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ABSTRACT 

INSIGHTS INTO FUNCTIONAL NONCODING RNA ELEMENTS THROUGH THE ANALYSIS OF 
HUMAN GENETIC VARIATION 

David S.M. Lee 

Yoseph Barash 

Louis R. Ghanem 

Most of the human genome is noncoding but knowing how and when genetic variation in 
noncoding regions of the genome can impact biology and disease susceptibility remains 
challenging. Here, we apply an integrated genomics approach towards understanding and 
elucidating new patterns of functional genetic variation in untranslated regions of protein-coding 
messenger RNAs.  
 
G-quadruplex (G4) sequences are abundant in untranslated regions (UTRs) of human messenger 
RNAs, but their functional importance remains unclear. In Part 1 of this dissertation, we integrate 
multiple sources of genetic and genomic data to show that putative G-quadruplex forming 
sequences (pG4) in 5’ and 3’ UTRs are selectively constrained and enriched for cis-eQTLs and 
RNA-binding protein (RBP) interactions. Using over 15,000 whole genome sequences, we find 
evidence of strong negative selection acting on central guanines of UTR pG4s. At multiple 
GWAS-implicated SNPs within pG4 UTR sequences, we find robust allelic imbalance in gene 
expression across diverse tissue contexts in GTEx, suggesting that variants affecting G4 
formation in UTRs may also contribute to phenotypic variation. Our results establish UTR G4s as 
important cis-regulatory elements and point to a link between disruption of UTR pG4 and disease. 
 
In Part 2 of this dissertation, we examine patterns of selective pressure in non-canonical open 
reading frames (ncORFs) mapped throughout the human genome. Ribosome-profiling has 
uncovered pervasive translation in ncORFs, however the biological significance of this 
phenomenon remains unclear. Using genetic variation from 71,702 human genomes, we assess 
patterns of selection in translated upstream open reading frames (uORFs) in 5’UTRs. We show 
that uORF variants introducing new stop codons, or strengthening existing stop codons, are 
under strong negative selection comparable to protein-coding missense variants. Using these 
variants, we map and validate new gene-disease associations in two independent biobanks 
containing exome sequencing from 10,900 and 32,268 individuals, respectively, and elucidate 
their impact of protein expression in human cells. Our results suggest new mechanisms relating 
uORF variation to reduced protein expression and demonstrate that translation at uORFs is 
genetically constrained in 50% of human genes.  
 
Together, these studies help emphasize the importance of noncoding RNA regulatory elements in 
mediating post-transcriptional regulation of gene expression and illuminate new patterns of 
functional variation in UTRs with human disease relevance. 
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CHAPTER 1: THE REGULATORY RENAISSANCE 

 

1.1: How many genes? 

In 1999 the New York Times published estimates from scientists at the Incyte Corporation that 

the human genome contained approximately 140,000 genes. This represented a ~40% increase 

over the consensus estimate by many researchers at the time, with most previous estimates 

falling between 50,000-100,000. Many assumed that more complex organisms, like humans, 

necessitated a greater number of genes to support their biological complexity.  As early as 1951 it 

had been observed that genome size appeared to increase with organismal complexity from 

invertebrates to vertebrates [1]. However, when the first working draft human genome was 

published in 2001, many were surprised to find evidence supporting the existence of only 30-

40,000 protein coding genes [2]. Three years later, this estimate was further reduced to 21,000 - 

almost 20% less than in the zebrafish genome (~26,000) [3,4]. The paucity of protein coding 

genes in the draft human genome challenged the view that more complex organisms encoded 

more proteins in their genomes, and raised an important question: What was the source of 

human biological complexity? 

The discrepancy between perceived organismal complexity and the number of protein coding 

genes came to be known as the “G-value Paradox”. One proposed resolution to this paradox 

hypothesized that biological complexity more likely arose from a milieu of regulatory interactions 

between a limited set of protein-coding genes rather simply encoding more genes in the genome. 

These ideas were pioneered by Roy Britten and Eric Davidson in a 1969 essay published in 

Science [5], writing that:  

Nonetheless, it seems unlikely that the 30-fold increase from poriferan to mammal can be 
attributed to a 30-fold increase in the number of producer [protein-coding] genes … Quite 
possibly, the principal difference between a poriferan and a mammal could lie in the 

https://paperpile.com/c/469AhQ/xDqH
https://paperpile.com/c/469AhQ/kR8M
https://paperpile.com/c/469AhQ/fKgY+nALd
https://paperpile.com/c/469AhQ/A6si
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degree of integrated cellular activity, and thus in a vastly increased complexity of 
regulation rather than a vastly increased number of producer genes. 

 

We now recognize that substantial biological complexity arises through multiple layers of 

regulation - from the intracellular processes that govern gene expression and alternative splicing, 

to tissue-level and whole-organism levels of regulation that contribute to physiology and 

pathology. Many diseases result from otherwise protective physiologic processes - including 

fibrosis, inflammation, and immune activation - that become co-opted and dysregulated to 

produce pathology. Understanding the contribution of our genetics to how these processes 

become dysregulated can not only help expand our appreciation of disease biology, but also 

inform new targeted approaches towards therapeutic development.   

 

1.2: Genetic variation and common disease 

A crucial motivation for sequencing the human genome was to better understand the relationship 

between genes and disease. Shortly after the first draft human sequence was completed, the 

International HapMap was formed to create a database of common single nucleotide 

polymorphisms (SNPs) across diverse human populations [6]. The formation of this database 

facilitated a wave of genome wide association studies (GWAS) through which researchers sought 

to associate common genetic variants with numerous human phenotypes [7]. A typical GWAS 

required genotyping large cohorts of individuals at 300,000 - 5 million SNPs selected for their 

ability to provide broad coverage across the human genome by being in linkage disequilibrium 

with as many nearby genetic variants as possible [8]. Each genotyped SNP therefore represented 

a block of commonly co-inherited genetic variants, all in linkage disequilibrium. Association tests 

were then performed between genotyped SNPs and phenotypes of interest to determine whether 

specific alleles at these variants were. Phenotypes of interest could include true disease cases 

https://paperpile.com/c/469AhQ/VJpep
https://paperpile.com/c/469AhQ/w74Qu
https://paperpile.com/c/469AhQ/AeEL
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versus controls, or with continuous traits like height or QT interval. When statistically significant 

associations were uncovered, discriminating between one or multiple true causal variants among 

co-inherited blocks of SNPs required additional fine-mapping and functional studies. Since most 

genetic variants uncovered through association studies resided in noncoding regions of the 

genome, the relationship between these variants, the genes they impacted, and how they related 

to the phenotypes being studied were rarely immediately obvious [8].   

Even when GWAS lead variants fell within the boundaries of annotated genes, the possibility of 

long-range interactions made simple approaches including connecting the biological impact of tag 

GWAS SNPs to their nearest genes dubious. In a well-known example, a functional SNP 

associated with lactose intolerance (rs4988235) was found to reside within an intron of the 

minichromosome maintenance complex component 6 (MCM6) gene. Although it was known that 

expression of the lactase (LCT) gene was crucial for maintaining lactose tolerance, rs4988235 

was located 13.9 kilobases upstream of LCT [9]. Despite being in the intron of MCM6, 

subsequent molecular studies showed that rs4988235 was indeed capable of modulating LCT 

expression by disrupting a distal enhancer element that is active only in lactase-producing 

enterocytes [10]. Thus, although GWAS were highly effective at uncovering sets of candidate 

variants associated with common diseases, identifying the true subset of causal genetic variants, 

and understanding how these variants connected specific genes to disease phenotypes remained 

challenging, particularly for disease contexts where no clear connection could be made between 

gene function and disease pathology. 

Indeed, over 90% of disease-associated genetic variants identified through genome-wide 

association studies occupy noncoding regions of the genome [8]. These variants are broadly 

hypothesized to disrupt regulatory processes important for controlling normal biological functions, 

however interpreting their potential biological impact has remained challenging. In protein-coding 

DNA sequences, biological information is encoded in the form of codons that directly correspond 

https://paperpile.com/c/469AhQ/AeEL
https://paperpile.com/c/469AhQ/NkN48
https://paperpile.com/c/469AhQ/sC4cY
https://paperpile.com/c/469AhQ/AeEL
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to amino acids. In contrast, noncoding regions of the genome can contain regulatory information 

that is often encoded as DNA sequence motifs. Making informed hypotheses on the mechanistic 

impact of genetic variation in noncoding DNA - in particular small insertions, deletions, or 

substitutions - is challenging both because much of the noncoding genome may not be functional, 

because many biological motifs are degenerate, and the specific mechanisms by which genetic 

variation impacts the activity of functional noncoding motifs are often unclear [11]. Thus, the 

promise of identifying specific biological mechanisms relating genetic variation to disease 

remained difficult for the vast majority of GWAS-uncovered SNPs. 

 

1.3: The challenge of interpreting noncoding variation 

Nevertheless, prior to the age of GWAS, traditional molecular biology approaches characterized 

numerous examples of noncoding genetic variants affecting DNA regulatory elements, including 

transcription factor binding sites [12], distal-acting transcriptional enhancers or silencers [13], and 

epigenetic regulatory marks that drive the pathogenesis disease [14]. Early studies of the 𝛽-globin 

gene were the first to demonstrate that genetic variants disrupting noncoding regulatory DNA 

could cause human disease [15]. It had been known previously that large deletions affecting the 

𝛽-globin gene produced thalassemias in patients. Unexpectedly, two patients were found to also 

manifest clinical and histological symptoms of classic 𝛽-thalassemia despite having a completely 

intact 𝛽-globin gene [16]. Restriction mapping revealed large deletions in these patients 

occupying noncoding DNase I hypersensitive sites far upstream of the 𝛽-globin gene. Further 

molecular studies elucidated that deletion of these DNase I hypersensitive sites led to loss of 𝛽-

globin expression, confirming a role for noncoding DNA in regulating gene expression, and also 

directly linking the disruption of noncoding regulatory DNA elements far upstream of encoded 

proteins to disease phenotypes [17].  

https://paperpile.com/c/469AhQ/yLRdI
https://paperpile.com/c/469AhQ/4nZgz
https://paperpile.com/c/469AhQ/Wl05Y
https://paperpile.com/c/469AhQ/fwgWg
https://paperpile.com/c/469AhQ/dGsBv
https://paperpile.com/c/469AhQ/AMsQO
https://paperpile.com/c/469AhQ/c0e87
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The recognition that noncoding genetic variants could affect gene expression, sometimes over 

long ranges, provided one avenue for linking noncoding variants to their impact on genes, and 

ultimately genes to disease. The ability to capture global profiles of gene expression from 

biological samples through microarrays and high-throughput sequencing facilitated association 

studies between catalogued common genetic variants and changes in gene expression. Common 

variants found to be significantly associated with changes in gene expression, or expression 

quantitative trait loci (eQTLs) could now be mapped and identified for all 20,000 protein coding 

genes. The largest of these studies, the Genotype-Tissue Expression (GTEx) project, 

accumulated genotype, and gene expression profiles for thousands of individuals across 49 

tissues [18,19]. These eQTLs could provide a putative link between changes in noncoding DNA 

and the activity of specific genes, and generate new hypotheses linking genes and disease. 

Similar approaches were developed for other measurable quantitative molecular traits - including 

levels of alternative splicing, degrees of chromatin accessibility, DNA methylation, protein 

expression, and metabolites among others [20]. Although these approaches could associate 

noncoding genetic variants with molecular phenotypes in cells, ascertaining precisely how these 

variants could change biological mechanisms remained elusive. 

 

1.4: Untranslated regions in messenger RNA 

While there is growing appreciation for the impact of noncoding genetic variation in human 

disease, most previous work has focused on understanding the impact of this variation on 

regulatory elements in DNA; in contrast, genetic variants affecting RNA have received 

comparatively less focus. As genetic information in the genome is first transcribed from DNA to 

RNA, and then translated from RNA to protein, understanding how genetic variation impacts RNA 

function is central to forming a more complete picture of how genetic variation can affect protein 

expression.  

https://paperpile.com/c/469AhQ/F9e7J+oVYMl
https://paperpile.com/c/469AhQ/riVSh
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The 5’ and 3’ untranslated regions (UTRs) are core components of all mature messenger RNAs 

(mRNAs) that contain regulatory elements controlling diverse post-transcriptional processes. 

Indeed, it has been observed in yeast that the majority of the variance in mRNA stability can be 

explained by cis-regulatory elements in UTRs and coding sequences [21]. Although these 

distinctions are not absolute, the 5’UTR is broadly thought to influence mRNA translation by 

modifying ribosome loading and the efficiency of translation initiation through structural elements 

such as hairpins [22], internal ribosome entry sites (IRES) [23], and sequences capable of 

initiating translation which include cognate or near-cognate start codons [24], and long repetitive 

trinucleotide repeats [25,26]. In contrast, regulatory elements in 3’UTRs - including secondary 

structure forming motifs and microRNA binding sites -are more broadly thought to modify post-

transcriptional mRNA stability, determine subcellular localization, and influence ribosomal 

recycling through interactions with the 5’UTR [27]. Moreover, sequence motifs in both 5’ and 3’ 

UTRs can serve as substrates for RNA binding proteins that greatly expand the repertoire of 

possible post-transcriptional RNA interactions impacting how and when mRNAs are translated or 

degraded. Thus, although genetic variants in both 5’ and 3’ UTRs have the capacity to affect 

protein expression through diverse mechanisms, dissecting which UTR variants can functionally 

impact biology from those that are silent remains challenging.  

Examples of genetic variants in UTRs causing disease have been identified by traditional linkage 

mapping approaches with experimental validations. Well-known functional elements within UTRs 

with disease relevance include 3’UTR polyadenylation signals [28], microRNA binding sites [29], 

and upstream open reading frames (uORFs) in 5’UTRs which modify translation [30]. Yet, broadly 

understanding how mutations in these elements can affect the biological processes which lead to 

pathology is difficult even when the functional impact of a mutation on a regulatory element is 

known. As an example, systematic mutagenesis of the canonical polyadenylation signal AAUAAA 

has elucidated the functional effects of all possible mutations on the motif’s function using 

synthetic 3’UTR constructs [31]. Yet, because 3’UTR regulatory elements are often repeated and 

https://paperpile.com/c/469AhQ/DFLa
https://paperpile.com/c/469AhQ/Qnmqq
https://paperpile.com/c/469AhQ/rNRG3
https://paperpile.com/c/469AhQ/FGi8P
https://paperpile.com/c/469AhQ/4FVHx+xOBvw
https://paperpile.com/c/469AhQ/Yetep
https://paperpile.com/c/469AhQ/GUNSN
https://paperpile.com/c/469AhQ/ZMJgI
https://paperpile.com/c/469AhQ/ADiC6
https://paperpile.com/c/469AhQ/XOmP
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can act synergistically [32], the ultimate effect of mutations in one of several potential 

polyadenylation signals within a 3’UTR cannot be known without performing targeted biochemical 

studies. A consequence of the ambiguity inherent in interpreting noncoding genetic variation is 

that most known pathogenic variants are in the coding genome, even though many exome 

sequencing approaches can capture variation in UTRs. Because of this, expanding our capacity 

to interpret genetic variation in both 5’ and 3’ UTRs can have an immediate and direct impact in 

clinical applications and our understanding of disease biology. 

 

1.5: Identifying variants of interest in the noncoding genome 

The falling cost of sequencing has led to the creation of large databases of human genetic 

variation, facilitating new approaches to identify functional noncoding genetic variation. Under the 

principle that functional elements within the human genome tend to be less tolerant to genetic 

variation, identifying regions of the genome that are depleted of variation can help unmask 

functional regulatory elements in noncoding DNA. Many studies have analyzed allele frequencies 

to infer the action of natural selection on putative and predicted noncoding regulatory elements 

throughout the genome. Broadly, allele frequencies in an isolated population are shaped by three 

forces: mutation, drift, and selection. Genetic variants are introduced into the population through 

random mutation - a process that tends to introduce variation throughout the genome at a nearly 

constant rate [33]. Under the neutral theory of molecular evolution, most mutations have neutral 

or negligible effects on an organism's fitness and therefore will either be randomly removed from 

the population, or rarely, will become fixed in a population due to genetic drift [34]. Even more 

rarely, a mutation can be beneficial to an organism’s fitness, and selection may cause its allele 

frequency to increase within a population in a process known as positive selection. A hard sweep 

occurs when a beneficial mutation is introduced into a population by random mutation and rapidly 

reaches fixation [35]. Alternatively, positive selection may manifest as a soft sweep - when 

https://paperpile.com/c/469AhQ/uM6C
https://paperpile.com/c/469AhQ/v3BnN
https://paperpile.com/c/469AhQ/HnW07
https://paperpile.com/c/469AhQ/tOyyw
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changes in the environment make a previously neutral variant present within the population 

beneficial and its allele frequency increases [36].  

In contrast, when a mutation has deleterious effects on an organism’s fitness, negative, or 

purifying selection, tends to remove it from the population [33]. Thus allele frequencies for 

deleterious variants tend to remain low within a population, and by extension deleterious classes 

of mutations - such as protein truncating mutations, or mutations affecting essential splice sites - 

will exhibit enrichment in rare allele frequencies compared to classes of genetic variation that are 

selectively neutral [37]. This relationship between selection and allele frequencies can be used to 

explore hypotheses and identify new classes of functional genetic variation in the human 

genome.  

Prior to the generation of large databases of human genetic variation, putative noncoding 

regulatory elements were identified by comparing genome alignments from multiple species. 

Many early approaches relied on detecting non-neutral substitution rates over particular genome 

segments compared to expectation based on genetic drift [38]. Although effective at identifying 

long stretches of conserved sequences in the human genome, the power of these methods to 

detect non-neutral substitution rates at the individual nucleotides was limited by comparison, 

particularly at moderately conserved bases [38]. By comparing strongly conserved sequences 

across 29 different mammals, Lindblad-Toh and colleagues reported a map of human constrained 

elements which also appeared to be depleted of single-nucleotide polymorphisms in human data 

[39]. Thus, mutations affecting highly conserved noncoding DNA also appeared to be strongly 

depleted of variation in human populations [39]. The increasing availability of sequenced human 

genomes made it possible to implement approaches for inferring selection on specific genetic 

variants or groups of nucleotide positions in the human genome based on their allele frequency 

spectrum. Because functional regulatory elements in noncoding DNA are likely under a greater 

degree of selective constraint compared to neutrally evolving DNA segments, the site frequency 

https://paperpile.com/c/469AhQ/Pv01G
https://paperpile.com/c/469AhQ/v3BnN
https://paperpile.com/c/469AhQ/c1yWa
https://paperpile.com/c/469AhQ/SxHSk
https://paperpile.com/c/469AhQ/SxHSk
https://paperpile.com/c/469AhQ/guy2U
https://paperpile.com/c/469AhQ/guy2U
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spectrum of variants with deleterious impacts on these functional elements are also expected to 

be enriched for rare allele frequencies.  

Studies inferring the importance of microRNA regulatory sites in humans were among the first to 

apply the relationship between selection and allele frequencies in human genomes. Using allele 

frequencies from the 1000 Genomes Project Chen et al. found that SNPs affecting 

computationally predicted conserved microRNA binding sites throughout the genome were 

enriched for rare allele frequencies compared to other conserved sequence motifs in 3’UTR 

sequences, suggesting that these sites were under a greater degree of negative selection [40]. 

By analyzing SNP density and the site frequency spectrum of genetic variants affecting ~22,000 

predicted microRNA binding sites conserved across 5 mammals, Chen and colleagues 

uncovered a significant depletion of genetic variation affecting these elements, suggesting that 

they were also more likely to be functionally important in 3’UTRs. Similar approaches have been 

used to examine patterns of selection on RNA-protein binding sites in RNAs [41], long-noncoding 

RNAs [42], and sites of m6A methylation in human mRNAs [43]. 

As the volume of sequencing data has increased, subsequent refinements have been made to 

this approach, most notably with the publication of the ExAC database in 2014 [37]. Here, Lek et 

al. developed a method to quantify the enrichment of rare allele frequencies for a given class of 

genetic variation using synonymous coding variants as a baseline for neutral selection, while 

adjusting for different rates of mutation based on local sequence context. This metric - termed the 

Mutability Adjusted Proportion of Singletons (MAPS) - has been applied to elucidate new classes 

of putatively functional genetic variation by identifying groups of variants under stronger negative 

selection compared to synonymous variants in coding regions of the genome. Indeed this 

approach has been applied to identifying deleterious classes of coding mutations [44], new 

putative splice-site disrupting mutations [45], and genetic variants creating new upstream open 

reading frames in mRNA 5’UTRs [46]. A key advantage of this approach is that biologically-

https://paperpile.com/c/469AhQ/d5FeY
https://paperpile.com/c/469AhQ/Pmne
https://paperpile.com/c/469AhQ/D3zK
https://paperpile.com/c/469AhQ/LSad
https://paperpile.com/c/469AhQ/c1yWa
https://paperpile.com/c/469AhQ/Erup
https://paperpile.com/c/469AhQ/MSVv
https://paperpile.com/c/469AhQ/wLW7
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informed hypotheses made about the potential functionality of a given class of genetic variants 

can be evaluated by analyzing their allele frequency spectrum in large population-scale 

databases.  

Here, we have applied metrics of negative selection across human cohorts to study noncoding 

regulatory elements in RNAs. To illuminate possible mechanistic relationships between genetic 

variation and gene regulation, we take a hypothesis-driven approach to assess the significance of 

specific classes of variation affecting both predicted and experimentally mapped RNA regulatory 

elements. We have additionally used a combination of public genotype and phenotype databases 

to explore the relevance of these variants to human disease. We have selected putative 

regulatory elements based on the availability of experimental data to support their existence 

across a large fraction of human mRNAs, and previously published literature supporting their 

potential functionality. The focus of this thesis is twofold: In Chapter 2, we investigate whether 

there is evidence for a functional role of G-quadruplex forming sequences in mRNA UTRs. In 

Chapter 3, we employ the same investigation framework to non-canonical open reading frames 

(ncORFs). Using public repositories of ribosome profiling to identify ncORFs, we elucidate 

selective pressures acting within these translated noncoding sequences and identify new patterns 

of functional variation in upstream open reading frames. For a subset of the variants we identified 

as functional and associated with disease, we performed luciferase assays to validate their effect 

on the translation of the downstream gene. Importantly, beyond the functional variants identified 

in this work, these studies represent a new approach to study and assess the impact of genetic 

variation on cis-regulatory elements in mRNA UTRs. 
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CHAPTER 2: INTEGRATIVE ANALYSIS REVEALS RNA G-QUADRUPLEXES IN UTRS 

ARE SELECTIVELY CONSTRAINED AND ENRICHED FOR FUNCTIONAL 

ASSOCIATIONS * 

 

2.1: Secondary structures as RNA regulatory elements 

Unlike DNA, the single-stranded nature RNAs significantly expands the possibility for intrastrand 

base-pairing. RNA secondary structures have long been implicated in regulating gene expression 

through diverse post-transcriptional mechanisms. Strong secondary structures in 5’UTRs are 

known to repress translation of downstream coding sequences by blocking the formation of 

ribosome translation initiation complexes [22,47]. Specific 5’UTR secondary structures have also 

been observed to facilitate increased translation of downstream protein coding sequences 

through serving as internal ribosome entry sites (IRES) [23], or possibly through blocking 

translation initiation at inhibitory upstream open reading frames (uORFs) [22].  In contrast, 3’UTR 

secondary structures have been found to mask microRNA binding sites [47,48], facilitate 

interactions with RNA binding proteins [49,50], and regulate mRNA stability [51], or subcellular 

localization [52–54]. 

