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ABSTRACT 

THE SOCIAL NETWORK DYNAMICS OF CATEGORY FORMATION 
  

Douglas Richard Guilbeault 

Damon Centola 

 

Category systems are remarkably consistent across societies. Stable partitions for concepts 

relating to flora, geometry, emotion, color, and kinship have been repeatedly discovered across 

diverse cultures. Canonical theories in cognitive science argue that this form of convergence 

across independent populations, referred to as ‘cross-cultural convergence’, is evidence of innate 

human categories that exist independently of social interaction. However, a number of studies 

have shown that even individuals from the same population can vary substantially in how they 

categorize novel and ambiguous phenomena. Contrary to findings on cross-cultural convergence, 

this individual variation in categorization processes suggests that independent populations should 

evolve highly divergent category systems (as is often predicted by theories of social 

constructivism). These puzzling findings raise new questions about the origins of cross-cultural 

convergence. In this dissertation, I develop a new mathematical approach to cultural processes of 

category formation, which shows that whether or not independent populations create similar 

category systems is a function of population size. Specifically, my model shows that small 

populations frequently diverge in their category systems, whereas in large populations, a subset 

of categories consistently reach critical mass and spread, leading to convergent cultural 

trajectories. I test and confirm this prediction in a large-scale online social network experiment 

where I study how small and large social networks construct original category systems for a 

continuum of novel and ambiguous stimuli. I conclude by discussing the implications of these 

results for networked crowdsourcing, which harnesses coordination in communication networks to 
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enhance content management and generation across a wide range of domains, including content 

moderation over social media and scientific classification in citizen science.   
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CHAPTER 1: THE PUZZLE OF CROSS-CULTURAL CATEGORY CONVERGENCE 

 

Is the way we categorize the world determined by cognitive universals, or socially 

constructed? This question, among the oldest in Western philosophy, underlies core 

lines of inquiry in social science, from how people use categories1 to assign value to 

cultural products –e.g. companies (Hannan, Pólos, and Carroll 2007) and art (DiMaggio 

1987) – to how marketing campaigns frame beliefs and attitudes in consumer and 

political contexts (Goffman and Berger 1986; Jamieson 1996). Today, the debate on this 

question is split between two camps. The first, nativism, holds that people independently 

categorize the world in highly similar ways as a result of innate and universal cognitive 

processes (Fodor 1998; Gelman 2005; Laurence and Margolis 2002; Medin and Atran 

2004; Medina et al. 2011; Pinker 1994, 2003), which are said to account for widespread 

similarities in the category systems that have emerged among independent populations 

around the world – referred to here as cross-cultural category convergence (Brown 

1984; Kauffman 1993; Lant and Mezias 1992; Malt 1995). The second, social 

constructivism, holds that people can vary wildly in how they categorize the world, and 

that communication amplifies this variation, leading to highly divergent category systems 

(Berger and Luckmann 1967; Burr 2003; David 2007; DiMaggio 1987, 1997; Searle 

1995; Shaw 2015; Smith 2010). For this reason, social constructivism is widely held to 

be incompatible with cross-cultural category convergence, because of its implication that 

 
1 I follow the work Rosch et al. (1976) in defining a category as “a number of objects which are 
considered equivalent” by virtue of being “designated by a name” (or more generally, by a label). I 
prefer this definition because of its simplicity and the opportunities it affords for cross-disciplinary 
synthesis, since this definition has furnished some of the more influential formal work on the 
theory of categories in sociology (Hannan et al, 2007) and anthropology (Brown 1984). Crucial to 
this definition is the idea that a category is not simply the word itself, nor the set of objects in the 
world, but rather the mapping between the label and the objects, where this mapping signifies 
that a set of objects are perceived as members of a common “kind” with a shared essence.  
 

1 
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communication inherently leads to path dependence (Malt 1995; Pinker 2003; Pinker 

and Morey 2014). My central thesis is that social processes provide a more compelling 

explanation of how cross-cultural category convergence emerges than nativism; 

however, I argue that social processes give rise to cross-cultural category convergence 

in deterministic ways that are largely incompatible with canonical views of social 

constructivism, indicating the need for a new theoretical approach. In what follows, I use 

mathematical modeling and online social network experiments to argue that 

communication in social networks can generate either divergence or convergence in 

category systems across independent populations, as a function of social network size. 

 I begin this dissertation by reviewing the longstanding debate about the nature of 

category formation between nativism and social constructivism. In reviewing this debate, 

I reveal an unresolved paradox concerning the effects of social network structure on the 

emergence of cross-cultural category convergence. In particular, I find a number of 

studies proposing that increasing network size should increase cultural variation in 

category systems, while a number of other studies indicate that increasing social 

network size should increase cross-cultural category similarities. To address this 

paradox, I transition into chapter 2, where I develop a novel formal model of category 

formation in social networks which identifies the conditions under which coordination in 

social networks can lead to the divergence of category systems (contrary to the nativist 

position), and the conditions under which it can lead to the convergence of category 

systems (contrary to both the nativist position and the constructivist position). These 

findings offer a new interpretation of past observational data on cross-cultural similarities 

in category systems. I suggest that rather than cross-cultural convergence providing 

evidence of innate, universal cognitive categories, instead it may indicate that 
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communication in large social networks filters cognitive and lexical diversity in such a 

way that promotes the development of similar category systems across diverse 

populations. Chapter 3 focuses on an experimental validation of this model, and the 

concluding chapter details the implications of this perspective, and the future studies and 

analyses I will pursue to expand its logic.  

 

1.1. Nativism and the Problem of Creative Interpretation 
 

The theory of cross-cultural category convergence derives from a large body of cross-

cultural linguistic data indicating striking similarities in the size, structure, and content of 

category systems that have emerged among distinct cultures (Brown, C. 1979, 1984; 

Brown, D. 2004; Brown and Witkowski 1981; Goddard 2008; Youn et al. 2016). The 

subfield of cognitive anthropology has focused on documenting examples of cross-

cultural category convergence as evidence for a panhuman structure of the mind. Most 

representative of this effort is Brown’s (2004) widely cited “List of Classification 

Universals”, which details a long list of semantic domains for which separate cultures 

have been consistently found to produce highly similar vocabularies and semantic 

partitions (i.e. organizations of the domain into subtypes and relations). Examples 

include geometry (Burris 1979), flora (Brown 1986), fauna (Malt 1995), body parts 

(Brown and Witkowski 1981), music (Trehub 2015), weather and geology (Youn et al. 

2015), and more controversially, emotions (Jackson et al. 2019; Pinker 2003), gender 

(Brown 2004), kinship (Kemp and Regier 2012; White 2012 [1963]), and race (Gil‐White 

2001).  
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The predominant explanation for why cross-cultural category convergence is 

observed for such a wide array of semantic domains is summarized by Brown in his 

claim that: “Whatever is constant through all human societies must be due to something 

that goes with people wherever they go – i.e. their psychobiology” (Brown 2004: 50). 

While researchers vary in the specific cognitive mechanisms they propose to account for 

how the mind gives rise to regularities in category formation at the individual-level, the 

broader claim that similarities in cognitive structure are responsible for cross-cultural 

category similarities is widely maintained. For instance, a recent study opens with the 

question – “How universal is human conceptual structure?” – and responds, based on 

observational, cross-linguistic data showing similarities in vocabulary systems, that: 

“Semantic clustering structure is independent of culture and environment in many 

domains” (Youn et al. 2016: 1768).    

 

 

Figure 1. A sample array of stimuli used in Rosch et al.’s seminal (1976) 

experiments.  

 

The idea that psychobiology can provide a bottom-up account of categorization 

was solidified as canon in cognitive science by the work of Eleanor Rosch (C B Mervis 

and Rosch 1981; Rosch 1973, 1975, 2002; Rosch et al. 1976; Rosch and Mervis 1975). 

Rosch aimed to critique the central view in developmental psychology at the time that, to 
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a child, the physical and social world is perceived as fundamentally continuous, and that 

the child imposes categorical structure onto the world only once they are taught names2. 

Rosch argued, to the contrary, that people are born hardwired to perceive the world in 

terms of certain categories, based on universal similarities in the resolution of sensory 

perception, as well as similarities in which features people detect and group together. To 

test whether individual-level cognition drives similarities in category formation, Rosch 

conducted experiments where separate individuals were given a finite set of stimuli– e.g. 

an array of shapes, clothing articles, or furniture – and were asked to group them based 

on a label (e.g. “circle” for the array of shapes), (Fig. 1). She found a high degree of 

similarity in which images subjects grouped together. This result was seen as evidence 

for her claim that “human categorization should not be considered the arbitrary product 

of historical accident or whim, but rather the result of universal psychological principles” 

(2002: 329).  

Importantly, Rosch maintained that while she only showed subjects a small set of 

discrete stimuli, her results generalized to the case of how people build categories for 

continuous, novel domains of stimuli; as she writes herself, “Most categories partition 

domains whose stimuli are not discrete but composed of continuous variation” (1973: 

 
2 Rosch quotes the following statement by the anthropologist Edmund Leach as 
epitomizing this broader view: “The physical and social environment of a young child is 
perceived as a continuum. It does not contain any intrinsically separate ‘things.’ The 
child, in due course, is taught to impose upon this environment a kind of discriminating 
grid which serves to distinguish the world as being composed of a large number of 
separate things, each labeled with a name” (Leach 1989, p. 34). The idea that the world 
in inherently continuous to the infant’s mind has firm roots in the history of psychology, 
reaching at least as far back as William James’ (2000 [1890])  “The Principles of 
Psychology”, where he poetically describes the world first experienced by the child as 
highly continuous in this often cited passage: “The baby, assailed by eyes, ears, nose, 
skin, and entrails at once, feels it all as one great blooming, buzzing confusion; and to 
the very end of life, our location of all things in one space is due to the fact that the 
original extents or bigness of all the sensations which came to our notice at once, 
coalesced together into one and the same space.”  
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329). Consider, for example, the continuities that frequently characterize domains of 

cultural products. What meaningfully differentiates a ‘smartphone’ from a ‘tablet’, and a 

‘tablet’ from a ‘laptop’? As smartphones get larger, size is no longer a reliable dimension 

for distinction. Similarly, technologies in each category now frequently possess both 

touchscreen and call-making functionality. Yet, despite the numerous complexities of 

such cultural domains, Rosch argued that her theory of cognitive universals could still 

account for category formation in continuous, multi-dimensional spaces. For this reason, 

her theory gained high levels of uptake among cognitive anthropologists seeking bottom-

up explanations of how distinct societies managed to develop highly similar category 

systems for domains that would have been highly continuous prior to categorization, 

such as the domains of geometry or flora.   

 

 

Figure 2. An example of an amorphous shape (far left) and a sample of 

how different subjects categorized this shape (to the right of the base 

image) in Shepard & Cermak’s (1973) study.  

 

A key limitation of Rosch’s experiments, however, is that she asked subjects to 

group images from familiar domains (e.g. shapes, clothing, and furniture) using familiar, 

already-existing labels (e.g. “circle” or “shirt”). As a result, the subjects in her 
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experiments (all undergraduate students from the same university) may have 

categorized the stimuli in the same way because they already learned to identify the 

same objects with common labels through their cultural experience. In other words, 

processes of social learning still provide a plausible account of her results.  

