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ABSTRACT

HEALTH, ENVIRONMENT, AND INEQUALITY IN INDIA

Aashish Gupta

Irma T. Elo

This dissertation makes three scientific contributions to understand the ongoing epidemi-

ological transition in India. The first chapter documents local externalities of solid fuel use 

for adult lung function. The use of solid fuels for cooking and heating is rooted in poverty 

and gender inequality within households. However, harms from solid fuel use are more 

widespread. In neighborhoods with high solid fuel use, the lungs of those who do not 

use solid fuels can be as obstructed as the lungs of those who use solid fuels. Because it 

contributes to both infectious disease among children and chronic diseases among adults, 

the use of solid fuels complicates the epidemiological transition in India. The second chap-

ter observes that Indian infants face higher mortality risks in the summer, monsoon, and 

winter months compared to the spring months. Using birth history data, the chapter de-

velops an innovative demographic approach which estimates and adjusts infant mortality 

by calendar month. The chapter highlights that Indian infants face multiple environmen-

tal threats that are less salient for a limited period within a year. It finds that although 

seasonal variation has declined, it remains a concern in rural areas and among more dis-

advantaged households. The last chapter provides the first estimates of life expectancy by 

social class in India for the period 1990-2016. It develops methods to directly estimate life 

tables from survey data. The chapter documents persistent and stark mortality disparities 

in a period of robust economic growth and changing disease profiles. It finds progress in 

reducing levels and differentials in child mortality. However, patterns in the working ages 

are concerning, with slower progress and little reduction in inequality. The three chapters 

make both substantive and methodological contributions to the study of health and mor-

tality in low- and middle-income countries. They show that addressing social inequalities 

and environmental risks are essential for population health improvements in India.
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INTRODUCTION

In 1947, in his first speech to an independent India, Jawaharlal Nehru listed the several

tasks before the nation. A prominent part of the speech were endeavors “to fight and

end poverty and ignorance and disease” (Nehru, 1983). Mindful of the enormity of the

task, Nehru reiterated that fulfilling these endeavors would require “incessant striving”.

It would also require monitoring progress. So in 1953-54, for its seventh survey round, In-

dia’s National Sample Survey fielded a module on mortality (Government of India, 1962).

As the survey report admitted, there was likely “considerable under-reporting” of deaths

in the survey (pg. 5). The survey estimated an infant mortality rate of 151 infant deaths

per 1,000 births. In contrast, indirect approaches used by the United Nations inter-agency

group estimated an infant mortality rate of 180 deaths per 1,000 live births for 1953-54

(UN-IGME, 2020).

People themselves did not need surveys to know that mortality was high, or that fighting

diseases is easier said than done. Veteran Dalit activist Babytai Kamble, who was born be-

fore independence, discussed the scale of mortality matter-of-factly in her autobiography,

The Prisons We Broke:

“Many young girls on the threshold of life succumbed to death. One in every

ten lost their lives during childbirth. Infants died as well.”

– Kamble (1990)

To better understand how the country was doing in its fight against disease, India insti-

tuted the Sample Registration System (SRS) in the late 1960s. In thousands of randomly se-

lected villages and urban blocks, the SRS monitored all births and deaths. Although by no 

means eliminating them, the SRS did help reduce uncertainty in mortality estimates (Bhat 

et al., 1984). It also noted some progress. Infant mortality was estimated to be 140 deaths 

per 1,000 births in 1975 by the SRS (ORGI, 2016). The UN-IGME estimate for this year is

xiii



close: 131 infant deaths per 1,000 births. These rates are lower than the infant mortality

rates estimated for the 1950s. But they were still too high. The SRS also helped generate

the first direct and reliable estimates of mortality across the life course. If a hypothetical

cohort experienced the age-specific mortality rates that the SRS observed in 1970-75, they

would have lived, on average, to the age of 49.7 years. About 50 years.

As the infant mortality rate indicates, many would have died earlier. Sugna, for instance,

who died in infancy, in Gorakh Pandey’s 1975 poem Mehnat Ke Barahmasa - “Twelve months

of hard work”. Her mother reminds her father:

1 

हमरी सुगना को ले गइल बुखार सजना,
नाहीीं दवा-दारू नाहीीं उपचार सजना,
तोर मेहनत-मजूरी सब बकेार सजना,
अस जजनगी जजयल धिरकार सजना।

Our Sugna was taken by the fever, O beloved,

Neither medicine nor healthcare, O beloved,

Your hard work and labour is pointless, O beloved,

Living such a life is worthless, O beloved.

– Pandey (2014)

Mortality has reduced further since then. A large number of factors, among them peo-

ple’s own struggles for a better life, economic growth, government initiatives, social move-

ments, and scientific progress have contributed to this decline (Caldwell et al., 1 988). In 

2018, the most recent years for which estimates are available, the infant mortality rate was 

32 deaths per 1,000 births (Drèze et al., 2021). Estimated period life expectancy at birth was 

70.7 years for women and 68.2 years for men in 2014-2018 (Government of India, 2020).

Within the broader demographic literature, these changes have been organized within 

ideas of the health transition (Caldwell, 1993), or the epidemiological transition (Horiuchi,

xiv



1999). Deaton (2013) has called these reductions in mortality “The Great Escape”. Babytai

Kamble also recognized the escape from premature mortality and suffering. But she also

recognized the role of “incessant struggles” that Nehru invoked. Particularly the struggles

waged by those like her who were at the margins of society – “The Prisons We Broke.”

However, this progress in mortality reduction may still be too slow. According to Drèze

and Sen (2013), survival rates in India “are far from flattering”, especially when compared

to peer countries. As they note, India’s GDP per capita is thrice as high as Nepal, and twice

as high as Bangladesh, yet child survival and life expectancy are higher in these countries.

Why might this be the case? According to Drèze and Sen (2013):

“It is not surprising that class, caste, and gender inequalities have played an

important role in preventing India from becoming a social development leader

in South Asia.”

Similar concerns were echoed by Dr. B.R. Ambedkar around the time of the first National 

Sample Survey on mortality, when he noted that “the health of the untouchable is the 

care of nobody” (Ambedkar, 1989), and before that, that “caste has killed public spirit.” 

(Ambedkar, 1936). Coffey et al. (2017) have noted that India’s caste system may prevent 

the use of simple toilets that prevent diseases, which explains why Indian children are 

shorter than children in Sub-Saharan Africa (Spears, 2018). Coffey (2015b) finds that In-

dian women finish pregnancy at weights lower than the weights at which women in Sub-

Saharan Africa start pregnancy. Consequently, neonatal mortality in India is higher than 

what GDP per-capita would predict (Coffey, 2015a).

In other words, these authors are pointing out that social inequalities may slow the epi-

demiological transition in India. The more the number of prisons, the harder the escape.

xv



Gender inequalities and environment in the epidemiological tran-

sition

Gender inequality in household wok is particularly severe in India. Men in Indian house-

holds do little cooking, for instance (Hirway and Jose, 2011; Sharma, 2018). Women also 

have the responsibility to prepare the solid fuels used for cooking. The use of these solid 

fuels is reinforced by gender inequality within the household (Vyas et al., 2020). The first 

essay of this dissertation, “Solid fuel externalities, gender, and adult respiratory health” shows 

that solid fuel use affects not just women – its harms are much more widespread.

The chapter is concerned with lung obstruction and Chronic Obstructive Lung Disease 

(COPD). COPD is a leading cause of death in India (Jha et al., 2005). In 2007-08, the WHO 

SAGE conducted spirometry, a test to measure lung function and obstruction in six large 

Indian states. The WHO-SAGE also measured behaviors such as smoking and the type of 

fuel used in kitchens by households. As expected, the WHO-SAGE found that those who 

smoked had higher lung obstruction.

As did those who used solid fuels, the chapter shows. In addition, the chapter documents 

local negative externalities of solid fuel use. This idea of local air pollution contributions of 

solid fuel use and subsequent harms to lung obstruction had been theorized, for instance, 

by Chafe et al. (2014). The chapter provides an empirical test of this hypothesis. A house-

hold and its members may not use solid fuels. But if they were around other households 

that used solid fuels, their lungs can be equally obstructed. This is because even in Indian 

villages, settlements can be dense, and household use of solid fuels can contribute to lo-

cal air pollution. Similarly, men, even if they did not smoke, had their lungs obstructed 

if they were members of households that used solid fuels, or residents of neighborhoods 

that used solid fuels.

These harms for adult respiratory health are in addition to already documented effects of 

solid fuel use on child health and mortality (Venkataramani and Fried, 2011). The chapter
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also shows that once household and local solid fuel use was accounted for, there was no 

relationship between household income and lung obstruction. Given these negative exter-

nalities of solid fuel use, what can public policy do? Negative externalities are a classic 

case for public intervention. In 2016, the Indian government initiated the Ujjwala program. 

It encouraged access to subsidized LPG cylinders. Poverty is certainly a factor prevent-

ing solid fuel adoption, and the Ujjwala program reduced the use of solid fuels (Gupta 

et al., 2020). However, instead of tackling gender inequality and encouraging both men 

and women to cook with LPG, the Ujjwala program reinforced the role of women as cooks 

in the household in its messaging. Despite the program, survey evidence from rural India 

shows that solid fuel use remains common, even if families own LPG stoves and cylinders 

(Gupta et al., 2020; Vyas et al., 2020).

This folly, of not targeting root causes that lie in social inequality, was recognized by the 

chief architect of India’s constitution, Dr. B.R. Ambedkar. He argued that “to leave in-

equality between class and class, between sex and sex” and “to go on passing legislation 

relating to economic problems is to make a farce of our Constitution and to build a palace 

on a dung heap” (Ambedkar, 1990). Dung heaps that are recycled to fuel chulhas remain 

common in rural India, and Dr. Ambedkar’s warning remains relevant.

Multiple environmental threats and infant mortality

Gender inequality contributes to solid fuel use, and the use of solid fuels contributes to air 

pollution. But other things contribute to air pollution too (Spears, 2019a). In the winter 

months, people often make fires and burn stuff to get some warmth and respite from the 

cold. Before the lighting of fire crackers in the winter festival of Diwali, farmers in north 

India burn crop stubble to prepare the fields f or t he n ext c rop. A ir p ollution i tself gets 

trapped near the ground in the winter, a meteorological phenomenon called inversion. Do 

children have worse health and higher mortality in these months?

But the winter is harsh not just because of the pollution. As Munni and Halku knew well
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in Premchand’s “A January Night”, the cold itself can be brutal (Orsini et al., 2004). And 

beyond the winter, the summer brings heat. Soon after that, the monsoon brings humidity. 

Both can be fatal (Geruso and Spears, 2018a). The monsoon may also spread infectious 

diseases (Pascual et al., 2002). Add floods to this, then droughts, and then the vagaries of 

agriculture, and there may hardly be a time when child mortality risks are not high. Con-

sequently, as Behrman and Deolalikar (1989) document, “important seasonal variations in 

nutritional and health status” are “persistent themes in the development literature.”

Does infant mortality vary by season too? To answer this, the second essay in the disserta-

tion, “Seasonal variation in infant mortality in India”, examines mortality by calendar month. 

It uses data from the National Family Health Surveys, which visited all Indian states in 

1992-93, 1998-99, 2005-06, and 2015-16. These surveys interview women in the reproduc-

tive ages 15-49 years. They ask them if they have ever had children, the month and year of 

the birth of their child if they had children, and the age at death of their child, if their child 

died. Using this information, the chapter estimates the number of infants alive and infant 

deaths for each calendar month up to four years before the survey.

Although women interviewed by the NFHS list all the births they have had, this study 

considers birth in the last five y ears. This i s to reduce recall e rrors. Another concern is 

seasonality in births. If some calendar months have more births, then the average infant in 

them would be younger than in other months. Among children, mortality is highest close 

to birth, and the risk of death declines as children age (Guillot et al., 2012). To adjust for 

variation in ages of children within a month, the chapter uses demographic standardiza-

tion techniques. It adjusts the extent to which each child ‘weighs’ in the data, such that the 

distribution of children’s age in each calendar-month is the same as distribution of ages as 

the overall survey round.

The chapter finds h igher m ortality i n t he s ummer, m onsoon, a nd w inter m onths when 

compared to the spring months. At an annualized rate, infant mortality in the spring 

months was lower by as many as 11 deaths per 1,000 infants per year in the early 1990s.
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In the latest available round of the NFHS, for the period 2012-2015, mortality in the spring 

months was lower by 4 deaths per 1,000 infants per year. These mortality differences be-

tween spring and other seasons are substantial – higher than the overall mortality rates in 

some high-income countries, for instance.

What might we do to reduce seasonal variation, and bring mortality in other months to the 

level of spring? The chapter does not measure the changes in the environmental exposures 

over the seasons itself. The prior population science literature has already documented 

the effect of these exposures. This literature has emphasized the population health impor-

tance of reducing pollution, simple technologies such as kangaroo mother care, improving 

indoor temperature control in rural houses, and preventing exposure to heat and humid-

ity (Spears, 2019a). The chapter shows that the overall contribution of these approaches 

can lead to important reductions in child mortality. It emphasizes priorities for healthcare 

settings too. Hospitals and health systems can plan for seasonal fluctuations in health and 

in births. These may reduce health system burdens in particular months. The chapter also 

documents that seasonal variation in mortality is higher among poorer households, and in 

rural areas.

These results will not be surprising to Gorakh Pandey. This was the theme of his poem 

Mehnat ke Barahmasa – “Twelve months of Hard Work” (Pandey, 2014) – that there is almost 

no month in the year which brings any respite. Except perhaps a brief spring, when the 

weather was less harsh and hunger was less common.

Mortality disparities across the life course

Can inequalities between “class and class” that Dr. Ambedkar invoked in his resignation 

speech, be observed in overall mortality as well? In an essay in the Annual Review of So-

ciology, Irma Elo noted that “among the many advantages afforded to the well-educated, 

affluent, and well-positioned i s a  longer and healthier l ife” (Elo, 2 009). As the previous 

two chapters hint at, the poor are more likely to be exposed to environmental harms, from
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pollution to heat. These higher exposures, and the lesser ability of those who are poor to 

fight the diseases these exposures cause would predict higher mortality among the poor. 

A large demographic literature, using the birth-history data used in chapter 2, has found 

higher mortality among poorer children in India and elsewhere (Chao et al., 2018; Cha-

lasani and Rutstein, 2014). A separate literature has found that insults in the childhood 

ages have consequences in the adult ages (Barker, 1995). If poorer children are more likely 

to be exposed to environmental harms, and poor children grow up to be poorer adults, 

then poorer adults may also have higher mortality.

Because the link between class and mortality has been so persistent across time and space, 

Link and Phelan (1995) have called social conditions a “fundamental cause” of disease. 

However, in contrast to high-income countries, and in contrast to child mortality, stark gra-

dients in adult mortality have not been documented in low- and middle-income countries 

(Sudharsanan, 2019; Beltrán-Sánchez et al., 2020; Luo and Xie, 2014; Nikoi and Odimegwu, 

2013; Sudharsanan et al., 2020). The fact that adult mortality risk factors, such as obe-

sity and cardiovascular disease, are not more common among poorer adults helps explain 

these modest-to-no gradients in low- and middle-income countries.

To what extent does socioeconomic status pattern mortality in India? And how does this 

relationship vary by age? Chapter 3, “Household wealth and life expectancy in India: 1990-

2016” investigates this. Information on mortality beyond the childhood ages is sparse in 

most low- and middle-income countries. However, in addition to asking about child mor-

tality, the NFHS also implemented a simple question about recent deaths in the household 

in its first, s econd, a nd f ourth r ounds. T he N FHS a sked t he h undreds o f t housands of 

households that it visited if there were any deaths of usual household members in the last 

couple of years. If a death had occurred, the NFHS interviewers also asked about the sex, 

age, and the month and year of death of the person who died. Demographers have worried 

about the accuracy of this question (Timæus, 1991; Hill, 1991) but the chapter shows that 

all-India age-specific mortality rates constructed from this approach correspond closely
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with the official Indian life tables as estimated by the Sample Registration System.

Surveyors also asked the household about assets they owned - from cycles to cars, from 

clocks to washing machines. The chapter combines information on these assets to create a 

household wealth index. The NFHS are multi-stage sample surveys. First, the NFHS orga-

nizers randomly selected urban blocks and villages. Then, NFHS interviewers randomly 

selected households within these villages and urban blocks. The chapter develops an ap-

proach to cluster-bootstrap standard errors. This measures uncertainty in the estimates of 

life expectancy or mortality probability by wealth.

The chapter finds disparities in period life expectancy across ages, regions, and periods in 

India. In 1990-99, the wealthiest ten per cent of Indian women and men had life expectancy 

at birth of 71.8 years and 70.1 years, respectively. This is higher than the life expectancy 

estimates for India more than two decades later in 2014-2018. In other words, this level of 

overall life expectancy has not yet been achieved for India as a whole. The poorest decile 

of Indians, meanwhile, had a life expectancy at birth of 57.0 years among women and 54.0 

years among men in 1990-1999. Average life expectancy at such levels were seen in India 

in the 1980s, about fifteen years b efore. Life expectancy gaps between the wealthiest and 

the poorest Indians in 1990-1999 were thus larger than the life expectancy gains in India 

over three decades.

The period between 1990-99 and 2012-16 in India saw declines in poverty, but also in-

creases in economic inequality (Himanshu, 2019). For mortality, however, the chapter ob-

serves declines in both overall mortality as well as disparities in mortality. Disparities 

declined in both absolute and relative terms. These declines reflect t he e xtent t o which 

India’s poorest were able to break “prisons”. They were also aided, to some extent, by 

improvements in living standards in this period, and state initiatives. As Drèze and Khera 

(2017) wrote, “There has been a major expansion of social security programs in India dur-

ing the last 15 years or so, along with wider recognition of economic and social rights.”

xxi



However, differences are still quite large. For life expectancy at birth, differences between 

the top and bottom decile were 8.3 years among women and 13.5 years among men. These 

disparities were not just contributed by differences in child mortality between the wealthy 

and the poor. At age 15, the richest women had 3 to 7 more years in life expectancy than 

the poorest women, and the richest men had 6 to 9 more years than the poorest men.

Ironically, the decline in life expectancy disparities is less of a puzzle than their presence 

in the first p lace. W hy i s I ndia n ot l ike o ther l ow a nd m iddle-income c ountries, where 

mortality disparities in the adult ages are modest or non-existent? Countries such as China 

and South Africa, without strong gradients in adult mortality (Sudharsanan et al., 2020; 

Nikoi and Odimegwu, 2013; Luo and Xie, 2014), often have more economic inequality 

than India (Ravallion, 2008). It is not the case that cardio-vascular disease is more common 

among the poor in India, either (Arokiasamy et al., 2021). So economic inequality or cardio-

vascular disease are unlikely to explain adult mortality disparities in India.

Environmental exposures may provide an explanation – pollution from solid fuel use 

harms both children and adults, and could explain adult mortality disparities to some 

extent. Chronic Obstructive Pulmonary Disease and Tuberculosis are still leading causes 

of death in India, and are known to affect the poor more. Ultimately, social inequalities, 

such as those of gender and caste may be more severe in India, even more than other 

unequal contexts, and may be the ultimate cause of class-based adult mortality dispari-

ties. Marginalized social groups in India, such as Dalits and Adivasis also have lower life 

expectancy than higher-caste Hindus (Gupta and Sudharsanan, 2020; Vyas et al., 2021).

These inequalities may constrain overall population health as well. In Uttar Pradesh, for 

instance, the chapter finds that life expectancy at birth in the richest quartile of women was 

lower than the life expectancy of women in the poorest quartile in South India. Dreze and 

Gazdar (1997) guessed that this would happen. Comparing Uttar Pradesh, India’s largest 

state, with South India, they pointed out:
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“Underlying the specific failures relating to public services, elementary educa-

tion, and women’s agency, is a deeper failure to achieve the kind of basic social

change that facilitates progress in these fields. One aspect of the ‘inertia’ that

accounts for slow social progress in Uttar Pradesh is the apathy of the state, but

an equally important factor is the failure of civil society to challenge oppressive

patterns of caste, class, and gender relations. The society of Uttar Pradesh re-

mains steeped in traditional inequalities, which makes it that much harder to

achieve widespread literacy, to run efficient public services, or to promote the

agency of women in social and political matters.”

The epidemiological transition in India

Arundhati Roy once wrote that “India lives in several centuries at the same time” (Roy, 

2002). Indeed, mortality risks as high as the ones faced by India’s marginalized popula-

tions were observed in high-income countries more than a century ago. In a similar vein, 

Drèze and Sen (2013) described India as a “sea of Sub-Saharan Africa with islands of Cal-

ifornia.” A substantial section of the Indian population – the bottom decile, which is a 

population that is larger than that of most countries – has life expectancy equivalent to 

that of Sub-Saharan Africa. But there isn’t an AIDS epidemic in India. Instead, it is social 

inequality which is rampant.

This dissertation in Demography and Sociology suggests that these inequalities and en-

vironmental exposures are key constraints on population health improvements in India. 

