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ABSTRACT

MACHINE LEARNING ECONOMETRICS 

Philippe Goulet Coulombe

Francis X. Diebold and Frank Schorfheide

Much of econometrics is based on a tight probabilistic approach to empirical modeling that 
dates back to Haavelmo (1944). Yet, the landscape of quantitative economics research has 
been changing rapidly in the last decade. Large data sets are increasingly available, and 
so is computational power. Both permits and require innovation in how economists treat 
data. In statistics and computer science, methods falling under the umbrella of “Machine 
Learning” (ML) have become common use in academia and industry, thanks to their ability 
to solve modern empirical problems – especially that of prediction. This thesis is part of a 
research agenda that leverages, adapts, and develops ML tools for economic data analysis. 
More than simply offering a basket of new methods, this strand of research also embeds 
a change in philosophy, largely borrowed from ML, where models design should be as 
data-driven as possible and their evaluation, more empirical than theoretical. Along these 
lines, this thesis explores a modern algorithmic view to macroeconometric modeling, and 
by doing so, finds solutions to classic problems while developing new avenues.

In the first chapter, Time-Varying Parameters as Ridge Regressions, Kalman-filter based com-
putations of random walk coefficients are replaced by a closed-form solution akin to OLS. 
In the second chapter, The Macroeconomy as a Random Forest, evolving coefficients are mod-
eled and forecasted with a powerful machine learning algorithm instead of the widely 
used random-walk process. Conveniently, this generalization of time-varying parameters 
provides statistical efficiency and interpretability, which off-the-shelf ML algorithms can-
not easily offer with macro data. Finally, the third chapter To Bag is to Prune answers the 
question: why can’t Random Forest (RF) overfit? I  show i t i s a  surprising byproduct of 
randomized “greedy” algorithms – often deployed in the face of computational adversity. 
Then, I capitalize on the new insight by developing new high-performing non-overfitting 
algorithms.

Those three chapters are highly interconnected. The first c hapter r ealizes t hat a  classi-
cal time series model can be rewritten as a decades-old regression tool, which simplifies 
greatly both computations and tuning. But we are still fitting an old m odel. The second 
chapter notices that this old model made easier in the first c hapter s hould i tself b e dis-
missed. Then, I propose a new algorithm that truly leverage the abundance of predictors

v



available to applied macroeconomists. The third chapter reflects on the empirical success
of Random Forest – the driving force behind the second chapter – and formulate an ex-
planation for it. Thus, we learn that ML methods (i) often beat traditional econometric
methods when carefully adjusted for macroeconomic problems, (ii) can provide impor-
tant insights about macroeconomic mechanisms, and (iii) owe their success to properties
traditional econometric analysis would overlook.
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CHAPTER 1 : TIME-VARYING

PARAMETERS AS RIDGE

REGRESSIONS

1.1. Introduction
Economies change. Intuitively, this should percolate to the parameters of models char-
acterizing them. To econometrically achieve that, a popular approach is Time-Varying
Parameters (TVPs), where a linear equation’s coefficients follow stochastic processes —
usually random walks. Classic papers in the literature consider TVP Vector Auto Regres-
sions (TVP-VARs) to study changing monetary policy (Primiceri, 2005) and evolving in-
flation dynamics (Cogley and Sargent, 2001, 2005).1 Recently, such ideas were introduced
to Jordà (2005)’s local projections (LPs) to obtain directly time-varying impulse response
functions (Ruisi, 2019; Lusompa, 2020).2

In both the VAR and LP cases, important practical obstacles reduce the scope and applica-
bility of TVPs. One is prohibitive computations limiting the model’s size. Another is the
difficulty of tuning the crucial amount of time variation. To address those and other press-
ing problems, I show that TVP models are ridge regressions (RR). The connection is useful:
50 years (Hoerl and Kennard, 1970) of RR widespread use, research and wisdom is readily
transferable to TVPs. Among other things, this provides fast computations via a closed-
form dual solution only using matrix operations. The amount of time variation is auto-
matically tuned by cross-validation (CV). Adjustments for evolving residuals’ volatility
and heterogeneous parameter drifting speeds (random walk variances) are implemented
via a 2-step ridge regression (henceforth 2SRR) the flagship model of this paper. In sharp
contrast with the usual Bayesian machinery, it is incredibly easy to implement and to op-
erate.3 For instance, it will never face initialization and convergence issues since it avoids
altogether MCMC simulations and filtering. Moreover, the setup is directly extendable to
deploy additional shrinkage schemes (sparse TVP, reduced rank TVPs) recently proposed
in the literature (Stevanovic, 2016; Bitto and Frühwirth-Schnatter, 2018). Finally, credible

1There is also a wide body of work using TVPs to study structural change in "great" macroeconomic (uni-
variate) equations (Stock and Watson, 1996; Boivin, 2005; Blanchard et al., 2015).

2Well-known applications where time variation in LPs is obtained by interacting a linear specification with
a "state of the economy" variable are Auerbach and Gorodnichenko (2012a) and Ramey and Zubairy (2018a).

