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ABSTRACT 
 

VOLATILE ORGANIC COMPOUND DETECTION AND DISEASE DIAGNOSTICS USING DNA-

FUNCTIONALIZED CARBON NANOTUBE SENSOR ARRAYS 

Christopher E. Kehayias 

A. T. Charlie Johnson 

 

There is a strong desire for novel chemical sensors that can detect low concentrations of 

volatile organic compounds (VOCs) for early-stage disease diagnostics as well as various 

environmental monitoring applications. The aim of this thesis work was to address these 

challenges by developing an “electronic nose” (e-nose) platform based on chemical sensor 

arrays capable of detecting and differentiating between various VOCs of interest. Sensor 

arrays were fabricated in a field-effect transistor (FET) configuration with exquisitely 

sensitive carbon nanotubes (CNTs) as the channel material. The nanotubes were 

functionalized with a variety of single-stranded DNA oligomers, forming DNA-NT hybrid 

structures with affinity to a wide variety of VOC targets. Interactions between DNA-NTs 

and VOCs yielded changes in sensor conductivity that depended strongly on the base 

sequence of DNA. Arrays of CNT devices were functionalized with up to ten different 

DNA oligomers to enable electronic signature readouts of VOC binding events. DNA-NT 

responses were processed with pattern recognition algorithms in order to classify different 

VOC targets according to their chemical “fingerprints.” This technology was used to 

measure VOC biomarkers associated with ovarian cancer and COVID-19 from human fluid 

media. DNA-NT arrays measured headspaces VOCs from 58 blood plasma samples from 

individual people, including 15 with a late-stage malignant form of ovarian cancer, 6 with 
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early-stage malignant cancer, 16 with a benign form of cancer, and 21 healthy age-matched 

controls. Statistical techniques based on machine learning were used to discriminate 

between the malignant, benign, and healthy groups with 90 – 95% classification accuracy. 

Furthermore, all six early-stage samples were correctly identified with the malignant group, 

indicating significant progress towards an effective screening method for ovarian cancer. 

Similar investigations were conducted on sweat samples procured from patients who had 

tested positive for COVID-19 (CoV+) and those who had tested negative (CoV-). 

Statistical analysis of the DNA-NT responses to the sweat headspace VOCs revealed 

highly differentiated clusters associated with the CoV+ and CoV- groups. A binary 

classifier was constructed using the response data and was estimated to have a 99% 

classification success rate, suggesting strong potential for utilizing DNA-NTs for COVID 

screening. Finally, DNA-NT arrays were assessed based on various performance 

characteristics desired for remote environmental monitoring applications such as pollution 

monitoring and explosives detection in a warzone. A series of experiments was conducted 

to evaluate DNA-NT sensitivity, specificity, and longevity using mixtures of 2,6-

dinitrotoluene (DNT) and dimethyl methylphosphonate (DMMP) to simulate complex 

VOC environments. The sensors demonstrated sensitivity to parts-per-billion 

concentrations of DNT in a highly concentrated background of DMMP. Moreover, the 

shelf life of these sensors was projected on the order of months, making DNA-NTs 

promising candidates for a wide range of applications. 
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CHAPTER 1: Overview of the Thesis 

 

There is an ever-increasing need for vapor-phase chemical sensors in biomedical 

applications including early-stage disease diagnostics or environmental monitoring 

applications such as pollution detection. Until recently, few technological advancements 

have been able to effectively respond to these needs because such applications demand 

high sensitivity to a wide variety of volatile organic compounds (VOCs) as well as fast 

response times and long sensor lifetimes. The emergence of nano-bio hybrid materials has 

stirred much excitement within the chemical sensing community due to the combined 

sensitivity of novel nanomaterials such as carbon nanotubes and graphene with various 

biomolecules with tunable affinities towards specific or a wide range of target vapor 

analytes. Electronic systems based on nano-bio materials are uniquely well-suited for 

chemical sensing applications due to their exquisitely high surface-to-volume ratios, 

ensuring that electronic transport activity occurs in close proximity to chemical binding 

events that take place on the material surface. This work focuses on the development of an 

electronic nose system based on DNA-functionalized carbon nanotube field-effect 

transistors and the evaluation of this system for ovarian cancer diagnosis of human blood 

plasma samples, COVID-19 screening based on human sweat, and various performance 

characteristics desirable in environmental monitoring applications. 

Chapter 2 of this thesis discusses the importance of detection systems based on 

olfaction and motivates the development of vapor sensing technology due that can operate 
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at the same proficiency as mammalian olfactory systems. Electronic nose systems based 

on DNA-functionalized carbon nanotube (DNA-NT) vapor sensors are introduced. The 

electronic properties of carbon nanotubes are discussed, motivating their use in chemical 

sensing applications due to their remarkable sensitivity. The field-effect transistor (FET) 

architecture of DNA-NT sensor arrays is presented and an overview of their operability is 

provided. Chemical functionalization of the nanotubes (NTs) via single-stranded DNA is 

covered, as is the interaction between target VOCs and the DNA-NT hybrid structures. The 

Hill-Langmuir theory of binding dynamics is proposed as a model for VOC binding events 

and is used to explain the relationship between variations in target concentrations and 

DNA-NT conductivity. Finally, statistical analysis techniques based on two machine 

learning algorithms, principal component analysis (PCA) and linear discriminant analysis 

(LDA), are summarized with more vigorous derivations found in the Appendix of this 

thesis. Binary classification based on receiver operating characteristics (ROCs) are also 

introduced. 

Chapter 3 describes electrode fabrication processes for FET arrays based on 

photolithography as well as procedures for deposition of the carbon nanotubes across the 

FET channels and chemical functionalization via single-stranded DNA. Electrical 

characterization of DNA-NT arrays is presented. General experimental procedures and data 

acquisition protocols are also introduced, as are data processing techniques. An overview 

of the equipment used in each experiment is also included. 

Chapter 4 discusses the challenge of early-stage diagnosis of ovarian cancer and 

motivates the development of a reliable screening technique to improve the survivability 
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of patients who develop this disease. A collaboration between Penn Hospital, the Johnson 

Group, the Penn Vet Working Dog Center and the Monell Chemical Senses Center is 

presented with the aim of analyzing VOCs from human blood plasma associated with 

ovarian cancer patients as well as healthy controls using three different approaches: (1) 

analytical chemistry using gas chromatography / mass spectrometry to identify differences 

in VOC composition between diseased and healthy blood; (2) training of sniffer dogs to 

identify blood samples as diseased or healthy based on their odors; and (3) using DNA-NT 

arrays to differentiate between VOC signatures associated with cancerous and non-

cancerous individuals. This chapter focuses on the third approach. DNA-NT measurements 

of headspace VOCs from pooled plasma and plasma from individuals are described. Data 

processing and classification of the sensor response data using LDA is presented. Cross-

validation techniques are introduced to test the statistical robustness of the LDA-based 

classifiers. Lastly, modifications to the experimental procedure in order to accommodate 

challenges measure plasma VOCs are discussed. 

Chapter 5 introduces a collaboration between the Johnson Group and Rohinton 

Mehta’s group from X Development with the aim of evaluating DNA-NT sensitivity, 

ability to detect low-concentration targets in a complex background, response times, and 

longevity. Experiments involving a newly fabricated DNA-NT array are described in 

which array is exposed to multiple different concentrations of 2,6-dinitrotoluene (DNT), a 

compound known to have a relatively low vapor pressure. Additional experiments 

involving parts-per-billion concentrations of DNT diluted in a highly concentrated 

background of dimethyl methylphosphonate (DMMP) are discussed. Similar experiments 
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are presented in which the fresh DNA-NT array is replaced with one that was prepared four 

months prior. Special data processing techniques using boxcar smoothing to assist in 

resolving low-concentration signals are introduced. Conclusions are made is assessment of 

the DNA-NT performance in all experiments. 

Chapter 6 discusses the deadly implications of the new COVID-19 disease and 

drawbacks of current screening procedures. An investigation involving DNA-NT 

discrimination of VOCs from human sweat procured from COVID-positive (CoV+) and 

COVID-negative (CoV-) volunteers is described. LDA processing of the ensuing response 

data is presented, revealing promising separation between the CoV+ and CoV- groups. 

Sensitivity and specificity estimates are presented for a binary classifier based on the LDA 

results, as are estimates of the overall classification accuracy using a ROC curve. 

Chapter 7 includes a summary of the thesis, along with a discussion of future 

prospects and developments needed to convert our apparatus into a reliable technology for 

clinical or commercial use. 
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CHAPTER 2: Principles of Electronic Nose Chemical 

Sensors 

 

In this chapter, we discuss the motivation and advantages of developing an 

electronic nose (e-nose) technology to explore volatile signatures appropriate for a diverse 

set of applications. This technology can probe the relatively untapped wealth of 

information found in chemical signatures based on volatile organic compounds (VOCs) 

produced from various biological and industrial sources, potentially leading to new and 

compelling applications. 

Section 2.1 describes the e-nose concept and its advantages over other chemical 

sensing techniques. We introduce an e-nose based on a large array of diversified chemical 

sensors that produce a unique olfaction response to a given target analyte. The sensing 

medium is a combination of highly sensitive carbon nanotubes and single-stranded DNA 

that induces an affinity to a wide variety of VOCs.  

In Section 2.2, we discuss the properties of carbon nanotubes. These are 

nanostructures that are exquisitely sensitive to changes in their local environment, making 

them ideal candidates for chemical sensing applications. Section 2.3 outlines how we 

combine carbon nanotubes with field effect transistors to form chemical sensors with an 

electronic readout. A “chemical gating” mechanism is proposed as the interaction between 

target analytes and the carbon nanotubes that produces a measurable electrical response. 

Chemical functionalization with single-stranded DNA is also described. 
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Section 2.4 introduces the Hill-Langmuir model that describes binding dynamics 

between chemical receptors and target species. Finally, Section 2.5 outlines basic 

principles of machine learning algorithms used to perform pattern recognition and 

statistical analysis on our e-nose response data to identify the chemical signatures of 

various VOCs of interest. 

 

2.1 Introduction to Electronic Nose Systems 

 

The important role olfaction plays in the survival of living creatures can hardly be 

overemphasized. One of nature’s oldest senses, olfaction enables a lifeform to detect and 

characterize traces of molecules in the air that indicate the presence of food, danger, or 

potential mates.1 In nature, many such molecules are volatile organic compounds (VOCs) 

produced metabolically by plants and animals. VOCs are compounds that have relatively 

high vapor pressure and low water solubility for standard temperatures.2 Generations of 

evolution have shaped olfaction mechanisms in a variety of organisms into highly 

successful chemical sensing systems able to discriminate between VOCs with remarkable 

precision.3-4 

Compared to countless advancements inspired by our visual and auditory systems, 

progress towards a technological equivalent of a nose has been relatively slow. Currently, 

our most reliable chemical vapor sensor is the canine. Dogs’ noses have about 300 million 

olfactory receptors represented by 1100 unique olfactory receptor proteins (ORPs) 

compared to six million sensors and 350 ORPs for humans, and thus dogs are able to 
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identify a much wider variety of VOC targets.5 Dogs’ noses are also 10,000 – 100,000 

more sensitive than our own, able to  detect VOCs at sub-parts per trillion levels.6-7 Sniffer 

dogs are highly successful in applications ranging from tracking odor signatures of missing 

personnel to detecting explosives or narcotics. However, using sniffer dogs in analytical 

applications is not as ideal. Unlike scientific instruments, a sniffing dog requires long-term 

professional training and its chemical “readout” is an anecdotal interpretation of its 

behavior. Often, the dog’s response is ineffectively communicated to its trainer and can be 

influenced by fatigue or short attention span.8 Moreover, it is practically impossible to 

determine which chemical compounds in particular are triggering the dogs’ responses.8 

A more scientifically robust approach is found in today’s electronic nose (e-nose) 

sensors. An e-nose is a device that incorporates electronic sensor arrays with pattern 

recognition systems to detect and discriminate between various odors.9 The architecture of 

e-nose systems is inspired by mammalian olfaction, making use many different types of 

cross-selective olfactory receptors that produce diversified electronic outputs upon 

exposure to a broad range of VOC analytes.9-10 These outputs are then recorded in a 

computer database and processed using pattern recognition and statistical analysis 

algorithms. The first e-nose was developed in 1982 based on three varieties of 

semiconductor transducers with broad, overlapping chemical selectivity.11 The sensing 

material was composed of conductive carbon black coatings coupled with insulating 

polymers. Adsorption of VOCs would cause the material to swell, causing a measurable 

decrease in its conductivity. Unfortunately, these early e-nose sensors could only 

differentiate between certain hydrophilic and hydrophobic molecules – nevertheless, their 
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emergence sparked the development of increasingly sophisticated e-nose designs with 

recent progress towards explosives detection and environmental monitoring 

applications.12-14 

In more recent years, e-nose gas sensors have also become popular candidates as 

detectors for VOC disease biomarkers.15-16 Disease monitoring based on VOC biomarkers 

poses the additional challenge that the target molecules are very complex chemically.17 To 

differentiate between these targets requires sensing materials that can accommodate such 

complexity. Fortunately, many biomolecular compounds are available that have natural 

affinity to biomarkers. These biomolecules can either be borrowed from nature, such as 

DNA or protein antibodies produced by the body, or engineered to serve a particular 

function.18-19 In addition, biomolecules can be chemically linked to electronic materials 

such as novel nanomaterials that possess exquisitely sensitive electronic properties.18, 20 

Nanomaterials are a natural choice for chemical sensing applications because they exhibit 

large surface-to-volume ratios and are atomically thin, thus confining charge carrier 

transport to the material surface where interactions with the environment take place.21 

This thesis work makes use of an e-nose system based on arrays of single-walled 

carbon nanotube field-effect transistors (NTFETs). A field-effect transistor (FET) is a 

three-terminal device in which the conduction between a source and a drain electrode pair 

is modulated by a voltage applied to a third gate electrode. A special electrode layout for a 

NTFET sensor array was designed to accommodate multiple sensor types that would 

respond simultaneously to target analytes (Figure 2.1a). A given array comprises 100 

NTFETs divided into ten groups of ten sensors each (Figure 2.1b). Each group is 
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chemically functionalized with an oligomer of single-stranded DNA with a different base 

sequence to induce differential affinity to a wide range of VOC targets.22-23 The sensor 

arrays are exposed to target biomarkers of interest using a home-built gas-delivery system. 

VOC analytes that adsorb onto the DNA-nanotube (DNA-NT) hybrid structures elicit 

electrical responses from the CNTs that are recorded and stored in a computer. The data is 

later processed using pattern-recognition algorithms to identify informative features useful 

for discriminating between different VOCs. 

 

 

Figure 2.1. (a) Electrode layout for an array of 100 NTFETs partitioned into ten groups of ten 

devices each. The ten groups are arranged in staggered columns, facilitating individual 

functionalization with ten different DNA oligomers without cross-contamination between groups. 

Source and drain electrodes are positioned at the top of each column (one region circled in red). 

Directly below are square contact pads for external measurement. (b) Microscope image of ten 

DNA-NT devices composed of ten drain electrodes and one common source electrode arranged 

in an interdigitated finger configuration. (c) Scanning electron microscopy image of a channel 

reveals a network of interspersed CNTs between a source-drain electrode pair. 
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2.2 Principles of Carbon Nanotubes 

 

2.2.1 Overview of Single-Walled Carbon Nanotubes 

Single-walled carbon nanotubes (SWCNTs) are carbon allotropes with tubular 

structures that have diameter length scales on the order of nanometers. Each SWCNT is 

composed of a single-atomic layer of sp2-hybridized carbon atoms arranged in a hexagonal 

“honeycomb” lattice. We can immediately draw a similarity to the structure of graphene 

which is a planar lattice of carbon atoms also arranged in a honeycomb lattice.24 The 

geometry of a SWCNT can be imagined by rolling a graphene sheet along a certain axis 

into a cylinder with seamlessly-bonded carbon atoms forming the surface. In order to 

preserve the lattice periodicity on the SWCNT, only certain choices for the rolling direction 

are allowed. This direction is called the chiral vector and the discrete set of geometric 

conformations for SWCNTs are known as chiralities. 

It is possible to obtain multi-walled carbon nanotubes (MWCNTs) in which several 

coaxial SWCNTs of varying diameters are merged into a single structure.25 However, I 

only used SWCNTs throughout my PhD research – hence, I will refer to SWCNTs simply 

as CNTs for the remainder of this dissertation. 