However, these constraints are not unbreakable. As Babytai Kamble’s experience shows, 

it is possible to escape from prisons, confront social inequality, improve population health, 

and reduce health disparities. Although it is a much smaller concern than these goals 

above, this dissertation also suggests that it is possible to measure population health bet-

ter.
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CHAPTER 1:

Solid fuel externalities, gender, and adult respiratory health in India

Abstract

Chronic respiratory conditions are a leading cause of death. Using data on lung

obstruction from the WHO Survey of Global AGEing and Adult Health (WHO-SAGE 2007-

08), this paper studies the determinants of respiratory health in India, home to a third of

all deaths from Chronic Obstructive Pulmonary Disease. First, we find that smokers and

members of households that use solid fuels (wood, biomass, coal or dung) for cooking

have higher lung obstruction. Second, even if a respondent’s household uses clean fuels,

their lung obstruction is higher if their neighbors use solid fuels. In neighborhoods with

high solid fuel use, the lungs of members of households that use clean fuels can be as

obstructed as lungs of members of households that use solid fuels. These negative exter-

nalities of solid fuel use are robust to additional controls for neighborhood socioeconomic

status, falsification tests, tests with placebo measures, and tests using alternative measures

of respiratory health as outcomes. Third, the influence of the determinants is patterned by

gender. Smoking tobacco is an important influence on lung obstruction among men. Con-

firming non-linear dose-response relationships, we find that women from households that

use solid fuels are the only group not further harmed by neighborhood solid fuel smoke,

possibly because of high exposure to pollutants while cooking. The study improves our

understanding of behavioral, social, and environmental determinants of respiratory health

in India. Importantly, it makes a case for greater public investments to promote the adop-

tion and use of cleaner fuels.

Note: A version of Chapter 1 was published as “Gupta, A. (2019). Where there is smoke:

Solid fuel externalities, gender, and adult respiratory health in India. Population and Envi-

ronment, 41(1), 32-51.”
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1.1 Introduction and background

Chronic Obstructive Pulmonary Disease (COPD), “a lung ailment that is characterized

by a persistent blockage of airflow from the lungs” (World Health Organisation, 2015) is

among the leading causes of death in India (Gomes et al., 2017). Although less developed

countries have a higher burden of disease attributable to chronic respiratory diseases and

adult respiratory health is becoming increasingly important for overall population health,

empirical research on the determinants of respiratory health at the population level in de-

veloping countries is limited (Mannino and Buist, 2007). In high-income countries, smok-

ing tobacco is the principle risk factor for COPD (Currie, 2010; Pauwels and Rabe, 2004).

Emerging evidence suggests that smoke from the use of solid fuels (wood, animal dung,

coal, charcoal, and crop residues), which are used for cooking and heating, may be an

equally important determinant in less developed countries (Salvi and Barnes, 2009, 2010).

Solid fuel smoke can harm the respiratory health of women (Po et al., 2011; Ezzati

and Kammen, 2002), as they are the household members primarily responsible for cooking

(Hirway and Jose, 2011). Other household members can be harmed because of exposure

to indoor air pollution (Venkataramani and Fried, 2011; Hu et al., 2010; Mishra et al., 2005).

Researchers have hypothesized that because solid fuel smoke contributes to local air pollu-

tion, neighbors can be harmed as well, even if they themselves use clean fuels (Smith, 2002;

Torres-Duque et al., 2008; Balakrishnan et al., 2014; Chafe et al., 2014). This points to im-

portant negative externalities, or negative effects of solid fuel use on third parties (Pigou,

1924; Fairbrother, 2016). However, existing research has not yet tested or quantified the

association between neighborhood externalities of solid fuel use and lung obstruction em-

pirically. Although these negative externalities can extend beyond the neighborhood as

well, we investigate local externalities as they are likely to be stronger. Finally, the pattern-

ing of the exposures by key social determinants such as gender has not been studied at the

population level for developing countries. This paper intends to fill these research gaps,

for the important case of India.
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Both smoking and cooking are patterned by gender in India, a large section of

the Indian population is exposed to solid fuel smoke, and respiratory health is poor. Few

women in India smoke (Jha et al., 2002; Mishra et al., 2016), while men do little household

work or cooking (Hirway and Jose, 2011; Sharma, 2018). Using data from the only repre-

sentative survey that measured time use in India, Hirway and Jose (2011) found that while

men spent less than an hour per week in India on cooking and related household activi-

ties, women spent an average of 25 hours per week. Thus, women who live in households

that use solid fuels have high exposure to direct smoke while cooking (Parikh et al., 1999).

More than 67.2% of Indian households used solid fuels for cooking (Government of India,

2011a; Gupta et al., 2019), and about one-third of the world’s population which relies on

solid fuels was estimated to live in India (Bonjour et al., 2013). Finally, in 2016, India was

estimated to be home to one-third of all deaths from chronic respiratory conditions (GBD

Causes of Death Collaborators, 2017), and almost half of Indian adults had COPD (World

Health Organisation, 2013) by the GOLD (2016) criteria. COPD was also among the top

three causes of death (Krishnan et al., 2011; Patel et al., 2011). These factors make India an

important and urgent context to examine lung obstruction determinants.

The paper informs this literature by considering, for the first time, neighborhood

externalities of solid fuel use in an empirical framework, by using population representa-

tive survey data on lung obstruction, by examining the gendered patterning of the expo-

sures, and by investigating both dichotomous and continuous measures of lung obstruc-

tion as outcomes. We use population level survey data on lung obstruction collected by

the World Health Organization’s Survey of Global AGEing and adult health (WHO-SAGE)

2007-08 (Kowal et al., 2012).

From a social science perspective, this study contributes evidence from a devel-

oping country context to the literature on environment and population health, as well as

the literature on how social and behavioral determinants mediate this relationship. From a

health policy perspective, the study presents evidence of negative externalities, which are

3



a classic argument for public intervention.

We discuss policy and research implications of this study in section 3.5. The next

subsection provides background information on lung obstruction. Section 1.2 discusses

the measures and the empirical strategy, and section 3.3 presents results.

Causes, prevalence, and diagnosis of lung obstruction

The lung is the body’s organ of gas exchange. The trachea or the windpipe branches into

the bronchi inside the lungs, which further divide into smaller branches, called bronchi-

oles. The bronchioles end in microscopic air sacs called alveoli. Long-term exposure to

noxious particles and gases produces inflammation in the lungs (Currie, 2010). This in-

flammation results in the narrowing of the bronchioles, and is accompanied by lung tissue

destruction (emphysema), disruption of repair and defense mechanism in the lungs (bron-

chiolitis), and secretion of mucous and increased cough (chronic bronchitis) (Calverley and

Walker, 2003). These changes increase resistance to airflow in the lungs. Persistent respira-

tory symptoms and lung obstruction characterize Chronic Obstructive Pulmonary Disease

(GOLD, 2016). Lung obstruction can result in respiratory or heart failure (Holguin et al.,

2005), increases the risk of lung infections and pneumonia (Prescott et al., 1995) while ex-

acerbating the risk of death from co-morbidities such as heart disease and lung cancer (Sin

et al., 2006).

Smoking tobacco is a well-established cause of lung obstruction. In a systematic

review, Forey et al. (2011) pool odds-ratios from 133 studies and find higher odds of COPD

in ever smokers, current smokers, and ex-smokers when compared to non-smokers. While

smoking cessation cannot reverse damage, a systematic review found that compared to

smoking, quitting was associated with slower increases in lung obstruction (Godtfredsen

et al., 2008). Inhaling smoke from solid fuels is the other big risk factor for lung obstruction.

Torres-Duque et al. (2008) and Kurmi et al. (2010) review evidence on the impact of solid

fuel use on respiratory diseases, including COPD. Kurmi et al. (2010) find higher odds

of having COPD among households that use solid fuels. In India, McKay et al. (2012);
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Moschovis et al. (2015); Dave et al. (2017) have found sex, smoking status, and indoor air

pollution to be significant predictors of lung obstruction. However, some studies (Amaral

et al., 2017; Sana et al., 2018) have failed to find significantly higher odds of COPD among

those who used solid fuels. These studies have not considered solid fuel externalities. The

comparison groups in these studies, those not using solid fuels, may also have high lung

obstruction because of exposure to neighborhood air pollution.

COPD is diagnosed using a non-invasive physiological test, spirometry, which

measures lung obstruction. A spirometer measures the proportion of the volume of air

(liters) one can exhale in 1 second to the total volume of air one exhales, after inhaling

as deeply as possible (Cotes et al., 2009). This ratio is called Forced Expiratory Volume

in 1 second percent (FEV1%). Higher values of FEV1% signify better respiratory health,

and imply lesser obstruction of airflow. Existing research on solid fuel use and respira-

tory health relies on dichotomized COPD as the outcome, based on the Global initiative

for Obstructive Lung Disease (GOLD) criteria of diagnosing COPD if FEV1% is less than

70% (GOLD, 2016). The GOLD cut-off over-diagnoses older patients, and under-diagnose

younger patients (Pellegrino et al., 2005). While categorization has clinical relevance, such

dichotomization does not capture the severity of the disease and reduces statistical power

and precision (Weinberg, 1995; Royston et al., 2006). Consequently, we use continuous

FEV1% as the outcome, but confirm that the results are robust to using dichotomized

COPD.

1.2 Materials and methods

Data and measures

The WHO-SAGE (2007-08) is representative of the adult population aged above 18 years

in six states of India: Rajasthan, Uttar Pradesh, Assam, Karnataka, Maharashtra and West

Bengal. These states had a combined population of 570 million in 2011, representing 47% of

India’s total population (Government of India, 2011b). The WHO-SAGE is unique among
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surveys carried out in India in that it conducted spirometry to measure lung obstruction

for its 9,551 respondents (World Health Organisation, 2013). The WHO-SAGE also col-

lected information on other individual and household characteristics. Table 1–1 provides

summary statistics for the main measures used in this analysis of WHO-SAGE data.

Outcome

The primary outcome is Forced Expiratory Volume in 1 second percent (FEV1%), the pro-

portion of total air inhaled that a person can exhale in one second. FEV1% is a direct

measurement of lung obstruction. The outcome is also called FEV1/FVC (ratio of Forced

Expiratory Volume in 1 second to Forced Vital Capacity). We use the continuous measure

to preserve the full range of variation in lung function and improve the precision of our

estimates. Our results were qualitatively unchanged when using a dichotomous outcome.

Average FEV1% was 70.8% in the WHO-SAGE sample. Mean levels of FEV1% as low as

these, very close to the GOLD criteria of FEV1% of 70% to clinically diagnose someone as

having COPD, reinforce the impaired state of respiratory health in India. Men and women

had similar mean values of lung obstruction (Table 1–1).

Exposures

The main independent variables that measure exposure to risk factors for lung obstruction

are smoking; household solid fuel use, and neighborhood solid fuel use.

Smoking: Smoking status was self-reported. Smoking is coded as a dummy variable (a

very small fraction of the sample consisted of former smokers, and second-hand smoke

was not observed). About 17% of the SAGE respondents smoked (Table 1–1). While 31%

of the men smoked, only 2% of the women smoked.

Household use of solid fuels: Respondents were asked the fuel their household uses for

cooking. Coal/charcoal, wood, agricultural residue/shrubs and animal dung were classi-

fied as solid fuels. Kerosene, gas, and electricity were classified as clean fuels. In robust-

ness tests, we examine if the result change by considering only gas and electricity as clean
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fuels (Table 1A–3). Household use of solid fuels is coded as a dummy variable. About 76%

of all households used solid fuels for cooking.

Neighborhood solid fuel use: Neighborhood solid fuel use is measured as the proportion

of households, excluding the respondent’s household, in a Primary Sampling Unit (PSU)

that use solid fuels. A PSU is an urban block or a rural village. Neighborhood solid fuel

use is coded as a continuous variable between 0 and 1. The SAGE survey interviewed re-

spondents in 375 different clusters or PSUs, selecting on average 26 households per cluster.

Nine out of ten clusters had more than 19 respondents (a histogram of the cluster size is

shown in Figure 1A–1). Solid fuel use in the neighborhood is hypothesized to capture the

deterioration in air quality in the neighborhood due to solid fuel use. On average, 76% of

a respondent’s neighbors used solid fuels. Accordingly, the respondent would be assigned

a value of 0.76 as a measure of neighborhood solid fuel use.

Although a larger sample from each PSU would be desirable, such specifications

have been used productively in research on neighborhood disease exposure, such as san-

itation (Geruso and Spears, 2018b) and vaccination (McGovern and Canning, 2015). The

neighborhood solid fuel use measure may introduce measurement error due to extreme

values (everyone using solid fuels or nobody using solid fuels). This measurement error

biases our estimates on neighborhood solid fuel use towards zero, thus making these es-

timates conservative. An additional concern is the correlation between neighborhood and

household solid fuel use. This estimated correlation between these variables was .6969,

and the Variation Inflation Factor based on the r-squared in a regression was 1.955. We find

similar results when we use district level solid fuel use estimated from the 2011 Indian cen-

sus instead of neighborhood solid fuel use estimated from the WHO-SAGE 2007-08 (Table

1A–3).
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Other explanatory variables

In all regressions, we adjust for age dummies (in years), sex of the respondent, state fixed

effects, and a dummy for living in a rural area. This specification of age has the advantage

of accounting for non-linear relationships between age and lung obstruction. In the SAGE

sample, average age was 40.4 years. Men were slightly older than women, and 47% of

the sample was female. Almost 70% of the respondents lived in rural areas (Table 1–1).

Apart from demographic and place controls, we also control for two measures of socioe-

conomic status, namely, years of education and number of household assets owned. We

use dummies for years of education and count of assets, a stronger control than linear con-

trols for wealth and education. Years of education ranged from 0 to 18. Mean years of

education were 5.9 years, 7.4 years for men and 4.2 years for women, reflecting an aspect

of gender inequality well-known for India (Drèze and Sen, 2013). The WHO SAGE asked

respondents the number of chairs, tables, and cars their household owned, whether the

household had a cycle, clock, bucket, cot, fridge, fixed line phone, mobile phone, televi-

sion, computer, radio, livestock, sewing machine, a motorized two-wheeler, bullock cart,

and non-homestead agricultural land. Based on these indicators, we created a variable

for the count of assets a respondent’s household owned. The mean number of assets was

13.2. Using district identifiers in the WHO-SAGE, we matched the respondents with the

proportion of households who were using solid fuels in their district in the 2011 census

(Government of India, 2011a). Districts in India are a third level of administrative unit,

below the federal and the state level, and above the level of rural villages or urban munic-

ipalities. India has 727 districts, and the WHO SAGE was conducted in 139 of them. Mean

district level solid fuel use was 74%. We also used estimates of particulate matter pollution

(PM 2.5) derived by Van Donkelaar et al. (2016). Since geographic coordinates of SAGE re-

spondents or their clusters were not available, we estimated mean district level exposure

in ArcGIS. Mean PM 2.5 exposure was 52.0 µg / m3, which is relatively very high.
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Empirical strategy

The empirical strategy consists of several steps, including descriptive graphs of cumula-

tive density function of lung obstruction by exposure type, Ordinary Least Squares (OLS)

regressions, and multiple robustness checks. The OLS linear regression equation is speci-

fied as:

respiratory healthij = β1smoke tobaccoij + β2household solid fuel useij+

β3neighborhood solid fuel useij

+ αplaceij + θdemographicij + λsesij + εij ,

(1.1)

where respiratory health is a measure of obstruction of airflow of respondent i living in

primary sampling unit j, measured as FEV1%. We cluster standard errors at the level of

the primary sampling unit, to account for the WHO SAGE’s multi-stage sample design,

and use survey weights throughout. The coefficients of interest are β1, of whether the

respondent smokes, β2, of whether the respondent’s household uses solid fuels, and β3,

of the proportion of other households in a respondent’s primary sampling unit who use

solid fuels. β3 is a continuous measure between 0 and 1. Since regression coefficients show

the effect of a one-unit change, β3 indicates the difference between respondents who live

in neighborhoods where no other households use solid fuels and respondents who live in

neighborhoods where all other households use solid fuels.

placeij controls for state fixed effects and a dummy for rural residence; demographicij

adjusts for sex of the respondent and age dummies, in years; and sesij controls include

dummies for both years of education and count of household assets.

In addition to these controls for SES variables, we conduct further robustness

checks, adjusting for additional household and neighborhood SES variables, such as log

household expenditure and average neighborhood assets. In placebo tests, we test whether
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measures similar to the exposures, such as chewing tobacco, drinking alcohol, household

ownership of toilets, household electrification, neighborhood open defecation or neighbor-

hood electrification are associated with the outcome. In falsification tests, we test whether

other health outcomes, such as Forced Vital Capacity of lungs or adult heights are associ-

ated with the exposures. Finally, we test if the exposures are associated with alternative

measures of respiratory health, such as self-reported lung disease and Forced Expiratory

Volume in 1 second. In placebo tests, it is expected that there will be no association between

the placebo variables and the outcome. In falsification tests, it is expected that there will

be no association between the falsification outcomes and the exposures. We expect to find

an association between the alternative measures of respiratory health and the exposures.

These results are available in the supplementary appendix.

1.3 Results

The results section is organized as follows. We begin by descriptive graphs in section 1.3,

first examining the cumulative density function of FEV1% by the three exposures. We

then see the extent to which the differences in the exposures can be explained by socioeco-

nomic status. Thereafter, we examine whether household and neighborhood solid fuel use

jointly influence lung obstruction. Section 1.3 presents regression results, documenting the

association between the outcome and the exposures while adjusting for other explanatory

variables, and examining the implications of the gendered patterning of the exposures.

Finally, section 3.4 presents the results from robustness checks, including the placebo and

falsification tests, and tests with alternative measures of respiratory health as outcomes.

Descriptive graphs

Figure 1–1 presents cumulative density function of FEV1% for those exposed to the three

risk-factors of lung obstruction (smoking, household solid fuel use, neighborhood solid

fuel use) and those not exposed. The cumulative distributions show differences in lung

obstruction by exposure at all levels of the distribution of FEV1%. p-values and D-values
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(absolute maximum distance between the two distributions) from Kolmogorov-Smirnov

tests, and p-values and z-statistics from Wilcoxon rank-sum test are also shown to compare

the distributions in each of the sub-figures. The p values, which are all less than .001,

indicate that the cumulative density functions of those exposed to the risk factors and

those not exposed are significantly different. Smokers, members of households that use

solid fuels, and residents of neighborhoods in which other members use solid fuels have

higher lung obstruction across the distribution, than non-smokers, members of households

that use clean fuels and residents of neighborhoods that have lower levels of solid fuel use,

respectively. The figure reveals that differences by household and neighborhood solid fuel

use exposure are larger than or similar to the differences by smoking.

Figure 1–2 provides graphical evidence that these differences cannot be explained

by differences in socioeconomic status. In fact, measures of socioeconomic status, such as

years of education and household assets themselves have a weak relationship with lung

obstruction. In Figure 1–2 the left panel shows differences in years of education, and the

right panel shows differences by count of household assets using non-parametric local

polynomial regressions with 95% confidence intervals shaded blue. At all levels of edu-

cation and household assets, respondents whose households or neighbors use solid fuels

have higher lung obstruction and lower values of FEV1%.

Figure 1–3 shows differences in lung obstruction between members of households

that use solid fuels and members of households that use clean fuels by neighborhood solid

fuel use. The x-axis shows the proportion of households in a primary sampling unit using

solid fuels, and the y-axis shows FEV1%. Among those respondents whose households use

clean fuels, there is a much steeper decline in FEV1% as neighborhood solid fuel use rises.

Among those respondents whose households use solid fuels, as neighborhood solid fuel

increases, a modest decline in FEV1% can be seen. That respondents who use cleaner fuels

show a steeper decline in FEV1% as neighborhood solid fuel use increases reinforces ex-

isting evidence of a downward sloping concave concentration response function. This im-
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plies diminishing marginal impacts of increases in pollution (Burnett et al., 2014; Pope III

et al., 2015; Gupta and Spears, 2017). The pattern of non-linear decline among respon-

dents whose households use clean fuels also supports these results. Respondents already

exposed to direct or indoor smoke from solid fuel use are not much harmed by neighbor-

hood solid fuels.

Regression results

Table 1–2 provides results from OLS regressions. The results indicate that average differ-

ences by the exposures are statistically significant, in magnitude similar to the ones in the

descriptive graphs, and robust to demographic, place, and SES controls. The first 3 mod-

els present results for the overall sample, models 4 and 5 restrict the sample to women,

and models 6 and 7 consider only men. All regressions adjust for age dummies, sex, state

fixed effects and rural residence. All models except model 1 also adjust for socioeconomic

status, by using dummies for years of education and number of household assets owned.

Models with linear controls for age and measures of socioeconomic status are available in

appendix table 1A–1. Appendix table 1A–1 shows that assets and education are not asso-

ciated with lung obstruction, and that dummies for age and socioeconomic status improve

model fit.

Model 1 of table 1–2 shows that those who smoke, whose household uses solid

fuels, and whose neighbors use solid fuels have lower FEV1% and higher lung obstruction.

Model 2 adjusts for socioeconomic status but the point estimates or the significance of the

coefficients do not change substantially. Compared to a respondent who does not smoke,

whose household does not use solid fuels, and whose neighbors do not use solid fuels, a

respondent who smokes, or a respondent whose household uses solid fuels, is, on average,

able to breathe out 3.7 percentage points less oxygen in the first second. Holding smoking

and household solid fuel use constant, a respondent living in a neighborhood in which all

her/his neighbors use solid fuels is able to breathe out 6 percentage points less FEV1%.

Models 1 and 2 reinforce the results from the descriptive graphs, that household solid fuel
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use and smoking tobacco are equivalent risks, and neighborhood solid fuel use is an even

greater risk for lung obstruction. In other words, a person who is a member of a household

that does not use solid fuels, does not smoke, but lives in a neighborhood in which half the

households use solid fuels is likely to have the same level of lung obstruction as a person

who is a tobacco smoker.

