
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2021 

The Online Adjustment Of Speaker-Specific Phonetic Beliefs In The Online Adjustment Of Speaker-Specific Phonetic Beliefs In 

Multi-Speaker Speech Perception Multi-Speaker Speech Perception 

Wei Lai 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Anthropological Linguistics and Sociolinguistics Commons, and the Behavioral 

Neurobiology Commons 

Recommended Citation Recommended Citation 
Lai, Wei, "The Online Adjustment Of Speaker-Specific Phonetic Beliefs In Multi-Speaker Speech 
Perception" (2021). Publicly Accessible Penn Dissertations. 4110. 
https://repository.upenn.edu/edissertations/4110 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4110 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/372?utm_source=repository.upenn.edu%2Fedissertations%2F4110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/56?utm_source=repository.upenn.edu%2Fedissertations%2F4110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/56?utm_source=repository.upenn.edu%2Fedissertations%2F4110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4110?utm_source=repository.upenn.edu%2Fedissertations%2F4110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4110
mailto:repository@pobox.upenn.edu


The Online Adjustment Of Speaker-Specific Phonetic Beliefs In Multi-Speaker The Online Adjustment Of Speaker-Specific Phonetic Beliefs In Multi-Speaker 
Speech Perception Speech Perception 

Abstract Abstract 
This dissertation examines how listeners' knowledge of interspeaker variability guides their generalization 
of perceptual learning in multi-talker listening. A series of perceptual learning experiments are conducted 
to evaluate whether listeners generalize what they have learned about a previous talker's production of 
sibilants and stop VOT to another speaker either of the same gender or a different gender. Experiment 1 
and 2 finds that the perceptual learning of sibilants constantly generalizes across speakers of different 
genders under an acoustics-phonology mismatch constraint. The constraint states that perceptual 
learning fails to generalize if there is a mismatch between the directions of perceptual shifts intended by 
the raw acoustic distributions of stimuli and by their phonological distribution in the perceptual space. 
Experiment 3 reports evidence for the perceptual generalization of stop VOT across speakers of different 
genders. These results lend support to a cumulative update account, which suggests that perceptual 
learning updates across speakers in such a way where previous and current perceptual learning 
experiences are re-integrated to form a cumulative perceptual expectation that listeners use for upcoming 
perception events. Building on the above findings, Experiment 4 investigates the constraints of speaker 
identity and gender on the perceptual generalization of sibilants and stops by introducing and 
manipulating visual identity and voice gender cues. The results show reduced magnitude for perceptual 
generalization across genders than within gender, and, in the latter case, for perceptual generalization 
across speakers than within speaker. These results raise the possibility that socioindexical specificity 
imposes a constraint on perceptual learning by modulating the magnitude of perceptual generalization 
across social groups, instead of blocking its occurrence. They also suggest that listeners' knowledge of 
structure in talker variability may be more fine-grained than hard-and-fast bindings of social-demographic 
groups and lend support to the sophisticated interweaving of social information in the architecture of the 
phonetics-phonological mapping system. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Linguistics 

First Advisor First Advisor 
Meredith M. Tamminga 

Subject Categories Subject Categories 
Anthropological Linguistics and Sociolinguistics | Behavioral Neurobiology 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4110 

https://repository.upenn.edu/edissertations/4110


THE ONLINE ADJUSTMENT OF SPEAKER-SPECIFIC PHONETIC BELIEFS IN

MULTI-SPEAKER SPEECH PERCEPTION

Wei Lai

A DISSERTATION

in

Linguistics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Meredith Tamminga, Associate Professor of Linguistics

Graduate Group Chairperson

Eugene Buckley, Associate Professor of Linguistics

Dissertation Committee:

Jianjing Kuang, Associate Professor of Linguistics

Joseph Toscano, Assistant Professor of Psychological and Brain Sciences



THE ONLINE ADJUSTMENT OF SPEAKER-SPECIFIC PHONETIC BELIEFS IN

MULTI-SPEAKER SPEECH PERCEPTION

c� COPYRIGHT

2021

Wei Lai

This work is licensed under the

Creative Commons

Attribution-NonCommercial-ShareAlike 4.0

International License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/


Dedicated to my parents, Weizhen Xie and Xunxu Lai,

whose love makes me fearless.

iii



Acknowledgements

At the very outset of this dissertation, I would like to take this space to express my sincere

and heartfelt gratitude to all the personages who have helped me throughout my graduate

program and academic career. Without their help, encouragement, and comfort, I would

not have made it this far to earn my doctoral degree.

First and foremost, I would like to thank my advisor, Meredith Tamminga, who has

always been a wise, devoted, and supportive mentor to me. Meredith is one of the earnest

persons that I have ever met in my life. When we discuss research questions together, she

always listens attentively and never easily lets go of a single underestimated opinion that

deserves more elaboration. When I receive invitations for job interviews, she is always the

first person to propose arrangement of a practise talk before I ask for anything. Meredith

advises me smartly on each step I need to take to achieve my goal but seldom interferes with

the big decisions that I am supposed to make by myself. She shows me how to simultaneously

maintain the courage to stand up for one’s belief and the wisdom to strategize around

foreseeable obstacles. I benefit a lot from her advice and my time spent with her in general.

This dissertation has also significantly benefited from discussions with my committee

members, Jianjing Kuang and Joe Toscano. I want to thank Jianjing Kuang for guiding me

through the first few phonetics projects at UPenn and teaching me how to find a specific

research question. I am grateful to Joe Toscano for providing insightful interpretations of

the results I obtained as well as professional advice on the experimental design. I also want

to thank Mark Liberman and David Embick for their countless feedback on the di↵erent

sets of projects I pursued and on the data that I obtained at each step of the dissertation

during the lab meeting. I am also especially grateful to Gareth Roberts for being a constant

iv



source of mentorship to me during my Ph.D. career. I enjoyed every minute of the time we

spent on our collaborative artificial-language-learning project.

During my stay in the program, I have spent most of my time in two labs – the Penn

Phonetics lab and the Variation and Cognition Lab. These places are also where I made most

of my friends at Penn. I want to thank my sociolinguist o�ce mates, Lacey Wade, Ruaridh

Purse, Yosiane White, and Aini Li, for all the moments of closeness and belonging that I

have enjoyed in the Variation and Cognition lab. I also want to thank cohort phoneticians,

Jia Tian, and Hong Zhang, for keeping me company through good times and bad times. I

am also grateful to the other members of the phonetics lab, Alethia Cui, Nari Rhee, Caitlin

Richter, and Ollie Sayeed, for always being there for discussion and help. Another big

thank-you goes out to the phoneticians and sociolinguists in higher grades – Sunghye Cho,

Mao-Hsu Chen, Jinjing Tan, Betsy Sneller, Gudrun (Duna) Gylfadottir, and Sabriya Fisher

– for helping me navigate through the most challenging areas and setting role models of

academic performance to me upon the first few years of my arrival. Finally, I also want to

thank the first-year phoneticians, Pik Yu (May) Chan, Xin Gao, and Christine Soh, who

made my last year at Penn truly enjoyable.

I have also enjoyed a lot of professional and mental support from my classmates outside

these two labs. I would like to thank the members of my cohort: Spencer Caplan, Andrea

Ceolin, Ava Creemers, Jordan Kodner, Caitlin Richter, Jia Tian, Lacey Wade, and Hong

Zhang. Each one of you is so smart, professional, and helpful. Being your cohort makes

me become a better person. I also want to acknowledge our departmente coordinator,

Amy Forsyth, and a number of higher-grade students at my time, Einar Freyr Sigurdsson,

Amy Goodwill, Robert Wilder, Haitao Cai, Luke Adamson, and Milena Šereikaitė. I want to
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ABSTRACT

THE ONLINE ADJUSTMENT OF SPEAKER-SPECIFIC PHONETIC BELIEFS IN

MULTI-SPEAKER SPEECH PERCEPTION

Wei Lai

Meredith Tamminga

This dissertation examines how listeners’ knowledge of interspeaker variability guides their

generalization of perceptual learning in multi-talker listening. A series of perceptual learning

experiments are conducted to evaluate whether listeners generalize what they have learned

about a previous talker’s production of sibilants and stop VOT to another speaker either

of the same gender or a di↵erent gender. Experiment 1 and 2 finds that the perceptual

learning of sibilants constantly generalizes across speakers of di↵erent genders under an

acoustics-phonology mismatch constraint. The constraint states that perceptual learning

fails to generalize if there is a mismatch between the directions of perceptual shifts intended

by the raw acoustic distributions of stimuli and by their phonological distribution in the per-

ceptual space. Experiment 3 reports evidence for the perceptual generalization of stop VOT

across speakers of di↵erent genders. These results lend support to a cumulative update ac-

count, which suggests that perceptual learning updates across speakers in such a way where

previous and current perceptual learning experiences are re-integrated to form a cumulative

perceptual expectation that listeners use for upcoming perception events. Building on the

above findings, Experiment 4 investigates the constraints of speaker identity and gender

on the perceptual generalization of sibilants and stops by introducing and manipulating

visual identity and voice gender cues. The results show reduced magnitude for perceptual

generalization across genders than within gender, and, in the latter case, for perceptual

generalization across speakers than within speaker. These results raise the possibility that

socioindexical specificity imposes a constraint on perceptual learning by modulating the

magnitude of perceptual generalization across social groups, instead of blocking its occur-

rence. They also suggest that listeners’ knowledge of structure in talker variability may

be more fine-grained than hard-and-fast bindings of social-demographic groups and lend
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support to the sophisticated interweaving of social information in the architecture of the

phonetics-phonological mapping system.
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Chapter 1

Introduction

Human speech is highly variable. In recent decades, the role of subphonemic phonetic vari-

ability has been highlighted for its facilitating role in speech comprehension and processing

(e.g., Goldinger, 1996, 1998). The kinds of variability in consideration include both pho-

netic idiosyncrasies that are specific to unique tokens or random contexts (Bradlow et al.,

1996), and global phonetic attributes that remain relatively stable with a particular talker

(Eisner and McQueen, 2005; Kraljic and Samuel, 2006; Norris et al., 2003) or a speech

community (Clarke and Garrett, 2004; Maye et al., 2008). A growing body of experimental

studies shows that listeners make use of these kinds of variability in speech perception and

processing, raising the possibility that phonetic specificity might be more closely interwoven

into our linguistic knowledge than previously considered (see Pisoni and Levi, 2007, for a

review).

Situated in this research background, this dissertation seeks a more precise understand-

ing of the involvement of phonetic details in the phonetics-phonology mapping through the

window of perceptual learning, a process by which listeners adjust their phonetics-phonology

mapping in perception to be better aligned with the production of a particular speaker. I in-

vestigate how listeners adjust their perceptual expectations as a response to speaker-specific

phonetic characteristics in a multiple-speaker setting. In such a context, phonetic tokens

of di↵erent speakers are interleaved, and listeners need to go back and forth between their

perceptual beliefs of di↵erent talkers to cope with talker variability. This dissertation in-

vestigates whether listeners form speaker-specific perceptual expectations that they track

separately for di↵erent speakers or speakers of di↵erent genders. Or, alternatively, they

1



may integrate the phonetic characteristics of di↵erent speakers to update their perceptual

beliefs within a holistic phonetics-to-phonology mapping system. I also investigate whether

the answer to this question varies with di↵erent natures of the phoneme under discussion.

Answers to these questions are expected to shed light on how social identity information is

interwoven in the architecture of the phonetics-phonology mapping system.

1.1 Theoretical and empirical origins

Theoretical elaborations on the involvement of intra-category phonetic information in speech

perception and processing are often framed in terms of a debate between abstract and

episodic views of the mental representations of phonology. These debates revolve around

whether phonological units are represented with discrete and invariant linguistic symbols

(e.g., phonemes, Halle, 1985), or with a collection of specific acoustic instances or percep-

tual episodes (Goldinger, 1996, 1998). The discrepancy between these two lines of models

essentially reflects a trade-o↵ between emphasises on the structural versus the variable

aspects of speech in speech processing. Prioritizing variability over structure leads to a

prototypical exemplar-based approach, in which the representation of phonemes emerges

from accumulated acoustic distributions of speech inputs in the listeners’ experience. In

this case, however, the convenience of handling variability comes at the cost of stronger

encoding e↵ort of individual acoustic instances encountered, and this type of encoding re-

sults in more complicated rules for the generalization of this knowledge to new scenes. On

the other hand, a prototypical abstractionist approach addresses the phonetics-phonology

mapping problem by mapping variable acoustic signals onto a symbolic phoneme system

that does not retain substantial surface acoustic details. Theories of this kind have the

advantage of providing straight-forward underlying systems of linguistic units with lower

needs for memory. However, these advantages come at the risk of losing explanatory power

towards phonetic variability in concrete social contexts. This approach still requires a better

delineated theory of those phonetics-to-phonology mappings.

This section provides a review of the basic mechanistic principles underneath the op-
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erations of these two kinds of speech perception models, as well as the historical research

background that they are rooted in. Section 1.1.1 explains the fundamental principles

underpinning the operation of “talker normalization”, a critical mechanism delineated by

abstractionist models of speech perception that maps variable acoustic signals to a fixed

set of phonemic units. Section 1.1.2 reviews the configurations of exemplar models and

their alternative approach to deal with acoustic instances and category labels. Section 1.1.3

presents a brief review on the historical origins of these two theoretical views and outlines

the progress of empirical findings in the area of speech perception that crucially motivates

a shift of research focus from phonemic to subphonemic units in speech perception and

processing.

1.1.1 Abstract speech representations and speaker normalization

The mapping between acoustic signals and linguistic categories is a many-to-many prob-

lem (e.g., Liberman et al., 1967). A certain kind of linguistic category can be realized in

various ways in the acoustic space, and a particular acoustic pattern may correspond to

several di↵erent linguistic interpretations. One classic example for the flexibility of map-

ping between speech acoustics and abstract phonemic categories is Peterson and Barney

(1952). They measured the formant frequencies of American English vowels produced by

adult men, adult women, and children, and found considerable overlap between the cate-

gories /I/ (as in bit) and /E/ (as in bet) in the vowel space defined by the first and second

resonance frequencies of the vocal tract. Each phoneme generates many di↵erent acoustic

values, and for many of the acoustic values they could plausibly have been generated by

either phoneme. In perception, the nondeterministic relationship between signals and rep-

resentational units may impose a challenge for listeners to maintain “perceptual constancy”

(Shankweiler et al., 1977), which refers to the “stable recognition of the phonetic structure

of utterances” (Nusbaum and Schwab, 1986, page 2).

Various approaches have been proposed to address how listeners manage to maintain

phonetic constancy across talkers (see Shankweiler et al., 1977, for a comprehensive discus-
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sion). One of the most influential mechanisms proposed to cope with this issue is “speaker

normalization”, which is hypothesized to transform acoustic signals into mental represen-

tations that characterize a stable system of linguistic categories. The term “normalization”

was first used to deal with categorization problems in the visual modality. To visually rec-

ognize an object, one needs to mentally rotate the input patterns, to expand or compact

their size, and to translate them across spatial patterns prior to pattern matching, such that

the input patterns can be mapped onto the right prototype template without being a↵ected

by properties unrelated to the basic pattern (Robert, 1965). In this case, “normaliza-

tion” involves at least three fundamental types of elements: representations of information

(mental templates), transformations of the representations (rotation, size expansion and

compaction, spatial orientation), and control structures that determine the sequencing of

transformations (Nusbaum and Schwab, 1986). Normalization essentially renders an input

pattern into a canonical form for pattern matching through the operation of a set of pas-

sive and simple transformations in the order specified by control structures. Extended to

the auditory modality, speech normalization presupposes a stable-state system of linguistic

representations characterized by features resembling their acoustic properties. To continue

with the previous example of vowels, phoneticians have attempted to characterize vowels

by the loci of their first and second formants scaled according to the vocal characteristics

of di↵erent speakers. After normalization for variances in the shape and size of vocal track,

the relational values of vowel formants should be su�cient to characterize di↵erent vowels

and should stay invariant across speakers. Following this idea, Nordström and Lindblom

(1975) proposed that such a uniform scaling method is adopted in vocal tract length nor-

malization. In their view, speech is mapped onto a reference vocal tract by estimating

the length of the speaker’s vocal tract and then scaling the formant frequencies as if they

had been produced by the reference tract with a single scale factor based on vocal tract

length. The mechanism of normalization by the virtue of vocal characteristics encoded in

the signals is referred to as intrinsic normalization (Nearey, 1989). An alternative mecha-

nism, referred to as extrinsic normalization (Nearey, 1989), refers to normalization by cues
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derived from preceding contexts to constrain the interpretation of a target utterance (e.g.,

Joos, 1948). For example, Ladefoged and Broadbent (1957) had listeners identify synthetic

/bVt/ words presented at the end of the precursor sentence “please say what this word is.”

Six versions of the precursor sentence were synthesized, each with a di↵erent range of F1

and F2 that corresponds to di↵erent talkers. Identification of the target vowel was found

to vary with the formant values in the carrier sentence. For example, the same token was

perceived as /bIt/ most of the time with higher F1 of vowels in the precursor sentence and

it was perceived as /bEt/ when the F1 of the precursor sentence were manipulated to be

lower. Essentially, both of these mechanisms suggest that the relational values character-

izing vowels in a metric space can be fixed after filtering out variances associated with the

vocal characters of specific talkers - they only di↵er in their preference of what measure to

use as a proxy of speaker’s vocal characteristics.

Although the concept of speaker normalization has been widely accepted and used in

many contexts in speech perception, researchers have not really succeeded in coming up

with a general transformation algorithm that yields a close approximation to the relational

invariance between linguistic units, or vowels, in this context. Peterson and Barney (1952)

evaluated whether the invariant relation can be preserved by linear scaling by examining

whether the formant frequencies of two speakers’ vowels are constant multiples of one an-

other; however, they found that such relationship does not hold. Later, Ladefoged (1967)

tried to reduce variability by employing phoneticians as talkers, and found that the sep-

aration of all vowels cannot be attained by scaling the F1 and F2 in linear or nonlinear

fashions, neither as on a scale of mels. Finally, I want to note that it is commonly assumed

that speaker normalization is a crucial process for understanding new talkers that one has

not encountered before (e.g., Joos, 1948; Ladefoged, 1967). In this process, a stretch of a

new talker’s speech will be required for deriving the calibration parameters for normaliza-

tion, although it remains a mystery how short the minimally required speech samples are.

The integration of adaptation-level perspectives in speaker normalization theories provides

a natural transition to the main research question of this dissertation – perceptual learning,
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which I am going to review in more detail in Section 1.2.

1.1.2 Episodic speech representations and exemplars

Di↵erent from abstractionist views that presuppose explicit phonological units, exemplar

views usually consider phonetics-phonology mapping as a process where linguistic structures

emerges based on episodic memories of acoustic instances. The basic operation of exemplar

model as “to categorize perceptual objects by evaluating the similarity between the item to

be categorized and a set of stored category exemplars” (Johnson, 1997, page 105). Johnson

(1997) lays out the concepts of this approach and developed a computational implementation

to apply it in the area of speech perception. According to Johnson’s model, speech waves

are first converted into a sequence of auditory spectra. Then, each auditory spectrum is

vector-quantized and compared with a set of stored spectra represented on an “exemplar

covering map”. If the incoming spectrum is not similar to any of the existing ones, then

the system creates a new representational localization for it. If the spectrum is similar

to one of the stored spectra, then the system returns the index of the stored spectrum

and the localization of the stored spectrum shifts slightly towards the new spectrum. The

third stage compares. Finally, category nodes (which are words in Johnson’s model) are

represented as labels over the map, with each label associated with a frequency distribution

of stored spectra of that label. Word node activation is the product of similarity to the

covering map location and the association between that location and word node weighted

by the frequency of exemplars at that location.

Pierrehumbert (2001) provided another computational implementation of phonological

activation using exemplar theory. In this model, linguistic categories (which are equivalent

to phonemes instead of words as in Johnson’s model) are associated with a cloud of percepts

or exemplars, and the strength of the activated exemplars cumulates in activating category

labels. Therefore, more frequent categories have more exemplars and more highly activated

exemplars than less frequent categories. Pierrehumbert’s model makes progress on the

meticulous delineation of the cognitive processes involved in phonological activation. In her
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model, the activation strength of exemplars depends on both their frequency and recency,

such that more recent exemplar has higher strength than temporally remote ones, and this

recency-associated activation gradually decays as time elapses. Her model also describes the

competition and inhibition of linguistic labels in the classification stage. The activation level

of a specific label for a newly entered token is derived from the similarity between the novel

token and the exemplars associated with the target label as well as the aggregate activation

strength of exemplars under that label. In the case of perceptual ambiguity where a token

is equally similar to two categories of exemplars, the category with more numerous or more

activated exemplars has advantage in the competition, or in other words, the model predicts

a bias towards a high-frequency label. In addition, Pierrehumbert (2001) also sketches how

the model would extend to speech production.

This approach provides a way to capture the influence of fine-grained phonetic instances

on speech behaviors. For one thing, it accounts for findings of the role of frequency in

linguistic activation relatively well. For another thing, it does not need to pre-specify a

set of linguistic structures or units to start with, which provides explanation power for

addressing acquisition problems. In first-language acquisition, children do not have explicit

phonological knowledge demonstrated to them; but rather, they need to figure out the

structure themselves with limited exposure to language input. Moreover, this approach

provides a way to respond to typological results showing that languages di↵er in arbitrarily

fine phonetic detail, because it assumes that a distribution can be learned at an arbitrary

location on the phonetic map with a substantial amount of exposure.

1.1.3 A shift of research foci in the literature

The abstract view and the episodic view to the mental representation of speech are rooted in

di↵erent historical backgrounds and motivated to address di↵erent sets of findings. Through

a brief recap on the origins and motivations of these di↵erent views, I hope to show that the

research endeavors to obtain and interpret a wider range of empirical findings have brought

rapid progress to our understanding of speech perception, and the focus shift of the research
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question is a natural result of this progress. In other words, the current exploration of the

role of within-category phonetic details is an extension rather than a setback of the earlier

explorations of the structure of language.

The theoretical background of the conventional symbolic views goes back to the middle

and late twentieth century. The primary debates concerning sublexical units back then did

not revolve around how phonetic details are incorporated in the mental representations,

but whether word-internal units are necessary at all. Several theories have proposed ap-

proaches to directly access lexical items either based on either spectral envelopes of the

acoustic signals (Klatt, 1980) or linguistic adjacency patterns such as neighborhoods (Luce

et al., 1 01) and cohorts (Marslen-Wilson, 1987), without an intervening layer of phonemes.

“Phoneme” as a linguistic unit was mainly the concern of formal phonology, in which,

discrete representational units are the nuts and bolts for systematic derivation of sound

regularities (Chomsky and Halle, 1968). Other than that, intuitions about phonemes were

rather limited, and primarily came from rhetoric and orthographic conventions such as the

existence of spelling and writing systems and rhymes of poetry (e.g., Liberman et al., 1974).

In the late twentieth century, more empirical findings in favor of word-internal structures

arose from the areas of speech production and experimental psycholinguistics. Studies in the

former showed that speech errors frequently occur in forms of substitutions and exchanges

of single segments (Fromkin, 1973; Garrett, 1976; Shattuck-Hufnagel and Klatt, 1979), and

those in the latter showed that listeners are able to detect phonemes in words (Foss and

Swinney, 1973) and nonwords (Foss and Blank, 1980; Foss and Gernsbacher, 1983), as well

as insert, delete and move around sounds as discrete units to form novel words (Treiman,

1983, 1985). Together with insights from formal phonology, rhetoric and orthography, these

findings motivate a symbolic view of speech units, according to which speech signals are

converted into linear combinations of discrete, abstract, symbolic units like phonemes, and

then these combinations feed forward to the activation of higher-level units such as words.

Extreme symbolic views see abstract regularities as emerging from computational processes

at the time of retrieval (Joos, 1948); phonetic details were discarded as soon as it has been
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normalized out and were kept away from the core linguistic processing.

While empirical findings on language users’ sensitivity to sublexical segments are well

addressed under a symbolic view, experimental works have moved forward to examine the

influence of sublexical phonetic realizations from a more fine-grained level, namely, the

speaker-or-context-specific phonetic realizations of phonemes and words. In the 1990s, em-

pirical research demonstrated a processing benefit from the recurrence of the same acoustic

instances or speaker voice. Regarding the latter, the general pattern is that, compared

with hearing speech from multiple speakers, hearing speech from a single talker benefits the

listeners with faster processing speed (Church and Schacter, 1994; Mullennix et al., 1989),

higher intelligibility (Nygaard and Pisoni, 1998) and longer durability in memory (Martin

et al., 1989; Palmeri et al., 1993). This e↵ect has been examined with experimental tasks

including word list recall (Martin et al., 1989), recognition memory (Palmeri et al., 1993),

auditory priming (Church and Schacter, 1994), perceptual identification (Goldinger, 1996;

Mullennix et al., 1989) and intelligibility tests (Nygaard and Pisoni, 1998).

In the meantime, researchers began to realize that the conventional symbolic view was

focused on the influence of the regularities rather than idiosyncrasies of the sound system. It

was not meant for addressing processing consequences caused by nuanced acoustic variabil-

ity. Episodic views were motivated to bridge the gap that the influence of nuanced phonetic

variability in linguistic processing was becoming recognized but not theoretically estab-

lished. Such approaches depart from traditional views to increase the encoding strength of

acoustic instances in the representations of linguistic structures (Goldinger, 1996; Nygaard

and Pisoni, 1998), in order to cope with consequences of variability.

The symbolic view is a step taken towards a more explanatory analysis of sublexical

structures as representational units, whereas the episodic view is intended to obtain a more

precise understanding of where phonetic details might also become relevant to linguistic

representations. Logically, the two views are not mutually exclusive – abstract units and

stored acoustic information can coexist. Although strong episodic theories have sometimes

claimed that phonology directly emerges from episodic representations without intermediate
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discrete units such as phonemes, that point of view is not automatically shared by all the

studies investigating episodic subphonemic details. Phoneme is acknowledged in some of

their frameworks (e.g., Pisoni and Levi, 2007) and exists in the form of exemplar clouds

clustering around the most frequent tokens in episodic models (e.g., Pierrehumbert, 2001).

Nowadays, most model usage-based approaches do involve phoneme-level representations

(Beckner and Bybee, 2009; Harrington et al., 2018; Hay and Foulkes, 2016; Todd et al.,

2019). Such approaches assume that the instances of the same phoneme in di↵erent words

may have di↵erent but related representational bases, which increases their explaining power

towards phoneme-centered linguistic phenomena such as regular sound change.

Along the exploration trajectory down from word to phoneme and to subphonemic

variability, plenty of questions and concerns have arisen from inconsistency between exper-

imental results and uncertainty of accurate interpretations of these results. In specific, the

robustness of facilitating e↵ects associated with phonetic details may vary with di↵erent

kinds of the stimuli (González and McLennan, 2007; Luce and Lyons, 1998; McLennan and

Luce, 2005), di↵erent hearing conditions (Jackson and Morton, 1984; Schacter and Church,

1992) and the examined time course (Wilder, 2018). This inconsistency suggests that more

precise delineations are needed regarding the scope and conditions under which phonetic

variability of particular kinds makes a di↵erence. On the theoretical side, it remains unclear

what kind of phonetic information is retained in representations, how much information is

there, and whether there are di↵erent mechanisms responding to di↵erent contrasts, tasks

and time-course. These questions are still to be resolved.

1.2 Perceptual learning as a testing ground

This dissertation takes “perceptual learning” (also called “perceptual recalibration”, or

“perceptual retuning”) as a way to probe how listeners cope with the phonetic charac-

teristics of idiosyncratic speakers in a multiple speaker setting. As a psychological term,

“perceptual learning” was originally used to refer to the general adaptation mechanism to

stimuli with di↵erent kinds of features represented at various levels of mental abstraction.
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For example, Gibson and Gibson (1955) defines perceptual learning as the mental process

of “making the perceiver more sensitive to the variables of the stimulus array” (page 40).

Goldstone (1998) defined perceptual learning as “relatively long-lasting changes to an or-

ganism’s perceptual system that improve its ability to respond to its environment and are

caused by this environment” (page 586).

In the last decade, perceptual learning studies have proliferated in the field of speech

perception. Within the speech area, however, the term of “perceptual learning” is still used

in di↵erent lines of literature that focus on di↵erent aspects of this issue. Samuel and Kraljic

(2009) sorted studies on the perceptual learning of speech into two broad themes. One line

of these studies focuses on the phenomenon that exposure to certain types of stimuli that

the listeners are unfamiliar with (e.g., nonnative speech, accentual speech, degraded speech)

leads to improvement in listeners’ ability to comprehend or identify speech stimuli of that

type (e.g., Bradlow and Bent, 2008; Clarke and Garrett, 2004). The other line of studies

examine how exposure to non-canonical speech make listeners more attuned to the acoustic

distribution of tokens in the prevailing environment (e.g., Kraljic and Samuel, 2005, 2006;

Norris et al., 2003). The basic procedure is to present listeners with phonetically ambiguous

stimuli with contextual information to disambiguate the stimulus. Perceptual learning

is then measured by a shift in the categorization boundary between the two phonemes

such that the phonetic space assigned to the contextually favored phoneme is expanded.

This dissertation investigates the second of these types of perceptual learning. Again,

experimentally, this kind of perceptual learning is quantified by the amount of adjustment

listeners make to their perceptual category boundary between two phonemes after exposure

to ambiguous stimuli with contexts that favor the perception of one of those phonemes.

For example, if we use contextual information to make listeners believe that a non-typical

/s/-like sound is just an /s/, they may expand the range of acoustic inputs they accept as

/s/ to account for the new sound. As discussed in Samuel and Kraljic (2009), a great virtue

of this paradigm is that “the observed category boundary shifts provide a clear indication of

exactly what is changing in perceptual processing as a function of experience” (page 1208).

11



One of the most important purposes of speech perceptual learning is to facilitate per-

ception e�ciency by adapting to speech variability. It is well established that there is a

substantial amount of speech variability in the speech production of speakers of the same

language. Some of these variations may reflect stratification in social identity, while others

are idiosyncratic traits of individual speakers. Abundant studies have shown that listeners

adapt rapidly to accommodate idiosyncratic speech properties of a particular talker. How-

ever, it remains a mystery what listeners do with this information after they encounter a

di↵erent speaker. We come up with several possibilities: Either listeners toss out what they

have learned and establish a new set of perceptual expectations for the current speaker

from scratch, or they apply their retuned perception criterion immediately to the next

speaker they encounter, or they store the outcome of perceptual learning for future use

when they encounter somebody similar. These questions have been investigated by previ-

ous experimental studies with di↵erent stimulus materials and paradigms. However, their

observations are not always consistent with each other, not to mention that there is still

room for di↵erent interpretations of the same set of results.

The remainder of this section provides a review of what we already know about the

mechanistic characteristics of the operation of perceptual learning from previous research,

including how much input is needed to induce a boundary shift (flexibility), how long a

perceptual learning e↵ect lasts (durability), and whether the perception adjustment gen-

eralizes to other speakers and contexts (generalizability) or stays specific to the speaker

whose speech triggers the shift (specificity). Section 1.2.1 reviews findings of di↵erent stud-

ies pointing to the flexibility and durability of perceptual learning, which are two seemingly

contrastive properties. Section 1.2.2 reviews previous findings lending support to another

pair of contrasting characteristics – specificity and generalizability – of perceptual learning.

In both of these sections, I further discuss whether these discrepancies are really incompat-

ible or can be reconciled at some level. Note that the theme of the current dissertation is in

fact more directly linked to the second pair of contrasts, since I investigates how perceptual

learning behaves in respond to switches between talkers. Finally, Section 1.2.3 discusses the
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possibility of reconciling the generalization and talker-specific aspects of perceptual learning

by resorting to listeners knowledge of structure in talker variability (see e.g., Kleinschmidt,

2019; Kleinschmidt and Jaeger, 2015), with explanations of how this idea works and how I

plan to test this idea in the present dissertation with experimental approaches.

1.2.1 Flexibility vs. durability

It has been mysterious whether and how flexibility and durability simultaneously apply

to perceptual learning. In terms of flexibility, researchers have found that listeners usually

adjust their perceptual expectations fairly quickly in response to only a few acoustic tokens.

In perceptual learning experiments, perceptual learning is typically induced with 40 critical

word stimuli, namely, 20 for each of the two target phonemes (e.g., Eisner and McQueen,

2005; Kraljic and Samuel, 2005, 2006). More extreme cases show that perceptual shift

can be caused by exposure to as few as 20 critical lexical stimuli, 10 for each phoneme

(Kraljic and Samuel, 2007). Another piece of support is that listeners are willing to make

a further perceptual adjustment after subsequent exposure to additional speech materials,

even when the acoustic distributions of those materials are at odds with those in their

previous training. Saltzman and Myers (2018) exposed listeners to four interleaved blocks

of lexical decision that were designed to bias perception in opposite directions along a /s-S/

continuum, and recorded the distribution shift with a phonetic categorization task after

each lexical decision block. They found that, in each session, listeners’ perceptual bias was

consistent with the cue distributions in the immediately preceding lexical decision block.

These results all suggest that the system of human speech perception is highly sensitive to

newly encountered acoustic instances and can make rapid adjustments accordingly.

Meanwhile, findings pointing to the durability of perceptual learning show that listeners

are able to store the e↵ect of perceptual learning in their mind for a long time, such that they

still maintain the perceptual shift on their second visit after hours and even days. Kraljic

and Samuel (2005) have shown that learning e↵ects are reliable after a 25-min interval,

unless listeners are exposed to unambiguous tokens of the critical sound that come from
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the voice of the exposure talker. Eisner and McQueen (2006) have subsequently shown

that the retuning can persist for twelve hours, regardless of whether subjects sleep in the

interim. Pushing the examination interval even longer, Zhang and Samuel (2014) had

listeners participate in two perceptual learning sessions separated by a full week. Listeners

were assigned to two groups who received perceptual learning towards opposite directions

on the first and second visit, e.g., treating an ambiguous sound halfway between /s-f/ as

/s/ on one visit and /f/ on the other visit. They found that only the first session, not the

second, showed the expected di↵erence between groups. Zhang and Samuel interpreted the

absence of boundary shift in the second session as reflecting dissipation of the first shift after

a week and inhibition of the expected second shift by previous exposure to good tokens one

week ago. Therefore, they concluded that the time limit of the perceptual learning e↵ect

should fall into the interval between 12 hours and a week.

I want to briefly note here that the above discussion brings up several other dimensions

a↵ecting the encoding strength of di↵erent acoustic instances. One of these factors is the

standardness or typicality of the instance compared to other exemplars within a phoneme

category. The inhibition e↵ect of exposure to standard tokens on later perceptual learn-

ing, mentioned in the above case of Zhang and Samuel (2014), essentially suggests that

tokens at di↵erent typicality levels are associated with di↵erent encoding strengths. This

point is also supported by several other studies. Hay et al. (2015) proposed a mechanism

that discards tokens or prevents their encoding in memory when that recognition process

involved excessive ambiguity, even in cases with ultimately accurate recognition. In other

words, exposure to items of more extreme category atypicality is less likely to cause percep-

tual adjustment because they are not fully encoded in the first place. Babel et al. (2019)

shows that there is still fine-grained covariation between the degree of typicality and the

extent of perceptual learning in less extreme cases. They found that, among nonstandard

instances, the perfect ambiguous instances cause greater perceptual learning than atypical

instances, and the latter still causes greater perceptual learning than remapped instances

(i.e., instances sounding like a di↵erent phoneme category).
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Another hidden question relevant to the flexibility vs. durability of perceptual learning

is “how does the encoding strength of recently encountered instances and temporally remote

instances vary?” As discussed earlier in this chapter, exemplar models (e.g., Pierrehumbert,

2001) consider the encoding strength of acoustic instances to be determined by their fre-

quency and recency1 and predict higher strength associated with more recently encountered

tokens. This view is supported by Saltzman and Myers (2018) (reviewed at the beginning

of this subsection), where the authors found that the perceptual bias induced by the most

recent training completely overrides the previous one. Saltzman and Myers (2018) therefore

conclude that listeners rely more heavily upon the most recent information received and

down-weight older, consolidated information. In the meantime, empirical findings by other

studies point to slightly di↵erent points of view. Theodore and Monto (2019) conducted a

similar study with unsupervised learning of /k-g/. Their experiment consists of two blocks

of categorization tasks. Half of the listeners were exposed to the narrow distributions of

VOT variances followed by the wide distributions, and the other half of them had the order

reversed. The result of the earlier block shows a di↵erence in identification slope between

groups who encountered di↵erent VOT distributions, but this di↵erence was attenuated at

the end when everyone heard all of the stimuli. This result was interpreted to show that

listeners did not disregard prior experience with a talker, but rather used cumulative statis-

tics to guide phonetic decisions. However, the between-group di↵erence in Theodore and

Monto (2019) is not completely gone at the final stage, which means that the cumulative

statistics listeners learned was still mediated by the sequential properties of the training

instances.

Although the influence of the sequential/temporal aspects of the training stimuli is not

the primary concern of this dissertation, a good understanding of this issue could help us

make wise methodological decisions in experiment design and interpret the results more

accurately. Other than these purposes, the tension between flexibility and durability of

1Such theories also tend to acknowledge greater strength of tokens with higher salience caused by social,
attentional, and experiential factors. See Sumner et al. (2014) for example of social salience and see Jaeger
and Weatherholtz (2016) and Lai et al. (2020) for salience associated with unexpectedness or surprisal.
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perceptual learning is an independently interesting question for many reasons. It is one of

the key assumptions that Bayesian models of perceptual learning need to include in order to

model the adjustment of perceptual expectations over time (e.g., Kleinschmidt and Jaeger,

2015). In addition, it is a crucial concern for models of diachronic sound change because they

make di↵erent predictions about whether novel or nontypical linguistic variants can survive

long enough to be re-used by the listeners and spread into the speech community (Tamminga

et al., 2020). Through an overview of the two lines of findings reviewed in this section, it

is unclear whether the properties of flexibility and durability necessarily contradict one

another. Flexibility speaks to the operation of perceptual learning in response to acoustic

input from a specific speaker and in a specific context, whereas durability refers to the state

of perceptual learning outcome without discussing further exposure to additional training

materials. These two properties delineated such a perceptual learning mechanism: It is

flexible to the acoustic distributions of incoming speech materials when relevant speech

input comes in; it stops operation and stores the output once relevant speech inputs are

suspended and will not start operating unless relevant speech input becomes available again.

By thinking that they are contradicting, one actually presupposes that the speech instances

a listener encountered in any context and at any time point goes to a single set of training

input that are essentially relevant to each other, which is not necessarily the case. The two

properties could become compatible if we think of separate perceptual learning processes

in charge of adaptation to a set of acoustic instances encountered in specific contexts or

from specific speakers. Then, how do listeners divide up the acoustic instances they have

encountered decide which ones go together? This question is to be further unpacked in the

next two subsections.

1.2.2 Specificity vs. generalizability

In real-world perceptual learning, listeners do not cope with only one kind of speech vari-

ability at a time, and linguistic variants would not come from only one particular category

of speakers or contexts. As more of these factors come into play, the perceptual learning

16



mechanism unavoidably needs to make decisions about whether it needs to extend linguistic

distributions they have picked up in one situation to a di↵erent situation, which may involve

di↵erent speakers, di↵erent phonemes, or di↵erent types of communication tasks. Whether

and how broadly does perceptual learning generalize? This question has been attracting a

substantial body of research, but the answers provided by di↵erent studies are somewhat

debatable.

Some studies do find that perceptual learning may generalize to the perception of dif-

ferent speakers (Kraljic and Samuel, 2005, 2006, 2007; Reinisch and Holt, 2014; Xie et al.,

2018) and di↵erent phonemes with similar contrast (Kraljic and Samuel, 2006; Weatherholtz,

2015). Regarding generalization across speakers, many studies have found that exposure to

a single speaker’s speech is su�cient to make listeners apply their knowledge of how that

speaker sounds to other speakers (Kraljic and Samuel, 2005, 2006, 2007; Reinisch and Holt,

2014). Studies in this line have also examined the e↵ect of training with multiple speakers,

and they find that exposure to multiple talkers with the same kind of pronunciation charac-

teristics can promote the perceptual learning generalization to other talkers (e.g., Bradlow

and Bent, 2008). In a slightly di↵erent vein, studies have also examined whether listeners

generalize their knowledge of the acoustic realizations of phonemic contrasts that listeners

have learned for one pair of phonemes to a di↵erent pair of phonemes with the same con-

trast. Kraljic and Samuel (2006) find that listeners who were trained on the VOT of /t-d/

generalize what they learned to /p-b/, which are a pair of new phonemes that are previously

unheard but share the same voicing feature distinction. Weatherholtz (2015) examined the

generalization of perceptual learning of a vowel chain, which shifts /i/ to [I], /I/ to [E], /E/

to [æ], and /ae/ to [A]. Weatherholtz find that listeners are able to generalize learning to fill

in incidental gaps in their experience, indicating that listeners learned the covariation pat-

tern between vowel categories, rather than learning each constituent shift independently.

However, this finding is not replicated in their experiment on the perceptual learning of

back vowel raising, raising questions about the robustness of the systematic learning of the

vowel space. These findings suggest that it is possible for perceptual learning to generalize,
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as one would expect for real-world listening with complicated linguistic co-varying factors.

Nonetheless, cases of failures to induce perceptual learning generalization are not un-

common (and maybe even more frequent) in this body of literature. As it is implausible for

listeners to acquire the distributional properties of all the linguistic variants they encounter

from di↵erent speakers and contexts, it is equally implausible for listeners to generalize

what they have learned without distinction. For example, it is not likely for one to gen-

eralize their perceptual learning of nonstandard (e.g., nonnative) accents to every other

speaker they encounter, if the encountered speaker does not share the same pronunciation

characteristics. Also, listeners rarely need to generalize their perceptual learning of newly

encountered speakers to those they have known for a long time. This is because listeners

have already accumulated su�cient linguistic exposure from those they know well and have

established stable and reliable perceptual expectations for them. Papers that do not find

evidence for the generalization of perceptual learning across speakers would argue for a

“speaker specificity” view of perceptual learning. That is, listeners only apply the acquired

perceptual adjustment to the perception of the particular speaker who that causes it. Note

that in this context, experimental conditions on di↵erent speakers commonly use stimuli in

a male voice and those in a female voice to di↵erentiate between speakers. Therefore, many

of the findings about the “speaker specificity” of perceptual learning essentially reflect the

constraint of di↵erent speaker genders on the generalization of perceptual learning. One of

the first studies taken to provide evidence for talker specificity in perceptual learning is Eis-

ner and McQueen (2005). They find that perceptual learning of a fricative boundary does

not arise when listeners are trained on stimuli from a female voice but tested on stimuli from

a male voice. They conclude that “the perceptual adjustment investigated here does not

generalize across talkers” Eisner and McQueen (2005). Another result that has been cited

as evidence for talker specificity comes from Kraljic and Samuel (2005). This study adds an

“unlearning” phase in between the training and test phases, in which listeners sometimes

hear additional spoken input that either contains no cases of the critical phonemes or con-

tains non-ambiguous instances of the critical phonemes as a form of corrected input. Kraljic
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and Samuel found that only when the unlearning input is presented in the same talker’s

voice does the perceptual learning e↵ect become attenuated. The learning is una↵ected by

the unlearning phase with speech of a di↵erent talker (of a di↵erent gender).

These findings seem to suggest that the specificity of perceptual learning is conditioned

on speaker identity/gender as signaled by voice. However, this is not the case for the two

studies above. In each of these studies, the authors simultaneously show that if a target

pair of phonemes are su�ciently acoustically similar between two speakers, listeners are

still able to generalize across speakers regardless of their di↵erent gender voices. In another

experiment of the Eisner and McQueen (2005) study, they find that listeners generalize the

perceptual learning of a female speaker’s pronunciation of /s-S/ to an /Es-ES/ continuum

when the vowel /E/ is spoken by either a male or a female novel speaker, as long as the

fricatives were from the original talker’s speech. When the continuum was created entirely

from the speech of a novel talker, there was no perceptual learning, unless the novel talker’s

fricatives had been spliced into the original talker’s speech during exposure. Although this

result is sometimes taken as a support for the speaker specificity of perceptual learning, it

essentially highlights the specificity of the productions of the target phonemes, rather than

speaker identity as indexed by voice. Kraljic and Samuel (2005) find that perceptual learning

with a female speaker’s fricatives can be transferred to a male voice in the test phase, but

this does not work backwards: listeners do not generalize their perceptual learning with the

female speaker to the male speaker’s fricatives. They interpret this result as caused by the

presence vs. absence of acoustic overlapping between the two sets of fricatives in training

and test. The female speaker’s training fricatives have COGs that lie within the COG range

of the male speaker’s test fricatives, whereas the COGs of the male training fricatives are

distinct from those of the female speaker’s test fricatives. They thus conclude that listeners

track the acoustic properties of each speaker’s fricatives and apply generalization whenever

there is a su�cient match. These findings raise the possibility that the previous “speaker

specificity” e↵ect is not essentially induced by di↵erent talker genders (or identities), but

rather, it reflects the constraint of acoustic similarity between the phoneme productions of
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di↵erent speakers on the generalization of perceptual learning.

The role of acoustic similarity is later echoed in Reinisch and Holt (2014). This paper

di↵ers from Kraljic and Samuel (2005) and Eisner and McQueen (2005) in that the ambigu-

ous fricatives are embedded in Dutch-accented English and that they examined perceptual

learning generalization both across and within genders. Instead of talker specificity vs.

generalization, their question is about accent adaptation more broadly, namely, whether

the presence of a foreign accent promotes generalization across talkers. Reinisch and Holt

(2014) show that a lexically-guided /s-f/ boundary shift generalizes from a female training

voice to a novel female voice, but does not generalize to a novel male voice without ma-

nipulating the acoustic similarity of the critical phonemes between the two speakers. This

result not only supports the findings of Eisner and McQueen (2005) and Kraljic and Samuel

(2005) in the role of acoustic similarity in cross-gender perceptual learning generalization.

It also echoes another line of literature pointing to a promotion of the generalization of

perceptual learning by the presence of an entirely di↵erent accent or cluster of features.

(e.g., Baese-Berk et al., 2013; Bradlow and Bent, 2008; Weatherholtz, 2015). Perceptual

learning studies from an accent-adaptation angle generally report quite robust generaliza-

tion, although they sometimes di↵er in how consistent the accents of di↵erent speakers need

to be for there to be generalization. Bradlow and Bent (2008) showed that adaptation to a

novel talker of Mandarin-accented English but not to a talker of Slovakian-accented English

following exposure to multiple talkers of Mandarin-accented English. This learning is not

talker-independent but accent-dependent, for the multiple talkers from a single language

background. However, Baese-Berk et al. (2013) examines training on talkers from five lan-

guage backgrounds and finds that listeners generalized their learning to novel talkers from

language backgrounds both included and not included in the training set. These findings

suggest that generalization of foreign-accent adaptation is the result of exposure to sys-

tematic variability in accented speech that is similar across talkers from multiple language

backgrounds.

Given the evidence amassed so far, it seems likely that generalization of perceptual
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learning is itself flexible, occurring across some speakers under some circumstances. The

factors determining when perceptual generalization occurs may include speaker gender,

voice similarity, and accentedness. The last constraining factor on perceptual generalization

that I review here is the type of phonological contrast. Up to this point, the phoneme in

question is always a fricative. When the same question is tested on stops, di↵erent results are

obtained. Kraljic and Samuel (2006) evaluate whether listeners generalize their perceptual

learning with ambiguous stops between /t/ and /d/ to a novel speaker of a di↵erent gender.

They find that listeners show equally robust perceptual learning e↵ects for the same speaker

and for the new speaker. Kraljic and Samuel (2007) expose listeners to blocks of words

from a male voice and a female voice with opposite directions of potential retuning, to

investigate whether listeners could simultaneously show learning for the pronunciations of

more than one talker. Again, they find that the perceptual learning is speaker specific

only when the critical phonemes are fricatives; for stops, the perceptual learning result

reflects the most recent pronunciation heard, regardless of the speaker. In discussing these

results, Kraljic and Samuel suggest that “when the to-be-learned phoneme highlights a

temporal-voicing contrast that does not provide local, acoustic cues to speaker, as in our

stop manipulations, learning will be speaker-independent. But when it highlights a spectral-

place contrast that does acoustically distinguish one speaker from another, as in one of our

fricative manipulations, learning is speaker-specific” (2007, 3).

1.2.3 Perceptual generalization by structures in talker variability

In the previous section, I have reviewed experimental findings showing that perceptual

generalization is sometimes inhibited across certain kinds of speaker groups or on certain

types of phonemes. Further, these findings shed light on the potential structures of speakers

or phonemes underpinning the function of this process. Regarding the di↵erence between

phoneme classes in the generalization of perceptual learning, one of the most intriguing

explanations is that fricatives contain more information about speaker identity than stops.

I have reviewed Kraljic and Samuel (2007)’s point in the last section that fricative variability
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allows them to learn to restrict the boundary shift to a particular speaker’s productions,

whereas stop variability provides less information such that it is merely adequate to support

learning at the broader featural level (see also Allen and Miller, 2004; Newman et al., 2001,

for discussion about the informativity of fricatives and stops).

