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ABSTRACT

ESSAYS IN ASSET PRICING

Yicheng Zhu

Jessica A. Wachter

In the first chapter, “A Unified Theory of the Term Structure and the Beta Anomaly”, I

propose a novel generalized framework which allows for disentangling agent’s risk aversion,

elasticity of intertemporal substitution, and the agent’s preference for early or late resolution

of uncertainty. I apply this framework to a consumption-based asset pricing model in which

the representative agent’s consumption process is subject to rare but large disasters. The

calibrated model matches major asset pricing moments, while higher exposure to systematic

risks may lead to lower risk premia. This is consistent with empirical finding, while existing

consumption-based asset pricing models fail to deliver.

The second chapter, “A Model of Two Days: Discrete News and Asset Prices”, co-authored

with Jessica A. Wachter, provides a quantitative model to address the macro-announcement

premium. Empirical studies demonstrate striking patterns in stock returns related to sched-

uled macroeconomic announcements. A large proportion of the total equity premium is

realized on days with macroeconomic announcements. The relation between market be-

tas and expected returns is far stronger on announcement days as compared with non-

announcement days. Finally, these results hold for fixed-income investments as well as for

stocks. We present a model in which agents learn the probability of an adverse economic

state on announcement days. We show that the model quantitatively accounts for the em-

pirical findings. Evidence from options data provides support for the model’s mechanism.
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CHAPTER 1 : A Unified Theory of the Term Structure and the Beta Anomaly

1.1 Introduction

The trade-off between risk and return is at the center of asset pricing research. It is com-

monly believed that assets with large and positive exposure to systematic risks should carry

a higher risk premium. It is thus important to find what these systematic risks are. The

capital asset pricing model (CAPM) by Sharpe (1964) and Lintner (1965)––one of the sem-

inal works on asset pricing––concludes that the market portfolio should serve as a proxy of

systematic risks. However, the CAPM has since been refuted by various empirical works.

Specifically, Black et al. (1972) show that the security market line––which describes the con-

nection between risk premium and exposure to the market portfolio––is too flat compared

to the benchmark predicted by the CAPM.

Additionally, a large body of macro-finance literature tries to connect risks in the financial

market to aggregate economic fundamentals. Leading models include the external habit

model by Campbell and Cochrane (1999), long-run risk model by Bansal and Yaron (2004),

and disaster risk model by Barro and Ursúa (2009) and Wachter (2013). These models try

to jointly explain equity premium, risk-free rate, and observed market volatility.

One important framework for these models is the recursive utility introduced by Epstein

and Zin (1991) and Weil (1990). The utility specification allows researchers to characterize

the agent’s risk aversion and elasticity of intertemporal substitution (EIS) separately, while

standard CRRA expected utility imposes that production of the two quantities should be

one. It turns out this separation is critical for jointly explaining the equity premium and

riskfree rate puzzles. Specifically, the representative agent is allowed to feature a high risk

aversion and a high EIS, and thus in equilibrium charges high equity premium and a low

riskfree rate in models.

While disentangling the agent’s risk aversion and elasticity of intertemporal substitution,
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the Epstein-Zin-Weil recursive utility introduces the agent’s preference for early or late

resolution of uncertainty. In the framework of Epstein-Zin-Weil, such preference is perfectly

determined by the agent’s risk aversion and EIS. In most existing models, it is automatically

implied that the agent has a preference for early resolution of uncertainty, meaning that

the agent would want to know everything about his life as early as possible.

However, such implication has been widely challenged, especially in the space of term struc-

ture. Figure 1.3 plots the implied yield curve at the steady state from one of the leading

models mentioned. It is clear that the implied real yield curve is downward sloping. Mean-

while, Figure 1.1 depicts a time series of the US Treasury Inflation-Protected Securities

(TIPS) yield curve from January 2013 to December 2018, while Figure 1.2 shows a time

series of the difference between 10-year and 5-year TIPS yields. Both figures clearly show

that the real yield curve should be upward-sloping. It turns out that, a preference for

late resolution of uncertainty is necessary for a general equilibrium model to feature an

upward-sloping real yield curve.

There are other indirect evidences. Papanikolaou (2011) studies the role of shocks to invest-

ment opportunities, and uses the difference in the risk premium of consumption-good and

investment-good production firms to identify the price of risk for shocks to investment op-

portunities. The price of risk if negative, which also implies that the agent has a preference

for late resolution of uncertainty.

For those models, they feature shocks to the future distribution of consumption growth, or

news shocks as sometimes called by macro economists. Long-maturity zero-coupon bonds

provide hedges against such shocks, while short-maturity zero-coupon bonds do not. When

the agent has a preference for early resolution of uncertainty, the demand for long-maturity

bonds is higher––resulting in higher prices and lower yields. In fact, the slope of the yield

curve implies that the agent should have a preference for late resolution of uncertainty in

existing consumption-based asset pricing models.
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In short, it appears that although the existing literature requires the agent to have a prefer-

ence for early resolution of uncertainty, while evidences, especially in cross-section, suggest

the opposite.

A conventional way of tackling such puzzles with a theoretical model is to design a model

with a more complicated consumption process or incomplete market. However, such models

should feature a higher risk in the short run and contradict the intuition of long-run risk or

disaster models.

In this article, I aim to tackle these puzzles by focusing on the agent’s preference while work-

ing with a standard friction-less consumption model. The model features a representative

agent, a straightforward aggregate consumption process, and a unified explanation for the

puzzles being addressed. The agent’s preference for early or late resolution of uncertainty

is disentangled from his risk aversion and EIS, allowing potentially addressing the existing

puzzles in a unified framework.

The main innovation of this paper is the Generalized Recursive Utility model, which is a

natural extension of the popular Epstein-Zin-Weil recursive utility model. The generalized

recursive utility allows the agent to show various degrees of aversion toward different types

of shocks, and this is achieved by permitting the agent to process different shocks recur-

sively. Empirically, various experiments document that agents’ risk aversion changes when

they face different types of shocks (Holt and Laury (2002), Coble and Lusk (2010)). The

generalization also disconnects the agent’s preference for early or late resolution of uncer-

tainty from the agent’s risk aversion and elasticity of intertemporal substitution, and such

disconnection has critical asset pricing implication.

One implication of this model is that the marginal distribution of continuation value no

longer serves as a sufficient statistic for its certainty equivalence. Such a characteristic

implies that the agent is not an expected utility agent within each period. Specifically, the

agent violates the independence axiom enforced by von Neumann and Morgenstern (1944).
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However, empirical evidence presented by Allais (1953) suggests that the independence

axiom has been commonly violated.

A common criticism of the generalization is that researchers lack discipline. I provide

a solution to this by categorizing the shocks into two classes: shocks to instantaneous

consumption growth and shocks to the long-run future consumption growth. The latter is

termed “news shocks” or “information” in the literature on macroeconomics and finance.

Grant et al. (1998) demonstrate that such distinction can help characterize agents’ intrinsic

preference for information.

As for asset pricing implication, the preference for early or late resolution of uncertainty

no longer determines the risk-pricing of shocks. Through generalized recursive utility, I

illustrate that an agent may prefer the existence of early information, but need not want

the information immediately. This feature contradicts the prediction of Epstein-Zin-Weil

recursive utility and is depicted as a determinant of the prices of risks for long-run future

shocks. Such disconnection then allows the model to feature a high equity premium, low

risk-free rate, and solve the puzzles raised before.

The Generalized Recursive Utility has the Epstein-Zin-Weil recursive utility and the con-

stant relative risk aversion (CRRA) expected utility as special cases, while featuring tractabil-

ity and usefulness. Following Hansen et al. (2008) and Ju and Miao (2012), I incorporate

a homothetic utility specification and demarcate a clear representation of the pricing ker-

nel. I also illustrate that with specific parametric restrictions, the generalization allows

for a closed-form solution, which facilitates analysis and insights regarding the economic

mechanism.

After formally defining generalized recursive utility, I apply it on an aggregate consumption

process which is subject to rare but large disasters. The disaster probability is time varying,

and shocks to the probability are considered as long-run future shocks. The model can be

solved in closed form, thus facilitating the identification of elements necessary for explaining
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the puzzles described. Following that, I calibrate the model and show that the model can

generate reasonable quantitative moments.

In equilibrium, there are three distinct priced risks: shocks to consumption growth, disaster,

and shocks to disaster probability. The disaster is modeled to be conditionally indepen-

dent, which implies that assets with different maturities should have identical exposure to

disasters. The maturity of a zero-coupon bond is proportional to the expected number of

disasters realized, meaning that long-maturity bonds have higher positive loading on disas-

ter probability. In equilibrium, the shocks to disasters carry a negative price of risk, and

long-maturity zero-coupon bonds have higher risk premia.

I also show that this paper can address various other asset pricing puzzles in the equity

market. Binsbergen et al. (2012) illustrate that claims to long-maturity dividends––which

are potentially more exposed to systematic risk––carry lower risk premia. Weber (2018)

demonstrates that risk premia decreases with assets’ cash flow duration. Similarly, Giglio

et al. (2015) deploy evidence from the real estate market to show that the agent’s discount

rate for risky cash flows decreases with respect to the cash flows’ maturities. As high-beta

firms and long-maturity dividends are more exposed to variation in disaster risk, similar

intuition can be applied and address why long-maturity risky claims could have lower risk

premia.

I also show that the model can address the challenges to pricing the claims of volatility.

Bollerslev et al. (2009) documents that exposure to short-term realized volatility carries

negative risk premia. This was further elucidated by Drechsler (2013) and Drechsler and

Yaron (2011). In their models, volatility is counter-cyclical and exposure to volatility fa-

cilitates hedging, and thus carries a negative risk premium. However, Dew-Becker et al.

(2017) show that, while short-term realized volatility contracts carry a negative premium,

volatility forward contracts with longer maturity carry a weak positive risk premium. In

the model, variation in expected volatility is driven by shocks to disaster probability, while

realized volatility provides additional insurance against disaster realization. This addresses

5



the fundamental difference between the realized volatility and volatility forward contracts,

and qualitatively explains why a long position in future expected volatility carries a positive

Sharpe Ratio.

This paper is closely related to that of Andries et al. (2018). They specify a recursive

utility specification, which allows the agent to show lower risk aversion inspired by future

shocks. However, when the shocks actually hit, the agent’s risk aversion is high, rendering it

time inconsistent. I focus on shocks being realized in the present but affecting the long-run

future and provide a time-consistent framework. Ju and Miao (2012) consider a recursive

utility specification that allows smooth aversions from uncertainty with different natures.

However, I focus on uncertainty led by physical shocks only. Skiadas (2013) points out that

the smooth ambiguity aversion would quantitatively diminish in the continuous-time limit,

but the model I present would survive such criticism.

In what follows, I will first develop the theory of the Generalized Recursive Utility. Next, I

will demonstrate that the Generalized Recursive Utility disconnects the agent’s risk aversion,

elasticity of intertemporal substitution (EIS), and preference for early (late) resolution of

uncertainty. Following that, I will present a representative-agent consumption-based asset

pricing model, with time-varying rare disaster probability. I provide a closed-form solution

to the asset-pricing moments and analyze the asset-pricing properties of the model. Finally,

I will calibrate the model and show that the model can successfully match macro-finance

asset pricing moments, including the equity premium, risk-free rates, the slope of real yield

curves, and other cross-sectional moments.
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1.2 The Generalized Recursive Utility

This section constructs the Generalized Recursive Utility in an endowment economy. Similar

arguments can be also applied to a production economy.

Since the Generalized Recursive Utility is a natural extension of the Epstein-Zin-Weil recur-

sive utility, I start with a quick review of the construction of the Epstein-Zin-Weil utility.

Later it is shown that the construction of the Generalized Recursive Utility shares a very

similar spirit.

1.2.1 From the CRRA Expected Utility to the Generalized Recursive

Utility

The Epstein-Zin-Weil Utility

Consider the CRRA expected utility specification:

Vt = Et

[ ∞∑
s=t

βs−tfγ(Cs)

]
, (1.1)

where Ct is the agent’s consumption at time t, β is the agent’s subjective time discount

rate, and fγ(Ct) is the von Neumann-Morgenstern utility function, with

fγ(x) ≡ 1

1− γ
x1−γ ,

where γ is the agent’s risk aversion.

Let Ft be the filtration process that represents the agent’s information. The Law of Iterated

7



Expectations implies

Vt = Et

[ ∞∑
s=t

βs−tfγ(Cs)

]

= fγ(Ct) + βEt

[ ∞∑
s=t+1

βs−(t+1)fγ(Cs)

]

= fγ(Ct) + βEt

[
Et+1

[ ∞∑
s=t+1

βs−(t+1)fγ(Cs)

]]

= fγ(Ct) + βE[Vt+1|Ft], (1.2)

which is the well-known recursive form of the CRRA expected utility.

Define

Ut ≡ f−1
γ ((1− β)Vt) . (1.3)

As the operator f−1
γ ((1−β)·) is strictly increasing, Vt and Ut represent the same preferences.

Combining (1.2) and (1.3) yields the recursive equation that characterizes Ut:

Ut = f−1
γ ((1− β)fγ(Ct) + βE [fγ(Ut+1)|Ft]) . (1.4)

We can further apply an operator fγ
(
f−1
γ (·)

)
on the expectation term in Equation 1.4. The

operator is the identity transformation, so the equation still holds:

Ut = f−1
γ

(
(1− β)fγ(Ct) + βfγ

(
f−1
γ

(
E [fγ(Ut+1)|Ft]

)))
. (1.5)

Define ν(U ;u(·),Ω) as

ν(U ;u(·),Ω) ≡ u−1
(
E [u(U)|Ω]

)
, (1.6)

where U is a random variable, Ω is a σ-algebra or σ-field, and u(·) is an increasing function.

8



Equation 1.5 then can be rewritten as

ν(Ut+1; fγ(·),Ft) = f−1
γ

(
E [fγ(Ut+1)|Ft]

)
(1.7)

Ut = f−1
γ

(
(1− β)fγ(Ct) + βfγ

(
ν(Ut+1; fγ(·),Ft)

))
. (1.8)

Equations 1.7 and 1.8 show that the recursive computation of the CRRA expected utility

each period can be decomposed into two steps. First, the agent computes ν(Ut+1; fγ(·),Ft),

and second the agent aggregates ν(Ut+1; fγ(·),Ft) with Ct using a Constant Elasticity of

Substitution (CES) aggregator.

Ut is homogeneous of degree 1. As a result, we can interpret a drop of 1% in the utility

level as the effect of a 1% drop in all future consumption levels.

The decomposition allows for distinguishing two different economic mechanisms. If Ut+1 is

constant given Ft, ν(Ut+1; fγ(·),Ft) yields Ut+1; the value is lower than E[Ut+1|Ft] if Ut+1

is random and fγ(·) is concave. In fact, this operator computes the continuation value the

agent is indifferent to if there is no uncertainty for the next period, and captures the agent’s

risk aversion. Indeed, this operator is called the Certainty Equivalence (CE) operator.

The second step, however, aggregates the contemporaneous consumption Ct and the cer-

tainty equivalence. This step connects quantities from two periods and characterizes how

the agent makes choices intertemporally.

One key observation is that the two steps both involve the concave functions with the same

concavity parameter γ. However, they stand for two different economic mechanisms. We

can relax the restriction by introducing ψ to the intertemporal aggregation step, and get

ν(Ut+1; fγ(·),Ft) = f−1
γ

(
E [fγ(Ut+1)|Ft]

)
. (1.9)

Ut = f−1
1/ψ

(
(1− β)f1/ψ(Ct) + βf1/ψ

(
ν(Ut+1; fγ(·),Ft)

))
(1.10)

9



The aggregator function in (1.10) is now a CES aggregator with an elasticity of substitution

ψ, and an agent represented by the utility specification above shows an EIS of ψ. Also,

the certainty equivalence employs a concavity parameter γ, and the agent would show a

relative risk aversion γ. The change disconnects the EIS and risk aversion and leads to the

recursive utility proposed by Epstein and Zin (1991) and Weil (1990).

The Idea of the Generalized Recursive Utility

In what follows, I first show that the certainty equivalence operator implies a restriction

that the agent would have the same risk aversion toward shocks of different types. I then

show that the restriction can be relaxed in a manner similar to the development of Epstein-

Zin-Weil utility. This procedure leads to the Generalized Recursive Utility.

Consider an endowment economy. Define Gt+1 as

Gt+1 ≡ σ(Ft, {Ct+1}), (1.11)

where σ(Ω, ω) is an operator which generates the smallest σ-field such that

Ω ⊆ σ(Ω, ω)

ω ∈ σ(Ω, ω).

It follows that

Ft ⊆ Gt+1 ⊆ Ft+1.

As a result, Gt+1 decomposes the uncertainty resolved from time t to t + 1 into two parts.

The first part, which is between Ft and Gt+1, is about the uncertainty of instantaneous

consumption growth – the uncertainty about the short-run future. The second part captures

the uncertainty resolved for future consumption growth, the risks appearing as ‘information’

for the long-run future.

10



The certainty equivalence operator satisfies

ν(Ut+1; fγ(·),Ft) = f−1
γ

(
E [fγ(Ut+1)|Ft]

)
= f−1

γ

(
E
[
E [fγ(Ut+1)|Gt+1]

∣∣Ft])
= f−1

γ

(
E
[
fγ

(
f−1
γ

(
E [fγ(Ut+1)|Gt+1]

))∣∣∣Ft]).
(1.12)

The second equality holds due to the Law of Iterated Expectations. The third equality

holds as the operator fγ
(
f−1
γ (·)

)
is an identity transformation.

The calculation above suggests that the computation of certainty equivalence can again

be understood as a two-step procedure. The first step, f−1
γ

(
E [fγ(Ut+1)|Gt+1]

)
, computes

the certainty equivalence for the agent conditioning on the information set Gt+1. This step

reflects how the agent would avoid uncertainty conditioning on Ct+1, or the uncertainty

about the long-run future. The second step captures the uncertainty that drives variation

in Gt+1, or the uncertainty of instantaneous consumption growth. Again, the two steps

facilitate the same concave function fγ(·). This restriction implies that the agent shows the

same level of aversion toward both types of shocks.

The restriction that the agent has same levels of risk aversion toward two types shocks

can be relaxed by introducing η to the first step of the certainty equivalence computation.

The change then allows the agent to show distinct levels of aversion to the two types

of uncertainty. Clearly, the generalization has the Epstein-Zin-Weil certainty equivalence

operator as a special case. As a result, I call this the Generalized Certainty Equivalence

Operator, and the recursive utility function that facilitates this is called the Generalized

Recursive Utility.

1.2.2 Formal Definition

In what follows, I give a formal definition of the Generalized Recursive Utility.

Definition 1.2.1 (The Generalized Recursive Utility). Let {Ft}t=0,1,2,... be the filtration
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process which represents the information flow to the agent . In addition, the agent has an

intermediate σ-field process: Gt+1, such that

Gt+1 = σ(Ft, {Ct+1}). (1.13)

Then the Generalized Recursive Utility satisfies the recursion

Ut = f−1
1/ψ

(
(1− β)f1/ψ(Ct) + βf1/ψ

(
ν
(
ν(Ut+1; fη(·),Gt+1); fγ(·),Ft

)))
(1.14)

ν
(
ν(Ut+1; fη(·),Gt+1); fγ(·),Ft

)
= f−1

γ

(
E
[
fγ
(
ν(Ut+1; fη(·),Gt+1)

)∣∣Ft]) (1.15)

ν(Ut+1; fη(·),Gt+1) = f−1
η (E [fη(Ut+1)|Gt+1]) , (1.16)

where

fα(x) =
1

1− α
x1−α, α 6= 1 (1.17)

fα(x) = log(x), α = 1, (1.18)

for α = η, γ and 1/ψ.

Remark 1.2.1. If the consumption growth process is i.i.d, the Generalized Recursive Utility

is observationally equivalent to the Epstein-Zin-Weil Recursive Utility.

If the consumption growth is i.i.d, Ft+1 only contains information from Ft and about Ct+1.

As a result, Gt+1 = Ft+1, and

ν
(
Ut+1; fη(·),Gt+1

)
= ν

(
Ut+1; fη(·),Ft+1

)
= Ut+1.

As a result, the recursion reduces to

Ut = f−1
1/ψ

(
(1− β)f1/ψ(Ct) + βf1/ψ

(
ν
(
Ut+1; fγ(·),Ft

)))
ν
(
Ut+1; fγ(·),Ft

)
= f−1

γ E
[
fγ(Ut+1)

∣∣Ft] , (1.19)
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which is the Epstein-Zin-Weil recursive utility.

1.2.3 Connection between the Generalized Recursive Utility and the Epstein-

Zin-Weil Utility

It is straightforward to show that the Generalized Recursive Utility nests the Epstein-Zin-

Weil recursive utility.

Remark 1.2.2. If η = γ, the Generalized Recursive Utility reduces to the Epstein-Zin-Weil

recursive utility.

Common questions for the generalization of the utility function include what assumptions

of the existing literature are violated and what feature of human behavior can motivate

such violation.

For the Generalized Recursive Utility, the most significant part is that the agent is no

longer an expected utility agent each period. This deviates from the framework of Kreps

and Porteus (1978) as they assume the agent makes decisions like an expect-utility agent for

uncertainty resolved each period. Specifically, the Generalized Recursive Utility agent vio-

lates the independence axiom per von Neumann and Morgenstern (1944), as a compounded

lottery is not equivalent to the reduced lottery with the same distribution of final payoff.

However, the famous Allais Paradox shows that people widely violate the independence

axiom.

In addition, Grant et al. (1998) show that variation in risk aversion could be closely con-

nected to people’s intrinsic preference for information. They show that if uncertainty is

resolved as early information, and the agent prefers that, then the agent’s risk aversion

toward early information uncertainty must be lower than that toward instantaneous con-

sumption growth risks. Meanwhile, experimental studies by Ahlbrecht and Weber (1996)

show that people do not appear to be indifferent toward the existence of the information,

which supports the separation suggested by the Generalized Recursive Utility.
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1.2.4 The Preference of the Generalized Recursive Utility Agent

This section shows that an Generalized Recursive Utility disconnects risk aversion, elasticity

of intertemporal substitution, and the preference for early (late) resolution of uncertainty.

The agent could prefer the existence of early information, but a late resolution (arrival) of

that. In Section 1.3, I will show that this is critical in addressing the asset pricing puzzles

raised before.

Remark 1.2.3. The Elasticity of Intertemporal Substitution is given by ψ.

Unsurprisingly, the intertemporal decision of the agent is characterized by the CES in-

tertemporal aggregator (1.14). As a result, the Elasticity of Intertemporal Substitution is

given by ψ.

Remark 1.2.4. In a one-period case, the agent is risk averse if and only if γ > 0.

For a one-period lottery, the agent’s continuation value is entirely determined by the finan-

cial payoff of the lottery. As a result, the first step of the Generalized Recursive Certainty

Equivalence computation collapses, and whether the agent is averse to the uncertainty of

the lottery is characterized by the concavity of the function fγ(·).

The following remark implies the key difference between the Generalized Recursive Util-

ity and the Epstein-Zin-Weil recursive utility. As the Generalized Recursive Utility distin-

guishes the shock types, the ‘existence of early information’ and ‘timing of early information’

could be considered as two different concepts.