Model 3 shows the interaction between household and neighborhood solid fuel

use. Predicted FEV1% for household and neighborhood solid fuel use are available in

figure 1–4. The interaction results and predicted FEV1% closely replicate the results from

figure 1–3: as neighborhood solid fuel rises, FEV1% declines more steeply among members

of households that use clean fuels.

Gender, exposures, and lung obstruction

Women and men differ both in the extent of their exposure to solid fuel smoke and smok-

ing tobacco (Jha et al., 2002; Hirway and Jose, 2011), as well as their physiological responses

to the exposures (Aryal et al., 2013), making a case for within-sex comparisons. The next

set of models in table 1–2 present stratified regressions for women (models 4 and 5) and

men (models 6 and 7).

Model 4 of table 1–2 shows that while smoking has a negative association with

FEV1% among women, the effect size is much smaller than that of men (model 7), and not

significant. This is likely due to selection, lesser intensity of smoking among women, a

very small number of women for whom smoking is observed, and possible reporting bias

because women may be less willing to say that they smoke. Household solid fuel smoke is

significantly and negatively associated with FEV1% among women. While neighborhood

solid fuel use has a negative association with FEV1%, this effect isn’t statistically significant

(p-value 0.128). However, model 5, which interacts household and neighborhood solid fuel

use for women, shows that neighborhood solid fuel use has a significantly negative associ-

ation for women whose households don’t use solid fuels. On the other hand, women who

are members of households that use solid fuels are not further harmed by neighborhood
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solid fuel use. This result can be more clearly seen through predicted margins, reported in

figure 1–4.

Among men, smoking is associated with higher lung obstruction and lower FEV1%.

The association of household use of solid fuels has a similar magnitude as the association

of smoking, while the neighborhood solid fuel use coefficient is even higher than that of

smoking (model 6). Model 7 reports coefficients from an interaction of household solid

fuel use and neighborhood solid fuel use. For men, the interaction is not significant. These

patterns, consistent with Burnett et al. (2014) and Pope III et al. (2015), underscore the

high levels of exposure to smoke among women exposed to solid fuel smoke from direct

cooking.

Robustness tests

As described previously, we next examine the robustness of the results. The regression

tables are shown in the supplementary appendix.

Table 1A–2 adds controls for log monthly expenditure, log monthly expenditure

squared, average neighborhood assets, and average neighborhood assets sequentially to

the main specification from Table 1–2 (model 2), repeated as Model 1 in appendix table

1A–2 for comparison. The log of monthly household expenditure and the square of the

log expenditure are not significantly associated with lung obstruction (model 2). Nor does

the inclusion of these controls change the magnitude of the associations for the three expo-

sures. Models 3 and 4 add controls for average neighborhood assets (model 3) and average

neighborhood education (model 4). As with neighborhood solid fuel use, these variables

are constructed as average of other households’ average assets, or other respondents’ aver-

age education. They are also not associated with FEV1%, and do not substantively change

the effect sizes of the exposures.

Table 1A–3 tests for robustness in the exposures of household and neighborhood

solid fuel use. In Model 1, we test if the main result is valid in the sub-sample of the
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SAGE in primary sampling units with more than 19 households. These results are similar

to the main result (Table 1–2, Model 1), confirming that the associations are not driven by

the small proportion of primary sampling units with fewer respondents. Model 2 uses an

instrumental variable approach. We randomly split the respondents in each primary sam-

pling unit into two units. We then instrument the mean neighborhood solid fuel use in the

first sub-sample of the primary sampling unit with the mean solid fuel use in the second

sub-sample of the primary sampling unit. In this instrumental variable approach, the co-

efficients for both household and neighborhood solid fuel use are higher than those in the

main specification, suggesting that the estimates in the main model are conservative. Mod-

els 3 and 4 test for the association between district level solid fuel use and lung obstruction.

We estimate district level solid fuel use from the 2011 census, which asked all households

the fuel they used for cooking. Model 3 shows that the association of neighborhood and

district level solid fuel use with lung obstruction is of similar magnitude. Model 4, which

has all the exposures, at the household, neighborhood, and district level, shows that it is

the household and neighborhood level exposures that matter. Once household and neigh-

borhood level exposures are accounted for, district level exposures are not significant. This

makes sense, because districts are much larger units. Finally, Model 5 separates clean fuels

into kerosene and other clean fuels (gas and electricity). The model shows that Kerosene

does not appear to be significantly worse than other cleaner fuels.

Table 1A–4 reports placebo tests for smoking tobacco, household solid fuel use,

and neighborhood solid fuel use. The associations of chewing tobacco and drinking al-

cohol with FEV1% are compared to that of smoking tobacco. Owning a toilet and house-

hold electrification, measures of household SES, are used as placebos for solid fuel use.

Measures for neighborhood electrification and neighborhood open defecation are used as

placebos for neighborhood solid fuel use. As before, all regressions control for demo-

graphic, place, and other socioeconomic status variables. Panel A shows that there is no

association between FEV1% and chewing tobacco, or between FEV1% and drinking al-

cohol. Chewing tobacco and drinking alcohol cause other health problems, but are not

15



linked to respiratory health, either theoretically or empirically in the WHO-SAGE. Regres-

sions in Panel B find no association of FEV1% with household ownership of toilets and

household electrification, and regressions in Panel C find no association of lung obstruc-

tion with neighborhood electrification or neighborhood open defecation. The effect sizes

for the placebo variables are also close to zero.

In Table 1A–5, we conduct falsification tests with health measures we do not ex-

pect to be correlated with solid fuel use. It is well known that exposures such as smoking

or solid fuel use harm airflow obstruction but not total lung capacity, which we confirm in

model 1. The outcome in model 2 is height of the respondents. While height is influenced

by early childhood disease environment, adult exposures to solid fuel use should not in-

fluence height, which is confirmed in model 2. We show that word recall, a measure of

memory, and walk time, a measure of physical strength, are also not associated with the

exposures.

In Table 1A–6, we confirm that the mechanism through which lung obstruction is

associated with neighborhood solid fuel use is through ambient air pollution (models 1-

3). We also confirm that alternative measures of respiratory health, such as dichotomized

COPD and self-reported lung disease are predicted by the exposures. Model 1 exam-

ines the relationship between the outcome and the exposures, without controls for state

of the respondent and rural residence, along with satellite PM 2.5 exposures. It finds that

both neighborhood solid fuel use and satellite PM 2.5 are associated with lung obstruction.

Model 2 introduces controls for state dummies and rural residence, as in our main speci-

fication. In this model, while neighborhood solid fuel use is significant, the association of

satellite PM 2.5 is no longer significant. This could partly because of the spatial correlation

of satellite measures of air pollution, which vary only over large geographic areas, such

as states (Van Donkelaar et al., 2016). Still, Model 3, which has PM 2.5 as an outcome,

confirms that local solid fuel use is predictive of satellite air pollution, establishing a link

between neighborhood solid fuel use, pollution, and health.

16



Model 4 in Table 1A–6 shows that smoking tobacco, household use of solid fuels,

and neighborhood solid fuel use are negatively associated with Forced Expiratory Volume

in 1 second, measured in liters. Because the amount of air blown out is also associated with

stature, model 4 adjusts for height in meters. Model 5 and 6 use the logistic model with

binary outcomes of having COPD (following GOLD 2016 guidelines) and self-reported

symptoms of lung disease, following the WHO SAGE guidelines (Arokiasamy et al., 2015).

Both models show higher odds of having COPD and self-reported lung diseases among

smokers, members of households who use solid fuels, and residents of neighborhoods

with high solid fuels use, reinforcing the main finding.

1.4 Discussion

This paper expands evidence on the determinants of lung obstruction for the important

case of India, where one-third of all deaths due to chronic respiratory conditions take place,

in three key ways. First, to our knowledge, this is the first study that documents an empiri-

cal association between local solid fuel use by other households in one’s neighborhood and

obstruction in one’s own lungs. Multiple robustness checks suggest a causal interpretation

of this association. Second, this study improves our understanding of gender as a deter-

minant of respiratory health in India. We find that women who live in households that use

solid fuels are not further harmed by neighborhood solid fuel use. They are the only group

not further harmed by neighborhood solid fuel use, which points to the already high ex-

posure to indoor smoke they must have while cooking. Gender also influences smoking

behavior. Finally, the study establishes that large sections of the Indian population - those

who smoke, those who use solid fuels, and those who live near others who use solid fu-

els - have higher lung obstruction than those who aren’t exposed to these determinants

of lung obstruction. Higher socioeconomic status does not mitigate the influence of these

exposures.

From the point of view of estimating differences in lung obstruction due to the
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exposures over a person’s life course, the study offers conservative estimates. Some of the

respondents who were not exposed at the time of the survey would have been exposed to

the exposures earlier in their lives. However, it has some limitations. The lungs of women

who cook with solid fuels are more likely to be obstructed (Johnson et al., 2011), but cook-

ing behavior is not observed in the WHO-SAGE. Future health surveys should identify

household members responsible for cooking, and if possible, ask about duration of cook-

ing, so that dose-response relationships can be understood. We are able to include only

district-level satellite measures of air pollution in our analysis, as ground-level pollution

monitoring in India is in a nascent stage (Guttikunda, 2017).

The study is also limited because it uses cross-sectional data. However, from a

policy-makers’ perspective, this study elevates the importance of promoting clean fuels to

improve adult health in India. Even though currently exposed populations may not see

immediate or significant improvements in FEV1% (Chapman et al., 2005; Smith-Sivertsen

et al., 2009; Kurmi et al., 2012), further obstruction can be prevented. Encouraging the

adoption of cleaner fuels remains a substantial challenge (Mobarak et al., 2012; Peel et al.,

2015; Jeuland et al., 2015). But the only viable public health strategy for reducing lung

obstruction is prevention through the adoption of cleaner fuels. Existing government pro-

grams in India to promote cleaner fuels are means-tested, provide modest capital subsi-

dies, involve significant private investments, do not have components for encouraging

behavior change, and focus on private harms to women from cooking with solid fuels

(Sethi and Deep, 2018; Gupta et al., 2019). There is a case for greater investments in efforts

to communicate the private and neighborhood harms of solid fuel use and encouraging

households to switch to cleaner fuels.

From an environmental health perspective, there is an urgent need for research

that integrates social determinants, environmental exposures, measures of pollution, and

respiratory health outcomes. Existing evidence points that women’s lower status impedes

the adoption of cleaner fuels (Kishore and Spears, 2014; Austin and Mejia, 2017; Gupta

18



et al., 2019; Vyas et al., 2020). Researching the role of gender in the persistence of solid fuel

use in India, and investigating approaches that address this social determinant of adoption

of cleaner fuels are an important research concern as well.
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Table 1–1: Descriptive statistics for the sample

mean s.e. mean s.e. mean s.e.

Outcome

Forced Expiratory Volume 1s % 70.8 0.5 71.2 0.7 70.5 0.6

Exposures

Respondent smokes 0.17 0.01 0.02 0.00 0.31 0.02

Household uses solid fuels 0.76 0.02 0.77 0.02 0.76 0.02

Neighbourhood solid fuel use 0.76 0.02 0.77 0.02 0.76 0.02

Explanatory variables

Demographic

Age 40.4 0.3 39.4 0.3 41.3 0.4

Female 0.47

Socio-economic Status

Years of education 5.9 0.2 4.2 0.2 7.4 0.2

# of assets owned 13.2 0.2 13.2 0.2 13.3 0.2

Contextual

Rural 0.70 0.02 0.70 0.03 0.70 0.02

District level solid fuel use 0.74 0.00 0.74 0.00 0.73 0.00

District level PM 2.5 (ug /m3) 52.0 0.3 51.6 0.3 52.5 0.4

N

Note: All means are weighted using national individual weights, and standard errors are clustered at the level 
of the primary sampling unit. FEV1% = (FEV1s * 100) / FVC. 

Source: WHO SAGE 2007-08

Total Women Men

9551 5777 3774
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Figure 1–1: Cumulative Density Function of lung obstruction by exposure type
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one can exhale in 1 second to the total volume of air one can exhale (after inhaling as deeply as possible).
Higher values denote lesser lung obstruction. hh: household
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Figure 1–2: Lung obstruction by household and neighborhood exposure, and two mea-
sures of socioeconomic status
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Figure 1–3: Lung obstruction by neighborhood solid fuel use among households that use
solid fuels and households who use clean fuels
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Figure 1–4: Predicted FEV1% from OLS regressions with household and neighborhood
solid fuel interactions
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1.5 Supplementary Appendix

Appendix table 1A–1 examines the association of smoking, household solid fuel use, and

neighborhood solid fuel use with lung obstruction. The models in the table compare the

association of the exposures when considered individually (models 1 - 3) and when con-

sidered together (models 4 - 6), the magnitudes of association for linear controls of age

and socioeconomic status (models 1 - 5), and the magnitude of association for living in a

rural area (models 1 - 6). Measures of socioeconomic status are not associated with lung

obstruction. Model 6 in 1A–1 is the same as Model 2 in table 1–2. Operationalizating the

measures of socioeconomic status and age as dummies improves model fit, as shown by

the r2. The table shows coefficients for the rural dummy as well, finding that respondents

in rural areas are not significantly different from urban respondents once household and

neighborhood solid fuel use are adjusted for.

Appendix Tables 1A–2 - 1A–6 examine the robustness of the main result with controls for

additional measures of socioeconomic status, placebo tests, falsification tests, mechanisms

checks, and tests with alternative measures of respiratory health. The main findings from

these tables are discussed in section 3.4.
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Table 1A–1: Association between smoking, household use of solid fuels, and neighbor-
hood solid fuel use with lung obstruction: Models with linear controls for age, assets, and
education

(1) (2) (3) (4) (5) (6)

smoke tobacco -3.909*** -3.484** -3.673*** -3.764***
(1.069) (1.066) (1.062) (1.040)

household uses solid fuels -5.241*** -2.968* -3.491** -3.762**
(1.427) (1.261) (1.230) (1.170)

neighourhood solid fuel use -9.188*** -6.127* -6.424* -6.088*
(2.739) (2.628) (2.612) (2.450)

female -0.650 0.543 0.584 -0.367 -0.576 -0.859
(0.936) (0.828) (0.828) (0.877) (0.939) (0.908)

rural -2.691* -0.533 1.301 1.320 1.384 1.382
(1.131) (1.367) (1.898) (1.816) (1.804) (1.672)

age -0.124*** -0.134*** -0.134*** -0.124*** -0.127***
(0.021) (0.021) (0.021) (0.021) (0.024)

assets -0.070
(0.086)

education -0.048
(0.092)

state fixed effects X X X X X X
age in years (as dummies) X
asset count (as dummies) X
years of education (as dummies) X

constant 74.108*** 76.179*** 77.875*** 78.248*** 80.334*** 74.768***
(2.044) (1.993) (2.125) (2.140) (2.556) (2.619)

r-squared 0.048 0.053 0.053 0.060 0.060 0.090

Observations 9551 9551 9551 9551 9551 9551

Source: WHO SAGE 2007-08
Note: Robust standard errors, clustered at the level of the primary sampling unit, in parentheses. + p<.1, * 
p<.05, ** p<.01, *** p<.001. Outcome: FEV1%  (FEV1s/FVC as a percentage) is the ratio of the volume of 
air one can exhale in 1 second to the total volume of air one can exhale after inhaling as deeply as possible. 
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Table 1A–2: Robustness I: Additional controls for household and neighborhood socioeco-
nomic status

(1) (2) (3) (4)
smoke tobacco -3.764*** -3.792*** -3.774*** -3.770***

(1.04) (1.04) (1.04) (1.04)

household uses solid fuels -3.762** -3.577** -3.352** -3.363**
(1.17) (1.15) (1.14) (1.14)

neighbourhood solid fuel use -6.088* -6.397* -7.936** -7.492*
(2.45) (2.59) (2.78) (3.18)

log monthly expenditure 1.012+ 0.838 0.839
(0.60) (0.61) (0.61)

log monthly expenditure squared -0.667 0.255 0.284
(1.21) (1.32) (1.31)

average neighbourhood assets -0.342 -0.385
(0.24) (0.27)

average neighbourhood education 0.114
(0.38)

demographic controls X X X X
place controls X X X X
ses controls X X X X

constant 74.768*** 72.409*** 71.927*** 71.393***
(2.62) (10.95) (10.83) (10.80)

observations 9551 9551 9551 9551

Source: WHO SAGE 2007-08
Note: Robust standard errors, clustered at the level of the primary sampling 
unit, in parentheses. + p<.1, * p<.05, ** p<.01, *** p<.001. Outcome: FEV1%  
(FEV1s/FVC as a percentage) is the ratio of the volume of air one can exhale in 1 
second to the total volume of air one can exhale after inhaling as deeply as 
possible. 
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Table 1A–3: Robustness II: Tests for bias in exposures

specification / sample
psu with n > 

19
iv with split 

psu
kerosene 

separately
(1) (2) (3) (4) (5)

smoke tobacco -3.693** -3.596*** -3.740*** -3.758*** -3.762***
(1.136) (1.069) (1.049) (1.041) (1.040)

household uses solid fuels -2.777* -7.324*** -3.748** -3.710**
(1.192) (1.817) (1.165) (1.176)

household uses kerosene 0.827
(3.141)

neighbourhood solid fuel use -6.223* -7.595* -5.460* -3.710**
(2.548) (3.466) (2.477) (1.176)

proportion using solid fuels in district -6.549* -1.998
(3.242) (2.972)

demographic controls X X X X X
place controls X X X X X
ses controls X X X X X

constant 74.702*** 85.363*** 74.101*** 76.013*** 74.702***
(2.610) (4.304) (3.345) (3.347) (2.610)

observations 8519 9361 9551 9551 9551
Source: WHO SAGE 2007-08

district level solid fuel use as an 
exposure

Note: Robust standard errors, clustered at the level of the primary sampling unit, in parentheses. + p<.1, * 
p<.05, ** p<.01, *** p<.001. Outcomes:  FEV1% (FEV1s/FVC as a percentage) is the ratio of the volume of air 
(litres) one can exhale in 1 second to the total volume of air one can exhale (after inhaling as deeply as possible). 
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Table 1A–5: Falsification tests: Association between other health outcomes and exposures

outcome: FVC height word recall walk time 

(1) (2) (3) (4)
smoke tobacco -0.038 0.002 -0.071 -0.061

(0.058) (0.004) (0.105) (0.047)

household uses solid fuels -0.050 -0.000 -0.067 0.048
(0.059) (0.004) (0.128) (0.053)

neighbourhood solid fuel use -0.008 0.002 -0.300 0.005
(0.075) (0.005) (0.225) (0.113)

demographic controls X X X X
place controls X X X X
ses controls X X X X

constant 2.765*** 1.656*** 4.725*** 2.994***
(0.414) (0.014) (0.275) (0.161)

observations 9551 9551 9551 9551

Source: WHO SAGE 2007-08
Note: Robust standard errors, clustered at the level of the primary sampling unit, in parentheses. + p<.1, 
* p<.05, ** p<.01, *** p<.001. Outcomes: FVC, or Forced Vital Capacity is the total amount (measured in 
liters) of air breathed out in the spirometry test. Height is measured in meters. Word recall is based on 
the delayed recall of ten words. Timed walk measures the time taken (in seconds) to walk 4 meters by 
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Figure 1A–1: Histogram of number of respondents per cluster
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CHAPTER 2:

Seasonal variation in infant mortality in India

Abstract

Investigating seasonal variation in health helps understand interactions between

population, environment, and disease. Using information on birth month-year, survival

status within the first year of life, and age (in months) at death (if the infant died) of more

than 330,000 children observed in the four rounds of India’s Demographic and Health Sur-

veys, I estimate period mortality rates between ages 0 and 1 (1m0) by calendar month.

Relative to the spring months, infant mortality is higher in the summer, monsoon, and

winter months. If the mortality conditions in spring were prevalent throughout the year,

1m0 would have been reduced by 11.4 deaths per 1,000 in the early 1990s and 3.7 deaths

per 1,000 in the mid-2010s. Seasonal variation in infant mortality has declined in both ab-

solute and relative terms, but remains higher among disadvantaged children. The results

highlight the multiple environmental health threats that Indian infants face, and the short

time of a year when these threats are less salient.
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2.1 Introduction

The recognition that seasonal variations influence health and mortality goes at least as far

back as 4th century BCE. Hippocrates is said to have written that “whoever wishes to in-

vestigate medicine properly, should proceed thus: in the first place to consider the seasons

of the year” (Adams, 1849). Seasonal influences on health were also recognized in ancient

Indian and Chinese texts, such as the Sushrut Sanhita and Huangdi Neijing (Bhishagratna,

1963; Veith, 2015). In the 10th century, Ibn Sina, highlighting several mechanisms of sea-

sonal influences in health, wrote in al-Qanun fi al-Tibb (canon of medicine) that “change of

seasons has to do with the kind of diseases peculiar to each climate” (Gruner, 1984).