By contrast, a number of studies have shown that even individuals from the same 

population can vary substantially in how they form categories. In experiments where 

subjects are shown continuous domains of novel stimuli they have never seen before, 

people vary considerably in how they label and group together stimuli (Brennan and 

Clark 1996; Clark and Wilkes-Gibbs 1986; Ranjan and Srinivasan 2010; Shepard and 

Cermak 1973). For example, Shepard & Cermak (1973) presented subjects with a grid 

of amorphous shapes (fig. 2), and asked them to group these shapes together and label 

their groupings. They found significant variation both in which shapes subjects grouped 

together, as well as in the labels they used for their groupings. These findings have 

since been shown to be mediated by a number of factors, including personal experience 

(Spalding and Gregory 1996),  expertise (Medin et al. 1997),  and cognitive style in 

feature selection (Medin, Wattenmaker, and Hampson 1987). Altogether, these studies 

indicate that when people are confronted with a semantic domain for which they have 

not had prior experience or cultural learning, individuals can vary wildly in how they 

categorize the space.  

The fact that individuals can vary wildly when categorizing novel and continuous 

domains poses a serious puzzle for the nativist position, especially when considering the 

widespread view in cognitive science that all domains of worldly objects (physical and 

social) are highly continuous when first encountered (see footnote 2). This intuition 

applies equally to the semantic domains of objects for which separate social groups are 
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said to have achieved cross-cultural category convergence. One experimental study of 

the Hadza (a hunter-gatherer tribe in Northern Tanzania) concluded the surprising result 

that individuals from the same tribe can vary in how they categorize colors (Lindsey et al. 

2016) – one of the perceptual domains that is most frequently associated with universal 

and innate human categories (Baronchelli et al. 2010; Guilbeault et al. 2020; Regier, 

Kay, and Khetarpal 2007). Another relevant domain is geometry, which is associated 

with consisting naming patterns across over 40 languages (Burris 1979); and yet, 

geometry is the epitome of a continuous space that exhibits completely continuous 

variation along all dimensions (shape, depth, curve, etc.). The puzzle for the nativist 

perspective, then, is:  How can separate social groups can arrive at highly similar 

category systems (i.e. cross-cultural category convergence) for continuous domains, if 

individuals both within and between populations vary substantially in how they perceive 

and categorize novel and continuous domains?  

Contrary to nativism, a longstanding view in social science argues that the 

purpose of categories is not to accurately describe the world, but rather to communicate 

with others for the purpose of coordinating perceptions and actions (Berger and 

Luckmann 1967; Swidler 1986; Wittgenstein 1973). This view entered social science 

largely by importing the work of Wittgenstein and like-minded pragmatist philosophers 

(e.g. Dewey and Rorty) who argued that “meaning is use”, implying that the meaning of 

a category is determined by how it is used in social contexts to communicate with others. 

This alternative theory of categories contributed to the paradigm of social constructivism, 

a theory in which categories are viewed as arbitrary in nature and defined relative to the 

norms, practices, and social structures of a given culture (Berger and Luckmann 1967; 

Burr 2003; Searle 1995; Smith 2010). In a bold (and yet popular) specification of this 
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view, communication is said to inherently lead to path-dependent (i.e. divergent and 

unpredictable) category systems, which only deepens the puzzle of cross-cultural 

category convergence (Berger and Luckmann 1967, 1967; Blumer 1986; David 2007; 

DiMaggio 1987; Rawlings and Childress 2019; Shaw 2015). Indeed, social 

constructivism is commonly viewed as the only reasonable alternative to the theory of 

cognitive universals; a number of cognitive scientists who challenge the theory of lexical 

universals similarly provide social constructivist arguments which maintain that 

communication inherently leads to cultural variation in meaning systems (Clark and 

Wilkes-Gibbs 1986; Fay et al. 2010b, 2018; Fay and Ellison 2013). However, a more 

recent version of constructivism (“formalism”) seeks to empirically study the formation of 

category systems in communication networks, which has paved the way toward to a new 

solution to the problem of cross-cultural convergence, due in large part to the 

development of novel methodologies in computational sociology.   

 

1.2. Social Constructivism and the Limits of Path Dependence  
 

The capacity for individuals to vary in how they categorize the world is a core feature of 

an alternative view of category formation that emphasizes both individual and collective 

level variation – namely, social constructivism (Berger and Luckmann 1967; Blumer 

1986). Constructivism goes the extra step by inferring that, as a result of individual 

variation, communication in social groups can lead to the adoption of highly idiosyncratic 

category systems that set a culture on radically unique, path dependent trajectory. This 

theory has been deemed as ‘foundational’ to social science broadly construed (David 
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2007), and its canonical role is perhaps most succinctly captured in Smith’s (2010) 

introduction to social construction: 

 

One of the amazing things about human persons is the ability to engage 

beliefs and ideas in order to creatively form patterns of actions, 

interactions, and collective social environments. Unlike other animals, a 

great deal of human social existence is not directly determined by genetic 

codes or instinctual species behaviors. Instead, human persons are free to 

use their manifold capacities for representation, belief formation, language, 

memory, creativity, identity development, and so on variously to shape the 

meanings and structures of their social existence together. The result is 

the immense variety, richness, and complexity of human cultures and 

subcultural meaning systems evident in history and the world today. (119)  

 

In contrast to nativism, constructivism emphasizes divergence in the category systems 

between social groups. One of the more colorful examples comes from an ancient 

Chinese encyclopedia in which the animal kingdom is divided into highly idiosyncratic 

categories, including (a) those that belong to the Emperor, (b) those drawn with a very 

fine camel’s hair brush, (c) those that have just broken a flower vase, (d) those that 

resemble flies from a distance, and last but not least, (e) mermaids (Borges 1973: 108). 

Such variation, according to constructivism, is not the exception, but the norm. 

Countless studies have detailed examples of how communication in social groups can 

lead to highly idiosyncratic categorizations across a wide range of domains, including art 
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(Becker 1984; DiMaggio 1987), music (Cerulo 1995; Peterson 1999), technology (Pinch 

and Trocco 1998), law (Gordon 1984; Gorwa and Guilbeault 2018), business (Hannan et 

al. 2007), politics (Krippendorff 2005), sexuality (Foucault 1990), race (Allport 1954), 

fashion (Obukhova, Zuckerman, and Zhang 2014), and even domains of scientific 

inquiry, from the classification of disease (Bowker and Star 2000; Foucault 1988) to the 

fundamentals of physics, chemistry, and biology (Collins 1998; Kuhn 1996; Latour 1988; 

Shwed and Bearman 2010). 

Due to its focus on individual variation and path dependence, the theory of social 

construction has been widely held to assume that communication in social groups can 

only lead to path dependence, and as a result, this theory is said to be incompatible with 

data supporting cross-cultural category convergence (Malt 1995; Pinker 2003). Indeed, a 

particularly strong (and popular) version of constructivism – also known as ‘relationalism’ 

(Erikson 2013) – goes so far as to argue for an ‘anti-categorical imperative’ in 

sociological research, where the social world is construed as irreducibly continuous and 

constantly changing through the interdependence of ideas and actors, such that it is 

impossible for regularities in category formation to emerge and for these regularities to 

be examined scientifically (Emirbayer 1997: 298). This style of thinking has also gained 

expression in the work of sociologists Latour and Woolgar (1986), in their argument that 

every feature of experience is known only through the application of an arbitrary 

category, whose meaning is determined solely by the idiosyncrasies of an individual’s 

perspective, framed within a broader idiosyncratic culture. This strong version of social 

constructivism deepens the puzzle of cross-cultural category convergence. If individuals 

vary radically in how they categorize novel continuous domains, and if communication in 

social groups only serves to amplify this variation, leading to highly divergent cultural 
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trajectories, then how are the known patterns of cross-cultural category convergence at 

all possible? Thankfully, this radical view of social constructivism, while popular, is not 

the only the shop in town.  

An alternative approach to sociological research – formalism – provides a theory 

of social construction that encourages formal inquiry into social dynamics and provides 

key intuitions that help resolve the paradox of cross-cultural category convergence. 

Smith (2010) and Erickson (2013) characterize formalism as the view – tracing back to 

Durkheim (1912) and Simmel (1964) – that processes of social construction are shaped 

by social structures (e.g. institutions, norms, and social networks) in causally coherent 

ways. As such, the chief accomplishment of formalism is that it approaches processes of 

social construction as something that can be modeled and measured scientifically. In his 

essay “Measuring Meaning Structures,” Mohr (1998) reviews a range of methodologies 

in sociology that have been developed for the purpose of measuring the effects of social 

structure on category formation. Many of these use individual-level experiments, similar 

to Rosch’s paradigm, where members of different societies are tasked with sorting 

objects into groups, for the purpose of understanding how social status and other 

cultural factors can influence category schemes (e.g. Shweder and Bourne 1982). Mohr 

further reviews a number of observational studies that challenge the arbitrariness of 

meaning formation by illustrating clear structural factors that underlie category formation. 

Tilly (1997), for instance, contends that the arguments made by people in the British 

Parliament (from 1758 to 1834) was a direct result of their membership in one of 64 

social categories (e.g. farmer, constables, militia, and practitioners). Writing in the 

1990s, Mohr concludes his essay with laudatory comments on a promising new method 

for measuring meaning structures in formal sociology – network analysis. Since the 
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writing of this article, network science has inspired a paradigm shift in formalist social 

science, with direct implications for the problem of cross-cultural category convergence 

(Centola 2010, 2011, 2015, 2018).   

Building on foundational theories of social networks from Simmel and Blau, early 

developments in sociological network analysis sought to unpack how the structure of 

communication networks causally shaped the structure of the category systems that 

people develop within these networks. As a canonical example, DiMaggio’s 

“Classification in Art” outlined a number of formal hypotheses for how the topological 

structure of social networks directly shaped the classifications of art that social networks 

produced. For instance, in proposition A-2, DiMaggio argued that “The greater the range 

of social networks, the greater the level of genre differentiation.” In other words, this 

proposition (along with its corollaries) was developed to provide a structural social 

network account for why we observe differentiation of artistic classification systems, 

where the diversification of social networks here is proposed as the underlying 

mechanism.  

While still maintaining the view that classification systems are path dependent in 

social systems, network analysis became increasingly amenable to theories concerning 

the interaction of cognitive constraints and communication dynamics. In DiMaggio’s 

(1997) essay “Culture and Cognition”, he argues that much of category formation 

depends on the use of analogies, where people draw from past experience and cultural 

associations to categorize new cultural products (e.g. art forms or institutions) entering 
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the cultural market3. As DiMaggio emphasizes, the widespread use of analogies in 

category formation suggest that much of categorization in social networks need not be 

arbitrary in nature, because these novel categories bare systematic similarities to pre-

existing domains. Nevertheless, DiMaggio still maintains that which categories form can 

be path dependent, because of how “networks are crucial environments for the 

activation of schemata, logics, and frames” (282). In other words, DiMaggio proposes 

that communication in social networks mediate which analogies form, where 

communication among people drive which analogies are used in the formation of new 

categories.   

DiMaggio’s “Culture and Cognition” marked a critical move in sociology because, 

by relaxing the assumption of arbitrariness, DiMaggio sparked a broader discussion of 

how cognitive processes (e.g. analogy making) can constrain social construction in ways 

that are not path dependent. A recent extension of DiMaggio’s network approach has 

been Hannan et al.’s (2007) The Logics of Organization Theory, which argues that 

universal cognitive constraints are needed to explain a core phenomenon in sociology – 

the “illegitimacy discount” – where people prefer to invest in and consume cultural 

products (e.g. technologies) that they can readily categorize by analogy to familiar 

products (Zuckerman 1999, 2004, 2012). Hannan et al.’s work starts by assuming that 

category systems exist, and then it examines the social implications of how 

organizations categorize audiences, and how they disseminate categories to audiences 

through marketing. Yet, they recognize that the question of how category systems 

emerge through network interactions is of pressing importance. Indeed, they conclude 

 
3 For a nice example, see Suarez and Stine’s (2015) discussion of the initial 
categorization of the “snowboard”, which had initially (and unsuccessfully) been named 
the “snurfer”, in direct analogy to surfing.  
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their book with a note on the need for such network analysis in future work: “we have 

refrained from developing a formal account of audience structure, because we think we 

need a better empirical foundation. Along these lines, we are interested in how audience 

structure might affect consensus formation in category emergence” (302). 