Remark 1.2.5. If γ ≥ η > 1/ψ, the agent exhibits a preference for early resolution of

uncertainty and would want the uncertainty resolved as early as possible; if γ ≥ 1/ψ > η,

the agent prefers the existence of information, but prefers later realization of that.

This remark can be better illustrated by comparing the following consumption plans.

14



C3 = 1

C3 = 10
C2 = 1C1 = 1C0 = 1Plan 3

C3 = 1

C3 = 10C2 = 1

C2 = 1
C1 = 1C0 = 1Plan 2

C3 = 1

C3 = 10C2 = 1

C2 = 1

C1 = 1

C1 = 1
C0 = 1Plan 1

The distributions of consumption in all three plans are identical. The only difference is the

time when the agent knows the value of C3, the only source of uncertainty.

Both plans 2 and 3 feature early information for C3. However, the timing for the resolution

of uncertainty in plan 1 is earlier.

Under the Epstein-Zin-Weil utility, if γ > 1/ψ, the preference order will be Plan 1 � Plan

2 � Plan 3, while the agent would strictly prefer Plan 3 to Plan 2 to Plan 1 when γ < 1/ψ.

Appendix A.1.1 shows that, under the Generalized Recursive Utility, the agent would prefer

Plan 2 the most if γ > 1/ψ > η. The fact that γ > η implies that the agent would have an

intrinsic preference of information, and this implies that both Plan 1 and 2 and would be

preferred to Plan 3.

The preference order between Plan 1 and Plan 2, however, depends on the net effect be-

tween intertemporal substitution and uncertainty aversion. When η < 1/ψ, compared to

uncertainty aversion, the inter-temporal smoothing is so costly that the agent would ex-

ante prefer to avoid the inter-temporal smoothing in bad states by having the uncertainty

resolved later.

What is the intuition behind such preference? Think about a crystal ball, which would

tell all the details about an agent’s life, while the agent could do nothing. An Epstein-

Zin-Weil agent with a preference for early resolution of uncertainty would love to have the

crystal ball. For such an agent, the information should always arrive as early as possible.
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An expected utility agent would be indifferent to the crystal ball, while for a Generalized

Recursive Utility agent, the best case would be to have the crystal ball chopped into pieces,

while the agent is allowed to pick the piece for next period only every time.
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1.3 The Term Structure and the Beta Anomaly

In this section, I investigate the asset pricing implications of the Generalized Recursive

Utility.

As discussed in the introduction, the upward sloping real yield curve in data contradicts a

large number of consumption-based asset pricing models. Additionally, there are puzzles in

the equity market, including the beta anomaly, the term structure of equity, and the risk

premium of volatility forward contracts.

In what follows, I will show some empirical results regarding the real yield curve, the

beta anomaly, and volatility forward contracts. I will provide a discussion on why they are

puzzles for existing literature. I then proceed with a consumption-based asset pricing model

featuring rare disasters, and show that with the Generalized Recursive Utility, the puzzles

can be jointly solved.

1.3.1 Empirical Facts

Data and Methodology

The data used in this paper is mostly collected from CRSP. I collect the monthly returns

of all stocks traded in NYSE / AMEX / NASDAQ from January 1961 to December 2017

and exclude companies of utility (SIC code 4900-4949) and financial (SIC code 6000-6799)

industries. I use the value-weighted average of NYSE / AMEX / NASDAQ returns as a

proxy for the market portfolio return. The 1-month risk-free rates in CRSP Risk-Free Rates

File are used as nominal risk-free rates. Real risk-free rates are not directly observable, so

I deduct realized inflation rate from nominal risk-free rates to obtain real quantities. The

values are not the real risk-free rate but serve well as proxies.

The excess returns of individual stocks and the market are computed as the difference

between the monthly returns and the 1-month risk-free rates at the end of the previous

month.
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With the stock return data, I create ten beta-sorted portfolios. I estimate the stocks’ CAPM

betas at the end of each month with 60-month rolling windows and create deciles. In order

to ensure the accuracy of beta estimates, a stock can be included if and only if there are

at least 36 months’ monthly returns data available for beta estimation. I then compute the

value-weighted average of the stock excess returns in each decile and get the monthly excess

returns of the beta-sorted portfolios.

I use TIPS yield as the proxy for the real yield curve. The data is provided by US Depart-

ment of the Treasury.

The prices of the variance forward contracts are provided by Dew-Becker et al. (2017) and

are available on Ian Dew-Becker’s website. I assume that the investors enter a forward

contract at the beginning of each trading month, and then settle the position one month

after. The difference in the forward prices would then be realized upon the maturity of the

contracts and can be understood as the excess returns of the investment strategy. I compute

the time series of the excess returns for the forward contracts with maturities from 1 to 12

months. Specifically, the contracts with a maturity of 1 month provide the investors with

exposure to realized volatility. Then with the time series of excess returns, I compute the

Sharpe Ratios for investing in variance forward contracts with different maturities.

Empirical Results

The main results are showed in Figures 1.1, 1.2, 1.4 and 1.5.

From the figures, the following conclusions can be obtained:

• The TIPS yield curve is, for most of the time, upward sloping. With the fact that

the nominal yield curve is also upward-sloping for most of the time, there is strong

empirical evidence supporting a upward-sloping real yield curve.

• The security market line with beta-sorted portfolios is too flat compared to the CAPM

benchmark. As the market is the value-weighted average of the beta-sorted portfolios,
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the security market line can get very close to the market portfolio; also, the intersect

of the regression line is large and positive.

• Only exposure to realized volatility provides a significantly negative Sharpe Ratio.

Forward contracts to volatility carry tiny negative or even positive Sharpe Ratios.

1.3.2 The Model

In what follows, I present a consumption-based asset pricing model with rare disasters and

its solution with the Generalized Recursive Utility.

The Aggregate Consumption Process

There is an infinitely-lived representative agent endowed with the aggregate consumption

process {Ct}t given by

ct+1 − ct = µC + σCBC,t+1 −
∆Nt+1∑
n=1

Zn,t+1. (1.20)

Here ct ≡ logCt is the log consumption. Zn,t > 0 is an i.i.d process, which captures the

distribution of disaster shocks. I use ν to denote the distribution of Zn,t. Nt is a counting

process, with the conditional distribution of ∆Nt+1 ≡ Nt+1 − Nt being Poisson. The

conditional distribution of ∆Nt+1 is given by E(∆Nt+1) = pt, where pt is the time-varying

jump intensity process:

pt+1 − pt = −ρp(pt − p̄) + σp
√
ptBp,t+1. (1.21)

Equation 1.21 does not guarantee that pt is positive with probability 1. However, with

reasonable calibration, we can keep the unconditional probability of pt < 0 negligibly low;

the process has the CIR process by Cox et al. (1985), which is bounded above zero, as

its continuous-time limit. For simplicity, I assume that Bp,t and BC,t are independent. In

addition, I assume that 0 < ρp < 1 to guarantee the stationarity of pt.
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The Generalized Recursive Utility represents the representative agent’s preference. I assume

that γ > 0 and η ≥ 0, meaning that the agent is not uncertainty loving.

It can be shown that when ψ = 1, a closed-form solution to the pricing kernel in the economy

can be obtained; when ψ 6= 1, a first-order log-linear approximation can be used to compute

the kernel. The following theorem provides the pricing kernel of the economy.

Theorem 1.1. The one-period pricing kernel Mt,t+1,at time-t is approximated by

Mt,t+1 ≈ βe
−µC/ψ− 1

2
(1−η)(1/ψ−η)b2pσ

2
ppt− 1

2
(1−γ)(1/ψ−γ)σ2

C−
1/ψ−γ

1−γ Eν
[
e(γ−1)Zn,t+1−1

]
pt

× e
−γσCBC,t+1+γ

Nt+1∑
n=1

Zn,t+1+(1/ψ−η)bpσp
√
ptBp,t+1

,

(1.22)

where bp is characterized by following equations:

a =
1

1− 1/ψ
log
(

(1− β) + βe(1−1/ψ)m
)
− β e(1−1/ψ)m

1− β + βe(1−1/ψ)m
np̄)

bp = β
e(1−1/ψ)m

1− β + βe(1−1/ψ)m
n

m = a+ µC + bpρpp̄+
1

2
(1− γ)σ2

C +

(
bp(1− ρp) +

1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(γ−1)Zn,t − 1

])
p̄

n = bp(1− ρp) +
1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(γ−1)Zn,t − 1

]
,

with

bp =
1− β∗(1− ρp)−

√
[β∗(1− ρp)− 1]2 − 2β∗2 1−η

1−γσ
2
pEν

[
e(γ−1)Zn,t − 1

]
β∗(1− η)σ2

p

β∗ =
βe(1−1/ψ)m

1− β + βe(1−1/ψ)m
.

In addition, when ψ = 1, the approximation is exact.
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Proof. In Appendix A.1.2, we show that one-period pricing kernel can be written as

Mt,t+1 = β

(
Ct+1

Ct

)−1/ψ (ν∗(Ut+1; fη(·),Gt+1)

ν(ν∗; fγ(·),Ft)

)1/ψ−η ( Ut+1

ν∗(Ut+1; fη(·),Gt+1)

)1/ψ−γ
,

(1.23)

where Ut+1 is the representative agent’s continuation value, ν∗ is the certainty equivalence

in the first stage, and ν is the certainty equivalence in the second stage. From (A.1.9) we

know

(
Ct+1

Ct

)−1/ψ

= e
−µC/ψ−σC/ψBC,t+1+1/ψ

Nt+1∑
n=1

Zn,t+1

(
ν∗(Ut+1; fη(·),Gt+1)

(ν∗; fγ(·),Ft)

)1/ψ−η
= e(1/ψ−η)bpσp

√
ptBp,t+1− 1

2
(1−η)(1/ψ−η)b2pσ

2
ppt

(
Ut+1

ν∗(Ut+1; fη(·),Gt+1)

)
= e

(1/ψ−γ)σCBC,t+1+(γ−1/ψ)
Nt+1∑
n=1

Zn,t+1− 1
2

(1−γ)(1/ψ−γ)σ2
C−

1/ψ−γ
1−γ Eν

[
e(γ−1)Zn,t+1−1

]
pt
.

(1.24)

Combining (1.23) and (1.24), we get Equation 1.22.

BC,t and rare disasters both shock the immediate consumption growth, but not future

growth rates. Thus the price of risk is given by the risk aversion of the agent, γ. This result

implies that an agent’s marginal utility will increase when there is an unexpected decrease

in consumption.

Appendix A.1.3 shows that bp captures how the agent’s continuation value varies as a

function of pt. The following corollary shows that the agent’s continuation value decreases

when pt increases.

Corollary 1.1. bp, as the sensitivity of the agent’s continuation value to variation in pt,

is negative.
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Proof. When η 6= 1, we have

bp =
1− β∗(1− ρp)−

√
[β∗(1− ρp)− 1]2 − 2β∗2 1−η

1−γσ
2
pEν

[
e(γ−1)Zn,t − 1

]
β∗(1− η)σ2

p

β∗ =
βe(1−1/ψ)m

1− β + βe(1−1/ψ)m
.

As 0 < β∗ < 1, we know 1 − β∗(1 − ρp) > 0. In addition, 1
1−γσ

2
pEν

[
e(γ−1)Zn,t − 1

]
< 0, as

a result bp < 0.

When η = 1,

bp =
β∗

1− β∗(1− ρp)
× 1

1− γ
σ2
pEν

[
e(γ−1)Zn,t − 1

]
< 0.

For an increase in pt, the first-order effect is the decrease in expected future consumption.

Furthermore, an increase in pt implies higher future volatility, while its effect on the agent’s

continuation value depends on the agent’s preference for the timing of information. However,

the effect is secondary, and the net effect must be negative, as implied by the corollary.

Bp,t+1 affects the distribution of agent’s future consumption growth. The effect on the

agent’s marginal utility, however, depends on the difference between η and 1/ψ, or the

agent’s preference toward the timing for the resolution of Bp,t+1. Combining the results of

Theorem 1.1 and Corollary 1.1, we can see that Bp,t+1 shocks carry a positive price of risk

if and only if η < 1/ψ. This is critical to the qualitative and quantitative results of the

model.

Pricing Equity and Zero-coupon Bonds

In what follows, I define and then solve for the prices of equity and real zero-coupon bonds.

Equity is defined as the claim to a dividend process {Dt}t=1,2,3,..., and the dividend process
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is modeled as a levered consumption process:

dt+1 − dt = µD + σDBC,t+1 − ϕ
Nt+1∑
n=1

Zn,t+1, (1.25)

where dt ≡ logDt is the log dividend in period t, and ϕ is the leverage of the dividend with

respect to aggregate consumption when a disaster hits.

Following Lettau and Wachter (2011), I solve for the prices of the dividend claims with

different maturity recursively. This also allows me to extract the term structure of equity

premium.

The following theorem characterizes the pricing of claim to future dividends.

Theorem 1.2. The time-t price of a dividend, or equity strip, maturing at time-t + s is

given by

Ft(Dt, pt, s) = Dt exp(aϕ(s) + bϕ,p(s)pt), (1.26)

where aϕ(0) = bϕ,p(0) = 0, and aϕ(s), bϕ,p(s), s ≥ 1 are recursively given by

aϕ(s) = aϕ(s− 1) + bϕ(s− 1)ρpp̄+ µD + log β − µC/ψ −
1

2
(1− γ)(1/ψ − γ)σ2

C +
1

2
(σD − γσC)2

(1.27)

bϕ(s) = bϕ,p(s− 1)(1− ρp)−
1

2
(1− η)(1/ψ − η)b2pσ

2
p +

1

2
((1/ψ − η)bp + bϕ,p(s− 1))2σ2

p

+ Eν

[
e(γ−ϕ)Zn,t+1 − 1

]
− 1/ψ − γ

1− γ
Eν

[
e(γ−1)Zn,t+1 − 1

]
. (1.28)

Proof. Conjecture that the time-t price of Dt+s is given by

F (Dt, pt, s) = Dt exp(aϕ(s) + bϕ,p(s)pt). (1.29)

Since F (Dt, pt, 0) = Dt, this implies that aϕ(0) = bϕ,p(0) = 0.
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Suppose that for s− 1 ≥ 0, Equation 1.29 holds, then we have

F (Dt, pt, s) = Et [Mt,t+1F (Dt+1, pt+1, s− 1)]

= Et

[
βe
−µC/ψ− 1

2
(1−γ)(1/ψ−γ)σ2

C−
1
2

(1−η)(1/ψ−η)b2pσ
2
ppt−

1/ψ−γ
1−γ Eν

[
e(γ−1)Zn,t+1−1

]
pt

× e
−γσCBC,t+1+(1/ψ−η)bpσp

√
ptBp,t+1+γ

Nt+1∑
n=1

Zn,t+1

×Dte
µD+σDBC,t+1+aϕ(s−1)−ϕ

Nt+1∑
n=1

Zn,t+1+bϕ,p(s−1)[pt−ρp(pt−p̄)+σp
√
ptBp,t+1]]

= Dte
aϕ(s−1)+bϕ(s−1)ρpp̄+µD+log β−µC/ψ− 1

2
(1−γ)(1/ψ−γ)σ2

C+ 1
2

(σD−γσC)2

× e−
1
2

(1−η)(1/ψ−η)b2pσ
2
ppt+

1
2

((1/ψ−η)bp+bϕ,p(s−1))2σ2
ppt

× eEν
[
e(γ−ϕ)Zn,t+1−1

]
pt− 1/ψ−γ

1−γ Eν
[
e(γ−1)Zn,t+1−1

]
pt+bϕ,p(s−1)(1−ρp)pt ,

(1.30)

which implies that

aϕ(s) = aϕ(s− 1) + bϕ(s− 1)ρpp̄+ µD + log β − µC/ψ −
1

2
(1− γ)(1/ψ − γ)σ2

C +
1

2
(σD − γσC)2

bϕ(s) = bϕ,p(s− 1)(1− ρp)−
1

2
(1− η)(1/ψ − η)b2pσ

2
p +

1

2
((1/ψ − η)bp + bϕ,p(s− 1))2σ2

p

+ Eν

[
e(γ−ϕ)Zn,t+1 − 1

]
− 1/ψ − γ

1− γ
Eν

[
e(γ−1)Zn,t+1 − 1

]
.

The zero-coupon bonds are defined as claims to one unit of consumption good at specified

time. Their prices are given by the following theorem.

Theorem 1.3. The time-t price of a zero-coupon bond maturing in s period (or at time

t+ s) is given by

B(pt, s) = exp (ab(s) + bb,p(s)pt) , (1.31)
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where ab(0) = bb,p(0) = 0, and ab(s) and bb,p(s), s ≥ 1, are recursively given by

ab(s) = ab(s− 1) + log β − µC/ψ −
1

2
(1/ψ − (1 + 1/ψ)γ)σ2

C + ρpp̄bb,p(s− 1)

bb,p(s) = bb,p(s− 1)(1− ρp)

+ (1/ψ − η)bpbb,p(s− 1)σ2
p +

1

2
(1/ψ − 1)(1/ψ − η)b2pσ

2
p +

1

2
bb,p(s− 1)2σ2

p

+ Eν
[
eγZn,t − 1

]
− 1/ψ − γ

1− γ
Et

[
e(γ−1)Zn,t − 1

]
.

(1.32)

Proof. We show the pricing by induction.

1. When s = 0,

B(pt, 0) = 1↔ ab(0) = bb,p(0) = 0,

and the theorem holds.

2. Suppose that for bonds with maturity no greater than s − 1 periods, the recursion

defined before holds. Then

B(pt, s) = Et [Mt,t+1B(pt+1, s− 1)]

= Et

[
βe
−µC/ψ− 1

2
(1−γ)(1/ψ−γ)σ2

C−
1
2

(1−η)(1/ψ−η)b2pσ
2
ppt−

1/ψ−γ
1−γ Eν

[
e(γ−1)Zn,t+1−1

]
pt

× e
−γσCBC,t+1+(1/ψ−η)bpσp

√
ptBp,t+1+γ

Nt+1∑
n=1

Zn,t+1

× eab(s−1)+bb,p(s−1)[pt−ρp(pt−p̄)+σp
√
ptBp,t+1]

]
Matching coefficients, we get that Equation 1.32 holds for s. By the property of

deduction, the theorem holds for s ≥ 0.
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An interesting quantity is the evolution of bb,p(s). From Equation 1.32 we can get

bb,p(s)− bb,(s−1) = −ρpbbp(s− 1)

+ (1/ψ − η)bpbb,p(s− 1)σ2
p +

1

2
(1/ψ − 1)(1/ψ − η)b2pσ

2
p +

1

2
bb,p(s− 1)2σ2

p

+ Eν
[
eγZn,t − 1

]
− 1/ψ − γ

1− γ
Et

[
e(γ−1)Zn,t − 1

]
. (1.33)

The third line of Equation 1.33 captures the bond’s role as hedging toward the disasters.

As the disasters are modeled as i.i.d, the agent is willing to pay the same insurance fee for

each additional unit of maturity time. The first line captures the fact that pt is roughly an

AR(1) process. The second line captures the joint effect of variation in pt: the shocks to

pt are priced, so there is a premium associated in the expected discount rate; Also, there

is a Jensen’s Inequality term that affects the expected value of bond price because of the

exposure to pt.

1.3.3 The Term Structure of Real Yield Curve and Equity

In this section, I discuss the term structure of yield curve for real zero-coupon bonds and

provide the intuition why the Generalized Recursive Utility, under some parametric restric-

tions, can yield an upward sloping yield curve. I consider the special case 1/ψ = 1 so that

the intuition can be better explained. When 1/ψ 6= 1, the argument still follows, but the

analysis will not be exact.

When 1/ψ = 1,

Eν
[
eγZn,t − 1

]
− 1/ψ − γ

1− γ
Et

[
e(γ−1)Zn,t − 1

]
=Eν

[
eγZn,t − e(γ−1)Zn,t

]
> 0.

This equation implies the first-order effect of change in pt on the price of real zero coupon

bonds: with higher pt, there is a higher probability of rare disasters, and hence higher

demand for hedging in the economy, driving up the price of zero-coupon bonds.
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Consider the case then pt = p̄, or when the economy is at the steady state of pt. The

following equation holds for the difference in log price of zero-coupon real bonds.

log (B(pt, s))− log (B(pt, s− 1))

= log β − µC/ψ −
1

2
(1− 2γ)σ2

C + Eν

[
eγZn,t − e(γ−1)Zn,t

]
p̄︸ ︷︷ ︸

(1.34.1)

+(1− η)bpbb,p(s− 1)σ2
p p̄︸ ︷︷ ︸

(1.34.2)

+
1

2
bb,p(s− 1)2σ2

p p̄︸ ︷︷ ︸
(1.34.3)

. (1.34)

(1.34.1) captures the first order marginal effect of maturity on bond price: zero-coupon

bonds provide insurance against rare disasters and consumption growth risks, and at the

steady state, the quantity of risk is proportional to maturity. In addition, the economy

features constant consumption growth and time-preference, making the hedging demand

proportional to maturity. When transformed into yield space, this would result in a flat

yield curve at the steady state.

(1.34.2) captures the effect of the variation in pt. It could be showed that, for certain s,

the loading of log (B(pt, s)) on pt, bb,p(s), is always positive, meaning that the price of bond

would increase when pt increases. However, when η < 1/ψ, shocks to pt carry positive price

of risk. When bb,p(s) is increasing with maturity, the premium required also is increasing in

maturity, driving down the price of bonds further. This premium then yields the upward

slope of real yield curve, and is the key mechanism in this model. (1.34.3) stands for Jensen’s

Inequality effect, and is generally small for short maturities.

Similar arguments follow for the term structure of equity. Prices of long-maturity dividends

drop more than short-maturity dividends with an increase in pt. However, this implies

that the agent is willing to pay a lower risk premium for such exposure. In equilibrium,

the long-maturity dividend claims carry lower risk premium relative to the short-maturity

claims, resulting in a downward sloping term structure of equity premium.
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1.3.4 Pricing Volatility Future

The realized volatility of the market portfolio over period t+ 1 is defined as

RVt+1 =
N∑
n=1

rx2
t+n−1

N
,t+ n

N

, (1.35)

where rxt+n−1
N

,t+ n
N

is the log return of the market portfolio during sub-period from time

t+ n−1
N to t+ n

N .

The volatility forward contract is an agreement such that one party pays a fixed amount

while the other party pays the value of realized volatility of a certain period in the future.

The volatility forward price is the fixed leg amount such that the volatility forward contract

has value zero.

As the realized volatility is defined using log return, it is helpful to derive a formula for the

log return of an equity asset in the model.

The (post-dividend) price of an equity asset is given by

P (Dt, pt) =
∞∑
s=1

F (Dt, pt, s)

= Dt

∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)

(1.36)

The one-period return of the market portfolio is then given by

Rϕ,t+1 =

Dt+1

∞∑
s=0

exp(aϕ(s) + bϕ,p(s)pt+1)

Dt

∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)

. (1.37)
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As a result the log return of the market portfolio is

log (Rϕ(pt)) = log

(
Dt+1

Dt

)
+ log

1 +
∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt+1)

∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)



= µD + σDBC,t + ϕ

Nt+1∑
n=1

Zn,t+1 + log

1 +
∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt+1)

∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)

 .

