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ABSTRACT

STATISTICAL METHODS FOR MULTI-MODAL IMAGE ANALYSIS WITH APPLICATIONS IN

MULTIPLE SCLEROSIS AND NEURODEVELOPMENT

Alessandra M. Valcarcel

Russell T. Shinohara

Kristin A. Linn

Multi-modal neuroimaging, where several high-dimensional imaging variables are collected, has

enabled the visualization and analysis of the brain structure and function in unprecedented detail.

Due to methodological and computational challenges, the vast number of imaging studies evaluate

data from each modality separately and do not consider information encoded in the relationships

between imaging types. In this work, we propose methods that quantify the complex relationships

between multiple imaging modalities and map how these relationships vary spatially across differ-

ent anatomical regions of the brain. In order to understand relationships between several high-

dimensional imaging variables, we use novel multi-modal image analysis techniques for feature

development and image fusion in conjunction with machine learning techniques to develop auto-

matic approaches for multiple sclerosis lesion detection. Additionally, we use multi-modal image

analysis to understand the association between high-dimensional imaging variables with pheno-

types of interest to investigate structure-function relationships in development, aging, and pathol-

ogy of the brain. We find that by leveraging the relationship between imaging modalities, we can

more accurately detect neuropathology and delineate brain trajectories to provide complementary

characterizations of healthy development. We provide publicly available R packages to allow easy

access and implemention of the proposed methods in new data and contexts.
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CHAPTER 1

INTRODUCTION

Over the last two decades, the development and use of neuroimaging technologies has grown

exponentially (Liu et al., 2015a). The rise of neuroimaging research is attributed to numerous dis-

coveries showing added clinical benefits and insights using imaging data, advancing image device

technology, and unprecedented acceleration of computing power at a rapidly decreasing cost (Liu et

al., 2015b). Multi-modal imaging data quantify different, yet complimentary, properties of the brain

and its activity. When studied jointly, multi-modal imaging data may improve our understanding of

the brain.

Common multi-modal data includes, but is not limited to, structural and functional magnetic reso-

nance imaging (MRI), positron emission tomography (PET), electroencephalography (EEG), mag-

netoencephalography (MEG), and computed tomography (CT). Multi-modal data can be acquired

from simulatenous imaging measurements or integration of separate measurements. For example,

multiple measures from the same device using differing acquisition sequences or protocol such

as T1-weighted (T1), T2-weighted (T2), Fluid Attenuated Inversion Recovery (FLAIR) images from

MRI is often considered multi-modal. Multi-modal data may also be comprised of images collected

from different imaging devices such as MRI and CT.

Multi-modal image analysis can be used for feature extraction, image fusion, machine learning,

and visualization. Commonly, multi-modal analysis seeks to understand the coupled association

among the multi-modal data and how these relate to covariates of interest. Many disease areas

benefit from multi-modal analysis. Multi-modal neuroimaging has been used to study healthy brain

development and aging (Satterthwaite et al., 2014b, 2016; Vandekar et al., 2016), Alzheimer’s

disease (Petersen et al., 2010), schizophrenia (Kochunov et al., 2014; Sui et al., 2011), epilepsy

(Abela et al., 2014), obsessive-compulsive disorder (OCD) (Radua et al., 2014), bipolar disorder

(Sui et al., 2011), attention-deficit hyperactivity disorder (ADHD) (Anderson et al., 2014), autism

spectrum disorder (ASD) (Stigler et al., 2011), traumatic brain injury (TBI) (Cherubini et al., 2007),

stroke (Copen, 2015), multiple sclerosis (Carass et al., 2017a,b; Valcarcel et al., 2018a,b), and

brain tumors (Durst et al., 2014). In this work, we propose novel statistical approaches to multi-

1



modal image analysis with applications in multiple sclerosis and neurodevelopment.

Total brain white matter lesion (WML) volume is the most widely established MRI outcome mea-

sure in studies of MS (Lublin et al., 2014). To estimate WML volume, there are a number of auto-

matic segmentation methods available, yet manual delineation remains the gold standard approach.

The most widely established MRI outcome measure is the volume of hyperintense lesions on T2-

weighted images (T2L) (Bakshi et al., 2005, 2008; Zivadinov and Bakshi, 2004). Unfortunately, T2L

are non-specific for the level of tissue destruction and show a weak relationship to clinical status

(Molyneux et al., 2000). Interest in lesions that appear hypointense on T1-weighted images (T1L)

(”black holes”) has grown because T1L provide more specificity for axonal loss and a closer link to

neurologic disability (Andermatt et al., 2017; Katdare and Ursekar, 2015). The technical difficulty

of T1L segmentation has led investigators to rely on time-consuming manual assessments prone

to inter- and intra-rater variability (Garcia-Lorenzo et al., 2013; Llado et al., 2012). In Chapter 2 of

this dissertation, we develop MIMoSA, a Method for InterModal Segmentation Analysis. Although

the majority of statistical techniques for the automated segmentation of WMLs are based on sin-

gle imaging modalities, recent advances have used multi-modal techniques for identifying WMLs.

Complementary modalities emphasize different tissue properties, which help identify interrelated

features of lesions. MIMoSA utilizes novel covariance features from inter-modal coupling regres-

sion in addition to features that capture the mean image structure to model the probability a lesion is

contained in each voxel. We demonstrate MIMoSA’s flexibility and utility by accurately automatically

segmenting T1L and T2L using data acquired at the Brigham and Women’s Hospital (BWH).

Multi-modal automatic segmentation approaches often yield a probability map to which a threshold

is applied to create lesion segmentation masks. Unfortunately, few approaches systematically de-

termine the threshold employed; many methods use a manually selected threshold (Sweeney et al.,

2013, 2014), thus introducing human error and bias into the automated procedure. In Chapter 3,

we propose and validate an automatic thresholding algorithm, Thresholding Approach for Probabil-

ity Map Automatic Segmentation in Multiple Sclerosis (TAPAS), to obtain subject-specific threshold

estimates for segmenting T2L. Using multi-modal MRI, the proposed method applies an automatic

segmentation algorithm to obtain probability maps. We obtain the subject-specific threshold that

maximizes the Sorensen-Dice similarity coefficient (DSC). These subject-specific thresholds are

modeled on a naive estimate of volume using a generalized additive model. Applying this model, we
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predict a subject-specific threshold in data not used for training. We ran a Monte Carlo-resampled

split-sample cross-validation (100 validation sets) using two data sets: the first obtained from the

Johns Hopkins Hospital (JHH) on a Philips 3 tesla (3T) scanner (n = 94) and a second collected at

BWH using a Siemens 3T scanner (n = 40).

The amount of data produced by a single imaging modality in any given experiment can be quite

large. Therefore, multi-modal imaging and analyses results in enormous amounts of data (Kang,

Caffo, and Liu, 2016). For example, 7 tesla (7T) imaging produces high contrast images with ex-

ceptional resolution and detail and can yield over 30 million measurements in just a single imaging

modality (Rutland et al., 2020). Imaging studies may collect multi-modal data from thousands of

subjects over multiple years (Kang, Caffo, and Liu, 2016). Therefore, the size of data sets has be-

come so large it cannot be loaded into memory for analysis, even on high-performance computing

clusters. In Chapter 4, we develop software tools in R for memory efficient representations of large

imaging data.

In Chapter 5, we propose Inter-Modal Coupling (IMCo) analysis. IMCo is a multi-modal data anal-

ysis method for studying the complex relationships between multiple imaging modalities and map-

ping how these relationships vary spatially across different anatomical regions of the brain. Given

a particular voxel location in the brain, we regress an outcome image modality on the remaining

modalities using all voxels in a local neighborhood of the target voxel. In this work we compare the

performance of three estimation frameworks that account for the spatial dependence among vox-

els in a neighborhood: generalized estimating equations (GEE), linear mixed effects models with

varying random effect structures, and weighted least squares. We run a large scale simulation to

assess estimator accuracy and efficiency across a number of different generative models.
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CHAPTER 2

A DUAL MODELING APPROACH TO AUTOMATIC SEGMENTATION OF CEREBRAL T2

HYPERINTENSITIES AND T1 BLACK HOLES IN MULTIPLE SCLEROSIS

2.1. Introduction

Multiple sclerosis (MS) is an inflammatory and demyelinating autoimmune disease of the central

nervous system which typically leads to neurodegeneration (Ahlgren, Odn, and Lycke, 2011; Comp-

ston and Coles, 2002; Harbo, Gold, and Tintor, 2013). The inflammatory and demyelinating process

causes multifocal lesions and widespread atrophy in white and gray matter, often leading to physi-

cal disability, cognitive dysfunction, and unemployment (Rovira and Len, 2008; Tauhid et al., 2015).

Structural magnetic resonance imaging (MRI) is a commonly used tool for the diagnosis, longitu-

dinal management, and scientific investigation of MS (Lublin et al., 2014) because it allows for the

detection of white matter lesions (WML). Common MRI metrics used to assess disease activity

and severity in patient management and clinical trials include WML count and volume, the latter of

which particularly relies on accurate segmentation.

Several complementary characterizations of WML are commonly delineated. Gadolinium-

enhancing lesions (EL) are closely linked to acute perivascular inflammatory activity due to fo-

cal break-down of the blood-brain barrier and typically fade over 26 weeks (Zivadinov and Bakshi,

2004). T2 hyperintense lesions (T2L), which typically start as EL but later remain as non-enhancing

lesions, are nonspecific for the severity of underlying pathology (Zivadinov and Bakshi, 2004). That

is, T2 sequences are nonspecific for the type and degree of tissue injury such as demyelination,

inflammation, edema or axonal loss. This non-specificity is one factor that contributes to modest

associations between T2L metrics and clinical status (Molyneux et al., 2000). Approximately 50%

of T2L also appear as persistent T1 hypointensities (T1L), commonly referred to as black holes,

which are likely to be the most destructive regions with severe demyelination and axonal loss (An-

dermatt et al., 2017; Katdare and Ursekar, 2015). Furthermore, the T1L/T2L ratio, an index of the

destructive potential of lesions, has been shown to be particularly sensitive in tracking MS thera-

peutic response (Kim et al., 2016). T1L metrics provide high clinical significance but are usually

assessed manually in both clinical and trial settings because they are difficult to segment (Bakshi
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et al., 2005).

Manual segmentation is the gold standard approach for WML quantification and requires an expert

to analyze scans visually. Unfortunately, this process is costly, time-consuming, and prone to intra-

and inter-rater variability (Garcia-Lorenzo et al., 2013; Llado et al., 2012; Sweeney et al., 2014).

Difficulties associated with manual lesion segmentation have led to the development of various seg-

mentation methods with different levels of accuracy and complexity (Sweeney et al., 2014). While

many methods are available, no single approach has been shown to perform optimally across mul-

tiple lesion assessments and scanning platforms. This is largely due to the challenges associated

with heterogeneous lesion characteristics within and across subjects and variability introduced by

scanning hardware and acquisition protocols.

The majority of automatic lesion segmentation methods delineate T2L (Dadar et al., 2017; Garcia-

Lorenzo et al., 2013; Meier et al., 2018; Shiee et al., 2010; Sweeney et al., 2013; Valcarcel et al.,

2018b). In contrast, few studies have investigated a fully automatic segmentation approach for T1L.

The sparsity of prior research is in part due to a technical challenge: since T1L and their bound-

aries appear similar to gray matter (Ceccarelli et al., 2012) and are subtler than the boundaries

of T2L, they are much more difficult to segment by manual and automatic methods. Related to

the segmentation of T1L, Khayati et al. proposed a method to segment different stages of lesions,

including chronic lesions which include T1L as well as other lesional phenotypes (Khayati et al.,

2008). The simplest method to segment T1L was proposed by Filippi et al. using an expert-driven

semi-automated thresholding approach to estimate lesion volumes (Filippi et al., 1996). Molyneux

et al. similarly proposed a semi-automated technique to delineate T1L in a multi-center study where

they showed that T1L volume is a consistent and reproducible metric that can be applied to MRI

data from various scanners (Molyneux et al., 2000). Following these results, Datta et al. recently

developed fully automated methods using fuzzy connectivity modeling (Datta et al., 2006). Wu

et al. proposed an algorithm to detect EL, T1L, and T2L using intensity-based statistical k-nearest

neighbor classification combined with template-driven segmentation and partial volume artifact cor-

rection (Wu et al., 2006). To automatically segment T1L, Spies et al. proposed an approach that

used a standard classification algorithm to partition T1-weighted images into gray matter, white

matter, and cerebrospinal fluid and then found T1L in the white matter using voxel-wise testing with

healthy controls as a reference (Spies et al., 2013). Harmouche et al. proposed a method to seg-
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ment T1L and T2L jointly by modeling the posterior probability density function (Harmouche et al.,

2015).

Unfortunately, none of these approaches provide publicly available software, and the studies were

based on relatively small MRI datasets with uniform patient demographics and lesion load (Datta et

al., 2006; Filippi et al., 1996; Molyneux et al., 2000; Spies et al., 2013; Wu et al., 2006). Additionally,

studies to date have only used a single rater for manual segmentations. Likely due to these limita-

tions, adoption of these previously published methods has been slow, and studies have continued to

obtain T1L segmentations manually. A comprehensive, automated technique with readily available

software that integrates aspects of WML burden of multiple lesion characterizations in a diverse

patient population would thus address an important, unmet need in the radiological assessment of

MS lesions.

In our previous work, a Method for Inter-Modal Segmentation Analysis (MIMoSA) was developed

and validated as an automatic T2L segmentation method in people with MS

(Valcarcel et al., 2018b). MIMoSA has readily available software for implementation in R as a

package on Neuroconductor (https://neuroconductor.org/package/details/mimosa) with doc-

umentation and a vignette available on GitHub (https://github.com/avalcarcel9/mimosa/blob/

master/vignettes/mimosa_git.md) (“Neuroconductor”; Valcarcel, 2018). In the present study, we

applied the MIMoSA method to automatically segment T1L. Since no publicly available software

for automatic detection of T1L exists, we automatically segmented T2L using MIMoSA and used

these measures as a reference for T1L performance. This was motivated by our findings that MI-

MoSA is a competitive T2L segmentation approach (Valcarcel et al., 2018b), and all T1L are also

seen as T2L (but not vice-versa). Moreover, since the data in this study were acquired under a

different protocol than data in the original development of MIMoSA, application of MIMoSA to seg-

ment T2L enabled us to validate and assess the robustness of MIMoSA’s accuracy across different

scanner platforms and protocols. For further comparison, OASIS, another validated T2L lesion

segmentation algorithm (Sweeney et al., 2013), was used to automatically segment T1L. Finally,

we examined correlations between lesion volume and clinical status measurements in order to de-

termine if automatic lesion segmentation reduced noise and revealed stronger associations with

disability.

Here we propose an automatic approach to segmenting T1L with software that is publicly avail-
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Table 2.1: Demographic information for subjects in this study are provided. Included were 40 sub-
jects diagnosed with multiple sclerosis (MS) and scanned between 2015 and 2016 at the Brigham
and Women’s Hospital.

Mean Std. Dev. Min Max

Age (years) 50.4 9.9 30.4 69.9
Disease duration (years) 14.5 4.6 3.8 21.3
Expanded Disability Status Scale score 2.3 1.6 0.0 7.0
Timed 25-ft walk (seconds) 5.1 2.6 3.0 18.4
T1L manual volume (mL) 7.70 8.33 0.18 35.03
T2L manual volume (mL) 13.57 12.78 0.58 52.04

%

Male 30
Female 70
Relapsing-remitting MS 80
Secondary progressive MS 20

able for implementation. The ability to segment T1L automatically and quickly has the potential to

facilitate tracking of disease activity and lesional damage over time. Additionally, using the same

automatic approach to determine T2L and T1L reduces variability in segmentation metrics by elim-

inating multiple data processing pipelines.

2.2. Materials and methods

2.2.1. Patients and study design

Data were collected at the Brigham and Women’s Hospital in Boston, Massachusetts. The Insti-

tutional Review Board approved the study and transfer of data to the University of Pennsylvania.

Forty patients, all with a clinical diagnosis of MS, were consecutively obtained from MRI scans at

the center. Subjects had an examination by an MS specialist neurologist to assess the type of MS,

the level of physical disability on the Expanded Disability Status Scale (EDSS), and ambulatory

function on the timed 25-ft walk (T25FW). Patient demographics are provided in Table 2.1. Addi-

tionally, a scatterplot of lesion count against volume is displayed in Figure 2.1, which shows a wide

range of lesion counts and volumes across subjects.
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Figure 2.1: Lesion volume (mL) and count for each subject are presented using manual segmen-
tation masks. The lesion number and volume across subjects are both diverse for T1 lesions (T1L)
and T2 lesions (T2L).

2.2.2. Image acquisition and preprocessing

High-resolution 3D T1-weighted (T1WI), T2-weighted (T2WI), and fluid-attenuated inversion recov-

ery (FLAIR) volumes of the brain were collected on a Siemens 3 tesla (3T) Skyra instrument using

a consistent scan protocol for all subjects. Acquisition details are provided in Table 2.2 and have

also been detailed previously (Meier et al., 2018).

2.2.3. Image analysis

All images were preprocessed prior to implementing the MIMoSA model using the R (R Devel-

opment Core Team, 2018) packages extrantsr (extrantsr: Extra Functions to Build on the ANTsR

Package) and WhiteStripe (R. Taki Shinohara and John Muschelli, 2017), as well as Multi-Atlas

Skull-Stripping (MASS) (Doshi et al., 2013; NITRC: CBICA: Multi Atlas Skull Stripping (MASS):

Tool/Resource Info). After N4 inhomogeneity correction Tustison et al., 2010, volumes were co-

registered across sequences for each subject using a rigid-body transformation with a Lanczos

windowed sinc interpolator. To remove extracerebral voxels, MASS was implemented (Doshi et al.,

8



Table 2.2: Image acquisition protocol using a 3 tesla (3T) Siemens Skyra scanner at the Brigham
and Women’s Hospital.

3T Brain MRI Acquisition Protocol

Scanner Hardware Siemens Skyra
Scanner Software Syngo MR D13
Coil 20 channel
MR Acquisition Type 3D
Orientation Sagittal
Number of signal averages 1
Sequence type FLAIR T2WI T1WI
Number of slices 176 192 176
Voxel size (mm) 1.0×1.0×1.0 0.98×0.98×1.0 1.0×1.0×1.0
TR (ms) 5000 2500 2300
TE (ms) 389 300 2.96
TI (ms) 1800 N/A 900
Flip angle (degrees) 120 120 9
Parallel acceleration 2 4 2
Scan time (minutes) 6:00 3:18 5:09

2013; NITRC: CBICA: Multi Atlas Skull Stripping (MASS): Tool/Resource Info). Manually delineated

T2L masks were obtained in the FLAIR space, and manual T1L masks were obtained in the T1WI

space. To avoid interpolation errors in these masks, analyses of T1L and T2L were conducted in

their respective native spaces and no transformations of the segmentation masks nor the primary

imaging sequences were applied. First, T1WI and T2WI images were registered to the FLAIR for

all T2L modeling; then, separately, T2WI and FLAIR images were registered to the T1WI space for

all T1L modeling. As conventional MRI volumes are acquired in arbitrary units, statistical intensity

normalization using WhiteStripe (R. Taki Shinohara and John Muschelli, 2017) was applied in order

to facilitate modeling of intensities across subjects.

T1L and T2L were manually segmented by a reading panel of two trained observers under the

supervision of an experienced observer at the Brigham and Women’s Hospital. Each trained ob-

server independently determined the presence or absence of T1L and T2L and then reviewed

these results together to form a consensus. In the event of a disagreement, a senior experienced

observer was consulted. A WML was categorized as a T2L if it appeared as hyperintense on the

FLAIR. T1L, or black holes, were defined as appearing hypointense on T1WI and at least partially

hyperintense on the FLAIR volumes. After a consensus of lesions was determined, one observer

segmented all T1L and T2L using an edge-finding tool in Jim (v. 7.0) (Jim 2014). This process

9



resulted in manually segmented gold standard masks for T1L and T2L for each subject in the study.

Figure 2.2 shows examples of preprocessed images and manual T1L and T2L segmentations. All

gadolinium-enhancing lesions were excluded from T1L manual segmentations.

Figure 2.2: Axial slices from an inhomogeneity corrected, registered, and intensity normalized MRI
of a single subject are displayed in the top row. In the bottom row, manual lesion segmentation
masks are overlaid on T1WI and FLAIR volumes.

2.2.4. Automatic segmentation of T1L and T2L using MIMoSA

To automatically segment both T1L and T2L, MIMoSA (Valcarcel et al., 2018b) was applied using

the mimosa (Valcarcel, 2018) package in R, which is available on Neuroconductor (“Neuroconduc-

tor”). MIMoSA was originally developed to automatically segment T2L. We attempted to modify the

MIMoSA paradigm to better tailor it to the T1L segmentation task by introducing: 1) a two-stage

model that first segments T2L and then segments T1L, and 2) a modification of the candidate mask

procedure. However, these changes did not improve the results over the original MIMoSA method

proposed for T2L segmentation. Therefore, the original method was applied with no changes. In

this section, we broadly summarize the steps of the approach and elaborate on each step in the

sections that follow.
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MIMoSA relies on a brain tissue mask that excludes cerebrospinal fluid and extracerebral tissue.