Several experimental approaches have been developed to map secondary structures 

transcriptome-wide [55–57]. These studies have generally uncovered an enrichment of secondary 

structures in both 5’ and 3’ UTRs compared to protein coding sequences where strong structure 

formation could disrupt translation elongation by ribosomes [58]. RNA secondary structures can 

also facilitate interactions with RNA binding proteins - either through helicases that unwind and 

 

*Published as Lee D.S.M. et al. Nat. Commun. 2020. [138] 

https://paperpile.com/c/469AhQ/Qnmqq+DZxy
https://paperpile.com/c/469AhQ/rNRG3
https://paperpile.com/c/469AhQ/Qnmqq
https://paperpile.com/c/469AhQ/DZxy+D5JX
https://paperpile.com/c/469AhQ/mCBz+ixaP
https://paperpile.com/c/469AhQ/0Guq
https://paperpile.com/c/469AhQ/IuFe+PGE4+b7Hg
https://paperpile.com/c/469AhQ/nb1m+OaiE+mZEs
https://paperpile.com/c/469AhQ/AjHt
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resolve secondary structure elements in the 5’UTR to facilitate translation initiation, or through 

binding proteins which can mediate RNA subcellular localization [59]. 

 

 

2.2: G-quadruplexes are non-canonical secondary structures formed by nucleic acids 

Guanine rich nucleic acid sequences can form non-canonical secondary structures known as G-

quadruplexes (G4s) in both DNA and RNA [60]. In contrast to DNA G4s, RNA G4s are thought to 

form more readily in vitro due to their increased thermodynamic stability and reduced steric 

hindrance [61,62]. G4 secondary structures are formed through non-canonical base pairing of 

guanine side chains in G-rich sequences. The canonical G-quadruplex forming sequence 

consists of four trinucleotide G-runs separated by 1-7 nucleotides (Fig. 2.1).  

 

Figure 2.1: Canonical G-quadruplex motif. Schematic depicting a folded RNA parallel G-
quadruplex with the accompanying canonical G4 forming sequence. 

https://paperpile.com/c/469AhQ/lIm8
https://paperpile.com/c/469AhQ/w6Vz
https://paperpile.com/c/469AhQ/YPZMy+ufElm
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Transcriptome-wide G4 mapping studies have uncovered evidence for widespread G4 formation 

in both 5’ and 3’UTR sequences [63,64]. In one approach, Kwok and colleagues developed a 

method to map transcriptome-wide G4 structures (rG4) by measuring reverse transcriptase 

stalling [63]. The method relies on isolating cellular mRNAs in vitro, while creating ionic conditions 

that are favorable to RNA G4 formation. These RNAs are then treated with reverse transcriptase 

(RT) to produce cDNA fragments which are isolated and subsequently sequenced. Because G4s 

will induce RT-stoppage due to steric blockage, evidence of significant RT stopping can be used 

to map secondary structures and identify G4 forming sequences within mRNAs transcriptome-

wide [63]. Results from these experiments uncovered specific enrichment of G4 structures in 5’ 

and 3’UTRs, and evidence that the capacity for G4 structure formation in mRNAs extends beyond 

the canonical G4 motif to include structures with extended loops, bulges in G-runs, and two 

quartets [63].  

Although G4 formation has been studied extensively in vitro, whether G4s in mRNAs exist in vivo 

has been an active area of debate. The single-stranded nature of RNAs is thought to favor G4 

formation due to reduced steric hindrance, however some in cellulo structural probing 

experiments using RT stopping have suggested that G4s typically exist unfolded at steady-state 

in most eukaryotic cells [65]. Guo et al. modified the RT-stopping approach to map RNA 

sequences capable of forming G-quadruplexes in vivo to probe for G4 formation in cellulo. 

Strikingly, they observed that while most predicted RNA G4-forming (pG4) sequences were 

unfolded at the steady-state, these same RNAs could form secondary structures when expressed 

in prokaryotes, suggesting that eukaryotic cells harbored factors capable of unwinding these RNA 

secondary structures [65].   

While specific RNA G4s have been associated with diverse biological functions, including 

mediating translational control [66,67], alternative splicing [68], subcellular localization [69], and 

RNA stability [70,71], the transcriptome-wide functional importance of UTR G4s has largely been 

https://paperpile.com/c/469AhQ/ZYuwZ+Yn1N
https://paperpile.com/c/469AhQ/ZYuwZ
https://paperpile.com/c/469AhQ/ZYuwZ
https://paperpile.com/c/469AhQ/ZYuwZ
https://paperpile.com/c/469AhQ/VNzKr
https://paperpile.com/c/469AhQ/VNzKr
https://paperpile.com/c/469AhQ/bIYLf+aQBn7
https://paperpile.com/c/469AhQ/nWH6n
https://paperpile.com/c/469AhQ/bQPWA
https://paperpile.com/c/469AhQ/8vyQt+xLnAF
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extrapolated from a limited number of experimental studies. To address this question, we 

combine several large-scale genomic and genetic data resources to assess evidence for 

evolutionary constraint on UTR pG4 sequences in humans, and enrichment for functional 

associations, including cis-eQTLs and protein binding sites. We show that UTR pG4 sequences 

are subjected to heightened selective pressures, have enrichment for cis-eQTL variants as 

identified by GTEx, and enrichment of RNA-protein binding interactions mapped by ENCODE. 

Taken together, our results support the biological significance of UTR pG4 sequences and 

highlight the importance of considering secondary structures in determining biological function in 

noncoding regions of the genome. 

 

2.3: pG4 exhibit heightened selective pressure within UTRs 

Putative G-quadruplex (pG4) forming sequences are enriched within untranslated regions of 

human messenger RNAs [63]. If these sequences are functional, they should exhibit patterns of 

genetic variation consistent with heightened evolutionary constraint. To test this hypothesis, we 

evaluated the distribution and frequency of single nucleotide variants occurring within UTR pG4 

sequences using whole-genome sequencing data from over 15,000 individuals from the public 

gnomAD release (version 2.2.1) [44]. We mapped pG4 sequences transcriptome-wide within 

annotated UTRs using the canonical G4 motif - GGG-{N-1:7}(3)-GGG (Fig. 2,1). Consistent with 

previous UTR G4 mapping efforts [72], we identified 2967 unique protein-coding genes encoding 

for at least one transcript isoform containing a pG4 sequence within the 5’UTR, and 2835 protein-

coding genes encoding a pG4 sequence within the 3’UTR. To further increase the specificity of 

pG4 sequences, we additionally defined a subset of experimentally supported rG4 sequences 

(466 in the 5’UTR, 1743 in the 3’UTR), consisting of canonical pG4 sequences with evidence of 

secondary structure formation as determined by biochemical structure mapping approaches [63]. 

Under the expectation that deleterious variation is continuously removed from the population, we 

https://paperpile.com/c/469AhQ/ZYuwZ
https://paperpile.com/c/469AhQ/Erup
https://paperpile.com/c/469AhQ/XBNjA
https://paperpile.com/c/469AhQ/ZYuwZ
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expect allele frequencies for variants affecting UTR pG4 sequences to be skewed towards more 

rare variation compared to non-pG4 UTR variants, reflecting their greater functional importance 

[40,73,74]. Because allele frequencies throughout the genome are affected both by local 

sequence context, which influences the mutability of a base at a given position, and nearby 

constrained functional elements that are under linked selection, we compared only single 

nucleotide variants affecting pG4 G-tracts to non-pG4 G-tracts (3 or more Gs) within UTRs 

belonging to a subset of transcripts whose estimated levels of overall constraint matched our 

UTR pG4-containing transcripts. This set of comparator transcripts was selected using the upper 

90% bound of the observed vs. expected (LOEUF) metric, as published by gnomAD [44]. This 

analysis revealed a significant depletion of variants in pG4 and rG4-seq G4s (Fig 2.2). For rG4 

sequences, we found mean allele frequencies were approximately one-third of that compared to 

non-pG4 G-tracts in constraint-matched transcripts in the 5’UTR, and 30% lower for the 3’UTR. 

For pG4 sequences without direct experimental support, G-tract variant frequency differences 

were similarly reduced (P<<2.2x10-16 for 5’UTR and 3’UTR; Fisher’s Exact Test). Taken together, 

this reduction in mean allele frequencies for variants in 5’ and 3’UTR pG4 sequences relative to 

those not affecting pG4 sequences is consistent with the effects of negative selection. 

https://paperpile.com/c/469AhQ/JXC0U+1XffU+d5FeY
https://paperpile.com/c/469AhQ/Erup
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Figure 2.2: Allele frequencies for G-run disrupting variants in gnomAD. Reduction in variant 
frequencies affecting guanine G-tracts within UTR pG4 forming sequences compared to matched 
non-pG4 G-tracts by transcript-level constraint. rG4-G-tracts are those within UTR pG4 that have 
evidence of secondary structure formation by rG4-seq. Asterisks denote P-value <<2.2x10-16 by 
Fisher’s exact test. 

To provide a complementary measure of sequence constraint, we assessed the number of 

polymorphic sites within UTR pG4 sequences compared to non-pG4 sequences. We applied a 

background model of neutral evolution to produce a distribution for the expected number of 

polymorphic sites in a given region of the genome under the assumption of neutral selection. This 

model has been shown to explain a median of 81% of the variability in nucleotide substitution 

probabilities for noncoding regions of the genome based on the local heptamer context of a given 

position [75]. Using this model, we partitioned UTR pG4 sequences into G-tracts and intervening 

gap sequences, and compared the ratio of observed versus expected polymorphic sites in the 

European sub-population of the 1000 Genomes Project. To additionally control for the possible 

confounding effects of linked selection driven by nearby constrained coding elements, or 

differences in sequencing depth across the 1000 Genomes Project, we produced an empirical 

distribution for observed vs. expected substitutions in constraint-matched 5’ and 3’UTR 

sequences. Consistent with the observed reduction in variant frequencies across UTR pG4s, we 

https://paperpile.com/c/469AhQ/l2ySj
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find a significant reduction in the number of observed versus expected polymorphic sites within 

UTR pG4 sequences compared to non-pG4 forming regions of the UTR. Relative substitution 

rates in 5’ and 3’ UTR G-tracts are reduced approximately 30-40% compared to non-pG4 regions 

of constraint-matched UTRs (permuted P<10-4, for 5’ and 3’UTR pG4 and rG4) - Fig. 2.3. In 

contrast, gap sequences that are not predicted to be important for secondary structure formation 

in either 5’ or 3’ UTR pG4 contexts are not significantly different from the background UTR 

estimates, consistent with a pattern of selective pressure in 3’UTR pG4 sequences that primarily 

act to maintain the capacity for secondary structure formation across UTR pG4 sequences. 

 

 

Figure 2.3: pG4-forming G-tracts are depleted of polymorphic sites compared to 
intervening sequences. Reduction in the number of observed polymorphic sites compared to 
expectation in 5’ and 3’ UTR pG4 forming G-tracts using a nucleotide substitution model based 
on local sequence context (permuted P < 1x10-4  in all G-tracts compared to matched non-pG4 
UTR sequences). Error bars represent bootstrapped 90% confidence intervals for the ratio of 
observed vs. expected substitutions within each pG4 region. Red line and shaded regions 
represent the observed vs. expected number of substitutions in non-pG4 UTR sequences 



18 

 

matched by transcript-level constraint and 90% confidence intervals, respectively. Gray-dashed 
line represents an expected vs. observed ratio of 1:1. 

The reduction in allele frequencies, and in the number of polymorphic sites within UTR pG4 

sequences, indicate UTR pG4 are under heightened selective pressures compared to non-pG4 

UTR regions. To place the degree of selection on UTR pG4s in context, we applied a mutability-

adjusted proportion of singletons (MAPS) metric, which measures the relative enrichment for rare 

variation within a particular class of variants accounting for differences in mutation rates based on 

local sequence context [37]. A similar approach has been recently used to assess the degree of 

selective pressure against upstream open-reading frame-creating variation within 5’UTR variants 

in the gnomAD database [46]. Within the canonical pG4 motif, we predicted that variants affecting 

the central guanine of each G-tract should be most constrained, since biophysical studies of G4 

stability have shown that mutations affecting the central tetrad (2nd guanine of each trinucleotide 

guanine repeat) are most detrimental to secondary structure stability [76]. To remove the 

ambiguity of which specific guanines are involved in secondary structure formation when more 

than three guanines form a pG4 G-tract, we focused only on single nucleotide variants within 

trinucleotide G-tracts (n = 3137). By examining variation across each pG4 G-tract, we found 

central guanine positions within UTR pG4 G-tracts are consistently enriched for singletons (one 

sequenced variant in gnomAD whole genomes) compared to non-pG4 UTR variants (Fig. 2.4, 

permuted P<10-4). Notably, non-pG4 UTR variants reflected a similar degree of constraint as 

synonymous coding variants, while central position guanines exhibit a similar degree of selective 

pressure as missense variation in protein-coding regions of the genome. Interestingly, the most 

proximal and distal 5’ and 3’ guanine of each trinucleotide pG4 G-tract demonstrated significantly 

less enrichment of singleton variants within gnomAD across gene classes compared to central 

guanine positions as determined by permutation testing (P-values = 0.0237 and 0.0022 

respectively - Figure 2.15). This result suggests these positions are under less negative selection 

https://paperpile.com/c/469AhQ/c1yWa
https://paperpile.com/c/469AhQ/wLW7
https://paperpile.com/c/469AhQ/BJE4d
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compared to central positions, perhaps because mutations in these positions can preserve the 

potential for RNA to form non-canonical G4 2-quartets [63]. 

 

Figure 2.4: Mutability-adjusted proportion of singletons (MAPS) for each set of variants 
affecting trinucleotide guanines within the meta-pG4 sequence motif. Central position 
guanines consistently demonstrate the highest MAPS scores (are most constrained) compared to 
non-pG4 UTR variants (permuted P < 1 × 10−4) across all contexts. Error bars represent the 5% 
and 95% bootstrap permutations for each variant class. Purple-dashed line, orange dashed line, 
and gray-dashed line represent MAPS score for Ensembl predicted high-impact coding (predicted 
loss-of-function), missense, and synonymous mutations respectively. 

Finally, to provide additional control for our sequence context-derived mutability rates, we 

compared the MAPS metric for UTR pG4 G-tracts to UTR trinucleotide G- and C-runs not 

involved in pG4 formation. Although these non-pG4 G- and C-tracts exhibit modest enrichment 

for rare variation at the central position, there is a significantly greater enrichment in singletons at 

the central position of the UTR pG4 G-tract compared to non-pG4-forming contexts (Figure 2.15 - 

https://paperpile.com/c/469AhQ/ZYuwZ
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permuted P=0.0195). Thus, the excess rare variation is specific to the guanine within pG4 G-

tracts most important for maintaining G4 secondary structure. 

 

2.4: Most pG4 motifs in UTRs are isoform-restricted 

Many functional UTR elements, including upstream open reading frames (uORFs), AU-rich 

elements, and microRNA binding sites are frequently included in alternative 5’ or 3’ UTR isoforms 

of the same gene [77,78]. Alternative UTR inclusion is hypothesized to significantly diversify the 

number of possible post-transcriptional regulatory interactions for a given gene [79]. Given the 

observed constraint over UTR pG4 sequences, we hypothesized that UTR pG4 sequences 

should also exhibit patterns of alternative inclusion or exclusion. 

To evaluate the extent of alternative UTR pG4 inclusion, we mapped UTR pG4s to protein-coding 

transcripts for each gene in the Ensembl transcriptome database. Genes were considered to 

produce constitutive UTR pG4 sequences when all annotated protein-coding transcript isoforms 

contained at least one pG4, or alternative UTR pG4 sequences if at least one transcript isoform 

lacked the pG4 sequence. Most constitutive pG4 genes were found to express UTRs with 

identical pG4s across all transcript isoforms, however 36 of 620 5’UTR and 75 of 1275 3’UTR 

constitutive pG4 genes produced transcript isoforms with non-identical pG4 sequences. For this 

subset of non-identical pG4 transcript isoforms, approximately one-third differ by the addition / 

subtraction of pG4 motifs (13/36 for 5’UTR, 20/75 for 3’UTR). Strikingly, we found that over half of 

all genes producing UTR pG4 transcripts also encoded for alternative UTRs lacking pG4 motifs 

(2254 genes with 5’UTR pG4 motifs and 1425 genes with 3’UTR pG4 motifs - Fig. 2.5). 

https://paperpile.com/c/469AhQ/BCZOg+r7Smg
https://paperpile.com/c/469AhQ/YEhCD
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Figure 2.5: Distribution of 5’ and 3’ UTR transcript isoforms with constitutive or non-
constitutive pG4 sequence motifs. (a) Most genes with mRNA transcripts with UTR pG4 
sequences also produce alternative isoforms lacking UTR pG4s (non-constitutive). (b) 
Overrepresented biological processes for protein-coding genes producing both pG4 and non-pG4 
5′ or 3′ UTR isoforms (n = 3148). GO-term enrichment was performed using PantherDB55 and 
enrichment was determined by meeting a Benjamini–Hochberg adjusted P value cutoff of 0.05 by 
Fisher’s exact test.  

Indeed, of the 5235 total UTR pG4-containing genes, 3395 exhibited either alternative 5’ or 3’ 

UTR pG4 inclusion, and 284 produced UTRs with both alternative 5’ and 3’ pG4s. This 

distribution of alternative and constitutive pG4 genes for each UTR context was found to be highly 

significant through permutation testing (P-value<0.0001 for 5’ and 3’ UTRs). Moreover, MAPS 

scores for alternative UTR pG4 indicate that their second guanine position is under a similar 

degree of constraint as for all UTR pG4 and is comparable to that of missense variations for the 

set of alternative pG4s found in genes with any disease association in ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar/) (Fig. 2.4). As is the case for all UTR pG4, this second 

guanine position was significantly more enriched for rare variation compared to either the 5’ or 3’ 

guanine (permuted P-value = 0.0138 and 0.004 respectively). Constitutive UTR pG4 sequences, 

in contrast, do not show a similar pattern of selective constraint acting on the second G-tract 

guanine, possibly because these sequences tend to be under less stringent selective pressures, 

https://www-nature-com.proxy.library.upenn.edu/articles/s41467-020-14404-y#ref-CR55
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or because we are underpowered to detect significant enrichment in rare variation. Notably the 

MAPS metric for the central G-position of alternative pG4 sequence G-tracts remained 

significantly higher than matched, non-pG4 G-tracts (permuted P=0.0124 - see Figure 2.15 for 

comparison of constitutive pG4 G-tracts and other pG4 gene sets). 

We next asked whether the expression of alternative pG4 isoforms tend to be restricted or shared 

across different tissue contexts. Using transcript-isoform expression data across 45 different 

tissues from GTEx, we find that many tissues appear to express both pG4 and non-pG4 

transcripts simultaneously (Fig. 2.6). Notably, this simultaneous expression of both pG4 and non-

pG4 isoforms also occurs in single-cell contexts (lymphocytes, fibroblasts), demonstrating that 

this effect is not due to cellular heterogeneity in bulk tissue samples. Thus, most UTR pG4-

encoding genes express alternative isoforms which lack pG4 sequences, and that the 

simultaneous expression of both pG4-isoforms and non-pG4 isoforms is widespread across 

multiple tissue and cellular contexts. 

To explore the functional associations of alternative UTR pG4 genes we performed a gene 

ontology analysis. We find that these genes are frequently involved in dynamic intracellular 

processes, including signal transduction, cellular responses to stress, and metabolic regulation 

(Fig. 2.5b). In contrast, constitutive pG4 genes showed enrichment for biological processes 

associated with the activation of gene expression in discrete temporal stages, including those 

involved in tissue development, pattern specification, and cellular differentiation. These 

observations, coupled with our finding that many tissues simultaneously express both pG4 and 

non-pG4 isoforms of the same gene, suggests that isoform-switching between pG4-containing or 

non-pG4 transcripts may facilitate dynamic cellular responses to external stimuli. More broadly, 

our results demonstrate considerable variation in alternative pG4 inclusion within UTRs across 

multiple tissue contexts, and suggest that the relative abundance of pG4 and non-pG4 UTRs may 

be dynamically regulated within a given tissue.  
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Figure 2.6: Median expression (TPM) of each pG4-transcript or non-pG4 transcript was 
assessed for each tissue context. For the subset of genes producing UTRs with alternative 
pG4 inclusion, both pG4-containing and non-pG4 isoforms are frequently expressed 
simultaneously. Transcripts were considered as expressed if their median TPM measurement 
exceeded one TPM for each tissue context considered. The proportion of pG4 genes expressing 
both pG4 isoforms, and non-pG4 isoforms was then compared for each tissue. 
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2.5: pG4 motifs in the 5’ and 3’ UTR are enriched for cis-eQTLs 

We next evaluated the potential regulatory consequences associated with mutations affecting 

UTR pG4s, hypothesizing that variants affecting pG4 sequences might also be more likely to be 

associated with changes in gene expression. To test this hypothesis, we compared the proportion 

of annotated cis-eQTLs versus non-eQTL SNPs identified by GTEx across pG4 and non-pG4 

regions of the UTR, finding significant enrichment for either nominally significant or lead eQTL 

variants (lowest P-value variant) in 5’ and 3’ UTR pG4 sequences compared to non-pG4 regions 

of UTRs (Fig. 2.7). Notably, we continue to observe an enrichment of cis-eQTL variants in UTR 

pG4 sequences using a reduced set of putatively causal cis-eQTLs [80], suggesting that 

disruption of UTR pG4 sequences may cause changes in post-transcriptional regulation.  

We next explored the direction of gene expression changes for UTR pG4 cis-eQTLs, considering 

all variant-tissue effects separately for each significant variant-tissue interaction. We 

hypothesized that variants affecting pG4 G-tracts are more likely to disrupt the structural integrity 

of the RNA G4s, and thus might influence gene expression differently than variants affecting gap 

(non-G-tract) sequences within pG4 motifs. Since the magnitude of normalized effect-size 

estimates in GTEx has no direct biological interpretation, we compared differences in the 

direction of variant effects across pG4 and non-pG4 sequences. As expected, UTR variants in 

non-pG4 regions are not significantly biased towards increasing or decreasing gene expression, 

regardless of whether the mutation affected a G-tract, or non-pG4 G-tract nucleotide. In contrast, 

mutations affecting structurally important pG4 G-tracts in the 3’UTR tend to increase mRNA 

expression compared to non-G-tract bases (OR 1.75, 95% CI: 1.34 to 2.30, P<3.0-5) - Fig. 2.8. 

This relationship for the 5’UTR was not observed. Given the role of the 3’UTR in mediating mRNA 

stability, the tendency for G-tract base mutations to increase gene expression suggests the 

involvement of 3’UTR G4s in decreasing mRNA stability. 

https://paperpile.com/c/469AhQ/iHmRu
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Figure 2.7: Analysis of frequency of variants in UTR pG4 also being GTEx cis-eQTLs 
compared to non-pG4 UTR variants. GTEx cis-eQTLs are enriched within UTR pG4 relative to 
the number of tested (non-eQTL) SNPs when comparing lead SNPs, high-confidence causal, 
nominally significant, and nominally significant in RBP-binding sites in matched UTR regions. 
Error bars represent the 95% confidence interval for the odds ratio.  