(1.38)

The equation above indicates the shocks that affect the realized returns: while BC,t+1 and

Zn,t+1 affect the dividend level, shocks to pt will affect the realized return through changing

the price-dividend ratio. Define

ζ(pt) =

∞∑
s=1

exp (aϕ(s) + bϕ,p(s)(pt − ρp(pt − p̄)))
∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)

.

Then with a first-order Taylor expansion with respect to σp
√
ptBp,t+1, a linear approxima-

tion of the log price-dividend ratio variation can be obtained:

log

1 +
∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt+1)

∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)



≈ log(ζ(pt)) +
1

ζ(pt)
×

∞∑
s=1

exp (aϕ(s) + bϕ,p(s)(pt − ρp(pt − p̄))) bϕ,p(s)
∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)

× σp
√
ptBp,t+1.

(1.39)

Approximating

1

ζ(pt)
×

1 +
∞∑
s=1

exp (aϕ(s) + bϕ,p(s)(pt − ρp(pt − p̄))) bϕ,p(s)
∞∑
s=1

exp(aϕ(s) + bϕ,p(s)pt)
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as a constant, with pt = p̄, yields a linear approximation of the log return:

log (Rϕ(pt)) ≈ µD + log(ζ(pt)) + σDBC,t + ϕ

∆Nt+1∑
n=1

Zn,t+1 + ζpσp
√
ptBp,t+1, (1.40)

where

ζp =
1

ζ(p̄)
×

1 +
∞∑
s=1

exp (aϕ(s) + bϕ,p(s)zup̄) bϕ,p(s)

∞∑
s=1

exp(aϕ(s) + bϕ,p(s)p̄)

. (1.41)

Then following Drechsler and Yaron (2011), the realized volatility from t to t+ 1 must be

RVt+1 = σ2
D + ζ2

pσ
2
ppt + ϕ2

∆Nt+1∑
n=1

Z2
n,t+1. (1.42)

The time t forward price of realized volatility from t+ s− 1 to t+ s must satisfy

F V OLt (pt, s) = EQt [RVt+s], (1.43)

where Q refers to the risk-neutral probability of the economy.

The following theorem characterizes the pricing of the volatility future.

Theorem 1.4. The time-t forward price of realized volatility from t+ s to t+ s+ 1 is given

by

F V OLt (pt, s) = aRV (s) + bRV (S)pt, (1.44)

where

aRV (1) = σ2
D (1.45)

bRV (1) = ζ2
pσ

2
p + ϕ2EQν

[
Z2
n,t+1

]
Eν
[
eγZn,t+1

]
, (1.46)
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and bRV (s), bRV (s), s ≥ 2 are recursively given by

aRV (s) = aRV (s− 1) + bRV (s− 1)ρpp̄ (1.47)

bRV (s) = bRV (s− 1)
(
1− ρp + (1/ψ − η)bpσ

2
p

)
. (1.48)

Proof. See Appendix A.1.3.

After obtaining the forward price of realized volatility, the risk premium associated with

the volatility forward contracts can be computed.

First, let’s consider the forward contract maturing in 1 period. This contract provides a

long position of the realized volatility of period t+ 1. The forward price is given at time t,

thus leading to the following expected pay-off:

EPt [RVt+1]− F V OLt (pt, 1)

=σ2
D + ζ2

pσ
2
ppt + ϕ2ptE

P
ν [Z2

n,t+1]− F V OLt (pt, 1)

=ptϕ
2
(
EPν [Z2

n,t+1]− EQν [Z2
n,t+1]Eν

[
eγZn,t+1

])
.

(1.49)

As Zn,t+1 < 0, the characterization of the risk-neutral measure implies that EQν [Z2
n,t+1] >

EPν [Z2
n,t+1] > 0, as the risk neutral probability bias toward realizations of Zn,t+1 with higher

absolute value. In addition, Eν [eγZn,t+1 ] > 1. As a result,

EPt [RVt+1]− F V OLt (pt, 1) < 0, (1.50)

or there is a negative premium associated to exposure to realized volatility.

Next, let’s consider the holding return for entering a volatility forward contract.

At time t, the investor enters the contract by committing to pay F V OLt (pt, s) at time t+ s,

and receive RVt+s. At time t+ 1, the contract would have value EQt+1[RVt+s]−F V OLt (pt, s).

Note that, EQt+1[RVt+s] = F V OLt+1 (s − 1), and F V OLt (pt, s) = EQt [F V OLt+1 (s − 1)]. Then again
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the expected pay-off of holding a forward contact would be

EPt
[
F V OLt+1 (s− 1)

]
− EQt

[
F V OLt+1 (s− 1)

]
=EPt [aRV (s− 1) + bRV (s− 1)pt+1]− EQt [aRV (s− 1) + bRV (s− 1)pt+1]

=− bRV (s− 1)(1/ψ − η)bpσp
√
pt,

(1.51)

which is positive when 1/ψ − η > 0.

The fundamental difference between realized volatility and volatility forward contracts be-

yond one period is that, only realized volatility provides hedge against the rare disasters

on consumption level. As a result, exposure to realized volatility carries negative premium.

However, volatility forward contracts provide positive exposure to conditional volatility pt,

resulting in a positive risk premium and Sharpe Ratio.

1.3.5 Calibration and Quantitative Results

I calibrate the model as described below. The consumption process, absent of disasters, is

calibrated the same as in Wachter (2013). I choose the unconditional disaster probability to

be 3.6%, as in Barro and Ursúa (2008). The disaster distribution is multinomial, with the

data provided by Barro and Ursua. Other parameters for the dynamics of pt process follow

Wachter (2013). The model in Wachter (2013) is in continuous time, and I discretized them

so that the process is consistent in the discrete-time framework.

The market consists of eight equity assets, with medium leverage ϕ = 3.5. I also use an

equity asset with ϕ = 3.5 to approximate the market for the simplicity of computation.

Following Wachter and Zhu (2019a), I assume that the dividend growth rate equals con-

sumption growth rate, or µD = µC .

I choose a time-preference parameter β = 0.97, and an EIS ψ = 0.5. In addition, I choose

risk-aversion γ = 3.3. All the parameters are consistent with a large body of existing

literature. I choose η = 0, which implies that the agent is indifferent to the variation in pt.
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This is a fairly strong assumption, but I would like to see how far the model can help to

resolve the puzzles described above without assuming that the agent is uncertainty-loving.

The details of the calibration are summarized in Table 1.1.

I compute the pricing parameters in the model. Recall that the model is written in discrete-

time, so the monotonicity of bϕp(s) and bbp(s) can not be guaranteed. I resolve this issue

by allowing for finer intervals in the numerical exercise. The actual frequency is monthly

in computation.

The main result for the real yield curve is reported in Figure 1.6. In the figure, I plot the

real yield curve at the steady state (pt = p̄). The figure features an upward sloping yield

curve, whith is consistent with data but contradicts existing literature.

To explore the quantitative implication of the model on the equity market, I simulate

500 parallel samples, each of length 57 years (12 × 57 periods). To obtain a stationary

distribution for the state variables, I simulate a burn-in period of 5 years. The market

portfolio is defined as the value-weighted average of individual equity assets. I report the

summary statistics of the market portfolio, the risk-free rate, and claims to short- and long-

maturity of aggregate dividends in Table 1.2. I define the short maturity dividend claims

as claims for dividends maturing within 5 years, and long-maturity dividend as dividends

as the remaining part of the equity.

The model can match empirical moments in the data: the mean equity excess return and

the mean and volatility of the risk-free rate from data all fall within 90% confidence interval

generated from the simulation.

Figure 1.7 shows that the model is able to explain the beta anomaly. Why is that the case?

For portfolios with higher leverage ϕ, the equity premium from rare disasters is higher.

They also have higher negative exposure to pt, the disaster probability, and such exposure

generates negative risk premium, flattening the security market line across assets.
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The same intuition can be applied when investigating the term structure of equity premium.

Binsbergen et al. (2012) show that the term structure of equity premium, defined as the

risk premium of equity strips as a function of maturity, is downward sloping. Figure 1.8

confirms that this is the case in the model. Table 1.2 shows that long-maturity dividends

have weakly higher CAPM betas, but lower risk premia.

Figure 1.9 illustrates the results for the variance forward contacts. The contracts with

1-month maturity, or realized volatility contracts, carry a negative Sharpe Ratio in the

model, as realized volatility jumps up when a disaster hits. The variance forward contracts,

however, feature small positive Sharpe Ratios. The intuition has already been discussed.

In conclusion, by allowing the agent to show lower aversion toward shocks about the long-

run future, the model is able to match a large body of puzzles in both fixed income and

equity markets.
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1.4 Conclusion

The expected utility hypothesis and recursive utility have been workhorse models for macro-

economic and financial research. However, they both imply restrictions on how the agent

would treat smoothing across time and different states. In addition, they both have strong

implications for asset returns in the cross-section, and strongly contradict data.

This paper proposes a generalized recursive utility function that further relaxes the restric-

tion implied by the Epstein-Zin-Weil recursive utility. The utility allows agents to show

various levels of aversion to two different types of shocks and then disconnects risk aversion,

Elasticity of Intertemporal Substitution, and preference for early resolution of uncertainty.

The new utility specification is then applied to a representative agent model with a friction-

less market. I show that with certain parametric restrictions, the model can qualitatively

explain the empirical puzzles.

I then calibrate the model with parameter values consistent with a large body of literature.

I show that the model not only provides qualitative explanation to the puzzles found in

empirical work but also can quantitatively match the empirical patterns.

While the current generalization focuses on distinguishing the short-run future and long-run

future shocks, similar approaches can be applied to distinguish other types of uncertainty

(e.g., Bayesian posterior uncertainty, ambiguity, etc.) It would be interesting to combine

the current framework with other literatures and investigate further implications.
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Table 1.1: Model parameters

Panel I: Consumption Growth

Normal time log consumption growth µC(%) 2.50
Volatility of consumption growth σC(%) 2.00

Panel II: Dynamics of pt
Average probability of disaster p̄(%) 2.86
Mean reversion ρp 0.07
Volatility σp 0.067

Panel III: Preference

Time preference β 0.97
Elasticity of Intertemporal Substitution ψ 0.50
Aversion to consumption risk γ 3.30
Aversion to variation in pt η 0.00

Panel IV: Equity Asset

Normal time log dividend growth µD(%) 2.90
Leverage φ 3.5
Volatility of dividend growth σD (%) 5.0

Panel V: Simulation parameters

Number of Samples 500
Sample Length 57 years
Cut-off for short- and long-end of equity maturities 5 years

Note: Parameters for the calibration of the disaster risk model in Sec-
tion 1.3. The quantities are reported in annualized terms.
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Table 1.2: Simulation results: market portfolio

Panel I: Equity excess returns

Statistics Data Sim. Mean Sim. Median 90 % CI

Mean 6.37 5.57 4.93 [1.42, 12.23]
Volatility 15.20 10.17 10.20 [5.50, 15.75]

Panel II: Risk-free rate

Statistics Data Sim. Mean Sim. Median 90 % CI

Mean 0.74 2.58 3.38 [−4.48, 6.58]
Volatility 1.14 1.20 1.06 [0.45, 2.40]

Panel III: Difference in long- and short-maturity dividend claims

Statistics Data Sim. Mean Sim. Median 90 % CI

Mean excess returns −0.20 −0.12 [−0.76, 0.13]
CAPM Beta 0.01 −0.01 [−0.04, 0.14]

Note: In data simulated from the model, I compute the mean excess returns and
unconditional volatility of the market portfolio for each simulation sample path;
I also compute the mean and unconditional volatility of the risk-free rates. The
long-maturity dividend claim is defined as the claim to dividends realized after
8 years or longer. The first column reports empirical moments; the second and
third column report the median and 90% confidence interval computed using sim-
ulation. The unit is percentage per annum.
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Table 1.3: Simulation results: cross-section

Panel A: Mean Excess Returns

Portfolio 1 2 3 4
Median 4.08 4.53 4.91 5.17
90% CI [0.98, 11.01] [1.32, 11.58] [1.55, 12.33] [1.73, 12.86]

Portfolio 5 6 7 8
Median 5.31 5.61 5.86 5.99
90% CI [1.82, 13.20] [1.79, 13.61] [1.78, 14.20] [1.69, 14.84]

Panel B: CAPM beta

Portfolio 1 2 3 4
Median 0.63 0.78 0.91 1.00
90% CI [0.50, 0.82] [0.68, 0.91] [0.82, 1.02] [0.92, 1.13]

Portfolio 5 6 7 8
Median 1.07 1.23 1.36 1.50
90% CI [1.01, 1.23] [1.09, 1.48] [1.12, 1.67] [1.15, 1.88]

Note: In data simulated from the model, I compute the mean excess re-
turns and unconditional volatility of the market portfolio for each simu-
lation sample path; I also compute the mean and unconditional volatility
of the risk-free rates. The long-maturity dividend claim is defined as the
claim to dividends realized after 8 years or longer. The first column re-
ports empirical moments; the second and third column report the median
and 90% confidence interval computed using simulation. The unit is per-
centage per annum.
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Figure 1.1: Time series of US TIPS yields
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Note: This figure plots time series of US TIPS (Treasury Inflation Protected Securities)
yields from 2003.01 - 2017.10. The legend shows the corresponding maturities. The unit is
% p.a.
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Figure 1.2: Time series of 5- and 10-year yield spread of US TIPS
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Note: This figure plots time series of the difference between the yields of 10- and 5-year
US TIPS (Treasury Inflation Protected Securities) I also point out the day when the 2008
financial crisis started (the collapse of Lehman Brothers.) .
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Figure 1.3: Implied real risk-free yield curve at pt = p̄, Epstein-Zin-Weil Utility
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Note: This figure plots the implied yield curve for real zero-coupon bond at the steady
state pt = p̄. The agent’s preference is represented by the Epstein-Zin-Weil Utility, with
risk aversion γ = 3.3, and EIS ψ = 0.5.

41



Figure 1.4: Mean excess returns and unconditional CAPM beta for beta-sorted portfolios
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Note: This figure plots the mean excess returns and unconditional CAPM beta for the 10
beta-sorted portfolios from 1961.01 - 2017.12. Also shown is the regression line of mean
excess returns against CAPM beta, or the Security Market Line (SML).
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Figure 1.5: Sharpe Ratio of Investing in Variance Forwards
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Note: The figure shows the realized Sharpe Ratios of investing in variance forward contracts
with different maturities from 1996.01 to 2013.09. Each star stands for forward contracts
with one certainty maturity. On the horizontal axis is the maturity (in month), while on the
vertical axis is the (annualized) Sharpe Ratio. The forward contract with 1-month maturity
provides exposure to realized volatility.
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Figure 1.6: Implied real risk-free yield curve at pt = p̄
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Note: This figure plots the implied yield curve for real zero-coupon bond at the steady state
pt = p̄. The agent’s preference is represented by the Generalized Recursive Utility, with
risk aversion γ = 3.3, and EIS ψ = 0.5, and aversion to long-run future shocks η = 0.
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Figure 1.7: Simulated equity portfolio CAPM betas and excess returns
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Note: This figure shows the mean excess returns on beta-sorted portfolios in daily data from
1961.01-2017.12 as a function of the CAPM beta. Also showed on the figure are moments
generated from simulation data. I calculate average excess returns and CAPM betas for
a cross-section of assets in data simulated from the model. The red lines stand for the
median for each portfolio across samples; the box show the interquartile range (IQR), and
the whiskers show the highest and lowest data point within 1.5 × IQR of the highest and
lowest quartiles. The returns are plotted against the median CAPM beta across samples.
The red stars correspond to the estimated CAPM beta and mean excess returns for beta-
sorted portfolios from empirical data.
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Figure 1.8: Implied term structure of equity premium
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Note: This figure shows the implied term structure of equity premium at the steady state
pt = p̄, with the Generalized Recursive Utility. I use an equity asset with leverage ϕ = 3.5
as the proxy for market portfolio.
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Figure 1.9: Simulated mean return of entering a volatility future contract
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Note: The figure shows the Sharpe Ratios of investing in variance forward contracts with
different maturities from 1996.01 to 2013.09. I also show the realized Sharpe Ratios from the
simulated data. For each simulated sample, I add a small noise to the horizontal position
of the dots to better illustrate the distribution of Sharpe Ratios across simulation samples.
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CHAPTER 2 : A Model of Two Days: Discrete News and Asset Prices

2.1 Introduction

Since the work of Sharpe (1964) and Lintner (1965), the Capital Asset Pricing Model

(CAPM) has been the benchmark model of the cross-section of asset returns. While the

literature has explored many generalizations, the CAPM, with its simple and compelling

structure and tight empirical predictions, remains the major theoretical framework for un-

derstanding the relation between risk and return. Recently, Savor and Wilson (2014) docu-

ment a striking fact about the fit of the CAPM. Despite its poor performance in explaining

the cross section overall, the CAPM does quite well on a subset of trading days, namely

those days in which the Federal Open Market Committee (FOMC) or the Bureau of Labor

Statistics (BLS) releases macroeconomic news.

Figure 2.1 reproduces the main result of Savor and Wilson (2014) using updated data. We

sort stocks into portfolios based on market beta (the covariance with the market divided by

market variance) computed using rolling windows. The figure shows the relation between

portfolio beta and expected returns on announcement days and non-announcement days

in the data. This relation is known as the security market line. On non-announcement

days (the majority), the slope is indistinguishable from zero. That is, there appears to be

no relation between beta and expected returns. This result holds unconditionally, and is

responsible for the widely-held view of the poor performance of the CAPM. However, on

announcement days, a strong positive relation between betas and expected returns appears.

Moreover, portfolios line up well against the security market line, suggesting that the rela-

tion is not only strong, but that the total explanatory power is high. Finally, these results

appear even stronger for fixed-income investments than for equities.

We summarize the facts as follows:

1. The equity premium is much higher on announcement days as opposed to non-
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announcement days

2. The slope of the security market line is higher on announcement days than on non-

announcement days. The difference is economically and statistically significant.

3. The security market line is essentially flat on non-announcement days.

4. Results 1 and 2 hold for Treasury bonds as well as for stocks.

In this paper, we build a frictionless model with rational investors that explains these

findings. Our model is relatively simple and solved in closed form, allowing us to clearly

elucidate the elements of the theory that are necessary to explain these results. Nonetheless,

the model is quantitatively realistic, in that we explain not only these findings above, but

also the overall risk and return of the aggregate stock market.

One important aspect of our model is that, despite the lack of frictions, investors do not

have full information. Macroeconomic announcements matter for stock prices because they

reveal information to investors concerning underlying shocks that have already occurred.1

The information that is revealed matters to investors, which is why a premium is required

to hold stocks on announcement days (the first finding). In our model, the information

concerns the likelihood of economic disaster similar to the Great Depression or what many

countries suffered following the 2008 financial crisis. We assume that this latent probability

follows a Markov process.

We further assume that stocks have differential exposure to macroeconomic risk. We en-

dogenously derive the exposure on stock returns from the exposure of the underlying cash

flows. We also assume, plausibly, that there is some variability in the probability of disaster

that is not revealed in the macroeconomic announcements. Stocks with greater exposure

have endogenously higher betas, both on announcement and non-announcement days, than

those with lower exposure. They have much higher returns, in line with the data, on

1Another possibility is that macroeconomic announcements themselves create the risk perhaps because
they reflect on the competence of the Federal Reserve. We do not consider that possibility here.
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announcement days, because that is when a disproportionate amount of information is re-

vealed (the second finding). Finally, the presence of disasters and of time-varying disaster

risk implies that a linear relation between expected returns and betas does not hold. Stocks

can have high variances, and covariances with the market, driven by time-varying disaster

risk, without exposure to the actual disasters rising in proportion. This explains the third

finding.

An extension of the model to bonds explains the fourth finding. We assume that some

information that is revealed on announcements is informative about expected inflation.

Bonds are exposed to announcements to a greater extent than equities. In the model, as

well as in the data, betas on bonds rise dramatically on announcement days (they are near

zero on non-announcement days), while equity betas do not.

We find that the presence of shifts in regime breaks the traditional relation between risk

and return. This is important, because conventional measures of risk such as variance and

covariance do not appear markedly higher on announcement days. Our model is consistent

with this finding, because of the asymmetric nature of the shift in regime. Most likely,

investors will learn that the economy continues to be in good shape and the risk of disaster

remains low. There is a small probability, however, that they will learn that the economy

is in worse shape than believed. In any given sample, positive announcements could easily

appear in greater proportion than they would in population. A prediction of the model,

then, is that implied volatilities should fall following announcements, even if realized volatil-

ities do not (this is because implied volatilities measure the ex ante volatility assumed by

investors). Moreover, implied volatilities should fall more for out-of-the-money put options

than for at-the-money options. We confirm both of these predictions in the data.

While we focus on macroeconomic announcements, the techniques we employ could be used

to address other types of predictable releases of discrete news (i.e. announcements). There

is a vast empirical literature on announcement effects (La Porta et al., 1997; Fama, 1970),

of which the literature on macro-announcements is a part. In this paper, we develop a set
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of theoretical tools to handle the fact that announcements occur at deterministic intervals,

and that a finite amount of information is released over a vanishingly small period of time.

In so doing, we complement and extend findings of Ai and Bansal (2018), who derive

necessary conditions on a utility function for the existence of an announcement premium as

well as closed-form expressions for risk premia in continuous time under the assumption of

conditional lognormality. As in their work, time just before and just after the announcement

is connected through intertemporal optimization conditions. We show that these conditions

form a set of boundary conditions for the dynamic evolution of prices in the interval between

announcements. It is this insight that allows us to compute a cross-section of stock prices

in closed form.

There is a very recent literature on modeling the macroannouncement premium, focusing

on the Bansal and Yaron (2004) long-run-risk setting.2 In work contemporaneous to the

present paper, Ai et al. (2018) aims to rationalize the relative performance of the CAPM

on announcement days in a production economy. In their model, total factor productiv-

ity follows an AR(1) process, about which agents receive normally distributed signals on

announcement days. The fact that all shocks are normal simplifies the filtering problem.

However, the evidence that daily returns exhibit no greater volatility on announcement

versus non-announcement days, together with the option pricing results, is more in line

with the regime-shift model that we propose. Ai et al. (2019) show that stocks whose im-

plied volatilities change more around announcement days also have higher announcement

premium, a result consistent with our model. In earlier work Andersen et al. (2003) show

that foreign exchange markets respond more to negative announcements than positive ones,

which is also consistent with our model. Cocoma (2018) builds a model to explain the Lucca

and Moench (2015) evidence that much of the premium is realized prior to announcements.

The rest of the paper proceeds as follows. Section 2.2 discusses the model. Section 2.3

discusses the fit of the model to the data, and Section 2.4 concludes.

2Savor and Wilson (2013) describe qualitatively how a long-run risk model might account for a macroan-
nouncement premium.
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2.2 A model of asset prices with macroeconomic announce-

ments

In the section that follows, we describe the model. Section 2.2.1 gives the endowment and

preferences, Section 2.2.2 the relation between cash flows and announcements, Section 2.2.3

describes state prices, Section 2.2.4 equity prices, and Section 2.2.5 nominal bonds. Unless

otherwise stated, proofs are contained in the Appendices.

