography (TEG) 

In clinical settings, rapid testing of hemostatic state is required in order to inform 

decisions regarding treatment options. First developed in the 1940s, thromboelastography 

(TEG) is a method used to evaluate several aspects of hemostasis and effects of different 

blood components on platelet function and coagulation. TEG utilizes principles of 

viscoelasticity to extract information about the strength and stability of thrombi throughout 

the stages of the hemostatic response [58]. The original assay design included a single 

reaction chamber – a whole blood sample would be inserted into a cup and a stationary 

pin capable of tracking movement would be immersed into the sample. The sample 

oscillates back and forth as an activator of the coagulation cascade is added, and the pin’s 

oscillations change over time as influenced by the dynamic clot strength. The resulting 

signal increases as a function of stronger clots and then decreases as the clot begins to 

break down due to shear forces [58]. A depiction of the visual output from a TEG 

experiment is shown in Figure 2-3.  

The graphic below is annotated with various parameters, details for each of which 

along with physiological significance and typical reference ranges are listed in Table 2-1. 

At the beginning of the experiment, a time delay between reagent addition and initial fibrin 

formation will occur, which is termed the reaction time (R). As the clot begins to develop, 

the signal read by the TEG device will increase exponentially and eventually reach an 

inflection point as the clot slows its growth. At this inflection point, the angle between the 

baseline and the generated curve (α-angle), sheds light on the kinetics of clot growth. An 

intermediate time, from the end of the reaction time to a pre-determined level of clot growth 

(e.g. 20 mm), is also recorded as the amplification time (K). The curve then asymptotically 
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approaches an upper limit, signifying the completion of thrombus development, and 

referred to as the maximum amplitude (MA) of the data. While the reaction and 

propagation times are typically indicative of coagulation-related processes, the point of 

maximum clot strength is highly dependent on platelet function and concentration. The 

rotational speed of the reaction chamber persists and imparts shear forces on the clot, 

which causes varying levels of degradation depending on the inherent strength of the clot. 

After 30 minutes have passed since attaining maximum development, the amplitude is 

again recorded and compared to MA to yield the LY30 parameter as a measure of clot 

breakdown via fibrinolysis [58]. The normal values for each parameter shown in Table 2-1 

and the general shape of the curve in Figure 2-3 are often used as reference to identify 

potential disorders in specific aspects of the clotting process or to confirm adequate 

hemostatic performance in an individual. 

 

 

Figure 2-3. Generalized TEG output 
Clot strength as a function of time is plotted during acquisition of TEG data, which generates a 

number of parameters to quantify various stages of hemostasis. The R and K parameters 

respectively represent the time to achieve initial coagulation and time to another stage of 

coagulation, dictated by the alpha angle as the maximum rate of clot formation. The maximum 

amplitude (MA) indicates the point at which the clot is strongest immediately prior to the beginning 

of lysis. After 30 min of lysis, LY30 indicates the degradation of the clot as a fraction of the maximum 

strength, and conveys information about clot stability.    
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Though the overall principles of the assay have remained constant over the years, 

new designs to increase throughput and decrease required sample volume have been 

developed. Microfluidic technology-based, one-time use cartridges are now commonly 

employed as a plug-and-play method of generating TEG data with a custom analyzer. 

Additionally, different aspects of the coagulation cascade and platelet function can be 

studied using specifically designed cartridges. For example, certain cartridges are pre-

loaded with tissue factor and/or kaolin to simulate the extrinsic and intrinsic pathways, 

respectively, or a platelet mapping alternative (TEG-PM) enables analysis of platelet 

response to ADP stimulation. Unfortunately, the reliability and accuracy of TEG in general 

has become a topic of debate in the medical community [59]. 

 

 

Table 2-1. TEG parameters 
Common TEG parameters that are extracted from data depicted in Figure 2-3 each contribute 

specific information towards understanding the full scope of hemostasis. Reference ranges of 

normal values are often used to determine presence or absence of hemostatic disorders. 

 

TEG is often used by trauma units to guide surgeons and other physicians in the 

attempts to resuscitate injured patients with hemorrhage and other bleeding complications 

[60]. Different from other conventional tests like prothrombin time (PT) or partial 

thromboplastin time (PTT), TEG provides information about the evolution of clot 

development and highlights specific stages of hemostasis that may be under- or over-

performing. Since trauma patients often present with coagulopathic conditions, the best 

course of action is often to initiate massive transfusion protocols (MTP). The ratios of blood 
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products—platelets, plasma, red blood cells, etc—are often fixed and equivalent, but using 

TEG data can improve the recommendations for addressing a given patient [60]. For 

example, a patient may have a long R-time or K-time, indicating a potential coagulation 

factor deficiency that can be treated with additional plasma delivery. Therefore, application 

of TEG can allow for more strategic blood product transfusion that may improve mortality 

in severely injured patients.   
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CHAPTER 3: SOLUBLE FIBRIN CAUSES AN ACQUIRED 
PLATELET GPVI SIGNALING DEFECT: IMPLICATIONS FOR 

COAGULOPATHY 
 
 
3.1 Introduction 

Thrombin generation within the systemic circulation can drive complex changes in 

blood associated with coagulopathy. During trauma, for example, major changes in blood 

biochemistry occur due to hemorrhagic shock, release of tissue factor (TF) into the 

vasculature, endothelial release of tPA, endothelial glycocalyx shedding, and systemic 

inflammatory events [61–63]. Following trauma, thrombin and plasmin are generated in 

the systemic circulation as indicated by elevated plasma levels of thrombin-antithrombin, 

fibrin degradation products, and activated protein C [33,64–66].   

Soluble fibrin monomer or soluble fibrin in various states of multimerization can 

circulate for several hours [67] and reach levels of 100 nM in trauma-induced 

coagulopathy (TIC) patients [38], 40 nM in Day 0 trauma patients (estimated from 

fibrinopeptide A levels) [68], 90 nM in neck fracture patients [69], 54 nM in sepsis patients 

[70], 42 nM in coronary artery disease patients [71], 30-300 nM in ECMO patients [72], 

and up to 67 nM in post-operative AAA patients [73], all relative to a healthy human 

baseline of ~7.5 nM soluble fibrin monomer [71].  Also, soluble fibrin exceeds 600 nM (50X 

baseline) in the rat model of Noble-Collip drum trauma [74]. 

Platelets obtained from trauma patients can display a hypofunctional phenotype, 

potentially contributing to TIC [28,32]. Platelet dysfunction after trauma has been detected 

by aggregometry [29,33], by thromboelastography [28], and by microfluidic assay of 

platelet deposition on collagen [30]. Interestingly, trauma patients often display no 

significant differences in baseline platelet count or platelet P-selectin levels compared to 

healthy individuals [33].  
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Platelet GPVI is an immunoglobulin superfamily receptor [75] present at about 4000 

copies/platelet [76], corresponding to about 1 nM concentration in platelet-rich plasma 

(PRP). Known GPVI-activating ligands include collagen, collagen-related peptide (CRP), 

and convulxin [77,78], as well as fibronectin [77], vitronectin [78], and laminins [79].  Within 

a forming clot and on fibrin-coated surfaces, insoluble fibrin has recently been described 

as a ligand and agonist of platelet GPVI signaling [75,80]. Platelet GPVI binding to fibrin 

surfaces increases platelet procoagulant activity [75], amplifies collagen-independent 

thrombin generation and platelet recruitment at the clot surface [80], and contributes to 

thrombus growth and stabilization [75,81].  

However, the function of soluble fibrin species on platelets in suspension is less well 

understood, since circulating platelets may eventually encounter a wound site presenting 

various adhesive matrix stimuli such as collagen, vitronectin, and laminin. Fibrinogen can 

be activated to desA and desB soluble fibrin monomer which will immediately bind 

fibrinogen (an assembly also considered, confusingly, as soluble fibrin monomer). 

Additionally, thrombin activity results in assemblies of sub-micron soluble fibrin multimers 

(<50 monomer units) which are easily detectable by light scattering. In diluted apixaban-

treated PRP where added thrombin is consumed without further thrombin generation, 

these dilute, soluble multimeric fibrin species are stable in suspension and never reach a 

concentration to form long fibrin strands, laterally aggregated bundles, or fibrin gels 

(insoluble fibrin). We use the term “soluble fibrin” to refer to sub-micron desA/B fibrin 

multimeric assemblies that may also contain bound fibrinogen. The fibrin polymerization 

inhibitor Gly-Pro-Arg-Pro (GPRP) keeps soluble fibrin monomer from binding fibrinogen or 

assembling into longer multimer units. 

We hypothesized that platelet hypofunction can result from exposure to low levels 

of thrombin and/or thrombin-generated plasma species such as soluble fibrin. Since 

elevated soluble fibrin levels have been implicated in trauma and disseminated 
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intravascular coagulation (DIC) [39,74,82,83], understanding GPVI signaling after soluble 

fibrin exposure has clinical implications. We developed approaches using apixaban-

treated, diluted PRP that allows addition of low-dose thrombin (t1/2~1 minute via inhibition 

by antithrombin) to trigger limited fibrin monomer generation without formation of an 

insoluble fibrin gel for studies of platelet GPVI signaling in the presence of soluble fibrin 

species. 

 

3.2 Materials and Methods 

3.2.1 Platelet calcium assays 

Apixaban and GM6001 (SelleckChem), Fluo-4 NW dye and probenecid 

(Invitrogen), ADP, GPRP, PGE1, apyrase, and Factor Xa (Sigma-Aldrich), convulxin 

(Cayman Chemical), thrombin and human fibrinogen (Haematologic Technologies Inc.), 

PAR-1/4 agonist peptides (Bachem), U46619 (Tocris Bioscience), T101 (Zedira), 

vorapaxar (Ryan Scientific), and GR144053 (R&D Systems) were stored and used 

according to manufacturers’ instructions. Whole blood was drawn by venipuncture from 

healthy donors with University of Pennsylvania Institutional Review Board approval into a 

syringe containing apixaban (final concentration, 250 nM) to prevent Factor Xa-driven 

generation of thrombin. Donors self-reported to be free of any medications or alcohol use 

for three days prior to the blood draw. Female donors self-reported not using oral 

contraceptives. 

Platelet calcium measurements were conducted in 384-well plate assay as 

previously described [84]. Briefly, 2 mL PRP was obtained from whole blood (120g 

centrifugation, 10 min) and incubated with a vial of Fluo-4 NW dye mixture reconstituted 

with 7.8 mL of sterile 20 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic 

acid) buffered saline (HBS, pH 7.4) and 200 µL of 77 mg/mL probenecid for 30 minutes. 

In some experiments, GPRP and/or vorapaxar were added with the calcium dye to give 
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final concentrations of 500 µM and/or 100 nM, respectively. Additionally, a 384-well plate 

containing platelet agonists was assembled, including thrombin, ADP, U46619 (a stable 

thromboxane analog), SFLLRN and AYPGKF (PAR-1 and PAR-4 receptor agonists), as 

well as convulxin (a potent and specific GPVI activator). Dye-loaded PRP was then 

dispensed into a 384-well plate. Both plates were loaded into a FlexStation 3 (Molecular 

Devices, Inc.) fluorescence reader. Agonists were dispensed column-wise to PRP, where 

dynamic fluorescence intensity F(t) was read and normalized by the pre-dispense baseline 

(Fo). For all experiments, 10 µL of agonist was added to 30 µL of PRP in each well, 

followed by a subsequent addition of 10 µL of convulxin at a later specified time. In each 

well, the final concentration of PRP after agonist addition was 12% PRP by volume. The 

fluorescence was read for 20 seconds before first dispense, and readings were taken 

every 2.5 seconds (Ex: 485 nm; Em: 525 nm). In previous tests, there was no evidence 

for autocrine signaling in the dilute PRP conditions of the experiment [84]. In calcium 

experiments using washed platelets instead of PRP, 500 nM human fibrinogen was added. 

In this case, the platelet pellet from 2 mL PRP was resuspended in 1.1 mL of HBS to 

obtain a washed platelet suspension. For calcium assay using type 1 fibrillar collagen 

(Chronolog), PRP was prepared as described, however the small FlexStation automation 

pipettes resulted in variable delivery, thus requiring manual pipetting and assay using a 

FluoroSkan Ascent 384-well plate reader. 

 

3.2.2 Microfluidic assays 

Fluorescent human fibrinogen (Thermo Fisher Scientific, Alexa Fluor® 647 

conjugate) was reacted with thrombin (2.5 nM final concentration) for 5 minutes after a 15-

minute incubation with either 5 mM GPRP or HBS (to prevent or allow fibrin 

polymerization, respectively), after which D-Phenylalanyl-prolyl-arginyl Chloromethyl 

Ketone (PPACK; Haematologic Technologies Inc.) was added (100 µM final 
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concentration) to inhibit thrombin. The mixture was then diluted 10-fold into whole blood 

that had been drawn into PPACK (100 µM) and apixaban (1 µM). Platelets were labeled 

using PE fluorescent anti-CD61 (BD Biosciences). The 8-channel microfluidic device was 

fabricated out of polydimethyl-siloxane (PDMS) (Ellsworth Adhesives) as previously 

described [85]. The device was blocked with 0.5% bovine serum albumin (BSA; Sigma-

Aldrich) for 30 minutes before sample perfusion (each channel: 60 µm high, 250 µm wide). 

Apixaban/PPACK-treated whole blood was perfused through the device using a syringe 

pump (Harvard Apparatus) at a wall shear rate of 200 s-1 over a patterned 250-µm long 

strip of 1 mg/mL fibrillar collagen type 1 (Chronolog). The deposited platelet and fibrin 

fluorescence intensities were recorded every minute for 6 minutes. 

 

3.3 Results 

3.3.1 Thrombin stimulation, but not ADP or U46619, attenuated subsequent platelet 
GPVI signaling 

Addition of thrombin (1-10 nM) to diluted apixaban-treated PRP caused a dose-

dependent calcium mobilization (Figure 3-1,A). Pretreatment with thrombin, however, 

resulted in a marked inhibition of calcium mobilization when 20 nM convulxin was added 

480 seconds after thrombin (Figure 3-1,A). In the absence of thrombin pretreatment, 

convulxin drives a massive and sustained calcium mobilization lasting over 700 seconds 

in the measurement. Dasatinib, a Syk inhibitor, blocked convulxin-induced GPVI signaling 

with minimal effect on Gαq agonists of calcium mobilization (via thrombin, U46619, and 

ADP), thus confirming that convulxin is activating GPVI with concomitant calcium 

mobilization dependent on Syk signaling (Supplemental Figure 1). Even the lowest dose 

of thrombin (1 nM), which caused minimal calcium mobilization, had significant inhibitory 

effect on GPVI activation by convulxin. However, convulxin-insensitivity was not observed 

when ADP or U46619 were added instead of thrombin (Figure 3-1,B-C) even though both 
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agonists caused dose-dependent calcium mobilizations similar to that evoked by thrombin 

treatment.  

When ADP was added instead of thrombin, a very low dose of ADP (10 nM) did 

not affect subsequent calcium response to convulxin compared to the control condition 

(Figure 3-1,B). Low to medium doses of ADP (100 nM-1 μM) slightly increased 

subsequent calcium response to convulxin. A high dose of ADP (10 μM) resulted in a 

detectable reduction in subsequent final platelet calcium response to convulxin, but not 

nearly to the extent seen in the case of thrombin. When U46619 was used as the first 

stimulus, very low to medium doses of U46619 (10 nM-1 μM) did not affect subsequent 

calcium response to convulxin compared to the control condition (Figure 3-1,C). Similarly, 

as seen in the case of ADP, a high dose of U46619 (10 μM) resulted in a detectable 

reduction in subsequent final platelet calcium response to convulxin, but not nearly to the 

extent caused by any dose of thrombin. In a related experiment, thrombin treatment of 

apixaban-treated PRP caused a marked loss in platelet sensitivity to CRP (Supplemental 

Figure 2), although 25 g/mL CRP was not as potent as 20 nM convulxin in activating 

platelet GPVI. Type I fibrillar collagen (20 µg/mL) was tested as a platelet agonist instead 

of convulxin. In this unstirred reaction, the platelet calcium response to collagen alone was 

slower than that observed with convulxin alone. As seen with convulxin and CRP, 

pretreatment of the PRP with thrombin (2-10 nM) resulted in a complete insensitivity to 

subsequent exposure to fibrillar collagen (Figure 3-2,A-C). 
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Figure 3-1. Thrombin but not ADP or U46619 blocks subsequent platelet GPVI activation by 
convulxin 
(A) Platelet activation by thrombin for 480 seconds causes a significant reduction in subsequent 

convulxin-induced calcium response. This effect was apparent for doses of thrombin (1 – 10 nM) 

treatment of diluted (12%), apixaban-treated PRP. (B) Platelet activation by ADP does not 

significantly attenuate subsequent convulxin-induced calcium response. (C) Platelet activation by 

the thromboxane analog, U46619, did not significantly attenuate subsequent convulxin-induced 

calcium response. (C, convulxin; T, thrombin; A, ADP; U, U46619). 
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Figure 3-2. Thrombin treatment of platelets blocks subsequent activation via fibrillar 
collagen when measuring calcium mobilization 
Various doses of thrombin (A: 10 nM; B: 5 nM; C: 2 nM) prevent further downstream platelet 

activation via collagen (Chrono-log; 10 µg/mL), fully consistent with the previous findings using 

convulxin. Additionally, collagen and convulxin show significantly different kinetic profiles of GPVI 

signaling which can be attributed to the molecular composition of each species. Collagen, a larger 

and more fibrillar molecule, activates GPVI in a slower but more sustained manner, while convulxin 

elicits a rapid and transient response. 
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3.3.2 Thrombin-induced GPVI signaling defect was time dependent 

Convulxin (20 nM) was added to PRP at varying times after thrombin addition (1-

2 nM). When convulxin was added after low-dose thrombin (1 nM) incubation times of 150, 

210, and 335 seconds, the calcium signal in response to convulxin was comparable to the 

control condition in which PRP was not first activated by thrombin (Figure 3-3,A). 

However, when the incubation time with 1 nM thrombin increased to 480 seconds, 

subsequent calcium responses to convulxin decreased significantly. When a slightly 

higher dose of thrombin (2 nM) was first added to PRP, subsequent calcium responses to 

convulxin were not attenuated until incubation times increased to 210 seconds or higher 

(Figure 3-3,B). The onset time of convulxin-insensitivity depended on thrombin dose 

(Figure 3-3,C). In comparing peak calcium response to convulxin (no thrombin 

pretreatment) with that obtained with prior thrombin treatment, an incubation with 2 nM 

thrombin for 220 seconds or incubation with 1 nM thrombin for 500 seconds led to a 

marked 80% reduction in convulxin-triggered GPVI signaling. 

 

3.3.3 Activating PAR-1 and PAR-4 does not attenuate GPVI signaling     

Thrombin signals through Gq-linked PAR-1 and PAR-4 receptors in human 

platelets, but when PAR-1 and PAR-4 agonists (SFLLRN and AYPGKF) were added to 

PRP (instead of active thrombin), the subsequent platelet calcium response to convulxin 

was unaffected compared to the control condition (Figure 3-4,A). In combination with the 

observations with ADP and U46619, this result indicated that thrombin activity played a 

unique role other than through Gq-dependent signaling through PAR-1/4. When 

vorapaxar, a PAR-1 specific inhibitor was added, calcium signaling in response to 10 nM 

thrombin was fully blocked (Figure 3-4,B). However, when thrombin was added to PRP 

incubated with vorapaxar, the lack of thrombin-induced calcium mobilization had no effect 
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on the subsequent thrombin-dependent GPVI-signaling defect when convulxin was added 

(Figure 3-4,C). In separate calcium mobilization experiments using PAR-1 and PAR-4 

activating peptides, vorapaxar was found to be a PAR-1 selective inhibitor (Supplemental 

Figure 3), as expected. 

 

 

Figure 3-3. Effect of thrombin dose and exposure time to drive convulxin-insensitivity 
(A) When platelets were treated with low dose thrombin (1 nM), the reduction of convulxin-

sensitivity was time-dependent with strong onset detected between 335 and 480 sec of thrombin 

incubation. (B) When platelets were activated by a slightly higher thrombin dose (2 nM), thrombin-

induced convulxin-insensitivity was detected after 200 sec of thrombin incubation. (C) Sensitivity to 

convulxin decreased with thrombin incubation time (data fitted with a Hill function) with more rapid 

onset observed at higher thrombin dose. (C, convulxin; T, thrombin). 
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Figure 3-4. Attenuation of convulxin sensitivity was not observed by pretreatment with PAR-
1 and PAR-4 agonist peptides 
(A) Despite calcium mobilization through PAR-1 and PAR-4, platelet activation by PAR-1 and PAR-

4 specific agonist peptides (SFLLRN and AYPGKF) did not reduce subsequent convulxin-

insensitivity, as was observed with thrombin. (B) Vorapaxar, a PAR-1 antagonist, blocked thrombin-

induced calcium signaling. (C) The convulxin-insensitivity after thrombin treatment was still 

apparent in the presence of vorapaxar. (PAR-1=SFLLRN activation peptide; PAR-4=AYPGKF 

activation peptide; V, vorapaxar; T, thrombin; C, convulxin). 
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3.3.4 Soluble fibrin caused convulxin insensitivity independent of receptor shedding or 
fibrin binding to αIIbβ3 

The results shown in the previous figures are fully consistent with thrombin acting 

on a plasma element to attenuate platelet sensitivity to GPVI agonists. This was confirmed 

in an assay comparing the effect of thrombin pretreatment of washed platelets versus 

PRP. Thrombin pretreatment of washed platelets caused substantial calcium mobilization, 

but had little effect on the GPVI response to convulxin (Supplemental Figure 4), 

confirming the role of thrombin on a plasma component. We next tested the ability of 

GPRP to block soluble fibrin multimerization and rescue GPVI function in the presence of 

active thrombin. When thrombin was first added to PRP incubated with GPRP, subsequent 

calcium response to convulxin was completely normal when compared to the control 

condition where no thrombin was first added (Figure 3-5,A). This demonstrated that 

soluble fibrin assembly was essential for the thrombin-induced ablation of platelet 

sensitivity to convulxin. GPRP rescued GPVI sensitivity to convulxin for thrombin 

pretreatment concentrations ranging from 2-20 nM (Supplemental Figure 5). Unlike 

thrombin, the P2Y1/P2Y12 agonist ADP does not induce polymerization of fibrinogen into 

fibrin. Therefore, as expected, when the experiment in Figure 3-5,A was repeated with 

ADP instead of thrombin, GPRP had no effect on the subsequent calcium response to 

convulxin (Figure 3-5,B). Notably, in the calcium responses to thrombin alone, the calcium 

signal displayed an upward trend, consistent with soluble fibrin acting as a weak GPVI 

activator [75]. However, in cases with GPRP present, the thrombin-induced calcium 

mobilization was transient and eventually returned to baseline (Figure 3-5,C).  

Since fibrin assembly was required for convulxin insensitivity, we tested if FXIIIa 

activity played a role in thrombin-induced GPVI attenuation. Interestingly, the FXIIIa 

inhibitor T101 had little effect on platelet response to thrombin, but caused a marked 

reduction in the thrombin-induced convulxin insensitivity (Figure 3-6,A-B). Additionally, 
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T101 alone had little effect on the convulxin response of platelets without thrombin 

pretreatment. T101 was unable to overcome the attenuation of GPVI at the highest 

thrombin concentration tested (20 nM).  

Since GPVI activators like CRP (as well as thrombin) can cause GPVI dimerization 

[86,87] and shedding by metalloproteases such as a-disintegrin-and-metalloproteinase 10 

(ADAM10), we tested the role of shedding in thrombin-induced GPVI-signaling deficiency. 

Treatment of PRP with the metalloprotease inhibitor GM6001 had little effect on the ability 

of thrombin to attenuate platelet response to convulxin (Figure 3-6,C). GPRP maintained 

its ability to prevent thrombin-induced convulxin-insensitivity in the presence of GM6001. 

Use of the αIIbβ3 inhibitor, GR144053, inhibited fibrinogen-dependent platelet 

aggregation (via aggregometry) as expected, however GR144053 did not alter the 

thrombin-mediated attenuation of convulxin-induced signaling (Supplemental Figure 6). 

This finding eliminates the potential role of fibrin(ogen)-driven integrin αIIbβ3 outside-in 

signaling in the observed deficiency in response to GPVI agonists. These results indicate 

that GPVI shedding and αIIbβ3-mediated fibrin binding were not the cause of convulxin-

insensitivity in the presence of soluble fibrin, even when soluble fibrin served as a relatively 

weak agonist for platelet GPVI. When soluble fibrin is formed in the presence of vorapaxar 

(to prevent thrombin activation), there is little change in calcium signal (Figure 3-4,C), 

indicating that the generation of soluble fibrin is not strongly activating in this system. Still, 

in this experiment with vorapaxar present, a marked convulxin insensitivity was observed 

(an effect fully reversed by GPRP and indicative of soluble fibrin driving the GPVI-signaling 

deficiency). 
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Figure 3-5. Inhibition of fibrin polymerization with GPRP prevents thrombin-induced 
convulxin-insensitivity 
(A) The thrombin-induced attenuation of platelet calcium GPVI signaling was not observed when 

GPRP was present. (B) Because platelet activation by ADP does not cause fibrinogen to 

polymerize into fibrin, GPRP has no effect on subsequent convulxin response. (C) Following 

thrombin stimulation of platelets, fibrin results in a sustained calcium mobilization that returned to 

unstimulated levels in the presence of GPRP. 
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Figure 3-6. Inhibition of cross-linking enzyme FXIIIa with T101 results in significant 
restoration of platelet GPVI activity and inhibition of ADAM10 shows no effect of GPVI 
shedding 
(A) Calcium dye-loaded platelets were incubated with 1 mM T101 for 10 minutes prior to activation 

with thrombin (2-20 nM). In the presence of the FXIIIa inhibitor, fibrin still polymerizes but cannot 

cross-link to form the traditional mesh network which is crucial for clot stabilization. The plot shows 

the effect of T101 towards greatly restoring convulxin-induced platelet activation. (B) Platelet GPVI 

exhibits a marked increase in sensitivity, especially at intermediate concentrations of thrombin (n=4 

donors, * p<0.05). (C) Thrombin-induced convulxin-insensitivity does not require GPVI shedding. 

Activation of platelets by thrombin resulted in attenuation of subsequent convulxin-induced calcium 

mobilization even in the presence of GM6001, which blocks GPVI shedding. When GPRP was 

present to block fibrin polymerization, thrombin treatment had no effect convulxin sensitivity, even 

in the presence of GM6001 which blocks GPVI shedding.   
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3.3.5 Thrombin treatment of washed platelets in purified fibrinogen displays convulxin 
insensitivity 

Since thrombin can act on numerous proteins in plasma, washed platelets were 

placed in a buffer containing purified fibrinogen to explore the role of soluble fibrin 

generation. Distinct from PRP, this buffer does not contain plasma antithrombin or FXIII. 