 

2.2.2 Semiconducting Carbon Nanotubes 

The dimensions and chirality of a CNT play crucial roles in determining its 

electronic properties. Given two linearly independent translation vectors on the graphene 

lattice, 𝒂⃑⃑ 𝟏 and 𝒂⃑⃑ 𝟐, the chiral vector of a CNT, 𝑹⃑⃑ , is represented by 
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 𝑹⃑⃑ = 𝑛𝒂⃑⃑ 𝟏 + 𝑚𝒂⃑⃑ 𝟐 (2.2.1) 

 

where n and m are integers. The chirality of a given CNT is commonly represented using 

the shorthand (𝑛,𝑚). Conventionally, n is positive with 𝑛 ≥ 𝑚. Two special cases include 

the “zigzag” chirality, where 𝑚 = 0, and “armchair” CNTs in which 𝑛 = 𝑚 (Figure 2.2). 

The diameter, d, of a (𝑛,𝑚) CNT is given by the following formula: 

 

 𝑑 = 𝑎√3(𝑛2 + 𝑛𝑚 + 𝑚2)/𝜋 (2.2.2) 

where 𝑎 = 1.42 Å is the interatomic distance between adjacent carbon atoms.25  

 

 

Figure 2.2. The hexagonal “honeycomb” lattice of the graphene structure (left) can be 

mathematically represented by the translation vectors 𝒂⃑⃑ 𝟏 and 𝒂⃑⃑ 𝟐. Single-walled carbon 

nanotubes (SWCNTs) can be constructed by rolling ribbon-like subsets of this lattice (indicated 

by the dashed edges) into cylinders with circumference |𝑹⃑⃑ | = |𝒏𝒂⃑⃑ 𝟏 + 𝒎𝒂⃑⃑ 𝟐| where n and m are 

integers. Chiral vectors are shown for a (8, 0) “zigzag” nanotube (blue) and a (5, 5) “armchair” 

nanotube (yellow). 
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 The chirality of a CNT can indicate whether it behaves as a metal or semiconductor. 

Semiconducting CNTs are far more desirable for use in our e-nose because their 

conductances vary drastically when exposed to nearby VOC analytes compared to only 

negligible changes for metallic CNTs. A (𝑛,𝑚) CNT is metallic if 𝑛 = 𝑚 or quasi-metallic 

with a very small bandgap if 𝑛 − 𝑚 is a multiple of 3 with 𝑛 ≠ 𝑚 and 𝑛𝑚 ≠ 0; a 

semiconducting CNT results in all other cases.25-26 

The vapor sensors used in this thesis work were fabricated using a solution of 98% 

semiconducting CNTs suspended in an aqueous solution purchased from NanoIntegris Inc. 

(Quebec, Canada). From an electronic transport point of view, these CNTs are essentially 

one-dimensional structures since they are quantum-confined spatially in two dimensions.27 

An elementary result from solid state physics reveals that the electronic density of states, 

𝐷(𝐸), for a one-dimensional potential takes the following form: 

 

where 𝑚𝑒 is the electron mass, 𝐸 is its energy and 𝐸𝑐 is the minimum energy of a given 

subband.25 The 1/√𝐸 relationship yields a series of discontinuities in  
𝑑𝐷(𝐸)

𝑑𝐸
  called Van 

Hove singularities that indicate energies within a subband that have a large number of 

available states (Figure 2.3). The first Van Hove singularity below the Fermi energy 

coincides with the edge of the valence band which consequently corresponds to a large 

number of available hole states (the CNTs used in this work are p-type so holes are the 

majority charge carrier). The number of holes occupying these states can be increased with 

an external electric field until a generated hole current is well above the noise threshold of 

𝐷(𝐸) =
1

2𝜋
ඨ

2𝑚𝑒

ℏ2
(𝐸 −  𝐸𝑐)−1/2 (2.2.3) 
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roughly 1 pA. This phenomenon is enabled by the field effect which will be described in 

the following section. 

 

Figure 2.3. The density of electronic states 𝑫(𝑬) for a semiconducting (6,5) CNT with a diameter 

of approximately 1 nm. As a consequence of this nanoscale confinement, the conduction and 

valence bands are divided into subbands that take the form 𝑫(𝑬) ∝ 𝟏/√𝑬. A series of Van Hove 

singularities occur at energies where 
𝒅𝑫(𝑬)

𝒅𝑬
 diverges. These are energies for which a large 

number of electronic states are available per unit energy. This figure was adapted from 

http://www.photon.t.u-tokyo.ac.jp/~maruyama/kataura/kataura.html. 

 

2.3 Carbon Nanotube-Based Sensor Arrays 

 

2.3.1 Field and Chemical Gating of Carbon Nanotube Field-Effect Transistors 

The e-nose sensor arrays utilize semiconducting CNTs in a field-effect transistor 

(FET) configuration. CNTs are deposited between source and drain electrodes patterned 
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onto Si/SiO2 substrates, forming a NTFET (Figure 2.4a). A fixed source-drain bias (VSD) 

is applied to generate a hole current (ISD) through the NTFET channel which is measured 

in real time with an ammeter. A gate potential (VG) is simultaneously applied to the 

underside of the substrate. The Si layer is heavily p-doped which effectively allows charge 

carriers to transport through the material as they would in a conductor. Hence, the holes 

near the CNT layer are capacitively coupled to the gate potential with the oxide layer in 

between serving as a dielectric. A negative gate potential will drive electrons to occupy the 

Si layer near the oxide which draws holes from the source electrode to match the change 

in opposing charge. The additional holes increase the local hole concentration, ultimately 

increasing the conductivity of the p-type CNTs. Similarly, a positive VG will deprive the Si 

layer of electrons, thus depleting the local hole concentration near the CNTs and ultimately 

decreasing the overall device conductivity. This is demonstrated in an I − VG characteristic 

where ISD for an NTFET is measured as a function of a varying VG (Figure 2.4b). 

 

 

Figure 2.4. (a) A semiconducting CNT is contacted by a source and a drain electrode on a Si/SiO2 

substrate. A source-drain bias, 𝐕𝐒𝐃, generates a current, 𝐈𝐒𝐃, through the NTFET channel. This 
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current is modulated by a gate potential 𝐕𝐆, applied to the underside of the p-doped Si layer. (b) 

𝐈 − 𝐕𝐆 characteristic of a single NTFET depicting the source-drain current as 𝐕𝐆 is swept from 

−𝟐𝟎𝐕 to +𝟐𝟎𝐕 and back to −𝟐𝟎𝐕 as indicated by the blue arrows. The discrepancy between the 

forward and reverse sweeps is due to a hysteresis effect.28 

 

2.3.2 DNA Functionalization of NTFETs 

NTFET conductance is also affected by VOC analytes in close proximity to the 

CNTs via “chemical gating.” Though the mechanism is not fully understood, it is believed 

that certain VOCs will either donate or accept electrons to or from the CNTs, varying the 

local charge carrier concentration and thus causing a shift in ISD from its baseline value.29 

Other VOCs are thought to dissociate in the presence of an interfacial water layer, leaving 

behind charged molecules that vary the hole density due to electrostatics.29 

The sp2-hybridized CNT structure offers a lacking diversity of interactions with 

VOCs, limiting the range of detectable VOCs.30 Hence, the CNTs are functionalized with 

single-stranded DNA oligomers of a particular base sequence that introduce binding sites 

for chemical sensing.30 DNA oligomers adhere onto CNT sidewalls via π – π stacking 

interactions, forming DNA-NT hybrid structures. This is a relatively strong chemical 

attraction that does not interfere with the covalent carbon-carbon bonds of the CNT, thus 

preserving the desirable electronic sensitivity of the overall structure.31 Furthermore, the 

DNA oligomers assume sequence-specific conformations with loop and hairpin structures 

that enable diversified interactions between VOC analytes and the DNA-NT structures.30, 

32-34 The sensor arrays used in this research were functionalized with ten DNA oligomers 

21 – 24 bases long (see Chapter 3, Table 3.1), offering a vast wealth of geometrical and 
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chemical complexity that is similarly enjoyed by olfactory receptor proteins found in 

nature. The base sequences of these oligomers are random, though in principle they can 

also be engineered to have targeted affinities towards certain types of VOC analytes of 

interest.22-23 Moreover, customized oligomers of single-stranded DNA are easily accessible 

and can be purchased inexpensively from biotechnology vendors such as ThermoFisher 

(Waltham, MA) for roughly one US dollar per base. 

For a typical experiment, a DNA-NT array is exposed to a mixture of VOC analytes 

and water vapor diluted in nitrogen gas. Based on thermodynamics studies of similar 

sensing mechanisms, it is hypothesized that the VOCs are solubilized by water molecules 

that form an interfacial layer with the DNA structures, enabling an interaction between the 

analytes and the DNA (Figure 2.5a).35-36 The VOCs can acquire a charge via dissociation 

or ionization, or possibly by exchanging electrons with the DNA-NT hybrid structure. The 

DNA-NT fabrication process is designed to limit the DNA functionalization layer to 

nanoscale thickness, ensuring that target binding events are in close proximity to the CNT. 

The result is an amplified electrostatic interaction between the charged VOCs and the 

CNTs, causing measurable shifts in device currents from baseline. Earlier investigations 

demonstrated that propionic acid, a known proton donor, evoked positive shifts in DNA-

NT currents from baseline,30 suggesting that a negatively-charged layer of deprotonated 

propionic acid ions evoked an increase in CNT hole concentration (Figure 2.5b).30 The 

same study also demonstrated that dimethyl methylphosphonate (DMMP), a strong 

electron donor,37 elicited negative DNA-NT current responses (Figure 2.5c). 
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Figure 2.5. (a) A NTFET, depicted by a single CNT for simplicity. The CNT is functionalized with 

a single-stranded DNA oligomer of a particular base sequence (blue and green structure) forming 

a DNA-NT hybrid material. Target VOCs (red) interact with DNA binding sites and are adsorbed 

onto the DNA-NT. (b) A single DNA-NT sensor is exposed to a two-minute pulse of hydrated 

propionic acid. A positive fractional current response ensues, presented as ∆𝐈/𝐈𝟎 where 𝐈𝟎 is the 

baseline current. The DNA-NT is subsequently refreshed with nitrogen gas at the same relative 

humidity to remove desorbing VOCs, essentially recovering the device current to baseline. (c) 

The same DNA-NT was exposed to dimethyl methylphosphonate (DMMP) in the same manner, 

which elicits a negative shift in current relative to baseline. 

 

2.4 Hill-Langmuir Binding Dynamics 

 

The binding interaction between single-stranded DNA and target VOCs is 

analogous to the binding dynamics of certain protein complexes in which ligand molecules 
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link to one or more receptors on a biomolecule to activate a particular biological function 

such as various types of molecular machinery within a living cell.38-42 The physical 

mechanism of such systems can be modeled using Hill-Langmuir analyte binding dynamics 

inspired by a simplified system of ligands occupying substrate-dwelling receptors or 

binding sites (Figure 2.6). In our case, the ligands are VOCs occurring at a fixed 

concentration, c, which is large enough such that VOC binding events cause a negligible 

decrease in c. 

 

Figure 2.6. An array of receptors (yellow) is exposed to VOC ligands (blue) at a fixed 

concentration. Some of the ligands bind with receptors to form receptor-ligand protein 

complexes. 

  

Once a ligand is bound to a receptor, the substrate’s affinity for binding another 

VOC depends on the cooperativity of binding, n. Positively cooperative binding occurs 
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when n > 0 in which one adsorbed ligand increases the substrate’s affinity while negatively 

cooperative binding occurs for n < 0 in which the affinity decreases. The binding is said to 

be noncooperative for n = 0 if the affinity is independent of already-bound ligands. The 

fractional occupancy, θ, is defined as the fraction of receptors with bound ligands. When 

the system is in thermal equilibrium, θ will reach a steady-state value given by the Hill 

equation:

 

where 𝐾𝑎 is the VOC concentration for which half the binding sites are occupied and n is 

the Hill coefficient describing the cooperativity of binding. Ka and n are generally obtained 

experimentally by fitting chemical response data to (2.4.1) for multiple values of c (Figure 

2.7). 

 

Figure 2.7. Hypothetical Hill-Langmuir curves outline the relationship between the fractional 

occupancy, θ, and the ligand concentration, c, for two different values of the Hill coefficient, n. 

Ka = 1 µM for both curves, the concentration at which θ is equal to one half. The colored dots 

represent experimentally obtained values from which Ka and n are extrapolated. 

𝜃 =
(𝑐/𝐾𝑎)

𝑛

1 + (𝑐/𝐾𝑎)𝑛
 (2.4.1) 
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DNA-NT responses in equilibrium (i.e. responses that reach a stable value) are proportional 

to θ since ∆I/I0 depends on the number of adsorbed VOCs. Thus, a given DNA-NT’s 

sensitivity to changes in VOC concentration is strongly related to the mutual affinity 

between the DNA and the VOCs which is reflected by Ka and n. 

 

2.5 Introduction to Machine Learning Algorithms 

As was discussed in Section 2.1, an electronic nose consists of an array of 

chemically diverse sensors that can discriminate between a vast set of VOCs. Ideally, each 

DNA oligomer contributes some orthogonal information about a target odor signature that 

enhances the discrimination power, or “chemical resolution,” of the e-nose. Thus, there is 

an apparent advantage for e-nose systems that incorporate a large number of distinct sensor 

types.43-44 A consequence of this, however, is that the ensuing high-parameter sensor output 

is necessarily complex, making it challenging to extract useful information out of it using 

conventional data analysis techniques. First-principles investigations of the system’s 

behavior are only possible for drastically simplified models. Meanwhile, graphical 

visualization is generally fruitless because DNA oligomers have largely overlapping 

selectivity, thus any informative features are generally obscured by high parameter 

correlation. A specialized statistical approach is needed to analyze the NTFET response 

outputs. 

Fortunately, there are numerous computational tools available for constructing 

predictive models in exploratory data analysis. Principal component analysis (PCA) and 
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linear discriminant analysis (LDA) are two such algorithms that we have used to analyze 

NTFET array outputs. Both PCA and LDA are linear algebra-based techniques used to 

identify patterns in high-dimensional data sets. In doing so, these algorithms can represent 

the original data with reduced dimensionality, keeping the most important discriminatory 

features. The following sections will review the mathematical foundations of PCA and 

LDA. 

 

2.5.1 Principal Component Analysis (PCA) 

 Principal Component Analysis (PCA) is an unsupervised statistical procedure that 

performs an orthogonal linear transformation on a set of observations of possibly correlated 

variables to convert them into a set of values represented by linearly uncorrelated variables 

called principal components.45-46 This is essentially a change of basis onto a new coordinate 

system such that the first principal component represents the direction with the greatest 

variance when scalar projections of the data lie on this axis. Subsequent principal 

components are associated with lower variances in descending order. Any correlation 

between variables in the original data representation indicates redundancy, and thus the 

data can be simplified by replacing the correlated variables with a single variable. In this 

way, significant trends and features can be revealed using only a few components. 

 Figure 2.8 shows a simulated set of 1,000 DNA-NT responses to a given type of 

VOC. The points are drawn randomly from a bivariate gaussian distribution to represent 

variations in signal due to differences in DNA-NT sensitivities as well as sources of 

random noise. For simplicity, only Seq1 and Seq2 responses are shown. PCA is an 
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unsupervised algorithm in that no prior knowledge of class distinction between data points 

is assumed. The first principal component, PCA1, maximizes the variance of the overall 

data and is associated with the measurement signal while the orthogonal axis, PCA2, 

represents the weakest correlation and is associated with signal noise. Effectively, the first 

principal component is the axis which maximizes the signal-to-noise ratio for the 

measurements. A more detailed mathematical explanation of PCA can be found in 

Appendix A.1. 

 

Figure 2.8. A simulated set of 1,000 DNA-NT responses are drawn randomly from a bivariate 

Gaussian distribution. Only Seq1 and Seq2 responses are shown for simplicity. The first 

principal component, PCA1, maximizes the variance of the overall data set and is associated with 

the signal while the orthogonal axis, PCA2, represents the weakest correlation and is associated 

with signal noise. 
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2.5.2 Linear Discriminant Analysis (LDA) 

 Like PCA, LDA performs a linear transformation on a dataset to reduce its 

dimensionality and facilitate pattern recognition. LDA is a supervised algorithm that finds 

directions (called linear discriminants) that maximize separation between two or more data 

classes. This is achieved when the separation between the centroids of known class 

distributions is greatest when compared to the measure spread for the two clusters. Figure 

2.9 illustrates two hypothetical distributions of Seq1 and Seq2 responses to two different 

types of VOCs. The measurements would clearly overlap significantly if projected onto 

either the horizontal or the vertical axis which would result in poor separation between the 

clusters. The optimal separation is expressed by projections onto the axis designated by the 

first linear discriminant (see Appendix A.2 for the mathematical foundations for LDA).

 

Figure 2.9. A simulated two-parameter data set with two classes of Gaussian-distributed data 

(red and blue). The distributions overlap significantly along the horizontal and vertical axes. 

Using LDA, one can discover a rotated representation of these axes (shown as the diagonal 
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lines). The distributions on the left show histograms of the data projected onto the 

corresponding axis, resulting in optimized class separation. 