A related proposal is found in the “ideal-adapter” framework (Kleinschmidt, 2017, 2019;

Kleinschmidt and Jaeger, 2015), which posits that listeners should generalize across speak-

ers according to the social grouping that conditions variability in speech production. This

proposal is dependent on the premise that listeners have good knowledge of the speech

properties of speakers from di↵erent sociophonetic speaker groups. The speaker structure

in listeners’ knowledge is not purely determined by social-demographic criteria. But rather,

it may be a reflection of the more nuanced co-variation between speakers’ phonetic proper-

ties and social aspects in di↵erent possible dimensions. Then, listeners use the information

of speakers’ sociophonetic group to make predictions about the characteristics of speakers’

productions2, including which speakers sound alike. Their knowledge of structure in talker

variability is obtained from listeners’ experience with the real-world sociophonetic speech

variability. In the above cases with fricatives, since men and women on average produce

fricatives (especially /s/) with di↵erent spectral peaks (e.g., Jongman et al., 2000), listeners

should use information about speaker gender to categorize fricatives when they encounter

new talkers, and therefore should not transfer what they learn about a male talker’s frica-

tives to a female talker or vice versa. Meanwhile, this model also predicts that if women

tend to produce broadly similar fricatives, listeners might not maintain a separate mental

model for the fricatives of each individual woman they encounter. This prediction also has

some experimental supports (Reinisch and Holt, 2014; Tamminga et al., 2020), which will

be reviewed in more detail in relevant chapters. The predictive power of the ideal-adapter

framework can be used for many other types of phonemes in addition to fricatives and stops,

as long as speech data are available and contain the productions of the phoneme in question

produced by speakers of various backgrounds. Through computational modeling based on

2This framework also works to predict speakers’ social group from their phonetic productions, but this
aspect is not directly relevant to the research question of the dissertation and is not reviewed here.

22



speech corpora, Kleinschmidt calculates informativity of speakers’ gender and dialect on

their productions of vowel formant and VOT length. He shows that gender and dialect

are more informative about speakers’ vowel formant frequencies than VOT length; among

them, gender is more informative about the absolute vowel formant frequencies, whereas

accent is more informative about the relative distribution of vowels in normalized space.

In a nutshell, models of perceptual generalization based on structure in talker variability

propose that listeners have knowledge of sociophonetic similarity between speakers and use

it to direct the storage, retrieval, and update of the mental distributions of instances associ-

ated with a phoneme label. How well this kind of model captures human speech perception

will depend in part on empirical findings of presented in this dissertation. Before diving into

more details of the specific assumptions and principles underpinning such a model, I would

like to first articulate why mechanistic properties of perceptual learning (flexibility vs. dura-

bility, specificity vs. generalization, etc.) are of interest to some of the theoretical questions

outlined in Section 1.1. They have implications for a critical issue at the heart of speech

perception and processing, namely, the architecture of the phonetics-phonology interface.

Research in this area aims at identifying and fixing the missing links between language struc-

ture and use, by pushing on questions like whether and how many acoustic details are stored

in listeners’ memories, whether phonetic knowledge is stored and represented as episodic

exemplars or abstract prototypes, and how these representations respond to typical and

atypical acoustic instances. In our case, conclusions of the specificity versus generalization

of perceptual learning may point to opposite views of how the phonetics-phonology map-

ping system works. Specificity seems to suggest that that phonetic details are dynamically

incorporated into listeners’ mental representations with rich, context-marked experiences,

whereas generalization tends to implicate that phonetic instances feed into a unique rep-

resentational system of phonological categories, one that tracks acoustic distributions of

tokens under specified categories but leaves out the information of the speakers and con-

texts of those tokens. Based on the above findings and insights, the present dissertation

seeks to provide a more accurate delineation of the mechanistic properties of perceptual
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learning and further clarify how the amassed empirical findings both in previous literature

and here speak to the involvement of knowledge about talker-variability structures in the

operation of perceptual learning.

1.3 Research questions and goals

The broad goal of this dissertation is to investigate the intriguing possibility that the gen-

eralization of perceptual learning across speakers within and between social groups reflects

listeners’ sociophonetic knowledge that mirrors the structure of real-world speaker variabil-

ity. However, as one of the first research endeavors to examine this proposal systematically,

the specific goal of this dissertation is to evaluate one of the most critical empirical supports

for talker-variability based generalization models, namely, that the perceptual learning of

fricatives is more speaker-specific than that of stops. Although this claim has been im-

plicated by the results of several separate studies reviewed earlier, these studies are not

designed to evaluate such a proposal specifically. They are intended to either evaluate rele-

vant questions of di↵erent scopes (e.g., “whether perceptual learning is talker-specific”) or

evaluate a di↵erent set of questions (e.g., accent adaptation). Therefore, the proposal of

structuralized speaker variability is often drawn upon as a post-doc explanation rather than

a research hypothesis. As a result, a number of missing links can be identified between the

results of these studies and the ultimate claim about di↵erent levels of speaker specificity

between fricatives and stops. For one thing, none but one of these studies includes a com-

parison between perceptual learning of di↵erent phoneme types. For another thing, most of

them su↵er from the confound between specificity to idiosyncratic speakers versus speaker

genders. This dissertation is aimed at filling in these missing links and providing a more

comprehensive picture of the generalization of perceptual learning across speakers within

and between gender groups for sibilants and stops.

The research questions of this dissertation are threefold in general. The first line of

inquiry regards the granularity of the social category that allows for generalization of the

perceptual learning of sibilants across members within such a category. Three levels of
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granularity are in consideration, namely, generalization across gender groups, generalization

within gender group, and generalization within individual. Similarly, the second line of

inquiry regards the granularity of the social category that allows for generalization of the

perceptual learning of stop VOT across members within the category. In other words, is

the perceptual learning of stop VOT talker-specific, gender-specific, or generalizable across

speakers and genders? The third line of inquiry involves a comparison between these two

types of phonemes, asking whether the perceptual learning of sibilant is more speaker- or

gender- specific than that of stop VOT.

Table 1.1 provides a summary of previous perceptual-learning studies of relevance to the

research questions outlined above. Because fricatives in general (instead of only sibilants)

have been argued to be informative of speaker identity (Newman et al., 2001), I have

included findings of fricatives in addition to those of sibilants in this review to gather a larger

amount of evidence. Four possibilities are under consideration for each of the two phoneme

types, namely, that the perceptual learning of phoneme type X is specific to individuals

within gender/generalizable across individuals within gender/specific to individuals across

genders/generalizable across individuals across genders. The enumerated studies may lend

support to one or more of these four possibilities. Studies in di↵erent cells should not be

simply considered as contradictory to each other, because these empirical findings need

to be interpreted in combination with the specific contexts or conditions where they are

observed. In our case, these conditions include whether perceptual learning is induced by

distributional or lexical information, whether visual cues to speaker identity are presented,

and whether the acoustic properties of the critical phonemes are similar between the training

and the test phase.

The remainder of this section discusses the specific research questions to be addressed

in this dissertation. Under the heading of each of these questions, I will walk through

some of the puzzling areas and vulnerability of previous studies, and discuss where there is

room for further investigation. I will also briefly introduce the corresponding experiments

associated with each of these questions, as well as what I expect to learn from the results
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Individuals across genders Individuals within gender

fricative
specific Kraljic and Samuel (2005, 2007);

Tamminga et al. (2020)�
none

generalize Eisner and McQueen (2005)†;
Reinisch and Holt (2014)†

Reinisch and Holt (2014);
Tamminga et al. (2020)�

Stop VOT
specific Munson (2011)� Allen and Miller (2004)?,

Theodore and Miller (2010)?,
Myers and Theodore (2017)?

generalize Kraljic and Samuel (2006, 2007) none

? indicates the availability of visual cues to speaker identity. † indicates the dependence of results
on acoustic manipulation of the target phonemes. � indicates distributional learning.

Table 1.1: Previous findings of the specificity versus generalization of perceptual learning
across speakers and genders for fricatives and stops

of this dissertation.

1.3.1 Is the perceptual learning of sibilant specific to talker or gender?

Under this line of inquiry, my first question regards whether the perceptual learning of

sibilants generalizes across speakers of di↵erent genders (Q.1). Although Kraljic and

Samuel (2005, 2007) have provided some evidence that perceptual learning of fricatives does

not generalize across speakers of di↵erent genders, they still leave several questions unsolved.

Kraljic and Samuel (2005, 2007) added an unlearning phase between the training phase and

the test phase, which raised the confound of whether the absence of the learning e↵ect is due

to an o↵set between two perceptual learning shifts towards opposite directions or disposal

of a previous perceptual shift after encountering a new voice. Tamminga et al. (2020)

evaluate perceptual shift induced by distributional properties instead of lexical contexts,

with the latter being more common in the context of the perceptual learning literature. This

question will be investigated in Experiment 1 of the current dissertation. Based on Kraljic

and Samuel (2005, 2007), I cope with the confound between o↵set and disposal by adding

more conditions of the intermediate learning phase that bias perception towards di↵erent

directions, either contradictory or consistent with the first phase of training. The results

are expected to provide a clearer answer to the question of specificity versus generalization

of sibilant perceptual learning across genders.
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Table 1.1 also seems to present a discrepancy between findings of perceptual specificity

(Kraljic and Samuel, 2005, 2007; Tamminga et al., 2020) and those of generalization (Eisner

and McQueen, 2005; Reinisch and Holt, 2014) of fricatives. However, these two lines of find-

ings are not really contradictory because they occur in di↵erent situations. In particular,

findings of perceptual generalization of sibilants only occur when additional manipulation

was implemented to ensure the acoustic similarity between fricatives in the training phase

and those in the test phase. In Eisner and McQueen (2005), generalization only applies

when the target phonemes involved in the training and test phases all come from a single

speaker and are later spliced with di↵erent voices; when the fricative instances come from

di↵erent speakers, the generalization does not occur. In Reinisch and Holt (2014), percep-

tual generalization does not occur until the acoustic range of the test continuum is tailored

to be less extreme and more comparable with the acoustic distributions of the training

stimuli. The second research question of this dissertation regards how the perceptual gener-

alization versus specificity of fricatives is conditioned on acoustic similarity (Q.2). This

question is investigated in Experiment 2 to obtain a clearer idea of the criterion for “acous-

tic similarity” between two sibilant instances: Do they need to be produced by the same

speaker, or do they need to overlap with each other along some critical dimensions? If their

similarity can be captured by the degree of acoustic overlap between these instances along

specific acoustic dimensions, then what is minimal the degree of overlap that is required to

allow for perceptual generalization? I expect the results of Experiment 2 to shed light on

these questions.

The third question under this line of inquiry regards whether the perceptual learning

of sibilants generalizes across speakers of the same gender (Q.3). Supporting evidence

of this hypothesis has been reported by two studies, one based on the perceptual learning

of foreign-accented speech (Reinisch and Holt, 2014) and the other based on distributional

learning (Tamminga et al., 2020, but with some lexical input in the mix). There is little

empirical evidence that lexically induced perceptual learning of fricative boundary is specific

to speakers of the same gender. Moreover, in perceptual learning studies with speakers of the
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same gender, it is unclear how similar the adopted voices are or whether listeners correctly

perceive these voices as coming from di↵erent speakers. Experiment 4 of this dissertation

evaluates this question, namely whether the presence of top-down cues to talker identity

facilitates speaker-specific perceptual learning. The results are expected to tease apart the

confound between talker-specificity and gender-specificity in previous studies that use voices

of di↵erent genders to stand for two di↵erent individuals.

1.3.2 Is the perceptual learning of VOT specific to speaker or gender?

The second line of inquiry extends the above questions to a di↵erent type of phoneme

contrast, namely, stop voicing indexed by the temporal cue of voice-onset-time (VOT). In

Table 1.1, previous studies have reported talker-specific perceptual learning for speakers of

the same gender (Allen and Miller, 2004; Myers and Theodore, 2017; Theodore and Miller,

2010) and perceptual generalization for speakers of di↵erent genders (Kraljic and Samuel,

2006, 2007). This is a somewhat unusual combination, because it is usually assumed that

talker variability is larger between genders than within gender, and that perceptual learning

generalizes among similar talkers but not dissimilar ones. This can be partially attributed

to the di↵erent paradigms and contexts of these two lines of experiments. In the line of

studies lending support to specificity (Allen and Miller, 2004; Myers and Theodore, 2017;

Theodore and Miller, 2010), additional visual cues to speaker identity (including photos of

speakers’ faces patterned with their names) are presented along with the acoustic stimuli

throughout the experiment. This information is expected to enhance listeners’ awareness

of individual speakers and help them distinguish between speakers who have similar voices.

As with sibilants, the second goal of this dissertation is to investigate whether the gen-

eralization of VOT perceptual learning can generalize across individuals of di↵erent gender

groups, remain specific to di↵erent gender groups but generalize across individuals of the

same gender group, or remain specific to individuals. These questions are evaluated in par-

allel to those for sibilants, except that acoustic similarity is not a concern for VOT because

there has been no evidence that it matters to VOT adaptation. I expect results to these
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questions to give us a better understanding of how perceptual generalization behaviors with

multiple speakers vary as a function of phoneme type. In particular, the distribution of VOT

production in natural speech seems to exhibit only a weak correlation with speaker gender

(e.g., Kleinschmidt, 2019), which di↵ers from spectral cues that exhibit strong correlations

with speaker gender (e.g., Jongman et al., 2000). A better idea of how perceptual learning

behaviors vary as a function of talker identity and phoneme type helps us understand the

nature of the talker structure that constraints perceptual generalization, or in other words,

what are listeners’ arguments behind their perceptual generalization/specificity decisions.

If this talker structure is more a reflection of listeners’ perception and mental construction

of speakers’ social identity, then we should expect the perceptual learning of sibilants and

stops to behave similarly with multiple speakers because the involved speakers maintain a

stable set of social attributes (e.g., gender) across experiments. In contrast, if the talker

structure involved in perceptual generalization reflects more of listeners’ knowledge about

sociophonetic variability in the acoustic realizations of phonemes, then we should expect

di↵erent perceptual learning behaviours for sibilants and stops due to their di↵erent degrees

of covariation with gender.

1.3.3 Is the perceptual learning of sibilant more susceptible to speaker

and gender specificity than that of VOT?

The third line of inquiry extends questions along the previous two lines and asks whether

sibilants’ perceptual learning exhibits a higher level of specificity than stops, as predicted by

models of structure in speaker variability. This dissertation approaches this broad inquiry

from the following two perspectives of views:

From a qualitative view, I have divided the specificity of perceptual learning into three

levels according to the granularity of the social structure that constrains their generalization.

From finer to coarser granularity, the perceptual learning of sibilants and stops may be either

“specific to talkers”, “specific to talker gender”, or “can be generalized across talkers and

talker genders”. As mentioned above, a between-gender multi-talker perceptual learning

29



experiment with various bias conditions of the intermediate learning phase will be conducted

to examine the generalization of perceptual learning across genders for sibilants (Experiment

1) and stops (Experiment 3). A within-gender multi-talker perceptual learning experiment

with conditions of auditory versus audiovisual cues to talker identity will be conducted to

examine the generalization of perceptual learning across speakers (Experiment 4). Then,

building on answers to these questions, we can finally ask whether the perceptual learning of

stops generalizes more broadly with coarser-grained constraints of speaker identity, whereas

the perceptual generalization of sibilants across speakers is more subject to finer-grained

constraints of social identity (Q.6). If we found that perceptual learning is talker-specific

for sibilants but generalizes across talkers for stops, or that it is gender-specific for sibilants

but can be generalized across talker genders for stops, then that is the qualitative evidence

for higher specificity of the perceptual learning of sibilants than stops.

If the perceptual generalization of sibilants and that of stop VOT exhibit sensitivity to

the same level of speaker social category, for example, they both show generalization across

speakers of di↵erent genders, the specificity level of these two mechanisms of perceptual

learning can still di↵er in the dimension of quantity. This specificity is reflected by the extent

to which the perceptual learning result reflects the distributional properties of the specific

speaker being tested. We may imagine that, after exposure to the speech of two speakers,

A and B, the listeners’ categorization of speaker A’s speech reflect a mixture of A’s and B’s

distributional properties for both sibilants and stops. However, if the perceptual learning

of sibilants reflect 80% influence of A’s speech and 20% influence of B’s speech, whereas

the perceptual learning of stops reflect 50% influence of A’s speech and 50% influence of

B’s speech, then the former still involves a higher level of talker specificity because the

result is more dependent on the acoustic properties of the specific test speaker. This is

the final specific research question that I plan to evaluate, namely, whether the perceptual

learning result of sibilants show higher consistency with the distributional properties of the

test speaker in training than that of stop VOT (Q.7).
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Chapter 2

General Method

This chapter reviews some of the major methodological issues in perceptual learning that

have been shown to a↵ect the experiment outcome and provides a general description of

the basic experimental paradigm adopted in this dissertation. Section 2.1.2 provides a

brief review of the methodological di↵erences between existing perceptual learning studies

and how they may alter the observed outcomes, including tasks and instructions, stimulus

properties, test paradigm, and result quantification. Building on these, I further discuss

the pros and cons of adopting di↵erent designs and summarize their implications for the

methodological decisions made in the current dissertation. Section 2.3 provides a general

introduction to the principal methodological factors involved in this dissertation, including

stimulus recording and manipulation, type of block, subject, and experimental task and

procedure. Experiments presented in Chapter 3-5 are derived from the paradigm described

in this chapter and are designed following a similar logic.

2.1 Review on the methodology of perceptual learning

This section reviews some of the principal methodological elements in the experimental

paradigms of perceptual learning. Section 2.1.1 introduces the standard practice of a

perceptual learning experiment in great detail, with a focus on two important learning

mechanisms involved in perceptual learning, i.e., context-guided learning and distributional

learning. Then, Section 2.1.2 reviews some of the more detailed methodological factors

that may cause gradient di↵erences in perceptual learning results. The findings reviewed
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in this section are expected to inform some of the methodological decisions made in this

dissertation, which I will discuss in a later section (Section 2.3).

2.1.1 Context-guided vs. distribution-based learning

Perceptual learning experiments typically involve using context to induce a degree of per-

ceptual bias for an originally ambiguous sound. The experiments in this dissertation are

largely modeled on the tradition of Norris et al. (2003), one of the most used techniques for

eliciting “lexically-guided” perceptual learning. Given the importance and influence of this

paradigm, it is necessary for us to go into details of Norris et al. (2003) before we extend it

to a wider range of topics and scopes.

Norris et al. (2003)’s paradigm uses a training phase in which lexical cues suggest the

categorical interpretation of an ambiguous sound to the learner. It takes advantage of

the well-established phenomenon where listeners prefer to hear words whenever possible

(Ganong, 1980). For example, if a listener hears [Ã@ôæ?], where [?] represents a fricative

halfway between [f] and [s], the listener will be inclined to interpret the fricative as /f/

to form the word “gira↵e,” because hearing the fricative as /s/ would produce only the

nonword “girasse.” Hearing the same ambiguous fricative in [h@ôæ?], on the other hand,

might lead the listener to an /s/ interpretation. In Norris et al. (2003), participants were

randomly assigned to either an /f/-biased or /s/-biased condition (with Dutch stimuli) and

were trained on a lexical decision task that consistently signaled the phonemic identity

of the ambiguous fricative according to whichever condition they were in. After training,

participants were tested on categorization of the ambiguous fricative in the syllables [Ef] and

[Es]. Listeners who had been trained on /s/-biased stimuli were more likely to categorize [?]

as /s/ in these syllables than those who had been trained on /f/-biased stimuli, suggesting

that the training had shifted either or both groups’ perceptual boundaries between /f/ and

/s/. An additional group of listeners was exposed to the ambiguous fricatives in nonwords,

and they showed no perceptual learning e↵ect in the post-test. In this paradigm, the

perceptual learning e↵ect is quantified by comparing /s-f/ perceptual boundaries exhibited
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by listeners on di↵erent conditions in the post-test categorization task.

The lexically-guided perceptual learning paradigm has been exploited considerably (e.g.,

Kraljic and Samuel, 2005, 2006, 2007; Maye et al., 2008; Reinisch and Holt, 2014). In

addition to lexical context, there are other contextual cues that have been shown to induce

such a shift of phoneme boundary. Bertelson et al. (2003) and subsequent studies (e.g., van

Linden and Vroomen, 2007; Vroomen and Baart, 2009a,b; Vroomen et al., 2007, 2004) have

successfully induced perceptual learning with visual cues of place of articulation. Cutler

et al. (2008) find that even phonotactic regularities can provide su�cient context to trigger

perceptual learning. In these cases, perceptual learning either directly implicates or is closely

related to a known bias in speech perception, be it a bias towards wordhood (Fox, 1984;

Ganong, 1980), audio-visual integrity (McGurk and MacDonald, 1976), or phonological

well-formedness (Hallé and Best, 2007; Massaro and Cohen, 1983), and listeners need this

information to infer the intended phoneme. The contextual cues mentioned in the above

cases provide crucial information that labels the intended category for the listener. In

this sense, Kleinschmidt et al. (2015) classified the cases of perceptual learning under the

guide of contextual information as problems of supervised learning, because such contexts

use lexical context to provide labels for ambiguous phoneme instances and guide listeners’

categorization decisions in training. In the meantime, there are situations where contextual

labels are not as informative or approachable. These cases include when critical instances

are embedded in minimal pairs where both directions of perception yield a real word, or

in language acquisition where top-down linguistic labels have not been included in the

knowledge of infant learners. This is when the adaptation mechanism needs to cope with

unsupervised learning problems, that is, to update one’s perceptual expectations based on

the acoustic distribution of speech input alone without associative labels.

Therefore, in addition to seeking for contextual feedback, listeners also need to keep

track of the bottom-up distributional information in continuous acoustic streams to op-

timize the mapping between acoustic statistics to speech sound categories. For example,

VOT typically shows two clusters centered around 0 and 50 ms with a boundary at 25
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ms (Lisker and Abramson, 1964). However, if a talker’s VOT clusters around 15 and 65

ms, listeners might reasonably learn a new boundary at around 35 ms (e.g., Kleinschmidt

et al., 2015; Maye and Gerken, 2001). This process of learning from simply being exposed to

frequency distributions of stimuli is often referred to as “statistical learning” or “distribu-

tional learning”. (e.g., Lacerda et al., 1995). These terms are sometimes used in a broader

sense; regarding perceptual learning in particular, it means that listeners are sensitive to

the distributional/statistical properties of the speech acoustics and use this information to

categorize them and update their norms.

Distributional learning is often considered to be an important mechanism in infant

speech category development (e.g., Maye et al., 2002), since infants lack lexical or phono-

tactic knowledge as sources for supervised learning. In adulthood perceptual adaptation,

distributional learning has been attested experimentally with continua of ambiguous seg-

ments embedded in nonwords (Maye and Gerken, 2001) and, more recently, in words of

minimal pairs (Kleinschmidt et al., 2015; Munson, 2011; Theodore and Monto, 2019). This

mechanism is also described mathematically (often with Bayesian models) in computa-

tional frameworks of acquisition of phonetic categories (e.g., McMurray et al., 2009), spoken

word recognition (Norris and McQueen, 2008) and perceptual learning (Kleinschmidt and

Jaeger, 2015; Toscano and McMurray, 2010). In general, these frameworks model listeners’

categorization decisions with probability density functions derived from the distributional

properties (e.g, mean and variance) of training acoustic values.

When sources for distributional learning and for contextual-guided learning coexist, the

outcome perceptual boundary may reflect a mixture of the two e↵ects. In light of this, in a

perceptual learning experiment, special attention should be paid to avoid unintended dis-

tributional learning e↵ect induced by irrelevant acoustic properties, which further interferes

with the actual word-guided learning result. This point will be discussed in more detail in

the next section.
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2.1.2 The influence of stimulus, paradigm, and task

This section reviews more detailed information of methodological factors in perceptual learn-

ing experiments, especially those interfering with the magnitude of the learning outcome.

The factors include di↵erent designs and tasks used to induce and quantify perceptual

learning, the acoustic properties of the training and test stimuli, and the attentional factors

associated with the nature of di↵erent stimuli and tasks.

2.1.2.0.1 The (a)typicality of critical instances in the training stimuli In the

training stimuli of perceptual learning, one of the two critical segments usually deviates

from the “canonical” form to some extent, such that listeners expand their boundary of the

intended phoneme to include the atypical instances. Meanwhile, it is also understood that

standard and nonstandard allophonic instances are assigned di↵erent weights in their encod-

ing: Nonstandard instances usually have less leverage on the shift of perceptual boundary

than standard ones (e.g., Sumner et al., 2014). As put by Kleinschmidt and Jaeger (2015,

p. 13), “(when) listeners encounter odd-sounding, often synthesized speech in a laboratory

setting, they may have little confidence ... that any of their previous experiences are directly

informative”. Therefore, the degree of atypicality needs to be limited to a certain scope for

perceptual learning to work.

The importance of the balance between deviation and typicality is also demonstrated

by empirical results. On the one hand, studies show that perceptual learning is less likely

to happen if listeners have prior exposure to standard instances of the to-be-expanded

category (Kraljic and Samuel, 2011). This is sometimes referred to as the “inoculation

e↵ect”. In other words, once a speaker has mentally anchored a phoneme with standard

instances of that phoneme from a particular speaker, they would be less willing to shift their

perceptual boundary with further exposure to nonstandard instances of the same category.

On the other hand, however, empirical studies have also reported that perceptual learning is

undermined by anomalous acoustic instances, including those with extreme acoustic values

(Kleinschmidt et al., 2015), those with a heavy nonnative accent (Witteman et al., 2013),
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and those with low intelligibility because of signal degradation (Sohoglu and Davis, 2016).

By contrast, a considerable number of lexically-guided perceptual learning studies have

induced robust perceptual learning with training stimuli containing “maximally ambiguous”

instances (Kraljic et al., 2008a,b; Norris et al., 2003; Reinisch and Holt, 2014). An instance

is identified as “maximally ambiguous” if it is half the time categorized as phoneme A and

half the time as phoneme B without lexical context.

In a nutshell, the above findings suggest that the most e�cient training materials for

perceptual learning should fall in an optimal range between ambiguity and typicality. The

question becomes how “maximally ambiguous” training stimuli commonly used in percep-

tual learning studies fit into this range. Babel et al. (2019) examined the magnitude of

perceptual learning e↵ect induced by “typical”, “ambiguous”, “atypical” and “remapped”

training materials. They found a maximal learning e↵ect induced by typical but ambiguous

pronunciations, an attenuated e↵ect by atypical pronunciations, and no e↵ect by typical

and unambiguous pronunciations, even for the remapped case. These findings provide jus-

tifications for using “maximally ambiguous” stimuli as training materials.

2.1.2.0.2 The (in)variance of critical instances in the training stimuli In addi-

tion to the (a)typicality of critical instances, another dimension of the acoustic distribution

of training materials that might a↵ect the outcome is (in)variance. It has been well attested

that listeners’ perception boundary of a phoneme will shrink after repetitive exposure to

invariant instances of that phoneme. For example, in phoneme identification with a /ba-

pa/ continuum, listeners with prior exposure to repeated good /ba/ are more likely to

categorize ambiguous sounds as /pa/ but not /ba/. This phenomenon is called selective

adaptation (Eimas and Corbit, 1973). Di↵erent from perceptual learning, the stimuli of

selective adaptation are usually repetitive presentations of an identical sound. As a result

of the repetition, listeners are less willing to include less prototypical acoustic instances in

the listener’s category.

It is unclear whether selective adaptation shares the same mechanism with perceptual

learning or operates separately (see e.g., Kleinschmidt and Jaeger, 2015, for an integrated
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account for selective adaptation and perceptual learning). However, Kraljic and Samuel

(2005) did raise the caveat that the interpretations of perceptual learning results are some-

times confounded by coexisting e↵ects of selective adaptation. Imagine a situation where

listeners who have heard a standard /ba/ and an ambiguous /pa/ repetitively end up per-

ceiving more /pa/ for ambiguous sounds. It is unclear whether this is due to the exclusion

of ambiguous tokens from the constricted /ba/ or the inclusion of those tokens into the

expanded /pa/. The easiest way to avoid this confound is simply to ensure an amount of

acoustic variability of the training stimuli.

2.1.2.0.3 The (a)symmetry of the continuum in the categorization test While

training stimuli for perceptual learning are expected to induce perceptual shifts e�ciently,

test stimuli should be used to record the boundary location at the moment faithfully with-

out introducing additional learning e↵ects. In this sense, researchers should look out for any

acoustic properties of the test stimuli that might induce unintended distributional learning,

as described in Section 2.1.1. One of the acoustic properties that makes the categoriza-

tion results susceptible to distributional learning is the asymmetry of the test continua.

For example, Tamminga et al. (2020) adopted a pre-test/post-test phoneme categorization

paradigm to quantify the shift of perceptual learning before and after exposure to atypical

phonemes. Surprisingly, they found that listeners started to shift their perceptual boundary

between /s-f/ over the ten repetitions of pre-test phoneme categorization even before they

heard any lexically-guided training stimuli. They attributed this finding to the fact that

the /s-f/ continuum for the test is not symmetric but leans towards /s/ acoustically and

perceptually. Exposure to such a distribution induces listeners to take tokens at the end-

points of the continuum as exemplars and shift their boundary to anchor with the midpoint

of the continuum. The finding implies that, for the test stimuli of perceptual learning, sym-

metric continua is preferred over asymmetric ones, because the perceptual learning results

collected with asymmetric continua might induce additional statistical learning during the

test phase, which is incorrectly taken to be top down.
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2.1.2.0.4 Experimental tasks in lexically-guided learning The most common tasks

used for lexically-guided perceptual learning include lexical decision and word identification.

The two tasks share similar ways to integrate listeners’ bias for wordhood and use it for

perceptual learning. To induce a boundary shift between a pair of phonemes, lexical stimuli

are designed to contain standard instances of one phoneme and nonstandard instances of

the other phoneme. For example, to expand category X and shrink category Y, the stimuli

are designed to contain nonstandard sounds of X and standard realizations of Y in their

own lexical contexts. If listeners recognize those stimuli as words, they unconsciously accept

the atypical sounds as realizations of the word-congruent phoneme.

The two tasks di↵ers in how they lead listeners to recognize those stimuli as words. In

lexical decision, listeners need to respond to both word and nonword stimuli and decide

whether what they heard is an existing word or a nonword. With low transitional prob-

abilities between phonemes or syllables in the language, the nonword stimuli are intended

to be obvious to listeners. In word identification, listeners hear word stimuli only (with

nonstandard X and standard Y embedded) and need to identify from two written options

the one they hear. Both of the two options contain the intended phoneme but only one of

them has the right word context (e.g., for rehear?al the answers would be “rehearsal” and

“reversal”). In this example, listeners are “forced” to accept the ambiguous sound as /s/

because there are no other options available to them.

Although the two tasks share a similar rationale of lexically guided perceptual learning,

they also have their own pros and cons as decided by the nature of the tasks. In lexical

decision, there is no guarantee word stimuli with ambiguous sounds would be classified as

“word” by participants. Although studies have shown that listeners’ endorsement of lex-

ical status has substantial impacts on the e�ciency of perceptual learning (Scharenborg

and Janse, 2013), the examination of lexical decision responses is sometimes overlooked in

perceptual learning studies with this kind of paradigm. This is not a problem for similar

studies adopting a word identification paradigm, because the information of lexicality is

presupposed by the task. Therefore, adopting a word identification task has the advantage
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of needing a shorter experiment and a simpler analysis due to the unnecessity of an equal

number of nonword stimuli to word stimuli or assessment on listeners’ lexicality endorse-

ment. That being said, it is still important for researchers to have a clear idea of how

convinced participants are of the lexical status of the stimuli, in order to prevent ine�cient

learning due to the inadequate activation of word-level processing.

2.1.2.0.5 Methodological factors related to attention orientation Experimental

elements could also exert an influence on the outcome of perceptual learning through di-

recting listeners’ attention either to the informational contents or to the acoustic properties

of the speech. Presumably, an attention-directing factor in such experiments is the nature

of the tasks for training and test. Listeners are more likely to turn on a “how mode” (Lind-

blom et al., 1995) whereby they pay more attention to pronunciation over contents if the

task focuses on speech signals at a sublexical level. These tasks include passive exposure to

training stimuli (Tillery, 2015), phoneme categorization with nonword stimuli (Norris et al.,

2003; Reinisch et al., 2014), and sound discrimination tasks (Clarke-Davidson et al., 2008).

With comprehension-oriented tasks that involve lexical activation and semantic processing,

however, listeners tend to adopt a “what-mode” (Lindblom et al., 1995) by attending more

to what is said over pronunciation. Tasks of this kind include lexical decision (e.g., Kraljic

and Samuel, 2005), identification of written words (McAuli↵e, 2015) or pictures (Klein-

schmidt et al., 2015), and comprehension of sentences (Davis et al., 2005; McAuli↵e, 2015)

and stories (Eisner and McQueen, 2006).

While the primary task plays an important role in attention orientation, other factors in-

cluding certain properties of the stimuli and the wording of instructions can also manipulate

listeners’ attentional mode. Some of those factors are listed in the following.

- Stimulus monotony: Larger stimulus variation is shown to lead to a more comprehension-

oriented attentional set (e.g., Cutler et al., 1987);

- Explicit instructions: Explicit instructions of the ambiguous phoneme promote a more

perception-oriented attentional set (e.g., McAuli↵e, 2015; Pitt and Szostak, 2012);
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- Cognitive load: Listeners show the same and even increased lexical bias e↵ects under

a higher cognitive load associated with more complicated tasks (Mattys and Wiget,

2011) or attentional distractors (Zhang and Samuel, 2014);

- The location of the critical phoneme in a word: Listeners are less likely to have full

activation of a lexical item at the onset of a word compared to later positions; (Jesse

and McQueen, 2011);

- The predictability of the critical word in a sentence: Words of lower predictability

induce more high-level processing (McAuli↵e, 2015).

Although these factors are tested with various paradigms of perceptual learning to ad-

dress di↵erent research questions, their impacts can be synthesized under the generalization

that perceptual learning is enhanced by a comprehension-oriented mode and attenuated by

a perception-oriented mode (McAuli↵e, 2015). For example, comparison between percep-

tual learning results with and without explicit instructions about the ambiguity of the

critical sounds show that explicit instructions would attenuate or totally inhibit the e↵ect

(McAuli↵e, 2015; Pitt and Szostak, 2012). Regarding the position of the critical sound in a

word, existing findings show that the perceptual learning e↵ect is barely induced with stim-

uli where the ambiguous sounds are located in word-initial positions (Jesse and McQueen,

2011; McAuli↵e, 2015; McAuli↵e and Babel, 2016), and the e↵ect is weaker for stimuli with

ambiguous sounds in word-initial positions than those with ambiguous sounds later positions

(McAuli↵e, 2015; McAuli↵e and Babel, 2016; Pitt and Samuel, 2006; Samuel, 1981). Studies

involving di↵erent predictability level of the critical word based on sentential context show

larger learning e↵ect with unpredictable stimuli than predictable ones (McAuli↵e, 2015).

Put together, the above review all point to the importance of a comprehension-oriented

mode in the elicitation of e�cient perceptual learning.

2.1.2.0.6 Between-subject versus within-subject design The e↵ect of perceptual

learning can be measured either through a between-subject paradigm or a within-subject

one. The standard practice in the literature is to compare the categorization results of
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listeners who are in di↵erent prior training conditions. In Norris et al. (2003), for example,

participants are randomly assigned to experimental conditions that get opposite treatments

in the training stage; then they participate in a phoneme categorization task with the same

sound continuum. The di↵erence of the categorization results between groups is taken as

an indicator of the perceptual learning e↵ect. The downside of this paradigm, however, is

one shared by between-subject designs in general. That is, the di↵erence between the final

categorization results can be attributed not only to the di↵erence in training but also to a

potential di↵erence in the categorization baseline between di↵erent groups of participants.

One way to avoid this problem is to adopt a within-subject paradigm in perceptual

learning studies, by adopting a pretest-exposure-posttest design. That is, listeners are first

pretested on their categorization with stimuli along an acoustic continuum; after exposure to

ambiguous segments in biased contexts, they are tested again on the same continuum. The

di↵erence between the pretest and posttest categorization results indexes the learning e↵ect

induced by the exposure phase. This is the standard setup of visually-guided recalibration

experiments following Bertelson et al. (2003), and it has also been successfully used to

evaluate lexically-guided perceptual learning (Eisner and McQueen, 2006). However, this

approach su↵ers from another set of confound, that is the involvement of distributional

learning during pre-test and post-test categorization. As discussed earlier in this section,

when the continuum is asymmetric, the learning e↵ect based on the acosutic distribution of

the continuum in the pretest and posttest interferes with the lexically-guided learning e↵ect

during the exposure stage. Such an approach is also a↵ected by the innocent constraint,

which states that listeners are less likely to shift their boundary after learning if they have

been exposed to the well-articulated tokens of the phoneme in question from the same

speaker before. In other words, the involvement of standard tokens at the endpoints of the

pretest continuum might also undermine the introduction of perceptual learning e↵ects.
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2.2 Methodological decisions in this dissertation

The findings reviewed above provide basis for some of the methodological decisions made

in this dissertation. This dissertation uses the well established lexically-guided paradigm

of perceptual learning as a testing ground to investigate the role of speaker identity and

gender. Regarding the experimental task, this dissertation adopts a word identification

task throughout the entire experiment, including both the training phase and the test

phase. Again, the use of this task benefits from several advantages: Compared to a lexical

decision task, word identification needs fewer stimuli for the omission of nonword ones. In

addition, since the lexical status of stimuli is implied by the nature of the task, there is less

concern of the lexical endorsement of stimuli by participants, which may a↵ect the e�ciency

of perceptual learning.

Like the training phase, word identification is also used for the test phase. Steps on

an acoustic continuum are spliced into minimal pairs, and listeners’ perception boundary

can be examined from their choice between two words contrasted by one phoneme. From a

ecological validity perspective, hearing sounds embedded in words is more common in real

life than hearing sounds in nonword syllables. Also, this makes the training and test phases

more consistent in paradigm and so their division less obvious to participants. Listeners

would not need to change their attentional set in order to cope with the transition from a

comprehension-oriented task to a perception-oriented one. On one hand, a comprehension-

oriented task plays a facilitating role in perceptual learning in the training phase. On the

other hand, with less attention to the acoustic distributions of the stimuli, listeners are less

likely to shift their perception boundary through distributional learning in the test phase.

The above review also shed light on the appropriate range of acoustic properties of

stimuli. Following the Goldilocks zone of perceptual learning (McAuli↵e and Babel, 2016),

the training stimuli are made of maximally ambiguous segments between the two target

phonemes embedded in lexical contexts. Previous findings also provide caveats on the

importance of introducing an amount of variability in the acoustic distribution of the tokens,
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in order to rule out the confound of selective adaptation. To introduce more variability,

di↵erent critical segments will be chosen for each of the lexical items instead of splicing an

identical sound into di↵erent word frames.

Regarding the test stimuli, pilot studies of phoneme categorization in the form of lexical

decision are conducted in order to pick the right steps that are symmetric around the 50%

categorization point. Endpoints of the continuum are not included in the test stimuli

in order to prevent an “inoculation e↵ect” (Kraljic and Samuel, 2011), which says that

exposure to standard instances blocks perceptual learning. It is also ideal to reduce the

number of steps and repetitions of the ambiguous stimuli, and to increase the variety of

lexical guises of minimal pairs in the test, in order to avoid the elicitation of a perception-

oriented attentional mode.

Lastly, the dissertation adopts a between-subject design instead of a within-subject one

in order to prevent extra learning from the pretest categorization phase, or any blocking

e↵ect by standard instances in the pretest. In the meantime, training conditions towards

opposite directions are adopted in addition to a baseline condition without training. This is

done to ensure that the di↵erence of perception boundary between conditions are consistent

with the training conditions, instead of merely a baseline di↵erence.

2.3 General method of the dissertation

This dissertation examines the perceptual learning of two pairs of phonemes (/t d/, /s

S/) across di↵erent speakers and genders. Experiments on the perception of /s S/ are

presented in Chapter 3-4 and those on the perception of /t d/ are presented in Chapter 5.

The perceptual learning experiments in the two chapters normally contain one or several

training blocks followed by a test block, both implemented in the form of a identification

task. The basic experimental procedure is shown in Fig. 2.1.

Each block contains an identical amount of word identification trials. The training

blocks may di↵er from each other in two dimensions, namely, the voice of the speaker (A, B),

and the acoustic distribution of the target phoneme (X-favoring, Y-favoring, unbiased). The
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X-favoring speech
- ambiguous X
- standard Y

Training: Speaker A Training: Speaker B Test: Speaker A

X-favoring speech
- ambiguous X
- standard Y

Y-favoring speech
- standard X
- ambiguous Y
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Figure 2.1: A diagram of the basic experimental procedure in this dissertation. X and Y
stand for the two target phonemes involved in the experiment

training trials are responses to lexical stimuli with ambiguous instances for one phoneme

(X) and standard instances for the other phoneme (Y). After exposure to these stimuli,

listeners are expected to expand their category X and shrink category Y in order to account

for these instances (i.e., X-favoring). Trials in test blocks were generated by embedding

ambiguous segments in frames of minimal pairs contrasted by the two target phonemes, so

that categorizing the segment as either of these phonemes would result in an English word.

Filler trials without the target phonemes were also included in these types of blocks.

This paradigm allows for independent manipulations of speaker identity and phonetic

distribution across experimental conditions. More details about the makeup of each type

of block and trial are introduced in the following subsections.

2.3.1 Block and trial

An experimental block may either be a training block, an intervening block, or a test block,

depending on the functions and proportional makeup of di↵erent types of trials. All these

blocks contain the same number of trials (N=51), and the trial order is randomized for each

participant.

A training block contains 34 training trials and 17 filler trials. The former is evenly split
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between 17 trials containing instances of phoneme X and 17 containing Y, while the latter

do not contain any X or Y. The training trials are designed to use lexical context to guide

the perception of ambiguous sounds towards the intended direction of the experiment. As

explained earlier, the crucial design that induces perceptual learning is that the instances of

one of the critical phonemes are standard whereas those of the other critical phoneme are

ambiguous acoustically. For example, an /s/-favoring training condition contains ambiguous

/s/ sounds and standard /S/ sounds embedded in lexical contexts that favors /s/ and /S/

respectively (e.g., [I’nIS@l] and [ôI’hÄ?@l]). The provided options are the correct word and

and one foil of a phonetically similar word. Crucially, they are not contrasted on the

critical sound. In the above example, the options for /I’nI?@l/ are initiate and initial, both

supporting the perception of /S/, and options for /ôI’hÄ?@l/ are rehearsal and reversal, both

pointing to /s/. See Table 2.1 for more examples of trials on other training conditions.

/s/-favoring [ôI’hÄ?@l] [I’nIS@l]
/S/-favoring [ôI’hÄs@l] [I’nI?@l]

correct answer/foil rehearsal/reversal initial/initiate
/t/-favoring [fr2n’?Iô] [@’Ãend@]
/d/-favoring [fr2n’thIô] [@’Ãen?@]

correct answer/foil frontier/frontal agenda/Amanda

Table 2.1: Examples of training stimuli in di↵erent experimental conditions: IPA transcrip-
tions and two options provided for identification

Table 2.2 and 2.3 provides the full lists of words that respectively contain /s-S/ and /t-d/

used for training in the experiments of this dissertation. The two word sets with /s/ and

/S/ are balanced for lexical frequency, and so are those with /t/ and /d/. Word frequency is

determined using the SUBTLEX corpus (Brysbaert and New, 2009) FREQcount measure.

The information of word frequency and the foil option is also presented for each word. Note

that I sometimes used low-frequency word such as names of specific places (e.g., Grayshott)

as foils in order to maximize their phonetic similarity with the target word. Even if listeners

do not recognize these words, it should not prevent them from deriving their pronunciations

and choosing the correct word instead. The remaining 17 filler trials in the training block

contain neither of the two critical phonemes. For example, for the stimulus /faUl/ listeners
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need to choose between foul and vowel, and no /s S/ or /t d/ are included in the stimulus.

Their purpose is simply to make listeners attend more to the content of the word rather

than the nuanced acoustic variability of the target phonemes.

/S/-containing /s/-containing
target freq foil target freq foil

1 compensate 124 condensate ambition 273 inhibition
2 dinosaur 203 dining-set beneficial 40 artificial
3 embassy 397 embarrassing brochure 97 butcher
4 episode 627 webisode commercial 829 financial
5 eraser 51 harasser crucial 234 cruel
6 falsetto 15 falsehood e�cient 253 e↵ective
7 faucet 73 flawless evaluation 225 valuation
8 hallucinate 15 deracinate glacier 38 Grayshott
9 legacy 256 legally graduation 500 substitution
10 medicine 1744 medical impatient 206 impacted
11 obscene 176 obscuring initial 325 essential
12 parasite 126 parasol negotiate 342 negation
13 peninsula 70 Pennsylvania o�cial 1224 optimal
14 personally 1870 personality parachute 162 paragon
15 pregnancy 334 presidency publisher 230 publicly
16 reconcile 58 gracile refreshing 187 infringing
17 rehearsal 635 reversal vacation 1673 vocation

Mean: 419.8 Mean: 402.2

Table 2.2: Word list of the training trials for the perceptual learning of /s-S/

Filler words exist in every experimental block in this dissertation, except that di↵erent

types of blocks have di↵erent proportions of fillers. In an intervening block, the whole 51

experimental trials are filler trials, which is intended to evaluate the persistence or change

of perceptual learning e↵ect without further exposure to critical phonemes in the speech.

Table 2.4 provides a list of filler trials used in this dissertation.

A test block contains 35 test trials and 16 filler trials. The 35 test trials are generated

by splicing 7 repetitions of 5 steps along a acoustic continuum into word frames of minimal

pairs. Di↵erent perception of the critical sounds yields in two possible words, which are also

the two choices on that particular test trial. For example, for the stimulus /?eIm/ listeners

need to choose between same and shame). This is similar with /t d/, such that the options

for /?aI/ may be tie and die. I did not include minimal pairs with coda contrasts (e.g.,
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/d/-containing /t/-containing
target freq foil target freq foil

1 academic 238 academia cafeteria 289 criteria
2 accordion 67 according casualty 138 casually
3 agenda 373 Amanda cemetery 443 cemented
4 armadillo 8 armchair consultation 64 consultative
5 coincidence 948 coincident frontier 167 frontal
6 comedian 209 commission hesitation 94 hesitate
7 confidence 993 confident infantile 38 infantry
8 crocodile 115 crockery lunatic 433 lunar
9 handy 623 handling magnetism 49 mathematics
10 hazardous 94 hassling military 2103 militant
11 iodine 64 idol momentary 56 moment
12 kingdom 787 kindle overtime 318 overtake
13 melody 337 metallic relative 397 related
14 merchandise 245 merchandiser royalty 200 loyalty
15 remedial 20 remediate scientific 580 scientist
16 residence 421 resilience voluntary 103 voluntarily
17 secondary 209 security warranty 42 warranted

Mean: 338.3 Mean: 324.4

Table 2.3: Word list of the training trials for the perceptual learning of /t-d/

led vs. let) or containing more than one syllable (e.g., writer vs. rider). This is because

vowels preceding voiceless stops are shorter in duration than vowels preceding the voiced

cognates, and this di↵erence is meaningful in perception as well (House and Fairbanks,

1953; Klatt, 1976; Zimmerman and Sapon, 1958). Excluding minimal pairs contrasted on

word-final /t/ and /d/ prevents integration of additional duration cues. However, there

may still be influences of other secondary accompanying cues such as F0 (Whalen et al.,

1993), formant transition (Liberman et al., 1958) and the energy distribution of the burst

(Chodro↵ and Wilson, 2014), admittedly. In this chapter, the only acoustic cue of /t d/ to

be manipulated is the VOT distribution. Therefore, in the stimuli manipulation process,

I have ensured that the secondary cues reviewed above are ambiguous or not informative

enough to signal a strong preference for the identification of one segment or the other. The

final candidates included in the recording are shown in Table 2.5.
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Filler Foil Filler Foil Filler Foil
airline alkaline foul vowel nothing nutting
amongst among framing Fleming racoon balloon
anvil angle gable gamble raven ravel
average advantage gargoyle char-broil ribbon region
banana barbarous honey hobby row low
beloved belated iguana Guana runaway takeaway
bu↵alo bu↵er January February thumbnail toenail
dragonfly dragon-fruit jewelry jealousy verify varified
earning earing journal journey village voltage
eyebrow eye-bolt lonely longing volleyball valleygirl
feeling feeding marina Maria vugar Vodka
firefly fairfax enamel enable wa✏e castile
follow fallow Nepal Napoleon wharf wolf

Table 2.4: Word list of fillers and their foil options in perceptual learning

/s-S/ same-shame sake-shake seat-sheet suit-shoot sock-shock
sip-ship sign-shine sigh-shy sell-shell self-shelf

/t-d/ done - ton dime - time deer - tear dip - tip dose - toes
down - town Dutch - touch die - tie dim - Tim dean - teen

Table 2.5: Word list of test trials in the form of minimal pairs

2.3.2 Recording

Materials recorded for further manipulation in this dissertation contained 68 training words

in Table 2.2 and 2.3, 39 filler words as shown in Table 2.4, and 40 test words in Table 2.5.

All the words were first read by a female native English speaker, who is also a linguist

at Penn. She was instructed to read each word with a falling intonation and a smooth

speech rate in a consistent manner. The 68 training words were read once normally and

a second time with the critical phoneme replaced by the opposite one. In other words,

both [I’nIS@l] and [I’nIs@l] were produced for initial, and both [’EvId@ns] and [’EvIt@ns] are

pronounced for evidence. Then, two female speakers and two male speakers of standard

American English were recruited from the undergraduate subject pool at UPenn to read

after the first speaker’s production, including all the training words with both the original

the replaced phoneme, as well as the filler and test words. The four speakers were asked to
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imitate the model talker’s pronunciation and intonation. The whole recording process was

monitored by the author to make sure of the consistency of the prosodic patterns, including

a falling intonation trend and consistent positions of lexical stress. All the stimuli were

recorded in a sound-proofed recording booth at the University of Pennsylvania, with a Yeti

microphone at a sampling rate of 44.1 kHz.

2.3.3 Manipulation and pilot

The two types of critical phonemes – sibilants and stops – are annotated and manipulated in

di↵erent ways, which will be described in greater details in the chapter where they become

relevant. Broadly, for sibilant stimuli, each pair of s-sh instances produced with the same

word frame (e.g., compensate and compenshate) are cut out and mixed with each other by

five steps of proportions. Then the synthesized continuum is spliced back to the production

instance of the correct phoneme (compensate).