The washed platelets were incubated with human fibrinogen (500 nM) with and without 

GPRP for 10 minutes before the assay (Figure 3-7,A). Exposure for 480 seconds of the 

washed platelets in purified fibrinogen to a low dose of thrombin (1 nM) caused a marked 

attenuation of the subsequent convulxin response (Figure 3-7,B). Similar to the PRP 

experiments, GPRP prevented the thrombin-dependent signaling defect in response to 

convulxin. Soluble fibrin assemblies reached a size of 1.095±0.347 µm after 10 min of 

thrombin-fibrinogen reaction, as detected by light scattering (Supplemental Figure 7).  

 

3.3.6 Soluble fibrin reduces platelet deposition to collagen under flow 

Fluorescent fibrinogen (0.788 mg/mL) was incubated in either 5 mM GPRP or HBS 

(control condition) for 10 min. Following incubation, 2.5 nM thrombin was added to 

generate either soluble fibrin monomer (GPRP present) or soluble fibrin polymer (HBS 

control). After 300 seconds, thrombin activity was inhibited with 100 µM PPACK. The 

resulting solutions were diluted by a factor of 10 in PPACK/apixaban-treated whole blood 

(treated to prevent endogenous thrombin production or thrombin activity). Platelet 

deposition from whole blood with 230 nM soluble fibrin monomer (GPRP condition) or 230 

nM soluble fibrin polymer (HBS control condition), nominal concentrations assuming 100% 

fibrinopeptide release by thrombin, was then tested on collagen at a wall shear rate of 200 

s-1 (Figure 3-8,A).   
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Figure 3-7. Thrombin activation of washed platelets in purified fibrinogen reduced 
subsequent activation by convulxin, an effect blocked by GPRP 
(A) Schematic of experimental protocol. (B) In a washed platelet and fibrinogen (500 nM) mixture, 

low dose of thrombin (1 nM) at 480 seconds incubation time significantly attenuated subsequent 

convulxin response. 

 

As expected, 5 mM GPRP substantially blocked the amount of fibrin that co-

deposited with the platelets (Figure 3-8,C-E). This indicated that ~8000 nM fibrinogen in 

whole blood outcompeted 230 nM fibrin monomer for platelet binding. In contrast, 230 nM 

soluble fibrin polymer added to whole blood co-deposited with platelets, even in the 

presence of normal levels of fibrinogen. When GPRP is present, there still appears to be 

a small amount of fibrin detected by fluorescence, which can be attributed to platelet-

bound fibrinogen or soluble fibrin monomer. Consistent with a defect in collagen-induced 

platelet activation via GPVI, the presence of soluble fibrin polymer (HBS control condition) 

caused a substantial reduction of platelet deposition on collagen (Figure 3-8,B-E), 

especially after ~100 seconds when ADP and thromboxane release are especially 

important for platelet buildup [88]. 
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Figure 3-8. Under thrombin-free conditions, presence of soluble fibrin in whole blood 
reduces platelet adhesion on collagen under flow 
(A) Schematic of experimental protocol. Fluorescent fibrinogen was exposed to 2.5 nM thrombin 

with either 5 mM GPRP (inhibit fibrin formation) or HBS (control). After 300 s, the thrombin was 

quenched with 100 μM PPACK. This reacted fibrinogen/fibrin solution was diluted by a factor of 10 

into PPACK/apixaban-inhibited whole blood with either 5 mM GPRP or HBS and then perfused 

through an 8-channel microfluidic device at 200 s-1 over a collagen surface. (B) GPRP increased 

platelet deposition on the collagen surface after 60 s. (C) Fibrin co-deposition with platelets was 

significantly decreased with 5 mM GPRP. (D) At 120 s, soluble fibrin monomer (GPRP present) 

resulted in more platelet deposition to collagen, while soluble fibrin polymer (no GPRP) resulted in 

less platelet adhesion to collagen. (E) At 240 s, platelet deposition and aggregation on collagen 

was quite pronounced in the presence of GPRP which blocked fibrin co-deposition, as expected. 
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3.4 Discussion 

In coagulopathic blood, low levels of thrombin in the systemic circulation may 

generate soluble fibrin monomers and small submicron-scale soluble protofibrils (<10-50 

monomers) that never reach the point of gelation. Several lines of evidence are presented 

that soluble fibrin, not thrombin cleavage of PARs, was the cause of GPVI-signaling 

deficiency in response to convulxin, CRP, and collagen. PAR-1 and PAR-4 activating 

peptides that trigger calcium mobilization had no effect on convulxin response. Vorapaxar, 

which blocked thrombin-induced calcium signaling, had no effect on thrombin-mediated 

convulxin-insensitivity. Agonists such as ADP and U46619, which similarly trigger 

signaling through Gq-coupled receptors, were not able to alter subsequent convulxin 

sensitivity. Importantly, GPRP blocked the ability of thrombin to attenuate platelet 

sensitivity to convulxin.  Also, the time of thrombin exposure and kinetics of onset were 

consistent with fibrin monomer generation and soluble fibrin multimerization. Thrombin 

treatment of washed platelets did not induce convulxin-insensitivity, unless platelets were 

supplemented with purified fibrinogen. Both the calcium mobilization assay with fibrillar 

collagen (Figure 3-2) and microfluidic platelet deposition from flowing whole blood on 

collagen-coated surfaces (Figure 3-8) indicated that exposure of plasma to thrombin 

drives an attenuation of platelet GPVI signaling in response to collagen. 

To test the findings under non-dilute PRP conditions, we used aggregometry to 

generate soluble fibrin under non-static conditions and challenge GPVI through addition 

of convulxin.  The results were consistent with those observed in the calcium mobilization 

experiments: a low dose of thrombin with stirring (1200 rpm) permitted fibrin 

polymerization and subsequent addition of GPVI agonists shows a significant (~35%) 

reduction in aggregation compared to the control, a result which is completely reversed 

with GPRP (Supplemental Figure 8). Platelet aggregation in PRP and platelet deposition 

from whole blood in a microfluidic device were reduced by a similar amount when fibrin 
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was allowed to polymerize, an effect reversed by GPRP. Given the multimeric nature of 

most GPVI activators, it was not unexpected that fibrin monomer which exists in the 

presence of GPRP was insufficient to block GPVI activation. 

GPVI-deficiency is extremely rare and not linked to a strong bleeding phenotype in 

healthy individuals. However, GPVI-deficient patients can display spontaneous bleeds 

[89]. The potential risk of genotypic GPVI-deficiency in combination with trauma is 

unknown. Importantly, a combined deficiency in mouse platelet PAR-4 and GPVI causes 

a severe bleeding phenotype in the tail bleed assay [90]. A level of only 1% conversion of 

fibrinogen (90 nM soluble fibrin) would be sufficient to overwhelm platelet GPVI which 

exists at ~1 nM in PRP, as the avidity of binding between polyvalent soluble fibrin and 

clustering receptors on platelets may be much stronger relative to the Kd of the monovalent 

affinity involving soluble forms of ligand and receptor. Since soluble fibrin can circulate 

without rapid clearance and GPVI signaling through fibrin is fairly weak compared to that 

driven by collagen, platelet hypofunction of endogenous or transfused platelets may be a 

cofactor in certain coagulopathies.    

We are much obliged to highlight recent work demonstrating platelet GPVI as a 

receptor for fibrin, which was also found to bind to a distinct configuration of GPVI [91]. In 

that study, sonicated crosslinked fibrin (but not D-dimer) caused <10% washed platelet 

aggregation over 6 min, while 30 µg/mL D-dimer substantially inhibited platelet 

aggregation by subsequent challenge by 0.1-0.3 µg/mL collagen (but interestingly not 

higher doses of collagen). As noted in [91], an agent that selectively blocks the interaction 

of fibrin but not collagen with GPVI has the potential as antithrombotic therapy with 

reduced bleeding risk. Such an agent might hypothetically also protect circulating platelet 

function in trauma patients with circulating levels of soluble fibrin polymer and lytic 

assemblies of D-dimer. 
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Our results and prior studies of fibrin activation of GPVI during thrombosis [75,80] 

are not particularly discordant on close examination. To mimic systemic blood changes 

and subsequent local hemostatic response, we challenge GPVI with a subsequent agonist 

after pre-exposure to soluble fibrin. In studies of thrombus generation at a wound site, 

there is no additional GPVI ligand added to the assay other than the original fibrin 

generated in the clot [75,80]. Also, there is no reason to expect sub-micron soluble fibrin 

multimers bound to a platelet in suspension to induce the same signaling as a spread 

platelet experiencing large expanses of solid-phase fibrin gel. Since platelets (and many 

other cell types) can sense the rigidity of their adhesive-mechanical environment [92], we 

suggest that platelet signaling on solid fibrin presented on glass/plastic or in a clot may be 

different from platelets in suspension interacting with soluble fibrin. We also observed that 

soluble fibrin multimers induce a weak signal in our assay that was blocked by GPRP 

(Figure 3-5,C). 

We found GPVI attenuation occurred acutely at ~200 seconds with 2 nM thrombin 

treatment (Figure 3-3,B-C) and was not blocked by a metalloprotease inhibitor (Figure 

3-6,C). This timescale of GPVI attenuation and the potency of GPRP to block convulxin-

insensitivity was fully consistent with the known dynamics of fibrin polymerization, which 

typically requires <5-10 minutes. Several prior studies have demonstrated minimal soluble 

GPVI release over 60 min exposure of PRP to tissue factor (200 nM peak thrombin) or to 

thrombin (1 U/ml), both of which generate fibrin in PRP [93,94]. Thrombin alone does not 

release soluble GPVI from washed platelets [95], fully consistent with an absence of 

convulxin-insensitivity following strong thrombin stimulation of washed platelets 

(Supplemental Figure 4).  Even strong agonists like collagen, convulxin, or Factor Xa 

typically require 60 min for full release of soluble GPVI. The exposure of washed platelets 

to one of the most potent inducers of shedding, Factor Xa, did not phenocopy the kinetics 

or severity of GPVI-signaling defects (Supplemental Figure 9) that we observed with 
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soluble fibrin generation. Thus, the observed rapid and acute attenuation of convulxin-

sensitivity is highly unlikely to be caused by fibrin-induced GPVI shedding, which is also 

fully consistent with the lack of effect of GM6001 (Figure 3-6,C). GM6001 is a known 

inhibitor of ADAM-mediated GPVI shedding [93–96]. Platelet GPVI shedding is regulated 

primarily by ADAM10 [97], and may also be facilitated by other members of the a-

disintegrin-and-metalloproteinase family (such as ADAM17) [34]. The GM6001 result 

supports the conclusion that soluble fibrin polymer blocks other more potent ligands from 

binding GPVI, an effect not requiring GPVI shedding. Since fibrin in clots is known to bind 

GPVI, soluble fibrin is likely serving as a receptor antagonist to sterically block other 

ligands from binding. The observed data do not prove mechanism, but are most consistent 

with (1) steric hindrance of GPVI by soluble fibrin species bound to the receptor and/or (2) 

soluble fibrin-triggered GPVI signaling that desensitizes the receptor. The observations 

were not consistent with GPVI shedding, Gαq-dependent GPVI attenuation, or αIIbβ3-

mediated GPVI attenuation as mechanisms of the observed phenotype.   

Distinct from the role of intrathrombus generation of fibrin, low levels of non-gelling, 

soluble fibrin may function differently in the context of trauma to cause an acquired GPVI-

signaling defect in the systemic circulation. Generation of low and transient levels of 

thrombin in coagulopathic blood may generate circulating soluble fibrin able to bind 

platelet GPVI to cause platelet insensitivity to stronger GPVI agonists such as collagen. 

Soluble fibrin is a long-lived species once it is generated, so platelet transfusion therapies 

for high-risk trauma patients may become affected by these pre-existing species in the 

systemic circulation. If transfused platelets display an acquired deficiency in GPVI-

signaling in trauma patients with elevated soluble fibrin, the extraordinary hemostatic 

demands essential for survival may not be fully achieved. 
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CHAPTER 4: PLATELET DYSFUNCTION DURING TRAUMA 
INVOLVES DIVERSE SIGNALING PATHWAYS AND AN 
INHIBITORY ACTIVITY IN PATIENT-DERIVED PLASMA 

 
 
4.1 Introduction 

Traumatic injuries are one of the most common causes of death in the United States 

and abroad, accounting for about 10% of fatalities worldwide [10]. Trauma is well 

recognized as the leading cause of death for younger populations (persons aged 30-40) 

[10,61]. Upon admission to trauma centers for a wide range of mechanisms of injury (MOI), 

approximately 25% of patients will present with a condition known as trauma-induced 

coagulopathy (TIC) [10,31], a complex clinical state highlighted by impaired activity of 

important blood clotting proteins, excessive fibrinolysis, and significant platelet dysfunction 

[10]. The intersection of these phenomena tends to lead to a coagulopathic bleeding 

phenotype which becomes difficult to treat and increases the chance of mortality by more 

than 4-fold [64].  

Several events may combine to drive TIC. For example, perturbation of the 

endothelium during a response to a traumatic episode can lead to generation of activated 

protein C (APC) and glycocalyx shedding, both of which serve anticoagulant and 

profibrinolytic roles [10]. Other biochemical changes also occur in concert with 

hemorrhagic shock, including release of tissue factor (TF) and tissue plasminogen 

activator (tPA), which lead to thrombin and plasmin generation in the circulation [36,61,98]. 

The coinciding coagulant and lytic processes are responsible for elevated levels of soluble 

fibrin species, which have traditionally been quantified by plasma levels of fibrin 

degradation products such as D-dimer [38–40,68]. However, the full extent and 

mechanisms of acquired platelet dysfunction remain poorly understood.      

Platelet dysfunction in trauma patients has been reported in several studies through 

the use of traditional assays like aggregometry, thromboelastography (TEG), and 
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microfludics [28–30,33]. Key findings include decreased aggregation responses to an 

array of platelet agonists in about half of the tested subjects [29], 80% inhibition of ADP-

induced platelet function [28], and defects in deposition to collagen under flow in two-thirds 

of the patient cohort [30]. The concept of an “exhausted” platelet arises from initial 

hyperstimulation in response to tissue damage and eventual tiring of the cell as it 

continues in circulation [28]. Proteolysis or internalization of platelet receptors, including 

glycoproteins VI (GPVI) or Ib (GP1b), might also play a role in downregulation of platelet 

function [34]. Soluble fibrin has been shown to cause a signaling defect in GPVI [99], 

possibly contributing to impaired initial platelet adhesion to exposed collagen at the site of 

vascular injury if platelets interact with circulating fibrin species prior to encountering a 

wound site in need of hemostatic response.      

Studies of platelets from trauma patients have typically only used one or two major 

agonists. With technologies for high dimensional phenotyping of calcium signaling 

pathways [50,84,100], building patient-specific phenotypic profiles of blood cell function 

may provide more information for treatment decisions. This work focuses on assessing 

platelet function in trauma patients using a high-throughput technique to interrogate up to 

six platelet signaling pathways via combinatorial stimulation of surface receptors and using 

intracellular calcium mobilization as a dynamic readout. Additionally, we investigated 

platelet dysfunction during trauma by examining the effects of trauma patient plasma on 

healthy platelets. By all metrics, platelets from trauma patients frequently display a defect 

in agonist response and the plasma from trauma patients may influence this dysfunctional 

platelet phenotype. 
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4.2 Materials and Methods 

4.2.1 Reagents 

Apixaban (SelleckChem, Houston, TX, USA), D-phenylalanyl-prolyl-arginyl 

chloromethylketone (PPACK; Essex Junction, VT, USA), adenosine 5’-diphosphate 

sodium salt (ADP), prostaglandin E1 (PGE1), citrate concentrated solution, and apyrase 

(Sigma-Aldrich, St. Louis, MO, USA),  the GPVI agonist convulxin (Cayman Chemical, 

Ann Arbor, MI, USA), the TP agonist U46619, the IP agonist iloprost (Tocris Bioscience, 

Bristol, UK), the PAR4 agonist peptide H-Ala-Tyr-Pro-Gly-Lys-Phe-NH2 trifluoroacetate 

salt (AYPGKF) and the PAR1 agonist peptide H-Ser-Phe-Leu-Leu-Arg-Asn-OH 

trifluoroacetate salt (SFLLRN) (Bachem, Torrance, CA, USA), Fluo-4 NW calcium dye and 

probenecid (Invitrogen, Carlsbad, CA, USA), and FITC mouse anti-human PAC-1, PE 

mouse anti-human CD62P, and Cy5 Annexin V fluorescent antibodies (BD Biosciences, 

San Jose, CA, USA) were used and stored according to manufacturers’ instructions. 

HEPES-buffered saline (HBS, pH 7.4) was prepared with 20 mM N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES, Fisher Scientific, Fair Lawn, 

NJ, USA) and 150 mM NaCl (Fisher); Tyrode’s buffer (pH 7.4) was prepared with 10 mM 

HEPES, 127.2 mM NaCl, 11.9 mM NaHCO3 (Fisher), 5 mM KCl (Fisher), 0.4 mM NaH2PO4 

(Fisher), 1 mM MgCl2 · 6 H2O (Sigma), and 5 mM D-glucose (Sigma). Where specified, 

Ca2+ HBS was prepared by dissolving CaCl2 · 2 H2O in HBS to achieve a calcium 

concentation of 2 mM. 

 

4.2.2 Study design 

Under Institutional Review Board approval, blood was obtained from trauma 

patients (n=16) who had been admitted to the Penn Presbyterian Medical Center Level 1 

Trauma Center following a severe injury. Patients who are 18-years-old or older, present 

as a trauma alert, and are admitted to the Trauma and Surgical Intensive Care Unit 
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(TSICU) were eligible for the study. Upon arrival to the trauma bay, a research blood 

sample (15 mL) and clinical data were collected by Penn Acute Research Collaboration 

(PARC) research staff. The legal authorized representative and/or patient is consented 

once available and after being debriefed by the clinical care team. Descriptions of patient 

demographics and clinical presentations are outlined in Table 4-1. 

 

 

Table 4-1. Summary of patient demographics and clinical presentations 
Data were collected for 16 enrolled trauma patients to Penn Presbyterian Medical Center’s Trauma-

Induced Coagulopathy and Inflammation (TrICI) study. Patient ages were distributed over a wide 

range (median=31.5, IQR=32.0), and gender distribution was 14 males (87.5%) and 2 females 

(12.5%). Patients presented with a variety of injuries, though the mechanisms were limited to gun 

shot wounds, stab wounds, motor vehicle crashes, and falls. Injury severity scores (ISS) were 

calculated as a measure of the extent of trauma (median=24.5, IQR=15.0), where ISS>15 

represents a major traumatic episode. 
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For each enrolled patient, blood samples were taken at specific time points (0, 3, 

6, 12, 24, 48, and 120 h) after initial admission. Several aliquots with specific 

anticoagulants were prepared for various clinical tests according to the previously 

established protocol; one such tube pre-loaded with apixaban (1.25 µM, final 

concentration) and PPACK (100 µM, final concentration) was prepared for the studies in 

this paper. Collecting blood (2 mL) into two anticoagulants ensured inhibition of factor Xa-

mediated thrombin generation and thrombin activity, respectively. The sample was split 

into two microcentrifuge tubes to isolate platelet-rich plasma (PRP) for immediate platelet 

function studies and platelet-poor plasma (PPP) to be frozen for future analysis. In addition 

to the patient cohort, a set of healthy donors (n=11) was recruited to donate blood 

according to University of Pennsylvania Institutional Review Board approval. Donors self-

reported to being free of any medication or alcohol use for 3 days leading up to the blood 

draw. Additionally, female donors self-reported to not using oral contraceptives. 

 

4.2.3 Intracellular calcium mobilization assays 

Platelet calcium measurements were conducted using a 384-well plate format as 

previously described [99]. Briefly, PRP was prepared via centrifugation of whole blood 

(120g, 10 min) and incubated with Fluo-4 NW calcium dye for 30 min. The dye was 

reconstituted with 5 mL HBS and 200 µL probenecid (77 mg/mL) to prevent dye leakage 

from cells during incubation. One 384-well plate was filled with dilute, dye-loaded PRP 

(12% final concentration after agonist dispense), while a second plate was prepared with 

platelet agonists at specified concentrations. Using the pairwise agonist scanning (PAS) 

method as motivation [50,84], an array of combinatorial stimuli (platelet 

agonists/antagonists) was used to develop subject-specific phenotypic profiles of platelet 

activity. As reported previously, PAS involves exposing dilute PRP to all single and 

pairwise combinations of up to six stimuli at low, medium, and high concentrations, 
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resulting in 154 unique conditions. In order to complete two replicates/condition, ~15-20 

mL of whole blood is required to isolate the necessary amount of PRP. However, due to 

volume constraints in the protocol (2 mL whole blood per patient sample), the 

combinatorial space was restricted to 31 unique conditions – single combinations of five 

agonists (ADP, EC50=1µM;  U46619, EC50=1µM; convulxin, EC50=2nM; SFLLRN, 

EC50=10µM; and AYPGKF, EC50=300µM) at three dosage levels each (0.1x, 1x, 10xEC50), 

and pairwise combinations of the same five agonists as well as one antagonist (iloprost, 

EC50=0.2µM) with each component present at a medium dose (1xEC50) (Supplemental 

Figure 10). Validation of this restricted combinatorial space was performed by training 

neural networks on data acquired from the smaller set of conditions and using the models 

to predict the responses for the full 154 conditions. A relatively reliable correlation 

(R=0.8125) was observed between the measured and predicted data sets after 10 neural 

networks per donor (80 total) were averaged together (Supplemental Figure 11). The 

two well plates were then inserted into a FlexStation 3 automated plate reader (Molecular 

Devices, Sunnyvale, CA, USA) and liquid handling functions were used to dispense 20 µL 

of agonist(s) directly into each well of 30 µL PRP. The fluorescence of the plate was read 

column-wise (Ex: 485 nm; Em: 525 nm) for 20 s prior to dispense and then for an additional 

4 min; the dynamic signal F(t) was also normalized to the pre-dispense baseline Fo. As a 

metric of each platelet sample, the amount of calcium mobilized for all stimuli can be 

calculated as the Total Platelet Calcium Mobilization (TPCM) by Equation (1): 

 

 𝑇𝑜𝑡𝑎𝑙 𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡 𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝑀𝑜𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = ∑ (𝐶𝑎2+ 𝐴𝑈𝐶(𝑖) − 𝐶𝑎2+ 𝐴𝑈𝐶(𝑏𝑢𝑓𝑓𝑒𝑟))

𝑖=𝑃𝐴𝑆 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 (1) 

 

where AUC is area-under-the-curve for calcium trace obtained for the ith-condition. 
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4.2.4 Flow cytometry assays 

Monitoring platelet activation via flow cytometry was conducted as documented 

previously [54]. In short, PRP was isolated as described above and diluted to 10% v/v with 

Ca2+ HBS. In each test tube, 10 µL dilute PRP was added to 74 µL Ca2+ HBS and 2 µL 

each of three fluorescently-labeled antibodies (FITC anti-PAC-1 for α2bβ3 activation, PE 

anti-CD62P for P-selectin expression, and Cy5 Annexin V for PS exposure). Prior to 

analysis, 10 µL of platelet agonists were added to the tubes and allowed to incubate in the 

dark for 10 min. Each sample was analyzed using an Accuri C6 Plus flow cytometer (BD 

Biosciences, San Jose, CA, USA), setting the flow rate to low (14 µL/min, 10 µm core) and 

reading for 60 s. Data were collected and reported as mean fluorescence intensity (MFI) 

for activated α2bβ3 and P-selectin, or % PS-positive cells as determined by pre-set gating 

techniques.  

 

4.2.5 Washed platelet preparation for plasma reconstitution experiments 

Plasma samples were collected from healthy/patient whole blood and stored at -

80°C for future analysis. Healthy washed platelets (WP) were prepared fresh following 

standard procedures. Specifically, whole blood was drawn into syringes containing citrate 

concentrated solution (4% w/v) in a 1:9 citrate:whole blood ratio and apixaban (1.25 µM). 

PRP was isolated as described above, incubated in calcium dye for 30 min, and recalcified 

with 2 mM CaCl2. The PRP mixture was diluted into Tyrode’s buffer supplemented with 1 

µM PGE1 and 1 U/mL apyrase prior to further centrifugation (1200g, 14 min). The 

supernatant was removed and the resulting platelet pellet was resuspended in Ca2+ HBS. 

Washed platelets were combined with plasma samples at specified volume fractions and 

incubated for approximately 30 min prior to platelet function challenge with various 

agonists (Supplemental Figure 12). For example, a final plasma concentration of 12% is 

achieved by addition of 6 µL PPP to 24 µL WP and 20 µL agonist. Calcium mobilization 
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measurements were recorded following the same procedure detailed in the previous 

section. 

 

4.2.6 Thromboelastography 

Blood samples were collected on arrival to the trauma bay (T0), and at 3h, 6h, 12h, 

24h, 48h, and 120h and immediately aliquoted into tubes containing distinct 

anticoagulants for assessment of platelet function or hemostasis state using the TEG 6s 

Hemostasis system (Haemonetics Corp., Braintree, MA, USA) as per the manufacturer’s 

instructions. To monitor the kinetics of patient blood clotting, one mL of blood was mixed 

with 15.87 units of heparin (Sagent Pharmaceuticals, Schaumburg, IL, USA) and was 

pipetted into the PlateletMapping ADP cartridge (Haemonetics, 07-615-US). Separately, 

whole blood was anticoagulated in 3.2% buffered sodium citrate (BD Vacutainer, Becton, 

Dickson & Co., Franklin Lakes, NJ, USA) and pipetted into the Citrated Multichannel 

Cartridge (Haemonetics, 07-601-US) which provides clotting characteristics data 

simultaneously from four independent assays. The de-identified data was stored in a 

secure server. 

 

4.2.7 Statistical analysis 

Analysis of raw calcium fluorescence data was performed by MATLAB version 

R2016a (MathWorks, Natick, MA). Statistical significance tests of results based on 

experimental condition were conducted using a two-tailed unpaired Student’s t-test in 

Prism version 5.03 (GraphPad Software, San Diego, CA).   
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4.3 Results 

4.3.1 Calcium mobilization measurements indicate global platelet dysfunction in trauma 
patients… 

A total of 31 blank, single, and pairwise mixtures of platelet agonists were prepared 

as shown in the color-coded concentration map (Figure 4-1,A) where each row 

corresponds to a specific input agonist mixture (dark blue = no agonist; light blue = low 

concentration; yellow = medium concentration; red = high concentration). Each stimulation 

condition yields a normalized calcium trace [F(t)/Fo] and all 31 traces are shown as 31 

rows in a heatmap (Figure 4-1,B-C). Comparison of the platelets from healthy donors 

(Figure 4-1,B) and trauma patients (Figure 4-1,C) demonstrate a markedly dysfunctional 

phenotype in the trauma patient platelets across all types of agonist stimuli. While trauma 

platelets responded best to the highest dose of convulxin, this response was greatly 

attenuated compared to healthy platelets. Overall, the healthy donor pool exhibited a 

significantly greater extent of TPCM than the trauma patient cohort (Figure 4-1,D-E). The 

average TPCM for healthy platelets was 220 ± 62 a.u. (Figure 4-1,D), greater than that 

found for every trauma patient at the initial time point of the test 0-hr TPCM (Figure 4-1,E). 