 

A predictive classifier can be constructed by fitting LDA parameters to an existing 

set of class-labeled data points. A multivariate normal distribution is used to model each 

class distribution which assigns a probability to any new data point. The estimated 

classification of the new point is selected based on the class for which this probability is 

the highest. 

 

2.5.3 Receiver Operating Characteristics 
 

The accuracy of a predictive classifier model can be validated using a receiver 

operating characteristic (ROC) curve. Given a collection of measurements of two distinct 

observables, a ROC curve provides an estimate of the classification accuracy of the model 

by comparing the false positive rate (FPR) and true positive rate (TPR) for all possible 

measurement values. This is represented visually in Figure 2.10, where two overlapping 

distributions of measurements for a positive and negative signal (Figure 2.10a) are 

distinguished by sweeping a measurement parameter, ζ, and computing the relationship 

between the FPR and TPR (Figure 2.10b). The area under the curve (AUC) formed by this 

relationship determines the probability of correctly classifying a measurement picked at 

random as negative or positive. This AUC is an estimate of the overall accuracy of the 

classifier model. 
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Figure 2.10. Two overlapping distributions of measurements for an imagined two-class system 

are distinguished for every possible value of the measurement parameter, ζ. The colored areas 

represent the true negative (TN), true positive (TP), false negative (FN), and false positive (FP) 

regions for a given ζ. (b) An imagined ROC curve shows the relationship between the false 

positive rate (FPR) and the true positive rate (TPR). The area under this curve (AUC) determines 

the probability of correctly classifying a measurement picked at random. The dashed line 

represents the ROC when the two distributions are perfectly indistinguishable. 

 

References 

1. Sarafoleanu, C.; Mella, C.; Georgescu, M.; Perederco, C., The importance of the 

olfactory sense in the human behavior and evolution. J Med Life 2009, 2 (2), 196-8. 

2. What are volatile organic compounds (VOCs)?, U. S. Environmental Protection 

Agency, August 2019, https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-

organic-compounds-vocs. 

3. Hoover, K. C., Evolution of olfactory receptors. Methods Mol Biol 2013, 1003, 

241-9. 

4. Niimura, Y., Olfactory receptor multigene family in vertebrates: from the 

viewpoint of evolutionary genomics. Curr Genomics 2012, 13 (2), 103-14. 

5. Padodara, R., Olfactory Sense in Different Animals. The Indian Journal off 

Veterinary Science 2014, 2, 1-14. 

6. Walker, D. B.; Walker, J. C.; Cavnar, P. J.; Taylor, J. L.; Pickel, D. H.; Hall, S. 

B.; Suarez, J. C., Naturalistic quantification of canine olfactory sensitivity. Applied 

Animal Behaviour Science 2006, 97 (2-4), 241-254. 

7. Krestel, D.; Passe, D.; Smith, J. C.; Jonsson, L., Behavioral Determination of 

Olfactory Thresholds to Amyl Acetate in Dogs. Neuroscience and Biobehavioral Reviews 

1984, 8 (2), 169-174. 

http://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs
http://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs


26 

 

8. Russell, R. A., Tracking chemical plumes in constrained environments. Robotica 

2001, 19, 451-458. 

9. Wilson, A. D.; Baietto, M., Applications and advances in electronic-nose 

technologies. Sensors (Basel) 2009, 9 (7), 5099-148. 

10. Wilson, A. D.; Baietto, M., Advances in electronic-nose technologies developed 

for biomedical applications. Sensors (Basel) 2011, 11 (1), 1105-76. 

11. Persaud, K.; Dodd, G., Analysis of discrimination mechanisms in the mammalian 

olfactory system using a model nose. Nature 1982, 299 (5881), 352-5. 

12. Wiederoder, M. S.; Nallon, E. C.; Weiss, M.; McGraw, S. K.; Schnee, V. P.; 

Bright, C. J.; Polcha, M. P.; Paffenroth, R.; Uzarski, J. R., Graphene Nanoplatelet-

Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical 

Warfare Agent Simulants. Acs Sensors 2017, 2 (11), 1669-1678. 

13. Zhong, Y.; He, Y.; Ge, Y.; Song, G., beta-Cyclodextrin protected Cu nanoclusters 

as a novel fluorescence sensor for graphene oxide in environmental water samples. 

Luminescence 2017, 32 (4), 596-601. 

14. Benitez-Martinez, S.; Lopez-Lorente, A. I.; Valcarcel, M., Graphene quantum 

dots sensor for the determination of graphene oxide in environmental water samples. 

Anal Chem 2014, 86 (24), 12279-84. 

15. Kodogiannis, V.; Wadge, E., The use of gas-sensor arrays to diagnose urinary 

tract infections. Int J Neural Syst 2005, 15 (5), 363-76. 

16. McCulloch, M.; Jezierski, T.; Broffman, M.; Hubbard, A.; Turner, K.; Janecki, T., 

Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast 

cancers. Integr Cancer Ther 2006, 5 (1), 30-9. 

17. Rusling, J. F.; Kumar, C. V.; Gutkind, J. S.; Patel, V., Measurement of biomarker 

proteins for point-of-care early detection and monitoring of cancer. Analyst 2010, 135 

(10), 2496-511. 

18. Goldsmith, B. R.; Mitala, J. J.; Josue, J.; Castro, A.; Lerner, M. B.; Bayburt, T. 

H.; Khamis, S. M.; Jones, R. A.; Brand, J. G.; Sligar, S. G.; Luetje, C. W.; Gelperin, A.; 

Rhodes, P. A.; Discher, B. M.; Johnson, A. T. C., Biomimetic Chemical Sensors Using 

Nanoelectronic Readout of Olfactory Receptor Proteins. Acs Nano 2011, 5 (7), 5408-

5416. 

19. Naylor, C. H.; Kybert, N. J.; Schneier, C.; Xi, J.; Romero, G.; Saven, J. G.; Liu, 

R. Y.; Johnson, A. T. C., Scalable Production of Molybdenum Disulfide Based 

Biosensors. Acs Nano 2016, 10 (6), 6173-6179. 

20. Lerner, M. B.; Matsunaga, F.; Han, G. H.; Hong, S. J.; Xi, J.; Crook, A.; Perez-

Aguilar, J. M.; Park, Y. W.; Saven, J. G.; Liu, R. Y.; Johnson, A. T. C., Scalable 

Production of Highly Sensitive Nanosensors Based on Graphene Functionalized with a 

Designed G Protein-Coupled Receptor. Nano Letters 2014, 14 (5), 2709-2714. 

21. Lerner, M. B.; Resczenski, J. M.; Amin, A.; Johnson, R. R.; Goldsmith, J. I.; 

Johnson, A. T. C., Toward Quantifying the Electrostatic Transduction Mechanism in 

Carbon Nanotube Molecular Sensors. Journal of the American Chemical Society 2012, 

134 (35), 14318-14321. 



27 

 

22. Patel, D. J.; Suri, A. K.; Jiang, F.; Jiang, L.; Fan, P.; Kumar, R. A.; Nonin, S., 

Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 1997, 

272 (5), 645-64. 

23. Breaker, R. R., Natural and engineered nucleic acids as tools to explore biology. 

Nature 2004, 432 (7019), 838-45. 

24. Kwak, J.; Gallagher, M.; Ozdener, M. H.; Wysocki, C. J.; Goldsmith, B. R.; 

Isamah, A.; Faranda, A.; Fakharzadeh, S. S.; Herlyn, M.; Johnson, A. T.; Preti, G., 

Volatile biomarkers from human melanoma cells. J Chromatogr B Analyt Technol 

Biomed Life Sci 2013, 931, 90-6. 

25. Natelson, D., Nanostructures and nanotechnology. Cambridge University Press: 

2015; p 182-191. 

26. Laird, E. A. K., F.; Steele, G. A.; Grove-Rasmussen, K.; Nygård, J.; Flensberg, 

K.; Kouwenhoven, L. P., Quantum Transport in Carbon Nanotubes. Reviews of Modern 

Physics 2015, 87 (3), 703-764. 

27. Aqel, A.; Abou El-Nour, K. M. M.; Ammar, R. A. A.; Al-Warthan, A., Carbon 

nanotubes, science and technology part (I) structure, synthesis and characterisation. 

Arabian Journal of Chemistry 2012, 5 (1), 1-23. 

28. Radosavljević, M., Freitag, M., Thadani, K. V., & Johnson, A. T., Nonvolatile 

Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors. 

Nano Letters 2002, 2 (7), 761–764. 

29. Kong, J.; Dai, H. J., Full and modulated chemical gating of individual carbon 

nanotubes by organic amine compounds. Journal of Physical Chemistry B 2001, 105 

(15), 2890-2893. 

30. Staii, C.; Johnson, A. T., Jr.; Chen, M.; Gelperin, A., DNA-decorated carbon 

nanotubes for chemical sensing. Nano Lett 2005, 5 (9), 1774-8. 

31. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; 

Richardson, R. E.; Tassi, N. G., DNA-assisted dispersion and separation of carbon 

nanotubes. Nat Mater 2003, 2 (5), 338-42. 

32. Rutkauskas, D.; Zhan, H.; Matthews, K. S.; Pavone, F. S.; Vanzi, F., Tetramer 

opening in LacI-mediated DNA looping. Proc Natl Acad Sci U S A 2009, 106 (39), 

16627-32. 

33. Johnson, R. R.; Johnson, A. T. C.; Klein, M. L., Probing the structure of DNA-

carbon nanotube hybrids with molecular dynamics. Nano Letters 2008, 8 (1), 69-75. 

34. Johnson, R. R.; Kohlmeyer, A.; Johnson, A. T. C.; Klein, M. L., Free Energy 

Landscape of a DNA-Carbon Nanotube Hybrid Using Replica Exchange Molecular 

Dynamics. Nano Letters 2009, 9 (2), 537-541. 

35. Hierlemann, A.; Zellers, E. T.; Ricco, A. J., Use of linear solvation energy 

relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. 

Analytical Chemistry 2001, 73 (14), 3458-3466. 

36. Johnson, K. J.; Rose-Pehrsson, S. L., Sensor Array Design for Complex Sensing 

Tasks. Annual Review of Analytical Chemistry, Vol 8 2015, 8, 287-310. 

37. Novak, J. P.; Snow, E. S.; Houser, E. J.; Park, D.; Stepnowski, J. L.; McGill, R. 

A., Nerve agent detection using networks of single-walled carbon nanotubes. Applied 

Physics Letters 2003, 83 (19), 4026-4028. 



28 

 

38. Ding, S.; Sachs, F., Single channel properties of P2X2 purinoceptors. J Gen 

Physiol 1999, 113 (5), 695-720. 

39. Chu, D.; Zabet, N. R.; Mitavskiy, B., Models of transcription factor binding: 

sensitivity of activation functions to model assumptions. J Theor Biol 2009, 257 (3), 419-

29. 

40. Alon, U., An introduction to systems biology : design principles of biological 

circuits. Chapman & Hall/CRC: Boca Raton, FL, 2007; p xvi, 301 p., 4 p. of plates. 

41. Hartwell, L. H.; Hopfield, J. J.; Leibler, S.; Murray, A. W., From molecular to 

modular cell biology. Nature 1999, 402 (6761 Suppl), C47-52. 

42. Teif, V. B., Ligand-induced DNA condensation: Choosing the model. Biophysical 

Journal 2005, 89 (4), 2574-2587. 

43. Hopfield, J. J., Odor space and olfactory processing: collective algorithms and 

neural implementation. Proc Natl Acad Sci U S A 1999, 96 (22), 12506-11. 

44. Gelperin, A. and Hopfield, J.J., Electronic and Computational Olfaction, in 

Chemistry of Taste: Mechanisms, Behaviors and Mimics. (eds. P. Given & D. Paredes) 

289-317 (American Chemical Society, Washington DC; 2002). 

45. Joliffe, I. T. (n.d.). Principal Component Analysis. Springer. 

46. Bishop, C. M., Pattern recognition and machine learning. Springer: New York, 

2006; p 561-565. 

  



29 

 

CHAPTER 3: Device Fabrication, Experimental Methods, 

and Data Processing 

 

In Section 3.1, we discuss the fabrication process of DNA-NT arrays and how we 

utilize them in experiments. Our processes are designed to yield high-yield, ultrasensitive 

chemical sensors using standard and easily reproducible techniques. We fabricate source-

drain electrode pairs on silicon-based substrates using photolithography. A CNT network 

is deposited across the FET channels, each chemically functionalized with single-stranded 

DNA of a particular base sequence. DNA-NT arrays are characterized for quality and 

sensitivity using I-VG sweeps. 

Section 3.2 outlines the vapor delivery system used to expose DNA-NT arrays to 

target VOCs. A home-built experimental setup was is used to house multiple VOC sources 

at a time. A series of computer-automated valves and mass flow controllers deliver the 

volatile headspace of these samples to a specially constructed sensor chamber according to 

a computer-automated protocol. The sensor chamber is fitted with contacts that enable 

rapid, high-precision measurements of 100 DNA-NT currents in real time. 

Section 3.3 describes the typical procedure for collecting DNA-NT chemical 

signature data as well as data analysis methods. DNA-NT arrays are generally exposed to 

a series of pulses of target VOCs from a given sample. A refresh period follows each pulse 

to remove analytes from the system, returning DNA-NTs to a quiescent state. The current 

responses to each exposure are computed as the fractional current shift relative to a baseline 

curve that is fitted to the response data using linear interpolation. Baseline-fitted responses 
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from all DNA-NTs functionalized with the same sequence of DNA are averaged together 

to produce a representative response for that sensor type. 

 

3.1 Fabrication and Characterization of NTFET Sensor Arrays 

 

3.1.1. Photolithographic Patterning of Electrode Arrays 

A standard photolithographic procedure is implemented to fabricate FET electrodes 

using the Quattrone Nanofabrication Facility at the Krishna P. Singh Center (see Appendix 

C for a full detailed description of the procedure). The substrates are standard boron-doped 

<100> silicon wafers, approximately 10 cm (4 inches) in diameter and 500 – 550 µm in 

thickness. Each Si wafer has 285 nm layer of polished dry thermal oxide (SiO2). Prior to 

electrode patterning, 15 nm of Al2O3 is deposited via atomic layer deposition (ALD) on a 

Si/SiO2 wafer (Figure 3.1). This is done because CNTs have improved adhesion to Al2O3 

over the bare SiO2 surface. The wafer is then coated with a positive photoresist, an organic 

material that degrades when exposed to certain wavelengths of light. The wafer is placed 

in a mask aligner where ultraviolet light is passed through a photomask, exposing the 

photoresist only in selected regions. Any exposed resist is dissolved away with a developer, 

leaving behind bare substrate. The entire wafer is then coated with 5 nm Cr followed by 40 

nm of Au using an electron beam physical vapor deposition (EBPVD) system. The Cr layer 

is necessary to increase the adhesion between the oxide and the Au layer. All remaining 

photoresist is dissolved by submerging the wafer into a solvent containing 1-methyl-2-
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pyrrolidinone. Whatever metal not in direct contact with the wafer is lifted off and 

removed, thus leaving behind the desired electrode pattern. 

 

 

Figure 3.1. A standard photolithography process is used to define electrode features on a Si/SiO2 

substrate. Starting at the upper-left diagram, a layer of Al2O3 (shown in blue) is deposited onto 

the substrate to increase its affinity to CNTs. Positive photoresist is then spin-coated uniformly 

onto the substrate. A photomask is placed between the substrate and a source of ultraviolet light, 

blocking selected regions from being exposed. Any photoresist exposed to the light is degraded 

and removed. A layer of Au is evaporated onto the entire wafer. The remaining photoresist is 

lifted off, leaving behind metallized regions in the desired pattern. 

 

Following a successful lithography process, the wafer is diced into individual chips, each 

containing a full set of electrodes for a single DNA-NT array. 
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3.1.2 Deposition and Functionalization of CNTs 

The vapor sensors used in this thesis work were fabricated using a solution of 98% 

semiconducting CNTs suspended in an aqueous solution purchased from NanoIntegris Inc. 

(Quebec, Canada). CNTs dissolved in pure water will tend to aggregate together into bulk 

carbon precipitate that exhibits metallic rather than semiconducting properties. To prevent 

this, the solution contains a water-soluble surfactant that keeps the CNTs separated. The 

CNTs themselves are grown using chemical vapor deposition and placed in solution. Using 

a process known as density gradient ultracentrifugation, the solution is spun in a centrifuge 

at 200,000 rpm over the course of several days to separate CNTs according to diameter 

(Figure 3.2).1 Extracting the proper layer of CNTs from the density gradient yields high-

purity semiconducting CNTs with a relatively uniform distribution of CNT diameters.1 

 

 

Figure 3.2. Density gradient ultracentrifugation is used to separate CNTs according to diameter 

and size with larger diameter CNTs settling toward the bottom. Image adapted from [1]. 
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A special procedure is used to deposit CNTs across the source-drain channels of 

each sensor array (see Appendix D for a full description of the process). Approximately 

140 µL of 98% semiconducting CNT solution from NanoIntegris is pipetted onto the 

source-drain regions on each chip and placed in a humid environment for 30 minutes 

(Figure 3.3). A fraction CNTs gradually self-assemble onto the substrate while the 

humidity prevents the solution from evaporating too quickly. This procedure is designed 

to yield a relatively uniform CNT network of an appropriate density (Figure 3.4). The 

residual CNT solution is washed away with isopropanol to remove residual surfactant and 

then again with deionized water to rinse away the isopropanol. The substrate is then 

annealed at 165°C on a hotplate for one hour to improve the contact between the CNTs and 

the electrodes, effectively lowering the electrode contact resistance. 