In recent years, a considerable literature in the economic, social, and health sci-

ences has investigated monthly and seasonal variation in health (Rau, 2006b), especially

early in life (Muhuri, 1996; Delaunay et al., 2001; Farrar et al., 2019). This literature has

contributed to the scientific understanding of health determinants, dynamics, and the role

of public policy. For instance, prior studies have documented reductions in seasonal varia-

tion along the epidemiological transition in both historical and contemporary contexts (De-

launay et al., 2001; Rau, 2006b; Schlüter et al., 2020). They have also shed light on vulnera-

bility to climactic factors (Rayco-Solon et al., 2004; Muhuri, 1996); identified the importance

of household technologies, such as those related to temperature control (Kunst et al., 1991);

motivated social security interventions in lean seasons (Behrman, 1988b; Drèze, 1990; Ku-

mar et al., 2016); and quantified the likely impact of health interventions targeting seasonal

diseases, such as malaria (Etard et al., 2004), influenza (Dorélien, 2019; Ho and Noymer,

2017), and diarrhea (Farrar et al., 2019).

Investigating seasonal variation in child health in low- and middle-income coun-

tries is an important priority within this literature for several reasons. First, children are

particularly vulnerable to changes in the disease environment (Jutla et al., 2013; Geruso

and Spears, 2018a), and these vulnerabilities are likely to be higher in developing country

contexts. Second, insults in childhood have adult health consequences (Elo and Preston,
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1992; Doblhammer and Vaupel, 2001; Currie and Vogl, 2013). Thus, recognizing the timing

of insults is critical to understanding interrelations of health across the life course. Third,

reducing child mortality is a global health priority, as highlighted in the Sustainable De-

velopment Goals (United Nations, 2015). Highlighting seasonal variation can motivate

particular policy and behavioral interventions, such as for interventions that target sea-

sonal diseases. Given increases in the provision of maternal and child health in low and

middle income countries (UNICEF, 2019), healthcare systems and interventions could also

prepare for seasonal healthcare needs.

Prior research has identified four broad categories of sources of seasonality in child

health in low- and middle-income contexts. First, economic and agricultural activity in

developing countries varies seasonally (Devereux et al., 2013; Chambers et al., 1981). In-

creased economic vulnerabilities and reduced access to nutrition is linked to morbidity and

mortality (Rao et al., 2009). Second, environmental exposures, such as pollution, heat, hu-

midity, and cold weather have direct impacts on health and they vary seasonally (Geruso

and Spears, 2018a; Guttikunda and Calori, 2013; Kumar et al., 2009). Third, disease dy-

namics, particularly for communicable diseases, are driven by individual behaviors, envi-

ronmental effects on hosts and pathogens, and their interactions (Fisman, 2007). In India,

pneumonia and diarrhea, leading causes of infant mortality (Fadel et al., 2017), have been

documented to vary seasonally (Farrar et al., 2019). A fourth source of seasonal variation

in child health is seasonal variation in births (Dorélien, 2016; Rumisha et al., 2013; Pitt and

Sigle, 1998). Seasonal variation in births has a compositional effect on seasonal estimates of

infant mortality - some seasons have higher births, and thus a younger age-profile among

infants, leading to more deaths (Knodel, 1983). Like seasonal diseases, seasonal variation

in births may also increase the demand for healthcare. Given these multiple contributors,

Fisman (2007) described seasonality in health and disease as “the final common expression

of environmental and population patterns.”

Studies on historical patterns of seasonality in contemporary high-income coun-
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tries relied on population level mortality records, which in many cases, span several cen-

turies (Rau, 2006b). In low- and middle-income contexts, the demographic literature has

documented a high-degree of seasonal variation based on sample registration (Farrar et al.,

2019; Burkart et al., 2011) or surveillance site data (Muhuri, 1996; Kampe et al., 2015; Delau-

nay et al., 2001; Rumisha et al., 2013). Although valuable, studies from surveillance sites

study localized populations, and sample registration system often lack key information,

such as the population exposed to the risk of death or household characteristics. Demo-

graphic and Health Surveys (DHS), which record calendar birth month, survival, and age

at death in months for infants are a relatively under-utilized source in studies of seasonal

variation in infant mortality. This omission is despite several advantages of examining

seasonality in child mortality from these data. The DHS are more representative than

surveillance sites, they measure a greater number of child health determinants than sam-

ple registration systems, and they have increasingly larger sample sizes, allowing for more

precise estimation.

Using data from the DHS, this paper presents the first estimates of all-cause infant

mortality by calendar-month for India, home to every sixth birth and every fifth infant

death in the world according to United Nations (2015). I estimate period mortality rates

between the ages 0 and 1 (1m0) by calendar month. To account for seasonal variation in

births, I compute age-standardized period-specific 1m0 by calendar month. The approach

developed here examines seasonality in infant mortality over two decades, a period in

which overall infant and child mortality have declined. Methodologically, the paper com-

plements Pedersen and Liu (2012), finding that the Demographic and Health Surveys can

be used to estimate mortality rates for shorter periods than the five year estimates that

DHS surveys typically estimate. Substantively, the paper contributes to the literature on

environmental determinants of child health in developing countries. To my knowledge,

this is the first paper to estimate infant mortality by calendar month using the DHS in

India.
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In the next section, I summarize the prior literature on seasonal variation in health

and mortality. Section 2.3 presents data and methods, section 2.4 the main results, and

section 2.5 presents several robustness checks. Section 2.6 concludes.

2.2 Background

Seasonal variation in mortality is a result of complex interactions between behaviors, envi-

ronmental exposures, effects on hosts and pathogens, and economic conditions (Chambers

et al., 1981; Fisman, 2007; Rau, 2006b). The epidemiological transition and other social de-

velopments have also shaped seasonal variation in mortality. Before the Industrial Revo-

lution, mortality in England used to be higher in the spring and winter months, and lower

in the summer months (Wrigley et al., 1997). These seasonal patterns could be seen for all

ages in other European countries as well and were relatively stable before the industrial

revolution, with little attenuation over time. In London, as well as in French urban areas

(Ariès, 1971), however, mortality used to be the highest in summer, likely due to infectious

diseases. By the early 20th century, this summer peak had vanished due to improvements

in hygiene and living standards (Rau, 2006b). During the rest of the 20th century, mortality

differences between summer and winter declined as well, particularly after the decrease

in respiratory track infections, possibly due to a reduction in air pollution (Kunst et al.,

1991). Sakamoto-Momiyama (1978) finds a similar “deseasonalition” in mortality between

1900-1970 in the United States and Japan. Even then, Ho and Noymer (2017) find that in

the US, pseudoseasonal life expectancy for winter months was higher by about a year than

the summer months for the period 1960-2014.

In developing countries, data limitations do not permit such a long historical

perspective on seasonal variations in mortality. However, data from Health and Demo-

graphic Surveillance Sites (HDSS) in sub-Saharan Africa, stretching as far back as the

1950s, have been used by researchers to analyze patterns of seasonal variation in child

mortality. Rayco-Solon et al. (2004) show that in Gambia, prior to 1975, deaths in the
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‘hungry’ season (July-November) were 1.9 times as likely as deaths in the ‘harvest’ sea-

son (December-June). These odds reduced to 1.8 for the period 1975-1984, and 1.2 for the

period 1984-1997 (Rayco-Solon et al., 2004). In Senegal, (Delaunay et al., 2001) found that

although seasonality in mortality declined between 1960s and 1980s, it increased in the

1990s. These results suggest that seasonal patterns in mortality may not decline linearly.

To the extent that information on causes of death are available from surveillance

sites, researchers have found that in Sub-Saharan Africa, along with diarrhea and pneu-

monia, malaria is a big component of both overall and seasonal variation in child mortality

(Abdullah et al., 2007). In Senegal, mortality was highest in the rainy season of August-

September (Delaunay et al., 2001). Etard et al. (2004) use verbal-autopsy information to

find that the increase in seasonality was due to an increase in mortality due to malaria, di-

arrhea, fevers, and acute respiratory infections. Kampe et al. (2015) find a similar pattern

of higher child-mortality in the rainy season months of June-October in an HDSS in Burk-

ina Faso. These seasonal patterns were driven by malaria mortality among children, with

no decline in mortality between 1998-2007. Abdullah et al. (2007) and Mutisya et al. (2010)

confirm similar patterns from seven other surveillance sites in Sub-Saharan Africa, finding

higher malaria mortality in the rainy seasons. Although it is well recognized that seasonal

variation in Sub-Saharan Africa is large (Dorélien, 2016), studies have largely focused on

the proportion of deaths in a year that occur in a month or season rather than on mortality

rates.

In South Asia, studies based on both surveillance and sample registration data

also find that child mortality varies seasonally. Becker (1981), Muhuri (1996), and Becker

and Weng (1998) estimate seasonal mortality patterns for the Bangladesh HDSS site in

Matlab for the periods 1972-1974, 1981-1982, and 1982-1990 respectively. All three papers

found marked seasonality in child deaths in this area despite overall child mortality de-

clines (Becker and Weng, 1998), as a result in part of many interventions to reduce child

mortality (Chen et al., 1983). Major causes of death, such as diarrhea, respiratory diseases,
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injuries, and ‘others’, showed similar seasonal patterns. These patterns are also confirmed

in sample registration data from Bangladesh for the period 2002-2007 by Burkart et al.

(2011). Burkart et al. (2011) further find higher seasonal variation in child mortality for

rural areas and families with lower socio-economic status.

Farrar et al. (2019) use sample registration data with causes of death coded on the

basis of verbal autopsies to examine seasonal variation in death counts at the ages 1-59

months in India. These results are based on the Million Deaths Study (Gomes et al., 2017).

They show that pneumonia deaths are highest in winter months in India, but also high

in the summer and monsoon months. Diarrhea deaths, on the other hand, are highest in

the summer and monsoon months, but also high in the winter months. Farrar et al. (2019)

find that although child mortality declined in the period 2005-2013, seasonality in both

pneumonia and diarrhea mortality still remains.

Higher mortality from these infectious diseases in the summer, monsoon, and

winter months confirms known seasonal patterns of environmental exposures such as

heat, humidity, cold temperatures, and air pollution. Heat and humidity is highest in the

monsoon months in India, and exposure to fecal germs may also be high in the monsoon

months (Pascual et al., 2002). Air pollution in India is caused by both perennial factors such

as industrial activity, transportation, and solid fuel use for cooking, as well as seasonal ac-

tivities such as stubble burning and solid fuel use for heating (Apte and Pant, 2019). In

addition to seasonal sources of pollution, meteorological factors such as inversion which

trap pollution close to the ground and are more likely to be observed in the winter months

(Tiwari et al., 2013) cause higher exposure to air pollution in the these months.

In contrast to these studies finding evidence of seasonal variation in child mor-

tality, studies using data from the DHS on child heights have had more mixed findings.

For 40 developing countries including India, Agarwal et al. (2017) show that there is no

correlation between height-for-age and month-of-birth. However, it is worth noting that

this literature is concerned with month-of-birth effects, rather than seasonal variation in

40



child health. Indeed, if a worse disease environment leads to higher mortality in particu-

lar seasons of a year, we may expect higher growth deficits if children were ‘scarred’ by

the worse disease environment in particular months (Preston et al., 1998). However, to the

extent that children who are more fragile die because of worse disease environment, the

surviving cohort born in those months would likely be healthier. This selection mecha-

nism linking early life circumstances and later health in (Preston et al., 1998) may in part

account for the above findings.

Although there are exceptions, the social science literature on examining seasonal

variation in mortality in India has preferred the approach of measuring mortality over cal-

endar months, rather than seasons (Farrar et al., 2019; Larsen et al., 2019). This has advan-

tages and disadvantages. Measuring mortality over longer periods will pool information,

and seasonal estimates will have lower sampling variation than calendar month estimates.

However, measuring mortality over calendar months allows for a finer understanding of

seasonal variation. It also allows for greater flexibility, considering that seasons may not

be uniform across India.

India is in the northern hemisphere. Although the intensity of the summer and

winter months is influenced by wind patterns and varies over India’s regions, these sea-

sons are common across the country (Attri and Tyagi, 2010). In addition to the monsoon,

Humidity is higher in India’s coastal regions. The south-west monsoon varies within India,

beginning in June in South India and proceeding to northern India by July, and withdraw-

ing in September. Parts of South India receive rains from the receding monsoon, from

September to November. Given the year to year variation in these seasonal patterns, as

well as their variation across India, this paper also examines mortality by calendar month.

To do this, the paper develops a methodological approach to estimate period 1m0 by calen-

dar month. This allows a flexible approach – we study regional patterns as well as broader

seasonal patterns that are common across India.
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2.3 Materials & methods

Data

The data used in this paper come from the National Family Health Surveys (NFHS), In-

dia’s version of the DHS. I use the four existing waves of the NFHS, conducted in the

years 1992-93, 1998-99, 2005-06, and 2015-2016. These multi-stage sample surveys, which

are representative at the national and state level, obtain retrospective birth histories from

women aged 15-49 years. In recalling their complete birth history, women surveyed are

asked about:

• all the children they have ever had

• the month and year of birth of each child

• whether the child died

• age at death if the child died

For children who died within the first month of life, the DHS asks about the number of

days the child was alive. For deaths in the first two years, the DHS asked about the number

of months a child was alive. For deaths after age two years, the DHS asks about the number

of years a child was alive.

To estimate mortality by calendar month (or any period), we need to estimate the

number of deaths in a particular month (period), and the number of child-months (person-

periods) lived in that month. Because the DHS asked the number of months a child was

alive only for children who died before the age of 2, mortality rates by calendar month

can only be estimated for children under the age of 2. However, because the bulk of child

mortality in India is before the age of 1 (Hill et al., 2012), in this paper, I estimate period

1m0 for each calendar month. I do so by using the information on children’s month and

year of birth; her/his survival status; and if she/he died before the age of 1, the number of

months they were alive. The next sections describes this approach in detail.
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Approach: Creating a child-month dataset

Using the DHS birth history module, I create estimates of infant mortality by calendar

month. In the birth history module, each observation is a child. I convert this child dataset

to a child-month dataset, where each observation is a child-month.

First, I assign every child 12 observations, one for each month in the first year of

life they can be alive (0-11 months). This creates a child-month dataset. In this dataset, a

child born in November 1989 will have 12 observations: one for November 1989, one for

December 1989, one for January 1990, and so on, until October 1990. For each of these

months, I also calculate the age (last month) the child attained, in months. So, the child

described above will be aged 0 months in November 1989, 1 month in December 1989, 2

months in January 1990, 3 months in February 1990, and so on, until October 1990, when

they will be aged 11 months.

Second, I calculate the month and year of death for children who died before the

age of 1. I do this by adding the age at death (in months) to their birth month and year. So,

a child born in November 1989 who lived for 5 months would have died in April 1990. A

child who died in the first month of life was assumed to have died in the birth month.

Third, I create an indicator for whether a child was alive in a particular month or

not. Thus, for this child who died at age 5 months in April 1990, the indicator for whether

they died in a particular month will be zero for months 0 to 4. In the linear regression ap-

proach I describe below, for month 5, the indicator will be 1,000. This scaling of the binary

indicator for whether a child died in that month to 0 or 1000 allows the interpretation of

mortality estimates as deaths per 1,000 infants alive. I also create a dummy variable indi-

cating 0 for alive and 1 for died in a month to use in a logistic and complementary-log-log

(cloglog) regression framework.

Finally, I censor those-child months that are after the observation window, i.e.

child months during or after the month-year of interview. Similarly, child-months after
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the death of a child are censored – i.e. child months a child did not live. After these steps,

we have a child month dataset that has the following information for each child-month:

• The month and year of observation

• The child’s survival status (dead or alive) in that month and year of observation

• The child’s age (in months) in that month and year of observation

• Other attributes of the child, such as sex, rural residence, or region

This approach assumes that all births in the middle of the month. Deaths are assumed to

be in the calendar-month an age is attained. It is compatible with other assumptions as

well, which are listed in the supplementary appendix.

Estimates of early life mortality using the DHS are typically calculated for the

period five years prior to the survey, to minimize recall errors. I follow this approach, and

use in estimation all children born in the last five years. But I restrict estimates of infant

mortality to the four years prior to the survey so that I can calculate both numerators

(infants who died in the month) and denominators (children alive in the month) correctly.

This approach assures that each calendar month in the analysis period has person-months

contributed from children of all ages from zero to 11 months.

Another exclusion criterion is that only those months are included in the analysis

in which children from all of India’s states contribute person months. The DHS surveys

in India are conducted in a phased manner and interviewers visit states at different times

within the survey period. Thus, for some initial months within the five year period, only a

few states contribute observations. Those months are dropped. This final criteria ensures

that estimates of monthly infant mortality are not driven by differences in the states that

contribute deaths and person-months to the calendar months.

An example using a Lexis diagram

This approach can be visualized in the Lexis diagram. Figure 2–1 helps understand the

structure of the dataset and the strategy for estimating period 1m0 by calendar month. The
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Lexis diagram shows lifelines for 15 children. The children were born in fifteen different

months, starting from January 1991 to March 1992. The Lexis diagram follows them for

each month until they reach the age of 1 year, or until they die. Out of the 15 children

followed here, 4 died before reaching the age of 1 year. Thus, child 1, 2, and 3 survived

until age 1 year, but child 4 died at the age of 4 months, in August 1991. Child 5 lived for a

full 12 months, child 6 died in the 1st month of their life, when their age was 0 month, and

so on.

We are interested in estimating period-specific 1m0 for each calendar month. In

this example, the first month for which we should estimate 1m0 is December 1991. This

is because December 1991 is the first month for which all children who could contribute

child-months actually do contribute person months. In this example, however, consider

1m0 for the month of January 1992. In this month, one child (child 10) died at the age of

3 months, while 10 children contributed person months. Thus, in this example, 1m0 for

January 1992 would be 1 death per 10 children, or 100 deaths per 1,000.

Finally, note that for January 1992, we have half a month contributed by child 1

to January 1992, and half a month contributed by child 13. In practice, the half-month

contributed by child 1 is not counted, and the half month counted by child 13 is counted

as a full month. In this, we have assumed that the child-months that children born in

January 1991 would have contributed to January 1992 are equal to the extra person-months

assigned to children born in January 1992 in of our approach (Goldman et al., 1984).

Estimating unadjusted and age-standardized 1m0 by calendar month

Age-specific mortality rates for a particular period and place take the form:

nmx =
ndx

nLx
, (2.1)

where nmx is the mortality rate between ages x and x + n, calculated as the number of
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deaths (d) in ages x to x+n in the time period under consideration divided by the person-

periods (nLx) lived in that time period. In our case, calculating mortality rates between the

ages 0 and 1 for calendar month t, equation 2.1 can be modified to:

1m
t
0 =

1deaths
t
0

1childmonths lived
t
0

, (2.2)

We approximate 1childmonths lived0
t, the number of child-months lived between the ages

0 and 1 years in month t by estimating the number of children alive in the middle of month

t. This approach of using the middle of the month as an estimate of the child-months lived

in the year is based on the assumption that person-months grow linearly within the month

(Preston et al., 2000). Thus, in the approach followed in this paper, period mortality rates

for each calendar month are estimated as:

1m
t
0 =

1deaths
t
0

1children alive in themiddle of themonth
t
0

, (2.3)

Since I use individual level data to compute these period mortality rates, I weight individ-

ual level data by survey weights that the NFHS calculated. However, the first three NFHS

surveys had much smaller sample sizes than the latest NFHS survey (NFHS-4). NFHS

1, 2 and 3 were representative at the level of the states in India, whereas NFHS-4 is rep-

resentative for districts in India. To avoid biasing estimates towards the NFHS-4, I give

each survey an equal weight, of 0.25. Thus, for each observation in NFHS-1, I divided the

survey weight by .1271 and multiplied them by 0.25, because NFHS-1 contributed 12.71%

of the weighted observations in the overall sample. Similarly, weights of NFHS-2 obser-

vations were divided by .1571 and multiplied by 0.25, weights of NFHS-3 observations

were divided by .1313 and multiplied by 0.25, and weights of observations were divided

by 0.5909 and multiplied by 0.25. The weighted mortality rate in the age 0-1 in calendar

month t can be calculated as:

46



1m
t
0 =

∑I
i=1(died between age 0 to 1 in month t)i × weighti∑I

i=1 (children between age 0 and 1 alive in middle of month t)i × weighti
(2.4)

Births also vary seasonally in India (Appendix Figure 2A–1, Anand et al. 2000; Dyson

1991). To adjust for monthly variation in the age distribution of infants in each calendar

month, I also compute age-standardized 1m0 by calendar month. Seasonal fluctuations

in births create a high-proportion of younger children in some calendar-months relative

to other calendar months. Mortality declines rapidly even in the first year of life (Guillot

et al., 2012). Thus, a higher proportion of younger children is some calendar-months rela-

tive to others can lead to a higher mortality in those months. To compute age-standardized

1m0 by calendar month, I use a reweighting standardization technique developed by Di-

Nardo et al. (1996) and introduced to the demography literature by Geruso (2012). This

reweighting technique is similar to direct age-standardization (Preston et al., 2000), except

that the reweighting technique is applied to individual level data. I re-weight the distribu-

tion of ages in each calendar month to match the overall distribution of ages in that survey

round. For this, I first estimate a reweighting function for each calendar month t in survey

round r. This reweighting function takes the form:

ψt,r(a) =
f(a|r)
f(a|t)

, (2.5)

where f represents the probability distribution function and a represents age (in months).

This function standardizes the distribution of ages in each calendar month such that each

calendar-month’s age distribution matches the overall age-distribution in the survey round.

Age-standardized 1m0* is calculated in this approach as:

1m
∗ t
0 =

∑I
i=1(died between age 0 to 1 in month t)i × weighti × ψt,r(ai)∑I

i=1(children age 0 to 1 alive in middle of month t)i × weighti × ψt,r(ai)
(2.6)
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For both the estimated (equation 2.4) and age-standardized mortality rates (equation 2.6),

I calculate standard errors accounting for the clustering of observations within primary

sampling units.