 

Figure 2.8: Annotated cis-eQTLs affecting 3’UTR pG4 sequences tend to increase gene 
expression. Odds ratio for a cis-eQTL increasing gene expression across all cis-eQTL-tissue 
effects (n = 379,441, P value < 2e−16, Fisher’s exact test), where the variant affects a pG4 G-tract 
compared to those affecting gap sequences. Error bars represent the 95% confidence interval for 
the odds ratio.   
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2.6: RNA-protein binding sites are enriched over UTR pG4 regions 

Transcriptome-wide RNA structure mapping studies have suggested that most RNA G4 are 

unfolded in eukaryotes, but not in prokaryotes, leading to the hypothesis that intracellular factors 

bind RNA G4s to maintain their unfolded state in cellulo [65]. To gain insights into regulatory 

mechanisms mediating pG4 effects on gene expression we investigated the propensity of protein-

binding sites to overlap UTR pG4s by comparing the proportion of UTR pG4 sequences 

overlapped by RNA-binding protein (RBP) binding sites published by ENCODE to non-pG4 

forming regions of the UTR[81]. This data consists of cross-linking immunoprecipitation 

sequencing (CLIP-seq) peaks, called from K562 or HepG2 cell lines for over 150 RBPs, 

containing at least one highly reproducible (IDR = 1000) [82] binding peak within the 5’ or 3’ UTR. 

When compared to non-pG4 regions of the UTR, the frequency of overlap between unique (non-

overlapping) RBP binding sites and pG4 sequences was almost 6-fold (P<<2.2x10-16, Chi-

square test) higher compared to non-pG4 sequences in the 5’UTR (Fig. 2.9). Enrichment of RBP 

binding locations over pG4 sequences within the 3’UTR was markedly higher (14-fold, 

P<<2.2x10-16, Chi-square test). Given the enrichment within UTR pG4s for cis-eQTLs and 

protein binding sites, we tested for significant colocalization between these two features in pG4s. 

Taking the subset of pG4 regions overlapped by any protein binding sites, we examined the 

density of cis-eQTLs in UTR pG4 regions also overlapping CLIP-seq peaks. When all nominally 

significant cis-eQTLs are considered, we observe a significant enrichment of cis-eQTLs in the 

3’UTR that are also protein binding sites (Fig. 2.7), indicating that variation in 3’UTR pG4 

sequences may influence gene expression through changing RNA-protein interactions.  

Given the observed association between protein binding sites and pG4 sequences, we next 

asked whether specific proteins’ binding sites are enriched for pG4s. For each protein, we 

determined the proportion of protein-specific binding sites containing pG4 sequences, against the 

total background rate of all CLIP-seq binding sites containing pG4 sequences. To determine a 

significant overrepresentation of pG4 sequences within a given protein’s binding sites, we 

https://paperpile.com/c/469AhQ/VNzKr
https://paperpile.com/c/469AhQ/qf5s5
https://paperpile.com/c/469AhQ/oQCgA
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performed a hypergeometric test against the null hypothesis that there is no overrepresentation of 

pG4 binding sites within the set of a protein’s binding sites - Fig. 2.9. 

 

 

Figure 2.9: Density of RBP-binding sites per kilobase of pG4 sequence compared to non-
pG4 regions of the UTR.  pG4 sequences are more frequently overlapped by RBP binding sites 
compared to non-pG4 sequences within the UTR (P value ≪ 2.2 × 10−16, chi-square test). 

This analysis revealed enrichment for proteins that have been implicated in RNA G4 binding 

(GRSF1, FUS), and those that, to our knowledge, have not previously been associated with RNA 

G4 structures (PRPF4, GTF2F1, and CSTF2T). GRSF1 is a cytoplasmic protein involved in viral 

mRNA translation and has recently been shown to play a role in the degradation of G4-containing 

RNAs in mitochondria [83,84]. Other proteins with significant enrichment for pG4 binding include 

those involved in mitochondrial processes (FASTKD2), transcriptional activation (GTF2F1), 

mRNA transport (FAM120A), mRNA degradation (XRN2, UPF1), in addition to several proteins 

implicated in RNA polyadenylation and splicing (CSTF2T, PRPF4, RBFOX2), and surprisingly, 

micro-RNA (miRNA) biogenesis (DCGR8, DROSHA). Interestingly proteins demonstrating a 

preference for binding UTR pG4 sequences tend to bind both 5’ and 3’ UTR contexts, with 14 out 

of 20 proteins’ binding peaks showing enrichment for overlap over 5’ and 3’ pG4 sequences in 

https://paperpile.com/c/469AhQ/JRBPc+q8dn6
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HepG2, and 17 out of 25 for K562 independently. Taken together, these data suggest that RBP 

binding is enriched in UTRs over pG4 sequences, and that RBP-pG4 interactions may regulate 

gene expression.  

An analysis of gene expression changes with sh-RNA knockdown for the majority of pG4-

enriched binding proteins showed genes containing pG4 in either the 5’ or 3’ UTR are much more 

likely to be significantly differentially expressed compared to non-pG4 genes (Figure 2.16). 

Approximately one-third of the proteins exhibiting a binding preference for UTR pG4 change the 

expression of pG4-containing genes concordantly across K562 and HepG2 cells (GTF2F1, 

FASTKD2, UPF1, NONO, GRSF1, NCBP2, AKAP8L, DDX6, FKBP4, TAF15, LARP4). Of these 

11 RNA-binding proteins, knockdown of eight tends to decrease expression of UTR pG4 genes 

(GTF2F1, UPF1, NONO, GRSF1, NCBP2, AKAP8L, DDX6, LARP4), while knockdown of three 

(FASTKD2, FKBP4, TAF15) tends to increase their expression, suggesting that most of the 

proteins enriched for pG4 binding tend to increase, or stabilize RNA expression rather than 

facilitate their degradation. This result is consistent with our finding that cis-eQTLs affecting 

3’UTR pG4 sequences are more frequently associated with decreasing gene expression.  

Finally, to explore the potential existence of post-transcriptional regulatory networks relying on 

shared RNA G4-protein interactions, we tested for a significant overlap in pG4 containing 

transcripts targeted by each protein enriched for pG4 binding interactions. Taking the set of 31 

proteins with significant overrepresentation for pG4 binding (Bonferroni-corrected P<0.001) and 

at least 20 unique pG4 binding sites in HepG2 or K562, we assessed overlaps between the 

various proteins’ pG4 gene targets (Fig. 2.10). We found low overlap of targets in helicases that 

have been hypothesized to bind RNA G4s frequently, such as DDX6, DDX51, and DDX52. In 

contrast, we find a subset of G4-binding proteins sharing a significant degree of overlap in G4-

gene targets, including FASTKD2, FAM120A, CSTF2T, PRPF4 and GTF2F1, none of which have 

been shown to bind RNA G4 structures previously. These data point to possible mechanisms of 
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gene control relying on the shared interactions of these proteins with their respective RNA 

targets. Indeed, assessing the functional associations of 133 pG4 genes sharing at least 3 out of 

5 protein-binding interactions from this module revealed enrichment for genes involved in viral 

process (GO:0016032, FDR-adjusted P=0.0268), suggesting that these genes and putative pG4 

binding proteins, may be involved in mediating host-viral interactions within the cell. 

 

Figure 2.10: Enrichment of specific protein–pG4 binding sites using CLIP-seq data from 
ENCODE. a, b Enrichment of specific proteins over pG4-binding sites within the 5′ UTR (left) and 
3′ UTR (right)—red line corresponds to P = 0.0001 (hypergeometric test). c, d Heatmaps depicting 
the significance of overlap (hypergeometric −log P value) in pG4 gene targets for proteins found 
to bind pG4 sequences preferentially. 
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2.7: 3’UTR pG4 in disease-causing genes are enriched for variants 

Multiple studies assessing evolutionary constraints in protein-coding regions of the human 

genome have shown that regions depleted of genetic variation are also enriched for pathogenic 

variation [85–87]. Under the principle that purifying selection removes deleterious variants from 

the genome to produce regions depleted of genetic variation, we expect UTR pG4s should also 

be enriched for pathogenic variation. Since pathogenic variants in ClinVar are overwhelmingly 

annotated in protein-coding regions of the genome, we are underpowered to test for a direct 

association between the set of annotated pathogenic variants and UTR pG4 sequences. Instead, 

we asked whether potentially pathogenic variation in ClinVar is enriched within UTR pG4 

sequences in known disease-associated genes. To test this hypothesis, we mapped all single 

nucleotide variants annotated in the most recent release of the ClinVar database available at the 

time of this writing [88] (April, 2019) across UTRs, and compared their relative density in pG4 

versus non-pG4 sequences in disease-associated genes. We defined the set of disease-

associated genes as any gene with at least one variant having an annotated as Pathogenic or 

Likely Pathogenic in ClinVar, excluding variants with an annotation of Benign or Likely_benign. To 

maximize our power for this analysis, we expanded our set of rG4-seq G4s to include all non-

canonical G4-forming sequences mapped and reported by rG4-seq in HeLa cells [63]. We found 

modest enrichment for variation in 3’UTR pG4 sequences, rG4 3’UTR sequences, and a notable 

enrichment in 3’UTR pG4 sequences within annotated RBP binding sites from ENCODE in 

disease-associated genes compared to non-pG4 forming regions of the 3’UTR - Fig. 2.11a (All 

pG4: OR 1.51, 95% CI 1.20-1.88, P<0.0005, rG4-seq pG4: OR 1.18, 95% CI 0.98-1.42, P=0.067, 

RBP pG4: OR 6.01, 95% CI 3.87-8.91, P<5e-12 - Fisher’s Exact Test). In contrast, there was only 

evidence for enrichment of variants in the 5’UTR rG4 sites (OR 2.32,  95% CI 1.93-2.78, 

P<2.25x10-16 Fisher’s Exact Test), but not pG4 or pG4-RBP overlap regions. It is important to 

note though that the above statistical test only contrasts relative enrichment of putative 

pathogenic variants in pG4 vs. non pG4 UTR sequences. Thus, the lack of such relative 

https://paperpile.com/c/469AhQ/CtqgQ+RytDQ+B4hb4
https://paperpile.com/c/469AhQ/FdDTC
https://paperpile.com/c/469AhQ/ZYuwZ
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enrichment in the 5’ UTR may reflect the generally greater density of other functional elements 

within 5’UTR sequences. In conclusion, these data imply that disease-associated noncoding 

variation may be enriched in 3’UTR pG4 regions. 

Finally, we tested for enrichment of common variants that have been associated with disease 

phenotypes using annotations available in the NIH GWAS Catalog (April 2019). There were not 

enough GWAS-associated lead variants within UTR pG4 regions to detect enrichment (7 variants 

in 5’UTR pG4, 4 in the 3’UTR pG4). However, given the enrichment for cis-eQTLs in UTR pG4, 

we hypothesized that disruption of UTR pG4 sequences could affect post-transcriptional 

mechanisms regulating gene expression, thus providing a potential mechanistic link between 

GWAS variants and their observed phenotypes. To test this hypothesis, we assessed evidence of 

allelic imbalance at select GWAS SNPs either falling within a UTR pG4 region, or in high LD with 

a common SNP (r-squared > 0.85 in the GBR population of 1KG) falling within a UTR pG4 in 

GTEx. Despite being limited by the number of heterozygous individuals in GTEx with matched 

whole-genome sequencing available, our analysis uncovered several proxy SNPs in high LD with 

GWAS tag-SNPs (Figure 2.18), and one GWAS lead variant exhibiting evidence of significant 

allelic imbalance. The lead GWAS variant, rs1048238 is a common SNP within the 3’UTR of 

HSPB7, a chaperone protein that is highly expressed in heart and skeletal muscle and has been 

associated with hypertension in a recent GWAS [89,90] (Fig. 2.11b). We found that rs1048238 

exhibited a substantial imbalance of reads mapping to the alternative allele in 84 heterozygous 

individuals, even after correcting for read-mapping biases using WASP-filtering [91]. Taken 

together, these results demonstrate that the predicted pG4-disrupting variant is associated with 

increased expression of the alternative allele at this locus (Fig. 2.11c-d). This association is 

consistent with our previous observations from transcriptome-wide mapping of pG4 eQTL 

showing that 3’UTR pG4 eQTLs tend to increase gene expression (Fig. 2.9) and suggest that the 

impact of these variants on gene expression are responsible for their respective GWAS 

associations. 

https://paperpile.com/c/469AhQ/c105y+cmDHj
https://paperpile.com/c/469AhQ/EMUOe
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Figure 2.11: UTR pG4 sequences are enriched for known pathogenic, and putative 
disease-associated genetic variants. (a) Annotated variants within ClinVar disease-associated 
genes occur with greater frequency in UTR pG4 sequences compared to non-pG4 UTR regions 
in the 3′ UTR across multiple G4 subsets (error bars represent the 95% confidence interval). (b) 
rs108348 maps to a 3′ UTR pG4 G-tract guanine within the primary HSPB7 transcript, which is 
encoded on the negative DNA strand. The SNP disrupts the canonical G4 sequence motif by 
causing a G to A mutation in the RNA transcript. (c, d) WASP-mapping of allele-specific reads in 
84 GTEx skeletal muscle samples reveals significant allelic imbalance favoring expression of the 
alternative allele (P value < 1 x 10−100, likelihood ratio test). Boxplot in c represents median and 1.5 
times the interquartile range of WASP-aligned RNA-seq reads aligning to the ference (red) or 
alternative (blue) allele. 
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2.8: Summary and future directions 

We have applied a deep catalog of human genetic variation to assess evolutionary pressures 

over putative G-quadruplex forming sequences within 5’ and 3’ UTRs. We hypothesized that if 

these regions are functionally important they should be depleted of variation. Supporting this 

hypothesis, we show that variation within UTR pG4 sequences is reduced compared to non-pG4 

UTR regions using a local sequence context based substitution model. Moreover, our analysis of 

positional constraint within the meta-pG4 motif reveals selective pressures acting on central 

guanines of each trinucleotide G-tract comparable to that of missense mutations in protein-coding 

regions of the genome. These findings are consistent with in vitro biophysical studies of DNA G-

quadruplex stability, which have shown that central position substitutions are most destabilizing, 

and consequently were predicted to be the most deleterious for native biological functions of G4s 

[76,92,93]. Interestingly, we find that non-central guanines appear less constrained compared to 

central positions - possibly because mutations at these positions may preserve the potential for 

RNA to form non-canonical G4 2-quartets. Indeed, these G4 2-quartets have been estimated to 

account for 1/4 to 2/3 of all RNA G4 structures observed by transcriptome-wide rG4-seq in HeLa 

cells [63].  

We also uncover a greater proportion of cis-eQTLs mapping to pG4 regions compared to non-

pG4 sequences within both 5’ and 3’ UTRs. Our analysis of nominally-significant cis-eQTL 

enrichment in UTR pG4 sequences may be confounded by the presence of linked SNPs that 

reach nominal significance because of their proximity to causal eQTL SNPs, however this likely 

deflates our estimates of enrichment in UTR pG4 sequences because the relatively smaller size 

of pG4 motifs (15 - 33nt) makes multiple linked nominally significant cis-eQTLs more likely to 

occur along the length of non-pG4 UTR regions. Nevertheless, the enrichment of cis-eQTLs 

within UTR pG4 remain unchanged when we limit each UTR pG4 feature to contain at most 1 

nominally-significant cis-eQTL SNP.  

https://paperpile.com/c/469AhQ/Wh22p+BJE4d+C5Ifv
https://paperpile.com/c/469AhQ/ZYuwZ
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Using CLIP-seq data for over 150 proteins published by ENCODE, we find 15 proteins whose 

binding sites are enriched for pG4 sequences across two cell lines, and identify regulatory 

modules associating a set of RNA binding proteins, including FAM120A, FASTKD2, and CSTF2T, 

with pG4 gene targets involved in viral mRNA expression. Indeed, several examples of viral hi-

jacking of eukaryotic RBPs have been reported in the literature [94,95], and G4-forming 

sequences have been found to occur commonly in multiple viral genomes [96]. This, coupled with 

the observation that RNA G4s appear to be universally depleted within prokaryotic transcriptomes 

[65], suggests that viruses might rely on G4s as a mechanism for co-opting host cell machinery 

involved in gene expression and RNA regulation. 

There are three primary limitations to the current study. First, we applied a text-based approach 

towards identifying regions of putative G-quadruplex formation within RNA UTRs. Although this 

approach has been commonly employed in previous work [63,72], there exists a considerable 

literature regarding possible variations to the canonical G-quadruplex forming sequence and 

methods that capture more variable motif definitions [97,98]; [99]. Given the comparably limited 

evidence that many of these alternative G-quadruplex sequences form readily in cellulo we used 

a more stringent motif definition, but alternative G4 sequences will have been missed in our 

analysis. The modest enrichment in singletons at the central position of trinucleotide G- and C-

tracts not matching our canonical pG4 sequence motif is consistent with this possibility. Thus, our 

assessment of sequence constraint and functional enrichment within UTR G4 forming regions is 

likely incomplete. Secondly, although we have uncovered evidence suggesting G4 secondary 

structure formation is constrained, whether these pG4s form secondary structures in vivo remains 

unclear. Finally, our assessment of selective pressures acting across UTR pG4 sequences using 

the MAPS metric is limited in power by low variant numbers. Nevertheless, we report multiple 

lines of evidence supporting the biological importance of putative secondary structure-forming G-

https://paperpile.com/c/469AhQ/uQuu6+AlPW2
https://paperpile.com/c/469AhQ/Sp2Et
https://paperpile.com/c/469AhQ/VNzKr
https://paperpile.com/c/469AhQ/ZYuwZ+XBNjA
https://paperpile.com/c/469AhQ/ygK0C+78If4
https://paperpile.com/c/469AhQ/lOwxl
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quadruplexes within UTRs. Although RNA UTRs represent only a small fraction of the noncoding 

genome, they are core components involved in mediating post-transcriptional regulation of gene 

expression. Ultimately, we hope this work will motivate researchers to consider G4s and other 

RNA elements in UTRs when assessing the possible impact of genetic variations in human health 

and disease. 
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2.9: Supplementary Materials to Integrative analysis reveals RNA G-Quadruplexes are 

selectively constrained and enriched for functional associations 

 

 
Figure 2.12: Distribution of binned distances for mapped canonical 5’ (left) and 3’ (right) 
UTR pG4 sequences with respect to protein-coding sequences across pG4-UTR 
containing mRNA transcripts. The relative locations of pG4 sequences within UTRs are plotted 
(x-axis), with 0 being adjacent to the coding sequence, and 1 representing the full-length of the 
annotated UTR away from the CDS. 

 
 
 

 
Figure 2.13: Quantile-quantile plot showing matching between pG4 and non-pG4 
containing transcripts based on  LOEUF scores for 5’UTR (left) and 3’UTR (right) 
transcripts. Allele frequencies (Figure 1b) and substitutions (Figure 1c) were compared across 
constraint-matched transcripts using gnomAD’s LOEUF metric to control for the possibility that 
nearby constrained coding sequences might affect local allele frequency estimates. LOEUF 
scores for non-G4 transcripts plotted on the X-axis and LOUEF scores for G4-containing 
transcripts are plotted on the Y-axis.  
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Figure 2.14: The empirical distribution of observed vs. expected number of substitutions 
across 10,000 bootstrapped 5’ and 3’ UTR regions in the European subpopulation of the 
1000 Genomes Project Phase 1 release. Red dotted line indicates the observed vs. expected 
ratios estimated by applying the noncoding heptamer mutation model across 5’UTR and 3’UTR 
pG4 sequences respectively. 
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Figure 2.15: MAPS scores for All (black), G4 (red), and non-G4 GGG/CCC (blue) variants 
across multiple gene sets. Error bars represent 90% CI from 10,000 bootstraps.Top ⅓ LOEUF 
represent MAPS scores for pG4 versus non-pG4 variants within the top-1/3rd most constrained 
genes as estimated by the gnomAD LOEUF metric. Alt. pG4 represent alternatively included pG4 
sequences while Const. pG4 represent constitutively included pG4 sequences. ClinVar pG4 
sequences are those pG4 within UTRs of disease-associated genes in ClinVar. Permutation P-
values for the second guanine of each trinucleotide G-tract context compared to non-pG4 G-
tracts in UTRs are: P=0.0195 for all UTRs, P=0.1063 for Top ⅓ LOEUF, P=0.0124 for Alt. pG4, 
P=0.4653 for Const. pG4, and P=0.0579 for ClinVar pG4. Genome-wide MAPS scores for 
synonymous (grey), missense (orange), and putative loss of function (red) protein-coding 
variation shown as dotted lines. 
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Figure 2.16: Distribution of odds ratio with error bars representing 95% confidence interval 
for changing gene expression of a pG4 containing gene versus a non-pG4 containing gene 
with sh-RBP knockdown in ENCODE as determined by Fisher’s Exact Test.  Results for 
HepG2 (a) and K562 (b) are shown. Colors represent a tendency for an RBP-knockdown to 
increase the expression of pG4 containing genes (blue), decrease their expression (red) or have 
no effect on changing the expression of pG4 genes (grey) at an FDR < 0.001. Proteins having the 
same direction on changing pG4 gene expression across both HpeG2 and K562 cell lines are 
marked by an asterisk. 
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Figure 2.17: Boxplot of distribution of distances between 5’ UTR (a) and 3’UTR (b) pG4 
sequences and nearest annotated protein-coding exons in ClinVar disease-associated 
genes showing the 1.5 times the interquartile range and median values. Compared to 
randomly selected positions within non-pG4 5’ and 3’ UTRs of ClinVar disease-associated genes, 
UTR pG4 sequences tend to be located further away from protein-coding exons. 
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Figure 2.18: Additional common SNPs in high LD (r2 > 0.85 in the 1000 Genomes GBR 
population) with GWAS tag SNPs exhibiting evidence of allelic imbalance in UTR pG4 
sequences. rs352047, rs77247684, and rs761153 affect 3’UTR pG4 sequences. rs11864750 
affects a 5’UTR pG4 sequence.  
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CHAPTER 3: DISRUPTING UPSTREAM TRANSLATION IS ASSOCIATED WITH 

LOSS-OF-FUNCTION IN HUMAN DISEASE* 

 

3.1: Ribosome profiling and non-canonical open reading frames 

With the completion of the human draft genome sequence, elucidating the number of protein-

coding genes represented a major challenge. While searching for known homologs using existing 

gene databases could help map the locations of known protein-coding sequences in the human 

genome, these strategies depended on the completeness of existing databases and the degree 

of evolutionary relatedness between humans and other species [100]. Naive approaches to 

mapping protein coding sequences relied on identifying sequence stretches that could 

correspond to open reading frames (ORFs) based on the amino acid code. These techniques 

identified sequence stretches consisting of first identifying an upstream start codon, and scanning 

along the DNA sequence in search for an in-frame downstream TGA, TAG, or TAA stop codon. 

Under the assumption that the DNA has a random sequence, and ~50% GC-content, a 

trinucleotide stop sequence is expected to appear once every 64 base pairs. Putative protein-

coding ORFs could therefore be identified if they extended significantly beyond this expected 

length. Crucially, ORFs smaller than 64 base pairs could not be distinguished from background 

nucleotide distributions and therefore could not be annotated as functional with certainty. While 

this ORF-scanning approach could be used to identify almost all the known protein-coding genes 

in prokaryotes, the increased size and widespread presence of introns of the eukaryotic genome 

presented significant challenges. 