 

 

Figure 3.3. A sensor array is placed inside an enclosed volume together with a hot water 

container to humidify the environment. CNT solution is deposited across the FET channel 
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regions (outlined in red). The humidity prevents the solution from evaporating while the CNTs 

gradually accumulate onto the substrate. 

 

 

Figure 3.4. Scanning electron microscope images of two representative NTFET channels reveal 

disordered CNT networks forming conductive pathways from source to drain electrodes 

positioned above and below. 

  

A similar procedure is used to functionalize the NTFETs with single-stranded DNA 

of a particular base sequence (see Appendix E for a full description of the process). Ten 

customized DNA oligomers are purchased from Invitrogen (Carlsbad, CA), each a 21- or 

24-base oligomer of randomized sequences (Table 3.1). 
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Table 3.1. Ten single-stranded DNA oligomers used to chemically functionalize DNA-NT arrays. 

Each oligomer is a randomized sequence of 21 or 24 nucleotides. 

Oligomer Name Base Sequence 

Seq1 GAGTCTGTGGAGGAGGTAGTC 

Seq2 CTTCTGTCTTGATGTTTGTCAAAC 

Seq3 GTACGGACTGTGAATGCGCGTTAG 

Seq4 CCCGTTGGTATGGGAGTTGAGTGC 

Seq5 GCGCATTGGGTATCTCGCCCGGCT 

Seq6 GTATCTAGAGCGGGCGGGTACTCC 

Seq7 AAACAAATCTAATAATACTTCCCA 

Seq8 AGTTCGGCATGTGGAAACTCCTTC 

Seq9 CGCCTAGAGGTCAAGCGTGGTTGC 

Seq10 TGAAAGTGGGAAGCGACACGATGG 

 

The DNA is diluted to 100 µM in deionized water, aliquoted, and stored in a -20°C freezer 

until use. One aliquot of each sequence is thawed and a 2 µL droplet is carefully pipetted 

onto each of ten source-drain regions on a DNA-NT array (Figure 3.5). As before, the array 

is placed in an enclosed humid environment for 30 minutes, allowing the DNA oligomers 

to settle out of solution and adsorb onto the CNT surfaces. The droplets are then removed 

from the substrate using compressed nitrogen. 

 

 

Figure 3.5. Ten groups of source-drain regions are functionalized with one of ten oligomers of 

single-stranded DNA. 2 µL droplets are carefully pipetted onto each region, allowing the DNA to 

gradually settle out of solution onto the CNT network on the substrate. This yields a DNA-NT 

hybrid structure only several nanometers in thickness. 
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3.1.3 Electrical Characterization of NTFET Arrays 

DNA-NT arrays are characterized by measuring current-gate voltage (I-VG) 

characteristics using a FormFactor MPS150 probing station. Conductive silver paint is 

applied to the underside of the array to serve as a back-gate contact. The array is placed on 

a metal stage to which is a gate voltage is applied. A customized probe card from Amprobe 

(Everett, WA) is used to interrogate each contact electrode, routing source-drain currents 

to a Keithley 6485 picoammeter as VG is swept from -20 V to +20 V with a fixed source-

drain bias of 0.1 V. Normally, currents converge towards a particular on-state current for 

increasingly negative VG and tend towards a near-zero off-state current for positive VG 

(Figure 3.6a). The overall quality of each array is assessed based on distributions of DNA-

NT on-state currents and on-off ratios. Ideally, on-state currents are significantly larger 

than the noise threshold and generally do not exceed 100 µA. 

 A measure of a DNA-NT’s sensitivity to changes in its electrostatic environment is 

the transconductance, 𝑔𝑚 =
𝑑I

𝑑VG
. Chemical gating due to adsorbed VOCs effectively shifts 

VG from its nominal value which changes the device current by ∆I ≅ 𝑔𝑚∆VG. VG is fixed 

such that |𝑔𝑚| is maximized for the greatest number of DNA-NTs (Figure 3.6b). 
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Figure 3.6. (a) I-VG curve for a single DNA-NT shows the relationship between the device current 

and the applied gate voltage. The diagonal green line indicates the steepest slopes in the I-VG 

curve, indicating the gate potential (𝐕𝑮 = −𝟏𝟒𝐕) at which the corresponding device current is 

maximally sensitive to variations in local charge environment. (b) I-VG characteristics for all 100 

devices from the same sensor array. All DNA-NT transconductances are maximized for gate 

potentials between 𝐕𝑮 = −𝟏𝟒𝐕 and 𝐕𝑮 = −𝟏𝟎𝐕. 

 

3.2 Experimental Procedure 

 

A home-built vapor delivery system is utilized to expose sensor arrays to headspace 

VOCs from up to five samples at a time while simultaneously measuring device currents 

in real time (Figure 3.7a). Low viscosity fluids, such as propionic acid or dimethyl 

methylphosphonate, can be placed inside gas bubblers in which headspace VOCs are 

pushed out a side arm by bubbling nitrogen from beneath the liquid level (Figure 3.7b). 

Blood plasma samples have much higher viscosity and are available in low volume (1 mL 
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or less), so they are instead loaded into two-neck round-bottom flasks (Figure 3.7c). Due 

to the relatively low vapor pressures of plasma VOCs at room temperature, the flasks are 

placed in a 50 °C hot water bath to increase the VOC headspace concentration. Micro stir 

bars are included with fluid samples to further promote the release of dissolved VOCs. 

High purity compressed nitrogen gas is delivered to the sample flasks or bubblers to carry 

the headspace VOCs to a stainless steel sensor chamber housing a DNA-NT array. The 

chamber is simultaneously humidified at a fixed relative humidity with water vapor 

generated from a bubbler filled with deionized water to enable VOC adsorption onto the 

DNA binding sites. The chamber is fitted with an intake and exhaust outlet and is open 

from atop to allow placement of a DNA-NT array inside (Figure 3.7d). An acrylic lid fits 

over the top of the chamber and is compressed against an O-ring with screws to prevent 

gas leaks. The lid is equipped with feed-through pogo pins that make electrical contact with 

each DNA-NT, routing current outputs to a National Instruments PXI-2535 switching 

matrix used to cycle through each output to be individually measured by a Keithley 6485 

picoammeter. The base of the chamber is charged to the desired gate voltage using a 

Keithley 617 electrometer. The associated flow rates are regulated using six MKS 1179 

computer-controlled mass flow controllers (MFCs), one for each of the five samples and 

the sixth for the water bubbler. The various components are connected together with ¼” 

Teflon tubing. Portions of the tubing are heated using a heating tape to prevent VOC 

adsorption inside the lines. Three-way solenoid valves (ASCO Valve 8320G202) are used 

to select the VOC headspace of one sample to be measured at a time. These valves are 

actuated electronically via 120VAC solid state relays that are controlled with a computer. 
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A LabVIEW program is used to automate the proceedings of the experiment once it has 

been set up. The program adjusts MFC flow rates and switches valve states according to a 

flow recipe, a precompiled set of instructions that synchronize with a timetable. The 

software also controls bias and gate voltages applied to the sensor array and records source-

drain currents from the picoammeter. This level of automation allows the system to run for 

many hours without user input. 

 

 

Figure 3.7. (a) Schematic overview of the vapor delivery system. Compressed nitrogen is used 

as a carrier gas to deliver VOCs in the headspaces of samples (S1 – S5) to a sensor chamber 

housing a DNA-NT array. The chamber is humidified with water vapor to enable VOC interaction 

with the DNA. Teflon tubing is used to connect the various components together. The gas flow 

rates are regulated using mass flow controllers (MFCs) controlled automatically using a 

computer program. The samples are heated in a hot water bath to promote the generation of 

VOCs. The tubing between the samples and the sensor chamber is also heated (red outline) to 

prevent VOC condensation inside the lines. Computer-controlled valves (yellow structures) are 
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used to select headspace VOCs from one sample to be measured at a time. (b) Two gas bubblers, 

one filled with deionized water for hydration (front). (c) Round-bottom flasks containing blood 

plasma (pale yellow regions) are heated in a hot water bath. Magnetic stirring rods (circled in 

red) are included to agitate the plasma. (d) Sensor chamber fitted with contact pins to read out 

currents from the array of 100 DNA-NTs inside. Three screws compress the top acrylic surface 

against an O-ring, preventing VOCs from leaking outside. 

 

3.3 Data Acquisition Protocol and Data Processing 

The protocol for taking measurements includes a pulse phase, in which a DNA-NT 

array is exposed to a mixture of target VOCs and water vapor diluted in nitrogen gas, and 

a refresh phase, where the mixture is replaced with a stream of nitrogen at the same relative 

humidity (RH) and total flow rate (Figure 3.8a). The purpose of the refresh is to carry away 

residual analytes from the sensor chamber, allowing the DNA-NT currents to recover to 

their baseline value. DNA-NT conductances vary significantly from device to device, 

hence the distribution of baseline currents can span several orders of magnitude (Figure 

3.8b). However, fractional current responses to target VOCs are found to be comparable – 

hence, responses are generally reported as fractional current shifts from baseline, ∆I/I0. 

DNA-NT baseline currents are not constant with time, but rather drift in response to 

changing ambient conditions. We account for this drift by fitting a baseline to each pulse 

measurement using linear interpolation (Figure 3.8c). The fractional current response for 

each DNA-NT is then computed as:  

∆𝐼

𝐼0
=

𝐼𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  −  𝐼𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐼𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% (3.3.1) 
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Baseline-fitted responses from all DNA-NTs functionalized with the same sequence of 

DNA are averaged together to produce a representative response for that sequence (Figure 

3.8d). Variations on the mean value of ∆I/I0 due to sources of random error are nominally 

reduced by a factor of 1/√𝑛 when averaging responses from n DNA-NTs, thus revealing 

the advantage of devoting many DNA-NTs to each DNA sequence. 

 

Figure 3.8. (a) A single DNA-NT is exposed to a series of two-minute pulses of propionic acid 

mixed with nitrogen at 33% relative humidity (RH). After each pulse, the DNA-NT is flushed with 

nitrogen at the same RH for two minutes, allowing the current to recover. The concentration of 

propionic acid vapor is incrementally increased after every other pulse from 62 ppm to 3100 ppm 

with each increase yielding larger associated responses. (b) Responses from the device in (a) 

(shown in red) are compared to those of 16 other DNA-NTs from the same array (black). Currents 
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are plotted on a logarithmic scale to show that the fractional responses across all devices are 

comparable, even though the magnitudes of baseline currents span several orders of magnitude. 

(c) The current response curve from (a) is baseline-fitted using linear interpolation to account for 

baseline drift. (d) ∆𝐈/𝐈𝟎 for all 17 devices (red traces) with their average superimposed (black). 

The average fractional response exhibits high signal-to-noise ratio.  
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CHAPTER 4: Early-Stage Detection of Ovarian Cancer 

 

 This chapter presents the use of our e-nose technology to screen blood plasma 

samples for volatile indicators of ovarian cancer. Samples were collected from patients 

with a malignant form of ovarian cancer, those suffering from benign ovarian lesions, and 

healthy age-matched women. DNA-NT sensor arrays were exposed to headspace VOCs of 

each sample. The ensuing sensor responses were processed using statistical analysis tools 

which revealed the sensor platform’s capacity to differentiate between metabolic VOCs 

characteristic of healthy individuals and of those suffering from ovarian cancer. 

Section 4.1 proposes a motivation for developing a reliable screening test for 

ovarian cancer, particularly for early-stage cancer when treatments are the most effective. 

Currently, there are no accepted screening tests for ovarian cancer for women of average 

risk. Clinical procedures that reveal ovarian tumors usually do so in the late stages of cancer 

when it is often too late to save the life of the patient. Furthermore, these tests exhibit high 

false positive rates which puts many patients through unnecessary treatment that causes 

significant risks for the patient. Remarkably, several studies have shown that sniffer dogs 

can be trained to differentiate between VOCs from blood plasma and other bodily fluids 

collected from cancer-suffering patients and healthy individuals. E-nose sensor platforms 

based on highly sensitive nanomaterials also show promise in this application, particularly 

for detection of early-stage cases where VOC biomarker concentrations are extremely low. 

 Section 4.2 describes experiments involving blood plasma samples procured from 

(1) patients suffering from malignant ovarian lesions, (2) patients with benign tumors, and 
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(3) age-matched healthy controls. Initial experiments involved three pools of plasma 

samples representing the malignant, benign, and healthy groups. A DNA-NT was 

functionalized with four different DNA oligomers and then exposed to headspace VOCs 

from the pools. The sensor groups produced diversified responses to the VOCs with some 

groups demonstrating promising differentiation between VOCs associated with malignant, 

benign, and healthy groups. Additional measurements were conducted using a DNA-NT 

functionalized with all ten DNA oligomers to probe headspace VOCs from plasma 

collected from 58 individual people. Of these, 21 had a malignant form of ovarian cancer, 

16 suffered from a benign from of cancer, and 21 were healthy controls. A special 

experimental protocol was developed specifically for measuring plasma VOCs to ensure 

reproducibility and signal quality of DNA-NT responses. Once all 58 samples were 

measured, the 10-channel DNA-NT responses were dimensionally reduced using linear 

discriminant analysis (LDA) yielding well-separated response distributions for the healthy, 

benign, and malignant groups. 

 Section 4.3 discusses predictive modeling based on machine learning algorithms to 

enable association of DNA-NT response data with healthy or diseased individuals. 

Classifier models based on four machine learning algorithms – LDA, support vector 

machine (SVM), k-nearest neighbors, and random forest – were constructed using the 

plasma response data as inputs. Each classifier was evaluated based on predictive accuracy 

and robustness using two different cross-validation techniques. All four classifiers 

demonstrated high validation accuracies and relatively low false-positive rates, signifying 

good progress towards a reliable and practical screening technology for ovarian cancer. 
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4.1 An Interdisciplinary Effort Towards Reliable Ovarian Cancer 

Screening 

 

Ovarian cancer is the fifth leading cause of cancer deaths in United States women. 

In 2020 alone, an estimated 13,940 women will have died from ovarian cancer while the 

number of new diagnoses is projected at 21,750.1 This staggering death toll is largely due 

to a complete lack of screening methods for accurate and early detection of the disease. 

The symptoms of ovarian cancer are diverse, non-specific, and commonly mistaken for 

those of other diseases such as various gastrointestinal illnesses.2 More than 80% of 

diagnoses are associated with late-stage ovarian cancer at which point treatments are no 

longer effective – as a result, roughly 70% of patients with late-stage ovarian cancer die 

within 5 years.2 On the other hand, if discovered early, ovarian cancer can be treated 

effectively with a 90% survival rate.3 Any practical test that can more successfully detect 

ovarian cancer in its early stage could significantly increase patient survivability. 

Modern medical diagnostics are largely based on some form of visualization, 

auscultation, or palpation. Currently, discoveries of ovarian tumors are largely achieved 

using some form of medical imaging and clinical laboratory tests. Ultrasound and cancer 

antigen 125 (CA-125) blood tests were once proposed as screening tests for ovarian 

cancer.4 Ultrasound imaging attempts to image tumor masses around a patient’s ovaries 

while CA-125 blood tests can identify individuals that have either healthy or elevated levels 

of the CA-125 protein which could indicate the presence of cancer. Unfortunately, both 

techniques suffer from high false positive rates. Ultrasound cannot distinguish tumors from 
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noncancerous masses and there are many noncancerous conditions that also increase levels 

of CA-125 in blood such as endometriosis and pelvic inflammatory disease. As such, 

neither technique is considered reliable screening techniques for ovarian cancer.5 

In previous centuries, olfaction also played a vital role as doctors would often make 

diagnoses based on their own personal senses of sight, touch, and smell. From an 

evolutionary point of view, olfaction serves as a mechanism for social animals that 

provides a means of communicating information about an individual to others of the same 

species. A diseased individual will sometimes give off a foul odor, causing alarm to its 

surrounding company. Unfortunately, a human’s sense of smell is largely inferior to other 

animals’, and with the emergence of positron emission tomography, ultrasound, liquid 

biopsy and other powerful medical aids, olfaction-based medical practices have been 

falling by the wayside. Only recently have researchers begun revisiting screening strategies 

based on olfaction.6-7 There have been reports of pet dogs behaving differently around their 

owners who were later diagnosed with some form of cancer.6, 8 It is believed that this 

reaction was triggered by the dogs’ ability to detect minute abnormalities in the VOC 

content of bodily odors given off by their owners.8 Though seemingly miraculous, there 

exist scientific theories that offer explanations for remarkable behavior. One such theory 

is that the metabolic byproducts due to cell division differ significantly between tumor cells 

and their healthy counterparts since tumor cells multiply more rapidly and have a higher 

metabolic rate. Some of these byproducts are VOCs that are absorbed into the blood stream 

and distributed to other parts of the body where they can appear in other bodily fluids such 

as sweat, saliva, urine, or tears. Another explanation for this apparent change in VOC 
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content from bodily fluids is due to an immune response to the presence of cancer rather 

than the cancer itself. Numerous studies have validated canines’ ability to detect VOC 

biomarkers associated with a variety of cancers including breast6, bladder9, and ovarian8 

from breath, urine, and blood samples, respectively. 

