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This dissertation combines tools from operations management, econometrics, machine learning, and 
behavioral sciences to (i) study how on-demand workers learn and make decisions in complex 
environments, (ii) develop tools to help improve their decision-making, and (iii) inform the design of better 
policies to manage human-centered operations. Recent technologies create and accelerate new work 
arrangements that provide workers with flexibility in their schedule and choice of service. At the same 
time, the decisions a worker faces have become more complex. Platforms offer competing dynamic 
incentives, and the independent nature of gig work means that workers do not experience the benefits of 
learning from colleagues. The following three chapters investigate how behavioral operations 
management can be utilized to better manage the gig economy. 

(i) Behavioral and Economic Drivers of Decisions.We empirically investigate how on-demand workers 
decide on when to work and \emph{for how long} depending on varying financial incentives and personal 
goals. Using the comprehensive data from a ride-hailing industry partner, we develop an econometric 
framework that addresses empirical challenges such as sample selection bias and endogeneity. Our 
results demonstrate that, while workers exhibit positive income elasticity as predicted by standard 
income theory, their decisions are significantly influenced by their cumulative earnings (more likely to stop 
working when reaching their income goal) and recent work duration (tend to stay working after long hours 
of work or exhibit "inertia"), more akin to the behavioral theory of labor supply. Inertia captures both the 
formation of work habits and the tendency to stay with the focal platform, suggesting that, amidst 
intensifying competition among platforms, platform loyalty could be induced through optimal incentive 
design. Thus, we propose a heuristic to optimize incentive allocation and demonstrate through 
counterfactual simulations the monetary and capacity benefits of accounting for our behavioral insights. 

(ii) Dynamic Decisions and Multihoming Behavior. We leverage proprietary data from our ride-hailing 
industry partner and the publicly available trip record data to develop and estimate a structural behavioral 
model of gig workers' sequential dynamic decisions of when and where to work in the presence of 
alternative work opportunities. Our major contributions are in the modeling and estimation of dynamic 
decisions with temporal and spatial components and dynamic outside options, and the development of 
an efficient simulation-assisted machine learning-based estimation framework. Our results characterize 
gig workers' forward-looking behavior and heterogeneous cost of working. We find that workers are 
strategic in their choice of initial service location to ensure high utilization and are prone to multihoming 
behavior when facing longer idle times. Then, we study how the firm can influence multihoming behavior 
among workers. Our counterfactual analyses demonstrate the effectiveness of strategies commonly used 
in practice and offer insights that can help retain workers during high demand or nudge them to quit 
during low demand. 

(iii) Improving Human Decision-Making with Machine Learning. We propose a novel machine-learning 
algorithm to automatically extract best practices from the trace data and infer simple tips that can help 
workers learn to make better decisions. We use an approach based on imitation learning and interpretable 
reinforcement learning and consider simple if-then-else rules that modify workers' strategy in a way that 
most improve their performance, capture useful insights that are challenging for workers to learn by 
themselves, and are simple enough for workers to understand. To validate our approach and test the 
performance of our algorithm, we design a virtual kitchen-management game and conduct large-scale 
pre-registered behavioral studies on Amazon Mechanical Turk. Our experiments show that rules inferred 
from our algorithm are effective and significantly outperform rules from other sources at improving 
performance and speeding up learning among workers. In particular, we help workers identify optimal 
early actions that help them improve in the long term and discover additional optimal strategies beyond 
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ABSTRACT

MANAGING THE GIG ECONOMY

VIA BEHAVIORAL AND OPERATIONAL LENSES

Wichinpong Park Sinchaisri

Gad Allon

This dissertation combines tools from operations management, econometrics, machine learn-

ing, and behavioral sciences to (i) study how gig economy workers learn and make decisions

in complex environments, (ii) develop tools to help improve their decision-making, and (iii)

inform the design of better policies to manage human-centered operations. Recent tech-

nologies create and accelerate new work arrangements that provide workers with flexibility

in their schedule and choice of service. At the same time, the decisions a worker faces have

become more complex. Platforms offer competing dynamic incentives, and the independent

nature of gig work means that workers do not experience the benefits of learning from col-

leagues. The following three chapters investigate how behavioral operations management

can offer insights into how to better manage the flexible workforce.

(i) Behavioral and Economic Drivers of Decisions. We empirically investigate how

on-demand workers decide on when to work and for how long depending on varying financial

incentives and personal goals. Using the comprehensive data from a ride-hailing industry

partner, we develop an econometric framework that addresses empirical challenges such

as sample selection bias and endogeneity. Our results demonstrate that, while workers

exhibit positive income elasticity as predicted by standard income theory, their decisions

are significantly influenced by their cumulative earnings (more likely to stop working when

reaching their income goal) and recent work duration (tend to stay working after long hours

of work or exhibit “inertia”), more akin to the behavioral theory of labor supply. Inertia

captures both the formation of work habits and the tendency to stay with the focal platform,

suggesting that, amidst intensifying competition among platforms, platform loyalty could
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be induced through optimal incentive design. Thus, we propose a heuristic to optimize

incentive allocation and demonstrate through counterfactual simulations the monetary and

capacity benefits of accounting for our behavioral insights.

(ii) Dynamic Decisions and Multihoming Behavior. We leverage proprietary data

from our ride-hailing industry partner and the publicly available trip record data to develop

and estimate a structural model of gig workers’ sequential dynamic decisions of when and

where to work. Our major contributions are in the modeling and estimation of dynamic

decisions with temporal and spatial components and dynamic outside options, and the de-

velopment of an efficient simulation-assisted machine learning-based estimation framework.

Our results characterize workers’ forward-looking behavior and the distribution of operating

cost. We find that workers are strategic in their choice of initial service location to ensure

high utilization and are prone to multihoming when facing longer idle times. Then, we

study how the firm can control workers’ multihoming behavior. Our counterfactual analy-

ses demonstrate the effectiveness of strategies commonly used in practice and offer insights

that can help retain workers during high demand or nudge them to quit during low demand.

(iii) Improving Human Decision-Making with Machine Learning. We propose

a novel machine-learning algorithm to automatically extract best practices from the trace

data and infer simple tips that can help workers learn to make better decisions. We use an

approach based on imitation learning and interpretable reinforcement learning and consider

simple if-then-else rules that modify workers’ strategy in a way that most improve their

performance, capture useful insights that are challenging for workers to learn by themselves,

and are simple enough for workers to understand. To validate our approach and test the

performance of our algorithm, we design a virtual kitchen-management game and conduct

large-scale pre-registered behavioral studies on Amazon Mechanical Turk. Our experiments

show that rules inferred from our algorithm are effective and significantly outperform rules

from other sources at improving performance and speeding up learning among workers. In

particular, we help workers identify optimal early actions that help them improve in the long

term and discover additional optimal strategies beyond what is stated by our algorithm.
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CHAPTER 1 : The Impact of Behavioral and Economic Drivers on Gig Economy

Workers

1.1. Introduction

Gig economy is a labor-sharing market system where workers engage in short-term projects

or freelance work as opposed to permanent jobs. In 2019, 57 million Americans or 35%

of the U.S. workforce engaged in gig work (Intelligence 2019), providing a wide range of

services, from ride-hailing (e.g., Uber, Lyft) to food delivery (e.g., DoorDash, Caviar) to

web development (e.g., Upwork, Fiverr). The size of the independent workforce is growing

three times faster than the overall U.S. workforce growth since 2014 and it is estimated that

by 2025, the majority of the workforce will participate in the gig economy—leading to a

global GDP boost of $2.7 trillion (Manyika et al. 2015). The unique and novel feature of this

system relates to the nature of employment: independent workers can freely choose their

work schedule as well as seamlessly switch between multiple platforms to provide service.

Such flexibility attracts many workers to the gig economy.

Companies also greatly benefit from increased labor flexibility as they can hire workers with

different skill levels to work at different times while compensating them for the work they

perform. Like any other market, the key to success in the gig economy lies in the effective

matching of supply with demand. Firms need to ensure that their services appeal not only

to customers (demand) but also to independent service providers (supply). This poses an

enormous challenge in planning and committing to a service capacity both during peak hours

when demand is high and during off-peak times when only a handful of workers are needed.

Policymakers have also joined the conversation, concerned with how such work structures

might affect workers. For instance, New York City passed fatigued driving prevention rules

as part of its Vision Zero initiative in 2017, limiting the number of daily and weekly hours

a ride-hailing driver can work with the goal of reducing driver fatigue and enhancing road

safety. In 2019, the European Parliament approved new rules that provide minimum rights

and enforce better job transparency and compensation for gig workers.

1



To examine how firms can staff the right number of on-demand workers at the right time and

how policymakers can develop effective regulations, it is important to first understand how

gig workers make labor decisions. For decades, economists have studied how labor supply

is influenced by economic incentives and behavioral motives. The standard income effect

predicts that workers, as lifetime-utility maximizers, are more likely to work or supply more

labor in response to a higher wage. While several observational studies find evidence for this

theory (e.g., Oettinger 1999, Sheldon 2016), other studies suggest the opposite prediction.

NYC taxi drivers are found to work for fewer hours on a high-paying day and more likely to

quit working in response to higher accumulated income due to reference-dependent behavior

with respect to earnings (e.g., Camerer et al. 1997, Thakral and Tô 2019). In other words,

their decisions are based on reaching a target level of income or income target. Providing

further support for the behavioral theory of labor supply, Crawford and Meng (2011) and

Farber (2015) suggest that workers’ behavior could perhaps be influenced by a target level

of work duration or time target.

Our paper aims, in part, to reconcile this ongoing debate by proposing a framework to ex-

plain labor decisions through both economic incentives and behavioral motivations. Recent

work in operations management in the context of the gig economy has focused on the system

equilibrium or on social welfare (e.g., Cachon et al. 2017, Taylor 2018). To our knowledge,

among the papers that focus on the supply side (e.g., Benjaafar et al. 2019, Dong and

Ibrahim 2020), our work is the first to empirically examine the causal effect of behavioral

and economic factors on gig economy workers’ decisions and to incorporate their behavior

into the optimization of financial incentives. Our work also follows calls for advancing be-

havioral operations research by studying worker behavior in new work environments such

as on-demand services and freelancing platforms (Donohue et al. 2020, Chen et al. 2020).

Research questions and methodology.

Our key research questions are: (i) How do gig economy workers make labor decisions?

How do they react to incentives? What are the factors that shape their work schedule
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decisions? Are their decisions rational or do they exhibit behavioral biases? and (ii) How

can gig companies set incentives to effectively recruit workers? How can they meet the

desired service level by taking into account workers’ behavior and offering them the right

incentives?

We answer these questions by estimating an econometric model of workers’ labor decisions

and conducting numerical experiments on incentive optimization. Prior empirical studies

on the relationship between wage and labor decisions have not distinguished between the

decision of whether to work and the work duration decision and instead treated them es-

sentially as a single decision due to data limitations. Through our collaboration with a

U.S. ride-hailing company, we overcome this challenge by leveraging our rich dataset which

contains real-time information on financial incentives regardless of drivers’ subsequent labor

decisions. Accordingly, we gain a clearer insight into drivers’ decisions to work by investi-

gating drivers who chose not to work during a particular period. In our empirical model, we

address econometric challenges such as sample selection and omitted variable biases and we

account for drivers’ heterogeneity and real-time market conditions and competition. Finally,

we propose an optimization heuristic for incentives and conduct counterfactual simulations

to examine its performance and quantify potential losses if the company ignores workers’

behavior when designing incentives.

Contributions.

Our paper contributes to the economics and operations literatures in four ways. First, we

offer a potential way to reconcile the two competing theories of labor supply by showing that

workers respond to wage variation in the same way as suggested by the standard income

effect, while also exhibiting reference-dependent behavior with respect to accumulated earn-

ings. We find that an hourly wage has a positive impact on both the decision to work and

on the work duration. However, our proxy for unobserved income targets—accumulated

earnings from earlier hours of the same day or earlier days of the week—has a negative

impact on both decisions. This finding provides support for an income-targeting behavior;
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that is, workers work less as they are closer to their income goal. Second, we unravel a

new behavioral driver of labor decisions, inertia. Our results indicate that workers’ recent

work duration (from earlier hours of the same day or earlier days of the same week) has

a consistent and positive influence on the decision to continue working and on subsequent

work duration. This phenomenon appears to capture the tendency of workers to make the

same work decision as their recent ones or inertia. Furthermore, it can potentially hint at

workers’ loyalty to the focal platform. Third, we demonstrate that behavioral factors play

an important role in workers’ labor decisions. Both in-sample and out-of-sample analyses

suggest that workers’ reaction to accumulated earnings and past work duration are key

drivers of their labor decisions. We then demonstrate via simulations that not accounting

for these behavioral factors would result in understaffing by 10–17%. Finally, we apply our

insights to prescribe operational decisions and conduct regulatory impact analysis. Specifi-

cally, we show that if the company optimizes their incentive policy accounting for workers’

behavior, it can increase the capacity by 22% without incurring additional cost or maintain

the same service level at a 30% lower cost.

1.2. Labor Supply Theories and Hypotheses Development

Economists have offered two different perspectives centered around the elasticity of labor

supply. On the one hand, the traditional approach follows a lifecycle model where indi-

viduals maximize their lifetime utility and predicts that workers exhibit positive income

elasticity. On the other hand, empirical studies, notably in the context of taxi drivers, sug-

gest that income elasticity could be negative if workers are loss averse and benchmark their

earnings relative to a reference point. It is unclear whether existing findings can apply to

gig economy workers who have full discretion over their work schedule. In this section, we

review in greater detail the two contrasting models of labor supply and develop hypotheses

for the behavior of gig economy workers.

1.2.1. Traditional Model of Labor Supply

In the neoclassical microeconomics tradition, each worker is a rational agent who maximizes

lifetime utility. A positive wage shock should then lead to a larger group of workers joining
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the force or to a higher level of activity from workers. In other words, workers are expected

to exhibit a positive wage elasticity (e.g., work more when facing a wage increase). This

perspective seems plausible but finding evidence in the field has been challenging as in

reality workers cannot easily adjust their work hours. However, positive elasticities have

been observed among workers who have some level of discretion over their schedule, such

as pipeline workers (Carrington 1996), vendors in a baseball stadium (Oettinger 1999)

and fishermen (Stafford 2015). These studies find that wage shocks, typically driven by

temporary demand variation, have a positive effect on labor supply—both on the number

of workers and work hours.

1.2.2. Behavioral Model of Labor Supply

The seminal work by Camerer et al. (1997) studies NYC taxi drivers and finds substantial

negative elasticities, suggesting that drivers’ daily decisions on work hours are influenced by

their individual income targets (known as the income-targeting effect). Using data from a

different set of NYC taxi drivers, Farber (2005) and Farber (2008) find that the probability

to stop working is closely related to the realized income earned in the same day and it

increases once the income target is reached, but conclude that the findings are not robust.

Crawford and Meng (2011) implements similar econometric strategies to estimate models

based on the reference-dependent preferences theory, which allows for consumption and

gain-loss utilities. The authors conceptualize drivers’ targeted levels of income and work

hours and find that stopping probabilities are more influenced by the second target they

reach on a given day. More recently, Thakral and Tô (2019) estimates a structural model of

labor supply of NYC taxi drivers, allowing a time-dependent relationship between earnings

and the stopping probability. Their results confirm that the income-targeting effect exists

when controlling for the number of work hours. These findings offer a realistic behavioral

explanation and align well with insights from behavioral economics; however, support for

the behavioral theory has been lacking outside the taxi industry.
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1.2.3. Labor Supply in the Gig Economy

The gig economy offers workers a flexible work schedule. As gig work appeals to a broad

range of workers with different backgrounds and preferences, predicting the worker turnout

or service capacity at any point in time is remarkably challenging. A common way to

incentivize workers to join and to keep active workers engaged is to offer dynamic financial

incentives. Real-time bonuses, such as Uber’s surge prices and Caviar’s Peak Pay, reward

workers who work during busy periods with high demand. Beyond direct monetary rewards,

several companies employ a combination of gamification and psychology and offer non-

monetary incentive programs. For example, Uber drivers can earn badges for achievements,

from excellent service to entertaining ride, and are constantly reminded of how close they

are to their earning goals. While these incentive strategies are prevalent in practice, less is

known in academic research about their influence on workers’ labor decisions.

Our paper belongs to the fast-growing research trend that examines operational and pricing

decisions in the context of the gig economy (for a review, see Benjaafar and Hu 2020). Most

relevant to our work are studies that examine how dynamic wages affect supply and consider

the problem of designing the optimal incentives to coordinate supply with demand for on-

demand service platforms. Dynamic wages due to surge pricing have been shown to entice

ride-hailing drivers to work longer (Chen and Sheldon 2016) and benefit drivers via better

utilization (Cachon et al. 2017). Hu and Zhou (2019) studies the contracts under which

the platform takes a fixed cut from workers’ earnings and demonstrates good performance

among flat-commission contracts. Taylor (2018) shows that the uncertainty in workers’

opportunity costs or in delay-sensitive customers’ valuations can lead the intermediary to

raise the price during congestion. Our work focuses on the supply side behavior and the

need to use incentives to motivate flexible workers. There are relatively few studies that

investigate worker behavior and its impact on the platform’s operational decision. Most of

these studies are of theoretical nature and focus on the equilibrium of matching supply with

demand (see, e.g., Ibrahim 2018, Benjaafar et al. 2019, Dong and Ibrahim 2020).
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The only empirical studies that incorporate worker behavior in a gig economy setting to our

knowledge are Sheldon (2016), Karacaoglu et al. (2018), and Chen et al. (2019). Sheldon

(2016) finds that Uber drivers’ income elasticities are significantly positive and increasing

over time, suggesting that if income targeting does exist, it would only be temporary and

moderated by experience. Karacaoglu et al. (2018) studies e-hailing taxi drivers in South

America and finds that drivers’ response to real-time information about other drivers ’

locations could explain different utilization they can achieve. Chen et al. (2019) documents

how Uber drivers value real-time flexibility and estimates the driver surplus from having

a flexible schedule. The authors find that drivers earn higher surplus from Uber’s flexible

model relative to less flexible arrangements. While these papers rigorously capture how

gig workers respond to incentives and information, their models do not consider potential

behavioral factors in explaining workers behavior. This is due to data limitations given that

most datasets record only the trips that happened. In our dataset, however, we observe

the information available to drivers even when they decided not to work. We focus on the

behavior of gig workers and on how the platform can improve its operational decisions by

understanding such behavior.

1.2.4. Hypotheses Development

We are interested in studying how gig economy workers make labor decisions, specifically

whether they will work at a particular time and, if so, for how long. Labor decisions typically

depend on multiple factors such as weather and external commitments. Yet, these are not

controlled by the platform and, thus, while we attempt to control for such factors, we focus

on the impact of economic drivers (hourly wage) and behavioral factors (workers’ income

and time targets). Several companies have exploited workers’ tendency to set goals by

helping workers track their progress toward the goals and nudging them to work for longer.

Since individuals’ targets cannot be observed, we use workers’ accumulated earnings since

the beginning of their work day as a proxy for their income target and the duration of their

work so far as a proxy for their time target. We next present our hypotheses regarding the

impact of each factor on gig economy workers’ labor decisions.
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H1: A higher wage increases the probability of working and the work duration.

Following the standard income effect (see §1.2.1), we expect that a higher hourly wage

will increase the probability of working. Empirical studies of workers who have discretion

over their work hours suggest that workers adjust labor decisions in the same direction as

wage (see, e.g., Oettinger 1999, Stafford 2015). We posit that gig workers also exhibit a

positive income elasticity as they have full control over their schedule. Unlike traditional

employment, gig work tends to be smaller and temporary projects (e.g., assembling furni-

ture, driving within a city) that require less time to complete. Consequently, work decisions

are made more frequently and for a shorter time frame. The objective is therefore likely to

maximize utility (e.g., earnings) in the following period. We still believe that there exists

a behavioral explanation of labor supply, but such effect would be driven by accumulated

earnings or work hours instead (see H2 and H3 below). Past studies that provide sup-

port for an income targeting effect only modeled the relationship between the number of

work hours and the average daily wage. We postulate that the negative impact on work

duration will only be apparent during specific times of day (days of week), when workers

might be closer to reaching their daily (weekly) income targets. Thus, when controlling for

both accumulated income and work hours separately, we should observe a positive income

elasticity.

H2: Higher accumulated earnings decreases the probability of working and the

work duration.

Studies of taxi drivers including Camerer et al. (1997), Farber (2008), and Thakral and

Tô (2019) provide support for an income-targeting behavior; that is, the probability to

stop working increases once the income target is reached. Thakral and Tô (2019) further

demonstrates that drivers’ decisions are highly influenced by recent earnings. Gig workers

are also likely to be influenced by the income-targeting effect, as tracking their progress

towards the income goal is much easier. Several gig platforms provide real-time information

about workers’ recent work activities and earnings through their apps and also provide

8



frequent feedback about their earnings (e.g., after every completed trip for ride-hailing

drivers). An alternative explanation of the negative impact of accumulated income is related

to fatigue. Specifically, higher accumulated earnings could indicate a greater level of effort.

Consequently, workers who experienced more fatigue would work for a shorter time. As

a result, we expect to see a negative impact of the accumulated earnings on both the

probability of working and on the work duration.

H3: Longer time worked decreases the probability of working and the work

duration.

Previous work in labor economics suggests another type of targeting behavior: time tar-

geting. Crawford and Meng (2011) develops a structural stopping estimation model that

allows for reference points in both daily income and work duration among taxi drivers and

concludes that drivers are loss averse relative to both reference points. Agarwal et al. (2015)

and Farber (2015) find that the probability of ending a work shift is positively related to

cumulative work hours. As discussed in H2, fatigue could also be explained by work dura-

tion. Recent findings suggest that work performance deteriorates toward the end of long

shifts among paramedics (Brachet et al. 2012) and part-time call center agents (Collewet

and Sauermann 2017). Thus, we expect that the longer the workers have recently worked,

the less likely they would continue working and, if they do work, the work duration would

be shorter relative to those with a shorter past work duration.

1.3. Data: Ride-hailing Platform in New York City

To answer our research questions, we collaborate with an on-demand ride-hailing company

(referred to as “the company” or “the platform”) and analyze a large comprehensive dataset

of driving activities and financial incentives in NYC over a period of 358 days (from October

2016 to September 2017). Our data includes: each driver’s vehicle type, experience with

the platform, number of hours driven, and financial incentives offered and earned. The key

advantage of our data is that we observe the incentives that were offered to every driver

regardless of the decision to drive. In other words, even for drivers who decided not to drive

for a particular time period, we still know their offered wage and promotions for that pe-
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riod. In total, we have several million driver-shift observations and several thousand unique

drivers.1 We next present an overview of the platform and report descriptive statistics of

working shifts, financial incentives, and vehicle types.