2.2.1 Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Aggregate

consumption (the endowment) follows the stochastic process

dCt
Ct−

= µdt+ σdBCt +
(
e−Zt − 1

)
dNt, (2.1)

where BCt is a standard Brownian motion and where Nt is a Poisson process. The diffusion

term µdt+σdBCt represents the behavior of consumption during normal times. The Poisson

term
(
e−Zt − 1

)
dNt represents rare disasters. The random variable Zt > 0, is the decline in

log consumption, given a disaster. We assume, for tractability, that Zt has a time-invariant

distribution, which we call ν; that is, Zt is iid over time, and independent of all other shocks.

We use the notation Eν to denote expectations taken over ν.

We assume the representative agent has recursive utility with EIS equal to 1, which gives

us closed-form solutions up to ordinary differential equations. We use the continuous-time

characterization of Epstein and Zin (1989) derived by Duffie and Epstein (1992). The

following recursion characterizes utility Vt:

Vt = maxEt
∫ ∞
t

f(Cs, Vs)ds, (2.2)
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where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log[(1− γ)Vt]

)
. (2.3)

Here β represents the rate of time preference, and γ represents relative risk aversion. The

case of γ = 1 collapses to time-additive (log) utility. When γ 6= 1, preferences satisfy risk-

sensitivity, the characteristic that Ai and Bansal (2018) show is a necessary and sufficient

condition for a nonzero announcement premium.

2.2.2 Scheduled announcements and the disaster probability

We assume that scheduled announcements convey information about the probability of a

rare disaster (in what follows, we use the terminology probability and intensity interchange-

ably). The probability may also vary over time for exogenous reasons; this creates volatility

in stock prices in periods that do not contain announcements.

To parsimoniously capture these features in the model, we assume the intensity of Nt is a

sum of two processes, λ1t and λ2t.
3 The intensity λ1t follows a latent Markov switching

process. Following Benzoni et al. (2011), we assume two states, λ1t = λL (low) and λ1t = λH

(high), with 0 ≤ λL < λH , and

P (λ1,t+dt = λL|λ1t = λH) = φH→Ldt

P (λ1,t+dt = λH |λ1t = λL) = φL→Hdt,

(2.4)

with φH→L, φL→H > 0. Note that φH→L can be interpreted as the probability (per unit of

time) of a switch from the high-risk state to the low-risk state and φL→H is similarly, the

probability of a switch from the low-risk state to the high-risk state.

Announcements convey information about λ1t. Let T be the length of time between an-

3Equivalently, decompose, Nt as
Nt = N1t +N2t,

where Njt, for j = 1, 2, has intensity λjt.

53



nouncements.4 Define

A ≡ {t : t mod T = 0} ,

N ≡ {t : t mod T 6= 0} .
(2.5)

That is, A is the set of announcement times, and N is the set of non-announcement times.

Note that N is an open set, so we can take derivatives of functions evaluated at times t ∈ N .

Let pt denote the probability that the representative agent places on λ1t = λH . For t ∈ N ,

assume

dpt = ((1− pt)φL→H − ptφH→L) dt = (φL→H − pt(φH→L + φL→H)) dt. (2.6)

This assumption implies that the agent learns only from announcements.5 Outside of an-

nouncement periods, the agent updates based on (2.4). If the economy is in a low-risk state,

which it is with probability 1− pt, the chance of a shift to a high-risk over the next instant

is φL→H dt. If the economy is in a high-risk state, which is with probability pt, the chance

of a shift to the low-risk state over the next instant is φH→L dt. Define

λ̄1(pt) ≡ ptλH + (1− pt)λL,

as the agent’s posterior value of λ1t. For simplicity, we assume announcements convey full

information, that is, they perfectly reveal λ1t.
6 We refer to announcements revealing λ1t to

4In the data, announcements are periodic, but, depending on the type of announcement, the period
length is not precisely the same. Our assumption of an equal period length is a convenient simplification
that has little effect on our results.

5Bayesian learning implies

dpt = pt−

(
λH − λ̄1(pt−)

λ̄1(pt−)

)
dN1t +

(
−(pt−)(λH − λ̄1(pt−)) − (pt−)φH→L + (1 − pt−)φL→H

)
dt

(Wachter and Zhu, 2019b). The first term multiplying N1t corresponds to the actual effect of disasters. The
term −p(λH − λ̄1(p)) in the drift corresponds to the effect of no disasters. We abstract from these effects
in (2.6). Because disasters will be very unlikely, the term −p(λH − λ̄1(p)) is small (agents do not learn
much from the fact that disasters do not occur). In what follows, we compare the data to simulations that
do not contain disasters. Therefore ignoring the Poisson term can be understood as an implementation of
realization utility, defined by Cogley and Sargent (2008). We allow agents to learn from disasters; however,
they do not forecast that they will learn from disasters.

6In effect, we assume the government body issuing the announcement has better information, perhaps
because of superior access to data. Stein and Sunderam (2015) model the strategic problem of the announcer
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be λL as positive and those revealing it to be λH as negative. As we will show, this language

is precise in the sense that the risk averse agent’s utility rises when the announcement is

positive.

It is useful to keep track of the content of the most recent announcement, because of the

information it conveys about the evolution of the disaster probability. Define τ as the time

elapsed since the most recent announcement:

τ ≡ t mod T,

Let

χt ≡ pt−τ . (2.7)

That is, χt is the revealed probability of a high-risk state at the most recent announcement.

By definition, χ ∈ {0, 1}. The process for pt is right-continuous with left limits. In the

instant just before the announcement it is governed by (2.6). On the announcement itself,

it jumps to 0 or 1 depending on the true (latent) value of λ1t.

Under these assumptions, pt has takes a simple form:

Lemma 2.1. The probability assigned to the high-risk state satisfies pt = p(τ ;χt), where

τ ∈ [0, T ), χ ∈ {0, 1} and

p(τ ;χ) = χe−(φH→L+φL→H)τ +
φL→H

φH→L + φL→H
(1− e−(φH→L+φL→H)τ ). (2.8)

Proof. Equation 2.6 implies that pt is deterministic between announcements. Moreover,

pt is memoryless in that it contains no information prior to the most recent announcement.

Because the information revealed at the most recent announcement is summarized in χ, any

solution for (2.6) takes the form pt = p(τ ;χ), where τ = t mod T and χ ∈ {0, 1}. It follows

and investors, and show that announcements might reveal more information than a naive interpretation
would suggest.
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directly from (2.6) that

d

dτ
p(τ ;χ) = −p(τ ;χ)(φH→L + φL→H) + φL→H , τ ∈ [0, T ). (2.9)

This has a general solution:

p(τ ;χ) = Kχe
−(φH→L+φL→H)τ +

φL→H
φH→L + φL→H

, (2.10)

where Kχ is a constant that depends on χ. The boundary condition p(0;χ) = χ determines

Kχ.

Equation 2.8 shows that pt is a weighted average of χ, the probability of the high-risk state

revealed in the most recent announcement, and φL→H
φL→H+φH→L

, the unconditional probability

of the high-risk state. As τ , the time elapsed since the announcement, goes from 0 to T,

the agent’s weight shifts from the former of these probabilities to the latter.

Agents forecast the outcome of the announcement based on pt. The optimality conditions

connecting the instant before the announcement to the instant after are crucial determinants

of equilibrium. It is thus useful to define notation for pt just before the announcement. Let

p∗χ = lim
τ↑T

p(τ ;χ) χ = 0, 1 (2.11)

Then p∗0 is the probability that the agent assigns to a negative announcement just before

the announcement is realized, if the previous announcement was positive. If the previous

announcement was negative, then the agent assigns probability p∗1. The values of p∗0 and p∗1

follow from (2.8):

p∗χ = χe−(φH→L+φL→H)T +
φL→H

φH→L + φL→H
(1− e−(φH→L+φL→H)T ). (2.12)

Not surprisingly, 0 < p∗0 < p∗1 < 1:
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Finally, we assume investors observe λ2t, which follows

dλ2t = κ(λ̄2 − λ2t)dt+ σλ
√
λ2tdBλt, (2.13)

with Bλt a Brownian motion independent of BCt. The process for λ2t is the same as the

one assumed for the disaster probability in Wachter (2013).

In what follows, all expectations should be understood to be taken with respect to the

agent’s posterior distribution, unless noted otherwise.

2.2.3 Equilibrium state prices

In what follows, we will separate quantities into a component that remains constant over

announcement intervals and a component that jumps over the announcement interval. This

separation allows us to focus our theoretical results on the behavior of asset prices around

announcements.7 This separation also implies that the results in this section could in

principle be applied to any underlying model for the equity premium, provided that it is

based on the revelation of latent regimes on announcement days.

We first solve for the value function of the representative agent. We then use this result to

solve for the stochastic discount factor, and finally to price assets. We show that the value

function depends on five state variables: consumption Ct, probability of the high-risk state

pt, time since the announcement τ , the previously announced state χ, and the observed

component of the disaster probability λ2. The state variable pt is technically redundant, as

it is a function of χ and τ . However, separating it out helps to gain economic intuition.

Theorem 2.1. In equilibrium, the agent’s continuation value Vt = J(Ct, pt, λ2t, τ ;χt), with

τ = t mod T . Continuation value takes the form:

J(Ct, pt, λ2t, τ ;χt) =
1

1− γ
C1−γ
t I(pt, λ2t, τ ;χt)

1−γ , (2.14)

7Quantitative implications depend on the behavior of the model at all time, however, and for this reason
a full solution of the model is given in the Appendix.
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with

I(pt, λ2t, τ ;χt) = IA(pt, τ ;χt)IN (λ2t) (2.15)

for IN constant over the announcement interval, and

IA(pt, τ ;χt) = eζχe
βτ+bppt , (2.16)

where

bp =
(λH − λL)Eν

[
e(γ−1)Zt − 1

]
(1− γ)(β + φH→L + φL→H)

, (2.17)

and where ζχ, χ = 0, 1 satisfy

e(1−γ)(ζχeβT+bpp∗χ) = p∗χe
(1−γ)(ζ1+bp) + (1− p∗χ)e(1−γ)ζ0 , (2.18)

with probabilities p∗ satisfying (2.12).

Each term in the value function has an economic interpretation. Note that the coefficient

(2.17) multiplies the probability of a high-risk. This term depends on the difference between

the disaster probability in the two states and the expected outcome for utility should a

disaster occur. It also depends on β + φH→L + φL→H , which captures the persistence of

effect on investor utility. The more patient the investor (the lower is β), and the more

persistent the states (the lower the transition probabilities), the greater the effect.

The value function also depends on the announced state and the time since the last an-

nouncement. The recursion (2.18) derives from the condition that the value function prior

to the announcement must equal its expected value following the announcement.

Using the analytical expressions in Theorem 2.1, we can show that the agent is always worse

off should the high-risk state prevail. The proof follows from the condition (2.18), and the

result that ζ0 > ζ1 + bp (which we prove in the Appendix).

Corollary 2.1. For all risk averse agents, utility increases for positive announcements and

58



decreases for negative ones. That is, for γ > 0, IA increases when the announcement is

positive and decreases when it is negative:

IA(1, 0; 1) < lim
τ↑T

IA(p∗χ, τ ;χ) < IA(0, 0; 0) χ = 0, 1.

Duffie and Skiadas (1994) link the equilibrium value function to the state-price density:

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (2.19)

We can think of πt as the process for marginal utility. Standard calculations (see Lemma A.2.3)

imply that

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ;χt)

1−γ , (2.20)

Now define the function

M(χ, χ−) ≡

(
exp{ζχ + bpχ}

exp{eβT ζχ− + bpp∗χ−}

)1−γ

(2.21)

It follows from (2.20) and Theorem 2.1 that (2.21) is, with probability 1, the change in the

state-price density over the announcement interval:

M(χt, χt−) =
πt
πt−

. (2.22)

Following Ai and Bansal (2018), we refer to M as the announcement stochastic discount

factor, or the announcement SDF.8 To summarize:

Theorem 2.2 (Announcement SDF). The change in state-price density over the announce-

8There is a theoretical possibility of a disaster co-occurring with an announcement, in which case (2.22)
would not hold. Because announcements occur on a set of measure zero, this is a zero probability event,
and we can ignore it when calculating expectations and therefore prices and returns.
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ment interval equals

M(χ, χ−) =

(
exp{ζχ + bpχ}

exp{eβT ζχ− + bpp∗χ−}

)1−γ

, (2.23)

where (2.17) defines bp and where ζ satisfies (2.18). We refer to M(χ, χ−) as the announce-

ment SDF.

Negative announcements decrease utility for all risk averse agents. However, negative an-

nouncements only affect marginal utility, and hence the SDF, for agents with a preference

for the timing of the resolution of uncertainty.:

Corollary 2.2. The announcement SDF is > 1 for negative announcements and < 1 for

positive ones, if γ > 1. If γ < 1, the inequalities reverse.

A preference for early or late resolution of uncertainty is a special case of risk-sensitivity, as

defined by Ai and Bansal (2018). In their setting, as in ours, risk-sensitivity is a necessary

and sufficient condition for a nonzero announcement premium.

Using the announcement SDF, we can define risk-neutral probabilities of negative announce-

ments, just before the announcement occurs.

p̃∗χ ≡M(1, χ)p∗χ χ = 0, 1 (2.24)

These are the risk-neutral counterparts of (2.11). When χ = 0, (2.24) is the risk-neutral

probability of a negative announcement, given that the previous announcement was positive.

when χ = 1, (2.24) is the risk-neutral probability of a negative announcement given that

the previous announcement was negative.

Provided that γ > 1, risk-neutral probabilities of a negative announcements are higher than

physical probabilities because of the effect of the announcement on state prices. Perhaps

less obvious is the fact that, regardless of the value of γ, the risk-neutral probability of

a negative announcement following a previous negative announcement is higher than the
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risk-neutral probability of a negative announcement following a positive one. This means

that a negative announcement is bad news in a dynamic sense: it affects not only dividends

that are about to be realized, but also the agents’ beliefs about future cash flows. This

insight is important for equity pricing.

Theorem 2.3. Let p̃∗1 be the risk-neutral probability of a negative announcement, just prior

to the announcement occurring, provided that the previous announcement was negative, and

p̃∗0 be the analogous quantity, provided that the previous announcement was positive. Then

p̃∗1 > p̃∗0.

This section shows that the stochastic discount factor undergoes a discrete change at the

instant of an announcement, provided that there is a preference for the timing of the reso-

lution of uncertainty. As we will show, any asset whose price undergoes a discrete change

at the instant of an announcement will carry an announcement premium: investors must

be compensated for the risk of holding the asset over any interval containing the announce-

ment. If the price change is in the same direction as the SDF change, then the announcement

premium is positive. Unlike the risk premium due to diffusion or Poisson risk, the announce-

ment premium does not scale with the length of time over which the premium is measured.

Even though the announcement occurs at an infinitesimal point in time, the premium is

bounded away from zero.

Savor and Wilson (2014) document announcement premia, as measured by the slope of the

security market line, for equities and bonds. In what follows, these are the focus of our

analysis. We endogenously derive the price change for equities and for nominal bonds upon

announcements and show that the magnitude of the effect matches the Savor and Wilson

evidence. Savor and Wilson also document an announcement premium in foreign exchange

markets. When currencies are sorted into portfolios based on interest rate differentials,

higher beta portfolios have higher returns on announcement days, but there is no relation
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(or a negative relation) on non-announcement days. While a full explanation of this finding

is outside the scope of our paper, the above reasoning suggests that if high interest rate

differential portfolios are those exposed to macroeconomic disasters (as captured in the λ1(t)

regime) then these would have high announcement day returns, with little or no relation

between risk and return on non-announcement days.

2.2.4 Equities

In this section, we derive properties of claims to dividends (that is, equity claims). Dividends

follow a process that is similar to that of consumption:

dDt

Dt−
= µdt+ σdBCt + (e−ϕZt − 1)dNt. (2.25)

To reduce the number of free parameters, we assume dividends have the same drift rate as

consumption and the same loading on Brownian risk.9 We allow dividends to display addi-

tional disaster sensitivity, where the parameter ϕ determines the degree of this sensitivity.10

The parsimonious structure (2.25) will allow us to define a cross-section of equity claims in

a simple and transparent way.

It is useful to first consider the price of a claim that pays a dividend at a fixed point in time

(an equity strip). Let F denote the ratio of the price of this claim to the current dividend.

By the Markov property,

F (pt, λ2t, τ, s;χt) = Et
[
πt+s
πt

Dt+s

Dt

]
. (2.26)

Theorem 2.4. The price of an s-period equity strip (scaled by the current dividend) takes

9This specification does imply that dividends in the model will, during normal times, feature the same
volatility as consumption. In the data, dividends are more volatile than consumption, but the normal-times
correlation between dividends and consumption is low. Adding unpriced dividend risk would make it easier
to explain the volatility of returns but would leave the results otherwise unchanged.

10 Longstaff and Piazzesi (2004) show that earnings were far more affected than consumption during the
Great Depression. Bianchi (2015), Bai et al. (2019) and Lu and Murray (2017) find that disaster sensitivity
is an important determinant of risk and return in the cross-section.
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the following form:

F (pt, λ2t, τ, s;χt) = FA(pt, τ, s;χt)FN (λ2t, s), (2.27)

where FN is constant over the announcement interval, where

FA(pt, τ, s;χt) = exp{g(τ + s;χt) + bϕp(s)pt}, (2.28)

with

bϕp(s) =
(λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
φH→L + φL→H

(
1− e−(φH→L+φL→H)s

)
, s ≥ 0. (2.29)

The function g : R+ × {0, 1} is the unique solution to the system of equations

eg(u;χ)+bϕp(u−T )p∗χ = p̃∗χe
g(u−T ;1)+bϕp(u−T ) + (1− p̃∗χ)eg(u−T ;0) (2.30)

with boundary condition g(u; ·) = 0, u ∈ [0, T ), for risk neutral probabilities p̃∗χ satisfying

(2.24).

Theorem 2.4 decomposes the price of an equity strip into a component affected by the an-

nouncement, and a component that is unaffected (which we describe in the Appendix). The

component affected by the announcement depends on the probability of a high-risk state,

the time since the announcement, the maturity of the strip, and the previous announce-

ment. When an announcement occurs, the time since the last announcement jumps from

T back to 0, the probability of a high risk state jumps to either 0 or 1, and the content of

the previous announcement is updated to the content of the current announcement.

We can gain some intuition from the form of prices in Theorem 2.4. First, provided that

ϕ > 1, −ϕZt < −Zt, implying that bϕp(s) is strictly negative and decreasing in s. The

greater is the probability that the economy is in the high-risk state, the lower is the price,

and the longer the maturity of the claim, the more pronounced the effect. Dividing this
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term is the sum of the transition probabilities; thus, the more persistent the state, the

greater the effect on the price.

Second, consider (2.30). This equation arises from the fact that the price just prior to

the announcement must be the expected value of the price just after the announcement,

under the risk-neutral probabilities. Essentially, the function g depends on the number of

announcements until maturity, and the most recent announcement.11 It keeps track of the

cumulative effects of anticipated future announcements on the price. It also enables us to

establish that equities increase in price upon positive announcements and decrease in price

upon negative ones.

Corollary 2.3. Assume ϕ > 1. Then the price of an equity strip with positive maturity

on the announcement date increases when the announcement is positive and decreases when

the announcement is negative. That is

FA(1, 0, s; 1) < lim
τ↑T

FA(pχ, τ, s;χ) < FA(0, 0, s; 0) χ = 0, 1,

for s > 0.

This result relies on the dynamic and recursive implications of announcements, as expressed

in the risk-neutral probabilities of Theorem 2.3. When ϕ > 1, a higher probability of disaster

lowers the value of the dividend claim (this effect operates through bφp). Consider first the

claim with one announcement prior to maturity. Clearly, this claim will fall in price if

the announcement is negative and rise if it is positive. Now consider the the claim with

two announcements prior to maturity. Note that p̃∗1 > p̃∗0, in other words, the probability

of a negative announcement is higher if the previous announcement was negative than if

it was positive. Thus the asset will fall in price if the second-to-last announcement prior

to maturity is negative and rise if it is positive. Iteratively applying this reasoning (see

11The fact that g depends on the sum s+ τ rather than s and τ by themselves indicates that it does not
matter how far away in time the next announcement is. As time goes by, τ increases, s decreases, so that
s+ τ remains constant until (upon the announcement) τ jumps back to zero.
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Appendix A.2.2 for details) leads to the result above.

We apply these ideas to compute the announcement premium. Consider first the change

in price (the return) for an equity strip around an announcement. This announcement

return depends on the announced state χ, the previously announced state χ−, and the strip

maturity s:

rA(χ, χ−, s) ≡
FA(χ, 0, s;χ)

limτ↑T FA(p∗χ− , τ, s;χ−)
=

eg(s;χ)+bφp(s)χ

e
g(T+s;χ−)+bφp(s)p∗χ−

(2.31)

Note that the change in price reduces to (2.31) because of the decomposition (2.27), and

because s and Dt are continuous variables (with probability 1). Equations 2.30 and 2.31

together imply the intuitive conclusion that the expected (gross) announcement return

under the risk-neutral probability must equal 1:

p̃∗χ−rA(1, χ−, s) + (1− p̃∗χ−)rA(0, χ−, s) = 1. (2.32)

Now consider the expected announcement return under the physical probability:

r̄A(χ−, s) ≡ p∗χ−rA(1, χ−, s) + (1− p∗χ−)rA(0, χ−, s) (2.33)

Subtracting (2.33) from (2.32) implies the following expression for the announcement pre-

mium:

r̄A(χ−, s)− 1 = (p̃∗χ− − p
∗
χ−)(rA(0, χ−, s)− rA(1, χ−, s))

= (p̃∗χ− − p
∗
χ−)

eg(s;0) − eg(s;1)+bφp(s)

e
g(T+s;χ−)+bφp(s)p∗χ−

, (2.34)

where (2.34) follows from (2.31). As long as the risk-neutral probability of a negative an-

nouncement is greater than the physical probability, the announcement premium is positive.

Corollary 2.2 and (2.24) show that this will be the case as long as γ > 1 (namely, if the agent

has a preference for early resolution of uncertainty). This corresponds to the finding, in Ai
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and Bansal (2018), that risk-sensitive preferences are a necessary and sufficient condition

for a nonzero announcement premium.

Another way to write the announcement premium is in terms of the co-movement of the

price with the SDF around announcements:

Corollary 2.4. The announcement premium on the s-period equity strip equals

Et− [rA(χt, χt− , s)− 1] = −Et− [(rA(χt, χt− , s)− 1) (M(χt, χt−)− 1)] (2.35)

= −Covt(rA(χt, χt− , s),M(χt, χt−)).

Moreover, provided s > T − τ ,

1. The announcement premium is strictly positive if ϕ > 1 and γ > 1, or if ϕ < 1 and

γ < 1.

2. The announcement premium is strictly negative if ϕ < 1 and γ > 1, or if ϕ > 1 and

γ < 1.