The approach used here is compatible with other assumptions, and robust to al-

ternative methodological approaches as well. The supplementary appendix discusses this

further.

Regression based approaches to estimate relative differences in infant mortality

by calendar month

Because we have a child-month dataset with a binary outcome (survived or died), regres-

sion based approaches can be used to control for covariates and examine if seasonal vari-

ation differs by observed determinants of child health. I use three regression approaches:

a linear probability model which examines if there are mean differences in mortality by

calendar month relative to a reference month; a logistic regression model which estimates

odds-ratios for the probability of dying in a particular month compared to a reference

month; and a complementary-log-log model which computes hazard-ratios of the proba-

bility of mortality in a particular month compared to a reference month.

The linear probability regressions take the form:

dijt =
11∑

m=1

βm1[calendarmonthijt = m] + γageijt + φperiodijt

+ θplaceij + λfemaleij + ρsurvey roundij + εijt,

(2.7)

where d is a binary indicator of whether a child i in primary sampling unit j in month t

died or not. The βms are the primary coefficients of interest, indicating the difference in the

probability of death in a particular month and a reference month. The reference calendar

month used in this analysis is March. In alternative specifications, I control for age-in-

month dummies, period (measured as linear year, linear month-year, or year dummies),
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dummies for place (such as rural residence and state or region), sex of the child, and the

survey round. Note that the adjusting for dummies for age-in-months in regression based

approaches is equivalent to the age-standardization approach described earlier (Case and

Paxson, 2005).

Adjusting for the period allows us to account for the declining trend of infant mor-

tality in the overall period of 1989-2014. Dummies for age in months allow us to account

for the pattern of mortality by age within the first year. This controls for age distribu-

tional differences between months. It creates estimates of infant mortality by month that

are analogous to age-standardized estimates in equation 2.6. Because the interview month

can influence the recall of birth or death months (Larsen et al., 2019), I also control for inter-

view month dummies. I control for dummies for survey round to account for measurement

error associated with the implementation of a particular wave of the NFHS surveys.

To examine differences in seasonal variation by time characteristics such as rural-

urban residence, mother’s education, household wealth, sex of the child, and region, I

also estimate stratified regressions. In these regressions, the sample is limited to those

belonging to a particular characteristic. These regressions, for instance, compare mortality

for girls in a particular calendar month against mortality for girls in a reference month.

More formally, these regressions take the form

dijt|c =
11∑

m=1

βm1[calendarmonthijt = m] + γageijt + φperiodijt

+ θplaceij + λfemaleij + ρsurvey roundij + εijt,

(2.8)

where c is the characteristic to which the sample has been limited to.

The logistic regression is estimated with the same set of covariates, and takes the form:
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log

(
Pijt

1− Pijt

)
=

11∑
m=1

βm1[calendarmonthijt = m] + γageijt + φperiodijt

+ θplaceij + λfemaleij + ρsurvey roundij + εijt,

(2.9)

Pijt is the probability of death in month t for child i in primary sampling unit j. This

logistic approach is exactly similar to the one followed by Rau (2006a) to understand sea-

sonality in Sweden, except that the approach followed here uses dummies for calendar

months instead of dummies for seasons. In a survival analysis sense, the model used

above is equivalent to a discrete-time hazard model with a logistic link function (Singer

and Willett, 2003). I report odds-ratios, which should be interpreted as the odds of death

in month t divided by the odds of death in March.

Finally, I estimate a hazard model with a complementary log-log link with the

same explanatory variables. This cloglog model makes an assumption of proportional

hazards and not proportional odds (Singer and Willett, 2003). The cloglog model has the

advantage that it allows the interpretation of hazards as if they were in continuous time.

The cloglog model takes the form:

log(−log(1− Pijt)) =
11∑

m=1

βm1[calendarmonthijt = m] + γageijt + φperiodijt

+ θplaceij + λfemaleij + ρsurvey roundij + εijt,

(2.10)

For this model as well, I report exponentiated coefficients, which are hazard ratios (or rela-

tive risks) relative to the month of March. An advantage of the logistic and complementary

log-log approaches over the linear regression approach is that the constant is not predicted

at theoretically implausible values. An advantage of the linear regression approach is that

model comparisons are straightforward (Mood, 2010).
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In all regressions, I cluster standard errors at the level of the primary sampling

unit. Although there are multiple observations per child in this dataset, all the observed

child-months for a child are still within a cluster. I also use calculated survey weights, as

described in section 2.3 (equation 2.4).

2.4 Results

Summary statistics

Table 3A–1 shows summary statistics for the overall sample as well as for each of the

survey rounds. Estimates for each of the NFHS rounds are weighted using the national

women’s weights. Overall estimates are weighted by the calculated weights, which divide

the weights of the individual NFHS rounds in such a way that they contribute equally to

the overall means. About 40,000 children were observed in the first three NFHS waves,

and more than 200,000 were observed in NFHS-4.

Because of censoring and because some children died, we observe the average

child for about 8.8 months. Overall, 6% of the children died in the four NFHS waves. The

proportion of children who died declined from 7% to 4% between the 4 rounds, reflecting

overall improvements in infant health (Drèze and Sen, 2013). It is worth pointing out that

overall infant mortality levels observed in these rounds for close to the infant mortality

rates from the Sample Registration System (ORGI, 2016), as well as infant mortality rates

from the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME,

2019). Auto-correlation for the outcome of death in a month was examined, and the pat-

terns suggested seasonal variation. Girls were slightly less than half the sample. In all the

four rounds, more than 70% of the children were in rural areas.

I divide the all India sample into 4 contiguous regions: North (comprising the

states of Jammu and Kashmir, Himachal Pradesh, Haryana, Punjab, and Delhi); Central

(comprising the states Uttarakhand, Uttar Pradesh, Rajasthan, Madhya Pradesh, Chat-

tisgarh, Gujarat, Bihar, and Jharkhand); East (comprising the states Odisha, West Ben-
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gal, Sikkim, Manipur, Meghalaya, Arunachal Pradesh, Tripura, and Mizoram), and South

(comprising the states Andhra Pradesh, Telangana, Maharashtra, Goa, Tamil Nadu, Ker-

ala, and Karnataka). This classification, which closely follows classical patterns of Indian

regional demography (Dyson and Moore, 1983), divides India into regions that are poorer

and have a higher burden of disease (the central and the eastern states), and the richer

and less resource-poor southern states. More than half of all children were observed in the

central states, 27% in the southern states, 14% in the central states, and 6% in the northern

states.

I also divide the states based on their broad climate patterns, following Farrar

et al. (2019). NFHS-1, 2, and 3 do not make available the location of the primary sampling

unit. I match locations of NFHS-4 primary sampling units to the 2017 Koppen-Geiger

classification, based on Beck et al. (2018).

For measures of socioeconomic status, I consider mother’s education and the as-

sets a family owns. I divide mother’s education into three categories: those with no educa-

tion, between 1-8 years of education, and more than 8 years of education. Over the course

of 25 years, education has increased. In 1992-93, 13% of mothers had more than 8 years of

education, and 65% had no education. By 2015-16, 39% had more than 8 years of educa-

tion, and 30% had no education. In assets, I consider the following assets: two-wheeler,

car, and refrigerator. These three assets were consistently asked in the four survey rounds,

are not directly linked to health, and have been consistent markers of wealth throughout

this period. Because of the small proportion of households owning these assets in earlier

NFHS rounds, I dichotomize the asset count into having at least one asset. About 14% of

households owned any of these assets in 1992-93, 21% in 1998-99, 32% in 2005-06, and 74%

in 2015-16.

Table 2–2 also shows summary statistics, but for the overall data at the level of

the observations, i.e. for the child months observed in the sample. Overall, we observed

more than 2.9 million child months in the four NFHS rounds, and 12,479 deaths of children
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below the age of 1. The table shows the proportion of these total child-months and mean

deaths that were observed in each calendar-month. The distribution of child-months over

the calendar months reflect pattern of fertility, survey timing, and censoring. Similarly,

the observed mean deaths by calendar months reflects patterns of seasonal variation in

mortality and the age distribution of children within each calendar month.

Figure 2–2 shows estimated 1m0 for each month-year included in the final analyt-

ical sample. These rates, which are not age-standardized, show a high degree of variation

in 1m0, especially for the first three NFHS rounds, in the 1990s and 2000s. This variation

has declined substantially only by NFHS 4, although there is still evidence of seasonal

variation in infant mortality.

Descriptive evidence of seasonal variation

What are the overall seasonal patterns of infant mortality in India? Are differences between

calendar months, observed in Figure 2–2 substantial? Figure 2–3 answers these questions.

It shows estimated raw and age-standardized rates, calculated following the approaches

described for equations 2.4 and 2.6, respectively.

The blue circles, which show estimated raw rates, show a high degree of seasonal

variation. Infant mortality is lowest in the spring months of February, March, and April

(when summer begins) and highest in the monsoon month of August. Mortality is also

high in the winter (December, January) and summer months (May, June). However, age-

standardized rates, in red squares, show that at least some of the higher mortality in the

monsoon months is because of a higher proportion of younger infants in those months.

The age-standardized rates show highest mortality in the summer month of May and the

winter month of January, which are higher than rates in the spring months of March. Al-

though the confidence intervals overlap slightly, age standardized 1m0 is also higher in the

peak monsoon month of August.

From a health system perspective, both the raw and the age-standardized rates
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may matter. Birth seasonality implies a higher need for care for some months. That mor-

tality rates are higher in some months because of birth seasonality is also a relevant health

policy concern. More specifically, birth seasonality implies that the health-care system

would need to prepare for a higher number of births and accompanying care in some

months rather than others. Higher age-standardized mortality rates in some months rather

than others, on the other hand, imply a role for addressing the seasonal determinants of

mortality.

Evidence from regression based approaches

In the mean 1m0 by calendar month reported in Figure 2–3, some of the variation in mortal-

ity rates is due to the variation in mortality rates by survey rounds and regions. To partial

out this variation, I turn to regression based approaches. Table 2–3 shows results from

linear (models 1-4), logistic (model 5) and complementary-log-log (model 6) regressions

of the association between calendar months and infant mortality. All models adjust for

calculated survey weights and report standard errors clustered at the level of the primary

sampling unit.

For the linear probability model, model 1 does not control for any covariates, repli-

cating the raw estimated infant mortality rates from Figure 2–2. Model 2 controls for demo-

graphic covariates: dummies for the age of the child (0-11) and sex of the child. Controlling

for dummies of age (in months) is equivalent to age-standardization. Model 3 additionally

controls for place: the state the child was born into and rural or urban residence. Model

4 controls for time variables: the interview month, the survey round, linear month-year.

Observations are child-months. The mean IMR was 4.32 infant deaths per 1,000 per month

(51.8 infant deaths per 1,000 per year).

The main differences in the linear probability model are in Models 1 and 2, which

replicate the differences between raw and age-standardized 1m0 in Figure 2–2. Between

models 2-4, adding additional controls for state, rural residence, survey round, interview

month, or linear month year do not change the results. These models show that relative
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to March, infant mortality is higher in the winter months of January, October, Novem-

ber, December; the summer month of May, and the monsoon months of July and August.

Marginal differences between March and these months range from 0.7 to 1 death per 1,000

per month. This difference in substantial: it translates to at least 8.4 additional infant

deaths per 1,000 per year. This difference itself is greater than the total infant mortality in

high-income countries in this period (UN inter-agency group for child mortality estima-

tion, 2019).

Models 5 and 6 confirm these findings using a logistic and complementary-log-log

link in these hazard models. Both models 5 and 6 control for all the covariates that model 4

controls for. Broadly, the relative odds and relative risks for mortality are between 1.1 to 1.2

times higher for the summer, monsoon, and winter months than for the month of March.

May and July have the highest mortality, followed by the winter months of November,

December, and January.

Figure 2–4 examines if seasonal variation can be observed in both neonatal and

post-neonatal mortality. Because neonatal mortality is much higher than post-neonatal

mortality, the figure reports results from logistic regression, which examines odds of neona-

tal (or post-neonatal) mortality in other months relative to march. The figure finds ev-

idence of seasonal variation in both the neonatal and post-neonatal periods. Although

infectious diseases play a greater role in the post-neonatal period, they are also important

for neonates (Bhalotra et al.; Fadel et al., 2017). We find that seasonal variation in both the

neonatal and post-neonatal period is similar to an extent. However, compared to march,

neonatal mortality is higher in May, and post-neonatal mortality is higher in July and De-

cember.

Decline and persistence in seasonal variation

How have seasonal patterns of mortality changed over time? Over the twenty-five year

period between 1990 and 2015, infant mortality has nearly halved. Does this decline in

infant mortality correspond to a decline in seasonal variation? Figure 2–2 provides evi-
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dence from un-adjusted mortality rates for a decline in seasonal variation. Seasonality has

declined particularly when comparing the latest NFHS round with earlier NFHS rounds.

Table 2–4 confirms these patterns from age standardized mortality rates for each

calendar month by NFHS round. To measure the extent of variation between calendar

months, it also shows the standard deviation, the coefficient of variation (standard devia-

tion divided by the mean), and the standard deviation of the natural log of the mortality

rates for each round. The coefficient of variation and the standard deviation of log mor-

tality rates are similar measures, and measure relative variation in mortality. In contrast,

the standard deviation measures absolute variation. The findings here show that relative

and absolute deviation move together. The three measures of variation do not decline be-

tween the first three rounds. But they do decline in the fourth NFHS round, confirming

descriptive patterns seen in Figure 2–2. In terms of absolute rates, for the first three rounds,

standard errors are large, because of smaller sample sizes in the first three rounds. The es-

timates still reveal that there is substantial variation in mortality in all four rounds, and

that seasonal variation can still be seen in the latest NFHS round, for births in the recent

period of 2011-2014.

The last panel in Table 2–4 considers how much infant mortality would be lower if

the mortality conditions in March were prevalent throughout the year. For this, I estimate

the 1m0 per year per 1,000 (estimates A) as annualized infant mortality rates observed in

each of the survey rounds. Next, I calculate the 1m0 in a year if the mortality conditions in

March were prevalent throughout the year by calculating annualized March 1m0 (estimates

B). To do this, I scale observed 1m0 in March by the person-months observed for the whole

of the year. Finally, I calculate the difference between estimates A and B to estimate the

hypothetical reduction in infant mortality if differences in infant mortality if march mor-

tality conditions were prevalent throughout. This exercise is an upper bound on the likely

mortality reductions, because some of the lower mortality in the March months could be

because of ‘harvesting’ of more diseased infants in the earlier winter months (Dorélien,
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2019). The calculation still reveals a large role of seasonal variation: a reduction of about

11 deaths per 1,000 in the early 1990s if March rates prevailed throughout the year, and

about 4 deaths less per 1,000 in the mid-2010s.

Average mortality decline by calendar-month: A related question is if mortality

declined in some months faster than others. Figure 2–5 reports results from an interaction

between calendar year (operationalized linearly) and calendar months (operationalized as

dummies from January to December). The coefficient for year in Figure 2–5 is the average

decline per year in the month of March. Thus, it shows that for the month of March, infant

mortality declined at the rate of 0.1 deaths per 1,000 infants per month every year. The

interaction coefficients, for calendar month by year, denote the additional decline in a par-

ticular month above the 0.1 deaths per 1,000 per month decline observed for March. These

estimates show that mortality has declined for all months. Additionally, they suggest that

mortality in the monsoon months and in the early winter months has declined slightly

faster than the mortality in winter and summer months. Compared to March and Summer

mortality declines, mortality in the monsoon months declined by an additional 0.05 deaths

per 1,000 per year. However, these interaction estimates are not statistically different from

zero, and the hypothesis that mortality declined similarly across calendar months cannot

be ruled out.

Differences by measures of socioeconomic disadvantage

Are these seasonal differences in infant mortality patterned by measures of socioeconomic

status? Figure 2–6 plots regression coefficients from separate regressions by residence, sex

of the child, mother’s education, and by household asset ownership. The reference month

is March, and the sample is limited in these regressions to the observations belonging to a

particular group.

Rural residence: Panel a) compares infant mortality in other calendar months in

rural areas with infant mortality in March in rural areas. It also compares mortality in a

particular calendar-month in urban areas to mortality in March in urban areas. Overall, ru-
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ral areas have higher seasonality than urban areas. In no calendar month are differences in

urban areas statistically different from March. In rural areas, several months have higher

mortality. Figure 2A–2 examines seasonality in infant mortality by round and rural resi-

dence. This figure suggests that the seasonal variation in the overall urban patterns largely

comes from the earlier NFHS rounds. By NFHS-4, there is little evidence of seasonal vari-

ation in urban areas. In rural areas, however mortality in the winter and summer months

is markedly higher than mortality in March. Even at a low level of overall infant mortality,

differences between months in NFHS-4 can be as high as one death per 1,000 per month in

rural areas.

Sex of the child: Panel b) shows differences by the sex of the child. Males are more

vulnerable to disease at all ages (Austad, 2011; Drevenstedt et al., 2008). However, in In-

dia, discrimination against female children leads to higher mortality among them (Murthi

et al., 1995), particularly in the ages 1-4 years. In ages 0-1 years, male and female 1m0 are

roughly equal (Sawyer, 2012; Rai et al., 2017). Prior research has suggested that this in itself

is a reflection of gender bias, given that female mortality rates should be lower than male

mortality rates (Kashyap and Behrman, 2020). Previous evidence has documented that

in the presence of seasonal shocks, intra-household allocations favor boys compared to

girls (Behrman, 1988a). To the extent that a worse disease environment affects boys more,

we expect boys to have higher mortality rates in the calendar months where mortality is

higher. Gender inequality within household in the presence of seasonal variation will pre-

dict equal mortality by sex, or higher mortality among girls. Figure 2–6 finds preliminary

evidence that both factors are at play: in some months, such as July, both boys and girls

have equally higher mortality. However, in other months, such as in November, boys have

slightly higher mortality than girls. Because discrimination against female children and

the causes of death are not directly observed here, we cannot say what the likely patterns

by gender would be without discrimination. This is an crucial avenue for future research.

Maternal education: Panel c) shows mortality rates by mother’s education. I use
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three categories: no education, 1-8 years of education, and eight or more years of educa-

tion, which corresponds to the number of years of education which are a constitutional

right in India (Bhatty, 2014), and is a corresponding Sustainable Development Goal as

well (United Nations General Assembly, 2015). A large literature, in the demographic

and health sciences considers mother’s education as a salient determinant of child health

(Caldwell, 1994). The regression results suggest that although seasonal variation in mor-

tality can be seen for all educational categories, seasonal variation is particularly salient

among the children of least educated mothers. Additionally, the fact that there is seasonal

variation even in children of mothers who have more than 8 years of education suggest

that these patterns are not driven by measurement error. Existing evidence suggests that

mothers with more education are more likely to recall their birth months correctly than

mothers with less education (Manesh et al., 2008; Larsen et al., 2019), and even among

these mothers, there is evidence of seasonal variation in mortality.

Household wealth: Panel d) finds that the bulk of the seasonal variation is in

families that are poorer. Families that own either a motorcycle, car, or refrigerator have

no seasonal variation in infant mortality. In the monsoon months, these families have

lower mortality than in March, although differences are not statistically different from zero.

Appendix Figure 2A–3 shows that patterns by asset ownership are consistent across the

earlier and latest NFHS rounds.

Regional and climactic patterns

Figure 2–7 shows coefficients and 95% confidence intervals for infant mortality by calendar

month from separate regressions for each region. The figure shows that seasonality in

infant mortality is lowest in the southern states, and highest in the poorer central states of

India. The southern states have lower mortality rates (Drèze and Sen, 2013) as well as a

better early life disease environment (Million Death Study Collaborators and others, 2010),

partly because they have better sanitation and lower solid fuel use (Government of India,

2011a). The southern states also have lesser variation across seasons, compared to north
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India, which may be driving these patterns. In the eastern states, mortality is highest in the

winter month of November, while in the northern states, mortality is highest in the winter

month of December and the summer month of June.

Figure 2–8 shows seasonal variation in mortality by Koppen-Geiger climate regimes,

using data from the fourth round of the NFHS. In this round, we observe higher mortality

in the tropical monsoon regions (areas of western ghats in India) in the month of August,

when the monsoon is at its peak. Mortality is higher in April, May, and June in the Humid

Subtropical region, which corresponds to the northern Indian plains. Although seasonal

variation is seen in other regions as well, such as with higher mortality in June in the arid

and desert regions, these patterns are less pronounced.

2.5 Robustness

Appendix figure 2A–4 tests if the estimates in Table 2–3 Model 4 are robust to alternative

specifications for time-trends (panel a) or age (panel b). In panel a), I consider 4 alterna-

tive ways to control for time trends: survey rounds, linear month years, linear year, and

dummies for years. The regressions include all existing controls: for age dummies, sex of

the child, state, and rural residence. Although the estimated coefficients and confidence

intervals vary slightly, they are broadly similar for all regressions. Panel b) confirms pat-

terns already observed in raw and age-standardized estimates (in figure 2–3). It also shows

that linear age controls are similar to no controls for age, while controlling for age and a

squared term for age is similar to dummies for age in months.