In recent years, there have been major advancements in the use of network 

analysis to study the emergence of categories (and more broadly, conventions) in social 

networks, using formal simulations, online experiments, and observational analysis. 

Much of this work has been developed in computational sociology and evolutionary 

linguistics. As I review these developments in the following section, I uncover an 

unresolved paradox for how the structure of communication networks impacts the level 

of cross-cultural convergence in the category systems that grow in separate social 

groups. I find a number of studies proposing that increasing network size should 

increase variation among emergent category systems, while a number of other studies 

report the opposite intuition, that increasing social network size should increase the 

similarity of emergent category systems. To address this paradox, I develop a novel 

formal model of category formation in networks which identifies the conditions under 

which coordination in social networks can lead to path dependency (contrary to the 

nativist position), and the conditions under which it can lead to cross-cultural 

convergence (contrary to both the nativist position and the constructivist position). I 

detail this model in chapter 2.  
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1.3. A Paradox in the Effects of Network Size on Category Formation  
 

The core intuition behind social constructivism is that increasing the diversity of possible 

categories in a population increases the number of possible trajectories in category 

formation, leading to path dependent and cross-group variation (Smith 2010; Burr 2015). 

Following this intuition, a number of formal models have been proposed which claim 

that, if agents have no preferences for which of a set of categories (or, in some models, 

cultural traits) to adopt, then peer influence in coordination networks leads to path 

dependent (DellaPosta, Shi, and Macy 2015; Flache and Macy 2006, 2011; Shaw 2015; 

see van de Rijt 2019 for further review). These models are consistent with numerous 

experiments in cognitive science illustrating that separate dyads arrive at strikingly 

different descriptions of the same stimuli when engaging in coordination tasks involving 

linguistic reference (Brennan and Clark 1996; Clark and Wilkes-Gibbs 1986; Fay et al. 

2010; Galantucci and Garrod 2011). A recent study conducted a visual communication 

task in social networks of 8 people, and found that increasing network size increased 

variation among the visual categories produced by separate networks (Fay et al. 2018). 

The same intuition has been reiterated in large-scale analyses of language change, 

where increasing population size is said to increase the rate at which new words enter a 

language, and thereby increase variation among different languages (Bowern 2010; 

Bromham et al. 2015; Keller 2005). Indeed, a recent issue of the Philosophical 

Transactions of the Royal Society is dedicated to the topic of how social network 

complexity begets communicative complexity in both animals and people (Freeberg, 

Ord, and Dunbar 2012). Common across all these explorations is the claim that 

increasing social network size increases variation in the category systems developed in 



17 
 

different social groups, as a result of increasing the diversity of potential options 

competing in the social system. 

 This view stands in direct contradiction to a number of studies reporting the 

opposite effects of population size on cultural evolution. Following a fundamental 

intuition from complex systems – that large populations can exhibit qualitatively different 

dynamics (Anderson 1972) – a number of formal models have found that communication 

in large populations can cause sharp transitions is collective dynamics that radically 

compress a diversity of competing labels into a small, finite vocabulary (Baronchelli et al. 

2006, 2010; Gong et al. 2012; Puglisi, Baronchelli, and Loreto 2008; Steels and 

Belpaeme 2005). A recent online experiment tested this theory in a real-time 

communication game (“the Name Game”), where players coordinated to establish a 

name for a person’s face in networks of varying topologies (Centola and Baronchelli 

2015). While the naming game does not capture a process of category formation, 

because it does not involve the use of labels to group multiple stimuli together, it 

presents the simplest case for how network interactions can consistently compress a 

diverse space of competing elements. This study found that in clustered networks where 

peers had a small number of local connections, diversity among names in the population 

was preserved; however, they found that in the condition where the size of subjects’ 

peer neighborhoods was increased to form a fully-connected network, separate 

populations reliably converged on a single globally adopted name.  

 While the above evidence suggests that increasing network size can cause 

separate populations to reliably compress a diverse space of competing options, it does 

not speak directly to similarities in the content of category systems that separate 

populations converge on. The formal models simulating category formation in social 
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networks assume, by design, that the labels proposed by agents are inherently arbitrary 

and bare no direct relation to the simulated stimuli, such that no label could be more 

likely to be used than others as a product of analogy making or common cultural 

background. The trivial result is that while separate populations can reliably converge on 

finite vocabularies, there is no process to guide their convergence dynamics to a 

common attractor state, leading to random path dependent. By consequence, it was not 

possible for these original models to produce cross-cultural category convergence, 

indicating that a key factor was missing.  

In more detail, another way in which large populations can qualitatively differ in 

their dynamics is in the predictability of the convergence state of a system. A canonical 

example is the Fisher-Wright model of genetic drift, which examines how a population of 

genes will evolve when a subset of a population has been randomly segmented and 

forced to evolve on its own (Gould 2002; Kauffman 1993); the model finds that if certain 

alleles are more represented in the population than others, then as the size of the 

segmented subpopulation increases, the predictability in the evolutionary trajectory of 

the subpopulation also increases. But if the subpopulation is small, it is more likely that 

its chance combination of alleles will not include those that were initially most 

representative, leading to path dependent evolutionary trajectories based on the 

infrequent allele combinations that happened to be distributed in the subpopulation. In 

this model, alleles are assumed to be differentiated by fitness solely in terms of their 

baseline frequency, but its results are consistent with a definition of allele fitness based 

on adaptive properties (Kauffman 1993).  

The general logic of this evolutionary model has been widely applied in the study 

of language (Atkinson et al. 2008; Mufwene 2001; Newberry et al. 2017; Pagel et al. 
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2019). The “iterative learning” paradigm, which examines language change as a result of 

transmission between generations, has found that communication overtime can amplify 

weak biases for particular grammatical structures in a population, leading separate 

populations to arrive at similar grammars (Kirby, Cornish, and Smith 2008; Kirby et al. 

2008; Kirby, Dowman, and Griffiths 2007). Observational data suggests these results 

concerning grammar may apply to the formation of additional linguistic features, 

including phonetics and even vocabulary (Newberry et al. 2017; Pagel, Atkinson, and 

Meade 2007; Silvey, Kirby, and Smith 2015). Several studies have found that frequent 

communication in large populations can incentivize the global adoption of simple terms 

that are easy to use and learn, in the place of complex and polysemous vocabularies 

(Kemp and Regier 2012; Regier, Carstensen, and Kemp 2016; Regier et al. 2007; Xu 

and Regier 2014). Indeed, a recent observational study found a strong correlation 

between the popularity of a label and the likelihood of this label gaining future adoption 

in a population, hinting at the possibility that population dynamics amplified their 

likelihood of spreading (Pagel et al. 2019). Even in the anthropological data on cross-

cultural category convergence, population size is a significant positive predictor of 

similarities in the size, structure, and content of category systems (Brown 1984; Fay and 

Ellison 2013; Fay, Garrod, and Roberts 2008; Nettle 2012; Witkowski and Burris 1981). 

Further consistent with the Fisher-Wright model, it has been found that terminologies 

used in small populations are subject to higher levels of idiosyncrasy and variation 

(Boone 1949; Bowern 2010; Nettle 1999, 2012; Pagel et al. 2007). Altogether, these 

studies point to the prediction that communication in small social groups can, contrary to 

the nativist position, lead to highy divergent, path dependent category systems for novel 

continuous domains, whereas large social groups can generate predictable evolutionary 

trajectories, leading to similar category systems in terms of both size and content.   
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 This hypothesis, if true, has ramifications for any domain of inquiry that uses 

categories –and potentially all of them. Until only recently, it has been nearly impossible 

to test this hypothesis experimentally. The experimental study of category formation in 

cognitive science remains largely focused on individual-level tasks. The select few 

studies that examine social dynamics in category formation have focused on dyads for 

observing communication effects (Brennan and Clark 1996; Clark and Wilkes-Gibbs 

1986; Galantucci and Garrod 2011). But for sociologists and a number of evolutionary 

linguists, studying communication effects requires studying macro-level dynamics in 

populations much larger than dyads.  

Scarce few experiments have attempted to scale category tasks beyond dyads. 

One study, discussed above, examined a visual communication task in networks of 8 

people, but found that communication lead to path dependence; meanwhile, a network 

of 8 people is not sufficiently large to observe the expected effects of large population 

sizes on categorization (Fay et al. 2018). A related experiment tested whether the size of 

a communication network affected how people coordinate through a virtual maze game, 

and found that in larger social networks (N=10), separate groups were much more likely 

to adopt similar verbal strategies for winning the game (Garrod and Doherty 1994). An 

experimental extension of the naming game tested whether a committed minority of 

confederates using the same name in fairly large social networks (e.g. N > 20 people) 

could trigger global adoption, consistent with the claim that communication networks 

amplify labels that are more representative in a population at baseline (Centola et al. 

2018). This finding was supported in both their model and experiment. At present, this 

result remains merely suggestive in the context of cross-cultural category convergence, 
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since the Name Game does not capture a category formation process, which involves 

using labels to group together stimuli from a common continuum.  

In what follows, I report the results of a novel formal model designed specifically 

to test the effects of population size on the emergence of cross-cultural category 

convergence. The model is an extension of a recent formal model designed to answer a 

question that is highly relevant to the puzzle of cross-cultural category convergence, and 

intellectually precedes it:  i.e. how it is possible for a given population to establish a finite 

vocabulary for a novel continuous domain (e.g. colour) when there may be an infinite 

number of possible partitions and an infinite number of possible labels (Baronchelli et al. 

2006, 2010; Puglisi et al. 2008)? Nativists sought to resolve this question by suggesting 

that individuals, at baseline, simply do not vary enough to create an infinitely large space 

of competing categories. This model challenges these results by illustrating that 

communication in large populations alone is sufficient to trigger sharp transitions from a 

vast diversity of competing elements in the population, to the population holding a finite 

vocabulary. By tweaking a key assumption of the model – namely, the arbitrariness of 

labels – I show that this model is consistent with the hypothesized effects of population 

size on cross-cultural category convergence, where small populations are more likely to 

vary substantially in the final category systems they adopt, while increasing diversity in 

large populations increases similarity in the category systems that emerge across 

separate social groups. In subsequent chapters, I report the results of large-scale online 

experiments that validate these predictions, and I develop a plan for additional applied 

extensions to illustrate how these predictions have major practical import to a domain of 

central importance in communication studies today – i.e. content moderation over social 

media.  
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CHAPTER 2: A MATHEMATICAL MODEL OF COLLECTIVE CATEGORY FORMATION 
 

The formal model on which this analysis is based is referred to as the “Categories 

Game”. It is a more complex extension of the “Name Game”, in which agents interact 

sequentially in dyads drawn each round from their network neighborhood in a larger 

connected graph. The interaction logic of the Name Game represents a simple repeated 

coordination game, where each agent attempts to use a name for a single referent (e.g. 

a person’s face), and they are incentivized in each dyadic interaction to use the same 

name as their partner for that round. Then, in subsequent rounds, their next partner is 

sampled from their network neighborhood.  