TPCM was depressed for every patient in blood samples tested between 0 and 12 hr. In 

general, TPCM displayed an increasing trend with time in several patients, but only 4 

patients (Patients 014, 019, 020, 038) had a single reading in the healthy range at times 

between 12 and 120 hr, potentially due to platelet transfusion. 
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Figure 4-1. Trauma patients exhibit a severely impaired calcium mobilization phenotype in 
response to platelet agonists 
(A) Five platelet agonists (ADP, U46619, convulxin, SFLLRN, and AYPGKF) and one platelet 

antagonist (iloprost) were prepared according to the concentration map shown. Low, medium, and 

high doses (0.1x, 1x, and 10x EC50) of the five platelet agonists as well as pairwise combinations 

of the full six compounds at medium doses (1x EC50) resulted in 31 total conditions including a null 

buffer control. Representative calcium responses to the array of agonists are shown for a healthy 

donor (B) and a trauma patient (C). Observations are quantified on the basis of total area under 

the curve for all conditions (Eq. 1) and results for 11 healthy donors (D) and 15 trauma patients (E) 

are shown. The mean and standard deviation of the healthy donor responses are overlaid on the 

plot of patient data to provide context as to the extent of coagulopathy observed in trauma patients 

and the ability of certain patients to show recovery in platelet function over 120 hr. 

 

4.3.2 Trauma patient platelets exhibit decreased α2bβ3 activation, P-selectin expression, 
and phosphatidylserine exposure upon stimulation in flow cytometry 

Beyond calcium mobilization, platelet activation also can drive integrin activation, 

granule release and phosphatidylserine exposure (especially with collagen/thrombin 

stimulation). Fluorescently activated α2bβ3 antibody (PAC1), P-selectin antibody, and 

annexin V were used in a flow cytometry assay to measure platelet activation in the healthy 
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and patient cohorts. Dilute (1%) PRP was stimulated with calcium-containing HBS, ADP 

(2 µM), or convulxin (4 nM). Unstimulated trauma platelets displayed low levels of 

activated α2bβ3, P-selectin, and PS indicating that they were not in a classically “activated” 

state at the start of the assay. The trauma platelets, however, were able to display 

stimulated levels of α2bβ3, P-selectin, and PS, but to an extent much lower than that seen 

with healthy platelets (Figure 4-2,A-C). As was observed in the calcium mobilization 

assay, addition of convulxin caused the greatest response in both healthy subjects and 

trauma patients. Significant PS exposure was only observed in healthy donors when 

subjected to convulxin; the other data showed no detectable difference above the buffer 

control response (Figure 4-2,C). A representative set of results for a healthy donor is 

shown in Supplemental Figure 13. 

 

4.3.3 Thromboelastography (TEG) data reveal patient platelet defects in whole blood 
samples… 

Whole blood samples from trauma patients were anticoagulated with sodium 

citrate or heparin and dispensed into TEG cartridges to measure platelet function and/or 

hemostatic state. For each test using citrated blood, the machine generates an output of 

five parameters describing different aspects of the clot formation process: the time to initial 

fibrin formation (R), the time to achieve a certain level of clot strength (K), the rate of clot 

generation (angle), the strongest point of fibrin clot (MA), and the extent of fibrinolysis 30 

min after achieving MA (LY30). Using the RapidTEG reagent to interrogate both the 

intrinsic and extrinsic coagulation pathways with kaolin and tissue factor, respectively, 

patient blood samples exhibit relatively accelerated coagulation characteristics, namely 

clotting times and rates, with little to no observed lysis (Figure 4-3,A-D). However, 

platelet-driven clot development and strength appear to be diminished during the first six 

hours post-trauma, as suggested by the MA parameter (Figure 4-3,E), typically most 
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indicative of platelet function [58]. Further, ADP stimulation of heparinized whole blood 

reveals a distinct platelet aggregation defect on par with the results from calcium 

mobilization and flow cytometry experiments (Figure 4-3,F). 

 

 

Figure 4-2. Trauma patient samples show impaired integrin α2bβ3 activation, P-selectin 
expression, and phosphatidylserine exposure in flow cytometry 
Fluorescence-activated cell sorting (FACS) was used to detect platelet activation following 

stimulation with ADP (2 µM), convulxin (4 nM), or buffer. Fluorescent antibodies against the 

activated form of integrin α2bβ3 (A), P-selectin (B), and exposed phosphatidylserine (C) were 

incubated with dilute PRP (1% final concentration) prior to agonist stimulation. Conditions were 

tested in replicate for each donor/patient and mean fluorescent intensities (MFI) of each peak were 

calculated. For PS exposure, the percentage of positive cells were determined by the relative 

intensity of the second peak after gating the data. 
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Figure 4-3. Thromboelastography results for patient samples over time 
Five important parameters describing clot formation and strength were measured at different 

timepoints using a TEG® 6s Hemostasis System (A-E). Averaged data for trauma patients (n=14) 

are shown for citrated whole blood treated with RapidTEG® reagent (dried kaolin + tissue factor) 

and CaCl2 for recalcification. The reported normal ranges (shaded) are: R=4-8 min; K=1-4 min; 

angle=47-74°; MA/max amplitude=55-73 mm; LY30=0-8%. Additionally, platelet function was 

measured using the compatible PlateletMapping cartridge. Data was collected using heparinized 

whole blood and the final metric of platelet activation was calculated as percent aggregation in 

response to ADP stimulation (F), where the shaded region indicates the reference range (83-

100%). 
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4.3.4 Healthy human platelets exhibit impaired function in plasma from trauma 
patients… 

Freshly prepared washed platelets reconstituted with plasma (12% v/v plasma, 

final concentration) were challenged with agonists at high doses (10xEC50). Responses to 

convulxin, ADP, U46619, and SFLLRN were significantly reduced when platelets were in 

the presence of plasma isolated from trauma patient blood samples (Figure 4-4,A-D). 

Specifically, the signals were 54%, 56%, 59%, and 54% lower in terms of area-under-the-

curve (AUC) when the system contained patient plasma compared to healthy plasma. 

These data indicate a clear role for a plasma component on platelet function, perhaps 

polymerized fibrin or its degradation products as suggested in other work [91,99,101]. 

ELISA for D-dimer, the smallest fibrin degradation product (FDP) in terms of size, showed 

~30-fold increase in D-dimer concentration in trauma patient plasma in comparison to 

healthy plasma (Supplemental Figure 14). The patient and healthy plasma samples used 

in the experiment shown in Figure 4-4 contained 21.9 nM and <1 nM D-dimer, 

respectively.   

 

4.3.5 Healthy plasma imparts a detectable inhibition of washed platelet activation but 
patient plasma samples result in more potent effect 

The previous experiment was repeated with a screen of plasma samples from 

several healthy donors and trauma patients to detect the range of effects of each class of 

plasma. A control condition (no plasma addition) served as a baseline response to which 

wells containing healthy or trauma plasma were normalized. High concentrations of 

convulxin (20 nM) or ADP (10 µM) were used as challenging stimuli and the calcium 

mobilization AUC result for each platelet/plasma pair are plotted as percent of the control 

response (Figure 4-5,A-B). In the case of each stimulating agonist, presence of healthy 

plasma resulted in ~25% reduction of the control response, whereas addition of patient 

plasma samples further decreased the observed signal to ~50% on average. Each dataset 
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shows statistical significance from the others, with the difference between the control 

condition and the trauma plasma samples being the most signficant for both agonists. 

 

 

Figure 4-4. Healthy donor platelets lose function when reconstituted in trauma patient-
derived plasma 
Washed platelets from healthy donors were prepared according to standard protocol and 

resuspended in platelet-poor plasma (PPP) from healthy donors or trauma patients. The platelet-

plasma systems were incubated for about 10 min prior to exposure to various platelet agonists to 

test cell functionality. The agonists tested were 20 nM convulxin (A), 10 µM ADP (B), 10 µM U46619 

(C), and 100 µM SFLLRN (D). In each case, platelets in a trauma plasma setting showed ~50% 

decrease in calcium mobilization from platelets in a healthy plasma setting. 
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Figure 4-5. Screening several plasma samples reveals a more potent inhibitory effect in 
trauma samples than healthy samples 
Functionality of platelets from healthy donors (n=3-4) was screened in the presence and absence 

of PPP from several other healthy donors and trauma patients using the same protocol as Fig. 4. 

Responses to 20 nM convulxin (A) and 10 µM ADP (B) were normalized to the control condition 

(no plasma). Though healthy plasma showed a down-regulation of platelet function, plasma derived 

from trauma patients showed a more potent inhibition in both agonist tests. Data are presented as 

mean ± SEM. (**p<0.01, ***p<0.001, ****p<0.0001). 

 

4.3.6 Plasma concentration is correlated with decreased platelet function 

All platelet-plasma combination experiments in previous sections were comprised 

of 12% plasma and a clear down-regulatory effect was observed. The effect of final plasma 

content was studied by titrating a range of concentrations (1-30%) and challenging platelet 

function with 20 nM convulxin, 100 µM SFLLRN, or 10 µM ADP. For each of the agonists, 

a negatively-sloping dose-response curve was created in which platelets incubated in 

increasing levels of healthy donor-derived or trauma patient-derived plasma steadily 

became hypofunctional (Figure 4-6,A-C). The negative correlation between platelet 

calcium mobilization and plasma concentration was evident in both healthy and patient 

plasma settings, though there was clear parity between the two plasma classes at each 

concentration to an extent comparable to the results in Figure 4-4 and Figure 4-5. 
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Figure 4-6. Increasing plasma concentrations reduces the calcium fluorescent signal in both 
healthy and patient plasma settings 
Plasma concentration was varied from 1% to 30% and healthy washed platelets were incubated in 

the presence of healthy (autologous/nonautologous) plasma or trauma plasma. A control repsonse 

(no plasma) was also prepared for data normalization purposes. All conditions were challenged 

with a potent dose of convulxin (20 nM) and data were plotted as a dose-response curve showing 

a negative relationship between plasma concentration and platelet response. Data are presented 

as mean ± SD. 
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4.4 Discussion 

In an effort to better understand platelet dysfunction in trauma patients, we present 

new results confirming the phenotype in several functional assays. Combinatorial agonist 

stimulation revealed significant depression of platelet calcium mobilization in patient 

samples compared to healthy controls, though it appeared the two populations show 

similar sensitivity to strong agonist conditions (e.g. high dose CVX) (Figure 4-1). Patient 

responses varied widely, perhaps due to diverse injury conditions or treatment strategies, 

and partial recovery of platelet function was observed in one-third of the patients. Trauma 

patients also showed low α2bβ3 activation, P-selectin display, and PS exposure following 

stimulation via flow cytometry (Figure 4-2), and thromboelastography (TEG) data showed 

relatively fast clotting times (R,K) and rates of clot formation (angle), but initially diminished 

clot development (MA) and platelet aggregation (Figure 4-3). The patient sample size in 

this study (n=16) may prevent the generalizable nature of the results and certainly 

warrants further investigation, but we have validated the coagulopathic phenotype of 

platelet dysfunction through the use of several lab and clinical techniques, which has not 

been reported previously to our knowledge.  

A potential link between these results is the injury severity score (ISS), an 

anatomical quantification system to describe the extremity of a patient’s injured state. The 

ISS accounts for multiple regions of the body, with scores ranging from 0-75 and the 

threshold for major trauma set at ISS=15 [102,103]. Individual ISS scores for the cohort of 

16 trauma patients are listed in Table 4-1 (median=24.5, IQR=15). This large range led 

us to hypothesize that the extent of platelet dysfunction may be correlated with the severity 

of the condition. However, we found no such relationship (Supplemental Figure 15), 

suggesting an added emphasis on the plasma effect observed in Figure 4-4, Figure 4-5, 

and Figure 4-6. The final ISS assigned to a patient is often determined at some later time 
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point during or even after the patient’s stay and does not account for the patient’s previous 

medical history, which may explain the lack of correlation. 

We also show a negative influence of plasma on platelet function. Diluting PRP with 

PPP to normalize platelet count has previously been shown to impair platelet aggregation 

[104]. Further, cellular microparticles isolated from traumatic hemothorax blood, and to a 

lesser extent shed frozen plasma, inhibit platelet response to ADP, arachidonic acid, and 

collagen [105]. The effect we observed was more potent with trauma patient-derived 

plasma, implying an amplified role of certain soluble species on cell viability. Other groups 

have shown elevated levels of soluble FDPs in trauma patient plasma [39,40], which we 

confirmed via D-dimer ELISA (Supplemental Figure 14). The role of circulating fibrin 

fragments on inherent and transfused platelet function is a subject of continuing study, but 

initial results show binding sites for fibrin on GPVI [91] and signaling defects following 

thrombin-mediated platelet activation and fibrin polymerization [99]. At this point it is 

difficult to elucidate whether these species (e.g. D-dimer) are meant to simply serve as a 

biomarker or if there exists an important mechanistic explanation linking elevated plasma 

concentrations and platelet dysfunction. Other possible hypotheses include roles of 

platelet-silencing species such as cAMP and cGMP, which are reported as elevated in 

trauma platelets and correlated with injury severity [106].  

With the sustained prevalence and diversity of trauma-related injuries and 

mortalities, understanding the mechanisms of action as well as developing sufficient 

treatment strategies is becoming increasingly necessary. We highlighted the development 

of phenotypic profiles of platelet function to be used to guide clinicians in making informed 

decisions. Additionally, the observation of a plasma-mediated inhibitory effect gives rise 

to implications of transfusion therapies being ineffective or uninformed. Recent work has 

debated the appropriate volumes and ratios of blood products to administer to 

coagulopathic patients [107,108], but perhaps transfusions are not always optimal. In fact, 
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platelet transfusions in trauma patients have been shown to have little effect on platelet 

function recovery [47] and resuscitation of hemorrhagic rats via whole blood delivery failed 

to restore platelet viability [109]. Healthy platelets may inherit the “zombie” nature of the 

unresponsive but still circulating cells upon exposure to the patient’s plasma, as suggested 

by the in vitro results in this study. 

 



70 
 

CHAPTER 5: D-DIMER AND FIBRIN DEGRADATION PRODUCTS 
IMPAIR PLATELET SIGNALING: PLASMA D-DIMER IS A 

PREDICTOR AND MEDIATOR OF PLATELET DYSFUNCTION 
DURING TRAUMA  

 
 
5.1 Introduction 

Trauma-induced coagulopathy (TIC) is a relatively common condition observed in 

patients following severe injuries, and is mainly characterized by an excessive bleeding 

phenotype attributed to hyperfibrinolysis, coagulation factor deficiency, and platelet 

dysfunction [10]. Hemorrhagic shock in trauma patients often results in significant 

thrombin generation and release of tPA, leading to a state of both systemic consumptive 

coagulation and thrombolysis [36,61]. As a result, fibrin degradation products and D-dimer 

are produced in large quantities and tend to circulate for extended periods of time [39,40]. 

Platelet dysfunction in these patients has also been identified as one of the key features 

of the coagulopathic phenotype. Though endpoint measurements tend to vary amongst 

studies due to the growing diversity of functional assays, there is general agreement 

regarding decreased platelet activity in injured patients. Several aspects of the hemostatic 

response, including aggregation [29,33], calcium mobilization [110], and deposition on 

prothrombotic surfaces under flow [30], have been shown to be impaired in trauma patient 

blood. Despite the breadth of literature related to platelet dysfunction following trauma, the 

underlying mechanisms contributing to the phenotype are not fully understood.    

The “exhausted platelet syndrome” has been hypothesized as a potential 

explanation, in which circulating platelets experience prolonged activation and eventual 

“tiring” that leads to acquired defects in younger platelets [28,111]. A recent report has 

suggested potential mechanical damage to platelets during trauma which may impact the 

cytoskeleton or configuration of integrins on the cell surface [112]. However, on a more 

biochemical basis, inhibitory effects of factors found in the plasma of traumatized patients 
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have been reported [110], and the effectiveness of platelet transfusions in restoring in vivo 

function in hemorrhaging patients is sub-optimal [47]. These latter results have given our 

group reason to believe certain plasma proteins, specifically fibrin-related species, may 

carry interfering effects on the ability of platelets to function properly. To our knowledge, 

there have been no published reports of potential causal relationships between measured 

D-dimer concentrations and observed platelet dysfunction in trauma, an area we are 

interested in exploring.    

Platelets are dynamic cells that participate in several processes ranging from 

signaling through a multitude of surface receptors, amplification of the hemostatic 

response through release of internal granule contents, and interplay with other blood cells 

and proteins. One of the key interactions that governs platelet aggregation is between the 

platelet integrin αIIbβ3 and the plasma protein fibrinogen. Additionally, platelets can interact 

with several other coagulation enzymes in a protective manner against inhibitors which 

reduces the risk of conditions like disseminated intravascular coagulation (DIC) [113]. This 

knowledge, and previous work from our group and others, has led us to conjecture there 

exists an important physical affinity between platelets and D-dimer or other fibrin-related 

species. This relationship and its impact on platelet function become especially meaningful 

in settings of elevated FDP levels. In this work, we attempt to better understand the factors 

that contribute to platelet dysfunction in trauma by phenocopying patient settings with 

healthy blood. Further, we investigate the effect of D-dimer on platelet function and 

propose new findings regarding potential binding events that may guide future therapy 

strategies. 
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5.2 Materials and Methods 

5.2.1 Reagents 

All reagents were used and stored according to manufacturers’ instructions. Fluo-

4 NW calcium dye and probenecid were obtained from Invitrogen (Carlsbad, CA). Human 

D-dimer ELISA Kit, native human D-dimer protein, and recombinant human tissue 

plasminogen activator (tPA) protein were purchased from Abcam (Cambridge, MA). ADP 

and citrate concentrated solution were from Sigma-Aldrich (St. Louis, MO). Apixaban was 

obtained from SelleckChem (Houston, TX), thrombin and D-phenylalanyl-prolyl-arginyl 

chloromethylketone (PPACK) from Haematologic Technologies Inc. (Essex Junction, VT), 

convulxin from Cayman Chemical (Ann Arbor, MI), PAR-1/4 activating peptides and fibrin 

polymerization inhibitor GPRP from Bachem (Torrance, CA), αIIbβ3 antagonist GR144053 

from R&D Systems (Minneapolis, MN), Factor XIIIa transglutaminase inhibitor T101, 

1,3,4,5-tetramethyl-2-[(2-oxopropyl)thio] imidazolium chloride, from Zedira GmbH 

(Darmstadt, Germany), type I fibrillar collagen from Chrono-log (Havertown, PA), and 

APC-conjugated D-dimer antibody from AssayPro (St. Charles, MO). HEPES-buffered 

saline (HBS) was prepared with 20 mM HEPES and 150 mM NaCl, after which pH was 

adjusted to 7.4 with 1 N NaOH, all from Fisher Scientific (Fair Lawn, NJ). Tyrode’s buffer 

was prepared with 10 mM HEPES, 127.2 mM NaCl, 11.9 mM NaHCO3 (Fisher), 5 mM KCl 

(Fisher), 0.4 mM NaH2PO4 (Fisher), 1 mM MgCl2·6 H2O (Sigma), and 5 mM D-glucose 

(Sigma).  

Agonist and other reagent concentrations were chosen based on both previous 

studies and published physiologic ranges. Inhibitor concentrations (GPRP, T101, 

GR144053) were five to ten-fold greater than the minimum doses required to see 

anticoagulant or antiplatelet effects, ensuring complete inhibition. Doses of the fibrinolytic 

agent tPA were supported by published values of plasma levels in trauma patients [47] 

and purified D-dimer concentrations used in the aggregometry assay were determined by 
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our D-dimer ELISA results (Figure 5-3,A). The antibodies used in the D-dimer ELISA and 

the flow cytometry assays were able to recognize both D-dimer subunit and D-dimer 

multimers present in other fibrin degradation products.  

 

5.2.2 Phlebotomy and patient enrollment 

 Whole blood was freshly drawn via venipuncture from volunteer donors following 

University of Pennsylvania’s Institutional Review Board-approved protocols. Syringes 

were pre-loaded with anticoagulants based on the specific assay being performed: 1.25 

µM apixaban to block endogenous thrombin generation through factor Xa activity, 100 µM 

PPACK to inhibit thrombin activity, or 4% citrate concentrated solution (1 part citrate:9 

parts blood) to chelate calcium. Donors self-reported to be free of all medications for seven 

days and alcohol use for three days leading up to the blood draw and female donors were 

free of oral contraceptive use. 

For patient studies, blood was obtained from a subset of enrolled subjects in the 

Penn Acute Research Collaboration’s Trauma-Induced Coagulopathy and Inflammation 

study, as documented in previous work [110]. Briefly, patients admitted to the trauma unit 

who fulfilled enrollment criteria (≥18 years old, present as trauma alert, and admitted to 

Trauma and Surgical Intensive Care Unit) were monitored over the course of 5 days via 

blood collection at specified timepoints (0, 3, 6, 12, 24, 48, and 120 hr). For this work, 

blood was drawn into 1.25 µM apixaban and 100 µM PPACK to ensure negligible thrombin 

generation and activity. General characterizations of trauma patient and healthy control 

cohorts are provided in Table 5-1. All trauma patients and healthy controls were screened 

for previous medical history prior to inclusion in the study. 

 

 

 



74 
 

 Trauma Patients 
(n=22) 

Healthy Controls 
(n=7) 

P-value 

Subject characteristics    
     Age, y 39.5 ± 19.0 32.3 ± 8.2 0.34 
     Male (n, %) 17 (77%) 5 (71%)  
     Prev. conditions/meds (n, %) 0 (0%) 0 (0%)  
     Mechanism of injury (n, %)    
          Gunshot wound 12 (54%) n/a  
          Motor vehicle accident 7 (32%) n/a  
          Fall 3 (14%) n/a  
     ISS 21.4 ± 9.8 n/a  

    
Laboratory measurements    
     Platelet count (x103/µL) 185.4 ± 44.7 209.3 ± 96.0 0.39 
     Fibrinogen, mg/dL 425.0 ± 109.5 (150-400)*  
     D-dimer, ng/mL DDU 9474 ± 9861 194.6 ± 73.1  0.02 
     Ca2+ mobilization, AUC 57.9 ± 54.0 238.7 ± 85.6 <0.0001 

Values are presented as mean ± SD. 
ISS: Injury Severity Score; AUC: area under curve; DDU: D-dimer units 
*Typical reference range for fibrinogen in healthy plasma 
 
Table 5-1. Summary of subject characteristics for complete study cohort 
Populations of healthy donors (n=7) and trauma patients (n=22) were analyzed in this study. 
General demographics, clinical presentations for the patient cohort, and lab measurements of 
common hemostatic variables are summarized in the table. A student’s t test was run to compare 
healthy and patient data for each parameter, and statistical significance is identified by p<0.05. 
Interestingly, platelet function as measured by calcium mobilization experiments was significantly 
lower in the patient population, while D-dimer concentrations were significantly higher compared to 
the healthy control population.   

 
 

5.2.3 Intracellular calcium mobilization 

 For calcium mobilization experiments investigating platelet response to 

combinatorial stimuli in healthy and patient cohorts, platelet-rich plasma (PRP) was 

isolated from apixaban- and PPACK-treated whole blood via moderate centrifugation 

(120g, 10min, 20°C), diluted in HEPES-buffered saline (HBS) and incubated with Fluo-4 

NW fluorescent dye as described in previous work [99]. Briefly, two independent 384-well 

plates were prepared: one plate containing dye-loaded PRP and another containing 

platelet agonists or other reagents. Dynamic data collection was performed with a 

FlexStation 3 (Molecular Devices, Inc., Sunnyvale, CA), an automated plate reader with 

liquid handling functions.  
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 In a separate set of experiments designed to mimic coagulant and lytic states 

during trauma, healthy PRP treated with apixaban only was exposed to a sequential 

addition of thrombin and tPA, followed by platelet function challenge with glycoprotein VI 

(GPVI)-activating convulxin. In some experiments, inhibitors of fibrin polymerization and 

cross-linking (GPRP and T101, respectively) were added to PRP-containing wells 5 min 

prior to reaction activation (Supplemental Figure 16,A). Calcium mobilization traces were 

all normalized by the initial pre-dispense baseline Fo.    

 

5.2.4 Platelet aggregometry 

Platelet aggregation experiments were performed using a Model 700 Whole 

Blood/Optical Lumi-Aggregation System (Chrono-log, Havertown, PA). Healthy PRP or 

washed platelets were prepared as described previously [114] from citrated whole blood 

followed by recalcification with 2 mM CaCl2 (Sigma). Platelet-poor plasma (PPP) or 

Tyrode’s buffer were used as respective controls. Platelet agonists were manually 

dispensed into sample cuvettes at 37°C and aggregation was monitored for 4 min in the 

presence and absence of purified human D-dimer protein. For study of dense granule 

function, Chrono-Lume® reagent (Chrono-log) was added to the cuvette and incubated 

for 5 min prior to beginning the experiment. 

 

5.2.5 ELISA 

 D-dimer plasma concentrations were measured using the Human D-dimer ELISA 

Kit from Abcam (PN: ab196269), which recognizes D-dimer and other FDPs containing 

the D-D epitope. Due to the sandwich nature of the assay with both capture and detector 

antibodies against D-dimer, we believe that the majority of the signal is indicative of D-

dimer presence. Platelet-poor plasma (PPP) samples were prepared via centrifugation of 

apixaban- and PPACK-treated whole blood (2000g, 10min, 20°C) and diluted adequately 
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in supplied diluent buffer to ensure the final optical density measurements (450 nm) fell in 

the pre-determined standard curve range. The assay duration time was about 2 hr from 

sample preparation to final endpoint read on EnVision 2102 Multilabel Reader 

(PerkinElmer, Waltham, MA). The ELISA kit was also utilized to measure resulting 

concentrations in final reaction volumes. Specifically, aliquots from wells described above 

were analyzed for D-dimer content under differing reaction conditions. Further, reactions 

of washed platelets and trauma patient plasma samples with elevated D-dimer levels or 

purified D-dimer were monitored over time to observe the ability of platelets to bind D-

dimer (Supplemental Figure 16,B). Samples of the reactions were taken at specified time 

intervals and platelets were removed prior to protein content analysis of the supernatant. 