For stops, however, the ambiguous sounds halfway between /t d/ are all manipulated

from voiceless /t/ sounds by VOT compression. For each production with /t/, five sections

of areas are annotated for each critical sound. They are obstruction, burst, aspiration, tran-

sition and vowel. The VOT coarsely corresponds to the “aspiration” part and is measured

automatically based on the annotation, whereas the burst is not included in the VOT mea-

surement. In addition to VOT time-compression, the manipulation may also include the

reduction of the burst amplitude, as well as the splicing of the transition (and sometimes

also the following vowel), if pure VOT manipulation does not make the phoneme ambiguous

enough.

For the training stimuli, a pilot lexical decision experiment is conducted to select the

most ambiguous step of sibilant and VOT for each lexical item. The synthesized acoustic

steps on the continuum are each presented in their unambiguous word frames. Listeners

need to judge whether these productions are English words or not. Finally, based on the

results of this lexical decision task, the most ambiguous acoustic steps (in stimuli chosen as

nonword 50% of the time) are selected to be further used to construct the training materials
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in perceptual learning.

Like the training stimuli, perception experiments were also conducted to select the steps

and word frames of minimal pairs to be used for stimuli in the test phase. The test trials

are generated by splicing eleven acoustic steps on a /s-S/ or /t-d/ continuum into di↵erent

word frames of minimal pairs. Participants need to choose between the two words in the

minimal pair which one they hear. Based on their responses, the most ambiguous steps

that triggers an equal number of the two words are selected as the center point of a new

five-step continuum to be spliced into the test trials.

2.3.4 Subject recruitment

All the experiments are programmed and implemented through the Ibex online experimental

platform, along with the PennController system (Zehr and Schwarz, 2018). The subjects

are recruited either from the UPenn subject pool or from Prolific, a subject pool for online

experiment (Palan and Schitter, 2018). Attention has been paid to ensure that participants

on di↵erent conditions of the same experiment whose results are to be compared come

from the same subject pool, since the demographic di↵erence between these two groups’

participants may a↵ect their perceptual learning results.

Internet-based research is considered beneficial for several reasons. It allows for the

recruitment of a large sample of participants coming from diverse backgrounds at a relatively

low cost. Also, the lack of researcher presence in internet-based research helps prevent

researcher bias and ensures procedure replicability (e.g., Birnbaum, 2004). Research on

methodology comparison has been conducted to evaluate whether data collected through

internet delivery and face-to-face contact produce comparison results both in the field of self-

reporting surveys and questionnaires (e.g., Carlbring et al., 2007; Whitaker, 2007), and with

experimental approaches (e.g., Birnbaum, 2001; Reips, 2002; Vadillo and Matute, 2011).

Mostly, these studies reported that internet-based studies tend to obtain their e�ciency

while producing results similar to traditional laboratory results, lending support to the

integrity of results obtained through internet-based approaches (see Honing and Reips,
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2008, for a review).

2.4 Planned analyses and result interpretation

The experimental design adopted in this dissertation (as elaborated with Fig. 2.1) provides

a specific situation of perceptual learning with multiple talkers: If a listener encountered A

who has high-frequency /s/ and /S/ sounds and learned to adapt to it; after a while, she

encountered B who has a low-frequency /s/ and /S/ sounds (di↵erent speaker and acoustic

distribution). Then by testing listeners’ categorization behaviors with Speaker A’s speech

in the final phase, we want to figure out what kind of phonetic distribution listeners will

adopt when they hear A’s speech again. Assuming perceptual learning happens with the

speech of both A and B, we may consider the above question to be a combination of two

sub-questions: 1) how much of the perceptual learning of Speaker A’s speech would be

applied to the perception of Speaker A’s speech in the final stage; and 2) how much of the

perceptual learning of Speaker B’s speech would be applied to the perception of Speaker A’s

speech in the final stage. For each of two questions, the answer could fall into a continuum

ranging from “not at all” to “a hundred percent”, and combinations of di↵erent parameters

set for these two dimensions will result in qualitatively di↵erent patterns.

Figure 2.2 is plotted to help visualize what the possibility space looks like. As a first

step, if we only consider the extreme situations (either 0% or 100%), four di↵erent patterns

can be derived: cumulative update, recency update, retention and reset. In what follows,

I will interpret these four possibilities, and present findings in favor of each of them in

previous literature on perceptual learning.

2.4.0.1 Retention

Retention refers to the possibility that the established speaker-specific phonetic belief is

retained in the listener’s mind, and becomes activated again each time when the same

speaker is encountered. In the case discussed above, retention would predict that listeners

will only use what has been learned from speaker A to cope with A’s speech, without
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Figure 2.2: Potential outcomes of perceptual learning with speaker A and B successively

interference from the intervention of B’s speech acoustics. Such a mechanism would require

memory of phonetic distributions to be long-term and highly speaker-specific.

Kraljic and Samuel (2005) provided a thorough investigation on this question, by asking

what kind of intervening materials can be used to “undo” the learning of /s-S/ distributions

with a previous speaker. The intervening materials they examined include: a) speech from

the same model talker or a di↵erent talker that contains no critical phonemes; b) speech

from the same model talker or a di↵erent talker that contains good instances of /s/ and /S/;

c) speech from the same model talker or a di↵erent talker good instances of /s/ or /S/ that

is opposite to the training (e.g., if the training contains ambiguous /S/, then the intervening

block contains non-ambiguous /S/); and d) a silent visual game with equivalent duration.

The two speakers used in their experiment have di↵erent genders.

Their results showed robust durability (and sometimes a boost) of perceptual learning

under several conditions. The learning e↵ect was not canceled out by an intervening silent

visual game or exposure to a di↵erent speaker with or without the critical phonemes. The

boundary also remained where it was after encountering speech of the same speaker without

instances of or with good instances of /s/ and /S/. The only intervening speech that made

a di↵erence is the speech of the same speaker with an opposite acoustic distribution of the
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critical phoneme compared to the preceding block. This is expected because there were not

multiple speakers; listeners were just updating their cue distributions for the same speaker.

The results showing the retention of learning after exposure to a di↵erent voice with opposite

cue distributions was replicated later in Kraljic and Samuel (2007). Based on these findings,

it seems that perceptual learning is quite robust and is resistant to interference with di↵erent

voices and variable critical instances.

Other studies lending support to the possibility of retention of perceptual learning

include Allen and Miller (2004) and Theodore and Miller (2010). With a somewhat di↵erent

experimental paradigm, they showed that perceptual beliefs about VOT distribution are

robustly talker-specific. In specific, they trained listeners on the speech of two female

talkers, one with short VOTs and the other with long VOTs, and evaluated whether listeners

choose a short or long VOT variant to represent a given talker’s speech. They found that

listeners were able to select the variant consistent with a given talker’s VOT characteristics.

Moreover, they can generalize the learned feature to novel words with the same phoneme

(Allen and Miller, 2004) and novel voiceless stops with the same contrast (Theodore and

Miller, 2010). This set of experiments di↵er from Kraljic and Samuel (2005, 2007) in several

aspects: The two speakers they used have the same gender, and stimuli were each paired

with the name and photo of their own speakers. In addition, they used unsupervised learning

in the training phase by embedding the critical sounds in lexically ambiguous contexts.

The above findings all indicate that listeners can maintain speaker-specific results of

perceptual learning in a robust manner.

2.4.0.2 Reset

Reset refers to the process of wiping out previous perceptual outcomes and beginning to

establish new phonetic beliefs from scratch. This possibility is diagnosed if we see a pre-

viously shifted perception boundary goes back to where it have been (the baseline) after

exposure to a di↵erent talker’s speech.

Findings in favor of reset also comes from Kraljic and Samuel (2007). While they
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observed retention of talker-specific phonetic beliefs with s-S, they did not find the same

thing with stops of /t-d/. The experimental paradigm was similar. Participants were

first trained with speech of two talkers with di↵erent genders (A and B) in two sequential

training blocks, with their VOT distribution biased toward di↵erent phonemes (either /t/

or /d/). Then participants were tested on the perception boundary of /t-d/ in talker A’s

voice. Surprisingly, the results showed no learning e↵ect this time. Kraljic and Samuel

(2007) proposed two possibilities that somewhat paralleled the possibilities of cumulative

update and reset, namely, either that listeners had integrated the two halves of opposite

VOT distribution together to form a new aggregate distribution that was not biased towards

either end of the continuum (cumulative update), or that they had reset the phonetic belief

about Speaker A’s speech in order to orient themselves towards the speech of an upcoming

speaker (reset). Then, they kept the training phases identical and changed the test stimuli

to be speaker B’s speech, and this change successfully induced an amount of boundary shift.

Based on these results, Kraljic and Samuel (2007) argued for the explanation of reset against

cumulative update. According to their interpretation, if distributions in the first block and

in the second block canceled each other o↵ by accumulation, then the second-phase training

would not have the power to shift the perceptual boundary of either A’s or B’s speech any

more with their local statistics. The result itself is clear, but corresponding interpretations

were somewhat puzzling. However, a possible concern is that the relationship between two

speakers need not be symmetric in principle. The reasoning they used to rule out cumulative

update would no longer valid if, for example, the perceptual learning of male speech are more

general and that of female speakers are more specific. In this case, cumulative update still

may partially account for the observations in Kraljic and Samuel (2007). In addition, it

is also unclear why the results were at odds with Allen and Miller (2004) and Theodore

and Miller (2010), both of which observed the retention of talker-specific phonetic beliefs

of talker VOT.
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2.4.0.3 Recency update

Recency update refers to a process, according to which, phonetic beliefs are by and large

shaped by the most recent acoustic instances of recently encountered speakers, while learn-

ing based on “old” acoustic instances fade out rapidly. This process is diagnosed if the

perceptual learning result consistently mirrors the distribution of the recent acoustic in-

stances.

Unlike studies showing that phonetic beliefs were long-lasting and specific to speakers

in multispeaker speech perception (e.g., Allen and Miller, 2004; Kraljic and Samuel, 2005),

very few studies argue that perceptual learning is simply tracking the most recent statistics

from any talker. However, the phenomenon that listeners disregard prior experience with

a talker and update to the most recent input is not uncommon in studies of perceptual

learning with a single speaker. Saltzman and Myers (2018) had listeners exposed to four

interleaved blocks of lexical decision that were designed to skew the perception boundary

between /s/ and /S/ towards opposite directions. They examined the perception shift after

each lexical decision block with a phonetic categorization task. Their result showed that,

in each session, listeners’ perceptual bias was consistent with the cue distributions in the

immediately preceding lexical decision block. Saltzman and Myers (2018) therefore argue

that, in perceptual learning, listeners rely more heavily upon the most recent information

and down-weight older, consolidated information.

The influence of recent acoustic instances was commonly observed in empirical percep-

tual learning experiments, but it is challenged for making predictions about the short-term

nature of perceptual learning. For example, Kleinschmidt and Jaeger (2015) posited that

talker- specific distributions cannot be created or maintained if a listener simply tracks the

recent statistics from a talker. Debates are still under way regarding the role of newly

encountered talker-specific instances (“recent” or “local” statistics), as opposed to the cu-

mulative distribution of a talker’s instances (“cumulative” or “global” statistics), which I

am about to review in the next section.
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2.4.0.4 Cumulative update

Cumulative update refers to the process of building up phonetic beliefs based on the cu-

mulative acoustic distribution of a collection of “old” and “new” instances of a phoneme.

As illustrated in Figure 2.2, this process is diagnosed if the outcome of perceptual learning

reflects aggregation of partly speaker A’s distribution and partly speaker B’s distribution.

Empirical findings in favor of accumulation are numerous, both with speech of a single

speaker, or with multiple speakers. Kraljic and Samuel (2005) showed that speech inputs

from the same speaker with di↵erent acoustic distributions of /s/ and /S/ canceled each

other out in perceptual boundary shift. Van Linden and Vroomen (2007) induced percep-

tual learning along a /t-b/ continuum using both lexical biases and lip-reading cues, and

examined the time-course of perceptual learning with sporadic trials distributed in di↵erent

positions of a block. They found that, as more recent instances were integrated towards the

end of the block, the learning e↵ect became smaller and finally gone.

Theodore and Monto (2019) demonstrated a di↵erent manifestation of the build-up

of the global statistical e↵ect, by manipulating the range instead of the mean of VOT

distribution. They adopted an unsupervised paradigm to induce perceptual learning with

the /k-g/ contrast, by having half of the participants exposed to a narrow VOT distribution

in one block followed by a wide distribution block, with the order reversed for the other

half of the listeners. The result showed a steeper identification slope from the narrow-wide

group compared to the wide-narrow group for earlier trials, with the di↵erence attenuated

towards the end of the experiment. This result was interpreted to show that listeners did

not disregard prior experience within a talker, but rather used cumulative statistics to guide

phonetic decisions.

56



Chapter 3

Exp 1: Perceptual Learning of /s-S/
across Speaker Genders

This chapter reports on Experiment 1, which evaluates how the perceptual learning of

fricatives operates across speakers of di↵erent genders. Experiment 1 contains a series of

sub-experiments that investigate how listeners integrate the acoustic distributions of /s/ and

/S/ of speakers of di↵erent genders to adjust their perceptual expectations in multi-speaker

listening. This chapter is organized into four sections. Section 3.1 summarises findings

in the previous literature on the acoustic analysis and perceptual correlates of /s-S/ and

outlines the research question and predictions of this experiment. Section 3.2 provides an

overview of the methodology, including general design, experimental conditions, stimulus

manipulation, and stimulus acoustics. Section 3.3 reports on results of a pilot study and a

series of three sub-experiments. Section 3.4 discusses the implications of the main findings

and concludes this chapter.

3.1 Background and research question

The background literature reviewed in this section are twofold: Section 3.1.1 summarizes

findings on the production and acoustic properties of /s-S/ and how they vary with speaker

gender in speech production; Section 3.1.2 summarizes findings on the perceptual correlates

of /s-S/ and the influence of speaker gender on the categorization and perceptual learning

of /s-S/. Building on the review, Section 3.1.3 articulates the research questions of this

chapter and lay out the predicted patterns of the experiment results for each hypothesis as
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a potential answer to the research question.

3.1.1 The acoustic properties of /s-S/ and gender variation in production

The acoustic properties of the sibilants /s/ and /S/ have been well examined, both regarding

how their acoustic realizations are di↵erent from other non-sibilant fricatives, and in terms

of how they di↵er from each other. Jongman et al. (2000) examined the acoustic di↵erences

between sibilants with four places of articulation: labial (/f, v/), dental (/T, D/), alveolar

(/s, z/) and post-alveolar (/S, Z/) with a set of extensive spectrum measurements, and found

/s, S/ to be di↵erent from other fricatives in a number of ways.

The first measure that captures their di↵erences is the root-mean-square (RMS) am-

plitude. Consistent with previous research (Behrens and Blumstein, 1988; Strevens, 1960),

Jongman et al. (2000) found the highest amount of RMS amplitude normalized by vowel

amplitude with /s z S Z/: their RMS amplitude is higher by around 10-15 dB than /f v

T D/. The second parameter is the F2 transition. /s z S Z/ have lower F2 transition than

/f v T D/, and /S/ has a still lower F2 transition than /s/. This is because the place of

articulation of /s-S/ is backer than the labial fricatives examined. Thirdly, /s S/ has the

longest noise duration after normalization among all the examined fricatives, and the noise

duration of /s/ is still longer than that of /S/. Lastly, sibilants are also found to have the

lowest frequencies of spectral peaks and the smallest spectral variances. This property is

also well-defined in previous literature (Behrens and Blumstein, 1988; Heinz and Stevens,

1961; Hughes and Halle, 1956; Strevens, 1960, etc.). In general, these studies show that the

spectral shapes of sibilants are more distinct, while labiodental and interdental fricatives

display a relatively flat spectrum.

In the meantime, /s/ and /S/ also di↵er dramatically from each other in several acoustic

dimensions. Among the examined fricatives in Jongman et al. (2000), /s/ has the highest

spectral mean and kurtosis, and the lowest skewness and relative amplitude by discrete

Fourier transform (DFT), whereas /S/ has the lowest spectral mean and kurtosis, and

the highest skewness and relative amplitude by DFT. These findings indicate /S/ has the
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strongest energy concentrated in the low frequencies whereas /s/ has it in the high fre-

quencies, and that /S/ has a flatter spectrum than /s/ (McFarland et al., 1996; Nittrouer,

2002; Tomiak, 1990). In vocalic contexts, /s/ shows a very di↵erent peak location after lip-

rounding vowels /o u/, whereas the peak of /S/ does not deviate from its original location

because of lip rounding.

It is well documented that the acoustic realizations of sibilants vary systematically

between gender. Jongman et al. (2000) presented a comparison of the acoustics of sibilants

between genders, which is adopted in Figure 3.1.

Figure 3.1: Spectral peak location of fricatives by place of articulation and by gender; figure
adopted from Jongman et al. (2000)

As shown in Fig. 3.1, fricatives of females generally have higher spectral peak locations

than those of males (except for /f, v/). Similarly, the sibilants of females have higher values

for spectral mean and kurtosis and lower values for skewness compared to those of males,

indicating that the spectra of female sibilants had clearer peaks and a concentration of

energy towards higher frequencies. Timing-related measures reveal that sibilants produced

by females had a slightly smaller normalized duration than those by male speakers. No

gender di↵erence is found in amplitude-related measures.

The covariation between sibilant properties and speaker gender is more than anatom-
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ical; it also has socially grounded motivations. In the sociolinguistic literature, sibilant

consonants are well-established as resources for the negotiation of gender and sexuality (see

Zimman, 2017, for a review). For example, Flipsen Jr et al. (1999) show that children

begin displaying gender di↵erences in /s/ at a young age before they start to show any sex

di↵erences of the vocal tract. Zimman (2017) finds that English-speaking men modulate

their /s/ production in a way that is consistent with their self-identified gender category.

In specific, non-binary male speakers produce /s/ sounds with a higher center of gravity

(COG) than trans-gender speakers, whose COG is still higher than those of the straight

speakers.

3.1.2 Perceptual correlates of /s-S/ and speaker gender e↵ects on percep-

tion and learning

A number of studies have examined the potential perceptual correlates of /s-S/, and their

findings show that relevant cues are distributed across the frication and vocalic portions.

Primarily, the perception of these sounds is a↵ected by the frication spectrum, especially the

location of spectral peak (Heinz and Stevens, 1961; Hughes and Halle, 1956, among others).

Formant transition at the onset of voicing (especially F2) is also shown to play a substantial

role (Heinz and Stevens, 1961; Nittrouer and Studdert-Kennedy, 1987; Stevens and House,

1956; Whalen, 1991, among others). Other supporting cues that have been shown to play

a role include the duration of frication (Jongman, 1989) and consonant amplitude relative

to vowel (Hedrick and Ohde, 1993).

The gender variation of sibilants in speech production reviewed above has substantial

consequences on perception. One of the consequences is that listeners use the socially

constructed concept of gender as a source of speaker normalization in the categorization

of /s S/. Strand and Johnson (1996) reported a shift of the perception boundary between

/s/ and /S/ as a function of the voice gender on the rest of the syllable – an /i/ vowel. In

specific, when listeners heard a vowel spoken by a female voice, they would expect sibilants

of higher frequency based on their experience that female speakers’ sibilants are centered
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around a higher frequency than male speakers’. Listeners thus ended up shifting their

perception boundary towards a higher frequency for tokens in female-sounding voices, and

towards a lower frequency for those in male-sounding voices. This sibilant boundary shift

can also be induced by visual gender stereotypes, e.g., by identical auditory tokens in a

gender-ambiguous voice patterned with di↵erent gender faces.

Due to the robust covariation and mutual-indexical relationship between sibilants and

speaker gender, relevant studies have also proposed a potential gender interference in the

perceptual learning of /s S/. Proposals along this line first came up in Kraljic and Samuel

(2007), where they suggest that listeners learn talker-specific representations for a fricative

contrast (/s S/) but do not do the same for a stop contrast (/t d/). However, the relevant

experiments in Kraljic and Samuel (2007) does not e�ciently tease apart the possibilities of

perceptual reset and distributional o↵set. In other words, when exposure to two speakers’

speech with acoustic biases at odds with each other ends up with no perceptual shift, it

is unclear whether it is because the opposite acoustic distributions cancel each other out,

or because listeners set aside the previous perceptual learning outcomes as they encounter

a new speaker. It still remains mysterious whether the mechanistic di↵erence leading to

asymmetric behaviors between /s S/ and /t d/ is an update one or a reset one.

The idea that speaker identity or gender may impose di↵erent constraints on the per-

ceptual learning of stops and fricatives is later integrated into an “ideal adapter” framework

(Kleinschmidt, 2017). According to this framework, gender may serve as an information-

based sociophonetic speaker structure for the perceptual learning of phonemes that are con-

trasted in frequency distributions. Through computational modeling, Kleinschmidt showed

that gender and dialect are more informative about speakers’ vowel formant frequencies

than VOT length. Specifically, gender is more informative about the absolute vowel formant

frequencies, whereas accent is more informative about the normalized vowel space. This

finding provides potential motivation for listeners to build separate mental representations

of frequency-related phonemes for speakers of di↵erent genders. Although Kleinschmidt

did not directly compare the informativeness of gender for fricatives and stops, the result
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revealed that speaker gender is useful for anticipating frequency distributions but not voice

onset time. In this sense, it also aligns with the earlier experimental finding (Kraljic and

Samuel, 2007) that perceptual learning of /s S/ does not seem to generalize across genders,

because it predicts that the storage of retrieval of relevant speech representations operates

for male speakers and female speakers separately.

More broadly, the general idea behind an “ideal adaptor” framework is that an ideal

listener would represent information about speakers according to an information-based so-

ciophonetic speaker structure: This structure would have minimal speech di↵erence within

sociophonetic speaker groups to ensure the accuracy of representational generalizations

among group members, and maximal speech di↵erences between sociophonetic speaker

groups. Such a speaker variability structure would require listeners to have sophisticated

knowledge of the informativeness of sociophonetic speaker conditions for di↵erent types

of phonemes, which emerges from listeners’ experience with the real-world sociophonetic

structures of speech variability. With such structures of speaker variability accessible to

listeners mentally, it is rational for them to manage a coherent representational system for

speakers of the same sociophonetic group while building separate representational systems

for speakers from di↵erent sociophonetic groups. Even though such representations may

require additional processing cost to maintain separate phonetics-phonology mapping, they

still better satisfy the needs of e�ciency and accuracy of the speech processing system than

managing every bit of speech episodes separately or encoding them all together with one

representational system.

Recently, Tamminga et al. (2020) reports on a set of experimental data that explic-

itly compares cross-talker generalization of fricative boundary perceptual learning in same-

gender and di↵erent-gender pairs. They adopted a pretest-training-posttest paradigm and

unexpectedly found that listeners shift their perceptual boundary in the categorization

phase by anchoring the perceptual boundary with the center of the continuum. Crucially,

this shift appears to be reset at the beginning of the post-test if the intervening training

phase comes with a speaker of a di↵erent gender from the speaker in the pre- and post-
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test. In contrast, the shift remains where it is if the intervening training speaker shares

the gender of the test speaker. Although the boundary shift observed in Tamminga et al.

(2020) is not induced by lexical bias as in previous studies and in this dissertation, it does

raises the intriguing possibility that exposure to the speech of di↵erent speakers of the same

gender does not hinder the retention of the previous perceptual learning outcome. This

lends further support to the role of speaker gender as a sociophonetically informative social

speaker structure in the generalization of perceptual learning for fricatives.

3.1.3 Research question and hypotheses

Under the broad inquiry of this dissertation about whether the cross-speaker generaliza-

tion of perceptual learning is conditioned on a specific sociophonetic speaker structure, this

chapter asks how listeners integrate the speech properties of speakers of di↵erent genders

into their perception expectations for an upcoming speaker. Experiment 1 provides a con-

crete example of this situation: If the listener has had exposure to the speech of a female

speaker and a male speaker successively, then whose phonetic distribution will they draw

upon to cope with the categorization of the previous female speaker’s speech? The two

speakers whose speech is used in this chapter will be referred to as Female A and Male A

throughout this dissertation. Broadly, a specificity hypothesis would predict that only the

knowledge of Female A’s acoustic distribution would become relevant in this case, whereas

a generalization hypothesis would expect otherwise.

Still, various situations can happen under the umbrella of “otherwise”. Recall that we

have discussed what the possibility space looks like in Section 2.4. The nature of speaker-

specific knowledge listeners use in the test phase can be captured by a two-dimension

possibility space, which describes a) whether or not it reflects the distribution specific

to Female A, and b) whether or not it reflects the distribution specific to Male A. This

combination gives rise to four possibilities, as briefly summarized in Table 3.1. Note that

each of these four possibilities could further be refined in terms of the relative strength of

the contributions of the di↵erent distributions, but for now, I will be focusing on the four
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broad kinds of possibilities for the sake of simplicity.

Hypotheses Influence of Female A Influence of Male A
cumulative update + +
recency update - +
retention + -
reset - -

Table 3.1: Predictions of the four possible mechanisms of perceptual generalization on the
result of Exp 1

A retention hypothesis, corresponding to the possibility of specificity mentioned above,

predicts that the outcome perceptual shift aligns with Female A’s acoustic distribution

while remains una↵ected by Male A’s acoustic distribution. In other words, when listeners

re-encounter Female A for a second time, they return to the expectations they had formed

about her speech from their earlier exposure. If Female A’s distribution is not reflected

in the result of the final test, then the possibility lies with either recency update or reset

depending on whether or not the test result reflects Male A’s distribution. Both of these

situations indicate suggest that the perceptual learning of sibilants is not speaker-specific.

Finally, if both of Female A’s and Male A’s distributions have laid an influence on the final

test, then it suggests that perceptual learning is not strictly speaker-specific given that it

updates in response to acoustic exposures from other speakers as well. This kind of result

lends support to a cumulative update account.

3.2 Method Overview

3.2.1 Experimental conditions

Experiment 1 contains four parts – a pilot study and three sub-experiments (Exp 1a-1c). All

of these experiments end with a categorization test on the same /s-S/ continuum of Female

A’s speech, but they di↵er in the speakers and the acoustic conditions of these speakers

that participants have had exposure to before the categorization test. In what follows, I

provide a brief overview of the design and purpose of each of these experiments.

The pilot study reports the /s-S/ categorization results of three conditions: a baseline
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condition where participants have not received any prior training before the test, and two

training conditions where participants have received either an /s/-favoring or an /S/-favoring

training phase with Female A’s speech before the categorization test, depending on the

specific condition they are in. The goal of the pilot study is twofold. The first goal is to

show that the categorization boundary (represented by the 50% probability point) is aligned

with the center of the continuum, and the second goal is to show that the perceptual learning

design works with the stimuli of Female A, as evidenced by a resulting boost either in /s/-

equivalent or /S/-equivalent responses depending on the training condition.

Exp 1a and 1b each contain three experimental conditions. Conditions in Exp 1a consist

of a training block with Female A’s /s/-favoring speech, a consecutive training block with

Male A’s speech, and a final categorization test with Female A’s speech. The three condi-

tions di↵er in whether the intermediate training phase with Male A’s speech is /s/-favoring

(in the same direction with the first training phase), /S/-favoring (in the opposite direction

to the first training phase), or containing no /s S/ (a neutral condition). Exp 1b di↵ers from

1a in having a Female /S/-favoring training phase instead of an /s/-favoring one as the first

training block. It is also followed by a consecutive training block with Male A’s speech,

whose sibilant characteristics are manipulated to be /s/-favoring (opposite), /S/-favoring

(same), or /s S/-free (neutral) depending on specific conditions. By comparing the results

of the three conditions within each sub-experiment, we are able to know to what extent the

exposure to Male A’s speech matters for the categorization of Female A’s speech in the test

phase.

The results from Exp 1a and 1b will show that listeners’ exposure to Male A’s speech

influences their perception of Female A’s speech in the final test phase. Building on that,

Exp 1c is designed to follow up on the question how much of Female A’s speech distribution

is maintained in the final categorization phase. In other words, Exp 1c is aimed to tease

apart the possibilities of cumulative update and recency update. The two update mechanisms

share the property that they predict the acoustic distribution of Male A’s sibilants has been

integrated and reflected in the final categorization result. However, they make di↵erent
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predictions about whether Female A’s sibilant distribution is also retained to some extent

with Male A’s distribution. Recency update refers to the possibility that listeners have

forgotten their earlier training with Female A’s speech and only use what they have learned

from Male A to apply to the categorization test. In contrast, cumulative update predicts

that both the training with Female A and with Male A are exerting an influence on the

final categorization result. By comparing the categorization results of participants who have

received training only with Male A in 1c and those who have received training with Female

A and Male A in Exp 1a and 1b, we are able to know how much the earlier training phase

still matters to the categorization result.

Fig. 3.2 shows a summary of the experimental designs and procedures in each condition

of the di↵erent sub-experiments in Experiment 1.

Figure 3.2: The structure of sub-experiments and conditions in Exp 1
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When there are two training phases, I refer to them as the “prior” training phase and

the “recent” training phase according to the order by which they take place. It is clear

from Fig. 3.2 that the pilot study and Exp 1c di↵er from Exp 1a and 1b in the number of

training phases involved. Pilot and Exp 1c only include no more than one training phase,

and therefore the training participants have received can only be recent rather than prior.

Pilot and Exp 1c di↵er in the speaker used in the training phase (if any), and Exp 1a and

1b di↵er in the acoustic condition of the first training phase with Female A.

3.2.2 Word list and recording

The stimuli used in Experiment 1 are manipulated from recordings of spoken words from

Female A and Male A obtained following the procedure described in Chapter 2. For each

speaker, the spoken words used in Experiment 1 consist of 17 /s/-containing words and

17 /S/-containing words (Table 2.2) each produced once with /s/ and once with /S/, 51

words without /s S/ (with 39 words selected from Table 2.4 and the remaining 12 words

selected from Table 2.3 and 2.5), and 7 minimal pairs of words contrasted by word-initial

/s S/ (selected from the 10 pairs in Table 2.5). These words are listed in the following:

• /s/-containing words: compensate, democracy, dinosaur, embassy, episode, eraser,

falsetto, faucet, hallucinate, legacy, medicine, obscene, parasite, peninsula, pregnancy,

reconcile, rehearsal (N=17);

• /S/-containing words: ambition, beneficial, brochure, commercial, crucial, e�cient,

evaluation, glacier, graduation, impatient, initial, negotiate, o�cial, parachute, pub-

lisher, refreshing, vacation (N=17);

• /s-S/ minimal pairs: same-shame, sake-shake, seat-sheet, sign-shine, sigh-shy, sell-

shell, self-shelf (N=14);

• Words without /s S/: airline, among, anvil, average, banana, beloved, deer, earning,

eyebrow, feeling, firefly, follow, foul, framing, gable, gargoyle, gavel, honey, iguana,

moreover, Nepal, raccoon, raven, ribbon, row, runaway, thumbnail, town, verify, vol-
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leyball, vulgar, wa✏e, wharf, time, tie, dragonfly, nothing, tag, village, Tim, down,

tip, tear, marina, bu↵alo, dim, dime, lonely, journal, jewelry, January (N=51);

The critical sound of each word is annotated in Praat by hand and the annotations are

saved as TextGrids. The center of gravity (COG) is measured for the 17 /s/ sounds in /s/-

containing words and the 17 /S/ sounds in /S/-containing words from the two speakers. Their

COG distributions are presented in Fig. 3.3 to represent the original acoustic properties of

the two target phonemes from Female A and Male A. The error bars represent the means

and the 95% confidence intervals of the COG measures for each phoneme of each speaker.

We can see that the COG measures of the two speakers’ sibilants are consistent with the

general trend of gender variation. In other words, Female A’s /s/ and /S/ sounds are

distributed in higher spectral frequencies than Male A’s, although the di↵erence is not as

large as expected from the average acoustic distribution of sibilants from male and female

speakers (e.g., as in Fig. 3.1).
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Figure 3.3: Mean and 95% confidence interval of the center of gravity of /s/ and /S/ of
Female A and Male A in natural speech production (Hz)

3.2.3 Step selection and synthesis

For the synthesis of the training stimuli, the critical proportion of sibilants sharing the same

word frame (e.g., compensate and compenshate) are cut out and mixed with each other by
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five steps of proportions. The five steps of sibilants for each word frame by each speaker

vary from 0.3[s]0.7[S] to 0.7[s]0.3[S] with an increase of 0.1[s] and a decrease of 0.1[S] by each

interval, and then they are spliced back to the lexical frame with the correct phoneme (e.g.,

the frame of compensate in the previous example). Finally, all the synthesized stimuli are

normalized to 70 dB.

A lexical decision task is conducted to select the most ambiguous step of sibilant for

each word frame to be used in the training phase. Participants needed to judge, for lexical

frames spliced with each of the five sibilant steps, whether they are an English word or not.

The results of this lexical decision task are shown in Section A. The mixture proportion

that provides the most ambiguous (50%) categorization result is selected to be further

used to construct the training materials in perceptual learning. If two sibilant steps are

approximately equally far from the 50% point, then the mean of the two steps is used as

the blending ratio for stimulus construction. Table 3.2 showed the most ambiguous steps

chosen for each critical lexical frame for Female A and Male A through lexical decision.

ID /S/-word Female A Male A /s/-word Female A Male A
1 ambition 0.3 0.3 compensate 0.5 0.4
2 beneficial 0.25 0.35 democracy 0.5 0.35
3 brochure 0.35 0.35 dinosaur 0.6 0.35
4 commercial 0.35 0.3 embassy 0.55 0.4
5 negotiate 0.25 0.35 episode 0.45 0.4
6 crucial 0.25 0.25 eraser 0.6 0.4
7 o�cial 0.25 0.4 falsetto 0.6 0.4
8 parachute 0.35 0.35 faucet 0.6 0.35
9 e�cient 0.3 0.45 hallucinate 0.6 0.35
10 impatient 0.35 0.45 legacy 0.5 0.35
11 initial 0.25 0.5 medicine 0.4 0.5
12 vacation 0.35 0.5 obscene 0.5 0.35
13 evaluation 0.35 0.45 parasite 0.4 0.55
14 publisher 0.25 0.35 peninsula 0.6 0.45
15 refreshing 0.25 0.4 pregnancy 0.6 0.35
16 glacier 0.3 0.35 rehearsal 0.65 0.4
17 graduation 0.35 0.4 reconcile 0.4 0.35

Table 3.2: The proportion of [s] mixed in the most ambiguous Step of sibilant chosen for
each word frame for Female A and Male A
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Like the training stimuli, perception experiments are also conducted to select the steps

and word frames of minimal pairs to be used for stimuli in the test phase. The test trials

are generated by splicing 5 steps on a /s-S/ continuum into 7 word frames of minimal

pairs. Each set of lexical contexts contains interleaving /s/-adjacent and /S/-adjacent lexical

frames along the continuum, as shown in Table 3.3. For example, according to Table 3.3,

the lexical frame of ?ake spliced onto Step 1, 3, and 5 are originally produced after /S/, and

?ake spliced onto Step 2 and 4 are originally produced after /s/.

Step 1 Step 2 Step 3 Step 4 Step 5
0.35[s]0.65[S] 0.45[s]0.55[S] 0.55[s]0.45[S] 0.65[s]0.35[S] 0.75[s]0.25[S]

1. ?ake shake sake shake sake shake
2. ?ame same shame same shame same
3. ?elf shelf self shelf self shelf
4. ?eat seat sheet seat sheet seat
5. ?ell shell sell shell sell shell
6. ?ign sign shine sign shine sign
7. ?igh shy sigh shy sigh shy

Table 3.3: The splicing of the test stimuli. Words in row 1-7 indicate the original word
where the remaining of the lexical context spliced onto each sibilant step comes from.

3.2.4 Stimulus acoustics

Fig. 3.4 shows the relationship between the acoustic distributions of sibilants in di↵erent

training conditions and those of the test phase after manipulation. It shows the means and

95% confidence intervals of the center of gravity for sibilants in the training stimuli (with

points and error bars), and marks the COG values for the five steps of ambiguous sibilants

in the test continuum (in red triangles).

From Fig. 3.4, we first see that the sibilants of Female A have higher COG values than

those of Male A after manipulation. We can also see that sibilants in /S/-favoring conditions

generally have higher COG values than those in /s/-favoring conditions. However, given

the relatively low frequencies of Female A’s sibilants compared to the average level of female

sibilants, the COG of sibilants in the four conditions still have substantial overlap with one

another in the acoustic space. In addition, the resulting continuum in the test phase does
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Figure 3.4: Mean and 95% confidence interval of the center of gravity of sibilants in di↵erent
training phases and in the test phase in Exp 1 (Hz)

not seem to stay distinct from the /s S/ sounds in any of the training conditions. Maybe

they are somewhat distinct from sibilants in the Male /s/-favoring condition, but there is

still some overlap between the low end of the test continuum and the high end of the /s/

sounds in the Male /s/-favoring condition (see also Calder, 2019a,b; Hall et al., 2020, etc.,

for examples of the fiereceness of /s/ as an indexical source of speaker gender).

3.3 Experiment and result

3.3.1 Pilot study: Learning Female A’s /s-S/

3.3.1.1 Experimental conditions and goals

The pilot study contains three experimental conditions, namely, baseline, /s/-favoring learn-

ing with Female A, and /S/-favoring learning with Female A. Participants in the baseline

conditions complete a single test block, containing 35 test trials with ambiguous sibilants

embedded in minimal pairs and 17 filler words without sibilants in Female A’s voice. The

result of this condition is taken as a reference of the default /s-S/ perceptual boundary for

Female A. participants in the two learning conditions first complete either an /s/-favoring
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training block or an /S/-favoring training block with Female A’s speech before they proceed

to complete the same test block as in the baseline condition.

The goal of the pilot study is twofold. The first goal is to demonstrate that the /s/-

favoring and /S/-favoring perceptual learning e↵ects have been successfully elicited with the

speech of Female A. The second goal is to demonstrate that the 50% perceptual boundary

between /s-S/ has been successfully aligned with the center of the continuum by default

without prior training.

3.3.1.2 Participant

31 participants are recruited from Prolific to participate in the baseline condition. They

are 18 female and 13 male, aged 18 to 58 years old (Mean = 28.5, SD = 9.0). Participants

in the Female A /s/-favoring condition are recruited from Prolific. They are 15 male and

15 female, aging from 21 to 72 years old (Mean = 35.6, SD = 12.7). The participants in

the Female /S/-favoring condition are recruited from the UPenn subject pool. They are 29

participants (6 male and 23 female), aging from 18 to 22 years old (Mean = 19.9, SD = 1.3).

3.3.1.3 Result

Fig. 3.5 shows the results of phoneme categorization by participants in the baseline con-

ditions (in grey), Female A /s/-favoring condition (in yellow), and Female /S/-favoring

condition (blue). We can see that firstly, the 50% point of the categorization boundary in

the baseline condition aligns with the middle step of the continuum (Step 55). Secondly,

the /s/-favoring training and the /S/-favoring training seem to have worked in inducing a

perceptual bias towards the expected direction compared to the baseline condition: Par-

ticipants in the /s/-favoring condition show more /s/-equivalent responses on every step of

the categorization continuum than those in the baseline condition. Similarly, participants

in the /S/-favoring condition show fewer /s/-equivalent responses on Step 45-75 than those

in the baseline condition. Also, it seems that the /s/-favoring perceptual learning e↵ect is

larger than /S/-favoring e↵ect with this set of stimuli of Female A’s speech.
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Figure 3.5: Exp 1 pilot: Boundary shift after exposure to Female A’s /s/-favoring and
/S/-favoring speech compared to the categorization baseline (mean and standard error)

I then run a logistic mixed-e↵ects regression model to evaluate whether the two learning

e↵ects we see in Fig. 3.5 are statistically significant. A mixed-e↵ects model is conducted

to predict the Response of each trial (S=0, SH=1), with Step (35-75, scaled and centered),

Trial (1-51, scaled and centered), Condition (treatment coded, reference: baseline), and

Phoneme (the original phoneme associated to each auditory frame, sum-coded, reference:

SH) as the fixed e↵ects, Condition:Step and Condition:Trial as the interaction items, and

Step by Subject, Phoneme by Subject, and Step by Frame as random slopes. The factor

Phoneme turns out to exhibit co-linearity with the random intercept of Subject and the

random slope of Step. I then took phoneme out from the random slopes and changed them

to Step by Subject and Step by Frame. The result of the model (Model-pilot1) is shown in

Table 3.4.

According to the statistical result, the main e↵ect of Step is significant, suggesting that

in the baseline condition, the larger the proportion of [s] is mixed in the stimulus, the

less likely that stimulus is perceived as /S/-equivalent (� = �2.23, p < 0.001). This trend

also holds for the other two training conditions, as evidenced by the lack of significant

interaction between Step and Condition for the /s/-favoring condition (� = 0.47, p = 0.10)

and for the /S/-favoring condition (� = 0.40, p = 0.15). It also suggests that the slopes of

the categorization boundaries along the continuum steps are not di↵erent between the three
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Fixed e↵ects Estimate Std. Err. z value Pr(>|z|)
(Intercept) 0.13 0.38 0.34 0.74
Step -2.23 0.21 -10.69 < 0.001⇤⇤⇤

Condition Female A s-favoring -2.15 0.46 -4.69 < 0.001⇤⇤⇤

Condition Female A sh-favoring 1.07 0.45 2.36 0.02⇤

Trial -0.47 0.10 -4.82 < 0.001⇤⇤⇤

PhonemeS -0.57 0.06 -9.90 < 0.001⇤⇤⇤

Step:Condition Female A s-favoring 0.47 0.28 1.65 0.10
Step:Condition Female A sh-favoring 0.40 0.28 1.46 0.15
Condition Female A s-favoring:Trial 0.64 0.14 4.54 < 0.001⇤⇤⇤

Condition Female A sh-favoring:Trial -0.02 0.14 -0.12 0.90

Model-pilot1: Response⇠Step*Condition+Condition*Trial+Phoneme+(Step|Subj)+(Step|Frame)

Table 3.4: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 1 pilot

conditions.

The e↵ect of Condition also turns out to be significant. It suggests that participants

with /s/-favoring training experience are less likely to show /S/-equivalent responses than

the baseline condition (� = �2.15, p < 0.001). Similarly, participants with /S/-training

experience are more likely to show /S/-equivalent responses than the baseline condition

(� = 1.07, p = 0.02). The e↵ect sizes revealed by these coe�cients are in line with our

impression that the /s/-favoring shift is larger in magnitude than the /S/-favoring shift as

a result of perceptual learning.

The model also reveals a main e↵ect of Trial (� = �0.47, p < 0.001), meaning that

test trials coming up at a later point are less likely to be perceived as /S/-containing in

the baseline condition. The influence of Trial also applies to the /S/-favoring condition,

as evidenced by the lack of significant interaction between Condition and Trial for this

condition (� = �0.02, p = 0.90). This may be because the responses in these conditions

consist of more /S/ than /s/ in general (although the di↵erence seems small for the baseline

condition), and listeners are trying to balance their responses towards the end of the block by

reducing the number of /S/ responses. In contrast, this interaction is significant for the /s/-

favoring condition (� = 0.64, p < 0.001), indicating that listeners are actually more likely

to perceive a /S/ at a later point of the block. This is expected, because the responses of

the /s/-favoring condition contain far more /s/ responses than /S/ ones, and the significant
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positive e↵ect of Trial implicates listeners’ tendency to balance their responses by reporting

more /S/-equivalent responses towards the end of the test. Lastly, the e↵ect of Phoneme is

also significant, implying that the /s/-initial word frames are more likely to be perceived of

bearing an /s/ than average even after splicing (� = �0.57, p < 0.001).

3.3.1.4 Summary

The results in Fig. 3.5 and Table 3.4 both suggest that the design of training phases with

Female A’s speech works to achieve the goals laid out in the beginning of this section,

namely, to align the 50% response point of the categorization boundary with the center of

the continuum, and to induce a significant amount of boundary shift towards the expected

directions.

3.3.2 Exp 1a: Previous /s/-favoring training with Female A

3.3.2.1 Experimental conditions and goals

The goal of Exp 1a is to tease apart the possibilities of retention, reset, and update as alter-

native possibilities of the mechanism involved in sibilant perceptual learning with multiple

speakers. As a brief reminder of these concepts (described in Section 7.1), retention means

that perceptual learning operates in a speaker-specific way; reset means that listeners reset

their perceptual expectation to the default each time they encounter a new speaker; update

refers to the possibility that listeners integrate the acoustic distributions they have learned

to update their perceptual expectations and generalize this knowledge across speakers. Up-

date may take the form of either cumulative update or recency update. The two mechanisms

both predict an amount of integration of Male A’s speech distribution, but they di↵er in

their predictions regarding how much of the learning with Female A’s speech is still main-

tained. This two possibilities cannot be teased apart in the current sub-experiment; instead

this question will be addressed in Exp 1c.

To distinguish between the above three possibilities, I designed three experimental con-

ditions in Exp 1a with di↵erent combinations of speaker and acoustic distribution for their
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training phases. These three conditions are referred to as Two genders - opposite, Two gen-

ders - same, and Two genders - neutral. Participants in all three conditions first complete

/s/-favoring training phase with Female A and then a training phase with Male A’s speech

with di↵erent sibilant manipulations depending on the condition they are assigned to. Male

A’s speech in the second learning phase is either /s/-favoring (same as Female A’s speech),

/S/-favoring (opposite to Female A’s speech), or sibilant-free (the neutral condition). In

the end, participants are tested on Female A’s sibilants on a /s-S/ continuum spliced into

minimal pairs.

Crucially, the three possibilities of cross-speaker perceptual learning behaviors each

make di↵erent predictions about the outcomes of the three training conditions. If listeners

retain the knowledge of acoustic distribution that is specific to Female A and do not apply

what they have learned from Male A’s speech to the categorization of Female A’s speech,

then we expect the categorization results of all the three conditions to show a similar

shift towards /s/. If listeners reset their perceptual expectation for every new talker they

encountered, then we expect that the categorization results reflect neither Female A’s nor

Male A’s acoustic distribution. Instead, all the three conditions would have categorization

boundaries overlapping with the boundary of the baseline condition. If listeners integrate

the acoustic distributions of Male A to update their perceptual expectations and generalize

this knowledge across speakers, we expect to see more /s/-equivalent responses in the Two

genders - same condition and more /S/-equivalent responses in the Two genders - opposite

condition, and the categorization boundary of the Two genders - neutral condition lying

between the above two conditions. In other words, if the perceptual boundary in the test

consistently patterns with the acoustic distributions of the second learning phase, then it

supports an update account.

3.3.2.2 Participant

Participants in the three conditions of Exp 1a are all recruited from Prolific. There are

32 participants in the Two genders - same condition. They are 10 male, 21 female, and
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one non-binary in gender, aging from 18 to 68 years old (Mean = 29, SD = 12). 33

participants are recruited for the Two genders - opposite condition, including 20 female

and 13 male, aging from 19-66 years old (Mean = 33, SD = 12). Lastly, 30 participants

are recruited for the Two genders - neutral condition. They include 10 male listeners,

19 female listeners, and one non-binary gender listener. Their ages range from 19 to 57

(Mean = 30, SD = 10). Along with the data of the above participants, I have also plotted

the results of participants in the baseline condition and the Female A /s/-favoring condition

as a reference (see Section 3.3.1.2 for the information on those participants).

3.3.2.3 Result

Fig. 3.6 shows the means and standard errors of the categorization result at each fricative

step in di↵erent experimental conditions, along with the results of the baseline condition and

the Female A /s/-favoring conditions represented by the grey lines (same as the grey line

and the yellow line in Fig. 3.5). The blue lines indicates the percentage of /s/-equivalent

responses in the Two genders - same condition (dashed line) and in the Two genders -

opposite condition (solid line). The yellow line lying in between is the average /s/ responses

at each step in the Two genders - neutral condition, where the speech of the intervening

male speaker does not contain any /s/ or /S/.

Recall that participants in all the three conditions have had identical exposure to Female

A’s /s/-favoring speech in the first training phase. Therefore, we can attribute any di↵er-

ences observed between these conditions to their training in the second phase with Male

A, under the assumption that participants on di↵erent conditions have the same baseline

perception of /s S/. Indeed, the overall /s/ responses of the three two-gender learning condi-

tions are consistent with the sibilant properties of Male A’s speech in their second training

phase: The most /s/-equivalent responses are exhibited in the Two genders - same condi-

tion where Male A’s sibilants are /s/-favoring, and the least /s/-equivalent responses are

exhibited in the Two genders - opposite condition where Male A’s sibilants are /S/-favoring,

with the results of the Two genders - neutral condition where there are no /s/ or /S/ in
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Figure 3.6: Exp 1a: /s/ response rate as a result of cross-gender perceptual learning with
di↵erent sibilant distributions (mean and standard error)

Male A’s speech lying in between. Such a pattern seems to lend support to an update mech-

anism, which predicts that the acoustic properties of Male A has been integrated to update

further perceptual expectations. In addition, the three two-phase learning conditions seem

to have categorization boundaries of shallower slope than either the baseline condition and

the Female A /s/-favoring condition, which might also be a result of exposure to Male A’s

speech. In other words, simply being exposed to Male A’s speech, even if it contains no

fricatives at all, changes the way people categorize Female A’s fricatives.

We can also see that results of the three two-phase learning conditions approximately

fall between the baseline condition and the Female /s/-favoring condition, with an approx-

imately equal amount of /s/ responses in the Female /s/-favoring condition and the Two

genders - same condition. There are several possible reasons for this decay. One is that

the decay in the /s/-equivalent rates of the three two-gender conditions compared to the

Female A /s/-favoring condition is due to a lapse in time during the second-training phase.

Another possibility is that listeners are still updating to Male A’s /s S/ boundary they have

conceived of even though they have never heard any actual sibilants from Male A. These

possibilities will be further discussed in the Discussion section (Section 3.4).