1.3.1. Platform Overview

The company is a ride-hailing online platform that offers services in many cities worldwide.

The users (riders) may request rides in real-time through a smartphone app. Then, the

platform will match riders with available drivers. This platform offers a shared service (i.e.,

several passengers heading in the same direction may share the same vehicle). To make the

service more efficient, passengers can be picked up and dropped off at an optimized location

near the exact requested locations. Finally, the vast majority of drivers are compensated

according to a guaranteed hourly rate regardless of the number of completed rides. We focus

on drivers who are paid by the hour as this scheme resembles the traditional wage model

but with more flexibility on the drivers’ side. This allows us to investigate how drivers’

work decisions are influenced by variations in monetary incentives.

Figure 1: Breakdown of shifts for each operating day

1.3.2. Shifts and Work Schedule

Each operating day is divided into six shifts specified by the company (see an illustration

in Figure 1): morning non-rush hours from midnight to 7am (AM Off-peak), morning rush

hours from 7 to 9am (AM Peak), midday from 9am to 5pm (Midday), afternoon rush hours

from 5 to 8pm (PM Peak), evening non-rush hours from 8 to 9pm (PM Off-peak), and late

night from 9pm to midnight (Late night). The largest volume of activities happen during

PM Off-peak, followed by PM Peak, and Midday, while AM Off-peak hours are the least

busy. In our data, an average driver works 2.1 days per week and 6.35 hours per day.

In this paper, we analyze drivers’ behavior at both the shift and day levels. We control

1We cannot reveal the exact number of drivers and the size of our dataset due to confidentiality. However,
these exact numbers do not affect any of our results or findings.
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for the day of the week to account for demand and supply variation. In our data, 49.46%

of all completed trips occurred between Tuesday and Thursday, potentially confirming the

popularity of the service among city commuters. Monday and Friday trips account for

30.91% of all trips, while weekend trips account for 19.62%. While drivers are allowed to

flexibly decide their own work schedules, they often stick to their “regular” times. For

example, 30.41% of drivers never worked on weekends. 91.07% of drivers’ working days did

not overlap with midnight (e.g., they did not work overnight).

1.3.3. Earnings and Incentives

Drivers receive a shift-specific hourly rate for the duration they are active on the platform.

They are considered active when they log on to the driver application on their mobile device

and report to their designated start location. This compensation scheme can be considered

as a guaranteed payment, in contrast to a commission-based contract that compensates

drivers for each completed trip, which is commonly used by several platforms. It is possible

under this scheme that drivers could be paid even if there are no ride requests for the entire

hour.2 Similar schemes are used by other gig platforms such as DoorDash, GoPuff, and

HourlyBee.

The guaranteed hourly offer comprises two components: a base rate and a promotional rate.

These two rates vary over time (shifts and days of week) and across different drivers. The

base rate for each driver is decided when the driver joins the platform for the first time.

For the same driver, the base rate may be different across shifts and across days of the

week, but typically remains the same across weeks. In addition to the base rate, drivers are

frequently offered promotional incentives. Rate-based promotions provide a multiplicative

bonus to the hourly base rate during specific times (e.g., during 2× shifts, drivers earn twice

the base rate). 32.71% of shifts in the data include rate-based promotions and the average

promotion rate is an additional 50.36% of the base rate or approximately 1.5×.

2To ensure that drivers are not working for other platforms at the same time, the app will redirect idle
drivers to a new waiting location every few minutes. Drivers have to confirm they reach the location via
GPS.
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At the time of our data, incentives were decided as follows: First, the platform sets a

number of promotional rates as benchmarks. Then, an algorithm uses these rates to assign

the final rate for each driver based on recent work history and vehicle type. Both the base

and promotional rates are specific to each driver. The platform then sends text messages

to drivers every evening to communicate the rates for the following day. This suggests

that drivers are likely to plan their work schedule ahead of time and there is no internal

competition for better rates among drivers. Occasionally, drivers may receive real-time

adjustments to their rates but will never experience lower rates than initially informed. All

rates are pro-rated to the actual amount of time worked in a given shift. Earnings are

cumulative until the end of the week when drivers have the option to transfer their eranings

to their bank account.

1.3.4. Drivers and Vehicle Types

Drivers are identified by a unique ID. For each shift, we observe the decision to work (i.e.,

to become active) for every driver registered in the system. For drivers who started working

after the first day of our dataset, we record both their first day joining the platform and

their first work day to control for their experience with the platform. Similarly, we observe

the last day of being registered with the platform for some drivers if they left within the

duration of our data. These allow us to control for drivers’ experience, tenure, and span of

their service for the focal platform.

For the analysis conducted in this paper, we only consider the drivers who own a single

vehicle (89.9% of all drivers). There are six types of vehicles: a 3-passenger sedan, a small

3-passenger SUV, a medium 4-passenger SUV, a large 5-passenger SUV, a 5-passenger van,

and a 6-passenger van. We exclude van drivers from our analysis as the majority of them

lease their vehicle from the company rather than owning their vehicle or leasing it from an

external third party, leaving us with 86.3% of the original pool of drivers. For our main

analysis, we present the results for two types of vehicles: sedan and large SUV, which are

33.2% of the pool. We make an assumption that drivers of different vehicle types may have

fundamentally different utilities and preferences. Sedan vehicles are generally less expensive
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to maintain than SUVs, while SUV drivers may have a different set of outside opportunities

(e.g., qualified for both regular and XL services). From our data, we observe that SUV

drivers typically work more frequently and for longer hours relative to sedan drivers. We

obtain similar qualitative results for other vehicle types; but omit them for conciseness.

1.3.5. Supplementary Data: TLC Trip Records

We incorporate trip records for other similar services in the same region to capture the real-

time market conditions. Information about taxi and for-hire vehicle (FHV) trips in New

York City have been collected by the Taxi and Limousine Commission (TLC) and publicly

released since 2009.3 In particular, we analyze 101,487,565 yellow taxi trips and 129,868,077

FHV trips operated by four major service providers (including our focal platform) in the city

between October 2016 and September 2017 (i.e., the duration of our data). Taxi trip records

include date, time, and location (at the neighborhood level) of every pick-up and drop-off,

itemized fares, and driver-reported passenger counts. FHV trip records prior to July 2017

consist of date, time, and location of each pick-up and the dispatching base associated with

a ride-hailing platform. Starting from July 2017, we also observe date, time, and location

of each drop-off by FHV drivers. In §1.4.1, we discuss the metrics that we construct to

control for market conditions and competition intensity.

1.4. Empirical Approach

To test the hypotheses developed in §1.2, we estimate the impact of financial incentives,

income and time targets, and other covariates on two labor decisions: (i) whether to work

or not and (ii) work duration. We assume that drivers make both decisions at the begin-

ning of each shift or day. We conduct our analyses at two levels, within-day (shift level)

and across-days (day level), as well as for each vehicle type separately. This allows us to

understand how variations within the same day or across days affect drivers’ decisions and

to capture vehicle type-specific heterogeneity. Drivers operating different vehicle types may

have different preferences, costs, and utility functions, and thus make their labor decisions

differently. In this section, we first introduce our econometric model and key covariates,

3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

13



then provide details of our estimation method, and finally discuss the empirical challenges

and our strategies to address them.

1.4.1. Empirical Model and Estimation Details

As discussed, our dataset provides a unique advantage as we observe the financial incentives

offered to every driver for every shift as long as the driver already joined the platform and

have not yet terminated their drivership. This allows us to study two stages of labor

decisions and control for potential sample selection bias (see §1.4.2 for further discussion).

Our approach therefore adapts the two-stage Heckman estimation method (Heckman 1979)

to first estimate the decision to work across all drivers using a probit regression, and then

estimate the work duration for drivers who chose to work for any given shift or day using

an OLS regression.

Outcome variables.

The decision of the first stage is captured by the binary variable Drivei,t. Specifically,

Drivei,t = 1 if driver i works during shift (or day) t and Drivei,t = 0 otherwise. In

the second stage, conditional on working during shift (or day) t, Hoursi,t represents work

duration in hours for driver i during t. Given the long tails in Hoursi,t, we apply a Box-Cox

transformation conditional on the covariates to normalize its distribution and homogenize

its variance. Our results are robust under other types of transformation (e.g., logarithm,

square root) and also without a transformation. We exclude outliers defined as drivers

whose work duration during a given shift or day exceeds the 1.5 interquartile ranges (IQRs)

or less than 5 minutes. We also exclude public holidays from our analysis.

Key covariates.

We focus our analysis on three key drivers of labor decisions. (i) Financial incentives. We

use the hourly offer rate (i.e., the sum of hourly base rate and promotions, if available),

denoted as wi,t for driver i during shift (or day) t, for the first stage. Similarly, conditional

on working, the second stage’s financial incentives are taken from the hourly earnings rate

(i.e., the sum of hourly base rate and promotions, if available), denoted as w̃i,t. (ii) Income
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targets. As we do not directly observe drivers’ income targets, we use cumulative earnings

since the beginning of the day (week) until the focal decision point as a proxy for a daily

(weekly) income target. We refer to this covariate as income so far or ISF . The rationale

behind this proxy is that, as the driver starts accumulating earnings, the higher ISF , the

closer they are to their privately known targets. The same proxy is used in the literature

(e.g., Crawford and Meng 2011, Thakral and Tô 2019). (iii) Time targets. Similarly, we

use cumulative work hours since the beginning of the day (week) until the focal decision

point as a proxy for a daily (weekly) time target. We refer to this covariate as hours so far

or HSF . Given our observation that over 90% of the data do not include overnight work,

we assume that daily targets and progress are “reset” at midnight (e.g., the driver starts

working toward a new target for the new day). Similarly, as the majority of work occurred

during weekdays, we assume that weekly targets are reset at the end of every Sunday. Our

results are robust to different constructs of targets and flexible frequency of target reset.

Two-stage estimation.

Let wi,t, w̃i,t, ISFi,t, and HSFi,t be hourly offer, hourly earnings rate, cumulative income,

and cumulative work hours of driver i at the beginning of time t, respectively. The variables

Xi,tXi,tXi,t and Zi,tZi,tZi,t are other relevant covariates that affect the decision to work and work duration,

respectively. We model the two stages of labor decisions, Drivei,t and Hoursi,t, of driver i
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at time t as follows.

Houri,t =


Hour∗i,t if Drivei,t = 1

unobserved otherwise

(1.1)

Drivei,t =


1 if Drive∗i,t > 0

0 otherwise

(1.2)

Drive∗i,t = α0,i + αwwi,t + αISF ISFi,t + αHSFHSFi,t +αXi,tαXi,tαXi,t + vi,t (1.3)

Hour∗i,t = β0,i + βw̃w̃i,t + βISF ISFi,t + βHSFHSFi,t + βZi,tβZi,tβZi,t + ui,t (1.4) σ2
v

σ2
u

 ∼ N

 0

0

 ,
 1 ρσu

ρσu σ2
u


 . (1.5)

The two stages that we estimate are given by:

P (Drivei,t = 1|Xi,tXi,tXi,t) = Φ(α0,i + αwwi,t + αISF ISFi,t + αHSFHSFi,t +αXi,tαXi,tαXi,t), (1.6)

f(Houri,t) = β0,i + βw̃w̃i,t + βISF ISFi,t + βHSFHSFi,t + βZi,tβZi,tβZi,t + θλi,t + ui,t,

(1.7)

where Φ(·) is the normal c.d.f. and λi,t is the inverse Mills ratio (IMR) calculated from the

predicted probability in Equation (1.6) (“Choice Equation”). Thus, we essentially estimate

a probit model for the work decision in Equation (1.6) and compute the IMR for each

observation. We then fit an OLS model of the (transformed) work duration conditional on

all covariates and the IMR (Equation (1.7)), while controlling for the drivers who worked

(“Level Equation”). The estimated coefficient θ = ρσu will potentially confirm the existence

of a sample selection bias. We next discuss in detail the estimation methodology for each

stage.

Choice: Control function probit. The first stage is based on a probit model of la-

bor decisions, Drivei,t. We address a potential endogeneity related to financial incentives
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and past work decisions by taking an instrumental variable (IV) approach (see §1.4.2). A

commonly used two-stage least squares (2SLS) can provide inconsistent estimates for a pro-

bit model as certain properties of the expectation and linear projection operators do not

carry over to nonlinear models (Newey 1987). Instead, we implement the control func-

tion method to account for endogeneity for our nonlinear probability model (Imbens and

Wooldridge 2007, Wooldridge 2015). The first step is identical to the first step of 2SLS, that

is, we estimate an OLS regression of the endogenous variable (wi,t) on exogenous covariates

and instrumental variables. We can then keep the endogenous variable in the model and

include the residuals from the previous regression as an additional regressor. The intuition

behind this method relies on using the instrument to split the unmeasured confounders

into two parts, one that is correlated with the endogenous regressor and one that is not.

We correct for the standard errors using the standard deviation of the residuals following

Imbens and Wooldridge (2007).

We also allow for drivers and time fixed effects throughout our estimation. Adding fixed

effects to the nonlinear choice equation is known to generate the incidental parameters prob-

lem. More precisely, the usual asymptotic properties of the maximum likelihood estimator

are not guaranteed, thus leading to a biased and inconsistent estimator (Greene 2004). For-

tunately, recent developments in bias correction, such as the jackknife estimation method

(see Hahn and Newey 2004, Dhaene and Jochmans 2015 for more details on this method),

allow us to obtain asymptotically unbiased estimates and alleviate the incidental parame-

ters problem. The final step for this stage is to compute the IMR for each observation using

the fitted probability.

Level: Fixed effects 2SLS. The second stage aims to estimate the work duration,

Houri,t, conditional on the driver working during the focal time period. The hourly earnings

rate, w̃i,t, is likely to be endogenous. Incorporating the IV approach to the level equation

is straightforward, as we can simply perform a 2SLS regression in which we first obtain

the predicted value of w̃i,t based on exogenous covariates and the IVs. We transform the

observed work duration using a Box-Cox approach conditional on all covariates to alleviate
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heteroskedasticity. Finally, as we include the IMR as one of the regressors in the second

stage, we bootstrap the standard errors by repeating our analysis on resampled datasets.

Other covariates. To capture drivers’ heterogeneity, we first include a driver-specific in-

tercept in both stages even if we already perform separate analyses for drivers with different

vehicle types. We also include other time-varying driver-specific covariates that could reflect

their work habits. Short-term habits are captured by historical work duration on the same

day and shift of the previous week and the total hours worked during the previous week.

Long-term habits are captured by the driver’s experience (i.e., whether they are new to the

platform and their tenure) and also through drivers’ fixed effects. Month and day-of-week

fixed effects are also included to capture seasonal trends. The sets of regressors in our main

model are:

• Choice: hourly offer (w), cumulative earnings (ISF ), cumulative work hours (HSF ),

number of hours worked last week, new driver indicator, humidity, apparent tempera-

ture, precipitation probability, number of other ride-hailing trips in the previous shift

or day (in thousands).

• Level: hourly earning rate (w̃), cumulative earnings (ISF ), cumulative work hours

(HSF ), number of hours worked on the same shift of last week, humidity, apparent

temperature, precipitation probability, number of other ride-hailing trips during the

same shift or day (in thousands).

1.4.2. Empirical Challenges and Strategies

Sample selection bias.

Previous studies such as Camerer et al. (1997) and Sheldon (2016) investigated the rela-

tionship between the number of work hours and the hourly wage conditional on drivers who

worked on a given day. This would not be a concern if drivers randomly decide whether

to work or not. In reality, however, it is more plausible that they make such decisions

based on factors which are not observed by the researcher. In other words, the selection of

drivers who choose to work at a given time is not random. Consequently, this approach may
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yield a biased estimate of the sensitivity to incentives (i.e., income elasticity). Fortunately,

the comprehensiveness of our data offers an opportunity to address this challenge. Since

we observe incentives for all drivers on every shift regardless of their work decisions, we

can directly estimate the selection problem. As presented in §1.4.1, we employ a modified

two-stage Heckman estimation method for our analysis.

While Heckman-type selection model has been widely used in several applications, it has

also been criticized on its potential pitfalls, particularly the weak nonlinearity of the IMR

and the multicollinearity of regressors in both stages (Puhani 2000). To address these

concerns, we carefully choose the sets of regressors for both stages (Xi,tXi,tXi,t and Zi,tZi,tZi,t) to be

different (as shown in §1.4.1) and we check for collinearity by regressing the IMR on the

regressors of the second stage. On average, the standard deviation of the errors is 44.52%

less than the standard deviation of the IMR, which suggests a substantial difference. We

also consider an alternative approach suggested by Puhani (2000): estimating a subsample

OLS or a two-part model. In the two-part model, a binary choice model is estimated

for the probability of observing a positive-versus-zero outcome (e.g., the number of work

hours). This is essentially the same as the first stage of our main approach. Conditional on a

positive outcome (e.g., drivers who worked during a particular shift or day), a separate OLS

regression model is estimated for the work duration (Cragg 1971, Madden 2008, Farewell

et al. 2017). This is the same as the second stage of our main approach excluding the

IMR. We report the estimates from both the two-part model and our main approach in

§3.5. Finally, as a robustness check, we consider the Dahl’s approach by using a basis spline

to approximate the choice probability (Dahl 2002). For more details on the approach, we

refer the reader to Bourguignon et al. (2007) that provides Monte Carlo comparisons across

different selection models and to Bray et al. (2019) that implements this correction to model

proximity-based supplier selection. In our context, the choice for each driver is binary. Our

results remain consistent and are presented in Appendix B.1.

19



Endogeneity.

As discussed in §1.2.1, the standard income effect suggests that financial incentives en-

courage workers by increasing their likelihood of working or work duration. Nevertheless,

quantifying the effect of incentives by regressing the labor decision on financial incentives

can lead to misleading results. In our dataset, we observe that a smaller fraction of drivers

who received an hourly offer of $65 decided to work relative to those who received $45

per hour. One possible implication is that financial incentives are not effective in convinc-

ing some drivers. Alternatively, these appealing promotions might have been strategically

offered to engage inactive drivers. Consequently, regressing work decisions on financial in-

centives can lead to an omitted variable bias as we do not observe the actual algorithm

behind these incentives. Overlooking this issue may yield to a bias estimate of the effect

of financial incentives. A common solution is to use instrumental variables (IVs) that are

highly correlated with financial incentives but affect the work decision only through the

incentives (Levinsohn and Petrin 2003).

Instrumental variables. The main endogenous variables in our data are the hourly

financial incentives, wi,t, and the hourly earnings, w̃i,j . Our ideal instrument should be

highly correlated with each endogenous variable and affect the dependent variable (the

decision to drive or the work hours) only through the endogenous variable. In other words,

we are looking for instruments that are not correlated with the unobserved variables in the

error terms. Our industry partner confirmed that the financial incentives were endogenously

determined with respect to (predicted) supply decisions. Specifically, the firm sets the

incentives based on past work history, level of inactivity, and vehicle type. Different teams

are in charge of determining the offers for different vehicle types. This insight motivated us

to focus on instruments that categorize drivers based on these three factors.

Our instrument is based on the notion of co-workers. For each driver who is available to work

at a particular time (i.e., has not terminated their partnership with the platform), we define

their co-workers as the drivers who meet the following conditions: (i) available to work at
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the same time, (ii) drive a different vehicle type, and (iii) have made the same work decision

in the past (i.e., worked in the same shift in the previous week or previous month). Work

decisions are binary such as working or not. Assuming that random shocks, vi,t and ui,t,

are not correlated across drivers, we propose to use the average hourly offers received by co-

workers for the focal period as an IV. This IV satisfies the relevance condition: since both the

focal driver and their co-workers made the same work decision in the past, their incentives

should be highly correlated as the firm would adjust the incentives for both groups in the

same direction. From the first stage of our IV estimation, the estimate for the instrument

is consistently significant and F -statistics for all models are higher than the conventional

threshold of 10. This IV also satisfies the exclusion restriction: current incentives for co-

workers should not directly influence the focal driver’s work decision because (i) the offers

for different vehicle types are decided independently by different teams within the company,

(ii) the focal driver does not have access to co-workers’ incentives information, and (iii) it

is unlikely that drivers compare the offers across different vehicle types.

To test the robustness of our results, we consider two alternative instruments. First, instead

of matching drivers based on their decision to work at a specific time in the past, we now

match drivers based on their decision not to work : the level of past inactivity. For every day

in our data, we categorize drivers into four groups based on each quartile of the number of

consecutive days they have not been working. We refer to the drivers of a different vehicle

type who belong to the same group as co-skippers. Finally, we also consider the instrument

used in previous literature (e.g., Sheldon 2016), the average hourly offer rate received by

all other drivers during the same shift on the same day as an instrument for the offer rate.

We obtain consistent insights under all three specifications. Further details are deferred to

Appendix B.2.

Multicollinearity.

A potential concern of including both HSF and ISF in the same specification is the mul-

ticollinearity issue. Correlations between ISF and HSF in our data range between 0.446
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and 0.929, depending on the time of the day and the vehicle type. This issue does not

significantly affect our results because of three reasons. First, despite a positive correlation,

HSF and ISF are not a direct transformation of each other, hence there is no perfect corre-

lation. Intuitively, HSF increases linearly with time as it denotes the exact amount of time

the driver has been working, while ISF evolves dynamically as it depends on time-varying

financial incentives. Second, multicollinearity generally makes causal inference difficult as

the variance of each estimate would be inflated, leading to statistical insignificance, but the

estimate itself would be unbiased. Our main results (see §3.5) show that this is not the

case for us as both coefficients for HSF and ISF are statistically significant in most cases.

Third, potential problems from high collinearity can be largely offset with sufficient power

(Mason and Perreault Jr 1991). Our dataset consists of a large enough number of observa-

tions to provide sufficient statistical power even when we separately estimate our model by

vehicle type, day of the week, and shift of the day. Finally, we consider several alternative

approaches to alleviate the multicollinearity concerns, including considering models with

only ISF or HSF , performing localized regressions by controlling for drivers with similar

ISF or HSF , and converting one of the two variables to be categorical. Our insights remain

qualitatively consistent. Further details and discussion are deferred to Appendix B.3.

Competition with other ride-hailing platforms.

One of the key features of the gig economy is the flexibility that gig workers have in choosing

their work schedule as well as the platform to work for. During the timeframe of our

dataset, there were four major ride-hailing companies operating in NYC. All ride-hailing

drivers require a TLC license plate to work in the five city boroughs. Drivers on our focal

platform are therefore eligible to work and could have worked for other companies and

made these choices during the same time as our data. Capturing the outside options of

each driver is thus crucial in understanding their labor decisions. The main challenge is

that we do not observe when drivers from our focal platform could have worked for other

companies nor the information about incentives outside our focal platform. In our main

specification, we include two covariates that can shed some light on the current market
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conditions for ride-hailing services. First, we capture the recent volume of rides operated

by the ride-hailing competitors using the number of trips from the TLC trip records data. In

the choice equation, we include the number of trips on competing platforms initiated in the

previous period, NumFHVt−1, to reflect the market condition observed by the drivers in

our platform at the time of decision t. Second, we capture the current volume of competing

services in the level equation by using the number of trips initiated in the same period,

NumFHVt.

