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ABSTRACT 
 

A COMPUTATIONAL APPROACH TO THE STUDY OF TRAUMA 

Evan Tsiklidis 

Talid Sinno, Scott L. Diamond 

Trauma with hypovolemic shock is an extreme pathological state that challenges the body 

to maintain blood pressure and oxygenation in the face of hemorrhagic blood loss. In 

conjunction with surgical actions and transfusion therapy, survival requires the patient’s 

blood to maintain hemostasis to stop bleeding. The physics of the problem are multiscale: 

(1) the systemic circulation sets the global blood pressure in response to blood loss and 

resuscitation therapy, (2) local tissue perfusion is altered by localized vasoregulatory 

mechanisms and bleeding, and (3) altered blood and vessel biology resulting from the 

trauma as well as local hemodynamics control the assembly of clotting components at the 

site of injury. Building upon ongoing modeling efforts to simulate arterial or venous 

thrombosis in a diseased vasculature, we have developed models of trauma (both multiscale 

and machine-learning based) to understand patient risk and predict response. Key results 

were: (1) the upstream vascular network rapidly depressurizes to reduce blood loss, (2) 

wall shear rates at the hemorrhaging wound exit are sufficiently high (~10,000 s-1) to drive 

von Willebrand Factor unfolding, (3) full coagulopathy results in >2L blood loss in 2  hours 

for severing all vessels of 0.13 to 0.005 mm diameter within the bifurcating network, 

whereas full hemostasis limits blood loss to <100 mL within 2 min, and (4) hemodilution 

from transcapillary refill increases blood loss and could be implicated in trauma induced 

coagulopathy. Machine learning based methods were also implemented to understand 
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trauma patient outcomes. A 400-estimator gradient boosting classifier was trained to 

predict survival probability and the model is able to predict a survival probability for any 

trauma patient and accurately distinguish between a deceased and survived patient in 

92.4% of all cases. Partial dependence curves (Psurvival vs. feature value) obtained from the 

trained model revealed the global importance of Glasgow coma score, age, and systolic 

blood pressure while pulse rate, respiratory rate, temperature, oxygen saturation, and 

gender had more subtle single variable influences. Shapley values, which measure the 

relative contribution of each of the 8 features to individual patient risk, were computed for 

several patients and quantified patient-specific warning signs. 
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CHAPTER 1 Introduction 

1.1	Trauma	Overview	
 

Modeling the human body’s response to acute hemorrhage and tissue trauma requires an 

understanding of the microscopic level mechanistic steps of blood coagulation, as well as 

of the global hemodynamic response to the loss of blood volume. The combination of 

hypovolemic shock and tissue damage creates the greatest risk of trauma induced 

coagulopathy (TIC) where excessive bleeding is difficult to manage.  Numerous pathways 

interact to contribute to TIC including: endothelial dysfunction, unregulated inflammation, 

NETosis, complement activation, fibrinolysis, consumptive coagulopathy, impaired 

thrombin production, and hypofunctional platelets (1–3).  

 

About a quarter of trauma patients display a coagulopathy that greatly increases the risk of 

death.  TIC leaves certain patients at risk for uncontrolled bleeding and “oozing”, a trait 

often observed by trauma surgeons. The most immediate biochemical changes driven by 

blood loss are hypothermia, acidosis, tissue hypoxia, and hypotension. Low pH, low 

temperature, and low oxygen are all linked to deficient coagulation function (4,5).  

 

Blood pressure and blood loss. At the whole-body scale, the systemic circulation seeks  
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to compensate for blood loss by several mechanisms. Transcapillary fluid shift draws 

waterfrom the interstitial space to compensate for the first 0.5 to 1 L of blood loss, a 

beneficial effect that is attenuated in the dehydrated patient (6). Similarly, the baroreflex 

modulates cardiac output with declining arterial blood pressure (7). Slower changes in 

pressure and volume control involve the hypothalamo-pituitary-adrenal (HPA) axis which 

may be perturbed by traumatic brain injury (TBI) or during shock (8). Modeling efforts 

described in Section 1 are focused on relating the systemic arterial blood pressure, heart 

rate, and stroke volume to the amount of blood lost via progressing hemorrhage.   

 

Pressure distributions in damaged vascular networks. At an intermediate length scale 

of damaged tissue (Section 2), the pressure along a branching arterial or venous network 

must account for the far upstream pressure condition set by the systemic circulation. The 

flow through a damaged vessel is different from that of an intact vessel since downstream 

resistance is lost when a vessel is severed.  Specifically, damaged arterial vessels that are 

bleeding will not be able to maintain high internal pressures since they are directly 

connected to low pressure environments (Patm or ~10 mm-Hg (interstitial) or -10 mm-Hg 

in certain diaphragm cavities below atmospheric pressure). The propagation of a 

vasoconstriction response to mechanical wounding may have significant effect on 

bleeding. Damage to veins can prevent filling, allowing for depressurization and leading 

to some back-drainage and diameter collapse. Blood leakage following damage to capillary 

beds can be regulated in part by smooth muscle cell contraction of precapillary sphincters. 
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An important attribute of tissue damage to quantify is the instantaneous rate of blood loss 

relative to the healthy tissue perfusion rate prior to damage. 

 

Changes in blood biology that result in local bleeding.  At the molecular and cellular 

length scale of vessel damage (Section 3), blood loss is controlled by the instantaneous 

intravascular pressure, the evolving geometry of the wound and the hemostatic action of 

clotting, and the extravascular pressure. Distinct from thrombosis in a diseased vessel that 

is not bleeding, hemostasis requires the rapid and controlled assembly of a clot where 

flowing blood may either leave the vascular space or continue past the wounded region, 

depending upon the size of damage.  Dysfunction of platelets and thrombin generation and 

hyperfibrinolysis and increased vascular permeability all increase the risk of a situation 

where blood clots may be insufficient to support hemostasis. Fortunately, the availability 

of human blood samples has made it possible to assemble a large database of information 

related to the kinetics, mechanistic steps, initial conditions, and transport influences of 

blood coagulation and clot formation. Such blood samples are now obtained routinely from 

trauma patients, for research and diagnostic purposes, for predicting risk, or for informing 

transfusion choices (eg. plasma vs. platelets vs. RBC). 

 

Shown in Fig 1-1 is a summary of the intricate and complex couplings between blood, 

vessels, heart, and therapeutic intervention that make TIC difficult to simulate, particularly 

for impacting real time clinical actions. The research field is at an early stage of creating 
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well-annotated patient data sets where hospital monitoring information (HR, BP, O2, pH, 

T, etc) are coupled with clinical laboratory data (pH, CBC, aPTT, blood gases and ions, 

etc.) and linked with research data (genome sequences, coagulation and platelet 

phenotyping data) for each patient.  Unique to trauma as a disease state, the onset time of 

trauma (t = 0) is well defined, which may help modeling efforts. However, a challenge for 

computer modeling of trauma is that the extent of initial traumatic injury, cumulative blood 

loss, and interstitial water level are difficult to quantify or monitor.  

 

 

 

Fig. 1-1 Multiscale Modeling of Trauma patient over 6 orders of magnitude. The global 
hemodynamics model is typically represented as a closed-loop hydraulic circuit that includes 
lumped, 0-D, descriptions of the various components of the body. Bleeding can be included in these 
models by connecting the circuit to atmospheric pressure through a “resistance-to-hemorrhage” 
resistor, as is done in the Reisner-Heldt model (6). At this scale, cardiovascular output is primarily 
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modulated by the baroreflex and transcapillary fluid shifts. At the tissue level scale (cm), 
vasculature branching networks are constructed to match physiological conditions before a wound 
occurs. Once severed, boundary conditions to model blood flow may include inlet pressure/flow 
conditions and an outlet pressure specification (typically atmospheric pressure). At this scale, 
modeling efforts should include variable resistance to flow (changing vessel diameter) to divert 
flow away from the site of injury. At the vessel scale (mm), parabolic flow is assumed in the healthy 
vessel. In the event of trauma, pressure and flow specifications are both possible, which are set by 
the global hemodynamic model, with the extrinsic coagulation pathway (tissue factor) being the 
predominant trigger for maintaining hemostasis. Transfusion, vasopressors, and clotting 
modulators are standard treatment options.   

 

1.2	Global	hemodynamics	during	trauma		
 

Quantifying the regulation of systemic blood pressure has been driven by pharmacology 

research of hypertension, particularly with respect to sodium balance and renal regulation 

over the course of hours to days.  These hypertension models do not account for blood loss 

but quantify complex interactions between water intake/urine production, renin-

angiotensin-aldosterone system, kidney filtering function, the renal sympathetic nerve 

activity, and ANP (atrial natrietic peptide) and ADH (vasopressin) (9).  

 

In general, understanding the time-dependent global hemodynamics is essential to 

predicting hemodynamic collapse and mortality during trauma – and must be accounted 

for in models of a trauma patient. In cases where trauma and hemorrhage lead to shock, 

relevant changes can occur on a relatively fast time scale and typically involve: 

transcapillary water shifts, hypoxia/acidosis, the baroreflex, sympathetic nervous system 

responses, and the hypothalamic-pituitary-adrenal (HPA) triad (especially during traumatic 

brain injury).   
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To some extent, models of blood pressure control have started to account for traumatic 

bleeding. Hemodynamic models of the systemic circulatory system often employ lumped-

parameter methods that implicitly assume uniform distributions of pressure, velocity, and 

hematocrit within a vascular compartment, resulting in a system of ordinary differential 

equations (ODEs). They often use an analogy with electrical circuits, where blood flow, 

viscous dissipation, and pressure drop are analogous to current, resistance, and voltage, 

respectively. Within this analogy, the frictional losses are modeled by resistors, the 

inertance of blood flow is captured by inductors (typically only significant in relatively 

large vessels), and vessel elasticity is represented by capacitors. In circuit analysis, 

Kirchhoff’s current and voltage laws are the primarily tools for determining voltage drops 

and current flows through every component of the circuit; the former enforces conservation 

of current and the latter enforces conservation of energy.  The early Otto Frank 2-

component Windkessel model (8) included a capacitor to capture the storage of stressed 

blood volume in the large arteries in parallel with a resistor to account for the dissipative 

losses of blood flow through the vasculature, resulting in the following ODE: 

 

																																																																										𝐹(𝑡) = 	 !(#)
%
+ 𝐶 &!(#)

&#
                                                  (4) 
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where F(t) is the flowrate of blood (ml/s), P(t) is the mean arterial pressure (mmHg), C is 

the arterial compliance(mL/mmHg), and R is the peripheral resistance (mmHg*sec/mL). 

This model has an exponentially decaying solution:   

                                                                   𝑃(𝑡) = 𝑃(𝑡')𝑒
!(#!#$)
&'                                                 (5) 

 

which remains useful in medical settings for estimating arterial compliance (10). However, 

this model does not provide pressure and flow information in each vascular compartment 

and does not include regulatory responses to blood loss.  

 

The Guyton-Coleman model (11), the most famous and extensive model of the circulatory 

system, contains hundreds of equations and parameters with each vascular compartment 

characterized by its own compliance, inductance, and resistance depending upon its flow 

characteristics. The models most salient (and perhaps limiting) feature (12) is the dominant 

role of the kidney in long-term blood pressure control. The model emphasizes the vital 

importance of renal control of blood volume in maintaining physiological blood pressures 

in response to any kind of perturbation (blood loss, salt intake/extraction imbalances, etc.) 

and quantifying the kidney’s response to these changes. The importance of the Sympathetic 

Nervous System (SNS) to maintain long-term blood pressure control is only marginally 

captured in the original Guyton-Coleman model (11), and may require extension to include 

SNS regulation (9).     
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Particularly relevant to traumatic blood loss, the Ursino model includes an elastic variable 

description of the heart, a parallel arrangement of splanchnic and extrasplanchnic 

circulations, and neuroregulation via the baroreflex for short-term arterial pressure control 

(minutes) (7). The baroreflex maintains cardiac output and systemic arterial pressure by 

regulating systemic resistance, heart period via SNS control, end-systolic elastance, and 

venous unstressed blood volume. Interestingly, a sensitivity analysis of each of these 

variables has shown that venous unstressed blood volume is the predominant mechanism 

for protecting the body from acute blood loss. The model was subsequently extended and 

able to simulate isocapnic hypoxia and hypercapnia (13–15). While other descriptions of 

the heart have been proposed and included in other models (16,17), the elastic variable 

description remains the most widely used because of its physical transparency and 

straightforward implementation (18,19).  

 

In the Reisner-Heldt model (6), a cardiovascular electric circuit model with baroreflex 

regulation, transcapillary fluid exchange, and lymphatic flow was constructed to model 

hemorrhage. Parameter values for fluid exchange and lymphatic flow were first tuned with 

canine blood loss data and then tested against further data sets. To simulate hemorrhage, a 

resistor was connected to atmospheric pressure and tuned to match blood volume loss as a 

function of time; once set, the resistance was held constant for the remainder of the 

simulation. The model predicted that in the initial stages of moderate to severe hemorrhage, 
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transcapillary fluid exchange was significant in limiting hypovolemia and antagonistic to 

protein return. In the dehydrated patient, hydrostatic pressure in the interstitial tissue was 

too small to return protein to the vasculature after blood loss and the model predicts an 

increased risk of hemodynamic collapse.   

 

The Neal-Bassingthwaighte (20) model was the first one with the capability of making 

trauma episode-specific predictions. The model used the electrical circuit analogy to 

construct a closed-loop circulation system with baroreceptor regulation. Parameters were 

determined by tuning the model to match baseline physiology of pigs prior to injury to the 

heart wall, and then held constant post-injury in the open-loop format. Rather than 

assuming a hemorrhage rate at a specific location (as in the Reisner-Heldt model), the 

tuned parameters were used in combination with arterial blood pressure and heart rate 

measurements (used as inputs to the model) to estimate cardiac output and total blood 

volume, which were validated via flowprobe measurements and survival/death outcomes 

of the pigs. Since the model did not explicitly account for diminished sympathetic 

vasoconstriction or cardiac contractility near the point of death, cardiac output 

measurements at those points were the most difficult to predict accurately.  

 

The Sterling-Summers model extended the Guyton Model to explore the effects of morbid 

obesity on Mean Arterial Pressure (MAP) and Cardiac Output (CO) during hemorrhage 

(21). Body mass Index (BMI) was used to quantify obesity, parameter values were tuned 
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from known population distributions, and percent changes in hemodynamic quantities were 

calculated and compared with non-obese patients. Interestingly, the model predicts 

significant decreases in MAP and CO in response to modest increases in BMI. A systems 

analysis of the virtual obese patient revealed that an increase in the resistance to venous 

return that results from increased intra-abdominal pressure is responsible for this. This 

implies that a greater quantity of fluid during resuscitation is essential to overcoming the 

resistance to venous return in the obese patient. Since the model is constructed with mean 

values from population distributions, it is unable to make real-time patient-specific 

prediction.  