 

*Published as Lee, D.S.M. et al. BioRxiv 2020. https://doi.org/10.1101/2020.09.09.287912. 

https://paperpile.com/c/469AhQ/n6zY
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To address these challenges, several refinements to the basic ORF-scanning approach were 

proposed. These included using biased codon distributions of known protein-coding regions of 

the genome to assess new putative ORFs, identifying exon-intron boundaries using known splice-

site motifs, and matching putative genes to upstream regulatory sequences including CpG islands 

that typically mark the beginning of protein-coding genes [100]. Although these strategies 

significantly improved computational ORF mapping from human DNA sequence alone, low-

throughput experimental validation remained indispensable to ascertaining whether predicted 

ORFs were truly capable of producing endogenous protein products. 

Annotation of ORFs using direct experimental evidence of ribosome translation is now possible 

through high-throughput ribosome profiling. Ribosome profiling is an experimental technique that 

produces a global, quantitative snapshot of actively translating ribosomes throughout the cell 

[101]. The typical experimental workflow involves treating cells with compounds that inhibit 

translational elongation and immobilize translating ribosomes on RNA transcripts. These RNAs 

are extracted and digested using nucleases that remove RNA fragments unprotected by the 

presence of immobilized ribosomes. After digestion, ribosomal RNA (rRNA) is depleted, and the 

remaining ribosome-protected fragments are sequenced and re-aligned to the genome (Fig 

3.1).  Because translation elongation proceeds with a 3-nucleotide periodicity, this feature can be 

combined with others to computationally annotate putative ORFs throughout the transcriptome 

[101,102]. 

 

 

 

 

 

https://paperpile.com/c/469AhQ/n6zY
https://paperpile.com/c/469AhQ/MpMX
https://paperpile.com/c/469AhQ/MpMX+3WmL
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Figure 3.1: Basic experimental workflow for ribosome profiling.  
 

3.2: Pervasive translation in non-canonical open reading frames 

The unanticipated abundance of ribosome-protected fragments mapping outside of known 

annotated protein-coding regions of the genome was a key observation arising from early 

ribosome-profiling studies [102–104]. When mapped back to the genome, many of these 

fragments shared similar characteristics to ribosome-protected fragments in known coding 

regions of the genome, including size distribution and 3-nucleotide periodicity [105]. Together, 

these studies suggested that cellular RNAs previously not thought to encode for functional 

proteins or peptides were nevertheless being translated by ribosomes. As many of these newly 

mapped non-canonical ORFs (ncORFs) were short in length, some suggested that they could 

encode for functional micropeptides which had been previously overlooked in ORF mapping 

studies due to biases favoring ORF annotation with longer sequence lengths [104–107]. 

https://paperpile.com/c/469AhQ/ScuY+iueD+3WmL
https://paperpile.com/c/469AhQ/xyVz
https://paperpile.com/c/469AhQ/xyVz+iueD+LsbA+T4HF
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Early examples of functional micropeptides had been characterized in the literature prior to their 

being identified in ribosome profiling data. Early evidence of micropeptide functionality was first 

characterized in yeast, where mutagenesis studies of 247 small ORFs <100 amino acids in length 

identified 22 ORFs required for haploid growth [108]. Specific functional small ORFs were further 

characterized from studies in Drosophila using polysome profiling - a technique which involves 

fractionating cellular mRNAs in a sucrose gradient to extract species bound by multiple 

ribosomes - which identified that select noncoding RNAs without obvious coding potential could 

be enriched from polysome-bound fractions [109]. Among these early examples of translated 

noncoding RNAs, the tarsal-less (tal) gene transcript was found to encode 4 small ORFs capable 

of producing 11-amino-acid-long peptides indispensable for early Drosophila morphogenesis 

[109]. Further investigation of polysome-bound noncoding RNAs from Drosophila identified a 

second polycistronic noncoding RNA (pncr003:2L) encoding two ORFs of length 28 and 29 amino 

acids each producing peptide products involved in regulating cardiac calcium transport [110]. 

Together these functional micropeptides served as early evidence that length-biases in gene 

discovery pipelines may have overlooked an entire class of functional elements encoded within 

sequenced genomes. 

To date, several additional examples of functional micropeptides in the human genome have 

been reported. These include several micropeptides implicated in regulating intracellular calcium 

levels and muscle contraction [111–113], the inflammatory response [114,115], and cellular 

metabolism [116–120]. Although modern ribosome-profiling approaches have uncovered 

widespread evidence translation in thousands of small non-canonical ORFs (ncORFs) in the 

human genome [102,121,122], what fraction of these ncORFs (ncORFs) can produce functional 

micropeptides remains an open question.  

A second possibility is that translation of ncORFs serve regulatory rather than coding functions. 

This regulatory hypothesis is most strongly supported by studies of upstream open reading 

https://paperpile.com/c/469AhQ/6Jht
https://paperpile.com/c/469AhQ/xeWs
https://paperpile.com/c/469AhQ/xeWs
https://paperpile.com/c/469AhQ/5JSi
https://paperpile.com/c/469AhQ/pcWP+pUBt+N7yP
https://paperpile.com/c/469AhQ/OO60+1W5g
https://paperpile.com/c/469AhQ/F5TB+VvDO+Hrsm+jzFy+gUyX
https://paperpile.com/c/469AhQ/8MAr4+3WmL+IcgD
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frames (uORFs). Since uORFs can initiate translation by ribosomes prior to their reaching 

downstream coding sequences (CDS), they are most frequently associated with repressive 

effects on downstream CDS translation [122–124]. Moreover, it has been observed that cis-

regulatory relationships between uORFs and downstream coding sequences are frequently 

maintained across species, but the nucleotide content of these ORFs are not [122,125]. Together, 

this evidence implies that the functional importance of uORF translation is in its regulatory effect 

on downstream protein expression rather than micropeptide encoding. Nevertheless, a few 

examples of uORF-encoded micropeptides which are capable of repressing downstream 

translation initiation at the CDS in a peptide-dependent have also been observed, although this 

phenomenon appears to be the exception rather than the rule [126,127]. More recently, the 

striking pervasiveness of translation outside of canonical protein coding ORFs revealed by 

ribosome profiling has not stopped some from speculating that micropeptides resulting from 

ncORF translation are broadly functional [107]. 

 

3.3: Disrupting upstream translation in mRNAs is associated with loss-of-function in 

human disease 

The classic view of information processing in the cell by gene expression occurs through 

transcription followed by translation. This basic flow is often complicated by regulatory elements 

which confer additional stages of processing and control. In particular, upstream open reading 

frames (uORFs) are segments of 5’UTR mRNA sequences that can initiate and terminate 

translation upstream of protein-coding start codons. Specific uORFs are known to control protein 

expression by tuning translation rates of downstream protein-coding sequences, and potential 

uORFs have been identified in ~50% of all human protein-coding genes [123,128]. 

Translation initiation is the rate-limiting step controlling post-transcriptional gene expression [129], 

and rates of translation initiation can significantly impact mRNA stability [130–134]. Cap-

https://paperpile.com/c/469AhQ/lRL3y+IcgD+L4Tl
https://paperpile.com/c/469AhQ/557f+IcgD
https://paperpile.com/c/469AhQ/1K6y+gt4Q
https://paperpile.com/c/469AhQ/T4HF
https://paperpile.com/c/469AhQ/sib2K+lRL3y
https://paperpile.com/c/469AhQ/ENqrP
https://paperpile.com/c/469AhQ/0iLqq+VNIkZ+AloYt+95f8b+ZXWcM
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dependent translation initiation begins when the 40s ribosomal subunit encounters a start codon 

as it scans along the 5’UTR. At the start codon, the 40s subunit acquires the 60s subunit with 

other translation initiation factors and peptide synthesis begins. Scanning ribosomes 

encountering uORFs may prematurely initiate translation in the 5’UTR; if this occurs, upon 

reaching the uORF termination codon the ribosome may dissociate from the mRNA transcript, or 

the 40s subunit may resume scanning after the 60s subunit is lost. Resumption of scanning leads 

to translation of downstream reading frames only if the necessary translation initiation factors are 

reacquired by the 40s subunit before reaching the downstream start codon. Thus, the spatial 

combination of uORFs and protein-coding start codons can produce different effects on 

translation of the downstream gene.  

Previous analyses of large-scale population data have shown that genetic variants creating new 

uORFs are rare, suggesting that these variants are subjected to strong negative selection due to 

their capacity to cause pathogenic loss-of-function of associated proteins [123,135]. Moreover, it 

has been shown that variants destroying stop codons in translated uORFs are under strong 

negative selection, presumably because the resultant translational readthrough can decrease 

start codon recognition and translation initiation at the coding sequence (CDS) [46]. In contrast, 

less is known about the impact of genetic variation within translated uORFs. Furthermore, recent 

untargeted ribosome-profiling experiments have revealed striking evidence of active translation at 

thousands of uORFs throughout the genome, but the biological significance of this phenomenon 

remains unresolved [123]. 

Here we use translated uORFs mapped through ribosome-profiling experiments and a deep 

catalogue of human genetic variation to characterize patterns of selection acting on single 

nucleotide variants (SNVs) in translated uORF sequences. We assess evidence for the functional 

importance of translation at uORFs, and explore possible phenotypic consequences associated 

with genetic variation in these sequences. Using the allele frequency spectrum of SNVs from 

https://paperpile.com/c/469AhQ/k6Q44+lRL3y
https://paperpile.com/c/469AhQ/wLW7
https://paperpile.com/c/469AhQ/lRL3y
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71,702 whole genome sequences in gnomAD, we find that SNVs introducing new stop codons, or 

creating stronger translation termination signals in uORFs are under strong selective constraints 

within 5’UTRs. We propose that these variants are under selective pressure because they disrupt 

translation initiation at downstream protein-coding sequences. We then utilize the Penn Medicine 

Biobank (PMBB) to discover new, robust disease-gene associations using uORF stop-creating 

and stop-strengthening variants and replicate these associations in the UK Biobank (UKB), and 

by gene burden tests aggregating rare protein-coding loss-of-function variants. Finally we validate 

the impact of uORF stop-creating and stop-strengthening variants on protein expression for our 

top phenome-wide significant associations. These data demonstrate that mutations in translated 

uORFs creating new stop codons, or strengthening existing stop codons can contribute to 

disease pathology by changing protein expression. 

 

3.3: Variants introducing new stop codons in uORFs are under strong negative selection 

Since elongating ribosomes must translate uORFs before they reinitiate translation at the CDS, 

we hypothesized that genetic variants introducing new stop codons in translated uORFs could 

impede downstream translation initiation. Because these variants interrupt translation without 

affecting the coding sequence directly, we term them upstream termination codons (UTCs) to 

distinguish them from premature termination codons within protein-coding sequences. 

To estimate the deleteriousness of UTC mutations, we assessed their frequency spectrum in 

gnomAD using the Mutability-Adjusted Proportion of Singletons (MAPS) metric. MAPS compares 

the strength of selection acting against different classes of functional variation by assessing the 

relative enrichment for rare singleton (one sequenced allele) variants in gnomAD, adjusted for 

local mutation rates (see Appendix B). More deleterious groups of SNVs - including premature 

termination codons and essential splice site mutations - show greater enrichment in singletons in 

gnomAD, and consequently have higher MAPS scores. MAPS has previously been used to 
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assess patterns of selective pressures acting on different classes of variation in both protein-

coding and non-coding regions of the genome [37,45,135–138]. 

Using translated uORFs from 4392 genes identified by deep ribosome profiling of two human cell 

lines (Figure 3.11) [94], we mapped genetic variation from 71,702 whole-genome sequences in 

gnomAD (version 3)[91]. We identified the subset of UTC mutations by selecting SNVs which 

mutated uORF codons to either UGA, UAG, or UAA in the mapped uORF reading frame (Figure 

3.2a). We calculated MAPS scores for these UTC mutations, finding that they are under strong 

negative selection within 5’UTRs, comparable to that of missense mutations in canonical protein-

coding regions of the genome (Figure 3.2b). Indeed, MAPS scores for these variants are 

significantly higher than all uORF variants (Figure 3.2b, P<0.001), sets of uORF variants matched 

by their underlying trinucleotide mutation context (Figure 3.12, P<0.001 - see Appendix B), all 

5’UTR variants creating UTCs outside of mapped translated uORFs (P=0.0441), and stop-

creating variants in ORFs in 3’UTRs, translated pseudogenes, and lncRNAs also mapped by 

ribosome-profiling from the same study (Figure 3.2b P=0.0041, Figure 3.11). Intriguingly, MAPS 

scores were highest for variants predicted to introduce strong (UAA) stop codons that are less 

susceptible to translational read-through [95–97]. In contrast, variants introducing the weaker 

UGA stop codon exhibited MAPS scores that are only nominally higher than MAPS scores for all 

uORF variants (P = 0.2833), suggesting that they may be less deleterious by comparison. To 

account for the possibility that the heightened MAPS scores for UTC mutations resulted from 

overlap between 5’UTRs and annotated coding sequences in different mRNA isoforms, we 

repeated this analysis excluding all uORF variants overlapping with any annotated CDS 

sequence. Re-calculated MAPS scores with all CDS-overlapping variants removed remained 

essentially unchanged (Table 3.2), ruling out the possibility that the enrichment in rare variation 

for UTC mutations is driven by selection on coding sequences. Additionally, we previously 

observed that variants destroying the central guanine of putative G-quadruplex forming 

sequences exhibit heightened MAPS scores in UTRs. We repeated this analysis with all potential 

https://paperpile.com/c/469AhQ/c1yWa+FjIfv+BcqFG+k6Q44+NnU1f+MSVv
https://paperpile.com/c/469AhQ/8MAr4
https://paperpile.com/c/469AhQ/FjIfv
https://paperpile.com/c/469AhQ/zfWml+BFxTm+pOmKQ
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G-quadruplex disrupting variants (n = 57) excluded, seeing a negligible effect on MAPS scores 

for all UTC mutations (MAPS = 0.0377, 95% CI: 0.0196-0.0557). Overall, the strong selective 

pressure to remove UTC mutations implies that these variants are also more likely to have 

functional biological consequences. 

 

 

Figure 3.2: Stop-introducing and stop strengthening mutations in translated uORFs are 
under strong negative selection. (a) Examples of possible stop-gained (UTC) or stop-
strengthened mutations in translated uORFs. (b) Mutability-Adjusted Proportion of Singletons 
(MAPS) scores for different classes of stop-introducing mutations within translated uORFs. Grey, 
orange, and purple dashed lines represent MAPS scores for synonymous, missense, and 
predicted loss-of-function (pLOF) SNVs affecting canonical protein-coding sequences in 
gnomAD. (i) MAPS scores for non-uORF variants including all 5’UTR SNVs, stop gained 
mutations in ncORFs, and all 5’UTR stop gained mutations (ii) MAPS scores for all uORF SNVs 
and stop gained mutations in uORFs show that uORF UTC mutations are significantly enriched 
for singletons. This is also observed for UAA-creating, and stop-strengthening SNVs in translated 
uORFs. Error bars represent bootstrapped 90% confidence intervals.  

3.4: Translated uORFs use weak stop codons 

Stop codons have different translation termination efficiencies in both prokaryotes and 

eukaryotes, with the hierarchy following the general pattern of UAA > UAG > UGA [139,142,143]. 

Given the observed selection against UTC mutations in translated uORFs, and in particular 

against UAA-introducing variants, we next asked whether stop codon usage by translated uORFs 

is distinct from the background distribution of UGA, UAG, and UAA trinucleotides in 5’UTRs. To 

perform this comparison, we determined the relative frequency that UGA, UAG, or UAA 

https://paperpile.com/c/469AhQ/7RwVB+zfWml+kDyvA
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trinucleotide sequences appeared within non-translated 5’UTR sequences, and compared this 

frequency to the distribution of stop codons used in translated uORFs. To further control for the 

possibility that translated-uORF containing UTRs might have significantly different background 

nucleotide distributions, we also assessed the relative frequency of UGA, UAG, or UAA 

trinucleotides from uORF-containing UTRs with translated uORF sequences excluded. Strikingly, 

we find that translated uORF stop codons are significantly depleted of UAAs compared to 

background UTR distributions (Figure 3.3a), suggesting that weaker stop-codons (UGA, UAG) 

are preferred (permutation P<0.001 compared to all UTRs, P<0.001 compared to uORF-

containing UTRs). Indeed there are approximately 45% less uORF UAA stop codons compared 

to the relative frequency of UAA trinucleotides in adjacent untranslated UTR sequences (uORF-

UAA=19%, matched UTR-UAA=35% - Table 3.3). In contrast, UGA stop codons are enriched 

within translated uORFs compared to non-translated UTR sequences (permutation P<0.001 

compared to all UTRs, P<0.001 compared to uORF-containing UTRs). 

 

Figure 3.3: Translated uORFs tend to use weak stop codons. (a) Relative frequencies of 
trinucleotides used as uORF stop codons compared to untranslated regions of uORF-containing 
5’UTRs, or all 5’UTRs shows uORFs are significantly enriched for weaker (UGA, UAG) stop 
codons and depleted of the UAA stop codons compared to control sequences. Error bars 
represent 95% bootstrapped confidence intervals. (b) Proportion of strongly conserved (phyloP > 
2) bases by phyloP scores from 100-way vertebrate alignments for uORF stop-creating, non-
uORF stop-creating in uORF-containing UTRs, and non-uORF stop-creating in all UTR genomic 
positions. Error bars represent 90% bootstrapped confidence intervals. 
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Given the depletion of UAA-stop codons in translated uORFs, we next asked whether variants 

changing weaker stop codons (UGA, UAG) to UAA were also enriched for singletons. Compared 

to synonymous and missense variation within the protein-coding genome, we find that the MAPS 

metric for stop-strengthening variants is significantly higher (Figure 3.2b-ii). This difference 

remained significant compared to uORF variants matched by trinucleotide context, indicating that 

this effect is specific to uORF stop codons (P=0.012, Figure 3.12). Given that UAA codons can 

facilitate greater termination efficiency and more rapid ribosomal dissociation from mRNAs 

compared to UAG and UGA codons [139,144,145], these results are consistent with the 

possibility that stronger stop codons in uORFs can also increase the efficiency of translation 

termination in the 5’UTR. Thus, like UTC mutations, stronger stop codons in uORFs may be 

disfavored because they decrease the probability that ribosomes reinitiate translation at 

downstream coding sequences. 

 

3.5 Genomic positions that can create new stop codons in uORFs are conserved 

Since the power of MAPS estimates are limited by the number of variants observed in gnomAD, 

we assessed the evolutionary conservation of each possible uORF stop-creating position as 

complementary evidence for their functional significance. For this, we compared the distribution of 

phyloP scores across potential uORF-stop-creating positions derived from the UCSC 100-way 

phyloP vertebrate alignment [38].. Specifically, for each potential new stop site, we compared the 

proportion of genomic positions with a phyloP score of > 2 - corresponding to strong conservation 

across multi-vertebrate alignment - versus those positions that were not strongly conserved 

(phyloP < 2). A similar approach has been used to show that genomic positions with the potential 

to produce new uORFs are strongly conserved across vertebrates [135]. 

We performed several assessments of phyloP scores across 5’UTR contexts. Consistent with our 

MAPS analysis, potential stop-creating positions in translated uORFs are also more likely to be 

https://paperpile.com/c/469AhQ/zfWml+3lNs5+uH7C7
https://paperpile.com/c/469AhQ/SxHSk
https://paperpile.com/c/469AhQ/k6Q44
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conserved compared to UTR positions matched by distance to the downstream coding sequence. 

This difference remained significant even when compared to potential stop-creating positions in 

5’UTR sequences adjacent to (but not within) translated uORFs (Figure 3.3b). Strikingly, 

conservation at each stop-creating position within mapped translated uORFs mirrored the 

strength of stop-codon contexts, with a positive correlation between the strength of the potential 

stop codon introduced and the proportion of uORF genomic positions that are conserved. This 

trend was not observed for non-translated 5’UTR contexts (Figure 3.3b). In all cases, the 

proportion of conserved bases for each class of potential stop-creating variant was significantly 

higher than those positions in all 5’UTRs, and particularly within untranslated regions of 

translated-uORF containing UTRs (P<0.001, Figure 3.3b). Moreover, the proportion of highly 

conserved bases at possible stop-creating positions increased in association with increasing 

gene constraint, as determined by the gnomAD LOEUF score, and remained significantly higher 

than non-uORF 5’UTR stop-creating positions (Figure 3.13). Together, these complementary 

analyses support our initial findings that UTC mutations are under strong negative selection within 

the human genome, and further strengthens the evidence that UTC mutations may functionally 

disrupt protein expression. 

 

3.6: Upstream open reading frames are not under strong selection to maintain amino 

acid identity 

Multiple transcriptome-wide ribosome profiling studies have proposed that some uORFs can 

encode functional micropeptides with important cellular roles [106,107,121]. This has fostered 

significant interest in the possibility that translated, non-canonical ORFs represent an overlooked 

class of potentially functional micropeptides with biological activity independent of the 

downstream protein-coding sequences [107,146]. If many uORFs encoded functional 

micropeptides, the pattern of constraint against UTC mutations might also reflect selection to 

https://paperpile.com/c/469AhQ/LsbA+T4HF+8MAr4
https://paperpile.com/c/469AhQ/k0ERV+T4HF
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preserve micropeptide function rather than downstream translation initiation. To address this 

possibility, we asked whether uORFs broadly exhibit similar constraints against missense 

variation, compared to known protein-coding regions of the genome, that could imply peptide 

functionality. We compared MAPS scores for predicted missense versus synonymous mutations 

in translated uORFs to those in canonical protein-coding regions of the genome (Figure 3.4). The 

MAPS scores for missense mutations in uORFs were significantly lower than that of missense 

mutations in canonical protein-coding regions of the genome, and not significantly higher than 

MAPS scores for synonymous variants in translated uORFs (P=0.7118, Figure 3.4a-iv). These 

results indicate that selection to maintain amino acid identity in uORF-encoded micropeptides is 

weak compared to canonical protein-coding sequences. As an additional control, we computed 

MAPS scores for predicted missense and synonymous mutations in 693, 1188, and 276 

translated non-canonical ORFs (ncORFs) mapped by ribosome profiling in 3’UTRs (dORFs), 

long-noncoding RNAs, and pseudogenes respectively, as these sequences are not thought to 

broadly encode for functional peptides. Similar to uORFs, predicted missense variants in these 

additional ncORFs were not significantly higher than predicted synonymous variants by MAPS 

score (dORFs P=0.3532; lncRNAs P=0.7777, pseudogenes P=0.4523 Figure 3.4a-i-iii). 

Since many translated uORFs are short, we asked whether longer uORFs might exhibit greater 

selection against missense variants compared to shorter uORFs. To test this possibility, we 

divided uORFs into long sequences >118 codons comprising the top 25% longest mapped 

uORFs, and short uORFs <118 codons in length. MAPS scores for missense variants in long 

versus short uORFs yielded no evidence of significant constraint acting on amino-acid changing 

variants compared to synonymous SNVs (long uORFs P=0.178, short uORFs P=0.9628, Figure 

3.4a-v).  
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Figure 3.4: ncORFs do not exhibit strong selective pressure to maintain amino acid 
identity. MAPS scores for single nucleotide variants within each ncORF category separated by 
predicted consequence (synonymous or missense) in each ORF. (i-iv) Allele frequencies for 
predicted missense SNVs are not significantly enriched for singletons than those for predicted 
synonymous SNVs. (v) MAPS scores are no different for long uORFs (> 118 codons) compared 
to the rest (short). Grey, orange, and purple dashed lines represent MAPS scores for 
synonymous, missense, and predicted loss-of-function (pLOF) SNVs affecting canonical protein 
coding sequences in gnomAD. Error bars represent bootstrapped 90% confidence intervals. 