 A collaboration between the University of Pennsylvania and the Monell Chemical 

Senses Center in Philadelphia is using three approaches to research the differences in odor 

signature in bodily fluids between women diagnosed with malignant ovarian cancer, those 

identified as having benign ovarian tumors, and age-matched healthy individuals. The first 

approach, directed by Dr. Cynthia Otto at the Penn Working Dog Center, involves training 

dogs to identify blood samples as healthy or non-healthy (i.e. cancerous) by sniffing the 

VOCs emitted by blood samples collected from individual people. The second approach 

focuses on using gas chromatography / mass spectrometry (GC/MS) to analyze the 

chemical makeup of characteristic VOCs of cancerous blood samples versus healthy 

samples. The third approach is to develop a laboratory platform based on DNA-NT arrays 

for ovarian cancer screening which is the scope of this dissertation. 

 Samples for this work were procured by our collaborator Professor Janos Tanyi 

through the Ovarian Cancer Center at the University of Pennsylvania Hospital. To ensure 

VOCs were retained for analysis, all samples were spun at 3000 rpm for ten minutes at 4°C 

and then stored frozen at -80 °C. The samples were later defrosted on ice and then divided 

into aliquots of 500 µL. The aliquots were distributed among all collaborators so that all 

samples could be analyzed using the sniffing dogs, GC/MS, and DNA-NT e-nose methods. 
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The aliquots were refrozen at -30 °C and stored until needed. For experiments, samples 

were thawed and then immediately analyzed by the DNA-NTs. 

 

4.2 DNA-NT Measurements of Headspace VOCs from Blood Plasma 

 

4.2.1 Initial Investigations Using Pooled Plasma 
 

The ovarian cancer project was initiated by Dr. Nicholas Kybert, a former Johnson 

PhD student. A preliminary experiment involved three pools of blood plasma procured 

from women with a malignant form of ovarian cancer, women suffering from benign 

tumors, and healthy age-matched controls. Each pool contained 500 µL of plasma from ten 

individual women. The pools were loaded into three separate 25 mL two-neck round-

bottom flasks that were each placed in a 50 °C hot water bath to promote VOC generation. 

Each pool was also agitated with a micro stir bar to further encourage the release of VOCs. 

The flasks were connected to the other e-nose components with Teflon tubing wrapped 

with a heating element to inhibit VOC condensation. An early-generation array of 80 DNA-

NTs was functionalized with four distinct sequences of DNA (Seq1, Seq2, Seq4, and Seq5) 

to probe the VOC headspaces of the three pools. 

Once the samples were brought to temperature, a 30-minute waiting period was 

issued to allow VOCs to accumulate within the headspaces of the flasks. The sensor array 

was then exposed to VOCs from the malignant pool diluted in nitrogen at a 1:4 volume 

ratio. Because plasma is mostly composed of water, the nitrogen component of the mixture 

was humidified to 100% relative humidity (RH). The malignant pulse was sustained for 

two minutes, after which the DNA-NTs were refreshed with 100% RH nitrogen for two 
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additional minutes. VOCs from the benign and healthy pools were measured in the same 

manner. Three measurements were completed for each pool. 

Exposure to plasma VOCs caused a negative shift in DNA-NT currents (Figure 

4.1). Repeated measurements of each sample were closely reproduced and the signal-to-

noise ratios of averaged responses were well above the noise threshold. Seq1 sensors 

demonstrated a remarkable ability to discriminate between the plasma headspaces of each 

pool (Figure 4.1a). Notably, responses to healthy VOCs were consistently the largest in 

magnitude and those associated with malignant pool were always the smallest with the 

benign responses in between. Unlike Seq1, Seq4 responses to malignant, benign, and 

healthy VOCs were far less diverse and hardly demonstrated any ability to distinguish any 

of the pools. The remaining sensors demonstrated some differentiation capacity, though 

neither were as pronounced as Seq1 (Figure 4.1b). Overall, the diversity of responses from 

only four sensor types suggested a strong potential of DNA-NT arrays to discriminate 

between ovarian cancer biomarkers in a complex plasma headspace. 

 

Figure 4.1. (a) Averaged sensor responses (∆𝑰/𝑰𝟎) of 21 Seq1 and 18 Seq4 DNA-NT devices 

exposed to VOCs from the cancerous, benign, and control pools. Three cycles of responses for 
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each pool are shown to show strong reproducibility between repeated measurements. Seq1 

responses demonstrate a strong ability to differentiate between the pools with the healthy pool 

showing the largest responses, malignant showing the smallest, and the benign in between. In 

contrast, Seq4 responses show almost no ability to distinguish them. (b) Responses to all four 

DNA sequences exhibit a diversified olfaction signature of the pooled samples. 

 

4.2.2 Measurement of Blood Plasma from Individuals 

Follow-up measurements were conducted on additional plasma samples collected 

from 58 different people. Of these, 21 had a malignant form of ovarian cancer, 16 suffered 

from a benign from of cancer, and 21 were healthy controls. Six of the malignant samples 

were from women suffering from Stage I or Stage II cancer while the remaining were from 

women with Stage III or IV cancer. As before, each sample was loaded into 25 mL round-

bottom flask and heated in a 50 °C water bath. DNA-NT arrays were coated with all ten 

DNA oligomers listed in Table 3.1 (including the four used in the pooled experiment) and 

then exposed to VOCs according to the same two-minute pulse and two-minute refresh 

protocol used previously (Figure 4.2a). Furthermore, responses from all sensor types 

formed three clusters corresponding to the malignant, benign, and healthy groups (Figure 

4.2b). These clusters overlapped significantly, indicating that effective discrimination of 

VOCs would require the combined efforts of multiple DNA-NT sensor types. This 

variation of responses within each cluster is attributed to biological differences between 

individual people. 
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Figure 4.2. (a) Average of 9 Seq1 DNA-NT responses exhibit differentiation of headspace VOCs 

from plasma samples derived from three healthy individuals, a patient with benign ovarian 

cancer, and a patient with a malignant form of cancer. Three cycles of measurements are shown 

to demonstrate the reproducibility of responses between repeated measurements. (b) Seq1 

responses for all 58 samples reveal clustering of data within malignant, benign, and healthy 

groups save for one malignant outlier (indicated by the blue arrow). Data points are displayed on 

an arbitrary horizontal axis to aid in visualizing overlapping points. The clusters overlap 

significantly, indicating that further data analysis techniques are needed to improve 

discrimination of each group. 

 

Improved separation between the clusters was achieved using linear discriminant 

analysis (LDA), a predecessor to many advanced machine learning techniques used today 

(Figure 4.3). LDA is a supervised learning algorithm that requires prior knowledge of data 

classification. Hence, the data was supplemented with healthy, benign, and malignant class 

labels which were provided as additional inputs for LDA. No distinction was made to treat 

early-stage and late-stage cancer samples at this time. Projections of data onto the first 

linear discriminant (LDA1) revealed three well-separated distributions corresponding to 
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each class. Remarkably, all early-stage malignant samples were well-situated within the 

malignant distribution, suggesting a strong potential for reliable early-stage detection using 

DNA-NT sensors. 

 

Figure 4.3. DNA-NT responses to headspace VOCs from plasma collected from 58 individuals are 

projected onto the first linear discriminant (LDA1) computed by linear discriminant analysis 

(LDA). 

 

4.2.3 Headspace Regulation of Plasma Samples 

Repeated measurements of plasma headspace VOCs caused a significant 

systematic depletion of DNA-NT baseline currents over the course of each experiment 

(Figure 4.4a). It is not fully understood why this occurs with VOCs associated with blood 

plasma as this phenomenon has not been observed for VOCs from other media. The current 

hypothesis is that this is caused by gradual accumulation of one or more “sticky” molecular 

components of the plasma headspace that are reluctant to desorb from the DNA-NTs, 
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resulting in only partial recovery of device currents after each refresh and thus attenuating 

DNA-NT responses over time (Figure 4.4b). 

 

Figure 4.4. (a) A single DNA-NT sensor is exposed to a series of sixteen exposures to headspace 

VOCs from one blood plasma sample to demonstrate attenuation of both the baseline current 

and the response levels. The start times of the first four exposures are marked by the brown 

arrows. (b) The average current responses of all ten Seq6 devices also demonstrates signal 

attenuation and deteriorating signal-to-noise ratios over time. 

 

A special experimental protocol was developed to reduce the attenuation of DNA-

NT currents due to plasma VOC exposure. Typically, sample VOCs are allowed to 

accumulate within the headspace of the corresponding container between measurements 

(i.e. whenever the system is busy measuring a different sample). This was altered 

specifically for measuring plasma by constantly delivering nitrogen to all sample-

containing flasks throughout all stages of the experiment, effectively reducing the 

associated headspace VOC concentrations. Three-way solenoid valves were used to direct 
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the flow of sample VOCs either to the sensor chamber to be measured or out a separate 

exhaust path (Figure 4.5). 

 

 

Figure 4.5. Modified gas-delivery setup for measuring headspace VOCs from blood plasma 

samples. Nitrogen gas is continuously delivered to all samples throughout the experiment while 

three-way solenoid valves (yellow structures) direct each flow either to the sensor chamber to 

be measured or out a separate exhaust. This decreases the headspace concentrations of plasma 

VOCs which slows the rate of DNA-NT response attenuation. 

 

This technique markedly improved the reproducibility of DNA-NT responses to plasma 

VOCs, nearly eliminating the systematic signal drift observed earlier (Figure 4.6). In 

addition, signal-to-noise ratios remained high above the noise threshold even though the 

overall concentration of VOCs was reduced. 
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Figure 4.6. Nine Seq6 DNA-NTs were exposed to six cycles of measurements of five plasma 

samples in sequence. The samples were measured in the same order for each cycle. The 

responses demonstrate significantly improved reproducibility and a high signal-to-noise ratio. 

 

4.3 Sample Classification Using Machine Learning 

 

4.3.1 Sample Classification Based on Cross-Validation 

Predictive modeling based on pattern recognition algorithms was performed on the 

chemical sensor data to enable association of DNA-NT responses with healthy or diseased 

individuals. Initially, an LDA-based classifier was constructed with the ovarian response 

data using the Scikit-learn package for the Python programming language.10 The 

robustness of the classifier was verified using two cross-validation techniques: Leave One 

Out Cross-Validation (LOOCV) and stratified k-fold cross-validation. Cross-validation is 

often used to test for biased training of a dataset in machine-learning applications. 

LOOCV is designed to test whether or not a single new data point would be 

correctly categorized by the classifier. This is simulated by building the classifier using all 
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but one of the samples in the database. The classifier is then used to predict the identity of 

the left-out sample. This process is repeated until each individual sample in the database 

has been validated. For the ovarian data set, 55 of the 58 samples were correctly identified, 

yielding a validation accuracy of 95% (Table 4.1). Both misclassified samples were false 

negatives with one malignant sample identified as benign and one benign sample identified 

as healthy. All early-stage samples were correctly classified as malignant. 

 

Table 4.1. Results of LOOCV on the entire ovarian dataset. 55 of the 58 samples were correctly 

classified, yielding a validation accuracy of 95%. The three misclassified samples were all false 

negatives with two malignant samples identified as benign and one benign identified as healthy. 

The misclassified malignant sample was from a late-stage cancer patient. 

  CLASSIFIED (LOOCV) 

  Malignant Benign Healthy 

ACTUAL 
Malignant 19 2 0 

Benign 0 15 1 

Healthy 0 0 21 

 

Stratified k-fold cross-validation is a derivative of k-fold cross-validation in which 

a dataset is randomly partitioned into k equal-sized subsets (Figure 4.7). One partition is 

chosen as the validation data while the remaining k – 1 subsets are used as the training data. 

This process is repeated until all partitions have been validated once. Due to the element 

of randomness, it is common practice to repeat the entire k-fold cross-validation process 

multiple times so that the validation results converge towards a representative set of values. 

k-fold cross-validation does not take the classification of each data point into account which 

can be problematic for relatively small data sets since there is a significant chance of obtain 



57 

 

training sets that are underrepresented by one or two of the sample groups. A solution is to 

stratify the k partitions such that each subset comprises an equal fraction of data points 

from each class, ensuring that the mean response for each class is approximately equal in 

all partitions. 

 

 

Figure 4.7. Using the stratified k-fold cross-validation technique, the malignant, benign, and 

healthy data are each randomly shuffled and then partitioned into four equal-sized subsets. 

Three subsets from each class are combined to form the training set while the remaining form 

the validation set. The process is repeated until all data points have been validated exactly once. 

 

Stratified k-fold cross-validation was used to partition the ovarian plasma database 

into four subsets, using 75% of the data as the training set with the remaining 25% as the 

validation set. This process was performed 10,000 times to obtain convergent validation 

estimates. On average, 3.76 samples out of 58 were misclassified, corresponding to a 

validation accuracy of 94%. The overall false-positives rate remained low at less than 

0.1%. A detailed summary of the results is presented in Table 4.2. 
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Table 4.2. Stratified k-fold cross-validation was performed 10,000 times on the ovarian database. 

The percentages indicate the number of correctly or incorrectly classified samples for each 

corresponding class. The overall validation accuracy was 94% while the overall false positives 

rate was less than 0.1%. 

  

CLASSIFIED (stratified 
k-fold) 

  Malignant Benign Healthy 

ACTUAL 
Malignant 86.0% 13.6% 0.4% 

Benign 0% 93.8% 6.2% 

Healthy 0% 0.5% 99.5% 

 

The classification performances of three additional learning algorithms, each more 

sophisticated than LDA, were also investigated. Support vector machine (SVM), k-nearest 

neighbors (KNN), and random forest were each used to construct new classifiers based on 

the combined dataset. Each algorithm was trained and tested according to LOOCV (Table 

4.3) and repeated stratified k-fold (Table 4.4) cross-validation methods. For the latter, 90% 

of the samples were used for the training set and the remaining 10% for the test set. As 

before, this was repeated 10 times so that each sample was in the testing set exactly once. 

The entire process was repeated 1000 times, shuffling the data each time to form 

independent trials. Again, each independent trial was stratified such that approximately 

equal proportions of malignant, benign, and healthy data were used for the training and 

testing sets for all repeats. In all cases, high validation accuracies were achieved. Despite 

being the least sophisticated algorithm, LDA performed the best in terms of overall 

accuracy, scoring around 95% for both LOOCV and k-fold. The other classifiers achieved 

accuracies of approximately 90%. This is perhaps due to the fact that SVM, KNN, and 

random forest are designed for larger datasets, in which case they may have been 
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overfitting the 58 ovarian responses and compromising the validation accuracies as a result. 

Remarkably, the number of false positives were consistently low in all cases with all 

algorithms successfully classifying 100% of all six early-stage cancer samples with the 

exception of random forest which misclassified one as benign. 

 

Table 4.3. Validation performances for Leave-One-Out Cross-Validation (LOOCV) for LDA, SVM, 

KNN, and random forest classification algorithms. LDA classified all samples with the highest 

accuracy (95%) with zero false positives. 

Classifier Overall Healthy Benign Malignant 
False 

Positives 

False 

Negatives 

LDA 55/58 (95%) 21/21 15/16 19/21 0 3 

SVM 52/58 (90%) 20/21 15/16 17/21 1 5 

KNN 53/58 (91%) 21/21 15/16 17/21 0 5 

Random 

Forest 
51/58 (88%) 19/21 14/16 18/21 3 4 

 

Table 4.4. Repeated stratified k-fold evaluation of the same four classification algorithms using 

10 bins and 1000 repeats. 