We create two metrics to capture competition effects by leveraging additional information

on drop-off time and location of all FHV drivers as well as the trip distance and duration of

taxi drivers (which is only available starting from July 2017). First, to capture the traffic

and congestion conditions, we compute the speed (in miles per hour) for each taxi trip

by dividing the trip distance by the trip duration. We then compute the average speed

for trips initiated in each neighborhood at each time period. To match with a shift (or

day) in our data, we average across all neighborhoods and time periods within the shift

(or day). We then include the average speed, Speedt, in both stages. Second, to reflect

potential real-time adjustments to financial incentives (e.g., surge pricing) on competing

platforms, we compare the imbalance between supply and demand in each neighborhood

at each time period. We assume that drivers who recently dropped off passengers in the

neighborhood reflects the number of potential supply of drivers in that neighborhood. In

the same vein, if we observe a larger number of trips picking up passengers from a specific

neighborhood, we can infer that this neighborhood has high demand (compared to supply),

and hence would likely trigger surge prices on the competitors’ platforms. We define the

binary variable Surgel,t as whether the number of trips leaving location l is at least 1.5

times greater than the number of trips entering the same location at time t. In other

words, surge pricing is likely to be activated when there are at least 50% more ride requests

than the number of available drivers in the neighborhood. Using different thresholds yields

qualitatively similar insights. We then compute the number of neighborhoods in the city

with Surgel,t = 1 for each time t. Aggregating across hours to a shift level, we obtain
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AggSurges =
∑

t∈Shifts
(
∑

l∈L Surgel,t)/|L| as our metric for potential real-time appealing

opportunities for the drivers to work for the competing platforms during shift s, where L

is a set of neighborhoods in NYC. Our insights remain valid with the inclusion of these

metrics. Details and discussion of the results are presented in Appendix C.

1.5. Empirical Results

We first present our analysis at the shift level, understanding the impact of financial in-

centives, income and time targets on within-day labor decisions of SUV and sedan drivers.

The results for the Midday shift are discussed in detail and a summary of results for the

remaining shifts is subsequently provided. We then perform the analysis at the day level, to

study across-day labor decisions from Tuesday to Sunday. We discuss the insights from both

analyses and test the hypotheses developed in §1.2. Finally, we conduct several robustness

tests that help validate our findings.

1.5.1. Within-Day Analysis

We examine drivers’ labor decisions at the beginning of each of the company-specified shifts

as introduced in §1.3.2. As 91% of drivers’ working days observed in our data do not

overlap with midnight and 73% of work day happened between 7am and midnight, we

assume that the first possible shift of the day is AM Peak (starting at 7am) and the last

possible shift of the day is Late Night (ending at midnight). Our analysis focuses on four

shifts (Midday to Late Night) to investigate how labor decisions are influenced by financial

incentives (“Offer”) as well as by cumulative earnings (ISF ) and work hours (HSF ) since

the beginning of the day. We assume that daily income and time targets, proxied by ISF

and HSF , are reset everyday after midnight.

For each shift, we first estimate the choice equation (Equation (1.6)) in which the outcome

variable is a binary decision of whether to work for the focal shift. We then estimate the

level equation (Equation (1.7)) that concerns the work duration for the shift, conditional

on the decision to work. We compare three model specifications for the second stage: (i)

baseline OLS, (ii) 2SLS without correction for sample selection bias (“two-part model”),

and (iii) our main model which is a 2SLS with sample selection correction. Tables 1 and 2
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display our estimates for the Midday shift of SUV and sedan drivers, respectively. The first

column in each table reports the estimates from the control function probit of the choice

equation. The second column reports the estimates from the baseline OLS for the level

equation replicating the model implemented in the literature (Camerer et al. 1997, Sheldon

2016). We follow the model specification and IV strategy used in past work. Covariates

include log hourly wage, temperature, rain indicator, day of week, and month dummies and

we use the average of other drivers’ hourly wages as an instrument. We then present the

estimates from the level equation of the two-part model in the third column, and from the

level equation of our main model in the fourth column.

Table 1: Estimates of two-stage selection models of SUV drivers’ decisions during Midday
shifts

Choice Eq Level Eq Level Eq Level Eq

Baseline Two-Part Main Model

Incentives/targets
Offer/Earnings 0.002∗∗∗ (0.0006) −0.083∗∗∗ (0.019) 0.001 (0.001) 0.001 (0.001)
Income so far −0.017∗∗∗ (0.004) - −0.009∗∗∗ (0.002) −0.008∗∗∗ (0.002)
Hours so far 2.904∗∗∗ (0.163) - 1.690∗∗∗ (0.068) 1.826∗∗∗ (0.070)
Hours last week
Total 0.017∗∗∗ (0.0003) - - -
Same shift - - 0.056∗∗∗ (0.002) 0.059∗∗∗ (0.002)
New driver 0.590∗∗∗ (0.060) - - -
IMR - - - 0.271∗∗∗ (0.029))

Observations 124,769 45,330 45,329 45,329
R2 - 0.378 0.552 0.552

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

SUV drivers.

For the choice equation, we find that hourly financial offer and cumulative work hours have

a significantly positive impact on the decision to work, while cumulative earnings have a

significantly negative impact. The first effect indicates that drivers respond positively to

an increase in financial incentives as predicted by the standard income effect. The positive

effect of HSF suggests that drivers who have worked for a longer period of time during the

preceding shift (e.g., AM Peak), controlling for other covariates, are more likely to work

for a new shift (e.g., Midday). We refer to this behavior as inertia, which we will discuss

further as it becomes more prevalent across different analyses. In contrast, the negative
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effect of ISF reflects a potential income-targeting behavior, that is, drivers are less likely

to work if they have earned more income or become closer to their (unobserved) income

target. We also find that the number of hours each driver worked in the previous week

has a significant positive impact on the decision to work. This could suggest that drivers

tend to stick to their work patterns and hold relatively stable work schedules, as observed

in Chen et al. (2019). In other words, past work decisions could play an important role in

how drivers form and adjust their income and time targets. Lastly, we observe that newer

drivers who recently joined the platform are significantly more likely to work.

We next consider the level equation of work duration. Interestingly, under the baseline

model, we observe that SUV drivers exhibit a negative income elasticity, similar to full-time

taxi drivers investigated in Camerer et al. (1997) and Thakral and Tô (2019), rather than a

positive income elasticity observed for ride-hailing drivers (Sheldon 2016). For the other two

models in which we incorporate proxies for income and time targets, the estimates for the

level equation are relatively consistent regardless of sample selection correction. We observe

a directional positive impact of hourly earnings on work duration, providing additional

evidence that drivers exhibit positive income elasticity. The impact of ISF is significantly

negative, suggesting that income-targeting behavior also negatively affects work duration.

On the other hand, the impact of HSF or inertia behavior is significantly positive. We

again observe that drivers might stick to their schedules as the work duration for the focal

shift is positively affected by the work duration during the same shift in the previous week.

In addition, the estimated coefficient of our sample selection correction variable (IMR) is

statistically significant, confirming that selection into working is not random. Overall, we

observe that the positive effects of hourly earnings and HSF dominate the negative impact

of ISF on the work duration.

Sedan drivers.

We perform the same estimation and obtain similar results for sedan drivers: hourly offer

or earnings rate and HSF have a positive impact on the decision to work and on the work
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Table 2: Estimates of two-stage selection models of sedan drivers’ decisions during Midday
shifts

Choice Eq Level Eq Level Eq Level Eq

Baseline Two-Part Main Model

Incentives/targets
Offer/Earnings 0.007∗∗∗ (0.0008) 0.080∗∗∗ (0.028) 0.001 (0.001) 0.001 (0.001)
Income so far −0.031∗∗∗ (0.006) - −0.007∗∗∗ (0.002) −0.007∗∗∗ (0.002)
Hours so far 3.243∗∗∗ (0.192) - 1.073∗∗∗ (0.058) 1.058∗∗∗ (0.061)
Hours last week
Total 0.022∗∗∗ (0.0004) - - -
Same shift - - 0.079∗∗∗ (0.003) 0.078∗∗∗ (0.003)
New driver 0.660∗∗∗ (0.042) - - -
IMR - - - -0.029 (0.029)

Observations 113,444 20,307 20,297 20,297
R2 - 0.389 0.580 0.580

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

duration. Under the baseline approach, we observe that, for sedan drivers, (log) hourly

earnings rate positively affects the number of hours worked. The positive income elasticity

is in line with findings from ride-hailing drivers in Sheldon (2016). This may suggest that

SUV and sedan drivers are fundamentally different types of workers: SUV drivers’ behaviors

are similar to full-time professional taxi drivers, whereas sedan drivers’ behaviors are similar

to average drivers on ride-hailing platforms. While descriptive statistics suggest that SUV

drivers tend to drive more often and for longer periods relative to sedan drivers, both types

of drivers exhibit similar responses to hourly incentive, cumulative earnings, and work

hours. Note that the estimated coefficient for IMR is not statistically significant (at p =

0.05) for this shift, suggesting that the evidence of selection of bias is weak. Nevertheless,

our insights remain valid as the estimates are consistent regardless of sample selection

correction. Furthermore, IMR estimates are statistically significant for all the other shifts

(see Appendix A).

Estimates for other shifts.

Figure 2 summarizes the signs and statistical significance of the key estimates (hourly

offer/earnings, ISF , and HSF ) for each vehicle type and each shift. Each cell in the

main three columns contains the sign of the effect (+ or −) and its statistical significance
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Figure 2: Signs and statistical significance for estimates of two-stage models of drivers’
shift-level decisions

Note: Solid background with bolded +: significantly positive, striped with bolded -: signifi-
cantly negative, white with italicized sign: non-significant. All at p = 0.05.

at p = 0.05 as follows: solid background with a bolded + indicates a significant positive

estimate, striped background with a bolded − indicates a significant negative estimate, and

white background with italicized sign corresponds to a non-significant directional effect. In

addition, we provide the mean work probability, F -statistics from the first stage of each IV

estimation, mean work duration conditional on working, adjusted total R2, and number of

observations alongside the estimates.

We observe that the estimates for drivers of both vehicle types are substantially similar

across most shifts. Hourly offers have a consistent positive impact on both choice and level

decisions. This result is consistent with the standard income effect that predicts a positive

income elasticity and confirms our first hypothesis, that is, financial incentives encourage

the decision to work and boosts the work duration. However, we also observe an evidence of

behavioral factors of labor supply with regards to cumulative earnings and work hours. The

impact of ISF on both stages is significantly negative, suggesting that drivers become less

likely to work and will work for shorter when they have earned higher cumulative income

since the beginning of the work day. This phenomenon reflects an income-targeting behavior

among drivers and provides support that labor decisions are negatively influenced by an
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income targeting behavior, hence supporting our second hypothesis. Lastly, we observe a

fairly surprising effect from HSF on both stages. Specifically, drivers who have previously

worked for a longer duration since the beginning of the day are more likely to work in a

new shift and for a longer duration. We refer to this phenomenon as inertia. Our third

hypothesis is hence rejected in the sense that, when controlling for the key covariates, drivers

do not exhibit a time-targeting behavior or an aversion to working too many hours.

Figure 3: Change in outcome for an average SUV driver when each variable increases by
1%
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(b) Change in work duration in minutes

As our three key variables have different units, it is not straightforward to compare the

magnitude of their effects. Nevertheless, we can compare how the probability of working

and the work duration are affected by a one percent increase in each of the variables for

an average driver. Figures 3a and 3b illustrate the change in probability of working (in

percentage points) and the change in work duration (in minutes) from midday to late night

for an average SUV driver, respectively. During earlier shifts in the day, the marginal effect

of HSF dominates that of the hourly offer and ISF . We also observe that the behavioral

effects (e.g., income targeting and inertia) are weaker later on in the day. The detailed

effect sizes for both SUV and sedan drivers are reported in Appendix A.

Putting these together, we conclude that drivers exhibit positive income elasticity as pre-

dicted by the standard income effect but are also influenced by behavioral motives such as

income targeting and inertia.
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1.5.2. Across-Day Analysis

Here, we consider the labor decisions that drivers make at the beginning of each day, whether

to work for the day and, if so, for how long. We assume that the week starts on Monday

so the income target ISF , the time target HSF , and their progresses are reset at the end

of Sunday. In this analysis, ISF and HSF are therefore considered as proxies for the

weekly income and time targets. The covariates in both stages of the estimation are nearly

identical to the ones used in §1.5.1, except that we replace the past work duration on the

same shift of the previous week by the past work duration on the same day of the previous

week. Figure 4 displays the estimates from our model for both vehicles types.

Figure 4: Signs and statistical significance for estimates of two-stage models of drivers’
day-level decisions

Note: Solid background with bolded text: significantly positive, striped with bolded text:
significantly negative, white with italicized text: non-significant. All at p = 0.05.

At a day level, we draw considerably different conclusions from our shift-level analysis.

While the positive impact of HSF on a decision to work remains consistent, the impact of

hourly offer and ISF appear to vary across different days of the week. Prior to the weekend,

both hourly offer and ISF positively encourage drivers to work. The latter effect might

suggest that drivers perceive high cumulative earnings early on in the week as an indicator
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of high demand and form an optimistic outlook on future market conditions. However, both

effects become negative for Saturday and Sunday, resembling less effectiveness of financial

incentive and weaker income-targeting behavior. The results for the level equation shed

another interesting insight. We do not find significant effects from the three main drivers

in most cases, except a consistent inertia observed among sedan drivers. Note that the

estimates of the IMR are significant across all cases, suggesting that there is indeed a

sample selection bias in the daily work decision. One potential explanation is that, while

gig economy workers make strategic decisions of whether to work on a daily basis, they

do not seem to decide the work duration for the entire day ahead of time. Instead, they

are likely to make such a decision at the shift (or hour) level as observed in our shift-level

analysis.

1.5.3. Discussion

Our results offer a refined explanation of how gig economy workers make labor decisions and,

in part, reconcile the debate between neoclassical and behavioral theories of labor supply.

Table 3 summarizes our hypotheses and results. We find that, as predicted by the standard

income effect, drivers respond positively to financial incentives. While we do not observe

the strong negative income elasticity from the literature (such as Camerer et al. 1997),

we find empirical evidence of an income-targeting behavior among drivers, suggesting that

their labor decisions are influenced by recent earnings or income goals. Several gig economy

platforms provide in-app features such as a real-time progress dashboard, making it simple

for workers to track their progress and recent earnings and work history. In other words,

information surrounding past earnings and work activities have become much more salient

relative to traditional settings. By separating cumulative income from financial incentives,

we show that the negative impact of income targeting stems from cumulative income rather

than the hourly wage. Thakral and Tô (2019) similarly demonstrates the existence of

income targeting among taxi drivers and identifies the recently earned cumulative income

as a key factor in the decision to quit.

In addition, we establish a new behavioral phenomenon. Workers who have previously
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Table 3: Summary of hypotheses and results

Shift-level Day-level
Statement SUV Sedan SUV Sedan

H1a Higher wage increases P(work) 3 3 3→ 7 3→ 7

H1b Higher wage increases work hours 3 3 7 7

H2a Higher income so far decreases P(work) 3 3 7→ 3 7→ 3

H2a Higher income so far shortens work duration 3 3 7 7

H3a Longer work hours so far decreases P(work) 7 7 7 7

H3b Longer work hours so far shortens work duration 7 7 7 7

Note: P(work): likelihood of working, 3: fail to reject, 7: reject, →: result differs later on in the day or week.

worked for a longer duration are more likely to start a new shift and work for longer

relative to those who have recently worked less, controlling for all other covariates. We

refer to this phenomenon as inertia to reflect the tendency of workers with longer recent

work hours to continue working and stay active for longer than their counterparts. Our

result on inertia is in contrast with findings from Crawford and Meng (2011) and Farber

(2015) that taxi drivers exhibit a time-targeting behavior. This difference could be driven

by the unique flexibility of gig work. Inertia could represent drivers’ strategic behavior

related to consistency and learning. In one of our robustness tests where we include the

interaction terms between drivers’ work experience and each of the key variables, we find

that both income targeting and inertia are stronger among newer drivers (e.g., with fewer

than 90 working days). A similar impact of experience is documented by Sheldon (2016).

Furthermore, multiple psychological phenomena could potentially explain the existence of

inertia, such as reduced fatigue from voluntarily scheduled work (Beckers et al. 2008) and

work addiction driven by stochastic and frequent rewards (DeVoe et al. 2010, Corgnet et al.

2020). We also believe that workers’ different behaviors toward time versus money could

be explained by how people perceive the value of time and money differently. Psychological

research has found that mental accounting for time does not work in the same manner as

mental accounting for money (Leclerc et al. 1995, Soman 2001). See Appendix D for further

discussion on this topic. Lastly, we find that gig workers make a decision to work at both

shift and day levels, whereas the work duration appears to be decided at a more granular

time unit such as a shift or even an hour. The latter potentially highlights the unique
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flexibility of gig jobs that provide workers with full control of their real-time work schedule.

Our results remain valid under a number of robustness checks, including the following:

allowing for non-linear targeting effects, relaxing our assumption on frequency of target

adjustment and definition of shifts, considering instrumental variables for ISF and HSF ,

performing alternative sample selection correction, and modeling stopping probabilities via

mixed-effects survival analysis. In summary, with a better understanding of how gig workers

make labor decisions, companies can design more effective incentives and personalize them

based on individual workers’ behaviors.

1.6. Managerial Implications: Optimal Incentive Allocation

In this section, we illustrate how gig economy firms can use our insights on workers’ behavior

to enhance their operations. We first investigate the benefit of improved incentive allocation

based on two perspectives: (i) increasing service capacity while keeping a fixed budget and

(ii) maintaining the same service capacity at a lower cost. We then further highlight the

potential pitfalls of ignoring behavioral factors and quantify the resulting capacity loss.

In Appendix E, we conduct a policy analysis to demonstrate how our insights can help

policymakers evaluate the impact of a regulation.

1.6.1. Targeted Incentives

Our main results suggest that workers are influenced by their behavioral motives and that

the impact of incentives on the number of active workers may be nonlinear. Targeting spe-

cific workers with different incentives can be beneficial. We examine how the platform can

improve its operational performance by offering personalized incentives based on workers’

attributes. As a benchmark, we compute the platform’s budget for promotions based on the

actual allocation of incentives. We then re-allocate the promotion budget more efficiently by

considering the following two perspectives: (i) increasing the service capacity (i.e., staffing

more workers) using the same budget, and (ii) maintaining the same service capacity at a

lower cost. Our proposed heuristic ranks the workers by the minimum level of incentives

they need to receive in order to start working.

In our context, drivers always receive a guaranteed base pay when they work and sometimes
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they receive promotions on top of the base rate. We assume that the budget for promotions

is separate from the budget for base rates. As not every driver who receives a promotion

would choose to work, we compute two types of budgets for promotions. First, we compute

the total promotions offered to all drivers for every shift on every day in the data as the

projected budget. This is the total cost related to promotions incurred by the platform if all

drivers chose to work. Second, we compute the actual cost based on the realized number

of drivers who showed up to work at any given time as the realized budget. We can then

compare the service capacity and cost of our heuristic relative to the actual allocation. As

our data spans one year from October 2016 to September 2017, we choose the last nine

months (January 1–September 30, 2017) as our test set. For each shift on each day in

the test set, we train our model using all observations from the same shift and day of the

week prior to the focal shift. Across 1,012 day-shifts, we observe that 94.59% of drivers were

offered a promotion but only 18.4% of them activated the offer and chose to work. Moreover,

94% of the drivers who worked did not receive any promotion. These observations suggest

that there is an opportunity to improve the current allocation of financial incentives.

To determine drivers’ baseline probability to work, we first compute the average fraction of

drivers who worked during a given shift on a given weekday using all past data, denoted by

D̄. We then compute the inverse c.d.f. evaluated at D̄: D̃ = Φ−1(D̄), that is, D̃ represents

the argument of Φ(·) in the right hand-side of Equation (1.6). In other words, D̃ corresponds

to the combination of drivers’ attributes that will induce a probability of working equal to

D̄. For each driver i, we use all the covariates’ values with the base pay (e.g., excluding

promotions) in our fitted model. This will predict the probability of working when offered

only the base rate, p̂basei . If p̂basei ≥ D̃, we label the driver as “driving without promotion.”

For other drivers, we compute the difference, ∆i = D̃ − p̂basei > 0, to determine the level of

additional incentive needed for them to work.
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Improving service capacity while keeping the same budget.

Assuming that the platform has a fixed budget for promotions, we consider a strategy to

recruit more workers under the same budget. We first determine the number of drivers who

would work regardless of promotions (i.e., their base rates are appealing enough to motivate

them to work), and then rank the remaining drivers by increasing values of ∆i. We compute

the minimum work-inducing promotion level by dividing ∆i by the estimated coefficient

β̂offer. We call this value ∆̃i. Then, a desired strategy is to allocate the promotion budget

first to drivers with the smallest ∆̃i until we exhaust the budget or we can no longer recruit

additional drivers. On average, our proposed procedure sends promotions to 6.27% of all

available drivers. The 95% interval for the fraction of drivers who should receive a promotion

is [0.44%, 19.92%]; these fractions are substantially lower than the current practice of the

company. As a result, a much smaller number of drivers would be targeted but each targeted

driver would receive a much more attractive promotion.4 Under the allocation observed in

the data, drivers were offered an average promotion of 0.58× relative to their base rate.

Under our proposed heuristic, however, targeted drivers receive an average promotion of

2.09×. Ultimately, using the same budget for promotions, our approach can staff 22.1%

additional drivers on average with a 95% interval of [2.46%, 50.50%]. Figure 5 reports the

percentage increase in the number of drivers for each shift and weekday.
Figure 5: Number of additional drivers using our allocation strategy given a fixed budget
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4One potential concern is fairness. Future research can include additional constraints such as the minimum
fraction of drivers receiving a promotion and the maximum number of different promotion levels.
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Maintaining service capacity at a lower cost.

Companies may have a target level of capacity they hope to meet for several reasons, such

as to satisfy a high forecast demand or maintain low and reliable wait times. Similar to

the previous case, we rank all drivers by increasing values of the minimum work-inducing

promotion level (i.e., ∆̃i). We subtract the number of drivers who are predicted to work

without any promotion from the desired service capacity. Instead of having a budget con-

straint, we now allocate promotions to drivers who require the smallest incentive ∆̃i until

we reach the desired service capacity. On average, the allocation under our heuristic costs

30.10% less relative to current practice with a 95% interval of [0.75%, 63.54%]. Figure 6

shows the percentage of cost savings for each shift and weekday.