3. The announcement premium is equal ot zero if either γ or ϕ equals 1.

It may first appear that Corollary 2.4 and (2.34) refer merely to the existence of an an-

nouncement premium; it appears to say nothing of the magnitude. However, implicit in

Corollary 2.4 is a very strong statement about the magnitude of the announcement pre-

mium. Equation 2.35 gives an absolute number; it does not scale with the size of the interval

containing the announcement. By contrast, the risk premium on the equity strip (or on

any other asset) at a non-announcement time is proportional to the time interval, and is

infinitesimal over infinitesimal intervals. The key difference between the announcement day

and the non-announcement day is that the announcement day provides a discrete amount

of news: the agent anticipates receiving news on this day with probability 1. At any other

day, there is either a tiny amount of news for sure (in the case of Brownian risk), or a large

amount of news with a tiny probability (in the case of Poisson risk). The Brownian and
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Poisson shocks provide risk that is continuous, whereas announcement news is discrete.

Because of the discrete quantity of news released on the announcement day, the daily

return on an announcement day can easily be an order of magnitude higher than on a

non-announcement day. Our numerical evaluation in the next section makes this statement

precise. In this numerical evaluation, we will consider claims to continuous streams of

dividends. These will represent stock prices; we will consider a cross-section with varying

parameters ϕ. For the remainder of this section, we specify how pricing works for a fixed

ϕ, and postpone discussion of the cross-section until Section 2.3. No-arbitrage gives us the

value of the stock:

St = Et
∫ ∞
t

πs
πt
Ds ds =

∫ ∞
t

Et
πs
πt
Ds ds. (2.36)

Clearly, the price of the stock is an integral of the prices of the underlying strips.

Lemma 2.2. Let St be the time-t price of an asset paying the dividend process (2.25). Then

S
(
Dt, pt, λ2t, τ ;χt

)
=

∫ ∞
0

DtF (pt, λ2t, τ, s;χt)ds, (2.37)

Proof. The result follows directly from Theorem 2.4 and the no-arbitrage condition (2.36).

The stock price moves in the same direction as the underlying strips, given an announce-

ment:

Corollary 2.5. Assume that ϕ > 1. Then S
(
Dt, pt, λ2t, τ ;χt

)
increases when the announce-

ment is positive and decreases when the announcement is negative. That is,

S(D, 1, λ2, 0; 1) < lim
τ↑T

S(D, pt− , λ2, τ ;χt−) < S(D, 0, λ2, 0; 0).

Proof. The result follows directly from Corollary 2.3 and from Lemma 2.2.

The expression for announcement premium on the stock is necessarily more complicated
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than the announcement premium on the equity strip. However, the sign of the premium is

clearly the same.

Corollary 2.6. Consider an asset paying dividends given by (2.25),

1. The announcement premium is strictly positive if ϕ > 1 and γ > 1, or if ϕ < 1 and

γ < 1.

2. The announcement premium is strictly negative if ϕ < 1 and γ > 1, or if ϕ > 1 and

γ < 1.

3. The announcement premium is equal ot zero if either γ or ϕ equals 1.

Proof. Corollaries 2.2 and 2.5 show that increases in S coincide with M > 1 in case 1,

whereas increases in S coincide with M < 1 in case 2. Finally, in case 3, either M = 1 or

S does not change given an announcement.

2.2.5 Nominal bonds

The pricing of nominal bonds requires an assumption on inflation. For simplicity, in event

of disaster we assume that inflation rises by the same amount – in percentage terms – that

consumption declines. Thus, in event of disaster, bonds will suffer a loss equal to the percent

decline in consumption. The price level Pt follows

dPt
Pt−

= qtdt+ σpdBPt +
(
eZt − 1

)
dNt. (2.38)

Expected normal-times inflation, qt, follows a mean-reverting process:

dqt = κq(q̄t − qt)dt+ σqdBqt, (2.39)

where BPt and Bqt are independent Brownian motion processes that are also independent

of BCt and Bλt, and where κq > 0.
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Equation 2.39 implies that expected inflation mean-reverts to a time-varying q̄t, which

follows a Markov-switching process. Consistent with the data (Dergunov et al., 2018), we

assume that high risk to consumption and elevated expected inflation co-occur. That is,

q̄t = q̄H when λ1t = λH and q̄t = q̄L when λ1t = λL, with q̄H > q̄L. This implies that

the macro-announcements, which reveal the latent disaster-probability state, also reveal

expected inflation. Given that macro-announcements are often ostensibly about inflation,

this seems reasonable.12

The nominal state-price density, which prices payoffs written in nominal terms, equals

π$
t =

πt
Pt
. (2.40)

Thus if F $(pt, qt, τ, s;χt) denotes the price of a default-free nominal bond with s years to

maturity and a face value of 1, no-arbitrage implies

F $(pt, qt, τ, s;χt) = Et

[
π$
t+s

π$
t

]
. (2.41)

Note that realized inflation stays constant over the announcement interval, so the nominal

announcement SDF equals the real announcement SDF.

Theorem 2.5. The nominal price of an s-period nominal bond satisfies the following de-

composition

F $
(
pt, qt, τ, s;χt

)
= F $

A(pt, τ, s;χt)F
$
N (qt, s) (2.42)

where F $
N is constant over the announcement interval, and where

F $
A(pt, τ, s;χt) = exp

{
g$(τ + s;χt) + b$p(s)pt

}
(2.43)

12We continue to assume that the agent infers the state only from announcements, and not from inflation
observations.
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with b$p satisfying

d

ds
b$p(s) = −(φH→L + φL→H)b$p(s) + κq

(
q̄H − q̄L

)
b$q(s), (2.44)

with boundary condition b$p(0) = 0, and with b$q(s) = 1
κq

(e−κqs − 1). The function g$ :

R+ × {0, 1} is the unique solution to the system of equations

eg
$(u;χ)+b$p(u−T )p∗χ = p̃∗χe

g$(u−T ;1)+b$p(u−T ) + (1− p̃∗χ)eg
$(u−T ;0), (2.45)

with boundary condition g$(u; ·) = 0, u ∈ [0, T ), for risk neutral probabilities p̃∗χ satisfying

(2.24).

An increase in risk coincides with an increase in inflation. For this reason, bond prices fall

when the announcement is negative and rise when it is positive:

Corollary 2.7. The price of a zero-coupon bond with positive maturity on the announce-

ment date increases when the announcement is positive and decreases when the announce-

ment is negative. That is

F $
A(1, 0, s; 1) < lim

τ↑T
F $
A(pχ, τ, s;χ) < F $

A(0, 0, s; 0) χ = 0, 1,

for s > 0.

Because bond prices fall when the announcement is negative, bonds have an announcement

premium, provided that there is a preference for early resolution of uncertainty. Define the

announcement return on the s-period bond as:

r$
A(χ, χ−, s) =

F $
A(p∗χ, 0, s;χ)

limτ↑T F
$
A(p∗χ− , τ, s;χ−)

Note that, with probability 1, realized inflation does not change over the announcement

interval, and therefore the nominal announcement SDF can be treated as if it were identical
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to the announcement SDF defined in (2.23). The remainder of the analysis proceeds in a

manner analogous to that of equities.

Corollary 2.8. The announcement premium on the s-period nominal bond equals

Et−
[
r$
A(χt, χt− , s)− 1

]
= −Et−

[
(r$
A(χt, χt− , s)− 1) (M(χt, χt−)− 1)

]
(2.46)

= Covt(r
$
A(χt, χt− , s),M(χt, χt−))

Moreover, provided s > T−τ , the bond announcement premium is positive if γ > 1, negative

if γ < 1, and zero if γ = 1.

2.3 Quantitative results

We start by replicating the evidence of Savor and Wilson (2014) in an extended sample.

Section 2.3.1 describes the data and Section 2.3.2 the empirical findings. We then simulate

repeated samples from the model described in the previous section. Section 2.3.3 describes

the calibration of our model and Section 2.3.4, the simulation results.

2.3.1 Data

We obtain daily stock returns from the Center for Research in Security Prices (CRSP). We

consider individual stocks traded on NYSE, AMEX, NASDAQ and ARCA from January

1961 to September 2016. In addition, we also use the daily market excess returns and

risk-free rate provided by Kenneth French. Data for bond returns comes from the CRSP

fixed-term indices file. Each month, for each target maturity, we choose a Treasury bond

with a maturity closest to the target maturity and compute daily returns on this bond.

The scheduled announcement dates before 2010 are provided by Savor and Wilson (2014).

Following their approach, we add target-rate announcements of the FOMC and inflation

and employment announcements of the BLS for the remaining dates.

We define the daily excess return to be the daily (level) return of a stock (or bond) in excess
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of the daily return on the 1-month Treasury bill. We estimate covariances on individual

stock returns with the market return using daily data and 12-month rolling windows. We

include stocks which are available for trading on 90% or more of the trading days. At the

start of each trading month, we sort stocks by estimated betas, and create deciles. We

then form value-weighted portfolios of the stocks in each deciles, and compute daily excess

returns.

2.3.2 Empirical findings

Table 2.1 presents summary statistics on the ten beta-sorted portfolios. For each portfolio j,

j = 1, . . . , 10, we use the notation E[RXj ] to denote the mean excess return, σj the volatil-

ity of the excess return, and βj the covariance with the value-weighted market portfolio

divided by the variance of the market portfolio. Table 2.1 shows statistics for daily re-

turns computed over the full sample, over announcement days, and over non-announcement

days.13 There is a weak positive relation between full-sample returns and market betas. On

non-announcement days, there is virtually no relation between betas and expected returns.

However, on announcement days, there is a strong relation between beta and expected

returns.

Figure 2.1 shows average daily excess returns in each of the ten portfolios, plotted against

the betas on the portfolios for announcement days (diamonds) and non-announcement days

(squares). Also shown is the fitted line on both days. This relation, known as the security

market line, is strongly upward-sloping on announcement days, but virtually flat on non-

announcement days.

Table 2.2 shows that Treasury bonds also feature much higher returns on announcement

days. On non-announcement days, the beta on Treasury bond returns with respect to the

market is negative, and there is no discernable relation between risk and return. How-

13Betas and volatilities are computed in the standard way, as central second moments. An announcement-
day volatility therefore is computed as the mean squared difference between the announcement return and
the mean announcement return. Announcement-day betas are computed analogously.
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ever, this beta is strongly positive on announcement days, and a clear security market line

emerges.

2.3.3 Calibration

We now describe the calibration of the model in Section 2.2. We choose preference pa-

rameters, normal-times consumption parameters, the mean reversion for λ2t (κ), and the

volatility parameter (σλ) as in Wachter (2013). For simplicity, we assume that, when the

economy is in the low-risk state, the intensity λ1t is zero, that is λL = 0. We choose

φL→H = 0.10 (that is, 10% per annum) so that switching to the high-risk state is unusual.

Should the high-risk state occur, it is persistent – there is a 33% chance of switching back

to the low state (φH→L = 0.33). The unconditional probability of the high-risk state in

our calibration is φL→H/(φL→H + φH→L) = 23%. We then choose λ̄2 and λH so that the

average disaster probability is 3.6%, as in Barro and Ursúa (2008). The values λ̄2 = 2.1%

and λH = 6.2% satisfy this requirement, while ensuring a reasonable announcement pre-

mium and equity premium. The model implies that the regime switch process (namely λ1t)

is responsible for 40% of disasters. We assume a multinomial distribution for the outcomes

Zt. This multinomial distribution, which also comes from Barro and Ursúa (2008), is the

same as in Wachter (2013).

We choose the disaster sensitivities ϕj to obtain a reasonable spread in betas, and so

that the average exposure to disasters is three times the consumption claim (this is a

standard calibration, see, e.g. Bansal and Yaron (2004)). We use the fact that betas depend

primarily on the exposure to λ2(t), which, as we show in Appendix A.2.2, is approximately

proportional to Eν
[
eγZ(e−ϕZ–e−Z)

]
.14 We solve for ϕj such that

Eν
[
eγZt(e−ϕjZt–e−Zt)

]
Eν
[
eγZ(e−3Zt–e−Zt)

] = k, k ∈ {0.2, 0.35, . . . , 1.85}.

14Note that Eν
[
eγZt(e−ϕZt–e−Zt)

]
is the last term in the ordinary differential equation (A.2.49) for the

sensitivity bϕλ(s). It therefore determines the magnitude of this sensitivity as ϕ varies.
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This yields 12 firm types, and a spread in betas that is sufficiently wide to compare model

with data.

Normal-times inflation parameters, σq, σP , and κq, are as in Tsai (2016). These roughly

determine the volatility of inflation, the persistence, and the volatility and persistence of

the nominal interest rate. Given these parameters, we choose expected inflation in each

regime to match normal-times expected inflation in the data. Table 2.4 reports parameter

choices.

2.3.4 Simulation method

To evaluate the fit of the model, we simulate 500 artificial histories, each of length 50 years

(240 × 50 days). We assume that announcements occur every 10 trading days. For each

history, we simulate a burn-in period, so that we start the history from a draw from the

stationary distribution of the state variables. We simulate the model using the true (as

opposed to the agents’) distribution. We report statistics for the full set of sample paths.

While time is continuous in our analytical model, it is necessarily discrete in our simulations.

We simulate the model at a daily frequency to match the frequency of the data. We compute

end-of-day prices, and assume the announcement occurs in the middle of a trading day.

We will use the notation a and n to denote announcement and non-announcement days

respectively.

Given a series of state variables and of shocks, we compute returns as follows. For each

asset j, define the price-dividend ratio

Gj(pt, λ2t, τ ;χt) =
Sj(Dt, pt, λ2t, τ ;χt)

Dt
=

∫ ∞
0

F j(pt, λ2t, τ, s;χt) ds
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We approximate the daily return as

Rjt,t+∆t ≈
Sjt+∆t +Dj

t+∆t∆t

Sjt

=
Dj
t+∆tG

j
t+∆t +Dj

t+∆t∆t

Dj
tG

j
t

=
Dj
t+∆t

Dj
t

Gjt+∆t + ∆t

Gjt

≈ exp

{
µ∆t− 1

2
σ2∆t+ σ(BC,t+∆t −BC,t) + φZ(Nt+∆t −Nt)

}
Gjt+∆t + ∆t

Gjt
,

(2.47)

where Z is drawn from the specified multinomial distribution, ∆t = 1/240, and where

Nt+∆t − Nt = 1 with probability (λ1t + λ2t)∆t and zero otherwise. The risk free rate is

approximated by

Rft = exp(rft∆t). (2.48)

The daily excess return of asset j is then

RXj
t,t+∆t = Rjt,t+∆t −Rft. (2.49)

We define the value-weighted market return just as in the data, namely we take a value-

weighted portfolio of returns. We assume that the assets have the same value at the begin-

ning of the sample. Because the assets all have the same loading on the Brownian shock and

the same drift, and conditional on a history not containing rare events, the model implies a

stationary distribution of portfolio weights. Given a time series of excess returns on firms

(which, because we have no idiosyncratic risk, we take as analogous to portfolios), and a

time series of excess returns on the market, we compute statistics exactly as in the data.

Before discussing the implications of our model for returns around announcement days, we

confirm that the model replicates the main findings in Wachter (2013): namely that it can

match the equity premium, the average riskfree rate, and the predictability in stock returns.

We show these and their data equivalents in Table 2.10. The main difference between this
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model and the earlier one is that this model produces negative return skewness, as in the

data.15

2.3.5 The equity premium and the riskfree rate on announcement and

non-announcement days

The model captures the time series result that most of the equity premium is realized

on announcement days (Savor and Wilson, 2013; Lucca and Moench, 2015).16 Table 2.5

shows that the average market return is far higher on announcement days versus non-

announcement days, both in the model and in the data. On the other hand, the increase in

volatility is small. While the median increase in volatility is greater in the model than in

the data, the data is well-within the 90 percent confidence intervals, reflecting the fact that

a substantial fraction of the samples feature no increase in volatility on non-announcement

days at all.17

Savor and Wilson (2013) also show that riskfree interest rates are lower on announcement

days as compared with non-announcement days. Our model can account for the sign and

magnitude of this result. The interest rate in the model equals:

rt = β + µ− γσ2 +
(
λ̄1(pt) + λ2t

)
Eν
[
eγZt(e−Zt − 1)

]
.

and is a decreasing function of the disaster probability. Bonds of non-infinitesimal maturity

are a hedge against disaster risk (because they go up in price when the interest rate declines

15One might ask whether this difference comes from the imperfect information or from the regime-
switching process, since these are both ways in which the current model differs from that of Wachter (2013).
Under our calibration, it comes from the regime-switching process. Figures 5 and 6 of the Online Appendix
show that results for full-sample moments do not change in the limit as the model approaches full information.

16Lucca and Moench (2015) focus on a later sample period and on scheduled FOMC announcements. They
show that the premium is realized on the announcement day, but before the actual announcement. While
outside the scope of our model, this finding could be rationalized in a similar model in which information
about the disaster regime leaks with some probability in the interval prior to the announcement, and then
is fully realized on the announcement itself.

17The fact that announcement-day volatility does not increase is a key feature, along with options ev-
idence to be presented in Section 2.3.8, that distinguishes our model from competing risk-premium-based
explanations. Any explanation based on normally-distributed risk would imply much greater volatility on
announcement days.
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(see Section 3.2 of the Online Appendix). They therefore feature a negative risk premium

that, through the same mechanism as equities, is greater in magnitude on announcement

days as compared with non-announcement days. The difference in the 30-day yield between

announcements and non-announcements is 40 basis points in the model, as compared with

80 basis points in the data. To summarize: short-term interest rates decline in the model,

as in the data, and the declines are of similar magnitude.18

2.3.6 The cross-section of beta-sorted portfolios on announcement and

non-announcement days

Figure 2.2 shows our main result: the model’s ability to match the differential beta-return re-

lation on announcement days. We overlay the simulated statistics on the empirical statistics

from Figure 2.1.19 Each dot on the figure represents a statistic for one firm, for one simu-

lated sample. Blue dots show pairs of average excess returns and betas on announcement

days, while grey dots show pairs on non-announcement days. The figure shows that average

returns on announcement days in the model are much higher than on non-announcement

days. Furthermore, average returns vary with beta on announcement days in the model,

whereas they do not on non-announcement days.

Figure 2.4 further clarifies the relation between the announcement and non-announcement

days in the model by showing medians and interquartile ranges from the full set of simulated

samples. Median returns closely match the data, whereas interquartile ranges show that

the vast majority of samples with announcements can be clearly distinguished from those

of non-announcements.

How is it that the model can explain these findings? Announcements convey important

news about the distribution of future outcomes in the economy. On that day, it is possible

18We ignore, for simplicity, the effect of inflation uncertainty on a short-term Treasury bill. This is the
approach usually taken in the literature. The presence of an average inflation term would not affect this
calculation.

19This figure reports simulated statistics from samples without disasters. As we show below, this does
not affect inference from the model.
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that a high-risk state of the economy could be revealed. If the high-risk state is realized,

not only will asset values be affected, but the marginal utility of economic agents will rise.

Thus investors require a premium to hold assets over the risky announcement period.

In our model, some assets have cash flows that are more sensitive than others. The sensi-

tivity parameter ϕj , while not the same as the beta, is closely related. Assets with high ϕj

have a greater dividend response to disasters. Their prices thus move more with changes in

the disaster probability, and in particular with λ1t and λ2t.
20 The value-weighted market

portfolio also moves with the disaster probability, and thus the higher is ϕj (over the rele-

vant range), the higher is the return beta with the market, both on non-announcement days

(which reveal information about λ2t, and on announcement days, which reveal additional

information about λ1t.

Panel A of Table 2.6 shows the security market line for equities on announcement and

non-announcement days. We run the regression

Ê[RXj
t | t ∈ i] = δiβ

j
i + error, (2.50)

where i = a (announcement days) or n (non-announcement days). The regression slope δi is

the slope of the security market line. It is simultaneously a measure of risk and return, and

a measure of the daily market risk premium. Table 2.6 shows an economically significant

difference between the slope on announcement and non-announcement days in the data, a

difference that is matched in the model.21 Thus the model predicts a relation between risk

and return on both announcement and non-announcement days, but because the risk is so

much greater on announcement days, the premium, and therefore the spread in expected

20This implies that more volatile stocks should have higher announcement-day returns. Savor and Wilson
(2013) show that this true empirically. Table 2.7 shows that it is true in the model.

21 One concern is that there might be a positive correlation between the slope difference and the volatility
difference (Table 2.5 shows that the volatility difference is within a 90% confidence interval implied by the
model) in data simulated from the data. If this were true, samples with a large difference in SML slopes would
also be those with a (counterfactually) high difference in volatility. In fact, there is almost no correlation
between these statistics, and a joint test (see Figure 3 of the Online Appendix) shows that the data has a
p-value of greater than 0.5.
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returns between low and high-sensitivity assets, will also be much greater.

Thus one reason for the differential slope in the SML is the difference in the announcement

premium. There is another reason for the difference in the slope, however. Table 2.6 shows

that the slope of the security market line for equities predicted by the model is about half the

size of the equity premium on non-announcement days. That is, while the model predicts

that the premium is far lower on non-announcement days, as compared with announcement

days, it also implies that the slope of the security market line is below even the premium

on non-announcement days. Furthermore, consider Figure 2.4. The relation between beta

and expected return implied by the model is linear on announcement days, but concave on

non-announcement days, just as in the data.

The reason is that, on announcement days, there is a single source of variation driving

both the risk premium and the covariance. This is variation due to the disaster probability

pt. The greater the response to a change in pt, the greater the covariance and the greater

the risk premium. This relation is approximately linear. However, on non-announcement

days, there are two sources of covariance: the disaster probability and disasters themselves.

It is exposure to disasters themselves that explain most of the risk premium, but it is

covariation with the disaster probability that determines the beta. The resulting error-

in-variables problem leads to a flattened beta-return relation, both in non-announcement

periods, and in the full sample, thus partially explaining the beta anomaly.22 It also implies

that a conditional CAPM does not hold on non-announcement days.23

2.3.7 Bond returns on announcement and non-announcement days

Table 2.6 repeats the regression (2.50 for bonds with various maturities. For bonds, the data

reveal a slightly negative slope on non-announcement days. The slope on announcement

days is strongly positive.

22Figure 4 in the Online Appendix shows the unconditional security market line in the model and in the
data.

23This reasoning could explain why, as Ai et al. (2019) show, implied volatilities from option prices
explain announcement returns better than betas.
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A crucial difference between bonds and equities is that equities are, by virtue of their

cash flows, exposed to aggregate stock market risk. For bonds, this need not be the case.