Classifier Overall Healthy Benign Malignant 
False 

Positives 

False 

Negatives 

LDA 54.5/58 (94%) 20.9/21.0 15.0/16.0 18.6/21.0 0.1 3.4 

SVM 52.1/58 (90%) 20.0/21.0 15.0/16.0 17.1/21.0 1.0 4.9 

KNN 52.8/58 (91%) 21.0/21.0 15.0/16.0 16.8/21.0 0.0 5.2 

Random 

Forest 
51.7/58 (89%) 19.5/21.0 14.0/16.0 18.2/21.0 2.4 3.8 

 

4.3.2 Classification Based on Receiver Operating Characteristics 

 

The classification performance of LDA was also verified with receiver operating 

characteristics (ROCs). Normally, ROCs are used to characterize the predictive accuracy 

of a two-class system. Because there are three classes for our database (i.e. healthy, benign, 
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and malignant), three ROC curves were generated using one class as the “positive” signal 

and the other two as the “negative” signal. ROC outputs were based on stratified k-fold 

cross-validation using training / validation splits of 90% / 10% (Figure 4.8a) and 75% / 

10% (Figure 4.8b). In each case, the validation accuracies for the healthy and malignant 

groups were nearly 100% while the benign group was validated with nearly 90% accuracy. 

Though the benign accuracy fell by 3% relative to the prior LDA-based k-fold results, the 

malignant accuracy rose by about 10%, marking a significant improvement for malignant 

classification. Furthermore, the nearly identical results reported by both sets of train / 

validation splits confirm the stability of the overall dataset. 

 

Figure 4.8. (a) ROC curves generated from stratified k-fold cross-validation using 10,000 repeats 

and a training / validation split ratio of 90% / 10%. (b) The procedure is repeated using a split 

ratio of 75% / 25%. The accuracies reported in both (a) and (b) are nearly identical. 

 

In conclusion, the successful differentiation of VOCs associated with healthy and 

cancerous individuals indicates the strong potential of DNA-NT sensor arrays as a 

screening method for ovarian cancer. Particularly promising is the consistently accurate 
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classification of early-stage samples which would place DNA-NTs above other clinical 

trials. Such results support the proposed advantage of early-stage cancer screening based 

on VOC biomarker detection over other techniques that lack the necessary sensitivity, 

possibly due to lack of signal. In the case of liquid biopsy, which attempts to collect 

circulating tumor DNA (ctDNA), there is necessarily a lack of ctDNA within early-stage 

cancer patients since the tumors at this point would be relatively small. On the other hand, 

it is plausible that even early-stage cancer can cause a response from the host’s immune 

system that is reflected in the VOC contents found within the patient’s bodily fluids or 

body odor. Another clinical advantage of DNA-NT screening is the apparently low rate of 

false positives boasted by the pattern-recognition algorithms. In a real clinical setting, 

avoiding a false positive diagnosis would mean preventing unnecessary treatments like 

chemotherapy that are often accompanied by troublesome side-effects. Overall, the results 

signify the promise for this technology in comparison to currently established techniques 

and motivate further development to manifest an effective screening technique for ovarian 

cancer screening. 

The performance of this technique could be enhanced by improving the various 

components of the e-nose system. To date, we have only explored chemical responses in 

the scope of ten distinct DNA sequences. By investigating new DNA oligomers, we could 

discover other sequences that offer orthogonal chemical sensing information that is not 

accessed by the original sequences. Unlike the current set of DNA oligomers, which were 

chosen randomly, new oligomers could be engineered to target particular VOC biomarkers 

for ovarian cancer discovered by GC/MS. Furthermore, testing new DNA oligomers allows 
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us to pick and choose the most successful sequences for this application. We intend to 

redesign our sensor array to increase the number of distinct sensor types from 10 to 100. 

This will increase the “chemical resolution” with which we probe the volatile headspaces 

of each plasma sample. It will also allow us to test a greater number of DNA oligomers at 

once in order to efficiently discover optimal sequences. We also aim to increase our sample 

size to better represent the chemical vapor signatures from various populations. This will 

enable us to utilize more specialized machine-learning methodologies to further improve 

the overall classification accuracy. 
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CHAPTER 5: Assessment of DNA-NT Performance for 

Remote Monitoring Applications 

 

This chapter presents potential uses of DNA-NT arrays in remote monitoring 

applications such as pollution detection and monitoring of agricultural produce. Various 

performance characteristics of DNA-NTs were investigated with a series of experiments 

designed to simulate certain complex environmental conditions related to such 

applications.  

 Section 5.1 motivates several desired qualities of ideal environmental chemical 

sensors, including low detection limits, detection of dilute targets in the presence of a 

complex background, fast chemical response readouts, and long lifetime. 

 Section 5.2 discusses experiments involving a freshly made DNA-NT array 

exposed to various concentrations of 2,6-dinitrotoluene (DNT). The array demonstrated 

sensitivity to parts-per-billion (ppb) concentrations of DNT. The experiment was repeated 

with exposure times reduced from two minutes to one minute. DNA-NT responses to the 

DNT were diminished but still visibly apparent after some signal processing, 

demonstrating high sensitivity and fast response times of our sensors. 

Section 5.3 discusses follow-up experiments involving the same array, this time 

exposed to DNT mixed with dimethyl methylphosphonate (DMMP) to simulate a complex 

background. DNA-NTs successfully distinguished 152 parts-per-million (ppm) DMMP 

from 152 ppm DMMP mixed with 149 ppb DNT, indicating sensitivity to a dilute target 

even in the presence of a 1000-times concentrated background. The fresh DNA-NT array 
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was replaced with another identical array that was prepared four months prior and the 

complex background experiment was repeated. Responses to DNT and DMMP mixtures 

were expectedly diminished, possibly due to partial denaturing of the sensing material. 

Nevertheless, the older array was also able to discriminate between mixtures with and 

without DNT. Thus, the DNA-NTs performed desirably in terms of sensitivity, selectivity, 

and longevity, making them promising candidates for a wide range of environmental 

applications. 

 

5.1 Introduction 

 

There is a strong desire for chemical vapor sensors that can operate in real-world 

settings with numerous potential uses in agricultural1-2, military,3-4 and environmental 

monitoring applications.5-10 Examples include assessment of ripeness or vitality of crops 

and produce, remote detection of mines in a warzone, and detection of pollutants in the 

atmosphere. In each case, chemical sensors must be able to identify target molecules in a 

complex chemical background. Furthermore, unlike laboratory settings where relative 

concentrations of VOC mixtures can be controlled precisely, the volatile backgrounds in 

real-world settings are constantly fluctuating which makes successful classification of 

VOCs more challenging. In practice, commercial sensors are often expected to collect vast 

amounts of data for extended periods of time, sometimes on the order of weeks or months. 

Because of this, sensors with low-power consumption and long lifetimes are preferred. Fast 
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measurement readouts are also coveted so as to capture as many VOC binding events as 

possible.  

 A series of experiments was initiated in collaboration with Rohinton Mehta’s group 

at X Development (Mountain View, CA) to assess the performance of our DNA-NTs in 

real-world environments. Five separate experiments were conducted within the laboratory 

using the e-nose system to simulate various environmental conditions. DNA-NT 

performance was evaluated based on the following desired characteristics: (1) detection of 

low concentrations of VOC analytes down to parts-per-billion levels; (2) detection of 

fractional changes of analyte concentration in the presence of a concentrated complex 

background; (3) fast responses to analytes; and (4) long-lasting devices that can remain 

functional for weeks or months.  

 

5.2 Parts-per-billion Detection of 2,6-Dinitrotoluene 

 

The first experiment sought to demonstrate parts-per-billion (ppb) sensitivity of the 

DNA-NTs. 2,6-Dinitrotoluene (DNT) was chosen as the target analyte due to its relatively 

low vapor pressure (5.67 ∙ 10−4 Torr).11 Roughly 10 mL of solid DNT powder was placed 

in a gas bubbler and allowed ample time to generate headspace volatiles. A fresh DNA-NT 

array with 80% device yield was prepared the day before the experiment. The array was 

initially exposed to two-minute pulses of DNT mixed with nitrogen at three different 

concentrations: 14.9 ppb, 149 ppb, and a fully saturated concentration of 746 ppb (Figure 

5.1a). Each pulse was followed by a two-minute refresh with pure nitrogen. Water vapor 
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was not included in the mixture to remove any doubt that the ensuing responses were 

caused by DNT alone. Exposure to DNT caused positive current shifts in DNA-NT 

currents, which was expected due to prior investigation.12 Responses to 149 ppb and 746 

ppb DNT were easily resolved. Responses to 14.9 ppb DNT were less profound and not 

easily resolved without additional data processing. Hence, all DNA-NT currents were 

baseline-fitted and then smoothed using 7-point boxcar averaging to improve signal-to-

noise. This revealed visibly apparent responses to 14.9 ppb DNT. 

 

 

Figure 5.1. (a) A day-old DNA-NT array was exposed to 2,6-dinitrotoluene (DNT) at various 

concentrations. Current responses are shown for a single Seq4 DNA-NT (blue). Responses are 
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clear for 149 ppb and 746 ppb concentrations of DNT, but less so for 14.9 ppb. A fitted current 

baseline (red) was subtracted from the raw current trace to reveal responses to 14.9 ppb DNT. 

(b) Average current responses for five DNA-NT sensor types (Seq1 through Seq5). The other five 

sensor types (Seq6 through Seq10) produced visually similar results and are not shown. 

Responses to 14.9 ppb DNT are small, yet visibly apparent. 149 ppb and 746 ppb responses are 

easily resolved. All averaged current responses were smoothed using 7-point boxcar averaging. 

 

The experiment was repeated with exposure and periods reduced from two minutes 

to one minute. DNA-NT currents were again baseline-fitted and smoothed using boxcar 

averaging. The response magnitudes were predictably reduced due to the lower exposure 

time. Nevertheless, Seq4 and Seq5 current responses were clearly resolved for all target 

concentrations while the other sensor groups also evidenced some detection capacity for 

14.9 ppb and 149 ppb DNT (Figure 5.2). These results demonstrate the desirably high 

sensitivity and fast response capabilities of DNA-NTs. 

 

Figure 5.2. DNT exposure times are reduced from two minutes to one minute. The responses are 

smaller as expected. Only Seq4 and Seq5 responses demonstrate apparent detection of 14.9 ppb 

and 149 ppb DNT. 
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5.3 Detection of DNT Target in Complex Background 

 

 The second experiment simulated detection of a target analyte in a complex 

background. The same day-old DNA-NT array was initially exposed to a mixture of DNT 

with dimethyl methylphosphonate (DMMP), a compound known to have a significantly 

larger vapor pressure (0.579 Torr) than DNT.13 The relative concentrations of DNT and 

DMMP were fixed at 149 ppb and 152 parts per million (ppm), respectively, thus creating 

a 1000-times diluted target-to-background mixture. After a one-minute exposure, the 

DNA-NTs were refreshed using 0% relatively humid (dry) nitrogen. This was followed by 

an exposure to 152 ppm DMMP devoid of DNT in the mixture. DMMP is known to cause 

negative shifts in DNA-NT currents,12 and since the DMMP was more concentrated, the 

responses to both types of pulses were expectedly negative. The DNA-NT responses were 

baseline-fitted and smoothed as before. This revealed that the current responses of the 

DNT-containing pulses were shifted slightly positive relative to responses to the DMMP 

background alone (Figure 5.3). Given that DNT exposures elicit positive responses, this 

result suggested that the presence of highly diluted DNT was indeed detected in the 1000-

times concentrated complex background. 
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Figure 5.3. DNA-NT responses to the 152 ppm DMMP + 149 ppb DNT mixture are superimposed 

with responses to only DMMP for comparison. All responses were smoothed using 7-point 

boxcar averaging. Solid lines represent the mixture and dashed lines are for the suppressed 

mixture. A slight relative positive shift in response is observed for the mixture containing DNT, 

suggesting that the DNA-NTs detected the lack of DNT molecules which are known to evoke 

positive current responses. 

 

 The DNT detection in complex background experiment was repeated using a four-

month-old DNA-NT array in place of the fresh array. The old array had not been used in 

any prior experiments and was merely kept in a plastic petri dish stored in air after it was 

fabricated. Up to this point, we had never observed responses of DNA-NT arrays more 

than a few weeks old and thus, it was not known whether the months-old array would 

reproduce the results from the previous experiment or if denaturing of the DNA had 

compromised its sensing capabilities. Despite its age, the array boasted a device yield of 

78% which was near that of the fresh array. As before, a one-minute exposure to 149 ppb 
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DNT with 152 ppm DMMP background was issued, followed by a one-minute exposure 

to 0 ppb DNT and 152 DMMP. The DNA-NTs were again refreshed with dry nitrogen in 

between each exposure. This cycle of measurements was repeated two more times and the 

average responses to each mixture were compared (Figure 5.4). The overall response 

magnitudes for the older array were diminished by roughly a factor of ten, suggesting that 

some denaturing of the sensing material had occurred. Nevertheless, a relative positive shift 

was observed for responses to mixtures containing DNT, thus reproducing the results of 

the fresh array. This result suggests a long-term shelf life of DNA-NTs projected on the 

order of months. 

 

 

Figure 5.4. The complex mixtures experiment was repeated using an DNA-NT array stored in air 

for four months. All responses were smoothed using 7-point boxcar averaging. The response 

profiles for 149 ppb DNT (solid line) and 0 ppb DNT (dashed line) represent averages of the three 

responses to each mixture. The overall response magnitudes for the older array were diminished 

by roughly a factor of ten, suggesting that some denaturing of the sensing material had occurred. 

However, the same relative positive shift was observed for responses to mixtures containing 
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DNT, confirming that the months-old DNA-NT array was able to reproduce the results of the fresh 

array. 

 

For certain applications, it may not be feasible to refresh the DNA-NTs with 

nitrogen after every exposure. To simulate the constant presence of a complex background, 

the latter experiment was repeated once more using a 152 ppm DMMP mixture as the 

refresh instead of dry nitrogen. The months-old array was exposed to alternating mixtures 

of 149 ppb DNT in DMMP background and plain DMMP background (Figure 5.5). Slight 

negative current shifts were observed in the absence of DNT in the mixture, validating the 

trend observed in the previous experiments and thus confirming the capability of DNA-

NTs to detect a dilute target despite the lack of a clean refresh. 

 

Figure 5.5. DNA-NT responses to pulses of 149 ppb DNT in 152 ppm DMMP background refreshed 

with 152 ppm DMMP instead of pure nitrogen. All responses were smoothed using 7-point boxcar 

averaging. The first pulse overresponded significantly, possibly due to unregulated buildup of 
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the DMMP headspace, and was therefore ignored. For the remaining responses, small yet 

apparent negative current shifts are observed in the absence of DNT in the mixture. 

 

In conclusion, our DNA-NTs demonstrated promising performance in terms of 

sensitivity, fast response, long lifetime, and ability to detect a dilute target in a highly 

concentrated complex background. Though X Development did not disclose their 

particular interests in this technology, it is conceivable that DNA-NT arrays can be used 

for long-term monitoring of crops or mounted on robotic devices programmed to roam 

warzones or other potentially hazardous environments in search of explosives or chemical 

weapons. Sensor performance can be further optimized according the specific application 

by tuning DNA-NT affinities towards the desired targets via specially engineered DNA 

sequences. Further performance enhancements may be realized by using more 

sophisticated baseline-fitting algorithms and noise reduction techniques. 
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CHAPTER 6: DNA-NT Screening for SARS-CoV-2 

Based on Human Sweat 

 

In this chapter, we discuss the deadly implications of the new coronavirus SARS-

CoV-2 that spread rapidly across the world and the need for efficient and accurate screening 

of large populations for the COVID-19 disease. Early identification of infection would 

allow medical experts and government officials to take effective preventative measures, 

such as enforcing strict quarantine regulations for densely populated urban centers that are 

at high risk of an outbreak. 

Section 6.1 introduces a pilot study initiated by our collaborator Dr. Cynthia Otto 

involving human sweat samples provided by individuals who had tested positive for 

COVID-19 (CoV+) as well as those who had been confirmed as COVID-negative (CoV-). 

The aim was to train scent detection dogs to discriminate between VOCs associated with 

the CoV+ and CoV- groups. All samples were shared with the Johnson Group for a 

complementary investigation using DNA-NT arrays. 

Section 6.2 describes experiments involving DNA-NT measurements of headspace 

VOCs from 30 sweat samples: fifteen from COVID-positive subjects and fifteen from 

COVID-negative individuals. The ensuing DNA-NT responses were processed using linear 

discriminant analysis (LDA) which revealed strong discrimination between the CoV+ and 

CoV- groups. An LDA-based binary classifier was constructed using estimated normal 

distributions associated with the two groups. The classifier demonstrated degrees of 

sensitivity and specificity which are comparable to what is currently reported for reverse 
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transcription polymerase chain reaction (RT-PCR), one of the established screening 

techniques used for COVID-19 today. A receiver operating characteristic (ROC) curve was 

also generated using the CoV+ and CoV- distributions from which a 99% classification 

accuracy was estimated for the LDA binary classifier. These compelling results suggest 

significant promise for reliable screening based on DNA-NT sensor arrays and motivate 

further investigation. 