Given this mask, MIMoSA first identifies candidate lesion voxels by thresholding hyperintensities

on the FLAIR. This step reduces computation time and minimizes false positive detection. Since

feature extraction is known to be pivotal for a segmentation algorithm’s accuracy and generaliz-

ability (Sweeney et al., 2014), MIMoSA relies on features that capture the mean structure of each

imaging volume as well as the covariance across volumes. The procedure proceeds by creating

these features, which are later used as predictors in a multivariable regression model. Once all

relevant features have been calculated, MIMoSA fits a local logistic regression using training data

with gold standard manual segmentations of either T1L or T2L. Coefficients from the model fit are

then used to produce maps that contain the probability that each voxel location contains lesional

tissue. Thresholding can be applied to the probability maps to obtain binary lesion segmentation

maps for each patient. MIMoSA also includes a thresholding algorithm that optimizes the similar-

ity of predicted segmentation masks in the training set with manual segmentations based on the

Sorensen-Dice coefficient (DSC). The MIMoSA model can then be applied to subjects who were

not included in the training set in order to automatically segment lesions.

In this study, MIMoSA was applied to automatically segment T1L and T2L by fitting separate models

for each lesion type. One model was fit to segment T2L using preprocessed images registered

to the FLAIR space, and a separate model was fit to segment T1L using preprocessed images

registered to the T1WI space. This separate fitting procedure is necessary because, while all T1L

are seen as T2L, not all T2L are seen as T1L (Sweeney et al., 2014). Specific steps of the MIMoSA

method are described in more detail in the following sections and illustrated in Figure 2.3.

2.2.5. MIMoSA candidate voxel selection

The first step in the MIMoSA procedure is to select candidate voxels for lesion presence for a

candidate mask. Since WML appear as hyperintensities on the FLAIR volume, the method excludes

voxels whose FLAIR intensities are likely not consistent with lesional tissue. Candidate voxels are

defined as the 85th percentile and above on the FLAIR volume. This step reduces computation

time and restricts the modeling space, which empirically has been found to reduce false positives

and leads to an increase in performance measures (Sweeney et al., 2013; Valcarcel et al., 2018b).
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Figure 2.3: The MIMoSA procedure is demonstrated and visualized in an example axial slice. 1.
MIMoSA first selected candidate voxels defined as being the 85th quantile or above in intensity on
the FLAIR images. 2. Features inside the candidate mask were then extracted (full brain features
derived from FLAIR volumes are only shown for simplicity). 3. To obtain T1 lesion (T1L) masks and
T2 lesion (T2L) masks, separate models were fit. 4. Training the MIMoSA models on a subset of
subjects with manual segmentations yielded segmentation models which were then applied to test
subjects not included in the training set.

2.2.6. MIMoSA feature extraction

The next step in the algorithm is to obtain features from the candidate voxels that will be used

in the model. MIMoSA utilizes three distinct feature types: (1) normalized images, (2) smoothed
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images, and (3) inter-modal coupling (IMCo) intercept and slope images (Vandekar et al., 2016).

MIMoSA allows for T1WI, T2WI, FLAIR, and Proton Density (PD) MRI modalities as inputs, but it

has been shown that only T1WI and FLAIR sequences are required to achieve statistically equiv-

alent performance to the model with all four sequences (Valcarcel et al., 2018b). In this study, PD

images were not collected; therefore, only T1WI, T2WI, and FLAIR are used as inputs and sub-

sequently included in the model as features. Since sequences are generally acquired in arbitrary

units, MIMoSA utilizes intensity-normalized images to facilitate across-subject modeling of intensi-

ties (Sweeney et al., 2013; Valcarcel et al., 2018b). To account for average signal intensities around

each voxel, Gaussian smoothers with varying kernel sizes are applied to the intensity-normalized

images and also included in the model. The smoothed-image features have been noted to mitigate

segmentation artifacts that are due to residual image inhomogeneity after N4 correction (Shinohara

et al., 2014) and to incorporate local spatial context. The model incorporates images smoothed

with parameters σ = 10mm and σ = 20mm. To further help distinguish the lesional tissue from

normal appearing white matter, the MIMoSA model includes features extracted from IMCo regres-

sions, which quantify the local covariance between two image modalities throughout the brain at

the subject level.

For a given center voxel, the IMCo features are extracted from a weighted linear regression of one

modality on the other in a local neighborhood around the center voxel. The weights are derived

from a Gaussian kernel with fixed full width half maximum (FWHM) parameter (3mm). Thus, voxels

in the neighborhood are weighted by their distance to the center voxel. MIMoSA estimates the

intercept and slope from a weighted linear regression at all voxels in the candidate mask for each

pair of imaging modalities. That is, MIMoSA exhausts all possible pairs of the scanning contrasts

available for feature extraction. For each pair, IMCo regression is performed twice so that both

image types in the pair are used, once as the outcome and once as the predictor. For example,

for T1WI and FLAIR images, MIMoSA performs IMCo regression using T1WI intensities as the

predictor with FLAIR intensities as the outcome and then repeats the IMCo regression with T1WI

as the outcome and FLAIR as the predictor. With our three contrasts, six unique IMCo regressions

were performed.
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2.2.7. Fit the MIMoSA model

After features are calculated, a logistic regression is fit to model the probability that a voxel contains

lesional tissue (Walter, 2005). Logistic regression is straightforward to interpret and implement and

is commonly used in the segmentation literature (Dadar et al., 2017; Sweeney et al., 2014).

The MIMoSA model is a voxel-level logistic regression that is fit using the candidate voxels. Let

Li(v) be a random variable denoting voxel-level lesion presence at voxel v; if voxel v contains

lesional tissue for subject i, then Li(v) = 1, otherwise Li(v) = 0. We model the probability that a

voxel v contains lesion P{Li(v) = 1} with the following logistic regression model:

logit[P (Li(v) = 1)] =

β0 +XT
i (v)β + GXT

i (v, 10)(β10 +XT
i (v)⊗ β∗10)

+ GXT
i (v, 20)(β20 +XT

i (v)⊗ β∗20) + CXT
i,l(v)βl + CXT

i,s(v)βs

(2.1)

where we denote the normalized images Xi(v) = [T(1,i)(v), FLAIRi(v), T(2,i)(v)]T and express

the smoothed images in vector form by GXi(v, δ) = [G(T(1,i)(v);N(v, δ)), . . . ,G(T2,i(v);N(v, δ))]T ,

where G denotes the image smoothing operator with parameter δ ∈ 10mm, 20mm. We further

denote all combinations of intercept and slope IMCo parameters respectively by CXT
(i,I)(v) and

CXT
(i,S)(v). We use ⊗ to represent the Hadamard product. The interaction terms between the

normalized volumes and the smoothed volumes, denoted by β∗j0, contribute to the model by cap-

turing differences between voxel intensities and their local mean intensities. These aid in mitigating

artifacts due to residual field inhomogeneity and have generally been shown to improve lesion de-

tection performance (Sweeney et al., 2013, 2014).

The normalized and smoothed volumes allow the MIMoSA model to capture mean structure within

modalities and the IMCo features help to capture inter-modal patterns that contain information

about lesion presence. The combination of modeling mean structure within an image type and the

covariance across image types allows for sensitive and specific delineation of WML. The model is

trained using manually segmented gold standard lesion masks. Two separate models are fit for au-

tomatically segmenting T1L and T2L using their respective gold standard masks. More specifically,
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the only difference between the models is whether Li(v) denotes T1L or T2L. Each model output

is a set of coefficients that can be used to obtain lesion probability maps on subjects not included

in the training of the model.

2.2.8. Apply the MIMoSA model

To determine where lesions are present, a probability map is obtained using the estimated re-

gression coefficients for each voxel in the candidate mask. To create a binary segmentation, a

population-level threshold on the probability map is applied. Any lesion smaller than 8 cubic mil-

limeters is removed (Shinohara et al., 2011). Figure 2.3 shows an example of a probability map

and binary segmentation for a subject not included during training of the model.

2.2.9. MIMoSA optimal thresholding algorithm

To make the method fully automated, an optimization strategy for the thresholding is employed to

yield binary lesion segmentations. After the model is fit on the training data, probability maps for

the subjects in the training set are generated. A threshold is then applied to the probability maps

for each subject based on a user-defined grid of possible threshold values to create a set of binary

segmentation masks; in this study, the grid selected was 0% to 100% by 1% increments. Using the

set of predicted lesion masks for each threshold, DSC is calculated at the subject level. After DSC

is calculated for each subject in the training set, the average across subjects for each threshold

is collected. The threshold with the highest average DSC score is applied to probability maps

estimated for subjects in the test set.

2.2.10. Statistical analyses

Training and testing of the MIMoSA method was conducted using cross-validation. In addition to

implementing MIMoSA, a competitive T2L segmentation algorithm, OASIS was also applied (Val-

carcel et al., 2018b). OASIS was specifically chosen for the present study because it can be easily

trained using publicly available software and there are no publicly available data for benchmarking

T1L automatic lesion segmentation. To fit the models and measure performance, 100 iterations of

the following procedure were performed. First, 20 subjects were randomly allocated to the training

set and the remaining 20 subjects constituted the test set. Thus, every subject was represented

in each iteration. MIMoSA and OASIS were then trained to detect T1L and T2L separately using
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subjects in the training set. After fitting the models, the estimated coefficients were applied to the

test set to generate probability maps. To generate lesion masks, the threshold obtained from the

optimal thresholding algorithm described above was applied.

In each of the 100 iterations, subject-level DSC, partial AUC (pAUC, up to 1% false positive rate),

root mean square error (Root MSE), detection error (DE) (Wack et al., 2012), and outline error (OE)

(Wack et al., 2012) were recorded (Sing et al., 2005). pAUC was estimated instead of traditional

AUC because it only considers regions of the ROC space that correspond to clinically relevant

values of specificity (Walter, 2005). All performance measures were calculated at the subject level

and then averaged across subjects and cross-validation folds. Figure 2.4 shows the full cross-

validation pipeline. In addition to these summary measures, MIMoSA performance was assessed

by estimating the Pearson correlation (ρ̂) between manually segmented and MIMoSA-predicted

volumes.

Figure 2.4: Cross-validation scheme used to assess MIMoSA performance on T1 lesions (T1L) and
T2 lesions (T2L) is pictured. Subjects were randomized to either the training set or the testing set.
The MIMoSA model was fit using subjects in the training set. To identify the optimal threshold, prob-
ability maps were generated for subjects. These maps were thresholded along a grid selected from
0% to 100% by 1% and then the Sorensen-Dice coefficient (DSC) was calculated. The threshold
that resulted in the maximum DSC across subjects in the training set was applied as the threshold
in the test set. This procedure was iterated 100 times. Summary statistics are based only on the
test set data. The same analysis was repeated using OASIS as the segmentation approach.

To adjudicate MIMoSA’s performance, Pearson correlation coefficients were calculated to assess

the relationship between image-derived features (T1L volume, T2L volume, and the T1L/T2L ratio
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(Kim et al., 2016) and clinical variables, including clinical status, disease duration (time from first

symptoms in years), EDSS score, and T25FW. Manual segmentation-based measures of T1L, T2L,

and the T1L/T2L ratio were also computed, and associations with clinical variables were estimated

for comparison. To avoid overfitting, correlations were estimated in each cross-validation fold using

only subjects in the test set and then averaged across folds. We denote MIMoSA measures by

ρ̂(MIMoSA), whereas manual evaluations are represented by ρ̂(Manual). For each measure, p-

values were similarly calculated in each fold and averaged across folds. We additionally calculated

each measure adjusted for sex and age.

In order to assess the accuracy and variability of the optimal threshold for each subject in the testing

set we applied thresholds from 0% to 100% by 1% increments to obtain lesion masks. DSC was

then calculated comparing the MIMoSA mask at each threshold with the manual segmentation.

2.3. Results

2.3.1. Segmentation Accuracy

Results are provided in Table 2.3, including average DSC, partial AUC with up to 1% false positive

rate, and the correlation coefficient for MIMoSA and OASIS volumes with manual volumes (ρ̂). Re-

sults in Table 2.3 indicate competitive lesion segmentation performance of both T1L and T2L. DSC

and pAUC for T2L lesion segmentation were competitive compared to state-of-the-art automatic

methods. DSC and pAUC for T1L were modest compared to those measures for T2L but high com-

pared with previous automated approaches in T1L studies. The MIMoSA performance measures

were all greater than the OASIS performance measures, indicating superior automatic segmenta-

tion. Specifically, for T1L the 95% confidence interval for DSC was 0.02 to 0.16 and pAUC was

0.03 to 0.13. Since 0 is not contained in these intervals, we can conclude that MIMoSA statistically

significantly segmented T1L more accurately than OASIS.

Similarly, the DE, OE, and Root MSE were all lower for MIMoSA segmentations than OASIS, indi-

cating that MIMoSA has less error. The DE for both methods was very small, indicating that the

automatic methods detected most of the lesions that were found manually. OE was much higher

than DE, indicating that the automatic methods tended to disagree at the boundary of lesions.

Root MSE, though very small for both MIMoSA and OASIS, favored MIMoSA and suggested that
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Table 2.3: Results from the cross-validation are presented. Sorensen-Dice coefficient (DSC), partial
AUC (pAUC) with up to 1% false positive rate, root mean square error (Root MSE), detection error
(DE), and outline error (OE) were averaged within each testing set and then across folds. Standard
deviation (SD) was calculated within cross-validation folds and then averaged across 100 iterations.
DE and OE are presented in mL. The correlation coefficient relating MIMoSA volumes to manual
volumes (ρ̂) was recorded in each fold and then averaged across folds.

DSC (SD) pAUC (SD) Root MSE (SD) DE (SD) OE (SD) ρ̂

MIMoSA T1L 0.53 (0.14) 0.64 (0.12) 0.06 (0.03) 1.02 (0.96) 9.22 (9.63) 0.88
OASIS T1L 0.43 (0.14) 0.55 (0.13) 0.08 (0.04) 1.76 (1.49) 9.85 (1.49) 0.85
MIMoSA T2L 0.66 (0.13) 0.70 (0.10) 0.07 (0.03) 1.41 (1.12) 14.9 (13.8) 0.95
OASIS T2L 0.55 (0.13) 0.62 (0.11) 0.09 (0.04) 2.55 (2.17) 15.6 (15.1) 0.88

MIMoSA had smaller average error.

Change in lesion volume and counts are both important outcomes commonly used in MS clinical

trials (Bakshi et al., 2005). The correlation between manual segmentation volume and MIMoSA

volume was high for both T1L and T2L. In Figure 2.5, plots of MIMoSA predicted volume are dis-

played against manual segmentation volume. The trend for both T1L volume and T2L volume were

markedly linear and close to the identity line. Subjects with low total lesion volume tended to have

accurate MIMoSA volume estimation with small variance. As total lesion volume increases, the

standard deviations around the MIMoSA volume estimates increase. Figure 2.5 also provides plots

of MIMoSA predicted count versus manual segmentation count. The count estimated by MIMoSA

for subjects with smaller lesion volumes (i.e. less than 25mL) was similar to the manual segmen-

tation count. For larger lesion loads, MIMoSA underestimated the count. With a few exceptions,

subjects with low lesion counts tended to have small variance around the MIMoSA estimate, but

variability of the estimates can be seen to increase along with increasing lesion counts. Although

MIMoSA underestimated lesion count for subjects with large manual lesion counts, the MIMoSA

volume estimate remained accurate. In follow-up investigations, we found that the joint underesti-

mation of lesion count and accurate estimation of volume by MIMoSA was attributable to generous

segmentation of spatially neighboring lesions that resulted in more confluent lesions.

Subject-level DSC and pAUC are presented in Figure 2.6. While DSC tended to be larger for

patients with larger manual lesion volume, pAUC tended to be higher for patients with small to

moderate manual lesion volume.
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Figure 2.5: Lesion volume and count are presented to compare manual segmentation with MIMoSA
segmentation metrics. MIMoSA values were obtained by averaging volume or count for each test
subject across cross-validation folds (100). The solid line depicts the y = x line. Vertical lines
traversing the points are computed at the subject-level and indicate one standard deviation above
and below the mean.

Figure 2.6: To further demonstrate model accuracy, Sorensen-Dice coefficient (DSC) and partial
AUC (pAUC) with up to 1% false positive rate were calculated. Results for each subject were
averaged across folds and are presented. Horizontal lines are the respective overall averages
presented in Table 2.3. Vertical lines traversing the points are computed at the subject-level and
indicate one standard deviation above and below the mean.

2.3.2. Correlations with clinical status

In practice, lesion segmentation metrics are commonly used to predict clinical status and evalu-

ate therapeutic efficacy (Bakshi et al., 2005; Zivadinov and Bakshi, 2004). In Table 2.4, clinical
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Table 2.4: Clinical-MRI relationships with manual lesion volume, denoted as ρ̂(Manual), or MI-
MoSA lesion volume, denoted as ρ̂(MIMoSA), was averaged across cross-validation folds. T1
lesion (T1L) volume, T2 lesion (T2L) volume, and the T1L/T2L ratio were correlated separately with
Expanded Disability Status Scale (EDSS) score, timed 25-ft walk (T25FW), and disease duration.
For each assessment, p-values were calculated and are presented in parentheses beside each
measure. The first table presents unadjusted correlations; the second table presents correlations
adjusted for sex and age (in years).

Clinical Correlations

EDSS T25FW Disease Duration

T1L ρ̂(Manual), (p− value) 0.32, (0.26) -0.07, (0.56) 0.12, (0.54)
ρ̂(MIMoSA), (p− value) 0.34, (0.21) -0.05, (0.58) 0.29, (0.30)

T2L ρ̂(Manual), (p− value) 0.33, (0.24) -0.07, (0.55) 0.15, (0.52)
ρ̂(MIMoSA), (p− value) 0.32, (0.23) -0.08, (0.56) 0.23, (0.37)

T1L/T2L ratio ρ̂(Manual), (p− value) 0.33, (0.22) 0.13, (0.56) 0.06, (0.54)
ρ̂(MIMoSA), (p− value) 0.33, (0.22) 0.18, (0.45) 0.40, (0.12)

Adjusted Clinical Correlations

EDSS T25FW Disease Duration

T1L ρ̂(Manual), (p− value) 0.36, (0.23) -0.03, (0.56) 0.08, (0.59)
ρ̂(MIMoSA), (p− value) 0.34, (0.25) 0.04, (0.58) 0.13, (0.53)

T2L ρ̂(Manual), (p− value) 0.38, (0.21) -0.02, (0.55) 0.10, (0.57)
ρ̂(MIMoSA), (p− value) 0.34, (0.23) -0.05, (0.58) 0.14, (0.50)

T1L/T2L ratio ρ̂(Manual), (p− value) 0.36, (0.20) 0.16, (0.53) 0.12, (0.51)
ρ̂(MIMoSA), (p− value) 0.30, (0.31) 0.18, (0.46) 0.26, (0.30)

measures are related to both manual and MIMoSA lesion segmentation metrics. EDSS score and

T25FW were correlated with T1L and T2L volume, as well as the T1L/T2L ratio. The correlations

displayed in this table show that ρ̂(MIMoSA) tended to be equal to or larger than ρ̂(Manual). The

associated p-values in Table 2.4 indicate that MIMoSA and the manual segmentations performed

similarly. Age and sex-adjusted results were similar to unadjusted results, with the exception of

EDSS. Results are visualized in Figure 2.7. The correlations, whether calculated with the manual

or MIMoSA volumes, were modest but consistent with the established literature.

Figure 2.7 also facilitates the comparison of correlations across the T1L and T2L metrics, both

marginally and adjusted for age and sex. T1L and T2L tended to have similar correlations with clin-

ical variables. However, the T1L/T2L ratio has similar or higher correlations with clinical measures.

Notably, the partial correlations of T1L and T2L with T25FW are small in magnitude, whereas the

T1L/T2L ratio is more strongly associated with T25FW.
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Figure 2.7: Visualization of clinical-MRI relationships. Both manual and MIMoSA segmentations
provided T1 lesion (T1L) volume, T2 lesion (T2L) volume, and the T1L/T2L ratio. The value of the
vertical axis for disease duration, Expanded Disability Status Scale (EDSS) score, and timed 25-
ft walk (T25FW) represents the Pearson correlations between each measure and the MIMoSA or
manual segmentation volume. The first row presents unadjusted correlations and the second row
presents correlations adjusted for sex and age (in years).