Figure 6: Simulated cost savings while maintaining the same service capacity
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1.6.2. Impact of Behavioral Explanations of Labor Decisions

In this section, we quantify the impact of capturing the main behavioral factors obtained in

our estimation results. To this end, we investigate how many workers the platform would

fail to attract if it did not incorporate income targeting and inertia into incentive design.

We compare the following three scenarios to our model:

(a) ISF Only : The firm assumes that work decisions are influenced by ISF but not HSF .

(b) HSF Only : The firm assumes that work decisions are influenced by HSF but not ISF .

(c) Base: The firm ignores both income-targeting and inertia behaviors.

36



Our analysis is at the day-shift level and reports out-of-sample predictions. The test set

consists of each day-shift between January 1, 2017 and September 30, 2017. For each day-

shift in the test set, we train four separate choice equations—one for each model (a)–(c)

above and one for our model—using all historical observations of the same day-shift from

October 2016 to the week prior to the focal date. Each of the four choice equations represents

the predicted outcome depending on the platform’s assumption on workers’ behavior. We

first compute the fraction of drivers’ work decisions that each model predicts correctly out-

of-sample relative to the actual realization in the data. On average, our model outperforms

the other three models in prediction accuracy both at the shift and day levels. Specifically,

when the company ignores behavioral drivers of labor decisions, it loses 8.6% in prediction

accuracy on average. Following the same procedure as in §1.6.1, we compute the incentive

allocation under each model. More precisely, we first assume that each model is the true

state of the world and solve for the optimal incentive allocation given the promotion budget

observed in the data. Once the allocation is completed, we estimate the expected number

of drivers who would be working, assuming that the true state of the world is actually

governed by our model. Note that by construction, our model will always outperform the

other models in terms of expected capacity. Our main goal here is to quantify the magnitude

of capacity loss when the company make different assumptions about workers’ behavior.

Figure 7: Impact of ignoring behavioral factors on the expected number of active drivers
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Figure 7 shows that ignoring behavioral factors can lead to a significant loss in the number of

active drivers. Specifically, the Base model leads to an average loss of 16.70% in the expected
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number of active drivers relative to our model, with a standard deviation of 13.06%. The

ISF Only (HSF Only) model leads to an average reduction of 9.63% (10.32%) in the

expected number of active drivers with a standard deviation of 9.10% (10.20%).

In summary, these results suggest that it is important for gig platforms to account for

income targeting and inertia. Ignoring these behavioral motives can decrease prediction

accuracy, and more importantly, induce misleading incentive decisions that may result in

suboptimal capacity levels.

1.7. Concluding Remarks

The recent rise of the gig economy has changed the way people think about employment.

Unlike traditional employees who work under a fixed schedule, gig economy workers are free

to choose their own schedule and platform to provide service. Such flexibility poses a great

challenge to gig platforms in terms of planning and committing to a service capacity. It

also poses a challenge to policymakers who are concerned about protecting workers. In this

paper, we propose a framework to investigate how gig economy workers make labor decisions.

Using data from a ride-hailing platform, we develop an econometric model that accounts for

sample selection and endogeneity and controls for the competition within the ride-hailing

industry. We find that financial incentives have a positive effect on the decision to work and

on the work duration, confirming the positive income elasticity from the standard income

effect. We also observe the influence of behavioral factors through the accumulated earnings

and number of hours previously worked. The dominating effect, inertia, suggests that the

longer workers have been working so far, the more likely they will continue working and

the longer duration they will work for. Our results also reflect a unique feature of gig

work. While workers decide whether to work on both shift and day levels, they decide on

work duration on a shift basis. Finally, our numerical experiments demonstrate that gig

platforms can benefit from incorporating our insights into their incentive optimization.

One of the important phenomena that emerge from this paper is the existence of inertia

among drivers. While we cannot conclude that all gig economy workers exhibit such a
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behavior, we believe that it has important implications that go beyond this study. Indeed,

we believe that our findings are generalizable to other flexible workforces. Drivers in our

data are not exclusive to the focal platform and are often working for other gig companies.

Policies used by the focal platform are also quite common in the industry, from delivery

to tutoring services. Therefore, there is a lesson to be learned about the fundamental

impact of such policies. Amidst intensifying competition among providers of similar on-

demand services, companies are making every effort to win over a mutual pool of workers.

This paper empirically identifies several key behavioral factors that affect gig economy

workers’ decisions. These findings can be used to sharpen platforms’ understanding on how

gig economy workers make labor decisions and, ultimately, improve platforms’ operational

decisions (e.g., sending the right offer to the right worker at the right time).

This paper opens several avenues for future research. It could be interesting to validate our

findings by running a controlled field experiment. Given that online platforms routinely run

experiments to confirm insights, testing the income targeting and inertia effects could be of

interest. A second direction is to further investigate how workers construct their reference

points or targets in both financial and time dimensions, and how these targets are updated

over time. This will allow companies to gain insights about the (dis)utility of working as

well as understanding how workers switch between service providers. Finally, our incen-

tive allocation is based on simple ranking arguments. Developing a more comprehensive

optimization framework to optimize incentives for each driver in each shift under further

operational constraints is also an interesting extension. The main goals of this research

stream would be to refine our understanding of gig economy workers and develop data-

driven methods that can be used by gig platforms to efficiently motivate and strengthen

their relationships with their flexible workforce.
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A. Additional Details of the Main Results

Figures A1 and A2 provide additional details of the main results from our two-stage model of

drivers’ decisions across shifts and across days, respectively. For each of the key variables,

we provide the estimated coefficient and the standard error in parenthesis. Within each

model, we also report the estimated coefficient and the standard error for IMR and two R2

values, total R2 (top) and within R2 (bottom, italicized). We acknowledge that a few of the

IMR estimates are not statistically significant, suggesting that the selection bias is weak in

some cases. However, our insights regarding the impact of financial incentives, cumulative

income, and cumulative work hours on the decisions of both stages are consistent across

different model specifications and selection approaches (e.g., two-part model and Dahl’s

correction).

Figure A1: Estimates of our two-stage model of drivers’ shift-level decisions across different
shifts

Note: Solid background with bolded text: significantly positive, striped with bolded text:
significantly negative, white with italicized text: non-significant. All at p = 0.05.

Figures A3 provides the effect sizes for an average driver at the shift and day levels, respec-

tively, under one of the following conditions: (i) a $10 increase in hourly offer or earning

rate, (ii) a $10 increase in ISF , and (iii) an additional hour to HSF .
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Figure A2: Estimates of our two-stage model of drivers’ day-level decisions across different
days

Note: Solid background with bolded text: significantly positive, striped with bolded text:
significantly negative, white with italicized text: non-significant. All at p = 0.05.
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Figure A3: Effect sizes of changes in hourly financial offer, ISF , and HSF on drivers’
shift-level decisions

Note: Solid background with bolded text: significantly positive, striped with bolded text:
significantly negative, white with italicized text: non-significant. All at p = 0.05.

B. Alternative Empirical Approaches

B.1. Sample Selection Bias Correction

Dahl’s correction.

Following Dahl (2002) and Bray et al. (2019), we use the selection probability as a sufficient

statistic for the selection bias. Since, in our context, the choice for each driver is only

binary: to work or not, we do not suffer from the curse of dimensionality. Revisiting our

level equation (Equation (1.7)),

f(Houri,t) = β0,i + βw̃w̃i,t + βISF ISFi,t + βHSFHSFi,t + βZi,t + θλi,t + ui,t,

we can substitute IMR (λ) with all basis functions of a B-spline by using the quantiles of

work probabilities for all drivers, Pwork = [P (Drivei,t = 1|Xi,t),∀i] as interior knots. Let

B(Pwork, j) be the jth basis function of a degree n B-spline with the quantiles of Pwork

as m interior knots. Also, we define ηi,t = ui,t −
∑m+n

j=0 γjB(Pwork, j) to maintain the

orthogonality of the error term and the expected hours worked. Thus, our level equation
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under this approach becomes:

f(Houri,t) = β0,i + βw̃w̃i,t + βISF ISFi,t + βHSFHSFi,t + βZi,t +
m+n∑
j=0

γjB(Pwork, j) + ηi,t.

(B1)

In Figure B4, we present the estimates for the level equation when choosing m = n = 3.

Our results remain consistent under both approaches for sample selection correction. Note

that, for all but sedan drivers’ decisions on Friday and Saturday, the selection variables are

significant at p = 0.05, hence confirming that there exists a selection bias in the decision to

work.

Figure B4: Estimates for the level equation using Dahl’s correction

Note: Green background with bolded “+”: significantly positive, yellow with bolded “-”:
significantly negative, white with italicized sign: non-significant. All at p = 0.05.

B.2. Instrumental Variables

Co-skippers IV.

This IV follows a similar idea to our main IV, but instead of matching drivers based on their

past work decisions at a specific time in the past, we now match drivers based on the level

of past inactivity. For every day in our data, we categorize drivers into four groups based on

each quartile of the number of consecutive days they have been inactive. We call the drivers

of a different vehicle type who belong to the same group co-skippers. This IV satisfies the

relevance condition: Since both the focal driver and their co-skippers have been inactive for

approximately the same time, their incentives should be highly correlated. From the first
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stage of our IV estimation, the estimate for the instrument is consistently signifiant and

F-statistics across all models except one are larger than the conventional threshold of 10.

This IV also satisfies the exclusion restriction: Current incentives for co-skippers should

not directly influence the focal driver’s work decision because (i) they drive different vehicle

types and (ii) the focal driver does not have access to co-skippers’ incentives information.

The estimates from shift- and day-level analyses are consistent with our main results. Figure

B5 presents the signs and statistical significance (at p = 0.05) of the estimates across shifts

and days. However, these models are outperformed by our main model both in terms of

in-sample and out-of-sample accuracy.

Figure B5: Estimates across shifts and days using the co-skippers IV

Note: Green background with bolded “+”: significantly positive, yellow with bolded “-”:
significantly negative, white with italicized sign: non-significant. All at p = 0.05.

Hausman-type IV.

Inspired by previous studies such as Sheldon (2016), we use the average hourly offer rate

received by all other registered drivers during the same shift on the same day as an in-

strument for the offer rate. Similarly, we use the average hourly earning rate earned by all

other active drivers during the same shift on the same day as an instrument for the hourly

earning rate. These instruments can be thought of as a mutual offer or earning rate for

eligible drivers in New York City at a particular time. In addition, the incentives offered to

other drivers should not directly influence the focal driver’s decision to work. Controlling
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for weather and market conditions using the TLC data, we rule out potential confounders

that affect both the variation in incentives and in labor decisions. Recall that unlike other

ride-hailing platforms, drivers on our platform do not compete with other drivers for pro-

motions as both the base and promotional rates are decided and announced ahead of time.

Moreover, promotions are not offered as a way to relocate drivers to high-demand areas (see

§1.3.3 for more details). Thus, it suggests that this IV satisfies the exclusion restriction.

The results we obtained using this IV are qualitatively similar as illustrated in Figure B6.

While this type of IV appears to be valid for the choice equation, low F -statistics suggest

that it is a relatively weaker IV relative to both the co-workers and co-skippers IVs.

Figure B6: Estimates across shifts and days using Hausman-type IV

Note: Green with “+”: significantly positive, yellow with “-”: significantly negative, white: non-significant at

p = 0.05.

B.3. Addressing the Multicollinearity Concern

Correlations between ISF and HSF in our data range between 0.446 and 0.929, depending

on the time of the day and the vehicle type. While these correlations appear to be on a

high side, we gain sufficient statistical power by leveraging our large sample size. Based

on Mason and Perreault Jr (1991), our levels of collinearity are between Levels II and III.

Given that our R2 is between 0.25 and 0.5, the minimum sample size of 300 is required. In

our case, this requirement is readily satisfied since we have over 100,000 observations for

each vehicle type and shift.

Nevertheless, we consider alternative model specifications that still allow us to investigate
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both the impact of ISF and HSF on the labor decisions. For conciseness, we present one

major approach below. The insights remain valid in all specifications.

Localized hazard regressions.

Motivated by Thakral and Tô (2019), we estimate additional models when controlling for

drivers who either had the same amount of accumulated earnings or the same amount

of time worked so far. Such a specification allows for a flexible, driver-specific hazard of

stopping and a time-dependent relationship between each of the covariates and the stopping

probability. After driving t trips and accumulating yint from working a total of hint hours,

driver i decides to end shift n when the cost of additional effort exceeds the expected

continuation value. The variables yint and hint represent income so far (ISF ) and hours so

far (HSF ) in our setting. We let dint be the decision to stop working after trip t in shift n.

Thakral and Tô (2019) models the probability that driver i ends shift n at trip t by

P(dint = 1) = f(hint) + β(hint)yint +Xintγ(hint) + µi(hint) + εint,

where f(·) represents the baseline hazard and µ absorbs differences in drivers’ baseline

stopping tendencies. HSF affects the stopping probability through the baseline hazard

and the impact of ISF , covariates, and drivers’ fixed effects. β(h) reflects the effect of

an additional dollar of ISF on the probability of ending a shift for a driver after h hours

of work (HSF = h). Thakral and Tô (2019) employs local linear regressions to estimate

the baseline hazard and the time-varying coefficients by solving a separate weighted least

squares problem:

min
α,β,γ,µi

∑
i,n,t

w(hint − h)(dint − (αhint + βyint +Xintγ + µi))
2

with weights given by w(·). With uniform weights, this procedure becomes fitting a linear

model to a localized subset of data. We consider time windows of different interval: 10, 15,

20, 30, and 60 minutes.
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Specifically, we consider the following two models:

(i) HSF impacts how ISF affects the stopping probability. This is similar to the model

formulated in Thakral and Tô (2019). We model the probability that driver i stops

working at time t of day n after earning ISFint and spending HSFint hours working

for the day as:

P(dint = 1) = f(HSFint) + βw(HSFint)wint + βISF (HSFint)ISFint

+Xintγ(HSFint) + µi(HSFint) + εint,

where wint is the hourly financial incentive offered at time t of day n. We include the

hourly incentive to match our main models and reflect the possibility that drivers are

less likely to quit if the current offer is appealing. The local regressions are done by

controlling for drivers who were still active at the population median of HSF .

(ii) ISF impacts how HSF affects the stopping probability. This model is to validate our

findings that drivers exhibit inertia, affecting their work decisions. Using the notation

from our setting, we model the probability that driver i stops working at time t of day

n after earning ISFint and spending HSFint hours working for the day as:

P(dint = 1) = f(ISFint) + βw(ISFint)wint + βHSF (ISFint)HSFint

+Xintγ(ISFint) + µi(ISFint) + εint.

The local regressions are done by controlling for drivers who were still active when

earning cumulative income of the population median of ISF .

Results for Model (i): Impact of ISF . The median number of hours that drivers

worked on non-holiday weekdays is 6.72 for SUV drivers and 6.58 for sedan drivers. Table B1

presents the estimates for the local probit models of the decision to quit within 10, 15, 30, or

60 minutes after reaching the population median HSF . The results confirm that financial
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incentives decrease the quitting probability, while cumulative earnings tend to increase

the quitting probability. Under the assumption that cumulative hours worked (HSF ) only

affect the quitting probability through the impact of offers and ISF , we confirm that income

targeting exists while drivers appear to have a positive income elasticity.

Table B1: Estimates of local probit models of quitting decision controlling for cumulative
work hours (HSF )

Quit within
SUV Sedan

Offer ISF Offer ISF
10 mins −0.0174 0.0004 −0.0340 0.0025
15 mins −0.0199∗ 0.0014 −0.0365∗ 0.0040∗

30 mins −0.0204∗∗ 0.0023∗ −0.0321∗∗ 0.0039∗∗

1 hour −0.0047 0.0011 −0.0165 0.0016
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Results for Model (ii): Impact of HSF . We perform a similar analysis where we

assume that the impact of ISF is only through the varying impact of HSF . The median

cumulative earnings drivers made on non-holiday weekdays are $219.73 for SUV drivers and

$199.01 for sedan drivers. Table B2 shows that significant inertia is observed among SUV

and sedan drivers when the time window of quitting decision is between 10 and 30 minutes.

We also find that the hourly financial offer consistently decreases the stopping probability

except for large SUV drivers where the effect is the opposite.

Table B2: Estimates of local probit models of quitting decision controlling for cumulative
earnings (ISF )

Quit within
SUV Sedan

Offer HSF Offer HSF
10 mins −0.18 −0.0652 −0.0047 0.0349
15 mins −0.0252∗∗∗ −0.1003∗∗∗ −0.0091 0.0019
30 mins −0.0186∗∗∗ −0.0718∗∗∗ −0.021∗∗∗ −0.1103∗∗∗

1 hour −0.0202∗∗ −0.0235 −0.0182∗∗∗ 0.0228
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

B.4. Alternative Construction of ISF and HSF

We first argue that our assumption that the progress toward a daily income or time goal is

reset at midnight is reasonable. 91.07% of drivers’ working days observed in our data do

not overlap with midnight (e.g., they did not work overnight). Furthermore, 99.93% started

working between 5am and 11pm. Therefore, we believe that drivers consider a new calendar
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day as a new progress. However, it is plausible that drivers do not reset their weekly goals

every Monday. As a robustness study, we relax the assumptions that the weekly targets

are reset every Monday. Instead, drivers might reset the across-day goals only when they

start working after being inactive for some time. In this direction, we analyzed the duration

of inactivity between any consecutive working days. Among 7,800 drivers who worked at

least two days in our dataset, the average number of inactive days between two working

days is 2.21. 15% drivers worked everyday on average and 53.30% did not take more than

2 days break. We re-estimated our models by allowing the targets to be reset every time

the drivers did not work for at least two days. Allowing the weekly targets to be reset after

taking time off from work, our original insights remain qualitatively consistent.

Figure B7: Additional competition metrics by hour of day for non-holiday weekdays

(a) Speed: Average speed in miles per hour (b) AggSurge: Number of NYC regions with potential
surge pricing on competing platforms

C. Competition Among Ride-hailing Platforms

In §1.4.2, we discussed four different metrics to control for unobserved demand for ride-

hailing services and competition effects. Our main results presented in §3.5 include all

observations from October 2016 to September 2017, the weather information, and the ag-

gregated number of trips on competing platforms (NumFHV ) as controls for market condi-

tions. For observations between July and September 2017, we conduct an additional analysis

to further include Speed and AggSurge as covariates. Figures B7a and B7b illustrate the

variations in Speed and AggSurge by hour of day for non-holiday weekdays, respectively.
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These new results are qualitatively consistent with our main results. Tables C3 and C4

display the estimates for the first-stage estimation of whether or not to work for each shift.

We observe a generally positive income elasticity, income targeting behavior, and inertia

throughout all the shifts. Speed appears to have a negative impact on the decision to work

in general, suggesting that drivers are less likely to work for the focal platform when there

is less traffic. The aggregated surge has also a negative impact on the decision to work.

This is to be expected: given that the financial incentive for the focal platform is fixed and

known, drivers are less likely to work when the outside option is more appealing.

Table C3: Estimates for the shift-level first-stage estimation for sedan drivers during Sum-
mer 2017

Sedan Offer ISF HSF Speed AggSurge
Mid-day 0.0075*** -0.0354** 3.6385*** -0.0298 -2.9551***
PM peak -0.0209*** -0.0016* 0.4743*** -0.0536** -3.9532***
PM off-peak 0.0136*** -0.0034*** 0.413*** 0.0132 -1.1326**
Late night 0.01079** -0.004*** 0.38036*** -0.07055*** -0.51665
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table C4: Estimates for the shift-level first-stage estimation for SUV drivers during Summer
2017

SUV Offer ISF HSF Speed AggSurge
Mid-day 0.0035** -0.0535*** 4.3936*** 0.0007 -2.5716***
PM peak -0.0433*** -0.0024*** 0.5249*** -0.0563*** -3.6690***
PM off-peak 0.0028 -0.0024*** 0.3414*** -0.0121 -0.2124
Late night 0.0085*** -0.0023*** 0.2945*** -0.0785*** 0.0920
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

The results for the second stage are relatively consistent as well (see Tables C5 and C6).

Higher hourly earnings appear to be associated with a longer work duration for most shifts.

Income targeting behavior becomes less significant. Inertia is stronger earlier on in the day.

Finally, we observe that, conditional on driving for the shift, drivers are less influenced by

the traffic conditions or by the potential surge pricing from other platforms.

For the day-level analysis, we find that, in the first-stage estimation, positive income elastic-

ity and income targeting behavior became less apparent. Sedan drivers responded positively

to the hourly offer from Tuesday to Thursday, whereas SUV drivers did not. The effect of
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Table C5: Estimates for the shift-level second-stage estimation for sedan drivers during
Summer 2017

Sedan Earnings ISF HSF Speed AggSurge IMR
Mid-day 0.008 -0.019*** 1.604*** -0.039 0.0003 ***
PM peak 0.025* -0.001 0.084*** 0.012 0.029 ***
PM off-peak 0.003 -0.003*** 0.006 -0.0001 0.147 ***
Late night 0.03*** 0.001 -0.071** 0.019 0.11* ***
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table C6: Estimates for the shift-level second-stage estimation for SUV drivers during
Summer 2017

SUV Earnings ISF HSF Speed AggSurge IMR
Mid-day -0.001 -0.008 1.819*** -0.034 -1.008 ***
PM peak 0.062*** -0.0002 0.245*** -0.053*** -0.421 ***
PM off-peak 0.004*** -0.0002* 0.033*** -0.002 -0.027 ***
Late night 0.022*** 0.0001 0.021 -0.006 0.843
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

cumulative earnings is generally insignificant, except a sign of income targeting at the end

of the week. However, inertia is still significant and apparent for most days, Thursday

through Sunday for sedan driver, and Wednesday through Sunday for SUV drivers. Lastly,

for the second-stage estimation, we find no significant estimates for our key variables. This

is in line with our original results, which led us to conclude that the decision on the work

duration for the day was not determined at the beginning of the day.