 

6.1 Introduction 

 

  A new strain of coronavirus, severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), emerged in Wuhan, China during the winter of 2019 and spread rapidly 

around the world.1 Those infected with the virus develop coronavirus disease 2019 

(COVID-19) with potentially severe or deadly outcomes.2 This is the third coronavirus 

outbreak within the past twenty years and is by far the most infectious to humans with over 

58 million reported cases and nearly 1.4 million deaths worldwide as of November 15, 

2020.1-2 The United States leads the world in both figures with over 12 million cases and 

250,000 deaths.1 Though there has been progress towards a vaccination for preventing the 

illness, none have yet been approved by the U. S. Food and Drug Administration.3 

Furthermore, developing accurate screening tests is challenging due to the novelty of 

COVID-19. Current detection approaches utilize reverse transcription polymerase chain 

reaction (RT-PCR) as well as antigen and antibody tests.4 Reports of sensitivity for RT-

PCR tests are largely uncertain, ranging from about 70% to 98%, while specificities are 
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estimated at roughly 95%.5 The accuracies of antigen and antibody tests are even less 

certain as each suffers from high false negative rates.4 A sensing technology that can permit 

effective and efficient screening of large populations would help reduce the rate at which 

COVID-19 spreads, particularly in airports, hospitals, and other potentially densely 

populated areas. 

A pilot study was initiated by our collaborator Dr. Cynthia Otto at the Penn Vet 

Working Dog Center, University of Pennsylvania, with the aim of training scent detection 

dogs and using DNA-NT arrays to discriminate between human sweat samples from 

COVID-19 positive (CoV+) subjects and COVID-19 negative (CoV-) individuals. Dr. Otto 

established an online system through which volunteers could apply to donate sweat 

samples through the mail. Only volunteers who had been tested for COVID-19 were 

eligible for selection. Each volunteer was provided a brand new 100% cotton T-shirt and 

was given instructions to wear it to sleep for one night. The T-shirt would absorb sweat 

generated from the volunteer throughout the night. Each shirt was isolated inside a Ziploc 

bag for 24 hours before being returned to Dr. Otto in order to extinguish any lingering 

active viruses inhabiting the samples.6 All shirts were transported and handled in a BSL2 

biosafety hood to satisfy University of Pennsylvania regulations for COVID-19 research. 

Due to their high sweat content, portions from the sleeves, back, and chest areas were cut 

from each shirt and placed in individual glass jars for VOC preservation. Samples were 

split evenly and shared between the Otto and Johnson research groups. 
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6.2 DNA-NT Measurements of Human Sweat Samples 

 

DNA-NT sensor arrays functionalized with ten DNA oligomers listed in Table 3.1 

were used to measure headspace VOCs from fifteen COVID positive (CoV+) and fifteen 

COVID negative (CoV-) T-shirt samples. Strips of cloth were cut from the T-shirt sleeves 

using scissors cleaned with isopropanol and loaded into separate 25 mL round-bottom 

flasks. The samples were heated to 50 °C and were allowed 15 minutes to generate 

headspace VOCs. These were subsequently delivered to a ten-channel DNA-NT array for 

two minutes at a time using 67% RH nitrogen. Small yet distinguishable responses to the 

sample VOCs were observed (Figure 6.1). 

 

Figure 6.1. Average responses to eight Seq9 DNA-NT sensors exposed to headspace VOCs from 

two CoV+ and one CoV- T-shirt sleeve samples. Two cycles of measurements are shown to 

demonstrate signal reproducibility. The responses are small compared to those associated with 
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blood plasma, which are typically on the order of 10%. Nevertheless, the signal-to-noise ratios 

of the response averages are comparable to those observed for plasma. 

 

The ten-channel DNA-NT response data was processed using linear discriminant 

analysis (LDA). Response projections onto the first discriminant revealed strong separation 

between the CoV+ and CoV- groups (Figure 6.2). Given the lack of overlap between the 

clusters, a classification boundary line between them could easily be imagined that would 

result in perfect binary classification of all data. For a more informed estimation of the 

classifier’s diagnostic accuracy, Gaussian distributions were approximated for each cluster 

based on their respective means and standard deviations in order to simulate overlap 

between the groups. The false positive (false negative) rate was calculated by dividing the 

area of the overlapped region of the CoV+ (CoV-) distribution by the area of the non-

overlapped region. 

 

Figure 6.2. LDA projections of DNA-NT responses to fifteen CoV+ and fifteen CoV- T-shirt 

samples are represented as colored triangles along the first linear discriminant (LDA1) with 
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associated Gaussian distributions based on the computed means and standard deviations of 

each cluster. The dashed line through the intersection between the curves indicates a binary 

classification boundary which defines the true positive, false positive, true negative, and false 

negative regions (labeled as TP, FP, TN, and FN, respectively). 

 

The sensitivity and specificity for the binary classifier were also estimated based 

on the Gaussian distributions from Figure 6.2. Sensitivity measures the fraction of CoV+ 

cases that were correctly identified as positive while specificity measures the fraction of 

CoV- cases that were correctly classified as negative (6.2.1): 

 

where TPR, TNR, FPR, and FNR are the true positive, true negative, false positive, and 

false negative rates, respectively. The calculated DNA-NT sensitivity was 93.5% and the 

selectivity was 95.8% which is comparable to the most optimistic estimates for RT-PCR 

tests. The diagnostic accuracy of the binary classifier based on the two Gaussian 

distributions was also estimated using a receiver operating characteristic (ROC) curve 

(Figure 6.3). The area under the curve indicated a 99% probability of correctly 

distinguishing CoV+ from CoV- data. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃𝑅

𝑇𝑃𝑅 + 𝐹𝑁𝑅
 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁𝑅

𝑇𝑁𝑅 + 𝐹𝑃𝑅
 

(6.2.1a) 
 
 
 
 

 
 
 
 
 
 

 
 

(6.2.1b) 
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Figure 6.3. Receiver operating characteristic for the estimated normal distributions from Figure 

6.2. The area under the curve indicates a 99% probability of correctly distinguishing CoV+ and 

CoV- data. 

 

In conclusion, DNA-NT sensors demonstrated a strong capacity to differentiate 

between headspace VOCs from human CoV+ sweat and CoV- sweat in this initial proof-

of-concept investigation. The success of the DNA-NT sensors is particularly impressive in 

this case because they were immediately adaptable to discriminating between VOCs 

associated with such a new disease, alluding to the flexibility of the technology. 

Advantages of this e-nose approach include speed of development, on-site prompt testing 

potential, guaranteed safety to both the patient and the caretaker, and relatively low cost of 

deployment. Furthermore, because only human sweat is needed as a specimen, this 

approach is non-intrusive and compatible with other testing approaches. 
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These compelling results motivate further development of an e-nose approach to 

screening populations for the COVID-19 disease. In order to build further acclaim for this 

screening method, we plan to increase our sample database up to 400 CoV- and 200 CoV+ 

individuals. As is discussed in previous chapters, we also have the opportunity to improve 

our selection of DNA oligomers to further increase the discrimination power of the DNA-

NTs, perhaps by targeting specific characteristics of biomarker molecules discovered by 

GC/MS that are associated with COVID-19. Finally, the success of LDA-based data 

processing suggests the possibility of using more sophisticated machine learning 

algorithms that may improve the performance of this e-nose based diagnostic. 

 

References 
 

1. Coronavirus disease (COVID-2019) situation reports. 2020. (Accessed 22nd of 

November, 2020, at https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/situation-reports/.). 

2. Yang, Y.; Peng, F.; Wang, R.; Yange, M.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; 

Chang, C., The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel 

coronavirus epidemic in China. J Autoimmun 2020, 109, 102434. 

3. U. S. Food & Drug Administration COVID-19 Vaccines. 2020. (Accessed 25th of 

November, 2020, at https://www.fda.gov/emergency-preparedness-and-

response/coronavirus-disease-2019-covid-19/covid-19-vaccines). 

4. Which test is best for COVID-19? Harvard Health Blog. 2020. (Accessed 25th of 

November, 2020, at https://www.fda.gov/emergency-preparedness-and-

response/coronavirus-disease-2019-covid-19/covid-19-vaccines). 

5. Watson, J.; Whiting, P. F.; Brush, J. E., Interpreting a covid-19 test result. BMJ 

2020, 369, m1808. 

6. Harbourt, D. E.; Haddow, A. D.; Piper, A. E.; Bloomfield, H.; Kearney, B. J.; 

Fetterer, D.; Gibson, K.; Minogue, T., Modeling the stability of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) on skin, currency, and clothing. PLoS Negl Trop 

Dis 2020, 14 (11), e0008831. 
 

  

http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.)
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.)
http://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines)
http://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines)
http://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines)
http://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines)


83 

 

Chapter 7: Summary, Conclusions and Future Work 
 

 

In this work, progress was made in developing an e-nose system based on DNA-

NT arrays capable of screening individuals for ovarian cancer and COVID-19 using human 

blood plasma and sweat, respectively. In addition, DNA-NTs were shown to have desirable 

attributes in terms of parts-per-billion (ppb) limits of detection, the ability to detect low 

concentrations of target VOCs in the presence of a highly concentrated background, fast 

responses on the order of seconds, and lifetimes on the order of months. The successes 

enjoyed by the DNA-NTs suggest significant promise for their utility in disease diagnostics 

as well as various environmental monitoring applications such as pollution detection. 

These vapor sensors possess exquisite sensitivity that has only recently become 

available due to the technological breakthroughs and advancements in the fields of 

nanotechnology and bioengineering and rise up to the challenge posed by early-stage 

disease detection where very small concentration of one or several compounds is present. 

Furthermore, despite the fact that the identities of relevant VOC compounds are often not 

completely known, DNA-NT arrays have demonstrated a desirable ability to differentiate 

between informative vapor species using the same principles that govern the discrimination 

capabilities of mammalian olfaction systems found in nature.  

In addition, DNA-NTs enjoy numerous attributes that make them ideal candidates 

for hospital use or remote monitoring of various environments. Because they are fast-

responding, cost-efficient, and easy to use by non-technical personnel, e-nose systems 

based on DNA-NTs are ideal for on-site prompt testing. These characteristics are clear 
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advantages over expensive and highly complex analytical techniques such as gas 

chromatography / mass spectrometry (GC/MS) which are cumbersome and suffer from 

slow readouts. Given their function of probing compounds in the vapor phase, DNA-NTs 

are also generally non-intrusive as the possibility of direct contamination of the sensor (or 

contamination of the sample from the sensor) is reduced. 

The fabrication of vapor sensor arrays is simple and can also be customized and 

tailored towards specific applications by choosing the DNA oligomers that work best for 

detecting certain molecules. Thus, as researchers develop a more complete understanding 

of the volatile metabolites in bodily tissues or fluids that indicate the presence of particular 

diseases of interest, the DNA-NT arrays can be evolved for improved screening 

performance. 

 In medical practice, clinical screening always yields false positives and negatives 

due to biological variations between individuals and countless other sources. Both forms 

of experimental error are of clinical concern. False negatives occur when a screening fails 

to identify the presence of a condition. This is especially problematic for diseases like 

ovarian cancer that can only be treated reliably in the early stages. A false negative in this 

case would often be fatal as the cancer would be able to metastasize unbeknownst to 

caretakers and patients alike until it is too late to treat the patient. With such high stakes, 

false negatives reduce the confidence of the medical community that the screening 

technology is worthwhile. False positives have dramatic consequences as well. False 

positives will put healthy individuals through unnecessary follow-up examinations such as 

biopsies. These tests are often harmful to the patients that receive them, and the overall 
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process can cause a great deal of needless anxiety. Moreover, biopsies are arduous and 

expensive procedures, and too many false positives will put strain on hospitals that have 

limited resources in terms of personnel, equipment, and funds. 

 The DNA-NT arrays have already demonstrated promising performance in terms 

of false positives and negatives. However, this technology has yet to see extensive testing 

in a real hospital setting. To curtail some of the worry surrounding false predictions, DNA-

NTs can be combined with other techniques that could provide orthogonal information to 

increase the probability of identifying important features in samples that would ultimately 

lead to improved classification performance. This is easily imaginable, as vapor-phase 

chemical sensing is unlikely to interfere with other sensing modalities in terms of 

contamination.  
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APPENDIX 
 

Appendix A: Basic Mathematical Foundations of Machine Learning 

Algorithms 

 

Appendix A.1: Principal Component Analysis 

The general procedure of PCA is to represent a data set with a basis that will best 

distinguish significant parameter correlations from signal noise. We start by imagining a 

data set acquired from a 10-channel NTFET array exposed to VOCs from n different trials. 

We define 𝑿 = {𝑥 1, 𝑥 2, … 𝑥 10} as the set of ten-dimensional NTFET outputs where the 

column vector 𝑥 1 represents the Seq1 responses, 𝑥 2 represents the Seq2 responses, and so 

on. Important trends are easily revealed when the signal-to-noise ratios (SNRs) of the 

responses are high, and much less so when the SNRs are low. The response signals are 

associated with the variances of 𝑥 1, 𝑥 2, … 𝑥 10. Meanwhile, NTFET responses are also 

strongly correlated because they are highly cross-sensitive. This is an indication that much 

of the information in the output data is redundant. Thus, we consider the covariances 

between the 𝑥 𝑖 parameters represented in the following covariance matrix: 

 

𝑆𝑋 =
1

𝑛 − 1
𝑿𝑿T = [

𝑣𝑎𝑟(𝑥1)   𝑐𝑜𝑣(𝑥1, 𝑥2)
𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2)

⋯
𝑐𝑜𝑣(𝑥1, 𝑥10)
𝑐𝑜𝑣(𝑥2, 𝑥10)

⋮ ⋱ ⋮
  𝑐𝑜𝑣(𝑥10, 𝑥1) 𝑐𝑜𝑣(𝑥10, 𝑥2) ⋯ 𝑣𝑎𝑟(𝑥10)

] 
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We now want to represent 𝑿 in a basis more suitable to revealing only the most 

important information with as few parameters as necessary. To do this, we apply a linear 

transformation on 𝑿: 

𝑷𝑿 = 𝒀 

where 𝑷 is an orthonormal matrix. This transformation essentially rotates the 

representation of 𝑿 to a new set of axes encoded in the rows of 𝑷. The best choice of 𝑷 

associates only a few principal components with high measures of SNR – that is to say, 

maximizing the response signals, measured by the variances, and minimizing redundancy, 

measured by covariances. This is achieved if the covariance matrix 𝑆𝑌 of 𝒀 = 𝑷𝑿 takes a 

diagonal form: 

𝑆𝑌 =
1

𝑛 − 1
𝒀𝒀T =

1

𝑛 − 1
(𝑷𝑿)(𝑷𝑿)T =

1

𝑛 − 1
𝑷(𝑿𝑿𝑻)𝑷𝑻 

 

Since 𝑿𝑿𝑻 is a symmetric matrix, it can be diagonalized by 𝑿𝑿𝑻 = 𝑽𝑫𝑽𝑇. Here, the 

columns of 𝑽 are the eigenvectors of 𝑿𝑿𝑻 and 𝑫 is a diagonal matrix whose elements are 

the eigenvalues of 𝑿𝑿𝑻. Setting 𝑷 = 𝑽𝑇 simplifies our expression: 

𝑆𝑌 =
1

𝑛 − 1
𝑷(𝑽𝑫𝑽𝑇)𝑷𝑻 =

1

𝑛 − 1
𝑷(𝑷𝑻𝑫𝑷)𝑷𝑻 =

1

𝑛 − 1
𝑫 

In this way, the procedure for PCA is reduced to solving a generalized eigenvalue for 𝑿𝑿𝑻. 

 

Appendix A.2: Linear Discriminant Analysis 

We imagine a data set where each data point, 𝑣𝑖, represents ten response averages 

(Seq1, Seq2, and so on). We define the basis 𝑽 ∈ ℝ such that each 10-dimensional data 
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point {𝑣1, 𝑣2, 𝑣3, 𝑣4, … 𝑣𝑁} ∈ 𝑽 where N is the total number of data points. Our mission is 

to find a transformation that maps 𝑽 → 𝒀 where 𝒀 is the basis with maximized class 

separation. For simplicity, we assume there are only two classes with N1 data points in 

Class 1 and N2 data points in Class 2. We relate 𝑦 to 𝑣 by the transformation 𝑦 = 𝑤𝑇𝑣 

where 𝑣 =

[
 
 
 
 
𝑣1

𝑣2

...
𝑣𝑚]

 
 
 
 

 and 𝑤 =

[
 
 
 
 
𝑤1

𝑤2

...
𝑤𝑚]

 
 
 
 

. To maximize the separation between class distributions, 

we will need two properties: (1) the relative positions of each distribution in space and (2) 

the degree of spread within each distribution. 