  

5.2.6 Flow cytometry 

 Surface binding of D-dimer to platelets was measured via fluorescently conjugated 

anti-D-dimer antibody designed for flow cytometry applications. Dilute (1%) PRP was 

isolated from apixaban- and PPACK-treated whole blood, prepared in HBS supplemented 

with 2 mM CaCl2, and incubated with 10 µL antibody prior to analysis. In some 

experiments, specified inhibitors were also included to investigate the role of certain 

surface receptors on D-dimer binding. Samples were analyzed on an Accuri C6 Plus flow 

cytometer (BD Biosciences, San Jose, CA) for 1 min using the low flow rate setting (14 

µL/min, 10 µm core). Data are reported as mean fluorescent intensity (MFI).  

 

5.2.7 Statistical analysis 

 Fluorescence data were analyzed and plotted with MATLAB (MathWorks, Natick, 

MA). Statistical significance levels between data sets were calculated using a two-tailed 

unpaired t test in Prism version 8.2.1 (GraphPad, San Diego, CA) and set as follows: 

*p<0.05, **p<0.01, ***p<0.001. Correlations between data were tested using the curve-
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fitting function in OriginPro 9 (OriginLab Corporation, Northampton, MA). Confidence 

intervals at the 95% confidence level and Pearson’s correlation coefficients were reported 

to indicate the strength of the best-fit line.   

 

5.3 Results 

5.3.1 Factor XIIIa and fibrinolysis contribute to platelet signaling defect 

 Treatment of diluted PRP (12 vol%) with thrombin (5 nM) caused a transient 

increase in intracellular calcium mobilization (Figure 5-1,A), consistent with previous 

results [99]. After 300 s of thrombin activity, tPA (50 nM) was added to certain wells to 

drive fibrinolysis without eliciting calcium mobilization (Figure 5-1,A). Finally, adding 

convulxin (CVX, 20 nM) to activate GPVI revealed drastically different results depending 

on the composition of each well, specifically whether tPA or inhibitors of fibrin 

polymerization (GPRP) or FXIIIa-mediated cross-linking (T101) were included in the 

pretreatment.  

 The addition of thrombin alone to generate cross-linked soluble fibrin species 

caused up to 90% inhibition of platelet GPVI signaling induced by convulxin (red, Figure 

5-1), consistent with previous results [99]. Incorporating tPA into the system to produce 

cross-linked FDP further reduced platelet response to CVX (black, Figure 5-1). These 

conditions were repeated in the presence of the FXIIIa inhibitor T101 (1 mM) to investigate 

the importance of fibrin cross-linking, with and without fibrinolysis. Non-crosslinked soluble 

fibrin (green, Figure 5-1), formed in the presence of thrombin and T101, showed only 

moderate inhibitory effect on GPVI signaling. Adding tPA to generate non-crosslinked FDP 

(T101 present) showed substantial inhibition of GPVI signaling (pink, Figure 5-1). Full 

platelet function was recovered when fibrin polymerization was inhibited with 5 mM GPRP 

(yellow, Figure 5-1) as previously observed [99]. The extent of platelet inhibition was 

quantified by calculating the integrated area under the curve after CVX dispense and 
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comparing it to the control condition (blue, Figure 5-1). Each colored bar in Figure 5-1,B 

corresponds to the signal derived from the colored trace in Figure 5-1,A. The relative 

potency of these species to inhibit convulxin-induced GPVI signaling was: cross-linked 

FDP (D-dimer) ≥ cross-linked soluble fibrin > non-crosslinked FDP >> non-crosslinked 

soluble fibrin >>> fibrin monomer. This assumes 50 nM tPA is sufficiently high enough 

dose to fully dissolve soluble fibrin under the well-mixed conditions of the assay. 

To further test that the effect of cross-linked FDP was more inhibitory than cross-

linked soluble fibrin (thrombin+tPA vs. thrombin only, respectively), we decreased the 

thrombin concentration while maintaining the tPA dose. Decreased thrombin 

concentrations (<5 nM) in control wells showed a dose-dependent restoration of response. 

The addition of tPA, however, consistently impaired GPVI calcium mobilization 

(Supplemental Figure 17,A). This suggests that, of all fibrin-related species, cross-linked 

FDP of various sizes (including D-dimer) are the most inhibitory. Generation of the D-

dimer epitope in thrombin-treated PRP required tPA and was confirmed by sampling 

aliquots of the reaction mixtures and measuring plasma concentrations via ELISA 

(Supplemental Figure 17,B). 
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Figure 5-1. Effect of cross-linked fibrinolytic products on healthy platelet function 
Fibrinolysis was simulated in vitro by sequential addition of thrombin and tPA to dilute, calcium dye-

loaded PRP isolated from healthy donors. Platelets were then challenged with a potent dose of 

CVX. Representative calcium mobilization traces for various conditions (A) and quantification of 

GPVI signaling based on area-under-the-curve following CVX dispense in comparison to a null 

control condition (B) are shown. 
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5.3.2 D-dimer impairs platelet aggregation in response to various agonists 

To further examine the effect of FDP on platelet function, we conducted 

aggregometry experiments in the presence and absence of purified human D-dimer. 

Healthy PRP or washed platelets (WP) were incubated with 50 µg/mL D-dimer or HBS 

and subsequently stimulated with collagen (2 µg/mL), PAR-1 activating SFLLRN (26 µM), 

or ADP (10 µM). In each condition, platelet aggregation was impaired in the presence of 

D-dimer, both qualitatively (Figure 5-2,A-D) and quantitatively (Figure 5-2,E). When 

washed platelets were isolated and concentrated, creating a fibrinogen-reduced setting, 

D-dimer strongly inhibited aggregation (Figure 5-2,A). In PRP aggregometry, the 

aggregation was initially identical in the D-dimer and control conditions, but D-dimer soon 

prevented further aggregation and drove disaggregation (Figure 5-2,B-D). This feature is 

often indicative of defective granule release and is important for secondary aggregation 

and clot development (confirming data showing dysfunctional ATP release by lumi-

aggregometry in Supplemental Figure 18) [56]. Recent data has suggested alpha 

granule release is intact in trauma through the monitoring of P-selectin display [112]. Our 

data suggest that diminished ATP levels following platelet stimulation in the presence of 

D-dimer lead to defective dense granule performance. 

 



81 
 

 

Figure 5-2. Effect of presence of D-dimer on healthy platelet aggregation following agonist 
stimulation 
PRP or washed platelets were prepared from healthy citrated whole blood and incubated with 

human D-dimer or buffer control. Cells were stimulated with common agonists and aggregation 

was measured via light transmission. (A-D) Collagen, SFLLRN, and ADP were used as stimuli at 

the specified concentrations. (E) The experimental data are quantified on the basis of % maximum 

aggregation. 
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5.3.3 Plasma D-dimer is a predictor of trauma-induced platelet dysfunction 

 Using blood from healthy donors and trauma patients, total platelet function in 

response to an array of stimuli (single and pairwise combinations of six common agonists) 

was calculated as Total Platelet Calcium Mobilization (TPCM), defined and measured in 

previous work [110] (see  

Supplemental Figure 19 for details). Agonists included ADP, thromboxane A2 analog 

U46619, convulxin, PAR-1/4 specific peptides SFLLRN and AYPGKF, and IP-receptor 

activator iloprost and were used at 0.1x, 1x, and 10x EC50, as previously determined [50]. 

Though TPCM is a quantitative measure of platelet function, it should be interpreted more 

as a global comparative metric to indicate deviations from normal or healthy behavior, 

since it is calculated from several independent measurements.  

 Plasma D-dimer concentrations were measured via ELISA, which provided a 

metric of D-dimer equivalents for FDP and fully degraded D-dimers in the trauma plasma. 

Healthy donor blood samples exhibited much higher platelet function and much lower D-

dimer concentration than trauma patient-derived samples (Table 5-1, Figure 5-3). The D-

dimer concentrations of both populations were consistent with previous literature 

[39,41,115], which increases our confidence in the reliability of the ELISA employed. 

Analyzing healthy and patient data together showed an inverse correlation between D-

dimer concentration and TPCM (R=0.8236, Pearson’s correlation coefficient), indicating 

that D-dimer was a predictor of platelet dysfunction within the power of the correlation 

presented (Figure 5-3,A). When the calcium traces were analyzed further by investigating 

agonist-specific induction (Supplemental Figure 20) or patient-specific trends (not 

shown), D-dimer remained a strong predictor of poor calcium mobilization. Both platelet 

dysfunction and elevated D-dimer have been reported previously in trauma, but the strong 

correlation between the two metrics is a novel observation.   
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Figure 5-3. Correlation between D-dimer level and total platelet calcium mobilization 
TPCM and plasma D-dimer concentrations were calculated for several healthy subjects and trauma 

patients. (A) The two parameters display a strong negative correlation when plotted against each 

other. Confidence intervals at 95% confidence level are shown as dotted lines. (B, C) A time 

dependence of recovery of platelet function and reduction of D-dimer concentration amongst 

trauma patients is shown. D-dimer concentrations were plotted on a log-scale. 



84 
 

 Averaging patient data into bins based on time of sample collection and 

experimentation revealed statistically significant recovery of platelet function (Figure 

5-3,B) and declining D-dimer levels (Figure 5-3,C). However, full return to healthy 

baseline was not achieved after several days of hospital treatment, indicating complete 

restoration of initial hemostatic state in trauma patients is a slow process.  

 

5.3.4 Healthy washed platelets bind D-dimer over time and trauma platelets feature D-
dimer on cell surface 

 We tested the capability of platelets to bind D-dimer by incubating freshly prepared 

healthy washed platelets with plasma samples from trauma patients. Plasma D-dimer was 

measured with time of incubation. Compared to control experiments in which no platelets 

were added to the system and D-dimer levels were constant (data not shown), D-dimer 

concentrations decreased over the course of 1 hr with platelet incubation (Figure 5-4,A). 

Lower volume fractions of plasma (meaning more platelets present in the system) resulted 

in a greater decrease in D-dimer concentration; 20 vol% plasma systems achieved ~20% 

decrease after 60 min, while 10 vol% plasma reactions concluded with ~40% reduction in 

initial D-dimer level. Additionally, using purified human D-dimer (1.5 µg/mL) in place of 

plasma samples showed a similar kinetic profile (Figure 5-4,A). These results indicate 

that platelets can bind to D-dimer in suspension even in the absence of agonist 

stimulation.  
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Figure 5-4. Binding of D-dimer by platelets over time 
(A) Healthy washed platelets were reconstituted with trauma patient plasma as a D-dimer source 

or purified human D-dimer. Decreases in protein content over time imply platelet uptake of D-dimer. 

(B) Calculations of D-dimer occupancy on the platelet surface were performed. (C) Flow cytometry 

experiments show trauma patient platelets exhibit more D-dimer on the cell surface than healthy 

donor platelets. 
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Using the data in Figure 5-4,A, we estimated D-dimer occupancy on a normalized 

per-platelet basis. For ~200,000 platelets/µL and incubation in 10 vol% and 20 vol% 

plasma, we calculated approximately 10,000 D-dimer equivalents bound per platelet 

(Figure 5-4,B). In the 20 vol% plasma scenario, cellular uptake was more gradual and 

constant over time. When more platelets were present (10 vol% plasma system), most of 

the D-dimer uptake took place in the first 10 min (Figure 5-4,B). However, when the 

calculation was performed on the system in which platelets interacted directly with purified 

human D-dimer, only 4,000 molecules/platelet were observed after 1 hr. This may be due 

to the diversity in size and composition of fibrin degradation products in plasma that signal 

positive for D-dimer in the ELISA being used, which has been discussed as a potential 

limitation. Certain small oligomers containing the cross-linked D-domain moiety, which 

may contribute to the total detected protein concentration, may also be able to bind the 

platelet surface. Considering reported receptor copy numbers in platelets (αIIbβ3: 40,000-

80,000; GPVI: 4,000) [116,117], we hypothesize that most of the observed uptake of D-

dimer involved both αIIbβ3 and GPVI. 

Trauma patient blood samples also exhibited higher, though not statistically 

significant, quantities of D-dimer on the platelet surface as quantified by flow cytometry 

(Figure 5-4,C). In contrast to healthy platelets, there was about a 3-fold increase in the 

mean fluorescent intensity in the patient platelets. In an experiment to explore which 

platelet receptors were involved in D-dimer binding, we used GR144053 to block integrin 

αIIbβ3 and saw a partial reduction in the bound D-dimer signal. Some of our previous work, 

as well as that of other groups [91,99,118,119], has implied that GPVI may also be a 

potential receptor to which D-dimer and other fibrin-derived species can bind. 
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5.4 Discussion 

Fibrinolytic products, like D-dimer, have traditionally been used as biomarkers for 

deep vein thrombosis (DVT), venous thromboembolism (VTE), and disseminated 

intravascular coagulation (DIC) [120,121]. For example, Bounameaux et al. first reported 

elevated levels of D-dimer in subjects with pulmonary embolism in 1991 [122]. Despite the 

number of papers highlighting D-dimer as a biomarker for thrombosis and elevated D-

dimer during trauma, there are few studies investigating the potential mechanistic 

contributions of these degradation products to dysfunctional hemostasis or platelet 

activity. In trauma patients whose systemic circulation is exposed to both tissue factor and 

tPA, elevated levels of soluble fibrin, FDP, D-dimer, F1.2, thrombin-antithrombin complex, 

and fibrinopeptide A/B are expected [40]. 

Using a 384-well plate assay, we explored the effect of various fibrin species on 

platelet function using diluted PRP exposed to the sequential addition of thrombin and 

tPA. Characterizing the inhibitory effects of various fibrin-related species on downstream 

platelet signaling through the collagen receptor GPVI led us to develop a hierarchy of 

GPVI signaling inhibition from the most potent species (D-dimer) to essentially inactive 

(fibrin monomer) (Figure 5-1). As expected, plasma D-dimer concentrations were notably 

higher in a trauma patient population compared to healthy controls (Table 5-1), as 

measured by sandwich ELISA with specificity for D-dimer and other D-D-containing 

oligomers. Interestingly, plasma D-dimer was inversely correlated with a metric of platelet 

function spanning six independent signaling pathways (Figure 5-3,A). Addition of pure D-

dimer to PRP interfered with platelet aggregation following stimulation with several 

agonists (Figure 5-2). Taken together, these data suggest that D-dimer can both predict 

and act as a mediator of platelet dysfunction.  

Using D-dimer as the primary measure of fibrinolysis, we also report that trauma 

patient platelets have elevated levels of bound D-dimer and D-dimer in trauma plasma 
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can be bound by healthy platelets (reaching ~10,000 D-dimer equivalents/platelet), which 

may have direct implications regarding the functionality of transfused platelets in trauma 

patients with high D-dimer levels (Figure 5-4). These data suggest that platelet 

transfusions and anti-thrombolytic drugs may not immediately rescue platelet calcium 

mobilization.  

The platelet receptors that bind D-dimer likely include GPVI (Figure 5-1) and αIIbβ3 

(Figure 5-4,C); our hypotheses and proposed understanding of platelet-fibrin interactions 

are presented visually in Figure 5-5. Due to structural similarities with fibrinogen, fibrin 

degradation products can also occupy the αIIbβ3 complex [123]. In continuing studies of 

the role of different GPVI configurations in D-dimer and fibrin recruitment, one group 

identified the monomeric form of GPVI as the responsible receptor for fibrin and D-dimer 

binding [91]. A separate group implicated both αIIbβ3 and, to a lesser extent, GPVI-dimer 

as capable of recognizing the D domain of fibrin-related species [118], and an earlier 

report postulated that fragment D has inhibitory effects on fibrin-dependent platelet 

activation [124]. In response to the lack of agreement between these groups, a follow-up 

article considered the role of inconsistent assay procedures and the need for 

standardization to elucidate the correct biology [119]. Our work does not specifically 

interrogate preferential activity of monomeric or dimeric GPVI but rather relies on the 

endogenous platelet repertoire of receptors. While GPVI shedding is highly relevant to 

pathological states, the conditions of Figure 5-1 and Figure 5-2 are far too rapid to include 

shedding mechanisms. Importantly, the sheddase inhibitor GM6001 was previously 

shown to have no effect on the GPVI signaling defect caused by soluble fibrin [99]. 
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Figure 5-5. Overall summary schematic showing proposed understanding of interactions 
between platelets and fibrin-related species 
Platelet surface receptors are shown with known ligands. Fibrin-related species generated 

throughout the coagulation process and their respective hypothesized roles in interfering with 

platelet activation are also shown. Our main focus in this paper is the potent inhibition of D-dimer 

(and to a lesser extent cross-linked soluble fibrin), as shown by its observed interaction with GPVI 

and potentially αIIbβ3. 

 

Several different factors during trauma may account for platelet dysfunction. We 

report in this pilot study that D-dimer is a predictor of this platelet dysfunction and may be 

a causative agent, along with soluble fibrin and FDP, to interfere with platelet ATP release, 

aggregation, and signaling. Considering the complex nature of TIC, we are not fully 

attributing the observed platelet dysfunction phenotype to these fibrinolytic products but 

rather we are identifying a significant biological role of these species that has not been 

reported previously. There are likely several other contributing mediators besides D-dimer 

and FDP and other areas of investigation that need to be considered, but the progress in 

understanding the multidimensional phenomena that contribute to TIC is encouraging 

[125]. Further study of platelet structural changes, exposure of surface receptors, and 

correlation with in vivo experiments is certainly warranted to evaluate our observations. 
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CHAPTER 6: OTHER STUDIES 
 
 
6.1 Dual antiplatelet and anticoagulant (APAC) heparin proteoglycan mimetic with 

shear-dependent effects on platelet-collagen binding and thrombin 
generation 

6.1.1 Introduction 

Antithrombotic drugs are typically classified into one of three major categories: 

antiplatelet, anticoagulant, or fibrinolytic agents [126,127]. Common antiplatelet 

therapeutics include aspirin and clopidogrel which both inhibit secondary platelet agonist 

generation (thromboxane A2 and ADP, respectively) [126–128], as well as inhibitors of the 

integrin ɑIIbβ3 [129]. Anticoagulants are responsible for preventing thrombin generation 

and fibrin polymerization. Warfarin and various heparins have been used as an oral and 

parental anticoagulant for several decades, but recent advances have focused on 

specifically targeting coagulation factors, such as thrombin and factor Xa [126]. Finally, 

fibrinolytic or thrombolytic drugs (most notably tPA: tissue plasminogen activator) promote 

the generation of plasmin, an enzyme that cleaves fibrin [130]. 

With increasingly complex cardiovascular disease states comes a need for the 

administration of multiple antithrombotics with different mechanisms of action. While 

certain classes of drugs have the potential to function synergistically, there is an 

associated increased bleeding risk as the number of drugs increases [131,132]. Therefore, 

identifying a method for combining the antithrombotic functions of antiplatelet and 

anticoagulant agents into a single therapy can have a potentially great impact on the field, 

as uncertainty regarding optimal use remains [132].      

Heparin (usually referred to as unfractionated heparin; UFH) is yet another 

common clinically-used antithrombotic agent which carries anticoagulant behavior through 

its binding and activation of antithrombin. Antithrombin then works to deactivate circulating 

thrombin and factor Xa to hinder the coagulation process [133]. Heparin can bind directly 



91 
 

to thrombin (Kd=100 nM) resulting in anticoagulant behavior [134]. Heparin is derived from 

mast cells which line the vascular walls usually in the same general location as tissue 

factor (TF). Upon tissue injury, mast cells are activated and release heparin proteoglycans 

(HEP-PGs) which are much higher in molecular weight than UFH [135,136]. These 

structures have been shown to exhibit both anticoagulant features, as does heparin 

typically [137], as well as specific antiplatelet properties, most notably involving the 

platelet-collagen interaction and subsequent aggregation and fibrin polymerization [135]. 

The unconventional ability for a heparin-based entity to impact collagen-dependent 

platelet activation could be attributed to the fact that type I collagen has binding sites for 

heparin, in addition to the heparin binding site to von Willebrand Factor (vWF) bridging 

platelets with collagen, relevant under arterial shear rates [138]. The concept of designing 

synthetic HEP-PG mimetics, structured with a protein core and conjugated with UFH, has 

been demonstrated [135,136,139,140]. 

Despite various results comparing the ability of HEP-PGs and UFH to inhibit 

collagen-mediated platelet aggregation and serotonin release under flow conditions [135], 

previous work with dual anticoagulant and antiplatelet (APAC) conjugates has been 

focused primarily on in vitro platelet aggregometry studies and in vivo vascular models 

[136,140]. The importance of understanding the functionality of APACs, as is the case with 

any novel therapy, in more pathophysiologic scenarios in vitro is crucial. Thus, the focus 

of this work was to compare the results obtained from various in vitro experimental 

techniques to gain a broader understanding for the potential therapeutic effect of synthetic 

HEP-PG mimetics with varying heparin conjugation levels (CL10, CL18, HICL).   

 

6.1.2 Methods 

Reagents were obtained as follows: Anti-human CD61 (BD Biosciences, San Jose, 

CA), Alexa Fluor® 647 conjugated human fibrinogen (Life Technologies, Waltham, MA), 
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corn trypsin inhibitor and D-Phe-Pro-Arg-chloromethylketone (CTI and PPACK, 

respectively; Haematologic Technologies, Essex Junction, VT), Sigmacote® siliconizing 

reagent (Sigma, St. Louis, MO), Dade® Innovin® PT reagent (Siemens, Malvern, PA), 

collagen Type I Chrono-Par™ aggregation reagent (Chrono-log, Havertown, PA). Whole 

blood was drawn via venipuncture from healthy donors following University of 

Pennsylvania Institutional Review Board approval into a syringe loaded with 100 µM 

PPACK (to inhibit thrombin activity altogether for the study of platelet deposition on 

collagen only) or 40 µg/mL CTI (to inhibit contact pathway and measure platelet and fibrin 

deposition). Prior to each blood draw, donors self-reported to be free of any medications 

for 7 days and alcohol use for 48 hours. Additionally, female donors self-reported to not 

using oral contraceptives. 

Apixaban (SelleckChem, Houston, TX), HEPES (Fisher Scientific, Hampton, NH), 

Fluo-4 NW calcium dye and probenecid (Invitrogen, Carlsbad, CA), ADP (Sigma-Aldrich, 

St. Louis, MO), U46619 (Tocris Bioscience, Bristol, UK), convulxin (Cayman Chemical, 

Ann Arbor, MI), type I fibrillar collagen (Chrono-log, Havertown, PA), thrombin 

(Haematologic Technologies Inc., Essex Junction, VT), and SFLLRN and AYPGKF amide 

(Bachem, Torrance, CA), Protein A Sepharose CL-4B (GE Healthcare, US), vWF 

(Wilfactin®, 100 IU/mL, LFB Biomedicaments, Les Ulis, FR), rabbit polyclonal anti-vWF 

(DAKO, Glostrup, DK), enhanced chemiluminescent (ECL) detection reagents (GE 

Healthcare, US), goat anti-rabbit HRP, (Jackson Immunoresearch, Westgrove, PA, US), 

streptavidin-ATTO647 (Immune Biosolutions, Sherbrooke, QE, CA) were stored and used 

according to each manufacturer’s instructions. Three different APAC molecules were 

synthesized (Aplagon, Helsinki, Finland) as previously described [136,140]. In brief, dual 

antiplatelet and anticoagulant (APAC) conjugate comprises of protein core, where UFH 

chains are bound by covalent di-sulfide bridges provided by a cross-linker molecule to 

reach various conjugation levels (CL) of heparin. 
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Measurements of platelet calcium mobilization were conducted in 384-well plate 

assay format, as described previously [84]. Briefly, fresh whole blood treated with 250 nM 

apixaban (a Factor Xa inhibitor used to eliminate endogenous thrombin generation) was 

centrifuged (120g, 10 min) to isolate platelet-rich plasma (PRP). The PRP was incubated 

with a vial of Fluo-4 NW calcium dye prepared by reconstitution with sterile 20 mM HEPES-

buffered saline (HBS, pH 7.4) and 77 mg/mL probenecid to prevent dye leakage for 30 

min. After incubation, two separate 384-well plates were assembled. One plate contained 

dye-loaded PRP (30 µL/well) and the other plate contained platelet agonists at previously 

determined EC50 concentrations [50,84], as well as serial dilutions of three different APAC 

molecules of varying heparin conjugation levels (CL10, CL18, HICL). The agonist-

containing plate was prepared using a JANUS liquid handling system (PerkinElmer, Inc., 

Waltham, MA) such that all 144 combinations of the six platelet agonists and eight APAC 

concentrations (0, 1.56, 3.12, 6.25, 12.5, 25, 50, 100 µg/mL) were prepared in a time-

efficient manner with replicates. The two plates were loaded into a FlexStation 3 

microplate reader (Molecular Devices, Inc., Sunnyvale, CA) and agonists (20 µL/well) 

were dispensed column-wise into PRP. The dynamic fluorescence intensity F(t) was read 

and normalized by the pre-dispense baseline (Fo) for 4.5 min with readings every 2.5 s 

(Ex: 485 nm; Em: 525 nm). The final PRP concentration after agonist addition was 12% 

by volume and previously no evidence of autocrine signaling has been reported in these 

dilute conditions [84]. Testing of type I fibrillar collagen (20 µg/mL) in the platelet calcium 

assay was performed as previously described [99], in which manual pipetting and reading 

using a Fluoroskan Ascent plate reader was required due to variable delivery of collagen 

by the FlexStation automated pipetting system. 

Platelet aggregation studies were performed using a Chrono-log Model 700 Whole 

Blood/Optical Lumi-Aggregation System. Whole blood was drawn via venipuncture into a 

syringe loaded with 250 nM apixaban and 4% (w/v) sodium citrate (Sigma-Aldrich) under 



94 
 

the same IRB approval as above. Citrated whole blood is commonly used to chelate 

calcium ions and prevent platelet activation, but here we use citrate in conjunction with 

apixaban to further ensure minimal endogenous thrombin generation. Type I fibrillar 

collagen (1 µL) was added to PRP after 10 min incubation of APAC (or buffer as control) 

and aggregation was measured for 4 min post-dispense. 

 

6.1.3 Results and Discussion 

Intracellular calcium mobilization of dilute apixaban-treated PRP in response to 

several platelet agonists was measured in the presence and absence of three different 

APAC molecules. Platelet agonists included thrombin (20 nM), convulxin (a potent platelet 

glycoprotein (GPVI) activator derived from snake venom; 2 nM), ADP (1 µM), U46619 (a 

stable thromboxane A2 analog; 1 µM), fibrillar collagen (20 µg/mL), and two PAR-specific 

ligands SFLLRN (PAR-1 agonist; 10 µM) and AYPGKF (PAR-4 agonist; 300 µM). All 

APAC concentrations (1.56-100 µg/mL) reduced the platelet calcium response to thrombin 

and collagen at least 50% compared with the negative control condition. Representative 

results for 12.5 µg/mL of APAC are shown in Supplemental Figure 21. 

For each condition, the area under the curve of the resultant calcium fluorescence 

trace was calculated and converted to a percentage of the control response (Figure 6-1). 

The effect of heparin conjugation level was also identified to impact the extent of inhibition. 