D. Psychological Explanations for Our Main Results

Our main results suggest that workers on our focal platform exhibit different behaviors

regarding cumulative earnings and recent work duration. We believe such different behaviors

stem from the fact that people perceive the value of time and money differently. Contrary

to a common saying that time is money, empirical research from psychology shows that

decisions about time follow different rules than decisions about money. For example, Leclerc

et al. (1995) finds that people are more averse to uncertainty with time as contrasted with

money. In other words, people are risk averse with respect to decisions in the domain of

time loss despite being risk-seeking with respect to decisions involving monetary loss. The

authors concluded that because time is less substitutable than money, being certain is more

important for decisions about time, and people are more averse when there is uncertainty
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about the allocation of time. Soman (2001) shows that people do not mentally account

for their time in the same way as they account for money as the former is more difficult,

while Okada and Hoch (2004) demonstrates that people spend time in a systematically

different way from spending money because the value of time is of greater ambiguity. The

distinction of attitude toward time and money applies to work motivation and decisions

as well. Workers who can adjust their own work schedules are found to be influenced by

internal reference targets. Depending on the context, workers may form only a target for

income (Camerer et al. 1997), a target for time (Farber 2015), both in the same direction

(Crawford and Meng 2011), or both in the opposite direction as observed in our work.

DeVoe and Pfeffer (2007) shows that organizational practices such as how firms pay their

employees may influence employees’ psychological evaluation of time and the tradeoffs they

make between time and money.

Our key insight suggests that gig economy workers may exhibit inertia at work. In our

context, inertia refers to the positive correlation between the recent work duration and the

decision to start a new work shift. We have identified the following three potential expla-

nations of inertia from the fields of psychology, organizational behavior, and management.

(i) First, inertia could be linked to the concept of experience of flow from positive psy-

chology. A flow state is the mental state in which a person performing an activity is

fully immersed in a feeling of energized focus, full involvement, and enjoyment in the

process of the activity (Csikszentmihalyi and Csikszentmihalyi 1992). The complete

absorption into the activity affects how the person perceives the sense of time, leading

to a continuation of performing the task even though the marginal benefit is negli-

gible. Flow theory postulates key conditions required to achieve a flow state. These

conditions include clear goals and task structure, clear and immediate performance

feedback, a balance between the challenges of the task and one’s own skills, one’s

feeling of control, and one’s intrinsic motivation. Gig economy workers are likely to

meet these conditions since gig tasks typically have a known set of goals and struc-
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ture, feedback (e.g., from customers) and compensation are provided frequently, and

workers are generally skilled at the particular tasks and have some control over their

decisions (e.g., work schedule). Csikszentmihalyi and LeFevre (1989) suggests that

flow can be experienced in both work and leisure settings, but more dominantly in

the former. Among different leisure activities, the authors find that driving is the

most common task that generates the flow experience. This finding fits well with our

analysis of ride-hailing drivers. Therefore, it is possible that drivers on our platform

are more likely to work if they recently worked for a longer duration because they are

more likely to experience the flow state.

(ii) Second, inertia may reflect work addiction caused by stochastic rewards. Applying

insights from neuroscience research that stochastic rewards could act as a motivator,

Corgnet et al. (2020) conducts a series of behavioral experiments to investigate the

relationship between stochastic rewards and workers’ likelihood to quit working on

effortful tasks. The authors found that participants who were offered a stochastic rate

of compensation stayed working for a longer period than those offered a deterministic

rate. The persistence on the tasks is linked to stress generated by the uncertainty. In

a gig economy setting, compensation to workers is typically determined in response

to real-time market conditions (e.g., demand) and depends on the specific task and

workers’ performance. Work addiction among gig workers has been documented and

attributed to the rate of compensation (Kruzman 2017). For our focal platform, finan-

cial incentives are decided and communicated to drivers ahead of time, but drivers’

opportunity costs (e.g., incentives from competing platforms) are not deterministic.

Therefore, it is possible that inertia is related to workaholism driven by uncertain

rewards.

(iii) Third, inertia, as the absence of fatigue, could be associated with gig workers’ flexibility

in deciding work schedule. Watanabe and Yamauchi (2016) shows that when workers

voluntarily opted to work for a longer period, there is a positive effect on their work-life
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balance due to the enjoyment of the work itself or increased rewards. Having control

over work duration and being compensated for the work are found to be important

for workers’ satisfaction. Similarly, workers who voluntarily chose to work overtime

did not feel more fatigued but instead felt satisfied as long as they chose their own

schedule (Beckers et al. 2008). Although the concept of overtime work can only be

applied loosely to gig workers since they have full control of their entire schedule, these

findings highlight the potential beneficial impact of the flexibility to choose one’s own

work schedule: reduced fatigued and increased satisfaction. A study on technical

contractors whose schedule were not decided by the organization shows that, despite

having full control over their work schedule and perceiving the privileged flexibility,

these contractors chose to work long hours and appeared to follow a less flexible

schedule (Evans et al. 2004). They considered leisure time as a period of loss without

pay and hence they sought to minimize time away from work. Using the British

Household Panel Survey, DeVoe et al. (2010) observes that individuals who received

hourly wage are more willing to trade their leisure time to work and earn more money

than those receiving a salary pay. Putting these findings together, we conclude that

in our setting where workers can freely choose their own work schedule and receive a

hourly pay, they are more likely to work for longer, become more satisfied with long

work hours, and feel less fatigue.

E. Policy Analysis: NYC’s Driver Income Rules

Here, we take the perspective of a policymaker and leverage our insights to evaluate the

impact of regulations on the welfare of gig workers. In December 2018, the TLC passed

Driver Income Rules to protect driver earnings, requiring ride-hailing platforms to com-

pensate drivers by a minimum amount for each trip at the rate equivalent to $27.86 per

hour. Since there were no such rules during the timeframe of our data, we can only per-

form a counterfactual analysis to quantify the impact of this new regulation on the workers’

welfare, particularly on their earnings.

We compare three different policies. First, our optimal policy is the targeted incentive
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allocation policy introduced in §1.6.1, which optimizes incentives based on drivers’ predicted

probability to work. Second, a minimum wage policy adds a constraint to the optimal policy

such that every driver must be guaranteed a minimum hourly offer of $27.86. Finally, we

use the observed incentives in the data as a benchmark or current practice. Outcomes

of interest are the average hourly offer across all drivers and the average hourly earnings

across drivers who are predicted to work. The counterfactuals are performed using the data

between January and September 2017 in the same fashion as in §1.6.1.

Figure E8a shows that the minimum wage policy slightly increases the average hourly offer

among drivers compared to the optimal policy and to current practice, but the differences

are not statistically significant. However, these policies lead to significantly different average

hourly earnings among drivers predicted to work. Figure E8b suggests that, compared to

the current practice, the minimum wage policy significantly improves the average hourly

earnings. However, drivers could have earned 10 to 23% more per hour if the incentives were

optimally allocated by following the optimal policy without the minimum wage constraint.

Figure E8: Average hourly offer and earnings across three policies

(a) Average hourly offer across all drivers (b) Average hourly earnings across drivers who
worked

The minimum wage policy appears to be beneficial to the workers compared to the plat-

form’s current practice. However, as firms are becoming more data-driven and potentially

adopting more sophisticated incentive policies (such as our proposed optimal policy), the

current minimum wage rule may no longer improve the welfare of the workers. In this case,
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if the focal platform implements the optimal policy, the regulation decreases workers’ pay

on average. This also highlights the importance of understanding how gig workers make

decisions. The TLC does have detailed information regarding trips operated by ride-hailing

drivers but may not have access to how platforms allocate incentives or how drivers decide

their flexible schedules. Without such knowledge, policymakers are prone to regulations

that could be suboptimal.
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CHAPTER 2 : The Structural Behavioral Model of Gig Economy Workers

2.1. Introduction

With the flexibility in the choice of service, gig workers often exhibit a “multihoming”

behavior. The majority of ride-hailing drivers work for more than one platform and many

also provide other services such as food delivery. An increase in the number of available

options has resulted in increased competition among platforms to win over a limited mutual

pool of workers. Such competition has only been further exacerbated in cities like New

York and Seattle, which recently passed caps on the number of ride-hailing drivers to solve

congestion problems and ensure drivers’ welfare (Fitzsimmons 2018, Wilson 2019). How

workers respond to platform competition is therefore an important topic to study, but

studying multihoming behavior empirically is challenging due to the unobservability of

workers’ available work options. A handful number of recent papers have offered theoretical

predictions about the impact of multihoming behavior on the workers. On a positive side,

workers benefit from multihoming as they spend less time idling (Liu et al. 2017, Bryan

and Gans 2019). However, in the equilibrium, they end up working more but earning less

(Benjaafar et al. 2020). In addition, less is known about the magnitude of multihoming

behaviors and how firms can influence workers’ decisions regarding where to work. Closest

to our work, Rosaia (2020) presents a model of competing transportation platforms and

estimates profit-maximizing prices and the impact of a merger on idle vehicles and efficiency.

In this work, we leverage proprietary data from our ride-hailing industry partner and the

publicly available trip record data from New York City’s Taxi and Limousine Commission

to develop and estimate a structural model of gig workers’ sequential dynamic decisions in

the presence of alternative work opportunities.

We first develop our structural model of gig workers’ labor decisions of when and where to

work based on time and their current location. We consider a setting where there are two

gig economy firms (e.g., our industry partner and a competing firm) that each worker can

choose to work for. From the beginning of the time horizon (e.g., the beginning of each
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working day), the worker chooses when to start working and which firm to work for. On a

particular platform, they perform a task (e.g., driving customers to a destination), observe

market information (e.g., demand for service at the current location and time, potential

future location and earnings), and decide whether to continue working on the focal firm,

switch to the competing firm, or stop working. We assume that each driver has a perceived

cost of working for each time unit drawn from a population distribution of costs and that

their decision-making follows a single-agent dynamic optimization framework. Combining

the proprietary dataset on each driver’s first and last trips of each active work session with

the publicly available trip record data, we first estimate expected values for working for

each firm at different times and locations and then simulate for each day the path of deci-

sions of each driver and the time and location s/he ends the session. The simulation relies

on the time- and platform-specific incentive structure and transition matrices calibrated

from the data. Then, our estimation procedure is based on a likelihood-free approximate

Bayesian computation with a sequential Monte Carlo sampler (Sisson et al. 2007) and a

machine learning-based adversarial indirect inference estimation (Gourieroux et al. 1993,

Kaji et al. 2020) to obtain posterior distribution of the key parameters that generate the

simulated outcomes to be as close as possible to the observed decisions. With our param-

eter estimates, we then perform counterfactual analyses to demonstrate the effectiveness

of different strategies commonly used in practice and offer insights that can help the firm

manager their workers for different demand scenarios.

Our results characterize workers’ forward-looking behavior and heterogeneous perceived cost

of working. We observe that a substantial portion of drivers on the focal platform exhibit

a multihoming behavior and that drivers can be clustered into low- and high-cost drivers.

We also find that drivers are strategic in their choice of initial service location to ensure

high utilization and are prone to multihoming when facing longer idle times. Since drivers

are paid regardless of the number of customers on the focal platform, our finding poten-

tially suggests that serving customers provides non-monetary benefit to the drivers, either

psychologically or by routing them to other high-demand locations. The natural follow-up
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question is how the firm can reduce (or induce in some cases) multihoming behavior. We

consider two policies inspired by practice: (i) using consecutive work bonus (e.g., earn extra

money after three consecutive trips), and (ii) imposing a time delay to quit (e.g., drivers

need to request to end the session ahead of time). Our counterfactual analyses show that

these policies can be effective depending on the goal of the platform. During peak time

when the firm wants to retain workers to stay on their platform, using the consecutive work

bonus lowers the switching probability and increases work duration on the focal platform.

Providing such incentive potentially creates a goal or a sense of commitment to the workers.

On the other hand, during the low demand period when fewer workers are needed, intro-

ducing the time delay can nudge workers to leave the focal platform sooner. This policy

makes being idle and getting stuck in a low-demand region more salient, thus workers would

be encouraged to quit earlier than expected. Our major contributions are in the modeling

and estimation of dynamic decisions with temporal and spatial components and dynamic

outside options, and the development of an efficient simulation-assisted estimation frame-

work in the presence of analytically or computationally intractable likelihood functions and

high-dimensional data.

2.2. The Model of Gig Workers’ Decisions

We consider a market with two gig platforms offering similar service (e.g., ride-hailing).

The two platforms are denoted as the focal firm A and the competitor firm B. This market

covers one city with L regions and we consider a discrete time horizon as intervals of 20

minutes from 7am to midnight. For the estimation, we consider the following time blocks:

AM peak (7-9am), Late AM (9am-12pm), Midday (12-2pm), Early PM (2-5pm), PM Peak

(5-8pm), PM off-peak (8-9pm), Late night (9pm-midnight). We assume that there is no

waiting time so the match between the active worker and the customer happens instantly

if available.

We focus on drivers who already choose to work for the focal firm A first. After completing

each task on A, they observe new information about the market such as demand for various

services and make a decision whether to continue on A, switch over to the competitor firm
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B, and stop working. If switching over to B, they enter a similar model: after completing

each task on B, they observe new information and make a decision whether to stay or quit.

We assume that once the drivers switched to B, they will not switch back to A. Figure 9

illustrates the high level overview of our model.

Figure 9: Overview of Our Model

We characterize the drivers by two parameters. All drivers have the same time discounting

factor β < 1 that represents how forward-looking they are. Each driver i has a fixed cost

to work Ci per each time interval. Ci ∼ F (·) essentially determines the type of drivers they

are. Next, we present how we model drivers’ decision when working for each of the two

platforms.

2.2.1. Working for the Competitor Firm B

A competitor firm B’s driver i at location l and time t decides whether to work or not. B

drivers can make a decision at the beginning of each time interval if currently not working,

not having a passenger in the previous time interval, or just dropping off a passenger.

• flkt is an average fare of a trip from l to k at t.

• πlkt is a probability that a passenger from l is going to k at t with B.
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• Rlt is a probability that an B driver would get a ride at l at time t.

• τlk is an average duration of an B trip starting from l to k.

First, denote the value of quitting to home as V BQuit
ilt If choosing to work for B, the driver

will be matched with a passenger with a probability Rlt. If matched, the driver will go to a

destination k with probability πlkt and the trip will take τlk time units. If not matched, the

driver stays at the same location and makes a decision again at the beginning of the next

time interval t+ 1.

V BWork
ilt = −Ci +Rlt

(
L∑
k=1

πlktβ
τlk
(
flkt − (τlk − 1)Ci + max

(
V BWork
ik(t+τlk), V

BQuit
ik(t+τlk)

)))

+ (1−Rlt)(βmax
(
V BWork
il(t+1) , V

BQuit
il(t+1)

)
) (2.1)

2.2.2. Working for the Focal Firm A

A focal firm A’s drivers i at location l and time t makes a decision whether to (i) work

for A, (ii) switch to work for B, or (iii) go home. A drivers can only make decisions after

completing a trip or when there is no passenger onboard.

• A drivers get paid an hourly rate wit if they are active.

• πVlkt is a probability that a A driver will be routed from l to k at t.

• RVlt is a probability that a A driver would get a passenger at l at time t.

• τVlk is an average duration of a A trip starting from l to k.

If choosing to work for A, the driver will be matched with a passenger with probability RVlt .

If matched, the driver will go to a destination k with probability πVlkt and the trip will take

τVlk time units. If not matched, the driver stays at the same location and makes a decision

again at the beginning of the next time interval t+ 1.
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The driver choose option j ∈ {Work, Switch,Quit}. The value function is

Vilt = max
[
V AWork
ilt + εwilt, V

Switch
ilt + εsilt, V

Quit
ilt + εqilt

]
, (2.2)

where εjilt is interpreted as a component of utility of a choice j at location l in time interval t

which is known to the driver i but not by us. εjilt is assumed to have a multivariate extreme

value distribution.

V AWork
ilt = (wit/3)− Ci +RVlt

(
L∑
k=1

πVlktβ
τVlk

(
(τVlk − 1)(wit/3− Ci) + Vik(t+τVlk)

))
(2.3)

+ β(1−RVlt )Vil(t+1)

= (wit/3)− Ci (2.4)

+RVlt

 L∑
k=1

πVlktβ
τVlk

(τVlk − 1)(wit/3− Ci) + log

 ∑
j∈(w,s,q)

exp
(
V j

ik(t+τVlk)

)
+ β(1−RVlt ) log

 ∑
j∈(w,s,q)

exp
(
V j
il(t+1)

) (2.5)

V Switch
ilt = V BWork

ilt (2.6)

V Quit
ilt = 0 (2.7)

2.3. Data: Ride-hailing Trips in New York City

Our main dataset consists of three sources of data. First, we obtain a proprietary data from

our industry partner, a U.S. ride-hailing platform, that includes detailed information about

the first pick-up and the last drop-off of every consecutive work session by drivers on their

platform. A consecutive work session is defined by the time the driver remains online on the

platform until she logs off. This data includes the exact timestamps and GPS coordinates

of when and where the first and last trips happened for each consecutive work session. The

data spans three months, from July 2017 to September 2017, and consists of approximately
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140,000 consecutive work sessions across 6,724 drivers. We combine this data with a large

comprehensive dataset of driving activities and financial incentives on the same platform.

This data includes each driver’s vehicle type, experience with the platform, number of hours

driven, and financial incentives offered and earned for each time block of the day. Finally, we

leverage a trip record data collected by New York City’s Taxi and Limousine Commission

(TLC). This data consists of date, time, and location of each pick-up and each drop-off

and the dispatching base associated with a ride-hailing platform. This public data allows

us to capture the real-time market conditions and estimate missing information regarding

competition and outside opportunities.

2.4. Estimation Strategy and Implementation

Our context is New York City and we consider L = 20 regions within the city: Bronx,

Brooklyn, Newark Liberty International Airport, Central Park, Chelsea, Downtown, Gov-

ernors Island, Gramercy, Harlem, Lower East Side, Lower West Side, Midtown, Morningside

Heights, Upper East Side, Upper West Side, Upper Manhattan, John F. Kennedy Interna-

tional Airport, LaGuardia Airport, Queens, and Staten Island. Each ride-hailing driver i

has their private fixed cost to work Ci per unit time which is drawn from a truncated Normal

distribution F with support [C, C̄], mean µC and variance σ2
C . Every driver has a discount

factor β ∈ [0, 1] for future utility. Therefore, we estimate three population parameters:

µC , σC , β.

2.4.1. Pre-Computation

We first discuss our pre-computation steps where we compute several key values from our

data prior to estimating for the key population parameters. Based on a 2014 report by the

American Automobile Association, the cost per mile is 59.2 cents for an average sedan and

73.6 cents for an SUV. The 2016 average speed of a car in Manhattan is 7.44 mph. The

hourly cost is then $4.40 for a sedan and $5.48 for an SUV. In our estimation we consider

a 20-minute interval as an average ride-hailing trip lasts 20 minutes. µC is then expected

to be around $1.47–$1.83 per interval. We set C = 0 and C̄ = 5.
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Expected values of working for B. We consider Ci ∈ [0, 5] with an increment of

0.05 and β ∈ {0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 0.98}. For each combination of

(Ci, β), we compute the value of working for B starting in location l and time block b

either on a weekday or a weekend: V B
l,b,weekday(Ci, β) or V B

l,t,weekend(Ci, β). Recall that for

an active B driver, we assume that they choose among two options: continue working or

quit. We assume that the value of quitting in zero at any time and any location. We omit

the subscript for day of week for simplicity. For each day type, we solve for the values

backward from the last (7th) time block in which all drivers are expected to quit at the end

of the block (i.e., midnight).

V B
l,7,midnight(·) = 0 ∀l = 1, ..., L

We assume that the probability of getting a ride R, the transition probability π, the trip

duration τ , and the average B fare f are fixed and computed by the averages within each

location, time block, and day of week. Then, we compute the value of working for B in the

earlier intervals based on the following equation

V B
l,7,t(Ci, β) = Rl,7

(
L∑
k=1

πl,k,7β
τl,k,7

(
fl,k,7 − (τl,k,7 − 1)Ci + max

(
V B
k,7,(t+τl,k,7)(Ci, β), 0

)))

+ (1−Rl,7)
(
βmax

(
V B
l,7,(t+1)(Ci, β), 0

))
− Ci

until we obtain convergence: V B
l,7,t(·) = V B

l,7,t+1(·) ∀l. The L × 1 vector of converged

values reflect the stationary expected value of working for B during the focal time block:

VB
7 = (V B

1,7, ..., V
B
L,7). This vector is then used as a terminal condition for the earlier time

block.

V B
l,6,T (·) = V B

l,7(·) ∀l = 1, ..., L
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In the same fashion, for any time block b < 7, we compute intermediate value of working

for B by:

V B
l,b,t(Ci, β) = Rl,b

(
L∑
k=1

πl,k,bβ
τl,k,b

(
fl,k,b − (τl,k,b − 1)Ci + max

(
V B
k,b,(t+τl,k,b)

(Ci, β), 0
)))

+ (1−Rl,b)
(
βmax

(
V B
l,b,(t+1)(Ci, β), 0

))
− Ci

The converged values are then the stationary values for the time block to be used as a

terminal condition for the next (earlier) time block.

V B
l,b,T (·) = V B

l,b+1(·) ∀l = 1, ..., L, ∀b = 1, .., 6

.

Expected values of working for A. For each A driver i, we observe whether they

worked on a particular date d, Worki,d, and if so, when and where they started (tsi , l
s
i ) and

ended (tqi , l
q
i ) their work session. Similar to the estimation of B values, we assume that the

probability of getting a ride R, the transition probability π, and the trip duration τ , as

well as B values V B, are fixed within each location, time block, and day of week. However,

we will estimate the driver- and date-specific value of working for A for every 20-minute

interval starting from the time the driver started working until midnight for each date that

the driver worked. In July 2017, there are 11,109 driver-date pairs.

Due to a much larger computational cost, we consider a sparser grid to compute A’s value

for each driver: 13 (C = 0, 0.5, 1, 1.5, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5) × 6 (β ∈ [0.825, 0.975]

with an increment of 0.25). For each combination of (C, β), we compute the value of

working for A, V A
i,l,d,t(C, β), for each driver i at location l on date d and time interval t,

where d ∈ ActiveDatesi and t ∈ [tsi + 1, midnight].
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The terminal condition at midnight is that the driver would quit:

V A
i,l,d,midnight(·) = 0 ∀l = 1, ..., L

We solve backward from midnight, for every 20 minutes, until we reach 20 minutes after

the actual time the driver started tsi . The hourly financial offer for driver i at time t of day

d is given by wi,d,t. Define b(t) as the time block that the time interval t is in and wk(d) as

an indicator whether the date d is a weekday or weekend. We omit the subscript for time

block and day of week for simplicity.

V A
i,l,d,t(C, β) = (wi,d,t/3)− C +RVl

(
L∑
k=1

πVl,kβ
τVl,k
(

(τVl,k − 1)(wi,d,t/3− C) + Vi,k,d,(t+τVl,k)

))

+ β(1−RVl )Vi,l,d,(t+1)

= (wi,d,t/3)− C +RVl · L∑
k=1

πVl,kβ
τVl,k

(τVl,k − 1)(wi,d,t/3− C) + log

 ∑
j∈(w,s,q)

exp

(
V j

i,k,d,(t+τVl,k)

)
+ β(1−RVl ) log

 ∑
j∈(w,s,q)

exp
(
V j
i,l,d,(t+1)

) ,

where V w
i,l,d,t(·) = V A

i,l,d,t(·), V s
i,l,d,t(·) = V B

l,b(t),wk(d)(·), and V q
i,l,d,t(·) = 0.