 

The Mazzoni-Skalak microcirculatory network model was based upon the rat 

spinotrapezius muscle and considered 389 microvessels originating from a single arteriolar 

tree and converging to a single collecting venule while tracking the flow of leukocytes 

through the network (21). Resistance parameter values were calculated by assuming 

Poiseuille flow through the microvasculature (correcting for viscosity changes using 

empirical relationships that relate viscosity to diameter, hematocrit, and shear rate) so that 

flowrate could be calculated in response to an applied pressure. Once a leukocyte attempted 

to enter a vessel smaller than its diameter, it would deform and increase the resistance to 

capillary flow. The simulation was used to study the relative importance of mechanisms 

responsible for slow reperfusion following ischemia and predict blood flowrates and 

composition in response to measurable changes in pressure, hematocrit, and capillary 

diameter in the left gastrocnemius muscle of bleeding anesthetized rabbit. Interestingly, the 
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model also predicted that the slow reperfusion that characterizes ischemia is intensified if 

the leukocytes become active during ischemia.  

 

The Hirshberg-Mattox model incorporated hemodilution into a hemodynamic model to 

evaluate the transfusion guidelines preventing dilutional coagulopathy in a bleeding patient 

(22). Hirshberg et al. argued that plasma and platelet replacement were based upon 

empirical guidelines derived from a simple mathematical model with assumptions that 

frequently do not hold in severe trauma patients. For example, the model assumed a stable 

blood volume and that replacement rate is constant and equal to blood loss rate - in reality, 

blood loss is a function of blood pressure (not a constant), and replacement follows blood 

loss (sometimes on the order of many minutes or hours). Furthermore, the original model 

was derived when whole blood transfusion was the standard protocol – not the packed red 

blood cell (PRBC) transfusions used today – thus underestimating required concentrations 

of clotting factors. The model accounted for the heterogeneity of blood by explicitly 

including red blood cells, plasma, and intravascular water. The circulation system was 

described with the same nonlinear function relating systolic pressure to blood volume 

developed by Lewis (23). Interestingly, the model was able to predict that resuscitation 

with more than 5 units of RBC will unavoidably lead to dilutional coagulopathy, and that 

the optimal ratio of fresh frozen plasma (FFP) to PRBC is 2:3, with an initial 2:1 ratio being 

essential to preventing dilutional coagulopathy.   

1.3	Modeling	of	tissue	scale	bleeding	
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Defining vascular networks in silico. In solving for the flow through a tissue that has 

been damaged, the hemodynamics of a branching vascular network becomes relevant.  

Vascular network modeling has been well-studied by numerous researchers. The earliest 

theoretical analysis for the design of the vasculature network was Murray’s “minimum 

dissipation principle”, which stated that the parent-vessel bifurcation occurs in such a way 

as to optimize the balance between the operational costs that arise from viscous energy 

losses (decreases with increasing diameter) and the capital cost of large blood vessels and 

large blood volume (increases with increasing diameter) (2). The most significant equation 

that arises from this analysis is a rule that governs how the parent vessel bifurcates into 

daughter vessels: 

 

𝑑(
) = 𝑑*

) + 𝑑+
) 

 

Where 𝑑( is the diameter of the parent vessel, 𝑑* and 𝑑+ are the diameters of the daughter 

vessels, and γ is the branching exponent. In Murray’s law γ is set to 3, although other 

researchers have found that values between 2 and 3 are also physiological in certain 

vascular beds (24,25). Other parent-daughter relations for bifurcating network relations are 

possible for generating realistic vascular tree networks. A constant parent-daughter ratio 

specification (26) can match measured geometries, as can stochastic sampling of 

branch/generation distributions. The bifurcation angles are then typically defined, although 

there is large variability in the angles depending upon the location and target (27). Realistic 
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vascular networks have been created in silico with these rules in other studies (28–30), 

although not in the context of traumatic bleeding. The Westerhof model depicted the 

systemic arterial tree as an electrical circuit to model the viscoelastic properties of the 

arterial wall, but this representation is less common (31).   

 

Defining regulatory mechanisms in bleeding tissue  

In deploying network models for bleeding by a tissue, a branching network progresses from 

a large feeding artery to arterioles to capillaries and then de-branches to venules and larger 

collecting veins. Severing an arteriole or a vein, for example, results in distinct flow 

changes upstream and downstream of the injury. Arterial injury is characterized by high 

pressures driving blood loss and disrupted perfusion of all distal vessels.  Venous injury is 

characterized by bleeding driven at lower pressures, with less likely immediate impact on 

the upstream arterial perfusion of the tissue. 

 

In arterial injuries, the blood vessel’s high pressure is suddenly exposed to atmospheric 

pressure and bleeding rate becomes a function of pressure difference, oxygen consumption, 

cardiac output, and resistance to flow towards the exit. In the limit of complete severing of 

the vascular network, local downstream resistance is entirely lost, further increasing blood 

loss from the wound. In the event of internal bleeding, which is common following trauma, 

bruising can often be observed due to blood pooling in the body. In venous injuries, 

additional complications arise when considering the compliance of the veins -- large vein 
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resistance varies depending upon how compressed they are by their surroundings, or 

distended due to the flow of blood. However, during trauma, high venous compliance and 

small filling pressure can lead to venous collapse. This phenomenon was indirectly 

addressed in Ursino’s model, where an exponential function was used to describe the 

relationship between pressure and volume in the veins (7).  The body’s immediate response 

to this perturbation in blood volume is the response of the baroreflex, which attempts to 

maintain cardiac output by regulating venous blood volume, systemic resistance, and heart 

rate. Vessel diameters are also varied to divert blood flow away from the site of injury and 

minimize blood loss. On a larger time-scale (minutes to hours), transcapillary fluid 

exchange in a well-hydrated patient occurs to diminish, to a limited extent, the effect of 

hypovolemia (6).  

 

Efforts to model bleeding networks requires inlet/outlet pressure or flow boundary 

conditions (as functions of time), conservation of flow restrictions at branching points, and 

regulatory mechanisms to account for the action of the baroreflex and the fluid shifts. 

Researchers have applied inlet pressure/flow boundary conditions and local vasoregulation 

effectively to model this phenomenon in the construction of the cardiovascular system and 

vascular networks (27,32). In the context of traumatic bleeding, the most natural outlet 

boundary condition would be a pressure specification since it is held constant at Patm, 

although a bleeding rate specification may also be possible. The downstream condition for 

intact cardiovascular system post-injury could also be pressure/flow specifications, 
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although 3-element windkessel boundary conditions (33) and wave reflection coefficient 

specifications have also been used (34).   

 

Formaggia et al. developed a multiscale model of the circulatory system by coupling a 

zero-dimensional, lumped parameter model with a carotid bifurcating model (31). The 

lumped parameter model provided pressure boundary conditions to the bifurcating model, 

while the bifurcation model provided flowrates to the global hemodynamic model. 

Although not used to study traumatic bleeding, a variation of this coupling strategy will be 

helpful in developing a full multiscale model of a trauma patient (35,36). 

1.4	The	hemostatic	response	in	traumatized	vessels	
 

In daily life, the routine hemostatic response to vessel injury is well regulated. Platelets are 

captured by the injured wall and activate to release ADP and synthesize thromboxane 

(TXA2) to drive further platelet deposition. The buildup of a platelet mass is highly 

hemostatic. Additionally, the extrinsic coagulation pathway is initiated when the cofactor 

Tissue Factor (TF) is exposed to blood near the site of injury and binds Factors VII and 

VIIa. The TF/FVIIa complex (sometimes called the extrinsic tenase) generates FXa and 

FXIa (37). Generation of the intrinsic tenase complex FIXa/FVIIIa results in a burst of 

FXa, resulting in prothombinase (FXa/FVa) to help drive the generation of thrombin (FIIa). 

Thrombin is essential for platelet activation and for fibrin polymerization to stabilize the 

clot structure. Because FXIIa or FXIa deficiency is not associated with hemophilia, the 

contact pathway is considered nonessential for hemostasis. However, the requirements for 
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hemostasis are substantially more challenging during trauma. Since contact pathway 

deficiency is associated with some risk for surgical bleeding, TIC risks may exist in trauma 

patients lacking FXII and FXI. The role of FXII and FXI in traumatic bleeding is not well 

studied.   

 

From a systems biology perspective, the kinetics modeling of isotropic coagulation 

protease cascade has progressed over several decades and has been extensively reviewed 

(38–42).  These models mostly focus on the rate of thrombin generation and the clotting 

time when a threshold level of thrombin has been reached, although some have progressed 

towards trauma in silico (43).  

 

Modeling of blood clotting under non-flow conditions.  One of the oldest ODE (lumped) 

models of coagulation is the Hockin-Mann model (44), which utilized 34 ODEs and 42 

kinetic parameters to describe the extrinsic pathway. This model predicted coagulation 

initiation as [TF] was increased from 1 to 25 pM (zero clotting if TF is absent).  A 

sensitivity analysis performed by Danforth et al. (45) indicated that the model was highly 

sensitive to parameter choice characterizing FVIIa with TF interactions. Model limitations 

include implicit assumption of an activated and excess platelet surface for coagulation to 

begin and did not include the contact pathway, and therefore, could not predict blood 

clotting in the absence of TF.  
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The Chatterjee-Diamond “platelet-plasma” ODE model (46) extended the Hockin-Mann 

model to 76 ODE’s and 105 kinetic parameters to include the extrinsic pathway and 

characterize the initiation of coagulation in the absence of TF. It also included thrombin 

and contact mediated feedback of FXIa generation and was able to predict FXIIa generation 

in the presence of CTI (corn trypsin inhibitor), a feature that was confirmed experimentally.  

The model included the role of platelet activation to reduce the initiation time for 

coagulation. Like the Hockin-Mann model, the platelet-plasma model assumes excess 

platelet surfaces. Recent experiments under flow indicate that the first layer of depositing 

platelets is sufficient for most of the thrombin produced on a TF bearing surface (47), 

confirming that platelets are not likely rate-limiting, at least at healthy platelet levels. 

 

Bungay-Gentry model developed an isotropic reaction network model (48) with 73 ODEs 

and 17 reversible lipid adsorption reactions to explicitly account for lipid binding. While 

the reaction mechanisms were quite different from the Hockin-Mann model, they both 

agree with the same experimental study (49). Their model predicts a threshold value of 25 

nM lipid required for thrombin generation with 30-200 nM lipid range being most ideal.  

 

Platelet Models. Modeling of platelet signaling during clotting often use simple models of 

platelet activation typically with activation states of platelets as binary, either resting or 

fully activated depending upon an “activator concentration”, which can be a lumped 
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representation of several species. This approach often is not tested against data sets with 

individual signaling pathways modulated pharmacologically. 

 

Toward a detailed description of receptor-mediated platelet activation, the Purvis-

Diamond model (50) used 77 reactions and 132 parameters to describe ADP-mediated 

signaling of P2Y1 G-coupled protein receptor activation, phospholipase-Cb activation, 

protein kinase C activation, phospohoinositol metabolism, and IP3 receptor regulation. The 

model was able to predict Ca2+ levels and ADP dose-responses, phosphoinositide 

metabolism, and volume of the dense tubular system. This ODE representation of the 

activation state of a platelet can then be included as a submodel of a larger-scale modeling 

of platelet aggregation. An ODE reaction network around platelet store-operated calcium 

entry (Stim1/Orai) predicts calcium mobilization in the presence of extracellular calcium. 

Lenoci and Hamm (51) used a system of ODE’s to describe kinetics of PAR-1 activation 

to generate intracellular signals that lead to platelet aggregation.  

 

While these ODE models for P2Y1 and PAR1 signaling are full descriptions, they prove 

unwieldy in hemostatic clotting with single cell resolution and are difficult to tune to an 

individual patient. Chatterjee used a high throughput assay to measure [Ca2+] responses to 

18 single agonist stimulations (6 agonists * 3 doses) and to 135 pairwise combinations of 

the agonists, an experimental technique termed pairwise agonist scanning (PAS). The data 

was used to train a neural network model (52) to make patient-specific platelet intracellular 
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Ca2+ predictions in response to pairwise combinations of 6 agonists and to stimulate 

P2Y1/P2Y12, TP, IP, PAR1/4, GPVI membrane receptors, as well as intracellular 

guanylate cyclase. This later became an instrumental tool in multi-scale simulations of 

thrombosis under flow.  

 

Clotting with flow.  The Kuharsky-Fogelson model (53) used 59 ODE’s to describe 

blood clotting on a Tissue Factor (TF) surface, simultaneously accounting for blood flow 

and platelet function. The model described blood flow over a TF patch that was small 

enough to make spatial variations in concentration negligible, enabling an ODE 

representation. The model was later extended to a PDE formulation (54) to account for 

concentration gradients in the growing thrombus. The model treated platelets as chemical 

solutes, and lumped mass-transfer coefficients were used to characterize transport of co-

factors, enzymes, platelets, and inhibitors to the injured surface. The model predicted a 

thrombin generation threshold dependence on surface [TF] that was consistent with 

experimental results (55). The PDE formulation of the model was used to calculate 

concentration variations within the thrombus, with the changing velocity field 

characterized by solution of the Navier-Stokes equation undergoing Brinkman flow. The 

model predicted that the thrombus was strongly dependent upon wall shear rate and 

physical blocking of TF, the latter being a strong inhibitor of coagulation. The model also 

predicted the classic thrombus architecture of an inner core of fully activated platelets, and 

an outer shell of less-activated platelets (56). Importantly, this is a model of clotting on a 
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surface and does not consider boundary conditions associated with bleeding 

hemodynamics.  

Xu et al. used interacting submodels to develop a multiscale simulation of thrombus growth 

(57). A coagulation cascade was coupled with a stochastic cellular Potts model of platelet 

states (motion, adhesion, deformations from the flow, activation state, etc.).  Additionally, 

the Filipovic-Tsuda model used dissipative particle dynamics (DPD) to model thrombosis 

(58). The model explicitly accounts for platelet motion and interactions with other platelets 

and the vessel wall. By integrating the DPD equations in time, the model was able to 

simulate thrombotic events in small stenotic flow channels while explicitly tracking the 

behavior of each individual platelet over time. Again, these thrombosis models do not 

consider the boundary conditions of bleeding and hemostasis. 

1.5	Machine	learning	in	trauma	
 

The Flamm-Diamond model used a patient-specific NN model (39) as one of four 

interacting submodules of a multi-scale simulation of thrombosis under flow. The model 

required simultaneous solution of the velocity field in the presence of a growing clot via 

the Lattice Boltzmann method, solution to the convection-diffusion-reaction equation via 

the Finite Element Method (FEM) for the concentration profiles of ADP and TXA2, platelet 

activation states in response to concentrations of soluble agonists from the NN, and platelet 

motion and binding via the Lattice Kinetic Monte Carlo (LKMC) method. A platelet drift 

velocity and an inlet platelet concentration distribution biased to be larger near the walls 

were included to account for red blood cell motion. The NN was able to provide patient-
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specific platelet information making it a highly valuable tool for predicting blood clotting 

under flow, as well as predicting the ranked potency of several drugs. This represented the 

first instance of patient-specific predictions of platelet deposition under flow and may have 

consequences in determining responses to therapy in the future.  This model was extended 

(Lu-Diamond model) to include thrombin-dependent platelet signaling during clot buildup 

in the presence of various pharmacological inhibitors (59). While no models yet calculate 

intrathrombus fibrin generation and fibrins anti-thrombin-1 activity, the Lu-Diamond 

model imposed a biphasic wall flux of thrombin that recapitulates the massive inhibitory 

action of fibrin against thrombin. Recent measurements prove that most thrombin is 

captured by intrathrombic fibrin [67].  