Starting with first property, let 𝜇𝑖 be the centroid of distribution of the ith class 

represented in the 𝑽 basis: 

𝜇𝑖 =
1

𝑁𝑖
∑𝑣𝑗

𝑁𝑖

𝑗=1

 

Transforming this to the 𝒀 basis, we obtain: 

𝜇𝑖 =  
1

𝑁𝑖
∑𝑦𝑗

𝑁𝑖

𝑗=1

=
1

𝑁𝑖
∑𝑤𝑇𝑣𝑗

𝑁𝑖

𝑗=1

=  𝑤𝑇 ∙
1

𝑁𝑖
∑𝑣𝑗 =

𝑁𝑖

𝑗=1

 𝑤𝑇𝜇𝑖 

We now define a measure of the “offset” between distributions: 

(𝜇1 − 𝜇2)
2 = (𝑤𝑇𝜇1 − 𝑤𝑇𝜇2)

2 = 𝑤𝑇(𝜇1 − 𝜇2)(𝜇1 − 𝜇2)
𝑇𝑤 = 𝑤𝑇𝑺𝑩𝑤 = 𝑺̃𝑩 

Here, 𝑺𝑩 is the between-class scatter matrix for samples in the 𝑽 space while 𝑺̃𝑩 is same 

matrix represented in the 𝒀 basis. 

 Now, for the second property, we define the following metric of within-class 

scatter: 
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𝑠𝑖
2 = ∑(𝑥𝑗 − 𝜇𝑗)(𝑥𝑗 − 𝜇𝑗)

𝑇

𝑁𝑖

𝑗=1

 

or alternatively, 

𝑠𝑖̃
2 = ∑(𝑦𝑗 − 𝜇𝑗)(𝑦𝑗 − 𝜇𝑗)

𝑇

𝑁𝑖

𝑗=1

 

We can define a within-class scatter matrix 𝑺𝒊 for each class as the following: 

𝑠𝑖̃
2 = ∑(𝑦𝑗 − 𝜇𝑗)(𝑦𝑗 − 𝜇𝑗)

𝑇

𝑁𝑖

𝑗=1

= ∑𝑤𝑇(𝑥𝑗 − 𝜇𝑗)(𝑥𝑗 − 𝜇𝑗)
𝑇
𝑤

𝑁𝑖

𝑗=1

= 𝑤𝑇𝑺𝒊𝑤 

Then the total within-class scatter for the entire data set is defined as the sum of these terms 

for each class: 

𝑠1̃
2 + 𝑠2̃

2 = 𝑤𝑇(𝑺𝟏 + 𝑺𝟐)𝑤 = 𝑤𝑇𝑺𝑾𝑤 = 𝑺̃𝑾 

where 𝑺𝑾 and 𝑺̃𝑾 are the complete within-class scatter matrices for the entire data set in 

bases 𝑽 and 𝒀, respectively. 

The transformation 𝑦 = 𝑤𝑇𝑣 the between-class separation relative to the overall within-

class scatter is accomplished by finding a 𝑤 that maximizes the following: 

𝐽(𝑤) =
|𝜇̃1 − 𝜇2|

2

𝑠1̃
2 + 𝑠2̃

2 =
𝑤𝑇𝑺𝑩𝑤

𝑤𝑇𝑺𝑾𝑤
 

Solving for 𝑤, we differentiate both sides and set the result equal to zero: 

𝑑

𝑑𝑤
𝐽(𝑤) =

𝑑

𝑑𝑤
(
𝑤𝑇𝑺𝑩𝑤

𝑤𝑇𝑺𝑾𝑤
) = 0 

With some algebra manipulation we obtain the following: 

𝑺𝑾
−𝟏𝑺𝑩𝑤 − (

𝑤𝑇𝑺𝑩𝑤

𝑤𝑇𝑺𝑾𝑤
)𝑤 = 𝑺𝑾

−𝟏𝑺𝑩𝑤 − 𝐽(𝑤)𝑤 = 0 
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We are now faced with a generalized eigenvalue problem where 𝑺𝑾
−𝟏𝑺𝑩 = 𝜆𝑤. Here, the 

eigenvalue 𝜆 = 𝐽(𝑤). We can finally solve for 𝑤: 

 

This is the general solution for the optimized basis for maximizing the separation between 

two classes. The result can be generalized to any number of classes with some more effort. 
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Appendix B: Fabrication Procedures for DNA-Functionalized NTFET 

Arrays 

 

Appendix B.1: Photolithography Process 
 

Deposit 15nm of Al2O3 on standard Si/SiO2 wafer. Then follow the steps below: 

 

1.) Pre-bake 

Dehydration bake: ~150°C, ~ 2mins. 

 

2.) Primer 

Spin PMGI: 4000 rpm, 45s, 500 rpm/s 

Bake at 210°C for 5 minutes 

 

3.) Photoresist 

Spin S1813: 5000 rpm, 45s, 500 rpm/s 

Bake at 100°C for 2 minutes 

 

4.) UV Light Exposure 

Use a hard contact procedure with manual alignment. Exposure dose is 120 mJ/cm2. Use 

the mask-aligner camera to make sure the common source electrode for column 10 is not 

clipped by the edge of the silicon wafer. 
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5.) Development 

Immerse substrate in MF-319 developer for around 30-60s. Use a pipette to agitate and 

disperse dissolving resist away from surface. The features of the pattern should gradually 

appear and change color due to the changing thickness of the resist. Once the surface is a 

uniform dark purple, remove the wafer from the developer and immediately rinse with 

water for a few minutes. Blow-dry with a nitrogen gun when the wafer is sufficiently 

cleaned. 

  

6.) Evaporation 

Normally evaporate 5 nm Cr / 40 nm Au 

  

7.) Lift-off 

Use R1165 remover to lift-off leftover resist. Leave the wafer soaking overnight and then 

heat the remover to 60°C. Use a pipette to agitate the solvent so that every last bit of 

residual photoresist is dissolved. Sometimes sonication is needed to resolve finer features. 

When the desired pattern is fully resolved, transfer the wafer to an acetone bath for 10 min 

and then to an isopropanol bath for 10 min. After blow-drying, bake the wafer at 250°C for 

1 hour. 
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Appendix B.2: CNT Deposition 

 

1. Acquire one large petri dish (bottom and cover), one small petri dish (cover only), 

and one glass slide. Place glass slide and small cover in the large bottom. 

2. If sonication is needed, pipette desired volume of CNT solution in a 1.5 mL aliquot 

vial and place vial in a foam “floater.” Place in the small sonicator and sonicate for 

desired duration. 

3. Choose array(s) for CNT deposition and blow off with N2 gas. Place chips on the 

glass slide. 

4. Start boiling DI water. 

5. Drop-cast roughly 130 – 140 µL of CNT solution for each array.  

6. Pour boiling water into small cover. Cover everything with the large cover and set a 

timer for 30 min. 

7. When the timer goes off, remove the top cover and the water container. Pour 

isopropanol directly into the large bottom so that the chips are fully immersed in 

solvent. 

8. Set a timer for 15 minutes. Agitate the IPA bath every 3 minutes. 

9. Transfer to a water bath. Be sure to prevent the chips from drying out during the 

transfer by spraying each chip with water from a squirt bottle while it is exposed to 

the air. 

10. Set timer for 5 minutes. 

11. Repeat steps 9 and 10 two more times. 

12. Blow each chip dry with N2 gas. 
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13. Set each chip on a hot plate set at 165ºC. Set a timer for 1 hour. 

14. Remove chips from hot plate. Once cool, apply silver paint to the underside of each 

chip. 
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Appendix B.3: DNA Deposition 
 

1. Acquire materials- 1 large petri dish (bottom and cover), 1 small petri dish (cover 

only), and 1 glass slide. Place glass slide and small cover in the large bottom. 

2. Thaw aliquots of desired DNA sequences (usually I use Seq1 through Seq10) 

3. Choose array for DNA deposition and blow off with N2 gas. Place the chip on the glass 

slide. 

4. Start boiling DI water. 

5. Pipette roughly 1.8 – 1.9 µL of DNA onto the regions shown below: 

 

6. Fill the small petri dish with hot water and close the cover of humidity bath. 

7. Set a timer for 30 minutes. 

8. Remove the chip from the humidity bath. Use the nitrogen gun to carefully blow the 

five leftmost droplets off the left side of the chip one at a time (corresponding to Seq1 – 

Seq5 in the diagram). Then blow off the remaining five droplets simultaneously.  

Seq1 

Seq2 

Seq3 

Seq4 

Seq5 

Seq6 

Seq7 

Seq8 

Seq9 

Seq10 
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Appendix C: Tabulated Ovarian Plasma Responses 

 

Current responses to VOCs from the 58 individual plasma samples. Each response 

value represents the percent variation from baseline, ΔI/I0, for all sensors of a given sensor 

type. The sample set consists of 21 healthy samples, 16 benign samples, and 21 malignant 

samples, of which five were from women with Stage I/II ovarian cancer. Variations in 

average responses within each class is believed to be caused by biological variations 

between individuals. 

 

Sample # 

 

Seq1 

 

Seq2 

 

Seq3 

 

Seq4 

 

Seq5 

 

Seq6 

 

Seq7 

 

Seq8 

 

Seq9 

 

Seq10 

 

Healthy 
5 -3.84 -0.60 -2.24 -1.79 -2.95 -2.17 -2.26 -4.31 -3.37 -4.45 

3 -4.74 -1.71 -3.44 -3.21 -7.06 -3.39 -2.55 -6.60 -4.65 -5.13 

13 -3.26 -0.90 -2.00 -1.82 -3.71 -2.03 -1.92 -4.06 -2.98 -3.61 

15 -3.04 -0.95 -1.91 -1.90 -4.42 -1.45 -2.36 -4.45 -2.99 -3.19 

7 -3.38 -0.72 -2.12 -1.84 -3.82 -2.03 -2.18 -4.91 -2.80 -4.05 

14 -1.97 -1.12 -0.81 -0.88 -1.85 -0.85 -0.81 -1.84 -1.10 -1.29 

9 -1.87 -1.26 -0.77 -0.79 -1.36 -0.75 -0.84 -1.84 -0.94 -1.24 

18 -1.65 -1.11 -0.83 -0.81 -1.66 -0.67 -0.95 -1.89 -1.13 -1.32 

17 -1.72 -1.08 -0.69 -0.75 -1.24 -0.58 -0.85 -1.66 -1.04 -1.20 

B10 -2.91 -1.17 -1.79 -1.33 -3.68 -1.84 -1.57 -3.47 -2.00 -2.68 

B16 -3.08 -1.10 -1.76 -1.65 -3.01 -1.57 -1.54 -4.09 -2.81 -2.63 

D21 -2.71 -0.96 -1.40 -1.50 -3.67 -1.47 -1.79 -3.22 -2.57 -2.52 

C7 -2.75 -1.03 -1.61 -1.49 -3.38 -1.60 -1.93 -3.69 -2.21 -2.99 

C24 -2.97 -1.07 -1.28 -1.24 -3.51 -1.25 -1.55 -2.88 -2.21 -3.06 

C30 -3.12 -1.04 -1.57 -1.57 -2.56 -1.63 -1.65 -3.30 -2.45 -2.72 

D8 -3.39 -1.03 -1.58 -1.43 -3.18 -1.62 -1.64 -3.28 -2.59 -3.12 

D26 -3.03 -1.02 -1.69 -1.73 -3.00 -1.25 -1.69 -3.62 -2.94 -2.47 

D31 -3.13 -1.06 -1.81 -1.67 -3.64 -1.49 -1.68 -3.79 -2.45 -3.16 

D36 -2.69 -0.91 -1.62 -1.48 -3.47 -1.45 -1.36 -3.75 -2.21 -2.50 

D56 -2.60 -0.98 -1.71 -1.45 -2.99 -1.31 -1.66 -3.95 -2.36 -2.34 

D59 -3.25 -1.20 -1.93 -1.61 -3.16 -1.67 -1.56 -3.79 -2.68 -3.22 

Benign 
54 -2.18 -1.57 -1.33 -1.09 -1.46 -1.24 -0.96 -2.72 -1.95 -2.00 

53 -2.27 -1.80 -1.38 -1.18 -1.24 -1.27 -1.19 -2.70 -2.01 -2.21 

58 -2.33 -1.91 -1.38 -1.27 -2.14 -1.32 -1.17 -2.94 -2.08 -2.06 

64 -1.32 -1.21 -0.57 -0.50 -0.96 -0.42 -0.94 -1.09 -0.98 -1.02 
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56 -1.97 -1.64 -1.16 -0.96 -1.07 -0.93 -1.16 -2.36 -1.56 -1.79 

H5837 -2.19 -1.69 -1.12 -0.98 -1.30 -1.05 -1.15 -2.14 -1.61 -1.68 

H6032-8 -2.06 -1.13 -1.18 -1.05 -1.44 -0.85 -1.13 -2.47 -1.63 -1.86 

H6001-

11 -2.12 -1.59 -1.14 -1.06 -1.48 -0.71 -1.01 -2.37 -1.62 -1.67 

H6130-

10 -1.89 -1.65 -1.21 -1.05 -1.49 -1.01 -1.08 -2.07 -1.71 -1.84 

H6153-6 -1.86 -1.63 -1.11 -0.98 -1.32 -1.15 -1.07 -2.45 -1.71 -1.84 

H5869 -2.05 -1.65 -1.22 -0.97 -1.39 -0.99 -1.01 -2.40 -1.70 -1.71 

H6019-4 -2.08 -1.71 -1.13 -0.89 -1.37 -0.83 -1.14 -2.23 -1.63 -1.89 

H6044-5 -2.12 -1.48 -1.11 -1.08 -1.48 -1.05 -1.14 -2.33 -1.76 -1.89 

H6057-7 -1.96 -1.64 -1.17 -0.98 -1.49 -0.84 -0.93 -2.28 -1.53 -1.95 

H6145-2 -1.94 -1.47 -1.24 -1.13 -1.32 -0.98 -1.11 -2.43 -1.85 -1.63 

H6151-6 -2.17 -1.69 -1.14 -0.99 -1.19 -1.12 -1.12 -2.39 -1.75 -1.69 

Malignant 
49 -2.25 -1.54 -3.15 -3.33 -2.26 -2.62 -1.10 -4.61 -5.44 -3.87 

46 -6.67 -2.16 -4.40 -7.15 -9.63 -3.97 -6.97 -7.54 -5.30 -7.83 

52 -2.02 -0.95 -2.97 -2.14 -2.07 -2.33 -1.19 -2.83 -3.50 -3.00 

57 -1.39 -0.72 -3.17 -1.88 -2.62 -0.31 -1.85 -2.16 -3.27 -1.74 

50 -1.39 -0.74 -3.55 -1.89 -4.16 -1.04 -2.80 -2.56 -2.23 -2.26 

48 -1.63 -1.60 -0.94 -1.15 -1.36 -0.89 -1.54 -1.84 -1.35 -1.48 

45 -2.21 -2.39 -1.42 -1.59 -2.41 -1.75 -1.17 -2.98 -1.98 -1.80 

66* -2.19 -1.56 -1.08 -1.14 -1.54 -1.16 -1.83 -2.25 -1.62 -1.69 

68 -1.96 -1.29 -1.00 -1.07 -1.58 -1.03 -1.51 -2.14 -1.56 -1.54 

65 -1.9 -2.11 -0.87 -0.96 -1.29 -0.78 -1.46 -2.14 -1.38 -1.46 

H6035-

14 -2.39 -1.53 -2.07 -2.04 -3.00 -1.64 -1.93 -2.74 -2.92 -2.42 

H5919-

10 -2.47 -1.61 -2.62 -2.49 -2.53 -1.59 -2.24 -2.65 -2.90 -2.67 

H6017-

16 -2.24 -1.57 -2.24 -2.28 -2.45 -1.50 -2.04 -3.11 -3.09 -3.11 

H6133-9 -2.13 -1.44 -2.23 -1.94 -2.55 -1.74 -2.10 -3.28 -2.53 -2.72 

4451-C-

1210* -2.12 -1.45 -2.20 -1.83 -2.40 -1.72 -2.50 -3.13 -2.75 -2.47 

H5877* -2.26 -1.57 -2.32 -2.23 -2.78 -1.55 -1.97 -3.23 -2.79 -2.50 

H5926-

16 -2.44 -1.49 -2.20 -1.87 -3.41 -1.61 -2.20 -3.27 -2.74 -2.26 

H5899* -2.46 -1.54 -2.35 -2.27 -3.16 -1.82 -2.29 -3.55 -2.91 -2.36 

H6011-

9* -2.59 -1.44 -2.21 -2.44 -2.94 -1.83 -2.18 -3.45 -2.84 -2.55 

H5940-

10* -2.13 -1.56 -2.06 -2.25 -3.36 -1.83 -2.05 -3.11 -2.58 -2.81 

H6083-9 -2.54 -1.39 -2.27 -2.65 -3.06 -1.99 -2.89 -3.25 -2.78 -2.74 

* Stage I/II ovarian cancer 
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