2.3.3. Optimal threshold

To assess the accuracy and variability of the optimal thresholding algorithm, Table 2.5 presents

summary measures across the cross-validation iterations. The mean values were slightly larger

for T2L compared to T1L, while the standard deviations and range were similar. Figure 2.8 shows

average DSC across thresholds applied to subjects in the testing set. For both T1L and T2L,
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Table 2.5: Summary measures for the optimal threshold obtained across iterations in the cross-
validation are shown for T1 lesions (T1L) and T2 lesions (T2L).

Lesion Type Mean Std. Dev. Min, Max

T1L 0.28 0.05 0.2,0.36
T2L 0.32 0.04 0.25,0.39

the average optimal threshold that was applied, denoted by the colored point, lay close to the

peak of each curve, which indicates that the optimal threshold algorithm indeed chose appropriate

thresholds to apply to test subjects. Additionally, we note that the relatively flat areas of the curves

surrounding the maximum DSC value suggest that slight differences in thresholds did not have a

major impact on segmentation accuracy.

Figure 2.8: To assess the accuracy and variability of the optimal threshold, the average Sorensen-
Dice coefficients (DSC) across subjects and iterations are shown across thresholds. Results for T1
lesions (T1L) and T2 lesions (T2L) are presented separately. The solid line represents the average
while the filled-in area corresponds to one standard deviation from the mean. The round points on
each figure are the average optimal threshold selected.

2.3.4. Qualitative performance

An example of MIMoSA’s qualitative performance is provided in Figure 2.9, where an axial slice from

a subject chosen at random is provided. MIMoSA masks are overlaid on T1WI and FLAIR volumes

respectively for T1L and T2L, and the probability maps used to generate MIMoSA segmentations

are shown. Qualitative results were consistent with quantitative performance.
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Figure 2.9: Segmented T1 lesions (T1L) and T2 lesions (T2L) in a randomly selected subject and
axial slice are pictured. The first row shows T1L segmentations for both MIMoSA and manual
assessment, the MIMoSA probability map, and the T1WI volume. In the second row, T2L segmen-
tations for both MIMoSA and manual assessment, the MIMoSA probability map, and the FLAIR
volume are displayed. The Sorensen-Dice coefficients (DSC) between the MIMoSA and manual
segmentation for T1L and T2L were 0.54 and 0.69, respectively. To elucidate the differences be-
tween the T1L and T2L tissue type segmentations for both the MIMoSA and manual segmentations,
we provide DSC between the lesion types. The DSC between MIMoSA T1L and T2L was 0.64 and
the DSC between the manually segmented T1L and T2L was 0.52.

2.4. Discussion

MIMoSA is a fully automated segmentation method that leverages changes in inter-modal covari-

ance structure that occurs in white matter pathology. It can be used to delineate T1L and T2L

accurately, reliably, and efficiently in people with MS. Improvements in accuracy seem to be driven

by the inclusion of IMCo regression features, which are features that are not included in OASIS.

These measures seem especially useful for detecting T1L, a challenging task since T1L lesions

often appear similar to gray matter. MIMoSA does not require human input, which promises to

promote stability across a range of lesion delineation tasks. By using the same procedure to auto-

matically segment T1L and T2L, MIMoSA also offers a consistent framework to obtain both metrics.

Furthermore, the optimal thresholding algorithm fully automates the MIMoSA segmentation method

by using the training subjects and their manual segmentations to provide a threshold that empir-
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ically works well in the test set. Results from our cross-validation experiments demonstrate its

accuracy and support its use in practice. The MIMoSA model can easily be adapted and trained for

cases with different sets of imaging sequences (Sweeney et al., 2013; Valcarcel et al., 2018b). The

full modeling procedure is fast and can be easily implemented using software and documentation

provided on Neuroconductor (“Neuroconductor”; Valcarcel, 2018).

MIMoSA provides accurate and reliable automatic segmentations of both T1L and T2L. Though

T2L DSC and pAUC measures were slightly larger, indicating greater similarity with our manual

segmentations, T1L performance was competitive. Simultaneous delineation of T1L and T2L may

lead to a better understanding of overall patient status. MIMoSA total lesion volumes were well-

correlated with the manual total lesion volumes, suggesting that MIMoSA may provide a promising

alternative to manual segmentation in the assessment of new therapies in clinical trials (Valcarcel

et al., 2018b). This may be especially useful for multi-center studies with a large number of patients

or longitudinal studies with sequences collected over time.

The MIMoSA method was previously implemented on data acquired at a different site using a dif-

ferent scanner and acquisition protocol than data collected in this study (Sweeney et al., 2013;

Valcarcel et al., 2018b). The results here indicate that the method performed well using images

acquired across scanner manufacturers and protocols when the model was appropriately trained.

Previously published experiments indicate that 20 subjects is sufficient for model training (Valcarcel

et al., 2018b). Pre-trained models are available for immediate application of the method, but for the

best results training on data acquired under the protocol of interest is encouraged (“Neuroconduc-

tor”; Valcarcel, 2018). The MIMoSA method should be implemented after appropriate image pre-

processing. MIMoSA users should be aware that processing failures in registration, skull-stripping,

and normalization may lead to segmentation failures. Quality control should be implemented after

each step of preprocessing before applying MIMoSA.

Often lesion volumes are correlated with clinical covariates and disease status in patient man-

agement and clinical trials that evaluate therapy effectiveness. Therefore, automatic segmentation

approaches should be as sensitive as manual measures. Correlations were provided to compare

manual and MIMoSA segmentations with clinically relevant variables. Our results indicate that

the relationship between MIMoSA volumetric assessments showed as close or better correlations

compared to correlations with manual segmentations. This was likely due to the stability and con-
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sistency introduced by an automatic method that requires no operator input. Segmentation of T1L

can be challenging since the intensity profile is often indistinguishable from gray matter (Bakshi

et al., 2005), especially with respect to delineating boundaries; thus, reliability in these areas may

be driving stronger correlation with covariates. For T2L evaluation, correlations seemed to be ap-

proximately equal between MIMoSA and manual segmentations. In general, the measurements,

whether obtained from manual segmentation or MIMoSA, were similar, advocating for the use of

the automated method to reduce cost and time.

In this study, T1L and T2L (Barkhof, 1999) were correlated approximately equally with clinical met-

rics. While the sample size and cross-validation in this study were powerful enough to evaluate

the accuracy of MIMoSA, it did not likely provide sufficient power to show improvement in clinical

associations. With a larger clinical cohort, it should be possible to see the increased clinical value

of T1L compared to T2L. Additionally, the images were acquired using a gradient echo acquisition

which has been shown in the literature to identify T1L more commonly than a spin echo acquisition

but with weaker associations to clinical status (Dupuy et al., 2015). The T1L/T2L ratio demon-

strated equal or stronger associations with clinical covariates compared to T1L or T2L volumes

alone, motivating the advantage of segmenting both T1L and T2L.

In this dataset, two subjects presented with gadolinium enhancing lesions. Unfortunately, without a

post-contrast T1 included in the MIMoSA model, we tend to segment these as T1L. In the future,

we propose to include post-contrast T1 imaging in the MIMoSA model to assess the capability of

MIMoSA to distinguish black holes from contrast-enhancing lesions. We will also evaluate whether

MIMoSA improves longitudinal assessment of dynamic lesion evolution and therapeutic response

over currently available methods, in particular, when a number of sequences are collected at each

visit. Finally, we demonstrated MIMoSA’s robustness to multiple scanners and protocols when

assessing T2L volume. Thus, MIMoSA may be useful for large, multi-center clinical trials that

employ a number of different scanners. In all future work, comparison of MIMoSA T1L and T2L

volumes to benchmark manual assessment is warranted.
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CHAPTER 3

TAPAS: A THRESHOLDING APPROACH FOR PROBABILITY MAP AUTOMATIC

SEGMENTATION IN MULTIPLE SCLEROSIS

3.1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous

system characterized by multifocal demyelinating lesions (Compston and Coles, 2002; Confavreux

and Vukusic, 2008) and atrophy in both white and gray matter, which may lead to physical and

cognitive disability and poor functional outcomes (e.g. social isolation, unemployment) (Rovira and

Len, 2008; Tauhid et al., 2015). In MS research and clinical care, magnetic resonance imaging

(MRI) is a commonly used tool for detection and quantification of disease activity and severity

(Bakshi et al., 2005; Ge, 2006; Zivadinov and Bakshi, 2004). MRI allows for the detection of

T2-weighted (T2) hyperintense white matter lesions. Both lesion volume and count have become

important metrics in the clinical and research domain (Dworkin et al., 2018; Ge, 2006). Advanced

MRI also allows for cortical lesion detection, one of the new biomarkers integrated in the revised

McDonald criteria (Thompson et al., 2018). Typically, total lesion burden (i.e. lesion load), is defined

as the volume of total brain matter containing lesions and is a cornerstone for assessing disease

severity in MS research and clinical investigations (Calabresi et al., 2014; Popescu et al., 2013;

Tauhid et al., 2014).

To quantify lesion burden, different approaches use MRI to identify and segment lesional tissue.

Manual segmentation is the gold standard approach and requires a neuroradiologist or imaging

expert to inspect scans visually and delineate lesions. Due to difficulties associated with manual

segmentation such as cost, time, and large intra- and inter-rater variability, many automatic seg-

mentation methods have been developed (Carass et al., 2017b; Egger et al., 2017; Garcia-Lorenzo

et al., 2013; Llado et al., 2012). Unfortunately, since lesions present heterogeneously on MRI

scans, automatic segmentation remains a difficult task, though numerous methods have been pro-

posed. No single approach is widely accepted or proven to perform optimally across lesion types,

scanning platforms, and centers (Danelakis, Theoharis, and Verganelakis, 2018; Sweeney et al.,

2014). A common key step in automatically delineating lesions involves creating a continuous map
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indicating the degree of lesion likelihood using various imaging modalities (Danelakis, Theoharis,

and Verganelakis, 2018; Roy et al., 2015; Sweeney et al., 2013, 2014; Valcarcel et al., 2018b). In

these cases, a threshold is then applied to probability maps to obtain binary lesion segmentations,

also referred to as lesion masks.

Automatic approaches are susceptible to biases in lesion volume estimation associated with the to-

tal lesion load (Commowick et al., 2018); that is, in subjects with few lesions, automated techniques

tend to over-segment lesions, and in subjects with higher lesion load, lesions are under-segmented.

Bias in lesion volume estimation may also be associated with MRI hardware specifications, differ-

ences in protocols, artifacts, or partial volume effects.

To investigate this volume bias, we leveraged the 2015 Longitudinal Lesion Challenge (https:

//smart-stats-tools.org/lesion-challenge) (Carass et al., 2017a,b), a publicly available data

set consisting of imaging of five subjects with MS for training and fourteen subjects with MS for test-

ing. In training and testing sets, subjects had at least four imaging visits. The training data contain

manual delineations from two expert raters while the testing set does not publicly provide manual

delineations; rather, the testing set only consists of volume estimates from each rater. Challengers

who wish to compare new segmentation methods can submit their testing set automatic segmenta-

tions. The automatic segmentation method is ranked using a weighted average of various similarity

measures. A leader board with method performance measures is maintained by challenge orga-

nizers and some published work compares top performing methods (Carass et al., 2017b).

We present data from challengers as Bland-Altman plots (Bland and Altman, 2007, 2016) to as-

sess disagreement with manual volumes from the top two performing approaches described in

Carass et al., 2017b (see appendix Table C3). Bland-Altman plots are provided in Figure 3.1 to

compare the automatically generated and manually delineated volumetric measures. This graph-

ical approach presents the differences between techniques, automatic and manual, against the

averages of the two. If no points lie outside the limits of agreement, the mean difference plus and

minus 1.96 times the standard deviation of the differences, according to classical guidelines this

indicates the difference between techniques is not clinically important and the two methods can be

used interchangeably.

The plots in Figure 3.1 show systematic deviations in automatic and manual volumes. Both ranked
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Figure 3.1: Bland-Altman plots using the first (left) and second (right) ranked automatic segmenta-
tion methods’ volumes from the 2015 Longitudinal Lesion Challenge are presented. We show plots
comparing volumes obtained from the automatic and manual methods. The manual volumes were
delineated by rater 1 (top) and rater 2 (bottom). Using the differences, we highlight the mean (blue)
plus and minus 1.96 times the standard deviation (red). Each subject is represented in a unique
color and each point represents a subject-time point. There are fourteen unique subjects with at
least four follow-up imaging sessions.

methods show that as lesion load increases, automatic segmentation approaches underestimate

volume compared with rater 1 and rater 2. This is evident by the dashed fitted smooth lines which

deviate away from the mean and outside the limits of agreement starting around lesion loads larger

than 20 mL in all four of the plots. While the direction of over- or under-estimation and magnitude

vary for rater 1 and rater 2 across challenge submissions, each approach shows systematic devia-
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tion and bias in volume estimates. Bias in manual segmentation may be due to the inability of raters

to objectively delineate the diffuse part of lesions. Supervised automatic approaches require man-

ual segmentations for training, and therefore may be biased in focusing only on the focal portions

of lesions ignoring regions of diffuse signal abnormalities near the boundaries of lesions.

The bias present in the volumetric estimates from automatic approaches may be related to the

thresholding procedure that segmentation methods apply to probability maps in order to create bi-

nary lesion masks. Currently, there are no stand-alone automated approaches for choosing thresh-

olds for segmentation. After probability maps are created, experts may inspect each subject and

visually determine a threshold to apply that performs well. Likewise, users may pick a single thresh-

old that generally performs well across all subjects (Sweeney et al., 2013). These two thresholding

methods, similar to manual segmentation, introduce human bias, cost, and time into the automated

procedure. Several recent publications use cross-validation approaches for determining a thresh-

old to apply to all subjects (see Roy et al., 2015; Valcarcel et al., 2018b for example), but most

methods do not provide sufficient detail to reproduce the thresholding approach. Further, these

methods propose a group-level threshold rather than subject-specific thresholds.

Using probability maps generated by an automatic segmentation method, we fit the subject-specific

threshold that yields the maximum expected Sorensen-Dice similarity coefficient (DSC) (Zijden-

bos et al., 1994) based on a naive estimate of lesion volume using a generalized additive model.

This approach provides a supervised method to detect a subject-specific threshold for lesion seg-

mentation by attempting to estimate a threshold that optimizes DSC and reduces bias. DSC

is defined as the ratio of twice the common area to the sum of the individual areas. That is,

DSC =
2#{A1 ∩A2}

#{A1}+ #{A2}
∈ [0, 1] where #{A} denotes the number of voxels classified as lesion

in measurement A. After training on a subset of subjects with manual segmentations, the TAPAS

model can be applied to estimate a subject-specific threshold to apply to lesion probability maps in

order to obtain automatic segmentations. The TAPAS method is fully transparent, fast to implement,

and simple to train or modify for new data sets.
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3.2. Materials and methods

3.2.1. Data and preprocessing

The first data set studied (JHH data) was collected at the Johns Hopkins Hospital in Baltimore,

Maryland. This data set consists of 98 subjects with MS, four of which were excluded from our

analyses due to poor image quality. Whole-brain 3D T1-weighted (T1), 2D T2-weighted fluid at-

tenuated inversion recovery (FLAIR), T2-weighted (T2), and proton density-weighted (PD) images

were acquired on a 3 tesla (3T) MRI scanner (Philips Medical Systems, Best, The Netherlands).

A more detailed description of the acquisition protocol was provided in previously published work

(Sweeney et al., 2013; Valcarcel et al., 2018b). Manual T2 hyperintense lesion segmentations

for each subject were delineated by a neuroradiology research specialist with a Bachelor of Arts in

Neuroscience trained in manual segmentation of MS lesions with more than 10 years of experience.

All images were N3 bias corrected (Sled, Zijdenbos, and Evans, 1998). The T1 scan for each sub-

ject was then rigidly aligned to the Montreal Neurological Institute (MNI) standard template space

at 1 mm3 isotropic resolution. FLAIR, PD, and T2 images were then aligned to the transformed T1

image. Extracerebral voxels were removed from all images using the Simple Paradigm for Extra-

Cerebral Tissue Removal: Algorithm and Analysis (SPECTRE) algorithm (Carass et al., 2011). MRI

scans were acquired in arbitrary units, and therefore analyzing images across subjects required

that images be intensity-normalized. We thus intensity normalized each modality using WhiteStripe

(Muschelli and Shinohara, 2018; Shinohara et al., 2014). All image preprocessing was conducted

using tools provided in Medical Image Processing Analysis and Visualization (MIPAV) (McAuliffe et

al., 2001), TOADS-CRUISE (http://www.nitrc.org/projects/toads-cruise/), Java Image Sci-

ence Toolkit (JIST) (Lucas et al., 2010), and Neuroconductor (“Neuroconductor”) R (version 3.5.0)

(R Development Core Team, 2018) packages.

We used a second data resource (BWH data) collected at the Brigham and Women’s Hospital in

Boston, Massachusetts from 40 subjects with MS. MRI data were consecutively obtained. High-

resolution 3D T1, T2, and FLAIR scans of the brain were collected on a Siemens 3T Skyra unit with

a 20-channel head coil. The detailed scan parameters have been reported previously in Table 2.2

as well as in Meier et al., 2018; Valcarcel et al., 2018a.
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T2 hyperintense lesions were manually segmented by a reading panel of two trained observers,

referred to here as rater 1 and rater 2, under the supervision of an experienced observer, referred

to as rater 3, at the Brigham and Women’s Hospital. A lesion was included if it appeared as hyperin-

tense on the FLAIR. Raters 1 and 2 independently marked all MS lesions and then reviewed these

results together to form a consensus. In the event of a disagreement, rater 3 was consulted and

resolved any differences. After a consensus of marked lesions was determined, rater 1 segmented

all lesions to determine their volume using an edge-finding tool in Jim (Jim 2014). This process

resulted in a manually segmented gold standard lesion mask for each subject in the study. Rater 3

certified the final lesion delineation. Rater 1 had a neuroscience undergraduate degree as well as

three years of work experience evaluating MS lesions on MRI scans as a research assistant. Rater

2 had a medical doctorate and four years of experience working in MS MRI research. Rater 3 had a

medical doctor degree as well as more than 10 years of experience in MS MRI, initially as a trained

research fellow, then serving as a faculty member and image analyst.

We performed N4 bias correction (Tustison et al., 2010) on all images and rigidly co-registered

T1 and T2 images for each participant to the corresponding FLAIR at 1 mm3 resolution. Ex-

tracerebral voxels were removed from the registered T1 images using Multi-Atlas Skull Stripping

(MASS) (Doshi et al., 2013) and the brain mask was applied to the FLAIR and T2 scans. We

intensity-normalized images to facilitate across-subject modeling of intensities using WhiteStripe

(Muschelli and Shinohara, 2018; Shinohara et al., 2014). Image preprocessing was applied us-

ing software available in R (version 3.5.0) (R Development Core Team, 2018) and from NITRC

(https://www.nitrc.org/projects/cbica_mass/).

The Institutional Review Boards at the appropriate institutions approved these studies.

3.2.2. TAPAS algorithm

Although the two data sets were processed using different pipelines, the proposed technique is

completely independent of the preprocessing pipeline. We applied the BWH preprocessing pipeline

to the JHH data and re-ran the analyses; we present these results in section A.2 of the Appendix.

TAPAS simply relies on a continuous map of degree or probability of lesion at each voxel in the

brain. Maps are generated by an automatic segmentation algorithm in order to predict a subject-

level threshold for segmentation. In our experiments, we used the predicted lesion probability maps
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from a Method for Inter-Modal Segmentation Analysis (MIMoSA) (Valcarcel et al., 2018a,b), an

automatic segmentation procedure. We also implemented the lesion prediction algorithm (LPA)

(version 2.0.15) using the lesion segmentation tool (LST), an open source toolbox for statistical

parametric mapping (SPM) (version 12) in MATLAB R2019a (Schmidt et al., 2012). In section A.3

of the Appendix, we provide results obtained from using LST-LPA as the automatic segmentation

algorithm.

Figure 3.2: The TAPAS procedure is shown using sample axial slices from the data. A set of
training scans with manual delineations were used to train and apply MIMoSA in order to obtain
probability maps. For each subject’s probability map, we applied thresholds at τ = 0% to 100% by
1% to create estimated lesion masks. For simplicity, in this example, we have only shown τ = 10%,
50%, and 90%. Based on Sorensen-Dice similarity coefficient (DSC) calculations within and across
subjects we estimated τ̂i and τ̂Group. Using τ̂Group we obtained volumei(τ̂Group). We fit the TAPAS
model and applied it to subjects in the test set to determine τ̂i. Red points in the plot represent τ̂0.1

and τ̂0.9, or lower and upper bounds at the volume associated with the 10th and 90th percentiles,
respectively.
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We first divide the data set under study into two parts: the first is used for training TAPAS, and the

second we refer to as the test set. In each subject in the training set of size N/2, we apply a grid

of thresholds τ ∈ {τ1, ..., τJ}, denoted as τ , to the probability map in order to generate estimated

lesion segmentation masks. The estimated lesion segmentation masks are binary masks indicating

estimated lesion presence or absence generated for each threshold in τ . Figure 3.2 shows an

example of these lesion masks at 10%, 50%, and 90%. For each subject in the training set we

initially let τ vary from τ1 = 0% to τJ = 100% in 1% increments and calculate DSC between each

estimated segmentation mask and the corresponding manual segmentation for the image. We then

estimate:

1. τ̂Group = arg max
τ∈{τ1,...,τJ}

2
∑N/2
i=1 DSCi(τ)

N
, and

2. τ̂i = arg max
τ∈{τ1,...,τJ}

{DSCi(τ)} for each subject i.