2.4.2. Adversarial Estimation for Population Parameters

Next, we present the estimation method for our population parameters. The key challenges

to the estimation are that traditional likelihood estimation is infeasible and our model

consists of sequential decision-making of a large number of drivers. Simulation-assisted

estimation methods are a common alternative. However, they still suffer from the curse

of dimensionality in models with rich heterogeneity such as ours and the convergence is

not guaranteed or can be extremely slow. Therefore, we adopt a machine-learning-based
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estimation method called adversarial estimation recently proposed by Kaji et al. (2020). We

also consider an alternative method, approximate Bayesian computation, that is more in line

with other common simulation methods and describe our implementation in Appendix ??.

Adversarial estimation. Adversarial estimation method is inspired by a machine learn-

ing algorithm called a generative adversarial network (GAN). The purpose of GANs is to

generate artificial data (e.g., images) that look real. In a similar manner, we can use GANs

to obtain estimates of our structural model that can generate data (e.g., decisions of ride-

hailing drivers) as if it was produced by real human decision-makers. The idea of GANs

and adversarial estimation is the result of a two-player minimax game. One player is a

discriminator that evaluates the data and determines whether the data is real or simulated,

while the other player is a generator that produces simulated data and is trained to increase

the error rate of the discriminator. In our setting, the discriminator is a neural network that

acts as a classifier (between real versus simulated data) and the generator is the structural

model we aim to estimate. The adversarial estimation framework consists of two levels of

estimation. The inner maximization problem is the maximum-likelihood estimator of the

discriminator model. Then, the outer minimization problem looks for the parameter values

for which real and simulated data are indistinguishable. Kaji et al. (2020) provides theo-

retical guarantees and characterizes the statistical properties of a GAN-based estimator. In

particular, the estimator has the same asymptotic distribution to the optimally weighted

simulated method of moments.

Implementation. The outcome data of interest is the fractions of ride-hailing drivers on

the focal firm A leaving the platform at different locations at each hour on each day. Let fdl,h

be the fraction of drivers who worked for A on day d and left the platform at location l and

hour h. The fraction is for each day, therefore,
∑

l∈L
∑

h f
d
l,h = 1 for any d. For example,

each row in the data X would contain the day of week (e.g., Wednesday), the hour (e.g.,

9-10am), and 20 columns of the fractions of drivers quitting at one of the 20 locations in

New York City.
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For a set of parameters θ = (β, µC , σC), we simulate the outcomes 1,000 times and obtain

the simulated data Xθ. We then combine the simulated data Xθ with the actual data X

and randomize the order of the rows. For each row, we set the label Y to be 1 if the row

is from the real data or 0 if it is from the simulated data. We use a feed-forward neural

network as our discriminator D. Our neural network is specified with sigmoid activation

functions with three hidden layers: the first with 20 nodes, the second 10 nodes, and the

third 1 node, and 10% dropout rate during training. We use the tensorflow and keras

packages in R and the default Adam optimization algorithm. After we train D̂ using X

and Xθ, we then fit it back to the same inputs to predict the labels Ŷ . We consider a

cross-entropy loss function:

Loss =
∑

i s.t. Yi=1

(− log(Ŷi)) +
∑

i s.t.Yi=0

(− log(1− Ŷi))

The advantage of using the off-the-shelf neural network is that we can obtain the gradients

using automatic differentiation. Given D̂, we compute numerical gradient of the loss func-

tion with respect to the input data {X,Xθ}. Using the chain rule, we obtain the gradient

with respect to each of the parameters ∆(θ). This step allows us to update θ(t) to θ(t+1)

with one-step gradient descent: θ(t+1) = θ(t) − ξ∆(θ(t)), where ξ > 0 is a learning rate. We

repeat the procedure until we obtain convergence (e.g., ∆(θ) ≈ 0).

2.5. Estimation Results

We present below our estimation results obtained by implementing the adversarial estima-

tion strategy described in Section 2.4.2.

Table 7: Population-level parameter estimates

β µC σC
0.92 1.3371 0.9035

2.5.1. Population-level Parameters

We obtain the discount factor estimate to be 0.92. This estimate is relatively high but

reasonable as we consider a 20-minute time interval in our finite horizon. We also find
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that the population distribution of cost is characterized by the mean µC = 1.3371 and the

standard variation σC = 0.9035. The average cost of $1.3371 is in line with the 2014 AAA

report that suggests the hourly cost for a sedan is $4.4 and $5.48 for SUV, translating into

$1.47 and $1.83 for a 20-minute interval.

2.5.2. Individual-level Parameters

Now that we have estimated population-level parameters, we determine where in the dis-

tribution of costs a particular driver lies by conditioning on her past choices.

Figure 10: Distribution of individual-level cost estimates

Figure 10 illustrates the distribution of individual-level cost estimates conditional on past

decisions. We observe that there are two clusters of drivers’ costs: low cost (LC) and high

cost (HC). The LC drivers consist of mostly drivers of smaller vehicles. The majority of

their starting locations are in Harlem and regions outside of Manhattan. On the other hand,

the HC drivers are made up mostly by those driving a larger vehicle. They also tend to start

working on the focal platform in Upper or Lower Manhattan. Both groups of drivers work

for approximately the same amount per day on average. However, HC drivers experience a

significantly higher utilization than LC drivers by approximately 4%. Figure 11 shows the

average utilization rate of both types throughout an average weekday. This finding seems

to suggest that HC drivers are more strategic in choosing where to start working.
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Figure 11: Utilization rate by driver type and time of day

2.5.3. Multihoming Behavior

We find that 40.78% of drivers always work for both platforms every time they work while

14.72% of drivers never switch to work for the competitor platform. We also find that

LC drivers are more likely to switch. For both types of drivers, there is an association

between facing idleness (e.g., not getting matched to a customer) and switching to work

for the competitor platform. Comparing the average probability of switching at each time

of day in Figure 12 to the utilization rate illustrated in Figure 11, we observe that the

peaks of the switching probability appear to coincide wit the drops of the utilization rate.

Interestingly, drivers on the focal platform are more likely to switch when idling even though

they are guaranteed an hourly pay. There are two potential reasons. First, switching to

the competitor could help them transition to a busier region, potentially increasing future

expected earnings. Second, it is possible that service providers such as ride-hailing drivers

enjoy non-monetary utility from serving customers.

2.6. Counterfactual Analyses

Structural estimation allows us to quantify the importance of different mechanisms and

evaluate counterfactual policies. We consider two levels of policies for our counterfactual

analyses, one at the firm level and another at the city level.
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Figure 12: Probability of switching to the competitor firm by driver type and time of day

2.6.1. Platform’s Policies to Control Multihoming

In 2.5.3, we show that the magnitude of multihoming behaviors among this set of drivers

on the focal platform is fairly large. The natural follow-up question is: what can the

platform do to control or influence multihoming behavior among drivers? For example,

as cities like New York City and Seattle have been capping the number of ride-hailing

drivers who can work or licenses to grant, ride-hailing platforms now face with the struggle

to encourage drivers from a limited pool to work for them. Multihoming could mean that

workers will spend less time on each platform on average, therefore the platforms may prefer

to decrease multihoming behavior among workers. On the other hand, for the platforms

that compensate workers using a guaranteed pay scheme similar to our industry partner,

having too many active workers during the period of low demand could be costly.

We consider two policies that the platforms can implement. First, the consecutive work

bonus policy requires workers to work consecutively and meet a specified threshold to earn

a bonus. This policy is widely used in practice, for example, Uber regularly offers a Consec-

utive Trips promotion for drivers to make additional earnings by completing multiple trips

in a row when and where they expect high demand. Kabra et al. (2017) also finds that

threshold incentives are more effective at motivating Singaporean ride-hailing drivers to

work than linear incentives. For our counterfactual analysis, we consider a policy in which

drivers will only earn their hourly earnings if they stay active for an hour. We also consider

71



the quit delay policy in which drivers will face a time delay before they can stop working.

On several gig platforms, workers cannot quit right when they want to. They either have

to go through multiple confirmation steps before being able to quit or are assigned at least

one final assignment. For our counterfactual analysis, we impose a 20-minute delay between

the time the driver requests to leave and the time they can actually leave. During the time

delay, the driver is still paid a prorated wage for the time and may be assigned to one final

trip. If the final trip lasts longer than 20 minutes, the driver will be able to leave right after

dropping off the last passenger.

Figure 13: Simulated outcomes across platform-level policies

(a) Work duration on the focal firm in hours (b) Probability of switching to the competitor

Results. We consider four outcomes from this counterfactual analysis: utilization, daily

earnings, work duration, and probability of multihoming. The baseline is the current prac-

tice without either type of policies. We first find that compared to the baseline the utilization

rate when either of the policies is implemented generally drops but not at a statistically sig-

nificant level. On the other hand, drivers’ daily earnings increase compared to the baseline,

again not at a statistically significant level.

Figure 13a reports the work duration on the focal firm among drivers under different policies.

In terms of work duration, both policies induce the drivers to spend a significantly longer

time on the focal platform. Drivers receiving the consecutive work bonus work slightly

longer than those facing the time delay. Figure 13b illustrates the probability of drivers

on the focal platform switching over to work for the competitor firm within the same day,

implying the multihoming behavior. We find that the baseline level of switching is relatively

high as close to 70%. The time delay policy significantly increases the switching probability
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further to over 80%. However, the consecutive work bonus policy leads to a result of a

opposite direction. Drivers appear to have a significantly lower probability of switching

under the bonus policy.

Our results provide two interesting insights. During peak time when the platform needs

to increase its service capacity and encourage workers to stay, using the consecutive work

bonus can be effective at lowering the switching probability and increasing work duration on

the platform. This could be because such incentive creates a goal or a sense of commitment

to the workers. Several gig economy platforms have indeed utilized the threshold policy

and incorporated gamification to retain their workers. On the other hand, during the low

demand when the platform does not need too many workers or leave their workers idle,

imposing a time delay before quitting can be an effective and cost-free policy. By forcing

the workers to wait before being able to leave, it triggers them to plan ahead. As we have

seen earlier that the drivers appear to be more likely to switch when being idle, we can infer

that they do not want to be stuck in the low-demand region. The time delay means that

the drivers have to be stuck for a longer period of time. If the drivers want to avoid being

stuck in idleness, they have to decide sooner under the time delay policy and thus are more

likely to leave.

2.6.2. Policy Analysis: Driver Income Rules

In December 2018, New York City’s TLC launched new rules. Drivers should earn at least

$17.22 per hour of working and must be paid at least $1.088 x (number of miles traveled)

+ $0.495 x (trip duration in minutes) for each trip. Ride-hailing platforms such as Uber

and Lyft promptly responded to the new rules by restricting driver access to their platforms

(e.g., locking a number of drivers out during certain times and/or around certain locations).

Juno, a smaller firm, quitted a few months after the new rules took effect. Such effect is

in line with the theoretical prediction by Asadpour et al. (2019). The authors show that a

minimum wage-type policy is only feasible for loose labor markets. If the minimum wage is

too high, the optimal response for the firm is to cap its supply.
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The City also provided an estimate that drivers should be paid additional $172 million in

the first four months. However, drivers have reported that the benefit was not substantial.

Furthermore, they reported experiencing longer idle time as a result of a larger number

of active drivers, driven by the larger guarantee minimum wage. In this counterfactual

analysis, we demonstrate that our structural model can help the policymakers better predict

the outcome of a new policy.

We consider four scenarios for the policy analysis. First, we consider the Pre-2019 scenario

in which there is no minimum wage policy. Based on our earlier analysis on the data from

2016 to 2017, we have already estimated the model of behavior for this scenario. When

the rules took effect in early 2019, they were applied to all ride-hailing platforms except

our industry partner. Therefore, we consider the Current scenario in which the competitor

platform has to follow the rules while the focal platform does not. Comparing this scenario

with the Pre-2019 one, we will be able to offer a prediction of the impact of the policy and

compare to the actual outcome. We then consider two hypothetical scenarios: Reverse in

which the rules are only applied to the focal platform but not the competitor, and Universal

in which the rules are applied to both platforms. We make one assumption that the fares

charged to the customers are not affected by the new rules. A report by Parrott and Reich

(2018) finds that the fare increase was not significant (e.g., only three to five percent higher).

Results. Our prediction for the Current scenario is that workers would earn 3.5% smaller

earnings and spend 2.1% more time idling. This is in line with the actual consequences of

the policy that drivers do not generally earn more money and would end up spending more

time without work assignment due to an influx of drivers seeking higher earnings through

a minimum wage. For the hypothetical scenarios, we first find that the Reverse scenario

leads to workers earning 3% higher earnings while spending 3.3% more time idling. The

Universal scenario would lead to workers earning 1.2% smaller earnings and spending 7%

more time idling. These results suggest that the universal policy might not be optimal as

it leads to both lower income and longer idle time. Instead, the policymakers should take

into account of how different platforms structure their incentive scheme in order to offer a
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more effective regulation that benefits all stakeholders.

2.7. Concluding Remarks

With the flexibility in the choice of service, gig workers often work for more than one

platform and exhibit a multihoming behavior. An increase in the number of available

options has resulted in increased competition among platforms to win over a limited mutual

pool of workers. Such competition has only been further exacerbated in cities like New

York and Seattle, which recently passed caps on the number of ride-hailing drivers. How

workers respond to platform competition is therefore an important topic to study, but

studying multihoming behavior empirically is challenging due to the unobservability of

workers’ options.

In this work, we leverage proprietary data from our ride-hailing industry partner and the

publicly available trip record data to develop and estimate a structural model of gig work-

ers’ sequential dynamic decisions in the presence of alternative work opportunities. Our

major contributions are in the modeling and estimation of dynamic decisions with temporal

and spatial components and dynamic outside options, and the development of an efficient

simulation-assisted machine learning-based estimation framework in the presence of analyt-

ically or computationally intractable likelihood functions and high-dimensional data.

Our results characterize workers’ forward-looking behavior and heterogeneous cost of work-

ing. We find that workers are strategic in their choice of initial service location to ensure

high utilization and are prone to multihoming behavior when facing longer idle times. Our

follow-up counterfactual analyses demonstrate the effectiveness of different strategies com-

monly used in practice and offer insights that can help the firm retain workers during high

demand using a consecutive work bonus or nudge them to leave the platform when demand

is low by imposing a time delay when the worker requests to leave.
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CHAPTER 3 : Learning Best Practices: Can Machine Learning Improve Human

Decision-Making?

3.1. Introduction

Workers often spend a significant amount of time on the job learning how to make good

decisions that improve their performance (Chui et al. 2012). The impact of a current decision

can be highly stochastic and affect future decisions/rewards, making it difficult for them to

evaluate the quality of a decision. This issue is further exacerbated by the fact that multiple

decisions are often made sequentially, making it hard to determine which decisions are

responsible for good outcomes. Many jobs require sequential decision-making; for example,

doctors making decisions to optimize the long-term outcomes of their patients (Kleinberg

et al. 2015) or drivers on ride-hailing platforms optimizing their long-term profits (Marshall

2020). As a concrete example, physicians seek to learn good strategies for ordering lab tests,

since obtaining the appropriate testing results in a timely fashion is necessary to minimize

delays in patient visits. Song et al. (2017) finds that experienced physicians have learned to

order these tests early on to avoid delays. Despite the simple description of the strategy—

“order lab and radiology tests as early in the care delivery process as possible”—learning it

on the job is difficult because the connection between when the tests are ordered and the

overall quality of care is highly stochastic, and is influenced by other decisions made by the

physician as well as unrelated environmental factors such as hospital congestion.

The need to spend time learning on the job has consequences for service quality, since work-

ers likely make suboptimal decisions during this time. For instance, when surgeons first use

new devices, surgery duration increases by 32.4% (Ramdas et al. 2017). Thus, whenever

possible, workers seek alternative ways to acquire best practices on decision-making. Con-

tinuing our example on physician decisions for lab testing, Song et al. (2017) finds that

physicians can learn strategies for reducing service time from their better-performing col-

leagues. This approach is effective precisely because the strategy is simple and easy to

communicate, yet time-consuming to discover independently. However, learning from their
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peers is not always an option for workers; for instance, some workers are comparatively

isolated—e.g., physicians working in rural hospitals or operating their own practices or in-

dependent workers in the gig economy. In these cases, workers must wastefully spend time

independently rediscovering best practices that are already known to their colleagues.

A natural question is whether we can automatically discover best practices and convey

them to workers to help them improve their performance. In particular, over the past two

decades, many domains have accumulated large amounts of trace data on human decisions.

For example, nearly every physician action is logged in electronic medical record data; every

movement of a driver is recorded on a ride-hailing platform; even retail manager decisions

on pricing and inventory management are recorded on a daily basis. This data implicitly

encodes the collective knowledge acquired by numerous workers about how to effectively

perform their jobs. Thus, we might hope to leverage tools from machine learning to mine

this data and automatically discover insights that can be used to help workers improve their

performance.

In this paper, we study whether machine learning can be used to infer rules that help im-

prove workers’ performance at sequential decision-making tasks. In particular, we propose

a novel algorithm for mining useful rules or best practices. Our algorithm automatically

learns a decision-making rule that, if correctly followed by the human worker, most im-

proves their performance. It does so in two steps. First, our algorithm uses imitation

learning (Abbeel and Ng 2004) to learn a model of the current strategy employed by the

human workers. These algorithms are designed to reverse-engineer the strategy employed by

humans based on data encoding the actions they take in various states. In particular, we use

Q-learning (Watkins and Dayan 1992) to learn a neural network, called the Q-network, that

approximates the long-term value of the actions taken by the human workers. In addition

to encoding the strategy of the human worker, the Q-network also encodes how changes to

the human strategy affect their performance. Then, our algorithm leverages the Q-network

to learn a decision-making rule that modifies the human worker strategy in a way that most
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improves their performance. We must carefully design the search space of decision-making

rules so that human workers can correctly follow the rule. That is, the rule must be an in-

terpretable model whose computation process can be understood by humans (Letham et al.

2015). In particular, we design the search space to consist of if-then-else rules, and use an

approach based on interpretable reinforcement learning (Bastani et al. 2018) to learn the

best rule. Importantly, despite their simplicity, these if-then-else rules can capture useful

insights that are challenging for humans to learn by themselves due to the sequential nature

of the decision-making problem.

As a case study, we have designed a game where human participants act as managers for a

virtual kitchen. An illustration of this task is shown in Figure 14a. In this environment, the

human is shown a set of food orders (e.g., burgers, tacos, etc.), each of which is decomposed

into a set of subtasks (e.g., chopping, cooking, serving, etc.). To complete an order, the

human must assign each subtask to one of the available virtual workers (e.g., chef, server,

etc.). The goal is to do so in a way that completes all the orders as quickly as possible.

There are two aspects of this environment that make it challenging: (i) each virtual worker

has different skills (e.g., the chef cooks quickly but serves slowly), and (ii) the subtasks

have dependencies (e.g., the food must be cooked before it is served). As a consequence,

the human must balance leveraging the strengths of each virtual worker (i.e., avoid assigning

suboptimal subtasks that the virtual worker is slow to complete) and ensuring that none of

the workers are idle (i.e., assign suboptimal subtasks to avoid idling the virtual worker). This

environment can be thought of as a networked queuing model with heterogeneous servers—

i.e., the subtask dependencies are encoded by the network structure and the virtual workers

are the heterogeneous servers.

We conduct a behavioral study using Amazon Mechanical Turk (MTurk) workers to test

whether our machine-learning algorithm can learn rules that help human workers improve

their performance. Our study is based on two different configurations of our virtual kitchen

environment. In the “normal” configuration, the MTurk worker plays three identical instan-
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Figure 14: Overview of behavioral study: virtual kitchen management.

(a) Workflow and main experimental task (b) Study configurations

tiations of the environment. In the “disrupted” configuration, the first two instantiations

of the environment are identical to the ones in the normal configuration, but the remaining

four instantiations are modified so that a key worker (namely, the chef) is no longer avail-

able. These two configurations are visualized in Figure 14b. The disrupted configuration

is particularly challenging for the MTurk workers, since they must “un-learn” preconceived

notions about the optimal strategy acquired during the first two instatiations. For each of

these configurations, we leverage our algorithm to learn interpretable decision-making rules,

and then demonstrate how providing this decision-making rule improves the performance of

the MTurk workers. Our results show that (i) the tips inferred from our algorithm are effec-

tive at significantly improving performance and speeding up learning, (ii) they outperform

the tips generated either by previous participants or the baseline algorithm by a signifi-

cant margin, and (iii) they induce the participants to discover additional optimal strategies

beyond what is stated in the tips.
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3.1.1. Related Literature and Contributions

Process improvement has always been one of the major emphases both in the operations

management literature and in practice. Our work focuses on process improvement from the

perspective of individual workers. Scholars have identified various difficulties associated with

learning to improve performance. When first experiencing a new work environment, workers

tend to have difficulty adjusting, resulting in various degrees of undesirable performance.

For instance, as mentioned earlier, Ramdas et al. (2017) finds that when surgeons first

use a new surgical device, surgery duration increases by 32.4%, hurting both their service

quality and productivity. Bavafa and Jónasson (2020a) shows that unexpected critical

medical incidents slow down the ambulance activation among paramedics. The situation

exacerbates when inexperienced workers lack a guideline on how to manage their workflow

as their prioritization could often be suboptimal and detrimental to productivity (Ibanez

et al. 2017). The complex nature of workflow also plays a role. Workers tend to focus

on immediate challenges and ignore opportunities for learning (Tucker et al. 2002) and

switching between tasks could hurt as much as 20% of their productivity (Gurvich et al.

2019). In many collaborative work settings, productivity depends on one’s co-workers.

Collaboration is particularly challenging in distributed work, where there is considerable

uncertainty about others’ behaviors (Weisband 2002, Mao et al. 2016). This is especially

true in healthcare, where delivery processes involve numerous interfaces and patient handoffs

among multiple healthcare practitioners with varying levels of training and prior experiences

working together (Hughes et al. 2008, Akşin et al. 2020).