Indeed, Table 2.2 shows that betas on bonds are close to zero on average. It is well-known

that the covariances between Treasury bonds and stocks are unstable (Campbell et al.,

2017), suggesting that the the beta does not reveal much about the risk in bonds. This

makes it all the more striking that bonds exhibit positive betas on announcement days,

and that these betas line up with the expected returns. To summarize: both equities

and bonds exhibit a strong relation between risk and return on announcement days. Bonds,

unlike equities exhibit no relation on non-announcement days. Furthermore, betas for bonds

change substantially on announcement days versus non-announcement days.24

What does the model have to say about these findings? Section 2.2 shows that, on non-

announcement days, the true instantaneous covariance between bonds and stocks is equal

to zero. This implies that the true security market line is undefined on non-announcement

days. Thus the model is consistent both with negative observed betas on non-announcement

days, and the fact that these betas exhibit no relation with expected returns. On the

other hand, macro-announcements directly reveal news about bond cash flows, because

they are informative about inflation. In our model, news of higher inflation is interpreted

as indicating macroeconomic stability. Losses on bonds therefore coincide with losses on the

stock market. Thus the model predicts both positive betas on bonds on announcement days,

and a strong risk-return relation. Table 2.8 shows that, indeed, bonds have much higher

betas on announcement days in simulated data. In contrast, equity betas can increase or

decrease, with confidence intervals generally containing zero.

Because betas on announcement days are higher in the model than in the data, the model

does not succeed in capturing the full magnitude of the announcement-day slope. The

model does succeed, however, in capturing the fact that bond returns contain substantial

market risk on announcement days, and no measurable market risk on non-announcement

24For further discussion of the properties of bond returns around announcements, see Jones et al. (1998)
and Balduzzi and Moneta (2017).
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days. In the model, news about disaster directly correlates with that of expected inflation.

Stated differently, the announcements are concerned with inflation; investors perhaps infer

that information concerning inflation also is informative about disasters. Moreover, because

inflation tends to rise when the probability of a disaster rises, news about inflation is priced.

The greater the bond maturity, the greater the impact of this news, and the greater is the

expected return.

2.3.8 Changes in index-option prices around announcements

Our explanation for announcement day anomalies focuses on a resolution of uncertainty

at announcements, and specifically, a resolution of uncertainty regarding tail events. One

place to look for direct evidence on resolution of uncertainty is from options markets.

In Figure 2.3, we show implied volatility of index put options at the close on announcement

days, and at the close of the day prior to the announcement day. Implied volatilities come

from OptionMetrics, which reports these as functions of option Delta, namely the change in

price of the option with respect to the change in price of the index. The lower the magnitude

is Delta, the further out-of-the-money are the put options that go into the implied volatility

calculation. Options with low Deltas best represent insurance against low-probability crash

events. The slope of the implied volatility curve represents, roughly speaking, the risk-

neutral probability of these states relative to a benchmark lognormal model.

Figure 2.3 shows a downward shift in implied volatilities following a scheduled announce-

ment. Thus even the options market, with sophisticated traders, prices in a decline in

uncertainty following announcements. Figure 2.3 also shows that the effect is strongest

for options with the lowest Deltas, namely those that are furthest out-of-the-money. The

implied volatility curve flattens after announcements; even after controlling for the quantity

of uncertainty (which is reduced across nearly all moneyness levels), it is the uncertainty

about tail risk that is reduced the most. Table 2.3 shows that the decline in the slope is

statistically significant at the 5% level. This is direct evidence in favor of the mechanism
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in our model.

One could further ask whether the decline in uncertainty in options data is of the correct

magnitude, given the model. In Table 2.9 we report the decline in the VIX, a measure

of risk-neutral standard deviation, around announcement days. As a risk-neutral moment,

the VIX has a closed-form solution in the model, which we describe in Section 3.1 of the

Internet Appendix. Table 2.9 shows that the decline in the VIX computed in the model is

about 1 percentage point. This is of similar economic magnitude as the decline in VIX in

the data (0.3 percentage points).

2.4 Conclusion

The Capital Asset Pricing Model has been a major focus of research in financial economics,

and the benchmark model in financial practice for over fifty years. Despite its pre-eminent

status, years of empirical research has found little support for the CAPM. That is, until quite

recently. The CAPM predicts a tight relation between market beta and expected return,

known as the security market line. Recent research has shown that this security market

line, seemingly absent on most days, appears on days with macro-economic announcements

(Savor and Wilson, 2014).

This paper builds a general equilibrium model to explain why the security market line

appears on macroeconomic announcement days, but is hard to discern on others. The

model derives the result from underlying economic principles in a frictionless environment.

For this reason, we can explain why the relation between risk and return is not asset-class

specific. It holds for both bonds and equities. Days with scheduled announcements provide

a discrete amount of news, leading to a risk premium that does not, unlike a risk premium

for Brownian or Poisson risk, does not scale with the time interval. This risk premium can

be an order of magnitude greater than the risk premium realized on other days.

Our model also makes use of a preference for early resolution of uncertainty, implying risk
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sensitive preferences (Ai and Bansal, 2018). Because investors have a preference for early

resolution of uncertainty, they require a risk premium for bearing assets that fall in price

on adverse economic news (as opposed to simply adverse economic events themselves, as

would be the case with time-additive utility). Quantitatively matching the model to the

data also appears to require an asymmetry in the release of bad versus good economic

news. In the data, the risk in equity returns appears about the same in good and bad

economic times. Our model explains this finding through the result that the release of bad

news is relatively unusual; most of the time, investors learn what they expect, which is

that economic fundamentals are sound. Occasionally, they learn that the economy is facing

higher risk; this possibility is sufficient to produce a risk premium, even if the risk does not

always realize.

While our focus in this paper is on macro-announcements, the methodology can be applied

to scheduled announcements more generally, and understanding the rich array of empirical

facts that the announcement literature has uncovered.
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Figure 2.1: Portfolio excess returns against CAPM betas

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Beta

-5

0

5

10

15

20

25

A
v
e

ra
g

e
 e

x
c
e

s
s
 r

e
tu

rn
s
 (

d
a

ily
, 

b
p

s
)

Notes: The figure shows average excess returns on announcement days (diamonds) and
non-announcement days (squares) on beta-sorted portfolios in daily data from 1961.01-
2016.09. On the horizontal axis is CAPM beta. Also shown are estimated regression lines
for announcement day returns against beta (solid red) and non-announcement day returns
against beta (dashed red).
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Figure 2.2: Portfolio excess returns against CAPM betas on announcement and non-
announcement days
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Notes: The figure shows average excess returns on announcement days (diamonds) and
non-announcement days (squares) on beta-sorted portfolios in daily data from 1961.01-
2016.09 as a function of the CAPM beta. Also shown are estimated regression lines for
announcement day returns against beta (solid red) and non-announcement day returns
against beta (dashed red). We simulate 500 samples of artificial data from the model, each
containing a cross-section of firms. The blue and grey dots show average announcement
day and non-announcement day returns for each sample as a function of beta, respectively.
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Figure 2.3: Annualized implied volatilities at announcement day closes and prior to an-
nouncements
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Notes: We plot the average implied volatility surfaces computed from put option prices
against the negative of the options’ delta. The option’s delta is defined as the sensitivity
of the option price relative to the underlying asset, or the change in option price per unit
change of underlying asset price. The blue circles stand for the average implied volatilities
at close on the announcement days, while the red circles are the average implied volatilities
at the close prior to announcements. The sample period is 1996.01 to 2016.12.
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Figure 2.4: Boxplots of simulated portfolio average excess returns on announcement and
non-announcement days

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Beta

-5

0

5

10

15

20

25

A
v
e

ra
g

e
 e

x
c
e

s
s
 r

e
tu

rn
s
 (

d
a

ily
, 

b
p

s
)

Notes: We compute average excess returns on announcement and non-announcement
days for a cross-section of assets in data simulated from the model. The red line shows
the median for each portfolio across samples; the box corresponds to the interquartile
range (IQR), and the whiskers correspond to the highest and lowest data value within
1.5 × IQR of the highest and lowest quartile. We plot returns against the median CAPM
beta across samples for each portfolio. The red solid and dashed lines are the empirical
regression lines of portfolio mean excess returns against market beta on announcement and
non-announcement days, respectively.
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Table 2.1: Statistics on excess returns of 10 beta-sorted portfolios

Unconditional Announcement day Non-announcement day

k E[RXk] σk βk E[RXk] σk βk E[RXk] σk βk

1 1.53 53.1 0.20 3.32 52.8 0.18 1.30 53.2 0.20
2 1.91 59.2 0.44 6.64 58.8 0.42 1.30 59.2 0.44
3 2.64 69.2 0.57 7.31 70.8 0.57 2.04 69.0 0.58
4 2.63 77.4 0.69 8.00 77.1 0.67 1.94 77.4 0.69
5 2.53 87.9 0.81 7.56 87.6 0.78 1.88 87.9 0.81
6 2.52 96.2 0.90 8.54 96.7 0.88 1.75 96.1 0.91
7 2.56 105.4 1.00 8.58 107.5 0.99 1.79 105.1 1.00
8 2.34 118.9 1.14 10.31 121.8 1.13 1.32 118.5 1.14
9 2.36 136.5 1.31 12.88 139.1 1.30 1.01 136.2 1.31
10 2.25 176.2 1.67 17.86 176.9 1.63 0.25 176.0 1.67

Notes: Sample statistics for excess returns of ten beta-sorted portfolios. The sam-
ple period is 1961.01-2016.09. We show the sample mean excess returns (E[RXk]),
and CAPM beta (βk). Each portfolio is labelled by k. Column 1-3 report estimates
with all data available. Column 4-6 and column 7-9 use returns on announcement
and non-announcement days, respectively. The unit is basis points per day.
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Table 2.2: Statistics on excess bond returns

Maturity Unconditional Announcement day Non-announcement day

k E[RXk] βk E[RXk] βk E[RXk] βk

1 0.363 0.000 −0.043 0.007 0.415 −0.001
5 0.855 −0.007 3.211 0.029 0.549 −0.013
10 0.779 −0.010 3.882 0.051 0.376 −0.019
20 1.122 −0.021 4.988 0.060 0.620 −0.033
30 0.986 −0.045 5.219 0.046 0.437 −0.058

Notes: Sample statistics for excess returns on Treasury bonds. The sample pe-
riod is 1961.01-2016.09. We show the sample mean excess returns (E[RXk]) and
CAPM beta (βk). The excess returns are computed using as the difference be-
tween CRSP nominal bond returns and the CRSP riskfree rates. Returns and
betas are computed using the full sample (first two columns), announcement days
(second two columns), and non-announcement days (last two columns). Matu-
rity is in units of years; returns are in units of basis points per day.
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Table 2.3: Statistics on implied volatility surface

Negative Delta 0.1 0.3 0.6 0.8 Slope
Announ. days 26.80 21.11 17.75 16.62 10.18
Pre-announ. days 27.09 21.41 17.98 16.72 10.37
Change −0.29 −0.30 −0.23 −0.10 −0.19
t-stat [−3.73] [−4.34] [−3.30] [−0.80] [−2.03]

Notes: We report the summary statistics of the average 30-day implied volatility surface
computed using put options on the index. The surfaces are computed using the closing
prices of each trading day. The pre-announcement days are the trading days right before
the pre-scheduled macro-economic announcements. The option’s delta is defined as the
sensitivity of the option price relative to the underlying asset, or the change in option
price per unit change of underlying asset price. The implied volatility slope is defined as
the difference between the implied volatilities of options with delta -0.8 and -0.1. The
volatilities are in units of percentage per annum. The sample period is 1996.01 to 2016.12.
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Table 2.4: Parameter values for the simulated model

Panel A: Basic parameters

Expected normal-times growth in dividends and consumption µ, (%) 2.52
Volatility of consumption growth σ, % 2.00
Rate of time preference β 0.012
Relative risk aversion γ 3.00
Average leverage ϕ 3.00

Panel B: The process for λ1t

Poisson intensity in the low-risk state λL 0
Poisson intensity in the high-risk state λH 0.062
Probability of switching to the high-risk state φL→H 0.10
Probability of switching to the low-risk state φH→L 0.33

Panel C: The process for λ2t

Average probability of disaster λ̄2 0.021
Mean reversion in disaster probability κ 0.08
Volatility for disaster probability σλ 0.067

Panel D: Inflation

Expected inflation in the low-risk state q̄L 0.014
Expected inflation in the high-risk state q̄H 0.070
Mean reversion in expected inflation κq 0.09
Volatility for expected inflation σq 0.013
Volatility for realized inflation σP 0.008

Notes: Parameter values for the calibrated model, expressed in annual terms.
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Table 2.5: The equity premium and volatility on announcement and non-
announcement days

Statistic Data Simulation Median 90 % CI

Ea[RX
mkt
t ] 10.79 8.86 [3.48, 13.10]

stda[RX
mkt
t ] 101.2 99.3 [62.0, 176.1]

En[RXmkt
t ] 1.16 2.39 [0.87, 4.61]

stdn[RXmkt
t ] 97.8 72.0 [34.6, 110.0]

Ea[RX
mkt
t ]− En[RXmkt

t ] 9.63 6.48 [0.45, 10.73]
stda[RX

mkt
t ]− stdn[RXmkt

t ] 3.4 29.9 [−29.3, 113.8]

Notes: Ea[RX
mkt
t ] and En[RXmkt

t ] denote the average excess return on the
market portfolio on announcement days and non-announcement days re-
spectively. stda[RX

mkt
t ] and stdn[RXmkt

t ] denote analogous statistics for
the standard deviation. The first column reports the empirical estimate.
The second column reports the median across samples simulated from the
model. The third column reports the two-sided 90% confidence intervals
from simulated samples. The units are in basis points per day.
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Table 2.6: Cross-sectional regressions on announcement and
non-announcement days

Panel A: Equity Portfolios

Coefficient Data Simulation Median 90 % CI

δa 10.30 8.37 [3.57, 13.32]
δn 1.23 1.71 [0.27, 4.22]
δa − δn 9.07 6.83 [0.49, 11.34]

Panel B: Nominal Bonds

Coefficient Data Simulation Median 90 % CI

δa 93.33 9.12 [1.53, 31.74]
δn −0.51 −2.05 [−671.32, 407.88]
δa − δn 93.84 13.56 [−402.98, 696.80]

Notes: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i +

ηki is estimated, where i = a, n stands for sets of announcement
and non-announcement days, respectively. These regressions
are estimated for beta-sorted equity portfolios (Panel A) and
for Treasury bonds (Panel B). The first column reports regres-
sion slopes in daily data from 1961.01-2016.09. The second col-
umn reports medians in simulated samples. The third column
reports 90% confidence intervals computed using simulations.
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Table 2.7: Summary statistics for simulated equity assets

Panel A: Mean excess returns: announcement days

Portfolio 1 2 3 4 5 6
Median 4.20 6.90 9.38 11.65 13.81 15.67
90% CI [1.85, 6.42] [3.37, 10.07] [4.79, 13.22] [5.86, 16.12] [6.77, 18.79] [7.38, 21.33]

Panel B: Mean excess returns: non-announcement days

Portfolio 1 2 3 4 5 6
Median 1.80 2.19 2.53 2.79 3.02 3.23
90% CI [0.73, 3.54] [0.91, 4.25] [1.07, 4.89] [1.17, 5.39] [1.15, 5.96] [1.12, 6.41]

Panel C: Volatility: announcement days

Portfolio 1 2 3 4 5 6
Median 43.02 74.77 102.91 130.52 155.38 179.35
90% CI [31.87, 93.11] [52.88, 131.16] [71.59, 171.70] [90.01, 215.44] [107.18, 260.90] [122.94, 308.12]

Panel D: Volatility: non-announcement days

Portfolio 1 2 3 4 5 6
Median 42.46 57.35 70.35 84.43 97.68 111.68
90% CI [22.01, 82.53] [29.23, 101.41] [34.32, 118.79] [38.33, 137.78] [41.69, 156.31] [44.61, 174.42]

Notes: In this table, we report the summary statistics of the equity assets from simulated data. We report the
distribution of mean excess returns and volatility of the assets on announcement and non-announcement days
across simulated samples. The units are in basis points per day.
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Table 2.8: Difference in announcement and non-announcement day betas in simulated
data

Panel A: Equity Portfolios

Portfolio 1 2 3 4 5 6
Median −0.19 −0.07 0.03 0.11 0.19 0.26
90% CI [−0.31,−0.05] [−0.22, 0.12] [−0.14, 0.30] [−0.05, 0.44] [−0.01, 0.58] [−0.04, 0.78]

Panel B: Bonds

Maturity 1 3 5 7 10
Median 0.01 0.21 0.48 0.81 0.95
90% CI [0.00, 0.02] [0.05, 0.30] [0.12, 0.67] [0.20, 1.11] [0.24, 1.30]

Notes: In data simulated from the model, we compute betas on announcement days and non-
announcement days. We do this for beta-sorted equity portfolios (Panel A) and for zero-coupon bonds
(Panel B). The table reports the median difference and 90% confidence intervals for the difference.
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Table 2.9: VIX in the model in simulated data

Data Simulation Median 90 % CI

Post-announcement 19.82 29.73 [23.95, 40.14]
Pre-announcement 20.1 31.0 [25.5, 41.1]
Change on announcement days −0.29 −1.26 [−1.59,−0.91]

Notes: We report the average VIX pre- and on announcement days in data and
from data simulated from the model. We report the closing VIX of the trading
days, and pre-announcement VIX is defined as the closing VIX one day before
the announcement days. The unit is in percentage per annum.
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Table 2.10: Aggregate market and predictive regression moments

Panel A: Summary statistics

Simulation quantiles

Data 0.05 0.5 0.95

E[Rft] 4.59 −3.23 0.20 1.92
σ(Rft) 3.20 1.97 3.00 4.61
E[Rmktt+1 −Rft] 6.73 4.22 7.55 11.62
σ(Rmktt+1 −Rft) 17.50 7.88 12.36 18.17
Sharpe Ratio 0.38 0.27 0.60 1.06
Skewness −0.67 −3.64 −1.21 1.01
exp(E(pd)) 36.38 14.40 16.94 21.32
σ(pd) 0.40 0.07 0.14 0.30
AR1(pd) 0.91 0.60 0.85 0.96

Panel B: predictive regressions: 1-year ahead excess returns

Simulation quantiles

Data 0.05 0.5 0.95

b 0.07 −0.28 0.19 0.63
R2 0.03 0.00 0.05 0.45

Panel C: predictive regressions: 5-year ahead excess returns

Simulation quantiles

Data 0.05 0.5 0.95

b 0.19 −1.31 0.66 1.82
R2 0.06 0.00 0.19 0.76

Notes: In panel A, we report the moments for the aggregate market including
the means and standard deviations of riskfree rates, equity premium, and log
price-dividend ratios. In panel B, we report the moments for predictive regres-
sions. Specifically, we run the regression logRmktt:t+k − rft = a + b × pdt + εt+1,

where Rmktt:t+k is the realized return of the equity market from time t to t+k, and
pdt is defined as the log price-dividend ratio of the equity market at time t. The
prediction horizon is one year or five years. The units are percentage per annum.
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APPENDIX

A.1 Appendix for Chapter 1

A.1.1 Computing the Utility Level with the Generalized Recursive Util-

ity

Consider Plans 1 and 2.

C3 = 1

C3 = 10C2 = 1

C2 = 1
C1 = 1C0 = 1Plan 2

C3 = 1

C3 = 10C2 = 1

C2 = 1

C1 = 1

C1 = 1
C0 = 1Plan 1

At time-0, the agent knows that the two plans are the same at time 2. As a result we can

use U2 to denote the time-2 utility for both plans.

With plan 1, at time 1, the agent knows perfectly about his time-2 utility level. As a result,

the agent’s utility level at time 1 with plan 1 is given by

U1
1 = f−1

1/ψ

(
(1− β)f1/ψ(C1) + βf1/ψ(U2)

)
.

The uncertainty is resolved at time-1, and is about consumption for the long-run future

(period 3). As a result, the certainty equivalence of U1
1 at time 0 is given by

ν1
0 = f−1

η

(
E
[
fη(U

1
1 )
])

= f−1
η

(
E
[
fη(f

−1
1/ψ

(
(1− β)f1/ψ(C1) + βf1/ψ(U2)

)
)
])
.
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Similarly, the certainty equivalence of U1 at time 0 for plan 2 is given by

ν2
0 = U2

1

= f−1
1/ψ

(
(1− β)f1/ψ(C1) + βf1/ψ(f−1

η E [fη(U2)])
)
.

It is straightforward to show that

ν1
0 < ν2

0

⇔fη(ν1
0) < fη(ν

2
0).

⇔E
[
fη(f

−1
1/ψ

(
(1− β)f1/ψ(C1) + βf1/ψ(f−1

η (fη(U2)))
)
)
]

< fη

(
f−1

1/ψ

(
(1− β)f1/ψ(C1) + βf1/ψ(f−1

η E [fη(U2)])
))
.

By Jensen’s Inequality, the inequality holds if and only if the operator

fη

(
f−1

1/ψ

(
(1− β)f1/ψ(C1) + βf1/ψ(f−1

η (·)
))

is concave. It then can be showed that the operator is concave if and only if η < 1/ψ.

As a result, the agent prefers Plan 2 to Plan 1 if and only if η < 1/ψ. When γ > 1/ψ > η,

it can be further showed that Plan 1 is preferred compared to Plan 3.
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A.1.2 Pricing Kernel with the Generalized Recursive Utility

In what follows, I use subscripts to denote the information set the expectation operator is

conditioning on. The utility is defined recursively by

Ut(Ct, ν(Ut+1)) = f−1
1/ψ

[
(1− β)f1/ψ(Ct) + βf1/ψ(ν(Ut+1))

]
, (A.1.1)

which is homogeneous of degree 1. ν(Ut+1) is the certainty equivalence function defined in

Section 1.2.2, which is also homogeneous of degree 1.

As a result, by slightly abusing notations, we have the following recursive form of utility:

Ut(Ct, Ut+1) = f−1
1/ψ

[
(1− β)f1/ψ(Ct) + βf1/ψ(ν(Ut+1))

]
. (A.1.2)

The difference is that the second argument now is next period utility as a random variable,

instead of a certainty equivalence. The function itself is again homogenous of degree 1. As

a result

kUt = Ut(kCt, kUt+1), ∀k > 0. (A.1.3)

Noting that, with fα(x) = x1−α

1−α , we have

∂fα(x)

∂x
= x−α,

∂f−1
α (x)

∂x
=
(
f−1
α (x)

)α
,
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Take the derivative of k on both sides, and let k = 1, we get

Ut = (1− β)

(
Ut
Ct

)1/ψ

Ct + β

(
Ut

ν(Ut+1)

)1/ψ

ν(Ut+1)ηEFtν1(Ut+1)−ην∗(Ut+1)γEGt+1

(
U−γt+1Ut+1

)
= (1− β)

(
Ut
Ct

)1/ψ

Ct + βEFt

[(
Ut

ν(Ut+1)

)1/ψ ( ν(Ut+1)

ν∗(Ut+1)

)η
EGt+1

[(
ν∗(Ut+1)

Ut+1

)γ
Ut+1

]]

= (1− β)

(
Ut
Ct

)1/ψ

Ct + βEFt

[
EGt+1

[(
Ut

ν(Ut+1)

)1/ψ ( ν(Ut+1)

ν∗(Ut+1)

)η (ν∗(Ut+1)

Ut+1

)γ
Ut+1

]]

= (1− β)

(
Ut
Ct

)1/ψ

Ct + βEFt

[(
Ut

ν(Ut+1)

)1/ψ ( ν(Ut+1)

ν∗(Ut+1)

)η (ν∗(Ut+1)

Ut+1

)γ
Ut+1

]
,

(A.1.4)

where ν(Ut+1) and ν∗(Ut+1) are the certainty equivalence given Ft and Gt+1, respectively.