A mixed-e↵ects model (Model-1a) is fitted to the categorization data of the three two-
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gender conditions in this sub-experiment and the baseline and Female A /s/-favoring condi-

tion from what is presented in the pilot study. The model uses Step (scaled and centered),

Trial (scaled and centered), and Condition (treatment coded, ref: baseline), and Phoneme

(the original phoneme associated to each auditory frame, sum-coded, reference: SH) as the

fixed e↵ects, Condition:Step and Condition:Trial as the interaction items, and Step by Sub-

ject and by Frame as random slopes, to predict the Response of each trial (S=0, SH=1).

The result is shown in Table 3.5.

Fixed E↵ects Estimate SE z value Pr(>|z|)
(Intercept) 0.11 0.41 0.27 0.79
Step -2.21 0.18 -12.25 < 0.001⇤⇤⇤

Condition Female A s-favoring -2.20 0.53 -4.17 < 0.001⇤⇤⇤

Condition Two genders - same -2.13 0.52 -4.11 < 0.001⇤⇤⇤

Condition Two genders - neutral -1.29 0.52 -2.48 0.01⇤

Condition Two genders - opposite -0.55 0.50 -1.09 0.28
Trial -0.47 0.10 -4.84 < 0.001⇤⇤⇤

PhonemeS -0.57 0.04 -13.10 < 0.001⇤⇤⇤

Step:Condition Female A s-favoring 0.42 0.25 1.68 0.09
Step:Condition Two genders - same 0.91 0.25 3.69 < 0.001⇤⇤⇤

Step:Condition Two genders - neutral 0.39 0.25 1.59 0.11
Step:Condition Two genders - opposite 0.83 0.23 3.57 < 0.001⇤⇤⇤

Condition Female A s-favoring:Trial 0.62 0.14 4.49 < 0.001⇤⇤⇤

Condition Two genders - same:Trial 0.44 0.14 3.17 0.001⇤⇤

Condition Two genders - neutral:Trial 0.57 0.14 4.22 < 0.001⇤⇤⇤

Condition Two genders - opposite:Trial 0.25 0.13 1.94 0.053

Model-1a: Response⇠Step*Condition+Condition*Trial+Phoneme+(Step|Subj)+(Step|Frame)

Table 3.5: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 1a

In Table 3.5, again, we see significant main e↵ects of Step, Condition, and Phoneme.

The significantly negative Step e↵ect indicates that, with a larger proportion of [s] is mixed

in the stimulus, the probability of that stimulus being perceived as /S/-equivalent is lower

(� = �2.21, p < 0.001). The model also reveals a significant interaction between Step and

Condition for the Two genders - same condition (� = 0.91, p < 0.001) and the Two genders

- opposite condition (� = 0.83, p < 0.001). Since the proportion of /S/-equivalent responses

should be decreasing with the increase of step, a positive value for the interaction item

would indicate that the decrease becomes shallower instead of becoming sharper. Therefore,
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the significant interaction between Step and Condition means that listeners who have had

exposure to Male A’s /s/-favoring or /S/-favoring speech show a shallower categorization

boundary than those in the baseline condition. In contrast, this interaction is not significant

for the Two genders - neutral condition (� = 0.39, p = 0.11).

The main e↵ect of Condition is significant for all experimental conditions except for

the Two genders - opposite condition. The other two conditions newly introduced in this

experiment, namely, Two genders - same (� = �2.13, p < 0.001), and Two genders - neutral

(� = �1.29, p = 0.01), both show significantly more /s/-equivalent responses (and fewer

/S/-equivalent responses) than the baseline condition. This is expected because stimuli on

the training phases in the three conditions are either /s/-favoring or /s S/-free, giving rise to

an overall boost in /s/. The categorization result in the Two genders - opposite condition

is not essentially di↵erent from the baseline condition (� = �0.55, p = 0.28). This suggests

that listeners in the Two genders - opposite condition have integrated the /S/-favoring

distribution during their training with Male A and used this knowledge to cope with the

categorization task with Female A. This cancels out the influence of the earlier /s/-favoring

training with Female A, leading the final result to return to the baseline again.

In addition, the e↵ects of Trial (� = �0.47, p < 0.001) and Phoneme (� = �0.57, p <

0.001) are also significant on the baseline condition, as we have already explained for

Table 3.4 in the previous section. Again, this means that listeners are less likely to re-

port on /S/ for later trials and for auditory frames original produced with /s/. As with

the Female A /s/-favoring condition where the interaction between Condition and Trial

is significant (� = 0.62, p < 0.001), Condition:Trial is also significant for the Two gen-

ders - same condition (� = 0.44, p = 0.001) and the Two genders - neutral condition

(� = 0.57, p < 0.001), and it is marginally significant for the Two genders - opposite condi-

tion (� = 0.25, p = 0.053). This implies that listeners on the three conditions are reporting

more /S/-equivalent responses at a later point of the test phase. Again, might be driven

by the response distribution that the three conditions overall have fewer /S/-equivalent

responses than the baseline condition.
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To further check whether the second-phase exposure to Male A’s speech has shifted

listener perceptual boundary further away from the Female A /s/-favoring condition, I

releveled the Condition factor with “Female A s-favoring” as the baseline and re-ran the

model. The result shows that among the three two-gender conditions, only the Two genders -

opposite condition exhibits a significant di↵erence from the Female A /s/-favoring condition

(�opposite = 1.64, p = 0.001), while the other two conditions do not (�neutral = �0.9, p =

0.09; �same = 0.07, p = 0.89). This suggests a significant influence of the Male A /S/-

favoring training but none of the Male A /s/-favoring training on top of the Female A

/s/-favoring training in the two-gender perceptual learning in Exp 1a.

3.3.2.4 Summary

The goal of Exp 1a is to tease apart the possibilities of retention, reset, and update. The

categorization results di↵er among the three two-gender conditions in a consistent way with

their exposure to Male A’s speech. This helps us rule out the possibility of retain which

predicts no di↵erence between these conditions and that they all show a perceptual shift

towards /s/. Also, the boundary reveals a reset to baseline in the Two genders - opposite

condition but not in the Two genders - neutral condition and in the Two genders - same

condition. These results rule out the possibility that hearing a new voice will make listeners

reset their perceptual expectations. The result lends support to an update process that

reflects the joined e↵ects of perceptual learning with Female A and Male A.

3.3.3 Exp 1b: Previous /S/-favoring training with Female A

3.3.3.1 Experimental conditions and goals

The goal of Exp 1b is to evaluate whether the findings of Exp 1a can be replicated after the

acoustic properties of Female A have been changed. Like in Exp 1a, Exp 1b also has three

experimental conditions where listeners accept two sequential training phases with Female

A and Male A, and the three conditions are contrasted by the acoustic distributions of Male

A’s sibilants. Participants in all three conditions first complete /S/-favoring training phase
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with Female A and then a training phase with Male A’s speech with di↵erent sibilant ma-

nipulations depending on the condition they are assigned to. Male A’s speech in the second

learning phase is either /S/-favoring (same as Female A’s speech), /s/-favoring (opposite to

Female A’s speech), or sibilant-free (the neutral condition). In the end, participants are

tested on Female A’s sibilants on a /s-S/continuum spliced into words of minimal pairs. The

only di↵erence between Exp 1a and 1b lies in that the first training phase with Female is

/s/-favoring in Exp 1a and /S/-favoring in Exp 1b.

There are some consequences of manipulating the acoustic bias of Female A’s speech

towards a di↵erent direction. One of them is that the acoustic distributions of Female A’s

sibilants and Male A’s sibilants become more distinctive in the acoustic space. This is

especially reflected by the opposite conditions. Fig. 3.7 shows the COG measures of the

sibilants of Male A and Female A in the Two genders - opposite condition. We can see

that the sibilants of Female A and Male A show similar mean COGs for each of the two

phonemes in Exp 1a (left), whereas the mean COGs of the same phoneme are very di↵erent

between speakers, as shown in Exp 1b (right).

●
●●

●●●
●
●

● ● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●●
●

●●
●
●
●

●

●

●

●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

● ●●

●
●
●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Exp1a−opposite:
more similar

Exp1b−opposite:
more distinct

Female A
s−favoring

Male A
sh−favoring

Male A
s−favoring

Female A
sh−favoring

3000

5000

7000

9000

M
ea

n 
an

d 
95

%
 C

I o
f c

en
te

r o
f g

ra
vi

ty
 (H

z)

●

●

s

sh

Figure 3.7: The COG of sibilants in the Two genders - opposite conditions in Exp 1a and
1b (mean and 95% CI)

It is unclear whether the relationship between the acoustic distributions of the two
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speakers in training would a↵ect the conclusion of cross-speaker perceptual learning ob-

tained in Exp 1a. If our previous finding about the update of perceptual expectation across

talkers is not constrained on acoustic dissimilarity, then we expect to see that the results

of the three conditions in Exp 1b show similar patterns to those in Exp 1a. Otherwise, if

the update of perceptual expectations across talkers is hindered by a change in the acoustic

properties the two speakers’ sibilants, then we would expect that the categorization bound-

ary either stays at the baseline position or remains a shift towards /S/ as a result of previous

training with Female A.

3.3.3.2 Participant

Participants in this experiment are all recruited from the UPenn subject pool. There are

29 participants in the same condition. They are 20 female and 9 male, aging from 19-26

years old (Mean = 20, SD = 1.6). The opposite condition has 33 participants, including

19 female and 14 male, aging from 18-22 years old (Mean = 19.6, SD = 1.2). The neutral

condition has 30 participants. Among them there are 22 female and 8 male, aging from

16-29 years old (Mean = 19.8, SD = 2.1). Along with the responses of these participants,

I have also plotted the results of participants in the baseline condition and the Female A

/S/-favoring condition to provide visual references (see Section 3.3.1.2 for the information

of those participants).

3.3.3.3 Result

Fig. 3.8 shows the means and standard errors of /s/-equivalent response rates at each step

in the three two-phase learning conditions, along with the results of the baseline and pilot

training conditions represented by the grey lines. The blue lines indicates the percentage

of /s/-equivalent responses in the Two genders - same condition (dashed line) and in the

Two genders - opposite condition (solid line). The yellow line in between is the result of

the Two genders - neutral condition, where the speech of the intervening male speaker does

not contain any /s/ or /S/.

83



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.1

0.3

0.5

0.7

0.9

35 45 55 65 75
Proportion of /s/ blended in the step (%)

R
at

io
 o

f /
s/
−e

qu
iva

le
nt

 re
sp

on
se

s

group
●

●

●

●

●

Female A baseline
Female A sh−favoring
Two genders − neutral
Two genders − opposite
Two genders − same

Figure 3.8: Exp1b: /s/ response rate as a result of cross-gender perceptual learning with
di↵erent sibilant distributions (mean and standard error)

Recall that participants in all the three conditions have had identical exposure to Female

A’s /S/-favoring speech in the first training phase, which has induced a shift towards /S/

as represented by the grey solid line. On top of that, a second-phase exposure to Male

A’s /S/-favoring speech in the Two genders - same condition causes further shift towards

/S/, whereas a second-phase exposure to Male A’s /s/-favoring speech in the Two genders -

opposite condition shift the categorization boundary backwards but it has not returned to

the baseline. The results of the Two genders - neutral condition where there are no /s/ or

/S/ in Male A’s speech lies in between. Like in Exp 1a, the overall /s/ responses of the three

two-gender learning conditions are consistent with the sibilant properties of Male A’s speech

in their second training phase, suggesting that listeners have updated their perceptual

expectations through exposure to Male A’s speech and applied their updated expectations

to the phoneme categorization of Female A’s speech. These findings are consistent with an

update account.

One way the result of Exp 1b di↵er from that of Exp 1a is that the perception boundary

of the Two genders - neutral condition roughly overlaps with the boundary in the Female A

/S/-favoring condition, meaning that a second-phase exposure to Male A’s speech without

/s S/ does not diminish the learning e↵ect established in the first phase. This is not the case

84



of Exp 1a, where we can observe a decay of the boundary shift towards /s/ compared to

the Female /s/-favoring condition. Recall that I have laid out several possibilities for this

decay. One possibility is that this is caused by a lapse in time during the second-training

phase. The other possibility is that listeners are adapting to Male A’s boundary that they

have conceived of without actually hearing the actual production of Male A’s sibilants. If

the patterns we observed for Exp 1b is statistically validated, then it might suggest that

the learning decay of the neutral condition in Exp 1a is more likely caused by adaptation

towards the expected boundary of the speaker rather than memory decay. In other words,

listeners might have inferred the distributional properties of Male A’s sibilants from his

neutral speech and adapted to that distribution. Moreover, the categorization boundaries

in the genders - same and opposite conditions become obviously shallower in slope with a

concavity at Step 55. This can be explained by the experimental design of the test phase

shown in Table 3.3, where the split of /s/-embedding frames and /S/-embedding ones is not

even across steps. I will elaborate on these points in more details in the section of general

discussion.

Similarly, a mixed-e↵ects model (Model-1b) is conducted with Step (35-75, scaled and

centered), Trial (1-51, scaled and centered), and Condition (treatment coded, reference:

baseline), and Phoneme (the original phoneme associated to each auditory frame, sum-

coded, reference: SH) as the fixed e↵ects, Condition:Step and Condition:Trial as the inter-

action items, and Step by Subject and by Frame as random slopes, to predict the Response

of each trial (S=0, SH=1). The result is shown in Table 3.6.

According to Table 3.6, the main e↵ect of Step is significant, suggesting that the larger

the proportion of [s] is mixed in the stimulus, the less likely that stimulus is perceived

as /S/-equivalent (� = �2.08, p < 0.001). The magnitude of the Step e↵ect is found to

vary with Condition: The model reveals a significant interaction between them for the two

conditions that involves training with Male A’s sibilants (� = 0.83, p < 0.001 for the Two

genders - same condition; � = 0.71, p < 0.001 for the Two genders - opposite condition;

� = 0.64, p = 0.003 for the Two genders - neutral condition). Since the proportion of /S/
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Fixed e↵ects Estimate SE z value Pr(>|z|)
(Intercept) 0.05 0.33 0.14 0.89
Step -2.08 0.17 -12.44 < 0.001⇤⇤⇤

Condition Female A sh-favoring 1.03 0.41 2.53 0.01⇤

Condition Two genders - same 1.96 0.41 4.73 < 0.001⇤⇤⇤

Condition Two genders - neutral 1.09 0.40 2.71 0.007⇤⇤

Condition Two genders - opposite 0.58 0.39 1.48 0.14
Trial -0.45 0.09 -4.78 < 0.001⇤⇤⇤

PhonemeS -0.52 0.04 -12.54 < 0.001⇤⇤⇤

Step:Condition Female A sh-favoring 0.40 0.22 1.78 0.08
Step:Condition Two genders - same 0.83 0.23 3.60 < 0.001⇤⇤⇤

Step:Condition Two genders - neutral 0.64 0.22 2.92 0.003⇤⇤

Step:Condition Two genders - opposite 0.71 0.21 3.32 < 0.001⇤⇤⇤

Condition Female A sh-favoring:Trial 0.00 0.13 -0.04 0.97
Condition Two genders - same:Trial 0.34 0.14 2.47 0.01⇤

Condition Two genders - neutral:Trial 0.16 0.13 1.23 0.22
Condition Two genders - opposite:Trial 0.47 0.12 3.74 < 0.001⇤⇤⇤

Model-1b: Response⇠Step*Condition+Condition*Trial+Phoneme+(Step|Subj)+(Step|Frame)

Table 3.6: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 1b

responses should be decreasing with the increase of Step, a positive value for the interaction

item would indicate that the decrease becomes shallower instead of sharper. Therefore,

the significant interaction between Step and Condition means that listeners who have had

exposure to Male A’s speech show a shallower categorization boundary than the baseline

condition. In contrast, the di↵erence in categorization slope between the baseline condition

and the Female A sh-favoring condition is only marginally significant (� = 0.40, p = 0.08).

The estimates of Condition in all conditions are positive, meaning that each of them has

/S/ equivalent responses than the baseline condition quantitatively. The e↵ect of Condition

is significant for the Two genders - same condition (� = 1.96, p < 0.001), the Two genders

- neutral condition (� = 1.09, p = 0.007), and the Female A sh-favoring condition (� =

1.03, p = 0.01), but it is not significant for the Two genders - opposite condition (� =

0.58, p = 0.14). These results means that the former three conditions are significantly

di↵erent from the baseline condition in that they exhibit more /S/-equivalent responses,

whereas the Two genders - opposite condition does not di↵er significantly from the baseline

condition. Basically, the Condition di↵erences revealed by Table 3.6 have replicated the
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result of Exp 1a, lending support to a update account where the speech of Male A has

been integrated and reflected in the final categorization stage, lending to the categorization

boundary in the Two genders - opposite condition to return to the baseline condition.

The model also reveals main e↵ects of Trial (� = �0.45, p < 0.001) and Phoneme

(� = �0.52, p < 0.001). The Trial e↵ect implies that trials coming up at a later point are

less likely to be perceived as /S/-containing. The Phoneme e↵ect implies that the /S/-initial

word frames are more likely to be perceived as /S/-initial. The Trial e↵ect interacts with

Condition for the Two genders - same condition (� = 0.34, p = 0.01) and the Two genders

- opposite condition (� = 0.47, p < 0.001), but not for the Female A sh-favoring condition

(� < 0.001, p = 0.97) or the Two genders - neutral condition (� = 0.16, p = 0.22). Simply

put, the Female A sh-favoring condition and the neutral condition share the Trial e↵ect in

the baseline condition such that later trials are more likely to be perceived as /s/. However,

this e↵ect is significantly smaller for the two conditions involving training with Male A’s

sibilants (same and opposite).

Finally, I re-evaluated the model with “Female A sh-favoring” as the baseline to examine

whether the second-phase exposure to Male A’s speech has shifted listener perceptual bound-

ary further away from the Female A /S/-favoring condition. This time, only the Two genders

- same condition exhibits significant di↵erence from the Female A /S/-favoring condition

(�same = 0.93, p = 0.03), while the other two conditions do not (�neutral = 0.06, p = 0.88;

�opposite = �0.45, p = 0.26).

3.3.3.4 Summary

In Exp 1b, again, I evaluate whether listeners use their knowledge of the acoustic dis-

tributions of a recently encountered male talker to categorize the speech of a previously

encountered female talker. Although we have already seen some evidence from Exp 1a that

this might be the case, we still wonder whether this finding applies to Exp 1b where the

acoustic distributions of the two speakers are farther apart from each other. The result of

Exp 1b shows that it does. On one hand, a significant di↵erence between the Two genders
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- opposite condition and the Female A /S/-favoring condition helps rule out the possibility

of retention, which predicts that exposure to Male A’s speech would not cause perceptual

shifts to the categorization of Female A’s speech. On the other hand, the lack of di↵erence

between the Female A /S/-favoring condition and two of the two-gender conditions, same

and neutral, helps rule out the possibility of reset, which predicts that simply exposure to

Male A’s speech is su�cient to make listeners reset their perceptual learning boundaries,

no matter what Male A’s acoustic distribution looks like. Up to this point, the result of

Exp 1a and 1b both lend support to the account of update, which predicts that the acoustic

distribution of Male A is also integrated to cope with categorization with Female A’s speech.

3.3.4 Exp 1c: No previous training with Female A’s /s-S

3.3.4.1 Experimental conditions and goals

In Exp 1a and 1b, listeners have been trained on the sibilants of Female A and Male A in

two sequential training phases, and then they complete a categorization test that evaluates

which perceptual expectation(s) they would use for the identification of Female A’s sibilants.

Results obtained so far consistently indicate that listeners have used their knowledge about

Male A’s sibilants in the categorization of Female A’s sibilants. In Exp 1c, I ask to what

extent the results reflect training with Male A’s speech alone (where training with Female

A’s speech has been forgotten) instead of the joint training with Female A’s and Male A’s

speech. Will training with Male A’s speech on its own give rise to the same categorization

boundary as induced by exposure to both Female A’s and Male A’s speech?

The two possible answers to the above question correspond to two possibilities laid out

in Section 2.4: The situation where listeners have integrated both Female A’s and Male

A’s sibilant properties to cope with the categorization is called cumulative update, and the

situation where listeners have integrated Male A’s sibilant properties only and have left

behind Female A’s sibilant properties is called recency update. These two situations share

the similarity that the training with the recent speaker (Male A in this case) is exerting

an influence on the final categorization result, but they make di↵erent predictions about
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whether the outcome of earlier learning experience is still retained.

The research goal of Exp 1c is to evaluate which of these situations is a more accurate de-

scription of the categorization results we have observed. Participants in this sub-experiment

only receive training on Male A’s speech in a single phase, which is manipulated to be either

/s/-favoring or /S/-favoring. Then they are tested with /s-S/ minimal pairs of Female A.

I compare the categorization result of training with Male A only (in 1c) and the result of

training with two speakers in 1a and 1b, where Male A’s speech shares the same distribution

with 1c. If the results turn out to be similar, then it suggests that the shift observed in the

two-gender training conditions in Exp 1a and 1b can be largely attributed to the training

with Male A in the second phase alone. If they turn out to be di↵erent, then it suggests that

the training with Female A in the first stage also exerts an influence on the categorization

results we have observed in 1a and 1b.

3.3.4.2 Participant

34 participants are recruited to participate in the Male A /S/-favoring condition from the

UPenn subject pool. They are 14 male and 20 female, aging from 18 to 31 years old

(Mean = 20.3, SD = 2.5). 27 participants are recruited for the Male A /s/-favoring

condition. Among them, 17 are recruited from Prolific and the remaining 10 are recruited

from the UPenn subject pool. They are 10 male and 17 female, aging from 18 to 56 years

old (Mean = 24.5, SD = 8).

3.3.4.3 Result

The first analysis I did is to compare the categorization boundaries of the Female A baseline

condition and the Male-only conditions. This comparison gives us an idea about whether

training with Male A’s speech successfully induced an amount of shift to the intended

direction. Fig. 3.9 shows the results of the two experimental conditions in Exp 1c, namely,

training with Male A’s speech only, in either the s-favoring or sh-favoring directions, along

with the baseline categorization results along the test continuum in Female A’s voice.
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Figure 3.9: Exp 1c: /s/ response rate as a result of training with Male A compared to the
baseline (mean and standard error)

Fig. 3.9 show that the training stimuli of Male A successfully induced an amount of

perceptual shift to the intended direction compared to the baseline categorization. A logistic

mixed-e↵ects model (Model-1c-a) is fitted to examine whether the categorization results of

the Male s-favoring condition and the Male /S/-favoring condition are significantly di↵erent

from the Female A baseline. The dependent variable is the response of each trial (S:0, SH:1).

The main e↵ects are Condition (Male A s-favoring/Male A sh-favoring/Female A baseline,

treatment coded, baseline: Female A baseline), Phoneme (the original phoneme associated

to each auditory frame, sum-coded, baseline: SH), and Step and Trial (both scaled and

centered). The models also include Condition:Step and Condition:Trial as the interaction

items, by-Subject Step as the random slope, and Frame as a random intercept (the random

slope of Frame is highly correlated with that of Step and is therefore dropped). The result

of this model is shown in Table 3.7.

Table 3.7 reveals a significant di↵erence between the Female A baseline condition and the

Male A s-favoring condition (� = �0.8, p = 0.043), as well as a significant di↵erence between

the Female A baseline condition and the Male A sh-favoring condition (� = 1.44, p <

0.001). The model also reveals significant main e↵ects of Trial (� = �0.44, p < 0.001) and

Phoneme (� = �0.49, p < 0.001), as well as significant interactions of Step:Condition for

both conditions (�MaleS = 0.62, p = 0.002;�MaleSH = 0.55, p = 0.006) and Condition:Trial

90



Fixed e↵ects Estimate Std. Err. z value Pr(>|z|)
(Intercept) 0.17 0.32 0.52 0.60
Step -2.04 0.15 -13.31 < 0.001⇤⇤⇤

Condition Male A s-favoring -0.80 0.39 -2.03 0.043⇤

Condition Male A sh-favoring 1.44 0.39 3.68 < 0.001⇤⇤⇤

Trial -0.44 0.09 -4.81 < 0.001⇤⇤⇤

PhonemeS -0.49 0.05 -9.64 < 0.001⇤⇤⇤

Step:Condition Male A s-favoring 0.62 0.20 3.09 0.002⇤⇤

Step:Condition Male A sh-favoring 0.55 0.20 2.76 0.006⇤⇤

Condition Male A s-favoring:Trial 0.44 0.13 3.47 < 0.001⇤⇤⇤

Condition Male A sh-favoring:Trial 0.17 0.12 1.38 0.17

Model-1c-a: Response⇠Step*Condition+Condition*Trial+Phoneme+(Step|Subj)+(1|Frame)

Table 3.7: The fixed e↵ects of the logistic mixed-e↵ects model evaluating the e↵ect of
training with Male compared to the Female A baseline in Exp 1c

for the Male A s-favoring condition (� = 0.44, p < 0.001). Crucially, this model suggests

that the training materials have successfully triggered an amount of perceptual boundary

shift.

The second set of comparisons I made is between the Male-only training conditions and

the Two-gender conditions that contain the same Male training phase. Fig. 3.10 shows the

results of Exp 1c along with Two-gender conditions sharing the same manipulation of Male

A’s speech in Exp 1a and 1b. The left facet shows the results of training with Male A’s

/s/-favoring alone speech (grey) and training with Male A’s /s/-favoring speech preceded

by either Female A’s /s/-favoring speech (blue) or Female A’s /S/-favoring speech (yellow).

Similarly, the left facet shows the results of training with Male A’s /S/-favoring speech alone

(grey) and training with Male A’s /S/-favoring speech preceded by either Female A’s /S/

speech (blue) or Female A’s /s/-favoring speech (yellow).

Crucially, in both of the two facets, we can see that the grey line lies between the yellow

line and the blue line. This means that a preceding training phase with Female A’s /s/-

favoring speech results in a higher amount of /s/-equivalent responses (represented by the

blue line in the left facet and yellow line in the right facet), whereas a preceding training

phase with Female A’s /S/-favoring speech results in a lower amount of /s/-equivalent

responses (represented by the yellow line in the left facet and the blue line in the right
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Figure 3.10: Exp 1c: /s/ response rate as a result of training with Male A compared to
two-genders training conditions (mean and standard error)

facet), compared to the result of training with Male A’s speech alone.

To evaluate whether the di↵erence between the grey line and the other two lines in each

of the facet is significant, I evaluated another two logistic mixed-e↵ects models (Model 1c-b

and 1c-c) respectively for the data of experimental conditions including Male A /s/-favoring

training and those including Male A /S/-favoring training. The dependent variable is SH

responses in the test. The main e↵ects are Condition (Male only, Two genders - opposite,

Two genders - same; treatment coded, baseline: Male only), Step and Trial (both scaled

and centered), and Phoneme (the original phoneme associated to each auditory frame, sum-

coded, baseline: SH). The models also include Condition:Step and Condition:Trial as the

interaction items, Subject as a random slope, and Frame as a random intercept.

A full list of the estimates in the two models are presented in Table B.1 and Table B.2 in

Appendix B. For conditions including Male s-favoring training (i.e., the left facet in Fig. 3.9),

a significant Condition di↵erence is found between the Two genders - opposite condition

and the Male only condition (� = 1.54, p = 0.002), as well as between the Two genders

- same condition and the Male only condition (� = �1.12, p = 0.03). This means that

compared to exposure to Male A’s /s/-favoring speech alone, a preceding training phase of
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Female A’s /s/-favoring speech results in significantly fewer /S/ responses (the blue line),

while a preceding training phase of Female A’s /S/-favoring speech results in significantly

more /S/ responses (the yellow line). For conditions including Male sh-favoring training

(i.e., the right facet in Fig. 3.9), however, only the Two genders - opposite condition shows

a significant di↵erence from the Male only condition (� = �2.16, p < 0.001), while the Two

genders - same condition does not (� = 0.23, p = 0.23). Overall, these results show the

results of “Male A only” conditions di↵er from the results of two-gender training conditions

that involve the same training condition with Male A, except for the di↵erence between the

Male A /S/-favoring condition and the Female A /S/-favoring Male A /S/-favoring condition,

which we will discuss more in the Discussion section.

3.3.4.4 Summary

Exp 1c evaluates the results of training with Male A’s /s/-favoring or /S/-favoring speech

only, and compares them with the two-gender training conditions that involve the same

training condition with Male A. The results show a clear di↵erence between two-gender

training conditions and Male A only conditions, except for the di↵erence between the Male

A /S/-favoring condition and the Two genders - /S/-favoring condition. This might have

been caused by a ceiling e↵ect since Male A’s voice tends to induce more /S/-equivalent

responses overall. This point will be discussed further in the next section. In general, these

results lend support to an account of cumulative update, where the speech of both Female

A and Male A exerts an influence in the test phase. They are not consistent with the other

possibility of recency update, which would otherwise predict little di↵erence between the

male-only conditions and their corresponding two-gender conditions.

3.4 Discussion

Experiment 1 aims at teasing apart the four possible mechanisms (retention, reset, cumu-

lative update, and recency update) involved in the perceptual learning of multiple speakers.

To achieve this goal, I separately manipulated the phonetic characteristics of the two talk-
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ers in the training phase and evaluated the perceptual consequences caused by each step

of manipulation with the same test continuum. This section provides a summary of the

main findings of Exp 1 in response to this question, and discusses the implications of other

empirical observations and remaining puzzles.

3.4.1 Cumulative update of perceptual expectations across speakers

One of the major findings of Exp 1 is that perceptual learning updates across speakers of

di↵erent genders for fricatives, when the sibilants of di↵erent speakers are similar enough

acoustically. This is reflected by the results of Exp 1a and 1b. Exp 1a compares the in-

fluences of three di↵erent training conditions on the categorization of a female speaker’s

sibilant continuum coming afterwards. The three training conditions each contain a train-

ing phase with the target female speaker’s speech and a second training phase with a male

speaker’s speech. The critical design is that the conditions are contrasted by the acoustic

distributions of the male speaker, such that they are intended to either favor /s/ or /S/, or

being neutral. The result of Exp 1a shows that the categorization boundaries vary consis-

tently with the training input of Male A’s speech in the second training phase: Participants

who have received /s/-favoring training with Male A show the highest /s/ response rate

among the three conditions; participants trained with /S/-favoring Male A show the lowest

/s/ response rate, and participants who have had no exposure to Male A’s sibilants exhibit

an /s/ response rate between the former two conditions.

This result is replicated by Exp 1b, which replaces Female A’s /s/-favoring speech with

her /S/-favoring speech as the training materials of the first training phase. Again, the

results show that exposure to a conflicting sibilant distribution from Male A successfully

canceled out the earlier /S/-favoring training with Female A, meaning that perceptual learn-

ing generalization still applies in the condition where the acoustic distributions of Female

A’s sibilants are manipulated in an opposite direction. Although the above trends are based

on empirical observations rather than statistical analysis, they indeed show an amount of

consistency between Male A’s speech properties and the direction of boundary shift in each
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condition indicates that the di↵erences between these conditions are not simply a reflection

of the between-group di↵erences inherently associated with di↵erent groups of participants.

Instead, it suggests that the acoustic distribution of the intervening speaker Male A is

learned and applied to the final test phase when listeners perform the final categorization

task with the voice of Female A.

When the statistical results are taken into consideration, the above picture is further

complicated but not essentially changed. For each of Exp 1a and 1b, two kinds of statistical

comparisons are conducted. One is the comparison between the results of the Female

A baseline condition and those of the two-gender experimental conditions. The results

consistently show that, in Exp 1a and 1b, exposure to Male A’s speech either with the

same acoustic bias or with no /s S/ does not set back the existing perceptual shift induced

by the first-phase training with Female A, whereas exposure to Male A’s speech biased

towards the opposite direction would cancel out the previous perceptual shift such that

the categorization result is not statistically di↵erent from the baseline. The other is the

comparison between the results of the female-only single-phase training condition and those

of the two-gender conditions. The results of this comparison are more mixed, and I will

discuss them in more details in the next section (Section 3.4.2.0.1).

Among the hypotheses about how perceptual learning operates with multiple talkers, as

laid out in Section 2.4, the current set of results lends support to the update account, which

claims that listeners update their phonetic expectations in response to the recent acoustic

input from di↵erent speakers. It is not consistent with other possibilities such as reset,

which suggests that the boundary goes back to the baseline each time after encountering a

di↵erent talker’s voice, or retention, which suggests that the perceptual learning functions

in an absolute speaker-specific way. The question remains, though, is whether listeners set

aside what they learned with Female A while integrating Male A’s acoustic distributions

into their perceptual expectations. To what extent do the categorization patterns in the

results of Fig. 3.6 and 3.8 maintain an influence of training with Female A’s speech?

Exp 1c is designed to evaluate this question by investigating the categorization boundary
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as a result of exposure to Male A’s training speech alone. Through a comparison between

a specific male-only condition and the two-gender conditions that contain it, we have seen

that their categorization results are not identical. This suggests that the results of the two-

gender conditions cannot be attributed to training with Male A alone. In the Two genders

- same condition, participants who heard only Male A’s /s/-favoring stimuli gave fewer

/s/ responses than participants who heard Female A’s /s/-favoring stimuli prior to Male

A /s/-favoring stimuli; similarly, participants who heard only Male A’s /S/-favoring stimuli

gave fewer /S/ responses than participants who heard Female A’s /S/-favoring stimuli prior

to Male A /S/-favoring stimuli. These patterns indicate that the results of the two-gender

conditions reflect the integration of the acoustic distributions of both Female A and Male

A. The same logic applies to the comparison between the Male only conditions and the

Two genders - opposite conditions. For example, participants who heard only Male A’s

/s/-favoring stimuli gave more /s/ responses than participants who heard Female A’s /S/-

favoring stimuli prior to Male A /s/-favoring stimuli. The above findings are represented

by the result pattern in Fig. 3.10, where the results of the Male-only conditions lie between

those of the Two genders - opposite condition and the Two genders - same condition that

contain the same training stage with Male A.

Taken together, results of Exp 1 lend support to an account of cumulative update for

perceptual learning, which predicts the integration of perceptual learning of both Female

A’s and Male A’s acoustic distributions, instead of recency update, which predicts that

listeners mainly integrate Male A’s acoustic distributions and toss o↵ Female A’s to cope

with the final categorization test.

3.4.2 E↵ect size, trial order, categorization slope, and transitional bias

After going through the main findings that shed light on the research question raised at the

beginning of this chapter, I now turn to discuss some other findings of Exp 1 that are less

relevant to the research question but are independently interesting. These factors include

asymmetric e↵ect sizes, trial order e↵ect, categorization boundary slope, and transitional
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bias of the test stimuli.

3.4.2.0.1 Asymmetric e↵ect sizes between conditions Although the main patterns

described above are statistically supported, one concern that comes up from the statistical

results of the models is the occasional lack of a significant di↵erence between the results of

the two-gender conditions and the female-only condition. In Exp 1a and 1b, I compared

the categorization results of the two-gender conditions with their corresponding female-only

conditions by re-coding the “Female A training” condition as the baseline. This comparison

is intended to evaluate how much change is caused by the second-stage training on top

of the first-stage perceptual learning. The results, as reproduced in Fig. 3.11, shows an

asymmetry regarding the e↵ect size of training with Male A with di↵erent directions of

biases: In Exp 1a, exposure to Male A’s neutral speech and speech favoring perceptual shift

in the same direction did not induce an extra amount of shift compared to exposure to

Female A’s training stimuli alone, whereas exposure to Male A’s speech favoring opposite

perceptual learning has induced a significant setback. However, what we observe in Exp 1b

is the reverse: Exposure to Male A’s neutral speech and speech favoring perceptual shift

in the opposite direction did not induce a significant amount of additional shift compared

to exposure to Female A’s training stimuli alone, whereas exposure to Male A’s speech

favoring perceptual learning in the same direction with Female A’s speech has induced an

additional shift towards /S/ on top of the previous shift induced by Female A’s speech.

The lack of significant di↵erence in the above two experimental conditions does not

mean that the perceptual learning e↵ect of the second phase in those conditions is absent.

The second-phase training e↵ect is captured by the model when “Female A baseline” is

coded as the reference level. In Exp 1a, for example, although the model does not reveal

a di↵erence between the Two genders - opposite condition and the Female A /s/-favoring

condition, a comparison with the baseline condition suggests that the result of the Two

genders - opposite condition has been set back to the baseline and the significant shift

towards /s/ as induced by training with Female A has been canceled out by exposure to

Male A’s speech.
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Figure 3.11: Asymmetric e↵ect sizes between experimental conditions in Exp 1a and 1b

Instead, I propose that the asymmetric perceptual shift in di↵erent directions reflects

the inherent acoustic biases of the training speech. Recall that the training stimuli of

Female A result inducing a larger perceptual shift towards /s/ (� = �2.15, p < 0.001)

than towards /S/ (� = 1.07, p = 0.02), despite the identical methodology adopted for the

manipulation of the two sets of training stimuli (Fig. 3.5, Table 3.4). The situation of

the Male A training speech is backward: it induces a larger shift towards the /S/ end

(� = 1.62, p < 0.001) than the /s/ end (� = �0.92, p = 0.07) (Fig. 3.9, Table 3.7). These

properties may explain why the female-only condition does not significantly di↵er from

the two-gender (same condition in Exp 1a and the two-gender opposite condition in Exp

1b – because the latter two conditions both contain training with Male A’s /s/-favoring

speech in their second phase, and /s/-favoring training with Male A does not induce robust

perceptual shifts by itself. Moreover, the fact that Female A’s training speech induces a

larger perceptual shift towards /s/ than /S/ makes the Two genders - same condition in Exp

1a more vulnerable to a ceiling e↵ect than in Exp 1b, which contributes to the insignificance

of the di↵erence between the same condition and the Female A s-favoring condition in Exp

1a.
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3.4.2.0.2 Trial order Another factor that consistently turns out to be significant in

the model statistics is trial order, namely, the order in which test stimuli are presented.

In the experiment, the stimuli are randomized within block for each participant, and as a

result, each test stimulus is assigned number from 1 to 51, with larger numbers standing for

occurrence at a later time point. Intriguingly, I find that the Trial e↵ect in Exp 1 usually

reflects listeners’ tendency to balance the numbers of their /s/ and /S/ responses through the

time span of the test phase. This is regardless of the fact that there are only 35 critical trials

in the test phase. For example, /s/-favoring training usually comes with a positive coe�cient

of Trial (for SH), because of listeners’ tendency to remedy for their bias towards choosing

/s/ at the beginning of the test phase. Similarly, /S/-favoring training usually comes with

a negative coe�cient of Trial (for SH), because of listeners’ tendency to remedy for their

bias towards choosing /S/ at the beginning of the test phase. This pattern can be observed

from the estimates of Condition:Trial interaction in Table 3.4, 3.5, and 3.6). This seems

to reflect a degree of distributional learning of the listeners from the acoustic distributions

of the continuum. In other words, these task-specific “balancing” e↵ects actually work

against the perceptual learning e↵ects of interest, making them appear smaller. Similar

behaviors have also been reported in other studies. In specific, listeners tend to balance

the identification choices distributed along the provided continuum in categorization tests.

Tamminga et al. (2020) attribute this phenomenon to either a range e↵ect (Brady and

Darwin, 1978; Keating et al., 1981; Rosen, 1979) that involves interpreting the continuum

endpoints as phonemic anchors, or a frequency e↵ect that reflects a bias toward hearing

each option an equal number of times in a two-alternative forced choice task.

3.4.2.0.3 Categorization slope In phoneme categorization or perceptual learning stud-

ies, the perceptual shift is usually quantified by the aggregate change in the identification

rate of a certain phoneme. Although changes in the categorization slope along the acoustic

continuum are not uncommon, the implication of this factor is sometimes neglected. Sta-

tistical models in this chapter evaluated how the slopes of categorization boundaries vary
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between conditions, by including the interaction between Condition and Step. A robust

pattern consistently reflected by models in Exp 1a-1c is that exposure to Male A’s training

stimuli usually results in a shallower slope of the categorization boundary, in addition to

the increase or decrease in the mean “s” or “sh” response rates (see Table 3.5, 3.6, and

3.7)). In contrast, exposure to Female A’s training speech does not change the slope of the

categorization boundary (see Table 3.4). The consistent behavior of boundary slope as a

response to di↵erent speakers’ speech across speakers might indicate that the categorization

slope reflects nuanced dimensions inherent to the acoustic distribution of Male A’s speech.

This idea is also embodied in some of the previous studies on the modeling of perceptual

learning. For example, Kleinschmidt and Jaeger (2015) derived the slope of the categoriza-

tion boundary from the variance of the underlying acoustic distribution of related phonemes

in his model. Further investigations on the behavior of categorization slope as a response

to training speech with di↵erent distributions and speakers is a promising direction for this

type of research.

3.4.2.0.4 Transitional bias The lexical frames used for test stimuli are manipulated

from /s/-containing and /S/-containing minimal-pair words. To account for any influence

of the transitional cues associated with the original phoneme produced with the minimal

pairs, I have included Phoneme as a fixed e↵ect in the model. It turns out that Phoneme

has a significant e↵ect on the categorization results in all of the models in this chapter.

Fig. 3.12 demonstrates the /s/ response rates of Exp 1a and 1b by Phoneme in the original

productions of minimal pairs. By comparing the left and right facets of each row, we can

see that /s/-transitional frames (left) consistently end up with more /s/ responses than /S/-

transitional ones (right). In other words, although the sibilants of the minimal pairs have

been sliced out and replaced with ambiguous ones along the continuum, the transitional

cues remaining in the lexical contexts still have a significant influence on the categorization

of the embedded phoneme.

This design leads to an unusual curvy shape of the categorization boundary in some of

the two-gender conditions. This is because the /s/- and /S/- transitional lexical frames are
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Figure 3.12: /s/ response rate in two-gender training conditions by phoneme and experiment
(mean and standard error)

organized in an interleaving way along the steps of the continuum (see Table 3.3): In the

seven repetitions of the continuum, /s/-transitional frames have occurred three times at

Step 35, 55 and 75 and four times at Step 45 and 65, whereas /S/-transitional frames have

occurred four times at Step 45 and 65 and three times at Step 35, 55 and 75. As a result,

the categorization boundaries in some of the two-gender conditions are curved toward the

floor at Step 55 and curved towards the ceiling at Step 45 and 65 (e.g., in Fig. 3.8).

In order to obtain smoother categorization results in the next chapter, I have changed the

adoption of interleaving transitional lexical frames in the test phase and used /S/-containing

productions for test trials at all steps.

3.4.3 Remaining questions

The final issue related to di↵erent directions of perceptual learning is the design of opposite

manipulations of Female A’s speech in the first learning phase between Exp 1a and 1b. This

is intended to evaluate whether the update of perceptual expectations across speakers is con-

ditioned on a degree of acoustic overlap between sibilants in di↵erent experimental phases.
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In the beginning of Section 3.3.3, we have seen that, compared to a female /s/-favoring

distribution, a female /S/-favoring distribution is farther apart from a male speaker’s sibi-

lant distributions in the acoustic space. This is because /s/-favoring manipulation keeps

/S/ sounds unaltered while reducing the frequencies of /s/ sounds, leading to lower sibilant

frequencies overall and making them closer to the male speakers’ sibilants. In contrast,

/S/-favoring manipulation keeps /s/ sounds unchanged while increasing the frequency of

/S/ sounds, making the overall frequency distribution higher and thus farther from a male

speaker’s sibilants.

A constraint of acoustic overlap on perceptual learning is claimed in previous perceptual

learning literature (e.g., Kraljic and Samuel, 2006), although they mainly discussed the

acoustic overlap between the training stimuli and the test stimuli. In the current experiment,

the lack of acoustic overlap occurs between training phases in the Two genders - di↵erent

condition in Exp 1b (Fig. 3.4). This lack of acoustic overlap between training phases

does not seem to make a di↵erence to the result of perceptual learning. Exposure to a

conflicting sibilant distribution of Male A successfully canceled out the earlier /S/-favoring

training with Female A, meaning that perceptual learning generalization still applies in the

condition where the acoustic distributions for sibilants are the most far apart.1

The current results does not show evidence for constraints of acoustic overlap between

training phases on perceptual learning across speakers. However the result does not directly

contradict the findings of an acoustic overlap e↵ect reported in Kraljic and Samuel (2006)

at this point, because there is no lack of acoustic overlap between the training and test

stimuli (Fig. 3.3) in all sub-experiments. It remains unclear whether the acoustic overlap

between the training stimuli and the test stimuli would impose such a constrain in this

set of experiments. The question of the acoustic constraints on perceptual learning will be

examined in more details in the next chapter.

1One may argue that the result of Exp 1b where the Two-gender opposite condition is not significantly
di↵erent from the female-only condition in Exp 1b is a consequence of the lack of acoustic overlap. However,
as I discussed in the earlier part of this section, this cannot be the full story since we see that /s/-favoring
training with Male A does not induce a robust perceptual shift in other sub-experiments (Exp 1a, 1c).
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Chapter 4

Exp 2: Acoustic Interference in the

Perceptual Learning of /s-S/ across

Speaker Genders

This chapter reports on Experiment 2, which investigates whether there is an interaction

between the e↵ects of speaker gender and the acoustic properties of /s S/ in cross-speaker

perceptual learning. Exp 2 shares similar experimental structures with Exp 1 but replaces

the previous female speaker, Female A, with a di↵erent one, Female B. Compared to Female

A, Female B has higher frequencies of energy distribution for sibilants, which causes more

dramatic acoustic asymmetry between the sibilants of the female speaker and the male

speaker in training and test. This chapter contains four sections. Section 4.1 reviews

previous findings of the e↵ect of acoustic properties on perceptual learning and explains how

replacing Female A with Female B provides a suitable testing ground for the investigation

of this question. Section 4.2 provides an overview of the experimental design, stimuli, and

conditions of Exp 2. Section 4.3 reports on a pilot and a series of three sub-experiments

and their main results. Finally, Section 4.4 discusses the implications of the main findings

in Exp 2 and concludes this chapter. The result of this experiment is expected to shed light

on whether and how the acoustic properties of sibilants constrain perceptual learning across

speakers of di↵erent genders.
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4.1 Background and research question

The previous chapter (Section 3.1) provides a review of the acoustic variation of /s-S/ with

speaker gender and the influence of this covariation on perception. In this section, I fur-

ther demonstrate that the gender variation in the natural production of /s S/ gives rise to

predictable patterns of acoustic properties of the training and test stimuli in perceptual

learning experiments. This is determined by the typical stimulus manipulation method

adopted by perceptual learning studies. Usually, clear sibilants in the stimuli are copied

from the original /s/ and /S/ pronunciations of the training speaker, and ambiguous sibi-

lants are generated by blending the spectra of clear speech production of di↵erent phonemes.

As a result, the acoustic distributions of critical phonemes in the training speech are cor-

related with the acoustic properties of their original production of those phonemes. In the

meantime, as sibilants also exhibit a robust gender variation in the naturalistic production,

complicated relationships between the acoustic distributions of the training and test stimuli

are generated in di↵erent conditions.

The remainder of this section delineates two potential ways in which the acoustic prop-

erties of experimental stimuli may constrain cross-speaker perceptual learning, and summa-

rizes the predictions of the experiment result under each hypothesized constraint.

4.1.1 Acoustic overlap between the training and the test stimuli

Empirical findings have suggested that the acoustic alignment or overlap between di↵erent

speakers’ critical phonemes makes a di↵erence to the generalization of perceptual learning.

Eisner and McQueen (2005) raised the possibility that the relationship between acoustic

distributions might be an even more reliable predictor of whether perceptual learning gener-

alizes than speaker gender. Eisner and McQueen showed that listeners would not generalize

what they had learned from a female training speaker to a male test speaker unless the fe-

male training speaker’s fricatives are replaced with the male test speaker’s fricatives, which

are then spliced into the female training speaker’s word frames. They interpret this result
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as evidence that listeners attend to the acoustic properties of the phonemes of di↵erent

speakers and only generalize what they learned from previous instances to upcoming ones

when the acoustic properties of these instances are similar enough.

This result is echoed by Kraljic and Samuel (2005) if we consider the overlap between

two acoustic distributions as a specific aspect of acoustic similarity. Kraljic and Samuel

(2005) found that the outcome of training with a female speaker can be transferred to a

male voice in the test phase; however, training with a male speaker does not generalize to

a female test speaker. They suggested that the decisive factor in cross-speaker generaliza-

tion for fricatives is the acoustic similarity between the fricatives heard during exposure and

those categorized at test. In their case, acoustic measurements of the fricatives revealed that

the female speaker’s fricatives during exposure fell within the range of the male speaker’s

test continuum, whereas the male speaker’s fricatives during exposure are acoustically dis-

tinct from the female speaker’s test continuum. Listeners thus seem to track the acoustic

properties of each speaker’s fricative productions and apply generalization whenever there is

a su�cient match. They put it this way: “perhaps unintended acoustic di↵erences between

our Female and Male training and test items led to di↵erent training-test mappings for

these voices... Female training transfers to the Male voice presumably because the Female

training stimuli are spectrally relatively close to the Male testing stimuli, but the Male

training does not transfer to the Female voice because Male training and test items are

virtually identical in average spectral mean, and relatively distant from the Female test

stimuli.” (2005, pp. 166).

Reinisch et al. (2014) investigated the cross-talker generalization of sibilant perceptual

learning with foreign-accented speech. They found that the retuning of fricative perception

is not speaker-specific, but generalization depends on how two speakers’ test continua are

sampled across perceptual space. In specific, Reinisch et al. (2014) evaluated whether the /s-

f/ boundary learned from a Dutch-accented female speaker can be generalized to a di↵erent

female speaker and a male speaker with the same Dutch-accented speech. They found

generalization across the female speakers, although the listeners reported some confusion
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about speaker identity. As with the male speaker, they found that generalization depended

on sampling of his fricatives to match or mismatch the perceptual space of the female

exposure speaker’s fricatives. It remains unclear whether this result would be expected

to generalize when not using L2-accented speech. In a nutshell, the above studies suggest

that the generalization of perceptual learning does require a certain amount of acoustic

overlapping between the sibilants of the training speaker and the test speaker.