Incubation of PRP with CL10 resulted in a 76% decrease in thrombin-induced platelet 

calcium signal and 51% reduction in the collagen response. CL18 showed the highest 

attenuation of calcium mobilization, yielding an 83% and 95% reduction in response to 

thrombin and collagen, respectively. However, increasing the conjugation level above 18 

(HICL) still exhibited a statistically significant inhibition, but slightly less than that seen with 

CL18 and closer to that of CL10.  For each of the other five agonists tested, virtually no 

inhibitory effect was observed, as is evident by ~100% calcium mobilization (Figure 6-1). 
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Heparin inhibition of thrombin-mediated platelet calcium mobilization was fully consistent 

with accelerated thrombin complexation with antithrombin via the heparin functionality of 

the constructs, while maintaining PAR-1/4 functionality as evidenced by the unchanged 

responses to SFLLRN and AYPGKF stimuli. In addition to this anticoagulant feature, 

previous work has shown the APAC conjugates to also display antiplatelet effects [136], 

however the effects on intracellular calcium mobilization have not been reported. The 

antiplatelet effects appear to be specific to collagen and thrombin, since all other platelet 

signaling pathways and receptor agonists (CVX, ADP, U46619, SFLLRN, and AYPGKF 

for GPVI, P2Y1/12, TP, PAR1, and PAR4, respectively) were active in the presence of 

APAC.  While collagen can bind heparin, convulxin has no known heparin-binding domain, 

thus likely explaining the striking difference in APAC activity against collagen stimulation 

of the platelets that remain fully responsive to the GPVI activator, convulxin.      

In a similar test as previously reported [136], aggregometry was used to investigate 

the antiplatelet features of the heparin proteoglycan mimetic APAC. Each individual APAC 

(100 or 200 µg/mL final concentration) or buffer was added to PRP, and type I fibrillar 

collagen (2 µg/mL) was used as the stimulus to measure platelet aggregation in citrated 

PRP with apixaban addition. The negative control condition (buffer treatment) produced 

70% aggregation over the course of the experiment (4 min). For each APAC species 

(CL10, CL18, and HICL), aggregation was impaired in a dose-dependent manner (Figure 

6-2,A-C). In all cases, the maximal aggregation was lowered, the lag time prior to 

aggregation was prolonged, and the slope and area under the curve were reduced. The 

intermediate-chain conjugated species (CL18) was again observed to have the most 

significant effect, as platelet aggregation was completely abolished at high concentrations 

(200 µg/mL) (Figure 6-2,B). Other platelet agonists were screened in aggregometry and 

the same observations were made in that APAC conjugates only affect thrombin- and 
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collagen-mediated platelet aggregation (Supplemental Figure 22), confirming the 

calcium mobilization results. 

 

 

Figure 6-1. Thrombin- and collagen-dependent calcium mobilization is specifically reduced 
in the presence of APAC 
Previously determined EC50 concentrations of several platelet agonists were added to dilute 

apixaban-treated PRP to stimulate platelet activation. A control condition (absence of APAC) was 

used as the 100% calcium mobilization baseline to which the effect of three APACs (12.5 µg/mL) 

was compared. Antiplatelet effects were seen by reduced activation levels in cases where thrombin 

and fibrillar collagen were used as the stimulus. However, all other platelet agonists were not 

significantly hindered by APAC. Final agonist concentrations: thrombin, 20 nM; collagen, 20 μg/mL; 

CVX, 2 nM; ADP, 1 μM; U46619, 1 μM; SFLLRN, 10 μM; AYPGKF, 300 μM. (n=3 donors, * p<0.05, 

mean ± SD). PRP = platelet-rich plasma. 
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Figure 6-2. Platelet aggregation in PRP is inhibited by APAC 
A dose-dependent reduction in collagen-mediated aggregation of apixaban/sodium citrate-treated 
PRP was observed for each of three APACs (A. CL10; B. CL18; C. HICL). A high dose of CL18 
was shown to have the greatest effect as aggregation was almost completely abolished, consistent 
with the calcium mobilization findings reported in the previous section. PRP = platelet-rich plasma. 
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Concern of bleeding risks associated with combinations of two or more blood 

modulating drugs have sparked interest in developing cardiovascular therapies with dual 

antiplatelet and anticoagulant (APAC) activity. Using naturally-produced HEP-PGs as a 

framework for synthetic alternatives, protein functionalized with conjugated UFH chains 

offers a promising route [136,140]. With our 8-channel device, we demonstrated APAC 

antiplatelet activity with PPACK-treated blood perfused upon collagen. Secondly, we 

analyzed the ability of APAC to interfere with the thrombus growth when CTI-treated blood 

was perfused upon a collagen/TF surface. We also provide evidence that APACs can 

directly interact with collagen to reduce platelet deposition under flow and to decrease 

collagen-induced calcium mobilization. Additionally, the increased inhibitory activity 

against platelets under arterial flow conditions suggests that APAC when studied in the 

absence of any other anticoagulant may also reduce vWF binding to collagen or modulate 

the VWF-GPIbα interaction. APAC interaction with vWF was supported by the 

immunoprecipitation studies where vWF captured APAC.  

 To investigate the observed antiplatelet effects of APAC more specifically, we 

utilized intracellular calcium mobilization as a metric to test the influence of APAC on 

various platelet signaling pathways. The activation of several platelet receptors leads to 

distinct signaling cascades that converge on mobilization of calcium ions, so we can infer 

the level of agonist-induced activation through this reading. A screen of seven common 

platelet agonists in the presence and absence of three APAC conjugates revealed 

inhibitory action only towards thrombin and fibrillar collagen (Figure 6-1, Supplemental 

Figure 21). All other agonists (ADP, U46619, convulxin, SFLLRN, and AYPGKF) were 

sufficiently active with respect to the control buffer condition. Collagen-induced 

aggregation was also impaired by each APAC molecule (Figure 6-2). These results 

suggest that APAC has specific antiplatelet targets without being a universal inhibitor of 

platelet activation, leaving the other activation routes intact. 
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 Other than its traditional anticoagulant mechanism, heparin has been implicated 

to exhibit other antithrombotic effects such as inhibiting endoperoxide metabolites that 

lead to thromboxane A2 production, suggesting aspirin-like functions [141]. Also, collagen 

has previously been reported to have unique heparin-binding sites separate from those 

involved in heparin-triggered thrombin inactivation [138,142,143]. Though the functional 

significance of heparin-collagen binding is still unclear, it may explain the observed 

inhibitory phenomenon of heparin proteoglycans and synthetic APAC conjugates on 

collagen-induced platelet aggregation, especially under blood flow. 

 Collagen activates platelets primarily through GPVI, a uniquely non-G protein-

coupled receptor. GPVI belongs to a class of proteins known as immunoreceptor tyrosine-

based activation motifs (ITAM) [13]. The converse to ITAM receptors are immunoreceptor 

tyrosine-based inhibition motifs (ITIM), which inhibit ITAM signaling in order to suppress 

platelet activation, a pathway that functions along with the prostacyclin-activated IP 

receptor [12,144]. Upon first consideration, it would appear, that the APAC conjugates 

would qualify as ITIM-activating molecules, but the calcium mobilization results showing 

full GPVI activity via convulxin disproves this hypothesis and points more towards the 

collagen-heparin interaction. Though certain explanations may be incorrect, and collagen 

and thrombin appear to be the sole targets, more work should be performed to further 

refine the specific antiplatelet and platelet anticoagulant mechanisms of APAC.  

 Currently available treatment by antithrombotics is available only systemically. In 

our previous publications we have shown that during local application at the injury site, 

either in vivo (arterial model of crush injury in baboon) or on the collagen coated surface 

ex vivo (collagen coated chamber - shunt model in baboons) APAC has potency to inhibit 

platelet thrombosis and reduce platelet accumulation under arterial shear forces [136]. In 

addition, we have previous data to show by PET scan that APAC (Cu64-APAC) binds at 

the injury site with extended retention time in respect to UFH (Cu64-UFH) [140]. Our recent 
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data [145] also shows localization of APAC at the injury site in porcine models of balloon 

denuded iliac and carotid arteries and at the arteriovenous fistula of femoral artery and 

vein. Based on the results of the current manuscript showing reduced platelet deposition 

on the highly thrombogenic collagen/tissue factor surface and the inhibition of collagen-

induced platelet aggregation support the suggestion to combine antiplatelet and 

anticoagulant action in a single antithrombotic, locally acting modality. Importantly, 

polyvalent APAC constructs may offer PK/PD advantages relative equivalent free drug. 

 

6.2 Testing efficacy, potency, and specificity of platelet inhibitors 

6.2.1 Effect of PAR-4 specific antagonist  

 When developing new antithrombotic drugs, one of the most important 

considerations for research groups is the potential for bleeding risk in patients. In order to 

address this concern, receptors with less significant contributions to platelet activation and 

clot formation are becoming promising targets for drug development. One such receptor 

of interest lately has been protease-activated receptor 4 (PAR-4) [146,147]. PAR-4 is one 

of two platelet receptors with affinity towards thrombin, the other being PAR-1. Though 

both PARs have been studied extensively, there have only been antagonists developed 

against PAR-1. Vorapaxar is a specific and potent PAR-1 inhibitor approved in 2014, 

though its benefits are limited due to its requisite administration with other antiplatelet 

therapies like aspirin. As a result, the bleeding risks associated with vorapaxar treatment 

are still an ongoing issue [148].  

 Thrombin is known to activate the two PARs in a concentration-dependent manner. 

First, at low to moderate thrombin levels, PAR-1 is the primary target for thrombin-

mediated platelet activation. As the concentration of thrombin increases to saturating 

levels, PAR-1 activation is overcome by PAR-4 signaling [149]. Thus, targeting PAR-4 is 

thought to be a gentler and more controlled manner of platelet inhibition, and the necessity 
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of high thrombin concentrations ensures that coagulation will also be largely in effect to 

further prevent excessive bleeding. One of the first and most promising reports of drug 

screening and development for PAR-4 inhibition was published by Wong and colleagues 

at Bristol-Myers Squibb [150]. Currently their drug, BMS-986120, is commercially available 

for lab purposes and has been tested in animal models. In follow-up work, other iterations 

of this and similar molecules are under investigation to improve the potency of the inhibitor, 

which had previously been reported to have an IC50 of ~10 nM [150]. One such variant is 

known as BMS-986141, and our group was asked to test its activity and potency in some 

of our assays using human blood.  

 The first round of experiments we conducted were dose-response experiments 

against PAR-4 signaling specifically, which was achieved by challenging platelets with the 

PAR-4 activating peptide AYPGKF. In calcium dye-loaded PRP, we found the inhibitor’s 

potency to be about 10-fold higher than BMS-986120 (IC50~1.3 nM) (Figure 6-3,A-B). 

Next, we checked the specificity of BMS-986141 by stimulating platelets with other 

agonists. No off-target effects were observed, and there was some inhibition against 

thrombin-mediated platelet signaling which is to be expected (Figure 6-3,C-H). 

These preliminary data are certainly encouraging and should be validated in other 

assays. In the future, it would be interesting to study how the inhibitor functions under flow 

conditions and in living organisms. Our lab is equipped to run in vitro microfluidic 

experiments, but investigating the specificity of this inhibitor against PAR-4 may not be 

trivial. The microfluidic channels are typically coated with collagen and/or tissue factor to 

observe both coagulation pathways, so additional inhibitors may have to be included in 

order to pinpoint effects against the receptor of interest. One initial idea for an experiment 

may be to include the PAR-1 inhibitor, vorapaxar, at a moderate dose, and high 

concentrations of tissue factor to ensure a PAR-4 response, followed by dose-response 
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concentrations of the PAR-4 inhibitor. In this way, we may be able to separate PAR-1 from 

PAR-4 signaling as was done in the well-plate experiments. 

 

 

Figure 6-3. Effects of PAR-4 antagonist BMS-986141 on array of platelet agonists 
Calcium dye-loaded PRP was incubated with different concentrations of BMS-986141, a specific 

PAR-4 inhibitor created by Bristol-Myers Squibb. Dose-response experiments of the inhibitor 

against a strong concentration of PAR-4 activating peptide AYPGKF confirm reported IC50 value of 

~1 nM (A, B). Target specificity was analyzed by activating platelets with several agonists in the 

presence and absence of BMS-986141 at potent doses (C-H). Other than AYPGKF and thrombin, 

which also activates PAR-4 physiologically at high concentrations, no significant inhibitory effects 

were observed.    
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6.2.2 Effect of custom GPVI inhibitor 

Despite the fact much is known about interactions between platelet glycoprotein 

VI (GPVI) and its primary physiologic ligand collagen, drastically different approaches 

towards inhibiting the receptor’s activity have been reported. Inhibition of GPVI has shown 

to have clinical benefit other than the expected antithrombotic effects, including protection 

against myocardial ischemia-reperfusion injury and increased efficacy of cancer treatment 

by inducing intra-tumor hemorrhage [151,152]. These studies made use of monoclonal 

antibodies (mAb) directly targeting and blocking the functionality of GPVI. In addition to 

these mAb strategies, a few small molecules have been developed with affinity for the 

GPVI receptor. Losartan and honokiol are examples of these small molecules that impart 

inhibitory effects on platelet aggregation in response to collagen stimulation [153]. 

Specifically, losartan is hypothesized to block the critical GPVI clustering and dimerization 

processes, while honokiol has shown direct binding affinity to the receptor though its 

potency is not very impressive (µM range of concentrations). To this point, it is unclear if 

either of these small molecules is a reliable method for blocking GPVI activity and likely 

requires much more work and characterization. Finally, a third class of approaches, which 

is less direct though seemingly still effective, involves understanding and targeting entities 

involved in GPVI-mediated intracellular signaling. For example, tyrosine kinase inhibitors 

like dasatinib, ibrutinib, acalabrutinib, and others prevent platelet activation through the 

GPVI pathway [99,154]. Phosphorylation of spleen tyrosine kinase (Syk) and Bruton’s 

tyrosine kinase (Btk) are essential for successful platelet activation, so inhibiting these 

intermediate steps can also be useful techniques.  

Considering this project’s interest in GPVI signaling and the observed down-

regulation in platelet response to convulxin stimulation in the presence of soluble fibrin 

and FDP, we became interested in using GPVI inhibitors for general mechanistic studies. 

Many of the function-blocking antibodies used by other groups are custom-made and not 
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available for purchase, and our attempts towards testing small molecules like honokiol 

were unsuccessful in calcium mobilization experiments (data not shown). Therefore, we 

turned our attention to designing a single-chain variable fragment (scFv) using plasmid 

technology in collaboration with Reaction Biology Corporation. In short, the scFv was Myc-

tagged for visualization purposes and subcloned into E. coli prior to expression and 

purification. The first iterations of this production unfortunately yielded low purity (~50%), 

and relatively high concentrations were required when we tested its capability to inhibit 

GPVI signaling (Figure 6-4,A). A dose-response experiment indicated 100 µg/mL as the 

approximate IC50 concentration, but when we investigated off-target effects by stimulating 

platelets with ADP or U46619, we found the scFv also inhibited these modes of platelet 

signaling (Figure 6-4,B-C). Our initial hypothesis is that the low purity of the prepared 

constructs may be responsible for this lack of specificity and low potency, which should 

be addressed in future iterations of this custom GPVI inhibitor.  

         

 

Figure 6-4. Inhibitory effects of custom scFv against GPVI 
PRP was loaded with calcium fluorescent dye and incubated with various concentrations of a 
single-chain variable fragment (scFv) designed in collaboration with Reaction Biology Corporation 
to target the platelet GPVI receptor. (A) Dose-response effects of the custom inhibitor indicate 
relatively high concentrations (>100 µg/mL) are required to impart significant inhibition when 
platelets are stimulated with convulxin. (B, C) Off-target effects are also observed when ADP or 
U46619 are used to activate platelets, perhaps a result of the low purity of the final formulation. 
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6.2.3 Effect of N-acetylcysteine on platelet activation 

 N-acetylcysteine (NAC) is a common nutritional supplement that has been shown 

to have mucolytic properties when used alone or in combination with other medications. 

Some applications for NAC administration are the neutralization of acetaminophen 

overdose often observed during pregnancy which may lead to severe liver damage, and 

the treatment of asthma [155]. Recently, several groups have also implicated efficacy of 

NAC as a therapy with antithrombotic effects, which may be effective in diabetic patients 

who tend to have hyperfunctional platelet activity [156,157]. The idea that NAC can be 

used to inhibit platelet function, however, has been known for several decades now, dating 

back at least to the work of Stamler et al., which suggested NAC involves endothelium-

derived relaxing factor (EDRF) and subsequently enhances the generation of cyclic GMP, 

a well-understood negative regulator of platelet activation [158]. Other groups have also 

tried to use knowledge of the chemical structure of NAC to elicit thrombolytic effects 

through interactions with von Willebrand Factor [159]. However, few if any of these studies 

investigating the effects of NAC on platelets included complete analysis of platelet 

signaling pathways, which we have preliminarily designed experiments to address. 

  To gain an understanding of impacts of NAC on individual platelet receptors, we 

screened six common ligand-receptor pairs in the presence and absence of NAC, and its 

amino acid parent, cysteine. The two molecules share much of the same atomic 

composition, though they differ in the inclusion of an acetyl group one end of the NAC 

structure. Both compounds exhibit a free thiol group, which has been implicated to be the 

critical functional group for reducing disulfide bonds that are important for clot strength 

and integrity [159]. Calcium-dye loaded PRP was incubated with one of the two cysteine 

derivatives at a potent dose (30 mM), followed by agonist challenge with ADP, U46619, 

convulxin, SFLLRN (PAR-1 activating peptide), AYPGKF (PAR-4 activating peptide), or 

thrombin. All agonists were prepared at 10x EC50 concentrations to ensure maximum 
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dynamic range to observe inhibitory effects. Representative data for these experiments 

are shown in Figure 6-5,A-F, and quantified as a fraction of the control response on the 

basis of area-under-the-curve (Figure 6-5,G). 

          

 

 

Figure 6-5. Global antiplatelet effects of cysteine derivatives 
PRP was loaded with calcium dye and incubated with N-acetylcysteine (NAC, 30 mM) or L-cysteine 

(30 mM) prior to agonist challenge. ADP, U46619, convulxin, SFLLRN, AYPGKF, and thrombin 

were added to platelet suspensions and showed varying extents of inhibition when cysteine-derived 

molecules were present (A-F). The data is quantified as % control response on the basis of area-

under-the-curve of the fluorescent time traces for each individual agonist (G).   
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 From these preliminary experiments, it appears both NAC and cysteine impart 

antiplatelet effects to varying degrees with respect to specific surface receptors. 

Significant inhibition was observed when challenging with any PAR agonists (SFLLRN, 

AYPGKF, and thrombin) as well as with ADP, whereas less dramatic effects were 

observed in the presence of U46619, and challenge with convulxin yielded virtually no 

separation from the control response. Though these results warrant follow-up 

experiments, it is interesting that the cysteine derivatives don’t affect GPVI signaling, 

which is the only non-GPCR that was studied in this pilot experiment. The concentration 

of convulxin may also have been too high, causing any potential inhibitory activity to be 

overwhelmed by the agonist. Nevertheless, conducting future work in this area would be 

interesting, especially with regard to the specific significance of the free thiol group present 

in these compounds. Investigation into other thiol-containing molecules may pave the way 

towards a better understanding of the biochemical mechanisms of platelet function 

downregulation in general. 

 

6.3 Computational modeling of the coagulation response during trauma 

6.3.1 Introduction 

Hemostasis is the body’s primary response to vessel injury. During trauma, this 

pathway may be pushed to its biochemical and physical limits to stop blood loss. 

Additionally, dramatic changes in inflammation, platelet function, and blood biochemistry 

set the stage for trauma-induced coagulopathy (TIC). Excessive blood loss (hemorrhagic 

shock) in combination with tissue trauma, NETosis, endothelial dysfunction, and excess 

fibrinolysis are evolving components that drive a multi-scale pathogenesis and high 

dimensional risk for these patients. This section reviews computational modeling efforts 

to help quantify the interplay of hemodynamics and bleeding. Specifically, simulation tools 
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(bottom-up and top-down) to describe platelet function and clotting under flow are 

presented in the context of bleeding. 

 

6.3.2 Coagulation during bleeding 

Platelets are essential to both hemostasis and thrombosis with extremely complex 

metabolism driven by receptor signaling. Bottom-up models of platelet signaling have 

treated calcium regulation by ADP [160,161] or thrombin [162]. Flamm et al. developed a 

stochastic, patient-specific model of thrombosis under 2D flow over tissue factor surface 

conditions [100]. The model used the Lattice Kinetic Monte Carlo (LKMC) method to solve 

for the stochastic platelet motion and binding events, the Finite Element Method (FEM) to 

solve for the concentration profiles of soluble agonists as a function of time and space, 

the Lattice Boltzmann (LB) method to solve for the velocity profile over the growing clot, 

and a neural network (NN) model to predict platelet activation states. The NN was trained 

via the pairwise agonist scanning (PAS) method (described in more detail later in this 

chapter), where individual and pairwise combinations of agonists are used to predict a 

donor’s platelet calcium concentration over time [50,84]. Interestingly, the model was 

highly predictive of microfluidic experiments of whole blood flowing over a collagen patch 

and predicted a ranked order of sensitivity to drugs such as indomethacin, aspirin, and 

iloprost. Lu et al. extended the model to include a time-dependent thrombin flux at the TF 

surface since this is validated by experimental measurements and is more efficient than 

solving the entire coagulation cascade continuously [163]. 

While these models of coagulation aid in understanding clot formation on a 

surface, they primarily relate to thrombosis and are not suitable for simulating bleeding, 

hemostasis, or TIC. There are several key differences that must be accounted for before 

they can be used in these cases, however. Blood flowing into a region of vessel damage 

will exit the vessel as a clot builds up to stop flow. The blood that pools around the wound 
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extravascularly experiences stasis, has prevailing hematocrit, and will undergo 

contraction. The clot at the wound wall-blood boundary experiences high shear stresses 

and is platelet rich with fibrin polymerizing on the wound boundary. A core-shell 

morphology is typical of these wounds as visualized in animal models [88] or in 

microfluidics with human blood [164]. These laser-injury models of clot structure, to date, 

have typically used healthy animals.   

During trauma, there are dramatic changes in coagulation proteins and platelet 

function. Trauma may present as a consumptive coagulopathy with excessive fibrinolysis, 

endothelial glycocalyx shedding, excessive inflammation, and neutrophil NETosis. 

Furthermore, some injuries, typically traumatic brain injury (TBI), can lead to defective 

platelets which is believed to be a key contributor to TIC [32]. In moderate to severe 

injuries (injury severity score > 15), elevated levels of D-dimer and high prothrombin times 

have been observed [165]. A model of a severe trauma patient experiencing TIC must 

account for these differences.  

Common platelet activators include collagen (lab analog: convulxin), ADP, 

thromboxane A2 (lab analog: U46619), and thrombin, the latter of which also plays key 

enzymatic roles in coagulation (e.g. fibrin polymerization and cross-linking). Following 

these “outside-in” binding events, cytosolic calcium concentrations rise via two different 

mechanisms [22,27], which then leads to “inside-out” activation of additional receptors 

important for platelet aggregation via the plasma protein fibrinogen, among other 

phenomena [22]. A relatively simplified schematic of external and internal platelet 

activation with common ligand-receptor interactions is shown in Figure 1-1. 

 

6.3.3 Data-driven development of subject-specific platelet function profiles 

To phenotype platelets, Chatterjee et al. designed a dual experimental-

computational technique known as pairwise agonist scanning (PAS) [50]. Essentially, 
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platelet-rich plasma (PRP) was prepared via centrifugation following collection of whole 

blood from a consenting donor or patient and incubated with a fluorescent dye that tracks 

changes in intracellular calcium concentration upon agonist stimulation. In order to 

generate sufficiently diverse training data for the machine learning algorithm, single and 

pairwise combinations of six different platelet agonists (or inhibitors) at low, medium, and 

high concentrations were prepared with liquid handling machines and then dispensed into 

the cell suspensions for dynamic data collection. In all, the combinatorial space amounted 

to 154 unique conditions, and the experiment lasted about 2 hr from start to finish. Next, 

a multi-layer supervised neural network (NN) model could be trained by using the agonist 

concentrations and corresponding calcium time series as input-output pairs, and then 

predictions of responses to higher order or more complex stimulation conditions could be 

generated. Once trained, the NN models serve multiple purposes: (1) phenotypic 

development of individualized platelet function profiles for each subject included in the 

study and (2) input into the multiscale models of platelet aggregation discussed previously 

[100,163]. The general workflow from initial experiments to NN training to multiscale 

simulation to validation against microfluidic experiments in shown in Figure 6-6. There 

have been other reports of computational simulation of platelet deposition and activation, 

such as that developed by Sorensen et al. [166,167], but few if any feature capability to 

predict distributions and effects of multiple stimuli on overall hemostatic state. 

Initially, the PAS method was developed using mostly non-physiological activating 

agents [50], but then was expanded to include the effects of thrombin by Lee et al. for 

more representative simulation of the hemostatic response [84]. This approach reliably 

interrogates multiple platelet signaling pathways, and with simple experimental 

implementation can accurately predict platelet reactivity in the presence of multiple stimuli 

working in concert. Platelet activation is a highly dynamic process with several contributing 

factors, which sheds light on the importance of understanding how these factors work 
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synergistically (or antagonistically) during clot development. Until recently, only healthy 

human subjects (no previous medical conditions or medications) had been studied with 

the PAS-NN method. 

 

 

Figure 6-6. Connecting experimental measurements and numerical predictions of platelet 
activation state 
PAS experiments were performed and used to train a NN ensemble to predict calcium response 

for an average healthy person and was incorporated into the multiscale model to predict platelet 

activation. An effective boundary flux term was imposed. Thrombus growth dynamics can be 

predicted by the multiscale model and were compared against microfluidic experiments on healthy 

human blood conducted under identical conditions. Reprinted with permission from [163]. 

  

Verni et al. developed a modified version of PAS with fewer (n=31) agonist 

conditions, comparing healthy donors with coagulopathic trauma patients [110]. The data 

indicated a severe level of platelet dysfunction across multiple signaling pathways, as 

shown in heatmap form in Figure 4-1, which was supported by several previous reports 

[10,29,31]. These other groups typically only characterized platelet function on the basis 

of single-agonist stimulation or with clinical assays such as thromboelastography (TEG), 
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which provide useful but limited information. Demonstration of the utility of this high-

throughput assay technique in a trauma patient population opens the door for studying 

countless other patient cohorts. 

The principles of PAS can be applied in other assays as well. The original design 

relied on intracellular calcium mobilization as the primary readout, which is universally 

recognized to be a correlate of platelet function and activation. However, other markers of 

activation exist downstream of calcium mobilization and are well-studied among groups in 

the platelet biology community. For example, upon initial stimulation, the surface integrin 

ɑIIbβ3 converts to an activated state to enable platelet aggregate formation, ɑ granules fuse 

to the plasma membrane and release contents such as P-selectin, and phosphatidylserine 

(PS) is exposed on the membrane to provide a charged surface for facilitation of 

coagulation [23,168].  