Surprisingly, we observed that MAPS scores for both synonymous and missense variants in 

translated uORFs deviated significantly from all 5’UTR variation (Figure 3.4a-iv). These 

heightened MAPS scores implied that uORF variants are under increased negative selection 

compared to all 5’UTR variants. The absence of similar effects for variants in dORFs, lncRNAs, or 

translated pseudogenes implies that this enrichment in singletons is unique to translated uORFs. 

One possibility is that synonymous variation in uORFs reflect selective pressures to maintain 

translational efficiency by preserving codon optimality. Messenger RNAs that are enriched with 

more optimal codons are both more stable, and more efficiently translated by ribosomes [147]. 

Like UTC mutations, uORF mutations introducing suboptimal codons could therefore slow 

translational elongation and impede downstream translation initiation at the CDS. Indeed, 

mutations introducing suboptimal codons in translated uORFs have been shown to disrupt 

translation initiation at downstream coding sequences [148–150], and more generally 5’UTRs are 

https://paperpile.com/c/469AhQ/Inth3
https://paperpile.com/c/469AhQ/uUsaW+R63IY+eSDqK
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under selective pressures to maintain their capacity for facilitating translation initiation at the CDS 

[151,152].  

 

Figure 3.5: Synonymous and missense variants in translated uORFs are under selective 
pressure to maintain codon optimality. (a) Translated uORF variants ranked by predicted 
change to codon optimality using codon stability coefficient (CSC) scores from SLAM-seq (red = 
decreasing, blue = increasing) [110]. Grey dotted line denotes boundary separating optimality 
increasing versus decreasing SNVs. (b) MAPS scores for SNVs separated by predicted 
consequence on codon optimality shows heightened constraint against decreasing optimality 
variants, while variants increasing optimality are indistinguishable from all 5’UTR variants. Error 
bars represent bootstrapped 90% confidence intervals. 

To test whether mutations in translated uORFs are constrained to maintain codon optimality, we 

asked if MAPS scores for mutations predicted to decrease codon optimality differed from those 

that increased codon optimality (Figure 3.5a). Using experimentally determined codon-stability 

coefficients (CSCs) [153], we matched each uORF SNV with its predicted consequence to codon 

optimality, and compared MAPS scores for optimality-increasing versus optimality-decreasing 

SNVs. As expected, SNVs increasing codon optimality were indistinguishable from all 5’UTR 

variants (P=0.1929, Figure 3.5b). In contrast, variants predicted to decrease codon optimality had 

significantly higher MAPS scores (P<0.001), although the magnitude of this difference is 

moderate compared to UTC mutations (Figure 3.3b). This effect remained significant regardless 

https://paperpile.com/c/469AhQ/7Sz6M+Aud9d
https://paperpile.com/c/469AhQ/pXpZD
https://paperpile.com/c/469AhQ/pXpZD
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of whether variants were predicted to cause synonymous or missense mutations (P=0.0125 for 

synonymous; P=0.009 for missense), and was notably absent for translated ORFs in 3’UTRs, 

lncRNAs, and pseudogenes (Figure 3.5b, Figure 3.14). Furthermore, this pattern of increased 

constraint against optimality-decreasing mutations was robust to the use of CSC scores derived 

from alternative experimental approaches across several cell lines (Figure 3.15) [153]. Together, 

these observations further support the hypothesis that natural selection acts to maintain the 

capacity for translational initiation at downstream coding sequences by preserving translational 

elongation efficiency in uORFs. 

3.7: uORF start codons are conserved and under strong selective pressure 

The finding of heightened selection against translation-interrupting variants in uORFs raises the 

question of why translated uORFs continue to persist in a large fraction of human genes. 

Evidence that uORF-CDS organization, and the strength of uORF repression is strongly 

conserved across vertebrates, suggests that translation at uORFs is maintained to regulate 

downstream translation initiation [122]. Moreover, variants destroying uORF start codons have 

been implicated in the development of cancer [154]. To provide further genetic evidence that 

translation at uORFs is maintained by selection, we asked whether allele frequencies for variants 

affecting uORF start codons also exhibited strong selection to maintain their capacity for 

translation initiation. Using the MAPS metric, and genome-wide phyloP scores, we evaluated 

patterns of variation affecting uORF start codons. Since many translated uORFs begin with non-

canonical start codons (Figure 3.6a-i), we distinguish between variants maintaining the start 

context by affecting the first position of the NUG trinucleotide from those that disrupt translation 

initiation by mutating the last two nucleotides in the uORF start codon (Figure 3.6a-ii). As 

expected, start-maintaining variants are no more enriched for singletons in gnomAD compared to 

synonymous protein coding variants. In contrast, start-disrupting mutations are enriched for 

singletons at a level comparable to that of protein-coding missense and UTC mutations (Figure 

3.7). The heightened pressure to maintain translational initiation at uORF start codons is similarly 

https://paperpile.com/c/469AhQ/pXpZD
https://paperpile.com/c/469AhQ/IcgD
https://paperpile.com/c/469AhQ/DsC0T
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reflected in phyloP scores for uORF start-disrupting genomic positions compared to distance-

matched UTR controls (P < 0.001), and uORF-matched controls (P < 0.001, Figure 3.8). These 

data show that translation initiation at uORFs is evolutionarily constrained in humans, and are 

consistent with previous reports that uORF start codons are frequently conserved across species. 

Taken together, our analyses of genetic variation in gnomAD show enrichment for rare allele 

frequencies in the frequency spectra of uORF start-disrupting, stop creating, and stop-

strengthening mutations. Results from our analyses indicate that these classes of variation are 

under a heightened degree of negative selection, and imply that processes of translation 

initiation, elongation, and termination at translated uORFs are maintained by selective pressure. 

 

 

 

Figure 3.6: Start codon usage for uORFs mapped by ribosome profiling. (i) Distribution of 
start codon usage for experimentally mapped translated uORFs, and (ii) possible consequences 
of mutations affecting uORF start codons. 
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Figure 3.7: MAPS scores for uORF start disrupting variants. (i) MAPS scores for start-
disrupting SNVs are compared to uORF variants matched by trinucleotide mutation context. (ii) 
Start-disrupting SNVs for short (< 20 codons) uORFs are under stronger negative selection 
compared to start-disrupting variants for long (>= 20 codons) uORFs. Error bars represent 
bootstrapped 90% confidence intervals. 
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Figure 3.8: PhyloP estimates for possible start codon disrupting positions. uORFs start 
disrupting positions are compared to all uORF SNVs, UTR-matched start-disrupting positions, 
and uORF-matched start-disrupting positions in translated uORFs. Start-disrupting genomic 
positions of short uORFs are more strongly conserved by phyloP scores compared to matched 
start-disrupting positions within uORFs. Error bars represent bootstrapped 90% confidence 
intervals. 

3.8: uORF-disrupting variants associate genes with new disease phenotypes 

The heightened MAPS score for UTC mutations suggests that they are also likely to be 

functional. To explore the possibility that UTC and uORF stop-strengthening mutations might 

contribute functionally to human disease susceptibility, we performed a phenome-wide 

association study (PheWAS) of predicted uORF-disrupting variants using the Penn Medicine 

Biobank (PMBB) - a large academic biobank with exome sequencing linked to EHR data for 

10,900 individuals [155].  

 

 

 

https://paperpile.com/c/469AhQ/wr8Cn
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Table 3.1: Significant novel associations in PheWAS of Penn Medicine BioBank 

Variant Novel associations Replication 

Gene 
(SNP, uORF 

effect) 

Phenotype 
(Phecode) 

OR (95% 
CI) 

P value 
Case

s 
Contr

ols 
UKB  PMBB LOF  UKBB LOF  

PMVK* 
(rs181302437) 

UAG>UAA 

250.13 (T1D - 
ophthalmic 

manifestations) 

27.29 
(6.88-

108.29) 

2.58E-
06 

23 5189 No No 

Yes 
(250.13, 

P = 7.27e-
03) 

  
250.14 (T1D - 
neurological 

manifestations) 

22.71 
(5.86-
87.97) 

6.20E-
06 

25 5189 No No No 

  
250.22 (T2D - 

renal 
manifestations) 

7.79 
(2.87-
21.17) 

5.73E-
05 

136 5189 No No No 

VPS53 
(rs35915949) 

UGA>UAA 

300.10 
(Anxiety 
disorder) 

0.64 
(0.53-
0.77) 

4.23E-
06 

1060 6939 No No No 

300.00 
(Anxiety 

disorders) 

0.69 
(0.58-
0.82) 

2.00E-
05 

1249 6939 No No No 

NALCN 
(rs139848407) 

CAA>UAA 

270.33 
(Amyloidosis) 

38.92 
(7.49-

202.36) 

1.34E-
05 

30 7727 No  No 
Yes 

(270.00, 
P=0.0264) 

BCL2L13† 
(rs140799351) 

UGA>UAA 

610.00 (Benign 
mammary 
dysplasias) 

270.57 
(19.69-

3718.08) 

2.80E-
05 

55 7689 No 
Insufficient 

variants 
Insufficient 

variants 

  

187.20 
(Malignmant 
neoplasm of 
the testes) 

331.41 
(21.68-

5065.35) 

3.03E-
05 

26 7700 
Yes 

(187.20, P 
= 2.09e-4) 

Insufficient 
variants 

Insufficient 
variants 

  

187.00 
(Cancer of 
other male 

genital organs) 

220.01 
(15.67-

3089.83) 

6.31E-
05 

34 7700 
Yes 

(187.00, P 
= 3.33e-4) 

Insufficient  
variants 

Insufficient 
variants 

SHMT2 
(rs28365863) 

UAG>UAA 

527.00 
(Diseases of 
the salivary 

glands) 

6.37 
(2.60-
15.65) 

5.27E-
05 

90 9774 
Insufficient 

cases 

Yes (527.00, 
P = 5.515e-

03) 

Insufficient 
cases 

 

MOAP1 
(rs116450723) 

UAC>UAA 

350.00 
(Abnormal 
movement) 

4.99 
(2.20-
11.33) 

1.22E-
04 

362 9414 
No (variant 
not present 

in UKB) 
No 

No (variant 
not present 

in UKB) 
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*As of the Gencode 32 release the 5’UTR PMVK annotation (September 2019) was shortened to 
exclude this uORF; however inspection of the raw ribosome profiling reads from Ji et al. [121] in 
conjunction with nearby transcription start sites annotated in FANTOM5 confirm the presence of a 
longer PMVK 5’UTR isoform (Figure 3.17). †The stop-strengthening variant in BCL2L13 affects a 
minor transcript isoform, and is also annotated as a synonymous mutation on the primary 
BCL2L13 transcript. 
 

Using exome sequencing from the PMBB, we identified heterozygous and homozygous 

individuals carrying UTC and stop-strengthening mutations. For the former class, we focused on 

variants introducing UAA stop codons, as the heightened MAPS score for such variants implied 

these mutations would be most deleterious. Filtering for variants with at least 5 heterozygous 

carriers with high-quality genotype, we identified 10 variants matching the above criteria (6 stop-

strengthening mutations, 4 UAA-UTC mutations). For each of these mutations we performed a 

single-variant PheWAS across 800 EHR phenotypes. Of those 10 candidates, 6 passed an FDR 

threshold of 0.1 (P<1.25e-4) used in previous PheWAS studies [156,157], including 5/6 of the 

stop-strengthening variants and 1/4 of the UAA UTCs. Even more strikingly, two of these six 

variants passed a highly conservative Bonferroni correction (P<6.25e-6), both being uORF stop-

strengthening variants. The stop-strengthening variant in PMVK was associated with increased 

risk of Type 1 diabetes while the stop-strengthening variant in VPS53 was associated with a 

protective effect against anxiety disorders (Figure 3.9, Figure 3.16, Table 1, Table 3.4). Notably, 

of the identified phenotype-associated variants, only VPS53 is annotated as a cis-eQTL in the 

latest GTEx release (version 8). 

To replicate associations from our exploratory analysis in the PMBB, we performed additional 

single-variant association analyses for each of the 6 significant variant-phenotype associations in 

the UK Biobank (UKB). Direct replication using the original significant 4- or 5-digit ICD-9 code 

from the PMBB was tested for each variant-phenotype association. Where there were insufficient 

case numbers in the UKB, we used the broader 3-digit ICD-9 code. Out of six novel associations 

https://paperpile.com/c/9JbdHH/AODjz
https://paperpile.com/c/469AhQ/Wf6ow+YtHT9


63 

 

reaching FDR < 0.1, one (rs140799351) showed P < 0.05 in the UKB at the 5-digit ICD code 

level, reaching study-wide significance (Table 3.1, Table 3.5). For the remaining putative novel 

associations, the VPS53 uORF stop-strengthening variant did not replicate, although the direction 

of effect is consistent with results from the PMBB. Finally variants in SHMT2 could not be 

replicated because there were fewer than 20 cases in the UKB cohort, and MOAP1 could not be 

replicated because this variant was absent from the UKB. 

 
 
 
 

 
Figure 3.9: Phenome-wide association study (PheWAS) of predicted stop-strengthening 
variant in a translated uORF in PMVK. PheWAS plot of translated uORF stop-strengthening 
variant in the  5’UTR of PMVK (N = 65 carriers) in the Penn Medicine BioBank. ICD-9 and ICD-10 
Phecodes are organized and plotted by category on the X-axis. The solid red line represents the 
threshold for Bonferroni-adjusted significance (P=6.25e-6) and the red dashed line represents the 
FDR threshold (P=1.25e-4). The direction of each arrowhead corresponds to increased risk (up) 
or decreased risk (down).  
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3.9: Disease-associated uORF variants change protein expression 

To elucidate the possible biological consequences of UTC and stop-strengthening mutations, we 

selected three PheWAS association signals in the discovery analysis for functional assessment. 

To determine if these variants could affect protein expression, we measured the expression of a 

set of dual-luciferase reporters in HEK293T cells for PMVK, VPS53, and the BCL2L13 uORF 

variants. We compared the expression of the wild-type 5’UTR sequence for PMVK, VPS53, and 

BCL2L13 cloned upstream of a Firefly Luciferase ORF to two variant sequences - one with the 

predicted uORF start codon removed, and a second sequence with the PheWAS-significant stop-

strengthening mutation inserted. For VPS53, we also tested the effect of a mutation changing a 

tryptophan UGG codon to a UAG UTC (Figure 3.10b). Across all constructs, we observed a 

significant reduction in expression of the downstream ORF when the PheWAS-significant stop-

strengthening mutation was introduced (Figure 3.10). Introducing a new UTC in the 5’UTR of 

VPS53 also significantly reduced reporter protein expression relative to the wild-type sequence. 

Similar results were obtained from assays performed in HeLa cells (Figure 3.22). 
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Figure 3.10: Reporter gene assays for translated uORF stop-introducing and stop-
strengthening variants.  Dual-luciferase reporter assay quantifies relative expression for uORFs 
with UTC and stop-strengthening mutations associated with EHR phenotypes by PheWAS. 
Experimental 5’UTRs for (a) PMVK, (b) VPS53, and (c) BCL2L13 for uORF KO, stop-
strengthened, or stop-introduced variants are shown. Bars represent co-transfected Firefly to 
Renilla Luciferase luminescence ratios normalized to associated wild-type 5’UTRs in HEK293T 
cells measured 48 hours post-transfection. Significant P-values from one-sample T-test for each 
condition denoted by * (>0.05), ** (>0.01), and *** (>>0.001). Error bars represent mean + S.E.M. 
of at least 3 independent experiments. 

In all the tested constructs, UTC and stop-strengthening mutations decreased relative Firefly 

expression. These data are consistent with the hypothesis that UTC or stop-strengthening 

mutations are under negative selection because they decrease the probability of translation 

initiation at downstream coding sequences. These results are congruous with our genetic 

analysis, and imply that UTC and stop-strengthening mutations represent a new class of 

functional variation in 5’UTRs capable of causing loss-of-function of downstream coding genes. 

3.10: Replication of novel associations by loss-of-function gene-burden studies 

Results from reporter-gene experiments showed that UTC and stop-strengthening mutations 

could decrease expression of the downstream protein for PMVK, VPS53, and BCL2L13. Our 
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findings implied that uORF UTC and stop-strengthening mutations cause phenotypic 

consequences through potential loss-of-function of the downstream protein-coding gene. To 

further validate this hypothesis, we performed a gene burden test by aggregating rare loss-of-

function protein-coding variants in the PMBB and UKB for each significant uORF-PheWAS 

association. These studies could confirm that predicted loss-of-function in the protein coding 

sequence of the uORF-regulated gene causes the same phenotype as the uORF UTC or stop-

strengthening mutations.  Indeed, similar loss-of-function gene burden approaches using rare 

protein-coding variants have successfully been applied to identify both known and new gene-

disease associations in the PMBB and UKB [155,158].  

Of six PheWAS-significant associations uncovered in our discovery analysis (FDR<0.1), two 

associations were replicated by an independent loss-of-function gene burden test in either the 

UKB or PMBB. The associations between PMVK and diabetes, and SHMT2 and diseases of the 

salivary gland, were replicated in the UKB and PMBB respectively (PMVK P=0.00727, SHMT2 

P=0.005515, Table 1, Table 3.5). Although no significant LOF-burden association for PMVK was 

replicated in the PMBB, predicted loss-of-function of PMVK was nominally associated with 

impaired fasting glucose (P=0.0235). A second uORF-disease association was replicated for 

NALCN and the parent 3-digit parent PheCode of disorders of plasma protein metabolism in the 

UKB (P=0.0264). Gene-disease associations for BCL2L13 could not be replicated in either the 

PMBB or UKB due to lack of carriers for predicted loss-of-function variants. Ultimately this 

analysis confirmed that loss-of-function gene burden tests using protein-coding variants are 

associated with the same phenotype for two uORF stop-strengthening mutations. This evidence 

of allelic heterogeneity for these phenotypes further strengthens the likelihood that uORF stop-

strengthening variants can cause loss-of-function of downstream protein-coding genes. 

https://paperpile.com/c/469AhQ/wr8Cn+YMX32
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3.11: Summary and future directions 

By combining large databases of human genetic variation with ribosome profiling, we identified 

two new categories of mutations in 5’UTRs capable of causing loss-of-function in downstream 

coding genes. These mutations either introduce upstream termination codons in uORFs or 

strengthen uORF stop sites. Given that ~50% of human protein-coding genes are estimated to be 

under translational control by uORFs, these findings provide a novel framework for interpreting 

the functional significance of 5’UTR variation for a large fraction of human genes.  

Using these mutations, we additionally identified new gene-disease associations in the PMBB 

and replicated one of these associations in independent single-variant association tests in the 

UKB. Two associations involving stop-strengthening variants in PMVK and SHMT2 and one 

involving a UTC in NALCN were also replicated using protein-coding mutations in loss-of-function 

gene burden tests. These results provide independent validation of uORF variant-phenotype 

associations uncovered through the PMBB discovery analysis and demonstrate that uORF stop-

strengthening and UTC mutations associate with the same phenotype as predicted loss-of-

function coding mutations in downstream coding sequences. In support of these conclusions, we 

have shown that introducing UTCs and stop-strengthening mutations in translated uORFs 

decreases protein expression of downstream genes in reporter assays. These findings establish 

that uORF UTC and stop-strengthening mutations can have functional consequences on protein 

expression and are associated with disease in humans. If we assume that pathogenic UTC or 

stop-strengthening mutations are under similar selective pressures as pathogenic loss-of-function 

variants in protein-coding regions of the genome, we estimate that approximately 24% (90% CI 

21-28%) of uORF-containing genes may be affected by UTC and stop-strengthening mutations 

with severe pathogenic consequences (3.13: Suppl. Note). Moreover, if we assume that 

missense mutations in functional uORF micropeptides are similarly enriched in singletons as in 

protein-coding regions of the genome, we estimate that ~5-15% of translated uORFs are under 

constraint for amino acid function (3.13: Suppl. Note). This latter estimate is consistent with 
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recent CRISPR screens reporting a statistically significant decrease in growth phenotypes for 

~14% (157/1098) of uORF-specific knockouts across two cell lines when the CDS was preserved 

[107]. Finally, of the 4392 genes with translated uORFs used for this analysis, 1121 (26%) are 

also annotated as having pathogenic coding sequence variants in ClinVar, suggesting that UTC 

and stop-strengthening mutations in these genes may have additional utility for the diagnosis of 

rare disease.  

Our results suggest uORF translation has broad roles in regulating CDS translation. Translation 

initiation is rate-limiting for protein production and selection against mutations disrupting 

translation elongation (UTCs) or termination at uORFs (stop-strengthening variants) may reflect 

the importance of preserving translation initiation efficiency at the CDS. This suggested mode of 

regulation is in-line with observations that cis-regulatory relationships between uORFs and 

downstream coding sequences are frequently conserved across vertebrates while features 

conferring strong uORF repression are less maintained [122,124]. For stop-strengthening 

variants, the increased translation termination efficiency could accelerate ribosomal release from 

the mRNA transcript, thus decreasing downstream CDS translation. This mechanism is 

consistent with previous data in human cell lines showing that decreased translation termination 

efficiency by global knockdown of eRF3A increases translation of genes under uORF-repression 

[159, 160]. For UTC mutations, the introduction of stop codons in the uORF may lead to either 

ribosome stalling and subsequent collisions that further repress CDS expression [161,162]. This 

early translation termination in uORFs might also facilitate greater rates of premature ribosome 

release from the mRNA transcript, or can lead to nonsense mediated decay (NMD). While a 

handful of translated uORFs that activate NMD have been described in the literature [163–165], 

whether uORF-activated NMD broadly regulates protein expression remains an open question. 

Indeed, depletion of UPF1, a central component of the canonical NMD pathway, produced only 

minimal changes in uORF-containing mRNAs abundance in human cell lines [159]. 

https://paperpile.com/c/469AhQ/T4HF
https://paperpile.com/c/469AhQ/IcgD+L4Tl
https://paperpile.com/c/469AhQ/Wokks
https://paperpile.com/c/469AhQ/uqiPe
https://paperpile.com/c/469AhQ/n1D3y+cIuOr
https://paperpile.com/c/469AhQ/aMCEO+niHxA+34UaL
https://paperpile.com/c/469AhQ/Wokks
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The capacity for translated uORFs to produce functional micropeptides independent of regulating 

CDS expression remains an area of active investigation. In canonical protein-coding regions of 

the genome, amino acid substitutions in critical protein domains can be highly deleterious for 

cellular functioning and fitness. Previous studies have found that uORF-encoded peptides show 

evidence of amino acid conservation using statistical tests relying on a null hypothesis of neutral 

selection [121]. It is unclear if the conclusions drawn from these approaches account for the 

possibility that codon-optimality constrains variation within uORFs rather than amino acid identity. 

In contrast, we do not observe similar constraints on missense mutations in translated uORFs, 

suggesting that amino acid substitutions within most uORF-encoded micropeptides are well-

tolerated in humans. This was also the case for other non-canonical translated ORFs, including 

3’UTR ORFs, pseudogenes, and lncRNAs, that are not thought to widely encode for functional 

micropeptides. Although a handful of functional micropeptides have been identified previously, 

our analysis implies that most ncORFs do not produce peptide products whose function depends 

on their amino acid composition. It is also important to note that ribosomes are among the most 

abundant proteins within cells, occupying approximately 5% of the entire intracellular volume 

[166]. As improvements in ribosome profiling facilitate deeper characterization of the translatome, 

observations of widespread translation in non-canonical ORFs should be interpreted cautiously in 

light of potential functionality. 