The threshold estimated by τ̂Group represents the threshold that produces maximum average DSC

across all subjects in the training set, and τ̂i is defined as the subject-specific threshold that yields

maximum DSC for subject i. In practice, we suggest initially using a threshold grid of τ1 = 0% to

τJ = 100% in 1% increments but based on training refine the grid to be more sensitive to the data.

In the event of a tie among thresholds that maximize DSC we first ensure these tied thresholds are

adjacent and then select the median threshold. In our analyses all ties were in fact adjacent. If ties

are not adjacent, we suggest enlarging the threshold region and repeating the analysis. In addition,

we repeat the optimization minimizing absolute error (AE) rather than maximizing DSC since DSC

can be biased for patients with low lesion load. These results are presented in section A.1 of the

Appendix. It is also possible this step could be implemented using an optimization framework and

may result in a reduction in computation time, but we did not validate other optimization approaches.

We apply τ̂Group to each respective subject and obtain a naive estimate of the volume,

volumei(τ̂Group). We then regress logit(τ̂i) on volumei(τ̂Group) using a generalized additive model

with an identity link function and a normal error. The generalized additive model was chosen over

linear models after manual inspection of scatter plots indicated non-linear trends. This is evident in

the scatter plot displayed in the bottom left panel of Figure 3.2 as the scatter plot presented in this

example case does not appear linear but quadratic. This held true for not just this example case but

most cross-validation iterations. We use an identity link function since both τ̂i and volumei(τ̂Group)
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are continuous. The identity link does not bound the outcome τ̂i between 0 and 1; so, rather than

modeling τ̂i, we model logit(τ̂i) to force τ̂i to be between 0 and 1. We implement the generalized

additive model using the gam function available through the mgcv package in R. This function fits

the model using a penalized scatter-plot smoother with thin-plate splines and smoothing parameter

estimated using generalized cross-validation (Generalized Additive Models; Wood, 2003, 2004;

Wood, Pya, and Sfken, 2016). More specifically, the following generalized additive model is fit as

the TAPAS model:

logit(τ̂i) = f1(volumei(τ̂Group)) + εi

where εi ∼ N(0, σ2).

In the model fitting procedure, we exclude subjects from model training if their τ̂i produces an

estimated segmentation mask with DSC < 0.03. We found this to empirically improve TAPAS

performance as it removes subjects for which even the best performing τ̂i yields an inaccurate

automatic segmentation mask.

After the TAPAS model is fit, we apply the model to subjects in the testing set. For each subject

i, we obtain a probability map from an automatic segmentation procedure. We then use τ̂Group to

threshold the probability map in order to estimate volumei(τ̂Group). We use these predicted volumes

in the TAPAS model to estimate the fitted value logit(τ̂i), from which we can obtain the estimated

subject-specific threshold. The probability maps are then re-thresholded using τ̂i to generate the

lesion segmentation masks.

When applying the TAPAS model in the testing set, we aim to reduce extrapolation and excessive

variability associated with left and right tail behavior of the spline model. Thus, for any volume we

obtain using τ̂Group that is larger than the volume at the 90th percentile, we use the threshold for

the subject whose volume is at the 90th percentile, denoted τ̂0.9, rather than the fitted τ̂i. Similarly,

for any volume we obtain from τ̂Group that is smaller than the volume at the 10th percentile, we use

the value of τ̂0.1. Figure 3.2 shows an outline of the full TAPAS procedure and model.

To implement TAPAS, we developed an R package that is available with documentation on GitHub

(www.github.com/avalcarcel9/rtapas) and Neuroconductor
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(https://neuroconductor.org/package/rtapas).

3.2.3. Performance Assessment

For the two data sets in this study (JHH and BWH), we ran separate Monte Carlo-resampled split-

sample cross-validations. More specifically, we repeatedly randomly sampled subjects (100 times)

without replacement to assign half of the subjects in the study to each of the training and test-

ing sets. Each iteration therefore contained a unique set of subjects to train TAPAS and a sepa-

rate set of subjects to test the algorithm’s performance. The Monte Carlo-resampled split-sample

cross-validation analysis assures that the proposed algorithm does not provide significantly differ-

ent lesion volume estimations when different trained regression models are used. In each training

set, we applied MIMoSA using the R package mimosa (Valcarcel, 2018) available on Neuroconduc-

tor (https://neuroconductor.org/package/mimosa) (“Neuroconductor”). After fitting the MIMoSA

model using subjects in the training set, we generated probability maps for all subjects in the training

and testing sets.

In each split-sample experiment, the training set was used to fit the TAPAS model and the testing

set applied the TAPAS model to determine a subject-specific threshold τ̂i. This subject-specific

threshold was used to create binary lesion segmentation masks and calculate lesion volume. In the

BWH data, we found using a threshold grid ranging from τ1 = 0% to τJ = 100% in 1% increments

to be too wide in initial experiments. Therefore, we refined the threshold grid range from τ1 = 13%

to τJ = 54% in 0.4% increments. We compared the TAPAS, group, and manually generated masks

and volumes using the subscripts TAPAS, Group, and Manual respectively. The use of τ̂Group to

threshold probability maps and generate lesion segmentations was previously applied (Valcarcel et

al., 2018a,b) and aided in automatic segmentation measures compared to user-defined threshold

application. In addition to calculating volume from TAPAS, group, and manual lesion masks we

also calculate partial volume denoted with the subscript Partial. We define partial volume as the

sum of the voxel level probabilities from the probability map generated by MIMoSA. Calculating

partial volume does not require thresholding. Rather than applying a hard threshold to estimate

lesion volume, we hypothesize that it may be more advantageous to compute total lesion burden

using this continuous measures from probability maps. These partial volumes may yield stronger

correlations with clinical outcomes.
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We provide quantitative comparisons between TAPAS and the group thresholding procedure for

subjects in the testing set. First, to assess whether segmentation masks produced using TAPAS

or the group thresholding procedure differed in accuracy as measured by DSC, we compared seg-

mentations between lesion masks produced by TAPAS (DSCTAPAS) and those produced by the

group thresholding procedure (DSCGroup) with manual segmentations. We compared these mea-

sures using a paired t-test within each split-sample experiment using subjects in the test set. Sec-

ond, to assess bias and inaccuracy present in volumeTAPAS and volumeGroup we calculated abso-

lute error defined as AE = |Threshold V olume−Manual V olume|. In order to determine whether

AE differed statistically, paired t-tests were conducted between AETAPAS and AEGroup within each

split-sample experiment. Third, to adjudicate whether TAPAS yielded volumetrics with similar phe-

notype associations, we calculated the Spearman’s correlation coefficient between volumeTAPAS ,

volumeGroup, volumePartial, and volumeManual and clinical variables. We denote these correla-

tions by ρ̂TAPAS , ρ̂Group, ρ̂Partial, and ρ̂Manual, respectively. We estimated correlations in each

split-sample experiment and averaged across experiments.

3.2.4. Expert validation

In addition to the Monte Carlo-resampled split-sample cross-validations, 3 board-certified neurol-

ogists with subspecialty training in neuroimmunology compared segmentations produced using

TAPAS and the group thresholding approach. For each subject (40 subjects from BWH data and 94

subjects from JHH data), we randomly selected a cross-validation iteration in which they were in-

cluded as a test set subject and therefore have segmentations produced from TAPAS and the group

thresholding procedure to present to the raters. We randomly assigned the order in which the sub-

jects were presented to the expert rater. Additionally, we randomly assigned each segmentation a

letter (A or B) so as to blind the rater to the segmentation algorithm.

We presented each of the 134 MRI studies to the experts individually. For each study, the expert

rater was presented with the set of two segmentations overlaid onto the FLAIR along with each

of the MRI contrasts simultaneously. For BWH data this included FLAIR, T1, and T2 imaging

modalities, while for the JHH data this included FLAIR, T1, T2, and PD imaging modalities. The

expert was then asked, ”Evaluate how well each of the two segmentations depicts your impression

of the extent of the white matter abnormality in the image displayed.” Ratings were given on a scale

of 1-to-5 scale with labels of ”1 - Excellent”, ”2 - Good”, ”3 - Fair”, ”4 - Poor”, ”5 - Very Poor”. Ratings
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Table 3.1: Demographic information for subjects in this study are provided. We include information
from 94 patients imaged at Johns Hopkins’s Hospital (JHH) and 40 patients imaged at the Brigham
and Women’s Hospital (BWH).

Mean Std. Dev. Min Max

JHH
Age (years) 43.4 12.3 21.4 67.3
Disease duration (years) 11.3 9.2 0.0 45.0
Expanded Disability Status Scale score 3.9 2.1 0.0 8.0
Lesion volume (mL) 11.5 13.1 0.0 77.0

BWH
Age (years) 50.4 9.9 30.4 69.9
Disease duration (years) 14.5 4.6 3.8 21.3
Expanded Disability Status Scale score 2.3 1.6 0.0 7.0
Lesion volume (mL) 13.6 12.8 0.6 52.0
Timed 25-ft walk (seconds) 11.5 6.9 1.0 25.0

%

JHH
Female 73
Male 27
Clinically isolated syndrome 1
Primary progressive MS 10
Relapsing-remitting MS 64
Secondary progressive MS 26

BWH
Female 70
Male 30
Relapsing-remitting MS 80
Secondary progressive MS 20

were given independently, with no discussion by raters occurring during the rating process.

3.3. Results

3.3.1. Demographics

JHH and BWH participant demographics are included in Table 3.1. In the JHH data, disease du-

ration was defined as years since diagnosis and participants were examined by a neurologist to

assess Expanded Disability Status Scale (EDSS) score. In the BWH data, disease duration was

defined as years since first symptoms. In order to assess the level of physical ability and am-

bulatory function in the BWH data, an MS neurologist examined patients to evaluate Expanded

Disability Status Scale (EDSS) and timed 25-foot walk (T25FW) (in seconds).

37



3.3.2. Volumetric bias assessment

Using Bland-Altman visualization, we compare automatic and manual volumes in addition to the

partial volume in Figure 3.3. Subject-level volumes were obtained by averaging each subject’s

measurement for all split-sample experiments in which it was allocated to the testing set. The JHH

data volumeGroup estimate exhibits systematic bias, evident in Figure 3.3, for volumes exceeding

20 mL. Visually, we observed a moderate inverse relationship in these subjects. This indicates

that volumeGroup under-estimates volumeManual in subjects with larger lesion loads with increas-

ing magnitude. The JHH data volumePartial estimate also exhibits systematic bias using Figure

3.3. For subjects with small lesion load volumePartial over-estimates volumeManual whereas for

subjects with moderate and large lesion load volumePartial under-estimates volumeManual. Unlike

the Group Bland-Altman plot, the TAPAS plot does not exhibit obvious patterns of systematic bias.

The cluster of points that begins to negatively deviate from 0 in the Group plot is still centered ran-

domly around 0 in the TAPAS plot. Additionally, the mean and standard deviation for the differences

are smaller using volumeTAPAS compared to volumeGroup and volumepartial. There are four points

that lie outside the limits of agreement in both thresholding procedures, but in the TAPAS plot these

are closer to 0.

The BWH Bland-Altman plots are nearly identical and almost indistinguishable when comparing the

group threshold procedure with the TAPAS outputs. There does not appear to be a systematic bias

in either volumeGroup or volumeTAPAS estimates since points are randomly scattered around 0 in

the positive and negative directions. This exemplifies TAPAS’s propensity to conserve unbiased

estimates when systematic bias is absent. The Bland-Altman plot calculated using volumePartial

shows all points lie within the limits of agreement but they are not randomly scattered around the

mean difference. For small lesion loads, the points cluster above the mean line and show a negative

association as in the JHH data.

3.3.3. Absolute error assessment

Scatter plots and their corresponding predicted linear models are presented in Figure 3.4 to com-

pare AETAPAS , and AEGroup, and AEPartial with volumeManual. The JHH data plot shows smaller

AE estimates associated with volumeTAPAS compared to volumeGroup and volumePartial. This is

highlighted by the negative shift in AETAPAS points throughout as well as a smaller slope estimate
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Figure 3.3: Bland-Altman plots comparing volumeManual with volumes obtained using automatic
thresholding approaches (volumeGroup, volumeTAPAS , and volumePartial) are shown. The mean
of the difference in volume is presented in blue and the mean plus and minus the standard error
is shown in red. Each point represents a unique subject. Subject-specific points were obtained by
averaging results across test set subjects in each split-sample fold.
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Figure 3.4: Scatter plots with fitted linear models are presented for the subject-level average abso-
lute error (ŷ) on manual volume (x) in mL. Fitted equations are given in the top left corner.

(provided in the top left corner of the figure). The JHH data points with volumeManual larger than

70 mL are influential for both the group, TAPAS, and partial fitted models. However, removing these

points, volumeTAPAS still shows larger reductions in AE compared to volumeGroup. The coefficient

associated with AEGroup is 0.26 while the coefficient associated with AETAPAS is 0.16. This means

that for a 1 mL increase in volumeManual, the predicted change in AE is 0.1 mL less when using

TAPAS compared to the group thresholding procedure. The reduction in AE associated with using

TAPAS over the group thresholding procedure is on the order of magnitude of average differences

found in clinical trial evaluations of MS therapies (see, for example, Barkhof et al., 2007). In the

BWH data, all values are remarkably similar across TAPAS and the group thresholding approach.

The partial volume leads to notably larger predicted absolute error. The results in Figure 3.3 and

Figure 3.4 are consistent and indicate that TAPAS performs at least as well as or better than the

group thresholding procedure in terms of reducing bias in lesion volume estimates.

Comparing the two thresholding approaches more rigorously we found the average AETAPAS

across subjects in the testing sets and iterations in the JHH data is 2.09 mL compared to 2.62

mL from AEGroup and 3.29 mL from AEPartial. In the BWH data, average AETAPAS and AEGroup

were both found to be 2.62 mL and average AEPartial was 3.17 mL. TAPAS yields equal or reduced

average AE. The average DSCTAPAS across subjects in the testing sets and iterations in the JHH

data is 0.61 compared to 0.6 from DSCGroup. In the BWH data, the average DSCTAPAS is 0.67
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Figure 3.5: Violin plots of p-values from paired t-tests to compare subject-level absolute error (AE)
and Sorensen-Dice coefficient (DSC) in each test set are presented. The mean for each statistic
and data set is presented as points within each violin plot and the black lines extend the mean by
the standard deviation. Labels below represent the number of significant p-values favoring TAPAS
performance measures. Labels above represent the number of significant p-values favoring group
thresholding performance. The dashed horizontal blue line highlights the α = 0.05 cutoff.

while average DSCGroup is 0.66. TAPAS yields equal or superior average DSC. We do not re-

port DSCPartial as the partial volume is calculated from the probability maps rather than the lesion

segmentation masks and binary segmentations are required to calculate DSC.

To examine this statistically, we employed one-sided paired t-tests to evaluate AE and DSC from

TAPAS compared with those obtained from the group thresholding procedure. Figure 3.5 shows

violin plots of p-values from both sets of tests for the two data sets. In the JHH data more than

half of the split-sample experiments resulted in p-values below the α = 0.05 for AE and DSC with

no statistically significant results favoring the group thresholding procedure. This indicates superior

performance using TAPAS compared to the group thresholding procedure. The BWH data was

more uniform with approximately equal statistically significant results favoring TAPAS and the group

thresholding procedure.
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Table 3.2: Subject-specific volume estimates, volumeManual (Manual), volumeTAPAS (TAPAS),
volumeGroup (Group), and volumePartial (Partial), were compared with clinical covariates available
from the data collected at the Johns Hopkins Hospital (JHH) and the Brigham and Women’s Hospi-
tal (BWH) and are represented in this table. Spearman’s correlation coefficient (ρ̂) was obtained in
the testing set for each iteration and averaged across folds. Clinical variables included Expanded
Disability Status Scale (EDSS) score, disease duration in years, and timed 25-ft walk (T25FW) in
seconds.

Estimates for ρ̂

Partial Group TAPAS Manual

JHH
EDSS 0.32 0.34 0.34 0.29
Disease duration 0.37 0.39 0.39 0.39

BWH
EDSS 0.42 0.43 0.43 0.45
Disease duration 0.31 0.32 0.32 0.29
T25FW 0.02 0.02 0.02 0.03

3.3.4. Correlation analysis

We assessed the relationship between volumeTAPAS , volumeGroup, volumePartial, and

volumeManual with various clinical variables. These results are provided in Table 3.2. All correla-

tions found are modest but align with previously published literature (Barkhof, 1999; Stankiewicz

et al., 2011; Tauhid et al., 2014; Valcarcel et al., 2018a). In the JHH data, ρ̂TAPAS and ρ̂Group are

indistinguishable from each other and slightly larger than ρ̂Partial ρ̂Manual. Similarly, the BWH data

show identical ρ̂TAPAS and ρ̂Group nearly equivalent to ρ̂Partial and ρ̂Manual. In terms of phenotypic

associations volumeTAPAS yielded similar correlation estimates as volumeGroup, volumePartial,

and volumeManual.

3.3.5. Threshold evaluation

In Figure 3.6 we present scatter plots of the thresholds predicted in the testing set from both TAPAS

and the group threshold procedure. There are a few notable differences between the threshold scat-

ter plots produced from TAPAS and those produced by the group thresholding procedure. In both

data sets the subject-specific thresholds have a much wider range than the group thresholds. In the

JHH data, the distribution shape is bi-modal for the subject-specific thresholds but uni-modal for the

group thresholds. In the BWH data, the distribution shape is similar between the two thresholding

approaches.
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Figure 3.6: Scatter plots of the subject-specific threshold τ̂i (TAPAS) and τ̂Group (group thresholding
procedure) on cross-validation number are presented with marginal histograms for both data sets
in the first two columns. The third column presents scatterplots of the average subject-specific
thresholds from TAPAS and the manually delineated lesion volume.

We also present average subject-specific thresholds plotted against the manual volumes in mL. The

JHH data show that as manual volume increases the average TAPAS threshold also decreases. The

thresholds plateau after manual volume of 20 mL and similar thresholds are detected for all lesion

loads greater than 20 mL. In the BWH data we see the points are randomly scattered and there is

no pattern between average subject-specific threshold and manual volume in mL.

3.3.6. Qualitative results

We present segmentations from the TAPAS and the group threshold approach as well as manual

delineations in Figure 3.7. This figure shows that TAPAS and the group thresholding procedure

generally agree with the manual segmentation. Some tissue was manually segmented and not

detected by either thresholding algorithm. The major differences between all the methods are

found at the boundaries of lesions, which are known to be difficult to discern for both automatic and

manual approaches. Overall, the automatic segmentation algorithm paired with either thresholding

approach is able to detect the majority of lesional space with few false positives.
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Figure 3.7: T2 hyperintense lesion segmentations from an example axial slice are displayed. The
colors represent the different individual or overlapping segmentations obtained from manual, TAPAS
threshold, and group threshold masks. The majority of segmented area was in agreement among
all lesion masks (green). Both the group thresholding approach and TAPAS missed some area that
was manually segmented (red). There was a small area where only TAPAS and manual segmen-
tations agreed (yellow), but almost no area where only the group threshold agreed with the manual
segmentation (fuchsia).

3.3.7. Rater study

The mean rating for TAPAS segmentations for each rater was 1.87 (SD=0.81), 2.72 (SD=0.94),

and 3.10 (SD=1.14). The mean rating for the group thresholding approach for each rater was

1.92 (SD=0.81), 2.66 (SD=0.97), and 3.10 (SD=1.14). The mean rating across the three raters

for both TAPAS and the group thresholding approaches was 2.56 (SD = 1.10). Raters evaluated

how well each of the two segmentations depicted the extent of the white matter abnormality in

the images displayed. An overall average score between 2 and 3 indicated therefore that the

segmentations produced from either method are between fair and good quality. The three raters

responded favorably to the segmentations.

77% of the studies resulted in the same rating between TAPAS and the group threshold segmen-

tations. 12% of the studies resulted in raters ranking the TAPAS segmentation more favorably than

the group threshold segmentation whereas 11% of the studies resulted in raters favoring group

threshold segmentation.”