3In its simplest form, it consists or creating many new regressors out of the original data and using it as a
feature matrix in any RR software, which requires 3 lines of code (cross-validation, estimation, prediction).
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regions are available since RR is alternatively a plain Bayesian regression. For the remain-
der of this introduction, I review the issues facing current TVP models, survey their related
literature, and explain how the ridge approach can remedy those.

COMPUTATIONS. Using standard implementations allowing for stochastic volatility (SV)
in TVP-VARs, researchers are limited to few lags (usually 2 for quarterly data) and a small
number of variables (not more than 4 or 5) (Kilian and Lütkepohl, 2017). This constraint
leaves the reader ever-wondering whether time variation is not merely the byproduct of
omitted variables. Consequently, a growing number of contributions attempt to deal with
the computational problem. In the state-space paradigm, Koop and Korobilis (2013) and
Huber et al. (2020) proposed approximations to speed up MCMC simulations. Giraitis
et al. (2014) and Kapetanios et al. (2019) drop the state-space paradigm altogether in fa-
vor of a nonparametric kernel-based estimator. Chen and Hong (2012) consider a similar
approach to develop a test for smooth structural change while Petrova (2019) develops
a Bayesian version particularly apt with large multivariate systems. While this type of
framework allows the estimation of the desired big models, it is unclear how we can in-
corporate useful features such as heterogeneous variances for parameters (as in Primiceri
(2005)). Further, there seems to be an artificial division between nonparametric and law-of-
motion approaches. Later, by showing that random walk TVPs give rise to a ridge regres-
sion (which will also be a smoothing splines problem), it will become clear that random
walks TVPs are no less nonparametric than TVPs obtained from the "nonparametric ap-
proach". Yet, RR implements nearly the same model as the benchmark Bayesian TVP-VAR
and preserves the interpretation of TVPs as latent stochastic states. Keeping alive the par-
allel to a law of motion has some advantages — like an obvious prediction for tomorrow’s
coefficients.

TUNING AND FORECASTING. On the forecasting front, D’Agostino et al. (2013), Baumeis-
ter and Kilian (2014), and Pettenuzzo and Timmermann (2017) have all investigated, with
varying angles, the usefulness of time variation to increase prediction accuracy. A critical
choice underlying forecasting successes and failures is the amount of time variation. No-
toriously, tuning parameter(s) determining it can largely influence prediction results and
estimated coefficients, accounting for much of the cynicism regarding the transparency
and reliability of TVP models. Amir-Ahmadi et al. (2018) propose to treat those pivotal
hyperparameters as another layer of parameters to be estimated within the Bayesian pro-
cedure — and find this indeed helps. By showing the TVP–RR equivalence, this chapter
defines even more clearly what is the fundamental tuning problem for this class of mod-
els. TVP models are simply standard (very) high-dimensional regressions which need to be
regularized somehow. By construction, the unique ridge tuning parameter, in this context,
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(Golub et al., 1979) mechanically corresponds to a ratio of two variances, that of parameter
innovations and that of residuals. Hence, tuning λ via standard (and fast) cross-validation
techniques deliver the holy quantity of how much time variation there is in the coefficients.
Given how the quantity is paramount for both predictive accuracy and economic analysis,
it is particularly comforting that it suddenly can be tuned the same way ridge λ’s have
been tuned for decades.

FANCIER SHRINKAGE. TVP models are densely parametrized which makes overfitting an
enduring sword of Damocles. The RR approach makes this explicit: TVP models are linear
regressions where parameters always outnumber observations — and by a lot. Precisely,
the ratio of parameters to observations is always K, the number of original regressors.
Clearly, things do get any better with large models. Assuming a random walk as a law of
motion and enforcing it with a varying degree of rigidity (using λ in my approach) kills
overfitting, provided the plain constant-coefficient models itself does not overfit.4 How-
ever, an unpleasant side effect of λ "abuse" is that time variation itself is annihilated. Since
this problem pertains to the class of models rather than the estimation method, I borrow
insights from the recent literature to extend my framework into two directions. Firstly,
I consider Sparse TVPs. This means that not all parameters are created equal: some will
vary and some will not. This brings hope for larger models. If adding regressors actually
make some other coefficients time-invariant, we are gaining degrees of freedom. In that
spirit, Bitto and Frühwirth-Schnatter (2018), Belmonte et al. (2014), Korobilis (2014), and
Hauzenberger et al. (2020) have proposed such extensions to MCMC-based procedures.
In the RR setup, this amounts to the development of the Group Lasso Ridge Regression
(GLRR) which is shown to be obtainable by simply iterating 2SRR. Secondly, another nat-
ural way to discipline TVPs is to impose a factor structure. This means that instead of
trying to filter, say, 20 independent states, we can span these with a parsimonious set of
latent factors. This extension is considered in Stevanovic (2016), de Wind and Gambetti
(2014) and Chan et al. (2018). Such reduced rank restrictions are brought to this chapter’s
arsenal by developing a Generalized Reduced Rank Ridge Regression (GRRRR).