As the first research of this chapter, I investigate whether the influence of acoustic

overlap between the training and the test stimuli on multi-speaker perceptual learning can

be observed with lexically-guided paradigm. Exp 1 does not provide a testing ground for

us to evaluate how perceptual learning across speakers is a↵ected by the lack of acoustic

overlap between the training and the test stimuli, because the test continuum overlaps

more or less with sibilants in each experimental condition in the acoustic space. The female

speech adopted in this chapter has higher frequencies of energy distribution for sibilants,

which leads to a lack of acoustic overlap between the male /s/-favoring speech and the

female test speech (to be explained with Fig. 4.4). If there turns out to be a constraint of

acoustic similarity between the training and test phase, then we should expect that Male

A’s /s/-favoring speech induces no perceptual shift on Female B’s continuum, regardless of

the fact that it has induced a significant amount of shift on Female A’s continuum in the

previous chapter.

4.1.2 Acoustic overlap and mismatch between training phases

Di↵ering from the design of Kraljic and Samuel (2005) and Reinisch and Holt (2014) de-

scribed in the previous subsection, other perceptual learning studies reported in previous

literature and in this dissertation involve training with multiple speakers instead of a single

speaker. Therefore, in addition to the relationship between the acoustic distributions of the

training phase and the test phase, relevant issues may also exist between di↵erent training

phases. At the beginning of Exp 1b in the previous chapter, I have demonstrated that the

relationship between the acoustic distributions of di↵erent training phases varies depending
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on the specific directions of the imposed perceptual biases. Recall that di↵erent amount of

acoustic overlap of Female A’s and Male A’s speech is derived in the Two-gender opposite

conditions between Exp 1a and 1b (see Fig. 3.7). The two speaker’s acoustic distributions

are closer to one another when the materials consist of Female A’s /s/-favoring speech and

Male A’s /S/-favoring, and they become farther apart when the materials consist of Female

A’s /S/-favoring speech and Male A’s /s/-favoring speech.

This situation is not limited to experiments in this dissertation but also applies to similar

studies on sibilant perceptual learning with manipulations of perceptual biases towards

di↵erent directions. To provide a more general schema for similar issues in experiments

with such a design, I demonstrate how di↵erent combinations of distributional parameters

may cause di↵erent relationships between acoustic distributions through simulation, which

is presented in Fig. 4.1. The left sub-figure demonstrates the simulated distribution of the

center of gravity (COG) of a female speaker’s clear /s/ (solid), clear /S/ (dashed), and

ambiguous (dotted) sibilants between these two phonemes, as well as the COG of a male

speaker’s speech of the three kinds. Overall, the female speaker’s sibilants have higher

COG than the male speaker’s, consistent with the real-world gender variation in spectral

frequency. The two sub-figures on the right demonstrate what the acoustic distribution

looks like under di↵erent training conditions depending on the specific perceptual biases

associated with each of the two speaker’s speech: The training condition with /s/-favoring

male speech and /S/-favoring female is shown in the top of the right figure. It consists of

the female speaker’s clear /s/ and ambiguous /S/ as well as the male speaker’s clear /S/

and ambiguous /s/. The training condition with male /S/-favoring male speech and female

/s/-favoring speech is shown in the bottom of the right. It consist of the female speaker’s

clear /S/ and ambiguous /s/ and the male speaker’s clear /s/ and ambiguous /S/.

Although the above two designs in Fig. 4.1 both represent a training condition where the

speech of speakers of di↵erent genders induces perceptual biases towards di↵erent directions,

the specific decisions about the directions of perceptual biases still make a di↵erence to

the relationship between the acoustic distributions of di↵erent speakers. Two issues emerge
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Figure 4.1: A schema of acoustic overlapping between fricatives under experimental condi-
tions of di↵erent perceptual biases

from Fig. 4.1 regarding the potential role of acoustic properties in constraining multispeaker

perceptual learning.

The first issue lies in the acoustic dissimilarity between the speech of the two speakers in

training. According to Fig. 4.1, the resulting acoustic distributions of di↵erent speakers are

distinct from one another in the experimental condition on top, whereas in the bottom, the

COG of the two speakers’ sibilants overlaps substantially with each other. This asymmetry

raises the issue whether the lack of acoustic overlap blocks the perceptual learning e↵ect

across speakers. To the best of my knowledge, experiments reporting on acoustic constraints

of cross-speaker perceptual learning are primarily concerned about the degree of acoustic

overlap between the training stimuli and the test stimuli. Few studies have looked into the

relationship between the acoustic distributions of di↵erent training phases and asked how it

a↵ects the perceptual learning results. Although the result of Exp 1 does not lend support

to this possibility, I still want to check whether the finding of perceptual generalization

can be replicated when the female speaker has a higher frequency range. If so, we should

see that perceptual learning fails to work for the condition in the right top facet, where

participants received /S/-favoring training with Female B and /s/-favoring training with

Male A:

The second issue is a potential mismatch between the acoustic place and the phonologi-
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cal space between experimental conditions. This situation applies to the condition described

in the right bottom facet in Fig. 4.1. The manipulation of the experimental stimuli is in-

tended to shift the categorization boundary between two phonemes by anchoring phoneme

representation with acoustic distribution of a less typical range. In specific, a /s/-favoring

manipulation is achieved by lowering down the general frequencies of /s S/ in the percep-

tual expectation and anchoring the ambiguous sibilants with /s/. Similarly, a /S/-favoring

distribution raises the sibilant frequencies in the perceptual expectation and anchors the

ambiguous sibilants with /S/. However, in the situation of the right bottom facet, an am-

biguous sound (which corresponds to the COG of around 6000 Hz) acoustically equals to /s/

in the training condition that favors /S/ perception (the blue distributions) and equals to

/S/ in the condition that favors /s/ perception (the yellow distributions). It is unclear how

the mismatch between the two speakers’ raw acoustic distributions and their distributions

in the phonological space (namely, distribution after normalization by speaker) blocks per-

ceptual learning. If so, we should see that perceptual learning fails to work for the condition

in the right bottom facet, where participants received /s/-favoring training with Female B

and /S/-favoring training with Male A.

The second research question of Exp 2 is how the multitalker perceptual learning of

sibilants is constrained on the relationship between the acoustic distributions of di↵erent

speakers in the training phase. Two constraints of acoustic distributions have been formed,

which I refer to as acoustic dissimilarity and acoustics-phonology mismatch. They make

di↵erent predictions about the results of Exp 2. The predictions of these two hypothesized

constraints are summarized as Table 4.1.

Acoustic Dissimilarity Acoustics-phonology Mismatch
Female /S/-favoring &
Male /s/-favoring

Yes (no overlap) No (no mismatch)

Female /s/-favoring &
Male /S/-favoring

No (acoustic overlap) Yes (/s/-favoring sounds have higher
frequencies than /S/-favoring ones)

Table 4.1: Summary of how experimental conditions in Exp 2 fit into the two hypothesized
acoustic constraints
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4.2 Method overview

4.2.1 Experimental conditions

Exp 2 contains a pilot study and three sub-experiments. The pilot study reports the /s-S/

categorization results of three conditions – a baseline condition where participants have not

receive any prior training before the test, and two training conditions where participants

have received either a /s/-favoring or a /S/-favoring training phase with Female B’s speech,

before they finally complete an identical categorization test on a /s-S/ continuum of Female

B’s speech spliced into minimal pairs. Like in Exp 1, the pilot study is intended to show

that the categorization boundary is aligned with the center of the continuum, and that the

design successfully induces the expected perceptual shift in both directions with Female B’s

speech.

Exp 2a and 2b each contain three experimental conditions. The two experiments begin

with a training phase of Female B’s speech. The training speech is manipulated to be

/s/-favoring in Exp 2a and /S/-favoring in Exp 2b, which corresponds to the two female

training conditions in Fig. 4.1. Then listeners proceed to the second training phase with

Male A’s speech, which is manipulated to be /s/-favoring, /S/-favoring, or containing no

/s S/ depending on the specific condition listeners are assigned to. Finally, the learning

outcome is evaluated by a categorization test phase with Female B’s speech. By comparing

the results of the three conditions within each sub-experiment, we are able to know to what

extent the exposure to Male A’s speech matters for the categorization of Female B’s speech.

By comparing the results of Exp 2a and 2b, we are able to detect any e↵ects associated

with acoustic overlapping situations of stimuli in di↵erent training phases.

Fig. 4.2 shows a summary of the experimental designs and procedures in each condition

in Exp 2a and 2b. In a nutshell, the pilot study di↵ers from Exp 2a and 2b in the number of

training phases involved. Exp 2a and 2b di↵er in the acoustic condition of the first training

phase with Female B.
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Figure 4.2: The structure of experiments and conditions in Exp 2

4.2.2 Word list and recording

Stimuli used in Exp 2 are manipulated from recordings of spoken words from Female B and

Male A obtained according to the procedure described in Section 2.3.2. For each speaker,

the spoken words used for training contain 17 /s/-containing words and 17 /S/-containing

words. The word list used in this experiment is identical to that of Exp 1 (provided in

Section 3.2.2). For each word, the critical sibilant is annotated by hand in the TextGrid

layer in Praat and measured for their the center of gravity (COG) value. Fig. 4.3 compares

the raw means and the 95% confidence intervals of the 34 sibilants for Female B, Male A

and Female A. We can see that Female B has a mean COG of around 10000 Hz for /s/,

which is considerably higher than the mean COG of /s/ of Female A (8500 Hz) and Male

A (7000 Hz). The COG of Female B’s /s/ also has a narrower frequency range, reflected

by the smaller 95% confidence interval. The /S/ sound of Female B does not seem to di↵er
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much from Female A in terms of mean COG (above 4000 Hz), both of which is higher than

the mean COG of Male A’s /S/ (below 4000 Hz).
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Figure 4.3: The COG of sibilants of Female A, Female B and Male A in natural speech
production (mean and 95% CI)

4.2.3 Step selection and synthesis

Again, for the synthesis of the training stimuli, the critical proportion of sibilants sharing the

same word frame (e.g.,compensate and compenshate) are cut out and mixed with each other

by five steps of proportions. The five steps of sibilants for each word frame by each speaker

vary from 0.3[s]0.7[S] to 0.7[s]0.3[S] with an increase of 0.1[s] and a decrease of 0.1[S] by each

interval, and then they are spliced back to the lexical frame. All the synthesized stimuli are

normalized to 70 dB. A lexical decision task is conducted to select the most ambiguous step

of sibilant for each word frame to be used in the training phase. Participants needed to judge

for lexical frames spliced with each of the five sibilant steps, whether they are an English

word or not. The results of lexical decision is shown in Section A. The mixture proportion

that provides the most ambiguous (50%) categorization result is selected to be further used

to construct the training materials in perceptual learning. If two steps bear approximately

similar distance to the 50%, then their average is used for stimulus construction. Table 4.2

showed the ambiguous steps chosen for each critical lexical frame for Female B.

Perception experiments are also conducted to select the steps and word frames of min-
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ID /S/-words Step /s/-words Step
1 ambition 0.35 compensate 0.4
2 beneficial 0.55 democracy 0.4
3 brochure 0.25 dinosaur 0.4
4 commercial 0.3 embassy 0.4
5 negotiate 0.35 episode 0.3
6 crucial 0.35 eraser 0.65
7 o�cial 0.4 falsetto 0.4
8 parachute 0.35 faucet 0.5
9 e�cient 0.4 legacy 0.25
10 impatient 0.3 medicine 0.4
11 initial 0.35 obscene 0.4
12 vacation 0.35 personal 0.35
13 evaluation 0.3 parasite 0.5
14 publisher 0.35 peninsula 0.55
15 refreshing 0.25 pregnancy 0.4
16 glacier 0.25 rehearsal 0.3
17 graduation 0.25 reconcile 0.3

Table 4.2: The proportion of [s] mixed in the most ambiguous step of sibilant chosen for
each word frame for Female B

imal pairs to be used for stimuli in the test phase. The test trials are generated by splicing

5 steps on a /s-S/ continuum into 7 word frames of minimal pairs. Di↵erent from Exp 1,

However, the categorization test with Female B’s speech does not involve interleaving /s/

and /S/ lexical frames across the continuum, as shown in Table 3.3. Instead, all of the

frames are /S/-containing (shake, shame, sheet, shelf, shell, shine, shy). Accordingly, the

statistical models evaluated for Exp 2 will not have Phoneme as a fixed e↵ect.

4.2.4 The acoustics of synthesized stimuli

Fig. 4.3 compares the means and 95% confidence intervals of /s S/ for each speaker in

each experimental condition between Exp 1 and 2. Recall that the two experiments di↵er

in the speech of the female speaker used. Exp 2 uses the speech of Female B, who has

higher frequencies of energy distribution for sibilants than Female A and Male A. The two

experiments each have two sub-experiments that di↵er in the sibilant frequencies of the

female speaker in training: female speakers exhibit /s/-favoring distributions in Exp 1a and
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2a while exhibit /S/-favoring distributions in Exp 1b and 2b. Subjects within each sub-

experiment received the same training with the female speaker but di↵erent training with

the male speaker. Depending on the condition they are assigned to, they may be exposed

to either /s/-favoring or /S/-favoring speech of Male A.
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Figure 4.4: The COG of sibilants in di↵erent training phases and in the test phase in Exp
2 (mean and 95% CI)

4.3 Experiment and result

4.3.1 Pilot study: Learning Female B’s /s-S/

4.3.1.1 Experimental conditions and goals

Like the pilot study of Female A, the pilot study of Female B also contains three conditions

– baseline, /s/-favoring learning, and /S/-favoring learning. Participants in the baseline

conditions completed a single test block, containing 35 test trials with ambiguous sibilants

embedded in minimal pairs and 17 filler words without sibilants in Female B’s voice. The

result of this condition is taken as a reference of the default /s-S/ perceptual boundary

for Female B. Participants in the two learning conditions first completed either an /s/-

favoring training block or an /S/-favoring training block with Female B’s speech before they
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proceeded to complete the same test block as in the baseline condition. The goal of the pilot

study is twofold. The first goal is to demonstrate that the /s/-favoring and /S/-favoring

perceptual learning e↵ects have been successfully elicited with the speech of Female B. The

second goal is to demonstrate that the 50% perceptual boundary between /s-S/ has been

successfully aligned with the center of the continuum by default without prior training.

4.3.1.2 Participant

Participants in the three conditions of the pilot with Female B are all recruited from the

UPenn undergrad subject pool. 31 participants are recruited to attend the baseline condi-

tion, including 23 female and 8 male, aged from 18-22 years old (Mean = 19.7, SD = 1.1).

32 participants are recruited for the Female B /S/-favoring condition, including 24 female

and 8 male, aged from 18-22 years old (Mean = 19.8, SD = 1.2). 30 participants are re-

cruited for the female B /s/-favoring condition, including 14 female and 16 male, aged from

18-22 years old (Mean = 20.2, SD = 1.2).

4.3.1.3 Result

Fig. 4.5 shows the results of phoneme categorization by participants in the baseline con-

ditions (in grey), Female B /s/-favoring condition (in yellow), and Female /S/-favoring

condition (blue). We can see that firstly, the 50% point of the categorization boundary in

the baseline condition aligns with the middle step of the continuum (Step 55). Secondly,

the /s/-favoring training and the /S/-favoring training seem to have worked in inducing a

perceptual bias towards the expected direction compared to the baseline condition: Partic-

ipants in the /s/-favoring condition show more /s/-equivalent responses on Step 35-55 than

those in the baseline condition. Similarly, participants in the /S/-favoring condition show

fewer /s/-equivalent responses on Step 45-75 than those in the baseline condition.

We then ran a logistic mixed-e↵ects regression model (Model-pilot2) to evaluate whether

the two learning e↵ects we see in Fig. 4.5 are statistically significant. A mixed-e↵ects model

is conducted to predict the Response of each trial (S=0, SH=1), with Step (35-75, scaled
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Figure 4.5: Exp 2 pilot: Boundary shift after exposure to Female B’s /s/-favoring and
/S/-favoring speech compared to the categorization baseline (mean and standard error)

and centered), Trial (1-51, scaled and centered), and Condition(treatment coded, reference:

baseline) as the fixed e↵ects, Condition:Step and Condition:Trial as the interaction item,

Step by Subject and Step by Frame as random slopes. The result is shown in Table 4.3.

Fixed e↵ects Estimate SE z value Pr(>|z|)
(Intercept) 0.31 0.42 0.74 0.46
Step -2.25 0.17 -13.14 < 0.001⇤⇤⇤

Condition Female B s-favoring -0.93 0.51 -1.81 0.07
Condition Female B sh-favoring 1.05 0.51 2.06 0.04⇤

Trial 0.25 0.09 2.77 0.006⇤⇤

Step:Condition Female B s-favoring 0.62 0.23 2.73 0.006⇤⇤

Step:Condition Female B sh-favoring 0.35 0.23 1.53 0.13
Condition Female B s-favoring:Trial -0.03 0.13 -0.22 0.83
Condition Female B sh-favoring:Trial -0.21 0.13 -1.66 0.10

Model-pilot2: Response⇠Step*Condition+Condition*Trial+(Step|Subj)+(Step|Frame)

Table 4.3: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 2 pilot

The model shows a main e↵ect of Step (� = �2.25, p < 0.001), suggesting that

in the baseline condition, the larger the proportion of [s] is mixed in the stimulus, the

less likely that stimulus is perceived as /S/-equivalent. This trend also holds for the sh-

favoring condition, as reflected by the lack of significant interaction between Step and

Condition(� = 0.35, p = 0.13). The slope of the categorization boundaries along the con-

tinuum step becomes significantly shallower for the Female s-favoring condition, as indexed
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by the interaction item (� = 0.62, p = 0.006). The e↵ect of Condition is significant for

the sh-favoring condition (� = 1.05, p = 0.04) and marginally significant for the s-favoring

condition (� = �0.93, p = 0.07), suggesting that participants with /s/-favoring training

experience are less likely to show /S/-equivalent responses than the baseline conditionwhile

those /S/-training experience are more likely to show /S/-equivalent responses than the

baseline condition. Lastly, the interaction between Conditionand Trial is not significant for

both of the conditions (s-favoring: � = �0.03, sh-favoring: � = �0.21).

While it is less ideal that the di↵erence between the baseline condition and the s-

favoring condition is only marginally significant, this result verified that they have induced

a perceptual bias towards the expected direction.

4.3.2 Exp 2a: Previous /s/-favoring training with Female B

4.3.2.1 Experimental conditions and goals

The goal of Exp 2a is to verify that what we found in Exp 1a, namely, the update of

perceptual expectations for fricatives across speakers of di↵erent genders, also applies to a

di↵erent set of speakers. Three experimental conditions are formed with the manipulated

speech of Female B and Male A as the training stimuli and the fricative continuum of

Female B spliced into minimal pairs as the test stimuli. Participants in all three conditions

first complete /s/-favoring training phase with Female B, followed by a training phase

with Male A’s speech with di↵erent sibilant manipulations. Depending on the condition.

Male A’s speech is either manipulated to be /s/-favoring (same), /S/-favoring (opposite),

or sibilant-free (neutral). In the end, participants are tested on Female B’s sibilants on an

/s-S/continuum spliced into minimal pairs.

If the result replicates what we see in Exp 1a, then it predicts that listeners integrate

the acoustic distributions of Female A to update their perceptual expectations and apply

this knowledge to the final categorization phase with Female B. As a result, we should see,

among the three conditions, the most /s/-equivalent responses in the same condition and

the most /S/-equivalent responses in the opposite condition, with the results of the neutral
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condition lying in between.

4.3.2.2 Participant

Participants in the three conditions of Exp 2a are all recruited from Prolific, with 29 of

them in the opposite condition, 29 in the same condition, and 23 in the neutral condition.

Participants in the opposite condition are 17 male and 12 female, aged from 17 to 21 years

old (Mean = 19.7, SD = 1.4). Participants in the same condition include 11 female and 18

male, aged from 18 to 29 years old (Mean = 20.5, SD = 2.1). Participants in the neutral

condition are 13 female and 10 male, aged from 18 to 22 years old (Mean = 20.2, SD = 1.1).

Along with the data of the above participants, I have also plotted the data of partici-

pants in the baseline condition and the Female B /s/-favoring condition as a reference (see

Section 4.3.1.2 for the information of those participants).

4.3.2.3 Results

Fig 4.6 shows the means and standard errors of the categorization result at each fricative step

in di↵erent conditions, along with the results of the baseline condition and the Female B /s/-

favoring conditions represented by the grey lines. The blue lines indicates the percentage of

/s/-equivalent responses in the same condition (dashed line) and opposite condition (solid

line). The yellow line lying in between is the average /s/ responses at each step in the

neutral condition where the male speech does not contain any /s/ or /S/.

In Fig. 4.6, the most /s/-equivalent responses are exhibited in the same condition where

Male A’s sibilants are /s/-favoring, and the least /s/-equivalent responses are exhibited in

the opposite condition where Male A’s sibilants are /S/-favoring. The results of the neutral

condition lie in between. Since the identical training with Female B in the first phase is

supposed to provide these participants with a similar perceptual expectation for Female

B, the di↵erences we observed between conditions should be attributed to their training in

the second phase with Male A. Indeed, the overall /s/ responses of the three two-gender

learning conditions are consistent with the sibilant properties of Male A’s speech in their
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Figure 4.6: Exp 2a: /s/ response rate as a result of cross-gender perceptual learning with
di↵erent sibilant distributions (mean and standard error)

second training phase. This pattern consistent with what we have seen in Exp 1 and lend

support to an account of update where listeners generalize their perceptual learning across

genders.

A mixed-e↵ects model (Model-2a) is evaluated to predict the Response of each trial

(S=0, SH=1) in Exp 2a, with Step (scaled and centered), Trial(scaled and centered), and

Condition(treatment coded, ref: baseline) as the fixed e↵ects, Condition:Step and Condi-

tion:Trial as the interaction items, and by-Subject Step and Frame as random slopes. The

model reports the isSingular error. An examination of correlation between dependent vari-

ables suggest substantial colinearity between Step and Frame. Then, the random factors of

the model are changed to include random slopes of Step by Subject and a random intercept

of Frame. The model compiles and the result is shown in Table 4.4

Table 4.4 reveals significant main e↵ects of Step, Condition, and Trial. The signif-

icantly negative Step e↵ect indicates that, with a larger proportion of [s] is mixed in

the stimulus, the probability of that stimulus being perceived as /S/-equivalent is lower

(� = �2.20, p < 0.001) in the baseline condition. The model also reveals a significant

interaction between Step and Conditionfor all the non-baseline conditions with positive co-

e�cients. Since the proportion of /S/-equivalent responses should be decreasing with the
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Fixed E↵ects Estimate SE z value Pr(>|z|)
(Intercept) 0.29 0.36 0.81 0.42
Step -2.20 0.18 -12.27 < 0.001⇤⇤⇤

Condition Female B s-favoring -0.84 0.47 -1.78 0.07
Condition Two genders - same -1.95 0.48 -4.06 < 0.001⇤⇤⇤

Condition Two genders - neutral -1.20 0.50 -2.40 0.02⇤

Condition Two genders - opposite -0.68 0.47 -1.43 0.15
Trial 0.22 0.09 2.59 0.009⇤⇤

Step:Condition Female B s-favoring 0.60 0.24 2.47 0.01⇤

Step:Condition Two genders - same 0.78 0.25 3.13 0.002⇤⇤

Step:Condition Two genders - neutral 0.79 0.26 3.09 0.002⇤⇤

Step:Condition Two genders - opposite 0.76 0.24 3.14 0.002⇤⇤

Condition Female B s-favoring:Trial 0.03 0.14 0.25 0.80
Condition Two genders - same:Trial -0.26 0.13 -2.03 0.04⇤

Condition Two genders - neutral:Trial -0.38 0.14 -2.70 0.007⇤⇤

Condition Two genders - opposite:Trial -0.09 0.14 -0.65 0.52

Model-2a: Response⇠Step*Condition+Condition*Trial+(Step|Subj)+(1|Frame)

Table 4.4: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 2a

increase of step, a positive value for the interaction item would indicate that the decrease be-

comes shallower instead of becoming sharper. Therefore, the slope of categorization bound-

ary along the fricative continuum is sharper in the baseline condition than all the other

conditions (�same = 0.78, p = 0.002; �neutral = 0.79, p = 0.002; �opposite = 0.76, p = 0.002).

In other words, participants who had exposure to the training stimuli in any condition

show a shallower categorization boundary than those who had no prior exposure to training

stimuli.

The Condition e↵ect is marginally significant the Female B s-favoring condition (� =

�0.84, p = 0.007), which is consistent with the result of the pretest. For experimental

conditions newly introduced in this experiment, the Condition e↵ect is significant for the

same (� = �1.95, p < 0.001) condition and the neutral (� = �1.20, p = 0.02) condition,

both of which show significantly more /s/-equivalent responses (and fewer /S/-equivalent

responses) than the baseline condition. This is expected because stimuli on the training

phases in the three conditions are either /s/-favoring or /s S/-free, giving rise to an overall

boost in /s/. The categorization result in the opposite condition is not essentially di↵erent

from the baseline condition (� = �0.68, p = 0.15). This suggests that listeners in the
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opposite condition have integrated the /S/-favoring distribution during their training with

Male A and used this knowledge to cancel out the influence of the earlier /s/-favoring

training with Female B. This is not surprising especially when the /s/-favoring training

e↵ect is only marginally significant in the first place.

The e↵ect of Trial is also significant (� = 0.22, p = 0.009), suggesting that listeners are

more likely to report on /S/ for later trials. The interaction between Trial and Condition

is significant for the same condition (� = �0.26, p = 0.04) and the neutral condition (� =

�0.38, p = 0.007), but not for the Female B s-favoring condition (� = 0.03, p = 0.8) or

the opposite condition (� = �0.09, p = 0.52). This implies that listeners tend to report

fewer /S/-equivalent responses at a later point of the test phase in the same and the neutral

conditions than the baseline condition. This pattern is di↵erent from what we have seen in

Exp 1a, and we do not know for sure why there is such a discrepancy.

To further check whether the second-phase exposure to Male A’s speech has shifted

listener perceptual boundary further away from the Female B /s/-favoring condition, I

releveled the Condition factor with Female B s-favoring as the baseline and re-ran the model.

The result shows that among the three two-gender conditions, only the same condition

exhibits a significant di↵erence from the Female B /s/-favoring condition (� = �1.1, p =

0.02), while the other two conditions do not (neutral: � = �0.36, p = 0.47; opposite:

� = 0.16, p = 0.73). The results with both kinds of model leveling point to an influence of

the Male A /s/-favoring training but none of the Male A /S/-one in two-gender perceptual

learning in Exp 2a.

4.3.2.4 Summary

Exp 2a is designed to examine whether the conclusions of Exp 1a can be replicated when

Female A’s speech is replaced by Female B’s. The sibilants of Female B has a more gender-

typical frequency distribution than Female A. The result echoes the conclusion of Exp 1a,

showing that the final categorization result reflects the joint perceptual learning outcomes

with the female speaker and the male speaker. In specific, like in Exp 1a, the final catego-
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rization results di↵er among the three two-gender conditions in consistent ways with their

exposure Male A’s speech. Again, this lends support to an update account suggesting that

the perceptual learning with Male A’s sibilants is generalized to the perception of Female

A’s speech.

4.3.3 Exp 2b: Previous /S/-favoring training with Female B

4.3.3.1 Experimental conditions and goals

Exp 2b evaluates whether the results of Exp 2a can be replicated when /S/-favoring sibilant

manipulation is adopted instead of an /s/-favoring one. Just like Exp 2a, Exp 2b also

contains three conditions that di↵er in Male A’s sibilant distribution in the second training

phase. Participants first completed a learning phase with Female B’s /S/-favoring speech,

then proceeded to a second learning phase with Male A’s speech that is either /s/-favoring

(opposite), /S/-favoring (same) or sibilant-free (neutral). In the end, participants are tested

on Female A’s sibilants along an /s-S/ continuum spliced into words of minimal pairs. The

only di↵erence between Exp 2a and 2b lies in the first training condition with Female B:

It is /s/-favoring in Exp 2a but /S/-favoring in Exp 2b. As elaborated in Section 4.1,

an /s/-favoring manipulation would result in lower center of gravity and an /S/-favoring

manipulation would result in higher center of gravity in general. Therefore, we expect that

Female B’s and Male A’s speech in the Two genders - opposite condition to have more

distinct spectral distributions in Exp 2b than in Exp 2a.

This is shown by Fig. 4.7, which demonstrates the distribution of COG measures of the

sibilants of di↵erent speakers in Exp 2a and 2b. We can see that the COG distributions of

the sibilants of Female B and Male A are more similar in the left facet (Exp 2a) than in the

right facet (Exp 2b). Based on the previous finding that the generalization requires a certain

amount of acoustic overlapping between sibilants of the di↵erent speakers (e.g., Eisner and

McQueen, 2005; Kraljic and Samuel, 2006), I expect that the update of perceptual learning

across the two training phases might fail to occur in Exp 2b, at least in the Two genders -

opposite condition.

122



●
●●

●

●

●
●

● ●

● ●
●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●
●
●
●

●

●

●

●●●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●●

● ●●

●
●
●
●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

Exp2a−opposite:
more similar

Exp2b−opposite:
more distinct

Female B
s−favoring

Male A
sh−favoring

Female B
sh−favoring

Male A
s−favoring

3000

5000

7000

9000

11000

C
en

te
r o

f g
ra

vi
ty

 (H
z)

●

●

s

sh

Figure 4.7: The COG of sibilants in the two - gender opposite conditions in Exp 2a and 2b
(mean and 95% CI)

4.3.3.2 Participant

Participants in the three conditions of Exp 2b are all recruited from Prolific, with 31 of them

in the same condition, 30 of them in the opposite condition, and 31 in the neutral condition.

Among participants in the same condition, 12 identified themselves as female, 17 identified

as male, and 2 chose not to identify. Their ages vary from 18 to 45 (Mean = 26.5, SD = 9.0).

Participants in the opposite condition include 21 female, 7 male, and 2 persons who chose

not to self identify. They age from 18 to 48 years old (Mean = 26.2, SD = 8.4). Participants

in the neutral condition are 14 female, 15 male and 2 persons who preferred not to identify.

Their age vary from 18 to 62 years old (Mean = 30.4, SD = 14.0). Along with the data of

the above participants, I have also plotted the data of participants in the baseline condition

and the Female A /S/-favoring condition as a reference (see the “Participant” subsection

under Section 4.3.1.2 for the information of those participants).
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4.3.3.3 Results

Fig. 4.8 shows the result of Exp 2b. The grey lines indicate categorization without training

or with one-phase training of Female B’s /S/-favoring speech. The blue lines indicate the

categorization results after two phases of perceptual learning with Female B and Male A

sequentially, with either the same or opposite directions. The yellow line indicates a two-

phase learning condition where the speech of the intervening male speaker does not contain

/s/ or /S/. We can see that the results of the two-gender non-neutral conditions (marked

by the two blue lines) lie roughly above the dashed grey line (Female B baseline). This

indicates that, no matter whether the training speech in the second phase is /s/-favoring or

/S/-favoring, they both end up boosting the response of /s/-equivalent responses after the

perceptual shift towards /S/ in the first training phase.
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Figure 4.8: Exp 2b: /s/ response rate as a result of cross-gender perceptual learning with
di↵erent sibilant distributions (mean and standard error)

The pattern shown in Fig. 4.8 is di↵erent from the results of previous experiments in

several regards. The most obvious discrepancy is that the result of the Two genders -

same condition (blue dashed line) does not shift the perceptual boundary to the /S/ end

compared to the baseline (grey dashed line). This happens regardless of the fact that /S/-

favoring training with Female B has already shifted the boundary substantially to have

fewer /s/ and more /S/. In other words, a second-phase exposure to /S/-favoring stimuli
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with Male A actually causes participants to hear more /s/ in the test phase, compared to

/S/-favoring training with Female B alone. The second discrepancy is that listeners who had

exposure to Male A’s neutral training speech actually reported fewer /s/ sound compared

to the Two genders - same and opposite conditions, instead of falling between these two

conditions.

I then evaluated a logistic mixed e↵ects model to predict the response in the test (S=0,

SH=1), with the main e↵ects of Condition (baseline: Female B baseline), Step, and Trial

(continuous, both scaled and centered) as the fixed e↵ects, Subject as the random slope,

and Frame as the random intercept. The main e↵ects are presented in Table 4.5. The result

revealed significant e↵ects of Step (� = �2.31, p < 0.001) and Trial (� = 0.24, p = 0.005),

as well as significant interactions between Step and Condition for the three two-gender

experimental conditions (�same = 0.53, p = 0.03;�neutral = 1.01, p < 0.001;�opposite =

0.75, p = 0.002). However, neither of the three two-gender conditions shows a significant

shift from the baseline condition.

Fixed E↵ects Estimate SE z value Pr(>|z|)
(Intercept) 0.25 0.45 0.55 0.58
Step -2.31 0.18 -13.04 < 0.001⇤⇤⇤

Condition Female B sh-favoring 1.10 0.54 2.06 0.04⇤

Condition Two genders - same -0.38 0.54 -0.71 0.48
Condition Two genders - neutral 0.34 0.54 0.62 0.53
Condition Two genders - opposite -0.74 0.54 -1.37 0.17
Trial 0.24 0.09 2.79 0.005⇤⇤

Step:Condition Female B sh-favoring 0.38 0.24 1.57 0.12
Step:Condition Two genders - same 0.53 0.24 2.20 0.03⇤

Step:Condition Two genders - neutral 1.01 0.23 4.35 < 0.001⇤⇤

Step:Condition Two genders - opposite 0.75 0.24 3.13 0.002⇤⇤

Condition Female B sh-favoring:Trial -0.15 0.13 -1.17 0.24
Condition Two genders - same:Trial -0.18 0.13 -1.36 0.18
Condition Two genders - neutral:Trial -0.30 0.13 -2.30 0.02⇤

Condition Two genders - opposite:Trial -0.35 0.13 -2.60 0.009⇤⇤

Model-2b: Response⇠ Step*Condition+Condition*Trial+(Step|Subj)+(1|Frame)

Table 4.5: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 2b

To evaluate whether the two-gender conditions significantly diverge from the Female B

/S/-favoring condition, I re-ran the model with the “Female B sh-favoring” condition as the
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baseline, to evaluate how the second-phase training changed the categorization boundary of

the outcome of /S/-favoring training with Female B. The result shows that both exposure

to Male A /s/-favoring speech and exposure to Male A /S/-favoring speech significantly

boosted /s/-equivalent responses compared to the Female B /S/-favoring condition (same:

� = �1.49, p = 0.006; opposite: � = �1.85, p = 0.0.0007). Exposure to the neutral speech

of Male A does not make any di↵erence to the final responses (� = �0.77, p = 0.15).

4.3.3.4 Summary

Exp 2b shares the same structure with Exp 2a, with Female B’s /s/-favoring speech re-

placed by her /S/-favoring speech. The hypothesis to be examined is whether the acoustic

dissimilarity between sibilants of di↵erent speakers a↵ects the update of perceptual learning.

If it does not make a di↵erence, we should expect the same pattern as shown in previous

experiments, namely, that the results of di↵erent experimental conditions show consistency

with their training with Male A at the second phase. If it does make a di↵erence, then this

pattern will not occur. Instead, the result of the Two genders - opposite condition will not

di↵er significantly from the Female B S-favoring condition due to the failure of integrating

Male A’s /s/-favoring training into the final result.

However, the result of Exp 2b is not consistent with either of the above predictions.

Surprisingly, Male A’s /s/-favoring and /S/-favoring distributions both turn out to exert an

/s/-favoring influence on the perception of Female B’s speech. This set of results does not

replicate the update of perceptual expectations across speakers as found in Exp 1a, 2b and

2a, because the perceptual boundaries in di↵erent conditions are not consistent with the

sibilant distributions of Male A’s speech in the second training phase. It is also di↵erent

from what the “acoustic dissimilarity” account predicts, i.e., the update of perceptual ex-

pectations will be blocked for the Two genders - opposite condition. In fact, the result of

the opposite condition is consistent with its second-phase training condition, but the result

of the same condition is not, unexpectedly. There must be other factors playing a role that

leads to such a pattern. Before we jump into possibilities accounting for the unexpected
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result of the Two genders - same condition, another crucial questions we want to figure out

first is whether training with Male A’s speech alone would successfully trigger a perceptual

shift in the test with Female B’s sibilant continuum. This question will be examined in Exp

2c. After this observation is obtained from Exp 2c, I will then come back to discuss the

potential factors that lead to the results of Exp 2b.

4.3.4 Exp 2c: No previous training with Female B’s /s-S/

4.3.4.1 Experimental conditions and goals

In Exp 2a and 2b, listeners have been trained on the sibilants of Female B and Male A in two

sequential training phases, and then they are tested regarding which piece of knowledge to

use for the categorization of Female B’s sibilants. Results obtained so far are not consistent

between the two sub-experiments. Most surprisingly, Male A’s /S/-favoring training leads

to a significant boost of /s/-equivalent responses compared to the result of its previous

/S/-training phase with Female B. Exp 2c is intended to evaluate whether training with

Male A’s speech alone successfully induces the intended perceptual shift on the sibilant

continuum of Female B’s speech.

4.3.4.2 Participant

30 participants are recruited for the Male A /s/-favoring condition and 26 are recruited

for the Male A /S/-favoring condition from the UPenn subject pool. Participants in the

Male A /s/-favoring condition are 10 male and 20 female, aging from 18 to 22 years old

(Mean = 19.5, SD = 1.20). Participants in the Male A /S/-favoring condition are 15 female

and 11 male, aging from 18 to 22 years old (Mean = 19.8, SD = 1.0).

4.3.4.3 Result

Fig. 4.9 compares the categorization boundaries of the Female B baseline condition and the

Male-only conditions. It shows that, while Male A’s /s/-favoring training stimuli induces a

certain amount of perceptual shift to the intended direction, Male A’s /S/-favoring training
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stimuli does not induce any perceptual shift, as indicated by the overlapping categorization

results between the Female B baseline condition and the Male A /S/-favoring condition.
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Figure 4.9: Exp 2c: /s/ response rate as a result of training with Male A compared to the
Female B baseline (mean and standard error)

A logistic mixed-e↵ects model (Model-2c-a) are fitted to examine whether the catego-

rization results of the Male s-favoring condition and the Male /S/-favoring condition are

significantly di↵erent from the Female B baseline. The dependent variable is the response

of each trial (S:0, SH:1). The main e↵ects are Condition(Male A s-favoring/Male A sh-

favoring/Female B baseline, treatment coded, baseline: Female B baseline), Phoneme (the

original phoneme associated to each auditory frame, sum-coded, baseline: SH), and Step

and Trial (both scaled and centered). The models also include Condition:Step and Condi-

tion:Trial as the interaction items, by-Subject Step as the random slope, and Frame as a

random intercept. The result of this model is shown in Table 4.6.

Table 4.6 reveals a marginally significant di↵erence between the Female B baseline con-

dition and the Male A s-favoring condition (� = �1.02, p = 0.056) but no di↵erence between

the Female B baseline condition and the Male A sh-favoring condition (� = 0.31, p = 0.58).

The model also reveals significant main e↵ects of Step (� = �2.29, p < 0.001) and Trial

(� = �0.44, p < 0.001), as well as significant interactions of Condition:Trial for both con-

ditions (�MaleS = �0.26, p = 0.04;�MaleSH = �0.36, p = 0.008) and Step:Conditionfor the
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Fixed e↵ects Estimate Std. Err. z value Pr(>|z|)
(Intercept) 0.16 0.43 0.37 0.71
Step -2.29 0.19 -12.17 < 0.001⇤⇤⇤

Condition Male A s-favoring -1.02 0.53 -1.91 0.056
Condition Male A sh-favoring 0.31 0.55 0.55 0.58
Trial 0.25 0.09 2.71 0.007⇤⇤

Step:Condition Male A s-favoring 0.56 0.25 2.21 0.03⇤

Step:Condition Male A sh-favoring 0.05 0.27 0.18 0.86
Condition Male A s-favoring:Trial -0.26 0.13 -2.07 0.04⇤

Condition Male A sh-favoring:Trial -0.36 0.14 -2.65 0.008⇤⇤

Model-2c-a: Response⇠Step*Condition+Condition*Trial+(Step|Subj)+(1|Frame)

Table 4.6: The fixed e↵ects of the logistic mixed-e↵ects model evaluating the e↵ect of
training with Male compared to the Female B baseline in Exp 2c

Male A s-favoring condition (� = 0.56, p = 0.03). In a nutshell, the model suggests that

training with Male A managed to induce a certain amount of perceptual shift towards /s/

but completely failed to induce any shift towards /S/ on Female B’s sibilant continuum.

The second set of comparisons I made is between the Male-only training conditions and

the Two-gender conditions that contain the same Male training phase. Fig. 4.10 shows the

results of Exp 2c along with Two-gender conditions sharing the same manipulation of Male

A’s speech in Exp 2a and 2b. The left facet shows the results of training with Male A’s

/s/-favoring alone speech (grey) and training with Male A’s /s/-favoring speech preceded

by either Female B’s /s/-favoring speech (blue) or Female B’s /S/-favoring speech (yellow).

Similarly, the right facet shows the results of training with Male A’s /S/-favoring speech

alone (grey) and training with Male A’s /S/-favoring speech preceded by either Female B’s

/S/ speech (blue) or Female B’s /s/-favoring speech (yellow).

Two logistic mixed-e↵ects models (Model 2c-b and 2c-c) respectively for the data of

experimental conditions including Male A /s/-favoring training and those including Male

A /S/-favoring training. The dependent variable is the SH response in the test. The main

e↵ects are Condition(Male only, Two genders - opposite, Two genders - same; treatment

coded, reference level: Male only), and Step and Trial (both scaled and centered). The

models also include Condition:Step and Condition:Trial as the interaction items, Subject

as a random slope, and Frame as a random intercept. Full list of the estimates in the two
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Figure 4.10: Exp 2c: /s/ response rate as a result of training with Male A compared to
two-genders training conditions (mean and standard error)

models are provided in Table B.3 and Table B.4 in Appendix B. Model 2c-b (Table B.3)

shows that a preceding training phase with Female B’s /s/-favoring speech results in a

marginally significant boost in /s/ responses compared to the result of training with Male

A’s s/-favoring speech alone indexed by the grey line and the blue line (� = �0.93, p = 0.07).

However, a preceding training phase with Female B’s /S/-favoring speech results in an

insignificant reduction of /s/-equivalent responses compared to the Male A only training

indexed by the grey line and the yellow line (� = 0.27, p = 0.6). In the right facet, the

three lines stay together closely, with the categorization boundaries of the two two-gender

conditions lying above the Male /S/-favoring condition. Model 2c-c (Table B.4) shows a

marginally significant boost in /s/ responses after a previous Female B /s/-favoring training

phase and an insignificant boost in /s/ responses after a previous Female B /s/-favoring

training phase compared to exposure to Male A /S/-favoring training alone.

This is consistent with both Exp 2a and the first analysis of Exp 2c. All of them suggest

that exposure to Male A’s /s/-favoring speech leads to a certain amount of boost in /s/

responses, whereas exposure to Male A’s /S/-favoring speech does not successfully trigger a

significant amount of reduction in /s/ response rate.
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4.3.4.4 Summary

Exp 2c evaluates how training with Male A’s /s/-favoring or /S/-favoring speech generalizes

to the categorization of Female B’s continuum. The results show that exposure to Male

A’s /s/-favoring speech has successfully elicited a perceptual shift on Female B’s /s-S/

continuum whereas exposure to Male A’s /S/-favoring speech does not. This is di↵erent

from what happens in Exp 1c when the same question is tested with Female A’s continuum,

meaning that the generalization of perceptual learning is conditioned on the raw frequencies

of sibilants in the test phase. I further compare the results of Male only training conditions

with the two-gender training conditions that involve the same training with Male A. The

results

4.4 Discussion

In Exp 2, I evaluated whether the findings of Exp 1 can be replicated when the training and

test speech of Female A is replaced with the speech of a di↵erent female speaker, Female B,

who has higher sibilant frequencies. The most straightforward consequence of this change

is that the acoustic properties of Female B’s sibilants after manipulation are more distinct

from the male speaker’s sibilants, especially when Female B’s speech is manipulated to

favor the perception of /S/ for ambiguous sibilants. Another less direct consequence is

that sometimes there is a mismatch between the raw acoustic values of sibilants and their

phonological anchors within the same training phase. The result of Exp 2 (Exp 2b and 2c

in particular) shows that the replacement of female speaker indeed make a di↵erence to the

categorization results through perceptual learning. This section goes through the findings

we have so far from Exp 2 and discusses their implications on the constraints of acoustic

distributions on sibilant perceptual learning.
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4.4.1 E↵ect of the acoustic distributions of the training and test stimuli

By comparing the results of Exp 1c and 2c, we see a discrepancy regarding whether expo-

sure to Male A’s training speech could induce an amount of shift to the perception of a

female speaker’s sibilant continuum: In Exp 1c, training with Male A’s /S/-favoring speech

successfully generalized to Female A’s sibilant continuum (as indicated by Fig. 3.9 and Ta-

ble 3.7), whereas in Exp 2, training with Male A’s /S/-favoring speech failed to induce a

perceptual shift to the perception of Female B’s sibilant continuum (as indicated by Fig. 4.9

and Table 4.6). As the training speech of Male A is identical across the two experiments,

the obviously di↵erentiating factor between Exp 1c and Exp 2c lies in the acoustic property

of the sibilant continua. Given that acoustic energy of Female B’s sibilants are distributed

at higher frequency areas than that of Female A’s in natural production (Fig. 4.3), we shall

expect the same for the sibilants on the test continua since they are synthesized following

the same procedure.

Fig. 4.11 shows the COG values of the sibilants of Male A’s training stimuli in two

conditions as well as Female A’s and Female B’s test stimuli on a five-step continuum.

The female speakers’ COG measures are indicated with red circles, with Female A’s in the

left facet (same as in Fig. 3.4) and Female B’s in the right facet (same as in Fig. 4.4).

As expected, Female B’s sibilants have higher energy frequencies (with COG ranging from

7000-10000 Hz) than Female A’s overall (with COG ranging from 5000-9000 Hz). The circles

in blue and yellow represent the COG values of the 17 sibilants in /s/-words and the other

17 in /S/-words in either a /s/-favoring training condition or a /S/-favoring one. The black

diamond stands for the mean value of the two kinds of sibilants in each training condition,

which can be interpreted as the perceptual boundary predicted from the 34 sibilants in

training. The COG values of Male A’s sibilants are identical across the two facets, and

they are presented twice to facilitate the comparison between Male A’s COGs and those of

di↵erent female speakers in di↵erent experiments.

We first discuss whether the e↵ect of acoustic dissimilarity provides an explanation for

the discrepancy we have observed, namely, perceptual learning with Male A successfully
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Figure 4.11: COG measures of the training stimuli of Male A and the test stimuli of Female
A and Female B. Black diamonds indicate the mean COG values of all the sibilants in an
experimental condition.

generalizes to the female speaker’s speech except that /S/-favoring perceptual learning with

Male A failed for the test with Female B’s speech. According to previous studies (e.g., Kraljic

and Samuel, 2006), the lack of acoustic similarity or overlap between the training stimuli

and the test stimuli may block the generalization of perceptual learning across speakers. In

our case, this account predicts the absence of perceptual learning in the Male A /s/-favoring

condition in Exp 2c compared to Female B’s baseline, because it is the only condition with

no overlap between the COGs of Male A’s sibilants and the female speaker’s sibilants. On

the contrary, if the acoustic similarity between Female B’s test continuum and Male A’s

training input does not matter, then we should expect the Male A training condition to

work in identical ways in Exp 1c and Exp 2c. However, none of the two predictions are

consistent with what I have found. In Exp 2c, while the /s/-favoring training with Male A

has induced a marginally significant amount of perceptual shift towards /s/, the /S/-favoring

training with Male A, instead failed to induce a perception shift with Female B’s sibilants.

If this lack of perceptual learning e↵ect is due to the little acoustic overlap between Male

A’s /S/-favoring speech and Female B’s sibilant continuum, then we should also expect to

see no e↵ect of Male A /s/-favoring training because Male A’s COGs on the /s/-favoring

condition is even more distinct from Female B’s sibilant continuum (Fig. 4.4). However, this
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is not what we see. The above analysis suggests that the lack of acoustic overlap between

the training and the test phases does not block the generalization of perceptual learning

(as shown in Male A /s/-favoring condition), and that an amount of acoustic overlap does

not entail the generalization of perceptual learning (as shown in the Male A’s /S/-favoring

condition).

Then, why did training with Male A’s /S/-favoring speech fail to induce a perceptual

shift on the continuum of Female B’s continuum? I propose that this can be explained by the

account of acoustics-phonology mismatch, which states that the adaptation to a speaker’s

speech involves learning the raw acoustic distributions of their phonemes, and the general-

ization of perceptual learning involves evaluating the relative acoustics between the acoustic

targets of di↵erent speakers. In Fig. 4.11, the relative position of the acoustic boundaries

predicted from Male A’s speech (as indexed by the black diamonds) and the acoustic values

of the female speakers’ test trials is di↵erent between Exp 1c and 2c. Particularly in Exp

2c, the acoustic boundaries predicted from Male A’s /s/-favoring and /S/-favoring speech

are both lower in COG than Female B’s test continuum. Even though Male A’s /S/-favoring

speech contains a number of /s/-sounding sibilant tokens according to the pilot perception

study, the predicted acoustic boundary of the Male A /S/-favoring condition is still lower

in COG than the lowest end of Female B’s continuum. In other words, training Male A’s

/S/-favoring speech does not boost the number of /S/-equivalent responses on Female B’s

continuum, because Female B’s sibilants are all acoustically /s/ according to the boundary

predicted from Male A’s /S/-favoring speech.