Current limitations in various clotting models include the difficulty of 3D simulation, lack 

of pulsatile flow conditions, and difficulty of solving problems on a full arterial length 

scale. Also for multicomponent reaction systems, different sets of reaction networks and 

parameterizations may equally fit the data [57], making validation difficult. To date, few 

mathematical models have been tested for clots growing under diverse flow, biochemical, 

and pharmacological conditions. Through course graining with an imposed thrombin 

generation rate at a tissue factor surface, Lu et al. was able to simulate clotting under flow 

for several relevant pharmacological conditions. However, a full simulation of thrombin 

generation, platelet activation, and fibrin polymerization has not yet been validated for 

healthy blood or for trauma blood. Additionally, clotting models have not been tested for 

boundary conditions of bleeding where clot strength is an important emergent property. 
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Also, flow-clotting models have not yet been parameterized for trauma blood, where 

platelets are so highly dysfunctional [33].  
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CHAPTER 2 Coagulopathy Implications using a multiscale model of traumatic 
bleeding matching macro and microcirculation 
 

2.1 Abstract 

Quantifying the relationship between vascular injury and the dynamic bleeding rate 

requires a multiscale model that accounts for changing and coupled hemodynamics 

between the global and microvascular levels. A lumped, global hemodynamic model of the 

human cardiovascular system with baroreflex control was coupled to a local 24-level 

bifurcating vascular network that spanned diameters from the muscular artery scale (0.1 – 

1.3 mm) to capillaries (5-10 μm) via conservation of momentum and conservation of mass 

boundary conditions. For defined injuries of severing all vessels at each nth-level, the 

changing pressures and flowrates were calculated using prescribed shear-dependent 

hemostatic clot growth rates (normal or coagulopathic). Key results were: (1) the upstream 

vascular network rapidly depressurizes to reduce blood loss, (2) wall shear rates at the 

hemorrhaging wound exit are sufficiently high (~10,000 s-1) to drive von Willebrand Factor 

unfolding, (3) full coagulopathy results in >2L blood loss in 2  hours for severing all vessels 

of 0.13 to 0.005 mm diameter within the bifurcating network, whereas full hemostasis 

limits blood loss to <100 mL within 2 min, and (4) hemodilution from transcapillary refill 

increases blood loss and could be implicated in trauma induced coagulopathy. A sensitivity 

analysis on length/diameter ratio and branching exponent demonstrated that bleeding was 

strongly dependent upon these tissue-dependent network parameters. This is the first 

bleeding model that prescribes the geometry of the injury in order to calculate the rate of 
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pressure-driven blood loss and local wall shear rate in the presence or absence of 

coagulopathic blood. 

2.2 Introduction 

Uncontrolled bleeding is the third leading cause of mortality in the US and is the leading 

cause of death in those 35 years of age and younger (60). Predicting patient bleeding 

trajectories (rate of bleeding and rate of hemostasis) following injury may help identify 

patients at risk for trauma-induced coagulopathy (TIC) or guide transfusion decisions (61–

64). However, traumatic bleeding is intrinsically multiscale and heterogeneous in both 

space and time. Tissue trauma simultaneously drives microscopic cellular responses via 

biochemical reaction networks operating at sub-second timescales, while also being 

modulated by patient-scale processes (e.g., baroreflex) occurring over minutes and hours. 

Consequently, a computational model can help relate the evolution of global hemodynamic 

quantities such as blood pressure, heart rate, and total blood volume with local injury site 

properties such as local blood flow and bleeding rates, wall shear rates, local pressure 

gradients, and clotting dynamics.  

 

Models of the cardiovascular system may be broadly classified into three categories 

according to their spatial resolution. At the patient scale are global hemodynamic (GH) 

models that describe the overall state of the patient in terms of quantities such as heart rate, 

blood pressure, and total blood volume. GH models usually represent a patient by a series 

of interconnected 0-dimensional (lumped) compartments, each of which is characterized 
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by a flow resistance and capacitance (11,65–67). GH models may include descriptions of 

various phenomena (e.g., baroreflex (67,68)) and disease states (e.g., hypertension (66)). 

Next, branching vasculature network (BVN) models are used to describe blood flow 

through continuously bifurcating blood vessels from the arterial to the capillary scale (~mm 

- µm) (27,69). Here, bifurcating networks are defined by an initial root vessel diameter, a 

length-to-diameter (L/D) relationship, and rules for vessel bifurcation (i.e., branching angle 

and vessel diameter). Such networks have been used primarily for investigating flow 

heterogeneity, oxygen transport, and understanding how disruptions in the vessel network 

architecture are implicated in disease. Finally, single-vessel (SV) models (~µm) have been 

constructed to model clotting under flow in response to collagen and tissue factor surface 

(54,57,59). These models typically employ interacting submodules for solving for 

concentration gradients of agonists involved in clotting, flow fields in the presence of a 

growing clot, and platelet motion.  

 

To date, mathematical models of hemorrhage generally have relied on GH formalisms 

coupled with a prescribed bleeding rate (20,22,70,71).   The Reisner-Heldt model simulated 

hemorrhage by connecting a resistive pathway to atmospheric pressure and tuning the 

resistance to match blood volume loss  to experimental data (70). The Neal-

Bassingthwaighte model used live arterial blood pressure and heart rate measurements 

from bleeding pigs to make predictions about total blood volume and cardiovascular output 

within the pig (20). The Ursino model was used to study the effects of a 10% blood volume 

reduction over a 5 second interval on various bodily responses (67). However, a more 
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predictive framework for bleeding requires explicit connections between bleed rates and 

damage to individual blood vessels. Recently, Canuto et al. coupled a GH model of the 

cardiovascular system with a 1-dimensional representation of large systemic arteries to 

study trauma by exposing a severed blood vessel to atmospheric pressure and modeling 

tourniquet application to the damaged region (68). Our model couples a GH model to a 

damaged BVN to quantify the response to bleeding in the absence of external intervention 

and in the presence/absence of factors such as vasoconstriction, high shear rate clotting, 

and hemodilution. 

 

Here, we present a multiscale model of a trauma patient that spans 6 orders of magnitude, 

from the patient scale (m) to the single vessel scale (µm). The model couples a global 

hemodynamic module with a bifurcating vascular network model containing 24 

generations of vessel diameters for a total of 33,554,431 vessels. Wound states are 

specified by deleting a portion of the vessel network and imposing atmospheric pressure 

conditions at the wound site. Hemostasis is modeled according to a prescribed shear-

dependent, transient sealing rate function that is based on direct measurements of healthy 

blood clotting under flow (72). External interventions such as tamponade were not included 

as we aimed to observe the bodily response to trauma. Using this modeling framework, we 

study bleeding dynamics due to wounds at different vessel scales, with and without 

hemostasis. We also demonstrate, for the first time, the importance of local 

depressurization near wound sites on predicted bleeding rates. Additionally, the 

simulations predicted pathologically high wall shear rates on the order of 104 which have 
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been demonstrated to elongate and multimerize von Willebrand Factor (VWF) into thick 

fibers (73,74). These calculations, which include baroreflex, vasoconstriction, and 

hemodilution, support the contention that wall shear rates are extremely high during 

traumatic bleeding. 
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2.3 Model Description  

2.3.1 Global Hemodynamic Model (GH) 

The global hemodynamic module employed in this study is a variation of the Ursino model 

(14,67,75), which consists of multiple, interacting 0-dimensional (lumped) arterial and 

venous compartments (Fig. 2-1). The compartments are arranged in a combination of series 

and parallel configurations and coupled to an elastic pulsatile description of the heart and 

a baroreflex control loop to model the cardiovascular system. The model enforces 

conservation of mass within each compartment so that  

 

 
 

(1) 

 

where Pi, Ci, and Fi are, respectively, the pressure, capacitance, and flowrate through the 

ith compartment and Fin is the incoming blood flow rate. Equation 1 applies to each of the 

following compartments shown in Fig. 2-1: pulmonary arteries (pa), pulmonary peripheral 

(pp), pulmonary veins (pv), systemic arteries (sa), systemic peripheral (sp), splanchnic 

veins (sv), skeletal muscle veins (mv), brain veins (bv), and coronary veins (hv). For the 

large sa and pa compartments, an additional force balance is imposed to account for blood 

acceleration, i.e.,  
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(2) 

 

where Li and Ri are the inertance and resistance of the compartment, respectively, and Pj is 

the pressure of the downstream compartment.  

 

Fig. 2-1 Global hemodynamic model. Closed-loop flow diagram of the global hemodynamic 
(GH) model in the absence of bleeding. The patient is represented by interconnected, lumped, 
compartments, composed of resistances, capacitances, and - in large arteries - inertances. P: 
Pressure, C: Capacitance, R: Resistance, L: Inductance, la: left atrium, lv : left ventricle, sp: 
splanchnic peripheral, sv: splanchnic venous, ep: extrasplanchnic peripheral, ev: extrasplanchnic 
venous, bp: brain peripheral, bv: brain venous, hp: heart peripheral, hv: heart venous. mp: muscle 
peripheral, mv: muscle venous. 
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The extrasplanchnic venous (ev) pressure is automatically constrained by the total blood 

volume to guarantee conservation of mass in the circulatory system, i.e.,  

 

 

 
(3) 

 

where Vtot is the total blood volume, Vrv  and Vlv are the volumes of the right and left 

ventricles respectively, and Vu is the total unstressed blood volume in the body. Vu is 

computed as the sum of the unstressed blood volume in the individual compartments,  

 

 
 

(4) 

where the summation includes the sa, sp, sv, ev, mv, bv, hv, pa, pp, pv, extrasplanchnic 

peripheral (ep), muscular peripheral (mp), brain peripheral (bp), heart peripheral (hp), right 

atrium (ra), and left atrium (la).  For all simulations presented in this study, the total blood 

volume was initialized to 5.3L, which corresponds approximately to the blood volume of 

a 80kg male (76). 

 

The driving force of the global hemodynamic model is given by the pressure-volume 

relationship of the left-heart 
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(5) 

Where Emax,lv is the elastance of the left ventricle, Vu,lv is the unstressed volume of the left 

ventricle, P0,lv and KE,lv are coefficients that govern the exponential pressure decay at 

diastole, Rlv is the resistance to flow in the left ventricle, and Fo,l is the cardiac output from 

the left ventricle. The first term assumes a linear relationship between left-ventricle 

pressure at end systolic volume, while the second term assumes an exponentially decaying 

relationship at diastole. The function j(t) describes ventricle activation and is given by, 

 

 

 

 

(6) 

where u is a dimensionless variable representing the fraction of the cardiac cycle, Tsys is 

the duration of systole, and T is the heart period. Equations (5) and (6) govern the pressure 

and pulsatile nature of the heart. An analogous set of equations was used to simulate the 

pulmonary circulatory system.  
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The arterial baroreflex is modeled by a set of 11 equations controlling vagal and 

sympathetic stimulation in the body (see Ref. (14,67,75)). The following properties are 

impacted by the baroreflex response: ventricle elastances, unstressed blood volumes, and 

peripheral resistances. Each property, q, is updated temporally according to  

   

  (7) 

 

where Dq(t) is the change in the property over a specified time interval due to baroreflex 

control, and q0 is the basal value. The heart period also is impacted by the baroreflex 

response,  

 

  (8) 

 

where DTs represents sympathetic stimulation influence on the heart period, DTv is the vagal 

stimulation influence on heart period, and T0 is the basal heart period.  

 

2.3.2 Branching Vasculature Network Model (BVN)  
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We adopt the branching vasculature network model of Yang et al. (27), which specifies an 

initial arterial root diameter, a length-to-diameter ratio for all vessels, and assumes a power 

law relationship that governs how the parent vessel bifurcates into two daughter vessels, 

i.e.,  

 

  (9) 

 

where d0 is the diameter of the parent vessel, d1 and d2 are the diameters of the daughter 

vessels, and k is the branching exponent. This bifurcation relationship has been well-

studied and extensively reviewed, with k = 3 frequently referred to as Murray’s “minimum 

dissipation principle” in 2 dimensions (77). Bifurcation angles were determined based upon 

the total volume minimization principle of Murray (77), i.e., 

 

 
 

(10) 

 

In the present study we assume that the two daughter vessels have the same diameter, i.e., 

θ1 = θ2  at all vessel sizes. Yang et al. generated a 3-dimensional vessel network by 

introducing a rotation at each generation. In ref. (27), rotation angles at each generation 

were determined by optimizing an objective function that balances space filling, 
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gravitational, and centripetal forces. Here, we assume a fixed 60° rotation angle for 

simplicity (Panel A, Fig. 2-2). Note that the choice of rotation angle only affects the vessel-

to-tissue volume ratio and does not impact the hemodynamic results.  

 

Fig. 2-2 Bifurcated vasculature network and pressure matching.  A schematic of a 3-generation 
branching vasculature network (BVN) is shown (A) along with examples of a first generation (1G), 
second generation (2G), and third generation (3G) vessel sever. The diameter (D), length (L), and 
the angles between each of the blood vessels within the same plane (θ), are provided for clarity. 
Traced lines show where severs to the network take place when referring to either a 1G, 2G, or 3G 
sever. Vessel diameters and flowrates of a 24-generation symmetric branching network (no 
bleeding) are shown in the Table (B). Generations 0-11 represent small arteries, 12-21 represent 
arterioles, and 22-24 represent capillaries.   

To solve for the flow distribution in the BVN, The Poiseuille flow equation was augmented 

with a bifurcation correction term  to account for the additional viscous dissipation 

associated with a bifurcation in all blood vessels with a diameter <60μm (78). Yang et al. 

used 3D flow simulations to show that this additional flow resistance arises as an additional 

parameter in the Poiseuille flow equation:  
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(11) 

 

where ΔP is the pressure drop, μ is the local viscosity, L is the length of the vessel, d is the 

diameter, and λ is the correction due to bifurcation. The correction term is independent of 

the size of the angle of bifurcation, suggesting that the act of separating the flow into two 

distinct parabolic flow streams is what provides the additional resistance to flow (78). The 

standard Poiseuille flow equation was used to describe terminating vessels. The blood 

viscosity is estimated by assuming a constant hematocrit of 45% and accounting for the 

apparent vessel diameter-dependent viscosity (Fahraeus-Lindqvist effect) with the Pries et 

al. measurements (79),   

 

 

 
(12) 

 

where  

  (13) 
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By enforcing conservation of mass and momentum at the bifurcation points, prescribing 

pressure boundary conditions at terminal points, and recognizing that the inlet pressure 

condition to every node of the same generation must be equal for a symmetric vascular 

network, it is possible to compute the pressure and flow distribution through the entire 

network.  