RESULTS. I first evaluate the method with simulations. For models of smaller size, where
traditional Bayesian procedures can also be used, 2SRR does as well and sometimes better
at recovering the true parameter path than the (Bayesian) TVP-VAR. This is true whether
SV is involved or not. This is practical given that running and tuning 2SRR for such small
models (300 observations, 6 TVPs per equation) takes less than 5 seconds to compute. Ad-
ditionally, I evaluate the performance of 3 variants of the RR approach in a substantive

4Guaranteeing that a large constant-coefficients model behaves well often requires shrinkage of its own
(Bańbura et al., 2010; Kadiyala and Karlsson, 1997; Koop, 2013).
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forecasting experiment. 2SRR and its iterated extension provide sizable gains for interest
rates and inflation, two variables traditionally associated with the need for time varia-
tion. I complete with an application to estimating large time-varying LPs (more than 4,500
TVPs) in a Canadian context using Champagne and Sekkel (2018)’s narrative monetary
policy (MP) shocks. It is found that MP shocks long-run impact on inflation increased sub-
stantially starting from the 1990s (onset of inflation targeting), whereas the effects on real
activity indicators (GDP, unemployment) became milder.

OUTLINE. Section 1.2 presents the ridge approach, its extensions, and related practical
issues. Sections 1.3 and 1.4 report simulations and forecasting results, respectively. Sec-
tion 1.5 applies 2SRR to (large) time-varying LPs. Tables, additional graphs and technical
details are in the Appendix.

NOTATION. βt,k refers to the coefficient on regressor Xk at time t. To make things lighter,
βt ∈ IRK or β0 ∈ IRK always refers to all coefficients at time t or time zero, respectively.
Analogously, βk represents the whole time path for the coefficient on Xk. β ∈ IRKT is
stacking all βk’s one after the other, for k = 1, ..., K. All this also applies to u and θ.

1.2. Time-Varying Parameters are Ridge Regressions
1.2.1. A Useful Observation
Consider a generic linear model with random walk time-varying parameters

yt = Xtβt + εt, εt ∼ N(0, σ2
εt
) (1.1a)

βt = βt−1 + ut, ut ∼ N(0, Ωu) (1.1b)

where βt ∈ IRK, X′t ∈ IRK, ut ∈ IRp and both yt and εt are scalars. This chapter first consid-
ers a general single equation time series model and then discuss its generalization to the
multivariate case in section 1.2.4. For clarity, a single equation in a VAR with M variable
and P lags has K = PM + 1 parameters for each equation. For simplicity of exposition,
I first impose Ωu = σ2

u IK and σ2
εt

= σ2
ε ∀t. This means all parameters are assumed to

vary equally a priori and constant variance of residuals. These assumptions will be re-
laxed in section (1.2.4). The textbook way of estimating (1.1) is to impose some value for σε

σu

and use the Kalman filter for linear Gaussian model (Hamilton, 1994). The advantages of
the newly proposed methods will be more apparent when considering complications typ-
ically encountered in macroeconometric modeling (e.g. evolving volatility, heterogeneous
variances for coefficients paths, unknown σε

σu
and a large Xt).
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A useful observation is that (1.1) can be written as the penalized regression problem

min
β1...βT

1
T

T

∑
t=1

(yt − Xtβt)
2

σ2
ε

+
1

KT

T

∑
t=1

‖βt − βt−1‖2

σ2
u

. (1.2)

This is merely an implication of the well-known fact that l2 regularization is equivalent
to opting for a standard normal prior on the penalized quantity (see, for instance sections
7.5-7.6 in Murphy 2012). Hence, model (1.3) implicitly poses βt − βt−1 ∼ N(0, σ2

u), which
is exactly what model (1.1) also does. Defining λ ≡ σ2

ε

σ2
u

1
K , the problem has the more familiar

look of

min
β1 ...βT

T

∑
t=1

(yt − Xtβt)
2 + λ

T

∑
t=1
‖βt − βt−1‖2. (1.3)

The sole hyperparameter of the model is λ and it can be tuned by cross-validation (CV).5

This model has a closed-form solution as an application of generalized ridge regression
(Hastie et al., 2015). In particular, it can be seen as the l2 norm version of the "Fused" Lasso
of Tibshirani et al. (2005) and embeds the economic assumption that coefficients evolve
slowly. However, as currently stated, solving directly (1.3) may prove unfeasible even for
models of medium size.
1.2.2. Getting a Ridge Regression by Reparametrization
The goal of this subsection is to rewrite the problem (1.3) as a ridge regression. Doing so
will prove extremely useful at the conceptual level, but also to alleviate the computational
burden dramatically. Related reparametrizations have been seldomly discussed in various
literatures. For instance, it is evoked in Tibshirani et al. (2015) as a way to estimate "fused"
Lasso via plain Lasso. Within to the time series realm, Koop (2003) discuss that a local-
level model can be rewritten as a plain Bayesian regression. More recently, Korobilis (2019)
uses it as a building block of his "message-passing" algorithm, and Goulet Coulombe et al.
(2020a) use derivations inspired by those below to implement regularized lag polynomials
in Machine Learning models. From now on, it is less tedious to use matrix notation. The
fused ridge problem reads as

min
β

(y−W β)′ (y−W β) + λβ′D′Dβ

5This definition of λ does not imply it decreases in K since σ2
u will typically decrease with K to avoid

overfitting.
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where D is the first difference operator. W = [diag(X1) . . . diag(XK)] is a T × KT
matrix. To make matters more visual, the simple case of K = 2 and T = 4 gives rise to

W =


X11 0 0 0 X21 0 0 0
0 X12 0 0 0 X22 0 0
0 0 X13 0 0 0 X23 0
0 0 0 X14 0 0 0 X24

 .