However, this is not the case with Exp 1c, where the COGs of some of Female A’s test

trials lie between the acoustic boundaries indicated by the Male A /s/-favoring and /S/-

favoring conditions. Some of the trials of Female A’s test continuum (at least for the last

two test trials of Female A counting from the top of the left facet) can be interpreted as /s/

compared to the boundary set in the Male A /s/-favoring condition and /S/ compared to that

set in the Male A /S/-favoring condition. This leaves some room for perceptual learning

to successfully introduce both acoustically and perceptually plausible interpretations in
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opposite directions. In comparison, in Exp 2c, the Male A /S/-favoring training is designed

to set a high bar for the perception of /s/ sounds perceptually whereas the bar is not

su�ciently high in the acoustic space. The training fails to make it acoustically authentic

for listeners to interpret Female B’s sibilants as /S/. This explanation successfully resolves

the discrepancy between Exp 1c and 2c.

To conclude, I did not find evidence that acoustic overlap is required for the gener-

alization of perceptual learning to work in Exp 2c. Instead, the results show that the

generalization of sibilant perceptual learning across speakers is subjected to the constraint

of raw acoustic distributions of the sibilants in addition to their relative distributions in the

phonological space.

4.4.2 E↵ect of the acoustic distributions of di↵erent training phases

This section evaluates the two hypothesized acoustic constraints, acoustic dissimilarity and

the acoustics-phonology mismatch, regarding how well they account for the results of the

two-gender conditions in Exp 2a and 2b. The results of these two sub-experiments do not

show the same pattern. Particularly, in Exp 2b, which starts with Female A /S/-favoring

training, successive exposure to Male A’s /s/-favoring and /S/-favoring speech both lead

to more /s/-equivalent responses than the baseline condition. This is di↵erent from what

we have observed in Exp 1a, 1b and 2a, where the two Male A conditions always result in

di↵erent patterns, such that the perceptual learning e↵ect with the female is maintained in

one condition and is set back in the other.

I now discuss whether the unexpected pattern boundary shift we observed in Exp 2b

can be well addressed by either the acoustic dissimilarity account or the acoustics-phonology

mismatch account. Fig. 4.12 shows the COG values of the training stimuli in di↵erent

training phases in Exp 2a (left) and 2b (right). The circles in blue and yellow respectively

represent the COG values of the sibilants in /s/-words and in /S/-words in each training

phase. The black diamonds stand for the predicted perceptual boundary between /s-S/

based on the training stimuli and are computed by averaging across the COGs of all the
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sibilants within the same training phase. The COG values of Male A’s production are

identical across facets, and they are presented twice because the two training phases with

Male A occurred in each of the sub-experiment.
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Figure 4.12: COG measures of the training stimuli in Exp 2a and 2b. Black diamonds
indicate the mean COG values of all the sibilants in a training phase.

Let us first consider how the acoustic dissimilarity account works for the speech of dif-

ferent speakers in the training phases. By comparing the COGs distributions of di↵erent

speakers between Exp 2a and 2b, we see that the two sub-experiments indeed involve dif-

ferent amounts of acoustic overlap between their training stimuli. In Exp 2a, substantial

acoustic overlap can be observed between Female B’s sibilants and each set of the Male

A’s sibilants with opposite biases. In Exp 2b, however, the acoustic overlap is sparser.

The sibilants in the Male A /s/-favoring condition (< 7000 Hz) and those in the Female B

/S/-favoring condition (> 7000 Hz) do not overlap at all in the COG dimension. The /S/-

words in the Female B /S/-favoring condition overlaps partially with sibilants in the Male

A /S/-favoring condition within the range from 7000 to 9000 Hz, but Female B’s /s/-words

have no overlap with words in the Male /S/-favoring condition either.

The acoustic dissimilarity account predicts that the influence of Male A /s/-favoring

training would be hindered since the acoustic distribution of sibilants in that phase is too

di↵erent from the first phase. The e↵ect of Male A /s/-favoring training would be more
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likely to occur than the /S/-favoring training. In other words, the experimental condition

that is the most vulnerable to such an acoustic e↵ect is the Two-genders opposite condition

of Exp 2b, where listeners received Female B /S/-favoring training and Male A /s/-favoring

training successively. However, the results of Exp 2b (Section 4.3.3) are backwards to the

prediction of the acoustic dissimilarity account. We keep seeing a robust influence of Male

A /s/-favoring on the final categorization phase consistently in Exp 2a, 2b and 2c, which

conflicts with the previous predictions stating the lack of e↵ect of the Male A /s/-favoring

training phase because of acoustic dissimilarity. Therefore, as with the results of Exp 2c,

the result of Exp 2b does not lend support to an acoustic dissimilarity account either for

speech materials in the training phases.

Moreover, Fig. 4.8 shows an unexpected pattern of results in the Two-genders same

condition. In specific, the condition with both /S/-favoring training with Female B and

/S/-favoring training with Male A end up giving rise to a boost in /s/-equivalent responses

compared to the baseline condition and the Female B /S/-favoring condition. This suggests

that instead of leading to fewer /s/-equivalent responses, a second phase exposure to Male

A /S/-favoring speech actually boosted the amount of /s/-equivalent responses compared

to participants who only had the first-phase training. This can be only addressed under an

acoustics-phonology mismatch account where the operation of perceptual learning depends

on the raw acoustic distributions to some extent. In Fig. 4.12, we can see that the perceptual

boundary indicated by Male A’s /s/-favoring speech is around 4500 Hz, and the boundary

indicated by Male A’s /S/-favoring speech is around 7000 Hz. According to the perceptual

boundaries set by Male A’s speech in both conditions, all tokens in Female B’s /s/-favoring

speech all of Female B’s speech should be categorized as /s/ because all of them are above

7000 Hz. In other words, Male A’s /s/-favoring and /S/-favoring speech are both /s/-

favoring compared to Female B’s speech in the first case in terms of the absolute COG

values.

To conclude, in Exp 2, I investigate two potential acoustic constraint on the multispeaker

perceptual learning. An acoustic dissimilarity constraint states that perceptual learning
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fails to generalizes if there is a lack of acoustic overlap or similarity between the acoustic

distributions of sibilants in di↵erent phases or speakers. An acoustics-phonology mismatch

constraint states that perceptual learning fails to generalizes if there is a mismatch between

the directions of perceptual shifts intended by the raw acoustic distributions of stimuli

and by their phonological distribution in the perceptual space. The experiment results

lend support to the latter account. Exp 2c provides a case where perceptual learning fail

to induce the intended shift when there is an acoustics-phonology mismatch between the

training phase and the test phase. Exp 2b shows that the stimuli of di↵erent training

phases are also subject to such a constraint. The results of Exp 2 do not show evidence

for an influence of acoustic dissimilarity between stimuli of di↵erent speakers. Further

investigations are needed to evaluate whether results in previous studies that indicate the

influence of acoustic overlap can be accounted for under alternative explanations.
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Chapter 5

Exp 3: Perceptual Learning of /t-d/
across Speaker Genders

This chapter reports an experiment investigating how listeners adjust their perceptual beliefs

in multi-speaker listening by integrate the VOT distributions of /t d/ from speakers with

di↵erent genders. As a temporal cue, VOT is considered to di↵er from spectral cues in

containing less information about the vocal track of the speaker, which is an indexical

source of the speaker’s gender identity. This chapter contains four sections. Section 5.1

summarises the relevant findings in the previous literature on the acoustic parameters and

perceptual correlates of /t d/, focusing on how they vary with social or contextual factors

and play a role in the perceptual learning of talker-specific productions of /t d/. Building

on the review, I articulate the main research question and hypotheses of this chapter at

the end of Section 5.1. Section 5.2 and 5.3 report on Experiment 3, which investigates

the perceptual learning of /t-d/ across speakers of di↵erent genders. Section 5.2 provides

an overview of the methodology, including experiment design and procedure, experimental

conditions, and the makeup and manipulation of the stimuli; Section 5.3 reports on results

of a pilot study and two sub-experiments. Finally, Section 5.4 summarises the main findings

and their implications and concludes this chapter.
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5.1 Background and research question

5.1.1 Voice onset time and other phonetic cues to English stop voicing

Stop voicing is signaled and identified by multiple acoustic cues in production and percep-

tion. Among these cues, the voice onset time (VOT) is generally considered the primary

cue for English stop voicing. VOT refers to the time between the burst of a stop and the

onset of vocal cord vibration in the following segment. This parameter was first proposed

by Lisker and Abramson (1964) as a universally available parameter for obstruent contrast

based on a cross-linguistic study. In Lisker and Abramson (1964)’s proposal, the voicing

contrast of world languages is cued by three acoustic categories, namely, voicing lead, short

lag (voiceless unaspirated), and long lag (voiceless aspirated). Although the three acoustic

categories were later shown to be insu�cient to categorize di↵erent voicing contrasts in the

world (e.g., Cho and Ladefoged, 1999; Docherty, 2011), they identify American English

stop consonants reliably. Voiced stop consonants (/b d g/) have short-lag VOTs whereas

voiceless stop consonants (/p t k/) have relatively long-lag VOTs (e.g., Lisker and Abram-

son, 1964). Although voiced stops can be produced as fully voiced between voiced sounds,

they are generally produced with lag VOT values in other contexts (e.g., Davidson, 2016).

VOT varies between and within phonemic categories. Regarding between-category dif-

ferences, VOT not only varies between voiced and voiceless stops; it also varies also between

stops sharing with the same voicing value. There is a general increase in VOT with more

posterior places of articulation (i.e., /p/ < /t/ < /k/, Cho and Ladefoged, 1999; Chodro↵

and Wilson, 2017, inter alia). In the meantime, the VOTs of voiceless stops from the same

talker robustly co-vary with one another in American English, as evidenced by strong cor-

relations among the mean VOT of di↵erent voiceless stops at the individual level (Chodro↵

and Wilson, 2017). In other words, a talker’s /p/ sound can reveal information about the

talker’s VOT of /t/ and /k/.

Regarding within-category variability, the VOT of a specific segment can be a↵ected

by speech rate, vocalic context, prosodic position, and lexical properties. Speech rate is a
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natural correlate of VOT. Intuitively, faster speaking rates result in a significant decrease

in VOT (e.g., Allen and Miller, 1999; Allen et al., 2003; Kessinger and Blumstein, 1997,

1998; Miller et al., 1986). VOT length is also subject to prosodic factors including prosodic

edges (Cho and Keating, 2009), lexical stress (Byrd et al., 2006), phrasal accent (Cole

et al., 2007), word length (Flege et al., 1998; Klatt, 1975), and whether the syllable is

embedded in a sentence (Morris et al., 2008). Cho and Keating (2009) report that utterance-

initial /t/ sounds are realized with a slightly longer VOT than utterance-medial ones with

matched accent status, as a result of domain-initial strengthening e↵ects. Cole et al. (2007),

among others, further report an interaction between the domain-initial strengthening e↵ect

and accentual VOT lengthening, such that the domain-initial strengthening e↵ect often

disappears when the word bears phrasal accent. Klatt (1975) and Flege et al. (1998) find

that the VOT of voiceless stops is longer in monosyllabic words than in polysyllabic words.

In parallel, Morris et al. (2008) find longer VOT of stops in utterances of isolated syllables

than in sentences. Regarding lexical properties, VOT is also subject to word frequency

(Yao, 2009) and neighborhood density (Baese-Berk and Goldrick, 2009; Buz et al., 2016;

Kirov and Wilson, 2012). Yao (2009) reports that frequent words tend to have shorter VOTs

than infrequent ones. Baese-Berk and Goldrick (2009), among others, report that the VOT

of word-initial voiceless stops is longer in words with a voiced-initial neighbor. Finally,

regarding the influence of vocalic context, a substantial body of studies have reported

longer VOTs before the vowel /i/ for voiceless stops (Flege et al., 1998; Klatt, 1975; Port

and Rotunno, 1979; Weismer, 1979).

In this chapter, the only acoustic cue of /t d/ to be manipulated is the VOT distribution.

This is a temporal cue that involves less of the spectral information associated with speaker

identity, di↵ering from sibilant contrasts that I investigated in the last two chapters. Other

than VOT, a number of secondary cues are also identified to influence the perception of

stop voicing (e.g., Lisker, 1986), which I am to review in the remainder of this section. The

review of the secondary cues in this section is intended to inform the stimuli manipulation

decisions in this chapter. With the primary goal of the experiments in this chapter to be
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inducing perceptual shifts of voicing boundary along the VOT dimension, I will make other

cues ambiguous or uninformative, such that they do not signal a strong preference for the

identification of /t d/.

Following VOT, the second most well-studied acoustic cue associated with voicing con-

trasts of stops concerns perturbations to F0 in the adjacent areas. Haggard et al. (1970)

observed that listeners were more likely to perceive a synthesized stop consonant as being

voiceless when it precedes a high F0 than a low F0. Whalen et al. (1993) reported that

listeners use the F0 cue even when voice-onset time is unambiguous. Research has also

indicated that F0 trajectory shapes di↵er depending on the voicing of the stops. Whalen

et al. (1993) and Shultz et al. (2012) based their perception studies on the assumption

that the F0 exhibits flat or rising contours into the following vowel after the voiced stops

while displaying falling contours after the voiceless stops. Haggard et al. (1970) accounted

for pitch change at the onset of voicing after the articulatory closure of a consonant as a

reflection of glottis status during that closure. For a preceding stop consonant in English,

a low rising pitch indicates a closed glottis, and a high falling pitch indicates a glottis that

is still partly open. They also found that listeners would integrate the association between

pitch change and glottis status in the perception of voicing for an onset stop.

In addition to VOT and F0, the e↵ects of the first formant transition and frequency at

the voicing onset are also shown to a↵ect the voicing contrast in English. Liberman et al.

(1958) found that voiced stops in initial position could sound like their voiceless counterparts

with the beginning of the first-formant transition cut o↵ (except for the combination between

/t d/ and /o/). Liberman et al. (1958) attributed this to a delay in the excitation of F1 in

voiceless stops in production, where the frequency of F1 transition at the voicing onset is

much higher for English voiceless stops than for voiced stops. For voiced stops where voicing

begins simultaneously with the release, acoustic energy from vocal fold vibration excites the

first formant during its rise from the consonantal release to the steady-state vowel frequency.

In contrast, for voiceless stops, since voicing onset much later than the release, F1 is not

excited until late in the CV transition when the vocal tract is close to the steady-state
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vowel configuration. Perceptual studies show that stops with a longer F1 transition and/or

lower F1 frequency at voicing onset are more likely to be classified as voiced than stops with

shorter F1 transitions and/or higher F1 frequency at voicing onset, all other things being

equal (Kluender, 1991; Lisker, 1977; Stevens and Klatt, 1974; Summerfield and Haggard,

1977). The direction of the e↵ect of the F1 transition pattern on voicing classification is

thus consistent with the observed production data for English and other languages with

aspiration in the voiceless stops.

The next phonetic correlate of voicing to be reviewed is the spectrum distribution of

burst. Acoustically, voiceless labial and coronal stops are found to have greater energy

at higher frequencies in comparison to homorganic voiced stops (Chodro↵ and Wilson,

2014; Halle et al., 1957; Parikh and Loizou, 2005; Sundara, 2005; Zue, 1976), as indexed

by a number of measures. For example, Zue (1976) measured the mean spectral peak of

the initial 10-15 ms of coronal stop bursts and found that /t/ had a mean spectral peak

of 3600 Hz, higher than the mean of 3300 Hz for /d/. Perceptual studies evaluated the

spectral cue with continua created by crossing burst shape and VOT and found that voiceless

identifications were more likely for tokens with higher frequency bursts (e.g., Chodro↵ and

Wilson, 2014; Keating, 1979; Nittrouer, 1999). Chodro↵ and Wilson (2014) also conducted

tasks of goodness ratings, which showed that stops identified as voiceless labials and coronals

are better members of their respective phonetic categories when COG is higher; in contrast,

this e↵ect is not as straightforward for stops categorized as voiced. They suspected that

burst spectrum has a substantial impact on goodness only when VOT is non-prototypical

for a phonetic category.

The last two cues documented in the literature that proved to be perceptual relevant to

the voicing contrast are aspiration amplitude and vowel duration. Repp (1979) found that

the perception of voicing for syllable-initial stops was a↵ected by the amplitude of aspiration

noise before voicing (relative to the following periodic portion of the vowel). Vowel duration

can be a salient cue for the voicing perception of the stop following that vowel (De Jong,

2004; Klatt, 1976), but it becomes a less reliable cue of voicing in onset stops (e.g., De Jong,
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2004; Peterson and Lehiste, 1960).

5.1.2 Talker and gender variability in VOT production and their influence

on perceptual learning

From an indexical point of view, VOT is found to covary with a number of social factors

including speaker dialect (Lipani et al., 2019; Scobbie, 2006), gender (Byrd, 1992; Smith,

1978; Swartz, 1992; Whiteside and Irving, 1998), and age (Benjamin, 1982; Morris and

Brown Jr, 1994; Torre III and Barlow, 2009). Since a significant motivation of this disserta-

tion is to compare speaker gender e↵ects on the perceptual learning of sibilants and stops,

I primarily focus on findings of the gender variation of VOT measures. Previous studies

regarding the e↵ects of speaker gender on VOT in English generally find that females pro-

duce longer average VOT values than males for voiceless stops (Morris et al., 2008; Swartz,

1992; Sweeting and Baken, 1982; Whiteside and Irving, 1997, 1998). In contrast, findings

of VOT for voiced stops are more mixed. While some studies have reported longer mean

VOT values for females than males (Morris et al., 2008; Swartz, 1992; Whiteside and Irving,

1997), other studies have reported the opposite (Sweeting and Baken, 1982; Whiteside and

Irving, 1998). Several possible explanations have been proposed for the gender di↵erence in

VOT. A physiological account arises in the light of findings on a correlation between VOT

length and lung volume (Hoit et al., 1993). According to this view, it is relatively easier

for male speakers with generally larger supraglottal cavities to form sub and supraglottal

air pressure di↵erences for vocal cord vibration, which shortens their VOTs (Koenig, 2000;

Smith, 1978; Swartz, 1992; Whiteside et al., 2004; Whiteside and Irving, 1997, 1998). Note

that this explanation mainly accounts for VOT variation in voiceless stops rather than

voiced ones. Meanwhile, a stylistic account proposes that the gender di↵erence of VOT

can also stem from di↵erent styles between gender. In this view, females tend to speak

more carefully than males and therefore produce shorter VOTs for voiced stops and longer

VOTs for voiceless stops to secure su�cient phonological contrasts between the two stops

(Whiteside and Irving, 1997, 1998).
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Substantial VOT variability has also been identified across specific talkers within rel-

atively homogeneous groups, even after controlling for di↵erences in speaking rate (Allen

et al., 2003; Theodore et al., 2009). The cross-talker variability is particularly large among

the voiceless categories. Although the VOTs of the voiceless stops observed in these studies

generally belong to what is usually called long lag, they can span tens of milliseconds, mak-

ing this source one of the larger factors of VOT variation. These findings are interpreted

to imply that VOT may function as an indexical source for speaker specificity (Allen et al.,

2003). More recently, Kleinschmidt (2019) quantifies the informativity of VOT distributions

about speakers’ social-indexical variables (gender, age, and speaker specificity) using the

VOT data of stops from the Buckeye corpus (Pitt et al., 2007). Specifically, he evaluates

the Kullback-Leibler (KL) divergence of the group-level VOT distribution from the overall

cue distribution from all groups. He finds that VOT distributions grouped by individual

speakers diverge more from the aggregate distribution than those grouped by age and gen-

der. This finding seems to consistent with Allen et al. (2003)’s claim about VOT being

indexically useful for identifying idiosyncratic speakers. However, when comparing VOT

distributions’ informativity measures with the vowel formant distributions extracted from

another corpus, Kleinschmidt (2019) shows that the divergence of by-speaker VOT from the

aggregate VOT distribution is still much smaller than the divergence of by-speaker vowel

formants from the aggregate formant distribution. These findings indicate that, although

VOT might be more useful for the index of idiosyncratic speakers than speaker gender and

age, the e�ciency of VOT for identifying individuals may not be as high as other phonetic

properties associated with other segments.

The influence of speaker specificity and gender on the perceptual learning of stop VOT

has been examined with various training and test paradigms. However, the results are

mixed, and the question of how much speaker specificity matters to the perceptual learning

of VOT distributions remains unsolved. One line of relevant experiments uses a talker-

speech matching task to evaluate listeners’ sensitivity to speaker-specific VOT properties.

This method was first developed by Allen and Miller (2004). In their study, speakers were
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trained on the speech of two female talkers, Annie and Laura, with manipulated VOTs

for word-initial voiceless stops. According to the experimental design, one speaker always

had short VOTs, and the other always had long VOTs, with the association between VOT

and speaker counterbalanced between groups. Allen and Miller (2004) found that, after

exposure to these speech stimuli patterned with the name of the speaker, listeners were able

to select the VOT variant consistent with their experience of Annie’s and Laura’s speech.

Follow-up experiments in this line further showed that listeners were able to generalize

their knowledge about talker-specific VOT distributions to the identification of novel words

(Allen and Miller, 2004) and novel voiceless stops (e.g., training with /b-p/ but test with

/g-k/, Theodore and Miller, 2010) of the speaker they were trained with. Based on these

findings, the authors proposed that such sensitivity to talker-specific VOT properties makes

it plausible for listeners to customize the mapping between the acoustic signal and speech

sound for individual talkers.

However, studies evaluating the perceptual learning of talker-specific VOT distributions

with phoneme identification tasks do not arrive at similar conclusions. These experiments

evaluate listeners’ sensitivity to talker specificity by quantifying their tendency to generalize

the categorization boundary established based on one speaker’s speech to the perception of

a di↵erent speaker’s speech. The more likely listeners are to generalize, the less they pay

attention to speaker specificity. As mentioned in Section 1.2.3, one of the findings motivating

this dissertation is that perceptual learning of stop consonant boundaries is more prone to

generalize across talkers than that of fricative boundaries (Kraljic and Samuel, 2006, 2007).

Kraljic and Samuel (2006) find generalization of perceptual learning across male and female

talkers on a /t-d/ continuum. The perceptual shift in the voicing distinction also transfers

to a /p-b/ continuum. They develop this point further in Kraljic and Samuel (2007), where

they suggest that listeners learn talker-specific representations for a fricative contrast /s-S/

but do not do the same for a stop contrast /t-d/.

The discrepancy between the above two lines of studies may be explained by the many

di↵erences between the two paradigms. For one thing, Allen and Miller (2004) and Theodore
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and Miller (2010) have used photos to provide an additional enhancing cue for talker speci-

ficity, which might have made it easier for listeners to encode the VOT distributions as-

sociated with specific talkers. However, this may not be the essential factor leading to

the discrepancy between studies, given that the talker voices used in Kraljic and Samuel

(2006, 2007) are of di↵erent genders, which should have led to a more enhanced perception

of talker di↵erences than the voices in Allen and Miller (2004) and Theodore and Miller

(2010). For another thing, the two paradigms also potentially di↵er in the involvement

of explicit versus implicit memory in the experimental tasks, and the ambiguous versus

well-defined exemplars adopted as stimuli in the training phases. These di↵erences were

addressed in Theodore et al. (2015), who introduced linguistic perception tasks at the end

of their previous talker-speech matching task with the same two female speakers’ speech

that listeners had shown sensitivity to in Theodore and Miller (2010). This time, Theodore

et al. collected listeners’ responses of phoneme categorization and goodness ratings of the

speakers’ voiceless stops after training with their speech with manipulated VOTs patterned

with their names. The results showed that although listeners dynamically adjusted inter-

nal category structure to be centered on experience with the talker’s voice, the category

boundary did not reflect speaker-specific VOT distributions. These results are consistent

with Kraljic and Samuel (2006, 2007) in pointing to a null-e↵ect of speaker specificity on

the perceptual learning of VOT-based stop voicing.

Up to this point, it seems like evaluations of VOT perceptual learning with phoneme

categorization tasks tend to find no e↵ects of talker specificity, but this is not always the

case. Munson (2011) evaluated whether listeners generalized what they have learned about

one talker’s VOT to a di↵erent talker on two separate days, with counterbalanced orders

between the training talker and the test talker. If a participant received training with

talker A and test with talker B on Day 1, they would receive training with talker B and

test with talker A on Day 2. She found that perceptual learning generalized across talkers

on Day 1 but not Day 2. This implies that cross-talker generalization when listeners did

not have prior knowledge about the test talker’s VOT distribution on Day 1; once they
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obtained the knowledge from previous exposure, then the generalization was blocked on

Day 2 because they still maintained what they had learned from the training speaker on

Day 1. The results lend support to the role of talker specificity in the perceptual learning

of VOT distributions by showing that the more recent training on the second talker did

not overwrite the initial training for the original talker. Munson also finds that listeners

learned talker-specific boundaries when the female talker had VOTs shifted towards the

voiced end of the continuum, but not when the male talker was shifted in that direction.

She attributed this asymmetry to the involvement of other cues to voicing such as F1 and

F0, which made it di�cult to shift the male continua to the left and female continua to the

voiceless end.

Munson (2011) shares a commonality with Kraljic and Samuel (2006) in that they both

adopt a linguistic categorization task and identify perceptual learning through phoneme

boundary shift on a voicing continuum. A methodological di↵erence worth noting between

these two studies is that the former uses unsupervised learning to induce the perceptual

shift whereas the latter lexically-guided learning. It remains unclear to what degree their

discrepant conclusions can be attributed to this methodological di↵erence. A final piece of

evidence to be reviewed for talker e↵ects on the perceptual learning of VOT comes from

neuroimaging studies. In Myers and Theodore (2017), listeners heard two talkers produce

characteristically di↵erent VOTs for word-initial voiceless stops during a brief exposure

phase. Following exposure, neural activation was measured using fMRI while listeners com-

pleted a phonetic categorization task for VOTs that was either consistent or inconsistent

with their exposure. Right temporoparietal regions previously implicated in talker iden-

tification showed sensitivity to the match between VOT variant and talker, whereas left

posterior temporal regions showed sensitivity to the typicality of phonetic exemplars, re-

gardless of talker typicality. These results suggest that talker-specific VOT characteristics

can be exploited for voice processing.

In summary, we have mixed findings regarding whether the perceptual learning of VOT

distributions is talker-specific. This mixture can be partially attributed to the di↵erences
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in technical details between studies, including experimental procedure, tasks, and stimuli.

Moreover, a deeper reason behind this discrepancy that sometimes gets ignored is that

investigators di↵er in their expectations about the linguistic processing levels where speaker

information makes a di↵erence and what a talker e↵ect should look like according to the

results of di↵erent tasks. This discussion can benefit from more uniform criteria of the

identification and quantification of a talker e↵ect.

5.1.3 Research questions

The research question of this chapter is whether the perceptual learning of the VOT dis-

tributions of a specific speaker’s /t d/ productions can be generalized to the perception of

a di↵erent speaker’s /t d/, who has a di↵erent gender. As with the experiments in Chap-

ter 3, the experiment in this chapter is also set up to provide a concrete situation for the

generalization of perceptual learning across talkers: If the listener has had exposure to the

/t d/ productions of Female A and Male A, successively, then whose VOT boundary will

listeners use to cope with the /t d/ categorization with Female A’s speech?

Again, I expect the results of Experiment 3 to help us tease apart four hypotheses

about the cross-gender generalization of the perceptual learning of VOT, which I have

laid out in Section 2.4 (and in Table 3.1): A retention hypothesis states that perceptual

learning is talker-specific, and only the knowledge of Female A’s acoustic distribution is

relevant to the perception of A’s test speech. It predicts that the outcome perceptual shift

aligns with Female A’s acoustic distribution while remains una↵ected by Male A’s acoustic

distribution. In contrast, if Female A’s distribution is not reflected in the result of the final

test, then the possibility lies with either recency update or reset depending on whether or

not the test result reflects Male A’s distribution. Both of these situations indicate suggest

that the perceptual learning of sibilants is not speaker-specific. Finally, if both of Female

A’s and Male A’s distributions have laid an influence on the final test, then it suggests

that perceptual learning is not strictly speaker-specific given that it updates in response

to acoustic exposures from other speakers as well. This kind of result lends support to a
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cumulative update account.

5.2 Method Overview

5.2.1 Experimental conditions

This section reports Experiment 3, which makes the first attempt in this dissertation to

evaluate the role of talker specificity in the perceptual learning of stop VOT. The stimuli

adopted in this experiment are wordlist productions of Female A and Male A, who are

the same speakers used in Experiment 1-2. Experiment 3 contains a pilot study and two

sub-experiments (Exp 3a, 3b), all of which end with a categorization test on the same /t-d/

continuum of Female A’s speech.

These sub-experiments di↵er in the speakers and acoustic conditions of the training

phases that participants have received before the categorization test. Fig. 5.1 shows a

summary of the experimental designs and procedures in each condition of the di↵erent sub-

experiments in Experiment 3. We can see that the pilot study and Exp 3b di↵er from Exp

3a in the number of training phases involved. Pilot and Exp 1c only include no more than

one training phase, and therefore the training participants have received can only be recent

rather than prior. Pilot and Exp 3b di↵er in the speaker used in the training phase (if any).

The pilot study reports the /t-d/ categorization results of the baseline condition and

the Female A /t/-favoring condition. The goal of the pilot study is to make sure that the

50% point at the categorization curve is anchored with the center of the continuum, and to

make sure that the current design and stimuli works to induce a boundary shift as a result

of perceptual learning.

Experiment 3a contains three experimental conditions. They each contain a training

block with Female A’s /t/-favoring speech, a consecutive training block with Male A’s

speech, and a final categorization test with Female A’s speech. The three conditions di↵er

regarding whether the intermediate training phase with Male A’s speech is /t/-favoring (in

the same direction with the first training phase), /d/-favoring (in an opposite direction
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Figure 5.1: The structure of sub-experiments and conditions in Exp 3

to the first training phase), or containing no /t d/ (a neutral condition). By comparing

the results of these three conditions, we are able to know to what extent the exposure

to Male A’s speech matters for the categorization of Female A’s speech. If the outcome

categorization boundary reflects the acoustic condition of the second training phase with

Male A, then that lends support to the generalization of perceptual learning across genders.

More detailed explanations will be presented at the beginning of experiment.

On the premise that Experiment 3a has lent some support to the generalization of

perceptual learning across speakers, Experiment 3b is aimed at further teasing apart two

possibilities under the generalization condition, i.e., cumulative update and recency update.

The two possibilities both predict Male A’s VOT distributions has been integrated and

reflected in the final categorization result, but they make di↵erent predictions about whether

Female A’s VOT distribution is involved. The setup of Exp 3b parallels that of Exp 1c

and 2c and follows the same logic to tease apart the two possibilities. By comparing the

categorization results of participants who have received /t/-favoring training with Male A

only in 3b and those who have received /t/-favoring training with both of the two speakers
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in experiment 3a and 3b, we are able to know to what extent the earlier training phase still

matter to the categorization result.

5.2.2 Word list and recording

The stimuli used in Experiment 3 are manipulated from recordings of Female A and Male

A obtained according to the procedure described in Section 2.3.2. Each word with /t/ or

/d/ is produced twice by the speakers, once with /t/ and the other time with /d/ (e.g.,

cafeteria and cafederia), in order to provide transitional signals to both /t/ and /d/ in the

same lexical context. Words selected for stimulus construction in Experiment 3 are listed

in the following. They include 17 /t/-containing words, 17 /d/-containing words, 51 words

with no /t d/, and 8 words in minimal pairs that contrast each other by word-initial /t/

and /d/ segments.

• /t/-containing words: authentic, cafeteria, cemetery, consultation, frontier, hesita-

tion, infantile, lunatic, magnetism, military, momentary, novelty, overtime, relative,

scientific, voluntary, warranty (count: 17)

• /d/-containing words: academic, agenda, armadillo, legendary, comedy, avocado,

crocodile, evidence, handy, hazardous, iodine, kingdom, melody, merchandise, re-

medial, secondary, residence (count: 17)

• /t-d/ minimal pairs: down-town, Dutch-touch, deer-tear, dime-time (count: 8)

• words without /t d/: airline, among, anvil, average, banana, bu↵alo, village, wa✏e,

wharf, earning, eyebrow, feeling, firefly, follow, foul, framing, gable, gravel, verify,

raven, honey, iguana, January, jewelry, journal, row, marina, enamel, Nepal, nothing,

sigh, shine, shame, same, obscene, runaway, crucial, flourishing, thumbnail, lonely,

legacy, ribbon, gargoyle, volleyball, vulgar, initial, o�cial, evaluation, rehearsal, eraser

(count: 51)

The 34 words containing /t/ or /d/ are selected from Table 2.3, which are mostly

adopted from Kraljic and Samuel (2006). In these words, /t/ and /d/ only occur in word-

152



medial positions. Among the 17 /t/-containing words, the /t/-initial syllable bears primary

stress in 5 words, secondary stress in 7 words, and no stress in 5 words. Among the 17

/d/-containing words, the /d/-initial syllable bears primary stress in 2 words, secondary

stress in 8 words, and no stress in 7 words.

The 51 words without /t d/ consist of 37 filler words with no /t d s S/ from Table 2.4

and 14 words with either /s/ or /S/ but no /t d/ from Table 2.2 and 2.5. Among the 51

filler words, six of them contain another minimal pair of stops – /p b/ (11%), but those

words only occur in a neutral training block. In other words, they are not included as fillers

in a /t/- or /d/- favoring training phase.

The word boundaries and VOT proportions are manually annotated for the 34 /t d/-

containing words in Praat. The word lengths and VOT lengths are extracted and presented

in Fig. 5.2. Each circle represents a unique word spoken by one of the two speakers. The

black points represent the group means, and the error bars represent the 95% confidence

intervals of the VOT lengths and word lengths.
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Figure 5.2: The VOT length of /t d/ and the duration of /t d/-containing words from
Female A and Male A (mean and 95% confidence interval)

The left facet shows a bimodal distribution of positive VOT values for voiced and

voiceless stops from both Male A and Female A. The VOT of /d/ varies from 0 to 30 ms,

and the VOT of /t/ varies approximately from 40 to 80 ms. Male A’s VOT lengths of /t/
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and /d/ are distributed far apart with no overlap VOT lengths between these two phonemes.

Female A’s VOT values are also distinct between phonemes except for two words, namely,

a /t/-containing word with a 20-ms-long VOT (word authentic) and a /d/-containing word

with a 35-ms-long VOT (word armadillo). In general, Female A’s VOTs are shorter than

Male A’s, and this between-talker di↵erence in VOT is larger for /t/ (Female A: 50 ms;

Male A: 65 ms) than for /d/ (Female A: 12 ms; Male A: 18 ms). The right facet shows the

word duration of each speaker’s lexical tokens, which gives us an idea of the speech rates of

the two speakers since the 34 /t d/ words they produced are identical. It appears that the

distributions of word lengths are similar between Female A and Male A, except that Male

A’s /d/-containing words have longer duration than Female A’s. Note that this di↵erence

is in the opposite direction of the average gender di↵erence in the literature, which reports

that female speakers have longer VOT than male speakers (Morris et al., 2008; Swartz,

1992; Sweeting and Baken, 1982; Whiteside and Irving, 1997, 1998).

5.2.3 Step selection and manipulation

As elaborated in Section 5.1.1, the voicing cue intended for perceptual learning and ex-

amination in Experiment 3 is the length of VOT. The secondary cues are neutralized to

di↵erent extents for each word such that they are less informative of the original phoneme

of the word frame. In the light of this goal, five sections of areas with cues to the criti-

cal phoneme are identified for the /t/- and /d/- containing tokens. They are obstruction,

burst, aspiration, transition, and vowel. These five sections are exemplified in Fig. 5.3 by

displaying the beginning of the spoken word “town”. Area a corresponds to the obstruction

part where the airflow is completely stopped while the pressure inside the vocal track builds

up. Area b is where the obstruction is released in a burst of air. Area c corresponds to

aspiration. Area d is the formant transition that links up the aspiration and the full vowel

production. It is indexed by smaller waveform amplitude and lower energy distributed in

high areas of the spectrum. Area e is the following vowel.

By definition, VOT corresponds to the section of area b (after the release of closure) and
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a b c d e

maintain shorten, weaken adjust pitch and length

Time (s)
0 0.3

Figure 5.3: A sound clip of the word town and its cue-bearing areas of relevance to the
perception of the critical phoneme: a - obstruction, b - burst, c - aspiration, d - transition,
e - vowel.

c (before the beginning of vocal fold vibration) in Fig. 5.3. However, since the manipulation

process would involve temporal compression or extension of the annotated section, I decided

to exclude area b from the annotated period of VOT, because it is less natural to lengthen or

shorten the duration of the burst. Therefore, among the five specified areas, the aspiration

part (area c in the figure) is explicitly annotated for each token with /t d/, and their lengths

are to be varied at di↵erent steps of the continuum

The 34 words used for training are each manipulated to embed a five-step /t-d/ con-

tinuum. The five steps of stimuli are manipulated from a /t/-substitution token of a cor-

responding word. For example, the /t-d/ continuum embedded in the word cafeteria is

manipulated from the auditory word token cafeteria, whereas the /t-d/ continuum embed-

ded in academic is manipulated from the auditory non-word token acatemic. Among the

five steps of stimuli, the longest VOT step is a re-synthesis of the /t/-substitution produc-

tion itself, and the remaining four steps are generated by temporally compressing area c in

Fig. 5.3 to the 20%, 40%, 60%, and 80% of its original length. Temporal compression is

conducted using the PSOLA algorithm in Praat and its graphical user interface for duration

interpolation. I set aside a region of 1 ms both before and after area c as transitions where

the speech rate slows down or speeds up gradually. In cases where tokens with shortened

VOTs still introduce a perceptual bias towards /t/, I have to neutralize some of the sec-

ondary cues to the /t/ sound in these tokens in di↵erent extents depending on how salient
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those cues are. These manipulations may include reducing the amplitude of the burst (area

b), attenuating or cutting o↵ the transitional area (area d), and cross-splicing the whole

following vowel (area d and e) from the corresponding lexical frames produced with /d/.

The secondary cues, once manipulated, are kept constant for each word throughout the con-

tinuum, rather than covarying with VOT at each step of the continuum. All the synthesized

stimuli are normalized to 70 dB.

A lexical decision task is conducted to select the most ambiguous step of VOT for each

training word to be used in the training phase. Since Exp 3 contains training with Female

A towards a /t/-favoring direction and training with Male A towards both /t/-favoring and

/d/-favoring directions (see Section 5.2.1), lexical decision tasks are conducted with Female

A’s 17 /t/-containing words and Male A’s 34 /t d/-containing words. The above 51 words

are each spliced with stops in five VOT steps. Then they are presented in a single block in a

randomized order and participants needed to judge whether they are an English word. The

results of this lexical decision task are shown in Appendix A. Among the five compression

factors ranging from 0.2 to 0.8, the one yielding the most ambiguous lexical decision result

is selected to be used for the stimulus construction of a particular lexical token. If two VOT

steps are approximately equally far from the 50% point, then the mean of the two factors

is used as the temporal compression ratio for stimulus construction (e.g., 0.3). Finally, if

a /t/-containing token with a VOT of 0.2 of its original length still receives a high rate of

/t/-equivalent responses (i.e., “Word” responses), then a compression factor of 0.1 will be

adopted in addition to manipulations of secondary cues for this particular lexical item.

Table 5.1 shows the temporal compression step chosen for each critical lexical frame for

Female A and Male A based on the lexical decision results. † indicates that the token has

also received manipulations of its secondary cues to stop voicing.

Minimal-pair words produced by Female A that I use for testing are also manipulated

to bear stops from a /t-d/ continuum. Like the training stimuli, continua of the minimal-

pair words are also all manipulated from /t/-containing tokens (i.e., touch, tear, town, and

time) by temporal compression of the aspiration area. 10 VOT steps are generated for each
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ID /d/ words Male A /t/ words Female A Male A
1 academic 0.4 authentic 0.1† 0.1†

2 according 0.2 cafeteria 0.2 0.5
3 agenda 0.2 cemetery 0.4 0.2
4 armadillo 0.4 consultation 0.2 0.1†

5 avocado 0.2 frontier 0.2 0.2
6 comedy 0.4 hesitation 0.1† 0.1†

7 crocodile 0.3 infantile 0.1† 0.2†

8 evidence 0.4 lunatic 0.4 0.2
9 handy 0.4 magnetism 0.2 0.2
10 hazardous 0.3 military 0.2 0.2†

11 iodine 0.6 momentary 0.2 0.2
12 kingdom 0.2 novelty 0.2 0.2†

13 legendary 0.4 overtime 0.1† 0.2
14 melody 0.2 royalty 0.2 0.2
15 merchandise 0.3 scientific 0.2† 0.2
16 remedial 0.4 voluntary 0.2 0.2
17 secondary 0.3 warranty 0.2† 0.2
† indicates simultaneous manipulations of secondary voicing cues.

Table 5.1: The temporal compression factor chosen for each word of the training stimuli for
Female A and Male A

lexical token by varying the length of the aspiration area from the 10% to the 100% of its

original length at an interval of 10% between adjacent steps. The temporal compression

is also implemented using the PSOLA algorithm as described above and manipulations

on the secondary cues of the burst, stop-to-vowel transition and the following vowel are

manipulated for each of the four tokens to ensure ambiguity.

A word identification task is conducted to select five temporal steps out of ten for each

of the four /t/-containing tokens of Female A. Listeners need to choose, for the four tokens

spliced with stops at ten VOT steps, whether it is a /t/-initial word or /d/-initial one (e.g.,

“tear” or “dear” for tokens manipulated from tear). The step selection process follows such

a procedure based on the categorization results of the word identification task. First, a most

ambiguous step is chosen for each word frame by identifying the step at which the response

rate for /t/ or /d/ is the closest to 50%. Then, two more steps are taken respectively on the

left and the right of the continuum to make up a five-VOT continuum. All the synthesized

stimuli are normalized to 70 dB.
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Table 5.2 presents the the final VOT length at each of the five chosen steps for the four

lexical token to be used in the test phase of Exp 3.

lexical frame step 1 step 2 step 3 step 4 step 5
touch 9.79 19.58 29.37 39.16 48.95
tear 15.36 30.72 46.08 61.44 76.89
town 10.92 21.84 32.76 43.68 54.60
time 9.34 18.68 28.02 37.36 46.70

Table 5.2: The VOT duration at each step of the /t-d/ continuum embedded in di↵erent
minimal-pair words in the test phase (ms)

Note that the interval between adjacent steps for the test continuum is 10% of the

original VOT length of a /t/-word (around 10-15 ms), which makes a relatively fine-grained

change for tokens on the continuum, instead of fully covering the VOT range between a

typical /d/ and a typical /t/. This step selection procedure is designed to fulfill the following

to requirements. One is that the center step of the continuum should anchor closely enough

with the location of the /t-d/ categorization boundary along the continuum, to avoid any

additional distributional learning induced by the continuum itself (Tamminga et al., 2020).

The other is that stops at the five VOT steps are essentially ambiguous in nature, in order

to avoid including any standard instances that are reported to prevents perceptual shift

from happening (Zhang and Samuel, 2014).

5.3 Experiment and Result

5.3.1 Pilot study: Learning Female A’s /t-d/

5.3.1.1 Experimental conditions and goals

The goal of this pilot study is to verify that perceptual learning can be successfully elicited

with the speech of Female A after manipulation. The result is also intended to demonstrate

that the 50% perceptual boundary between Female A’s /t-d/ has been anchored with the

center of the test continuum by default without prior training. The pilot study contains

a baseline condition and a /t/-favoring learning condition. Participants in the baseline
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condition completed a single test block of Female A’s spoken words, which consist of 35 test

trials with ambiguous dental stops embedded in /t-d/ minimal pairs and 17 filler words that

do not contain /t/ or /d/. The result of this condition is taken as a reference of the default

/t-d/ perceptual boundary for Female A’s speech. Participants in the /t/-favoring learning

condition first completed a /t/-favoring training block with Female A’s speech before they

proceeded to complete the same test block as in the baseline condition. The di↵erence

in the perceptual boundary between these two conditions is taken as an indicator of the

perceptual learning e↵ect.

5.3.1.2 Participant

All the participants in the pilot study are recruited from Prolific. Thirty participants are

in the baseline condition. They are 17 female, 12 male, and a remaining participant who

preferred not to identify their gender. Their age varies from 18 to 67 years old (Mean =

29.4, SD = 12.4). Another group of 27 participants is assigned to the Female A /t/-favoring

condition. They are 16 female and 13 male, aged 19-57 (Mean = 29, SD = 10.4).

5.3.1.3 Result

Fig 5.4 shows the results of phone categorization in the baseline condition (the dashed line)

and in the /t/-favoring condition (the solid line). Points and error bars indicate the mean

and standard error of the /t/-equivalent response rate across the group.

As expected, Fig 5.4 shows that participants in the /t/-favoring condition report more

/t/-equivalent responses on each step of the categorization continuum than those in the

baseline condition. In other words, after exposure to stimuli with standard /d/ and non-

standard /t/, listeners become more likely to categorize the ambiguous stops between /t-d/

as /t/ rather than /d/, compared to the baseline condition. In Fig. 5.4, we can also see

that the 50% point of the categorization boundary in the baseline condition aligns with

the middle step of the continuum (Step 3). The response rates at the endpoints have

only reached 20% and 75% in the baseline condition, meaning that the test stimuli on the
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Figure 5.4: Exp 3 pilot: Boundary shift after /t/-biased learning compared to the baseline
categorization with Female A (mean and standard error)

continuum are essentially ambiguous in nature, even for the ones at the endpoints.

A logistic mixed-e↵ects regression model (Model-pilot3) is evaluated to predict the Re-

sponse of each trial (T=0, D=1), with Step (1-5, scaled and centered), Trial (1-51, scaled

and centered), and Condition (treatment coded, reference level: the baseline condition) as

the fixed e↵ects, Condition:Step and Condition:Trial as the interaction items, and Step by

Subject and by Word as the random slopes. The result of the model (Model-pilot3) is shown

in Table 5.3.

Fixed e↵ects Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.04 0.44 0.09 0.93
Step -1.39 0.27 -5.24 < 0.001⇤⇤⇤

Condition Female A t-favoring -1.20 0.36 -3.38 < 0.001⇤⇤⇤

Trial -0.15 0.09 -1.74 0.08
Step:Condition Female A t-favoring -0.67 0.23 -2.94 0.003⇤⇤

Condition Female A t-favoring:Trial 0.14 0.13 1.07 0.28

Model-pilot3: Response⇠Step*Condition+Condition*Trial+(Step|Subj)+(Step|Word)

Table 5.3: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 3 pilot

The result reveals a significant main e↵ect of Step (� = �1.39, p < 0.001), suggesting

that in the baseline condition, longer VOTs at larger steps lead to fewer perception of /d/.

Crucially, the e↵ect of Condition also turns out to be significant (� = �1.20, p < 0.001),
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suggesting that participants with /t/-favoring training are less likely to show /d/-equivalent

responses than the baseline condition. A significant interaction between Step and Condition

indicates that the slopes of the categorization boundary along the continuum becomes

sharper in the Female A /t/-favoring condition (� = �0.67, p = 0.003). In other words,

one step of VOT increase would lead to fewer /d/ perception in the Female A /t/-favoring

condition than in the baseline condition. The e↵ect of Trial is insignificant; neither is its

interaction with condition.

5.3.1.4 Summary

The above results suggest that I have successfully aligned the 50% response point of the cat-

egorization boundary with the center of the continuum, and that the Female A /t/-favoring

training works to induce a significant amount of boundary shift towards the expected direc-

tion. This pilot or the remaining of the experiment does not contain training with Female

A /d/-favoring speech, because there is no hypothesis about how perceptual shift towards

di↵erent directions might interact with our observations.

5.3.2 Exp 3a: Perceptual learning of /t-d/ with Female A and Male A

5.3.2.1 Experimental conditions and goals

The goal of Exp 3a is similar to that of Exp 1a, namely, to evaluate what listeners do with

their existing perceptual expectation established for a previous speaker after encounter-

ing another speaker of a di↵erent gender. Possibilities of involved multi-talker perceptual

learning mechanisms include retention, reset, and update, as described in Section 7.1. Three

experimental conditions are designed in Exp 3a to tease apart the above possibilities. All

participants in the three conditions of this experiment completed two phases of percep-

tual learning, one /t/-favoring training with Female A and the other training phase with

Male A. Male A’s speech in the second training phase has been manipulated to be either

/t/-favoring, /d/-favoring, or /t d/-free depending on the experimental condition that each

participant was assigned to. In the end, participants completed a word identification task
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on Female A’s /t d/ minimal pair words with VOT continua spliced into the minimal pairs.

Crucially, di↵erent possibilities of cross-speaker perceptual learning behaviors make dif-

ferent predictions about the outcomes of the three training conditions. If the final cat-

egorization is always consistent with the /t/-favoring distribution of Female A’s speech

across the three conditions, then indicates that listeners retained the phonetic information

of Female A regardless of the talker switch. If the final results in the three experimental

conditions are always consistent with the perceptual bias induced by their exposure to Male

A’s speech and thus di↵er from one another, it indicates that listeners have updated their

beliefs as a function of the recent input regardless of speaker specificity. Finally, if the

categorization results across conditions show a similar reset to the baseline condition, then

it indicates that listeners reset their phonetic beliefs in response to the switch of talker.

5.3.2.2 Participant

90 participants are recruited from Prolific to participate in Experiment 3a, with 30 par-

ticipants in each experimental condition. The responses of these participants are analyzed

along with the data of the 30 participants in the baseline condition and the 27 partici-

pants in the Female A /t/-favoring condition, as introduced in Section 5.3.1. Participants

in the Two genders - neutral condition are 20 female and 10 male, aged 18-65 years old

(Mean � 32.2, SD = 13.5). Participants in the Two genders - same condition are 14 fe-

male and 16 male, aged 19 to 52 years old (Mean = 32.4, SD = 9.0). Participants in the

Two genders - opposite condition are also 14 female and 16 male, aged 19 to 54 years old

(Mean = 30.97, SD = 10.23).