The Categories Game involves several key extensions to the Name Game. First, 

in the Name Game, each pair of agents each round offer a name simultaneously and 

evaluate whether it agrees, such that the roles of agents are equivalent. However, the 

Categories Game recreates a paradigmatic scenario in language interaction (first 

specified by Wittgenstein4), where a speaker uses a word to direct the actions of a 

hearer, and if the hearer demonstrates the correct action, coordination is successful. For 

this reason, for each round in the categories model, one agent is randomly assigned to 

 
4 Wittgenstein (1965) lays out simple scenario of linguistic interaction that this game is 
designed to capture, while also reflecting on the definition of meaning it seeks to 
demonstrate in the “The Blue Book”: “Suppose I give to an Englishman the ostensive 
definition “this is what the Germans call ‘Buch’”. Then in the great majority of cases at 
any rate, the English word “book" will come into the Englishman’s mind. We may say he 
has interpreted “Buch” to mean “book”. The case will be different if e.g. we point to a 
thing which he has never seen before and say: “This is a banjo”. Possibly the word 
“guitar” will then come into his mind, possibly no word at all but the image of a similar 
instrument, possibly nothing at all. Supposing then that I give him the order “now pick a 
banjo from amongst these things.” If he picks what we call a ‘banjo’ we might say ‘he has 
given the word ‘banjo’ the correct interpretation”; if he picks some other other instrument 
– “he has interpreted ‘banjo’ to mean ‘string instrument’” (1965: 2).   
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be speaker, and the other is randomly assigned to be hearer. Both the speaker and the 

hearer are presented with an array of objects; the speaker attempts to get the hearer to 

select one of the objects  by sending a label. The hearer checks whether it has a 

meaning for the label stored in its memory, and if so, it selects the object associated with 

the label. Following Wittgenstein’s logic, if the hearer selects the correct object, we can 

say the speaker and hearer have the same meaning for the label used (i.e. the same 

mapping between the word and the group of objects to which it properly refers to in the 

world). 

Another way that the categories model extends the Name Game is by introducing 

the interaction dynamics of using a label to group objects together from a continuum; 

whereas in the Name Game, agents negotiate to name a single fixed referent. The 

categories model involves a population of N individuals (or players), committed in the 

categorization of a single continuous perceptual channel, each stimulus being 

represented as a real-valued number ranging in the interval [0, 1], where the range [0,1] 

creates a fully continuous novel dimension. Here, we identify categorization as a 

partition of the interval [0, 1) in discrete subintervals, from now onwards denoted as 

“perceptual categories”. This numeric continuum is standardly used in the literature as a 

close analogy for the color spectrum, which is highly continuous; but various studies 

discuss at length how this model of a continuum is indeed intended to generalize beyond 

the color spectrum, and even into multidimensional perceptual channels (e.g. the set of 

objects used to contain liquid, where there is no natural discontinuity between cups and 

glasses). The idea is that this model, even while reducing the phenomenon to the case 

of a one-dimensional continuum, unveils a mechanism that can be easily extended to 

any kind of space, once it has been provided with a topology.  
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For the negotiation dynamics in the model, each individual agent is initialized with 

a dynamic inventory of form-meaning associations linking their perceptual categories 

(the partitions of the continuum) to labels, where the “meaning” of the label is how it 

maps onto a subset of perceptual categories in the continuum. Perceptual categories 

and the labels associated to them co-evolve dynamically through a sequence of 

elementary communication interactions, simply referred to as games. All players are 

initialized with only the trivial perceptual category [0,1], with no name associated to it. At 

each time step, a pair of individuals (one playing as speaker and the other as hearer) is 

selected and presented with a new “scene”: i.e., a set of M ≥ 2 objects (stimuli), denoted 

as Oi ∈ [0, 1) with i ∈ [1, M].  

The speaker discriminates the scene, if necessary adding new category 

boundaries to isolate the topic; then she names one object and the hearer tries to guess 

it. The label to name the object is chosen by the speaker among those associated to the 

category containing the object, with a preference for the one that has been successfully 

used in the most recent game involving that category. A game round is successful if the 

hearer makes the correct guess. Based on the game’s outcomes, individuals may 

update their category boundaries and the inventory of the associated words: in a 

successful game, both players erase competing words in the category containing the 

topic, keeping only the word used in that game; in failed games, the speaker points out 

the topic and the hearer proceeds to discriminate it, if necessary, and then adds the 

spoken label to its inventory for that category. A detailed overview of these dynamics is 

present in fig. 1 (taken from the original modeling paper).  
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Figure 3. A schematic display of the coordination logic of the categories 

model (copied from Puglisi et al. 2008). The following paragraph walks 

through the details of this logic verbally.  

 

The behavioral rules for discrimination and communication are displayed in fig. 3, 

which present a case of both failed coordination (game 1) and successful coordination 

(game 2).  in each round of the game, two players are selected to interact, conditional on 

them sharing an edge within a social network. One player is randomly designated as 

speaker, the other as hearer. A set of objects are presented to both players. The 

speaker selects the topic. In game 1, the speaker has to discriminate the chosen topic 

(“a”) by creating a new boundary in his rightmost perceptual category at the position (a + 

b)/2. The two new categories inherit the words inventory of the parent perceptual 

category (here, the words “green” and “olive”) along with a different brand new word 

each (“brown” and “blue”). Then, the speaker browses the list of words associated to the 
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perceptual category containing the topic. There are two possibilities: if a previous 

successful communication has occurred with  this perceptual category, the last winning 

word is chosen; otherwise, the last created word is selected. In the present example, the 

speaker chooses the word “brown” and transmits it to the hearer. The outcome of the 

game is a failure because the hearer does not have the word “brown” in her inventory. 

The speaker unveils the topic (e.g. by pointing at it), and the hearer adds the new word 

to the word inventory of the corresponding perceptual category. In game 2, the speaker 

chooses the topic “a,” finds the topic already discriminated, and refers to it using the 

label “green” (which, e.g., may be the winning word in the last successful communication 

concerning that category). The hearer knows this word and refers to the correctly to the 

object that represents the speaker’s intended topic. In the case of a success, both the 

speaker and the hearer eliminate all competing words for the perceptual category 

containing the topic, leaving “green” only (on the assumption that this is now the 

accepted word for this percept). In general, when ambiguities are present (e.g. the 

hearer finds the label associated to more than one category containing a possible 

object), these are resolved by making an unbiased random choice.  

An additional parameter controls the perceptual resolution power of the 

individuals limits their ability to distinguish objects/stimuli that are too close to each other 

in the perceptual space: to take this into account, the model defines a threshold dmin 

inversely proportional to their resolution power. In a given scene, the M stimuli are 

chosen to be at a distance larger than this threshold: i.e., |oi – oj | > dmin. The results vary 

by dmin, though not qualitatively, and altering the size of M does not alter the qualitative 

outcomes of the model, but only the amount of time it takes for convergence.   
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Figure 4. The main results of the original categories model (Puglisi et al. 

2008). Results are from simulations with 100 agents and different values 

of dmin. (a) Synonymy, i.e. average number of words per perceptual 

category. (b) Success rate measured as the fraction of successful rounds, 

indicating a sharp transition. (c) average number of perceptual (dashed 

lines) and linguistic (solid lines) categories per individual, showing an 

initial increase, and then a sharp decrease in the number of categories 

per individual, indicating compression effects. (d) Averaged overlap (i.e. 

alignment) among speakers within each network, for both perceptual and 

linguistic categories, showing sharp increases in the adoption of a shared 

verbal vocabulary.  
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The main results of the original categories model are displayed in fig. 4 (copied from the 

original paper by Puglisi et al. 2008 with the authors permission). Panel A shows that the 

average number of words in the population for each perceptual category (i.e. the 

average linguistic ambiguity) sharply decreases overtime as a function of repeated 

communicative interactions. Panel B shows a similar sharp transition in terms of success 

rate, measured at the fraction of successful rounds, where after each agent has played 

roughly 100 games, the system goes from nearly no successful interactions to almost 

perfect success of coordination (akin to the experimental results reported for the Name 

Game model; Centola & Baronchelli, 2015). Panel C shows the averaged number of 

categories (both perceptual and linguistic) per individual, showing a sharp decrease in 

the number of categories for both individual, indicating the effects of network 

coordination in compressing the diverse space of many competing labels. Lastly, Panel 

D shows the averaged overlap (i.e. alignment) among speakers within each network (i.e. 

not between separate networks), for both perceptual and linguistic categories, showing a 

rapid increase in the adoption of a shared verbal vocabulary. 

 

2.1. Extending the Categories Model  
 

A limiting assumption in the original model is that the labels proposed by agents are, by 

design, arbitrary, since they are defined as random strings. As a result, each new label 

proposed by an agent in the model bares no prior relation to the simulated continuum or 

to the labels already in use in the population. The result is that, when agents introduce 

new labels, it is not possible for some labels to be introduced at greater frequency than 

others, as a product of analogy-making or common cultural background. The trivial 
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consequence is that while separate populations in the model show similar compression 

effects, by converging on finite vocabularies that are shared among agents in the same 

network, there is no process to guide their convergence dynamics to a common attractor 

state, leading to totally random path dependence. As such, the model is trivially 

consistent with the strong social constructivism account, in showing that the category 

systems generated by separate realizations of the model are incapable of baring 

systematic similarities, unless purely by chance.  

 In later iterations, researchers began to consider how the categories model can 

speak to the emergence of universal patterns of category structure in separate 

populations (Baronchelli et al. 2010). Because the original model was framed with 

respect to the classical case of colour terms, with an arbitrarily continuous wave 

spectrum, the question of universality they focused on concerned similarities in the 

structure of color vocabularies across populations. While a straightforward extension, the 

topic of universal similarities in color vocabularies has two idiosyncrasies: (1) the 

patterns of universality often discussed concern the rate at which new color terms are 

added to a population, where a key predictor of the distinctions made by a color 

vocabulary is the size of the vocabulary, and (2) color is uniquely physiologically 

constrained by a highly modular neural architecture that is conserved across all humans. 

For these reasons, the underlying drivers for universality in color terms are distinct from 

those that are expected to underlie emergent universality in domains such as emotions, 

fauna, or kinship.  

Yet, due to its focus on color categories, later iterations of the categories model 

approached the problem of cross-cultural convergence in terms of how many words a 

color vocabulary has, and when new terms are added to these vocabularies (Baronchelli 
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et al. 2010). Further fixated on the technicalities of color perception, this extension of the 

model endeavored to account for these universal patterns by building in fixed 

physiological biases into agents, so that they perceive the color spectrum in terms of a 

rugged landscape, where some regions are easier to categorize and more likely to be 

grouped together than others. The result is broadly relevant to the study of cross-cultural 

convergence, but it has to be taken with a grain a salt to due to the focus on color. In 

particular, they find that the color vocabularies which emerged in separate realizations of 

the model became increasingly similar when agents shared strong and similar 

physiological biases. In other words, the model forces convergence by assuming a 

nativist viewpoint, with category similarities emerging as a result of shared individual 

neurobiology. While this result is broadly relevant to the claim that networks serve to 

amplify populations biases, the kind of ‘bias’ used in this model does not generalize to 

the kinds of biases expected to operate across the vast range of domains with 

continuous stimuli. E.g. similarities in how plants are categorized cannot be accounted 

for by shared physiological biases for how to perceive plants, because the existence of 

an innate neurobiological module for perceiving plants is far from plausible5. 