 

2.3.3 Multiscale Coupling Strategy  

 

In the following discussion, the muscular peripheral (mp) compartment is used to 

demonstrate the multiscale coupling strategy, although it may be equivalently applied to 

any compartment. The principal notion of our strategy is to divide a GH compartment into 

explicit and implicit sub-compartments. Here, the explicit sub-compartment is represented 

by a BVN that resolves a portion of the blood vessel network in the compartment, while 

the implicit sub-compartment accounts for the remainder. Moreover, the BVN may be 

further subdivided into intact and wounded portions, the latter representing a traumatic 

injury. 

 

As shown in Fig. 2-3, the overall resistance of the compartment may be expressed as a 

combination of four distinct resistances. The resistance R’ corresponds to the (implicit) 

portion of the compartment comprised of vessels larger than those represented by the BVN. 

The exit pressure leaving this subcompartment is P* (see below). The subcompartment 



37 
 

corresponding to the resistor R’’ represents vessels that are of equal size to those in the 

BVN but that are not explicitly resolved. The inlet and outlet pressures for this sub-

compartment, which is parallel to the BVN, are P* and Pout, respectively. The BVN itself 

is subdivided into two portions—the first consists of all intact vessels with outlet pressure 

Pout and the second consists of all severed vessels with outlet pressure Patm, i.e., neglecting 

any interstitial resistance. The two portions of the BVN are characterized by resistances, 

RBVN and Rw, respectively.  

 

Fig. 2-3 Multiscale coupling strategy for boundary condition matching where the lumped 
compartment, macroscale description of resistance (Ursino model) (A) was fully-resolved for 
traumatic bleeding in parallel with an intact tissue (B). The total resistance value Rtot from the 
Ursino Model is divided into a four-resistance subsystem (R’, R’’, Rw, RBVN). R’ represents the 
implicit portion of the compartment and is comprised of vessels larger than the branching 
vasculature network (BVN). R’’ represent vessels that are of equal size to those of the BVN but 
were not explicitly resolved. Rw is the resistance to bleeding, effectively infinite in the absence of 
bleeding but finite in the presence of bleeding. RBVN is the overall resistance of the BVN computed 
based on fully-developed, steady state Poiseuille flow with the correction term included (equation 
(11)) for all relevant blood vessels. The inlet and outlet pressure boundary conditions for intact 
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vasculature (no bleeding) were set to Pin = 70 mmHg and Pout = 25 mmHg. In simulations of 
bleeding, the outlet pressure was set to Patm = 0 for exposure to the atmosphere. 

 

In the absence of bleeding, i.e., when there are no severed vessels, Rw is effectively infinite, 

and all blood flow is directed to intact vessels. The relationship between the resistances R’, 

R’’, and RBVN is shown in panel B of Fig. 2-3, i.e.,  

 

 

 

(14) 

 

The value of RBVN is analytically computed on the basis of fully-developed, steady-state 

Poiseuille flow across all vessels in the BVN (with the bifurcation correction term included 

for all relevant blood vessels). The value of R’ is chosen such that the average pressure 

distribution across the BVN vessel size range is consistent with physiologic values (80,81). 

For example, for the BVN subcompartment used in this study the P* at the inlet artery 

diameter of 1.3 mm is ~70 mmHg. The value of R’’ is then specified by equation (14).  

 

As noted above, when a wound is present, the BVN domain is split into a ‘wound’ sub-

network with finite resistance Rw and an ‘intact’ sub-network with a reduced resistance, 

RBVN. Conservation of mass now leads to a closed-form expression for P*(t) given by,  
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(15) 

 

Rw may be computed in the same way as RBVN, i.e., assuming the Poiseuille flow across all 

severed vessels. Note that this is a well-posed operation for any combination of severed 

vessels – even in the asymmetric BVN (i.e. differences in diameters/lengths of daughter 

vessel pairs). Imposing a mass balance at each bifurcation point and specifying the 

pressures at terminal vessels generates a set of linear equations of the form 

  

 
 

(16) 

 

Where A is a sparse matrix of resistances associated with each bifurcation point, b is a 

vector with non-zero elements only where pressure boundary conditions apply, and p is a 

vector of nodal pressures and can be used to calculate the pressure distribution through the 

network, and subsequently flowrate and wall shear rate distributions. Since both of the 

geometric properties (length and diameter) and the blood viscosity (a function of diameter, 

and diameter is known) in each of the blood vessels is known throughout the duration of 

the simulation, the matrix A can change with time but is never undetermined. LU 
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decomposition with partial pivoting can be used to solve for the pressure distribution of the 

network, noting that this is simplified in a symmetric bifurcating network since the nodal 

pressures of the same generation must be the same. 

	2.4	Results		

2.4.1 Validation 

 

The flowrate and pressure profiles through the vascular network in the absence and 

presence of bleeding are shown in Fig. 2-4. In the absence of bleeding, pressure and 

velocity values are in agreement with in vivo measurements as shown in appendix A Figure 

A1 for the simulation conditions in the range of = 6-20. (80,81). The flowrate decreases 

exponentially since the network is symmetric and mass is conserved at every bifurcation 

in the network. The pressure profile decreases linearly over the first 17 generations since 

each daughter vessel has approximately twice the resistance of its parent vessel when the 

branching exponent is ~3. Once the diameter of the vessels reaches the 5-80 μm range, 

however, the resistance of each daughter vessel increases more than twice the amount of 

its parent vessel because of the apparent viscosity increase in smaller blood vessels (82). 

This causes a larger resistance and pressure drop at the arteriole – capillary scale, consistent 

with the notion that arteriole scale blood vessels are vital for controlling arterial blood 

pressure (ABP).  
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Fig. 2-4 Pressure (A) and flowrate (B) profiles in the presence and absence of acute bleeding.  
For complete severing at t = 0 of 2n vessels at n = 3, 10, 18, 23 generation (A), network 
depressurization was simulated successfully for the pressure matching condition of Pin = 70 mmHg 
for wounds n = 10, 18, 23 (red curves).  For n = 3, depressurization did not allow successful pressure 
matching and caused a hemodynamic discontinuity by not matching the Pin = 70 mmHg condition. 
For n = 10 - 25 generation wounding, the network depressurizes due to the sudden exposure to 
atmospheric pressure.   Under all conditions of wounding, the flow rate (B) through the network 
increases relative to the intact network as a result of loss of downstream resistance (i.e., Pout = 0).  
As wounds increase in severity by severing larger vessels, the overall flowrate through the network 
increases 6-fold from 0.09 mL/s (no wounding) to 0.63 mL/s for n = 10 generation wounding.   

 

To our knowledge, quantitative data is not available for human bleeding rates from defined 

wounds under coagulopathic hemorrhage.  To validate the model of pressure-driven 

bleeding, simulations were performed to determine if the experimental results of Silva et 

al. could be reproduced (83). Silva et al. tracked cumulative blood loss and mean arterial 
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pressure for pressure-driven hemorrhage in heparinized dogs with specified initial blood 

loss rates. The initial normalized blood loss rate in the human simulation was set equal to 

that of the reported experimental condition in the canine model (~0.026 mL/sec per kg at t 

= 0). While the wounding geometries were different in the human simulation and the canine 

model, matching the initial bleed rate allowed accurate prediction of the dynamics of 

systemic blood pressure and blood volume.  As bleeding proceeded for 6000 s in each case, 

there was strong agreement between the model and the in vivo measurements as shown in 

Fig. 2-5. 

 

Fig. 2-5 Model validation in the presence of bleeding. Comparison of multiscale model with 
normalized in vivo measurements of blood loss rate (A), mean arterial pressure (B), and total blood 
volume (C) in heparinized bleeding dogs (83). Simulation was performed with the same initial 
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normalized blood loss rate as the reported experimental condition. Excellent agreement can be seen 
between the two. The initial total blood volume of the dog was estimated assuming a blood volume 
of 85 mL/kg in the dog (84) . 

2.4.2 Depressurization of vessels 

 

Blood pressure in arteries and arterioles is typically a minimum of 30 mmHg above 

atmospheric pressure and when one of them is severed, blood vessels near the wound site 

depressurize to equilibrate with the atmosphere. Consequently, the inlet pressure boundary 

condition cannot be set by the GH model if the root vessel is affected by the 

depressurization. This effect is seen in Fig. 2-4, where the pressure distribution is shown 

in the bleeding and non-bleeding networks. In the absence of bleeding, the pressure drop 

across the entire vasculature tree is 45 mmHg. Severing a generation of blood vessels leads 

to a pressure reduction (depressurization) that propagates up to the root blood vessel 

(generation 0). The pressure must be set by the global hemodynamic module upstream of 

the vessel sever where the effects of the local depressurization have not been felt. Directly 

specifying the inlet pressure boundary condition to the severed vessel would overestimate 

the true bleeding rate of the system since it would overestimate the pressure. For severs 

made at generation n ≥ 10, the depressurization has a negligible effect on the root blood 

vessel (Fig. 2-4). Therefore, all wound severs described in this paper were made to 10th 

generation blood vessels and beyond. 
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2.4.3 Response to vessel severing in the absence of clotting   

 

In order to quantify the relative effect of vessel dimensions on wound severity, entire 

generations of vessels from the vasculature network were severed. The evolution of global 

hemodynamic quantities as a result of severing all the 10th, 13th, 18th, and 23rd generation 

blood vessels are shown in Fig. 2-6. While simulations with a fully functional baroreflex 

do include tachycardia and vasoconstriction, they did not include vasoconstriction of the 

damaged BVN unless explicitly specified to quantify its effects. Therefore, in the absence 

of local vasoconstriction, clotting, and external intervention of any kind, vessel severing 

patterns that are exposed to atmospheric pressure can be quite serious with ~1.0 – 2.4 L of 

blood loss predicted just 2 hours post-injury. Complete nonsurvivable hemodynamic 

collapse would be expected at ~2 - 2.5 L of blood loss in the absence of external 

intervention (85). As blood is lost from the circulatory system, arterial blood pressure 

(ABP) and blood loss rate (BLR) decrease since the pressure drop at the wounds decrease 

as mean arterial pressure decreases.  Heart rate increases (Fig. 6B) as the baroreflex 

responds to maintain blood perfusion as blood pressure is lost.  

 

The effect of resistance on total blood loss is also demonstrated in Fig. 2-6. The difference 

between all 10th generation blood vessels being severed (vessels 1024-2047) and all 13th 

generation blood vessels being severed (vessels 8192-16383) is the downstream resistance 

provided by the additional bifurcations. The simulation predicts that after 2 hours, this 
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additional resistance can prevent the loss of ~0.1 – 1.5 L of blood, a dramatic difference in 

blood loss over this time frame. While it has been known that resistance is imperative to 

maintaining hemostasis, this is the first time the effect has been quantified. Since the only 

way to drive blood loss rate to zero in this simulation is with decreasing blood pressure as 

a result of blood loss, non-survivable hemodynamic collapse is expected in all four cases 

in the absence of hemostasis.   

 

Fig. 2-6 Global and local hemodynamics following different injuries (no hemostasis). Arterial 
blood pressure (ABP), blood loss rate (BLR), heart rate (HR), and total blood volume (TBV) 
evolution as a result of severing all 10th, 13th, 18th, and 23rd generation blood vessels. A moving 
average was used to remove systole and diastole fluctuations in panels A - C for visual clarity.  As 
blood is lost, blood pressure drops while heartrate increases due to baroreflex. The rate of blood 
loss declines with time as the driving force (ABP) declines. The sensitivity of bleeding to prevailing 
ABP is less pronounced for injury of n = 23 generation vessels due to the added upstream resistance 
and diameter-dependent viscosity. 
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Evolution of ABP, cardiac output (CO), and the cardiac cycle curve due to severing all 

generation 10 blood vessels are shown in Fig. 2-7. All three hemodynamic quantities 

suggest that the greatest change in the state of the patient occurs in the first 2000 seconds, 

which is when blood loss rate is highest. Both blood volume and blood pressure decrease 

because of blood loss explaining the shift in the cardiac cycle to the lower-left corner of 

the plot. In the cardiac cycle curve, the magnitude of the cardiac output pulses decreases 

significantly although the frequency increases, suggesting that the heart is beating faster 

but less efficiently to maintain blood perfusion. This can be quantified by examination of 

the cardiac curve, where the ratio of the area within the curve post-bleeding and prior to 

bleeding can be thought of as a measure of heart efficiency. After just 4500 seconds of 

bleeding, the efficiency of the heart has already decreased to below 20% of the non-

bleeding state.  
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Fig. 2-7 Global hemodynamics changes in response to severing all generation n = 10 vessels 
at 0, 1000, 2000, and 3000 s post-injury.  Panels A-D and E-H show arterial blood pressure (ABP) 
and cardiac output (CO) over a 5 second time interval, respectively. As bleeding occurs, the heart 
rate increases due to the action of the baroreflex (number of pulses in each panel increases from 
top to bottom). The cardiac cycle curve at the same time points is shown in panel I – the efficiency 
of the heart rapidly decreases to below 25% in less than 2 hours. All three quantities suggest that 
the greatest change in the state of the patient occurs in the first 1500 seconds, which is when blood 
loss rate is highest. The effect of the baroreflex (J) is quantified, where the presence of the 
baroreflex increases blood loss due to its attempts to maintain blood pressure during bleeding. 
However, if the baroreflex can still initiate vasoconstriction then the added resistance of the 
shrinking, bleeding, blood vessels can greatly blood loss. 

In order to examine the effects of the baroreflex in maintaining hemostasis, all 10th 

generation blood vessels were severed and cumulative blood loss was tracked. 

Vasoconstriction to the local, damaged BVN was simulated by assuming vessels with 

diameters in the 100μm < d < 550μm range experienced a 30% diameter reduction and 

vessels with diameters in the 10μm < d < 100μm range experienced a 60% reduction over 
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1 minute, consistent with reported values (86,87). In the case where local vasoconstriction 

does not occur, blood loss was larger in the presence of the baroreflex than during its 

absence - as shown in panel J of Fig. 2-7. This can be attributed to the baroreflex’s attempt 

to increase arterial blood pressure when it begins to decrease as a result of the blood loss. 

In doing so however, blood pressure increases and so does the rate of blood loss. Local 

vasoconstriction can dramatically increase resistance and limit bleeding, with ~ 1.2 L less 

blood lost over a 2-hour interval.  

 

2.4.4 Implications of the Vasculature Network Geometry and Location 
 

The branching exponent and the length to diameter ratio of the BVN are known to vary 

greatly depending on tissue or organ (88,89). Sensitivity analyses were performed on both 

parameters, and the root vessel diameter, to test how the geometry of the BVN can affect 

bleeding. A sensitivity analysis on the ratio of implicit resistances, R’/R’’, was also 

performed in order to test how sensitive the blood loss rate was to the pressure of the root 

vessel. Fig. 2-8 shows the sensitivity analysis results of all four quantities by plotting 

cumulative blood loss during the first hour of bleeding in the absence of clotting and as a 

result of all 10th generation blood vessels being severed. Interestingly, blood loss was found 

to be highly sensitive to all parameters, especially branching exponent where a minor 

increase in the branching exponent can drastically increase the amount of blood lost. This 

suggests that location of the injury can be a large determinant in injury severity. Blood loss 

predictions for 1000 simulations when this parameter is randomly chosen between 2 and 3 
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at generation for the entire network is shown in Fig. A2, further highlighting its 

significance.  