5.3.2.3 Result

Fig. 5.5 shows the means and standard errors of the categorization result at each step in

the three two-gender learning conditions. The blue lines indicates the perceptual learning

outputs after two phases of perceptual learning sequentially with a male speaker and a female

speaker, where Male A either have the same (dashed) or an opposite (solid) pronunciation
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characteristics of /t d/ with Female A. The yellow line indicates a two-phrase perceptual

learning condition, where no /t d/ is involved in the intervening male speaker’s speech. The

grey lines stand for the results of the baseline and the Female /t/-favoring conditions, which

I have already reported in the pilot study.
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Figure 5.5: Exp 3a: /t/ response rate as a result of cross-gender perceptual learning with
di↵erent combinations of /t d/ production biases (mean and standard error)

Among the three two-phase learning conditions in Fig. 5.5, the Two genders - same

condition exhibits the most /t/-equivalent responses and the Two genders - opposite condi-

tion exhibits the fewest /t/-equivalent responses. The /t/-equivalent responses of the Two

genders - neutral condition lie between the above two conditions, meanwhile it stays closer

to results of the Two genders - same condition and farther apart from those of the opposite

condition. Since participants in all the three conditions have had identical exposure to

Female A’s /t/-favoring speech in the first training phase, we can attribute the di↵erences

between experimental conditions to their training in the second phase with Male A. Indeed,

the overall /t/ responses of the three two-gender learning conditions are consistent with

the perceptual biases associated with Male A’s /t d/ sounds. The highest /t/ response

rate occurs in the condition where Male A’s speech favors the perception of /t/, and the

lowest /t/ response rate occurs where Male A’s speech favors the perception of /d/, and

the results of the condition with no /t d/ from Male A’s lie in between. Such a pattern
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essentially suggests that the VOT properties of Male A has been acquired and integrated

in the perception of Female A’s /t d/ sounds. This is consistent with an update hypothesis

for multi-talker perceptual learning, which claims that the perceptual learning outcome of

one speaker is integrated to update listeners’ perceptual expectations of other speakers.

A logistic mixed e↵ects model was conducted to predict the response in the test (T=0,

D=1), with Step (1-5, scaled and centered), Trial (1-51, scaled and centered), and Condi-

tion (treatment coded, reference level: the baseline condition), as the fixed e↵ects, Condi-

tion:Step and Condition:Trial as the interaction items, and Step by Subject and by Word

as the random slopes. The fixed e↵ects of the model are shown in Table 5.4.

Fixed E↵ects Estimate SE z value Pr(>|z|)
(Intercept) 0.09 0.39 0.22 0.83
Step -1.39 0.27 -5.12 < 0.001⇤⇤⇤

Condition Female A t-favoring -1.17 0.34 -3.44 < 0.001⇤⇤⇤

Condition Two genders - neutral -0.75 0.33 -2.28 0.02⇤

Condition Two genders - opposite 0.22 0.33 0.67 0.51
Condition Two genders - same -1.06 0.33 -3.20 0.001⇤⇤

Trial -0.16 0.08 -1.85 0.06
Step:ConditionFemale A t-favoring -0.67 0.24 -2.73 0.006⇤⇤

Step:Condition Two genders - neutral -0.30 0.23 -1.30 0.19
Step:Condition Two genders - opposite 0.02 0.23 0.09 0.93
Step:Condition Two genders - same -0.55 0.24 -2.31 0.02⇤

ConditionFemale A t-favoring:Trial 0.15 0.13 1.14 0.25
Condition Two genders - neutral :Trial 0.08 0.12 0.64 0.52
Condition Two genders - opposite:Trial -0.12 0.12 -0.97 0.33
Condition Two genders - same:Trial -0.01 0.13 -0.07 0.95

Model-3a: Response⇠Step*Group+Group*Trial+(Step|Subj)+(Step|Word)

Table 5.4: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 3a

Table 5.4 reveals a significant main e↵ect of Step (� = �1.39, p < 0.001). This means

that, in the baseline condition, segments with longer VOT steps are less likely to be perceived

as /d/. The Condition e↵ect is significant for the conditions of Female A /t/-favoring

(� = �1.17, p < 0.001), Two genders - neutral (� = �0.75, p = 0.02), and Two genders

- same (� = �1.06, p = 0.001), but not for the Two genders - opposite condition (� =

0.11, p = 0.51). In other words, compared to the baseline condition, the Two genders

- same condition and the Two genders - neutral condition show significantly fewer /d/
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responses and more /t/ responses. In contrast, the di↵erence between the baseline condition

and the Two genders - opposite condition is not significant, suggesting that the opposite

perceptual learning with di↵erent speakers have cancelled each other out for listeners in the

Two genders - opposite condition so that they are not di↵erent from the baseline condition

anymore.

The interaction between Step and Condition is significant for the Female A /t/-favoring

condition (� = �0.67, p = 0.006) and the Two genders - same condition (� = �0.55, p =

0.02), but not for the conditions of Two genders - opposite (� = 0.02, p = 0.93) or neutral

(� = �0.30, p = 0.19). Again, this means that each step of increase in VOT causes a larger

amount of increase in /t/ responses in the Female A /t/-favoring condition and the Two

genders - same condition than in the baseline condition, whereas such a di↵erence from

the baseline condition does not occur to the Two genders - opposite or neutral conditions.

Regarding e↵ects relevant to Trial, no significant main e↵ect or significant Trial:Condition

interactions has been found in Exp 3a, which is di↵erent from what we have observed in

Exp 1 and 2.

To further check whether the second-phase exposure to Male A’s speech has shifted

listeners’ perceptual boundaries further away from the Female A /t/-favoring condition, I

reran the model with the Female A /t/-favoring condition as the reference level of Condition.

The result shows that among the three two-gender conditions, only the opposite condition

exhibits a significant di↵erence from the Female A /t/-favoring condition (� = 1.39, p =

0.007). A second-phase training with Male A’s /t/-favoring speech or /t d/-free speech does

not seem to induce any additional perceptual shifts on top of the shift towards /t/ induced

by the first-phase training (�same = 0.11, p = 0.75;�neutral = 0.42, p = 0.22).

5.3.2.4 Summary

The three conditions of Exp 3a essentially di↵ers in the directions of perceptual biases

associated with the speech of a male speaker in an intervening training phase. The question

is whether the perceptual learning outcome of this male speaker would be applied to the
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perceptual categorization of a female speaker’s speech. The final categorization results of

the three experimental conditions di↵er from one another in a consistent way with the male

speaker’s production characteristics in their conditions. These results are not consistent

with a reset account claiming that encountering a di↵erent speaker’s voice makes listeners

set aside any perceptual expectations they have established previously, because this is not

observed in the Two genders - same and neutral conditions. Instead, these results lend

support to an update hypothesis that integrates the perceptual learning outcomes of both

Female A and Male A into the update of perceptual expectations.

So far, we have demonstrated the influence of perceptual learning with Male A in the

second phase on the final categorization results. The next question that comes up is whether

or to what degree the perceptual learning with Female A in the first stage matters to the

final categorization results. This question is to be evaluated in Exp 3b in the next section.

5.3.3 Exp 3b: No previous training with Female A’s /t-d/

5.3.3.1 Experimental conditions and goals

In Exp 3a, listeners have been trained on Female A’s and Male A’s /t d/ productions in

two sequential training phases, and then they complete a categorization test that evaluates

which perceptual expectation(s) they would apply to the identification of Female A’s /t

d/. Results obtained so far indicate that listeners have generalized their knowledge about

Male A’s speech properties to the categorization of Female A’s speech. In Exp 3b, I ask

whether the results of the final categorization stage can be attributed to perceptual learning

with Male A alone instead of the combination of perceptual learning outcomes with Female

A and Male A. These two possibilities correspond to the two kinds of update mechanisms

that I discussed in Section 7.1, namely, recency update and cumulative update. These

two possibilities can be teased apart by comparing the perceptual shift in the two-gender

conditions to the shift induced by the perceptual learning of Male A’s speech alone.

Among the three two-gender conditions in Exp 3a, the neutral condition lends the

strongest support to the integration of perceptual learning with Female A into the final
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categorization results; otherwise, it is hard to explain where the /t/-biased perceptual shift

comes from. In contrast, the results of the Two genders - same condition and those of the

opposite condition can be reasonably addressed either under a recency update account or

under a cumulative update account. Exp 3b focuses on unpacking the result of the Two

genders - same condition, asking how much of this result depends on the prior learning

of Female A’s speech. Participants first complete a /t/-favoring perceptual learning phase

with male A and are then tested with /t d/ minimal pairs from Female A. By a comparison

between the Male A /t/-favoring and the Two genders - same condition in Exp 3a, we will

be able to tell whether whether training with Male A’s /t/-favoring speech on its own gives

rise to the same categorization boundary as induced by the /t/-favoring speech of both

Female A and Male A.

5.3.3.2 Participants

An additional group of 29 participants are recruited from Prolific to participate in the Male

A /t/-favoring condition in Exp 3b. They are 16 female and 13 male, aging from 18 to 67

years old (Mean = 31.9, SD = 12.3).

5.3.3.3 Result

Fig. 5.6 shows the planned comparison of the results in the Male A /t/-favoring condition

(yellow) and the Two genders - same condition (blue). Crucially, a gap is shown between

the Male A /t/-favoring condition and the Two genders - same condition. This means

that, without previous training with Female A’s /t/-favoring speech, training with Male

A’s /t/-favoring speech alone cannot induce as large a perceptual shift as shown in the Two

genders - same condition.

The results of Fig. 5.6 suggest that, without the /t/-favoring training with Female

A in the first place, the perceptual shift induced by Male A end up being much smaller

in magnitude. If the di↵erence between the Male A /t/-favoring condition and the Two

genders - same condition is significant, then this pattern lends support to the account of
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Figure 5.6: Exp 3b: /t/ response rate as a result of training with Male A compared to the
two-gender condition and the baseline condition (mean and standard error)

cumulative update where the distribution of both Female A and Male A were exerting

an influence on the test phase. A logistic mixed-e↵ects model (Model-3b) is evaluated to

predict the response of the test (T=0, D=1). It includes Step (1-5, scaled and centered),

Trial (1-51, scaled and centered), and Condition (treatment coded, reference level: Male

A /t/-favoring), as the fixed e↵ects, Condition:Step and Condition:Trial as the interaction

items, and Step by Subject and by Word as the random slopes. To evaluate whether the

result of the Male A /t/-favoring condition is significantly di↵erent from those of the other

three conditions, the model takes the Male A /t/-favoring condition as the reference level

of the Condition variable. The fixed e↵ects of the model are shown in Table 5.5.

The model reveals a significant Step e↵ect (� = �1.65, p < 0.001), meaning that the

number of /d/-equivalent responses decreases as the VOT of the stop becomes longer in the

Male A /t/-favoring condition. The model also revealed a significant Condition e↵ect for the

Female A /t/-favoring condition (� = �0.78, p = 0.03) and a marginal significant Condition

e↵ect for the Two genders - same condition (� = �0.67, p = 0.05). The near-significant

di↵erence between the results of the Two genders - same condition and those of the Male A

/t/-favoring condition lends some support to cumulative influences of perceptual learning

from the two training stages in the Two genders - same condition.
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Fixed E↵ects Estimate SE z value Pr(>|z|)
(Intercept) -0.35 0.41 -0.84 0.40
Step -1.65 0.29 -5.73 < 0.001⇤⇤⇤

Condition Female A baseline 0.42 0.34 1.23 0.22
Condition Female A t-favoring -0.78 0.35 -2.20 0.03⇤

Condition Two genders - same -0.67 0.34 -1.94 0.05
Trial -0.05 0.10 -0.50 0.62
Step:Condition Female A baseline 0.26 0.22 1.15 0.25
Step:Condition Female A t-favoring -0.39 0.24 -1.61 0.11
Step:Condition Two genders - same -0.29 0.23 -1.25 0.21
Condition Female A baseline:Trial -0.14 0.13 -1.12 0.26
Condition Female A t-favoring:Trial 0.01 0.14 0.10 0.92
Condition Two genders - same:Trial -0.13 0.14 -0.91 0.36

Model-3b: Response⇠Step*Condition+Condition*Trial+(Step|Subj)+(Step|Word)

Table 5.5: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 3b

An unexpected result that we can see in Table 5.5 is that the Condition e↵ect does

not turn out to be significant for the Female A baseline condition (� = 0.42, p = 0.22).

In other words, training with Male A’s /t/-favoring speech does not seem to successfully

induce a significant perceptual shift compared to the baseline condition. This raises some

question regarding whether the Two genders - same condition is essentially identical to the

Two genders - neutral condition in this experiment, in that the training with Male A’s

speech only means additional exposure to a di↵erent speaker’s voice without introducing

additional perceptual shifts. To figure out this question, I then divided the result up into

four sets based on the lexical frame of the test phase, and reran Model-3b (with the random

slope of Word taken out) again for each of the four sets of results. This time, I coded

“Female A baseline” as the reference level for Condition, because it could tell us not only

whether training with Male A’s /t/-favoring speech has induced a significant shift from the

baseline, but also whether shifts have been induced by training with Female A’s /t/-favoring

speech as well as by training with both of them, when we look at individual lexical frames

of the test stimuli. Table 5.6 provides a summary of the Condition estimates in the four

models. A full list of the fixed e↵ects of each of these models (Model-3b-tear, Model-3b-

time, Model-3b-touch, and Model-3b-town can be found in Table B.5, B.6, B.8, and B.7 in
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Appendix B.

(Condition ref: Female A baseline) tear-dear time-dime town-down touch-Dutch
Condition Male A t-favoring -1.42⇤ -0.33 0.12 -0.52
Condition Female A t-favoring -3.45⇤⇤⇤ -0.93 -1.27⇤⇤ -1.00⇤

Condition Two genders - same -1.48⇤⇤ -0.64 -0.90⇤ -1.61⇤⇤⇤

*p < 0.05, **p < 0.01, ***p < 0.001

Table 5.6: Condition estimates of the four logistic mixed-e↵ects models for responses ob-
tained with di↵erent lexical frames in Exp 3b

The results in Table 5.6 suggest that the occurrences and significance levels of perceptual

shifts induced in di↵erent conditions also vary with the test stimuli. Based on the responses

to “tear-dear” identification questions, a significant shift towards the intended direction

occurs both in the Male A /t/-favoring condition (� = �1.42, p < 0.05) and in the Female

A /t/-favoring condition (� = �3.45, p < 0.001). In contrast, responses to “town-down” or

“touch-Dutch” identification questions only show a significant perceptual shift in conditions

involving training with Female A’s speech, but not in the Male A /t/-favoring condition

(�town = 0.12,�touch = �0.52, p > 0.05 in both cases). Finally, no perceptual shift shows up

at all in identification responses of “time-dime” in any of the three training conditions under

question. To better visualize the di↵erence between words, I separately present the results

obtained with “tear-dear” alternatives and those with alternatives of “town-down” and

“touch-Dutch”, which is shown in Fig 5.7. I do not include a visualization of responses to

the “time-dime” identification, because no e↵ect has been found in any perceptual learning

conditions with this set of test stimuli according to Table 5.6.

In the left facet of Fig 5.7, which presents identification responses of “tear-dear” iden-

tification, the results of the Male A /t/-favoring condition almost overlaps with those of

the Two genders - same condition. At this point, the results of “tear-dear” identifica-

tion cannot help us disentangle the possibilities of cumulative update and recency update.

One may either argue that the /t/-favoring perceptual learning with Female A decays and

the results of the Two genders - same condition essentially reflect that of the perceptual

learning of Male A /t/-favoring speech. Alternatively, one may argue that the perceptual

170



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

tear town, touch

1 2 3 4 5 1 2 3 4 5

0.1

0.3

0.5

0.7

0.9

Step of VOT length (larger step = longer VOT)

R
at

io
 o

f /
t/−

eq
ui

va
le

nt
 re

sp
on

se
s

●

●

●

Female A baseline
Male A t−favoring
Two genders − same

Figure 5.7: Exp 3b: /t/ response rate obtained with di↵erent minimal-pair test stimuli in
the Female A baseline condition, the Male A /t/-favoring condition, and the Two genders
- same condition (mean and standard error)

learning e↵ect of Female A and Male A coexist, but they do not induce an additive amount

of perceptual shift in the Two genders - same condition because of a ceiling constraint

on the perceptual shift towards the /t/ end. Crucially, the results of “touch-Dutch” and

“town-down” identification in the right facet shows a di↵erent pattern, where the results

of the Male A /t/-favoring condition by and large overlaps with those of the Female A

baseline condition rather than the Two genders - same condition. Since the training with

Male A’s /t/-favoring speech by itself does not induce perceptual shifts to the perception

of “town-down” and “touch-Dutch”, it is unlikely that it suddenly yields a significant per-

ceptual shift in the Two genders - same condition. Like the results of the Two genders -

neutral condition, the “town-down” and “touch-Dutch” identification results in the Male A

/t/-favoring condition lend support to the persistence of the perceptual learning e↵ect with

Female A’s /t/-favoring speech.

5.3.3.4 Summary

Exp 3c evaluates the perceptual learning of Male A’s /t/-favoring speech alone and compares

it with the results of the Two genders - same condition that involve /t/-favoring training

with both Female A’s and Male A’s speech. The results show a clear di↵erence between
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two-gender training conditions and Male A only conditions. These results lend support to

an account of cumulative update, where the speech of both Female A and Male A exerts an

influence in the test phase. They are not consistent with the other possibility of recency

update, which would otherwise predict little di↵erence between the male-only conditions

and their corresponding two-gender conditions.

5.4 Discussion

Experiment 3 is aimed at teasing apart the four possible mechanisms (retention, reset,

cumulative update, and recency update) underpinning the perceptual learning of /t-d/ with

multiple speakers. To address this question, I manipulated the phonetic characteristics of

the /t d/ productions of two talkers – Female A and Male A – in the training phase. I

then evaluated the perceptual consequences caused by each condition of manipulation with

the same test phase. Experiment 3a compares the influences of three di↵erent perceptual

learning conditions on the categorization of Female A’s /t-d/ continuum. The three training

conditions each contain a training phase with Female A’s speech and a second training phase

with Male A’s speech. The critical design lies in the acoustic properties of Male A’s /t d/

productions in each condition: These conditions are designed to induce a perceptual bias

towards either /t/ or /d/, or they contain no /t d/ sounds and cause no perceptual bias. A

comparison between the outcomes of the three two-gender perceptual learning conditions

suggests that manipulating Male A’s /t d/ productions makes a di↵erence to the final

categorization results of Female A’s /t d/. Moreover, the directions of the perceptual shift

exhibited in di↵erent conditions are consistent with Male A’s acoustic properties in the

second training stage of those conditions: Participants who received /t/-favoring training

with Male A show the highest /t/ response rate among the three conditions, and participants

trained with/d/-favoring Male A showed the lowest /t/ response rate. These observations

are not consistent with a retention (or speaker specificity) account that says listeners update

their perceptual expectations in a speaker-specific way. Besides, participants who have not

had exposure to Male A’s /t/ or /d/ sounds show a similar pattern with those in the Female
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A /t/-favoring condition, meaning that additional exposure to 51 spoken words from Male

A does not wipe out the outcome of previous perceptual learning with Female A. The results

of the Two genders - neutral condition and the Two genders - same condition both reject a

reset hypothesis that says that listeners set aside existing perceptual expectations they have

established once they encounter the speech of a di↵erent speaker. This result lends support

to the update account, according to which, listeners almost always update their phonetic

expectations in response to the recent acoustic input, regardless of speaker specificity or

gender.

Exp 3b is aimed at disentangling a confound involved in the interpretation of this

result, namely, whether the categorization results can be largely attributed to the perceptual

learning with Male A’s speech alone, as opposed to a combination of the perceptual learning

outcomes of the two training phases. Put di↵erently, how much of the perceptual learning

outcome of the first training phase with Female A has been maintained and reflected in the

final result? Exp 3b addresses this question by taking out the first /t/-favoring learning

phase with Female A and comparing the result of a Male A /t/-favoring condition with that

of the Two genders - same condition. The results show that the shift induced by Male A’s

/t/-favoring stimuli alone is not as large as the shift induced by the /t/-favoring stimuli of

both Female A and Male A. Moreover, the shift in the Male A /t/-favoring condition does

not even turn out to be statistically significant compared to the baseline condition. I further

break down the results according to the word frame of the test stimuli that participants

responded to in their final categorization test. The results by test word suggest that the

occurrence of perceptual shifts also depends on the lexical frame of the test stimuli. This

is unexpected but not surprising, because the five steps of test stimuli in di↵erent lexical

frames are manipulated to have di↵erent VOT values and span across di↵erent ranges (see

Table 5.1 in Section 5.2). The five steps of stimuli that have the longest VOT and span

across the widest VOT range have shown perceptual shifts in response to the training of

the Female A /t/-favoring condition, the Male /t/-favoring condition, and the Two genders

- same condition. For stimuli in the lexical frame of “town” and “touch”; however, a
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perceptual shift only occurs in the Female A /t/-favoring condition and the Two genders

- same condition, but not in the Male A /t/-favoring condition. We conclude that the

null-e↵ect in the latter case lends support to the critical role of exposure to Female A’s /t/-

favoring stimuli in the first phase, without which, the perceptual shift in the Two genders

- same condition would not be significant either. Taken together, these findings support

an cumulative update account of multi-speaker perceptual learning, which predicts that the

experimental outcomes in the two-phase learning conditions indeed reflect the integration

of the speech properties of both Female A and Male A.
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Chapter 6

Exp 4: Comparing Speaker E↵ects

on the Perceptual Learning of /s-S/
and /t-d/ within and across Gen-

ders

This chapter brings together the investigations of e↵ects of speaker, gender and phoneme

type in multi-speaker perceptual learning. I will be reporting on Experiment 4, which intro-

duces visual cues to index speaker identity and compares potential constraints of speaker

identity and speaker gender on the magnitude of perceptual generalization for both stops

and sibilants. This chapter contains four sections. Section 6.1 recapitulate the e↵ects of

speaker specificity, speaker gender, and phoneme type on multi-talker perceptual learning

in previous literature and lays out the fundamental research questions and hypotheses of

this experiment. Section 6.2 provides an overview of the methodology, including experimen-

tal conditions, subjects, stimulus manipulation, and brief analysis of subjects’ perception

of speakers’ identity and gender involved in the experiment. Section 6.3 reports on the

result of two sub-experiments, which respectively evaluate the speaker and gender e↵ects

on the perceptual learning of /s-S/ and /t d/, by comparing the perceptual learning out-

comes in di↵erent social-indexing experimental conditions. Section 6.4 summarizes the

main findings of this experiment, compares the two sets of results obtained with di↵erent

types of phonemes, and discusses their implications for the sociophonetic talker structure

that underpins the tracking and generalization of perceptual learning across speakers.
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6.1 Background and research question

6.1.1 Speaker, gender, and phoneme type

Previous findings about the e↵ects of speaker identity, speaker gender, and phoneme type

on multi-talker perceptual learning has been described in great detail in previous chapters

(see, e.g., Sec. 1.3 in Ch. 1, Sec. 3.1 in Ch. 3, Sec. 5.1 in Ch. 5). This section brings them

all together and highlights the missing links between these lines of studies that motivate

the current experiment.

As a brief recap, previous studies have claimed that listeners make speaker-specific

perceptual adjustments based on the unique speaker’s speech that triggers the adjustment

(e.g., Eisner and McQueen, 2005; Kraljic and Samuel, 2005). However, they have also

found evidence that listeners generalize their adjusted perceptual criteria to novel speakers

that they have never heard (e.g., Kraljic and Samuel, 2006, 2007; Reinisch and Holt, 2014;

Xie et al., 2018). Furthermore, the generalization of perceptual learning across speakers

seems to vary with di↵erent types of phonemes. For example, it is reported that perceptual

generalization across speakers of di↵erent genders is allowed on stop voicing indexed by

VOT but inhibited on the place of articulation of fricatives as signaled by spectrum energy

(Kraljic and Samuel, 2007). The di↵erent perceptual generalization behaviors of stops

and sibilants raise an intriguing possibility that perceptual generalization behaviors across

speakers reflect listeners’ sociophonetic knowledge that mirrors the structure of real-world

speaker variability, where fricatives contain more information about speaker identity than

stops (e.g., Kleinschmidt, 2017; Kraljic and Samuel, 2007).

The above proposal, interesting as it is, still has several weak ties of empirical evidence.

One constraint lies in that studies of multi-talker perceptual learning make prevailing use of

voices of di↵erent genders to represent di↵erent speakers (Eisner and McQueen, 2005; Kraljic

and Samuel, 2005; Munson, 2011, etc.). Moreover, the evidence for speaker-specificity in

the perceptual learning literature comes exclusively from cross-gender pairings. To the best

of my knowledge, the literature does not contain a single case where generalization failed
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between talkers of the same gender with the paradigm that examines perceptual generaliza-

tion through perceptual shifts. One of the crucial questions remaining unclear here, then,

is whether the di↵erence between speakers needs to be salient enough to introduce speaker-

specific perceptual learning. Another weak link in the argument for di↵erent speaker e↵ects

on the perceptual learning of fricatives and stops is that the comparison between phoneme

types usually comes up as a post-hoc explanation rather than a hypothesis in relevant exper-

iments. Except for Kraljic and Samuel (2007), no study has included the factor of phoneme

types as a deliberate design of the experiment. In a nutshell, perceptual learning with

conditions of di↵erent speaker pairings and phoneme pairings needs more comprehensive

investigation.

6.1.2 Qualitative vs. quantitative speaker e↵ect

In Section 1.3 of Ch 1, I have proposed two ways in which speaker specificity and gen-

der may constrain the generalization of perceptual learning across speakers, which I refer

to as qualitative and quantitative speaker e↵ects. Qualitative speaker e↵ects impose a

categorical constraint on the occurrence of perceptual generalization across speakers, and

quantitative speaker e↵ects impose a gradient constraint on the magnitude of perceptual

learning generalization. Following these two dimensions, a comparison between sibilants

and stops regarding their susceptibility to speaker e↵ects can be achieved by asking two

kinds of questions.

One kind of question to investigate is the categorical constraints imposed by speaker

structure on the perceptual generalization across talkers. Suppose we found that perceptual

learning is talker-specific for sibilants but generalizes across talkers for stops, or that it is

gender-specific for sibilants but can be generalized across talker genders for stops. In that

case, the findings lend support to the phoneme type di↵erence that sibilants are more

a↵ected by the social aspects of speakers than stops. This is also the kind of evidence that

previous studies observed to suggest that sibilants are more sensitive to speaker properties

than stops in terms of perceptual generalization.
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However, the empirical results of Exp 1 and Exp 3 in this dissertation raise an issue

with this kind of evaluation, because we have not observed much of a categorical alternation

between generalization and failure to generalize either with stops or with fricatives. Instead,

what we observed is that perceptual learning constantly generalizes across speakers of dif-

ferent gender groups for both sibilants and stops. If the situation of constant generalization

also occurs in Exp 4, then we need to investigate a di↵erent kind of question to compare

the susceptibility of stops and sibilants to speaker e↵ects in perceptual learning, that is,

whether the magnitude of perceptual generalization di↵er across social indexing conditions.

The influence of speaker specificity is reflected by the extent to which the perceptual learn-

ing result reflects the speech properties of the specific speaker being tested instead of a

cumulative learning output of all speakers in general.

6.1.3 Research question and hypotheses

In the light of the broad goal of investigating the constraints of speaker identity and speaker

gender on the generalization of perceptual learning with di↵erent types of phonemes, Exp

4 aims at examining two hypotheses with respect to the perceptual learning of /s-S/ and

/t-d/. The first hypothesis is that listeners use voice gender cues to inhibit perceptual

generalization across speakers of di↵erent genders compared to speakers of the same gen-

der. The second hypothesis is that listeners use speaker identity cues to inhibit perceptual

generalization across di↵erent speakers within the same gender. Note that these two hy-

potheses are not competing, but rather logically independent. The di↵erence between these

two possibilities requires comparing within-gender and cross-gender conditions.

As with Exp 1-3, Exp 4 also contains two training phases each with a di↵erent speaker

(A, B) and a test phase of phoneme categorization with the speaker in the first training phase

(A). In this experiment, Speaker A and B always exhibit opposite acoustic characteristics

for the phonemes in question. Three experimental conditions are designed to contrast in the

available social indexical cues to speaker identity and gender. They are a female-auditory

condition, where listeners hear female-sounding voices of both speakers, a gender-auditory
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condition, where listeners hear a female-sounding voice and a male-sounding voice that

distinguish the two speakers, and a female - visual condition, where listeners hear female-

sounding voices of both speakers with each voice associated with a unique photo of that

speaker.

The two comparison analyses are planned to evaluate the two hypotheses of the con-

straints of speaker gender and speaker identity. To evaluate the constraint of speaker

gender, I plan to compare the perceptual learning results of the female-auditory condi-

tion and the gender-auditory condition. If the hypothesis is true, then it predicts that the

categorization results of the gender-auditory condition reflect more of speaker A’s speech

characteristics and less of speaker B’s compared to the female-auditory condition, because

A and B are of di↵erent genders in the gender-auditory condition and of the same gender

in the female-auditory condition. To evaluate the constraint of speaker identity, I plan to

compare the perceptual learning results of the female-auditory condition and the female-

audiovisual condition. If the hypothesis is true, it predicts that the categorization results

of the female-audiovisual condition reflect more of speaker A’s speech characteristics and

less of speaker B’s compared to the female-auditory condition, because the enhanced cues

to speaker identity in the female-audiovisual condition inhibits the generalization of the

perceptual learning with a di↵erent speaker in the second phase and enhances the retention

of perceptual learning in the first phase.

6.2 Method overview

6.2.1 Experimental conditions

Experiment 4 contains two sub-experiments that work in parallel to each other to inves-

tigate the perceptual generalization of /s-S/ (Exp 4a) and /t-d/ (Exp 4b) with multiple

speakers either from the same gender group or from di↵erent gender groups. Fig. 6.1 shows

a summary of the experimental designs and procedures in each condition of the di↵erent

sub-experiments in Experiment 4. We can see that the two sub-experiments of Exp 4 each
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have three conditions, and participants in each of these conditions need to complete two

training phases respectively with Female A’s and Female B’s speech and a test phase of

phoneme identification with Female A’s speech. The two training phases, which I refer to

as the “prior” training phase and the “recent” training phase according to the order by

which they take place, are always designed to induce perceptual biases that work against

one another. In Exp 4a, Female A’s speech is manipulated to favor the perception of /s/

in the prior training phase, whereas Female B’s speech favors the perception of /S/ in the

recent training phase. Similarly, in Exp 4b, Female A’s speech is perceptually /t/-favoring

while Female B’s speech is perceptually /d/-favoring in the two training phases. Finally, the

test phase evaluates the perceptual categorization of the two phonemes under investigation

(/s-S/ in Exp 4a and /t-d/ in Exp 4b) on a synthesized continuum spliced into Female A’s

spoken words.

Figure 6.1: The structure of sub-experiments and conditions in Exp 4

The three conditions in each sub-experiment include a female-auditory condition, a

female-audiovisual condition, and a gender-auditory condition. They all follow the setup
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of two training phases with Female A and B that point to opposite perceptual biases and a

test phase with Female A as described above. Since the perceptual biases triggered by the

two training phases are at odds with one another, the degree to which listeners generalize

their learning of Female B’s speech to Female A can be quantified by how much the final

categorization output patterns with or deviates from the result of training with Female A

in the first phase alone. The more that the categorization results reflect the bias of the first

learning phase, the less that listeners generalize their perceptual learning with Female B to

the categorization of Female A’s speech.

Meanwhile, di↵erent social indexing cues are available in each condition provides par-

ticipants with di↵erent amount of information about the speakers. Listeners in the female-

auditory condition (the uppermost one in each sub-experiment in Fig. 6.1) hear Female A’s

voice in two phases (first, third) and Female B’s voice in one phase (second). No other cues

or descriptions are presented to inform listeners of the number of speakers involved or their

social characteristics. Listeners need to infer these pieces of information from the voices

alone, and thus their inference may or may not be accurate. By contrast, participants in

the female-audiovisual condition (the bottom one in each sub-experiment in Fig. 6.1) are

exposed to the same set of spoken words from Female A and Female B as those in the

female-auditory condition, but each voice is associated with a photo of a unique speaker,

which co-occurs with the individual spoken words in each trial. I expect this design to im-

plicate that there are two female speakers involved in the experiment, and that speakers in

the first and third phases are the same person. Finally, participants in the gender-auditory

condition (the middle one in each sub-experiment in Fig. 6.1) are also exposed to training

stimuli of both Female A and Female B, and test stimuli of Female A; however, stimuli

of Female B are manipulated to be male-sounding in this condition. With successful voice

gender manipulation, participants in the gender-auditory condition are supposed to hear a

female voice in the first phase and the third phase and a male voice in the second phase

during the experiment.
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6.2.2 Stimuli

The stimuli used in Experiment 4 are manipulated from recordings of spoken words from

Female A and Female B obtained following the procedure described in Chapter 2.

In Exp 4a, each training phase consists of 17 /s/-containing words, 17 /S/-containing

words, and 17 filler words without /s S/. The test phase consists of 35 test trials synthesized

by splicing five steps of /s-S/ continuum into 7 lexical frames of minimal pairs with word-

initial /s S/. See Sec 3.2.2 for a full list of words used in the experiment. See Sec 3.2.3 for

more details about the step selection and stimulus synthesis of Female A’s speech tokens

and Sec 4.2.3 for more details about the step selection and synthesis of Female B’s tokens.

In Exp 4b, each training phase consists of 17 /t/-containing words, 17 /d/-containing words,

and 17 filler words without /t d/.

Tokens of Female B are manipulated to be male-sounding for the gender-auditory condi-

tion via a series of manipulation with Praat. These manipulations include scaling the vowel

formant by 0.8 of its original values, lowering the F0 median of Female B to 110 Hz, and

compressing the F0 range to 0.9 of its original range. The manipulation is implemented to

the whole word for /t-d/ stimuli in Exp 4b, whereas it is implemented to the remainder of

the word excluding the sibilants for /s-S/ stimuli. This is to ensure the comparability of the

crucial acoustic dimensions to be evaluated as a result of perceptual learning. In Exp 4a,

the distinction between /s-S/ is largely signaled by the spectrum energy of the sibilants, and

therefore I excluded this proportion from the above manipulations such that the spectral

properties of the sibilants are not changed in vowel formant scaling1. In Exp 4b, however,

the distinction between /t-d/ is largely signaled by the temporal feature of VOT length,

which does not change after the stimulus manipulations. Therefore the stops are not spliced

out and assembled back before and after the voice gender manipulation.

1I also tried implementing voice gender manipulation to the whole /s-S/ words including the sibilant
proportions. This manipulation indeed ends lowering the COG values of the sibilants according to acoustic
measures
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6.2.3 Participant

178 participants are recruited from Prolific to attend Experiment 4. All of them are self-

reported to be native American English speakers with normal hearing. Table 6.1 shows

a breakdown of participants in each of the three conditions of the two sub-experiments,

including the number of participants, their gender distribution based on self report, and the

range, mean and standard deviation of the age of participants in each condition. In this

dataset, we can see that participants in di↵erent conditions are fairly comparable in terms

of gender and age.

Condition N
Gender Age
F M else range mean (sd)

Exp. 4a
Female-auditory 28 10 18 0 18-66 30.2 (10.6)
Gender-auditory 30 9 21 0 18-61 34.4 (11.8)
Female-audiovisual 30 9 19 2 19-56 30.5 (10.6)

Exp. 4b
Female-auditory 32 14 18 0 18-67 36.9 (14.4)
Gender-auditory 32 11 17 2 19-61 30.0 (10.2)
Female-audiovisual 26 11 15 0 18-67 38.5 (15.6)

Table 6.1: The participant information in each condition in Exp 4

6.2.4 Speaker perception

At the end of the experiment, participants reported their perception of speaker identity

and gender involved in the experiment by responding to two questions in a final survey.

One question asks “How many voices have you heard in this experiment?” Participants

are expected to type in an integer, but input of characters are also acceptable with the

setting of the survey. The other question asks “What is the gender/are the genders of that

voice/those voices?” Listeners respond by choosing from three alternatives – “female only”,

“male only”, and “both female and male”.

Listeners responses to these two questions are reported in this section to provide a clear

idea of what listeners think they have heard in di↵erent experimental conditions, which is

crucial for accurately interpreting any potential di↵erences observed across these conditions.

Table 6.2 shows the breakdown of their responses to the question about speaker gender.
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We can see that listeners reported “female only” 100% of the time in the female-auditory

and female-audiovisual conditions in both Exp 4a and 4b. This suggests that Female A’s

and Female B’s voices are generally associated with correct gender perception with their

original F0 and vowel formants. For the gender-auditory condition where Female B’s voice

are manipulated to be male-sounding, listeners tended to report that they had heard voices

of both genders. The only exception (marked with a star) is one participant in the gender-

auditory condition in Exp 4a, who perceived the original gender of Female B’s voice instead

of the intended gender by manipulation and chose “female only” for the two voices.

Experiment 4a Experiment 4b
female only male only both female only male only both

Female-auditory 28 0 0 32 0 0
Female-audiovisual 30 0 0 26 0 0
Gender-auditory 1? 0 29 0 0 32

Table 6.2: Voice gender responses in each condition of Exp 4

In general, listeners’ perception of voice gender is quite consistent with the intended

voice gender(s) in each experimental condition. Especially, these results have confirmed

that Female B’s voice becomes fairly male-sounding after F0 and vowel manipulation. The

responses of the starred participant is removed in further analysis, so that we can interpret

our results based on the premise that listeners in all conditions have successfully perceived

the intended gender of the speaker by voice cues.

Regarding the perception of voice identity, Fig. 6.2 shows the distribution of the number

of voices reported by listeners in di↵erent conditions in Exp 4a and 4b. We can see that in

each experimental condition, the majority of participants (57%-92%) correctly reported that

they had heard 2 voices throughout the experiment. The second most common category

of answer is 3, which include not only straightforward integer responses but also variations

such as “2 or 3”, “3?”, “2-3 depending on whether the speakers in the first phase and the

third phase are the same person”, and the like. In general, choosing 3 generally reflects

listeners’ uncertainty about whether the speech in the first phase and in the third phase

comes from the same person. The categories of “4-6” and “50+” are also combinations of
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answers falling into that range.

Figure 6.2: Voice number responses in each condition of Exp 4a and 4b

Compared to the female-auditory condition, additional manipulations of social index-

ical cues does make a di↵erence to listeners’ perception of speaker identity in the female-

audiovisual condition and the gender-auditory condition. The influence of visual cues to

speaker identity can be observed in Exp 4a, which shows that listeners who are presented

with speaker photos are more likely to respond that they have heard two voices instead of

three, presumably because seeing the same photo occurring in the first and third phase has

convinced them that speech materials in these phases are produced by the same speaker.

Oddly, this pattern does not come out in Exp 4b, where quite a few participants in the

female-audiovisual condition still responded that they had heard three voices even though

they had only seen two faces patterned with those voices throughout the experiment. An-

other e↵ect of the social indexing manipulation is reflected by the di↵erence between the

female-auditory condition and the gender-auditory condition. In general, voices of di↵erent

genders lead listeners to believe that there are more speakers in the experiment than an

equal number of voices of the same gender. Two voice genders also help wipe out listeners’

misperception that there is only a single speaker throughout the experiment, which does
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occur in the female-auditory and female-audiovisual conditions in Exp 4a.

6.3 Experiment and Result

6.3.1 Exp 4a: Perceptual learning of /s-S/ with Female A and B

Exp 4a evaluates the perception learning of /s-S/ with two speakers in the three di↵erent so-

cial indexing conditions, namely, female-auditory, female-audiovisual, and gender-auditory.

All participants in these conditions are exposed to Female A’s /s/-favoring speech and Fe-

male B’s /S/-favoring speech sequentially in the training phase, and they then complete

a phoneme identification task with Female A’s /s-S/ continuum. Therefore, more /s/-

equivalent responses in the final phase would reflect more retention of the specific speaker’s

speech characteristics, whereas more /S/-equivalent responses would reflect more generaliza-

tion of a di↵erent speakers’ speech characters to the speech perception of the test speaker.

I focus on two comparison analyses that respectively evaluate the hypotheses of an identity

constraint and a gender constraint on the perceptual generalization across speakers, which

are laid out in Section 6.1.3.

To evaluate whether listeners use voice gender cues to inhibit perceptual generalization

across genders as opposed to across speakers within gender, I compare the categorization

results of the female-auditory condition and the gender-auditory condition. If the gender-

auditory condition has a higher amount of /s/-equivalent responses than the female-auditory

condition, which suggests a higher level of retention of talker-specific characteristic traits,

then it lends support to the hypothesis of a gender group constraint.

Similarly, to evaluate whether listeners use identity cues to inhibit perceptual general-

ization across di↵erent speakers within the same gender, I compare the result of the female-

auditory condition and that of the female-audiovisual condition. If the female-audiovisual

condition ends up having more /s/-equivalent responses, which mirrors the result of training

with Female A’s /s/-favoring speech alone, than the female-auditory condition, then that

means the availability of visual cues to talker identity has inhibited perceptual generalization
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across speakers.

6.3.1.1 Aggregate analysis

Fig. 6.3 shows the means and standard errors of the categorization result at each /s-S/ step

in the three two-phase perceptual learning conditions, along with the results of the baseline

condition and the Female A /s/-favoring conditions represented by the grey lines.
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Figure 6.3: Exp 4a: /s/ response rate as a result of opposite perceptual learning in di↵erent
social-indexing conditions (mean and standard error)

Recall that listeners in Exp 4a had received /s/-favoring training with Female A and

/S/-favoring training with Female B before the categorization task. Therefore, their cate-

gorization curves diverge from that of the Female A /s/-training condition and stay close

to the baseline condition because the two opposite distributions of Female A’s and Female

B’s sibilants canceled each other out to some extent. Other than that, we can see that the

two-female audiovisual condition seems to have retained more /s/-equivalent responses than

the female-auditory condition, revealed by the yellow line placed on top of the blue line.

This is consistent with our earlier prediction that the photos of di↵erent talkers would pro-

vide enhancing cues to speaker specificity and allow listeners to retain more speaker-specific

perceptual learning. In this case, listeners are informed by photo cues that the /S/-favoring

distribution in the second phase is associated with a di↵erent speaker. Therefore, in the
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final categorization stage, they retain more of the /s/-favoring perceptual expectations in-

duced by Female A. In contrast, we can see that the results of the gender-auditory condition

show fewer /s/-equivalent responses than the Two females auditory condition, revealed by

the plum line placed below the blue line. This is not expected because we predict that

the di↵erent gender voices would serve as an additional cue to speaker specificity and al-

low listeners to retain more speaker-specific perceptual learning of Female A. I discuss the

potential reasons for this pattern in the summary section in Sec 6.3.1.3.

A logistic mixed-e↵ects regression model (Model-4a) is evaluated to predict the Re-

sponse of each trial (S=0, SH=1). Since we are specifically wondering about the compar-

isons between female-auditory and female-audiovisual, as well as between female-auditory

and gender-auditory, I code female-auditory as the reference level of the variable Condition.

Model-4a includes Step (35-75, scaled and centered), Trial (1-51, scaled and centered), Con-

dition (treatment coded, reference: female-auditory), and Phoneme (the original phoneme

associated to each auditory frame, sum-coded, reference-level: SH) as the fixed e↵ects,

Condition:Step and Condition:Trial as the interaction items, Step by Subject, Phoneme by

Subject, and Step by Word as random slopes. The model estimates of the fixed e↵ects are

shown in Table 6.3.

In Table 6.3, the Condition e↵ect is only significant for the Female A s-favoring con-

dition (� = �1.98, p < 0.001) but no other conditions. Especially, the Condition e↵ect

does not turn out significant for either the Two females opposite audiovisual condition

(� = �0.51, p = 0.29) or the Two genders opposite auditory condition (� = 0.75, p = 0.13).

Although the resulting pattern of the Two females audiovisual condition is consistent with

my prediction, the availability of the visual cues to di↵erent talkers does not seem to make

a statistical di↵erence. I have also evaluated whether the results of the three two-phase per-

ceptual learning conditions deviate significantly from the baseline condition, by re-running

the model with “Female A baseline” as the reference level of the Condition variable. The

results show that the female-auditory condition, the female-audiovisual condition, and the

gender-auditory condition all pattern with the baseline condition as a result of two training
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Fixed E↵ects Est. SE z value Pr(> |z|)
(Intercept) -0.08 0.39 -0.20 0.85
Condition Female A baseline 0.19 0.48 0.39 0.70
Condition Female A s-favoring -1.98 0.49 -4.02 < 0.001⇤⇤⇤

Condition Two females opposite audiovisual -0.51 0.48 -1.05 0.29
Condition Two genders opposite auditory 0.75 0.49 1.52 0.13
Step -1.65 0.20 -8.07 < 0.001⇤⇤⇤

Trial -0.16 0.08 -1.89 0.06
PhonemeS -0.54 0.04 -12.93 < 0.001⇤⇤⇤

Condition Female A baseline:Step -0.58 0.28 -2.06 0.04⇤

Condition Female A s-favoring:Step -0.13 0.29 -0.47 0.64
Condition Two females opposite audiovisual:Step 0.05 0.28 0.20 0.84
Condition Two genders opposite auditory:Step 0.01 0.28 0.03 0.98
Condition Female A baseline:Trial -0.32 0.13 -2.51 0.01⇤

Condition Female A s-favoring:Trial 0.32 0.13 2.50 0.01⇤

Condition Two females opposite audiovisual:Trial -0.13 0.12 -1.07 0.28
Condition Two genders opposite auditory:Trial -0.26 0.12 -2.07 0.04⇤

Model-4a: Response⇠Step*Condition+Condition*Trial+Phoneme+(Step|Subj)+(Step|Word)

Table 6.3: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 4a

stages inducing opposite perceptual biases2.

In addition to Condition, Model-4a also reveals a number of other e↵ects. As always,

the main e↵ect of Step is significant (� = �1.65, p < 0.001), meaning that each step of

increase in mixed [s] results in a lower likelihood of perceiving /S/ by 1.65 in log scale for

the Two Females audiovisual condition. Step shows significant interactions with the baseline

condition (� = �0.58, p = 0.04) but not the other two two-phase training conditions in this

experiment (female-audiovisual : � = 0.05, gender-auditory : � = 0.01, n.s.). This means

that exposure to Female B’s sibilants gives rise to a shallower categorization line than the

Female A baseline condition. The e↵ects of Phoneme (� = �0.54, p < 0.001) is significant,

meaning that listeners are less likely to report on /S/ for later trials in the female-auditory

condition. The e↵ect of Trial is marginally significant (� = �0.16, p = 0.06) for the female-

auditory condition and it shows significant interaction with the Female A baseline condition

(� = �0.32, p = 0.01), the Female A s-favoring condition (� = 0.32, p = 0.01), and the

gender-auditory condition (� = �0.26, p = 0.04). These suggest that participants in the

2See a full list of the fixed e↵ects of Model 4a-relevel in Table B.9 in Appendix B.
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Female A s-favoring condition are more likely to report an /S/ for test stimuli coming up

later. By contrast, participants in the other four conditions are more likely to report an

/s/, to di↵erent degrees, for test stimuli occurring in a later time phase.

6.3.1.2 Analysis by phoneme

As I have demonstrated in previous chapters, the test stimuli may di↵er regarding whether

they are /s/- initial or /S/-initial in their original productions (i.e., the variable of Phoneme),

and the sibilant-associated transitional cues also give rise to perceptual biases that may

interact with the results of perceptual learning. To examine whether such interaction exists

in Exp 4a, I examined the results of the three experimental conditions for test stimuli

produced with /s/ and /S/ separately. Given the smaller number of observations after being

split by Phoneme, I did not further distribute the observations over five sibilant steps; but

rather, I examined the overall result of each experimental condition averaged across sibilant

steps. Fig. 6.4 shows the means and 95% confidence intervals of the aggregate /s/ response

rates by phoneme and experiment condition.
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Figure 6.4: Exp 4a: /s/ response rate by condition and phoneme (mean and 95% confidence
interval). Values above the comparison bars indicate the p-values of Wilcoxon rank sum
tests.

The pattern exhibited in both of the two facets in Fig. 6.4 is consistent with the pattern

in Fig. 6.3. All of them reveal the highest /s/ response rate in the female-audiovisual con-
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dition, followed by lower rates in the female-auditory condition and the lowest /s/ response

rate in the gender-auditory condition. A series of Wilcoxon rank sum tests are conducted

to evaluate whether the /s/ response rate of the female-auditory condition is significantly

di↵erent from those of the other two conditions respectively when the test stimuli start with

an /s/ or an /S/ before manipulation. As noted in Fig. 6.4 already, the between-condition

di↵erences under inquiry are each significant. In both of the two Phoneme conditions, the

female-audiovisual condition has a significantly higher /s/ response rate than the Two fe-

males auditory condition significant (original /s/-initial stimuli: W = 134346, p = 0.0032;

original /S/-initial stimuli: W = 147763, p = 0.015), and the gender-auditory condition has

a significantly lower /s/ response rate than the Two females auditory condition (original

/s/-initial stimuli: W = 112553, p = 0.0079; original /S/-initial stimuli: W = 128421, p =

0.03).

6.3.1.3 Summary

In a nutshell, through the planned comparisons between the female-auditory condition and

the female-audiovisual condition and between the female-auditory and gender-auditory con-

dition, we can see that the availability of di↵erent social indexical cues in these conditions

makes a di↵erence to the outcomes of multi-speaker perceptual learning. The availability

of additional visual cues to the identity of the two female speakers shows enhanced percep-

tual generalization within the same speaker and weakened perceptual generalization across

speakers, compared to the female-auditory condition. This is reflected by the result that

the gender-audiovisual condition exhibits more /s/-equivalent responses that are consistent

with the speech characteristics of the speaker in question. However, this di↵erence is not

statistically significant in the aggregate logistic regression model, which also accounts for

other fixed e↵ects such as Step and random e↵ects such as Subject and Word. This dif-

ference does turn out significant according to the Wilcoxon rank-sum test, in which the

results are grouped by experimental condition and the original phoneme of the test stimuli.