Furthermore, these extensions do not directly engage the effects of population size, 

 
5 Though, to be noted, a branch of nativism rightly referred to as ‘radical concept 
nativism’ does maintain that all categories, including categories for complex objects like 
“plants” and human-made objects like “door-knobs” are innate (Laurence and Margolis 
2002; Margolis and Laurence 2013). The logic of this viewpoint rests on a subtle 
argument that denies the ability to learn these concepts from experience. This view was 
more strongly made by Fodor (1998), who argues (to overly simplify) that to experience 
any category at all, including complex categories, we need to first have a mental 
representation that precedes the experience and directs our attention and processing of 
stimuli relevant to the concept. Recent extensions of this view argue that children are 
preloaded with massive libraries of categories (and potentially all categories) when then 
are born. It is beyond the scope of this dissertation to review this literature (Huang and 
Snedeker 2009; Medina et al. 2011).  
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because these hardwired physiological biases are strong enough to eventually lead to 

the same convergence state across networks of any size, in the limit of infinite rounds.  

The question of cross-cultural convergence requires a different operationalization 

of population bias than hardwired, neurobiological universals, due to the evidence that 

individuals vary substantially in how they perceive novel continuum, with no clear 

evidence of underlying, cognitive universals. This is due, in part, to the fact that the 

continua of interest in this study (for which cross-cultural convergence has been 

observed) cannot plausibly be accounted for by physiological universals. It is worth 

noting, though, that the critique of universal physiological constraints can also be 

marshalled against the theory of cross-cultural convergence in the case of color 

perception. Ethnographers asked various members of the Hadza (an indigenous ethnic 

group in north-central Tanzania) to group together and label tiles from a color spectrum, 

and they found striking variation and disagreement among the Hadza, even though prior 

linguistic data suggested a universally held color system across the tribes (Lindsey et al. 

2016).  

Instead, the constraints of central interest in the present examination of cross-

cultural convergence concern the probability of certain labels being introduced into the 

population, as a function of analogy-making and commonalities in the similarities agents 

perceive (which need not be a function of nativist universals, but which could easily be a 

product of shared cultural conditioning). Consistent with the Fisher-Wright model and 

recent experimental results on critical mass dynamics in the Name Game, the 

hypothesis is that if certain labels are more likely to be introduced than others by 

independent individuals, than increasing population size will amplify the spread of these 

more popular labels, leading to greater cross-cultural convergence across separate large 
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populations; connectedly, the hypothesis is that, similar to the effects of sampling in 

genetic drift, small population sizes are more likely to get trapped in communicating with 

idiosyncratic labels that get locally reinforced and adopted, setting these small groups on 

path dependent trajectories, thereby giving rise to lower overall levels of cross-cultural 

convergence.  

To test this hypothesis, I extended the categories model by constraining the set 

of possible labels agents can introduce into the game, and by altering the uniformity of 

the probability distribution governing the likelihood that certain labels from this 

constrained set are introduced. These parameter updates are intended to create the 

dynamics described in DiMaggio’s discussion of analogy-making, and also in the 

broader literature on the illegitimacy discount, where it is expected that when individuals 

are confront a genuinely novel domain of stimuli, they will propose categories that are 

drawn in reference to objects and domains they are already familiar with, such that the 

set of labels they are drawing from is not functionally infinite. More generally, this 

captures the dynamics of category formation when an agent, and their social network, is 

situated in a culture with already existing category systems. We will see in later 

discussions of the experimental results that not only that this assumption is key for 

studying people (where subjects already possess a multitude of categories), but that it is 

also empirically valid with respect to how people naturally prefer to form categories for 

novel continua – i.e. by analogy to existing domains, rather than using novel and 

arbitrary names.  

In my extension, I add a global set of possible labels L defined as a sequence of 

real values on the range [0, |L|] from which all agents in a network draw from when 

introducing new labels when discriminating ambiguous objects (i.e. when agents do not 
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have an existing category for an object in the scene, and they must differentiate it from 

other objects by creating a label; for speakers, the label they create is then sent to the 

hearer to engage in coordination, at which point it may be adopted and internalized by 

the hearer in the case of a success). Following prior empirical data concerning the 

likelihood of terms being used in a population, I define a probability distribution over L, 

denoted as LB  where B refers to population bias. In my simulations I use the Zipf 

distribution (Adamic and Huberman 2002), which drives from Zipf’s effort to determine 

the frequency at which nth most common word in a language is used. The Zipfian 

distribution is defined by Zipf’s law, which states that the size of the rth largest occurrence 

of the event (in this case, the frequency of a word) is inversely proportional to its rank: y 

~ r-b, with -b close to unity.  

 

 

Figure 5. A schematic of how different probability distributions are defined 

over the set of possible labels (L) from which agents sample the new 

labels they introduce. (A) the case of no bias that leads to radical path 
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dependence, where the probability function defined over L is uniform; (B) 

the case of Zipfian bias, where a small subset of labels are exponentially 

more likely to be sampled when agents introduce new labels into the 

population.  

 

These formal additions allow me to control the amount of sampling bias among 

individuals in the population when introducing labels – in other words, the likelihood that 

a certain number of labels are likely to be introduced by separate individuals, 

independently of each other. Fig. 4A is a general qualitative depiction case where there 

is no sampling bias giving rise to unequal population densities of labels, such that each 

label is equally likely to be introduced as others. This is the case of the original model 

that leads to path dependence regardless of population size (to be shown below). Fig. 

4B is a general qualitative depiction of the case where the likelihood of labels being 

introduced is constrained by a Zipfian distribution; in this case, a very small subset is 

exponentially more likely to be introduced than  others (for example, by 20% of the 

population), whereas the vast majority are highly idiosyncratic and unlikely to be 

introduced by independent agents in the network, creating the diversity of competing 

elements of key interest to the social constructivist account. 

By defining L, I test the hypothesis that (1) in the case of no bias defined over L, 

network size will have no effect on the similarity of category systems that emerge in 

separate populations, and (2) that in the case with minimal population bias, increasing 

network size will amplify the spread and adoption of the same labels across separate 

populations, thereby increasing cross-cultural convergence. Furthermore, these 

simulations allow me to identify nonlinearities in the effects of population size, where 
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after a certain threshold, cross-cultural convergence increases in a nonlinear fashion. As 

an initial test, I measure cross-cultural convergence in terms of the average pairwise 

Jaccard distance between the vocabularies that emerged in separate populations of the 

same size. When computing the Jaccard distance between two trials, this measure 

refers to the number of unique words that occur in both trials, divided by the sum total of 

all unique words that occurred in either trial. These equally hold in terms of how the 

vocabularies in separate populations grouped elements from the continuum together (i.e. 

in terms of the overlap of partitions). All networks are initialized as fully-connected 

networks. Later chapters in this dissertation will examine the effects of different network 

topologies on convergence dynamics in category systems.  

 

 
 

Figure 6. Results of 50 simulations (100 rounds; dmin = 0.01; |L| = 6000) 

comparing the effects of population size on bias and cross-cultural convergence. 

Each data point represents a single network in each condition, where the 
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horizontal axis indicates the level of category diversity in a population (i.e. the 

average number of unique labels that agents encountered in that population). (A) 

Cross-cultural convergence in vocabulary after 100 rounds in networks of varying 

population size where the model is initialized with LB (the level of population 

sampling bias) is random and uniform, indicating no bias.  (B) Cross-cultural 

convergence in vocabulary after 100 rounds in networks of varying population 

sizes where the model is initialized with LB defined by the standard Zipfian 

distribution (i.e. where y ~ r-b, and b approximates unity).  

 

The modeling results provide strong support for the hypothesis that when L is defined 

with no population bias (fig. 5A), there is no cross-cultural convergence above chance in 

any network sizes, with no effect of network size on path dependence. By contrast, the 

model shows that when L is defined by minimal population bias using the standard 

Zipfian (y ~ r-b), population size has a direct effect on the amount of cross-cultural 

convergence between separate networks of the same population size. Specifically, the 

model reveals the counterintuitive result that by increasing population size, and thereby 

increasing the diversity of competing elements, the predictability of the convergence 

state increases, rather than decreases, contrary to the popular story of social 

constructivism, where social interaction is assumed to inherently lead to path 

dependence. In this case, the number of elements in L is 6000. These results are robust 

to a wide range of sizes for L, where the lower bound for sufficient variation is 

approximately 50. We can also show that these results robust to a range of values for 

dmin and M.  
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 Here I posit that the key mechanism captured by the above agent-based model 

concerns the effect that population size has on the ability for labels to reach ‘critical 

mass’ and thereby spread (Centola et al. 2018). This intuition can be clearly articulated 

through a surprising connection to the birthday paradox in probability theory. First, 

following prior work, a label is said to reach a sufficiently large ‘critical mass’ when a 

large enough minority of subjects exist the population who are committed to spreading 

the label (Centola et al. 2018). Prior work on the spread of arbitrary linguistic 

conventions (i.e. ‘names’ in the name game) has shown that when a single name is 

introduced by an average of 25% of subjects in a network, it reaches a ‘tipping’ point, 

after which it rapidly spreads and gains widespread adoption in the overall population 

(though they also show that the critical mass threshold can vary according to key 

parameters like memory length and social resistance).  

Now, the question of whether a particular label is likely to reach a critical mass 

within a population of size n is strikingly analogous to the infamous birthday paradox 

(Borja and Haigh 2007): the counterintuitive result in probability theory where the 

extremely unlikely event that two randomly sampled individuals share the same birthday 

becomes vastly more likely as the size of the sample population increases. Once a 

population reaches at least 23 people, it becomes more likely than chance for two 

people in this population to share a birthday. Once populations surpass 50 people (the 

size of the largest population in our experiment), it becomes almost mathematically 

guaranteed that two people in the population will share a birthday.  

By analogy, the problem of whether a label reaches critical mass within a 

population is a question of the probability that a certain proportion of people in the 

population introduce the same label (i.e., “have the same birthday”). But the problem of 
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critical mass involves two subtle differences that require formalization. First, the question 

of whether a label reaches critical mass in a population is not about the specific 

proportion that introduces the label, but about whether the proportion of the population 

introducing the label reaches the minimum requirement to trigger a tipping point. 

Secondly, the distribution of label frequencies is not uniformly distributed: some labels 

are more likely to be introduced than others. Recent work shows that the birthday 

paradox holds with nonuniform distributions, though its formalization rarely incorporates 

this subtlety (Borja and Haigh 2007; Munford 1977). Both of these additional features of 

critical mass can be readily modeled using the hypergeometric distribution.  

The hypergeometric distribution is derived by computing the probability of 

selecting k successes in a sample of size n from a total population of size N, where the 

total frequency of successes in the population is given by K. To determine the likelihood 

of obtaining at least k successes in a sample of size n, we sum the probabilities of 

obtaining k, k + 1, …. k + (n – k) successes using the following formula. 

 

  (1) 

 

A “success”, for our purposes, refers to selecting an individual from the 

population who introduces label x. The total number of possible successes in N (i.e. K) 

corresponds to the number of individuals who will introduce label x. Within this model, 

we can distinguish rare from common labels by altering the probability of an individual 

introducing x at baseline; in other words, by modifying K as a function of the probability 

P(x) of an individual introducing label x. For instance, say the overall test population is 
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1480 subjects (the size of our experimental population, detailed in Chapter 3). If a given 

label is introduced by 32% of people on average, then assuming K = N · P(x), we arrive 

at K = 296 for this label. By contrast, if a rare label were introduced by 0.5% of the 

population, K would then equal 7.  