To increase reliability and reduce process variation, process standardization is commonly

implemented to form best practices (Nonaka and Takeuchi 1995, Pfeffer et al. 2000, Spear

2005). Process standardization is generally a two-step process: creating the standards and

then communicating them. Creating standards and developing knowledge of best practices

are known to be hard as they take time (Nonaka and Takeuchi 1995) and knowledge transfer

often fails across organizational borders (Szulanski 1996, Argote 2012). A rich literature

in operations management and organizational behavior has shown how various aspects of
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experiences can improve individuals’ productivity and performance. For example, profes-

sional web developers frequently learn new concepts and strategies by trial and error (Dorn

and Guzdial 2010). Past experiences on the same or related tasks, even subtasks, have a

significant effect on performance (Huckman and Pisano 2006, Kc and Staats 2012), a va-

riety of experiences could hinder workers’ ability to identify best practices (Kc and Staats

2012). Furthermore, Bavafa and Jónasson (2020b) shows that greater prior experience

reduces variance of performance. Social interaction is another common way to learn. Ther-

apy workers learn from clients’ feedback to adjust their treatment process (Brattland et al.

2018). Workers also learn significantly from their colleagues, particularly those with a high

level of knowledge or valuable skills (Herkenhoff et al. 2018, Jarosch et al. 2019). Song

et al. (2017) shows that by publicly disclosing relative performance feedback, physicians

can better identify their top-performing co-workers, enabling the identification and valida-

tion of best practices. Working alongside experienced peers is shown to improve workers’

performance (Chan et al. 2014, Tan and Netessine 2019). Team experience and familiarity

with one another and with the tasks are associated with both team and individual per-

formance (Akşin et al. 2020, Kim et al. 2020). However, these learning strategies can be

inefficient as they rely on the availability of experts and knowledge of best practices. Given

well-documented difficulties in learning on the job and identifying best practices, our work

proposes an effective approach to automatically extract best practices from logs of historical

decisions and outcomes.

Besides identifying best practices, effectively sharing and encouraging workers to adopt

them are known to be challenging (Tucker et al. 2007). One way to improve such knowl-

edge transfer is to structure it as a simple rule. The clarity of simple rules allows workers

to gain deeper understanding of the environment and potential improvement (Sull and

Eisenhardt 2015, Gleicher 2016). A simple training intervention is also shown to improve

decision-making by persistently reducing cognitive biases (Morewedge et al. 2015, Sellier

et al. 2019). Thanks to the fast-growing advancement of artificial intelligence, machine-

learning models have demonstrated great success in learning complex systems and making
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predictions that help guide high-stakes decision-making in various domains, from healthcare

to criminal justice. However, most commonly used black-box models do not provide users

with transparency, accountability, or explanations. The lack of human understanding of

how algorithms work poses serious problems to society (Rudin 2019) and leads to aversion

to adopting these tools (Dawes et al. 1989, Dietvorst et al. 2015). In recent years, significant

efforts have been dedicated towards the development of models that are inherently inter-

pretable (e.g., see Murdoch et al. (2019) for an in-depth review of methods and applications

of interpretable machine learning). Incorporating human domain knowledge into algorithms

has also received increased attention recently (Arvan et al. 2019, Ibrahim et al. 2020). Our

work contributes to this stream of literature in two ways. First, we show that a simple

intervention–providing a simple tip–can help improve worker performance over time and

speed up their learning process. Second, we develop a novel algorithm that leverages the

largely untapped potential of worker trace data to complement existing training programs

and learning among workers.

3.2. Learning Interpretable Tips for Improving Human Performance

Consider a human making a sequence of decisions to achieve some desired outcome. We

study settings where current decisions affect future outcomes—for instance, if the human

decides to consume some resources at the current time step, they can no longer use these

resources in the future. These settings are particularly challenging for decision-making

due to the need to reason about how current actions affect future decisions, making them

ideal targets for leveraging tips to improve human performance. In particular, our goal is

to provide insights to the human that enable them to improve their performance. In this

section, we describe our algorithm for computing rules designed to improve the performance

of human workers. We begin by formalizing the tip inference problem, and then describe

our algorithm for solving this problem.

3.2.1. Background on MDPs

Because we are focused on sequential decision-making, we assume the decision-making

problem is modeled by a Markov Decision Process (MDP). In particular, consider an
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MDP M = (S,A, P,R, γ), where S is a finite set of states, A is a finite set of actions,

P : S × A × S → R encodes the transition probabilities (i.e., P (s′ | s, a) is the probability

of transitioning from state s to state s′ upon taking action a), R : S → R denotes rewards

(i.e., R(s) is the reward obtained in state s), and γ ∈ (0, 1) is a discount factor. In addition,

we assume there is a deterministic initial state s0 ∈ S. Finally, we also assume there is a

finite time horizon T ∈ N after which the rewards are zero.

Now, given a stochastic policy π : S × A → R (i.e., π(a | s) is the probability of taking

action a in state s), a rollout in M uses π to generate a random sequence of state-action-

reward tuples ζ = ((s1, a1, r1), ..., (sT , aT , rT )), where at ∼ π( · | st), rt = R(st), and

st+1 ∼ P ( · | st, at). We use D(π) to denote the distribution over rollouts using π. Note

that if the MDP transitions P and the policy π are both deterministic, then ζ is also

deterministic.

The cumulative expected reward of π is

J(π) = Eζ∼D(π)

[
T∑
t=1

γtrt

]
.

Finally, the value function V (π) : S → R and Q function Q(π) : S × A → R of π are the

unique solutions to the recursive system of equations

V (π)(s) = Eπ(a|s)[Q
(π)(s, a)]

Q(π)(s, a) = R(s) + γ · EP (s′|s,a)[V
(π)(s′)],

respectively. Intuitively, V (π)(s) is the cumulative expected reward of using π if the initial

state is s, and Q(π)(s, a) is the cumulative expected reward of using π from state s, but

where the first action taken is fixed to be a.

3.2.2. Problem Formulation

Given an MDP and a human acting in that MDP, our goal is to learn a decision-making

rule that most improves the performance of the human. In particular, we model the human
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as executing a human policy πH ; we measure their performance as the cumulative expected

reward J(πH) that they achieve. To ensure that the decision-making rule can be understood

by the human worker, we restrict to learning rules of the form

if [state constraint] then [action].

Note that this rule specifies the action to take in a portion of the state space; in the

remainder of the state space, the human should continue to make decisions using their own

policy πH . More precisely, assuming we have a mapping φ : S → {0, 1}d of states to a set

of binary properties φ(s)i, then a state constraint is a predicate ψ : S → {0, 1} of the form

ψ(s) = (φ(s)i1 = b1) ∧ ... ∧ (φ(s)ik = bk).

Then, the rule is a pair ρ = (ψ, a) of a predicate ψ and an action a. Intuitively, this rule

says to take action a in state s if s satisfies ψ (i.e., ψ(s) = 1); otherwise, the human should

take an action using their own policy πH . More precisely, given a stochastic policy π and a

rule ρ = (ψ, a), we define the rule-following policy π ⊕ ρ : S ×A→ R

(π ⊕ ρ)(s, a) =


1(a = a′) if ψ(s) = 1

π(s, a) otherwise.

In particular, πH ⊕ ρ represents the setting where the human worker exactly follows rule

ρ—i.e., they use the action recommended by ρ when applicable and use their own policy

πH otherwise.1 Finally, given a class of rules ρ ∈ R, our goal is to choose the one that most

improves the performance of the human worker—i.e.,

ρ∗ = arg max
ρ∈R

J(πH ⊕ ρ). (3.1)

1Although we rank rules assuming humans follow our tips exactly, this is not the case in practice. Nev-
ertheless, our behavioral experiments demonstrate that our tips significantly improve performance relative
to other types of tips.

84



To guide our algorithm for learning ρ∗, we assume we are given an expert policy π∗ that

achieves high performance J(π∗). In principle, we can compute the exact optimizer π∗ =

arg maxπ J(π) using dynamic programming. However, this approach is computationally

intractable for large state spaces. Instead, we can use techniques such as model-free re-

inforcement learning (Watkins and Dayan 1992, Sutton et al. 2000) to compute π∗ that

approximately optimizes J(π). These approaches rely on our assumption that the MDP

structure is known; when it is unknown, our algorithm can instead leverage sampled rollouts

from a human expert.

3.2.3. Tip Inference Algorithm

Now, we describe our algorithm for maximizing the objective in (3.1). Ideally, our algorithm

would simply enumerate ρ ∈ R, compute J(πH ⊕ρ), and return the rule ρ that achieves the

highest score. The key challenge is how to compute the value of the objective J(πH ⊕ ρ) in

(3.1) for a candidate tip ρ ∈ R. First, we leverage the following result from Bastani et al.

(2018):

Lemma 3.2.1 For any policy π, we have

J(π) = Eζ∼D(π)

[
T∑
t=1

Q(π∗)(st, at)

]
,

We can use this result to rewrite the objective J(πH ⊕ρ) in (3.1). However, we do not have

access to samples ζ ∼ D(πH⊕ρ). To address this issue, we use an approximation where we

assume that the distribution over rollouts of the human user is not significantly affected by

the rule—i.e., D(πH⊕ρ) ≈ D(πH). Then, we have

J(πH ⊕ ρ) = Eζ∼D(πH⊕ρ)

[
T∑
t=1

Q(π∗)(st, at)

]

≈ Eζ∼D(πH )

[
T∑
t=1

Q(π∗)(st, (at ⊕ ρ)(st)

]
,
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where given rule ρ = (ψ, a) and action a′, we define

(a′ ⊕ ρ)(s) =


a if ψ(s) = 1

a′ otherwise.

Next, we can approximate this objective using sampled rollouts based on the human policy—

i.e., given samples ζ1, ..., ζk ∼ D(πH), we have

ρ̂ = arg max
ρ∈R

1

k

k∑
i=1

T∑
t=1

Q(π∗)(sit, (a
i
t ⊕ ρ)(sit)).

The remaining challenge is that we do not have access to the Q-function Q(π∗) of the expert

policy π∗. We can learn an estimate Q̂ of Q(π∗) using supervised learning based on sampled

rollouts ζ ∼ D(π∗). In particular, given samples ζ1, ..., ζh ∼ D(π∗), we solve the optimization

problem

Q̂ = arg min
Q∈Q

h∑
i=1

T∑
t=1

(
Q(sit, a

i
t)−Qit

)2
where Qit =

T∑
τ=t+1

riτ .

Here, Qit is an unbiased estimate of Q(π∗)(sit, a
i
t). For instance, we could choose Q to be a

random forest or a neural network. Then, our objective becomes

ρ̂ = arg max
ρ∈R

1

k

k∑
i=1

T∑
t=1

Q̂(sit, (a
i
t ⊕ ρ)(sit)).

3.3. Case Study: Virtual Kitchen Management Game

We seek to evaluate whether our algorithm can reliably improve worker performance in a

controlled environment. To this end, we have developed a sequential decision-making task

in the form of a virtual kitchen game that can be played by individual human users.

In this game, the human user takes a role of a manager of a virtual kitchen. The overall

goal is to complete a fixed set of n food orders (e.g., burgers, tacos, etc.), where order
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j ∈ {1, ..., n} consists of kj subtasks (e.g., chopping, cooking, serving, etc.). To complete

an order, the human user must assign each of these subtasks to one of the available virtual

workers (e.g., chef or server), ideally accounting for the heterogeneous skillset of each worker.

The game operates in discrete time steps called ticks. On each tick, the human user can

assign any of the available subtasks to any of the available virtual workers, where (i) a

subtask is available if all its prerequisites have been completed but it has not yet been

assigned, and (ii) a virtual worker is available if they are not currently working on another

subtask. Importantly, the human user can choose not to assign any subtask to a virtual

worker even if they are available—e.g., to strategically wait and assign the worker a more

appropriate subtask that will become available at a later tick. On each tick, the human

user makes their desired assignments, and then clicks a “next tick” button on the screen;

upon clicking this button, the assignments are made and the game is incremented to the

next tick. This process repeats until all orders are complete. The goal of the human user

is to assign all subtasks to the virtual workers in a way that minimizes the total number of

ticks it takes to complete all the orders.

There are two aspects of the game which make it challenging to play optimally. First,

the subtasks have dependencies—e.g., the burger must be cooked before it can be served.

Second, the virtual workers have different skills that affect how long they take to complete

a subtask—e.g., a chef can cook quickly but is slow at serving, whereas a server can serve

quickly but is slow at cooking. Thus, the human user must make trade-offs such as deciding

whether to greedily assign a worker to a task that they are slow to complete, or leave them

idle in anticipation of an upcoming task they can complete quickly.

3.3.1. Formulation as an MDP

At a high level, the states encode the progress towards completing all the food orders, the

actions encode the available assignments of subtasks to workers, and the rewards encode

the number of ticks the user takes to complete all the orders. More specifically, the states

encode the following information: (i) in all the orders, which subtasks have been completed

so far, and (ii) which subtask has been assigned to each virtual worker (if any), and how
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many ticks remain for the virtual worker to complete that subtask. Next, the actions consist

of all possible assignments of available subtasks to available virtual workers. Finally, the

reward is −1 at each tick, until all orders are completed—thus, the total number of ticks

taken to complete all orders is the negative reward.

3.3.2. Search Space of Tips

Next, we describe the search space of tips (i.e., rules) that are considered by our algorithm.

Each tip is actually composed of a set of rules inferred by our algorithm. Recall that

our algorithm considers rules in the form of an if-then-else statement that says to take a

certain action in a certain state. One challenge is the combinatorial nature of our action

space—there can be as many as k!
(k−m)! actions, where m is the number of workers and

k =
∑n

j=1 kj is the total number of subtasks. The large number of actions can make the

rules very specific—e.g., simultaneously assigning three distinct subtasks to three of the

virtual workers. Instead, we decompose the action space and consider assigning a single

subtask to a single virtual worker. To be precise, we include three features in the predicate

φ: (i) the subtask being considered, (ii) the order to which the subtask belongs, and (iii)

the virtual worker in consideration. Then, our algorithm considers rules of the form

if (order = o ∧ subtask = s ∧ virtual worker = w) then (assign (o, s) to w),

where o is an order, s is a subtask, and w is a virtual worker.

Even with this action decomposition, we found that these rules are still too challenging for

human users to internalize since the rules are very specific. Instead, we post-process the

rules inferred by our algorithm by aggregating over tuples (o, s, w) that have the same s

and w—e.g., instead of considering two separate rules2

2We experimented with combinations of rules in exploratory pilots, and found that MTurk workers were
unable to operationalize and comply with such complex tips even though they might be part of an optimal
strategy.
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if (order = burger1 ∧ subtask = cooking ∧ virtual worker = chef) then (assign (burger1, cooking) to chef),

if (order = burger2 ∧ subtask = cooking ∧ virtual worker = chef) then (assign (burger2, cooking) to chef),

we merge them into a tip

assign cooking to chef 2 times.

In other words, a tip is a combination of rules ρ = (ρ1, ..., ρk). The score that we assign to

such a tip is J(ρ) =
∑k

i=1 J(ρi). Then, we choose the tip that achieves the highest score.

3.3.3. Rule Inference Algorithm Implementation

First, we describe how we compute the expert Q-function Q∗. In principle, we could use

dynamic programming to solve for the optimal value function V ∗, and then compute the

optimal Q-function based on V ∗. However, while our state space is finite, it is still too large

for dynamic programming to be tractable. Instead, we use the policy gradient algorithm

(which is widely used for model-free reinforcement learning) as a heuristic to learn an expert

policy π∗ for our MDP (Sutton et al. 2000).

At a high level, the policy gradient algorithm searches over a family of policies πθ parametrized

by θ ∈ Θ ⊆ RdΘ ; typically, πθ is a deep neural network, and θ is the corresponding vector of

neural network parameters. This approach requires featurizing the states in the MDP—i.e.,

constructing a feature mapping φ : S → {0, 1}d. Then, the neural network policy πθ takes

as input the featurized state φ(s), and outputs an action π∗(φ(s)) ∈ A to take in state s.3

Then, the policy gradient algorithm performs stochastic gradient descent on the objective

J(πθ), and outputs the best policy π∗ = πθ∗ . In general, J(πθ) is nonconvex so this algo-

rithm is susceptible to local minima, but it is well known that it performs exceptionally

well in practice.

3To be precise, π∗(φ(s)) outputs a probability π∗(a | φ(s)) for each action a ∈ A of taking a in state s.
We take the action a with the highest probability.
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In our implementation, the state features include the availability of each sub-task (for each

order), the current status of each worker, and the time index. We take πθ to be a neural

network with 50 hidden units; to optimize J(πθ), we take 10,000 stochastic gradient steps

with a learning rate of 0.001. In addition, since our MDP has finite horizon, we use a

discount factor of γ = 1.

Once we have computed π∗, we use the supervised learning algorithm described in Sec-

tion 3.2 to learn an estimate Q̂ of the optimal policy’s Q(π∗); specifically, we choose Q̂ to

be a random forest (Breiman 2001). The random forest operates over the same featurized

states as the neural network policy—i.e., it has the form Q̂(φ(s), a) ≈ Q(π∗)(s, a).

Finally, we apply our algorithm to inferring rules on state-action pairs collected from ob-

serving human users playing our game. Because our goal is to help human users improve,

we restrict our data to the bottom 25% of human users in terms of performance. In ad-

dition, we apply two additional postprocessing steps to the set of candidate rules. First,

we eliminate rules that apply in less than 10% of the states occurring in the human trace

data—i.e., the predicate ψ(s) = 1. This step eliminates high-variance rules that have large

benefits, but are useful only a small fraction of the time. Second, we eliminate rules that,

when they apply, disagree with the expert policy more than 50% of the time—i.e., for a

rule (ψ, a), ψ(s) = 1 and a 6= π∗(s). This step eliminates rules that have large benefits on

average, but sometimes offer incorrect advice that can confuse the human user (or cause

them to distrust our tips).

3.3.4. Baseline Algorithm

A simpler approach is to directly imitate the optimal policy rather than indirectly using

the Q function. In particular, given rollouts D̂ from a policy π, we compute the frequency

of state-action pairs in D̂—i.e.,

Ĉ(ψ, a) = log
(

1 + #{(ψ, a) ∈ D̂}
)
,
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where #{(s, a) ∈ D̂} is the number of times the action a was taken when the state constraint

ψ was active in one of time steps in a rollout in Dπ. Then, the baseline algorithm selects

the rule “if ψ(s) then a” with the highest Ĉ(ψ, a). Then, we post-process these tips in the

same way as we process the tips inferred using our algorithm. This comparison evaluates

the importance of accounting for the reward structure when selecting good tips.

3.4. Experimental Design

We perform a behavioral study to evaluate whether the tips inferred using our algorithm can

help human participants improve their performance at complex sequential decision-making

tasks—specifically, in our virtual kitchen game. Our goal is to address the following research

questions:

• Can our algorithm infer tips that help participants improve their performance on a

complex sequential decision-making task?

• How do the tips inferred by our algorithm compare to other approaches, including tips

suggested by experienced human participants as well as a baseline algorithm-inferred

tip?

• Does the inferred tip help improve human performance solely because the participant

follows the tip, or does it induce them to improve in additional ways?

Recall that our tip inference algorithm requires data on the human performance so it can

focus on conveying information not already known by the humans. For example, if it is

fairly common for human participants to learn not to assign a lengthy cooking task to

a virtual server, our algorithm will search for other rules that are less obvious but vital

to performance improvement. Thus, our behavioral experiment proceeds in two phases.

First, we collect data on the actions taken by the humans participants when they are not

provided with any tips, and use our algorithm in conjunction with this data to infer tips.

Second, we evaluate whether providing these tips can significantly improve the performance

of subsequent human participants, compared both to a control group of participants who
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are not provided with any tips as well as two other groups of participants who are each

provided with tips of different sources (i.e., previous participants or a baseline algorithm).

Each human user plays the game several times in sequence, allowing them to learn good

strategies over time. For each time the user plays the game, we need to specify the orders

that must be completed as well as the available virtual workers; we refer to this specification

as a scenario. Furthermore, we refer to the overall sequence of scenarios played by the user

as a configuration.

We evaluate our algorithm based on two different configurations of our queueing game that

are designed to evaluate different conditions under which tips might be useful. First, the

normal configuration consists of a single scenario we refer to as the fully-staffed scenario.

Thus, our goal is to infer tips that help the human users fine-tune their performance at

this scenario. Second, the disrupted configuration starts with the fully-staffed scenario, but

then switches to a modified scenario called the understaffed scenario. Intuitively, we expect

the human workers to acclimate to the fully-staffed scenario; thus, they may have difficulty

adapting to the understaffed scenario where the high-level strategy is very different. Thus,

our goal is to infer tips that convey shifts in strategy that are needed to perform well in the

new scenario.

For a given configuration, we additionally vary the tip that is shown to the user. Potential

tips include: no tip (i.e., the control), our algorithm-inferred tip, a baseline tip, and a

human-suggested tip. Our goal is to understand how the choice of tip affects the performance

of the human users in the context of that configuration.

3.4.1. Virtual Kitchen Scenarios & Configurations

Our experimental design is based on two scenarios of the virtual kitchen, differing in terms

of which workers are available. In the fully-staffed scenario, the human user has access to

three virtual workers, whereas in the understaffed scenario, the human user only has access

to two workers. The scenarios are identical in terms of the orders that must be completed.

The orders are all the same dish—specifically, they must complete four burger orders. To
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complete a single burger order requires three subtasks: (i) chopping meat, (ii) cooking

burger, and (iii) plating. Each subtask can only be started once the previous one has been

completed. The subtasks in the burger order are illustrated in Figure 15.

Figure 15: Subtasks required to make a burger with a median processing time for each
subtask.

There are three possible virtual workers in the kitchen: chef, sous-chef, and server. The

chef is fastest at chopping and cooking, but is slowest at plating. The sous-chef is a “jack-

of-all-trades”, who can perform all tasks at an intermediate speed. Finally, the server is

fastest at plating, but slowest at chopping and cooking. Participants are not given the

exact number of ticks each worker takes to complete each subtask. Instead, when a subtask

becomes available, participants are shown the median number of ticks required to complete

that subtask. The true number of ticks for a given worker is only revealed if they assign

the subtask to that worker. The human user must experiment to learn this information by

playing the game. Figure 16 shows two screenshots of the game. While the optimal policy

in these types of games are typically quite complex and must be solved approximately, we

find that a significant number of human users are able to learn very efficient policies by

playing the game 3-6 times in a row. For instance, they identify bottleneck subtasks, and

learn to mitigate them by assigning these subtasks to their most capable virtual worker.

As discussed above, we consider two different scenarios for our virtual kitchen. First, in the

fully-staffed scenario, the human user has access to all three virtual workers—i.e., the chef,

sous-chef, and server. In contrast, in the understaffed scenario, the user has access to only

two virtual workers—namely, the sous-chef and server.

Finally, we describe the two configurations of our game used in our study. First, in the
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Figure 16: Example screenshots from the game.

(a) The initial state where participants observe
available subtasks from current orders, median
times to completion, and three idle virtual work-
ers. The interface also shows the current tick, time
limit, current progress, and treatment-specific tip.