Interestingly, bi-allelic loss-of-function mutations in SHMT2 have recently been described in a 

novel brain and heart developmental syndrome involving spastic paraparesis and ataxias [167]. 

Indeed, in addition to the phenome-wide significant association with diseases of the salivary 

gland uncovered in our study, the SHMT2 uORF stop-strengthening variant was nominally 

associated with several Phecodes related to cardiac and movement disorders in the PMBB 

(Table 3.7), including Congenital anomalies of the great vessels (ICD 747.13, P = 0.0117), 

Abnormal involuntary movements (350.1, P = 0.0238), Abnormality of gait (350.2, P = 0.02575), 

Mobitz II AV block (426.22, P = 0.03432), and Arrhythmia (cardiac) NOS (427.5, P = 0.04977). 

https://paperpile.com/c/469AhQ/8MAr4
https://paperpile.com/c/469AhQ/cXKz2
https://paperpile.com/c/9JbdHH/eBHB
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These additional nominal associations suggest that SHMT2 uORF variants may be capable of 

contributing to similar phenotypic consequences as described in loss-of-function mutation 

carriers, however further studies are needed to investigate this possibility. The novel association 

between stop-strengthening and pLOF variants in PMVK with diabetes further strengthens 

existing genetic and epidemiological evidence linking the mevalonate pathway to diabetes. PMVK 

encodes for phosphomevalonate kinase, an enzyme in the mevalonate pathway catalyzing the 

conversion of mevalonate-5-phosphate to mevalonate-pyrophosphate downstream of HMG-CoA 

reductase. Multiple randomized clinical trials have shown that inhibiting HMG-CoA reductase with 

statins increases the risk of developing new-onset type 2 diabetes in a dose-dependent manner, 

although the mechanism driving this association has remained elusive [168–170]. Moreover, 

genetic variants in and near the HMGCR gene that are associated with lowered LDL cholesterol 

levels have been similarly shown to confer an increased risk of developing diabetes [171,172], 

suggesting that decreased HMGCR activity contributes to diabetes pathogenesis. Our data is the 

first to establish a putative link between PMVK and diabetes. Given the shared involvement of 

PMVK and HMGCR genes in the mevalonate pathway, it is possible that variants in both these 

genes confer an increased risk of diabetes through a similar mechanism, however additional 

studies will be needed to further elucidate the precise relationship between PMVK and diabetes. 

A limitation of our analysis is that we cannot directly assess the impact of additional factors on 

uORF-mediated translational regulation. As an example, a pathogenic UTC mutation in the U2HR 

gene has previously been reported to confer gain-of-function in Marie Unna hereditary 

hypotrichosis [173]. However, missense variants in this uORF also confer gain-of-function effects, 

suggesting that these mutations contribute to pathology through disrupting a functional 

micropeptide. Indeed, previous studies have shown that a multitude of factors may impact uORF 

regulatory function and dissecting these effects remains a challenge for future studies.  

https://paperpile.com/c/9JbdHH/BhOsi+cbQI0+jYcEx
https://paperpile.com/c/9JbdHH/12ZVc+azvyc
https://paperpile.com/c/9JbdHH/YRa5Y
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Finally, we note that being a hospital-based biobank, participants in the PMBB are generally less 

healthy than the general population. As phenotypes within broader disease Phecode families are 

often highly correlated, we sought to replicate associations uncovered in the discovery analysis 

by first testing for a specific hypothesis-driven phenotype association in addition to related 

phenotypes in the corresponding Phecode families. We recognize that controlling for Type 1 error 

in this framework remains challenging. However, to remedy this we sought additional confidence 

by further replicating significant uORF-variant associations through loss-of-function gene-burden 

analyses. Moreover, the relative enrichment in diseased individuals in the PMBB may account for 

why few associations discovered in our analysis of the PMBB are replicated in the UKB which 

contains a healthy volunteer selection bias [174]. Indeed, we were unable to test for an 

association for two of the six PMBB associations due to an inadequate number of individuals 

having the phenotype in UKB. As hospital-based biobanks become more prevalent these 

unreplicated associations should be revisited and confirmed. 

Understanding and interpreting the impact of noncoding genetic variation is a fundamental 

challenge in biology. Many mutations affecting uORFs are known to cause disease [175–178], 

but until now, most studies have focused on mutations which abolish start codons, stop codons of 

existing uORFs, or those that create new inhibitory uORFs. By examining patterns of genetic 

variation within translated uORFs, we have uncovered two new categories of variation affecting 

5’UTRs that may lead to loss-of-function in associated genes. We have used these variants to 

identify new gene-disease associations, and provide evidence for their ability to impact 

downstream gene expression. Our approach demonstrates the power of integrating population-

scale databases of human genetic variation with cellular-scale -omics data to identify new 

patterns of how variation impacts regulatory elements. Taken together, our data broadens the 

scope of functional translational regulation by uORFs in the transcriptome and establishes new 

approaches for interpreting functional genetic variation in 5’UTRs. 

https://paperpile.com/c/9JbdHH/IhvaU
https://paperpile.com/c/9JbdHH/hDEvm+rjR73+ZYyAl+G3HIN
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3.12: Supplementary Figures and Tables for Disrupting upstream translation in mRNAs 

is associated with human disease 

 

 
Figure 3.11: Distribution of protein coding ORFs, uORFs, and other non-canonical ORFs 
mapped by ribosome profiling from Ji et. al paper [121]. dORFs represent ORFs mapped in 
3’UTRs, lncRNAs represent ORFs mapped in long-noncoding RNAs, and pseudogenes represent 
translated pseudogenes respectively. 

 

https://paperpile.com/c/9JbdHH/AODjz
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Figure 3.12: MAPS scores for uORF UTC-creating and stop-strengthening variants 
compared to non UTC-creating or stop-strengthening uORF variants matched by 
trinucleotide mutation context. Error bars represent bootstrapped 90% confidence intervals. 

 

 
Figure 3.13: PhyloP scores for possible UTC-creating positions and gnomAD protein-
coding constraint. PhyloP scores in translated uORFs (red) compared to 5’UTR sequences 
(black) across all sextiles of gene constraint as determined by gnomAD LOEUF scores (1 being 
least constrained, 6 being most constrained).   
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Figure 3.14: Optimality changing MAPS scores for SNVs in dORFs (3’UTRs), pseudogenes, 
and long-noncoding RNAs (lncRNAs). Error bars represent bootstrapped 90% confidence 
intervals. 
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Figure 3.15: MAPS score for optimality changing variants using different optimality scores. 
MAPS dependence on whether a SNV increases or decreases codon optimality in uORFs is 
robust to changing CSC-scores used to calculate codon optimality across 293 cell lines using the 
orfome approach, and from retinal pigment epithelium cells with CSC-scores calculated using 
endogenous mRNAs [153]. 

https://paperpile.com/c/9JbdHH/kJek5
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Figure 3.16: PheWAS plot of VPS53 stop-strengthening variant. Red solid line indicates 
Bonferroni significance threshold (P=6.25e-05). Red dashed line represents the FDR < 0.1 
threshold. 
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Figure 3.17: Change in PMVK 5’UTR annotation as of September 2019 Gencode 32 release. 
The longer 5’UTR isoform for PMVK is supported by transcription start-site mapping from 

FANTOM5, and by the remapped ribosome-profiling reads (top, black) from GSE65885. 

 

Figure 3.18: PheWAS plot of BCL2L13 stop-strengthening variant. Red solid line indicates 
Bonferroni significance threshold (P=6.25e-05). Red dashed line represents the FDR < 0.1 
threshold. 

https://www.ncbi.nlm.nih.gov/gds/?term=GSE65885%5bAccession%5d
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Figure 3.19: PheWAS plot of NALCN UAA UTC variant. Red solid line indicates Bonferroni 
significance threshold (P=6.25e-05). Red dashed line represents the FDR < 0.1 threshold. 
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Figure 3.20: PheWAS plot of SHMT2 stop-strengthening variant. Red solid line indicates 
Bonferroni significance threshold (P=6.25e-05). Red dashed line represents the FDR < 0.1 
threshold. 
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Figure 3.21: PheWAS plot of MOAP1 UAA UTC variant. Red solid line indicates Bonferroni 
significance threshold (P=6.25e-05). Red dashed line represents the FDR < 0.1 threshold. 
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Figure 3.22: Luciferase experiments for PMVK and VPS53 plasmid Constructs showing 
similar direction of effect for UTC and stop-strengthening variants using HeLa cells for 
transfection. 
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Table 3.2: uORF UTC / Stop-strengthening MAPS analysis with all CDS-overlapping 
variants removed. 

 

Table 3.3: Relative frequencies of TGA, TAG, and UAA trinucleotides across different 
5’UTR sequence contexts 

 

Table 3.4: Minor allele frequencies for all PheWAS-significant variants tested in discovery 
and replication analyses 
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Table 3.5: PheWAS replication analyses phenotypes tested 

 

Table 3.6: 5’UTR Fragments used in expression constructs 

Gene 
(Transcript) 

Mutatio
n 

Sequence 

PMVK 
(ENST0000
0368467) 

WT TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGAGAAGGTTCTGGGCGGGGCTGGACTGTT
CTAAGTGAGTTCGGGTGGGGGAGCTTCACGAGGGGAGG
CTGCTCTGTGAAGGAACCGCCTTTCTCTCCGCGTGTCTCA
CCCTTTTCTCCCCATATCTGTTTGGACATGAGCTGAGGGC
ACGGTCGCGGGCGGTCAGCCCTGTTCGCAGCTACGGCG
AGGAGGGGCGCGATTGTTCCTTGTTGCCGCTCCGCTTAG
TGGCCGCGTCCATTCCGCGCGGTGTCCCGATTTTAGGGG
TAGGGAGAAGTGTCAGCTTCAGGCATCGCGAGGCGTGGC
GGCCCCATGGAAGATGCCAAAAACATTAAGAAGGGCCCA
GCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCGAG
CAGCTGCACAAAGCCATGA 

PMVK 
(ENST0000
0368467) 

KO TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGAGAAGGTTCTGGGCGGGGCTGGACTGTT
CTAAGTGAGTTCGGGTGGGGGAGCTTCACGAGGGGAGG
CTGCTCTGTGAAGGAACCGCCTTTCTCTCCGCGTGTCTCA
CCCTTTTCTCCCCATATCTGTTTGGACATGAGCTGAGGGC
ACGGTCGCGGGCGGTCAGCCCTGTTCGCAGCTACGGCG
AGGAGGGGCGCGATTGTTCCTTGTTGCCGCTCCGCTTAG
TGGCCGCGTCCATTCCGCGCGTTTTCCCGATTTTAGGGGT
AGGGAGAAGTGTCAGCTTCAGGCATCGCGAGGCGTGGCG
GCCCCATGGAAGATGCCAAAAACATTAAGAAGGGCCCAG
CGCCATTCTACCCACTCGAAGACGGGACCGCCGGCGAGC
AGCTGCACAAAGCCATGA 

PMVK 
(ENST0000
0368467) 

TAG>T
AA 

TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGAGAAGGTTCTGGGCGGGGCTGGACTGTT
CTAAGTGAGTTCGGGTGGGGGAGCTTCACGAGGGGAGG
CTGCTCTGTGAAGGAACCGCCTTTCTCTCCGCGTGTCTCA
CCCTTTTCTCCCCATATCTGTTTGGACATGAGCTGAGGGC

https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000368467
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000368467
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000368467
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000368467
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000368467
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000368467
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ACGGTCGCGGGCGGTCAGCCCTGTTCGCAGCTACGGCG
AGGAGGGGCGCGATTGTTCCTTGTTGCCGCTCCGCTTAG
TGGCCGCGTCCATTCCGCGCGGTGTCCCGATTTTAAGGG
TAGGGAGAAGTGTCAGCTTCAGGCATCGCGAGGCGTGGC
GGCCCCATGGAAGATGCCAAAAACATTAAGAAGGGCCCA
GCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCGAG
CAGCTGCACAAAGCCATGA 

VPS53 
(ENST0000
0437048) 

WT TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGACTGGGGCCTGGGTGGCGGCTGGAGGC
CTGAGTTGGGCTCGCGGCGGGGGTCGGCAGGGGGCCGG
GTGGCGGAATGGAAGATGCCAAAAACATTAAGAAGGGCC
CAGCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCG
AGCAGCTGCACAAAGCCATGA 

VPS53 
(ENST0000
0437048) 

KO TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGACAGGGGCCTGGGTGGCGGCTGGAGGC
CTGAGTTGGGCTCGCGGCGGGGGTCGGCAGGGGGCCGG
GTGGCGGAATGGAAGATGCCAAAAACATTAAGAAGGGCC
CAGCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCG
AGCAGCTGCACAAAGCCATGA 

VPS53 
(ENST0000
0437048) 

TGA>T
AA 

TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGACTGGGGCCTGGGTGGCGGCTGGAGGC
CTAAGTTGGGCTCGCGGCGGGGGTCGGCAGGGGGCCGG
GTGGCGGAATGGAAGATGCCAAAAACATTAAGAAGGGCC
CAGCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCG
AGCAGCTGCACAAAGCCATGA 

VPS53 
(ENST0000
0437048) 

TGG>T
AG 

TATAGGGAGACCCAAGCTGGCTAGTTAAGCTTAGATCTTG
ATATCCTCGAGACTGGGGCCTGGGTAGCGGCTGGAGGCC
TGAGTTGGGCTCGCGGCGGGGGTCGGCAGGGGGCCGG
GTGGCGGAATGGAAGATGCCAAAAACATTAAGAAGGGCC
CAGCGCCATTCTACCCACTCGAAGACGGGACCGCCGGCG
AGCAGCTGCACAAAGCCATGA 

BCL2L13 
(ENST0000
0543133) 

WT TCGGAGCACTCACCGCCGCTGGGGGACCCTGTCGGAAG
CAACTGCCGCCGCCGCCTCTTTCATCTCTTCTGGGGCAG
GGGCCAGGGCCAGGTTTTACACATCCATAAGTAGACCTTT
TTGGAGCCTCACCAGCCAATTCAATGGCGTCCTCTTCTAC
TGTGCCT 
CTGGGATTTCACTATGAAACAAAGTATGTTGTTCTCAGCTA
CTTGGGACTCCTCTCTCAAGAGAAGCTGCAAGAGCAACAT
CTTTCCTCACCCCAAGGGGTTCAACTAGATATAGCTTCAC
AATCTCTGGATCAAGAAATTTTATTAAAAGTTAAAACTGAA
ATTGAAGAAGAGCTAAAATCTCTGGACAAAGAAATTTCTGA
AGGCCAGTGACATATCAGGCATTTCGGGAATGTACACTGG
AGACCACAGTTCATGCCAGCGGCTGGAATAAGATTTTGGT
GCCTCTGGTTTTGCTACGACAA 

BCL2L13 
(ENST0000
0543133) 

ATG>A
TA 

TCGGAGCACTCACCGCCGCTGGGGGACCCTGTCGGAAG
CAACTGCCGCCGCCGCCTCTTTCATCTCTTCTGGGGCAG
GGGCCAGGGCCAGGTTTTACACATCCATAAGTAGACCTTT
TTGGAGCCTCACCAGCCAATTCAATAGCGTCCTCTTCTAC
TGTGCCT 
CTGGGATTTCACTATGAAACAAAGTATGTTGTTCTCAGCTA

https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000437048
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000543133
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000543133
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000543133
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000543133
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CTTGGGACTCCTCTCTCAAGAGAAGCTGCAAGAGCAACAT
CTTTCCTCACCCCAAGGGGTTCAACTAGATATAGCTTCAC
AATCTCTGGATCAAGAAATTTTATTAAAAGTTAAAACTGAA
ATTGAAGAAGAGCTAAAATCTCTGGACAAAGAAATTTCTGA
AGGCCAGTGACATATCAGGCATTTCGGGAATGTACACTGG
AGACCACAGTTCATGCCAGCGGCTGGAATAAGATTTTGGT
GCCTCTGGTTTTGCTACGACAA 

BCL2L13 
(ENST0000
0543133) 

TGA>T
AA 

TCGGAGCACTCACCGCCGCTGGGGGACCCTGTCGGAAG
CAACTGCCGCCGCCGCCTCTTTCATCTCTTCTGGGGCAG
GGGCCAGGGCCAGGTTTTACACATCCATAAGTAGACCTTT
TTGGAGCCTCACCAGCCAATTCAATGGCGTCCTCTTCTAC
TGTGCCT 
CTGGGATTTCACTATGAAACAAAGTATGTTGTTCTCAGCTA
CTTGGGACTCCTCTCTCAAGAGAAGCTGCAAGAGCAACAT
CTTTCCTCACCCCAAGGGGTTCAACTAGATATAGCTTCAC
AATCTCTGGATCAAGAAATTTTATTAAAAGTTAAAACTGAA
ATTGAAGAAGAGCTAAAATCTCTGGACAAAGAAATTTCTGA
AGGCCAGTAACATATCAGGCATTTCGGGAATGTACACTGG
AGACCACAGTTCATGCCAGCGGCTGGAATAAGATTTTGGT
GCCTCTGGTTTTGCTACGACAA 

 

Table 3.7: Nominal cardiac and movement disorder associations with SHMT2 stop-
strengthening variant uncovered through PheWAS in Penn Medicine Biobank. 

 

 

 

 

 

 

https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000543133
https://grch37.ensembl.org/Homo_sapiens/transview?transcript=ENST00000543133
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3.13: Supplementary Note: Estimating the proportion of uORFs that may cause 

pathogenic loss-of-function equivalent consequences in ClinVar disease genes 

 

We assume that MAPS score for UTC and stop-strengthening variants in uORFs represent the 

combination of variants from uORFs where loss-of-function is well-tolerated, and those from 

uORFs where loss-of-function is not tolerated (has severe impact on fitness). In other words, the 

MAPS score is a mixture of variants that are not under selective pressure, and variants that are 

under comparable selective pressure to predicted loss-of-function variants in protein-coding 

regions of known disease-associated genes. 

Under this assumption we design a simulation study to model the association between the 

proportion of pathogenic uORFs and MAPS scores for all uORF-disrupting (UTC and stop-

strengthening) variants using variants from protein-coding sequences. We calculate a distribution 

of MAPS scores for each simulated proportion of uORFs capable of harboring pathogenic loss-of-

function variants as described in Figure 3.23. 

Specifically the approach is to: 

1. Randomly select ~4000 genes (approx. number of genes with uORFs) from genes in 

ClinVar with annotated pathogenic consequences 

2. Partition these genes to a sub-fraction of “TRUE LOF” (10%, 20%, 30%, ...) and a sub-

fraction of “FALSE LOF”. The “TRUE LOF” genes will be contributing protein-coding LOF 

variants to the MAPS score in gnomAD 

3. “FALSE LOF” genes will be contributing synonymous variants annotated in gnomAD   

4. Calculate MAPS score for this mixed set of TRUE LOF and synonymous variants 

5. Repeat 10,000 times to build confidence intervals for each proportion of “TRUE LOF” 

genes 
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Figure 3.23: Sampling procedure to generate MAPS scores to model the proportion of 
uORFs where UTC or stop-strengthening variants are capable of having pathogenic 
consequences.  
 
We can repeat this procedure for several fractions of “”TRUE” pathogenic genes (10-80% in 

increments of 5%) and determine the range of possible MAPS scores given a particular 

proportion of genes contributing true pLOF variants. Since the baseline estimate for uORF 

variants is higher than that for synonymous coding variants, we adjust these MAPS scores by 

adding the baseline estimate for uORF variants to all simulated MAPS scores. We then plot the 

relationship between fraction of TRUE LOF genes and MAPS scores (Figure 3.24): 
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Figure 3.24: Relationship between the fraction of true LOF variants in ClinVar pathogenic 
genes and MAPS scores adjusted for uORF-synonymous variants baseline. Black line 
represents MAPS scores for UTC and stop-strengthening variants combined in all uORFs. 
Orange points represent the mean of MAPS scores over 10,000 bootstraps. Orange band 
represents 90% confidence interval of 10,000 bootstraps MAPS scores at each simulated 
proportion of genes contributing true pLOF variants. 

 
We fit a simple regression model to these simulated MAPS scores as a function of the proportion 

of genes contributing LOF variants, and use the fitted model to determine the proportion of LOF 

features corresponding to the MAPS score for uORF-UTC and stop-strengthening variants. This 

corresponds to the proportion of uORFs contributing UTC or stop-strengthening variants with 

loss-of-function consequences capable of causing pathogenicity in humans. Solving this linear 

equation gives an estimate of the proportion of uORFs where UTC or stop-strengthening variants 

have comparable consequences as LOF protein coding variants in ClinVar pathogenic genes. 

This gives us the estimate of 24.15354%. We fit separate lines to the 5% and 95% bootstrapped 
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MAPS estimates at each proportion to determine the 90% confidence interval for this estimate 

(21.35285 - 27.33626). 

To derive an estimate of the proportion of uORFs under similar constraint to maintain amino acid 

identity as protein-coding regions of the genome, we repeat the above procedure substituting 

missense variants in all protein coding genes for pLOF variants in ClinVar disease-associated 

genes. This procedure gives us an estimate of 9.916032% (5.216744 - 14.69604). 

 

 
Figure 3.25: Relationship between the fraction of true missense variants in all protein-
coding genes and MAPS scores adjusted for uORF-synonymous variants baseline. Black 
line represents MAPS scores for predicted missense variants for all uORFs. Red points represent 
the mean of MAPS scores over 10,000 bootstraps. Red lines above and below points represent a 
simple regression line fitted to the 90% confidence interval of 10,000 bootstrap MAPS scores at 
each point. 
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CHAPTER 4: TRANSLATING REGULATORY INSIGHTS INTO THERAPIES 

 

4.1: G-quadruplexes and upstream open reading frames in UTRs 

Much of the human genome is noncoding, but knowledge of how and when genetic variation can 

impact biology and disease has been primarily limited to coding sequences. Interpreting genetic 

variation in noncoding DNA remains challenging because the universe of functional noncoding 

elements in the human genome remains incompletely mapped and because the potential impact 

of variants affecting known noncoding regulatory elements is difficult to predict. Here, we have 

adopted an integrated omics approach towards addressing these dual challenges: first, by 

examining the genetic and genomic evidence that putative G-quadruplex forming sequences in 

UTRs of mRNAs are functional, and second by elucidating new patterns of functional variation 

affecting translated upstream open reading frames. For putative G-quadruplex forming 

sequences in UTRs, we have shown that central guanines in the canonical G-quadruplex motif 

are significantly depleted of genetic variation in concordance with their importance for facilitating 

stable secondary structure formation. We further find that these sequences are enriched for cis-

eQTLs annotated in GTEx, and overrepresented among RNA-protein binding interactions 

mapped by ENCODE. Taken together, this evidence suggests that UTR G-quadruplexes are 

functional noncoding elements in UTRs. 