The first step is to reparametrize the problem by using the relationship βk = Cθk that we
have for all k regressors. C is a lower triangular matrix of ones (for the random walk case)
and I define θk = [uk β0,k]. For the simple case of one parameter and T = 4:

β0

β1

β2

β3

 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1




β0

u1

u2

u3


For the general case of K parameters, we have

β = Cθ, C ≡ IK ⊗ C

and θ is just stacking all the θk into one long vector of length KT. Note that the summation
matrix C could accommodate easily for a wide range of law of motions just by changing
summation weights. Actually, any process that can be rewritten (a priori) in terms of un-
correlated u’s could be used. For instance, AR models of arbitrary order and RW with
drifts would be straightforward to implement.6 Furthermore, one could use C2 in the ran-
dom walk setup and obtain smooth second derivatives, e.i. a local-level model. While it
clear that many more exotic configurations are only a C choice away, there is a clear advan-
tage to random walks-based processes: the corresponding C has no parameter to estimate.
If we wanted to consider an AR(1) process with a coefficient φ ∈ (0, 1], either a 2-step es-
timation procedure or cross-validating φ would be necessary. Thus, the ridge approach is
possible, whether βt’s are random walks or not.

Using the reparametrization β = Cθ, the fused ridge problem becomes

min
θ

(y−WCθ)′ (y−WCθ) + λθ′C′D′DCθ

and it is now clear what should be done. Let Z ≡ WC and use the fact that D = C−1 to
6In the latter case, it can be shown that one simply needs to add regressors t ∗ Xt to those implied by the

RW without drift, that is the Zt’s to be detailed later.
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obtain the desired ridge regression problem

min
θ

(y− Zθ)′ (y− Zθ) + λθ′θ. (1.4)

Again, for concreteness, the matrix Z = WC looks like

Z =


X11 0 0 0 X21 0 0 0
X12 X12 0 0 X22 X22 0 0
X13 X13 X13 0 X23 X23 X23 0
X14 X14 X14 X14 X24 X24 X24 X24


in the K = 2 and T = 4 case.7 The solution to the original problem is thus

β̂ = Cθ̂ = C(Z′Z + λIKT)
−1Z′y. (1.5)

This is really just a standard (very) high-dimensional Ridge regression.8 These derivations
are helpful to understand TVPs, which is arguably one of the most popular nonlinearity in
modern macroeconometrics. (1.5) is equivalent to that of a first-order smoothing splines es-
timator.9 More generally, the equivalence between Bayesian stochastic process estimation
and splines has been known since Kimeldorf and Wahba (1970). Following along, consid-
ering a local-level model for βt would yield second order smoothing splines. Clearly, ran-
dom walk TVPs and their derivatives can hardly be described as "more parametric" than
kernel-based approaches: splines methods are prominent within the nonparametric canon.
Furthermore, the basis expansion and associated penalty D′D in the original fused prob-
lem can be approximated by a very specific reproducing kernel (Dagum and Bianconcini,
2009b). This brings the one-step estimator in the direction of the kernel proposition of
Giraitis et al. (2018).

In other words, assuming a law of motion implies assuming implicitly a certain kernel. The
ridge approach makes clear that there is nothing special about random walks beyond that
it is just another way of doing a nonparametric regression. This new view of the problem
– in sync with the reality of implementation – allows dispensing with some theoretical

7The structure of Z’s echoes to Castle et al. (2015) "indicator-saturation" approach to detect location shifts in
the intercept via model selection tools. TVPs via RR first generalize the approach by interacting all individual
regressors with a stray of shifting indicators. Then, rather than selecting one or few of them (sparsity), they
are all kept in the model by constraining to incremental location shifts only via heavy ridge shrinkage (smooth
time variation).

8In this section, I assumed for simplicity that we wish to penalize equally each member of θ which is not
the case in practice. It is easy to see why starting values β0 should have different (smaller) penalty weights
and this will be relaxed as a special case of the general solution presented in section 1.2.4.

9Also, it has the flavor of Hoover et al. (1998) for time series rather than panel data.
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worries, like the one that a random walk parameter is not bounded, which are of little
empirical relevance.

At this point, the computational elephant is still in the room since the solution implies
inverting a KT × KT matrix. Avoiding this inversion is crucial; otherwise the procedure
will be limited to models of similar size to Primiceri (2005). Fortunately, there is no need
to invert that matrix.
1.2.3. Solving the Dual Problem
The goal of this subsection is to introduce a computationally tractable way of obtaining the
ridge estimator β̂ in (1.5). It is well known from the splines literature (Wahba, 1990) and
later generalized by Schölkopf et al. (2001) that for a θ̂ that solves problem (1.4), there exist
a α̂ ∈ IRT such that θ̂ = Z′α̂. Using this knowledge about the solution, we can replace θ in
(1.4) to obtain

min
α

(
y− ZZ′α

)′ (y− ZZ′α
)
+ λα′ZZ′α.