Though both thresholding approaches were trained using manual segmentations, the gold stan-

dard approach, we and our expert raters believe the resulting segmentations from the automatic

approaches do in fact capture the extent of white matter abnormality in the brain fairly well.
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3.3.8. Computation time

The TAPAS thresholding procedure is easily implemented using the rtapas R package available

with documentation on GitHub www.github.com/avalcarcel9/rtapas and Neuroconductor https:

//neuroconductor.org/package/rtapas. The model is supervised and must be trained. All

benchmarking was done on a 2017 MacBook Pro with 3.1 GHz Intel Core i5 and 16GB of memory

using a single core. To benchmark, a single subject with voxel size 1 mm3 was used. Before train-

ing the TAPAS model, the training data must be generated and takes approximately 20 minutes per

subject. This process is parallelizeable through the package to decrease computation time. The

model itself takes less than a second to train. After a model has been fit, a single test subject’s

prediction data and segmentation mask can be generated in about 30 seconds.

3.4. Discussion

Most automatic segmentation algorithms produce continuous maps of lesion likelihood, which are

subsequently thresholded to create binary lesion segmentation masks. While a number of au-

tomatic approaches exist for lesion segmentation, there are few automatic algorithms available

for threshold selection. Thresholds are commonly chosen using cross-validation procedures con-

ducted at the group level, or arbitrarily through subjective human input. This introduces variability

and biases in automatic segmentation results. Furthermore, thresholding approaches often apply

a single common threshold value to all subjects’ probability maps. This lack of subject specificity

may lead to inaccuracy in lesion segmentation masks, especially in subjects with the smallest and

largest lesion loads.

This study sought to address these issues by introducing a supervised fully automated algorithm for

subject-specific threshold prediction that also reduces volumetric bias if present. The TAPAS proce-

dure is easily implemented and performs well on data acquired with different scanning protocols or

pre-processed with different pipelines. We validated TAPAS in two unique data sets from different

imaging centers using 3T MRI scanners from different vendors. In section A.2 of the Appendix we

applied a different preprocessing pipeline to the JHH data and found TAPAS outperforms the group

thresholding procedure even under varying processing.

The TAPAS procedure is a supervised fully automated thresholding approach that determines a
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subject-specific threshold to apply to continuous maps (including predicted probability maps) for

automatic lesion segmentation. TAPAS volume estimates are accurate and reduce systematic bi-

ases associated with differential total lesion load when present. In the JHH data, we observed such

a bias using the MIMoSA algorithm, which was mitigated using TAPAS.

The BWH data used a consensus approach with two trained raters to manually segment lesions

consulting a third rater in the event of a disagreement. We believe this approach reduces intra- and

inter-rater variability normally present with a single rater and allows for a closer approximation of the

ground truth, and, thus, better training of automatic approaches. The Bland-Altman plots in these

data indicate unbiased estimation using a group threshold or TAPAS. In this study, we showed that

without systematic biases TAPAS preserves the unbiased volumetric estimation of the automated

segmentation technique.

In clinical trial evaluations of therapeutic efficacy, associations between clinical variables and lesion

volume are of primary interest. This study shows that TAPAS and group threshold volumes resulted

in similar correlations to clinical variables as the manual volume. Therefore, the automatic seg-

mentations produced after thresholding, using either TAPAS or group thresholding, should be as

sensitive to image-phenotype correlations as manual measures. Correlations were thus estimated

to compare volumeManual, volumeTAPAS , and volumeGroup with clinically relevant variables. The

results indicate the correlations between respective volumes and clinical variables are all approx-

imately equal. Agreement across the thresholding methods with manual measures advocates for

the use of TAPAS to reduce cost and time while providing a subject-specific threshold.

Currently, available assessments of lesion volume are weakly correlated with clinical outcomes.

This may be in part due to discarding voxels with low estimated probability of containing lesion,

mostly around the edges of lesions, that may capture signal. The partial volume computed in this

analysis was an attempt to include these voxels in the calculation of volume in the hopes of reducing

biases and providing a metric that correlates better with clinical assessments. Unfortunately, these

partial volumes did not yield stronger correlations with clinical outcomes and showed more bias

compared to volumes computed with a threshold. These methods have not been assessed in

clinical trials to date, and additional studies and methodological innovations are warranted.

TAPAS is a post-hoc subject-specific threshold detection algorithm built to reduce volumetric bias
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associated with automatic segmentation procedures. In this study, we optimized TAPAS using DSC

in this Chapter and AE in section A.1 of the Appendix provided. Both optimizations favor TAPAS

over group thresholding with DSC having more dramatic improvements than AE. Though DSC

can be biased or under-estimate true accuracy in subjects with low lesion load, we find it performs

well compared to AE. Automatic approaches are constantly being built and improved upon to yield

more accurate and robust methods. TAPAS allows for improvement upon even the most accurate

and robust automatic segmentation procedures with no observed addition of error. Beyond MS or

MRI, this methodology can be used for automatic segmentation of other tissues or body parts using

different imaging types after proper validation.

We initially ran all cross-validation settings with a threshold grid ranging from 0% to 100% in 1%

increments. In certain settings, these increments were too large which led to sub-optimal TAPAS

models. We refined threshold grids in these settings and found improved performance. Due to the

iterated nature of cross-validations, we chose to use one threshold grid for the entire set of cross-

validation folds (100). In practice, data will likely consist of a training and testing set. We suggest

applying the original threshold grid, 0% to 100% by 1% increments, and evaluating model fit through

subject-specific threshold selection in the training and testing data in order to inform the selection of

a finer grid. The grid should be updated until results are stable. We believe this will lead to optimal

performance.

There are several notable limitations to the proposed algorithm. First, the method must be used

in conjunction with continuous maps of likelihood of lesion, so investigators must use automatic

approaches that generate these maps for adaptive thresholding. Second, since the TAPAS model

fits a generalized additive model, training data sets with small sample size, uniform lesion load, or

those dissimilar from testing data may result in poor model fit or inappropriate threshold estimation.

For example, when we applied TAPAS to the 2015 Longitudinal Lesion Challenge data we found

poor model fit associated with fitting a generalized additive model to data that only included 5 unique

subjects for training. To apply TAPAS to longitudinally acquired data, such as those presented in the

2015 segmentation challenge, a sufficiently large sample of subjects with variable lesional volume

is required.

Atrophy of the brain and spinal cord are key measures of disease progression in MS and may be

more closely associated with clinical status than lesion volume (Bakshi et al., 2008; Fisher et al.,
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2008; Fisniku et al., 2008; Keshavan et al., 2016; Sanfilipo et al., 2006). It is important to note

that TAPAS is easily extended or applied to settings in which brain volumes are estimated. Many

segmentation methods for structures other than lesions, for example the thalamus which is of key

interest in MS presently (Fadda et al., 2019; Neema et al., 2009; Oh et al., 2019), also use thresh-

olding to determine binary segmentations and volumes. Future work will include assessments of

whether biases such as those studied in this paper exist for atrophy assessments and techniques

for their mitigation.

Future developments will include specialized methods for the analysis of longitudinal lesion volu-

metrics. Additionally, to investigate the repeatability of this study and stability of the algorithm we

will implement the method on scan-rescan data to evaluate reliability of the subject-specific prob-

ability and lesion volume estimation. It is possible that the underlying method may benefit from

dynamic thresholds for smaller lesions and larger lesions even within the same subject. That is,

we may need to move beyond even a subject-specific threshold since, when a subject has larger

lesions, the error associated with those lesions contributes more to the DSC metric than the same

relative error associated with smaller lesions. There may thus be a tendency of TAPAS to better

segment larger lesions at the cost of doing worse on smaller lesions.
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CHAPTER 4

MEMORY EFFICIENT COMPUTATIONAL TOOLS FOR IMAGE ANALYSIS IN R

4.1. Introduction

Common MRI acquisition protocols include imaging at 1.5 tesla (1.5T) and 3 tesla (3T). A typical

image at 1.5T and 3T consumes approximately 10 and 85 megabytes, respectively, in the R envi-

ronment. Unfortunately, R is not inherently well suited for big data sets. Medical images, depending

on the image dimension and voxel size, can require extensive memory resources (Kang, Caffo, and

Liu, 2016). Carrying out image analysis as sample size or number of scans increases becomes

challenging even on well-equipped hardware. A standard 2020 MacBook Pro comes with 16 giga-

bytes of memory. This powerful laptop can handle approximately 1600 images acquired with a voxel

resolution of 2mm compared to only 190 images acquired at 1mm. High-performance computing

clusters offer more memory than a laptop but may still be insufficient for image analysis of studies

with large sample size and multi-modal data. Other computing languages such as C/C++ or Fortran

allow for fast and memory-efficient operations on large data. Unfortunately, these languages lack

flexibility, are not well-suited for interactive data exploration, and cannot access R’s rich package

environment required for image analysis.

Further, recent advancement of 7 tesla (7T) imaging has led to increased installation of 7T MRI

scanners around the world for both clinical and research applications (Rutland et al., 2020). While

still new, 7T scanners are the future of MRI. Imaging on 7T produces high contrast images with

exceptional resolution and detail, but the increased precision comes at the cost of larger size and

memory. Imaging at 7T will bring resolutions as high as 0.65mm isotropic to standard imaging

studies. Table 4.1 provides a comparison of 3D MRI information for images at varying resolutions

acquired at 1.5T, 3T, and 7T. This table presents data from a typical image acquired on respective

MRI scanners. Images acquired at 7T with 0.65 mm voxel sizes consume substantially more mem-

ory both on on-disk and in R compared to 1.5T and 3T. On the same 2020 MacBook Pro with 16

gigabytes of memory only approximately 70 7T images can be loaded into memory.

Due to the high memory consumption of images in R, it becomes difficult to perform simple oper-

ations voxel-wise across subjects. For example, calculating the median at the voxel-level across
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Table 4.1: 3D MRI information for images at aquired 1.5 tesla (1.5T), 3 tesla (3T), and 7 tesla (7T)
are provided. On-disk size was calculated using compressed images.

1.5T 3T 7T

Pixel Dimension (millimeter) 2 × 2 × 2 1 × 1 × 1 0.65 × 0.65 × 0.65
Image Dimension 94 × 124 × 94 240 × 256 × 176 256 × 312 × 384
On-Disk Image Size (Megabyte) 3 5 20
R Image Size (Megabyte) 10 85 235

1000 images becomes computationally intense since it may not be possible to load all 1000 images

into memory at once depending on the acquisition protocol and computational resources. Acquisi-

tion of MRI images at 1.5T and 3T in both clinical and reseach settings has become more common

and accessible leading to multi-modal imaging studies with large sample sizes. Analyses of data

from these studies face memory problems in R and statistical analysis is difficult. While 7T imaging

is new and scanning on these machines is limited thusfar, the data size is much larger than 1.5T

and 3T. As 7T imaging becomes more commonplace, memory, even in small studies, will quickly

be a concern. Therefore, there is a need for more advanced computational tools for image analysis

in R.

4.2. Materials and methods

The issues associated with limited memory are also faced in the statistical analysis of genomics

data. Bioconductor provides tools for the analysis of genomic data and has existing tools for mem-

ory efficient statistical analysis of large genomic data in R (Gentleman et al., 2004). DelayedArray

is an R package currently hosted on Bioconductor (Pages, Hickey, and Lun, 2020). DelayedArray

allows common array operations on an object without loading it into memory. In order to reduce

memory usage and optimize performance, operations on the object are either delayed or executed

using a block processing mechanism. DelayedMatrixStats is an R package currently hosted

on Bioconductor (Hickey, 2020). DelayedMatrixStats contains functions for statistical calcula-

tions (i.e. row or column median calculation) using DelayedArray efficient block processing on

large matrices while keeping local memory usage low. DelayedMatrixStats builds on both the

DelayedArray and matrixStats packages to allow for high-performing functions operating on rows

and columns of objects of class DelayedMatrix (Bengtsson, 2019). The functions are optimized by

data type and for subsetted calculations such that both memory usage and processing time are
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minimized.

We developed an R package NiftiArray to overcome big data limitations in imaging (Muschelli

and Valcarcel, 2020). The NiftiArray package allows for fast random access of imaging data in

NIfTI format and is compatible with existing software for performing common statistical operations

without loading data objects into memory (Hickey, 2020; Pages, 2020; Pages, Hickey, and Lun,

2020). The package establishes the NiftiArray class, a convenient and memory-efficient array-like

container for on-disk representation of NIfTI images. The NiftiArray class is an extension of the

HDF5Array class and converts NIfTI objects on disk to HDF5 files which allow for block processing

and memory-efficient representations in R (Pages, 2020).

4.3. Results

In R, multi-modal image analysis requires large quantities of memory. Using NiftiArray, images

are represented extremely efficiently such that large numbers of images can be analyzed in R.

Figure 4.1 compares memory requirements in R for a single image that is dimension 182 by 218

by 182 with voxel size 1mm3. Traditional imaging packages used to load data such as neurobase

(Muschelli, 2020) and RNifti (Clayden, Cox, and Jenkinson, 2020) result in images consuming

approximately 60,000 kilobytes of memory. The same image loaded into R using NiftiArray

consumes only 9 kilobytes. Using NiftiArray results in massive memory efficiency gains.

Speed can be as important as memory during analyses. Ideally, software should be both fast and

memory efficient. Time lags due to slow software can cause distraction to the user. Software

function calls running in 0.1 second or less will result in no perceived time lag to a user and thus no

distraction to user thoughts and tasks. Software functions that take 1.0 second will result in a user

observed delay but flow and thought process remain uninterrupted. Software functions running at

10 seconds result in noticeable delay and loss of flow or thought processes (Card, Robertson, and

Mackinlay, 1991; “Response time in man-computer conversational transactions”). When software

functions run beyond 10 seconds the user may lose track of the task at hand. That is, the users may

open Twitter or Instagram and completely lose track of what they were doing. Therefore, function

calls that take no more than 1 second are ideal to minimize lag and maximize user attention spans.

The NiftiArray and RNifti load speeds are both at approximately the 0.1 limit of seamless user
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Figure 4.1: Comparison of the local memory consumption in R of a single image that is dimension
182 by 218 by 182 with voxel size 1mm3. The first two bars (pink and green) load the image into
R using neurobase’s readnii and RNifti’s readNifti. The last column uses the NiftiArray

function from the NiftiArray package. Memory is compared using kilobytes.

flow. The remaining function from neurobase is at the 1 second limit where a users will notice a

lag but not lose their train of thought. The RNifti R wraps code in C++ and is thus extremely fast.

Though coded in R, NiftiArray shows competitive speed with RNifti and results in no perceived

time lag to users with reading speeds at around the 0.1 limit.

4.4. Summary

NiftiArray is an R package that allows for memory efficient analysis of NIfTI images (Muschelli

and Valcarcel, 2020). Memory conservation is not achieved at cost of speed. Since NiftiArray

is compatible with DelayedMatrixStats quick calculations of common simple statistics (i.e. voxel

mean, median, and standard deviation) at the voxel-level are now simple to implement on large

imaging datasets (Hickey, 2020). Users can also create their own user-defined calculations to

compute other voxel-level analyses quickly utilizing delayed operations since NiftiArray is also

compatible with DelayedArray (Pages, Hickey, and Lun, 2020).

A development version of the NiftiArray package is available on GitHub (https://github.com/

muschellij2/NiftiArray). A stable version is available on Neuroconductor

(https://neuroconductor.org/package/NiftiArray). A package website was developed for doc-
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Figure 4.2: Comparison of the time taken to read a single image that is dimension 182 by 218
by 182 with voxel size 1mm3 using the neurobase readnii, RNifti readNifti, and NiftiArray

NiftiArray functions. Speed is compared in seconds for 100 benchmark iterations.

umentation and to host a tutorial. The package website is available through Neuroconductor

(https://neuroconductor.org/help/NiftiArray/).
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CHAPTER 5

APPROACHES FOR MODELING SPATIALLY VARYING ASSOCIATIONS BETWEEN

MULTI-MODAL IMAGES

5.1. Introduction

All methods for imaging the brain and measuring its activity (structural magnetic resonance imag-

ing (MRI), functional MRI, diffusion tensor imaging (DTI), computerized tomography (CT), positron

emission tomography (PET), electroencephalogram (EEG), and more) have both technical and

physiological limitations (Liu et al., 2015a). Multi-modal imaging provides complementary mea-

surements to enhance signal and our understanding of neurobiological processes (Biessmann et

al., 2011). When studied jointly, multi-modal imaging data may improve our understanding of the

brain. Unfortunately, the vast number of imaging studies evaluate data from each modality sepa-

rately (voxel- or region-wise) and do not consider information encoded in the relationships between

imaging types.

There are a number of existing approaches for multi-modal image analysis, many of which rely

on sparsity assumptions and penalization to deal with the massively high dimension of multiple

images. Multivariate pattern analysis (MVPA) can be used to integrate information across a set

of modalities that are predictive of a phenotype using models such as support vector machines

(SVM) (Zhang et al., 2011). MVPA leverages the correlation structure among images in a black

box manner for the purpose of prediction rather than studying correlations among imaging features

directly. Methods such as independent component analysis (ICA) (Calhoun, Liu, and Adali, 2009)

and canonical correlation analysis (CCA) (Correa et al., 2008) can be used to identify common

signals from multi-modal images that may provide insight into the correspondence between different

types of images. However, the common signals may be spatially distributed throughout the brain

and difficult to interpret.

In contrast to high-dimensional predictive models, voxel-wise analyses using the general linear

model are primarily used to study associations between a single image modality and demograph-

ics, clinical phenotypes, or treatment groups. An exception is biological parametric mapping (BPM)
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(Casanova et al., 2007; Yang et al., 2011) which allows for a voxel-wise regression of one image

modality on another as well as covariates of interest. However, BPM relies strictly on across-subject

information at a single location to estimate the local relationship between different imaging modali-

ties. In contrast, our proposed approach leverages both within- and between-subject information to

quantify local relationships between modalities.

In this work, we develop inter-modal coupling (IMCo), a general framework for quantifying how multi-

ple image modalities covary with each other that extends recent work on cortical coupling (Vandekar

et al., 2016). IMCo is a regression-based framework that can be used to provide population- and

subject-level estimates of spatially varying multi-modal image associations. Within-subject IMCo

estimates have been included as features in a competitive automatic segmentation algorithm to

delineate multiple sclerosis lesions (Valcarcel et al., 2018a,b). While IMCo estimates have proven

useful as features in this predictive model setting, we aim to expand the utility of IMCo as a general

framework by providing: 1) valid inference for population-level IMCo parameters and 2) subject-level

IMCo estimates with good statistical properties.

Statistical analysis of spatially correlated data requires methods that can properly account for the

dependence between observations. Two-stage least squares regression, which has been imple-

mented in analyses of local cortical coupling (Vandekar et al., 2016), is an estimation approach

that partitions the between- and within-subject spatial variation. In the first stage, the method es-

timates a linear association for each subject among the correlated observations and then models

the individual-level linear association estimates across subjects in the second stage. Thus, the

first stage analysis is restricted to within-subject modeling and the second stage is restricted to

between- or across-subject modeling.

Modeling within-subject data in the first stage may result in noisy subject-level estimates and unre-

liable variance estimates (Diggle et al., 2002). These issues motivate the use of single-stage es-

timation models such as weighted least squares (WLS) (Linear Models in Statistics), linear mixed

effects (LME) models (Laird and Ware, 1982), or generalized estimating equations (GEE) (Liang

and Zeger, 1986). These models borrow information across subjects while appropriately account-

ing for spatially correlated data within subjects. A primary distinction between these models is

that WLS and LME models are full-likelihood based methods while GEEs rely on partial-likelihood

specification.
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WLS accounts for spatial correlation by attempting to give each data point its proper amount of

influence in the model. WLS estimators are unbiased even when incorrect weights are used. How-

ever, inefficiency and unreliable inference can result from incorrect specification of the weights.

In two-stage analyses, WLS can be used to provide within-subject estimates, but in single-stage,

across-subject estimation, WLS only permits estimation of population-level association parameters.

LME models incorporate both fixed and random effect terms in the linear predictor from which the

conditional mean of the response can be estimated (Laird and Ware, 1982). A LME model relies on

full specification of the likelihood to estimate parameters, and therefore distributional assumptions

are required. In addition to estimating population-level effects, LME models allow for estimation of

subject-specific effects.

GEEs estimate the average response over the population (”population-averaged” effects) rather

than the effect of changing one or more covariates for a given individual (”conditional” effects).

Thus, within-subject estimates cannot be obtained from the GEE approach. The GEE method does

not require full specification of the multivariate distribution of the correlated voxel values but rather

only the first two moments of the distribution. Instead of attempting to correctly estimate the true

within-subject covariance structure, the GEE treats it as a nuisance and relies on specification of

a ”working” correlation structure to use for mean parameter estimation. The working correlation

structure does not need to be specified correctly in order to obtain unbiased estimates of regres-

sion coefficients. However, as the working correlation structure gets further from the population

correlation structure, estimators will become increasingly inefficient (standard errors will be large).

Statistical properties, advantages, and disadvantages of two-stage estimation, WLS, LME models,

and GEE methods have been well documented in longitudinal data analyses. Often the best model

choice depends on the scientific question of interest. In the context of relating multi-modal images

where the spatial correlation is complex and unknown, it is unclear how these models may perform.