Appendix figure 2A–6 examines seasonal variation by access to household envi-

ronmental technologies. The regression controls for household asset ownership. The figure

suggests higher seasonal variation among households who do not use toilets or clean fuels

for cooking. This is consistent with findings from the prior literature (Geruso and Spears,

2018b; Bassani et al., 2010), which would expect greater exposure to infectious disease

among households without access to environmental health technologies.
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Prior research has documented a large and implausible gap in height-for-age for

children born in December in a year and children born a month later in January the next

year (Agarwal et al., 2017; Larsen et al., 2019). Are measures of infant mortality by calen-

dar month similarly biased? Appendix Figure 2A–5 reports differences in differences in

period infant mortality between December and January next month. We find that there

are no systematic biases in period mortality rates. Period mortality rates for December are

sometimes equal to period mortality rates in January next month, sometimes higher, and

sometimes lower. This suggests that unlike birth-month effects on height for age, period

mortality rates by calendar month are not systematically biased. This can be inferred from

figure 2–3 as well, which shows that unadjusted and age-standardized mortality rates for

January are similar. Thus, it confirms that January’s mortality rates are not higher because

it has a higher proportion of neonates than other months.

Finally, I consider the effects of age-misreporting and heaping. Panel a) of ap-

pendix figure 2A–7 shows the number of deaths by month of death. Most deaths are in the

first month, confirming patterns of high neonatal mortality in India (Sankar et al., 2016).

The panel shows evidence of heaping around 6th months, when the number of deaths are

higher than mortality in the 5th month. To test if this age-heaping biases mortality rates,

panel b) in appendix figure 2A–7 compares 1m0 with 1m0 that exclude 6 month olds. The

1m0 estimates which exclude 6-month olds exhibit slightly higher seasonality than 1m0,

suggesting that this age-misreporting biases estimates for calendar-months towards zero.

Thus, if age-misreporting was lower, it is likely that estimates of seasonal variation would

be even higher.

2.6 Discussion

This paper contributes evidence to the literature on environmental determinants of child

health for the important case of India, home to every sixth birth and every fifth infant

death in the world, in several ways. To my knowledge, this is the first paper to estimate
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period infant mortality rates by calendar month for India. The methodological approach

outlined here, of estimating period mortality rates between ages 0 and 1 could for peri-

ods shorter than a year, using routinely collected survey data, can be used to study other

time-varying determinants of child health or policy interventions. The approach estimates

unadjusted and age-standardized mortality rates below the age of 1 for calendar months.

Age-standardized mortality rates by calendar month in ages below 1 adjust for composi-

tional differences created by seasonal variation in births (Knodel, 1983). The approach here

is compatible with several assumptions about the exact occurrence of births and deaths.

Although the development of alternative estimation strategies, such as those that assign

death dates to replicate age patterns of mortality in the infant ages, would be valuable,

the approach used here is robust to alternative estimation strategies as well, such as using

randomly assigned birth-dates within the birth-month.

We cannot rule out that some of the period-mortality estimates we observe could

be because of lagged effects of disease environment prevailing in previous months. An-

other concern about the methodological approach followed here is that measurement error

in calendar birth month and age at death may still bias estimates of mortality by calendar

month. We are able to address these concerns to some extent. First, the paper documents

seasonal variation in both the neonatal and post-neonatal period. This implies that overall

seasonal variation is not just because of neonatal mortality in misreported birth months.

Second, we show that unadjusted and age-standardized mortality rates are similar in Jan-

uary, a month which often gets a disproportionate number of misreported births (Larsen

et al., 2019). Similarly, we do not find a systematic difference between December and next-

year January in terms of infant mortality. Finally, although more deaths are reported at age

six months than deaths at five or seven months, dropping six-month old children from the

sample leads to similar results.

Substantively, the analysis presented here concludes that although seasonal vari-

ation in mortality has declined over the period 1989-2014. In particular, seasonal variation
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was considerably less in the recent period, 2011-14. Similar patterns have been observed in

the context of the epidemiological transition in contemporary high and low-income coun-

tries as well (Rau, 2006a; Schlüter et al., 2020). In India, the period 2005-2014 saw declines

in infant mortality, progress on other aspects of human development (Drèze et al., 2021),

and increases in child health provision (Singh et al., 2019). Household ownership of basic

assets, such as cleaner fuels, pucca homes, fans and coolers also increased to an extent.

It is likely that these improvements contributed to declines in seasonal variation in infant

mortality. An important priority for future research is to investigate the causes of declines

in infant mortality and seasonal variation in India.

Despite these declines, the paper documents that seasonal variation remains a

challenge, particularly in rural areas, and particularly among disadvantages sections of

Indian society. Why this is the case, and what can be done about this is an urgent question

for policy and research. The pattern of seasonal variation documented in this paper re-

veals a limited period within the year – the spring months of February and March – where

threats to child health are less salient. This evidence has relevance for studies of the late-

life-legacy of early life conditions as well as for studies assessing the association between

environmental exposures and child mortality. It is consistent with the prior literature in

India. This literature has found a large number of seasonally varying exposures – pollu-

tion, heat, humidity, and cold weather, and the monsoon (Spears, 2019b; Fu et al., 2018;

Brown et al., 2019). The results documented here are also consistent with existing studies

using cause of death data, such as Farrar et al. (2019). Farrar et al. (2019) find evidence

in support of variation in diarrhea and pneumonia related mortality in the post-neonatal

period in the summer and the winter months.

On the whole, we find that given current technologies and incomes, infant mor-

tality in March is lower by about 4 infant deaths per 1000 per year. This is a sizable com-

pared to overall infant mortality in India and elsewhere. Further research, which examines

the extent to which accounting for these seasonally varying exposures can explain sea-
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sonality in mortality would help further bolster the evidence on the relative importance

of the mechanisms highlighted here. Seasonal variation in nutrition availability, agricul-

tural work, and other economic determinants are also not directly examined here. Fur-

ther studies examining seasonal variation in cause-specific mortality and patterns of social

disadvantage, such as gender, can be helpful in understanding discrimination within the

household. The NFHS surveys may not be powered to detect seasonal variation over finer

geographic and time scales, even if seasons themselves vary within India in terms of tim-

ing and intensity. This is an important avenue for future research. These specific studies

can contribute to overall evidence on the role of policy approaches to reduce seasonal vari-

ation.
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Figure 2–1: Lexis-Diagram containing life-lines and deaths to illustrate how 1m0 by month
is calculated for a particular month (January 1992)
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I estimate period-specific infant mortality rates, where each period is a calendar month-year. For
example, to estimate the infant mortality rate for January 1992, the numerator consists of all deaths
that occur to infants less than 1 year old in January 1992. The denominator consists of children below
age 1 who are alive on January 15, 1992. The Lexis diagram in Figure 1 shows life-lines and deaths for
15 children, from birth to age 1 year. Of these 15, 4 died before reaching the age of 1 year. For the
period January 1992, marked by blue dashed lines, there was 1 death (child id 10), and 10 children were
exposed to the risk of death. The mortality rate for children under the age of 1 year for January 1992 in
this hypothetical example would thus be 100 deaths per 1,000.
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Figure 2–2: Estimated of infant mortality (1m0) by calendar month-year

2
4

6
8

10

19
89

m
5

19
89

m
6

19
89

m
7

19
89

m
8

19
89

m
9

19
89

m
10

19
89

m
11

19
89

m
12

19
90

m
1

19
90

m
2

19
90

m
3

19
90

m
4

19
90

m
5

19
90

m
6

19
90

m
7

19
90

m
8

19
90

m
9

19
90

m
10

19
90

m
11

19
90

m
12

19
91

m
1

19
91

m
2

19
91

m
3

19
91

m
4

19
91

m
5

19
91

m
6

19
91

m
7

19
91

m
8

19
91

m
9

19
91

m
10

19
91

m
11

19
91

m
12

19
92

m
1

19
92

m
2

19
92

m
3

19
92

m
4

19
92

m
5

NFHS 1

2
4

6
8

10

19
95

m
5

19
95

m
6

19
95

m
7

19
95

m
8

19
95

m
9

19
95

m
10

19
95

m
11

19
95

m
12

19
96

m
1

19
96

m
2

19
96

m
3

19
96

m
4

19
96

m
5

19
96

m
6

19
96

m
7

19
96

m
8

19
96

m
9

19
96

m
10

19
96

m
11

19
96

m
12

19
97

m
1

19
97

m
2

19
97

m
3

19
97

m
4

19
97

m
5

19
97

m
6

19
97

m
7

19
97

m
8

19
97

m
9

19
97

m
10

19
97

m
11

19
97

m
12

19
98

m
1

19
98

m
2

19
98

m
3

19
98

m
4

19
98

m
5

19
98

m
6

19
98

m
7

19
98

m
8

19
98

m
9

19
98

m
10

NFHS 2

2
4

6
8

10

20
01

m
10

20
01

m
11

20
01

m
12

20
02

m
1

20
02

m
2

20
02

m
3

20
02

m
4

20
02

m
5

20
02

m
6

20
02

m
7

20
02

m
8

20
02

m
9

20
02

m
10

20
02

m
11

20
02

m
12

20
03

m
1

20
03

m
2

20
03

m
3

20
03

m
4

20
03

m
5

20
03

m
6

20
03

m
7

20
03

m
8

20
03

m
9

20
03

m
10

20
03

m
11

20
03

m
12

20
04

m
1

20
04

m
2

20
04

m
3

20
04

m
4

20
04

m
5

20
04

m
6

20
04

m
7

20
04

m
8

20
04

m
9

20
04

m
10

20
04

m
11

20
04

m
12

20
05

m
1

NFHS 3

2
4

6
8

10

20
11

m
12

20
12

m
1

20
12

m
2

20
12

m
3

20
12

m
4

20
12

m
5

20
12

m
6

20
12

m
7

20
12

m
8

20
12

m
9

20
12

m
10

20
12

m
11

20
12

m
12

20
13

m
1

20
13

m
2

20
13

m
3

20
13

m
4

20
13

m
5

20
13

m
6

20
13

m
7

20
13

m
8

20
13

m
9

20
13

m
10

20
13

m
11

20
13

m
12

20
14

m
1

20
14

m
2

20
14

m
3

20
14

m
4

20
14

m
5

20
14

m
6

20
14

m
7

20
14

m
8

20
14

m
9

20
14

m
10

20
14

m
11

20
14

m
12

20
15

m
1

20
15

m
2

20
15

m
3

NFHS 4

month-year

in
fa

nt
 d

ea
th

s 
pe

r 1
,0

00

Note: Estimates account for survey weights.

66



Figure 2–3: Estimated raw and age-standardized 1m0 with 95% confidence intervals by
calendar month
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Note: Mean and 95% CI estimates account for survey weights and clustering of observations within the primary sampling unit.
Age-standardized estimates match the distribution of age (in monhts) for each calendar month with the overall age distrbution.

Observations are from pooled sample, for child-months from all four NFHS rounds.
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Figure 2–4: Seasonal variation in neonatal and post-neonatal mortality
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Estimates are for the pooled sample.

68



Figure 2–5: Plotted coefficients from linear probability regression interacting linear year
and calendar month to examine if decline in infant mortality is higher for some calendar
months
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69



Fi
gu

re
2–

6:
Pl

ot
te

d
co

ef
fic

ie
nt

s
fr

om
se

pa
ra

te
lin

ea
rp

ro
ba

bi
lit

y
re

gr
es

si
on

s
fo

r 1
m

0
by

ca
le

nd
ar

m
on

th
,s

tr
at

ifi
ed

by
ch

ar
ac

te
ri

st
ic

s
of

ch
ild

re
n

-1012

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

ur
ba

n
ru

ra
l

R
eg

re
ss

io
ns

 c
on

tro
l f

or
 li

ne
ar

 m
on

th
-y

ea
r a

nd
 d

um
m

ie
s 

fo
r a

ge
 in

 m
on

th
s,

st
at

e,
 s

ex
 o

f t
he

 c
hi

ld
, i

nt
er

vi
ew

 m
on

th
, a

nd
 ro

un
d.

a)
 b

y 
re

si
de

nc
e

-1012

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

gi
rl

bo
y

R
eg

re
ss

io
ns

 c
on

tro
ls

 fo
r l

in
ea

r m
on

th
-y

ea
r a

nd
 d

um
m

ie
s 

fo
r a

ge
 in

 m
on

th
s,

st
at

e,
 ru

ra
l r

es
id

nc
e,

 in
te

rv
ie

w
 m

on
th

, a
nd

 ro
un

d.

b)
 b

y 
se

x 
of

 th
e 

ch
ild

-1012

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

no
 e

du
ca

tio
n

1-
8 

ye
ar

s
> 

8 
ye

ar
s

R
eg

re
ss

io
ns

 c
on

tro
ls

 fo
r l

in
ea

r m
on

th
-y

ea
r a

nd
 d

um
m

ie
s 

fo
r a

ge
 in

 m
on

th
s,

st
at

e,
 ru

ra
l r

es
id

en
ce

, s
ex

 o
f t

he
 c

hi
ld

, i
nt

er
vi

ew
 m

on
th

, a
nd

 ro
un

d.

c)
 b

y 
ye

ar
s 

of
 e

du
ca

tio
n

-1012

Ja
n

Fe
b

M
ar

Ap
r

M
ay

Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

no
 a

ss
et

s
 o

w
n 

at
 le

as
t o

ne
 a

ss
et

R
eg

re
ss

io
ns

 c
on

tro
ls

 fo
r l

in
ea

r m
on

th
-y

ea
r a

nd
 d

um
m

ie
s 

fo
r a

ge
 in

 m
on

th
s,

st
at

e,
 ru

ra
l r

es
id

en
ce

, s
ex

 o
f t

he
 c

hi
ld

, i
nt

er
vi

ew
 m

on
th

, a
nd

 ro
un

d.

d)
 b

y 
as

se
t o

w
ne

rs
hi

p

average marginal effects (infant deaths per 1,000)

N
ot

e:
 A

ll 
es

tim
at

es
 a

cc
ou

nt
 fo

r s
ur

ve
y 

w
ig

ht
s 

an
d 

cl
us

te
rin

g 
w

ith
in

 th
e 

pr
im

ar
y 

sa
m

pl
in

g 
un

it.
Es

tim
at

es
 a

re
 fo

r t
he

 p
oo

le
d 

sa
m

pl
e.

70



Figure 2–7: Plotted coefficients from separate linear probability regressions for 1m0 by
calendar month, stratified by region
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North: Jammu & Kashmir, Himachal Pradesh, Haryana, Punjab, Delhi.
Central: Uttarakhand, Uttar Pradesh, Rajasthan, Madhya Pradesh, Chattisgarh, Gujarat, Bihar, Jharkhand.
East: Assam, Odisha, West Bengal, Sikkim, Manipur, Meghalaya, Arunachal Pradesh, Tripura, Nagaland, Mizoram.
South: Andhra Pradesh, Telangana, Maharashtra, Goa, Tamil Nadu, Kerala, Karnataka.
Estimates are for the pooled sample.
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Figure 2–8: Seasonal variation in 1m0 by calendar month and Koppen-Geiger climate clas-
sifications, NFHS-4 (2015-16) for period 2011-2016
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Table 2–2: Proportionate distribution of observed child months by calendar month in the
sample, and mean observed infant deaths per child-month in each calendar month

calendar month child-months deaths
mean s.e. mean s.e.

January 0.085 0.0001 0.005 0.0002

February 0.077 0.0002 0.004 0.0002

March 0.085 0.0001 0.004 0.0002

April 0.076 0.0001 0.004 0.0002

May 0.082 0.0002 0.005 0.0002

June 0.082 0.0002 0.004 0.0002

July 0.082 0.0002 0.005 0.0002

August 0.090 0.0001 0.006 0.0002

September 0.090 0.0001 0.005 0.0002

October 0.090 0.0001 0.006 0.0002

November 0.084 0.0001 0.006 0.0003

December 0.077 0.0002 0.005 0.0003

n (observations) 2,933,892 12,479
Source: NFHS Surveys. Note: Means and standard errors account for national women’s weights
and clustering of observations within primary sampling units. Units of observation in this table
are child-months.
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Table 2–3: Estimated coefficients and odds-ratios from linear probability, logistic, and
complementary-log-log models of infant mortality by calendar month

model: logit cloglog
(1) (2) (3) (4) (5) (6)

reference: March
January 0.764* 0.686* 0.686* 0.705* 1.157* 1.155*

(0.319) (0.315) (0.315) (0.315) (0.081) (0.079)

February 0.176 0.469 0.460 0.323 1.075 1.074
(0.323) (0.321) (0.321) (0.321) (0.081) (0.080)

April -0.053 0.074 0.079 0.213 1.048 1.048
(0.305) (0.302) (0.302) (0.302) (0.076) (0.075)

May 0.623+ 0.802* 0.801* 0.896** 1.229** 1.226**
(0.319) (0.315) (0.315) (0.316) (0.087) (0.086)

June 0.144 0.150 0.148 0.257 1.051 1.050
(0.304) (0.301) (0.301) (0.302) (0.075) (0.074)

July 1.035** 0.897** 0.895** 1.018** 1.219** 1.215**
(0.326) (0.321) (0.321) (0.322) (0.085) (0.083)

August 1.595*** 0.757* 0.756* 0.753* 1.137+ 1.135+
(0.330) (0.325) (0.325) (0.325) (0.076) (0.075)

September 0.862** 0.476 0.475 0.488 1.097 1.097
(0.309) (0.304) (0.304) (0.304) (0.073) (0.072)

October 1.566*** 0.702* 0.702* 0.727* 1.130+ 1.128+
(0.327) (0.320) (0.320) (0.322) (0.075) (0.074)

November 1.534*** 0.948** 0.951** 0.987** 1.189* 1.187*
(0.341) (0.336) (0.335) (0.336) (0.082) (0.081)

December 0.986** 0.758* 0.764* 0.789* 1.177* 1.174*
(0.330) (0.326) (0.326) (0.327) (0.083) (0.081)

age (in month) dummies X X X X X
sex of the child X X X X X
state X X X X
rural residence X X X X
month of survey X X X
survey round dummies X X X
linear month year X X X

mean imr
children 331,845 331,845 331,845 331,845 331,845 331,845
n (child-months) 2,933,892 2,933,892 2,933,892 2,933,892 2,933,892 2,933,892

linear probability

4.32 infant deaths per 1,000 per month

Source: NFHS Surveys. Estimates and clustered standard errors account for national women’s weights and
clustering of observations within primary sampling units. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 2–4: Age-standardized 1m0 by calendar month and survey round

NFHS-1 NFHS-2 NFHS-3 NFHS-4
1m0 s.e. 1m0 s.e. 1m0 s.e. 1m0 s.e.