The sensitivity to the ratio, R’/R’’, suggests that the type of vessel can be a strong indicator 

of injury severity, with wounds to high pressure vessels being significantly more severe.  

 

Fig. 2- 8 Effects of network properties on blood loss. Blood loss profiles for n = 10 wound in the 
absence of hemostasis due to changes in: branching exponent, k (A), the length/diameter ratio, β 
(B), the ratio, R’/R’’ (C), and root diameter at n = 0, do (D).  The branching exponent has the 
strongest effect on bleeding as downstream diameters are larger (less resistance) at larger values of 
K. 

2.4.5 Effect of hemostatic closure of severed vessels 
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The effects of clotting on the bleeding outcome of the patient were simulated by assuming 

fully functional platelets in a healthy patient and hemodilution in a trauma patient. For 

simplicity, all of the mechanistic steps involved in simulating blood coagulation and 

platelet adhesion were not included. Rather, a parameterization of measured clot growth 

rates as a function of shear rate for healthy, whole blood perfused over pyrex was imposed 

on the damaged blood vessels (72,90). Instantaneous seal rates could then be used to 

compute cumulative blood vessel diameter changes as a result of the clotting. The 

parametric relationship is: 

 

 

 

 

(17) 

 

where S is sealing rate (μm/s), γ is wall shear rate (1/s), and a2, a1, and a0 are fitted 

coefficients to smooth the sharp bifurcation between the other two power law fits. Their 

values are a2 = 2.405*10-8 μm*s, a1 = 3.502*10-4 μm, and a0 = -0.565 μm/s. Wall shear rate 

was calculated with the standard formula: 

 
 

(18) 
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where the subscript i references the specific blood vessel. In a circular cross-section, seal 

rate was assumed to be twice the clot height growth rate and vessel clotting was assumed 

to take place over the entire length of the blood vessel. The response curves as a result of 

all 10th generation blood vessels being severed are shown in Fig. 2-9.  Loss of downstream 

resistance caused wall shear rate to mediately increase to ~  s-1. As the severed blood 

vessel seals due to hemostatic clotting, wall shear rate further increased to 3-5x the initial 

value. However, once clot growth had substantially reduced the available lumen, the 

pressure drop became large enough to significantly reduce wall shear rate, seal rate, and 

blood loss rate. After just 100 seconds post-wounding, full hemostasis was achieved. The 

action of the baroreflex can be seen to have a positive effect on simulations, where local 

vasoconstriction reduces blood loss by ~40 mL.  
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Fig. 2-9 Global and local hemodynamics with healthy hemostasis.    Uniform clotting occurs 
over the entire length of the severed blood vessel (A) reducing the initial diameter of the blood 
vessel (Do) to the effective diameter (D) at a rate given by the seal rate – wall shear rate function 
parameterized by the experimental measurements of Colace et al. (72) and Bark et al. (90) (B) . 
Wall shear rate (C), blood loss rate (D), seal rate (E), and total blood volume (F), evolution as a 
result of severing all generation 10 vessels in the presence of shear-dependent clotting. The effect 
is dramatic, with blood loss ceasing just ~100 seconds into the simulation. 

Fig. 2-9  

 

Hemodilution was simulated by running simulations with different hematocrits. This 

required modification of the seal rate–shear function since hematocrit is known to be a 

strong modulator of clot growth rate via driving platelet margination as well as altering the 

wall shear rate. The seal rate - shear rate function shown in Fig. 9B was rescaled by 
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hematocrit (h) according to the measurements of Li et al. (91) (Insert of panel C Fig. 2-10). 

Simulations at h = 0.23, 0.30, and 0.45 (Fig. 2-10) demonstrated the risk of low hematocrit, 

with clotting time and total blood loss being an order of magnitude larger for h = 0.23 

compared to h = 0.45.  Furthermore, since blood viscosity is a function of hematocrit, the 

blood loss rate increased by a factor of ~2 as hematocrit decreased. In all three cases, wall 

shear rates continue to reach ~104 s-1, suggesting that vWF elongation can occur during 

traumatic bleeding even with vasoconstriction and hemodilution. These results suggest that 

hematocrit changes as a result of transcapillary refill could contribute to TIC via 

hemodynamic mechanisms.  
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Fig. 2-10 Global and local hemodynamic evolution for different hematocrits. Wall shear rate 
(A), blood loss rate (B), seal rate (C), and total blood volume (D), evolution as a result of severing 
all generation 10 vessels in the presence of shear-dependent clotting and for different hematocrits. 
Local vasoconstriction was not included to examine the sole effect of the hematocrit change. Seal 
rate function rescaled by data presented by Li et al. (91). While all three have similar wall shear 
rate profiles, total blood loss dramatically increases by ≈1L as a result of a 2-fold decrease in 
hematocrit. This suggests that hemodilution could be a large component of trauma induced 
coagulopathy (TIC). 

2.5 Discussion 

A bleeding bifurcating vasculature network (BVN) model was coupled to a global 

hemodynamic (GH) model in order to predict the bleeding trajectory of a patient in 

response to defined tissue injury. This is the first computational model to relate wound 

geometry on the microvascular scale to global hemodynamic changes in a patient. 
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Furthermore, the dimensionality of the GH model is unaltered by incorporation of the BVN 

thus preserving its computational efficiency.   

 

The simulations emphasized the importance of vascular network depressurization, vascular 

geometry, and local hemodynamics. The model predicted that patient trajectories were 

highly dependent upon the geometry of the bleeding vasculature network, in particular the 

branching exponent, k, and the length to diameter ratio, β. Patient outcome may be highly 

dependent upon wound location since these parameters are known to vary significantly in 

the body. The simulation results presented in this paper were all generated using k = 3 and 

β = 20 (except during sensitivity analyses). With a symmetric bifurcation and a constant 

rotation angle of 60°, it is possible to calculate an order of magnitude approximation of the 

volume spanned by the BVN. Severing all generation 10 vessels would roughly correspond 

to a 10cm3 (2cm * 2cm * 2.5cm) and since each finger is known to contain 2 palmer digital 

arteries, generation 10 severs should roughly correspond to severing the end of a fingertip.  

 

A coarse-grained hemostasis function was used in this study. Future work can use full 

simulation of clotting (59) based upon platelets from trauma patients (92). Alternatively, 

microfluidic measurements of clot growth using coagulopathic blood is possible (91). 

Importantly, the simulations predicted pathologically high wall shear rates on the order of 

104 s-1. Colace et al. (73) and Herbig et al. (74) demonstrated that human Von Willebrand 

Factor (VWF) multimerizes at shear rates of these orders of magnitude suggesting that 
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wounds of these sizes and pressures can lead to VWF unfolding and fiber formation. One 

of the challenges associated with incorporating clotting under flow models is the associated 

computational cost and lack of 3D simulations at the arterial length scale. Furthermore, it 

is well-established that platelets in the traumatized patient are highly dysfunctional (93), 

so standard models of platelet aggregation will need to be augmented to account for this. 

 

Furthermore, an important emergent result is the phasic nature of the response to bleeding 

in the presence of clotting. The wall shear rate function shows an initial jump in wall shear 

rate to ~103 s-1 due to the loss of downstream resistance and increased flow rate. Afterwards, 

the wall shear rate in each blood vessel continues to increase as the platelet accumulation 

reduces the effective diameters of the wounded blood vessels. Once the diameters of the 

bleeding vessels reach a critical value, the clotting is sufficiently advanced to reduce blood 

loss rate, seal rate, and wall shear rate. Note that this model does not include the well-

known effect that clot growth experiences an initial delay during in vitro experiments 

involving blood perfusion over a collagen/tissue factor surface; there is a need for an initial 

layer of platelets to aggregate before significant clotting can begin. This effect can be 

captured with a more complex model for clotting under flow (54,57,59).  

 

Limitations of this model can originate from several sources, including the global 

hemodynamic model, the vascular network, the multiscale coupling between them, or 

neglection of some of the mechanisms for maintaining hemostasis.  
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The first potential limitation of the global hemodynamic model is its lumped parameter 

representation of a component of the vasculature. Milisic and Quarteroni et al. have 

provided a proof that the lumped parameter methods used in 0D models of the circulatory 

system are first order discretization’s of 1D models of the cardiovascular system (94). 

While a more complex model that uses higher order discretization would be able to capture 

the pulse-wave transmission effects, these would not affect the evolution of blood pressure, 

heart rate, and blood loss rate and only add computational cost to simulations. Therefore, 

the authors concluded that a standard 0D global hemodynamic model would be appropriate 

for this study. Note that 2D and 3D models of regions of particular interest can also be 

coupled to 0D or 1D GH models, although this was not needed for this particular study 

(95–97). 

 

Platelet and endothelial dysfunction, anticoagulation, hyperfibrinolysis have all been 

implicated during major trauma, an effect known as trauma-induced coagulopathy (TIC) 

(93). The simulations in this model were relatively short (< 2 hours) and the timescale for 

TIC is on the order of many hours. On the other hand, longer simulations would require 

careful consideration of TIC where both variable hematocrit and impaired platelet 

aggregation would need to be included. The BVN also makes several assumptions about 

the geometry of the vascular network for simplicity. The first assumption is parabolic flow 

through rigid, cylindrical, blood vessels. While this is generally a fair assumption, arteries 
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and arterioles may be quite compliant and easily deformable with ~40% changes in 

diameter and non-circular, non-constant cross-sectional shape across the entire length of 

the blood vessel. This assumption leads to inaccuracies in vessel resistance calculations, in 

general underestimating them. However, while the resistance through an individual blood 

vessel is uncertain, the overall resistance of the BVN is more accurately calculated (79). 

Since vessel severs were made a minimum of 10 generations from the root vessel, an 

accurate resistance for the bleeding BVN is still computed.  

 

The multiscale coupling strategy extracts the vascular network model from a lumped 

representation of a component of the cardiovascular system. The local depressurization 

effect however creates a significant limitation in the bleeding patterns that can be 

simulated. The vascular network requires the pressure be set by the global hemodynamic 

model, however the depressurization makes it impossible to set the pressure independent 

of this effect. It is not possible to completely extract the entire lumped parameter into 

constituent blood vessels as this would be too computationally expensive, so wound severs 

must be made a minimum of 10 generations from the root vessel to minimize this error. Of 

course, this limits blood loss patterns predictable by the model as it not possible to sample 

from earlier generations.  

 

The contribution of this work is a model that efficiently predicts the hemodynamic response 

to severing blood vessels from the single vessel scale to the global hemodynamic response 
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as well presents a multiscale coupling strategy for efficient simulation. The developed 

coupling strategy is one that can be used for coupling all lumped parameter models, so long 

as knowledge on the magnitudes of the correct inlet and outlet boundary conditions to the 

resolved model are available. It also directly addresses depressurization as a result of blood 

vessel severing, an effect that is often overlooked and must be addressed to correctly 

predict patient trajectories. 
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CHAPTER 3: USING THE NATIONAL TRAUMA DATA BANK AND MACHINE 
LEARNING TO PREDICT PATIENT MORTALITY AT ADMISSION  

3.1 Abstract 
 

A 400-estimator gradient boosting classifier was trained to predict survival probabilities of 

trauma patients. The National Trauma Data Bank (NTDB) provided 799233 complete 

patient records (778303 survivors and 20930 deaths) each containing 32 features, a number 

further reduced to only 8 features via the permutation importance method. Importantly, the 

8 features can all be readily determined at admission: systolic blood pressure, heart rate, 

respiratory rate, temperature, oxygen saturation, gender, age and Glasgow coma score. 

Since death was rare, a rebalanced training set was used to train the model. The model is 

able to predict a survival probability for any trauma patient and accurately distinguish 

between a deceased and survived patient in 92.4% of all cases. Partial dependence curves 

(Psurvival vs. feature value) obtained from the trained model revealed the global importance 

of Glasgow coma score, age, and systolic blood pressure while pulse rate, respiratory rate, 

temperature, oxygen saturation, and gender had more subtle single variable influences. 

Shapley values, which measure the relative contribution of each of the 8 features to 

individual patient risk, were computed for several patients and were able to quantify 

patient-specific warning signs. Using the NTDB to sample across numerous patient 

traumas and hospital protocols, the trained model and Shapley values rapidly provides 

quantitative insight into which combination of variables in an 8-dimensional space 
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contributed most to each trauma patient’s predicted global risk of death upon emergency 

room admission.  
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3.2 Introduction 
 

Trauma is the third leading cause of mortality in the United States and results in 

approximately 6 million deaths and a cost over 500 billion dollars worldwide each year 

(60,98). A unique characteristic of trauma in relation to other diseased states is not only 

the large patient-to-patient variability, but non-physiological considerations such as the 

distance from a trauma center, the resources available for resuscitation, and the number of 

other casualties. These additional complexities make patient risk analysis difficult, but 

necessary, to implement in real time. Given the intricacy of traumatic injury, patient-scale 

modeling of trauma from first principles is extremely challenging. Consequently, machine 

learning approaches have been the mainstay of modeling in this arena. In this regard, a 

large and diverse data set is valuable for the training of an accurate model to efficiently 

predict patient risk, warning signs, and survival probabilities from easily measurable or 

estimable quantities. 

Trauma centers prioritize patients as they arrive by dividing them into various tiers based 

upon patient vital signs (respiratory rate, systolic blood pressure, etc.), nature of the injury 

(i.e., penetrating), and Glasgow Coma score (99). This prioritization is essential, as it is 

understood that the sooner a patient receives surgical or medical treatment the greater the 

likelihood for patient survival (100). A well-trained model has the potential to help in this 

patient prioritization by providing a quantitative metric for patient risk. Moreover, the use 

of SHAP values (101), for example, to explain the prediction of the model may help alert 

the clinician of difficult-to-discern combinatorial risks in a high dimensional 

pathophysiological space.  
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To date, neural networks have been the primary model in the study of trauma. Edwards and 

Diringer et al. showed that a neural network could accurately classify mortality in 81 

intracerebral hemorrhage patients (102). Marble et al. used a neural network to predict the 

onset of sepsis in blunt injury trauma patients with 100% sensitivity and 96.5% specificity 

(103). Estahbanati and Bouduhi used neural networks to predict mortality in burn patients 

to a 90% training set accuracy (104). DiRusso et al. compared the accuracy of logistic 

regression (linear) and neural networks (non-linear) in predicting outcomes in pediatric 

trauma patients (105). Walczak used neural networks to predict the transfusion 

requirements of trauma patients, an important problem considering potential resource 

limitations and adverse responses (106). Mitchell et al. used comorbidities, age, and injury 

information to predict survival rates and ICU admission (107). Recently, Liu and Salinas 

published an extensive review on how machine learning has been used in the study of 

trauma (108). In general, studies have focused on the capability to predict mortality, 

hemorrhage, and hospital length of stay. The datasets used in these studies generally came 

from local trauma centers and varied greatly in training and test set size, with most studies 

on the order of hundreds of patients and some on the order of thousands (103,109). Models 

based on ordinary and partial differential equations have also been used to study trauma 

but were not used in this report (6,7,20,110,111).  