The solution to the original problem becomes

β̂ = CZ′α̂ = CZ′(ZZ′ + λIT)
−1y. (1.6)

When the number of observations is smaller than the number of regressors, the dual prob-
lem allows to obtain numerically identical estimates by inverting a smaller matrix of size T.
Since sample sizes for macroeconomic applications quite rarely exceed 700 observations
(US monthly data from the 1960s), the need to invert that matrix is not prohibitive. While
computational burden does still increase with K, it increases much slowly since the com-
plexity of matrix multiplication is now O(KT3) and O(T3) for matrix inversion. Solving
the primal problem, one would be facing O(K2T3) and O(K3T3) complexities respectively.
Concretely, solving the dual problem brings high-dimensional TVP models to be more fea-
sible than ever. Estimating a small TVP-VAR with T=300 with 6 lags and 5 variables takes
roughly 10 seconds on a standard computer. This includes hyperparameters optimization
by cross-validation, which is usually excluded in the standard MCMC methodology. How-
ever, the latter provides full Bayesian inference. A VAR(20) with the same configuration
takes less than 2 minutes. Section 1.3 reports detailed results on this.
1.2.4. Heterogenous Parameter and Residual Variances
For pedagogical purposes, previous sections considered the simpler case of Ωu = σ2

u IK

and no evolving volatility of residuals. I now generalize the solution (1.6) to allow for
heterogeneous σ2

uk
(a diagonal Ωu 6= σ2

u IK) and σ2
ε,t. The end product is 2SRR, this chapter’s

flagship model.
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New matrices must be introduced. First, we have the standard matrix of time-varying
residuals variance Ωε = diag([σ2

ε1
σ2

ε2
... σ2

εT
]). I assume in this section that both Ωε

and Ωu are given and will provide a data-driven way to obtain them later. Departing from
the homogeneous parameter variances assumption implies that the sole hyperparameter
λ must now be replaced by an enormous KT×KT diagonal matrix Ωu = Ωu⊗ IT which is
fortunately only used for mathematical derivations. For convenience, I split Z in two parts
so they can be penalized differently. Hence, the original Z ≡ [X Z−0]. The new primal
problem is

min
u,β0

(y− Xβ0 − Z−0u)′Ω−1
ε (y− Xβ0 − Z−0u) + u′Ω−1

u u + λ0β′0β0. (1.7)

For convenience, let the Ωθ matrix that stacks on the diagonal all the parameters prior
variances, which allow rewriting the problem in a more compact form

min
θ

(y− Zθ)′Ω−1
ε (y− Zθ) + θ′Ω−1

θ θ.

Using a GLS re-weighting scheme on observations and regressors, we get a "new" standard
primal ridge problem

min
θ̃

(
ỹ− Z̃θ̃

)′ (ỹ− Z̃θ̃
)
+ θ̃′θ̃.

where θ̃ = Ω
− 1

2
θ u, Z̃ = Ω−

1
2

ε ZΩ
1
2
θ and ỹ = Ω−

1
2

ε y. Solving this problem by the "dual path"
and rewriting it in terms of original matrices gives the general formula

θ̂ = ΩθZ′(ZΩθZ′ + Ωε)
−1y. (1.8)

Equation (1.8) contains all the relevant information to back out the parameters paths, pro-
vided some estimates of matrices Ωθ and Ωε.10

Implementation

The solution (1.8) takes Ωθ and Ωε as given. In this section, I provide a simple adaptive
algorithm to get the heterogeneous variances model estimates empirically. Multi-step ap-
proaches to obtain the obtain analogs of Ωθ and Ωε have been proposed in Ito et al. (2017)
and Giraitis et al. (2014). It is conceptually convenient to extent the original penalized re-
gression (1.3) for heterogeneous variances of parameters and residuals. By bringing back

10This two-step procedure is partly reminiscent of Ito et al. (2014) and Ito et al. (2017)’s non-Bayesian Gen-
eralized Least Squares (GLS) estimator, where a two-step strategy is also proposed for reasons similar to the
above. Their approach could have a ridge regression interpretation with certain tuning parameters fixed.
However, the absence of tuning leads to overfitting and the GLS view cannot handle bigger models because
the implied matrices sizes are even worse than that of the primal ridge problem discussed earlier.
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to σε and σu their respective subscripts and moving σεt to the penalty side of the program,
ones obtains

min
β1 ...βT

T

∑
t=1

(yt − Xtβt)
2 +

K

∑
k=1

T

∑
t=1

λtλk‖βk,t − βk,t−1‖2. (1.9)

It is clear from this perspective that neglecting time variation in the variance of residuals
can be understood as forcing homogeneity of tuning parameters. Indeed, evolving resid-
uals volatility, when seen as λt, implies a time-varying level of smoothness. Neglecting it
does not imply biased estimates, but inefficient ones. In other words, fixing λt = λ ∀t pre-
vents from using extra regularization to reduce the estimation variance of βt during high
volatility episodes. Conversely, this means low volatility periods may suffer from over-
regularized estimates. Fortunately, dealing with heterogeneous regularization is exactly
the motivation behind the panoply of "adaptive" algorithms tuning hyperparameters in a
data-driven way – usually as a special case of a broader EM algorithm (Murphy, 2012). Al-
gorithm 1 follows along this perspective and proposes a two-step ridge regression (2SRR)
which uses a first stage plain RR to gather the necessary hyperparameters in one swift
blow.