January 6.6 0.551 5.3 0.528 4.9 0.548 3.9 0.196

February 6.4 0.603 4.1 0.455 5.4 0.576 3.4 0.232

March 5.6 0.516 5.0 0.489 4.3 0.543 3.1 0.179

April 5.9 0.662 5.2 0.521 4.3 0.499 3.4 0.202

May 6.3 0.750 5.6 0.471 6.0 0.605 3.7 0.203

June 6.0 0.652 5.0 0.411 4.1 0.528 3.8 0.205

July 7.3 0.701 5.7 0.452 5.8 0.610 3.3 0.198

August 6.6 0.521 6.1 0.425 4.7 0.531 3.4 0.199

September 6.3 0.532 5.6 0.422 4.9 0.524 3.1 0.180

October 7.0 0.550 5.2 0.384 5.0 0.503 3.5 0.199

November 7.2 0.566 5.4 0.491 5.5 0.555 3.3 0.203

December 6.8 0.559 5.1 0.492 5.8 0.756 3.4 0.191

s.d. (1m0) 0.535 0.484 0.636 0.237

c.v. (1m0) 0.082 0.092 0.127 0.069

s.d. (log1m0) 0.083 0.096 0.126 0.069

A. Observed 1m0, annualized 78.0 63.9 60.3 41.2

B. March 1m0, annualized 66.6 59.7 51.8 37.6

C. Difference (A - B) 11.4 4.2 8.5 3.7

Means and standard errors account for national women’s weights and clustering of observations within
primary sampling units. Units of observation in this table are child-months. s.d: standard deviation. c.v.:
coefficient of variation.
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2.7 Supplementary Appendix

Additional methodological notes

The approach used in this paper and outlined in the lexis diagram is compatible with

several assumptions. The full list of compatible assumptions includes:

• All births are in the middle of the month (on the 15th); and all deaths are on the exact

day the child attains the age (in months) at which they died

• All births are in the middle of the month (on the 15th); and all deaths are within the

fifteen days of reaching a particular age (in months)

• All births are in the middle of the month (on the 15th); and all deaths are on the last

day of the month, i.e. at age in months the child died + 0.49 of a month

• All births are distributed uniformly within the month; and all deaths are on the exact

day the child attains the age (in months) at which they died

The approach is also robust to alternative assumptions. For instance, we can assume that

within a calendar-month, births are randomly distributed across days. Then, for neonatal

deaths, we know the exact month a child died because age at death in days is available. For

deaths at ages greater than age zero month, we can assume that the death was fifteen days

after the day a child turned a particular age-month. So a child who died at age two months

can be assumed to have died 74 days after the day s/he was born. Appendix figure 2A–

8 shows the unadjusted and adjusted mortality rates below age 1 for this approach (red

squares). Comparing with the mortality rates using the main approach outlined in the

paper (blue circles) reveals minor differences. It is worth noting that the risk mortality

declines rapidly within the first year of life in India (Hill, 1995; Guillot et al., 2012). Hence,

deaths are more likely to be close to the day a child turns a particular month than towards

the middle or the end of that age-month. Hence, the blue circles are more closer to reality

than the red squares in terms deaths, even if the red squares are a closer approximation to

reality than the blue circles in terms of births.
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Figure 2A–1: Seasonality in births
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Source: NFHS Surveys. Estimates are from pooled sample.
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Figure 2A–2: Plotted coefficients from separate linear probability regressions, showing
1m0 by calendar month and residence, for earlier and latest NFHS rounds
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Figure 2A–3: Seasonal variation by asset ownership, for earlier and latest NFHS rounds
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Figure 2A–4: Results from alternative regression specifications to control for time and age
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Figure 2A–5: Regression margins: Difference between January and previous-year Decem-
ber for infant mortality
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Figure 2A–6: Seasonal variation by access to household environmental technologies

-1
0

1
2

av
er

ag
e 

m
ar

gi
na

l e
ffe

ct
s

Ja
n

Fe
b

M
ar Ap

r

M
ay Ju
n

Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

use toilet open defecation

a) Seasonal variation by household sanitation use
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Figure 2A–7: Heaping in reporting age at death and mortality estimates with and without
mortality at age 6 months
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Figure 2A–8: Unadjusted and age-standardized 1m0 based on alternative estimation ap-
proaches
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CHAPTER 3:

Household wealth and life expectancy in India: 1990-2016

Abstract

Research on life expectancy gradients in low- and middle-income contexts is constrained

by data limitations. Using data from three Demographic and Health Surveys in India, I

generate the first direct estimates of period life table quantities and their standard errors by

household wealth in India. These estimates reveal large and persistent disparities in mor-

tality. In 2013-16, life expectancy at birth for the wealthiest women was 9.2 years higher

than the poorest women. Differences among men were even starker: 14.1 years higher

among the wealthiest octile when compared to the poorest. Disparities have declined be-

tween the 1990s and the mid 2010s, and life expectancy at birth has improved across wealth

classes. To a large extent, these patterns are driven by declines in child mortality levels and

differentials. In contrast, disparities in adult mortality have not declined, and among men,

even overall declines in adult mortality are not observed. We find that life expectancy dis-

parities are higher in urban areas compared to rural areas. Regionally, life expectancies of

those in the poorest quartiles are lowest in the Hindi-speaking states. In fact, the poorest

women who live in South India have similar or higher life expectancies than the richest

women who live in Uttar Pradesh. These findings highlight the persistence of disparities

and deficits in overall well-being in India. They have several implications for the scientific

literature on measurement of mortality, health system priorities, and understanding the

evolution of health disparities in the ongoing epidemiological transition.
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3.1 Introduction and background

A broad scientific literature has observed social class differentials in health and mortality

in a variety of contexts (Elo, 2009). Apart from improving understanding of the distribu-

tion of mortality within populations, this literature has informed policy and health system

priorities (Gwatkin, 1993; Deaton, 2002; Heuveline et al., 2002). Identifying the sections of

a population that have higher mortality relative to others is the first step in understanding

the causes of deficits and appropriate social responses (Preston and Taubman, 1994). Given

that life expectancy is a critical human development outcome, evidence on mortality dis-

parities is also central to public discussions on overall social progress (Sen, 2001; Krieger,

2011; Marmot, 2015). However, data limitations in low- and middle-income countries, es-

pecially on mortality beyond the childhood ages, prevent systematic examination of life

expectancy disparities (Krueger and Burgard, 2011; Tabutin et al., 2017).

Child mortality differentials have been observed in studies of contemporary high

income countries (Chen et al., 2016), historical patterns in high income countries (Preston

and Haines, 2014), as well as in contemporary low- and middle-income countries (Gwatkin

et al., 2007; Chao et al., 2018). Chao et al. (2018) show that absolute mortality differentials

have reduced in low- and middle-income countries between 1990 and 2016. These compar-

isons of child mortality in households in the poorest and richest asset classes in low- and

middle-income countries show that declines are partly driven by improvement in living

standards and increased access to maternal and child healthcare (Boerma et al., 2018; OPHI

and UNDP, 2020). Still, even when absolute disparities declined, relative child mortality

disparities were stable in in this period, suggesting an even greater emphasis on improving

child health in poorer populations within countries.

Unlike child mortality, patterns and trajectories of adult mortality gradients in

low- and middle-income countries are not well-understood. This is despite the growing

importance of mortality in the adult ages to overall population health. As child mortality

declines, a greater proportion of the population and deaths are in the adult ages (Heligman
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et al., 1993; Meslé and Vallin, 2011). Studies from the United States and some other coun-

tries have found increases in adult mortality disparities in recent periods (Shkolnikov et al.,

2012; National Academies of Sciences, 2015; Chetty et al., 2016; Bosworth, 2018; Venkatara-

mani et al., 2020; Committee on Population, 2021). Studies on trends in adult mortality

disparities in low-and middle-income countries are less common. Single-period findings

have found modest gradients in adult mortality in these countries (Chapoto et al., 2012;

Sudharsanan, 2019; Beltrán-Sánchez et al., 2020; Luo and Xie, 2014; Nikoi and Odimegwu,

2013; Sudharsanan et al., 2020). A key explanation of these modest-to-no gradients has

been that chronic diseases are emerging health risks in these countries, and may even

be more prevalent among more advantaged sections (Rosero-Bixby and Dow, 2009; Sud-

harsanan and Ho, 2020).

A high-burden of risk-factors such as air pollution, on the other hand, may affect

socially disadvantaged individuals more (Gupta, 2019). Disparities may also be shaped

by a high-burden of accidental and tuberculosis mortality, both of which are more likely

to affect poorer individuals in their productive ages (Jagnoor et al., 2012; Pai et al., 2017).

Finally, adult consequences of child health insults in the presence of child mortality gradi-

ents will also predict adult mortality gradients (Mosley and Gray, 1993).

What are the overall impacts of declines in mortality (Deaton, 2013), changing

health-risk profiles along with the epidemiological transition (Horiuchi, 1999; Caldwell

and Caldwell, 1993), and generalizing cardio-vascular disease burdens (Patel et al., 2019)

on gradients in life expectancy at birth? This paper addresses these questions for the case

of India, the world’s largest democracy and home to more people than the combined pop-

ulations of North America and Europe. Using data from three rounds of the National

Family and Health Surveys (NFHS), I investigate life expectancy disparities by household

wealth. These three NFHS rounds, fielded in 1992-93, 1998-99, and 2015-16, included a

module on recent deaths in the household. This is in addition to the birth history mod-

ule that the Demographic and Health Surveys, of which the NFHS is the Indian version,
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implement.

Combining data from the birth history module for ages 0-5, household deaths for

mortality in ages beyond 5, and persons alive from household rosters, I directly estimate

period life table quantities. Following a principal component approach, I estimate house-

hold wealth categories. This approach creates a wealth index using the observed durable

goods that a household owns. I estimate standard errors and 95% Confidence Intervals for

these life table quantities by using a cluster-bootstrap approach. The approach used here

builds on methods to estimate age-specific mortality rates (Gupta and Sudharsanan, 2020)

and their standard errors from clustered survey data (Vyas et al., 2021), and estimating

household wealth indexes using data on household assets (Pollitt et al., 1993; Filmer and

Pritchett, 2001).

The paper makes methodological contributions to studying the determinants of

mortality using survey data in developing countries, where mortality registration is in-

complete (Mikkelsen et al., 2015). To my knowledge, these are the first direct estimates of

social class disparities in abridged life table quantities with accurate standard errors that

account for the clustering of observations within primary sampling units. Substantively,

the paper helps understand disparities in both overall life expectancy as well as mortal-

ity across the life course. A unique contribution of this study is that the data allow us to

examine mortality disparities across the life course, unlike previous studies which focus

on child or adult ages separately. Unlike the previous literature, this study is also able to

examine trajectories in life expectancy disparities.

The paper intervenes in three key debates. First, it informs the India specific liter-

ature on the evolution of inequality in human development in the period 1900-2016. This

period saw a robust economic growth (Drèze and Sen, 2013), a widening of economic in-

equalities (Himanshu, 2019), a decline in poverty (Alkire et al., 2021), and an expansion in

social and health policy (Drèze and Khera, 2017). In contrast to patterns of increasing eco-

nomic inequality despite poverty declines, the paper finds overall health improvements
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and declines in mortality disparities between 1990 and 2016. Declines in child mortal-

ity, particularly among the poor, contributed to the reduction in overall life expectancy.

However, mortality disparities in the adult ages were persistent in this period. Among

men, even overall declines were not observed, pointing to a lost decades in terms of adult

health improvements.

Second, it informs a policy debate on health system priorities, which has worried

about equity considerations of allocating resources to addressing cardiovascular disease

(Subramanian et al., 2013; Narayan and Ali, 2013; Patel et al., 2019). In documenting both

child and adult mortality gradients, the paper suggests that investments in reducing the

burden of adult mortality risk factors, particularly in the working ages, is not likely to

increase inequality in health spending.

Third, in contrast to existing studies which document modest mortality gradients

in adult mortality, the paper finds persistent disparity across the life course. In this, the

paper suggests that India is different from other low- and middle-income countries where

adult mortality gradients are modest. This finding highlights the relevance of fundamental

cause perspectives (Link and Phelan, 1995) in India.

The next section describes the data and empirical approach followed here. We

describe the results after that. Because prior demographic literature has emphasized the

importance of sex, region, and residence in India (Murthi et al., 1995; Subramanian et al.,

2006; Saikia and Ram, 2010; Saikia et al., 2013) and elsewhere (Elo et al., 2019; Mackenbach

et al., 2003; De Walque and Filmer, 2011; Zajacova and Hummer, 2009), I break down key

results by these factors. I discuss the results of several robustness tests in section 3.4. Com-

plementary papers have discussed disparities by social group (Gupta and Sudharsanan,

2020) and the intersection of social-group and economic disparities (Vyas et al., 2021). This

paper focuses on socioeconomic status as measured by household wealth. Section 3.5 dis-

cusses the strengths and limitations of the methodological approach followed here as well

as implications for research. Section 3.6 concludes.
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3.2 Data and methods

I use data from three rounds of the National Family Health Surveys (NFHS), India’s ver-

sion of the Demographic and Health Surveys (DHS). Four sets of measures are used from

these data.

First, I use a question on recent deaths in the household to estimate mortality rates

beyond the childhood ages. Out of the four available rounds of the NFHS surveys, three

rounds – those conducted in 1992-93, 1998-99, and 2015-16 – implemented this module on

recent deaths in the household. This question was asked in the household questionnaire

of the surveys.

Second, I use information on usual household members listed in the household

roster in the household interview questionnaire to estimate person years lived by those

who did not die.

Third, the household questionnaire also asks respondents about the durable assets

and household goods that it owns. I use this information to create a household wealth

index.

According to the interviewer manual of NFHS-4, the NFHS household interview

module can be answered by “any adult member of the household who is capable of pro-

viding information needed to fill in the Household Questionnaire” (IIPS and ICF, 2014).

The NFHS surveys visit randomly selected households within randomly selected primary

sampling units. The households are randomly selected from a list of all households that is

prepared for the survey. Appendix figure 3A–1 shows that the household sizes of selected

households in the NFHS surveys is similar to that observed in the decennial Indian cen-

suses. Reports compiled by the NFHS surveys (IIPS, 1995; IIPS and ORC Macro, 2001; IIPS

and ICF, 2017) also confirm that other characteristics measured in the NFHS surveys, such

as age distribution, marital status, and sex ratios are similar to observed characteristics in

the censuses and the Sample Registration System in India.
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Finally, child mortality is estimated using the birth history module. This module

is included in the women’s questionnaire of the surveys. This question is answered by all

eligible women in the household – women between the ages 15-49 – where they list all the

children they have ever had and the survival status of their children.

Using this data, I create wealth- and sex-specific life-lines for dead and alive house-

hold members. I use standard life table methods (Preston et al., 2001) to estimate life tables

by household wealth categories. To estimate standard errors and 95% confidence intervals

for estimated life expectancies, I use a cluster-bootstrap approach. These data and methods

are described in detail below.

Estimating mortality

The NFHS surveys are multi-stage sample surveys that are representative at the state and

national levels in India. Given their scale, these surveys are implemented in phases, sur-

veying several states in each phase. In Phase 1 of NFHS-1, information on deaths in the

household were asked for the period January 1990 till the date of the interview. For phase

2, information on deaths between January 1991 and the interview date was asked. NFHS-2

had three phases, which asked about deaths between the periods January 1996, 1997, or

1998 and the interview date, respectively. In NFHS-4, the period for which information

on deaths were asked was January 2012 till the survey date in the first phase, and January

2013 till the survey date in the second phase. To minimize recall biases, I use information

on deaths in the last two years in these surveys. Person years are also estimated for this

period. Thus, for NFHS-1, the estimates are for the period 1990-1993, for NFHS-2, they are

for the period 1996-1999, and for NFHS-4, they are for the period 2013-2016.

The question on recent deaths was implemented in the household questionnaire of

the surveys. I follow the approach developed in Gupta and Sudharsanan (2020) to estimate

mortality rates. For all deaths recorded in the household death question, respondents were

asked about the age and sex of the deceased, and the month and year when they died. I

use this information to create life-lines for all dead individuals.
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I use information from the household roster to create life-lines for alive individ-

uals as well. For this, I use information on the age of alive individuals at the time of the

interview, and create a random month of birth for them. These life-lines for alive or dead

individuals start at age 5.

Then, I estimate the number of deaths, persons years lived by dead individuals,

and person years lived by alive individuals in abridged life table age-groups in the es-

timation period. Although researchers have not used these data to directly estimate life

expectancies or age-specific mortality rates, these data have been used in regression-based

or indirect-estimation approaches to evaluate specific determinants of mortality (Saikia

and Ram, 2010; Subramanian et al., 2006; United Nations Population Division, 2011; Asaria

et al., 2019). Regression based approaches have been used to study the association between

socioeconomic status and mortality using data from the India Human Development Sur-

vey as well (Po and Subramanian, 2011; Barik et al., 2018).

For ages below 5, I use the birth history module of the NFHS surveys, using stan-

dard approaches (Moultrie et al., 2013). I estimate age-specific mortality rates in the ages

0-1 and 1-4 years by using information provided by mothers who list their birth history

in the DHS surveys. I create life-lines for children between the ages 0-1 and 1-4 in the es-

timation period by using information on their month and year of birth, month and year

of death if they died, and the interview month and year. For consistency, these rates are

estimated for the same period for which adult mortality rates are estimated.

Deaths and the exposures are first estimated at the level of the calendar month,

which are then summed into deaths and person-years in the estimation period. The entry

month for children is at the beginning of the estimation period if they were born before the

beginning of the estimation period. If they were born in the estimation period, their entry

date is the month-year they were born. Exit dates for children are the month-year they

turned 59 months if the date is before the end of the estimation period; month-year of death

if they died in the estimation period; and the month before the month-year of interview if
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they did not turn 5 and did not die in the estimation period. For adults aged 5 and above,

the entry date is the month-year they turned 5, or the beginning of the estimation period if

they turned 5 before the estimation period began. Exits are on the month-year of death or

the month before the month-year of the interview.

Although an older demographic literature has emphasized the unreliability of the

question on recent deaths in the household (Hill, 1991; Timæus, 1991), Gupta and Sud-

harsanan (2020) show that the mortality rates estimated using this approach match closely

with those of India’s national life tables estimated by the Sample Registration Survey. More

recent assessments from other contexts, such as those from Sub-Saharan Africa, also finds

increased reliability of the recent deaths in the household approach (Masquelier et al.,

2017). In Bangladesh, El Arifeen et al. (2014) and Hill et al. (2006) use the question on

recent deaths in the household to measure maternal mortality, and find similar results as

questions on sibling survival. In Appendix Figure 3A–2, I show that the age-specific mor-

tality rates generated using this approach correspond closely to official Indian life tables

based on the Sample Registration Survey (SRS).1

Estimating wealth

In the literature on social gradients in mortality, a variety of measures, including occupa-

tional class (Marmot et al., 1991; Bengtsson et al., 2019), education (Elo and Preston, 1996;

Luo et al., 2015), income (Dowd et al., 2011; Chetty et al., 2016), and household wealth

(Laaksonen et al., 2009; Barik et al., 2018) have been used to study the relationship be-

tween socioeconomic status and health (Elo, 2009). In this paper, I use a household wealth

index based on the durable goods that a household owns, created using principal compo-

nent index (Pollitt et al., 1993; Filmer and Pritchett, 2001). Each measure of socioeconomic

status has its own advantages and disadvantages (Elo, 2009).

1Although the SRS is also a survey, accurate standard errors that reflect the multi-stage sampling design
of the SRS are not published by the SRS. The NFHS standard errors are calculated using a clustered bootstrap
approach, as described in the section on empirical strategy. If individual level SRS data are made available,
the cluster-bootstrap strategy used here would be applicable to the SRS data as well.

94



Household assets and indexes based on them have the advantage that they are

available for all individuals (unlike occupational class), for all ages (unlike education),

and are easier to measure in developing countries where income data are harder to col-

lect (Filmer and Pritchett, 2001). When compared to income, reverse-causality is less of

a concern with household durable assets, although households may still sell some assets

after the death of a household member. Along with social group, such as caste or in-

digenous identity, the assets that a household own may be a key marker for social class

in India. In addition to measuring relative social class, household based wealth indices

may also capture social class perceptions, given that they are easier to display and observe

(Ramakrishnan et al., 2020).

A limitation of the household asset index approach is that household assets are

measured at the time of the interview, after deaths have occurred (Chao et al., 2018). Un-

fortunately, the NFHS does not ask questions on household income, and educational at-

tainment is only collected for alive members. However, socioeconomic status as measured

by wealth index of household assets is a common approach to investigating inequality in

well-being using the DHS surveys, particularly for child mortality (Lu et al., 2020).

Using principal components analysis, I create a household wealth index based

on the durable goods a household is reported to own. I exclude those household goods

that have direct links with health and mortality, such as toilet ownership (Geruso and

Spears, 2018b) and solid fuel use (Gupta, 2019). I also use those assets which are linked to

higher social status and were technologically relevant in a particular period. From NFHS-

1, I use the household assets radio, television, refrigerator, cycle, motorized two-wheeler,

car, sewing machine, clock, sofa, fan, whether the house was pucca, and video-cassette-

recorder. From NFHS-2, I use the assets television, refrigerator, mattress, motorized two-

wheeler, car, land-line phone, pressure cooker, chair, cot, table, clock, fan, whether the

house was pucca, and sewing machine. From NFHS-4, I use the assets television, refrig-

erator, car, landline phone, pressure cooker, fan, computer, air-conditioner, and washing
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machine. Each subsequent round of the NFHS surveys observes a larger number of house-

hold assets and there are some changes in each round about particular assets (for instance

video-cassette recorders or mattress). I estimate separate wealth indexes for all households

in each round’s overall, rural, and urban samples.

Empirical strategy

For each household, the household wealth index is the first component of a principal com-

ponent analysis of the assets it owns. This wealth index, w, is a continuous function of the

assets a household owns. Although the relationship between wealth and mortality is con-

tinuous, life expectancy and other life-table quantities are not individual level outcomes.

Therefore, I split the wealth-index into categories, wc.

To ensure that there are sufficient number of deaths in each wealth category, I split

the wealth index into octile for the overall sample in each round. For the rural and urban

sample in each round, regional patterns, and sex-ratios of mortality rates, the wealth index

is split by quartiles. Because of a small number of deaths in each wealth category in the

first two NFHS surveys, and the short time interval between them, I create life tables after

combining them. Thus, in these two surveys, although wealth quartiles are estimated by

round and sample separately, mortality estimates are for both rounds together. Hence, the

estimates reported here are for the period 1990-99 and 2013-2016. Taking advantage of

the larger sample size of the NFHS-4 surveys, I also split the overall NFHS-4 sample into

ventiles, or twenty categories of the wealth index.

For each wealth category,wc, I estimate age-specific mortality rates, nmx in abridged

life-table ages x to x+ n, in period t, for sex g,

nm
wc,s,t,g
x =

nd
wc,s,t,g
x

nL
wc,s,t,g
x

(3.1)

where s is the overall, rural, or urban sample; g is either male or female; ndx is the estimated
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number of deaths in ages x to x + n in the period, and nLx is the number of person-years

lived in ages x to x+ n. All estimates are weighted using the national household weights

calculated by the NFHS.

I borrow values for person years lived by those who died, nax, (Preston et al., 2001,

pg. 45) from national Indian life tables based on the India’s Sample Registration System

(Office of the Registrar General and Census Commissioner of India, 2018). I use separate

nax values by period, sex, and sample for the nmx → nqx conversion, and calculate period

life expectancies using standard life table methods.

To calculate standard errors and 95% CIs for the life expectancy (ex) estimates

that I obtain, I use a cluster-bootstrap approach (Vyas et al., 2021; Fishman, 2015). The

NFHS surveys are multi-stage sample surveys that sampled households within randomly

sampled primary sampling units. Primary Sampling Units were either villages in rural

or census enumeration blocks in urban areas. The strata used for selection of primary

sampling units were rural and urban areas within states. I repeatedly sample primary

sampling units, with replacement, for each sex-, period-, sample-specific wealth categories,

maintaining the distribution of primary sampling units within strata. I draw 100 bootstrap

samples, Z∗1 ... Z∗100. Thus, for each period, sample, sex, and wealth category, I generate

100 life expectancy estimates: ê∗1x ... ê∗100x . Standard errors for life expectancy are the

standard deviation of bootstrapped estimates:

SE(êx) =

√√√√ 1

100− 1

100∑
b=1

(
ê∗bx −

1

100

100∑
r=1

e∗bx

)2
(3.2)

where b denotes the specific bootstrap sample drawn, between 1 and 100. I assume that

the estimator for life expectancies is normally distributed. Thus, 95% Confidence Intervals

are calculated as ex ± 1.96 ∗ SE(êx).