Here, we take a machine learning approach based on a gradient boosting classifier (112) 

for predicting survival probabilities. Furthermore, we make use of Shapley values to garner 

a physiological and quantitative understanding of why patients are either at high-risk or 

low-risk. With a reasonably small set of 8 easily measurable and commonly known 
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features, we demonstrate accurate prediction of patient survival probabilities and the ability 

to indicate patient warning signs.  

3.3 Methods 

3.3.1 Patient Dataset 
 

All training and testing data was obtained from the National Trauma Data Bank (NTDB), 

the largest aggregation of trauma data ever assembled in the United States (113) . The 2016 

NTDB dataset was used for all training and testing and consisted of 968665 unique patients. 

Each patient was identified by a unique incident key with comorbidities, vital signs, and 

injury information, present in separate .csv files. The open-source library, Pandas, was 

used to import, clean, and merge each of the csv incident files and generate a matrix of 

features and a vector of outcomes. Input features consisted of binary categorical features 

(e.g., gender, alcohol use disorder, etc.) and numerical features (e.g., age, systolic blood 

pressure, heart rate, etc.) while the outcome vector consisted of the binary states, survived 

or deceased.  

3.3.2 Preprocessing  
 

Of the 968,665 unique patients in the trauma database, 351,253 patients contained missing 

data. The death rate of the population of patients with missing data was 1.4 times greater 

than that of the patients without, suggesting that patients with missing data should not be 

ignored. Therefore, we used an iterative imputation method (see supplemental section for 

details) to impute the missing values of all patients missing 2 or fewer features. This 

threshold was chosen based on the distribution of quantity of missing features, which is 
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shown in supplemental Fig. B1. This captured 181,821 additional patients, and the death 

rate of all included patients was now approximately equal to that of the excluded patients.  

Commonly presenting categorical features (hypertension, alcoholism, etc.) that were 

initially present in the comorbidities .csv file were encoded into their own binary columns, 

indicating whether a patient had the preexisting comorbidity or not. Continuous variables 

such as vital signs were also included. The feature matrix, X, is NxM dimensional where 

N is the total number of patients and M is the total number of features used to construct the 

model. All feature values in the feature matrix were rescaled to be between 0 and 1 by the 

minimum and maximum of each feature, i.e.,  

 

 
𝑿_𝒔:,. =	

𝑿:,. −min3𝑿:,.4
max	(𝑿:,.) − min	(𝑿:,.)

	, 

 

(1) 

 

where X_si,j is the rescaled jth column in the new feature matrix and X:,j is the unscaled jth 

column of the original feature matrix.  Feature rescaling is a standard preprocessing step 

performed so that all features are dimensionless and of the same order of magnitude.  
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Fig. 3-1 Process Flow Diagram of the process of building a predictive trauma model. The 
dataset is acquired from the National Trauma Data Bank (NTDB) and any patient with more than 
2 missing data fields were removed from the dataset (cleaning). The data consisted of relational 
tables with each patient identified by a unique incident key. By merging using the incident key, it 
was possible to generate a matrix of data where each row represented a unique patient and each 
column represented a unique feature. Features were included in the column based on physiological 
information that was expected to contribute to the outcome of the model. This included age, gender, 
vital signs, coma and severity scores, and comorbidities. Facility and demographic information 
(other than age) was not included in the analysis. The dataset was then divided into a balanced 
training set (equal number of survived and deceased patients) and a test set, a model was trained 
on the training set with optimized hyperparameters (see appendix Fig. B2), and then the results 
reported and analyzed. 

3.3.3 Class Imbalance 
One of the challenges associated with classifying whether the patient survived or deceased 

is that the dataset had 778303 survived patients and only 20930 deceased patients, a very 

large class imbalance (114). We chose to address this problem by undersampling from the 

survived class. A total of 85% of the deceased patients were randomly selected to be 

included in the training set, and an equal number of survived patients were randomly 

selected to be included in the training set. All other patient records were included in the 



67 
 

test set resulting in a training set of size 35580 records and a test set of size 763653 records, 

as shown in Fig. 1B.  

3.3.4 Feature Selection 
A critical step in determining the final accuracy and utility of the model in the trauma unit 

(i.e., bedside) was determining which features to include. In this study, features were 

chosen not only based upon which would be the most predictive of outcome but also upon 

which would be the easiest to measure on admission. The permutation importance (PI) 

method (115) was used to determine which features were most likely to be the most 

predictive of trauma, see Fig. 3-1C. The method consists of training a model, obtaining an 

accuracy for that model on the independent test set, then randomly permuting each feature 

column and measuring the change in accuracy. If the accuracy of the model decreases 

significantly, then this implies that the permuted feature was heavily contributing to the 

prediction of the model and should be kept in the final model. 

In this case, the PI method guided the reduction of 32 feature to only 8 final features per 

patient record. The final 8 features used for model training were: systolic blood pressure 

(SBP), heart rate (HR), respiratory rate (RR), temperature (Temp), oxygen saturation 

(SaO2), gender, age, and total Glasgow coma score (GCSTOT). The full list of features 

before and after the reduction can be found in supplemental Table 3-1. While the Glasgow 

Coma Score can be unreliable in intubated patients, only an exceedingly small percentage 

(<1%) of the entire NTDB trauma patient set were in that state (116). 

Table 3-1: Table of all features used to make predictions.  

32 features 8 features 
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GCSTOT GCSTOT 

Age 

HR 

SBP 

TEMP 

GENDER 

RR 

SaO2 

Advanced Directive Limiting Care 

Alcohol Use Disorder 

Attention Deficit Disorder 

Bleeding Disorder 

Cerebrovascular Accident 

Chronic Obstructive Pulmonary Disease 

Chronic renal failure 

Cirrhosis 

Congenital Anomalies 

Congestive Heart Failure 

Current Smoker 

Chemotherapy for cancer 

Dementia 

Diabetes Mellitus 

Disseminated Cancer 

Drug use disorder 

Functionally Dependent 

Peripheral Vascular Disease 

Age 

HR 

SBP 

TEMP 

GENDER 

RR 

                             SaO2 
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History of Angina 

History of Myocardial infarction 

Hypertension 

Major Psychiatric Illness 

Prematurity 

Steroid Use 

  

Our description of the gradient boosting classifier, partial dependence curves, and SHAP 

values can be found in the supplemental section.  

3.3.5 Gradient Boosting Classifier  
 

Many different machine learning algorithms exist for identifying trends and hidden patterns 

in a large, high dimensional dataset like the NTDB. Since the NTDB contained labeled 

data (i.e., survived and deceased) we focused on supervised learning approaches. This class 

of machine learning algorithms (e.g., support vector machine, neural network, random 

forest, etc.) learn a function that maps a high dimensional input to an output. Here, we 

choose a gradient boosting classifier because it was found to be the most accurate when 

compared with several other models; see Appendix Table B2. The gradient boosting 

algorithm utilizes a stage-wise addition of weak learners, small decision trees (stumps), 

and averages the prediction of each of them to make a final decision on the individual 

patient. During the training process, subsequent learners are trained with an added weight 

on the individual samples that have been classified incorrectly, as shown in Fig. 3-1D.  
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Most machine learning algorithms contain hyperparameters, which are parameters that 

must be specified prior to the start of the training process. The k-fold grid-search cross 

validation method was used to determine the optimal set of hyperparameters (number of 

weak learners, learning rate, the fraction of the data used for training by each learner, and 

the number of features to consider at each split point) for the gradient boosting classifier. 

The training set was temporarily subdivided into 5 folds (k = 5) and the model was trained 

with 4 of the folds and evaluated on the 5th fold. The accuracy was recorded and repeated, 

each time changing which fold the model was evaluated on, and the final accuracy was 

taken as the average of each of these. This process was repeated for each combination of 

hyperparameters and whichever combination produced the smallest error rate was taken as 

the optimal set. The validation set was returned to the training set and the model was trained 

and evaluated on the test set with the parameters determined to be the most optimal by the 

grid-search cross validation method. Note that the test data was not used during the k-fold 

grid search or the model training. A visual description of this process is shown in Appendix 

Fig. B2 and an example of a single weak learner from the trained model is shown in 

Appendix Fig. B3. 

3.3.6 Global Feature Dependencies - Partial dependence 
 

Once a model has been trained and tested, partial dependence curves on each feature can 

be used to garner a greater understanding of how the model depends upon each feature.  

Partial dependence is the marginal effect that a feature has on the model’s prediction and 

can be used to show the form of the dependence (linear, exponential, monotonous, etc.) 
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and whether the feature affects the prediction positively or negatively. The partial 

dependence function is defined as  

 

 𝑓(𝑥/) = 	:𝑓(𝑥/ , 𝑥%)𝑑𝑥% , 

 

(2) 

 

where f(x) is the trained model, i is the feature of interest, xF is the vector of values for 

feature F, R is the set of all remaining features, and xR is the dependence of f(x) on the 

remaining features.  Since the partial dependence curves are constructed by marginalizing 

over all remaining features, the resulting model is a function of feature i only. We can 

approximate this integral by discretizing equation (2), e.g.,   

 

 
𝑓(𝑥0) =

1
𝑛	=𝑓>𝑥/ , 𝑥%

(/)?
1

/2*

, (3) 

 

where n is the number of samples in the training set. This is a sensitivity analysis averaged 

over all test set examples. Since this method marginalizes over all features, a requirement 

is that feature i must be uncorrelated with the features in R. All Pearson correlation 

coefficients were < 0.6, verifying this assumption.  
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3.3.7 Patient Specific Feature Dependencies - Shapley Additive Explanations 
(SHAP) 
 

While partial dependence curves provide a global view of the effect of each feature, 

Shapley Additive Explanations (SHAP) is a method for calculating the relative importance 

of each feature on a single prediction (patient)(101,117,118). The method was  largely 

inspired by Lloyd Shapley’s work in cooperative game theory, where individual players 

are rewarded based upon their contributions in a collaborative game (119). When applied 

analogously to the prediction of a model, the SHAP value measures how much each feature 

contributes to its prediction. This feature importance tool has the advantage of accounting 

for local patient-to-patient variations, which is important since a significant factor for one 

patient may not be for another. By contrast, global feature importance metrics, such as 

partial dependence curves, average out variations across the entire population.  

Analogous to linear regression, the SHAP method locally approximates the function, f(x), 

by a linear combination of the features each weighted by a SHAP value (j), i.e., its 

contribution to the model prediction. Intuitively, the SHAP value of a feature is the 

difference in the prediction of the model with and without the feature present. While the 

model requires 8 inputs to run in general, it can be allowed to run by computing a weighted 

average of all nodes that depend upon the missing feature. The SHAP value computation 

of a feature, i, requires averaging the output of the model, f, for all possible subsets of 

features with and without i. Formally, the SHAP value is computed with the formula,  
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𝜑/(𝑥) = 	 = A

|𝑆|(𝑀 − |𝑆| − 1)!
𝑀! F ∗ 3𝑓3(𝑆	 ∪ {𝑖}) − 𝑓3(𝑆	)4

4⊆6\{/}

, (4) 

 

where S is the set of features being considered, |S| is the cardinality of S, M is the total 

number of features, fx is the prediction made by the model, N is the set of all input features, 

and 𝜑/(𝑥) is the shapley value of the ith feature of patient x. Intuitively, the second term in 

equation (4) represents the importance of a feature as the difference in the prediction with 

and without that feature present, weighted by the first term. More information on this 

computation can be found in the original work by Lundburg et al. (101). 

3.3.8 Iterative Imputation 
 

We used the IterativeImputer class from the scikit-learn library to impute missing data in 

patients missing 2 or fewer features (120). Missing features are modeled as functions of 

present features and a ridge linear regression model is trained to predict the missing value. 

At a single step in the iteration, a single feature is treated as the missing output while the 

remaining features are the input. This is repeated for each feature in a single round, and 

then iterated for 50 rounds. In the rare instances that this imputation led to unphysical 

values (e.g., age < 0), we simply imputed the value with a nearby physical value. This is 

superior to simply imputing the missing value with the mean of the present features as it 

imputes the average over many approximations of possible values. Furthermore, simple 

imputation significantly model variance leading to lower generalizability.  
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3.4 Results 
The accuracy of the model is expressed as the area under the receiver operating 

characteristic curve coefficient (AUC). Given two patients, one survived and one deceased, 

the AUC represents the relative likelihood of the classifier predicting that the patient who 

survived had the higher probability of surviving. An AUC of 0.50 is the worst-case, as it 

implies that the classifier is no better than random guessing while an AUC of 1.0 is the best 

case, as it will always classify the two patients correctly. The AUC method is also relatively 

insensitive to the class imbalance between the survived and deceased patients making it a 

logical choice as the metric for accuracy. The gradient boosting model was able to achieve 

an accuracy of 0.924.  

In other words, with a single 8-feature vector consisting of age, gender, five vital sign 

measurements, and the easily measurable Glasgow coma score, it was possible to predict 

the outcome of the patient up to ~92.4% accuracy, making this a useful tool for quantifying 

patient risk. Using 32 features per patient for model training resulted in minimal 

improvement of the AUC (black line, Fig. 3-2).  Importantly, the high accuracy of the 

model implies that a single snapshot view (8 features) can give a quantitative prediction of 

the patient’s mortality risk on admission. For further validation, we tested the model on the 

2017 Trauma Quality Programs participant use file (TQP PUF). The dataset consisted of 

an additional 648192 complete patient records and our model was able to achieve an 

accuracy of 91.2%, further validating the robustness of the model and eliminating concerns 

of data leakage and biased evaluation. The high accuracy on a completely different cohort 

of patients is perhaps unsurprising given that the data points from the NTDB represent 

patients from numerous trauma centers. As we show below, the utility of the model is not 
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only in its prediction of mortality risk, but also in its insight in quantifying key metrics that 

could be viewed as potential warning signs in a trauma setting.   

 

Fig. 3-2 The receiver operating characteristic curves (ROC) for 2 different cases. The true 
positive rate (TPR) is plotted on the y-axis and the false positive rate (FPR) is plotted on the 
x-axis for classification thresholds between 0 and 1. In the red curve, only 8 easily measurable 
vital signs or scores were included in the prediction while the black curve included these and the 
comorbidities. A full list of features in each case can be found in supplemental Table S1. All results 
are reported using the second case because the required inputs can be measured rapidly, while 
knowledge of the comorbidities of a patient is less likely. The heat map in the insert plots the 8 
feature values of 100 randomly selected patients, illustrating the high dimensionality of the 
problem. While no obvious pattern can be seen by humans in the heat map, the algorithm is able to 
find and quantify one. 4 zoomed-in examples are provided for clarity. Note that each column is 
normalized by its own feature value range. 

The partial dependence curves are shown in Fig. 3-3. Age, GCSTOT, and systolic blood 

pressure all display substantial influence on the probability of survival. The model predicts 

that by the age of ~60, a patient’s “youth protection” has substantially dissipated on average 

and ages greater than this will further reduce the probability of survival. Likewise, a 
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GCSTOT below 12 will increase the likelihood of death. More interestingly however, is 

the apparent threshold behavior in the heart rate and blood pressure profiles. The 

probability of survival begins to drop dramatically if the SBP < ~110 mmHg or the HR > 

~100 beats per minute, consistent with the findings that hypotension is correlated with 

higher mortality rates (121–123). The two variables are related to one another via the 

baroreflex, a negative-feedback loop system that increases heart rate in response to the loss 

in blood pressure, which will decline as blood volume is lost from the injury. Both vital 

signs should be viewed in tandem to assess patient status during resuscitation.  