Algorithm 1 2SRR

1: Use the homogeneous variances approximation. That is, get θ̂1 with (1.6).11 λ is obtained by
CV.

2: Obtain σ̂2
ε,t by fitting a volatility model to the residuals from step 1.12 Normalize σ̂2

ε,t’s mean to
1.

3: Obtain σ̂2
u,k = 1

T ∑T
τ=1û2

k,τ for k = 1, ..., K. Normalize the new vector to have its previous mean
(1/λ).

4: Stack these into matrices Ωu and Ωε. Use solution (1.8) to rerun CV and get θ̂2, the final
estimator.13

While reweighting observations is nothing new from an econometric perspective, reweight-
ing variables is less common since its effect is void unless there is a ridge penalty. 2SRR
(and eventually GLRR in section 1.2.5) makes use of adaptive (or data-driven) shrinkage.
Adaptive prior tuning has a long tradition in Bayesian hierarchical modeling (Murphy,
2012) but the term itself came to be associated with the Adaptive Lasso of Zou (2006). To
modulate the penalty’s strength in Lasso, the latter suggest weights based on preliminary
OLS (or Ridge) estimates. Those, taken as given, may be contaminated with a considerable
amount of noise, especially when the regression problem is high-dimensional (like the one
considered here). Thankfully, adaptive weights in 2SRR have a natural group structure,
which drastically improves their accuracy by the simple power of averaging.
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Choosing λ

Derivations from previous sections rely on a given λ. This section explains how to obtain
the amount of time variation by CV (as alluded to in Algorithm 1), and how that new
strategy compares to more traditional approaches to the problem.

Within the older literature where TVPs were obtained via classical methods, estimating the
parameters variances (σ2

u in my notation) made MLE’s life particularly difficult (Stock and
Watson, 1998c; Boivin, 2005). In the RR paradigm, with σ2

u expressed through λ, it is ap-
parent as to why those issues arose in the first place: nobody would directly maximize an
in-sample likelihood to obtain ridge’s λ. In the Bayesian TVP-VAR literature, it is common
to implicitly fix the influential parameter to a value loosely inspired by Primiceri (2005).
Some consider a few and argue ex-post about their relative plausibility (D’Agostino et al.,
2013). Within this paradigm or that of RR, it is known that a high λ (or its equivalent)
guarantees well-behaved paths but also shrinks βk to a horizontal line. As a result, one
is often left wondering whether the recurrent finding of not so much time variation is not
merely a reflection of the prior (and its absence of tuning) doing all the talking.

More recently, Amir-Ahmadi et al. (2018) propose to estimate hyperparameters within the
whole Bayesian procedure and find that doing so can strongly improve forecasting results.
This suggests that opting for a data-driven choice of λ is the preferable strategy. Nonethe-
less, CV is not carried without its own theoretical backing. Golub et al. (1979)’s Theorem
2 shows that the λ minimizing the expected generalization error as calculated by general-
ized CV is equal to the "true" ratio of the parameters prior variance and that of residuals. In
the case of TVPs, this is a multiple of σε

σu
, the ratio guiding the amount of time variation in

the coefficients. Of course, the specific elements of this ratio are only of interest if one truly
believes random walks are being estimated (in contrast to simply being a tool for non-
parametric estimation as discussed in section 1.2.3). Also, the ridge approach makes clear
that only the ratio influences out-of-sample performance rather than the denominator or
numerator separately, and should be the focus of tuning so to optimally balance bias and
variance. Thus, by seeing the TVP problem as the high-dimensional regression it really
is, one avoids the "pile-up" problem inherent to in-sample maximum likelihood estimation
(Grant and Chan, 2017) and the usual necessity of manually selecting a highly influential
parameter in the Bayesian paradigm.

I use k-fold CV for convenience, but anything could be used – conditional on some amount
of thinking about how to make it computationally tractable. This is also what standard RR
implementations use, like glmnet in R. A concern is that k-fold CV might be overopti-
mistic with time series data. Fortunately, Bergmeir et al. (2018) show that without residual
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autocorrelation, k-fold CV is consistent. Assuming models under consideration include
enough lags of yt, this condition will be satisfied for one-step ahead forecasts. Moreover,
Goulet Coulombe et al. (2019) report that macroeconomic forecasting performance can of-
ten be improved by using k-fold CV rather than a CV procedure that mimics the recursive
pseudo-out-of-sample experiment.