Observation of multiple biomarkers simultaneously is difficult with traditional well-

plate reader technology, but can be achieved by using flow cytometry. Jaeger et al. 

developed a PAS analog known as pairwise agonist scanning-flow cytometry (PAS-FC) in 

which each of the activation events discussed above were tracked as a function of 

combinatorial agonist stimulation [54].  

Machine learning provides access to understanding basic biological mechanisms 

and, perhaps more significantly for the progress of biomedicine, developing diagnostic 

applications as well. The work by Verni et al. with respect to trauma patients presents a 

framework to understand platelet dysfunction and potentially influence transfusion 

strategies employed in the emergency room [110]. Currently, work is being performed to 

fully simulate a trauma patient’s hemostatic state, with the influence of patient-specific NN 

models and extension to 3D geometries.  

Additionally, other machine learning algorithms can be developed that consider 

relative influences of various clinical variables (e.g. vital signs, demographics, previous 
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medical history) to make predictions of patient outcomes and inform appropriate treatment 

regimens. Yoon et al., have published an approach for diagnosing disseminated 

intravascular coagulation (DIC). DIC is notorious for its lack of accepted biomarkers, so 

using readily available patient data to train machine learning models, certainly carries 

significant weight. For example, the DIC diagnostic NN model rank-ordered importance of 

32 variables and identified platelet count, D-dimer content, and clinically assigned scoring 

systems as parameters with most direct implication to development of DIC [169]. Such 

models, with sufficient learning, have the potential to be used in real-time to obtain a rough 

understanding of patient prognosis based on previous cases, and perhaps provide hints 

towards the best method of treatment. Ultimately, all of this work lends itself to the long-

term goal of personalized medicine for countless disease states. 

  

6.3.4 Conclusions 

The multi-factorial nature and ever increasing complexity of physiological 

responses to blood vessel injury have been the focus of several efforts of computational 

modeling. Some groups have chosen to focus on the role and interplay of various 

coagulation proteins, while others have strived to understand the mechanisms of blood 

cell (specifically platelet) function and activity. The ultimate goal of simulating hemostasis 

as completely as possible is becoming more achievable with integration and development 

of models that span multiple orders of magnitude and combine several individual 

components together. Applying data-driven modeling approaches that are dependent on 

bench-scale experimentation and post-simulation verification has proven to be an 

incredibly valuable method that takes advantage of the power of machine learning 

technology. Additionally, recent advances have begun to model non-healthy populations 

(e.g. patient cohorts experiencing coagulopathy and acute inflammation) in an effort to 

better understand patient prognoses and potentially guide diagnosis and treatment 
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strategies. Using the examples discussed above as motivation for the future, there should 

be great optimism for development of similarly structured models for other clinical 

conditions and diseases. 
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CHAPTER 7: FUTURE WORK 
 
 
7.1 Further characterization and study of physiological significance of fibrin 

species distribution in trauma patient blood 

7.1.1 Using gel electrophoresis and western blot to analyze size and composition of 
fibrin-related species 

In Chapters 4 and 5, we presented data from enzyme linked immunosorbent 

assays (ELISA) designed to detect the relative plasma concentrations of D-dimer and 

other cross-linked fibrin degradation products. Elevated levels were observed in samples 

obtained from trauma patients and were strongly correlated with a dysfunctional platelet 

phenotype. Though ELISA is a great method for determining presence or absence of 

proteins of interest, it lacks the ability to specify other proteins that may also be present in 

the sample. Due to the heterogeneity of fibrinolytic products in terms of size, composition, 

and other physical attributes, additional techniques can be applied to learn more about 

the distribution of fibrin-related species in trauma patient blood.  

For example, gel electrophoresis is a commonly used tool to analyze DNA, RNA, 

or protein content in a given sample on the basis of molecular size. By applying an electric 

field across a polyacrylamide gel pre-loaded with protein samples in individual lanes, the 

samples begin to mobilize through the gel and separate as a function of ability to transport. 

The distance travelled through the gel is inversely proportional to the size of the molecule, 

meaning smaller molecules will be found towards the end of the gel at the end of the 

experiment. After this separation step, the gel can be stained through techniques like 

western blotting which enables visualization of individual protein constructs and relative 

quantities in the original sample. The gel is transferred to a membrane and is then 

sandwiched by fiber pads and filter paper to protect the membrane and blot the gel, 

respectively. Primary and secondary antibodies are used to identify the proteins and a 
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reference ladder of general molecule sizes is used to determine the size of the protein 

corresponding to each band [170].   

Applying the principles of gel electrophoresis and western blotting can be applied 

to samples of blood proteins such as the family of fibrin degradation products (FDP) that 

are produced through the action of plasmin on a fibrin mesh. Analysis of size and 

composition of FDP has been conducted previously. One study included the design of a 

system to develop a fibrin-rich clot, perfuse plasmin through the mass, and collecting the 

effluent material for analysis. Using multi-angle light scattering, size exclusion 

chromatography, and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-

PAGE), the group identified FDP ranging from 105-107 g/mol [171]. The lower limit was 

representative of D-dimer, which has been discussed at length in this dissertation as a 

product with potential clinical significance, and the authors suggested that these smaller 

FDP can be approximated as rigid rods with little flexibility. Even earlier than this work, 

another group investigated FDP in acute myocardial infarction (AMI) patients [172]. Blood 

was collected prior to and after fibrinolytic therapy administration, and serum was isolated 

for subsequent protein analysis. Specifically, the authors were interested in differentiating 

between cross-linked fibrin degradation products and fibrinogen degradation products, 

and gel electrophoresis was used to distinguish the two groups.  

Using these success stories as motivation, future work with the trauma patient 

collaboration should focus on further physical and biochemical characterization of the 

specific protein complexes that may carry stronger mechanistic implications than others. 

Plasma samples or serum samples can be prepared following whole blood collection 

according to the methods outlined in Chapter 4, and separation assays can be run to 

observe the prevalence of each type of FDP. It is clear that D-dimer and cross-linked fibrin 

degradation products are present, but to this point the presence of other fibrin-related 

species specifically in trauma-derived samples is unknown.  
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7.1.2 Observing interactions between D-dimer and platelets under flow conditions in 
microfluidic device 

Virtually all of the experiments discussed in this work have utilized well-plate 

technology, which enable high-throughput data collection and excellent analysis of cellular 

signaling processes mediated by ligand-receptor interactions, but typically employ static 

reaction conditions. Considering the fact that hemostasis is a dynamic process that is 

highly dependent on the flow properties of blood, recreating these physiologically relevant 

conditions is crucial for developing a complete understanding of all aspects of the 

hemostatic response. In light of this, our group and several others have applied principles 

of biomaterials and soft lithography to fabricate controllable in vitro models of blood flow 

through miniaturized channels. Over the years, members of our lab have designed various 

microfluidic schemes for simulating a plethora of hemodynamic scenarios [173]. The 

flagship device design is comprised of eight independent channels, each supplied by its 

own inlet reservoir and operated by a syringe pump pulling through a single outlet port 

[85]. Each of the channels includes a region patterned with prothrombotic entities, where 

fluorescently labeled blood components can be visualized as the hemostatic response is 

triggered. This setup permits up to 24 test conditions when three devices are run in parallel 

and is ideal for dose-response characterization of antiplatelet and anticoagulant drugs as 

well as customized study of specific facets of hemostasis. 

To continue the work with trauma patients and assess the validity of the 

observations regarding the effects of D-dimer and fibrin degradation products on platelet 

signaling, we plan to employ microfluidic technology to determine how our results compare 

to those obtained with the incorporation of flow conditions. A previous lab member had 

also shown similar dysfunctional phenotypes in patients, but did not pursue the underlying 

mechanisms [30]. Moving forward, it would be interesting to design phenocopying 

experiments similar to those outlined in Figure 3-8, but also with the incorporation of tPA 
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or plasmin to generate fibrinolytic products or direct addition of purified D-dimer to the 

initial whole blood sample. In addition to fluorescently labeling platelets and fibrin, it would 

be important to include a detector of D-dimer and visualize whether or not the platelet and 

D-dimer signals indicate colocalization. We used a fluorescent anti-D-dimer antibody 

validated for the flow cytometry experiments in Chapter 5, but other options are available 

which are more suitable for immunofluorescence applications. A proposed schematic of 

the experimental design is shown below in Figure 7-1. Treatment of apixaban-

anticoagulated whole blood with thrombin, tPA/plasmin/D-dimer, and fluorescent 

antibodies will occur prior to loading into the microfluidic device or a coverslip. After 

sufficient incubation, both the flow experiment over a collagen patch and the static 

interaction visualization assay will be conducted. Our hypotheses would include 

decreased platelet deposition to the collagen surface as well as colocalization of platelets 

and FDP to further strengthen the notion that the two components contain binding affinity 

for one another. 

 

 

Figure 7-1. Proposed experimental setup for microfluidic investigation of platelet-FDP 
interactions 
Full-scale fibrinolysis will be simulated with thrombin and tPA or plasmin sequential addition prior 

to microfluidic assay or microscopic visualization of resulting clot components. Parameters such as 

reagent concentrations and incubation times would require optimization. 
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7.1.3 Studying mechanisms of D-dimer binding in mouse knockout cell lines 

A common method for determining specific effects of genes or transcribed proteins 

on observed phenotypes, or for identification of new functions, is the generation of 

knockout models with targeted modification of genetic material. These studies are often 

performed in mice, which have been shown to have relatively high degrees of homology 

with respect to genetic content compared to humans. Countless knockout mouse models 

have been developed and studied for all sorts of medical conditions, and this technique 

can certainly be applied to follow up on the major conclusions made in this work. In 

Chapters 3 and 5, we showed distinct platelet signaling defects through the GPVI receptor 

when soluble fibrin and fibrin degradation products were present in solution prior to agonist 

challenge. Also in Chapter 5, we presented preliminary data using an inhibitor of the 

integrin αIIbβ3 to imply decreased interactions between platelets and D-dimer when the 

receptor was hindered. Though there may be additional surface receptors to consider, we 

have proposed two candidates to study further. Despite the fact that our lab does not have 

much expertise in mouse models, we have collaborators in the medical school who could 

be included to assist in the development of knockout models and cell lines for additional 

analysis.  

Studying functionality of platelet receptors has previously been performed in 

knockout mice missing key receptors such as GPIb and GPVI, the PARs, P2Y1 and 

P2Y12, and integrin  αIIbβ3 [174]. Specifically, one group showed that thrombasthenic mice 

with knockout of the αIIb gene fail to bind fibrinogen and aggregate adequately, leading to 

bleeding disorders comparable to those observed in Glanzmann thrombasthenia patients 

[175]. For the purposes of our interests, we would be interested in a similar model, though 

ideally a full αIIbβ3 knockout, to use in D-dimer binding assays utilizing flow cytometry 

technology or surface plasmon resonance (SPR). Hypothetically, if a myriad of knockout 
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mouse models would be generated, we could screen several receptors for potential 

binding interactions to identify targets for future drug development with more confidence.   

 

7.2 Comparison of PAR signaling via activation with thrombin or synthetic 
peptide combination 

 
7.2.1 Investigating trends in different measures of platelet function 

Though thrombin is the physiologic activator of the two protease-activated 

receptors (PAR) expressed in human platelets, PAR-1 and PAR-4, ex vivo studies of 

individual activation schemes of each receptor are often performed with synthetic 

peptides. Other published work has investigated functional responses and clinical 

implications of PAR activation [176,177]. In a study of PAR-1 signaling by agonist peptides 

and thrombin, different mechanisms of activation were observed and were determined to 

be dependent on intracellular components [176]. Though this study focused on endothelial 

cells rather than platelets, which function differently, the relative dose-response results 

were similar to those observed in platelets. Another group conducted work in extracted 

cardiovascular tissues from umbilical arteries and similarly investigated effects of PAR-1 

activation via thrombin or PAR-1 activating and inhibiting peptides [177]. The conclusions 

of this study showed similar effects on arterial blood flow when either thrombin or a PAR-

1 peptide was utilized, indicating physiological significance of the receptor for 

cardiovascular applications extending beyond platelet activation. These reports do not 

consider platelet PAR activity specifically, which presents an opportunity for future 

directions. It would be interesting to try to determine dosages of various PAR agonists that 

produce similar platelet responses, and also to extend this notion to multiple metrics of 

platelet activation to obtain a full understanding of PAR signaling and inform future 

experiments as to the appropriate peptide concentrations that will mimic a physiologic 

response in the presence of thrombin. 
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Preliminary work with respect to this objective has been completed, though there 

is still ample room for further study. First, calcium mobilization experiments were designed 

with the goal of producing virtually identical data when platelets were subjected to 

thrombin stimulation or activation by a combined cocktail of PAR-1 and PAR-4 agonists, 

SFLLRN and AYPGKF. After several iterations of trial and error, it was determined that 

high concentrations of thrombin (200 nM) as well as the individual PAR peptides (100 µM 

SFLLRN + 300 µM AYPGKF) generated starkly similar calcium release profiles (Figure 

7-2,A). This agonist ratio was held constant and other conditions were tested to determine 

the generalizability of the observations. Using area-under-the-curve (AUC) as a 

quantitative measure, and plotting the thrombin-mediated results against the peptide-

mediated data, a strong linear correlation was observed (Figure 7-2,B). Though there may 

be other agonist concentrations that yield similar results, this initial outcome is 

encouraging. Similar experiments, in which flow cytometric detection of integrin αIIbβ3 

activation and P-selectin exposure were performed, produced comparable results (Figure 

7-2,C-F). However, the relative agonist concentration ranges for the calcium and flow 

cytometry assays were not conserved, probably due to different dose-response 

relationships for each metric. Standardizing the concentrations in some fashion, perhaps 

through non-dimensionalization with respect to EC50 values, may facilitate the ability to 

merge the independent observations. Despite this drawback, these preliminary data 

highlight the potential for developing a data-driven model for mapping platelet responses 

due to various PAR agonists across multiple common activation methods, which has yet 

to be successfully done by other groups to our knowledge.       
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Figure 7-2. Matching of various platelet activation markers for PAR agonists 
Platelet stimulation of dilute PRP was performed with either thrombin or a cocktail of SFLLRN and 

AYPGKF. Characteristic data for specific concentrations of each agonist condition are shown for 

calcium mobilization (A), GPIIb/IIIa activation measured by PAC1 binding (C), and P-selectin 

expression detected by anti-CD62P antibody (E). Data from other experiments with fixed agonist 

ratios are quantified and plotted to show strong correlations between the thrombin concentrations 

and peptide concentrations that span two orders of magnitude. The basis of quantification was 

area-under-the-curve for calcium assays (B), or mean fluorescent intensity for measuring PAC1 

(D) and P-selectin (F) in flow cytometry.   
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7.2.2 Training machine learning model to generalize PAR signaling events 

Using the pairwise agonist scanning (PAS) method with neural network training as 

motivation, an area of future interest would be to develop a computational model for 

describing multiple aspects of PAR signaling. Initial hypotheses present several possible 

model designs, one of which is shown below in Figure 7-3. The models would ideally be 

trained and validated with data generated in experiments similar to those discussed in the 

previous section, and then could be used to predict outcomes from diverse scenarios. 

Though inputs to the model would likely be agonist concentrations and outputs would be 

traditional metrics of platelet activation, once the model is sufficiently trained it could be 

used for making other interesting predictions. For example, if the thrombin concentration 

and corresponding calcium release profile are known and these variables are used as 

inputs, the model would then be able to generate predictions of the concentration of 

synthetic peptides required to mimic the calcium response as well as expected levels of 

PAC1 binding and P-selectin expression. This differs from the traditional PAS method in 

that the new model doesn’t rely on the same inputs and outputs, but rather is versatile 

depending on the known information.    

 

 

Figure 7-3. Proposed structure of machine learning model for PAR-specific signaling 
Data collected from experiments using thrombin and PAR-specific peptides as stimuli to trigger 

platelet activation events can be used to train computational models as predictive tools for complex 

scenarios.   
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 Since this model will involve data of different visual contexts (kinetic data traces 

for calcium experiments vs histogram distributions of cell function in flow cytometry), the 

model will likely require an image recognition feature in order to reliably learn trends in the 

data. Though many machine learning models exist and have been developed for various 

applications, models capable of deep learning, such as convolutional neural networks 

(CNN), are great for image analysis because of the capability to handle “big data” [178]. 

As was done for the PAS-NN method described at length throughout this work, 

optimization of the internal architecture of this model in terms of the number of hidden 

layers and nodes per layer would have to be performed at length to develop the most 

efficient and accurate algorithm possible.   

 

7.3 Extension of PAS to studying toll-like receptors 

7.3.1 Toll-like receptors (TLR) 

 Toll-like receptors (TLR) are a class of receptors primarily involved in the innate 

immune system and inflammatory responses. TLRs are comprised of a family of 

transmembrane proteins present in a variety of cell types. Immune cells, such as dendritic 

cells and macrophages, as well as non-immune cells like fibroblasts and epithelial cells, 

are known to express TLRs [179]. Recognizing a plethora of foreign signals known as 

pathogen-associated molecular patterns (PAMPs) or danger-associated molecular 

patterns (DAMPs), TLRs transmit intracellular signals upon activation to induce the 

expression of genes to initiate host defense. The majority of TLRs signal through proteins 

like myeloid differentiation primary response gene 88 (MyD88), Toll-interacting protein 

(TOLLIP), IL-1R-associated kinase (IRAK), and TNF-receptor-associated receptor 6 

(TRAF6). These signaling proteins work in concert to elicit downstream activation of 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-

activated protein kinase (MAPK) which tend to generate experimentally detectable signals 
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[179]. Specifically, NF-κB is a transcription factor for regulation of genes responsible for 

both innate and adaptive immune response, pro-inflammatory cytokine production, and 

other cell survival functions. 

 Though their primary function is not linked directly to the immune system, platelets 

have also been shown to express the full TLR transcriptome [180,181]. The activation of 

these receptors in platelets, of which there are known to be at least 10, contributes to both 

hemostatic and inflammatory responses, though only a subset is known to be involved in 

platelet function. These include TLRs 1, 2, 3, 4, 6, 7, and 9, and each receptor is uniquely 

expressed on either the extracellular platelet surface or within the platelet’s intracellular 

endosome compartments (Table 7-1). One TLR present on the cell surface is TLR4, which 

recognizes a variety of PAMPs and DAMPs, the most notable of which being 

lipopolysaccharide or LPS. Sometimes referred to as endotoxin, LPS is derived from 

gram-negative bacteria and is typically recognized by CD14 when in the presence of LPS-

binding protein (LBP). CD14, which can also exist as a soluble form, then shuttles the 

bound LPS to TLR4 to trigger the immune response [180].  

 The other well-characterized TLR present extracellularly is TLR2, but its functional 

activity requires heterodimer formation with TLR1 (denoted TLR2/1) or TLR6 (TLR2/6) in 

order to be able to recognize its specific pathogenic ligands. These ligands include gram 

positive-derived lipoteichoic acid and other bacterial lipoproteins, some of which have 

been successfully mimicked by synthetically developed molecules. TLR2/1 and TLR2/6 

both detect microbial PAMPs, though the former targets triacylated lipoproteins while the 

later focuses more on diacyl forms [180]. Another difference between these two receptor 

constructs is their respective effects on platelet function, which will be discussed further in 

the next section. TLR2/1 activation is often studied through the use of Pam3CSK4, a 

synthetic triacylated lipoprotein that mirrors the amino terminus of bacterial lipopeptides, 

which has been shown to positively impact platelet function. Conversely, the diacylated 
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macrophage activating lipoprotein-2 (MALP-2), agonizes the TLR2/6 complex but exerts 

inhibitory effects on platelet activation [180].        

 

Receptor Ligand(s) Involved in Platelet 
Function? 

Extracellular/Intracellular 
Platelet Expression? 

TLR1 PAM3CSK4 Yes (via heterodimer 
with TLR2) 

Extracellular 

TLR2 PAM3CSK4  
MALP-2  
Zymosan 

Yes (via heterodimer 
with TLR1 or TLR6) 

Extracellular 

TLR3 Poly (I:C) Yes Intracellular (endosomes) 
TLR4 LPS 

HMGB1 
Histones (H3, H4) 

Yes Extracellular 

TLR5 Flagellin No n/a 
TLR6 MALP-2 Yes (via heterodimer 

with TLR2) 
Extracellular 

TLR7 Imiquimod 
Imidazoquinoline 
resiquimod 

Yes Intracellular (endosomes) 

TLR8 Imidazoquinoline 
resiquimod 

No n/a 

TLR9 CpG ODN Yes Intracellular (endosomes) 
TLR10 -- No n/a 

 

Table 7-1. Expression of toll-like receptors in platelets 
Platelets feature all 10 known TLR transcripts, though only a select few are involved in platelet 

function (shown in bold). The table lists the important receptors with identified ligands, as well as 

whether the receptor is present on the cell surface (extracellular) or within the cell (intracellular). 

 

 The remaining three TLRs that have been implicated to affect platelet function—

TLR3, TLR7, and TLR9—are found within the cell and respond to viral PAMPs. Each of 

these receptors recognizes different forms of genetic material; TLR3 responds to double-

stranded RNA (dsRNA) produced during the life cycle of a virus, TLR7 recognizes single-

stranded RNA (ssRNA), and TLR9 detects viral DNA containing the unmethylated 

cytidine-phosphate guanosine (CpG) sequence [180]. Similar to TLR2 and TLR4, these 

intracellular receptors can also be activated through mimetics of physiologic entities. For 

example, TLR3 activation can be mediated with polyinosinic:polycytidylic acid, or 
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Poly(I:C), which serves as an analog for dsRNA replication products, and TLR7-

dependent inflammatory signals can be initiated with imiquimod, a prescription drug known 

to treat genital warts in addition to its capability to boost the immune system. 

 

7.3.2 TLR activation involvement in platelet activation and signaling 

 As has been discussed, only a selection of the TLR transcripts carry platelet 

function implications upon activation, and even some of the reported effects are 

contradictory. Table 7-2 lists platelet activation signals that have been reported in the 

literature for each of the functional TLRs. When activated, most of the receptors lead to 

platelet activation events such as adhesion, aggregation, and intracellular granule release 

in addition to their usual pro-inflammatory signals through the NF-κB pathway. Other 

receptors exhibit antiplatelet activity; the TLR2/6 heterodimer complex competes with 

TLR2/1 to balance the effects, and TLR7 activation has been shown to induce 

thrombocytopenia as a result of the formation of platelet-neutrophil aggregates [180]. More 

interesting and applicable to the work in this dissertation, however, a few TLRs have been 

reported to elicit increases in calcium mobilization in platelets.  

TLRs specifically identified to play a role in platelet calcium signaling are TLR2/1 

and TLR3. A few groups have shown positive results for Pam3CSK4 stimulation of 

platelets through TLR2/1 to elicit rises in calcium concentrations [182,183]. In fact, the 

calcium mobilization level in response to the TLR2/1 agonist was comparable to that 

induced by thrombin, and was inhibited if platelets were also stimulated simultaneously 

with MALP-2 [183]. However, a separate group attempted similar experiments in which 

platelets were stimulated with Pam3CSK4 or LPS to study calcium signaling in the two 

known surface TLRs. Their results implied TLR activation fails to effectively mobilize 

calcium, and have no effects on subsequent challenge with traditional agonists like ADP 

or platelet-activating factor (PAF) [184]. This lack of agreement may be attributed to the 
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different calcium detection systems used in the referenced studies, but also provides an 

opportunity to apply the methods we have developed to further understand the potential 

physiological significance of TLR signaling in platelets. 

 

TLR Signals for Platelet Activation 

TLR2/1 NF-KB pathway, Syk/Src pathway 
Increased Ca2+, TXA2 production, p38 phosphorylation, PI3K/AKT activation, 
PLCγ2 activation 
Platelet aggregation, adhesion, granule secretion, NET formation  

TLR2/6 Anti-platelet activity  inhibitory towards TLR2/1 signaling 
TLR3 NF-KB pathway 

Increased Ca2+, PI3K/AKT activation, alpha granule secretion, potentiation 
of activation via other agonists 

TLR4 NF-KB pathway, MAPK pathway 
PI3K/AKT activation, PKG expression through cGMP signaling 
Platelet aggregation, adhesion, granule secretion, NET formation 

TLR7 Granule secretion, platelet-neutrophil aggregation, thrombocytopenia 
TLR9 PI3K/AKT activation, Src signaling 

Alpha granule secretion, integrin activation, aggregation, thrombosis 
acceleration 

 

Table 7-2. Platelet biochemical signaling mediated by TLR activation 
For the specific TLR’s involved in platelet activation, some require heterodimer formation (e.g. 

TLR2/1, TLR2/6), while most lead to activation of the NK-KB pathway. Other receptors are reported 

to lead directly to rises in calcium mobilization, or other indicators of platelet activity like 

aggregation, adhesion, or granule release.    

 

7.3.3 Application of PAS to study TLR-mediated platelet function 

To this point, our study of platelet function has focused on traditional agonists and 

receptors whose sole purpose is hemostatic in nature. Several other surface receptors 

commonly involved in other processes like inflammation, such as toll-like receptors, may 

also play an important role in platelet activation, as has been described in the previous 

sections. Our literature review of TLRs has revealed several ligand-receptor interactions 

to consider in platelets, some of which have already been studied by other groups, and 

our lab’s capability to interrogate countless signaling pathways in a single experiment 

certainly presents an opportunity for future research.  
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Figure 7-4. Proposed set of experiments for investigating TLR activation in platelets 
Preliminary studies of TLR-mediated platelet activation will begin with characterization of several 

of the known agonists listed in Table 7-1, specifically for ability to induce calcium mobilization. If 

necessary, other platelet function assays can also be incorporated for the most promising agonists. 

Dose-response experiments will be conducted to determine appropriate concentration ranges to 

use in future studies, which will include PAS-inspired experiments with multiple TLR ligands 

(orange boxes) as well as combinations with traditional platelet agonists (blue boxes).  

 

Since this area of research is unfamiliar and relatively poorly understood, several 

preliminary experiments can be designed to establish how to proceed with future studies. 

A general outline for the proposed sequence of events in this study is presented in Figure 

7-4, however this is not an exhaustive list and tangential investigation should certainly be 

pursued as initial results are obtained. Each of the TLR agonists listed in Table 7-1 is 

commercially available and can be purchased for laboratory use. The first step upon 

acquisition of these reagents, as with most studies in this work, is to characterize their 

ability to activate platelets. Calcium mobilization experiments in systems of dilute PRP 

should be conducted in which varying doses of each reagent are used as activating stimuli. 

Ideally, some of the TLR agonists will yield dose-dependent calcium profiles, and these 

candidates will progress to the next stage of testing. For those agonists that don’t 

successfully mobilize calcium in platelet suspensions, they should not necessarily be 

omitted from future work but simply put on the back burner until studies with the more 
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promising reagents are complete. At that point, other assays can be designed (e.g. platelet 

aggregometry, flow cytometry) to investigate other mechanisms of platelet activation. 