Although these studies imply that G4 forming sequences in UTRs are constrained by selection, 

dissecting the precise functional importance of these sequences will be an important step to 

understand their roles more clearly in gene regulation. Our finding that both 5’ and 3’UTR G4 

sequences are enriched for cis-eQTLs implies that these sequences are broadly capable of 

influencing mRNA abundance. In particular, the enrichment for cis-eQTLs in 3’UTR protein 

suggests that G4s in 3’UTRs are involved in mediating mRNA stability [32], and that this is 

accomplished by facilitating RNA-protein binding interactions. More generally, the observed 

https://paperpile.com/c/9JbdHH/RRd5s
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enrichment for RNA protein binding interactions over both 5’ and 3’ UTR G4s implies that the 

capacity for these secondary structures to bind proteins is central to their functionality. 

Whether some subsets of G4 binding proteins bind differentially to folded versus unfolded G4 

secondary structures remains an interesting question for further investigation. Indeed, 

subsequent studies have replicated our findings that helicase RNA-binding proteins including 

DDX6 tend to bind G-rich sequences capable of forming G4 structures [179], suggesting that 

dynamic folding and unfolding UTR G4s plays a role in regulation. G4 folding could possibly mask 

other regulatory protein binding sites within mRNAs, or create a new substrate for protein binding, 

depending on cell state. Our finding that many UTR sequences with potential G4 structures tend 

to be overrepresented among genes involved in cellular stress response pathways further implies 

that differential G4 binding interactions may be involved in post-transcriptional responses to 

cellular stress. Future targeted functional studies should explore this possibility further. 

We have additionally examined patterns of selective pressure in non-canonical open reading 

frames mapped through ribosome profiling experiments. Our analysis of allele frequencies in 

gnomAD identified uORF stop-introducing and stop-strengthening variants as categories of 

variation in the 5’UTR that exhibit a strong signature of negative selection, comparable to that of 

missense mutations in protein-coding regions of the genome. We further demonstrate that certain 

uORF stop-strengthening and stop-introducing variants associated with human disease 

phenotypes in two EHR-based biobanks can decrease downstream protein expression in reporter 

gene assays. Together, these data demonstrate that variants introducing new stop codons or 

strengthening existing stop codons in uORFs can impact protein expression and imply that they 

may contribute to human disease.  

Previous studies of translational regulation by uORFs have revealed that several additional 

factors, including the strength of a uORF start codon [180], intercistronic distance between the 

uORF stop codon and downstream coding gene [181,182], and potential secondary structures in 

https://paperpile.com/c/9JbdHH/5LeJ
https://paperpile.com/c/9JbdHH/Vqhl
https://paperpile.com/c/9JbdHH/pcJC+5ODg
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the 5’UTR can impact translational regulation by uORFs [183,184]. Although these factors were 

not addressed in the current study, they are likely to influence the ability for uORF stop-

introducing or stop-strengthening variants to decrease downstream protein expression. Notably, 

mutagenesis studies have reported that shortening repressive uORFs significantly may result in 

increased expression of downstream proteins [181]. This raises the possibility that some uORF 

stop-introducing variants can confer gain-of-function rather than loss-of-function depending on the 

length of the uORF they interrupt, the specific uORF that is affected, and the amount by which the 

uORF is shortened. In the scanning model of translation initiation, uORF-mediated translational 

repression occurs by preventing ribosomes from reacquiring the necessary translation initiation 

factors in time to begin translation at the downstream CDS. Thus, uORF stop-introducing variants 

may sufficiently lengthen the intercistronic distance between uORF and CDS to release 

downstream coding sequences from uORF-mediated translational repression. Further 

characterizing the precise relationship between intercistronic distance and uORF repressiveness 

will help improve our ability to accurately predict when uORF stop-introducing variants can 

increase protein expression. 

The observed allele frequencies of variants affecting translated uORFs also suggests that these 

regulatory elements largely act at the level of translation rather than through encoding functional 

micropeptides. In support of this interpretation, we do not observe widespread evidence that 

amino acid encoding is constrained in most non-canonical ORFs, but we do observe that uORF 

translation initiation in 5’UTRs is maintained by selection. While there has been growing interest 

in the possibility functional micropeptides are widely encoded in ncORFs throughout the genome, 

the absence of significant selection to maintain amino acid encoding in ncORFs more broadly 

suggests that the functionality of micropeptides is either not associated with their amino acid 

encoding, or that perhaps that the fraction of functional micropeptides is much smaller than 

implied through ribosome profiling studies. Indeed, as translation in 5’UTRs has long been 

observed to have regulatory functions, it is possible that widespread translation in ncORFs may 

https://paperpile.com/c/9JbdHH/7Jl1+QYYU
https://paperpile.com/c/9JbdHH/pcJC


93 

 

also have regulatory rather than peptide-encoding roles in biology. Nevertheless, it remains 

possible that patterns of selection in ncORF encoded micropeptides do not reflect similar 

selective forces as those acting in canonical protein coding regions of the genome. In this 

scenario the function of ncORF micropeptides may alternatively depend on their length, or 

perhaps the presence of a few key amino acids in their sequence. 

 

4.2: From regulation to therapy 

Together, our studies help expand the understanding of regulatory elements in UTRs, and the 

interpretation of genetic variation in 5’ and 3’ UTRs – core components of all protein-coding 

messenger RNAs. As databases of human genetic variation grow larger, so too will the resolution 

by which we can observe and understand patterns of functional genetic variation in noncoding 

DNA. Further work establishing detailed maps of functional noncoding RNA regulatory elements 

will help inform the future development of new medicines which manipulate these regulatory 

elements for therapy. Indeed, drugging RNAs has received growing interest as a therapeutic 

mechanism in recent years [185]. The molecular tools of RNA manipulation – including small 

interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs) – have existed for decades, 

however strategies for modulating protein activity or direct genome editing have traditionally 

received greater attention for therapeutic development. Compared to small molecules, 

oligonucleotides do not widely distribute throughout the body with the same efficiency, thus 

developing improved targeted drug delivery strategies is critical to realizing the promise of 

oligonucleotide therapies.  

Nevertheless, interest in RNA targeting drugs has grown in recent years as advances in our 

understanding of RNA regulation and disease has improved. Early oligonucleotide-based 

therapies were developed for pharmacologically convenient tissues in the human body, beginning 

with the eye. Approved by the FDA over 20 years ago as a therapy for cytomegalovirus retinitis, 

https://paperpile.com/c/9JbdHH/ZSpRR
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the first antisense oligonucleotide to find use in humans, Fomivirsen, acted through blocking 

translation of viral mRNAs and was delivered by intravitreal injection [187]. As advances in 

oligonucleotide chemistry conferred greater resistance to degradation and improved 

biodistribution, other routes of administration and mechanisms of action became feasible [186]. 

Subsequent RNA-based therapies have focused on modulating alternative splicing, or inducing 

RNA degradation relying on intravenous administration for muscle targeting or intrathecal delivery 

for targeting neurons [185]. Despite these advances, oligonucleotide delivery remains much less 

efficient than for small molecules, and devising improved methods for targeted delivery remains a 

key bottleneck to the translational application of oligonucleotides for therapy [188]. 

Informed by our growing appreciation for the diversity of RNA regulatory mechanisms, there is 

now increasing interest in new strategies for changing protein expression at the RNA level. 

Indeed, approaches for targeting G-quadruplex elements and uORFs to modulate protein 

expression have been proposed previously in the literature [189–191], and several preclinical 

studies have been published with promising results across a number of human disease 

contexts[192–196]. As catalogues of RNA regulatory elements encoded in the transcriptome 

expand, so too will the possibilities of therapeutic manipulation.  

https://paperpile.com/c/9JbdHH/8bcMb
https://paperpile.com/c/9JbdHH/NaXl
https://paperpile.com/c/9JbdHH/ZSpRR
https://paperpile.com/c/9JbdHH/LT7C
https://paperpile.com/c/9JbdHH/NKfJk+79hDQ+noHue
https://paperpile.com/c/9JbdHH/jJHy1+O5kIk+o5BQ0+Iynpj+aIzho
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APPENDIX A: Methods for Integrative analysis reveals RNA G-quadruplexes in 

UTRs are selectively constrained and enriched for functional associations 

Identification of UTR G-quadruplex Sequences 

Annotated UTR sequences and genomic coordinates were downloaded using biomaRt[189,190] 

for Ensembl Transcript Database version 75 for all protein-coding transcripts. Putative G-

quadruplex forming sequences (pG4) were identified using this set of annotated UTRs by 

performing a pattern-matching text search to identify regions of UTRs matching the canonical G-

quadruplex pattern as a regular expression: (G:3+)-{N:1-7}(3)-(G:3+). Genomic coordinates for 

pG4 sequences within UTRs were obtained using a custom python script, and cross-referenced 

with annotated protein-coding regions of the genome from the Ensembl Transcript Database to 

remove overlaps between annotated UTRs and coding sequences using human genome hg19 

coordinates. The identified set of 5’ and 3’ pG4 sequences, and corresponding genomic 

coordinates were used for all downstream analysis. This approach yielded a total of 5235 protein-

coding genes harboring a UTR pG4 sequence, with 2967 genes having a 5’UTR pG4, and 2835 

genes having a 3’UTR pG4. Of the 5235 genes with either a 5’ or 3’ UTR pG4, 567 have both. 

A second set of pG4 sequences with evidence of secondary structure formation was defined by 

overlapping pG4 motifs identified transcriptome-wide with published in vitro rG4-seq annotations 

by using the K+PDS conditions [63]. Only the subset of rG4-seq G4s matching the canonical pG4 

motif were used in this analysis. For the set of rG4 sequences, we find 243 protein-coding genes 

encoding a 5’UTR rG4, and 803 genes encoding a 3’UTR rG4. Of these rG4 genes, 16 have 5’ 

and 3’ UTR pG4 encoding transcript isoforms. 

 

Constraint Analysis 

https://paperpile.com/c/9JbdHH/oQJiT+ZsED0
https://paperpile.com/c/9JbdHH/i6t5W


96 

 

Variants from gnomAD release 2.2.1 were obtained from (URL here: 

https://gnomad.broadinstitute.org/downloads) and filtered to exclude those marked with 

segmental duplication, low complexity regions (LCR), and decoy flags, in addition to those 

variants whose True Positive probability as determined by a random forest model trained in 

gnomAD did not exceed 40% [44]. As an additional requirement, only those variants where the 

total observed allele number was at least 80% of the maximum number of sequenced alleles was 

considered to control for differences in sequencing depth in the gnomAD WGS dataset. The 

remaining set of high-confidence variants was overlapped with genomic coordinates for UTR 

pG4, non-pG4, and CDS regions, using bedtools2 (version 2.27.1) intersect with the -u and -b 

flags.  

The transcript constraint-table from gnomAD release 2.2.1 (URL 

https://gnomad.broadinstitute.org/downloads) was used to randomly select a matching set of 

transcript-level constraint-matched non-pG4 UTR sequences based on the gnomAD observed / 

expected metric for the 5’ UTR and 3’ UTR separately. Specifically, transcript constraint was 

matched between pG4 and non-pG4 forming sequences using the observed versus expected 

ratio of loss of function variants metric (LOEUF) provided for each transcript by gnomAD. 

The fraction of variants per sequenced allele across UTR regions were computed as the fraction 

of the observed allele count versus observed allele number. The distribution of frequencies for 

variants mapping to each UTR region was extracted from the gnomAD summary variant call files 

directly. P-values for difference between the expected number of variants per sequenced allele 

across genomic regions were calculated using a two-sided Fisher exact test. Only variants that 

did not overlap annotated coding regions of the transcriptome were compared to ensure that 

UTRs overlapping coding regions of other transcript isoforms were excluded. All statistical tests 

were conducted for 5’UTR and 3’UTR features separately. 

 

https://paperpile.com/c/9JbdHH/Tq7kW
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For positional constraint analysis, we applied the mutability-adjusted proportion of singletons 

(MAPS) metric [37] for each nucleotide position across all trinucleotide G-tracts with G4-forming 

capacity, as defined by our bioinformatic analysis. We developed a MAPS model using custom 

code based on a previously published MAPS model (https://github.com/pjshort/dddMAPS) with 

the addition of adjusting for methylation levels at variant positions. We divide variants by median 

estimated methylation levels across 37 tissues at CpG sites into None/Low (<0.2), Intermediate 

(0.2-0.6), or High (0.6<) bins for which separate methylation-adjusted mutation rates were 

available. Our model was trained by regressing the observed proportion of singleton synonymous 

variants for each trinucleotide context within protein-coding regions of the genome on mutation 

rates for each trinucleotide context (methylation-adjustment was performed only at CpG 

dinucleotides) derived from intergenic noncoding regions of the genome [137]; [44]. All variants 

used in this analysis, including synonymous variants used for training the model, were subject to 

the same filtering requirements as used in the analysis of allele frequencies (random forest True 

Positive probability exceeding 40%, and total observed allele number was at least 80% of the 

maximum number of sequenced alleles). To control for ambiguity regarding which specific 

guanines within each G-tract are involved in pG4 formation for G-tracts having more than 3 

guanines, we considered only variants within trinucleotide G-tracts. MAPS values were also 

determined for the set of variants with a VEP consequence of missense, or those variants 

predicted to cause a loss of function (pLoF) in gnomAD to provide context for the different 

degrees of purifying selection acting over a set of variants. pLoF variants were defined as those 

annotated with Ensembl predictions for having a high impact and includes transcript_ablation, 

splice_acceptor_variant, splice_donor_variant, stop_gained, frameshift_variant, stop_lost, and 

start_lost terms. In our assessment of positional constraint within the meta-pG4 sequence 

consisting of only trinucleotide G-tracts, we calculated MAPS for four categories of pG4 variants: 

1) all genes, 2) genes with at least one transcript falling in the upper one-third of transcripts that 

are most intolerant to loss of function mutations (as determined by the gnomAD o/e metric), 3) 

https://paperpile.com/c/9JbdHH/0jWU8
https://github.com/pjshort/dddMAPS
https://paperpile.com/c/9JbdHH/t7iMN
https://paperpile.com/c/9JbdHH/Tq7kW
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alternative pG4 genes, and 4) alternative pG4 disease-associated genes extracted from ClinVar 

database (April, 2019 release). Permutation P-values were obtained by performing 10,000 

bootstraps for each set of pG4 variants in gnomAD with replacement to produce a distribution of 

MAPS score for each variant context; and then comparing these distributions to a matched set of 

resampled MAPS scores using either all UTR variants, or position-matched non-pG4 GGG/CCC 

trinucleotide variants to determine the proportion of bootstrapped samples whose MAPS score of 

pG4 regions exceeded the matched non-pG4 variant set. 

Posterior substitution probabilities for noncoding regions of the genome based on local 

heptameric sequence contexts were obtained from a published model [75] based on the Phase 1 

release of the 1000 Genomes Project. Cumulative substitution probabilities for each of the 

possible mutations within a heptamer context (e.g. A→C, A→T, A→G) were calculated by 

summing over all nucleotide substitution probabilities for a given heptamer context. To produce a 

null distribution of observed / expected number of substitutions for non-pG4 regions of the UTR, 

we randomly sampled 5000, 25 nucleotide UTR regions from constraint-matched transcripts, 

10,000 times to generate a null distribution. Specifically, constraint-matched non-pG4 transcripts 

were divided into heptamers using a sliding window across the entire region, and substitution 

probabilities based on heptameric context alone was summed for each nucleotide position of 

each region to estimate the expected substitution frequency across each region of interest. The 

number of expected substitutions as derived from the heptamer substitution model for a given 

region was compared to observed substitutions for the European subpopulation within the Phase 

1 of the 1000 Genomes Release. We performed comparisons across UTR pG4 G-tracts, pG4 

non-G-tract Gap sequences, and constraint-matched non-pG4 UTRs for all pG4s, and the subset 

of rG4-seq supported pG4 motifs. Because the model does not adjust for methylation at CpG 

dinucleotides, all CpG dinucleotide positions within UTRs were removed from consideration. 

Statistical significance was determined by randomly sampling a set of genomic positions from 

each region of interest with replacement, matching the original combined size of each region, 

https://paperpile.com/c/9JbdHH/yzImu
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over 10,000 iterations to produce a distribution of observed / expected ratios for each region of 

interest. P-values for each region (pG4, rG4, gap sequences) were calculated as the proportion of 

the observed / expected ratios obtained from the above bootstrapping procedure that were less 

than a matched set of observed / expected ratios using all 5’ and 3’UTR genomic positions 

obtained by the same procedure.  

 

pG4 Isoform Expression Across Tissues in GTEx 

The median expression of each annotated RNA transcript (as measured in units of TPMs) in each 

tissue context was downloaded from GTEx v7. Median TPMs for each transcript were extracted 

for all pG4- or non-pG4 containing transcript for each pG4 gene, the highest expressed pG4 or 

non-pG4 isoform was selected, and a threshold of 1 TPM was used to determine expression 

within a specific tissue context. pG4 transcripts were deemed constitutive if only one of the pG4, 

or none of the non-pG4 transcripts exceeded this threshold, and labeled alternative if both the 

pG4, and non-pG4 transcripts exceeded this threshold. Significance of the distribution of 

alternative versus constitutive UTR pG4-encoding genes was assessed by randomly assigning 

pG4 and non-pG4 transcripts each gene, maintaining the number of transcript isoforms encoded 

by each gene constant with the condition that each gene should contain at least 1 pG4-encoding 

transcript. The distribution of the ratio of alternative to constitutive pG4 genes from the randomly 

distributed pG4 transcripts was then computed over 10,000 iterations to obtain a P-value for the 

true ratio of alternative to constitutive UTR pG4 encoding genes. 

 

cis-eQTL and protein-binding enrichment 

Significant variant-gene pairs were obtained from GTEx release version 7 (URL: 

https://gtexportal.org/home/datasets) constituting the set of nominally significant cis-eQTLs. Lead 
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cis-eQTL variants for each gene were defined as the variant with the lowest P-value for each 

gene, from the set of all significant variants in each tissue context separately. The set of lead and 

nominally significant variants was overlapped with UTR pG4 and non-pG4 regions of the UTR, 

and the number of significant cis-eQTL variants per region was compared to the number of non-

significant tested SNPs occupying the same region to determine the proportion of cis-eQTLs 

compared to non-cis-eQTL SNPs. UTRs with cis-eQTLs not associated with changing the 

expression of the parent gene were excluded this analysis. Enrichment of cis-eQTLs was 

computed using a two-sided Fisher Exact Test. The set of causal eQTL candidates were obtained 

directly from the supplemental material of Brown et. al [80], and enrichment statistics were 

computed using GTEx v6p tested SNPs instead of v7 to match the data used in that study. 

The direction bias of nominally significant cis-eQTLs within UTR pG4 G-tracts versus non-G-tract 

variants was computed by binarizing the normalized effect size pre-computed for each QTL by 

GTEx, and comparing the proportions of QTLs in each feature with either a positive effect, or 

negative effect on gene expression for each possible cis-eQTL annotation across all tissue 

contexts combined. Statistical significance was determined by a two-sided Fisher Exact Test. 

High-confidence protein-binding sites were obtained from ENCODE CLIP-seq summaries and 

only peaks called with an Irreproducible Discovery Rate = 1000 were used for downstream 

enrichment analyses as determined by ENCODE [82]. Overlapping binding sites for multiple 

proteins were collapsed into a single protein-binding site, and the density of unique binding sites 

overlapping UTR pG4 regions compared to non-pG4 regions of the UTR was compared by 

dividing the number of CLIP-seq peaks overlapping each feature by the total number of 

nucleotides in each region. Significance was assessed using a chi-square test with 2 degrees of 

freedom. 

 

https://paperpile.com/c/9JbdHH/FW1xT
https://paperpile.com/c/9JbdHH/i5HzV
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Proteins whose binding sites are enriched for pG4 overlaps were computed using a 

hypergeometric test, by comparing the proportion of set of pG4 containing versus non-pG4 

binding sites for a given RBP compared against the background proportion of of all UTR CLIP-

seq peaks containing a pG4 sequence. The significance of pairwise overlaps between protein-

gene targets was also computed using a hypergeometric test to assess the degree that one 

protein’s pG4 binding genes were also targets for another protein.  

 

Gene Expression with RBP Knockdown in ENCODE 

Processed differential gene expression tables for K562 and HepG2 were obtained directly from 

ENCODE (https://www.encodeproject.org/) for each of the pG4-enriched binding proteins and 

their respective knockdown experiments. For each experiment, a gene was considered 

differentially expressed at an FDR threshold of < 0.05. Genes from ENCODE differential 

expression tables were annotated as either a pG4 gene or non-pG4 gene on the basis of whether 

they encoded for a transcript isoform possessing a UTR pG4 sequence in either the 5’UTR or 

3’UTR. The odds ratio for being significantly differentially expressed was calculated by comparing 

the ratio of pG4 to non-pG4 genes reaching statistical significance for differential expression 

between shRNA knockdown of the RBP, and the control for each protein separately. Statistical 

significance was determined by Fisher’s Exact Test and FDR was controlled at 0.001 by applying 

the Benjimini-Hochberg procedure to the resultant P-values for each cell line. The direction of 

effect on pG4 gene expression for protein knockdown to cause an increase or decrease in pG4 

gene expression was determined by taking the median value for log2-fold change in expression 

for all pG4-containing genes measured in a given experiment. 

 

Variants in ClinVar and the NIH-GWAS Catalogue 

https://www.encodeproject.org/
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The April 2019 release of ClinVar was obtained from ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/. Using 

these variant annotations, we identified a subset of disease associated genes as any gene with at 

least one variant having a Pathogenic or Likely Pathogenic annotation. These genes were used 

to subset the ClinVar database and all variants spanning 40 nucleotides or less were overlapped 

with UTR regions to assess for enrichment in pG4 sequences. Insertions or deletions spanning 

greater than 40 nucleotides were not considered in this analysis, nor were any variants with an 

annotation of Benign or likely benign in Clinvar. The number of variants across each region was 

then divided by the total number of bases in each respective region to estimate of the density of 

variation in a given region. The odds ratios for the number of single nucleotide variants compared 

to the number of bases in a given region were then compared using a two-sided Fisher Exact 

Test. 

For identification of GWAS-implicated SNPs affecting annotated UTR pG4 sequences, publicly 

available phenotype-associated SNPs from were obtained from the NIH-EBI GWAS Catalogue. 

Genomic coordinates for GWAS SNPs were converted from hg38 to hg19 coordinates using the 

NCBI Genome Remapping Service (https://www.ncbi.nlm.nih.gov/genome/tools/remap). This set 

of lead GWAS SNPs was used to identify nearby linked SNPs in high LD using the Linkage 

Disequilibrium Calculator tool from the Ensembl GRCh37 website using a 50KB window 

surrounding each lead GWAS SNP and selecting the set of SNPs with r2 > 0.85 using the GBR 

population of the 1000 Genomes Project.  

 

Allele-specific expression for GWAS-variants 

RNA-seq libraries were trimmed using TrimGalore [191]. Reads were aligned to the GRCh37 

human genome using STAR (version 2.7.0c) with the WASP-filtering option, and matched whole-

genome sequencing variant files obtained from GTEx for Skeletal Muscle, Thyroid, Fibroblast, 

https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://paperpile.com/c/9JbdHH/5wTmk
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Esophagus, and Tibial Nerve tissue samples. Reads that did not pass WASP-filtering were 

removed from the resulting aligned bam files. PCR duplicates were removed using the python 

script remove_duplicates.py included in the WASP version 0.3.3 pipeline 

(https://github.com/bmvdgeijn/WASP). Read counts matching the reference and alternate alleles 

in the resultant WASP-filtered bam files were compiled using bcftools mpileup across UTR pG4 

variants. A beta-binomial model was fitted using the R VGAM package [192] for each variant 

across all heterozygous samples identified using matched whole-genome sequencing from GTEx 

to estimate the ratio of reference reads to alternate reads. Estimates of statistical significance 

were obtained by using a likelihood ratio test comparing the log-likelihood of the observed count 

distribution for each variant using the beta-binomial estimate for ρ versus the null hypothesis of 

no bias (ρ = 0.5).  