One last question to address is that of the hypothesized behavior of λ as a function of
T and K. In a standard ridge context (i.e., with constant parameters) where the number
of regressors is fixed as the sample increases, λ → 0 as T grows and we get back the
OLS solution. This is not gonna happen in the TVP setup since the effective number of
regressors is KT, and it clearly grows as fast as T. When it comes to K, λ will tend to
increase with it simply because a larger model requires more regularization. This is a
feature of the model, not the ridge estimation strategy. But the latter helps make it crystal
clear. This means there is little hope to find a lot of time variation in a large model –
provided it is tuned to predict well.

Credible Regions

In various applications, quantifying uncertainty of β is useful. This is possible for 2SRR by
leveraging the link between ridge and a plain Bayesian regression (Murphy, 2012). In the
homoscedastic case, we need to obtain

Vβ = C(Z′Z + Ωθ
−1)−1C′σ̂2

ε .

This is precisely the large matrix we were avoiding to invert earlier. However, this is much
less of an issue here because we only have to do it once at the very end of the procedure.14

Since heterogeneous volatility is incorporated in a GLS fashion and taken as given in the
2nd stage, the bands for the heteroscedastic case can be obtained by using the formula
above with the properly re-weighted data matrix Z.

In the simple case where Ωu = σ2
u IK and Ωε = σ2

ε IT, there is a clear Bayesian interpre-
tation allowing the use of the posterior variance formula for linear Bayesian regression.
However, it treats the cross-validated λ as known. This also means these credible regions
are conditional on σ2

ε . In a similar line of thought, I treat the hyperparameters inherent to
2SRR as given when computing the bands. That is, I regard steps 1–3 of the algorithm as
a practical approximation to a full-blown cross-validation operation on both diagonals of
Ωu and Ωε matrices.

14To compute the posterior mean, only one inversion is needed. However, to cross-validating λ requires a
number of inversions that is the multiple of the number of folds (usually 5) and the size of potential λ’s grid.
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From Univariate to Multivariate

Many applications of TVPs are multivariate and derivations so far have focused on the
univariate case. This section details the modifications necessary for a multivariate 2SRR.

Since both Ωu and Ωε are equation-specific, we must use (1.8) for each y. However, all
estimation procedures proposed in this chapter have the homogeneous case of section 1.2.3
as a first step. This is usually the longer step since it is where cross-validation is done.
Hence, it is particularly desirable not to have computations of the first step scaling up in
M, the number of variables in the multivariate system. Thankfully, in the plain ridge case,
we can obtain all parameters of the system in one swift blow, by stacking all y’s into Y (a
T ×M matrix) and computing

Θ̂ = Z′(ZZ′ + λIT)
−1Y = Pλ

ZY . (1.10)

This is precisely the approach that will be used as a first step for any multivariate exten-
sion. Of course, this works because the multivariate model has the same regressor matrix
for each equation (like VARs and LPs). In this common case, Pλ

Z is the same for all equa-
tions and cross-validation still implies inverting (ZZ′ + λIT) as many times as we have
candidates for λ. That is, even if we wish to have a different λ for each equation in the first
step, computing time does not increase in M, except for matrix multiplication operations
which are much less demanding.15

When entering multivariate territory, modeling the residuals covariances – a necessary
input to structural VARs (but not forecasting) – arises as an additional task. The number
of TVPs entering the Ωε matrix can quickly explode. There are M(1+M)

2 of them. Here,
I quickly describe a workaround for the computational issues this could engender. Let
η̃t = vec∗(εtεt

′) where ∗means only the non-redundant covariances are kept. Let η̃ be the
T × M(1+M)

2 matrix that binds them all together. We can get the whole set of paths η̂ with

η̂ = (IT + ϕD′D)−1η̃ (1.11)

where ϕ is a smoothness hyperparameter (just like λ) and D is the matrix difference op-
erator described above. In this new case, CV can be conducted very fast even if ϕ differs
by elements of η̂. Of course, if ϕ are heterogeneous, we may have to invert M(1+M)

2 times
a T × T matrix. While this may originally appear like some form of empirical Waterloo, it
is not. In practice, one would reasonably consider a grid for ϕ’s that has between 10 and

15Precisely, cross-validation implies calculating # of folds × # of λ’s the Pλ
Z. Then, these matrices can be

used for the tuning of every m equation, which is precisely why the computational burden only very mildly
increases in M.
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20 elements. By forming η̃’s subgroups that share the same ϕ, one has to invert at most 20
matrices.
1.2.5. Extensions
Iterating Ridge to Obtain Sparse TVPs

Looking at the 2SRR’s algorithm, one may rightfully aks: "why not iterate it further?" This
section provides a way to iterate it so that not only it fine tunes Ωu but also set some of
its elements to zero. That is, some parameters will vary and some will not. Applications
in the literature often suggest that the standard TVP model may be wildly inefficient. A
quick look at some reported TVP plots (D’Agostino et al., 2013) suggests there are potential
efficiency gains waiting for harvest by Sparse TVPs. Those have already been proposed in
the standard Bayesian MCMC paradigm most notably by Bitto and Frühwirth-Schnatter
(2018) and Belmonte et al. (2014). However, such an extension would be more productive
if it were implemented in a framework which easily allow for the computation of the very
models that could benefit most from it — the bigger ones.