To gain insight on the relative performance of these models for multi-modal imaging studies, we

designed and implemented a comprehensive set of Monte Carlo simulations based on real imag-

ing data. We focus primarily on population-level estimation of the association between images,

comparing bias and mean squared error of estimators from multiple model specifications.
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Table 5.1: Demographic information for 831 subjects scanned as part of the Philadelphia Neurode-
velopmental Cohort (PNC). Statistics presented: N (percent); mean (SD, minimum, maximum).

Characteristic N=831
Sex

Male 353 (42%)
Female 478 (58%)

Age (years) 15.6 (3.4, 8.2, 23.0)

5.2. Materials and methods

5.2.1. Subjects

The Philadelphia Neurodevelopmental Cohort (PNC) is a large-scale study of child development

carried out by the University of Pennsylvania and the Center for Applied Genomics at the Chil-

dren’s Hospital of Philadelphia. The PNC consists of rich multi-modal neuroimaging, genetics, and

detailed clinical and cognitive phenotyping (Satterthwaite et al., 2014b, 2016). The PNC includes

9,498 participants ages 8-23 at baseline who underwent thorough cognitive and psychiatric eval-

uation. Of these adolescents, 1,601 underwent multi-modal neuroimaging including T1-weighted

structural neuroimaging, diffusion tensor imaging, perfusion neuroimaging using arterial spin la-

beling, functional imaging tasks of working memory and emotion identification, and resting state

imaging of functional connectivity. All subjects were imaged on a single scanner under the same

imaging protocol. The study design and data are described in detail by Satterthwaite et al., 2016

and Satterthwaite et al., 2014b.

In the current study, we exclude subjects who were taking psychoactive medication, had any med-

ical problems that could impact brain function, had a history of psychiatric hospitalization, or had

any abnormalities of brain structure or distortions of brain anatomy as determined by review of the

T1-weighted image by a neuroradiologist. Participants with unusable T1-weighted images are also

excluded because the T1-weighted image is necessary for registration. Participants with poor qual-

ity images are also excluded based on modality-specific quality assurance. These exclusions are

summarized in Figure 5.1. The final sub-sample for our analysis consists of 831 adolescents (478

females) aged 8–23 (mean = 15.6, sd = 3.4) at time of first scan. Demographics are included in

Table 5.1.

57



Figure 5.1: Exclusion criteria for the current analysis of PNC data. *Indicates no medical co-
morbidities, no abnormal brain structure on radiology read, not currently using psychoactive or
psychiatric medications, and no inpatient hospitalizations.

5.2.2. Image acquisition and preprocessing

In this work, we apply our proposed methodology to study spatially varying relationships between

local functional connectivity quantified by Amplitude of Low Frequency Fluctuation (ALFF) images

and cerebral blood flow (CBF). ALFF quantifies the amplitude of low-frequency oscillations over time

and space from resting-state BOLD scans to determine correlated activity between brain regions.

We choose ALFF rather than other resting-state functional connectivity measures since prior work

shows abnormal resting-state low-frequency fluctuations are associated with neurodevelopment

and psychopathology (Bing et al., 2013; Hoptman et al., 2010; Liu et al., 2014; Liu et al., 2018;

Wang et al., 2019; Zang et al., 2007; Zhou et al., 2015).

Imaging data were acquired on a single Siemens TIM Trio 3 tesla scanner with a 32-channel head

coil using identical sequencing protocol (Satterthwaite et al., 2014b). Image acquisition, processing,

and quality assurance for the full set of multi-modal imaging data collected as part of the PNC have

been previously described (Satterthwaite et al., 2014b, 2016).

CBF was calculated from brain perfusion imaging using a custom written pseudo-continuous arte-

rial spin labeling (pCASL) sequence (Satterthwaite et al., 2014a,b; Wu et al., 2007). ALFF was

computed from resting-state fMRI imaging as the sum over frequency bins in the low-frequency
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Figure 5.2: Axial slices of ALFF and CBF images from a randomly selected subject from the PNC.
The brain mask includes voxels within the gray matter (minimum 10% probability according to an
atlas prior) that had adequate image coverage for both resting-state functional MRI and ASL.

(0.01-0.08) band of the power spectrum (Kaczkurkin et al., 2019; Zang et al., 2007). Figure 5.2

displays an axial slice of volumetric ALFF and CBF imaging modalities from a randomly selected

subject from the PNC.

5.2.3. Inter-modal coupling

Inter-modal coupling is our proposed general framework for quantifying the relationship between

two imaging modalities, denoted by X and Y , and mapping how the relationship varies spatially

across the brain. We assume all images have been registered to a common template space. Let

v0 denote a specific voxel in the brain, where v0 = 1, ..., V indexes all voxels in the brain mask.

Given a particular location in the brain, we regress the outcome image modality Y on the remaining

modality X using data from all voxels in a local neighborhood of the target voxel v0. We repeat

this procedure at all target voxels, v0 = 1, ..., V . We call the spatially varying relationship between

two imaging modalities inter-modal coupling (IMCo), which can be estimated at the subject (within-

subject) or population (across-subject) level (Valcarcel et al., 2018a,b; Vandekar et al., 2016). With

this general set up, we now specify several models that could be used for the regressions at each

target voxel.
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Figure 5.3: Schema of the within-subject (row 1) and across-subject (row 2) inter-modal coupling
(IMCo) frameworks. We let m denote voxels within the neighborhood of the target voxel v0. Within-
subject IMCo is implemented in two stages using weighted least squares regression (WLS) to
produce IMCo maps which are then regressed across subject on covariates of interest. Across-
subject coupling is implemented in one stage using generalized estimating equations (GEE), linear
mixed effects models (LME), or population-level WLS regression.

5.2.4. Within-subject WLS

The within-subject (WS) version of IMCo first regresses image modality Y on X at the individual

subject level. For subject i, let N(v0) denote a neighborhood of voxels centered at the target

voxel v0 that includes v0 itself. We index voxels in N(v0) as vj , j = 1, ..., J . Thus, |N(v0)| = J .

Let Xi(v0) denote a design matrix that includes a column of 1’s for the intercept and subject i’s

vectorized neighborhood of voxels surrounding v0 from the independent imaging modality X. Let

Y i(v0) denote subject i’s vectorized neighborhood of voxels surrounding v0 from the dependent

imaging modality Y . We use one modeling approach to fit the within-subject framework.

Assume the following underlying true model for the data from subject i, neighborhood N(v0):

Y i(v0) = Xi(v0)βIMCo
i (v0) + εi(v0), (5.1)

where we assume E[εi(v0)] = 0 (dim(εi) = J × 1) and V ar(εi(v0)) = Σi(v0) (dim(Σi) = J × J).

In order to reduce the parameter space, in this working model, we assume a common covariance
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structure within neighborhoodN(v0) for all subjects i and at all voxels v0 in the brain mask. That is,

we assume V ar(εi(v0)) = Σ for all i and v0. The IMCo parameter vector βIMCo
i (v0) consists of an

intercept and slope. The within-subject IMCo framework seeks estimated intercept and slope brain

maps for each subject (henceforth referred to as IMCo maps).

To fit model (5.1), we use weighted least squares (WLS), where the weights depend on the neigh-

boring voxels’ distance from the central voxel. Let d(v0, vj) denote a measure of distance from voxel

vj ∈ N(v0) to v0. We use Euclidean distance for d(v0, vj) but other distance measures could be

specified. We then assign weights according to an isotropic Gaussian kernel,

wj(v0) = exp
{
− d(v0, vj)

2

2σ2

}
, (5.2)

where the parameter σ determines the smoothness of the estimated IMCo measures across the

brain. We specify σ based on the full-width half-maximum (FWHM) parameter of a Gaussian distri-

bution, with FWHM units measured in millimeters. A larger FWHM specification results in a larger

neighborhood size and smoother IMCo maps since σ grows with the FWHM value. We define

W = diag(w(v0)) where w(v0) is a J × 1 vector of weights and all off-diagonal elements in W are

equal to 0. Then, W is used as the weight matrix in a standard weighted least squares fit.

Population-level analyses can proceed in a second modeling step using subject-level IMCo maps.

For example, it might be of interest to test whether the relationship between image modalities differs

by sex or is associated with age. We refer to the estimation of subject-level IMCo parameters as

stage 1 modeling. In stage 2 modeling, we regress the individual IMCo maps (β̂IMCo
i0 or β̂IMCo

i1 )

from the stage 1 modeling on covariates of interest using a voxel-wise analysis.

5.2.5. Across-subject modeling

The across-subject (AS) modeling framework regresses image modality Y on X using local neigh-

borhoods as defined in the within-subject approach by stacking observations in neighborhood

N(v0) across subjects i = 1, ..., n.

We propose three models for the across-subject IMCo framework, which we will compare using

simulated data:
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1. weighted least squares using across-subject estimation (WLS-AS),

2. generalized estimating equations (GEE), and

3. linear mixed effects models (LME).

5.2.6. Across-subject WLS

We assume the following model:

Y i(v0) = Xi(v0)βIMCo(v0) + εi(v0). (5.3)

Notice, in Equation (5.1) the parameter vector βi(v0) is subject-specific, whereas in Model (5.3)

β(v0) is a population-level parameter vector that represents the expected relationship between

image modalities. The assumptions on the errors and covariance structure are the same as in

the WLS-WS model in Equation (5.1). We fit Model (5.3) using weighted least squares, stacking

the vectors Y i(v0) and design matrices Xi(v0) from each subject. Weights for each subject’s

observations are assigned in the same way as WLS-WS.

5.2.7. LME

Linear mixed effects models incorporate both fixed and random effects in a linear predictor from

which the conditional mean of the response can be estimated (Laird and Ware, 1982). A fixed

effect is a parameter that does not vary. In contrast, random effects are parameters that are them-

selves random variables. LME relies on specification of the full likelihood to estimate parameters.

Therefore, distributional assumptions are required.

We assume the following model:

Y i(v0) = Xi(v0)β(v0) + Zi(v0)bi(v0) + εi(v0). (5.4)

The design matrix for the random effects, Zi(v0), is an n× k matrix. We use bi(v0) to denote the k

random effects where bi(v0) ∼ N(0, ψ(v0)) and ψ(v0) is the k× k covariance matrix for the random

effects.
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The design matrix for the fixed effects Xi(v0) and vector of fixed effects, β(v0), are defined in the

same way as those in Equations (5.3) and (5.9). We use εi(v0) to denote the error associated

with the fixed effects where εi(v0) ∼ N(0, σ2Λi(v0)) and σ2Λi(v0) is the n × n covariance matrix

for the errors associated with subject i. More concisely, the assumptions surrounding the model in

Equation (5.4) can be written as:

bi
εi

 ∼ N(
0
0

 ,
ψ 0

0 σ2Λi

). (5.5)

In order to make the conditional nature of the LME model obvious we re-write (5.5) as a two level

hierarchical model:

Y i|bi ∼ N(Xiβ + Zibi, σ
2Λi), (5.6)

and

bi ∼ N(0, σ2Λi). (5.7)

5.2.8. GEE

Assume E[Y i(v0)] = µi(v0) where µi(v0) (dim(µi(v0)) = J × 1) for subject i as the mean vector.

We assume a marginal model to relate the mean response vector and the covariates:

g(µi(v0)) = Xi(v0)β(v0), (5.8)

where g is a known link function. The estimating equation then depends on the regression param-

eters β(v0), and variance structure, Vi(v0) (dim(Vi(v0)) = J × J), via:

U(β(v0)) =

N∑
i=1

∂µi(v0)

∂β(v0)
V −1i (v0){Y i(v0)− µi(β(v0))}. (5.9)
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5.2.9. Simulation

In this section we evaluate the performance of the IMCo modeling approaches using simulations.

MRI data sets are large and characterized by complex dependence structures that reflect the brain’s

anatomy and neurophysiology. In order to incorporate the sophisticated spatial structure of neu-

roimaging data, we first create a synthetic outcome imaging modality, denoted as Y ∗, from the CBF

images collected as part of the PNC. We induce additional known spatial correlation and depen-

dence in order to evaluate our methods with respect to these parameters.

We simulate data using the following model:

Y ∗i (v0) =β0 + β1 × CBFi(v0) + β2 × CBFi(v0)× I(GM(v0) = 1)+

β3 × Sexi + β4 × Sexi × CBFi(v0) + b0i + qi(v0) + εi(v0),

(5.10)

where b0i ∼ N(0, σ2
b ) and εi(v0) ∼ N(0, σ2

ε ). We let I(GM(v0) = 1) denote an indicator variable

for whether a voxel is in the gray matter. This allows for a different effect of CBF in gray matter

compared to white matter. In order to induce an exchangeable correlation structure in portions of

the brain, we first split the brain into quadrants. Each quadrant is assigned a quadrant ID from 1 to 4.

All the voxels in each respective quadrant are then simulated from a mean zero normal distribution

with the standard deviation assigned as the quadrant ID. More formally, qi(v0) ∼ N(0, σ2
Q) where

Q ranges from 1 to 4. Voxels within a quadrant will have exchangeable correlation structure since

they are generated from the same distribution.

In an effort to reduce computation time and conserve memory, we select a set of adjacent axial

slices to decrease the total number of voxels where we need to estimate IMCo parameters. We

use axial slices 46 to 52 from the CBF images in the simulation. Analyses are carried out in a brain

mask created by intersecting pCASL and resting-state fMRI masks. Additionally, we do not run

IMCo in neighborhoods that are missing more than 50% of voxels.

To assess how the quality of IMCo estimates vary with sample size, we run the simulation with

n = 30 and n = 100. We sample n CBF subject images randomly from the available 831 PNC

participants in each iteration of the simulation. We simulate Y ∗ for each subject from the model in

Equation (5.10) using the n randomly sampled CBF images. This process is repeated for k = 100
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Figure 5.4: Axial slices of simulation parameters are displayed. Colors are arbitrarly chosen to
emphasize whether the parameter is assigned at the voxel or image level.

Term Parameter Value
Sample size n 30, 100

Number of Iterations k 100
Intercept β0 222.26
CBF (v0) β1 2.58

CBF × I(GM = 1) β2 -1.73
Sexi β3 46.3

CBF × Sexi β4 -0.03
εi(v0) ∼ N(0, σ2

ε ) σ2
ε 81

b0i ∼ N(0, σ2
b ) σ2

b 466489
qi(v0) ∼ N(0, σ2

1) Quadrant 1 σ2
1 1

qi(v0) ∼ N(0, σ2
1) Quadrant 2 σ2

2 4
qi(v0) ∼ N(0, σ2

3) Quadrant 3 σ2
3 9

qi(v0) ∼ N(0, σ2
4) Quadrant 4 σ2

4 16

Table 5.2: Parameter values assigned to generate simulation data.

Monte Carlo iterations. To inform realistic parameters values for Model (5.10), we ran an exploratory

analysis using all 831 PNC subjects’ ALFF and CBF images. We regressed ALFF on CBF, sex, and

a CBF by sex interaction using a linear mixed effects model with a random intercept. All simulation

parameters and assigned values are provided in Table 5.2.

After generating Y ∗ for n subjects, we fit the following IMCo models:

1. GEE with an exchangeable working correlation structure (GEE-Exch),
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2. GEE with an independent working correlation structure (GEE-Ind),

3. Linear mixed effects model with a random intercept (LME-RI),

4. Linear mixed effects model with a random slope and intercept (LME-RSI),

5. Weighted least squares across-subject approach (WLS-AS), and

6. Weighted least squares within-subject approach (WLS-WS).

It is important to note that the LME-RI model is correctly specified based on the data generating

model shown in (5.10). The GEE-Exch model is also expected to perform well as the correlation

structure and model specifications are correct. Since the WLS-WS approach uses a two stage

model fitting framework, the results from the second stage analysis where we regress sex on the

IMCo slope maps across subjects at the voxel-level are only comparable to the CBF by Sex inter-

action term in the other models. We are unable to estimate the other parameters in this model.

Only the LME-RI, LME-RSI, and WLS-WS models are capable of estimating subject-specific pa-

rameters. The true model in Equation (5.10) includes a subject-specific intercept b0i. We calculate

bias and MSE for the subject-specific intercept estimate for these models only.

To assess the simulation performance after models are fit, we calculate voxel-level bias and mean

square error (MSE) across simulation iterations. We calculate average bias and MSE in four brain

regions: full brain, gray matter only, white matter only, and locations proximal to where the white and

gray matter IMCo neighborhoods overlap. We present results for white and gray matter separately

as the true underlying model has distinct effects in white and gray matter. Furthermore, as previous

IMCo studies have shown artifacts in boundary regions (Vandekar et al., 2016), it is of interest to

assess model performance in neighborhoods at the boundary of white and gray matter.

To carry out these simulations we use tools built in Chapter 4.
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5.3. Results

5.3.1. Bias

We present overall bias estimates from the simulation setting with n = 30 in Table 5.3. We visualize

these results in Figure 5.5.

To better understand model accuracy in each tissue class and at the boundary of tissue classes, we

compare bias across the modeling approaches in each brain region. The average bias is generally

similar for full brain, boundary, white, and gray matter regions. In general, at the boundary of white

and gray matter where neighborhoods include voxels from both tissue classes, we do not observe

larger biases. There are two notable exceptions. The CBF parameter estimates show larger biases

across all models in the brain white matter. Additionally, the WLS-WS approach shows increases

in bias at the boundary white and gray matter.

We compare parameter bias for each model to assess overall accuracy. The LME-RI model has the

minimum bias across all parameter estimates, with the exception of CBF where the WLS-AS model

yields the smallest bias. Results from the LME-RSI and GEE-Exch models are similar and show

bias equal to or only slightly elevated compared to the LME-RI model. With a sample size of only

30, the GEE-Ind model results in larger biases than the LME-RI, LME-RSI, and GEE-Exch models.

We are only able to compare bias from the WLS-WS model to the other models for the CBF by sex

interaction term. While the WLS-WS model yields larger biases compared to the LME-RI, LME-RSI,

and GEE-Exch models, the bias is smaller than both GEE-Ind and WLS-AS models. The WLS-AS

model consistently yields the largest bias compared to the other modeling approaches.The models

tend to over-estimate the intercept and CBF by sex interaction while they underestimate the CBF

and sex parameters.

We repeat the simulation using n = 100 and present results in Table 5.5. These results are visu-

alized in Figure 5.6. Generally, results are consistent with those presented in the n = 30 setting

except for a few notable differences. Within the gray matter models are not consistently over- or

under-estimating the parameters. Notice, in the CBF by sex interaction bias panel in Figure 5.6,

bias for GEE-Ind and WLS-AS is negative whereas the remaining models show positive bias. The

GEE-Ind model still produces larger bias than the LME-RI, LME-RSI, and GEE-Exch models but
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with n = 100 differences are not as far as in the n = 30 simulation setting. With larger sample

size, the GEE-Ind model seems to be approaching the performance of the LME-RI, LME-RSI, and

GEE-Exch models. All models tend to over-estimate the intercept and interaction term but under-

estimate sex and CBF terms.

Comparing the two simulation settings, n = 30 with n = 100, we find that the estimates for the

intercept and sex are less biased in the n = 100 setting across all modeling approaches. The

remaining parameter estimates, CBF and the interaction term, show similar biases. Noticeably, the

GEE-Ind model yields substantially less bias with n = 100 compared to n = 30.

Table 5.7 presents bias results for the subject-specific intercept estimates in the n = 30 simulation

setting. These results are visualized in Figure 5.7. The bias is similar across models for the different

brain regions (full, boundary, white, and gray matter). The WLS-WS model results in the smallest

bias closely followed by the LME-RI and LME-RSI models. The results for the n = 100 simulation

setting are presented in Table 5.9 and Figure 5.8. Findings are similar to those in the n = 30

simulation. Compared to using a sample size of n = 30, the subject-specific bias estimates are

substantially lower for the n = 100 simulation setting.

5.3.2. MSE

We present MSE estimates from the simulation setting with n = 30 in Table 5.4. In order to better

visualize findings, these results are also displayed as a bar chart in Figure 5.5.

To better understand model accuracy in each tissue class and at the boundary of tissue classes, we

compare MSE across the modeling approaches in each brain region. The average MSE is generally

similar for full brain, boundary, white, and gray matter regions. In general, at the boundary of white

and gray matter where neighborhoods include voxels from both tissue classes, we do not observe

larger MSE.

We compare MSE for parameters across models to assess estimation accuracy. The LME-RI model

results in the smallest MSE across parameters but these estimates are often equal to the LME-RSI

and GEE-Exch models. MSE for the WLS-AS model is extremely large for each parameter. The

GEE-Ind model shows larger MSE compared to the LME-RI, LME-RSI, and GEE-Exch models but

is smaller than the WLS-AS model. We are only able to compare MSE from the WLS-WS model to
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the other models for the CBF by sex interaction term. While the WLS-WS model yields larger MSE

compared to the LME-RI, LME-RSI, and GEE-Exch models, the MSE is smaller than both GEE-Ind

and WLS-AS models.