Let

MCt = (1− β)

(
Ut
Ct

)1/ψ

MVt+1 = β

(
Ut

ν(Ut+1)

)1/ψ ( ν(Ut+1)

ν∗(Ut+1)

)η (ν∗(Ut+1)

Ut+1

)γ
,

Then (A.1.4) can be re-written as

Ut = MCtCt + EFtMVt+1Ut+1 (A.1.5)

If we let Ct be the numeraire, and divide both by MCt, we get

Wt = Ct + EFt

[
MCt+1MVt+1

MCt
Wt+1

]
, (A.1.6)

where Wt is the representative agent’s wealth at time t. Then the stochastic discount factor

is given by

Mt+1 =
MCt+1MVt+1

MCt

= β

(
Ct+1

Ct

)−1/ψ (ν∗(Ut+1)

ν(Ut+1)

)1/ψ−η ( Ut+1

ν∗(Ut+1)

)1/ψ−γ
.

(A.1.7)
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A.1.3 Solving the Disaster Risk Model with the Generalized Recursive

Utility

Lemma A.1.1. The representative agent’s continuation value is given by

Ut(Ct, pt) = Ct exp(a+ bppt), (A.1.8)

where bp can be solved with the following equations:

a =
1

1− 1/ψ
log
(

(1− β) + βe(1−1/ψ)m
)
− β e(1−1/ψ)m

1− β + βe(1−1/ψ)m
np̄)

bp = β
e(1−1/ψ)m

1− β + βe(1−1/ψ)m
n

m = a+ µC + bpρpp̄+
1

2
(1− γ)σ2

C +

(
bp(1− ρp) +

1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

])
p̄

n = bp(1− ρp) +
1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

]
,

Proof. We solve the function by conjecture and verify the fixed point of the recursion.

Conjecture that

Ut = Ct exp(a+ bppt).

Then we have 1

ν∗(Ut+1; fη(·),Gt+1) = Cte
a+µC+ 1

2
(1−γ)σ2

C+bppt+1+pt
1

1−γEν
[
e(1−γ)Zn,t−1

]

ν(ν∗; fγ(·),Ft) = Cte
a+µC+ 1

2
(1−γ)σ2

C+bp(pt−ρp(pt−p̄))+ 1
2

(1−η)b2pσ
2
ppt+pt

1
1−γEν

[
e(1−γ)Zn,t−1

]

= Cte
a+µC+bpρpp̄+

1
2

(1−γ)σ2
C+
(
bp(1−ρp)+ 1

2
(1−η)b2pσ

2
p+ 1

1−γEν
[
e(1−γ)Zn,t−1

])
pt .

1When γ = 1, we consider the limit case and limγ→1
1

1−γEν
[
e(1−γ)Zn,t − 1

]
= Eν [Zn,t+1] .
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which implies the following log-linearization approximation

Ut =
(

(1− β)C
1−1/ψ
t + βC

1−1/ψ
t e(1−1/ψ)m+(1−1/ψ)n(pt−p̄)

) 1
1−1/ψ

= Cte
m
(

(1− β)e−(1−1/ψ)m + βe(1−1/ψ)n(pt−p̄)
) 1

1−1/ψ

≈ Cte
1

1−1/ψ
log((1−β)+βe(1−1/ψ)m)+β e(1−1/ψ)m

1−β+βe(1−1/ψ)m
n(pt−p̄)

,

where

m = a+ µC + bpρpp̄+
1

2
(1− γ)σ2

C +

(
bp(1− ρp) +

1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

])
p̄

n = bp(1− ρp) +
1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

]
.

This implies a four-equation system for a, bp, m and n:

a =
1

1− 1/ψ
log
(

(1− β) + βe(1−1/ψ)m
)
− β e(1−1/ψ)m

1− β + βe(1−1/ψ)m
np̄)

bp = β
e(1−1/ψ)m

1− β + βe(1−1/ψ)m
n

m = a+ µC + bpρpp̄+
1

2
(1− γ)σ2

C +

(
bp(1− ρp) +

1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

])
p̄

n = bp(1− ρp) +
1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

]
,

(A.1.9)

which can be numerically solved. Specificatlly, Let

β∗ =
βe(1−1/ψ)m

1− β + βe(1−1/ψ)m
,

we can show that 0 < β∗ < 1 when 0 < β < 1.

When η 6= 1, bp is the solution to the following quadratic function:

bp = β∗
(
bp(1− ρp) +

1

2
(1− η)b2pσ

2
p +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

])
,

103



or

bp =
1− β∗(1− ρp)±

√
[β∗(1− ρp)− 1]2 − 2β∗2 1−η

1−γσ
2
pEν

[
e(1−γ)Zn,t − 1

]
β∗(1− η)σ2

p

.

Following Wachter (2013), I choose the solution according to the limit case when Pr(Zn,t+1 =

0) = 1. When Pr(Zn,t+1 = 0) = 1, disasters do not affect agent’s consumption at all so the

agent’s continuation value should not be affected by pt. This is the case when

bp =
1− β∗(1− ρp)−

√
[β∗(1− ρp)− 1]2 − 2β∗2 1−η

1−γσ
2
pEν

[
e(1−γ)Zn,t − 1

]
β∗(1− η)σ2

p

.

as 1− β∗(1− ρp) > 0.

When η = 1, bp is the solution to the following linear function:

bp = β∗
(
bp(1− ρp) +

1

1− γ
Eν

[
e(1−γ)Zn,t − 1

])
,

or

bp =
β∗

1− β∗(1− ρp)
× 1

1− γ
Eν

[
e(1−γ)Zn,t − 1

]
.

Proof of Theorem 1.4. We prove the theorem by induction. Theorem 1.1 implies the

following Radon-Nikodym derivative:

dQ

dP
= e−γσCBC,t+1− 1

2
γ2σ2

C×e(1/ψ−η)bpσp
√
ptBp,t+1− 1

2
(1/ψ−η)2b2pσ

2
ppt×e

γ
∆Nt+1∑
n=1

Zn,t+1−pt(Eν[eγZn,t+1−1])
.

(A.1.10)

This implies that the compound Poisson process

∆Nt+1∑
n=1

Zn,t+1,
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is also a compound Poisson process, but with conditional jump intensity

ptEν
[
eγZn,t+1

]
, (A.1.11)

and the p.d.f of Zn,t+1 given by

f(Zn,t+1)
eγZn,t+1

Eν
[
eγZn,t+1

] , (A.1.12)

under risk-neutral measure.

The time-t risk neutral expectation of RVt+1 is then given by

EQt [RVt+1] = σ2
D + C2σ2

ppt + ϕ2EQt

Nt+1∑
n=1

Z2
n,t+1


= σ2

D + C2σ2
ppt + ϕ2pQt E

Q
ν

[
Z2
n,t+1

]
= σ2

D +
(
C2σ2

p + ϕ2EQν
[
Z2
n,t+1

]
Eν
[
eγZn,t+1

])
pt

(A.1.13)

which is strictly increasing in pt as pt ≥ 0.

The second term of the Radon-Nikodym derivative implies that under risk-neutral proba-

bility, Bp,t+1 has mean

(1/ψ − η)bpσp
√
pt.

This would imply that the time t expectation of pt+1 under risk neutral probability is

EQt (pt+1) = pt − ρp(pt − p̄) + (1/ψ − η)bpσ
2
ppt

= (1− ρp + (1/ψ − η)bpσ
2
p)pt + ρpp̄.

(A.1.14)

Now consider the future price of the realized volatility. We want to show that the future

price of realized volatility is given by (1.44).
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• s = 1, (A.1.13) implies that

aRV (1) = σ2
D

bRV (1) =
(
C2σ2

p + ϕ2EQν
[
Z2
n,t+1

]
Eν
[
eγZn,t+1

])
,

and (1.44) holds.

• Suppose (1.44) holds for s− 1, then

Et [RVt+s] = Et [Et+1 [RVt+s−1]]

= Et [aRV (s− 1) + bRV (s− 1)pt+1]

= aRV (s− 1) + bRV (s− 1)
(
(1− ρp + (1/ψ − η)bpσ

2
p)pt + ρpp̄

)
= aRV (s− 1) + bRV (s− 1)ρpp̄+ bRV (s− 1)(1− ρp + (1/ψ − η)bpσ

2
p)pt.

Let

aRV (s) = aRV (s− 1) + bRV (s− 1)ρpp̄

bRV (s) = bRV (s− 1)(1− ρp + (1/ψ − η)bpσ
2
p).

Then (1.44) holds for s. By the property of induction, (1.44) holds for any positive

integer s.

A.2 Appendix for Chapter 2

A.2.1 The value function and the state-price density

For the remainder of the Appendix, define the vector Brownian motion

dBt ≡ [dBCt, dBλt]
>. (A.2.1)
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Lemma A.2.1. In equilibrium, the representative agent’s continuation value takes the form

J(Ct, pt, λ2t, τ ;χt) =
1

1− γ
C1−γ
t I(pt, λ2t, τ ;χt)

1−γ , (A.2.2)

with

I(pt, λ2t, τ ;χt) = ea(τ ;χt)+bppt+bλλ2t , (A.2.3)

and

bp =
(λH − λL)Eν

[
e(γ−1)Zt − 1

]
(1− γ)(β + φH→L + φL→H)

, (A.2.4)

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λEν [e(γ−1)Zt − 1]

)
. (A.2.5)

for a function a : [0, T )× {0, 1} → R satisfying

a(τ ;χt) = ζχte
βτ +

1

β

(
µ− 1

2
γσ2 + bpφL→H + bλκλ̄2 +

λL

1− γ
Eν
[
e(γ−1)Zt − 1

])
, (A.2.6)

for scalars ζ0, ζ1 solving a system of two equations in two unknowns.

Proof. Along the optimal path, and over intervals not containing announcements, the value

function must satisfy the usual Hamilton-Jacobi-Bellman equation. That is:

f(Ct, Jt) +
∂J

∂τ
+
∂J

∂C
Ctµ+

∂J

∂p
(φL→H − pt(φH→L + φL→H))− ∂J

∂λ
κ(λ2t − λ̄2)

+
1

2

∂2J

∂C2
C2
t σ

2 +
1

2

∂2J

∂λ2
λ2tσ

2
λ

+
(
ptλ

H + (1− pt)λL + λ2t

)
J Eν

[
J(Ce−Z , ·)− J(C, ·)

J(C, ·)

]
= 0. (A.2.7)

Given the conjecture (A.2.2),

1

J
(J(Ce−Z , ·)− J(C, ·)) = e(γ−1)Z − 1. (A.2.8)
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Further conjecturing (A.2.3), and using (2.3) and (A.2.8), we find

− β(1− γ)(a(τ ;χt) + bppt + bλλ2t)

+ (1− γ)
da

dτ
+ (1− γ)µ+ (1− γ)(φL→H − pt(φH→L + φL→H))bp − (1− γ)bλκ(λ2t − λ̄2)

− 1

2
γ(1− γ)σ2 +

1

2
(1− γ)2b2λσ

2
λλ2t

+ pt(λ
H − λL)Eν

[
e(γ−1)Zt − 1

]
+ λLEν

[
e(γ−1)Zt − 1

]
+ λ2tEν

[
e(γ−1)Zt − 1

]
= 0.

(A.2.9)

Matching coefficients on λ2t, pt, and on the constant term implies:

−β(1− γ)bλ − (1− γ)bλκ+
1

2
(1− γ)2b2λσ

2
λ + Eν

[
e(γ−1)Zt − 1

]
= 0(A.2.10)

−β(1− γ)bp − (1− γ)(φH→L + φL→H)bp + (λH − λL)Eν
[
e(γ−1)Zt − 1

]
= 0,(A.2.11)

and

da

dτ
= βa(τ ;χt)− µ+

1

2
γσ2 − bpφL→H − bλκλ̄2 −

λL

1− γ
Eν
[
e(γ−1)Zt − 1

]
. (A.2.12)

This verifies the conjecture (A.2.3) over non-announcement intervals. Furthermore, (A.2.5–

A.2.6) solve (A.2.10–A.2.12).2

It remains to verify (A.2.3) over announcement intervals. Along the optimal path, contin-

uation value must satisfy

Vt− = Et−
[∫ ∞

t
f(Cs, Vs)ds

]
= Et− [Vt].

(A.2.13)

Applying (A.2.13) for t ∈ A, we obtain

lim
τ↑T

J(Ct− , pt− , λ2,t− , τ ;χt−) = Et− [J(Ct, pt, λ2t, 0;χt)] . (A.2.14)

2Equation A.2.10 as two solutions. Equation A.2.5 represents the economically reasonable one in that
zero disaster risk implies zero impact of disasters on the value function.
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That is, the value function on the instant before the announcement must equal the ex-

pectation of its value just after the announcement. Furthermore, because Ct and λ2t are

continuous at t with probability 1,

lim
τ↑T

J(Ct, pt− , λ2t, τ ;χt−) = Et− [J(Ct, pt, λ2t, 0;χt)] . (A.2.15)

A solution of the form (A.2.2) will satisfy (A.2.13) provided that

lim
τ↑T

I(pt− , λ2t, τ ;χt−) = Et− [I(pt, λ2t, 0;χt)] . (A.2.16)

because, almost surely, Ct does not change on announcements or on any other specific time

t. Moreover, (A.2.3) and (A.2.16) imply a set of two equations in the two unknowns ζ0 and

ζ1, verifying (A.2.2) and (A.2.3) over announcement intervals.

Proof of Theorem 2.1. Define the function IA : [0, 1]× [0, T )× {0, 1} → R as follows:

IA(pt, τ ;χt) = eζχte
βτ+bppt . (A.2.17)

The form of the function I (Equation A.2.3) then implies the multiplicative decomposition:

I(pt, λ2t, τ ;χt) = IA(pt, τ ;χt)IN (λ2t), (A.2.18)

for IN (·) a function of λ2t. Substituting (A.2.2), (A.2.3) and (A.2.17) into (A.2.15) leads to

lim
τ↑T

IA(pt− , τ ;χt−) = Et− [IA(pt, 0;χt)] . (A.2.19)

Equation 2.18 then follows from substituting (A.2.17) into (A.2.19), using the definition of

p∗.
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Lemma A.2.2. Define ζ0, ζ1, and bp as in Theorem 2.1. Then bp < 0 and

ζ0 > ζ1 + bp. (A.2.20)

Proof. Suppose by contradiction that

ζ0 ≤ ζ1 + bp. (A.2.21)

Recall the following pair of equations which determine ζ0 and ζ1:

e(1−γ)(ζ0eβT+bpp∗0) = p∗0e
(1−γ)(ζ1+bp) + (1− p∗0)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bpp∗1) = p∗1e
(1−γ)(ζ1+bp) + (1− p∗1)e(1−γ)ζ0 ,

(A.2.22)

The expressions on the left hand side of (A.2.22) are weighted averages of e(1−γ)(ζ1+bp)

and e(1−γ)ζ0 with weights between 0 and 1. Thus they must lie between these two terms.

Because the exponential function is strictly increasing, it follows that

ζ0 ≤ ζ0e
βT + bpp

∗
0

ζ1e
βT + bpp

∗
1 ≤ ζ1 + bp.

(A.2.23)

However, (A.2.23) implies

ζ0(1− eβT ) ≤ bpp∗0 < 0

ζ1(eβT − 1) ≤ bp(1− p∗1) < 0,

because bp < 0. Therefore ζ0 > 0 and ζ1 < 0, contradicting (A.2.21).

Proof of Corollary 2.1. Utility prior to the announcement must equal its expectation
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just after the announcement (see Equation A.2.19). That is:

lim
τ↑T

IA(p∗χ, τ ;χ) = p∗χIA(1, 0; 1) + (1− p∗χ)IA(0, 0; 0), (A.2.24)

for χ = 0, 1, where p∗χ is the probability of a negative announcement for the previous

announcement being positive (χ = 0) or negative (χ = 1). It follows from Lemma A.2.2

and the form of IA that

IA(1, 0; 1) < IA(0, 0; 0),

namely, utility is lower for a negative announcement than for a positive one. Utility just

before the announcement is a weighted average of the utility for the announcement outcomes

as (A.2.24) shows. Thus it must lie strictly between the two. It follows that utility falls

when the announcement is negative and rises when it is positive.

Lemma A.2.3. The state-price density πt takes the form

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ;χt)

1−γ , (A.2.25)

with I(pt, λ2t, τ ;χt) equal to (A.2.3).

Proof. Duffie and Skiadas (1994) show that

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (A.2.26)
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The form of f implies

∂

∂C
f(Ct, Vt) = β(1− γ)

Vt
Ct

= β(1− γ)(1− γ)−1C−γt I(pt, λ2t, τ ;χt)
1−γ

= βC−γt I(pt, λ2t, τ ;χt)
1−γ .

(A.2.27)

Combining (A.2.26) and (A.2.27) implies

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ;χt)

1−γ .

Proof of Theorem 2.2. We compute the instantaneous change in πt over an infinitesimal

interval containing an announcement. With probability 1, a disaster does not coincide with

an announcement. Therefore, it follows from (A.2.25) that

πt
πt−

= lim
τ↑T

IA(pt, 0;χt)

IA(pt− , τ ;χt−)
= lim

τ↑T

IA(χt, 0;χt)

IA(p∗χt−
, τ ;χt−)

, t ∈ A. (A.2.28)

The second equality follows from the definition of p∗ and of χt. We substitute in for IA

using (A.2.17) to find

lim
τ↑T

IA(χt, 0;χt)

IA(p∗χt−
, τ ;χt−)

=
e(1−γ)(ζχt+bpχt)

e
(1−γ)(ζχ

t−
eβT+bpp∗χ

t−
)
. (A.2.29)

This shows that the change in the state-price density equals the right hand side of (2.23).

Finally (2.23) follows from the definition of M as the change in the state-price density

around announcements.

Proof of Corollary 2.2. The result follows directly from Lemma A.2.2 and the fact that

the denominator of (2.23) is a weighted average of two terms, with weights strictly between

0 and 1, as given in (2.18).
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Proof of Theorem 2.3. We show the result for γ > 1. The proof for γ < 1 is similar and

easier. Recall thatM(χ, χ−) is the announcement SDF for previously announced probability

χ− and current announcement χ. It follows from (2.23) that

M(1, 1)

M(0, 1)
=
M(1, 0)

M(0, 0)
. (A.2.30)

Define

x =
M(0, 0)

M(1, 0)−M(0, 0)
=

M(0, 1)

M(1, 1)−M(0, 1)
.

It follows from

p∗χM(1, χ) + (1− p∗χ)M(0, χ) = 1

and (A.2.30) that

M(1, 0)

M(1, 1)
=
p∗1 + x

p∗0 + x
<
p∗1
p∗0
.

The second inequality follows from the fact that
p∗1+x
p∗0+x is decreasing in x for p∗1 > p∗0.

Therefore,

p̃∗1 = p∗1M(1, 1) > p∗0M(1, 0) = p̃∗0.

Lemma A.2.4. Over non-announcement intervals (t ∈ N ), the state-price density πt fol-

lows the stochastic process

dπt
πt−

= −(rt +
(
λ̄1(pt) + λ2t

)
Eν
[
eγZt − 1

]
)dt

− γσdBCt + (1− γ)bλσλ
√
λ2tdBλt + (eγZt − 1)dNt, (A.2.31)

where bλ is given by (A.2.5) and where rt is the instantaneous riskless interest rate:

rt = β + µ− γσ2 +
(
λ̄1(pt) + λ2t

)
Eν
[
eγZt(e−Zt − 1)

]
. (A.2.32)

113



Proof. Consider t ∈ N . Ito’s Lemma and Lemma A.2.3 imply

dπt
πt−

= µπt dt+ σπt dBt +
πt − πt−
πt−

dNt, (A.2.33)

for a scalar process µπt and a 1× 2 vector process σπt.
3 It follows from (A.2.25) and Ito’s

Lemma that

σπt = [−γσ, (1− γ)bλσλ
√
λ2t], (A.2.34)

and that, for ti = inf{t|Nt = i},

πti − πt−i
πt−i

= eγZti − 1. (A.2.35)

It follows from no-arbitrage that

Et−
[
dπt
πt−

]
= −rt−dt.

It follows from the definition of an intensity that

Et−
[
dπt
πt−

]
= µπt +

(
λ̄1(pt) + λ2t

)
Eν [eγZt − 1],

implying

µπt = −rt −
(
λ̄1(pt) + λ2t

)
Eν [eγZt − 1], (A.2.36)

where rt = rt− because µπt, and λ2t are continuous.

3Lemma A.2.3 also implies the continuity of µπt and σπt on non-announcement dates. This allows us to
use t rather than t− to subscript these variables in (A.2.33) and elsewhere.
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Finally, we show (A.2.32). Note that

∂

∂V
f(Ct, Vt) =

∂

∂V

(
β(1− γ)Vt logCt − βVt log[(1− γ)Vt]

)
= β(1− γ) logCt − β log[(1− γ)Vt]− β

= −β
(
1 + (1− γ)[a

(
τ ;χt

)
+ bpp+ bλλ2t]

)
.

(A.2.37)

It follows from (A.2.25) and Ito’s Lemma that

µπt =

(
−β
[
1 + (1− γ)a

(
τ ;χt

)
+ (1− γ)bppt + (1− γ)bλλ2t

]
+ (1− γ)

∂a

∂τ

)
− γµ+ (1− γ)bp [−ptφH→L + (1− pt)φL→H ]− (1− γ)bλκ(λ2t − λ̄2)

+
1

2
γ(γ + 1)σ2 +

1

2
(1− γ)2b2λσ

2
λλ2t.

Collecting terms and subsituting in for a
(
τ ;χt

)
, bp, and bλ using (A.2.4–A.2.6) implies

µπt = −
(
β + µ− γσ2 +

(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−1)Zt − 1

])
. (A.2.38)

The result then follows from (A.2.36).

A.2.2 Equity prices

Lemma A.2.5. Define the function

H(Dt, pt, λ2t, τ, s;χt) = Et
[
πt+s
πt

Dt+s

]
. (A.2.39)

Then H represents the price of an equity strip of maturity s. Moreover,

H(Dt, pt, λ2t, τ, s;χt) = DtF (pt, λ2t, τ, s;χt), (A.2.40)
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where

F (pt, λ2t, τ, s;χt) = Et
[
πt+s
πt

Dt+s

Dt

]
. (A.2.41)

Proof. The validity of (A.2.39) follows from the Markov property for πt and Dt. The fact

that (A.2.39) represents the price of an equity strip follows from the absence of arbitrage.

Finally (A.2.40) again follows from the Markov property, and (A.2.41) is by definition, given

(2.26).

Lemma A.2.6. Define Ht = H(Dt, pt, λ2t, τ, t̄− t;χt), so that Ht is the time-t price of the

equity strip maturing at date t̄. Then, for t ∈ N , Ht satisfies

dHt

Ht−
= µHtdt+ σHtdBt + (e−ϕZt − 1)dNt, (A.2.42)

with scalar µHt and (row) vector σHt satisfying

µHt + µπt + σHtσ
>
πt +

(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−ϕ)Zt − 1

]
= 0, (A.2.43)

with µπ as in (A.2.38) and σπ as in (A.2.34).