The final component of this model incorporates the critical mass size of interest, 

denoted by cm. Following prior work, we assume here that cm = 25%. To incorporate 

this element into equation (1), we constrain the model so that for each n, we set k as the 

min(k) such that k/n ≥ cm.  

 

 

Figure 7. Using the hypergeometric distribution to model the effect of 

population size on the likelihood of labels reaching critical mass. 

Horizontal axis displays the size of a population sample (n) from the total 

population size N, which is set to 1460 to emulate the size of the test 

population in our main experiment. The vertical axis displays the 
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probability of a label reaching critical mass (25%). The colors indicate the 

probability of an individual being drawn who uses a given label. Rare 

labels are highlighted by cooler colors, and common labels are 

highlighted by warmer colors. Fig. 3B uses shaded regions to represent a 

smoothed display of the above distributions, distinguishing between 

common and rare labels accordingly.  

 

Drawing from analytic properties of the hypergeometric distribution, we show that 

population size directly affects the likelihood of common labels reaching critical mass. 

Fig. 7 displays these results while assuming cm = 25%, following prior research(Centola 

et al. 2018). We find that common labels with 0.25 ≤ P(x) ≤ 0.45 are more likely to reach 

critical mass in larger populations (n>20), where the probability they will reach critical 

mass approaches unity when n>50. These results indicate that common labels are much 

more likely to reach critical mass and spread in larger populations, as a result of the 

properties of the hypergeometric distribution. These results are robust to a range of cm 

values. We thus arrive at the following prediction: assuming that populations possess a 

similar bias landscape in the likelihood of certain categories being introduced, we would 

expect that increasing population size drastically increases the likelihood that labels 

associated with greater bias (i.e. common labels) reach critical mass and spread, 

leading to consistent and replicable trajectories in the cultural construction of categories.  

These results provide a formal, mathematical theory for the empirical hypothesis 

that cross-cultural convergence is the result of coordination and diffusion dynamics in 

social networks. My theoretical model predicts that as population size increases – 
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thereby increasing the diversity of category options in the population – the similarity of 

the convergence state of separate populations also counterintuitively increases. In the 

chapter to follow, I outline the design and results of a large-scale online network 

experiment on real-time category formation which successful confirms this hypothesis 

with high fidelity.  
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CHAPTER 3: THE EMERGENCE OF CROSS-CULTURAL CATEGORY 
CONVERGENCE IN AN ONLINE SOCIAL NETWORK EXPERIMENT 

 

There are three main technical challenges that needed to be overcome in order to be 

able to test the hypothesis. First, we need an experimental environment that supports 

social interaction in large social networks. Prior experiments involving communication 

and categorization have been largely restricted to tasks done by individuals or dyads 

(Galantucci and Garrod 2011). Second, we need to construct a genuinely continuous 

and novel domain of stimuli such that people actually have to engage in category 

formation. Prior experiments on category formation have relied almost exclusively on 

small sets of discrete stimuli, or otherwise on drawing tasks where subjects are asked to 

depict tokens of already existing categories (e.g. “soccer”), thus failing to capture the 

process of categorizing large continuous sets of novel stimuli in natural language. This is 

especially challenging because the continuum constructed needs to be genuinely novel. 

Unlike modeling environments where agents can be constructed as blank slates, we 

cannot run an experiment with people categorizing a color spectrum, because people 

already have robust categories for colors. Lastly, we need an experiment that enables 

people in networks of varying sizes to collaboratively categorize this genuinely novel 

continuum, in real-time, and for long periods of time. We address each of these issues 

through the design of an online web platform that allows us to experimentally control the 

size of people’s social networks as they collaboratively labeled a novel continuum of 

arbitrary in the context of a communication game built to resemble the logic of the 

categories model.   
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Figure 8. Screenshots of “The Grouping Game” interface from (A) the 

view of a speaker and (B) the view of a hearer on a given round. (C) A 

sample of the continuum of novel shapes used as stimuli in the 

experiment.   

 

3.1. Experimental Design 

 

1480 subjects we recruited from Amazon’s Mechanical Turk to participate in the 

experiment. Subjects registered to play a paid online language game called “The 

Grouping Game” that involved grouping abstract shapes from a novel continuum. Upon 

arrival to the game, subjects were randomized into either the “dyad” condition, where 

they collaboratively categorized the continuum with the same partner, or into one of four 

“social network” conditions where they categorized shapes in a fully-connected network 

of either 6, 8. 24, or 50 people. Each trial in each condition consisted of unique 

individuals. We collected 80 independent dyads and 15 independent social networks for 
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each network size. We also built a separate web platform where individuals 

independently categorized a sample of the continuum without any social interaction, and 

the results were highly consistent with our main findings reported below. The data was 

collected between July 1st and August 30th, 2018. 

The image continuum was constructed using Adobe Animate 2018 (Fig. 8). To 

create a continuous space of images, we began by defining 3 separate amorphous 

shapes on a blank white background, creating a composite image akin to Rorschach ink 

blots. Then, we used Animate’s motion path functionality to create an arbitrarily large 

continuum of images formed by the intermediate combination of shape orientations 

generated by gradual rotation and motion. With this method, we were able to create a 

continuum at an arbitrary resolution, demarcating the amount of rotation between each 

frame. After pretesting, we decided to deploy a continuum consisting of 1500 images, 

based on participant feedback indicating that this resolution permitted an intuitive and 

manageable amount of variety to categorize in the timeframe of the experiment.  

The gameplay was designed to recreate the Wittgenstein language game used in 

formal models simulating cultural processes of category formation (Baronchelli et al. 

2010; Puglisi et al. 2008) (Fig. 8). In each round, subjects were randomly paired with 

another subject in their network. In the dyads, they were always paired with the same 

person. For each pair in each round, one subject was randomly chosen to be the 

speaker and the other hearer. Each round, the speaker was presented with a random 

selection of 3 images from the continuum of 1500 images (fig. 8), abiding by a minimal 

distance constraint of 75 images (thus approximating a dmin of 0.05, in terms of the logic 

of our formal model; see Chapter 2). The continuum was held constant across 

conditions. 
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The image selection algorithm was designed so that subjects were never shown 

the same shape from the continuum twice, unless (1) our system could not find a set of 

images that neither speaker nor hearer had seen before, or (2) the available images 

satisfying (1) violated the distance constraint. This design ensured that subjects were 

forced to categorize images from round to round by generalizing across the features 

observed in prior rounds. For the same label to be applied on different rounds, subjects 

had to group images based on perceived similarities across rounds, thus requiring a 

process of generalization and category formation. In each condition, subjects interacted 

for 100 rounds. For each round, both the speaker and the hearer were given 30 seconds 

to respond. Each game lasted approximately one hour regardless of condition, where in 

every experimental condition, each subject played 100 rounds.   

To initiate categorization, one image was randomly highlighted, and the speaker 

was asked to enter any label into a free text-entry window that would allow their partner 

to click on the highlighted image (fig. 8). The order of the images displayed varied for the 

speaker and the hearer, so they could not coordinate on the basis of superficial 

strategies relating to position. The hearer received the speaker’s label and was asked to 

click on the shape expected to be the label’s referent. If the hearer clicked the correct 

shape, both players received 10 cents. If they failed, 1 cent was subtracted from each of 

their earnings, and the hearer was shown the shape originally intended as the referent to 

enable social learning. Following Centola & Baronchelli (2015), subjects were 

incentivized monetarily to emulate the positive feedback associated with successful 

coordination. Once the round was complete, each player returned to a waiting page 

where they were asked to wait while the system paired them with their next partner. 

Regardless of condition, subjects received the same instructions and messages on each 
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page, and subjects were given no information about their partners or the size of the 

network they were in. For this reason, any differences in the category systems that 

emerged across conditions can be attributed to the effects of network size.   

All 1480 subjects from Amazon’s Mechanical Turk were required to live in the 

U.S. with English as their first language. There were no differences in the distribution of 

demographic traits across conditions, in terms of gender (p = 0.56), ethnicity (p = 0.42), 

and age (p = 0.67), (Kruskal-Wallis H Test). We imposed these constraints on 

recruitment to arrange the optimal conditions to observe individual-level uniformities in 

how subjects labeled the continuum, as predicted by the nativist position. Thus, any 

variations in how subjects categorized the stimuli across conditions can be attributed to 

the size of the network they are in, and not to variations in the subject population 

between conditions.  

Subjects were contacted via email with an invite to come play a paid online game 

at a scheduled time. One hour prior to the game, subjects were sent an email with 

instructions on how to play. They were told that (1) “In each round, you will be asked to 

label one of three shapes”; that (2) “Based on your label, your partner will have to click 

on the shape they think you’re referring to”; that (3) “If your partner clicks on the correct 

shape, you both receive money”; and that (4) “Sometimes you will be the player who will 

have to click on the shape.” Shortly before game times, subjects were emailed with a link 

to the experimental platform. Upon arrival, subjects were brought to a waiting page, 

where the above instructions were displayed for them again. When enough subjects 

arrived to the platform to fill all conditions, subjects were randomized to each condition, 

and a trial was initiated.  
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We excluded trials in the dyads where at least one subject stopped playing 

before the game was over, because under these conditions, the remaining subject had 

no one else to coordinate with. This occurred in 5 of the 80 trials in the dyad condition, 

resulting in 75 usable trials. Overall attrition rates were very low across all conditions, 

with an average of 2% of participants failing to successfully finish the game. There was 

no significant difference in the distribution of attrition across conditions (Kruskal-Wallis H 

Test, p = 0.72).  

 

3.2. Methods of Analysis  

 

To identify the labels that were adopted in each trial, we selected the top 5 labels used 

most frequently to successfully coordinate in a single trial of the experiment. All of the 

results reported below are robust to a wide range of vocabulary sizes, ranging from the 

top 1 to 10 most successful labels. Then, we identified the images that a label was used 

to refer to along the continuum, as an indication of which images it grouped together. 

This allowed us to compare conditions in terms of the boundaries their labels drew 

between image sets along the continuum, as an indication of the similarities among 

images lexicalized by each population. Following prior work (Baronchelli et al. 2010; 

Hannan et al. 2007), a category in this study refers to a mapping between a label and a 

set of referent images from the continuum.  

These techniques provided two direct measures of cross-cultural convergence. 

First, given that our subjects were given a free-text entry window, enabling them to enter 

any type of linguistic form of their choice, we measured convergence in terms of the 



48 
 

similarity of the vocabularies that were adopted by the end of the experiment. We 

computed vocabulary overlap using the average pairwise Jaccard distance between all 

trials in a condition, where Jaccard distance is the number of words that occur in both 

trials, divided by the total number of unique words across both trials.  

Secondly, to calculate similarities across trials in terms of which images were 

grouped together,  we use Baronchelli et al.’s (2010) measure of centroid overlap. The 

centroid of a category is the median image in the image range that each label refers to 

within the continuum. The distance between centroids is the absolute number of images 

along the continuum between the centroids of two categories from different trials. For 

each category ci in population X, Baronchelli et al.’s (2010) measure calculates the 

minimum centroid distance between ci and all categories in population Y. It then takes 

the average across all minimum centroid distances between the two populations as a 

measure of overall centroid alignment.   