 

Fig. 3-3Partial dependence curves showing how the prediction of the model is globally 
influenced by each of the features. Pulse rate and systolic blood pressure display threshold 
behavior, where the probability of survival can decrease at HR > 100 beats / min and SBP < 
110mmHg (123). 
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The probability of survival model predictions for deceased and survived patients were 

plotted on histograms in Fig. 4 for a visual representation of the effectiveness of the model. 

The distributions of survival probability had means of 0.21 (deceased) and 0.78 (survived) 

and were highly skewed (1.51 and -1.38, respectively) suggesting that the model was very 

confident in the predictions that it made.  

 

Fig. 3-4 Histograms of the survival probabilities for survived and deceased patients. If 
probabilities of death greater than 20% are marked as high risk, then ~96% of the deceased patients 
would been labeled.   

Next, SHAP values were used to examine individual patient records and quantify patient 

risk. As examples, 4 cases are shown in Fig. 3-5. Note that the scales of Fig. 3-5 are 

expressed as the log-odds ratio of the probability of survived to probability of deceased 

(i.e., log( :()*+
*;:()*+

)). A log-odds ratio of 0 (Psurv = 0.5) was used to binarize the patients into 
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survived and deceased patients. With this metric, the model correctly predicted all 4 patient 

outcomes in Fig. 3-5. The force plot of the SHAP values of each feature identifies the 

relative contribution of each variable, both positively (blue) and negatively (red). In panel 

A, while the patient was conscious (GCSTOT = 15) and had relatively normal heart and 

respiratory rates, his low blood pressure and age were quantifiably more significant and 

the reason the model predicted deceased (sum of SHAP values < 0). In case B, the patient’s 

youth and consciousness were enough to overcome his abnormal vital signs. While the 

patient did experience mild tachypnea and tachycardia, he was ultimately not a very high-

risk patient. In the third case, the patient’s youth and consciousness could not compensate 

for the significant drop in blood pressure and elevated respiratory rate. The model 

identified 60 mmHg systolic blood pressure as a “red flag”, which should indicate to a 

trauma team that this patient is a priority. In panel D, the patient’s age and oxygen 

saturation were the key warning signs and the reason she was high-risk.  
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Fig. 3-5 SHAP feature importance metrics for 4 patients that were correctly predicted as 
survived or deceased. Output values (bold), expressed as log odds ratio of probability of survival 
to probability of deceased (i.e. log( !!"#$

"#!!"#$
)), that are < 0 represent deceased patients (Cases A, C, 

D). Blue bars indicate that the feature value is increasing the probability of survival while red 
bars indicate that the feature is decreasing it. 

We also computed the SHAP values for 8 cases where the model made incorrect 

predictions, as shown in Fig. 3-6 and Fig. 3-7. Notably, in all 8 cases, there was a single 

feature that dominated the model prediction (GCSTOT, Age, and SaO2) instead of a 

combination of features as in Fig. 3-5. Machine learning models are typically best at 

making predictions on unseen data that are as close to an interpolation of the training data 

as possible, and often fail when the unseen data is significantly different from the training 

data. One possible solution could be to explicitly model cross terms in the data to force the 

model to consider all feature-feature interactions. While the model is ideally learning the 

feature-feature interactions during the training process, sometimes explicit inclusion of 

these terms can improve model accuracy (although potentially at the expense of model 

interpretability). 
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Fig. 3-6 SHAP feature importance metrics for 4 patients that were incorrectly predicted as 
deceased. Output values (bold), expressed as log odds ratio of probability of survival to probability 
of deceased (i.e. log( !!"#$

"#!!"#$
)), that are < 0 represent deceased patients. Blue bars indicate that the 

feature value is increasing the probability of survival while red bars indicate that the feature is 
decreasing it.  In all 4 cases, there was one feature that dominated the model prediction.  
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Fig. 3-7 SHAP feature importance metrics for 4 patients that were incorrectly predicted as 

survived. Similar to incorrectly predicting deceased cases, there was one feature that dominated 

the model prediction.  
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3.5 Discussion 
 

The NTDB-trained gradient boosting model was trained with thousands of trauma patients 

from participating trauma centers around the country and was able to fit a robust decision 

boundary to the dataset. With only 8 features that can be measured upon a patient’s ER 

admission, our model was able to provide an accurate metric for patient risk of death (AUC 

= 0.924, Fig. 3-2) even when death was rare. This high accuracy was further tested on a 

withheld dataset to further validate our claims of its high accuracy.  

 

In a trauma setting, the usefulness of a model is not only limited by its accuracy but also 

by its interpretability – clinicians must understand how the model makes predictions in 

order to trust it. This has typically resulted in the use of linear models, but unfortunately, 

linear models are incapable of modeling complex decision boundaries - resulting in the loss 

of accuracy in exchange for interpretability. SHAP scores circumvent this problem by 

providing a robust method for quantitatively explaining a model’s predictions. Using our 

model in conjunction with SHAP scores for the 8 features (Fig. 3-5) provides a detailed 

and quantitative view of each vital sign’s contribution to risk. The method may serve 

several distinct uses. In a prioritization setting, where both time and nurse/surgeon 

availability are limited, the rapid generation of a hierarchy for patient treatment has value. 

The model can provide an objective ranking as to which patients should receive the most 

available resources and guide triage. Another use is to help explain those objective rankings 

with specific references to patient vital signs, potentially enhancing the prioritization.  
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Furthermore, they can be used to evaluate how actions taken to alter these variables may 

affect patient survival probability. 

 

A limitation of this model is that it was trained based on the vital signs of patients upon 

admission. While the model was accurate, predicting the time-series evolution of the 

patient will requires dynamical training data. A natural extension would be to train a model 

that can predict patient-risk in real-time if time-series trauma patient data is available.    

 

On the machine learning side, one limitation of our approach was the random 

undersampling procedure for balancing the number of survived patients with the number 

of deceased patients in the training set (124). It is possible that more informative survived 

patients were not included in the training set that could have led to an even more robust 

decision boundary (125). Undersampling methods that include survived examples based 

upon their distances to deceased patients in the 8-dimensional space could improve model 

predictability, as they can more accurately model the decision boundary near “hard-to-

classify” cases (125). We also used the synthetic minority oversampling technique 

(SMOTE) to try to balance the training set, where artificial patient records from the 

survived class are generated from existing survived patient records, but it was ineffective 

in this instance and the accuracy of our model decreased significantly (126).  
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Although not the focus of this paper, we also note that the gradient boosting method 

exhibited a ROC-AUC that exceeded that of various neural networks and other machine 

learning models. Neural networks and tree-based models are two of the most commonly 

used classification models in the machine learning community with neural networks 

frequently outperforming tree-based models as well (127). While we extensively tuned the 

parameters to the neural network in hopes of attaining a higher accuracy, it was unable to 

eclipse our gradient boosting model.  

 

The advantages of the present approach are: (1) only 8 features are needed, (2) all 8 features 

are readily available on admission, (3) the calculation is exceedingly fast, portable and 

accurate, (4) the relative risk of each feature is determined and graphically presentable as 

in Fig. 3-5 and 3-6, and (5) actual outcomes can be compared to the NTDB average 

performance on an individual basis. While features were chosen for inclusion based upon 

availability and importance, the accuracy of the model could be further improved by also 

including approximated inputs. For example, trauma surgeons generally also have an 

approximation for the injury severity score upon admission. If estimates for the severity of 

each injury is included into the model, the accuracy of the model was found to increase by 

~2-3%. In future work, a goal will be to determine if the model predictions can be refined 

as a patient’s vital signs evolve in time.  
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CHAPTER 4: PREDICTING RISK FOR TRAUMA PATIENTS USING STATIC AND 
DYNAMIC INFORMATION FROM THE MIMIC-III DATABASE 

 

4.1	Abstract	
 

Risk quantification algorithms in the ICU can provide (1) an early alert to the clinician that 

a patient is at extreme risk and (2) help manage limited resources efficiently or remotely. 

With electronic health records, large data sets allow the training of predictive models to 

quantify patient risk. A gradient boosting classifier was trained to predict high-risk and 

low-risk trauma patients, where patients were labeled high-risk if they died within the next 

10 hours or within the last 10% of their ICU stay duration. The MIMIC-III database was 

filtered to extract 5,400 trauma patient records (526 non-survivors) each of which 

contained 5 static variables (age, gender, etc.) and 28 dynamic variables (e.g., vital signs 

and metabolic panel). Training data was also extracted from the dynamic variables using a 

3-hour moving time window whereby each window was treated as a unique patient-time 

fragment. We extracted the mean, standard deviation, and skew from each of these 3-hour 

fragments and included them as inputs for training. Additionally, a survival metric upon 

admission was calculated for each patient using a previously developed National Trauma 

Data Bank (NTDB)-trained gradient booster model. The final model was able to distinguish 

between high-risk and low-risk patients to an accuracy of 92.9%, defined as the area under 

the receiver operator characteristic curve. Importantly, the dynamic survival probability 

plots for patients who die appear considerably different from those who survive, an 

example of reducing the high dimensionality of the patient record to a single trauma 

trajectory. 
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4.2	Introduction		
Trauma is the leading cause of death in the United States for people over the age of 46 and 

the leading cause of overall expected years of life lost (60). Since modern intensive care 

units (ICU) monitor patients continuously, the data-rich environment can be used to predict 

mortality, time-dependent risk, and provide opportunities for data science and machine 

learning (128,129). Due to the high patient-to-patient variability, a data-driven approach is 

a reasonable way of predicting patient outcomes as patient-scale mechanistic models 

developed from first principles are highly challenging and likely injury-specific 

(70,110,111). Furthermore, time-series classification has already been successfully 

implemented in the field of medical diagnosis suggesting its potential utility in the context 

of trauma (130). The Medical Information Mart for Intensive Care (MIMIC-III) database 

is one of the first initiatives for not only the frequent collection of clinical patient data, but 

also the public dissemination of this de-identified data to be used by researchers around the 

world. This database is now the gold standard for publicly available time-stamped patient 

data, consisting of a very large patient population (> 40,000 patients) and time-stamped 

records of every clinical event.  

To date, there has been considerable work aimed at predicting ICU patient outcomes. 

Alistair et al. predicted mortality to an area under the receiver operator characteristic curve 

(AUROC) of 92.4% using features extracted from the first 24 hour of a patient’s stay in 

the ICU (131). Harutyunyan et al. predicted mortality within 24 hours to an AUROC of 

91.1%, while simultaneously predicting average length of stay, an additional important 

variable for quantifying the efficacy of the ICU (132). In an earlier study, our group 

predicted mortality in the National Trauma Data Bank (NTDB) to an AUROC of 91.8%, 
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using only 8 static data points [age, gender, respiratory rate, heart rate, systolic blood 

pressure, Glasgow coma score, temperature, oxygen saturation] obtained upon admission 

into the hospital or ambulance, but not including data collected in the ICU (133). In 

addition to mortality analysis, length-of-stay prediction has been the focus of many 

machine learning groups as well, as it is a useful measure for managing hospital resources, 

improving outcomes, and increasing efficiency (134,135). Liu et al. published a detailed 

review on machine learning for trauma patients (108). There have also been physics-based 

models constructed to model trauma. Ursino et al., developed a system of ordinary 

differential equations to describe the circulatory system as a closed loop with feedback, 

which has been extended to simulate traumatic bleeding (7,110). While able to simulate 

blood loss patterns, these types of models are difficult to connect a specific injury to an 

outcome (20,68,70,136). Hirshberg et al., also developed a model to evaluate the impact of 

the transfusion of blood products on dilutional coagulopathy and found that resuscitation 

with more than 5 units of red blood cells would lead to coagulopathy (137).  

In this paper, we use the MIMIC-III ICU database to predict risk of death in trauma patients 

and whether a patient’s health will begin to rapidly decline (analogously, a rapid rise in 

risk). We pose this problem as a time-series classification problem where the input is a 

fixed-length window of patient properties (both dynamic and static) with a 1-hour step size. 

Each patient 3-hour window is regarded as a patient-time fragment that is used for training 

or evaluating a model. The goal of this work is to develop a model that can continuously 

assess and predict patient mortality probability (a metric for quantifying patient risk) as 

data becomes available.  
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4.3	Methods	
 

4.3.1 Patient Dataset 
The MIMIC-III dataset is publicly available and consists of more than 60,000 ICU 

admissions in 25 .csv files (Fig 4-1A). The patient dataset contains both static features (age, 

gender, etc.) and dynamic features (heart rate, blood pressure, etc.) and is suitable for the 

study of time-varying processes in trauma patients. We used an exclusion criterion 

consistent with the work of Alistair et al., where patients were excluded if they were 

neonatal or pediatric patients (age < 16), presented in the ICU for less than 4 hours, or had 

a do not resuscitate order (131). We also excluded patients with more than a single ICU 

stay per admission and filtered for patients who had external traumatic injury ICD-9 codes 

to ensure that we were gathering trauma patients; filtering criteria are listed in Fig. 4-1B. 

Following these exclusion and inclusion criteria, the dataset contained 5400 unique ICU 

visits (corresponding to 5400 unique patient records). Patient data was recorded at 1-hour 

time points after admission into the ICU.  
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Fig. 4-1 Process flow diagram of the workflow for building a model to predict physiological 
decompensation. The data comes from the MIMIC-III database, an openly available dataset 
consisting of >40,000 patients, >60,000 intensive care unit admissions, and 25 .csv files. We 
filtered for trauma patients based on ICD-9 codes, and imputed missing data using mode imputation 
for static variables and interpolation for dynamic variables. We rearranged the data and posed it as 
a classification problem within a moving-window, where we tried to predict high-risk (death within 
10-hours or death within the final 10% of the patient’s total ICU stay duration). We extracted the 
mean, standard deviation, and skew for every dynamic variable. We constructed the training and 
test sets while biasing the sampling procedure to alleviate the class imbalance problem (the ratio of 
patients who survived to those who died was ~10:1). We then trained the gradient boosting 
classifier and analyzed whether it can be used to signal extreme risk of death. 

4.3.2 Missing data 
Missing data was handled in one of two ways. Mode imputation was used to impute the 

missing values and outlier values for all static variables used in the analysis (e.g., age, 

height, weight, BMI). For dynamic variables, we used linear interpolation method to 

populate the missing values. The vital signs of an exemplary patient are shown in Fig. 4-

2. In some cases, the features varied greatly and displayed large fluctuations over the course 

of a patient’s stay in the ICU (e.g., heart rate, respiratory rate, and systolic, diastolic, and 

mean blood pressure) and in other cases a variable may remain almost constant (e.g., 
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hematocrit, hemoglobin, and Glasgow Coma Score). The high dimensionality of such data 

can become challenging even for an expert to rapidly interpret. Ideally, machine learning 

models are equipped to accommodate these high-dimensional patterns and use them to 

predict patient-risk.  