We repeat the simulation using n = 100 and present these results in Table 5.6. These results are

visualized in Figure 5.7. The MSE findings using a sample size of n = 100 are the same as those

in the n = 30 setting. As expected, the MSE is smaller using n = 100 compared to n = 30.

Table 5.10 presents MSE results for the subject-specific intercept in the n = 30 simulation setting.

These results are visualized in Figure 5.8. We find no differences in MSE performance across the

brain regions (full, boundary, white, and gray matter). The LME-RSI model results in the smallest

MSE. The results for the n = 100 simulation setting are presented in Table 5.10 and Figure 5.8 and

this setting yields the same findings as in n = 30. The MSE findings using a sample size of n = 100

are the same as those in the n = 30 setting. As expected, the MSE is smaller using n = 100

compared to n = 30.

5.3.3. Bias and MSE maps

The table and bar charts presenting bias and MSE do not elicit patterns related to model accuracy

across brain regions. Displaying bias and MSE results in brain maps does elucidate performance

differences in certain brain regions across modeling approaches. We present axial slices of bias

and MSE for simulation settings n = 30 and n = 100 in Figures 5.9 and 5.10. Below the average

bias and MSE maps for this axial slice we present a histogram summarizing the full brain average

bias or MSE.

Both simulation settings show that the WLS-WS model bias is most severe in the boundary regions

where IMCo neighborhoods include voxels from both the white and gray matter. The GEE-Ind and

WLS-AS models show larger average biases in the brain white matter.

In terms of MSE, both simulation settings also show that the WLS-WS model has increased MSE

in the boundary regions where IMCo neighborhoods include voxels from both the white and gray

matter. Across both simulation settings, the GEE-Ind and WLS-AS average MSE is largest in the

brain white matter.

All models show increased bias and MSE at the edge of the brain. Neighborhoods at the edge of
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Table 5.3: Across-subject parameter bias estimates from the n = 30 (100 iterations) simulation set-
ting are presented. We present average bias calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
Intercept GEE-Exch 81.56 79.37 85.37 101.03
Intercept GEE-Ind 98.85 103.74 90.35 101.79
Intercept LME-RI 81.56 79.37 85.37 101.03
Intercept LME-RSI 86.44 84.61 89.61 107.77
Intercept WLS-AS 98.65 108.79 81.04 92.50

CBF GEE-Exch -0.90 -0.45 -1.68 -1.49
CBF GEE-Ind -1.20 -0.79 -1.90 -1.47
CBF LME-RI -0.90 -0.45 -1.68 -1.49
CBF LME-RSI -0.97 -0.52 -1.76 -1.59
CBF WLS-AS -1.07 -0.96 -1.27 -1.10
Sex GEE-Exch -101.08 -101.04 -101.13 -98.53
Sex GEE-Ind -118.76 -124.83 -108.22 -109.92
Sex LME-RI -101.08 -101.04 -101.13 -98.53
Sex LME-RSI -101.32 -101.32 -101.33 -98.85
Sex WLS-AS -134.21 -146.27 -113.25 -121.66

CBF by Sex Interaction GEE-Exch 0.03 0.03 0.03 0.03
CBF by Sex Interaction GEE-Ind 0.26 0.33 0.13 0.18
CBF by Sex Interaction LME-RI 0.03 0.03 0.03 0.03
CBF by Sex Interaction LME-RSI 0.03 0.03 0.03 0.03
CBF by Sex Interaction WLS-AS 0.48 0.64 0.22 0.40
CBF by Sex Interaction WLS-WS 0.11 0.08 0.17 0.35

the brain will only include voxel intensities from the brain and will have fewer repeated observations

per subject.

The histograms created using average bias and MSE from the full brain provided in Figures 5.9 and

5.10 show that LME-RI, LME-RSI, and GEE-Exch models perform similarly and the best in terms

of minimizing bias and MSE. The GEE-Ind and WLS-WS both perform reasonably well in terms of

minimizing bias and MSE. Across all the models, the WLS-AS model has unstable MSE estimates

and performs the worst in terms of bias.

5.4. Discussion

In this work, we provide a unified framework to study the complex relationships between multiple

imaging modalities. We quantify the relationship between multiple imaging modalities and map

how these relationships vary spatially across different anatomical brain regions. Inter-modal cou-
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Table 5.4: Across-subject parameter MSE estimates from the n = 30 (100 iterations) simulation
setting are presented. We present average MSE calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
Intercept GEE-Exch 29944.26 29622.64 30503.10 33055.74
Intercept GEE-Ind 178091.05 228269.48 90904.58 116534.35
Intercept LME-RI 29944.25 29622.63 30503.10 33055.73
Intercept LME-RSI 30855.70 30580.61 31333.68 34447.96
Intercept WLS-AS 423153.80 535501.11 227947.11 308948.87

CBF GEE-Exch 1.68 0.46 3.81 3.26
CBF GEE-Ind 59.31 51.55 72.78 39.79
CBF LME-RI 1.68 0.46 3.81 3.26
CBF LME-RSI 1.85 0.54 4.12 3.55
CBF WLS-AS 186.61 134.72 276.77 152.61
Sex GEE-Exch 76493.33 76434.28 76595.91 74720.31
Sex GEE-Ind 414384.38 523410.18 224948.91 268711.84
Sex LME-RI 76493.33 76434.29 76595.91 74720.30
Sex LME-RSI 76491.44 76451.37 76561.08 74692.44
Sex WLS-AS 1064767.87 1325011.53 612587.00 784131.75

CBF by Sex Interaction GEE-Exch 0.04 0.04 0.05 0.06
CBF by Sex Interaction GEE-Ind 144.37 119.13 188.23 91.05
CBF by Sex Interaction LME-RI 0.04 0.04 0.05 0.06
CBF by Sex Interaction LME-RSI 0.03 0.03 0.04 0.05
CBF by Sex Interaction WLS-AS 497.56 337.80 775.15 399.07
CBF by Sex Interaction WLS-WS 0.74 0.56 1.04 1.59
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Figure 5.5: Across-subject parameter bias and MSE estimates from the n = 30 (100 iterations)
simulation setting are presented in a bar chart. We present average bias calculated from voxels in
the full brain (Full), gray matter only (GM), white matter only (WM), and where the white and gray
matter IMCo neighborhoods overlap (Boundary).
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Figure 5.6: Across-subject parameter bias and MSE estimates from the n = 100 (100 iterations)
simulation setting are presented in a bar chart. We present average bias calculated from voxels in
the full brain (Full), gray matter only (GM), white matter only (WM), and where the white and gray
matter IMCo neighborhoods overlap (Boundary).
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Table 5.5: Across-subject parameter bias estimates from the n = 100 (100 iterations) simulation
setting are presented. We present average bias calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
Intercept GEE-Exch 53.93 51.73 57.75 73.96
Intercept GEE-Ind 22.84 13.38 39.26 40.28
Intercept LME-RI 53.93 51.73 57.75 73.96
Intercept LME-RSI 59.05 57.23 62.20 81.02
Intercept WLS-AS 1.11 -11.00 22.16 13.45

CBF GEE-Exch -0.89 -0.44 -1.67 -1.48
CBF GEE-Ind -0.32 0.21 -1.22 -0.77
CBF LME-RI -0.89 -0.44 -1.67 -1.48
CBF LME-RSI -0.97 -0.52 -1.75 -1.59
CBF WLS-AS 0.19 0.46 -0.29 0.01
Sex GEE-Exch -38.79 -38.80 -38.77 -37.65
Sex GEE-Ind -35.69 -29.98 -45.61 -37.35
Sex LME-RI -38.79 -38.80 -38.77 -37.65
Sex LME-RSI -38.75 -38.75 -38.75 -37.60
Sex WLS-AS -37.23 -29.50 -50.64 -39.45

CBF by Sex Interaction GEE-Exch 0.03 0.03 0.03 0.02
CBF by Sex Interaction GEE-Ind 0.07 -0.09 0.35 0.05
CBF by Sex Interaction LME-RI 0.03 0.03 0.03 0.02
CBF by Sex Interaction LME-RSI 0.03 0.03 0.03 0.02
CBF by Sex Interaction WLS-AS 0.16 -0.09 0.59 0.11
CBF by Sex Interaction WLS-WS 0.10 0.07 0.16 0.32
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Figure 5.7: Within-subject parameter bias and MSE estimates from the n = 30 (100 iterations)
simulation setting are presented in a bar chart. We present average bias calculated from voxels in
the full brain (Full), gray matter only (GM), white matter only (WM), and where the white and gray
matter IMCo neighborhoods overlap (Boundary).
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Table 5.6: Across-subject parameter MSE estimates from the n = 100 (100 iterations) simulation
setting are presented. We present average MSE calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
Intercept GEE-Exch 12221.94 12033.42 12549.52 14576.54
Intercept GEE-Ind 46292.44 57449.22 26907.22 32561.95
Intercept LME-RI 12221.95 12033.42 12549.52 14576.55
Intercept LME-RSI 12910.58 12746.65 13195.42 15667.65
Intercept WLS-AS 102510.52 126826.41 60260.96 79211.22

CBF GEE-Exch 1.65 0.44 3.76 3.21
CBF GEE-Ind 15.98 12.61 21.82 11.45
CBF LME-RI 1.65 0.44 3.76 3.21
CBF LME-RSI 1.83 0.52 4.10 3.52
CBF WLS-AS 46.53 31.97 71.84 39.26
Sex GEE-Exch 19178.84 19189.88 19159.66 18743.40
Sex GEE-Ind 98302.82 121889.12 57320.95 66620.21
Sex LME-RI 19178.85 19189.88 19159.66 18743.41
Sex LME-RSI 19180.52 19190.31 19163.51 18748.01
Sex WLS-AS 230227.46 281216.30 141632.88 179773.68

CBF by Sex Interaction GEE-Exch 0.01 0.01 0.02 0.02
CBF by Sex Interaction GEE-Ind 36.17 28.38 49.72 23.62
CBF by Sex Interaction LME-RI 0.01 0.01 0.02 0.02
CBF by Sex Interaction LME-RSI 0.01 0.01 0.01 0.02
CBF by Sex Interaction WLS-AS 111.67 72.78 179.23 93.05
CBF by Sex Interaction WLS-WS 0.25 0.19 0.37 0.57

Table 5.7: Within-subject parameter bias estimates from the n = 30 (100 iterations) simulation set-
ting are presented. We present average bias calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
b0i LME-RI 343.99 341.07 349.07 378.85
b0i LME-RSI 354.21 351.80 358.40 393.12
b0i WLS-WS 279.64 270.32 295.73 352.85

Table 5.8: Within-subject parameter MSE estimates from the n = 30 (100 iterations) simulation set-
ting are presented. We present average MSE calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
b0i LME-RI 135401.85 133580.50 138566.5 163389.87
b0i LME-RSI 354.21 351.80 358.4 393.12
b0i WLS-WS 103823.53 96102.65 117157.7 181491.34
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Table 5.9: Within-subject parameter bias estimates from the n = 100 (100 iterations) simulation
setting are presented. We present average bias calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
b0i LME-RI 647.76 643.34 655.44 677.79
b0i LME-RSI 656.59 652.83 663.12 689.78
b0i WLS-WS 279.93 270.09 296.94 354.88

Table 5.10: Within-subject parameter MSE estimates from the n = 100 (100 iterations) simulation
setting are presented. We present average MSE calculated from voxels in the full brain (Full), gray
matter only (GM), white matter only (WM), and where the white and gray matter IMCo neighbor-
hoods overlap (Boundary).

Term Model Full GM WM Boundary
b0i LME-RI 424920.64 419413.84 434488.86 475399.63
b0i LME-RSI 656.59 652.83 663.12 689.78
b0i WLS-WS 104397.85 95737.03 119355.31 184454.98
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Figure 5.8: Within-subject parameter bias and MSE estimates from the n = 30 (100 iterations)
simulation setting are presented in a bar chart. We present average bias calculated from voxels in
the full brain (Full), gray matter only (GM), white matter only (WM), and where the white and gray
matter IMCo neighborhoods overlap (Boundary).
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Figure 5.9: Axial slices of bias (row 1) and MSE (row 3) maps are presented for across-subject
model estimates. Below the bias and MSE maps we present histograms of full brain bias and MSE.
Results are from simulation setting n = 30 (100 iterations). The color bars for each map and x-axis
for the histogram representations use different scales across models.

Figure 5.10: Axial slices of bias (row 1) and MSE (row 3) maps are presented for across-subject
model estimates. Below the bias and MSE maps we present histograms of full brain bias and MSE.
Results are from simulation setting n = 100 (100 iterations). The color bars for each map and x-axis
for the histogram representations use different scales across models.
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Figure 5.11: Axial slices of bias (row 1) and MSE (row 3) maps are presented for within-subject
model estimates. Below the bias and MSE maps we present histograms of full brain bias and MSE.
Results are from simulation setting n = 30 (100 iterations). The color bars for each map and x-axis
for the histogram representations use different scales across models.
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Figure 5.12: Axial slices of bias (row 1) and MSE (row 3) maps are presented for within-subject
model estimates. Below the bias and MSE maps we present histograms of full brain bias and MSE.
Results are from simulation setting n = 100 (100 iterations). The color bars for each map and x-axis
for the histogram representations use different scales across models.
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pling (IMCo) utilizes local neighborhoods of voxels to relate multi-modal imaging data. In this way,

we leverage spatial information encoded in each imaging modality to improve signal estimation

and detection. All proposed IMCo estimation approaches allow for across-subject or group-level

estimation and inference. A subset of IMCo methods allows for estimation of subject-specific mea-

sures. Subject-specific measures can be used for novel feature development, image fusion, or to

simply explore and better understand subject-level effects. The WLS-WS subject-level estimates

have already been included as features in a competitive automatic segmentation algorithm to delin-

eate multiple sclerosis lesions (Valcarcel et al., 2018a,b). The inclusion of IMCo features improved

segmentation quality.

The estimation approaches leveraged in this work have been extensively investigated and validated

in the longitudinal data analysis field. Though the theoretical assumptions of each estimation ap-

proach (LME, GEE, WLS-AS, and WLS-WS) seem plausible in our neuroimaging application, prior

to this study, the proposed methods had not been rigorously examined. In this work, we carry out

a simulation study to assess estimation accuracy and efficiency for a set of estimation approaches

where we fit a variety of models using a sample size of n = 30 and n = 100.

Predominately, models closest to correct specification (LME-RI, LME-RSI, and GEE-Exch) perform

best. The performance of incorrectly specified models like the WLS-WS and GEE-Ind are reason-

able. The WLS-AS model is biased and unstable and we caution its use in practice unless a priori

information is known about a suitable weight. Comparing the results of the two sample sizes, n = 30

versus n = 100, we find decreases in bias and MSE across models when a larger sample size is

used. Many of the proposed methods rely on asymptotic normality so this is expected. These

results provide insights for real multi-modal image analysis. We suggest comprehensive data ex-

ploration and using a priori information prior to model fitting. Additionally, it may be useful to carry

out model selection using multiple IMCo models in order to determine a single best performing

model or to combine results across a few estimation approaches.

There are several notable limitations to the proposed work. First, in order to carry out across-subject

IMCo analyses, such as those performed here, all images must be registered to a common tem-

plate. IMCo performance will likely suffer if implemented on images that were poorly registered or

when registration has failed. Second, in order to run IMCo, we must first load both image modalities

for a subject into memory, extract the local neighborhoods for each target voxel, and then run the
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models at every voxel location. This process is memory intensive and slow. Depending on the scan-

ner strength, resolution, and acquisition protocol, brain masks may include millions of voxels that

consume memory and require modeling. We have developed a publicly available R package, Nif-

tiArray (Muschelli and Valcarcel, 2020), to reduce memory consumption and are currently working

on developing methods to increase computation speeds. Lastly, in real multi-modal data analysis

the local spatial relationship between modalities may be endogenous. That is, the independent

modality at one location within a local neighborhood may affect the dependent modality of a voxel

in a different location within the neighborhood. In the presence of endogenous variables, GEE mod-

els can result in biased estimates with all working correlation structures except for independence

(Pepe and Anderson, 1994).

Future developments will include simulation studies with both larger sample sizes and increased

number of iterations. Due to computational challenges and limitations, we only repeated sampling

across 100 iterations. Additionally, comparing the simulation settings with n = 30 and n = 100 we

notice only inconsistent reductions in bias and MSE. To elucidate the effect of sample size, we will

re-run analyses with larger sample sizes. At present, analyses are carried out in the full brain mask

even though the data are generated with distinct effects in brain white and gray matter. Neighbor-

hoods at the boundary of the tissue class use voxels from both classes in the estimation procedure.

While LME and GEE methods do not show increased bias levels at the boundary between white

and gray matter, the WLS-WS does have increased bias in these regions. We would like to ex-

tend methods and carry out the estimation procedures regionally (i.e. in the white and gray matter

separately) to better understand boundary effects. In future studies, we will explore the impact of

neighborhood size on estimation accuracy and efficiency. To minimize memory consumption, we

used only a neighborhood size of 3× 3× 3 voxels. The methods presented in this work include only

two imaging modalities but easily extend to accommodate multivariate regression using more than

one independent modality. Lastly, we would like to better characterize inferential performance for

the IMCo parameter estimates.
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CHAPTER 6

DISCUSSION

Multi-modal neuroimaging approaches are used to better understand patterns of healthy brain de-

velopment as well as detection, diagnosis, and prognosis of many disorders. The continued growth

and development of novel imaging contrasts and sequences coupled with the advancement of

ultra-high resolution scanners is leading to visualizations of the brain in unprecedented detail. The

increasing complexity and dimensionality due to these cutting-edge neuroimaging techniques will

demand parallel advances of computational and statistical approaches to understand such large

and complex data. In this paper, we present new methods for multi-modal neuroimaging analysis

as well as applications of multi-modal imaging techniques to study multiple sclerosis and neurode-

velopment. As new imaging contrasts and sequences are developed and scanners become more

powerful, these methods will remain applicable and allow for unmatched discoveries of brain struc-

ture and function.

In Chapter 2 we propose a fully automated segmentation method, MIMoSA, that utilizes the changes

in inter-modality covariance structure that occur in white matter pathology, and can be used to assist

in white-matter lesion detection or replace manual segmentation. MIMoSA avoids the variability as-

sociated with manual and semi-automated lesion segmentation. The model can be easily adapted

and trained in cases where fewer imaging sequences are available. Though originally designed

to segment T2L, MIMoSA performs well at segmenting T1 black holes in patients with multiple

sclerosis.

In Chapter 3 we introduce a statistical technique, TAPAS, for reducing the volumetric bias between

probabilistic lesion segmentation algorithm and a manual rater by optimizing similarity metrics

among raters. TAPAS reduces bias in brain lesion volume estimates with automatic segmenta-

tion approaches. The proposed pipeline allows a more accurate estimation of lesion volume at the

subject-level compared to traditional thresholding of probability maps for lesion segmentation which

only offer group-level threshold estimates.

R is a computing environment which contains free and open source software for statistical analysis

and visualization. As such, R is a necessary tool for carrying out statistical methodological research
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in imaging. Unfortunately, R is not well suited for big data. Imaging data can be enormous due

to resolution, repeated measures, and large sample size. In Chapter 4, we develop NiftiArray

which allows for memory efficient representations of imaging data in R. This work leverages and

adapts a number of statistical tools built in the genomics field to overcome big data limitations

of R. The NiftiArray package is compatible with DelayedMatrixStats and therefore can quickly

calculate voxel-wise statistics quickly. To carry out more complex statistical analyses, NiftiArray is

compatible with DelayedArray which reduces memory usage by applying either delaying operations

on the object or executing operations using a block processing mechanism.

In Chapter 5, we propose a novel multi-modal analysis framework which we refer to as IMCo anal-

ysis. Current multi-modal imaging techniques do not leverage the spatially correlated data struc-

ture naturally present within an image. In this chapter, we quantify the covariability across image

modalities by regressing local neighborhoods from the images onto each other. To estimate the

covariability between the modalities, we use linear mixed effects models, generalized estimating

equations, and weighted least squares (one- and two-stage). Each method accounts for the spatial

correlation of voxels within a neighborhood. We assess the accuracy of each estimation approach

using a large simulation study. Generally, we found all estimation approaches to perform well in

terms of minimizing bias and mean square error when models are correctly specified. Under mis-

specification, certain estimation approaches did not provide accurate estimation. The NiftiArray

software package built in Chapter 4 enabled research related to IMCo to be completed within a

reasonable time. Without the memory saving tool, the large scale simulation would not have been

possible due to memory and time constraints associated with these analyses.

In an effort to facilitate reproducible and replicable research, publicly available software packages

with documentation and tutorials accompany each method discussed in this work. Resources are

available on GitHub and Neuroconductor. Details on software are provided in Appendix sections

B.1, B.2, B.3, and B.4.
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APPENDIX A

CHAPTER 3 EXTENSIONS

Please take note that Figure A.5, Figure A.10, and Figure A.15 in this appendix are re-creations of

Figure 3.7 provided in Chapter 3. These figures include example slices from the various analyses.