To measure population bias in the sampling of images, for each label, we 

computed the proportion of subjects in each trial that introduced each label at any point 

in the experiment, prior to exposure to this label from another players. Then, as a 

window into the hypothesized effect of population size, we examined the rank correlation 

between the proportion of subjects who independently introduced each label, and the 

proportion of adopters in each trial that adopted each label. To illustrate the logic of this 

analysis, consider that in a dyad, the largest (and only) proportion of subjects who can 

independently introduce a label is 50%. As a result, even if some labels are more likely 

to be introduced than others in a larger population, in the context of a dyad, this bias in 

sampling does not allow some labels to be meaningfully distinguished from others – they 

are all introduced by no less and no more than half the population. However, as network 



49 
 

size increases, the extent to which sampling bias differentiates labels also increases. If  

labeli is introduced by 20% of the population in a network of 50, while most labels are 

independently introduced by only 1 person, this means that labeli is introduced by 10 

people. If the correlation between the proportion of label originators and the proportion of 

label adopters increases with population size, this indicates that population size serves 

to amplify the spread of labels with greater population density at baseline. We show how 

this process is crucial to understanding the observed results concerning cross-cultural 

convergence.  

 

3.3. Results  

 

I begin this analysis by establishing that the distribution of labels introduced into the 

experiment follows a Zipfian curve to striking precision. Consistent with Zipf’s law 

(Adamic and Huberman 2002), a small number of labels like “crab” and “bunny” were 

common, meaning they were more likely to arise independently, whereas the vast 

majority of labels were rare and introduced by only a few individuals. I then confirm that, 

indeed, increasing population size drastically increases the likelihood that common 

labels reach critical mass and thereby spread, giving rise to consistent trajectories in the 

cultural formation of categories. As a result, I show that in small network sizes (N<10), 

social interaction lead to highly path-dependent category systems, both in terms of 

vocabulary and continuum partitions; however, I show that in large networks (N > 20), 

communication substantially increased cross-cultural similarities in category formation 

across totally separate and replicated populations, both in terms of the specific words 

they adopted, as well as how they used these words to group together stimuli. A novel 
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hypothesis follows from these results which I then directly test. A popular nativist intuition 

holds that categories gain popularity due to their intrinsic cognitive appeal. However, my 

theory and results suggest that the success of a category is largely a function of whether 

it is associated with a sufficiently large critical mass to trigger its diffusion. I evaluate this 

prediction in a robustness experiment, where I test whether artificially inflating the 

baseline popularity of uncommon labels can trigger cross-cultural convergence on these 

labels rather than on more cognitively appealing ones. I find across six replicated trials 

that a committed minority of confederate subjects (37% of a network of 24 people) could 

trigger the adoption of uncommon labels in the place of more cognitively appealing ones. 

Implications for cultural evolution and communication engineering are discussed in the 

concluding chapter.  

 

 

Figure 9. Using the Zipfean distribution to model the initial frequency of 

labels (including data from all conditions; N=2, N=6, N=8, N=24, and 
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N=50), where initial frequency refers to the number of individuals who 

introduced a label without any prior exposure to the label in the task. 

Vertical axis displays the log of each label’s initial frequency. Horizontal 

axis displays the log of each label’s frequency rank. The data represent 

80 dyads and 15 social networks of each size.   

 

As predicted, I find that the likelihood of labels being independently introduced 

into a given condition was characterized by a Zipfian distribution with the standard curve 

(b = 1.3), (Fig. 9). The majority of labels were “rare” and were originated by less than 1% 

of the population, on average, whereas a small subset (less than 1%) of labels were 

“common” and were originated by an average of 25% of the population. In 

supplementary analyses, I show that the same labels emerged as popular when 

separately analyzing the data from each condition (Kruskal-Wallis H test, P=0.65), 

suggesting that the initial population bias represented in each condition was 

indistinguishable. Supplementary analyses further show that common labels were 

associated with regions of the continuum that were easier to label in general, suggesting 

that label popularity corresponded to regions of the continuum that were less 

ambiguous. In total, a surprising diversity of over 5000 unique labels were attempted in 

the experiment, across all conditions.  
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Figure 10. Comparing the level of convergence in category systems that 

emerged in (A) small (N=2) and (B) large (N=50) populations. Each row 

displays the category system constructed by a single unique population in 

each condition after 100 rounds of interaction. The horizontal axis 

displays the image continuum of shapes, consisting of 1500 slices. 

Density distributions display the frequency of successful coordination for 

each label, as well as the region of the continuum to which each label 

referred. Each color indicates a unique label. Similarity in the category 

systems across populations indicates convergence.  

 

Figure 10 displays the category systems that emerged in each population. As 

predicted, fig. 10A shows that small populations (N=2) produced highly divergent 

category systems. Only 5% of labels were shared across independent dyads, and there 

was no consistency in how these dyads partitioned the continuum (p < .001, n = 80, 

Kruskal Wallis H Test). As a result, dyads varied not only with respect to the labels they 
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adopted for the same regions of the continuum, but also with respect to the regions of 

the continuum they successfully categorized. By contrast, large populations (N=50) 

generated remarkably similar vocabularies (50% Jaccard index, n = 95, p < .001, 

Wilcoxon rank sum) and similar partitions of the continuum (p = 0.87, n = 15, Kruskal 

Wallis H Test), indicating convergence in how these independent populations 

categorized the novel stimuli (Fig. 10B).   

These findings appear puzzling at first since larger populations are expected to 

increase the unpredictability of category formation as a result of containing a greater 

diversity of individuals, and thus a greater number of categories that can be adopted. 

Yet, these results indicate that increasing population size – and thereby increasing the 

diversity of categories – can counterintuitively lead to convergent cultural trajectories 

across independent populations.  

 

 

Figure 11. (A) Convergence in the vocabularies that emerged in populations of 

different sizes, for N=2 (black dots), N=6 (blue diamonds), N=8 (purple squares), 
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N=24 (green triangles), and N=50 (yellow circles). Vertical axis reports the 

average similarity in vocabulary (average Jaccard index) between each network 

trial and all other networks of the same population size. Horizontal axis displays 

category diversity, measured as the average number of unique labels 

encountered by subjects in a population. Data points represent experimental 

results (80 dyads and 15 social networks of each size). (B) Measuring cross-

cultural convergence in terms of how the vocabularies of separate groups 

partitioned the continuum, where the y-axis displays the average overlap 

between the partitions in a given trial and all other trials of the same group size. 

The x-axis displays the average number of unique labels encountered over the 

course of the experiment by each subject within each group. Average partition 

overlap is quantified using centroid alignment. The centroid of a category is the 

median image in the range of the continuum to which this category referred. 

Average partition overlap is measured as 1 – (kij / m), where kij is the average 

minimum centroid distance between the categories of population i and j, and m is 

the maximum number of images that can separate two centroids (i.e. 1499). 

 

 The theoretical predictions for these convergence dynamics based on the model 

specified  in chapter 2 provide an excellent fit with our experimental findings (Fig. 11). 

Across all experimental conditions, label diversity significantly increased with population 

size. Figure 11A shows that greater label diversity within populations predicts greater 

similarity in the category systems that emerge between populations (Jonckheere-

Terpstra Test, N=120, p < .001). We find these convergence dynamics not just for the 

labels that were used, but also for how participants’ partitioned the continuum into 

distinct regions (Figure 11B).  
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Figure 12. Larger populations amplify the spread of initially frequent 

labels. (A) Displaying the effect of population size on the ability for labels 

to reach critical mass (when at least 25% of subjects in a network 

independently introduce a label). Common labels are identified as outliers 

with high initial frequency (see Chapter 2 for model details). Data display 

the proportion of experimental trials in each condition for which each label 

type reached critical mass. Error bars display 95% confidence intervals. 

(B) The correlation between the initial frequency of a label in a population 

and the proportion of subjects in a population who adopted the label 

(vertical axis), where adopting a label implies that a subject produced a 

label after being exposed to it. Horizontal axis displays the diversity of 

categories in each trial, indicated as the average number of unique labels 

encountered by each subject in a network. All observations are 

independent and at the network-level. The data represent 80 dyads and 

15 social networks of each size.   
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Here I test the simple mechanism proposed in chapter 2 as an explanation of 

these findings. I suggest that larger populations amplify the spread of initially more 

frequent labels, leading these common labels to reach a ‘tipping point’, after which they 

diffuse and become widely adopted. Figure 12A shows the relationship between 

population size and critical mass dynamics, empirically. In small populations, common 

labels were not sufficiently reinforced to reach the tipping point needed to trigger 

widespread adoption. Consequently, small populations were significantly more likely to 

adopt rare labels (n = 80, p < .001, Wilcoxon Signed Rank), leading these populations to 

follow divergent evolutionary trajectories. However, increasing population size 

significantly increased the likelihood that common labels (like “crab” and “bunny”) would 

be reinforced and adopted (Jonckheere-Terpstra Test, n = 120, p < .001), significantly 

reducing the likelihood that rare labels would spread (Jonckheere-Terpstra Test, n = 

120, p < .001). Our findings indicate a direct relationship between population size and 

cross-cultural convergence (Fig. 12B). For large populations (N=50), the likelihood of 

common labels becoming widely adopted approaches unity, leading these populations to 

convergent cultural trajectories. 

A crucial implication of our theory is that cultural convergence does not simply 

depend upon cognitively salient features of the labels themselves, but upon the labels’ 

frequency in the population. An established intuition is that certain categories gain 

popularity because they have intrinsic cognitive appeal (e.g., because of their ‘natural’ 

descriptive fit with the stimuli) (Rosch 1973; Winkielman et al. 2006). However, even 

when the most popular labels (e.g. “crab” and “bunny”) were attempted in dyads, they 

regularly failed to gain acceptance. We located the region of the continuum shared 
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among all uses of the common label “crab” in the N=50 networks (i.e. images in the 

range 500 – 600), and we examined the dyads in which “crab” was attempted for this 

region. Every time this label was introduced for this region in large networks (N=50), it 

gained adoption. By contrast, even in dyads where the label “crab” was attempted for 

this same region, a wide range of rare labels were adopted in the place of “crab”, 

including “baby”, “turtle”, “hotdog”, and “smile”. As a result, dyads were much less likely 

to adopt “crab” when this label was introduced compared to N=50 populations (Binomial 

Test, p < .001, CI = [0.63, 0.83]). This suggests that the adoption of these labels at the 

population level is not strictly determined by their cognitive appeal, but rather by the fact 

that they are more likely to be reinforced and reach critical mass in larger populations.  

 

 

Figure 13. Time series showing the adoption of confederates’ rare label 

(“sumo”) by noncommitted subjects (i.e. experimental subjects). Pink lines 
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indicate the cumulative number of successful uses among experimental 

subjects of the label “crab”. Black lines indicate the cumulative number of 

successful uses among experimental subjects of the label “sumo”. Each 

round is measured as N/2 pairwise interactions, such that each player 

has one interaction per round. The data displayed exclude all interactions 

between confederates.  