After dose-response experiments inform appropriate concentrations to use, PAS 

studies can be designed to investigate synergies between individual TLR agonists as well 

as crosstalk between TLRs and traditional platelet receptors. It is difficult to predict the 

number of TLR agonists that will be used for this second set of tests, so we show a few 

that should produce some platelet reactivity (LPS and Pam3SK4). Procedures should 

follow those documented previously [50,84,110], and this pilot study will be novel in that 

high-throughput experimentation of combined inflammatory and hemostatic receptor 

activation has not been performed previously to our knowledge.  
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CHAPTER 8: APPENDIX I (SUPPLEMENTAL FIGURES) 
 

 

Supplemental Figure 1. Dasatinib, a Syk inhibitor, blocks the GPVI-signaling pathway, confirming 
that convulxin or collagen activates GPVI with concomitant calcium mobilization and platelet 
activation dependent on Syk signaling. (A) Stimulation of platelets with convulxin (2 nM) is inhibited 
by Dasatinib (1 µM) when measuring calcium mobilization. (B) Platelet deposition on a collagen 
surface in an 8-channel microfluidic device is abolished when Dasatinib is present. 
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Supplemental Figure 2. Pretreatment of PRP with thrombin blocks subsequent platelet activation 
by collagen related peptide (CRP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



133 
 

 

Supplemental Figure 3. Vorapaxar is a specific PAR-1 inhibitor. Vorapaxar (100 nM) reduced 
PAR-1 agonist peptide induced platelet calcium mobilization in a dose-dependent manner (A), but 
had no effect on PAR-4 agonist peptide induced calcium mobilization (B). 
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Supplemental Figure 4. Thrombin activation of washed platelets does not exhibit attenuation of 
GPVI activation as is observed in PRP. (A) Incubation of 12% (v/v) PRP with thrombin (5 nM) 
results in initial platelet activation and subsequent down-regulation of the GPVI signal when 
compared to a buffer control. (B) Isolation and preparation of washed platelets (a plasma-free 
background) shows initial thrombin-induced platelet activation but no significant downstream effect 
on the functionality of platelet GPVI when exposed to convulxin (20 nM). (C, convulxin; T, thrombin). 
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Supplemental Figure 5. Inhibition of fibrin polymerization with GPRP completely eliminates down-
regulation of convulxin-induced platelet activation. (A) When GPRP (5 mM) is present in platelets, 
the attenuation of calcium fluorescence through GPVI signaling is no longer observed after platelets 
have been activated with thrombin. (B) At several dosage levels of thrombin (2-20 nM) the 
functionality of platelet GPVI is nearly 100% (n=3 donors, * p<0.05). 
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Supplemental Figure 6. Inhibition of glycoprotein IIb/IIIa-mediated platelet aggregation via 
GR144053 does not prevent GPVI down-regulation after thrombin treatment of PRP. (A) Upon 
pretreatment with GR144053 (5 µM), platelets exhibit calcium mobilization due to thrombin 
stimulation but show convulxin-insensitivity similar to that of the negative control (no GR144053 
treatment) (n=3 replicates for each condition). (B) Aggregometry shows the effect of GR144053 on 
collagen-induced platelet aggregation. 
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Supplemental Figure 7. Characterization of soluble fibrin via dynamic light scattering. Purified 
fibrinogen (final concentration = 10 nM) was stimulated with low-dose thrombin (1 nM) for 10 min. 
The first peak (42.7±7.4 nm) reflects unreacted fibrinogen and the second peak (1095±347.7 nm) 
indicates soluble fibrin polymerization with an approximate chain length of 25 monomeric units. 
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Supplemental Figure 8. Low-dose thrombin treatment (2 nM) of PRP results in ~35% decrease in 
platelet aggregation in response to convulxin (orange curve). However, full GPVI-mediated platelet 
aggregation is restored when PRP is incubated with 5 mM GPRP, preventing fibrin polymerization 
(grey curve). This result is representative of at least three independent experiments and similar 
results were observed using 1 µg/mL fibrillar collagen in place of convulxin.  
 

 

 

 

 

 

 

 

 

 

 

 

 



139 
 

 

Supplemental Figure 9. Factor Xa is an effective mediator of GPVI shedding, though the process 
is relatively slow and requires >60 min to exhibit ~80% of the original GPVI signal. Washed platelets 
were isolated from apixaban-treated whole blood, incubated with calcium dye, and resuspended in 
HBS buffer, then pretreated with FXa (10 µg/mL) for the times indicated above. Convulxin-induced 
(10 nM) calcium mobilization was measured at three timepoints (0, 30, 60 min) of FXa incubation 
to show the time-dependency of FXa-mediated GPVI shedding (n=8 replicates for each timepoint). 
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Supplemental Figure 10. Platelet signaling pathways and ligand-receptor binding. Platelet 
activation is mediated by several surface receptors, each with specific ligands that are either 
presented to cells upon endothelial disruption or produced following the first stages of the 
hemostatic response. Major receptors are shown above (GPVI, TP, PAR-1/4, P2Y1 and P2Y12, and 
IP) with commonly used activating agents and respective signaling pathways (right), all of which 
converge upon intracellular calcium mobilization [Ca2+(t)]. Dose-response experiments have been 
conducted previously to determine the EC50 values for each platelet agonist and antagonist listed 
above and combinations of one or two agonists can be prepared as detailed in the concentration 
map (left) to build a subject-specific phenotypic profile of platelet activation. This technique is called 
pairwise agonist scanning (PAS) and has been documented extensively for healthy donors 
(Chatterjee et al. Nat Biotechnol, 2010;28:727-32; Lee et al. PloS Comput Biol, 2015;11:e1004118). 
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Supplemental Figure 11. Validation of restricted combinatorial space in trauma patient studies of 
total platelet calcium mobilization. Full (n=154 agonist conditions) and restricted (n=31) PAS 
experiments were conducted on healthy donors (N=8) and neural network models were trained 
using data from the restricted space. Up to 10 NNs were trained on each unique donor’s data, and 
the models were averaged together to predict the responses to the full PAS space. The prediction 
made by an average of 80 NNs yielded high agreement (R=0.8125) with the actual measured data. 
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Supplemental Figure 12. Experimental setup for monitoring platelet function following 
resuspension of washed platelets in platelet-poor plasma (PPP). Anticoagulated whole blood (WB) 
is centrifuged to isolate platelet-poor plasma (PPP; 2000g, 10min), which can be stored at -80°C 
for future use, or platelet-rich plasma (PRP; 120g, 10min). PRP can then be incubated with a 
fluorescent calcium dye, Fluo-4, and centrifuged further to concentrate a platelet pellet which can 
be washed and resuspended in a medium of choice. Frozen plasma is thawed, reconstituted, and 
incubated in fresh washed platelets and platelet activity is challenged with various agonists.  
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Supplemental Figure 13. Representative flow cytometry results for healthy donor. Platelet function 
was monitored using antibodies against activated αIIbβ3, P-selectin, and phosphatidylserine (PS). 
Results were quantified as mean fluorescent intensity (MFI) or % PS-postive cells as determined 
by a pre-determined gating function. Dilute PRP (1%) was activated by buffer control, ADP (2 µM), 
or CVX (4 nM) and results were compared between trauma patients and healthy donors (Figure 
4-2). (Note that the x-axis is in log scale.) 
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Supplemental Figure 14. D-dimer ELISA results. Plasma concentrations of D-dimer were 
measured via a Human D-dimer ELISA Kit (Abcam, Cambridge, MA). A standard curve was 
constructed for a range of D-dimer concentrations (left) and used to determine levels in a cohort of 
healthy donor and trauma patient plasma samples (right). Trauma patient samples showed ~30-
fold increase in D-dimer concentration compared to healthy samples. 
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Supplemental Figure 15. Total platelet calcium mobilization as a function of patient injury severity 
score (ISS). Each enrolled trauma patient was assigned an ISS to denote the seriousness of the 
presenting conditions. To determine if this unitless parameter was correlated with the level of 
platelet dysfunction observed in the calcium mobilization assay, the data in Figure 4-1,E was plotted 
against the ISS for each patient. The top panel includes all collected data, while the bottom panel 
is the same data labeled with the collection time point. There appears to be no significant 
relationship between the two variables. 
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Supplemental Figure 16. (A) Protocol for replication of fibrinolysis in well plate-based calcium 
mobilization assay. Thrombin is added to fluorescent dye-loaded PRP in the presence and absence 
of inhibitors, followed by dispenses of tPA and convulxin. (B) Experimental setup for measurement 
of platelet-mediated consumption of D-dimer. Washed platelets were isolated from healthy whole 
blood and incubated with sources of D-dimer (trauma patient-derived plasma or pure human D-
dimer recombinant protein). Sample supernatants following centrifugation were analyzed for final 
D-dimer content by ELISA. 
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Supplemental Figure 17. (A) Addition of tPA to fibrin-containing systems reduces platelet reactivity 
to CVX stimulation at several low initial thrombin concentrations. (B) D-dimer generation is 
confirmed at each of the thrombin concentrations tested when tPA is present. 
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Supplemental Figure 18. Measurements of dense granule activity via ATP release in the presence 
and absence of D-dimer. When stimulated with 2 µg/mL collagen (A) or 10 µM ADP (B), platelets 
released less ATP when pre-incubated with D-dimer (50 µg/mL). The traces shown are averages 
of n=2-3 independent experiments and all data collected are quantified for each condition (C). 
(*p<0.05, **p<0.01) 
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Supplemental Figure 19. Visual representation of data presented in Figure 3 with raw datasets. 
(A) The calcium experiment begins with the preparation of several (n=31) conditions containing 
different doses of six common platelet agonists, shown schematically where each condition is 
represented as a row in the first heatmap (e.g. first condition: buffer control; second condition: low-
dose AYPGKF only, etc). After the agonists are dispensed into PRP, each condition generates a 
calcium time trace, which can also be vectorized and concatenated as a heatmap in the same order 
as the concentration map. Each of these vectors contributes to the Total Platelet Calcium 
Mobilization calculation. The datasets obtained from healthy controls (B, above) and trauma 
patients (C, next page) shows stark differences in platelet response between the two populations 
as well as intra-group variability. 
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Supplemental Figure 20. Agonist-specific correlations of platelet function and D-dimer 
concentration. Black solid lines show correlation of all data (healthy/trauma), and dotted line 
represents 95% confidence interval bounds on the line of best fit. Agonist-receptor pairs include 
(A) convulxin-GPVI, (B) ADP-P2Y1/P2Y12, (C) SFLLRN-PAR1, and (D) AYPGKF-PAR4. 
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Supplemental Figure 21. Representative calcium traces showing effect of APAC (12.5 µg/mL) on 
activity of various platelet agonists. (A: T=thrombin, B: C=convulxin, C: A=ADP, D: U=U46619, E: 
SFL=SFLLRN, F: AYP=AYPGKF, G: type I fibrillar collagen, APAC CL10, APAC CL18, APAC 
HICL. 
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Supplemental Figure 22. Platelet aggregation profiles for several platelet agonists in the presence 
and absence of APAC (200 µg/mL). Taken with Figure 6-2, only thrombin- and collagen-mediated 
platelet aggregation are inhibited by APAC. 
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CHAPTER 9: APPENDIX II (DATA ANALYSIS SCRIPTS) 
 

Copies of various MATLAB scripts used for data analysis, figure generation, and machine 

learning model development are stored in an online Github repository entitled ‘Diamond-

Lab-MATLAB-Codes’. For more information, please email cverni13@gmail.com.  

mailto:cverni13@gmail.com


155 
 

CHAPTER 10: BIBLIOGRAPHY 
 

1  Boon GD. An overview of hemostasis. Toxicol Pathol 1993; 21: 170–9.  

2  Gale AJ. Current Understanding of Hemostasis. Toxicol Pathol 2011; 39: 273–80.  

3  Paul BZS, Daniel JL, Kunapuli SP. Platelet shape change is mediated by both 
calcium-dependent and -independent signaling pathways: Role of p160 Rho-
associated coiled-coil-containing protein kinase in platelet shape change. J Biol 
Chem 1999; 274: 28293–300.  

4  Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound 
healing and beyond. Blood Rev 2015; 29: 153–62.  

5  Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth Analg 
2009; 108: 1447–52.  

6  Shen L, Lorand L. Contribution of fibrin stabilization to clot strength: 
Supplementation of factor XIII-deficient plasma with the purified zymogen. J Clin 
Invest 1983; 71: 1336–41.  

7  Rosenberg RD, Rosenberg JS. Natural anticoagulant mechanisms. J Clin Invest 
1984; 74: 1–6.  

8  Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 
2015; 29: 17–24.  

9  Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: 
an update. Eur Heart J 2017; 38: 785–91.  

10  Chang R, Cardenas JC, Wade CE, Holcomb JB. Advances in the understanding 
of trauma-induced coagulopathy. Blood 2016; 128: 1043–9.  

11  van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new 
concepts and clinical perspectives. Nat Rev Cardiol 2019; 16: 166–79.  

12  Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay 
between inhibitory and activatory networks. J Thromb Haemost 2016; 14: 918–30.  

13  Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. 
Physiology 2017; 32: 162–77.  

14  Bergmeier W, Stefanini L. Platelet ITAM signaling. Curr Opin Hematol 2013; 20: 
445–50.  

15  Polgár J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TNC, 
Clemetson KJ. Platelet activation and signal transduction by convulxin, a C-type 
lectin from Crotalus durissus terrificus venom via the p62/GPVI collagen receptor. 
J Biol Chem 1997; 272: 13576–83.  

16  Suzuki-Inoue K, Fuller GLJ, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, 
Hughan SC, Pearce AC, Laing GD, Theakston RDG, Schweighoffer E, Zitzmann 
N, Morita T, Tybulewicz VLJ, Ozaki Y, Watson SP. A novel Syk-dependent 
mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 
2006; 107: 542–9.  



156 
 

17  Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, Coughlin SR. Structure-function 
analysis of protease-activated receptor 4 tethered ligand peptides: Determinants 
of specificity and utility in assays of receptor function. J Biol Chem 2000; 275: 
19728–34.  

18  Vu T-KH, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional 
thrombin receptor reveals a novel proteolytic mechanism of receptor activation. 
Cell 1991; 64: 1057–68.  

19  Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ. Thromboxane A2 is a 
mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. 
Cancer Res 1999; 59: 4574–7.  

20  Gurbel PA, Kuliopulos A, Tantry US. G-Protein-Coupled receptors signaling 
pathways in new antiplatelet drug development. Arterioscler Thromb Vasc Biol 
2015; 35: 500–12.  

21  Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J 
Thromb Haemost 2012; 10: 167–76.  

22  Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and 
activation. Arterioscler Thromb Vasc Biol 2010; 30: 2341–9.  

23  Yun S-H, Sim E-H, Goh R-Y, Park J-I, Han J-Y. Platelet activation: The 
mechanisms and potential biomarkers. Biomed Res Int 2016; 2016: 9060143.  

24  Pai M, Wang G, Moffat KA, Liu Y, Seecharan J, Webert K, Heddle N, Hayward C. 
Diagnostic usefulness of a lumi-aggregometer adenosine triphosphate release 
assay for the assessment of platelet function disorders. Am J Clin Pathol 2011; 
136: 350–8.  

25  Nagy Jr B, Beke Debreceni I, Kappelmayer J. Flow Cytometric Investigation of 
Classical and Alternative Platelet Activation Markers. EJIFCC 2012; 23: 124–34.  

26  Nesbitt WS, Giuliano S, Kulkarni S, Dopheide SM, Harper IS, Jackson SP. 
Intercellular calcium communication regulates platelet aggregation and thrombus 
growth. J Cell Biol 2003; 160: 1151–61.  

27  Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb 
Haemost 2009; 7: 1057–66.  

28  Wohlauer MV, Moore EE, Thomas S, Sauaia A, Evans E, Harr J, Silliman CC, 
Ploplis V, Castellino FJ, Walsh M. Early platelet dysfunction: An unrecognized role 
in the acute coagulopathy of trauma. J Am Coll Surg 2012; 214: 739–46.  

29  Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, 
Nelson MF, Cohen MJ. Characterization of platelet dysfunction after trauma. J 
Trauma Acute Care Surg 2012; 73: 13–9.  

30  Li R, Elmongy H, Sims C, Diamond SL. Ex vivo recapitulation of trauma-induced 
coagulopathy and preliminary assessment of trauma patient platelet function 
under flow using microfluidic technology. J Trauma Acute Care Surg 2016; 80: 
440–9.  

31  Saillant NN, Sims CA. Platelet dysfunction in injured patients. Mol Cell Ther 2014; 
2: 37.  



157 
 

32  Davis PK, Musunuru H, Walsh M, Cassady R, Yount R, Losiniecki A, Moore EE, 
Wohlauer MV, Howard J, Ploplis VA, Castellino FJ, Thomas SG. Platelet 
dysfunction is an early marker for traumatic brain injury-induced coagulopathy. 
Neurocrit Care 2013; 18: 201–8.  

33  Ramsey MT, Fabian TC, Shahan CP, Sharpe JP, Mabry SE, Weinberg JA, Croce 
MA, Jennings LK. A prospective study of platelet function in trauma patients. J 
Trauma Acute Care Surg 2016; 80: 726–33.  

34  Bender M, Hofmann S, Stegner D, Chalaris A, Bösl M, Braun A, Scheller J, Rose-
John S, Nieswandt B. Differentially regulated GPVI ectodomain shedding by 
multiple platelet-expressed proteinases. Blood 2010; 116: 3347–55.  

35  Baaten CCFMJ, Swieringa F, Misztal T, Mastenbroek TG, Feijge MAH, Bock PE, 
Donners MMPC, Collins PW, Li R, van der Meijden PEJ, Heemskerk JWM. 
Platelet heterogeneity in activation-induced glycoprotein shedding: functional 
effects. Blood Adv 2018; 2: 2320–31.  

36  Dunbar NM, Chandler WL. Thrombin generation in trauma patients. Transfusion 
2009; 49: 2652–60.  

37  Chapman MP, Moore EE, Moore HB, Gonzalez E, Gamboni F, Chandler JG, Mitra 
S, Ghasabyan A, Chin TL, Sauaia A, Banerjee A, Silliman CC. Overwhelming tPA 
release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely 
injured trauma patients. J Trauma Acute Care Surg 2016; 80: 16–25.  

38  Yanagida Y, Gando S, Sawamura A, Hayakawa M, Uegaki S, Kubota N, Homma 
T, Ono Y, Honma Y, Wada T, Jesmin S. Normal prothrombinase activity, 
increased systemic thrombin activity, and lower antithrombin levels in patients 
with disseminated intravascular coagulation at an early phase of trauma: 
Comparison with acute coagulopathy of trauma-shock. Surgery 2013; 154: 48–57.  

39  Bredbacka S, Edner G. Soluble fibrin and D-dimer as detectors of 
hypercoagulability in patients with isolated brain trauma. J Neurosurg Anesthesiol 
1994; 6: 75–82.  

40  Wada H, Sase T, Matsumoto T, Kushiya F, Sakakura M, Mori Y, Nishikawa M, 
Ohnishi K, Nakatani K, Gabazza EC, Shiku H, Nobori T. Increased soluble fibrin in 
plasma of patients with disseminated intravascular coagulation. Clin Appl Thromb 
2003; 9: 233–40.  

41  Johna S, O’Callaghan T, Cemaj S, Catalano R. Effect of tissue injury on D-Dimer 
levels: A prospective study in trauma patients. Med Sci Monit 2002; 8: CR5–8.  

42  Gans H, Lowman JT. The uptake of fibrin and fibrin-degradation products by the 
isolated perfused rat liver. Blood 1967; 29: 526–39.  

43  Pizzo S V., Pasqua JJ. The clearance of human fibrinogen fragments D1, D2, D3 
and fibrin fragment D1 dimer in mice. Biochim Biophys Acta 1982; 718: 177–84.  

44  Brommer EJP, Engbers J, v.d. Laarse A, Nieuwenhuizen W. Survival of fibrinogen 
degradation products in the circulation after thrombolytic therapy for acute 
myocardial infarction. Fibrinolysis 1987; 1: 149–53.  

45  Sharma S, Sharma P, Tyler LN. Transfusion of blood and blood products: 
Indications and complications. Am Fam Physician 2011; 83: 719–24.  



158 
 

46  Thorn S, Güting H, Mathes T, Schäfer N, Maegele M. The effect of platelet 
transfusion in patients with traumatic brain injury and concomitant antiplatelet use: 
a systematic review and meta-analysis. Transfusion 2019; 59: 3536–44.  

47  Vulliamy P, Gillespie S, Gall LS, Green L, Brohi K, Davenport RA. Platelet 
transfusions reduce fibrinolysis but do not restore platelet function during trauma 
hemorrhage. J Trauma Acute Care Surg 2017; 83: 388–97.  

48  Paredes RM, Etzler JC, Watts LT, Lechleiter JD. Chemical Calcium Indicators. 
Methods 2008; 46: 143–51.  

49  Liu ECK, Abell LM. Development and validation of a platelet calcium flux assay 
using a fluorescent imaging plate reader. Anal Biochem 2006; 357: 216–24.  

50  Chatterjee MS, Purvis JE, Brass LF, Diamond SL. Pairwise agonist scanning 
predicts cellular signaling responses to combinatorial stimuli. Nat Biotechnol 2010; 
28: 727–32.  

51  Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles 
and applications. Crit Rev Biotechnol 2017; 37: 163–76.  

52  Brown M, Wittwer C. Flow cytometry: Principles and clinical applications in 
hematology. Clin Chem 2000; 46: 1221–9.  

53  Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet 
membrane glycoprotein IIbIIIa complex during platelet activation. J Biol Chem 
1985; 260: 11107–14.  

54  Jaeger DTL, Diamond SL. Pairwise agonist scanning-flow cytometry (PAS-FC) 
measures inside-out signaling and patient-specific response to combinatorial 
platelet agonists. Biotechniques 2013; 54: 271–7.  

55  Born GVR. Aggregation of blood platelets by adenosine diphosphate and its 
reversal. Nature 1962; 194: 927–9.  

56  Hvas A-M, Favaloro EJ. Platelet Function Analyzed by Light Transmission 
Aggregometry. In: Favaloro EJ, Lippi G, editors. Hemostasis and Thrombosis: 
Methods and Protocols. New York (NY): Springer New York; 2017. p. 321–31.  

57  Koltai K, Kesmarky G, Feher G, Tibold A, Toth K. Platelet aggregometry testing: 
Molecular mechanisms, techniques and clinical implications. Int J Mol Sci 2017; 
18: 1803.  

58  Reikvam H, Steien E, Hauge B, Liseth K, Hagen KG, Størkson R, Hervig T. 
Thrombelastography. Transfus Apher Sci 2009; 40: 119–23.  

59  Gill M. The TEG®6s on shaky ground? A novel assessment of the TEG®6s 
performance under a challenging condition. J Extra Corpor Technol 2017; 49: 26–
9.  

60  Gonzalez E, Moore EE, Moore HB. Management of Trauma Induced 
Coagulopathy with Thromboelastography. Crit Care Clin 2017; 33: 119–34.  

61  Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, Mackway-Jones 
K, Parr MJ, Rizoli SB, Yukioka T, Hoyt DB, Bouillon B. The coagulopathy of 
trauma: a review of mechanisms. J Trauma 2008; 65: 748–54.  



159 
 

62  Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces 
endogenous heparinization in patients with severe injury and early traumatic 
coagulopathy. J Trauma Acute Care Surg 2012; 73: 60–6.  

63  Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury 
2007; 38: 1336–45.  

64  Brohi K, Singh J, Heron M, Coats T. Acute Traumatic Coagulopathy. J Trauma 
2003; 54: 1127–30.  

65  Boldt J, Papsdorf M, Rothe A, Kumle B, Piper S. Changes of the hemostatic 
network in critically ill patients-Is there a difference between sepsis, trauma, and 
neurosurgery patients? Crit Care Med 2000; 28: 445–50.  

66  Conti A, Sanchez-Ruiz Y, Bachi A, Beretta L, Grandi E, Beltramo M, Alessio M. 
Proteome study of human cerebrospinal fluid following traumatic brain injury 
indicates fibrin(ogen) degradation products as trauma-associated markers. J 
Neurotrauma 2004; 21: 854–63.  

67  Iversen LH, Thorlacius-Ussing O, Okholm M. Soluble fibrin in plasma before and 
after surgery for benign and malignant colorectal disease. Thromb Res 1995; 79: 
471–81.  

68  Gando S, Nanzaki S, Sasaki S, Kemmotsu O. Significant correlations between 
tissue factor and thrombin markers in trauma and septic patients with 
disseminated intravascular coagulation. Thromb Haemost 1998; 79: 1111–5.  

69  Sakai H, Nishihara H, Kakemizu M, Imai M, Igarashi K, Okazaki A. Discrepancy 
between soluble fibrin and D-dimer levels among sampling sites in elderly patients 
with femoral neck fracture. J Anesth 2009; 23: 308–9.  

70  Toh JMH, Ken-Dror G, Downey C, Abrams ST. The clinical utility of fibrin-related 
biomarkers in sepsis. Blood Coagul Fibrinolysis 2013; 24: 839–43.  

71  Giannitsis E, Siemens HJ, Mitusch R, Tettenborn I, Wiegand U, Schmücker G, 
Sheikhzadeh A, Stierle U. Prothrombin fragments F1+2, thrombin-antithrombin III 
complexes, fibrin monomers and fibrinogen in patients with coronary 
atherosclerosis. Int J Cardiol 1999; 68: 269–74.  

72  Westerlund E, Woodhams BJ, Eintrei J, Söderblom L, Antovic JP. The evaluation 
of two automated soluble fibrin assays for use in the routine hospital laboratory. 
Int J Lab Hematol 2013; 35: 666–71.  

73  Hosaka A, Miyata T, Aramoto H, Shigematsu H, Nakazawa T, Okamoto H, 
Shigematsu K, Nagawa H. Clinical implication of plasma level of soluble fibrin 
monomer-fibrinogen complex in patients with abdominal aortic aneurysm. J Vasc 
Surg 2005; 42: 200–5.  

74  Hayakawa M, Gando S, Ono Y, Wada T, Yanagida Y, Sawamura A, Ieko M. 
Noble-Collip Drum Trauma Induces Disseminated Intravascular Coagulation But 
Not Acute Coagulopathy of Trauma-Shock. Shock 2015; 43: 261–7.  

75  Alshehri OM, Hughes CE, Montague S, Watson SK, Frampton J, Bender M, 
Watson SP. Fibrin activates GPVI in human and mouse platelets. Blood 2015; 
126: 1601–8.  



160 
 

76  Dütting S, Bender M, Nieswandt B. Platelet GPVI: a target for antithrombotic 
therapy?! Trends Pharmacol Sci 2012; 33: 583–90.  