Each figure is made using the same test subject within the same cross-validation fold. Approxi-

mately the same slice was used for each representation, but the exact slice was not possible due

to differing processing pipelines yielding images in slightly different spaces.

A.1. Training TAPAS with Absolute Error

In this section of the appendix we present results using the same data and processing pipeline

described in Chapter 3. We first apply MIMoSA to obtain probability maps and then implement the

thresholding algorithm as described in section 3.2.2 of the paper except we re-define τ̂Group and

τ̂i as τ̂AEGroup and τ̂AEi , respectively, to emphasize that the optimization approach involves the mini-

mization of absolute error (AE) rather than maximization of the Sorensen-Dice coefficient (DSC).

1. τ̂AEGroup = arg min
τ∈{τ1,...,τJ}

2
∑N/2
i=1 AEi(τ)

N
, and

2. τ̂AEi = arg min
τ∈{τ1,...,τJ}

{AEi(τ)} for each subject i.

We choose a threshold grid of τ1 = 0% to τJ = 100% in 1% increments. We use the exact Monte

Carlo-resampled split-sample cross-validation method. That is, the same subjects assigned to

training and testing sets across iterations in Chapter 3 are used here. The only difference is that in

the TAPAS algorithm we optimize using AE.
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Figure A.1: Bland-Altman plots comparing volumeManual with volumes obtained using automatic
thresholding approaches (volumeGroup, volumeTAPAS , and volumePartial) are shown. TAPAS is
trained using absolute error (AE) rather than the Sorensen-Dice coefficient (DSC). The mean of
the difference in volume is presented in blue and the mean plus and minus the standard error is
shown in red. Each point represents a unique subject. Subject-specific points were obtained by
averaging results across test set subjects in each split-sample fold.

The results presented in Figure A.1 are re-created from the Chapter 3 Figure 3.3. The Bland-Altman

plots in these two figures are nearly identical.
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Figure A.2: Scatter plots with fitted linear models are presented for the subject-level average abso-
lute error (ŷ) on manual volume (x) in mL in the Johns Hopkins Hospital (JHH) and Brigham and
Women’s Hospital (BWH) data sets. Fitted equations are given in the top left corner. The TAPAS
algorithm was optimized using AE rather than the Sorensen-Dice coefficient (DSC).

The results presented in Figure A.2 are re-created from Chapter 3 Figure 3.4. The scatter plots

presented here are slightly different than those presented in Chapter 3 Figure 3.4. The slope of the

Johns Hopkins Hospital (JHH) group fitted line is smaller while the TAPAS slope is approximately

the same. The slope of the Brigham and Women’s Hospital (BWH) group and TAPAS fitted lines is

similar to those presented in Chapter 3. These results indicate that TAPAS performs as well as or

better than the group thresholding procedure at reducing AE.
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Figure A.3: Violin plots of p-values from paired t-tests to compare subject-level absolute error (AE)
and Sorensen-Dice coefficient (DSC) in each test set are presented. The mean for each statistic
and data set is presented as points within each violin plot and the black lines extend the mean by
the standard deviation. Labels below represent the number of significant p-values favoring TAPAS
performance measures. Labels above represent the number of significant p-values favoring group
thresholding performance measures. The dashed horizontal blue line highlights the α = 0.05 cutoff.
The TAPAS algorithm was optimized using AE rather than DSC.

The results presented in Figure A.3 are re-created from Chapter 3 Figure 3.5. We employed one-

sided paired t-tests to evaluate AE and DSC from TAPAS compared with those obtained from the

group thresholding procedure. Figure A.3 shows violin plots of p-values from both sets of tests for

the two data sets. In the JHH data approximately half of the split-sample experiments resulted in p-

values below the α = 0.05 for AE and DSC with only one statistically significant result favoring the

group thresholding procedure. This indicates superior performance using TAPAS compared to the

group thresholding procedure. The BWH data is more uniform with statistically significant results

favoring TAPAS over the group thresholding procedure only slightly. The number of statistically

significant improvements in AE and DSC in the JHH data are somewhat smaller compared to

findings in Chapter 3. Generally, TAPAS thresholding still results in as good or better performance

compared with group thresholding.
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Table A.1: Subject-specific volume estimates, volumeManual (Manual), volumeTAPAS (TAPAS),
volumeGroup (Group), and volumePartial (Partial), were compared with clinical covariates available
in each data set and are represented in this table. Spearman’s correlation coefficient (ρ̂) was
obtained in the testing set for each iteration and averaged across folds. Clinical variables included
Expanded Disability Status Scale (EDSS) score, disease duration in years, and timed 25-ft walk
(T25FW) in seconds. The TAPAS algorithm was optimized using absolute error (AE) rather than
the Sorensen-Dice coefficient (DSC).

Estimates for ρ̂

Partial Group TAPAS Manual

JHH
EDSS 0.32 0.34 0.33 0.29
Disease duration 0.37 0.39 0.39 0.39

BWH
EDSS 0.42 0.43 0.42 0.45
Disease duration 0.31 0.30 0.31 0.29
T25FW 0.02 0.01 0.02 0.03

The results presented in Table A.1 are re-created from Chapter 3 Table 3.2. The results presented

in this table are nearly identical to those in Chapter 3. The Chapter 3 correlation estimates tend to

be slightly stronger for some clinical covariates.
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Figure A.4: Scatter plots of the subject-specific threshold τ̂i (TAPAS) and τ̂Group (group thresholding
procedure) on cross-validation number are presented with marginal histograms for both data sets
in the first two columns. The third column presents scatterplots of the average subject-specific
thresholds from TAPAS and the manually delineated lesion volume. The TAPAS algorithm was
optimized using absolute error (AE) rather than the Sorensen-Dice coefficient (DSC).

The results presented in Figure A.4 are re-created from Chapter 3 Figure 3.6. Generally, these

figures are similar in shape and spread. The group threshold scatter plots for both JHH and BWH

data have a smaller range of selected τ̂Group.
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Figure A.5: T2 hyperintense lesion segmentations from an example axial slice are displayed. The
colors represent the different individual or overlapping segmentations obtained from manual, TAPAS
threshold, and group threshold masks. The majority of segmented area was in agreement among
all lesion masks (green). Both the group thresholding approach and TAPAS missed some area that
was manually segmented (red). There was a small area where only TAPAS and manual segmen-
tations agreed (yellow), but almost no area where only the group threshold agreed with the manual
segmentation (fuchsia). The TAPAS algorithm was optimized using absolute error (AE) rather than
the Sorensen-Dice coefficient (DSC).

The results presented in Figure A.5 are re-created from Chapter 3 Figure 3.7.
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A.2. Training TAPAS with the Sorensen-Dice coefficient using Brigham and Women’s

Hospital Preprocessing Pipeline

In this section of the appendix we implement the TAPAS algorithm and replicate the cross-validation

as described in section 3.2.2 and section 3.2.3, respectively, of Chapter 2. We preprocessed the

JHH data using the same processing pipeline as the BWH data described in the section 3.2.1 of

Chapter 3. That is, we performed N4 bias correction (Tustison et al., 2010) on all images and

rigidly co-registered T1 and T2 images for each participant to the FLAIR at 1 mm3 resolution.

Extracerebral voxels were removed from the registered T1 images using Multi-Atlas Skull Stripping

(MASS) (Doshi et al., 2013) and the brain mask was applied to the FLAIR and T2 scans. We

intensity-normalized images to facilitate across-subject modeling of intensities using WhiteStripe

(Muschelli and Shinohara, 2018; Shinohara et al., 2014). Image preprocessing was applied using

software available in R (version 3.5.0) R Development Core Team, 2018 and from NITRC (https:

//www.nitrc.org/projects/cbica_mass/).

Additionally, we implement the algorithm as described in section 3.2.2 of Chapter 3 with a minor

change to the threshold grid. In this analysis, we refine the grid of thresholds applied to range

from 11% to 52% in .4% increments. We use the same Monte Carlo-resampled split-sample cross-

validations described in section 3.2.3 of Chapter 3.

Only the JHH data was processed differently so the BWH data and results in this section are the

same as Chapter 3 and excluded from this section of the appendix.
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Figure A.6: Bland-Altman plots comparing volumeManual with volumes obtained using automatic
thresholding approaches (volumeGroup, volumeTAPAS , and volumePartial) are shown. The mean
of the difference in volume is presented in blue and the mean plus and minus the standard error
is shown in red. Each point represents a unique subject. Subject-specific points were obtained by
averaging results across test set subjects in each split-sample fold. The JHH data were processed
using the same pipeline as the BWH data in Chapter 3.

The results presented in Figure A.6 are re-created from Chapter 3 Figure 3.3. The Bland-Altman

plots presented for the JHH data are different here than in the original work. The JHH data begins

to exhibit systematic bias for volumes exceeding 20 mL, similar to the findings in Chapter 3, but

the plots presented here shows that the systematic deviation is not as dramatic as in Figure 3.3 in

Chapter 3. Comparing the group and TAPAS plots on the left and right, the TAPAS plot still shows

a less steep fitted line and therefore less systematic bias associated with the volumes compared to

the group thresholding approach.
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Figure A.7: Scatter plot with fitted linear models are presented for the subject-level average absolute
error (ŷ) on manual volume (x) in mL. Fitted equations are given in the top left corner. The Johns
Hopkins Hospital (JHH) data are processed using the same pipeline as the BWH data in Chapter
3.

The results presented in Figure A.7 are re-created from Chapter 3 Figure 3.4. The results presented

in this figure are consistent with those presented in Chapter 3. The line of best fit for TAPAS using

the JHH data is slightly less steep than the line presented in Chapter 3. TAPAS still shows reduced

AE compared to the group thresholding procedure.
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Figure A.8: Violin plots of p-values from paired t-tests to compare subject-level absolute error (AE)
and Sorensen-Dice coefficient (DSC) in each test set are presented. The mean for each statistic
and data set is presented as points within each violin plot and the black lines extend the mean by
the standard deviation. Labels below represent the number of significant p-values favoring TAPAS
performance measures. Labels above represent the number of significant p-values favoring group
thresholding performance. The dashed horizontal blue line highlights the α = 0.05 cutoff. The
Johns Hopkins Hospital (JHH) data are processed using the same pipeline as the Brigham and
Women’s Hospital (BWH) data in Chapter 3.

The results presented in Figure A.8 are re-created from Chapter 3 Figure 3.5. We employed one-

sided paired t-tests to evaluate AE and DSC from TAPAS compared with those obtained from the

group thresholding procedure. Figure A.8 shows violin plots of p-values from both sets of tests for

the JHH data set using the BWH data processing pipeline. More split-sample experiments resulted

in p-values below the α = 0.05 for AE and DSC with only a few statistically significant results favor-

ing the group thresholding procedure. This indicates superior performance using TAPAS compared

to the group thresholding procedure. The number of statistically significant improvements in AE

and DSC in the JHH data are somewhat smaller compared to those in Chapter 3 but still favor

TAPAS in a large number of cross-validation iterations.
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Table A.2: Subject-specific volume estimates, volumeManual (Manual), volumeTAPAS (TAPAS),
volumeGroup (Group), and volumePartial (Partial), were compared with clinical covariates avail-
able in each data set and are represented in this table. Spearman’s correlation coefficient (ρ̂)
was obtained in the testing set for each iteration and averaged across folds. Clinical variables in-
cluded Expanded Disability Status Scale (EDSS) score, disease duration in years, and timed 25-ft
walk (T25FW) in seconds. The Johns Hopkins Hospital (JHH) data are processed using the same
pipeline as the Brigham and Women’s Hospital (BWH) data in Chapter 3.

Estimates for ρ̂

Partial Group TAPAS Manual

JHH
EDSS 0.36 0.34 0.34 0.29
Disease duration 0.43 0.43 0.43 0.39

The results presented in Table A.2 are re-created from Chapter 3 Table 3.2. Correlation estimates

are similar to those presented in Chapter 3.
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Figure A.9: Scatter plots of the subject-specific threshold τ̂i (TAPAS) and τ̂Group (group thresholding
procedure) on cross-validation number are presented with marginal histograms for both data sets
in the first two columns. The third column presents scatterplots of the average subject-specific
thresholds from TAPAS and the manually delineated lesion volume. The JHH data are processed
using the same pipeline as the Brigham and Women’s Hosptial (BWH) data in Chapter 3.

The results presented in Figure A.9 are re-created from Chapter 3 Figure 3.6. The JHH TAPAS

scatter plot shows that the range of thresholds selected at the subject level are much more narrow

compared to Chapter 3 findings. Further, the bi-modal pattern in the Chapter 3 histogram is no

longer present in these data and an approximately normal shape is formed. The group threshold

scatter and histogram plots are similar to those in Chapter 3.
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Figure A.10: T2 hyperintense lesion segmentations from an example axial slice are displayed.
The colors represent the different individual or overlapping segmentations obtained from manual,
TAPAS threshold, and group threshold masks. The majority of segmented area was in agreement
among all lesion masks (green). Both the group thresholding approach and TAPAS missed some
area that was manually segmented (red). There was a small area where only TAPAS and manual
segmentations agreed (yellow), but almost no area where only the group threshold agreed with the
manual segmentation (fuchsia). The Johns Hopkins Hospital (JHH) data were processed using the
same pipeline as the Brigham and Women’s Hospital (BWH) data in Chapter 3.

The results presented in Figure A.10 are re-created from Chapter 3 Figure 3.7.
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A.3. Training TAPAS with the Sorensen-Dice coefficient using Lesion Segmenta-

tion Tool’s Lesion Prediction Algorithm

In this section of the appendix we present results using Lesion Segmentation Tool’s Lesion Predic-

tion Algorithm (LST-LPA) as the automatic segmentation method. The LST-LPA method implements

its own processing pipeline as part of the algorithm. Therefore, no processing was carried out on

the images before implementing LST-LPA. The processing pipeline that LST-LPA uses can be found

in their documentation (https://www.applied-statistics.de/LST_documentation.pdf) and in

their original work (Schmidt et al., 2012). We implement the algorithm as described in section

3.2.2 of Chapter 3 with a minor change to the threshold grid. In this analysis, we refine the grid of

thresholds originally applied. In the JHH data we use a grid from 0% to 22% in 0.2% increments

and in the BWH data we use a grid from 12% to 55% in .4% increments. We use the same Monte

Carlo-resampled split-sample cross-validations described in section 3.2.3 of Chapter 3.
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Figure A.11: Bland-Altman plots comparing volumeManual with volumes obtained using automatic
thresholding approaches (volumeGroup, volumeTAPAS , and volumePartial) are shown. The mean
of the difference in volume is presented in blue and the mean plus and minus the standard error
is shown in red. Each point represents a unique subject. Subject-specific points were obtained by
averaging results across test set subjects in each split-sample fold.

The results presented in Figure A.11 are re-created from Chapter 3 Figure 3.3. The Bland-Altman

plots presented for the BWH data are nearly identical to those presented in Chapter 3. The plots

using the JHH data though are different than those in Chapter 3 and show both the group and

TAPAS thresholding procedures perform similarly.
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Figure A.12: Scatter plots with fitted linear models are presented for the subject-level average
absolute error (ŷ) on manual volume (x) in mL. Fitted equations are given in the top left corner.

The results presented in Figure A.12 are re-created from Chapter 3 Figure 3.4. The scatter plots

presented here are show similar results using either TAPAS or the group thresholding procedure.
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Figure A.13: Violin plots of p-values from paired t-tests to compare subject-level absolute error (AE)
and Sorensen-Dice coefficient (DSC) in each test set are presented. The mean for each statistic
and data set is presented as points within each violin plot and the black lines extend the mean by
the standard deviation. Labels below represent the number of significant p-values favoring TAPAS
performance measures. Labels above represent the number of significant p-values favoring group
thresholding performance. The dashed horizontal blue line highlights the α = 0.05 cutoff.

The results presented in Figure A.13 are re-created from Chapter 3 Figure 3.5. We employed one-

sided paired t-tests to evaluate AE and DSC from TAPAS compared with those obtained from the

group thresholding procedure. Figure A.13 shows violin plots of p-values from both sets of tests for

the two data sets. The labels beneath each violin show the number of p-values less than α = 0.05

that favor the TAPAS measure (i.e. a reduction in AE and an increase in DSC). The labels above

each violin show the number of p-values less than α = 0.05 that favor the group measure. In the

JHH data p-values for AE and DSC favor the TAPAS thresholding procedure compared with the

group thresholding procedure. The BWH data is more uniform.
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Table A.3: Subject-specific volume estimates, volumeManual (Manual), volumeTAPAS (TAPAS),
volumeGroup (Group), and volumePartial (Partial), were compared with clinical covariates available
in each data set and are represented in this table. Spearman’s correlation coefficient (ρ̂) was
obtained in the testing set for each iteration and averaged across folds. Clinical variables included
Expanded Disability Status Scale (EDSS) score, disease duration in years, and timed 25-ft walk
(T25FW) in seconds.

Estimates for ρ̂

Partial Group TAPAS Manual

JHH
EDSS 0.35 0.38 0.38 0.29
Disease duration 0.43 0.43 0.43 0.39

BWH
EDSS 0.42 0.43 0.43 0.45
Disease duration 0.31 0.32 0.32 0.29
T25FW 0.02 0.02 0.02 0.03

The results presented in Table A.3 are re-created from Chapter 3 Table 3.2. The correlations

presented are similar to those presented in Chapter 3. The JHH data correlation estimates are

slightly increased using LST-LPA here compared to MIMoSA in Chapter 3.
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Figure A.14: Scatter plots of the subject-specific threshold τ̂i (TAPAS) and τ̂Group (group threshold-
ing procedure) on cross-validation number are presented with marginal histograms for both data
sets in the first two columns. The third column presents scatterplots of the average subject-specific
thresholds from TAPAS and the manually delineated lesion volume.

The results presented in Figure A.14 are re-created from Chapter 3 Figure 3.6. The BWH data

scatter and histogram plots are similar to those in Chapter 3 for both thresholding procedures.

The JHH plots presented here are quite different than those in Chapter 3 for both the group and

TAPAS thresholding procedures. The group thresholding procedure thresholds are centered around

0.10 here whereas in Chapter 3 they centered around 0.40. The TAPAS subject-specific threshold

distribution is very different than Chapter 3 findings. The distribution here is centered around 0.10

whereas Chapter 3 is centered around 0.40. The spread here is also much more narrow than

Chapter 3 findings.
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Figure A.15: T2 hyperintense lesion segmentations from an example axial slice are displayed.
The colors represent the different individual or overlapping segmentations obtained from manual,
TAPAS threshold, and group threshold masks. The majority of segmented area was in agreement
among all lesion masks (green). Both the group thresholding approach and TAPAS missed some
area that was manually segmented (red). There was a small amount of area where only TAPAS and
manual segmentations agreed (yellow), but almost no area where only the group threshold agreed
with the manual segmentation (fuchsia).

The results presented in Figure A.15 are re-created from Chapter 3 Figure 3.7.
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APPENDIX B

SOFTWARE

B.1. mimosa

Software to implement the MIMoSA method is available through the mimosa R package. The

package takes NIfTI images as inputs in order to train the MIMoSA model and then predicts le-

sion segmentations. Additionally, we have made some pre-trained models available in the event

gold standard manual segmentations are not available for training. We suggest when possible

to train the model. The development version of the package is available on GitHub https://

github.com/avalcarcel9/mimosa. A stable version is available on Neuroconductor https://

neuroconductor.org/package/mimosa. Package documentation is available on GitHub https:

//avalcarcel9.github.io/mimosa/.

B.2. rtapas

Software to implement the TAPAS method is available through the rtapas R package. This package

creates data structures necessary for training the TAPAS model from NIfTI inputs. After training,

the model can be used to predict subject-specific thresholds to use on probability maps for auto-

matic lesion segmentation. The development version of the package is available on GitHub https:

//github.com/avalcarcel9/rtapas. A stable version is available on Neuroconductor https:

//neuroconductor.org/package/rtapas. Package documentation is available on GitHub https:

//avalcarcel9.github.io/rtapas/.

B.3. NiftiArray

NiftiArray is an R package that allows for convenient and memory-efficient containers for on-

disk representation of NIfTI objects. The package also allows for all operations supported by

DelayedArray. Operations on NiftiArray objects can be either delayed or block-processed. The

development version of the package is available on GitHub https://github.com/muschellij2/

NiftiArray. A stable version is available on Neuroconductor https://neuroconductor.org/

package/NiftiArray. Package documentation is available on GitHub https://neuroconductor.

org/help/NiftiArray/.
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B.4. Inter-Modal Coupling

There are currently two privately distributed R packages to implement inter-modal coupling analy-

sis. Please contact Alessandra Valcarcel if you would like access to the private package. After in

progress manuscripts are published the packages will be publicly available on GitHub and Neuro-

conductor. Check https://github.com/avalcarcel9 for updates.
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