 

To evaluate this hypothesis directly, I experimentally tested the following 

counterfactual: if we artificially inflated the popularity of infrequent labels to reach critical 

mass, would it trigger convergence on those labels rather than on more cognitively 

appealing ones? I conducted six robustness trials (N=24) in which each network 

contained a minority of confederate subjects (37%) tasked with spreading a novel 

category system based on infrequent labels. For instance, I trained confederates to use 

the rare label “sumo” (Fig. 13) for the same regions of the visual continuum associated 

with the most popular label in our initial studies, “crab”. Figure 13 shows that although 

“crab” appeared in each robustness trial, “sumo” consistently outcompeted “crab”. In 

every robustness trial, populations adopted the confederates’ labels across each region 

of the continuum, yielding significantly more convergent category systems (58% Jaccard 

index) than those that emerged in N=24 populations without confederates (36% Jaccard 

index), (n = 21, p < .001, Wilcoxon rank sum).  
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3.4. Discussion  

 

This study strongly supports the hypothesis that coordination dynamics in social 

networks can facilitate both the divergence and convergence of category systems, as a 

function of network size. Moreover, our results are highly consistent with our 

hypothesized mechanism, that large networks amplify population densities in which 

labels are originated by subjects. In smaller social groups, population densities do not 

allow labels to be meaningfully differentiated from others. Even when N=8, if a label is 

introduced by 20% of subjects, this only barely evaluates to 2 label originators, which 

places this label on roughly equal footing as idiosyncratic labels that are introduced by 

only one person. As a result, labels that are more popular at the population level have a 

substantially lower likelihood of succeeding in smaller networks, which can instead serve 

to locally reinforce highly idiosyncratic labels, leading to path-dependent trajectories in 

category formation. By contrast, in large networks (e.g. N=50), if a label is introduced by 

20% of the population, this means that this label is introduced by 10 independent 

individuals, whereas the vast majority of labels are still introduced by only 1 person. As a 

result, these popular labels become much more likely to spread and gain adoption in 

separate social networks, leading to a nonlinear increase in cross-cultural convergence.  

One possible objection is that given more time, dyads would approach the levels 

of cross-cultural convergence observed in large social networks. The concern is that 

many more interactions happen in parallel in the large networks, such that dyads are 

disadvantaged in the overall number of interactions informing their category systems. To 

test this, we allowed 30 dyads to play for an additional 25 rounds. We show that the 

average level of cross-cultural convergence in both vocabulary and image groupings 
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was not significantly higher than the original dyads, when comparing any number of 

topmost successful vocabulary items.  

A final concern is that our results may be an artifact of the game algorithms used 

to select and display images to subjects. To address this concern, we first show that 

each shape in the continuum was equally likely to be shown across all trials (Kruskal-

Wallis H Test, P=0.89). In general, there were no significant differences in the 

distribution of images that individuals saw across conditions (Kruskal-Wallis H Test, 

P=0.48). Secondly, we show that when subjects were shown the same image twice in 

social networks, no image was more likely repeat, thereby preventing algorithmic bias in 

the process of social reinforcement. 

The “social constructivist” view of cultural evolution suggests that large 

communication networks contain greater individual variation, which leads to greater 

divergence and unpredictability in the evolution of category systems (Fay et al. 2010b; 

David 2007; DiMaggio 1987; Berger and Luckmann 1967; Salganik, Dodds, and Watts 

2006; Macy et al. 2019). Here, we show that while increasing the size of 

communication networks does, in fact, significantly increase the diversity of categories 

that people encounter, it does not increase divergence. Rather, it increases cross-

cultural convergence. Our results suggest that convergence in the categorization of 

novel phenomena across independent populations is significantly determined by the 

communication networks in which people are embedded. 

These findings offer a new experimental interpretation of past observational 

data on cross-cultural similarities in category systems. We suggest that rather than 

cross-cultural convergence providing evidence of innate, universal cognitive categories 



61 
 

(Brown 1984, 2004; Malt 1995; Pinker 2003; Youn et al. 2016), instead it may indicate 

that communication in large social networks filters cognitive and lexical diversity in 

such a way that promotes the development of similar category systems across diverse 

populations.  
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CHAPTER 4: CONCLUSION 
 

Is the way we categorize the world governed by innate cognitive universals, or 

socially constructed? This dissertation uses insights from social network dynamics 

to provide a unique answer to this question. Nativism, the view that innate 

cognitive universals account for cross-cultural category convergence, is not 

consistent with the creativity and diversity observed in how individuals categorize 

novel, continuous stimuli. Social constructivism views creativity and diversity as 

key factors in category formation, however these factors are said to result in highly 

path dependent category systems as a result of communication. Combined, these 

two views leaves us with a paradox concerning cross-cultural convergence: if 

individual vary in how they categorize novel continuous domains, and this 

individual-level variation leads to path-dependency, how do get cross-cultural 

convergence at all?  

This dissertation argues that insights from the social network dynamics of 

category formation can resolve this paradox. Through the use of formal models 

and online experiments, this study shows that social processes of category 

formation need not give rise to path-dependency. The central and counterintuitive 

finding is that by increasing network size, and thereby increasing the diversity of 

categories in a population, communication can actually lead to predictable 

patterns of cross-cultural convergence when categorizing a novel continuum of 

objects. As such, this finding opens to a new domain of inquiry, concerning how 

social network structure underlies patterns of divergence and convergence in the 

social construction of category systems.  
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This research program has direct practical implications for a widespread 

problem in contemporary data production and management – that is, the problem 

of categorizing massive amounts of rapidly emerging and continuous content (e.g. 

new companies, art, and technology). Social groups are unable to ascribe value to 

these cultural products until they can effectively categorize them (Durand, 

Granqvist, and Tyllström 2017; Hannan et al. 2007; Zuckerman 1999, 2012). One 

domain where this is especially concerning is in content moderation over social 

media. Potentially harmful content floods social media websites like Facebook 

everyday in the millions, and yet most of this content is too new and culturally 

nuanced to be classified by existing machine learning algorithms (Gillespie 2018; 

Klonick 2018). Currently, social media companies are attempting to use large-

scale crowdsourcing to manage content moderation, where online workers 

manually flag content as potentially harmful, with two major limitations (Gillespie 

2018; Klonick 2018): (1) people vary wildly in how they interpret and apply the 

categories required by Facebook’s Community Standards (e.g. “crime”, “violence”, 

and “bullying), and (2) people are slow to classify new content, leaving millions of 

users at risk everyday. The assumption in crowdsourcing is that people need to be 

kept independent to produce accurate classifications (Gillespie 2018; Lorenz et al. 

2011; Pennycook and Rand 2019), because communication amplifies bias and 

leads to group think (Lorenz et al. 2011; Sunstein and Hastie 2014). The result is 

an unmanageable amount of diversity in the categories formed by independent 

coders, which in aggregate rarely provides social media companies with a reliable 

signal regarding which content they should and should not remove. The 

theoretical framework developed in this dissertation can be used to test an 

alternative approach in which category diversity can, counterintuitively, accelerate 
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the emergence of consensus in collective category formation. Specifically, the 

core theory in this dissertation suggests that allowing moderators to 

collaboratively classify content in social networks can accelerate and improve 

classification, enabling content moderation at scale. I refer to this as networked 

crowdsourcing.  

Testing networked crowdsourcing in the domain of content moderation 

would provide an opportunity to address another longstanding debate at the 

boundary of nativism and social constructivism – namely, the question of whether 

people’s moral classifications are determined by innate moral instincts or by peer 

influence and conformity effects (Landy and Bartels 2018; Sinnott-Armstrong 

2012). In the world of content moderation, variation among individuals’ categories 

for moral content is associated with a systematic problem that this experiment can 

both examine and potentially alleviate, i.e. bias (e.g. racial and gender) among 

coders undertaking crowdsourcing (Gillespie 2018; Noble 2018). In future work, it 

will be possible to build networks consisting of people who share a demographic 

trait linked to bias (e.g. “men”, in association with gender bias); this approach can 

then be used to grow and compare the classification systems produced by 

distinct, homogenous social networks (e.g. all male and all female networks) to 

measure how these groups differ in their perceptions of inappropriate content. 

Once separate category systems are grown in distinct social groups, the next step 

is to examine whether communication between these distinct social networks can 

reduce bias, similar to my earlier work, where bipartisan communication networks 

were shown to eliminate political bias in the interpretation of climate data 

(Guilbeault, Becker, and Centola 2018).  
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 An important implication of recent collective intelligence work on bias reduction is 

that the structure of social networks plays a key causal role in whether networks amplify, 

or reduce, bias. Future work will also explore the role of topology in determining whether 

networked crowdsourcing entrenches or eliminates ideological bias. The aim is to 

discover whether there is an optimal level of connectivity to create between separate 

ideologically homogeneous communities so that their perspectives are integrated. In 

general, the question of how topological variation shapes category formation processes 

will be a pivotal focus in future research. A range of topological variables, including 

modularity and path length, are already linked with formal hypotheses posited in 

theoretical social science for how they should impact category formation (DiMaggio 

1987; Gong et al. 2012; Milroy 1987), and these hypotheses are now amenable to direct 

empirical investigation within the experimental framework developed in this dissertation.   

 Moreover, content moderation is just one domain where crowdsourcing is applied 

to address extant categorization problems. Social media is not the only arena of social 

interaction flooded with massive amounts of novel and continuous content. Another 

prime and pertinent example is the domain of scientific classification. An illustrative story 

comes from the citizen science platform Galaxy Zoo (Salganik 2017; Watson and Floridi 

2018). Galaxy Zoo was developed to address a pervasive classification problem in 

astronomy. While billions of dollars have been invested into satellites that take millions of 

images of space everyday, there is a paucity of scientists with sufficient time and 

expertise to examine these images. Galaxy zoo developed an online crowdsourcing 

system where anonymous users on the internet volunteer to classify a variety of stars 

and galaxies structured by continuous geometrical dimensions. This platform became 

shockingly successful when a large number of crowdworkers interacting over Galaxy 
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Zoo’s discussion boards unexpectedly discovered a new kind of star – the Green Pea6 

(Watson and Floridi 2018) – which became the subject of several technical publications. 

Since this discovery, Galaxy Zoo quickly expanded into Zooniverse, a platform with a 

diverse set of crowdsourcing efforts on a range of topics from gravity wave detection to 

coding primate behavior (Jackson et al. 2018; Zevin et al. 2017). Networked 

crowdsourcing has the potential to greatly enhance the emergence of consensus and 

accuracy in scientific classification schemes; and theoretically, it has the potential to 

significantly deepen our understanding of how scientific taxonomies emerge, clash, and 

grow in social groups of different sizes, structures, and demographic compositions (Wu, 

Wang, and Evans 2019), with broader implications for the structure of scientific 

revolutions (Collins 1998; Kuhn 1996). 

Most fundamentally, the network dynamics of category formation has theoretical 

implications for our understanding of what constitutes social structure itself as an object 

of inquiry in social science. A foundational idea in sociology is that the structure of 

society, in terms of group relations and institutions, underlies the structure of category 

systems that emerge in society (Douglas 1986; Durkheim 1912; Simmel 1964)7. More 

recent work in sociology (Bowker and Star 2000) – generally influenced by the paradigm 

of symbolic interactionism (Blumer 1986) – has shifted focus to how social structures 

gain their influence through how people in social groups categorize social roles, actions, 

 
6 Note how the term draws an explicit analogy to an existing concept, the green pea, 
suggesting that the Green Pea discovery was not the result of introducing an arbitrary 
label from the infinite void of possible arbitrary labels, but that instead it was sampled by 
a set of labels constrained by analogy, akin to the dynamics observed in the experiment 
discussed in chapter 2.  
 
7 Durkheim ([1912] 2008) articulated this view particularly strongly in his supposition that 
even the abstract concept of a set, for which the elements of the set are members, 
derives from an original representation of social groups in which people are members. 
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and the conditions of communication, where changes in category systems are the 

primary vehicle through which social construction can lead to changes in social 

structure. This dissertation and the burgeoning body of work it evokes raises the broader 

question of whether, and if so, how the network dynamics of category formation mediate 

the collective interpretation of social structure itself, as a driving force in both the 

maintenance and creation of social order. These theoretical implications, along with the 

array of practical implications discussed above, will be the focus of future work to come.   
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