This result has lent some weak evidence to an identity constraint of multi-talker perceptual
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learning, which predicts that listeners make use of social cues of speaker identity to inhibit

perceptual generalization across di↵erent speakers.

The second comparison to make is between the female-auditory condition and the

gender-auditory condition, intended to evaluate whether listeners generalize more across

speakers of the same gender and less across speakers of di↵erent genders. The results show

that participants in the gender-auditory condition actually show more /S/-biased shift that

is consistent with Speaker B’s speech characteristics instead of Speaker A’s, who is also the

speaker of the test phase. This is not consistent with our prediction that turning Speaker

B’s voice into a di↵erent gender will undermine the perceptual generalization of B’s speech

to the test speaker. Moreover, this pattern is quite robust because the di↵erence between

these two auditory conditions is statistically significant according to both the logistic mixed

e↵ect model and the Wilcoxon rank-sum tests. I argue that this unexpected pattern is

caused by the interference of the speaker normalization mechanism, according to which

altering the acoustic properties of the contextual materials causes di↵erent perceptions of

the same piece of acoustic signals. In this experiment, I intentionally excluded the sibilant

proportions from manipulation in order to keep them comparable across di↵erent condi-

tions – because those sibilants in the female-auditory or audiovisual conditions have not

undergone such manipulations. However, this decision gives rise to another problem. Since

a /S/-favoring training phase already involves standard /s/ pronunciations and ambiguous

/S/ pronunciations, the sibilants within that training phase are already /s/-sounding in

general. In addition, I also lowered the formant frequencies of the contextual vowels, which

also contributes to the /s/-sounding properties of sibilants in the second training phase of

the gender-auditory condition. These additive /s/-sounding (/S-favoring) e↵ects might have

given rise to a stronger perceptual learning e↵ect to shift the perceptual boundary towards

/S/. That is why the gender-auditory condition exhibits the least /s/-equivalent responses

in the test phase among all the conditions. More discussion about this will be provided

in the Discussion section. Up to this point, I did not find evidence for the speaker gender

constraint on the multi-talker perceptual learning of sibilants.
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6.3.2 Exp 4b: Perceptual learning of /t d/ with Female A and B

6.3.2.1 Experimental conditions and goals

Experiment 4b shares the experimental structure of Experiment 4a and evaluates how talker

identity and gender a↵ect the magnitude of perceptual generalization across speakers for /t

d/. Like Exp 4a, Exp 4b also has three experimental conditions: female-auditory, female-

audiovisual, and gender-auditory. All participants in these conditions are exposed to Fe-

male A’s /t/-favoring speech and Female B’s /d/-favoring speech in two sequential training

phases. In the end, they complete a phoneme categorization task along Female A’s /t-d/

continuum. Di↵erent social indexing cues are presented in each condition to give partici-

pants di↵erent information about the speakers.

As with the results of Exp 4b, I also focus on two comparison analyses in order to

evaluate the hypotheses of an identity constraint and a gender constraint on the perceptual

generalization of /t d/ across talkers. To evaluate the identity constraint hypothesis, I

compare the result of the female-auditory condition and that of the female-audiovisual

condition. If listeners use identity cues to inhibit perceptual generalization across di↵erent

speakers within gender, then it predicts that the female-audiovisual condition will show a

higher /t/ response rate, in line with Female A’s speech characteristics, than the female-

auditory condition. Similarly, to evaluate the gender constraint hypothesis, I compare the

categorization results of the female-auditory condition and the gender-auditory condition.

If the perceptual generalization across speakers from the same gender group is enhanced

compared to that across speakers from di↵erent gender groups, then we should expect

to see a higher amount of /t/-equivalent responses in the gender-auditory condition than

the female-auditory condition. This is because the influence of training with Female B

is weakened for it is manipulated to have a di↵erent voice gender in the gender-auditory

condition.
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Figure 6.5: Exp 4b: /t/ response rate as a result of opposite perceptual learning in di↵erent
social-indexing conditions (mean and standard error)

6.3.2.2 Aggregate analysis

Fig. 6.5 shows the means and standard errors of the /t-d/ categorization results at each VOT

step in the three experimental conditions of Exp 4b, along with the results of the baseline

condition and the Female A /t/-favoring conditions represented by the grey lines. Recall

that listeners in the two Two Females conditions had received /t/-favoring training with

Female A and /d/-favoring training with Female B before the categorization task. According

to the figure, the second training phase with Female B has canceled out the learning outcome

in the first perceptual learning phase with Female A, such that the categorization boundary

goes back to the baseline condition for these conditions. In addition, Fig. 6.5 does not

seem to reveal any di↵erence between the Two Females auditory condition and the Two

Females audiovisual condition, as reflected by the overlapping blue line and the yellow line.

Listeners in the female-audiovisual condition did not show more perceptual bias towards /t/

than those in the female-auditory condition to reflect a heavier influence of the /t/-favoring

training with Female A. In other words, adding additional visual cues of speaker faces does

not seem to help listeners establish more speaker-specific categorization boundaries.

Similarly, a mixed-e↵ects model (Model-4b) is conducted to predict the Response of
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each trial (T=0, D=1), with Step (scaled and centered), Trial (scaled and centered), and

Group (treatment coded, baseline: female-auditory) as the fixed e↵ects, Group:Step and

Group:Trial as the interaction items, and Step by Subject and by Word as random slopes.

Again, the female-auditory condition is coded as the reference level in order to provide

straightforward comparisons between these condition and each of the other two conditions.

The fixed e↵ects of Model-4b are shown in Table 6.4.

Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) 0.02 0.35 0.05 0.96
Step -1.45 0.29 -4.98 < 0.001⇤⇤⇤

Condition Female A t-favoring -1.13 0.34 -3.34 < 0.001⇤⇤⇤

Condition Female A baseline 0.04 0.32 0.13 0.90
Condition Two females opposite audiovisual 0.02 0.34 0.06 0.95
Condition Two genders opposite auditory -0.69 0.32 -2.13 0.03⇤

Trial -0.11 0.09 -1.21 0.23
Step:Condition Female A t-favoring -0.54 0.20 -2.64 0.008⇤⇤

Step:Condition Female A baseline 0.08 0.18 0.43 0.67
Step:Condition Two females opposite audiovisual 0.07 0.19 0.34 0.74
Step:Condition Two genders opposite auditory -0.14 0.19 -0.73 0.47
Condition Female A t-favoring:Trial 0.07 0.14 0.49 0.63
Condition Female A baseline:Trial -0.09 0.12 -0.72 0.47
Condition Two females opposite audiovisual:Trial 0.01 0.13 0.11 0.91
Condition Two genders opposite auditory:Trial -0.16 0.13 -1.23 0.22

Model-4b: Response⇠Step*Condition+Condition*Trial+(Step|Subj)+(Step|Word)

Table 6.4: The fixed e↵ects of the logistic mixed-e↵ects model in Exp 4b

Table 6.4 reveals a significant main e↵ect of Step (� = �1.45, p < 0.001), indicating

that segments with longer VOT at larger Steps are less likely to be perceived as /d/ in the

female-auditory condition. Step interacts with Group in the Female A /t/-favoring condition

(� = �0.54, p < 0.001), meaning that the slope of the categorization line becomes sharper

in the Female A /t/-favoring condition. The interaction is not significant for the baseline

condition (� = 0.08, p = 0.67), the female-audiovisual condition (� = 0.07, p = 0.74), or

the gender-auditory condition (� = �0.14, p = 0.47).

The Group e↵ect is only significant for the conditions of Female A /t/-favoring (� =

�1.13, p < 0.001) and the gender-auditory condition (� = �0.69, p = 0.03), but not for

any of the other conditions (�baseline = �0.04, p = 0.90; �audiovisual = 0.02, p = 0.95). This
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Figure 6.6: Exp 4b: /t/ response rate by condition and word (mean and 95% confidence
interval). Values above the comparison bars indicate the p-values of Wilcoxon rank sum
tests.

is consistent with the pattern revealed in Fig. 6.5 showing that the Female A t-favoring

condition and the gender-auditory condition both show a much higher /t/-response rate

than the other three conditions. The e↵ect of Trial (� = �0.11, p = 0.23) is not significant,

nor is any of its interactions with Group.

6.3.2.3 Analysis by lexical frame

As demonstrated in Sec 5.3.3.3 of Ch 5, the perceptual learning results of /t-d/ may vary

substantially with the lexical frames of the test stimuli, because each lexical frame is spliced

with /t-d/ sounds from a unique VOT continuum whose range is determined specifically

for that frame. To examine whether such lexical influences exist in Exp 4a, I separately

examined the results obtained with di↵erent lexical frames in Exp 4b. Fig. 6.6 shows

the means and 95% confidence intervals of the aggregate /t/ response rates by word and

experimental condition. The four facets show a similar pattern that a higher /t/ response

rate is exhibited in the gender-auditory condition than the other two female conditions,

with no obvious di↵erence exhibited between the latter two conditions.

A series of Wilcoxon rank sum tests are conducted to evaluate whether the di↵erences
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between the female-auditory condition and each of the other conditions are statistically

significant for di↵erent lexical frames. As shown in Fig. 6.6, the di↵erence between the

female-audiovisual condition and the female-auditory condition does not turn out significant

in any of the four lexical conditions (Wtear = 20300, p = 0.93; Wtime = 20706, p = 0.74;

Wtouch = 26032, p = 0.63; Wtown = 26680, p = 0.96). This constant lack of di↵erence

between the Two-female conditions are consistent with the results in Fig. 6.5 and Table 6.4,

indicating the absence of interactions between lexical frame and the di↵erence between

these two experimental condition. Regarding the comparison between the female-auditory

condition and the gender-auditory condition, the significance levels of their di↵erence vary

with the lexical frame of the test stimuli: The di↵erence is significant for responses obtained

with “town-down” (W = 34664, p = 0.002) and is marginal significant for responses obtained

with “tear-dear” (W = 25620, p = 0.06) and “time-dime” (W = 25494, p = 0.07). It is not

significant with “touch” (W = 32912, p = 0.10). The existence of a significant or marginally

significant di↵erence between the gender-auditory and the female-auditory conditions points

to a somewhat constant constraint of speaker gender on the perceptual generalization of /t

d/.

6.3.2.4 Summary

In contrast to Exp 4a, Exp 4b shows evidence for speaker gender constraints on the percep-

tual learning of /t-d/ in multi-speaker listening. By comparing the results of the female-

auditory condition and the gender-auditory condition in Exp 4b, we see that the influence of

the /d/-favoring training with Female B diminished when Female B’s voice is manipulated

to be male-sounding, compared to the condition where her voice is female-sounding. As a

result, the categorization result of the gender-auditory condition still retains much of Female

A’s speech properties and exhibits a distinctive perceptual shift towards /t/. In contrast,

in the female-auditory condition, the perceptual bias induced by exposure to Female B’s

speech is strong enough to cancel out the prior perceptual learning e↵ect with Female A’s

speech, leading to no perceptual shift from the baseline condition in the final categorization
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stage. The di↵erence between the gender-auditory condition and the female-auditory con-

ditions in Exp 4b essentially reflects that listeners in the gender-auditory condition have

generalized less of Female B’s /S/-favoring speech bias to the final test phase due to a change

of voice gender. This is regardless of the fact that all the speech tokens in the two condi-

tions share the same set of temporal properties. Meanwhile, I did not find evidence for the

constraint of speaker identity on the perceptual learning of /t-d/ with multiple speakers.

This is reflected by the lack of di↵erence between the female-auditory condition and the

female-audiovisual condition.

6.4 Discussion

In Exp 4, I investigated the potential constraints of speaker identity and gender on the

perceptual learning of /s-S/ and /t-d/ in a multi-talker listening setting. As a result, I find

some evidence for the speaker gender constraint on the perceptual generalization of /t-d/

and some weak evidence for the speaker identity constraint on the perceptual generalization

of /s-S/. I did not find evidence for the remaining combinations, namely, a gender constraint

for /s-S/ and an identity constraint for /t-d/. However, the lack of evidence can be partially

attributed to issues with experimental design and participant sampling and should be in-

vestigated further before conclusions are made. The remainder of this section goes over the

findings or issues I encountered in Exp 4, respectively for the two types of phonemes and

the two kinds of constraints in question.

Speaker gender and /s S/

The perceptual generalization of /s S/ across multiple speakers has been reported to depend

on the gender of involved speakers (Kraljic and Samuel, 2007), and this interesting finding

is a crucial motivation of this dissertation. However, in Exp 4a, I did not find evidence for

the constraint of speaker gender on the perceptual learning of /s-S/. To be specific, when

the stimuli of Female B are manipulated to be male-sounding, the phoneme categorization

results actually reflect a bigger influence of the /S/-favoring training with Female B com-
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pared to the condition where they are female-sounding. Nonetheless, this result is not a

piece of powerful evidence against a speaker gender constraint on /s S/ perceptual learning

either because it can be interpreted in alternative ways. Especially, the observed perceptual

shift towards /S/ in the gender-auditory condition might be caused by the interference of

a speaker normalization mechanism, as I have explained in Sec 6.3.1.3. The normaliza-

tion mechanism may cause the sibilants of Female B to be even more /s/-sounding in the

gender-auditory condition than they are intended to be, which adds up to the strength of

the /S/-favoring training with Female-turned-male B in the second phase.

Future studies are needed to follow up on this issue. However, this is not an easy question

to cope with because one needs to make a compromise between the comparability of the

acoustic properties of sibilants and the comparability of their phonological or perceptual

locations across gender-pairing conditions. How do we ensure that one set of sibilants

embedded in female-sounding speech would be strictly perceptually equivalent to another

set of sibilants embedded in male-sounding speech? This poses a unique challenge for

follow-up studies along this line.

Speaker gender and /t d/

Previous studies have reported that the perceptual generalization of /t-d/ across speakers

is not constrained by di↵erent genders of the speakers (Kraljic and Samuel, 2007). Again,

however, this is not what we found in Exp 4b. By comparing the results of the female-

auditory condition and the gender-auditory condition in Exp 4b, we see that the /d/-

favoring e↵ect of Female B’s speech on the perception of Female A’s /t-d/ perception

diminished when Female B’s voice is manipulated to be male-sounding, compared to the

condition where the voice is female-sounding.

A typical confound involved in the interpretation of the comparison between a same-

gender condition and a di↵erent-gender condition is whether the di↵erence is caused by

speaker identity or speaker gender. Given that there is no guarantee that participants

would always perceive the identity of voices of the same gender accurately, an alternative
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explanation could always be that listeners might have treated Female A and B as the same

person in the female-auditory condition while they are less likely to do so in the gender-

auditory condition. Fortunately, this possibility can be ruled out for this set of data based

on the results of speaker perception in Fig. 6.2. Although this kind of misperception could

have happened and is captured from the responses of Exp 4a’s participants, it does not

really show up with the responses of participants in Exp 4b.

The results in Fig. 6.2 also allow us to think a little bit deeper about the consequences

of di↵erent voice gender conditions on speaker identity perception. A comparison between

the speaker perception results in the female-auditory condition and the gender-auditory

condition suggests that the voice gender manipulation has caused listeners to believe that

they have heard more voices than they actually did. A conceivable possibility behind this

result is that more listeners can identify that the speakers in the first and third phase are the

same person in the female-auditory condition than in the gender-auditory condition. If this

factor has a↵ected the result, then we should expect that listeners in the female-auditory

condition are more likely to retain Female A’s /s/-favoring perceptual expectations than

those in the gender-auditory condition, because they are more aware of the fact that the

speaker in the test phase is exactly the one who induced an /s/-favoring perceptual expec-

tation in the first training phase. However, this is not the pattern we observed. Instead,

we have seen that listeners in the two-gender condition actually managed to reflect more of

Female A’s /s/-biasing speech properties in the test phase without a clearer realization that

they have the same speaker. Therefore, this di↵erence is caused by constraints of speaker

gender instead of its side e↵ects on speaker identity perception. Taken together, the di↵er-

ence between the gender-auditory and female-auditory conditions in Exp 4b lend support

to a speaker gender constraint on the generalization of perceptual learning, which claims

that listeners are less likely to generalize what they have learned from a previous speaker

to another speaker of a di↵erent gender group than one from the same gender group.
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Speaker identity and /s S/

Experiment 4a shows that the /s/-equivalent response rates in the female-auditory condi-

tion is higher than that of the female-audiovisual condition. This is consistent with the

prediction of speaker identity constraints on the perceptual generalization of Speaker iden-

tity and /s S/, namely, that listeners are more likely to generalize their perceptual learning

of the same speaker rather than that of a di↵erent speaker when they have accurate access

to the information of speaker identity.

One concern with this set of result is that the di↵erence between the above two condi-

tions are not robust enough to show up in the logistic mixed e↵ect model, although it does

turn out to be significant in the Wilcoxon rank-sum tests and in both of the two phoneme

conditions. Given that the realizations of sibilants are not only known to covary with gender

but also other identity-related aspects such as gender orientation, this result opens up a new

possibility to be explored, that is, the perceptual learning of /s-S/ might also be sensitive to

speaker specificity, and this sensitivity is an influence in a more gradient and less detectable

way.

Speaker identity and /t d/

In Exp 4b, I did not find evidence for speaker identity constraints on the perceptual learning

of /t-d/ with multiple speakers. By comparing the female-auditory condition and the

female-audiovisual condition, we can see that the availability of additional visual cues to

speaker identity does not make a di↵erence to the phoneme categorization results. Listeners

did not show more /t/-favoring patterns in line with Female A’s speech properties after they

had realized that the test speaker is Female A.

However, a worrisome in the interpretation of this set of results is that the pattern might

be associated with the unusual sampling of participants in that particular condition. Recall

that in Fig. 6.2, we have seen that the availability of visual cues makes a di↵erence to the

reported number of voices in Exp 4a but not in Exp 4b. In other words, participants with

access to the visual cues should be less likely to report that they had heard three speakers
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because only two speaker photos are presented throughout the experiment. This di↵erence

has come up in Exp 4a but not Exp 4b according to Fig. 6.2. Follow-up studies are needed

to rule out the possibility that participants in the female-audiovisual condition in Exp 4b

just happened not to have noticed that there are only two photos of unique female speakers

presented in the experiment.
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Chapter 7

Discussion and Conclusion

This dissertation’s broad goal was to investigate the possibility that the generalization

of perceptual learning across speakers within and between social groups reflects listeners’

sociophonetic knowledge that mirrors the structure of real-world speaker variability. In this

dissertation, I look into this possibility starting with the question of whether the perceptual

learning of /s-S/ and /t-d/ generalizes across di↵erent speakers and genders. In Chapter 1,

I have broken down the research question of the present dissertation into three lines. Exp 1

and 2 investigates the first line of inquiry regarding the perceptual generalization of sibilants

in multi-talker listening and their interaction with acoustic constraints. Exp 3 looks into

the second line of inquiry regarding perceptual generalization of stops across speakers and

genders. Exp 4 provides a comparison of the social constraints on the perceptual learning

of di↵erent types of phonemes, asking how they di↵er in qualitative and quantitative ways.

In this chapter, I synthesize the results of these experiments and discuss their implications

for the operation of perceptual learning in multi-talker listening, listeners’ knowledge of

structure in talker variability, and the interweaving of social information in the architecture

of the phonetics-phonological mapping system.

7.1 Major findings of this dissertation

7.1.1 Perceptual generalization by cumulative update

In Exp 1 and 3, I asked how the perceptual learning of /s-S/ and /t-d/ generalizes across mul-

tiple speakers of di↵erent genders. The experiments and conditions generally share a similar
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design and consist of one or two training blocks followed by a test block, all implemented in

the form of an identification task. In the experimental conditions with two training phases,

participants were exposed to the speech of Female A and Male A sequentially before they

were tested with Female A’s speech again. Through independent manipulation of the pres-

ence or absence of exposure to di↵erent speakers’ speech and phonetic characteristics, I

examined how listeners’ categorization responses were a↵ected by each of those training

phases.

In Chapter 2, I have proposed four hypotheses for how perceptual learning works with

multiple speakers, which I reproduce here in Fig. 7.1.

Figure 7.1: Potential outcomes of perceptual learning with speaker A and B successively

The first hypothesis to be examined is that perceptual learning is talker-specific. In

the case of our experiments, if we only found an influence of the training with Female

A but not with Male A on the final categorization results with Female A’s speech (100%

talker A and 0% talker B), then it suggests that listeners retain speaker-specific perceptual

learning outcomes (retention). In Exp 1a, 1b, and 3a, I have kept the speech characteristics

of Female A constant and those of Male A varied across conditions. The hypothesis of

retention predicts that participants in di↵erent conditions of these sub-experiments would

not show di↵erent speech categorization patterns with Female A’s speech because they were
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not expected to integrate the perceptual learning with a di↵erent speaker – Male A – in

the final categorization task. However, the results of these sub-experiments are against

this hypothesis. Instead, we keep seeing that the results of di↵erent conditions constantly

deviate from each other in ways consistent with their second-phase training. This means

that after listeners have already established their perceptual expectations with Female A’s

speech in the first training phase, further exposure to a di↵erent speakers’ speech in the

second phase can still change the perceptual expectations they established previously for

Female A.

The second hypothesis I evaluated is that listeners set aside their previous perceptual

learning and reset their perceptual boundary to the baseline each time they encounter

a di↵erent speaker. A reset hypothesis predicts that listeners in di↵erent experimental

conditions within Exp 1a, 1b, and 2a would exhibit the same categorization results aligned

with the baseline condition, where participants have not received any perceptual training

(0% talker A and 0% talker B). This is because participants in all the two-talker learning

conditions have experienced a switch of talker’s voices that is supposed to re-initialize their

perceptual learning process, according to a reset account, regardless of the previous learning

treatment they have received. Again, our results do not support such a hypothesis. We have

only observed a return to the baseline when the perceptual biases associated with training

with Female A and Male A are in opposite directions. Other than that, when Male A’s

speech introduces perceptual biases towards the same direction as Female A’s speech does,

or when it contains no critical phonemes, the perceptual boundary does not return to the

baseline.

The results of Exp 1a, 1b, and 3a all suggest that the perceptual learning with Male

A generalizes to the perception of Female A’s speech and a↵ects the categorization results

in the test phase. At this point, the remaining hypotheses are either that listeners up-

date their perceptual expectations to reflect the phonetic characteristics of the most recent

speech input they are exposed to (recency update), or that listeners take all of the learning

experience into account to update their perceptual expectations (cumulative update). Exp
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1c and 3b are conducted to evaluate these two alternatives for sibilants and stops, asking

to what extent the categorization results in Exp 1a, 1b, and 3a are also a↵ected by the pre-

vious training experience with Female A. In the experimental conditions of Exp 1c and 3b,

the training phase with Female A was taken out, and listeners only received training with

Male A’s speech before they were tested with the same continuum of Female A’s speech.

By comparing the results of the two-speaker training conditions and the results of training

with Male A only, I find that training with Male A alone does not introduce perceptual

shifts with comparable magnitudes to shifts induced by two phases of perceptual learning

with Female A and Male A.

Taken together, we have seen frequent occurrences of perceptual generalization across

speakers of di↵erent genders for both sibilants and stops, which is much more frequent

than what previous claims in the literature would predict. The results of Exp 1 and 3 lend

support to a cumulative update account, which suggests that perceptual learning updates

across speakers in such a way where previous and current perceptual learning experiences are

re-integrated to form a cumulative perceptual expectation that listeners use for upcoming

perception events. Nonetheless, generalization is not universal or limitless. Next I will

discuss some of the situations where the generalization of perceptual learning is inhibited.

7.1.2 Constraints on cross-talker perceptual generalization

Building on the previous finding that perceptual learning generalizes by cumulative update

across speakers and genders, Exp 2 and 4 demonstrate how the occurrence and magnitude

of perceptual generalization across talkers can be constrained by the phonetic properties of

the phoneme realizations and the social condition of talkers involved in training.

In Exp 2, I evaluate two hypothesized phonetic constraints on the perceptual general-

ization of sibilants across speakers. One is the acoustic dissimilarity constraint (Kraljic and

Samuel, 2005), which states that the perceptual generalization of sibilants across speakers

will be blocked when the distributions of sibilant spectral energy are distinct between speak-

ers. The other is a acoustics-phonology mismatch constraint that I proposed. It claims that
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when the direction of the intended perceptual bias is at odds with the inferred perceptual

shift from the sibilant spectral distributions, perceptual generalization does not occur.

By replacing Female A in Exp 1 with another female talker with higher sibilant frequen-

cies (Female B), Exp 2 provides a testing ground for evaluating these hypotheses. In Exp 2b,

the Two genders - same condition and the Two genders - opposite condition form a contrast

in exhibiting acoustic dissimilarity versus acoustics-phonology mismatch (Fig. 4.12, right

facet). In the Two females - opposite condition, sibilants of Male A and Female B in training

do not overlap in the COG dimension, but this lack of acoustic similarity does not block the

perceptual generalization of sibilants across speakers: listeners who had received training

with Female B’s /S/-favoring speech and Male A’s /s/-favoring speech set back their percep-

tual boundary to the baseline position. In contrast, sibilants of the two speakers in the Two

females - same condition do exhibit an amount of overlap in the COG dimension. However,

the second /S/-favoring training phase with Male A contains lower-frequency sibilants that

make them /S/-sounding compared to sibilants in first-phase training with Female B. This

property sets a high bar for the perception of /S/ and therefore favors /s/ perception, which

raises an acoustics-phonology mismatch. Due to the acoustics-phonology mismatch, the

result shows that, surprisingly, listeners who had received two phases of /S/-favoring train-

ing exhibited a boost in the number of /s/ responses. An acoustics-phonology mismatch

account also works to explain the results of Exp 2c, where the perceptual learning of Male

A’s /S/-favoring speech fails to generalize to Female B’s sibilant continuum. This is because

Male A’s /S/-favoring sibilants have lower COG values than the lowest end of Female B’s

sibilant continuum, making it di�cult for listeners to reconcile that the intended /s/-like

sounds actually have a low frequency of spectral energy distribution. In a nutshell, the

above results show evidence for the constraint of acoustic-phonology mismatch but not the

constraint of acoustic similarity on the perceptual generalization of sibilants.

In Exp 4, I evaluated a di↵erent kind of constraint, namely, speaker identity and gender,

on the perceptual generalization of /s-S/ and /t-d/ across speakers of either di↵erent genders

or the same gender. For the perceptual generalization across speakers of di↵erent genders, I
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ask whether generalization would be inhibited for learning with speakers of a di↵erent gender

compared to learning with speakers of the same gender. The hypothesis is supported by the

results of Exp 4b, where participants received exposure to Female A’s /t/-favoring speech

and Female B’s /d/-favoring speech sequentially before they were tested with Female A’s

/t-d/ continuum. I find that participants set back their perceptual shifts to the baseline

position when the two voices are both female-sounding, whereas they exhibited a higher

number of /t/-equivalent responses than the baseline level in their categorization of Female

A’s /t-d/ when Female B’s voice was turned to be male-sounding. This means that the

/d/-favoring learning with Female B does not fully generalize to the final categorization

when it becomes male-sounding. Therefore, the categorization results still maintain a shift

as established in the first learning phase.

Similarly, for the perceptual generalization across speakers of the same gender, I ask

whether the generalization would be inhibited for perceptual learning of a di↵erent speaker

compared to learning of the same speaker. The hypothesis of a speaker identity constraint

gains some support from the results of Exp 4a, where listeners were exposed to Female

A’s /s/-favoring speech and Female B’s /S/-favoring speech before they completed sibilant

categorization with Female A’s /s-S/ continuum. When listeners are provided with visual

cues to the identity of Female A and B, again, they show less integration of the percep-

tual learning of Female B’s /S/-favoring speech in the categorization phase. As a result,

they exhibit more /s/-equivalent responses than participants who were not exposed to the

visual cues. Note, however, that compared to participants who only received /s/-favoring

training with Female A, participants in the audiovisual condition still have a much lower

/s/ response rate. In other words, although participants in the audiovisual condition did

not fully generalize their learning with Female B, they still did it to some extent. This

result suggests that listeners generalize less for perceptual learning with a di↵erent speaker

compared to learning with the same speaker.

The above results add to previous findings where the generalization of perceptual learn-

ing becomes inhibited in certain situations, such as when listeners see that speakers hold a
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pen in their mouth (Kraljic et al., 2008b), or when the disambiguating text shows up at a

later time point than the audio (Caplan et al., 2021). They also suggest that constraints on

perceptual generalization may take place by modulating the magnitude of the consequen-

tial perceptual shift rather than forbidding it. These findings add to the full picture of how

perceptual learning ceases, resumes, and modulates in feeding into upcoming perception

behaviors within the bounds set by relevant constraints.

7.2 Theoretical implications and future research directions

7.2.1 The role of listeners’ knowledge of structure in talker variability

Recall that the broad goal of this dissertation is to evaluate whether perceptual general-

ization behaviors with multiple talkers within and between social groups reflect listeners’

knowledge of the real-world structure in talker variability. This proposal first came up in

Kraljic and Samuel (2007) and was later adopted in an “ideal-adapter” framework by Klein-

schmidt (2019). According to this proposal, listeners have good knowledge of the speech

properties of speakers from di↵erent sociophonetic speaker groups; they use this informa-

tion to predict which speakers share similar phonetic characteristics and to guide their

perceptual generalization behaviors. One of the most well-known empirical observations

in favor of this proposal is that Kraljic and Samuel (2007) reported that the perceptual

learning of fricatives is speaker- or gender- specific, whereas the perceptual learning of stop

VOT is generalizable across di↵erent speakers and genders. As one of the first few research

endeavors to systematically evaluate this proposal, I ask whether the perceptual learning

of sibilants remains more specific to the speaker or the type of speakers that trigger the

learning e↵ect than that of stop VOT. Two types of comparisons are considered between

the perceptual generalization of /s-S/ and /t-d/ regarding their susceptibility to speaker

identity and gender.

The first type of comparison regards perceptual generalization as a categorical behavior

and characterizes their presence versus absence with di↵erent speaker groups and phoneme
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types. Under this perspective, I evaluated the hypothesis that perceptual learning general-

izes across speakers of di↵erent genders for stops (Exp 3) but not for fricatives (Exp 1-2).

As we have already seen, the results do not lend support to such a hypothesis. Instead,

they show that perceptual learning robustly generalizes across speakers of di↵erent genders

with both sibilants (Exp 1, 2a) and stops (Exp 3). Later, we also see that the results of

perceptual generalization are replicated with speech stimuli of the same voice gender in Exp

4 (the Two females - auditory condition). The prevailing occurrence of perceptual general-

ization across speakers is one of the most major findings of this dissertation, which has been

replicated with speakers across and within gender groups, phoneme contrasts of sibilants

and stops, and di↵erent combinations of acoustic properties of the target phonemes, in four

experiments, ten sub-experiments, and thirty out of thirty-four experimental conditions.

In contrast to the evidence for perceptual generalization, which shows up from the very

first experiment to the very last experiment, evidence of categorical absence of perceptual

generalization due to speaker- or gender- specificity is seldom observed in this dissertation.

With the prevailing findings of perceptual generalization, I then asked whether the mag-

nitude of boundary shifts as a result of perceptual generalization vary in di↵erent conditions

of speaker identity and speaker gender. In Exp 4, I kept the acoustic properties of the target

phonemes constant while manipulated the availability of visual cues to speaker identity and

voice cues to speaker gender across experimental conditions. As described in the earlier sec-

tion 7.1.2, a comparison between the categorization results of di↵erent conditions indicates

that speaker social information does impose some gradient constraints on the magnitude

of perceptual generalization. Results of /s-S/ learning in Exp 4a lend support to a speaker

gender constraint by showing that listeners integrate less of the sibilant properties of Female

B and generalize it to the phoneme categorization of Female A’s speech when Female B’s

voice is manipulated to be male-sounding. Results of /t-d/ learning in Exp 4b support a

speaker identity constraint by showing that listeners integrate less of the VOT properties

of Female B and generalize it to /t-d/ categorization of Female A’s speech when visual cues

of speakers’ faces were presented to inform them that Female B is a di↵erent speaker. I
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then asked how the constraints of the same type of social information on perceptual gener-

alization might di↵er in magnitude between sibilants and stops. However, since the results

of Exp 4 only review evidence for constraints of speaker gender on the generalization of

stops and constraints of speaker identity on the generalization of sibilants, it is impossible

to compare the magnitude of the same kind of constraint on the generalization of di↵erent

phonemes with the current result data.

In a word, the results of this dissertation are at odds with the previous empirical find-

ing that perceptual learning is gender-specific for fricatives but not stops. Nonetheless,

the results also provided some evidence that speaker social information imposes certain

constraints on the generalization of perceptual learning across speakers. Put together, the

results of this dissertation are still in line with proposals suggesting the involvement of

listeners’ sociophonetic knowledge in their perceptual generalization behaviors. However,

without a chance to compare the influence of the same kind of constraint on the perceptual

generalization of di↵erent types of phonemes, it remains a mystery how listeners’ sociopho-

netic knowledge in relevant aspects looks like and how closely they pattern with the talker

variability in the real world. Also, it is unclear whether the absence of gender constraint

e↵ects in Exp 4a and the absence of identity constraint e↵ects in Exp 4b reflect the truth

of reality or consequences of confounding factors. The interpretability of the null gender

e↵ect in Exp 4a su↵ers from a potential interference of the speaker normalization mech-

anism. Even though I have kept the speech signals of sibilants comparable across gender

conditions, the same sibilants would still end up perceptually di↵erent when embedded in

di↵erent gender voices. The null e↵ect of speaker identity in Exp 4b is weakened by the

unexpected talker perception behaviors of participants in the Two-females visual condition,

namely, that exposure to visual cues of speaker identity does not help inform the listeners

of the correct number of speakers in the experiments. Follow-up studies will be in need

to rule out these confounds in order to obtain a more comprehensive understanding of the

nature of speakers’ knowledge of talker variability structures and the involvement of this

knowledge in perceptual generalization behaviors.
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7.2.2 Perceptual generalization in the acoustic vs. phonological space

In addition to the question of listeners’ knowledge of talker variability, this dissertation

raises another fundamental but understudied question, namely, what is the nature of the

target of perceptual generalization? Are the perceptual beliefs updated by tracking the

distributions of relevant phonemes’ raw acoustic values or their perceptual locations relative

to the standard phoneme instances in the phonological space? This question mainly comes

up in Exp 4a, when we find that embedding a set of /S/-favoring sibilants in male-sounding

lexical contexts boosts the e↵ect of /S/-favoring perceptual learning. One way to account for

this finding is to introduce a level of interference of the perceptual normalization mechanism.

By this account, the perceptual normalization of sibilants against vowel contexts of lower

formant frequencies makes the sibilants more /s/-sounding and therefore more /S/-favoring

for the identification of upcoming instances. The additive /S/-favoring e↵ects give rise to

the boost in /S/-equivalent responses in the categorization phase. This is regardless of the

fact that they are produced by speakers of di↵erent gender, which is expected to inhibit

their e↵ect sizes. In other words, the same acoustic pieces of signals embedded in two sets of

vowels with di↵erent levels of vowel formant frequencies may induce perceptual learning at

di↵erent strengths. This strength resulting from perceptual normalization is then entered

into the perceptual learning process as a piece of input information, instead of/in addition

to the raw acoustic values of the sibilants.

Existing computational models of perceptual adaptation based on a mixture of Gaus-

sians (Toscano and McMurray, 2010) or Bayesian belief update (Kleinschmidt and Jaeger,

2015) normally take raw acoustic parameters of VOT lengths or formant frequencies as the

model input to predict the location of the outcome perceptual boundary in the acoustic

space. With these models, speech normalization is not a problem because they usually deal

with the perceptual learning of a single speaker. However, with multiple voices from di↵er-

ent speakers coming into play, the spectral frequencies of di↵erent voices naturally raise the

issue of potential interference of speech normalization in the perceptual learning of sibilant,

vowel, and pitch. In addition to spectral contrasts, the speaker normalization might also
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interfere with the perceptual learning of temporal contrasts such as stop VOT. Speakers

may also di↵er in their speech rates and other temporal dimensions of speech productions,

which introduces variability into the normalization context for the perception of temporal

contrasts. How does the perceptual generalization of VOT a↵ected by the di↵erent speech

rates of speakers? Do listeners generalize their learning of the raw duration of VOTs to

distinguish stop voicing, or do they also need to account for speech rate and generalize the

VOT target located in a phonological space? These questions are yet to be solved by future

research.

7.2.3 Implications for the mental representation of speech variability in

the phonetics-phonology interface

In the last section, I discuss the theoretical implications of this dissertation for the mental

representations of speech in phonetics-phonology mapping. This dissertation is situated in

the background when there is a shift of research foci from the fundamental units of human

speech to the role of intra-category phonetic details in speech perception and processing.

Debates have arisen regarding whether the mental representation of phonological units is

better modeled as discrete linguistic symbols or a collection of perceptual episodes. Nowa-

days, there is a trend in the literature to acknowledge both phoneme-level and exemplar-level

representations and integrate them through explorations of “hybrid” models (e.g., Wilder,

2018). Most of the current usage-based models have also integrated phoneme-level represen-

tations to account for phoneme-driven linguistic phenomena such as regular sound change

(e.g., Beckner and Bybee, 2009; Harrington et al., 2018; Hay and Foulkes, 2016; Todd et al.,

2019).

The results of this dissertation reinforce the development of the hybrid view. It is

normally assumed that perceptual adaptation behaviors occur at the processing level and

respond to random speaker variability on the fly. In contrast, perceptual normalization is a

more regular part of linguistic knowledge and is essential to the access and comprehension

of linguistic units. In our result, we can see that the input of the former mechanism is
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dependent on the output of the latter. This at least suggests that the two mechanisms

need to be activated in adjacent time windows and coordinate to feed into the operation of

each other. The results of this dissertation lend support to such a representational system,

where phonemes and exemplars should be both represented cognitively with associative

links between them to allow for interactions on the fly. The question remains at which

processing levels perceptual normalization and perceptual generalization each come into

play and what kind of specific procedures they follow to interact. Future studies are still in

need to delineate the cooperation of these two mechanisms in more detail.
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Appendix A

Results of Pilot Studies
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Figure A.1: Lexical decision results for /s/-containing words from Female A (Ashley) with
di↵erent proportions of /S/ blended into the fricative
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Figure A.2: Lexical decision results for /S/-containing words from Female B (Vicky) with
di↵erent proportions of /S/ blended into the fricative
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Figure A.3: Lexical decision results for /t/-containing words from Female A (Ashley)

217



●

● ●
●

●

●
●

● ●

●

●

●
●

●
●

●

●
● ● ●

●

●

● ●

●

●

●
●

●
●

●

●

● ●
●

●

●

● ● ●

●

●

● ●
●

●

●
●

● ●

●

●

●
● ●

●

● ● ●
●

●

●
● ●

●

●

●
● ●

●

●

●
●

●
●

●
●

● ●
●

●

●

●
● ●

voluntary warranty

momentary novelty overtime relative scientific

hesitation infantile lunatic magnetism military

authentic cafeteria cemetary consultation frontier

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Step of VOT length

Th
e 

fre
qu

en
cy

 o
f W

O
R

D
 re

sp
on

se
s

Figure A.4: Lexical decision results for /t/-containing words from Male A (Gabriel)
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Figure A.5: Lexical decision results for /d/-containing words from Male A (Gabriel)
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Appendix B

Supplementary models

Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) -0.81 0.41 -1.97 0.049⇤

Step -1.68 0.15 -11.22 < 0.001⇤⇤⇤

Condition Two genders - opposite 1.54 0.51 3.04 0.002⇤⇤

Condition Two genders - same -1.12 0.52 -2.16 0.03⇤

Trial -0.04 0.09 -0.47 0.64
PhonemeS -0.60 0.05 -11.21 < 0.001⇤⇤⇤

Step:Condition Two genders - opposite 0.24 0.19 1.28 0.20
Step:Condition Two genders - same 0.46 0.20 2.28 0.02⇤

Condition Two genders - opposite:Trial 0.06 0.12 0.45 0.65
Condition Two genders - same:Trial 0.02 0.13 0.13 0.90

Model-1c-b: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)+(1|Word)

Table B.1: The fixed e↵ects of Model 1c-b for conditions including Male s-favoring training
in Exp 1c

Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) 1.72 0.37 4.70 < 0.001⇤⇤⇤

Step -1.54 0.13 -11.46 < 0.001⇤⇤⇤

Condition Two genders - opposite -2.16 0.45 -4.80 < 0.001⇤⇤⇤

Condition Two genders - same 0.37 0.47 0.79 0.43
Trial -0.31 0.09 -3.66 < 0.001⇤⇤⇤

PhonemeS -0.55 0.05 -10.50 < 0.001⇤⇤⇤

Step:Condition Two genders - opposite 0.22 0.18 1.21 0.23
Step:Condition Two genders - same 0.23 0.19 1.20 0.23
Condition Two genders - opposite:Trial 0.09 0.12 0.79 0.43
Condition Two genders - same:Trial 0.20 0.13 1.57 0.12

Model-1c-c: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)+(1|Word)

Table B.2: The fixed e↵ects of Model 1c-c for conditions including Male sh-favoring training
in Exp 1c
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Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) -0.84 0.40 -2.12 0.03⇤

Step -1.73 0.19 -9.17 < 0.001⇤⇤⇤

Condition Two genders - opposite 0.27 0.51 0.53 0.60
Condition Two genders - same -0.93 0.52 -1.79 0.07
Trial -0.01 0.08 -0.14 0.89
Step:Condition Two genders - opposite 0.18 0.26 0.67 0.50
Step:Condition Two genders - same 0.21 0.27 0.77 0.44
Condition Two genders - opposite:Trial -0.08 0.12 -0.65 0.51
Condition Two genders - same:Trial -0.02 0.12 -0.18 0.86

Model-2c-b: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)+(1|Word)

Table B.3: The fixed e↵ects of Model 2c-b for conditions including Male s-favoring training
in Exp 2c

Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) 0.55 0.47 1.18 0.24
Step -2.27 0.20 -11.21 < 0.001⇤⇤⇤

Condition Two genders - opposite -1.00 0.58 -1.72 0.09
Condition Two genders - same -0.69 0.57 -1.20 0.23
Trial -0.12 0.10 -1.21 0.23
Step:Condition Two genders - opposite 0.78 0.26 2.98 0.003⇤⇤

Step:Condition Two genders - same 0.50 0.26 1.88 0.06
Condition Two genders - opposite:Trial 0.23 0.13 1.74 0.08
Condition Two genders - same:Trial 0.16 0.13 1.22 0.22

Model-2c-c: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)+(1|Word)

Table B.4: The fixed e↵ects of Model 2c-c for conditions including Male sh-favoring training
in Exp 2c
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Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) 0.35 0.39 0.91 0.37
Step -2.52 0.42 -5.98 < 0.001⇤⇤⇤

Condition Male A t-favoring -1.42 0.56 -2.53 0.01⇤

Condition Female A t-favoring -3.45 0.77 -4.51 < 0.001⇤⇤⇤

Condition Two genders - same -1.48 0.56 -2.64 0.008⇤⇤

Trial -0.56 0.23 -2.43 0.01514 *
Step:Condition Male A t-favoring -0.42 0.54 -0.77 0.44
Step:Condition Female A t-favoring -2.57 0.82 -3.13 0.002⇤⇤

Step:Condition Two genders - same -0.31 0.54 -0.58 0.56
Condition Male A t-favoring:Trial 0.24 0.33 0.73 0.47
Condition Female A t-favoring:Trial 0.34 0.41 0.83 0.41
Condition Two genders - same:Trial 0.31 0.33 0.92 0.36

Model 3c-tear: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)

Table B.5: The fixed e↵ects of Model 3c-tear for responses to stimuli in the word frame of
“tear” in Exp 3c

Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) 1.02 0.35 2.93 0.003⇤⇤

Step -0.88 0.20 -4.32 < 0.001⇤⇤⇤

Condition Male A t-favoring -0.33 0.49 -0.68 0.50
Condition Female A t-favoring -0.93 0.50 -1.86 0.06
Condition Two genders - same -0.64 0.49 -1.31 0.19
Trial -0.06 0.18 -0.35 0.73
Step:Condition Male A t-favoring -0.05 0.28 -0.18 0.85
Step:Condition Female A t-favoring -0.58 0.31 -1.87 0.06
Step:Condition Two genders - same -0.44 0.30 -1.48 0.14
Condition Male A t-favoring:Trial 0.43 0.28 1.55 0.12
Condition Female A t-favoring:Trial -0.02 0.27 -0.07 0.95
Condition Two genders - same:Trial -0.08 0.28 -0.28 0.78

Model 3c-time: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)

Table B.6: The fixed e↵ects of Model 3c-time for responses to stimuli in the word frame of
“time” in Exp 3c
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Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) -0.94 0.30 -3.09 0.002⇤⇤

Step -1.72 0.31 -5.62 1.9e-08 ***
Condition Male A t-favoring 0.12 0.43 0.28 0.78
Condition Female A t-favoring -1.27 0.47 -2.72 0.006⇤⇤

Condition Two genders - same -0.90 0.44 -2.03 0.04⇤

Trial -0.55 0.20 -2.79 0.005⇤⇤

Step:Condition Male A t-favoring -0.41 0.41 -1.00 0.32
Step:Condition Female A t-favoring -0.16 0.44 -0.37 0.72
Step:Condition Two genders - same -0.47 0.43 -1.11 0.27
Condition Male A t-favoring:Trial 0.28 0.30 0.94 0.35
Condition Female A t-favoring:Trial 0.31 0.34 0.90 0.37
Condition Two genders - same:Trial -0.05 0.31 -0.16 0.87

Model 3c-town: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)

Table B.7: The fixed e↵ects of Model 3c-town for responses to stimuli in the word frame of
“town” in Exp 3c

Fixed E↵ect Est. SE z Pr(>|z|)
(Intercept) 0.05 0.30 0.16 0.87
Step -1.28 0.27 -4.78 < 0.001⇤⇤⇤

Condition Male A t-favoring -0.52 0.42 -1.24 0.22
Condition Female A t-favoring -1.00 0.44 -2.28 0.02⇤

Condition Two genders - same -1.61 0.44 -3.65 < 0.001⇤⇤⇤

Trial 0.07 0.16 0.43 0.67
Step:Condition Male A t-favoring -0.43 0.37 -1.15 0.25
Step:Condition Female A t-favoring -0.82 0.40 -2.07 0.04⇤

Step:Condition Two genders - same -0.83 0.39 -2.12 0.03⇤

Condition Male A t-favoring:Trial 0.22 0.25 0.90 0.37
Condition Female A t-favoring:Trial 0.08 0.26 0.31 0.76
Condition Two genders - same:Trial 0.12 0.27 0.45 0.65

Model 3c-touch: Response⇠Step*Group+Group*Trial+Phoneme+(Step|Subj)

Table B.8: The fixed e↵ects of Model 3c-touch for responses to stimuli in the word frame
of “touch” in Exp 3c
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Fixed E↵ects Est. SE z value Pr(> |z|)
(Intercept) 0.11 0.38 0.29 0.77
Condition Two females opposite auditory -0.19 0.48 -0.39 0.70
Condition Female A s-favoring -2.16 0.48 -4.49 < 0.001⇤⇤⇤

Condition Two females opposite audiovisual -0.69 0.47 -1.47 0.14
Condition Two genders opposite auditory 0.55 0.47 1.16 0.25
Step -2.22 0.21 -10.73 < 0.001⇤⇤⇤

Trial -0.48 0.10 -5.00 < 0.001⇤⇤⇤

PhonemeS -0.54 0.04 -13.03 < 0.001⇤⇤⇤

Condition Two females opposite auditory:Step 0.58 0.28 2.07 0.04⇤

Condition Female A s-favoring:Step 0.45 0.29 1.55 0.12
Condition Two females opposite audiovisual:Step 0.63 0.28 2.29 0.02⇤

Condition Two genders opposite auditory:Step 0.56 0.28 2.01 0.04⇤

Condition Two females opposite auditory:Trial 0.32 0.13 2.51 0.01⇤

Condition Female A s-favoring:Trial 0.64 0.14 4.68 < 0.001⇤⇤⇤

Condition Two females opposite audiovisual:Trial 0.19 0.13 1.44 0.15
Condition Two genders opposite auditory:Trial 0.07 0.13 0.51 0.61

Table B.9: The fixed e↵ects of Model 4a-relevel

Fixed E↵ects Est. SE z value Pr(> |z|)
(Intercept) 0.06 0.36 0.16 0.87
Step -1.37 0.29 -4.69 < 0.001⇤⇤⇤

Condition Female A t-favoring -1.17 0.34 -3.42 < 0.001⇤⇤⇤

Condition Two females opposite audiovisual -0.02 0.34 -0.06 0.95
Condition Two females opposite auditory -0.04 0.32 -0.13 0.90
Condition Two genders opposite auditory -0.73 0.33 -2.23 0.03⇤

Trial -0.19 0.08 -2.42 0.02⇤

Step:Condition Female A t-favoring -0.62 0.21 -3.01 0.003⇤⇤

Step:Condition Two females opposite audiovisual -0.01 0.19 -0.07 0.94
Step:Condition Two females opposite auditory -0.08 0.18 -0.43 0.67
Step:Condition Two genders opposite auditory -0.22 0.19 -1.14 0.25
Condition Female A t-favoring:Trial 0.15 0.13 1.16 0.25
Condition Two females opposite audiovisual:Trial 0.10 0.13 0.80 0.43
Condition Two females opposite auditory:Trial 0.09 0.12 0.72 0.47
Condition Two genders opposite auditory:Trial -0.07 0.12 -0.59 0.55

Model 4b-relevel: Response⇠Step*Group+Group*Trial+(Step|Subj)+(Step|Word)

Table B.10: The fixed e↵ects of Model 4b-relevel
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