I also investigate regional patterns of these disparities. As Chetty et al. (2016)

examine in the US context, this analysis asks: where do those in the poorest (and other)
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quartiles have the highest life expectancies in India? For these sets of regional analyses, I

use household wealth quartiles estimated nationally. For SEs and CIs, I draw 100 bootstrap

for each region. Additionally, because behaviors and social factors linked to mortality dif-

fer by gender (Guillot, 2002; Canudas-Romo et al., 2016), I compute male-female mortality

ratios by household wealth quartile.

3.3 Results

Estimated person years and deaths by sex, sample, and wealth quartile are shown in Ap-

pendix Table 3A–1. Because of their smaller sample sizes, there are comparatively lesser

number of deaths and person-years in each quartile of the first two NFHS Surveys. This

is particularly true for urban areas when we split the samples by residence. Given these

smaller sample sizes, I combine these earlier two rounds. We observe a larger number of

deaths and person years in each category in the latest NFHS round because of its larger

sample size.

Overall patterns

How large are disparities in life expectancy at birth? Figure 3–1 shows life expectancy at

birth and 95% CIs by wealth octile for men and women.2 The figure shows large gradients

in life expectancy, and a flattening of wealth gradients, particularly among women. Life

expectancy at birth for the poorest octile of women in the 1990s was 56.9 years, about 14

years less than the richest octile of women. By 2013-2016, the difference between the poor-

est and wealthiest octile of women were more than 9 years. Disparities among men were

even larger: more than 14 years between the poorest and wealthiest octiles in 1990-99 and

more than 12 years in 2013-2016. Despite absolute and relative reductions in differentials,

these disparities remain large, especially in a comparative perspective (Marmot, 2015).3

2Confidence intervals for the earlier NFHS rounds are slightly larger, reflecting their smaller sample sizes.
Confidence intervals also vary across octiles to some extent. Octiles are based on household wealth-index, and
given variation in household size and mortality, some octile have more observations than others. This can be
seen in Appendix Table 3A–1 for quartiles as well.

3It is possible to split the NFHS-4 sample even further, such as in ventiles, as shown in Appendix Figure
3A–3 which shows even starker disparities.
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Figure 3–2 shows that overall life expectancy disparities are driven by differences

in both the childhood ages and the adult ages. The figure shows overall reductions in child

mortality, as well as a flattening of the gradient across asset octiles. In contrast, however,

the figure shows modest to no improvements in adult mortality, and large gradients. Gra-

dients for adult mortality observed here are in contrast to patterns observed in other low-

and middle-income countries, where mortality gradients have been observed to be modest

or non-existent (Sudharsanan, 2019; Beltrán-Sánchez et al., 2020).

Appendix Figure 3A–5 shows probability of death in across the life course.4 The

age ranges displayed in the figure correspond to broad life course stages – childhood (ages

0-4), schooling and adolescence ages (5-19), working ages where chronic diseases are not

observed (20-39), working ages which mark the onset of chronic diseases (40-59), and older

ages (60-84). Mortality disparities by wealth can be observed till age 60. Overall improve-

ments are modest both for both working younger and older age-groups. Disparities in the

older ages (60-84) are modest and do not follow clear pattern. Within the prior literature,

similar patterns have been observed by Kitagawa and Hauser (1973) for the United States.

These patterns are likely to be driven by a combination of selection into survival to age 60;

age-misreporting, which biases mortality estimates downwards (Preston et al., 1999) and

is more likely to be observed among the poor; deaths among single-person households,

who are more likely to be poor (Dommaraju, 2015); and modest social and employment

security provisions for the poorest old, which has expanded to an extent in India (Drèze

and Khera, 2017; Reed, 2020; Gupta, 2013). To the extent that these patterns are driven

by age-misreporting or missing deaths among single-person households, the overall life-

expectancy disparities documented here are conservative.

Disparities by residence and region

How do these disparities vary by residence and region? Figure 3–3 shows life expectancies

at birth by household wealth quartile, sex, and residence. In both rural and urban areas,

4Appendix Figure 3A–4 shows disparities at age 0, 15, and 60.
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disparities in life expectancies have reduced, partly driven by mortality declines among

the poorest quartiles. Still, large inequalities remain. Among women, differences between

the wealthiest and poorest quartiles in 2013-2016 were 6.1 years in urban areas, and 5.3

years in rural areas. Among men, these differences were 10.2 years in urban areas and 8.6

years in rural areas.

The figure shows higher life expectancy disparities in urban areas when compared

to rural areas, even when urban areas have overall higher life expectancies. These patterns

are different from the ones observed by Sudharsanan and Ho (2020) for Indonesia, where

rural areas have lower mortality than urban areas because of lower prevalence of cardio-

vascular disease risk-factors.

Figure 3–4 shows regional patterns. A large literature in Indian demography has

focused on regional patterns, following Dyson and Moore (1983) and Murthi et al. (1995).

I divide India’s 29 states into ten regions. Regions are defined partly by geographic conti-

guity, and partly by the need to have sufficient number of deaths and person-years lived

to estimate life expectancies. For this reason, patterns for the 1990s are not shown as they

have large sampling variability. Maps here document where women and men from respec-

tive quartiles have high and low life expectancies.

We find that in 2013-16, variation by region within quartiles is higher for women

than among men. In 2013-2016, women from the lowest quartiles have life expectancies

as low as about 65 years in the states of Uttar Pradesh, Bihar and Jharkhand, and Madhya

Pradesh and Chattisgarh, and as high as 72 years in states of south India and north-east

India. Although the confidence intervals overlap, women in the lowest quartile who live in

southern and north eastern states in India in fact have higher life expectancies than women

in the wealthiest quartile in Uttar Pradesh, India’s most populous state.

Apart from documenting the extreme disadvantage that women in rural North

India face, these patterns show that overall disparities can be observed within regions

as well. The overall disparities observed for India as a whole are not because of the co-
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patterning of household wealth and mortality within India’s regions.

Male-female mortality ratios by wealth quartile

Although females generally have a survival advantage across the life course (Barford et al.,

2006), a large literature documents female survival disadvantage in certain younger age-

groups in India (Sen, 1992). This survival disadvantage has been declining in India, with

regional variations (Canudas-Romo et al., 2016). Female survival advantage can be seen in

most ages now. How is female survival advantage or disadvantage patterned by house-

hold socioeconomic status? Figure 3–5 shows male-female mortality ratios by age-group

and wealth quartile. These mortality ratios are calculated as the age-specific mortality rate

for men in an age-group and quartile divided by the corresponding age-specific mortality

rate for women in the same quartile. Because these are male-female mortality ratios, val-

ues greater than 1 (shown in shades of blue in the figure) reflect higher mortality among

men. Shades of red show higher mortality among women.

Three patterns are worth noting. First, overall, between 1990-99 and 2013-16, fe-

male survival disadvantage has declined, and severe male disadvantage has emerged in

the middle ages from 30-60. Second, while female disadvantage in childhood ages of 1-4

can be seen in the lower quartiles in 2013-2016, female survival disadvantage in the adoles-

cent ages can be seen in the middle quartiles in 2013-2016. Female survival advantage in

the latest NFHS round in the childhood ages in the wealthiest quartile may be a reflection

of higher prenatal sex-determination and sex-selective abortions in the wealthiest quartiles

(Das Gupta and Mari Bhat, 1997). As sex-selection increases, the girls who are born are

more wanted, and this selection influences mortality patterns in the childhood ages. Still,

in 2013-2016, the higher the quartile, the lower was the survival advantage among girls in

the ages 0-1. Indeed, they had no survival advantage in the wealthiest quartile. Finally,

men’s survival disadvantage in 2013-2016 was particularly worse in the later productive

ages in the second, third, and wealthiest quartiles. These patterns merit further attention,

and may be driven by harmful health behaviors such as alcohol and tobacco consumption
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among men.

3.4 Robustness

Age-misreporting influences life expectancy estimates, biasing mortality estimates down-

wards at older ages (Preston et al., 1999). Apart from a similar distribution of mortality

risk-factors at the older ages, higher age-misreporting among poorer quartiles could also

make life-expectancy estimates at age 60 among the poorer quartiles closer to those from

wealthier quartiles. Figure 3A–8 examines age at death in single years by sex, period, and

wealth quartile. Although age-heaping is severe among all quartiles in the older ages, it is

slightly more severe among poorer quartiles, and particularly worse among women. This

suggests that disparities in life expectancies at older ages reported here may be conserva-

tive.

Are 100 bootstraps enough to generate reliable estimates of SEs and CIs for these

life expectancy estimates? Figure 3A–9 examines this. It shows how the 95% CIs change

by the number of cluster-bootstraps drawn. Estimates are for life expectancy by sex and

wealth quartile. Although less reliable when a small number of bootstrap samples are

drawn, CIs do not change substantially after more than 75 bootstrap samples are drawn.

Although they may still vary, the estimates shown in Figure 3A–9 show that the main

interpretations drawn from these 100 bootstrap samples are robust.

A concern with questions on household deaths has been that household deaths

lead to household fissures (Timæus, 1991). When compared to censuses, the probability of

two households reporting the same death is less in survey settings. However, it is not zero.

Appendix Figure 3A–10 reports the proportion of clusters (among all clusters that reported

a death in an age group and sex) in which more than one deaths were observed in the same

wealth-octile, age-group, and sex. We cannot ascertain the extent to which these deaths

were of the same individual or of a different person. However, Appendix Figure 3A–10

provides evidence that the proportion of such clusters and deaths was small. Indeed, the
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largest proportion of such deaths was in the childhood ages, which were observed in the

birth history module. To some extent, this suggests that the vast majority of these deaths

are likely to be of different individuals.

3.5 Discussion

Summary of results

This paper investigates mortality and life expectancy disparities in household wealth in

India, as measured by an index of assets that a household owns. It finds that mortality dis-

parities in India are large and can be observed across the life-course, and are particularly

salient in the childhood, young-adulthood, and working ages. In addition to disparities,

we document a lack of overall improvements for adults as well. These disparities have

persisted despite declines in child mortality and changes in mortality risk-factors as the

epidemiological transition has proceeded in India. Disparities can also be observed across

regions and residence, are particularly high in urban areas. The paper documents severe

mortality disadvantage among women in North India. The highest quartile of North In-

dian women in Bihar and Uttar Pradesh have similar or lower life expectancy than women

in the lowest quartile in South India.

Strengths and limitations

The paper has some limitations. Mortality and wealth have a bi-directional relationship

(Deaton, 2013), and assets are measured after mortality in the NFHS surveys. However,

household assets may be less sensitive to mortality in the household than income. Addi-

tionally, the asset index here is operationalized as a relative index within survey rounds.

Understanding the role of absolute improvements in socioeconomic status, either at a

household or more aggregate level, would be helpful in understanding the association

between socioeconomic status and mortality.

The demographic literature has noted a number of concerns on the approach of
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estimating mortality rates from questions on recent deaths in the household (Hill, 1991;

Timæus, 1991). This paper is able to address these concerns to some extent. For instance,

both Timæus (1991) and Hill et al. (2006) raise concerns about large sampling variability

in survey based estimates from the recent household deaths approach. To address these

concerns, I empirically estimate standard errors and confidence intervals using a cluster

bootstrap approach. I also combine the earlier two NFHS rounds. Overall, we find that

the NFHS surveys are powered to study mortality disparities. A second concern that this

literature has noted is downward biases in mortality estimates. Timæus (1991) for instance

describes surveys and censuses where a majority of the deaths were missed. In contrast,

estimates from NFHS estimates correspond closely in terms of overall mortality with In-

dia’s national life tables estimated from the Sample Registration Surveys. In many ages,

we observe higher age-specific mortality rates in the NFHS than in the SRS. Third, Hill

(1991) notes that the recent household death approach may miss childhood deaths. This

is not a concern here, since childhood mortality is estimated using the birth history mod-

ule. Although we cannot rule out that household splits lead to a double counting of some

deaths, the overall proportion of such deaths is small, and surveys which randomly sam-

ple households are less likely than censuses to observe the same death twice. Finally,

age-misreporting among poorer older individuals and not observing deaths among those

single-person households likely underestimates mortality in the poorest wealth categories.

Even if these last two concerns cannot be addressed directly, they make the disparities doc-

umented here conservative.

The approach used here also has several strengths. First, the paper uses large-

scale data to directly estimate empirical mortality rates for an important and long period

in India. This period saw robust economic growth, a decline in absolute poverty, but an

increase in economic inequality. This paper shows that this period also saw declines in

child mortality disparities but persistent disparities in the working ages. Second, the paper

examines the reliability of survey approaches to measure mortality across the life course

and generate insights that have scientific and policy implications. Together with Vyas et al.
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(2021) and Gupta and Sudharsanan (2020), the paper contributes to methods on estimating

mortality rates and their standard errors. This approach may be relevant in other contexts

which use multi-stage surveys. Third, relative to the previous literature, which has ex-

amined adult and child mortality disparities separately, the paper is able to understand

mortality disparities across the life course. Finally, the paper contributes to the literature

on the forms of socioeconomic disadvantage which predict mortality. It shows that in ad-

dition to caste and social group, mortality in India is also strongly patterned by class.

Policy implications

In the ongoing epidemiological transition in India, an academic debate has been concerned

about equity in health spending and health system priorities (Subramanian et al., 2013;

Narayan and Ali, 2013). Reducing child and maternal mortality has become a priority

in India, specially with the National Rural Health Mission which was launched in 2005

(Drèze and Sen, 2013). From a policy perspective, prioritizing adult health may mean

reducing funding for child mortality, especially if overall public health spending does not

increase. Even if adult mortality gets additional allocations, a worry is that since adult

mortality and adult diseases are not more prevalent among the poor, the marginal increase

in health spending on adult diseases increases inequality in spending. This essay does

not suggest the particular diseases to tackle or the policy approaches to pursue to reduce

adult mortality. However, it suggests that since both child mortality and adult mortality

are patterned by socioeconomic status, additional prioritization of adult health per se will

not increase inequality in health spending. The paper shows that unlike child mortality,

overall declines in adult mortality disparities are also modest. This makes prioritizing

adult health an even more urgent priority.

From a broader societal perspective, this research has similarities and differences

with research on economic and social inequality in India. As with other research docu-

menting overall human development in India (Himanshu, 2019), we find life expectancy

improvements across wealth classes. However, instead of increases in inequality, as docu-
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mented by research on consumption patterns (Subramanian, 2020), we document declines

in child mortality disparities, and no declines in adult mortality disparities. We find that

overall improvements in life expectancy and declines in gradients are also driven by pat-

terns in the childhood ages. In the adult ages, in addition to persistent gradients that did

not decline, even overall mortality did not reduce substantially.

Research implications

Why is mortality, particularly in the childhood and working ages, consistently patterned

by household wealth? A large literature has focused on the extent and causes of child

mortality disparities in India and elsewhere (Saikia et al., 2013; Chalasani and Rutstein,

2014; Chao et al., 2018). In addition to documenting child mortality disparities in several

low and middle income countries (Chao et al., 2018), this literature has shown that other

markers of child health, such as anemia, weight, or height also have large gradients (Sub-

ramanyam et al., 2010; Coffey et al., 2019; Onyeneho et al., 2019).

Such large adult mortality disparities have not been documented in other low-

and middle-income countries (Sudharsanan, 2019; Beltrán-Sánchez et al., 2020). Because

cardiovascular disease risk factors are not patterned strongly by wealth Patel et al. (2019),

this is a paradox. Except underweight, anemia, and lung function among adults, other

adult mortality risk-factors such as blood glucose and hypertension are not more preva-

lent among the poor in India (Arokiasamy et al., 2021). The rich are more likely to be

overweight in the Longitudinal Aging Study of India (Arokiasamy et al., 2021). The poor

are more likely to have untreated hypertension. This is consistent with patterns observed

in the India Human Development Survey – although they interpret self-reported cardio-

vascular diseases as prevalence of cardio-vascular diseases, Barik et al. (2018) also find

higher access to healthcare among the rich, and lower adult mortality among them.

Investigating factors such as access to the healthcare system (Baru et al., 2010;

Balarajan et al., 2011), exposures to pollution from solid fuel use (Gupta, 2019), and tuber-

culosis or accidental mortality may help understand why adult mortality is patterned by
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household wealth. The extent to which class based inequalities are contributed by caste

differences, as documented in Gupta and Sudharsanan (2020) and (Vyas et al., 2021), may

also explain the patterns observed here. Finally, working conditions, and class-based in-

equalities themselves may be a factor slow adult health improvements. The causes of slow

adult mortality improvement, which were also noted by Saikia et al. (2011), deserve further

examination.

3.6 Conclusion

This paper documents persistent disparities in mortality across the life course in India.

Disparities are large in a comparative perspective as well as when considering temporal

patterns in India. The life expectancy that wealthy Indians achieved in the 1990s have

not yet been observed for the average Indian. The poor, on the other hand, have life ex-

pectancies that were observed a hundred years ago in high-income contexts, or are seen

in contemporary Sub-Saharan Africa. In contrast to child mortality, adult mortality levels

and differentials have not declined. The paper documents an urgent need for social and

health policy to address disparities and improve health in the childhood and adult ages

for the poorest Indians.

Acknowledgments: For helpful comments and suggestions, I am thankful to Apurva

Bamezai, Jere Behrman, Pritha Chatterjee, Diane Coffey, Solveig Argeseanu Cunningham,
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Figure 3–1: Wealth disparities in life expectancy at birth
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Figure 3–2: Disparities in child and adult mortality
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Table 3A–1: Person-years and deaths, by sex, residence, and household wealth quartile

Characteristics NFHS-1 (1992-93) NFHS-2 (1998-99) NFHS-4 (2015-16)

sex sample quartile person-years deaths person-years deaths person-years deaths

female overall poorest 150,116 1,670 150,062 1,658 1,105,286 8,492
female overall 2nd quartile 147,375 1,698 164,296 1,570 1,205,110 8,481
female overall 3rd quartile 146,904 1,355 165,984 1,334 973,585 6,258
female overall wealthiest 162,760 950 166,428 1,120 1,124,684 6,577

female urban poorest 36,697 339 37,434 294 331,269 2,121
female urban 2nd quartile 38,210 285 41,713 331 358,336 2,234
female urban 3rd quartile 42,951 256 44,169 293 385,670 2,111
female urban wealthiest 43,294 190 44,659 268 370,456 2,030

female rural poorest 136,564 1,529 104,651 1,164 685,865 5,316
female rural 2nd quartile 108,604 1,269 123,098 1,311 737,098 5,521
female rural 3rd quartile 113,076 1,135 123,584 1,071 746,855 5,213
female rural wealthiest 87,760 670 127,462 951 793,116 5,262

male overall poorest 153,370 2,012 153,918 1,951 1,098,174 11,219
male overall 2nd quartile 159,472 1,747 175,634 1,769 1,217,446 11,017
male overall 3rd quartile 159,140 1,390 178,056 1,521 1,008,503 8,048
male overall wealthiest 172,048 1,186 175,733 1,340 1,176,869 8,428

male urban poorest 39,921 484 41,234 439 360,041 3,140
male urban 2nd quartile 43,246 372 45,076 343 372,186 2,826
male urban 3rd quartile 45,943 290 47,772 350 400,726 2,937
male urban wealthiest 45,486 249 47,115 312 393,231 2,487

male rural poorest 139,506 1,814 105,834 1,390 664,529 7,367
male rural 2nd quartile 116,496 1,253 130,574 1,373 738,516 6,815
male rural 3rd quartile 120,588 1,129 131,666 1,239 756,654 6,629
male rural wealthiest 92,844 744 134,070 1,136 815,110 6,511

exposure period Jan1990-Aug1993 Jan1996-Dec1999 Jan2013-Nov2016

All estimates weighted by national households weights. Wealth quartiles are estimated using a
principal component analysis of assets owned by the household. Quartiles are estimated sepa-
rately for rural, urban, and all households in each round. This implies, for example, that person
years and deaths in the poorest quartile in urban areas in NFHS-4 are from households who are
the poorest 25% within urban areas in NFHS-4.
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Figure 3A–1: Comparison of household size in decennial censuses and NFHS surveys
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Figure 3A–3: Life expectancy at birth by household asset ventile, 2013-2016
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Figure 3A–4: Wealth disparities in life expectancy at birth
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Figure 3A–5: Probabilities of death across the life course, 1990-2016
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Figure 3A–6: Age-specific death rates by household wealth quartile
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Figure 3A–7: Survivorship curves by household wealth quartile
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Figure 3A–8: Age heaping in deaths by wealth quartile
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Figure 3A–9: Robustness: 95% CIs by number of bootstrap samples drawn, NFHS-4
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Figure 3A–10: Proportion of clusters which have multiple deaths in the same sex, age-
group, and wealth octile
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Drèze, J., Gupta, A., Parashar, S. A., and Sharma, K. (2021). Pauses and reversals of infant
mortality decline in india in 2017 and 2018. Forthcoming, Economic and Political Weekly.

Drèze, J. and Khera, R. (2017). Recent social security initiatives in india. World Development,
98:555–572.

130
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