 

Code Availability 

All analysis scripts used to generate the primary results and figures reported in this study are 

publicly available from: https://bitbucket.org/biociphers/g4-paper-2019/src/master/. 

 

Data Availability 

Pre-processed data, and instructions for how to access public data resources used in this study 

that can be used to regenerate the primary figures of this analysis have been uploaded to 

https://bitbucket.org/biociphers/g4-paper-2019/src/master/. A subset of the processed publicly 

available data underlying Figs 3, 4, and 5 are included in this repository, with associated 

instructions on how to access other data as required to regenerate these figures where 

necessary. This repository also contains a link to a Source Data file which contains raw data 

underlying Figs 1b-d, 3a, b, 4a-d, 5a, c, d, and Supplementary Figs 5 and 7. Genetic variation 

https://paperpile.com/c/9JbdHH/THnyR
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data from The Genome Aggregation Database version 2 release are available from: 

https://gnomad.broadinstitute.org/downloads. Gene expression and cis-eQTL mapping data from 

the Genotype Tissue Expression Project version 7 release are available from the GTEx Portal 

website: https://gtexportal.org/home/. RNA-seq data used for allelic imbalance analysis are 

available from dbGaP (phs000424.v7.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000424.v7.p2]). RNA-protein binding interaction data can be retrieved 

from the ENCODE Consortium: https://www.encodeproject.org/. GWAS-associated variation data 

can be accessed from the NIH-EBI GWAS Catalog: https://www.ebi.ac.uk/gwas/. A copy of the 

filtered ClinVar database used to generate Fig. 5a is included in the code repository from April 

2019. The most updated version of disease-associated genetic variant annotations are also 

available from ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/. 

 

Statistics 

Data were analyzed and statistics performed using R (version 3.5.0) and Python (version 3.7 and 

3.6.1). 

  

https://gnomad.broadinstitute.org/downloads
https://gtexportal.org/home/
https://www.encodeproject.org/
https://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/clinvar/
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APPENDIX B: Methods for Disrupting upstream translation in mRNAs is 

associated with loss-of-function in human disease 

Annotation of translated non-canonical open reading frames 

Non-canonical ORF (ncORF) annotations encompassing 5’UTR ORFs (uORFs), 3’UTR ORFs 

(dORFs), long-noncoding RNA ORFs (lncRNA) and pseudogene ORFs were retrieved from 

Supplementary File 1 from Ji et al. [121]. These ncORFs were mapped by ribosome-profiling in 

human BJ fibroblasts and MCF10A breast epithelial cells using the RibORF algorithm. Using the 

final set of genomic coordinates for ncORFs identified in this study, we converted these 

coordinates to match hg38 annotations using the UCSC LiftOver executable 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver). Out of 10,007 distinct non-canonical uORFs 

mapped in the original study, 27 whose length changed after conversion (N = 5 uORFs, 4 dORFs, 

16 lncRNA ORFs, 2 pseudogenes) were excluded from subsequent analyses. Each Refseq 

mRNA ID for each ORF-associated RNA transcript was annotated to its associated Ensembl 

transcript ID using the BioMart database v86 annotations. The first three nucleotides of each ORF 

were used as start codons for downstream analyses. The final three nucleotides of each ORF 

were used as stop codons for downstream analyses. 5’ and 3’ UTR definitions used in this study 

are derived from the Ensembl v86 annotations. 

 

Quality filtering and annotation of variants from gnomAD version 3 

Variants from gnomAD 3 release were downloaded from the gnomAD browser website 

(https://gnomad.broadinstitute.org/downloads). A set of high-confidence variants were obtained 

by removing those failing the Filter column (Filter != PASS) from the gnomAD version 3 vcf files 

using bcftools (version 1.9), and those falling in low complexity regions (lcr != 1). This set of 

variants was used for all downstream analyses. We additionally removed variants where the total 

https://paperpile.com/c/9JbdHH/AODjz
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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observed allele number was at less than 80% of the maximum number of sequenced alleles to 

control for differences in sequencing depth in the gnomAD WGS dataset. The remaining set of 

high-confidence variants was overlapped with genomic coordinates for annotated ncORFs, 5’UTR 

sequences, and annotated protein-coding sequences using bedtools (version 2.27.1) intersect 

with the -u and -b flags. The predicted consequence of each variant was obtained using the 

Ensembl Variant Effect Predictor (VEP, version 98.2) based on hg38 gene models obtained from 

Ensembl. VEP consequences were further filtered to only include the predicted consequence for 

the canonical Ensembl transcript as determined in [136].  

 

Positional constraint analysis using variants from gnomAD 

For the positional constraint analysis we applied the MAPS metric to each variant set. We 

developed a MAPS model following previous methods [136]. The set of synonymous protein-

coding variants are used as a baseline measurement for neutral selection, and the proportion of 

singletons in a variant class are adjusted for differences in mutation rates due to local sequence 

context [37,136]. We trained our model by regressing the observed proportion of singleton-

synonymous variants for each trinucleotide context within protein-coding regions of the genome 

using previously published context-dependent mutation rates derived from intergenic noncoding 

regions of the genome [136]. Since negative selection prevents deleterious mutations from 

becoming common in human populations, more deleterious mutations - including those disrupting 

essential splice sites or introducing premature termination codons - are also more enriched for 

singletons compared to neutral variants. 

MAPS scores for a given set of variants are calculated as described previously [37,135,136]. 

Briefly, for a given set of variants, we use the MAPS model to determine the expected number of 

singletons that should be observed, based on the transformed mutation rates which account for 

https://paperpile.com/c/9JbdHH/yMoOF
https://paperpile.com/c/9JbdHH/yMoOF
https://paperpile.com/c/9JbdHH/0jWU8+yMoOF
https://paperpile.com/c/9JbdHH/yMoOF
https://paperpile.com/c/9JbdHH/t6lzM+yMoOF+0jWU8
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trinucleotide context and methylation levels. To calculate the MAPS score, we take the observed 

number of singletons for this set of variants, and subtract the expected number of singletons 

calculated using the MAPS model. We then divide this value by the number of variants total to 

obtain the proportion of singleton variants adjusted for mutation context. 

To estimate of MAPS scores for missense-causing mutations in canonical protein-coding 

sequences within the genome, we selected the subset of SNVs in gnomAD with an annotated 

VEP consequence of missense, and removed SNVs from this set of variants if they had additional 

VEP annotations that could be considered predicted loss-of-function (pLoF). The set of variants 

used to calculate MAPS scores for pLoF variants relied on aggregating variants with a VEP 

annotation of transcript_ablation, splice_acceptor_variant, splice_donor_variant, stop_gained, 

frameshift_variant, stop_lost, and start_lost terms. The set of synonymous variants used to train 

the MAPS model was filtered to remove variants with any of the previous predicted high impact 

annotations, and those with a possible missense consequence.  

We computed MAPS scores for each set of variants based on uORF annotations, or 5’UTR 

annotations from Gencode (GRCh38.p13; 

https://www.gencodegenes.org/human/release_32.html). Using the set of filtered variants we 

matched them to uORF positions annotated by their relative position within the uORF reading 

frame, strand, and codon. We determined how the mutation affected the codon within the 

translated uORF sequence, and annotated each variant with its consequence on the encoded 

amino acid. We used these annotations to select variants that could introduce new stop codons 

(UTC-introducing variants) and those that strengthened existing stop codons within uORFs. For 

UAA-introducing variants we selected any variant that produced an in-frame UAA stop codon. For 

each set of stop-introducing or stop-strengthening variants, we selected a set of uORF variants 

matching the underlying trinucleotide context of each experimental set of variants. MAPS scores 



108 

 

for these variant sets were computed and confidence intervals were determined by resampling 

from each variant set with replacement over 10,000 iterations.  

For codon optimality analysis, we used the set of codon stability coefficients (CSC) scores 

derived from SLAM-seq in 562 cells obtained from https://doi.org/10.7554/eLife.45396.006 [153]. 

Optimality decreasing variants were defined as any variant which decreased the CSC score for 

the encoded codon, and optimality increasing variants were defined as any variant which 

increased the CSC score for the encoded codon. 

Confidence intervals for MAPS scores were calculated using bootstrapping as described [135]. 

For each set of n variants used to compute a MAPS score, we select n variants randomly with 

replacement and recalculate MAPS scores. This is repeated over 10,000 permutations and the 

5th and 95th percentiles of the MAPS scores distribution are used as confidence intervals. P-

values for differences in MAPS scores were determined by calculating the proportion of 

bootstrapped MAPS scores from an experimental group of variants that were larger than those 

from the control group [135].  

 

Determining the distribution of stop codons used by upstream open reading frames 

Stop codons from each uORF were extracted based on genomic coordinates and the uORF 

reading frame. Confidence intervals were determined by sampling with replacement from the set 

of uORF stop codons over 10,000 iterations. For 5’UTR sequences, all stop-codon matching 

trinucleotides (UGA, UAG, UAA) were extracted from annotated canonical 5’UTR sequences of 

protein-coding genes in the BioMart Ensembl database (version 86). The set of canonical 

transcripts annotated in the gnomAD flagship release paper were used to define 5’UTR 

sequences for this analysis [136]. For each iteration, one stop codon was randomly selected from 

each 5’UTR and the proportion of UGA, UAG, and UAA trinucleotides selected from all 5’UTR 

https://doi.org/10.7554/eLife.45396.006
https://paperpile.com/c/9JbdHH/kJek5
https://paperpile.com/c/9JbdHH/t6lzM
https://paperpile.com/c/9JbdHH/t6lzM
https://paperpile.com/c/9JbdHH/yMoOF
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sequences were calculated. This procedure was repeated 10,000 times to form a distribution of 

TGA, TAG, and UAA trinucleotides in all 5’UTR sequences. This procedure was also repeated for 

uORF-matched UTR sequence segments that did not overlap known translated uORFs. P-values 

for the depletion of UAA stop codons used in translated uORFs were calculated by determining 

the number of bootstrap iterations where the frequency of UAA codons from uORFs was higher 

compared to non-uORF sequences. P-values for enrichment of UGA and UAG sequences were 

calculated by determining the fraction of sampled iterations where fewer UGA and UAG 

sequences were selected from uORF stop codons compared to all 5’UTRs and uORF-matched 

5’UTR sequences respectively. 

 

Assessing variant conservation using genome-wide phyloP scores 

PhyloP scores for each base were downloaded from the UCSC genome browser 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/). 1-indexed bigwig files were 

converted to bed file format using the wig2bed tool from bedops (version 2.4.36; 

https://bedops.readthedocs.io/en/latest/index.html). These base-level annotations were matched 

to each uORF base and used to determine the proportion of bases that were significantly 

conserved (proportion of bases with phyloP score > 2). Possible inframe stop-codon creating 

positions were identified based on mapped reading frames for each uORF. These sites were 

extracted and further categorized by whether or not a mutation could create a UGA, UAG, or UAA 

stop codon. Some positions could be mutated to either a UGA, UAG or UAA codon and these 

were considered separately from potential UGA, UAG or UAA-creating positions. We have 

included all potential stop-introducing positions in Suppl. File 1. As a control we used phyloP 

scores for genomic positions with the potential to create non-uORF UGA, UAG, or UAA 

trinucleotides by mutation, but matched by distance to CDS in 10-base pair windows. 
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Start-disrupting genomic positions were annotated as those mutating the second or third position 

in the first codon of each translated uORF. Conservation based on phyloP scores were assessed 

for start-disrupting positions similar to potential stop-introducing positions. As a control we 

compared phyloP scores for uORF start-disrupting positions to out-of-frame start-disrupting 

positions within annotated uORFs, and a set of NTG start-disrupting variants that were not part of 

translated uORFs but matched by distance to the CDS as determined by 10-bp windows. 

P-values were determined by sampling with replacement from each set of variants 10,000 times 

and re-calculating the proportion of significantly conserved bases (phyloP score > 2). The 

distribution of the fraction of conserved base positions were then compared against different sets 

of variants, and the P-value was defined as the fraction of samples where one group was higher 

than the other. 

 

Setting and study participants 

All individuals who were recruited for the Penn Medicine Biobank (PMBB) are patients of clinical 

practice sites of the University of Pennsylvania Health System. Appropriate consent was obtained 

from each participant regarding storage of biological specimens, genetic sequencing, access to 

all available electronic health record (EHR) data, and permission to recontact for future studies. 

The study was approved by the Institutional Review Board of the University of Pennsylvania and 

complied with the principles set out in the Declaration of Helsinki. Replication analyses were 

conducted using the whole exome sequencing (WES) dataset from the UK Biobank (UKB). 

Genetic sequencing 
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This PMBB study dataset included a subset of 11,451 individuals in the PMBB who have 

undergone WES. For each individual, we extracted DNA from stored buffy coats and then 

obtained exome sequences generated by the Regeneron Genetics Center (Tarrytown, NY). 

These sequences were mapped to GRCh37 as previously described [155]. Furthermore, for 

subsequent phenotypic analyses, we removed samples with low exome sequencing coverage 

(i.e. less than 75% of targeted bases achieving 20x coverage), high missingness (i.e. greater than 

5% of targeted bases), high heterozygosity, dissimilar reported and genetically determined sex, 

genetic evidence of sample duplication, and cryptic relatedness (i.e. closer than 3rd degree 

relatives), leading to a total of 10,900 individuals. 

For replication studies in UKB, we interrogated the 32,268 individuals of European ancestry 

(based on UKB’s reported genetic ancestry grouping) with ICD-10 diagnosis codes available 

among the 49,960 individuals who had WES data as generated by the Functional Equivalence 

(FE) pipeline. We focused our replication efforts on 32,268 individuals after removing samples 

with poor genotype quality, individuals closer than 3rd degree relatives, and those with dissimilar 

reported and genetically determined sex. The PLINK files for exome sequencing provided by UKB 

were based on mappings to GRCh38. Access to the UK Biobank for this project was from 

Application 32133.           

 

Variant annotation and selection for association testing 

For both PMBB and UKB, genetic variants were annotated using ANNOVAR [193] as 5’ 

untranslated region (5’ UTR), predicted loss-of-function (pLOF), or missense variants according 

to the NCBI Reference Sequence (RefSeq) database [193,194]. Rare (MAF ≤ 0.1%) pLOF 

variants were defined as frameshift insertions/deletions, gain/loss of stop codon, or disruption of 

canonical splice site dinucleotides. Predicted deleterious rare (MAF ≤ 0.1%) missense variants 

https://paperpile.com/c/9JbdHH/mY3Yb
https://paperpile.com/c/9JbdHH/ZYVwX
https://paperpile.com/c/9JbdHH/ZYVwX+lKZVo
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were defined as those with Rare Exonic Variant Ensemble Learner (REVEL) [195] scores ≥ 0.5. 

pLOF and REVEL-informed missense variants were selected for gene burden testing to validate 

the robustness of significant uORF variants’ corresponding gene-disease associations. 

 

Clinical data collection 

International Classification of Diseases Ninth Revision (ICD-9) and Tenth Revision (ICD-10) 

disease diagnosis codes and procedural billing codes, medications, and clinical imaging and 

laboratory measurements were extracted from the patients’ EHR for PMBB. ICD-10 encounter 

diagnoses were mapped to ICD-9 via the Center for Medicare and Medicaid Services 2017 

General Equivalency Mappings (https://www.cms.gov/Medicare/Coding/ICD10/2017-ICD-10-CM-

and-GEMs.html) and manual curation. Phenotypes for each individual were then determined by 

mapping ICD-9 codes to distinct disease entities (i.e. Phecodes) via Phecode Map 1.2 using the 

R package “PheWAS” [156,196]. Patients were determined to have a certain disease phenotype 

if they had the corresponding ICD diagnosis on two or more dates, while phenotypic controls 

consisted of individuals who never had the ICD code. Individuals with an ICD diagnosis on only 

one date as well as individuals under control exclusion criteria based on PheWAS phenotype 

mapping protocols were not considered in statistical analyses. 

For UKB, we used the provided ICD-10 disease diagnosis codes for replication studies, and 

individuals were determined to have a certain disease phenotype if they had one or more 

encounters for the corresponding ICD diagnosis given the lack of individuals with more than two 

encounters per diagnosis, while phenotypic controls consisted of individuals who never had the 

ICD code. Individuals under control exclusion criteria based on PheWAS phenotype mapping 

protocols were not considered in statistical analyses. 

 

https://paperpile.com/c/9JbdHH/1iUzv
https://paperpile.com/c/9JbdHH/Q6mur+LzSF5
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Association studies 

A phenome-wide association study (PheWAS) approach was used to determine the phenotypes 

associated with 5’ UTR variants predicted to create new UAA UTCs, or strengthen existing uORF 

stop sites and carried by individuals in PMBB for the discovery experiment [156]. Each disease 

phenotype was tested for association with each uORF variant using a logistic regression model 

adjusted for age, age2, sex, and the first ten principal components (PCs) of genetic ancestry. We 

used an additive genetic model to collapse variants per gene via an extension of the fixed 

threshold approach [197]. Given the high percentage of individuals of African ancestry present in 

the discovery PMBB cohort, association analyses were performed separately in European 

(N=8198) and African (N=2172) genetic ancestries and combined with inverse variance weighted 

meta-analysis. Only 5’ UTR variants with at least five total alternate alleles in PMBB were 

selected for univariate PheWAS analyses in the discovery phase while variants with greater than 

half of the genotypes annotated as missing due to low quality were excluded. This resulted in a 

final set of N=10 variants. Our association analyses considered only disease phenotypes with at 

least 20 cases, leading to the interrogation of 800 total Phecodes. All association analyses were 

completed using R version 3.3.1 (Vienna, Austria). 

We evaluated the robustness of significant uORF-phenotype associations in the same PMBB 

discovery cohort by aggregating pLOF and predicted deleterious missense variants in each 

uORF’s corresponding gene into a ‘gene burden’ for hypothesis-driven association with the 

significant phenotype from discovery. Only gene burdens with at least five total alternate alleles in 

PMBB were selected for replication studies. All gene burden association studies in PMBB were 

based on a logistic regression model adjusted for age, age2, sex, and the first 10 PCs of genetic 

ancestry. 

Additionally, we replicated our findings in UKB for significant uORF associations in the PMBB 

discovery using 1) hypothesis-driven univariate association studies for the same uORF variants 

https://paperpile.com/c/9JbdHH/LzSF5
https://paperpile.com/c/9JbdHH/DeO68
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and 2) hypothesis-driven gene burden collapsing pLOF and predicted missense variants for the 

corresponding genes. Only uORF variants and gene burdens with at least five total alternate 

alleles in PMBB were selected for replication studies. Association statistics were calculated 

similarly to PMBB, such that each disease phenotype was tested for association with each gene 

burden or single variant using a logistic regression model adjusted for age, age2, sex, and the first 

10 PCs of genetic ancestry. Replication significance was defined using a P-value threshold of 

0.05. All association analyses for PMBB and UK Biobank completed using R version 3.6.1. 

 

Construction of expression vectors 

The test plasmids used a modified pGL4.12[luc2CP] (Promega) vector backbone where the 

control of expression of the Firefly ORF was modified by the addition of an upstream CMV 

promoter. The modified pGL4.12 vector was linearized using Bgl-II and MreI restriction sites. 

Hybrid 5’UTR fragments containing the entire 5’UTR sequence and the first 91 nucleotides of the 

Luc2 Firefly ORF were produced by gBlock synthesis and received from Integrated DNA 

Technologies using sequences in Suppl. Table 3. Test plasmids were constructed by sub-cloning 

these hybrid 5’UTR sequences for PMVK, VPS53, and BCL2L13 into the modified pGL4.12 

vector to preserve the uORF-CDS relationship for each construct. Correct fragment insertion was 

verified for each engineered construct by sanger sequencing. For PMVK and BCL2L13, the entire 

annotated 5’UTR sequence was used. For VPS53, because of a G-rich sequence in the 5’UTR 

upstream of the uORF complicated synthesis of the gene’s entire 5’UTR fragment, we removed 

the first 75 nucleotides of the annotated 5’UTR sequence. Construct assembly was accomplished 

using the NEB Hi-Fi assembly protocol following manufacturer’s instructions. 

 

Cell culture and transfections 
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HEK293T cells were used for conditional expression of reporter genes. For transient 

transfections, HEK293T cells were split 1 day before transfection and seeded in 24-well plates at 

a density of 100,000 cells per well. 2 ug of the test Firefly reporter plasmid was transfected into 

each well using Lipofectamine 3000 following the manufacturer’s protocol using 1.5 uL of 

transfection reagent and 0.5 uL of the P3000 reagent for each well. As a control for transfection 

efficiency, 0.02 ug of the pRL-CMV Renilla Luciferase plasmid (Promega Accession No. 

AF025843) was co-transfected with firefly luciferase plasmids. Biological replicates were obtained 

by transfecting cells from separate passages on separate days using newly prepared reagents. 

All transfections were repeated using the HeLa cell line. Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% (v/v) fetal bovine serum and antibiotics was used for all cell 

culture. 

 

Luminometry assays 

Luminescence was measured using the Promega Dual-Luciferase Reporter Assay System 

(E1910) following the manufacturer’s protocol. Cells were lysed by adding 100 uL of lysis buffer 

10 uL of each lysate was transferred to a black opaque 96-well plate. The ratio of Firefly to 

Renilla luminescence with a microplate reader by automatic injection of the Luciferase Assay 

Reagent II and Stop & Glo reagents. Biological replicates were obtained by transfecting cells from 

separate passages on separate days using newly prepared reagents. Luminescence 

measurements were compared within each set of transfections and statistical significance was 

determined using a one-sided T-test comparing the firefly to Renilla expression ratio of each test 

construct normalized to the wild-type construct. 

 

http://www.ncbi.nlm.nih.gov/nuccore/AF025843
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Code Availability 

All scripts used in this analysis except for those generating PheWAS results and plots can be 

accessed from https://www.bitbucket.org/biociphers/uorf-paper-2020/src 

 

Data Availability 

Data Description URL 

gnomAD 

variants 

(version 3) 

The set of variants obtained from 

71,702 whole genome 

sequences used for MAPS 

analysis 

https://gnomad.broadinstitute.org/downloads 

Mapped 

Non-

canonical 

ORFs 

5’UTR (uORF), 3’UTR (dORF), 

long-noncoding RNA, and 

pseudogene ORFs mapped by 

the RibORF algorithm from 

ribosome-profiling data 

https://doi.org/10.7554/eLife.08890.023  

CSC scores Codon-stability coefficient scores 

as determined by several 

techniques 

https://doi.org/10.7554/eLife.45396.006  

 

Software Availability 

https://doi.org/10.7554/eLife.08890.023
https://doi.org/10.7554/eLife.45396.006
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Software Version URL 

Python 3.7.3 https://www.python.org/downloads/release/python-373/ 

R 3.6.1 https://cran.r-project.org/bin/windows/base/old/3.6.1/ 

bedtools 2.27.1 https://github.com/arq5x/bedtools2/releases 

bcftools 1.9 http://samtools.github.io/bcftools/bcftools.html 

Variant Effect Predictor 

(Ensembl) 

98.2 https://useast.ensembl.org/info/docs/tools/vep/index.html 
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