(b) The next state after all three previously available
subtasks were assigned to the virtual workers and
the true completion times were realized, revealing
different levels of virtual workers’ skills.

normal configuration, the human user plays the fully-staffed scenario for three rounds. Sec-

ond, in the disrupted configuration, they first play two rounds of the fully-staffed scenario,

followed by four rounds of the understaffed scenario.

3.4.2. Experimental Procedure

We perform separate experiments for each configuration of our game. The high-level struc-

ture of our experimental design for each configuration is the same; they differ in terms of

when we show tips to the user and which tips we show. For each configuration, our exper-

iment proceeds in two phases. Before starting our game, each human user is shown a set

of game instructions and comprehension checks; then, they play a practice scenario twice

(with an option to skip the second one).4

In the first phase, we recruit 200 participants via Amazon Mechanical Turk to play the game.

At the end of all rounds of play, we give users a post-game survey where we ask several

questions regarding their experience with the game. Additionally, we ask the participants

to suggest a tip for future players. In particular, we show each participant a comprehensive

4The practice scenario is meant to familiarize participants with the game mechanics and the user interface.
In this scenario, they manage three identical chefs to make a single, simple food order. This food order is
significantly different than the burger order used in the main game.
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list of candidate tips and ask them to select the one they believe would most improve the

performance of future players. This list of tips is constructed by merging three types of

tips: (i) all possible tips of the format described in Section 3.3.2 (e.g., “Chef shouldn’t

plate.”), (ii) generic tips that arise frequently in our exploratory user studies (e.g., “Keep

everyone busy at all time.”), (iii) a small number of manually constructed tips obtained by

studying the optimal policy (e.g., “Chef should chop as long as there is no cooking task”).

Importantly, this list always contains the top tip inferred using our algorithm.

Next, we use the data from the final round played by the participants to infer tips in three

ways. First, we train our tip inference algorithm described in §3.3.3 on the experimental

data and obtain an algorithm tip. Second, we implement the baseline algorithm described

in §3.3.4, which directly tries to imitate the optimal policy based on the frequency of state-

action pairs observed in the experimental data, and yield an baseline tip. Finally, we take

the tip with the most votes from the participants in the post-game survey as a human tip.

Figure 17: Study flow for the normal configuration.

(a) Phase I (b) Phase II

In the second phase, we evaluate the effectiveness of the each of the inferred tips based on

the data from the first phase. In this phase, human users are randomly assigned to one of

four arms, which differ in terms of the tip that is shown to the user. These arms include

the control arm (i.e., no tip), the algorithm arm (i.e., the tip inferred by our algorithm),

the baseline arm (i.e., the tip inferred by the baseline algorithm), and the human arm (i.e.,
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the tip most frequently recommended by human users). We recruited 350 MTurk users to

play each arm in each configuration, totaling 2,800 users.

The specific tips we show on each round depends not just on the arm, but also varies

from round to round depending on the configuration. For the normal configuration (i.e.,

the human user plays the fully-staffed scenario for three rounds), we show the tip for the

current arm on all three rounds. Figures 17a and 17b illustrate the study flow for the normal

configuration. However, for the disrupted configuration configuration (i.e., they first play

two rounds of the fully-staffed scenario, followed by four rounds of the understaffed scenario),

the tip for the current arm is specific to the understaffed scenario. Thus, we only show the

tip for the current arm on rounds 3-6. In all arms, for rounds 1 and 2, we show the tip

inferred using our algorithm for the fully-staffed scenario from the normal configuration.

By doing so, we help the human users learn more quickly to play the fully-staffed scenario

before switching to the understaffed scenario. Figures 18 and 19 illustrate the study flow

for the disrupted configuration.

Figure 18: Study flow for Phase I of the disrupted configuration.

Figure 19: Study flow for Phase II of the disrupted configuration.

Each participant receives a participation fee of $0.10 for each round they completed. We
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also provide a bonus based on their performance, measured by the number of ticks taken

to complete each round. The bonus ranges from $0.15 to $0.75 per round. The full pre-

registration document for our study is available at https://aspredicted.org/blind.php?

x=8ye5cb.

3.4.3. Hypotheses

We are interested in addressing three sets of hypotheses with our experiment.

1. Do humans perform better with the tip from our algorithm compared to receiving no

tips?

H1a: In the normal configuration, participants who receive the tip generated by our

algorithm will perform better than those not receiving any tips.

H1b: In the disrupted configuration, participants who receive the tip generated by

our algorithm will perform better than those not receiving any tips.

2. Do humans perform better with a tip from our algorithm compared to the tip most

frequently suggested by other humans who have completed the game?

H2a: In the normal configuration, participants who receive the tip generated by our

algorithm will perform better than those receiving the tip most frequently sug-

gested by past participants who also played the normal configuration.

H2b: In the disrupted configuration, participants who receive the tip generated by

our algorithm will perform better than those receiving the tip most frequently

suggested by past participants who also played the disrupted configuration.

3. Do humans perform better with the tip from our algorithm compared to the tip from

a baseline tip mining algorithm?

H3a: In the normal configuration, participants who receive the tip generated by our

algorithm will perform better than those receiving the tip generated by the base-

line.
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H3b: In the disrupted configuration, participants who receive the tip generated by

our algorithm will perform better than those receiving the tip generated by the

baseline.

To do so, we perform six two-sample one-sided t-tests to compare the distributions of number

of ticks to completion of the final round of each configuration. We also consider additional

secondary outcome measures including the learning rate (e.g., performance across rounds),

the fraction of participants who completed each round of the game by taking the optimal

number of steps, and how well the participants complied with the provided tip and learned

additional optimal strategies.

3.5. Experimental Results

We show that our tips significantly improve participant performance compared to the control

group, as well as compared to two baselines: (i) a baseline algorithm that näıvely tries to

match the optimal policy, and (ii) tips suggested by previous participants. These results

demonstrate that despite their simplicity and conciseness, our tips capture strategies that

are hard for participants to learn and can significantly improve their performance. In

addition, we find evidence that the participants were not blindly following our tips, but

combine them with their own experience to improve performance. Finally, we also find

evidence that participants build on our tips by discovering additional strategies beyond

the ones stated in the tips. We first discuss the tips inferred from our algorithm and the

baselines in §3.5.1, and then describe our main results in §3.5.2–3.5.5.

3.5.1. Phase I: Inferred Tips

Normal configuration. 183 participants5 successfully completed the game in the first

phase of the normal configuration. The top three tips inferred from each of the sources

are reported in Table 8. For the algorithm tip, “Chef should never plate” is selected as

it is expected to be the most effective at shortening completion time (2.43 ticks). For the

baseline tip, “Chef should chop once” is chosen as it is the most frequently observed state-

5The average age of the participants is 34.6 years old, 57.38% are female, and 67.73% have at least a
two-year degree.
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action pair in the data. Finally, for the human tip, “Strategically leave some workers idle”

received the most votes among previous participants (28.42%).

Table 8: Top three tips inferred from different sources for the normal configuration.

Normal Tip #1 Tip #2 Tip #3

Algorithm Chef should never plate Server plates three times Server should skip chopping once

Baseline Chef should chop once Server should plate three times Sous-chef should plate twice

Human
(% voted)

Strategically leave
some workers idle

(28.42%)

Server should never cook
(21.31%)

Chef should never plate
(13.11%)

It is worth noting that all of the top three human-generated tips are in line with the optimal

policy. The first tip captures the key strategy that some virtual workers should be left idle

rather than assigned to a time-consuming task. However, it is less specific than the other

tips or tips from our algorithm. The second and third tips reflect the fact that the server

takes the most time cooking and the chef takes the most time plating, which participants

could learn from assigning these tasks to them during the game.

Disrupted configuration. 172 participants6 successfully completed the first phase of

the disrupted configuration. Table 9 reports the top three tips inferred from each of the

sources. The best algorithm tip is “Server should cook twice” with the expected completion

time reduction of 2.32 ticks. Interestingly, only the first and third tips are in line with the

optimal policy. The second tip is slightly off as in the optimal policy Sous-chef and Server

should each plate twice. For the baseline arm, all three tips are in line with the optimal

policy and we select “Sous-chef should plate twice” as the baseline tip. Finally, for the

human tip, we select the one with the most votes from the participants: “Server should

cook once” or “Sous-chef should cook three times”.

Unlike the top human tips in the normal configuration, the two tips with the most votes

in the disrupted configuration are not part of the optimal policy. In the optimal policy,

Sous-chef and Server should each cook twice. While the third human tip is in line with the

optimal policy as no worker should be left idle in the disrupted scenario, it is much less

6They are 36.4 years old on average, 61.63% are female, and 77.91% received at least a two-year degree.
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Table 9: Top three tips inferred from different sources for the disrupted configuration.

Disrupted Tip #1 Tip #2 Tip #3

Algorithm Server should cook twice Sous-chef should plate once Server should chop once

Baseline Sous-chef should plate twice Sous-chef should chop three times Server should cook twice

Human
(% voted)

Server should cook once
(28.48%)

Server should never cook
(23.84%)

Keep everyone busy
(16.86%)

specific than the first two tips or those inferred from our algorithm. This highlights the

increased difficulty for humans to identify the optimal strategy in the disrupted configuration

compared to the normal configuration.

3.5.2. Phase II: Our Tips Substantially Improve Performance

Normal configuration. 1,317 participants7 successfully completed the game. Partici-

pants shown our tip completed the final round in 22.54 steps on average (optimal is 20

steps), significantly outperforming those in other arms: 23.86 (control group, t = −4.397,

p < 0.0001), 23.73 (human tip, t = 3.628, p = 0.0002), and 23.82 (näıve algorithm,

t = −4.232, p < 0.0001); see Figure 20a.

Figure 20: Performance of participants across conditions in the last round of Phase II.
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(a) Normal configuration (optimal: 20 ticks)
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(b) Disrupted configuration (optimal: 34 ticks)

Disrupted configuration. 1,011 participants8 successfully completed the game. 244

were assigned to the control arm, 247 to the algorithm arm, 249 to the human arm, and 271

to the baseline arm. Participants shown our tip completed the final rounds in 37.05 steps,

7The mean age is 33.3 years old, 51.03% are female, and 67.73% completed a degree beyond high school.
8On average, participants are 34.9 years old, 60.14% are female, and 70.43% have at least a two-year

degree.
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again significantly outperforming those in other arms: 37.92 (control group, t = −4.361,

p < 0.0001), 37.53 (human tip, t = −2.52, p = 0.0061), and 38.40 (näıve algorithm,

t = −7.348, p < 0.0001); see Figure 20b.

3.5.3. Learning Over Time: Our Tips Speed Up Learning

Next, we study how performance improves across rounds as participants learn better strate-

gies. In particular, tips can be thought of as a substitute for learning, reducing the number

of rounds needed for participants to achieve a certain performance level. Recall that par-

ticipants in the normal configuration had three game rounds over which they could learn

and improve, while those in the disrupted configuration had four rounds (not counting the

initial two rounds with the fully-staffed scenario). In addition to the number of ticks to

complete all orders, we also examine the fraction of participants that reach the optimal

reward—i.e., completing the game in 20 ticks for the fully-staffed scenario or in 34 ticks for

the understaffed scenario).

Normal configuration. Our tip speeds up learning by at least one round compared to

any of the other arms. Figure 21a illustrates the performance measured by the number of

ticks taken to complete each round for participants in each condition. First, we observe

that participants in all arms improved over the three rounds. Although participants in each

of the three arms (but not the control) received tips starting from the first round, only

those receiving our tip performed significantly better the control in any of the three rounds.

In fact, our tip speeds up learning by at least one round compared to any of the other

arms—i.e., the performance of participants given our tip on the kth round was similar to

the performance of participants in alternative arms on the (k + 1)th round. Figure 21b

displays the fraction achieving this optimal performance for each arm over the rounds. As

before, we observe that all participants improved over the three rounds, and that our tip

was the only one to significantly improve performance in any round.

Disrupted configuration. The improved speed of learning was even more apparent un-

der the disrupted configuration. Figure 22a shows the performance measured by the comple-

tion time in each of the under-staffed rounds for participants in each arm. The participants
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Figure 21: Performance of participants in each condition across the rounds of Phase II
(normal configuration).
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(b) Fraction achieving optimal

in the control arm took four rounds to achieve the same level of performance as the partic-

ipants shown our tip on the first round. Thus, our optimal tip speeds up learning by four

rounds. In addition, Figure 22b shows the fraction of participants that achieved optimal

performance. Interestingly, only participants given our tip achieved optimal performance:

by the last round of the game, 18.79% of participants in the algorithm arm played opti-

mally, compared to 1.14% of the human tip arm, 0.99% of the baseline arm, and 0.51% of

the control arm.

Intuitively, the baseline algorithm performs poorly since it blindly tries to mimic the optimal

policy rather than focus on accounting for consequential decisions. For instance, in the

disrupted configuration, it infers the tip “Sous-chef should plate twice”, which actually

reduces performance. The actions suggested by this tip occur at the end of the game, which

is too late to significantly benefit overall performance. In contrast, our algorithm focuses

on mimicking decisions made by the optimal policy that have long-term benefits.

Next, note that the human arm initially improves performance comparably to our arm;

however, it levels off towards the end whereas our arm continues to improve. These results

suggest that our tip, while simple and concise, encodes a complex underlying strategy

that the participants come to understand when they combine it with their own experience

playing the game. In contrast, the human-suggested tip encodes a more shallow strategy
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that quickly improves performance but does not lead to deeper insight over time.

Figure 22: Performance of participants in each condition in the last four rounds of Phase
II (disrupted configuration).
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(b) Fraction achieving optimal

Lastly, we believe that one potential obstacle to uncovering the optimal strategy during the

understaffed scenario is the participants’ inability to “un-learn” and adapt their strategy to

the disrupted environment. In the first two rounds with the fully-staffed scenario, partici-

pants have potentially learned each worker’s skill level and developed a strategy to assign

tasks based on such knowledge. A long task (e.g., cooking burger) is often assigned to the

highly skilled worker (e.g., chef), while the least skilled worker (e.g., server) is reserved

to carry on a short task (e.g., plating). Once the disruption took place, the majority of

participants kept their original strategy—i.e., not assigning chopping or cooking tasks to

the server. After four rounds of the understaffed scenario, a fraction of participants learned

that leaving the server idle was suboptimal. The human-proposed tip (“Server should cook

once”) suggests that participants were able to adjust their strategy towards the optimal

one after four rounds. However, this tip is not aggressive enough to achieve the optimal

performance—as indicated by our tip (“Server should cook twice”). In optimal play, the

server actually needs to perform a significantly larger share of the subtasks than the human

tip suggests. Another evidence for this explanation is observed in the post-game survey of

both phases of the normal configuration. Although participants in these studies did not

experience a disruption, they were asked to imagine a hypothetical understaffed scenario

and select the best tip that they expected to help improve performance in such disruption.
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The tip that received the most votes is “Server shouldn’t cook”. Without the actual experi-

ence of managing the disruption, participants appeared to be biased towards their strategy

learned in the normal scenario. Thus, we believe the success of our tip is due in part to

how it helps human decision-makers overcome their resistance to exploring counterintuitive

strategies.

3.5.4. Complying to Tips: Human Users are More Compliant Over Time

The effectiveness of a tip critically depends on whether the participant follows it; to better

understand this relationship, we study how well participants complied with tips across

arms. Importantly, participants were not informed of the source of the tips, so variation in

compliance is entirely due to the contents of the tips.

Normal configuration. We find that participants increasingly comply with tips across

rounds in all arms, as can be seen in Figure 23a. However, in the final round, a significantly

higher fraction participants complied with our tips and the human suggested tips compared

to the baseline algorithm tips, suggesting that participants determined that the näıve algo-

rithm did not suggest a useful tip. These results suggest that participants are not blindly

following tips; instead, they only follow the tip if it suggests a strategy that makes sense

to them. Furthermore, they show that our strategy is effective even though our tips are

inferred under the assumption that the participant exactly follows the tip. Intuitively, we

believe our approach remains effective since our objective of identifying a tip that maximizes

long-term payoff is consistent with the idea that participants only follow the tip if it encodes

an effective strategy; that is, they follow the strategy as long as they can understand it and

it is effective.

Disrupted configuration. As before, Figure 23b shows that participants increasingly

comply to their respective tips across rounds. The compliance of the human-suggested tip

(“Server cooks once”) is significantly higher than the others, likely because it is the most

intuitive. In contrast, our tip (“Server cooks twice”) is counterintuitive since the server is

slow at cooking; nevertheless, it is more effective at improving performance when followed.
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Figure 23: Compliance rate across the rounds of Phase II.

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Round #

C
om

pl
ia

nc
e 

ra
te

1 2 3

algorithm
baseline
human

(a) Normal configuration
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(b) Disrupted configuration

3.5.5. Learning Beyond Tips: Our Tips Help Users Learn to Play Optimally

A key question is understanding how humans internalized and actualized the strategies

encoded in the tips we inferred. We study this question in two ways. First, we examine

cross-compliance, which is the compliance of the participant to alternative tips other than

the one we showed them. Näıvely, there is no reason to expect participants to cross-comply

with an alternative tip (assuming it does not overlap with the tip shown), beyond the cross-

compliance of the control group to that tip. Thus, cross-compliance measures how showing

one tip can enable participants to discover strategies beyond what is stated in that tip.

Finally, we investigate whether the tips could help participants uncover the structure of the

optimal policy beyond the simple rules they stated.

Cross-compliance. We find that our tips had high cross-compliance than other tips in

both configurations. For the normal configuration, we find that participants across all

arms learn not to assign plating to the chef (Figure 24a), strategically leave some virtual

workers idle (Figure 24b), and let the chef chop only once (Figure 24c). These tips are all

consistent with the optimal policy, suggesting that participants generally learn over time

to improve their performance regardless of the treatment. Interestingly, participants in the

algorithm arm have similar or higher cross-compliance compared to the other arms. This

result suggests that our tip is the most effective as the information it conveys encompasses

the information conveyed by the other tips.
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Figure 24: Cross-compliance rate across the rounds of Phase II (normal configuration).
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(a) Algorithm:
“Chef shouldn’t plate”
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(b) Human:
“Leave some idle”
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(c) Baseline:
“Chef chops once”

For the disrupted configuration, the cross-compliance of the the human and control arms

with our tip remained flat (Figure 25a). We observe a similar trend for the näıve algorithm

tip (Figure 25c). These results suggest that participants do not naturally learn this strategy

over time, most likely since it is counterintuitive. In particular, simple tips can greatly

improve human performance by capturing counterintuitive strategies that take a great deal

of experimentation to discover. Finally, Figure 25b shows the cross-compliance to the human

tip. Interestingly, compliance of the algorithm arm to this strategy actually decreases over

time; indeed, the tip suggested by humans is a suboptimal strategy, so complying with this

tip leads to worse performance.

Figure 25: Cross-compliance rate across the rounds of Phase II (disrupted configuration).
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(a) Algorithm:
“Server cooks twice”
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(b) Human:
“Server cooks once”
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(c) Baseline:
“Sous-chef plates twice”

Uncovering the optimal policy. At a high level, the optimal policy for the fully-staffed

scenario has the chef cook most of the dishes, has the server plate most of the dishes, and

never assigns the chef to plate or the server to cook. We observe that participants generally

recovered these optimal strategies as they played more rounds. For instance, the fraction of
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participants in each arm that never assigned cooking to the server in each round, as if they

were following the tip “Server shouldn’t cook”, increases over time and within each round

the fractions are not statistically different among the arms (see Figure 26a). This result

suggests that people learned about this rule by themselves across all arms.

Figure 26: Fraction of participants taking optimal action beyond the tips they were shown
across the rounds.
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(a) Fully-staffed: “Server shouldn’t cook”
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(b) Under-staffed: “Server chops once”

Furthermore, for the under-staffed scenario, the optimal policy requires balanced assign-

ment of cooking and plating tasks to both sous-chef and server while assigning most of the

chopping tasks to sous-chef. A key rule beyond our tip is thus “Server chops once”. We find

that only participants in our arm cross-complied with this auxiliary tip (see Figure 26b),

again demonstrating that our tip enables participants to discover strategies beyond what is

stated in the tip.

3.6. Concluding Remarks

We have proposed a novel machine learning algorithm for automatically identifying in-

terpretable tips designed to help improve human decision-making. Our behavioral study

demonstrates that the tips inferred using our algorithm can successfully improve human

performance on a challenging sequential decision-making task. In particular, our results for

the normal configuration suggest that our tip can speed up learning by up to three rounds of

in-game experience, demonstrating that our tip can significantly reduce the cost of learning.

Furthermore, in the disrupted configuration, our results suggest that our tip enables the

human participants to discover additional strategies beyond the tip. In other words, the
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benefit of tips comes not just from having the human follow the letter of the tip, but from

how the human builds on the tip to discover additional insights.

An important ingredient in our framework is the incorporation of trace data to identify

pieces of information that are most likely to help improve the performance of an aver-

age worker. Modern-day organizations have benefited from using customer data to inform

new product strategies and provide personalized offerings to their customers, but the data

on their own employees is underused. Our framework provides techniques to leverage the

largely untapped potential of readily available trace data in pinpointing areas of perfor-

mance improvement and identifying new practices. Even when the true optimal strategy is

unknown, trace data of workers with high experience or good performance can be used to

identify good strategies. In recent years, a growing number of organizations have adopted

a gig economy employment model or allowed for remote work in response to worker pref-

erences for flexibility and independence. To compensate for the lack of interactions among

workers, firms can employ our algorithm to learn best practices from the highly performing

workers and then provide tips to help individuals improve.

There are several important directions for future work. First, incorporating personalization

to individual workers could greatly improve the performance of our tip inference algorithm.

Our optimal tips were chosen based on the expected improvement among the bottom quar-

tile of performers in the game. Ideally, we would instead infer tips personalized for different

skill levels and individual worker characteristics. Furthermore, in our approach, we only in-

ferred tips at one point in time. In practice, our approach could also be performed every time

additional data is collected. Then, an important question is understanding the long-term

benefits of our approach and understanding how it affects learning behavior over a longer

period of time. Another promising direction is extending our algorithm to a collaborative

setting. We have only studied how individual workers learn to improve performance, but

a similar approach may help teams improve their collaboration and optimize information

sharing. Finally, future work is needed to study how to better convey machine-generated
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tips to improve compliance. Recent work has documented human aversion to advice made

by algorithms (Eastwood et al. 2012, Dietvorst et al. 2015) and shown certain conditions

that alleviate such aversion (Dietvorst et al. 2018, Logg et al. 2019). In our study, a fraction

of participants chose to forgo our tip and continue using their own strategy. Finding ways

to build trust and encourage compliance is an important ingredient for ensuring our tips

help people improve.
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