Proof. It follows from (A.2.40) and (2.25) that

1

H
(H(De−ϕZ , ·)−H(D, ·)) = e−ϕZt − 1. (A.2.44)

Then (A.2.42) follows from Ito’s Lemma.

Equation A.2.39 implies that πtHt is a martingale. Consider t ∈ N and chose ∆t sufficiently

small so that the interval [t, t + ∆t] does not contain an announcement. It follows from
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(A.2.42) that

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t
πuHu(µHu+µπu+σHuσ

>
πu)du+

∫ t+∆t

t
πuHu(σHu+σπu)dBu

+
∑

t<ui≤t+∆t

(πuiHui − πui−Hui−
), (A.2.45)

where ui = inf{u : Nu = i}. Rewriting, we have:

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t
πuHu

(
µHu + µπu + σHuσ

>
πu +

(
λ̄1(pu) + λ2u

)
Eν
[
e(γ−ϕ)Z − 1

])
du︸ ︷︷ ︸

(1)

+

∫ t+∆t

t
πuHu(σHu + σπu)dBu︸ ︷︷ ︸

(2)

+
∑

t<ui≤t+∆t

(πuiHui − πui−Hui−
)−

∫ t+∆t

t
πuHu

(
λ̄1(pu) + λ2u

)
Eν
[
e(γ−ϕ)Z − 1

]
du︸ ︷︷ ︸

(3)

.

(A.2.46)

Since Htπt is a martingale, the time-t expectation of Ht+∆tπt+∆t must be Htπt. In (A.2.46),

(2) and (3) equal zero in expectation, so that the integrand in (1) must be zero.4 We obtain

(A.2.43).

Corollary A.2.1. The price of an equity strip with maturity s satisfies:

H(Dt, pt, λ2t, τ, s;χt) = Dt exp
{
aϕ
(
τ, s;χt

)
+ bϕp(s)pt + bϕλ(s)λ2t

}
(A.2.47)

4 Note that πtHt follows a jump diffusion with intensity λ̄1(pt) + λ2t and jump size

πuiHui − π
u−
i
H
u−
i

π
u−
i
H
u−
i

= e(γ−ϕ)Zui − 1.

It follows that the term (3) in (A.2.46) equals zero.
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with

bϕp(s) =
(λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
φH→L + φL→H

(
1− e−(φH→L+φL→H)s

)
, s ≥ 0, (A.2.48)

where bϕλ(s) solves

dbϕλ
ds

=
1

2
σ2
λbϕλ(s)2 +

(
(1− γ)bλσ

2
λ − κ

)
bϕλ(s) + Eν

[
eγZt(e−ϕZt − e−Zt)

]
, (A.2.49)

with boundary condition bϕλ(0) = 0, and where aϕ : [0, T )× [0,∞)× {0, 1} → R satisfies

aϕ(τ, s;χt) = g(τ + s;χt) +∫ s

0

(
−β + λLEν

[
eγZt(e−ϕZt − e−Zt)

]
+ κλ̄2bϕλ(u) + φL→Hbϕp(u)

)
du (A.2.50)

for a function g : R+ × {0, 1} → R.

Proof. No-arbitrage applied to the zero-maturity claim implies the following boundary

condition:

H(D, p, λ2, τ, 0;χ) = D.

Thus

aϕ(τ, 0;χ) = bϕp(0) = bϕλ(0) = 0. (A.2.51)

Define µHt and σHt as in Lemma A.2.6. Applying Ito’s Lemma to the conjecture (A.2.47)

implies

µHt = µ+
∂aϕ
∂τ
− ∂aϕ

∂s
+ bϕp(s)φL→H + bϕλ(s)κλ̄2

+

(
−∂bϕp

∂s
− bϕp(s)(φH→L + φL→H)

)
pt +

(
−
∂bϕλ
∂s

+
1

2
bϕλ(s)2σ2

λ − κbϕλ(s)

)
λ2t,

(A.2.52)
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and

σHt =
[
σ, bϕλ(s)σλ

√
λ2t

]
. (A.2.53)

Substituting (A.2.52), (A.2.53), (A.2.34), and (A.2.38) into (A.2.43) and matching coeffi-

cients implies

−∂bϕp
∂s
− (φH→L + φL→H)bϕp(s) + (λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
= 0 (A.2.54)

−
dbϕλ
ds

+
1

2
σ2
λbϕλ(s)2 +

(
(1− γ)bλσ

2
λ − κ

)
bϕλ(s) + Eν

(
eγZt(e−ϕZt − e−Zt)

]
= 0, (A.2.55)

and

∂aϕ
∂τ
− ∂aϕ

∂s
= β − λLEν

[
eγZt(e−ϕZt − e−Zt)

]
− κλ̄2bϕλ(s)− φL→Hbϕp(s). (A.2.56)

Then (A.2.48) uniquely solves (A.2.54) together with the boundary condition (A.2.51).

Moreover, (A.2.56) and (A.2.51) ensure that that aϕ takes the form (A.2.50).

Proof of Theorem 2.4. Corollary A.2.1, and specifically (A.2.47), implies that there ex-

ists a decomposition (2.27), where FA : [0, 1]× [0, T )× {0, 1} takes the form

FA(pt, τ, s;χt) = exp{g(τ + s;χt) + bϕp(s)pt},

with bϕp(s) in (A.2.48), and with g : R+ × {0, 1} → R. Note that

H(Dt, pt, λ2t, τ, s;χt) = DtFA(pt, τ, s;χt)FN (λ2). (A.2.57)
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We now show (2.30). We apply (A.2.39) over an interval containing an announcement:5

lim
τ↑T

H(Dt− , pt− , λ2t, τ, s;χt−) = Et−
[
πt
πt−

H(Dt, pt, λ2t, 0, s;χt)

]
. (A.2.58)

for t ∈ A. Almost surely, Dt does not change over a sufficiently short announcement interval.

We substitute (A.2.57) into (A.2.58) to obtain

lim
τ↑T

FA(pt− , τ, s;χt−) = Et−
[
πt
πt−

FA(pt, 0, s;χt)

]
, t ∈ A.

We use Theorem 2.2 to substitute in for the change in the state-price density:

lim
τ↑T

FA(p∗χt−
, τ, s;χt−) = Et− [M(χt, χt−)FA(χt, 0, s;χt)] , (A.2.59)

where we have also applied the definition of p∗ and χt. Substituting in for FA using (2.28)

yields

e
g(τ+s;χt− )+bϕp(s)p∗χ

t− = Et−
[
M(χt, χt−)eg(s;χt)+bϕp(s)χt

]
.

Then (2.30) follows from the definition of p̃∗.

We now show that (2.30) uniquely characterizes g. In the process, we provide a recursive

algorithm for computing g. Define u = s+ τ . For u < T , g(u, ·) = 0 uniquely solves (2.30).

Let

n =
⌊ u
T

⌋
equal the number of announcements prior to maturity. We prove uniqueness by induction

on n. Assume g is unique for u ∈ [(n − 1)T, nT ). Note that (2.30) defines g(u, ·) in terms

of g(u−T, χ), χ = 0, 1. Consider u ∈ [n, (n+ 1)T ). Then u−T ∈ [(n− 1)T, nT ). It follows

that the right hand side of (2.30) is unique. Therefore, for each u ∈ [nT, (n+ 1)T ), (2.30),

5Note that

H(Dt, pt, λ2t, τ, s;χt) = Et
[
πu
πt
H(Du, pu, λ2u, τ + t− u, s− (t− u);χu)

]
for u ≥ t.
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applied at χ = 0, 1, gives the value of g(u, χ) on the left hand side. Thus g(u, ·) is unique

for u ∈ [n, (n+ 1)T ), and hence for all u > 0.

Proof of Corollary 2.3. It follows from Theorem 2.4 that the equity strip price just prior

to an announcement is a weighted average of its possible values just after the announcement,

with the weights given by the risk-neutral probabilities (which are strictly between zero and

one). Thus the value prior to the announcement must lie between the post-announcement

values. It therefore suffices to show that the equity strip price is higher when the announce-

ment is positive as compared to when it is negative. That is, we need to show:

g(s; 0) > g(s; 1) + bϕp(s) (A.2.60)

for s > 0.

When s < T , (A.2.60) follows from g(s; 1) = g(s; 0) = 0 and bϕp(s) < 0 (recall that we

assume ϕ > 1). We now show (A.2.60) for general s ≥ T using induction on the number of

announcements prior to maturity:

n =
⌊ u
T

⌋
.

Assume for s ∈ [(n− 1)T, nT ), a weaker condition holds:

g(s; 0) ≥ g(s; 1) + bϕp(s).

Consider s ∈ [nT, (n+ 1)T ). It is helpful to write (2.30) out more explicitly:

eg(s;0)+bϕp(s−T )p∗0 = p̃∗0e
g(s−T ;1)+bϕp(s−T ) + (1− p̃∗0)eg(s−T ;0) (A.2.61)

eg(s;1)+bϕp(s−T )p∗1 = p̃∗1e
g(s−T ;1)+bϕp(s−T ) + (1− p̃∗1)eg(s−T ;0). (A.2.62)

By Theorem 2.3, p̃∗1 > p̃∗0. That is, under the risk-neutral measure, when the previous

announcement was negative, the probability that the high-risk state will prevail in the next
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period is higher. However, by the induction step, we know that the equity price, in the next

period, is (weakly) lower, if the high-risk state occurs. That is,

g(s− T ; 0) ≥ g(s− T ; 1) + bϕp(s− T ).

Because the right hand side of (A.2.61) puts greater weight on the state with higher prices,

as compared with (A.2.62), the left hand side of (A.2.61) is bigger than the left hand side

of (A.2.62). That is,

g(s; 0) + bϕp(s− T )p∗0 ≥ g(s; 1) + bϕp(s− T )p∗1.

Finally,

g(s; 0) ≥ g(s; 0) + bϕp(s− T )p∗0

≥ g(s; 1) + bϕp(s− T )p∗1

≥ g(s; 1) + bϕp(s− T )

> g(s; 1) + bϕp(s).

The last inequality follows because bϕp is a strictly decreasing function. Thus (A.2.60) holds

for s ∈ [nT, (n+ 1)T ), and therefore for all s > 0, completing the proof.

Proof of Corollary 2.4. It follows from the definition of the announcement return (2.31),

and the instantaneous Euler equation for the price around announcements (A.2.59) that

Et− [M(χt, χt−)rA(χt, χt− , s)] = 1. (A.2.63)

Moreover, it follows from (A.2.19), and (A.2.28) that

Et− [M(χt, χt−)] = 1 (A.2.64)

Then, (2.35) follows from (A.2.63), (A.2.64), and algebraic manipulation.
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Statement 1 of the corollary follows from the fact that, under the stated conditions, the

announcement return and the announcement SDF are in opposite positions relative to 1.

(see Corollaries 2.2 and 2.3. Statement 2 follows from the fact that, under the stated

conditions, they are in the same position relative to 1. Statement 3 follows from the fact

that, under the stated conditions, either M or rA equal 1.

A.2.3 Nominal bond prices

Define the vector Brownian motion

dB$
t = [dB>t , dBPt, dBqt]

>,

with dBt defined in (A.2.1).

We first show the validity of the nominal stochastic discount factor.

Lemma A.2.7. Let Pt denote a process for the price level, and let F $
t denote a time-t

nominal price of a non-dividend paying asset. Then absence of arbitrage implies that there

exists a nominal state-price density π$
t = πt/Pt, such that

π$
tF

$
t = Et

[
π$
uF

$
u

]
, u ≥ t. (A.2.65)

Proof. The time-t real price of the asset equals F $
t /Pt. Absence of arbitrage implies that

πt
F $
t

Pt
= Et

[
πu
F $
u

Pu

]
, u ≥ t. (A.2.66)

Define π$
t = πt/Pt, then (A.2.66) is equivalent to (A.2.65), implying that π$

t is the nominal

stochastic discount factor process.
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Corollary A.2.2. For t ∈ N , the nominal state-price density π$
t evolves according to

dπ$
t

π$
t−

= −(r$
t +

(
λ̄1(pt) + λ2t

)
Eν

[
e(γ−1)Zt − 1

]
)dt

− γσdBCt + (1− γ)bλσλ
√
λ2tdBλt − σPdBPt

+ (e(γ−1)Zt − 1)dNt, (A.2.67)

where r$
t , the nominal riskless rate, equals

r$
t = rt + qt − σ2

P − (λ̄1t + λ2t)Eν
[
e−γZt(eZt − 1)

]
, (A.2.68)

for rt the real riskless rate in (A.2.32), and where bλ equals (A.2.5).6

Proof. Applying Itô’s Lemma to

π$
t =

πt
Pt

(A.2.69)

implies that there exists a (scalar) process µ$
πt and (row vector) process σ$

πt such that

dπ$
t

π$
t−

= µ$
πt dt+ σ$

πt dB
$
t +

π$
t − π$

t−

π$
t−

dNt. (A.2.70)

Given (A.2.34) and (2.38), it follows that

σ$
πt = [−γσ, (1− γ)bλσλ

√
λ2t,−σP , 0]. (A.2.71)

Furthermore, (A.2.35) and (2.38) together imply that, for ti = inf{t|Nt = i},

π$
ti
− π$

t−i

π$
t−i

= e(γ−1)Zti − 1. (A.2.72)

Finally, the drift of π$
t , together with (A.2.68), arise from (A.2.36) and the drift of Pt given

6The nominal riskless interest rate is the nominal return on the asset that is instantaneously riskfree
when payoffs are expressed in nominal terms.
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in (2.38). Substituting in for rt using (A.2.32) implies

µ$
πt = −β − µ+ γσ2 − qt + σ2

P −
(
λ̄1(pt) + λ2t

)
Eν
[
e(γ−1)Zt − 1

]
. (A.2.73)

Lemma A.2.8. Define the function

F $(pt, qt, λ2t, τ, s;χt) = Et

[
π$
t+s

π$
t

]
. (A.2.74)

Then F $ represents the price of a nominal bond with maturity s.

Proof. The validity of (A.2.74) follows from the Markov property of π$
t . The fact that

(A.2.74) equals the nominal bond price follows from the absense of arbitrage.

Lemma A.2.9. Define F $
t = F $(pt, qt, λ2t, τ, t̄ − t;χt), so that F $

t is the time-t nominal

price of the nominal bond maturing at date t̄. Then, for t ∈ N , F $
t satisfies

dF $
t

F $
t−

= µ$
Ft dt+ σ$

Ft dB
$
t , (A.2.75)

with scalar µ$
Ft and (row) vector σ$

Ft satisfying

µ$
πt + µ$

Ft + σ$
πt(σ

$
Ft)
> + (λ̄1(pt) + λ2t)Eν

[
e(γ−1)Zt − 1

]
= 0, (A.2.76)

with µ$
πt as in (A.2.73) and σ$

πt as in (A.2.71)

Proof. Equation A.2.75 follows from Ito’s Lemma. Equation A.2.74 implies that π$
tF

$
t is

a martingale. Moreover, it follows from (A.2.67) that for ti = inf{t|Nt = i},

π$
ti
F $
ti
− π$

t−i
F $
t−i

π$
t−i
F $
t−i

=
π$
ti
− π$

t−i

π$
t−i

= e(γ−1)Zti − 1.
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The remainder of the proof follows that of Lemma A.2.6.

Corollary A.2.3. The time-t nominal price of a nominal zero-coupon bond with maturity

s satisfies

F $
(
pt, qt, τ, s;χt

)
= exp

{
a$(τ, s;χt) + b$p(s)pt + b$q(s)qt

}
, (A.2.77)

with

b$q(s) =
1

κq
(e−κqs − 1), (A.2.78)

where b$p(s) solves

db$p
ds

= −(φH→L + φL→H)b$p(s) + b$q(s)κq
(
q̄H − q̄L

)
(A.2.79)

with boundary condition b$p(0) = 0, and where a$
ϕ : [0, T ) × [0,∞) × {0, 1} → R takes the

form

a$(τ, s;χt) = g$(τ + s;χt)+∫ s

0
(−β − µ+ γσ2 + σ2

p + b$q(u)κq q̄
L + b$p(u)φL→H +

1

2
b$q(u)

2
σ2
q )du, (A.2.80)

with g : R+ × {0, 1} → R.

Proof. No-arbitrage applied to the zero-maturity claim implies the following boundary

condition

exp(a$(τ, 0;χt) + b$p(0)pt + b$q(0)qt) = 1.

Thus

a$(τ, 0;χt) = b$p(0) = b$q(0) = 0. (A.2.81)

Define µ$
Ft and σ$

Ft as in Lemma A.2.9. Applying Ito’s Lemma to the conjecture (A.2.77)
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implies

µ$
Ft =

∂a$

∂τ
− ∂a$

∂s
+ b$pφL→H + b$q(s)κq q̄

L

+

(
−
∂b$p
∂s
− (φH→L + φL→H)b$p(s)

)
pt +

(
−
∂b$q
∂s
− κqb$q(s)

)
qt, (A.2.82)

and

σ$
Ft =

[
σ, 0, 0, b$q(s)σq

]
. (A.2.83)

Substituting (A.2.82), (A.2.83), (A.2.73) and (A.2.71) into (A.2.76) and matching coeffi-

cients implies

0 =
∂a$

∂τ
− ∂a$

∂s
+ b$p(s)φL→H + b$q(s)κq q̄

L +
1

2
b$q(s)

2
σ2
q − β − µ+ γσ2 + σ2

p (A.2.84)

0 = −
db$p
ds
− (φH→L + φL→H)b$p(s) + b$q(s)κq

(
q̄H − q̄L

)
(A.2.85)

0 = −
db$q
ds
− b$q(s)κq − 1. (A.2.86)

Then (A.2.78) uniquely solves (A.2.86) together with the boundary condition (A.2.81).

Moreover, (A.2.84) and (A.2.81) ensure that that a$ takes the form (A.2.80).

Proof of Theorem 2.5. Given the foregoing results, this proof follows closely along the

lines of that of Theorem 2.4.

Lemma A.2.10. b$p(s) ≤ 0, and the inequality is strict when s > 0.

Proof. We prove the lemma by contradiction.

Substituting the boundary conditions (A.2.81) into (A.2.85) yields

∂b$p
∂s

∣∣∣
s=0

= 0. (A.2.87)
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In addition, (A.2.78) implies

κq(q̄
H − q̄L)b$q(s) < 0, s > 0. (A.2.88)

It follows that there is a sufficiently small but positive s1, such that

b$p(s1) < 0.

Suppose there exists s2 > 0, such that b$p(s2) ≥ 0. Then there must exists s∗ ∈ [s1, s2], such

that

b$p(s
∗) = 0 (A.2.89)

db$p
ds

∣∣∣
s=s∗

≥ 0 (A.2.90)

However, substituting (A.2.89) into (2.44) yields

∂b$p
∂s

∣∣∣
s=s∗

= κq(q̄
H − q̄L)b$q(s3) < 0. (A.2.91)

which contradicts (A.2.90).

Lemma A.2.11. Suppose that q̄H > q̄L, 0 < κq < 1, φH→L > 0 and φL→H > 0. Then

db$p(s)

ds
< 0, s > 0.

Proof. We prove the lemma by contradiction. Suppose there exists s∗, such that
db$p
ds |s=s∗ ≥
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0. Define f∗(s) as the solution to the following O.D.E:

df∗(s)

ds
= −(φH→L + φL→H)f∗(s) + b$q(s

∗)κq(q̄
H − q̄H)

f∗(0) = 0.

Then

f∗(s) =
b$q(s

∗)κq(q̄
H − q̄H)

φH→L + φL→H

(
e−(φH→L+φL→H)s + 1

)
>
b$q(s

∗)κq(q̄
H − q̄H)

φH→L + φL→H
.

Specifically,

f∗(s∗) >
b$q(s

∗)κq(q̄
H − q̄H)

φH→L + φL→H
.

As
db$p(s∗)

ds ≥ 0, from (A.2.85) we have

− (φH→L + φL→H)b$p(s
∗) + κq

(
q̄H − q̄L

)
b$q(s

∗) ≥ 0. (A.2.92)

Reorder, and we get

b$p(s
∗) ≤

κq(q̄
H − q̄H)b$q(s

∗)

φH→L + φL→H
< f∗(s∗). (A.2.93)

Then we have

d

ds

(
f∗(s)− b$p(s)

)
=
df∗

ds
−
db$p
ds

= −(φH→L + φL→H)
(
f∗(s)− b$p(s)

)
+ κq(q̄

H − q̄L)
(
b$q(s

∗)− b$q(s)
)

(A.2.94)

Specifically, for s ∈ (0, s∗), b$q(s
∗) < b$q(s), and

κq(q̄
H − q̄L)

(
b$q(s

∗)− b$q(s)
)
< 0.

Then with the proof similar to that of Lemma A.2.10, we have that f∗(s)− b$p(s) < 0, 0 <

s ≤ s∗. However (A.2.93) implies that f∗(s∗)− b$p(s∗) > 0, which is a contradiction.
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Proof of Corollary 2.7. Using (A.2.77), (A.2.80) and the almost-sure continuity of all

variables around announcements, with the exception of pt and χt, it suffices to show that

nominal zero-coupon bond price is higher when the announcement is positive as compared

to when it is negative. That is, we need to show:

g$(s; 0) > g$(s; 1) + b$p(s) (A.2.95)

for s > 0.

When s < T , (A.2.95) follows from g$(s; 0) = g$(s; 1) = 0 and b$p(s) < 0 from Lemma A.2.10.

We now show (A.2.95) holds for s ≥ T . We prove this by using induction on the number of

announcements prior to maturity:

n =
⌊ u
T

⌋
.

Assume for s ∈ [(n− 1)T, nT ), n = 1, 2, 3, . . . , the following weaker condition holds:

g$(s; 0) ≥ g$(s; 1) + b$p(s). (A.2.96)

Equation 2.45 suggests

eg
$(s;0)+b$p(s−T )p∗0 = p̃∗0e

g$(s−T ;1)+b$(s−T ) + (1− p̃∗0)eg
$(s−T ;0)

eg
$(s;1)+b$p(s−T )p∗1 = p̃∗1e

g$(s−T ;1)+b$(s−T ) + (1− p̃∗1)eg
$(s−T ;0).

Theorem 2.3 shows that p̃∗1 > p̃∗0. However, by the induction step, we know that the equity

price, in the next period, is (weakly) lower, if the high-risk state occurs. That is,

g$(s− T ; 0) ≥ g$(s− T ; 1) + b$(s− T ).

Therefore, it follows that

g$(s; 0) + b$p(s− T )p∗0 ≥ g$(s; 1) + b$p(s− T )p∗1.

130



Finally,

g$(s; 0) ≥ g$(s; 0) + b$p(s− T )p∗0

≥ g$(s; 1) + b$p(s− T )p∗1

≥ g$(s; 1) + b$p(s− T )

> g$(s; 1) + b$p(s).

The last inequality follows because b$p(s) is strictly decreasing from Lemma A.2.11. Thus

(A.2.95) holds for s ∈ [nT, (n+ 1)T ], and therefore for all s > 0, completing the proof.
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