77  Bültmann A, Li Z, Wagner S, Peluso M, Schönberger T, Weis C, Konrad I, Stellos 
K, Massberg S, Nieswandt B, Gawaz M, Ungerer M, Münch G. Impact of 
glycoprotein VI and platelet adhesion on atherosclerosis-A possible role of 
fibronectin. J Mol Cell Cardiol 2010; 49: 532–42.  

78  Schönberger T, Ziegler M, Borst O, Konrad I, Nieswandt B, Massberg S, 
Ochmann C, Jürgens T, Seizer P, Langer H, Münch G, Ungerer M, Preissner KT, 
Elvers M, Gawaz M. The dimeric platelet collagen receptor GPVI-Fc reduces 
platelet adhesion to activated endothelium and preserves myocardial function 
after transient ischemia in mice. Am J Physiol Cell Physiol 2012; 303: C757–66.  

79  Inoue O, Suzuki-Inoue K, McCarty OJT, Moroi M, Ruggeri ZM, Kunicki TJ, Ozaki 
Y, Watson SP. Laminin stimulates spreading of platelets through integrin 
alpha6beta1-dependent activation of GPVI. Blood 2006; 107: 1405–12.  

80  Mammadova-Bach E, Ollivier V, Loyau S, Schaff M, Dumont B, Favier R, 
Freyburger G, Latger-Cannard V, Nieswandt B, Gachet C, Mangin PH, Jandrot-
Perrus M. Platelet glycoprotein VI binds to polymerized fibrin and promotes 
thrombin generation. Blood 2015; 126: 683–91.  

81  Nieswandt B, Pleines I, Bender M. Platelet adhesion and activation mechanisms 
in arterial thrombosis and ischaemic stroke. J Thromb Haemost 2011; 9: 92–104.  

82  Scherer RU, Spangenberg P. Procoagulant activity in patients with isolated 
severe head trauma. Crit Care Med 1998; 26: 149–56.  

83  Wada H, Sakuragawa N, Shiku H. Hemostatic Molecular Markers Before Onset of 
Disseminated Intravascular Coagulation in Leukemic Patients. Semin Thromb 
Hemost 1998; 24: 293–7.  

84  Lee MY, Diamond SL. A Human Platelet Calcium Calculator Trained by Pairwise 
Agonist Scanning. PLoS Comput Biol 2015; 11: e1004118.  

85  Maloney SF, Brass LF, Diamond SL. P2Y12 or P2Y1 inhibitors reduce platelet 
deposition in a microfluidic model of thrombosis while apyrase lacks efficacy 
under flow conditions. Integr Biol 2010; 2: 183–92.  

86  Arthur JF, Shen Y, Kahn ML, Berndt MC, Andrews RK, Gardiner EE. Ligand 
binding rapidly induces disulfide-dependent dimerization of glycoprotein VI on the 
platelet plasma membrane. J Biol Chem 2007; 282: 30434–41.  

87  Jung SM, Moroi M, Soejima K, Nakagaki T, Miura Y, Berndt MC, Gardiner EE, 
Howes J-M, Pugh N, Bihan D, Watson SP, Farndale RW. Constitutive 
dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to 
collagen and activation in flowing blood. J Biol Chem 2012; 287: 30000–13.  

88  Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R, 
Diamond SL, Brass LF. Hierarchical organization in the hemostatic response and 
its relationship to the platelet-signaling network. Blood 2013; 121: 1875–85.  

89  Arai M, Yamamoto N, Moroi M, Akamatsu N, Fukutake K, Tanoue K. Platelets 
with 10% of the normal amount of glycoprotein VI have an impaired response to 
collagen that results in a mild bleeding tendency. Br J Haematol 1995; 89: 124–



161 
 

30.  

90  Bynagari-Settipalli YS, Cornelissen I, Palmer D, Duong D, Concengco C, Ware J, 
Coughlin SR. Redundancy and Interaction of Thrombin- and Collagen-Mediated 
Platelet Activation in Tail Bleeding and Carotid Thrombosis in Mice. Arterioscler 
Thromb Vasc Biol 2014; 34: 2563–9.  

91  Onselaer M-B, Hardy AT, Wilson C, Sanchez X, Babar AK, Miller JLC, Watson 
CN, Watson SK, Bonna A, Philippou H, Herr AB, Mezzano D, Ariëns RAS, 
Watson SP. Fibrin and D-dimer bind to monomeric GPVI. Blood Adv 2017; 1: 
1495–504.  

92  Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, Ahn B, Hardy ET, 
Kee MF, Kumar S, Bao G, Barker TH, Lam WA. Platelet mechanosensing of 
substrate stiffness during clot formation mediates adhesion, spreading, and 
activation. Proc Natl Acad Sci 2014; 111: 14430–5.  

93  Al-Tamimi M, Grigoriadis G, Tran H, Paul E, Servadei P, Berndt MC, Gardiner EE, 
Andrews RK. Coagulation-induced shedding of platelet glycoprotein VI mediated 
by factor Xa. Blood 2011; 117: 3912–20.  

94  Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. 
Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM 
family metalloproteinases. J Thromb Haemost 2007; 5: 1530–7.  

95  Bergmeier W, Rabie T, Strehl A, Piffath CL, Prostredna M, Wagner DD, 
Nieswandt B. GPVI down-regulation in murine platelets through 
metalloproteinase-dependent shedding. Thromb Haemost 2004; 91: 951–8.  

96  Stephens G, Yan Y, Jandrot-Perrus M, Villeval J-L, Clemetson KJ, Phillips DR. 
Platelet activation induces metalloproteinase-dependent GP VI cleavage to down-
regulate platelet reactivity to collagen. Blood 2005; 105: 186–91.  

97  Facey A, Pinar I, Arthur JF, Qiao J, Jing J, Mado B, Carberry J, Andrews RK, 
Gardiner EE. A-Disintegrin-And-Metalloproteinase (ADAM) 10 Activity on Resting 
and Activated Platelets. Biochemistry 2016; 55: 1187–94.  

98  Wu X, Darlington DN, Cap AP. Procoagulant and fibrinolytic activity after 
polytrauma in rat. Am J Physiol Regul Integr Comp Physiol 2016; 310: R323–9.  

99  Lee MY, Verni CC, Herbig BA, Diamond SL. Soluble fibrin causes an acquired 
platelet glycoprotein VI signaling defect: implications for coagulopathy. J Thromb 
Haemost 2017; 15: 2396–407.  

100  Flamm MH, Colace T V., Chatterjee MS, Jing H, Zhou S, Jaeger D, Brass LF, 
Sinno T, Diamond SL. Multiscale prediction of patient-specific platelet function 
under flow. Blood 2012; 120: 190–8.  

101  Wilson PA, McNicol G, Douglas A. Effect of fibrinogen degradation products on 
platelet aggregation. J Clin Pathol 1968; 21: 147–53.  

102  Baker SP, O’Neill B, Haddon W, Long WB. The Injury Severity Score: A Method 
for Describing Patients with Multiple Injuries and Evaluating Emergency Care. J 
Trauma 1974; 14: 187–96.  

103  Palmer C. Major trauma and the injury severity score--where should we set the 



162 
 

bar? Annu Proc Assoc Adv Automot Med 2007; 51: 13–29.  

104  Cattaneo M, Lecchi A, Zighetti ML, Lussana F. Platelet aggregation studies: 
autologous platelet-poor plasma inhibits platelet aggregation when added to 
platelet-rich plasma to normalize platelet count. Haematologica 2007; 92: 694–7.  

105  Mitchell TA, Herzig MC, Fedyk CG, Salhanick MA, Henderson AT, Parida BK, 
Prat NJ, Dent DL, Schwacha MG, Cap AP. Traumatic Hemothorax Blood 
Contains Elevated Levels of Microparticles that are Prothrombotic but Inhibit 
Platelet Aggregation. Shock 2017; 47: 680–7.  

106  Bai X, Wang H, Li Z, Liu K. Correlation between blood cAMP, cGMP levels and 
traumatic severity in the patients with acute trauma and its clinical significance. J 
Huazhong Univ Sci Technol Med Sci 2004; 24: 68–70.  

107  Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, del Junco 
DJ, Brasel KJ, Bulger EM, Callcut RA, Cohen MJ, Cotton BA, Fabian TC, Inaba K, 
Kerby JD, Muskat P, O’Keeffe T, Rizoli S, Robinson BR, Scalea TM, et al. 
Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and 
mortality of patients with severe trauma. JAMA 2015; 313: 471–82.  

108  Miller TE. New evidence in trauma resuscitation - is 1:1:1 the answer? Perioper 
Med 2013; 2: 13.  

109  Chen J, Wu X, Keesee J, Liu B, Darlington DN, Cap AP. Limited resuscitation with 
fresh or stored whole blood corrects cardiovascular and metabolic function in a rat 
model of polytrauma and hemorrhage. Shock 2017; 47: 208–16.  

110  Verni CC, Davila A, Balian S, Sims CA, Diamond SL. Platelet dysfunction during 
trauma involves diverse signaling pathways and an inhibitory activity in patient-
derived plasma. J Trauma Acute Care Surg 2019; 86: 250–9.  

111  Pareti FI, Capitanio A, Mannucci L, Ponticelli C, Mannucci PM. Acquired 
dysfunction due to the circulation of “exhausted” platelets. Am J Med 1980; 69: 
235–40.  

112  St. John AE, Newton JC, Martin EJ, Mohammed BM, Contaifer D, Saunders JL, 
Brophy GM, Spiess BD, Ward KR, Brophy DF, López JA, White NJ. Platelets 

retain inducible alpha granule secretion by P‐selectin expression but exhibit 
mechanical dysfunction during trauma‐induced coagulopathy. J Thromb Haemost 
2019; 17: 771–81.  

113  Walsh PN. Platelet Coagulation-Protein Interactions. Semin Thromb Hemost 
2004; 30: 461–71.  

114  Chen J, Verni CC, Jouppila A, Lassila R, Diamond SL. Dual antiplatelet and 
anticoagulant (APAC) heparin proteoglycan mimetic with shear-dependent effects 
on platelet-collagen binding and thrombin generation. Thromb Res 2018; 169: 
143–51.  

115  Zhang L, Liu H, Li Y, Ma H, Liu Y, Wang M. Correlation analysis between plasma 
D-dimer levels and orthopedic trauma severity. Chin Med J (Engl) 2012; 125: 
3133–6.  

116  Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. 



163 
 

Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human 
platelets. Blood 1996; 88: 907–14.  

117  Best D, Senis YA, Jarvis GE, Eagleton HJ, Roberts DJ, Saito T, Jung SM, Moroi 
M, Harrison P, Green FR, Watson SP. GPVI levels in platelets: relationship to 
platelet function at high shear. Blood 2003; 102: 2811–8.  

118  Induruwa I, Moroi M, Bonna A, Malcor J-D, Howes J-M, Warburton EA, Farndale 
RW, Jung SM. Platelet collagen receptor Glycoprotein VI-dimer recognizes 
fibrinogen and fibrin through their D-domains, contributing to platelet adhesion 
and activation during thrombus formation. J Thromb Haemost 2018; 16: 1–16.  

119  Slater A, Perrella G, Onselaer M-B, Martin EM, Gauer JS, Xu R-G, Heemskerk 
JW, Ariëns RAS, Watson SP. Does fibrin(ogen) bind to monomeric or dimeric 
GPVI, or not at all? Platelets 2019; 30: 281–9.  

120  Refaai MA, Riley P, Mardovina T, Bell PD. The Clinical Significance of Fibrin 
Monomers. Thromb Haemost 2018; 118: 1856–66.  

121  Soomro AY, Guerchicoff A, Nichols DJ, Suleman J, Dangas GD. The current role 
and future prospects of D-dimer biomarker. Eur Hear J - Cardiovasc 
Pharmacother 2016; 2: 175–84.  

122  Bounameaux H, Cirafici P, de Moerloose P, Schneider PA, Slosman D, Reber G, 
Unger PF. Measurement of D-dimer in plasma as diagnostic aid in suspected 
pulmonary embolism. Lancet 1991; 337: 196–200.  

123  Podestà MA, Galbusera M, Remuzzi G. Bleeding and Hemostasis in Acute Renal 
Failure. Critical Care Nephrology: Third Edition.  Third Edit. 2019. p. 630–5.  

124  Orloff KG, Michaeli D. Inhibition of fibrin-platelet interactions by fibrinogen-
degradation fragment D. Am J Physiol 1977; 233: H305–11.  

125  Kornblith LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy: The past, 
present, and future. J Thromb Haemost 2019; 17: 852–62.  

126  Sikka P, Bindra VK. Newer antithrombotic drugs. Indian J Crit Care Med 2010; 14: 
188–95.  

127  Watson RDS, Chin BSP, Lip GYH. Antithrombotic therapy in acute coronary 
syndromes. BMJ 2002; 325: 1348–51.  

128  Warner TD, Nylander S, Whatling C. Anti-platelet therapy: cyclo-oxygenase 
inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. 
Br J Clin Pharmacol 2011; 72: 619–33.  

129  Stangl PA, Lewis S. Review of currently available GP IIb/IIIa inhibitors and their 
role in peripheral vascular interventions. Semin Intervent Radiol 2010; 27: 412–
21.  

130  Lijnen HR, Collen D. Fibrinolytic agents: mechanisms of activity and 
pharmacology. Thromb Haemost 1995; 74: 387–90.  

131  Holmes DR, Kereiakes DJ, Kleiman NS, Moliterno DJ, Patti G, Grines CL. 
Combining Antiplatelet and Anticoagulant Therapies. J Am Coll Cardiol 2009; 54: 
95–109.  



164 
 

132  Lamberts M, Olesen JB, Ruwald MH, Hansen CM, Karasoy D, Kristensen SL, 
Køber L, Torp-Pedersen C, Gislason GH, Hansen ML. Bleeding after initiation of 
multiple antithrombotic drugs, including triple therapy, in atrial fibrillation patients 
following myocardial infarction and coronary intervention: A nationwide cohort 
study. Circulation 2012; 126: 1185–93.  

133  Hirsh J, Anand SS, Halperin JL, Fuster V. Mechanism of Action and 
Pharmacology of Unfractionated Heparin. Arterioscler Thromb Vasc Biol 2001; 21: 
1094–6.  

134  Machovich R. Mechanism of action of heparin through thrombin on blood 
coagulation. Biochim Biophys Acta 1975; 412: 13–7.  

135  Lassila R, Lindstedt K, Kovanen PT. Native macromolecular heparin 
proteoglycans exocytosed from stimulated rat serosal mast cells strongly inhibit 
platelet-collagen interactions. Arterioscler Thromb Vasc Biol 1997; 17: 3578–87.  

136  Lassila R, Jouppila A. Mast cell-derived heparin proteoglycans as a model for a 
local antithrombotic. Semin Thromb Hemost 2014; 40: 837–44.  

137  Tchougounova E, Pejler G. Regulation of extravascular coagulation and 
fibrinolysis by heparin-dependent mast cell chymase. FASEB J 2001; 15: 2763–5.  

138  San Antonio JD, Lander AD, Karnovsky MJ, Slayter HS. Mapping the heparin-
binding sites on type I collagen monomers and fibrils. J Cell Biol 1994; 125: 1179–
88.  

139  Kauhanen P, Kovanen PT, Lassila R. Coimmobilized native macromolecular 
heparin proteoglycans strongly inhibit platelet-collagen interactions in flowing 
blood. Arterioscler Thromb Vasc Biol 2000; 20: e113–9.  

140  Tuuminen R, Jouppila A, Salvail D, Laurent C-E, Benoit M-C, Syrjälä S, Helin H, 
Lemström K, Lassila R. Dual antiplatelet and anticoagulant APAC prevents 
experimental ischemia–reperfusion-induced acute kidney injury. Clin Exp Nephrol 
2017; 21: 436–45.  

141  Hwang DH, LeBlanc P. Heparin inhibits the formation of endoperoxide metabolites 
in rat platelets: aspirin-like activity. Prostaglandins Med 1981; 6: 341–4.  

142  Sweeney SM, Guy CA, Fields GB, San Antonio JD. Defining the domains of type I 
collagen involved in heparin- binding and endothelial tube formation. Proc Natl 
Acad Sci U S A 1998; 95: 7275–80.  

143  Ricard-Blum S, Beraud M, Raynal N, Farndale RW, Ruggiero F. Structural 
requirements for heparin/heparan sulfate binding to type V collagen. J Biol Chem 
2006; 281: 25195–204.  

144  Coxon CH, Geer MJ, Senis YA. ITIM receptors: more than just inhibitors of 
platelet activation. Blood 2017; 129: 3407–18.  

145  Barreiro KA, Tulamo R, Jouppila A, Albäck A, Lassila R. Novel Locally Acting Dual 
Antiplatelet and Anticoagulant (APAC) Targets Multiple Sites of Vascular Injury in 
an Experimental Porcine Model. Eur J Vasc Endovasc Surg 2019; 58: 903–11.  

146  Rudinga GR, Khan GJ, Kong Y. Protease-activated receptor 4 (PAR4): A 
promising target for antiplatelet therapy. Int J Mol Sci 2018; 19: 573.  



165 
 

147  French SL, Hamilton JR. Drugs targeting protease-activated receptor-4 improve 
the anti-thrombotic therapeutic window. Ann Transl Med 2017; 5: 464.  

148  Tricoci P, Huang Z, Held C, Moliterno DJ, Armstrong PW, Van de Werf F, White 
HD, Aylward PE, Wallentin L, Chen E, Lokhnygina Y, Pei J, Leonardi S, Rorick 
TL, Kilian AM, Jennings LHK, Ambrosio G, Bode C, Cequier A, Cornel JH, et al. 
Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J 
Med 2012; 366: 20–33.  

149  Duvernay MT, Temple KJ, Maeng JG, Blobaum AL, Stauffer SR, Lindsley CW, 
Hamm HE. Contributions of protease-activated receptors PAR1 and PAR4 to 
Thrombin-Induced GPIIbIIIa activation in human platelets. Mol Pharmacol 2017; 
91: 39–47.  

150  Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, 
Hua J, Harden D, Guay J, Callejo M, Miller MM, Lawrence RM, Banville J, Guy J, 
Maxwell BD, Priestley ES, Marinier A, Wexler RR, Bouvier M, et al. Blockade of 
protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with 
low bleeding. Sci Transl Med 2017; 9: eaaf5294.  

151  Pachel C, Mathes D, Arias-Loza AP, Heitzmann W, Nordbeck P, Deppermann C, 
Lorenz V, Hofmann U, Nieswandt B, Frantz S. Inhibition of Platelet GPVI Protects 
Against Myocardial Ischemia-Reperfusion Injury. Arterioscler Thromb Vasc Biol 
2016; 36: 629–35.  

152  Volz J, Mammadova-Bach E, Gil-Pulido J, Nandigama R, Remer K, Sorokin L, 
Zernecke A, Abrams SI, Ergün S, Henke E, Nieswandt B. Inhibition of platelet 
GPVI induces intratumor hemorrhage and increases efficacy of chemotherapy in 
mice. Blood 2019; 133: 2696–706.  

153  Onselaer M-B, Nagy M, Pallini C, Pike JA, Perrella G, Quintanilla LG, Eble JA, 
Poulter NS, Heemskerk JWM, Watson SP. Comparison of the GPVI inhibitors 
losartan and honokiol. Platelets 2020; 31: 187–97.  

154  Denzinger V, Busygina K, Jamasbi J, Pekrul I, Spannagl M, Weber C, Lorenz R, 
Siess W. Optimizing Platelet GPVI Inhibition versus Haemostatic Impairment by 
the Btk Inhibitors Ibrutinib, Acalabrutinib, ONO/GS-4059, BGB-3111 and 
Evobrutinib. Thromb Haemost 2019; 119: 397–406.  

155  Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A. A Review on 
Various Uses of N-Acetyl Cysteine. Cell J 2017; 19: 11–7.  

156  Gibson KR, Winterburn TJ, Barrett F, Sharma S, MacRury SM, Megson IL. 
Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with 
type-2 diabetes. Cardiovasc Diabetol 2011; 10: 43.  

157  Wang B, Aw TY, Stokes KY. N-acetylcysteine attenuates systemic platelet 
activation and cerebral vessel thrombosis in diabetes. Redox Biol 2018; 14: 218–
28.  

158  Stamler J, Mendelsohn ME, Amarante P, Smick D, Andon N, Davies PF, Cooke 
JP, Loscalzo J. N-acetylcysteine potentiates platelet inhibition by endothelium-
derived relaxing factor. Circ Res 1989; 65: 789–95.  

159  Martinez De Lizarrondo S, Gakuba C, Herbig BA, Repessé Y, Ali C, Denis CV, 



166 
 

Lenting PJ, Touzé E, Diamond SL, Vivien D, Gauberti M. Potent thrombolytic 
effect of N-acetylcysteine on arterial thrombi. Circulation 2017; 136: 646–60.  

160  Purvis JE, Chatterjee MS, Brass LF, Diamond SL. A molecular signaling model of 
platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 
activation. Blood 2008; 112: 4069–79.  

161  Dolan AT, Diamond SL. Systems modeling of Ca2+ homeostasis and mobilization 
in platelets mediated by IP3 and store-operated Ca2+ entry. Biophys J 2014; 106: 
2049–60.  

162  Lenoci L, Duvernay M, Satchell S, DiBenedetto E, Hamm HE. Mathematical 
model of PAR1-mediated activation of human platelets. Mol Biosyst 2011; 7: 
1129–37.  

163  Lu Y, Lee MY, Zhu S, Sinno T, Diamond SL. Multiscale simulation of thrombus 
growth and vessel occlusion triggered by collagen/tissue factor using a data-
driven model of combinatorial platelet signalling. Math Med Biol 2017; 34: 523–46.  

164  Muthard RW, Welsh JD, Brass LF, Diamond SL. Fibrin, γ′-Fibrinogen, and 
Transclot Pressure Gradient Control Hemostatic Clot Growth during Human Blood 
Flow over a Collagen/Tissue Factor Wound. Arterioscler Thromb Vasc Biol 2015; 
35: 645–54.  

165  Oshiro A, Yanagida Y, Gando S, Henzan N, Takahashi I, Makise H. Hemostasis 
during the early stages of trauma: comparison with disseminated intravascular 
coagulation. Crit Care 2014; 18: R61.  

166  Sorensen EN, Burgreen GW, Wagner WR, Antaki JF. Computational Simulation 
of Platelet Deposition and Activation: I. Model Development and Properties. Ann 
Biomed Eng 1999; 27: 436–48.  

167  Sorensen EN, Burgreen GW, Wagner WR, Antaki JF. Computational Simulation 
of Platelet Deposition and Activation: II. Results for Poiseuille Flow over Collagen. 
Ann Biomed Eng 1999; 27: 449–58.  

168  Lentz BR. Exposure of platelet membrane phosphatidylserine regulates blood 
coagulation. Prog Lipid Res 2003; 42: 423–38.  

169  Yoon JG, Heo JN, Kim M, Park YJ, Choi MH, Song J, Wyi K, Kim H, Duchenne O, 
Eom S, Tsoy Y. Machine learning-based diagnosis for disseminated intravascular 
coagulation (DIC): Development, external validation, and comparison to scoring 
systems. PLoS One 2018; 13: e0195861.  

170  Mahmood T, Yang P. Western Blot: Technique, Theory, and Trouble Shooting. N 
Am J Med Sci 2012; 4: 429–34.  

171  Walker JB, Nesheim ME. The molecular weights, mass distribution, chain 
composition, and structure of soluble fibrin degradation products released from a 
fibrin clot perfused with plasmin. J Biol Chem 1999; 274: 5201–12.  

172  Francis CW, Connaghan DG, Marder VJ. Assessment of fibrin degradation 
products during fibrinolytic therapy for acute myocardial infarction. Circulation 
1986; 74: 1027–36.  

173  Zhu S, Herbig BA, Li R, Colace TV, Muthard RW, Neeves KB, Diamond SL. In 



167 
 

microfluidico: Recreating in vivo hemodynamics using miniaturized devices. 
Biorheology 2015; 52: 303–18.  

174  Ware J. Dysfunctional platelet membrane receptors: from humans to mice. 
Thromb Haemost 2004; 92: 478–85.  

175  Tronik-Le Roux D, Roullot V, Poujol C, Kortulewski T, Nurden P, Margeurie G. 
Thrombasthenic mice generated by replacement of the integrin alphaIIb gene: 
demonstration that transcriptional activation of this megakaryocytic locus 
precedes lineage commitment. Blood 2000; 96: 1399–408.  

176  McLaughlin JN, Shen L, Holinstat M, Brooks JD, DiBenedetto E, Hamm HE. 
Functional Selectivity of G Protein Signaling by Agonist Peptides and Thrombin 
for the Protease-activated Receptor-1. J Biol Chem 2005; 280: 25048–59.  

177  O’Loughlin AJ, O’Sullivan CJ, Ravikumar N, Friel AM, Elliott JT, Morrison JJ. 
Effects of thrombin, PAR-1 activating peptide and a PAR-1 antagonist on umbilical 
artery resistance in vitro. Reprod Biol Endocrinol 2005; 3: 8.  

178  Chen C, Li O, Tao C, Barnett AJ, Su J, Rudin C. This Looks Like That: Deep 
Learning for Interpretable Image Recognition. 33rd Conference on Neural 
Information Processing Systems. Vancouver, Canada; 2019.  

179  Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1: 
135–45.  

180  D’Atri LP, Schattner M. Platelet toll-like receptors in thromboinflammation. Front 
Biosci 2017; 22: 1867–83.  

181  Kapur R, Zufferey A, Boilard E, Semple JW. Nouvelle Cuisine: Platelets Served 
with Inflammation. J Immunol 2015; 194: 5579–87.  

182  Fung CYE, Jones S, Ntrakwah A, Naseem KM, Farndale RW, Mahaut-Smith MP. 
Platelet Ca2+ responses coupled to glycoprotein VI and Toll-like receptors persist 
in the presence of endothelial-derived inhibitors: Roles for secondary activation of 
P2X1 receptors and release from intracellular Ca2+ stores. Blood 2012; 119: 
3613–21.  

183  Kälvegren H, Skoglund C, Helldahl C, Lerm M, Grenegård M, Bengtsson T. Toll-
like receptor 2 stimulation of platelets is mediated by purinergic P2X1-dependent 
Ca2+ mobilisation, cyclooxygenase and purinergic P2Y1 and P2Y12 receptor 
activation. Thromb Haemost 2010; 103: 398–407.  

184  Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MKB, Dower SK, 
Buttle DJ, Sabroe I. Agonists of toll-like receptor (TLR)2 and TLR4 are unable to 
modulate platelet activation by adenosine diphosphate and platelet activating 
factor. Thromb Haemost 2005; 94: 831–8.  

 


	Role Of Soluble Fibrin And Fibrin Degradation Products On Platelet Signaling During Trauma
	Recommended Citation

	Role Of Soluble Fibrin And Fibrin Degradation Products On Platelet Signaling During Trauma
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	tmp.1631825297.pdf.d1otC