 

Fig. 4-2 The vital signs of a single patient’s stay in the ICU. 

4.3.3 Data Formatting 
We posed this problem as a binary-classification problem where the data from the 3-

previous time points was used to predict mortality over the following 10 hours. By posing 

the problem in this manner, the labels we were seeking to predict were effectively “high-

risk” and “low-risk” (Fig. 4-1D).  We further hypothesized that the most recent patient 

history was more predictive of patient-risk than the long-term patient history. Since we 

computed the descriptive statistics of each of the features, this would be akin to computing 
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these statistics with an exponential moving average and a small half-life (thus, more highly 

weighting the most recent data points).   

 

Fig. 4-3 Construction of the dataset from the raw data. Patient trajectories were divided into 3-
hour window subsequences with a 1-hour step size. 

4.3.4 Feature Selection 
The dataset consisted of both static and dynamic variables. One of the most common 

treatments of dynamic analysis is to extract features based upon the entire time window. In 

this analysis, we performed a less common approach which is to divide the original patient 

vital sign evolution into multiple subsequences with a fixed step size and window length. 

This approach implicitly assumes that the short-term patient history is more significant to 

the outcome of the patient than the long-term patient history. For each trauma patient, we 

specified a 3-hour time window referred to as a patient time fragment. Within each time 

fragment, we extracted the mean, standard deviation, and skew for each of the dynamic 

variables, as shown in Fig. 4-1E.  
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Importantly, only vital sign and lab measurements from the basic metabolic panel were 

used and a complete list of features is shown in Table 4-1. This is consistent with the work 

of Alistair et al. who used similar features in their analysis (131). In addition to vital sign 

and lab measurement data, we also included the survival probability prediction of the 

model from our previous publication based only on time-equals-zero admission data (133). 

While this prior model was trained on static data primarily taken from trauma patients upon 

admission to the hospital, the inputs to this model (age, gender, temperature, GCS, SBP, 

O2SAT, HR, RR) are all present in this MIMIC-III dataset. Therefore, the survival 

probability predictions from the PLOS model were calculated and included as a feature for 

each patient at every time-point. We also included the static variables shown in the second 

column of Table 4-1, which were held constant across all patient time fragments. This 

analysis resulted in 89 features (5 static variables, and 3 features extracted from each of the 

28 dynamic variables).  

Table. 4-1 Features extracted from the dataset. Importantly, these extractions occurred over a 
3-hour window of time length for each patient. A 1-hour step size was used to construct each patient 
fragment. The mean, standard deviation, and skew was included for each of the dynamic variables. 

 

Dynamic Variables Static Variables 

Heart Rate  Sex 

Systolic Blood Pressure  

Diastolic Blood Pressure 

Mean Blood Pressure 

Respiratory Rate 

Temperature 

Age 

Height 

Weight 

BMI 
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Oxygen Saturation 

Glucose levels 

Glasgow Coma Score 

Anion Gap 

Albumin levels 

Bicarbonate levels 

Bilirubin levels 

Calcium levels 

Creatine levels 

Chloride levels 

Lactate levels 

Platelet levels 

Potassium levels 

Sodium levels 

Prothrombin Time 

International Normalized Ratio 

Hematocrit 

Hemoglobin 

Blood Urea Nitrogen 

White Blood Cell count 

Endotracheal tube requirement flag 

PLOS-NTDB Model Prediction (133) 
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4.3.5 Class Imbalance  
Of the 5400 trauma patients in the MIMIC-III database, 526 of them died. While not an 

enormous class imbalance, the dataset consisted of 158,108 patient windows of which only 

5,615 mapped to high-risk patients. If one were to randomly assign patients to either the 

training set or the test set without accounting for this imbalance, the model will simply 

learn to label each patient as low-risk (the majority class) as this will maximize its accuracy 

(although it would not have learned anything meaningful). To alleviate this class 

imbalance, we undersampled from the population that survived to develop the training set, 

as described in Fig. 4-1F (124). Patients who ultimately died were assigned a higher 

probability of being placed in the training set than in the test set. Importantly, all of the 

patient windows corresponding to a specific patient were present in either the training set 

or test set, an important point to ensure that we are not fitting our model to data present in 

the test set, a process known as data leakage.  

4.3.6 Machine Learning Modeling 
A gradient boosting classifier as trained to predict high-risk and low-risk patient windows, 

the penultimate step in the process flow diagram and shown in Fig. 4-1G (112). The 

algorithm works by training 300 weak learners, typically short decision trees, on the dataset 

in a stage-wise manner so that the errors made by the early weak learners are corrected by 

the latter ones. Gradient boosting receives high recognition in the literature for its 

effectiveness in classification on tabular data (138,139). We also trained other common 

machine learning models to the dataset (e.g., support vector machine, logistic regression, 

and gaussian naïve Bayes) but the gradient boosting classifier was found to outperform all 
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other models. With the model trained, we were left to interpret the results as represented in 

Fig. 4-1H.  
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4.4	Results	
The accuracy of the model is expressed as the area under the receiver operator characteristic 

curve (AUROC), which is the probability of correctly distinguishing between a high-risk 

patient time fragment and a low-risk patient time fragment. Using this as the metric for the 

model, we achieved an accuracy of 92.9%. We also compared this accuracy with other 

machine learning models and found that it outperformed the support vector machine 

classifier, the logistic regression classifier, and the Gaussian Naïve Bayes classifier (Fig. 

4).  

 

Fig. 4-4 The ROC Curve for every machine learning model that we trained. The gradient 
boosting classifier is the most accurate and the one used in the subsequent analysis. 

We plotted the probability of survival against the time prior to expiration or discharge for 

patients who died (Fig. 4-5) and those who survived (Fig. 4-6). The survival probability 

plots of patients who died exhibited either a sudden drop in survival probability in the hours 

prior to death or had survival probabilities weakly fluctuating at very low survival 
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probability values (e.g., Fig. 4-5E and Fig. 4-5F). In the patients who survived, we 

generally observed the opposite behavior. Survival probabilities would either rise, remain 

the same, or experience minor drops that were not indicative of extreme risk of death. 

 

Fig. 4-5 Survival probability plots for a subset of patients who ultimately died. Notice that 
many of these patients experienced a sudden dip in survival probability prior to death, except for 
one displayed in panel F, where the probability of survival of this patient was consistently low 
(<0.4 for all time points). 
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Fig. 4-6 Survival probability plots for a subset of patients who survived. Note that probability 
of survival remains the same or increases, but rarely displayed a sudden, dramatic drop. 

	4.5	Discussion	
The gradient boosting classifier was able to accurately predict risk in the trauma patients 

present in the MIMIC-III database with dynamic (vital signs, basic metabolic panel values) 

and static (age, gender, etc.) values. This machine learning methodology naturally raises 

certain questions as to how the model should be implemented and interpreted 

mechanistically. If an absolute, and arbitrary, threshold is used to indicate extreme risk of 

death, it would not be accurate for detecting this extreme risk in severe cases. An outlier 

detection method for detecting sudden drops in survival probabilities may be more 

appropriate, as it will be able to trigger a response from ICU team. As it stands, the 

relatively small number of deceased patients make it difficult to determine its effectiveness, 

but as more data becomes available, this should be the focus of future work. 
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One of the key assumptions of this analysis was that the time-prior to death or discharge 

from the ICU was specified prior to training, a variable we will refer to as lead-time. We 

performed a sensitivity analysis on this variable, as it represents a balance between 

predictive power (high AUROC) and value in a clinical setting (the greater the lead-time, 

the more useful the model is) which is shown in Fig. 4-7. Based on the concavity of plot 

and apparent inflexion point around 10-hours, this value seems to be a fair compromise 

between these two factors.  

 

Fig. 4-7 A sensitivity analysis of the lead time for each of the 4 machine-learning models. We 
can see that a 10-hour lead-time achieves a high accuracy and identifies risk accurately by 10-hours 
ahead of time, a considerable amount of time. The gradient boosting classifier also outperformed 
each of the other 3 models regardless of the label start time.    

There are other limitations of this model as well. First, all of the data used in this analysis 

are from the same hospital making it unclear if it is predictive of all hospitals. In theory, a 

similar approach can be taken if data is unified from participating trauma centers but to our 
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knowledge this has not occurred yet. The National Trauma Data Bank (NTDB) consists of 

trauma patient data but mostly contains static data (113). Second, our analysis was only 

performed on trauma patients suggesting that it may not generalize to other disease states. 

Furthermore, while our methodology resulted in 158,108 time points, this only represented 

5,400 trauma patients, a relatively small number. As is usually the case in problems with 

limited data available, more data could dramatically improve accuracy and garner more 

insights. We hope that this paper, as well as the works of groups, can help elucidate the 

need for publicly available, de-identified, patient data for in-depth analysis.  

Another limitation of the present model is its interpretability. While gradient boosting 

classifiers tend to perform very well on tabular datasets, they often lack the interpretability 

of simpler models such as the logistic regression classifier and clinicians must have an 

understanding of how the model works in order to trust it. Tools such as the Local 

Interpretable Model-Agnostic Explanations method (LIME) or Shapley Additive 

Explanations (SHAP) value metrics are used to interpret these models, but their reliability 

is an active area of research (140). Interpretability is a key component of a machine learning 

models in most settings, but especially healthcare since it may often have the direst 

consequences.  

Clearly, publicly available EHR spell out data presents an opportunity for patient outcome 

improvements. In this work, we demonstrated the utility of gradient booster classification 

in handling static and dynamic data. Additionally, we demonstrated the utility of the patient 

time fragment as a useful protocol for extracting information from time series with the goal 

of training machine learning algorithms. Importantly, the dynamic survival probability 
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plots for patients who die appear to be considerably different from those who survive, an 

example of the benefit of reducing the high dimensionality of the patient record to a single 

trauma trajectory.  
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CHAPTER	5:	FUTURE	WORK	
 

5.1	Multiscale	Modeling	
 

The multiscale model of a trauma patient that we developed offers the potential to optimize 

treatment options and quantify difficult to observe mechanisms important to patient 

outcome. Unfortunately, there are important processes that lack suitable biomarkers or 

measurable attributes, despite their importance. For example, mean arterial pressure is used 

as a metric for blood loss since cumulative and instantaneous blood loss are not known 

quantities in the trauma patient. Patient hydration status is important for quantifying the 

influence of transcapillary fluid shifts in attenuating hypovolemia, although this is also 

typically unknown. The pre-trauma pharmacology of a patient is important but typically 

unknown, particularly antiplatelet and anticoagulant agents or drugs of abuse. The injury 

distribution of the patient is required for the model, a factor that is typically unknown in a 

trauma setting. While the model can provide quantitative insights into patient evolution, it 

is currently difficult to implement in a practical trauma patient setting.   

Platelet and endothelial dysfunction, anticoagulation, hyperfibrinolysis have all been 

implicated during major trauma, an effect known as trauma-induced coagulopathy (TIC) 

(93). The simulations in this model were relatively short (< 2 hours) and the timescale for 

TIC is on the order of many hours. On the other hand, longer simulations would require 

careful consideration of TIC where both variable hematocrit and impaired platelet 
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aggregation would need to be included. Trauma modeling efforts on the order of days must 

take this phenomenon into account.   

The BVN also makes several assumptions about the geometry of the vascular network for 

simplicity. The first assumption is parabolic flow through rigid, cylindrical, blood vessels. 

While this is generally a fair assumption, arteries and arterioles may be quite compliant 

and easily deformable with ~40% changes in diameter and non-circular, non-constant 

cross-sectional shape across the entire length of the blood vessel. This assumption leads to 

inaccuracies in vessel resistance calculations, in general underestimating them. However, 

while the resistance through an individual blood vessel is uncertain, the overall resistance 

of the BVN is more accurately calculated (79). Since vessel severs were made a minimum 

of 10 generations from the root vessel, an accurate resistance for the bleeding BVN is still 

computed for our purposes. However, if a modeler is interested in simulating blood loss 

from an individual blood cell rather than a network, this must be explicitly modeled.  

Trauma presents complex and rapidly evolving scenarios for clinical decision making. As 

a patient bleeds, the individual’s life may be at extreme risk if their systemic blood function 

changes in a manner that is unable to stop further bleeding. The overall goal is to achieve 

multiscale simulation of the trauma patient by accounting for changes in the systemic 

circulation and the traumatized blood and tissue so as to better stratify patient bleeding (or 

clotting) risks, prioritize improved biomarkers of risk, and potentially identify new 

opportunities for safer treatments.  Although at an early stage of development, improved 

multiscale vessel and blood-tissue models will be broadly useful to other clinical situations 
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of: surgical bleeding, sepsis, consumptive coagulopathies, deep vein thrombosis, acute 

lung injury, and hemophilic bleeding. 

5.2	Machine	Learning	
 

In the field of machine learning, advanced algorithms are freely available and computing 

power is at an all-time high. The bigger limit at this point is data availability, as de-

identified trauma-patient data is not publicly available. All of the data used in this analysis 

comes from the same hospital making it unclear if it is predictive of all hospitals. In theory, 

a similar approach can be taken if data is unified from participating trauma centers but to 

our knowledge this has not occurred yet. The National Trauma Data Bank (NTDB) consists 

of trauma patient data but mostly contains static data (113).  

We demonstrated that our machine-learning model can make accurate predictions for 

patient-risk but forecasting patient-evolution is not present which may be tremendously 

useful in predicting appropriate intervention time-points. We can predict whether a patient 

will decompensate but predicting the evolution of this patient in terms of measurable 

quantities (e.g., vital signs) might be the focus of future work.  
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Appendix	A:	Multiscale	model	supplemental	figures	
 

 

Fig. A-1 Model validation prior to Bleeding. Comparison of multiscale model with in vivo 
pressure (A) and velocity (B) measurements in the mouse (81) and in the cat (80). 
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Fig. A-2 Effect of branching exponent variability. To further examine the influence of the 
branching parameter, k, 1000 simulations were run with k randomly chosen from a uniform 
distribution between 2 and 3 at each generation. The cumulative blood loss (A) and the blood loss 
rates (B) include dashed lines representing the most extreme results and the black line represents 
the most common result. Small deviations in this geometric parameter can lead to ~3-fold change 
in these curves. 
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Appendix	B:	PLoS	NTDB	model	supplemental	figures	
 

 

Fig. B-1 A distribution of the number of patients per number of missing features. The 
distribution is bimodal, suggesting that including patients with a maximum of 2 missing features is 
the appropriate threshold for inclusion.   
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Fig. B-2 The 5-fold grid-search cross validation method for selecting the approximately 
optimal hyperparameters. Importantly, the test set was withheld during the grid-search cross 
validation process allowing it to remain a fair metric for evaluating performance on new data. 
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Fig. B-3 A single weak learner randomly chosen from the trained gradient boosting ensemble 
of weak learners. Variable thresholds, Friedman mean squared errors (112), percentage of training 
samples passed through each node, and log odds ratios are all present. 

 

 

Table. B-1 Performance comparison of various supervised machine learning models. 

Model ROC-AUC 

Gradient Boosting Classifier 0.918 

Neural Network 

Decision Tree Classifier 

Adaboost Classifier 

Random Forest 

0.910 

0.817 

0.907 

0.896 
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