The new primal problem is

min
u

(y− Xβ0 − Z−0u)′Ω−1
ε (y− Xβ0 − Z−0u) + u′(Ω−1

u ⊗ IT)u + ξtr(Ω
1
2
u ), (1.12)

which is just adding the penalty ξtr(Ω
1
2
u ) to (1.7).16 In the RR paradigm, it is quite straight-

forward to implement: it corresponds to a specific form of Group Lasso — a Group Lasso
ridge regression (GLRR). Mechanically, making a parameter constant amounts to drop-
ping the group of regressors Zk corresponding to the basis expansion of Xk making it
time-varying. That is, for this "group", λk is set to infinity. The proposed implementation,
formalized by Algorithm 2, amounts to iterating ridge regressions and updating penalty
weights in a particular way. This estimation approach is inspired by Grandvalet (1998)’s
proposition of using Adaptive Ridge to compute the Lasso solution. The insight has since
been recuperated by Frommlet and Nuel (2016) and Liu and Li (2014) to implement l0 reg-
ularization in a way that makes computations tractable. In particular, Liu and Li (2014)
show that such algorithm has three desirable properties. It converges to a unique mini-
mum, it is consistent and has the oracle property. GLRR goes back to implementing the
l1 norm by Adaptive Ridge as in Grandvalet (1998) but extend it to do Group Lasso and
add a Ridge penalty within selected groups. Many derivations details are omitted from
the main text and can be found in Appendix 1.7.1.

As we will see in simulations, iterative weights can help in many situations, but not all.

16The properties of such a program are already known in the Splines/non-parametrics literature because it
corresponds to a special case of the Component Selection and Shrinkage Operator (COSSO) of Lin et al. (2006)
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Algorithm 2 GLRR

1: Initiate the procedure with θ̂1 or θ̂2 from Algorithm 1. Keep the sequence of σ
2,(1)
uk ’s and the

chosen λ(1). Set λ̃ = λ(1). Choose a value for α. In applications, it is set to 0.5.
2: Iterate the following until convergence of λuk ’s. For iteration i:

1. Use solution (1.8) to get θ̂
(i)
3 .

2. Obtain σ̂
2,(i)
u,k the usual way and normalize them to have mean of 1. Generate next step’s

weights using

λ
(i+1)
uk ← λ̃

[
α

1

σ
2,(1)
uk

+ (1− α)
1

σ
(i)
uk

]

on the diagonal of Ω−1,(i)
u . The formula is derived in Appendix 1.7.1.

3. Obtain σ̂2
ε,t by fitting a volatility model to the residuals from step 1. Normalize σ̂2

ε,t’s

mean to 1 and input it to Ω(i)
ε .

3: Use solution (1.8) with the converged Ωε and Ωu to get θ̂3, the final estimator.17

A relevant empirical example of where it can help in discovering that only the constant is
time-varying, an important and frequently studied special case (Götz and Hauzenberger,
2018). One where it can fail is by shutting down many coefficients that were varying only
slightly, but jointly. An algorithm tailored for the latter situation is the subject of the next
subsection.

Reduced Rank Restrictions

As the TVP-VAR or -LPs increase in size, more shrinkage is needed to keep prediction vari-
ance in check. Unsettlingly, chronic abuse of the smoothness prior delivers the smoothest
TVP ever: a time-invariant parameter. Looking at this problem through the lenses of RR
makes this crystal clear. The penalty function is, essentially, a "time-variation" budget
constraint. Thus, when estimating bigger models, we may want to reach for more sophis-
ticated points on the budget line. This subsection explores an extension implementing
reduced-rank restrictions – another recent proposition in the TVP literature.

A frequent empirical observation, dating back to Cogley and Sargent (2005), is that βt’s
can be spanned very well by a handful of latent factors. de Wind and Gambetti (2014), Ste-
vanovic (2016) and Chan and Eisenstat (2018) exploit this that directly by implementing
directly a factor structure within the model. It is clear that dimensionality can be greatly
reduced if we only track a few latent states and impose that evolving parameters are lin-
ear combinations of those, Dense TVPs. Additionally, it can be combined with the idea of
section 1.2.5 that not all parameters vary to get sparse and dense TVPs via a Generalized
Reduced Rank Ridge Regression (GRRRR). "Generalized" comes from the fact that what will
be proposed here is somewhat more general than what Mukherjee and Zhu (2011) have
coined as Reduced Rank Ridge Regression (RRRR) – or even the classic Anderson (1951)
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Reduced Rank regression. Precisely, the model under consideration here is univariate. The
reduced rank restrictions will be applied to a matrix U = vec−1(u) where u are the coeffi-
cients from an univariate ridge regression.18

The measurement equation from a TVP model can be written more generally as

y = Xβ0 + Zvec(U) + ε (1.13)

U = AS (1.14)

where β0 are still the starting values for the coefficients and A is a K× K matrix and S is a
K × T matrix. For identification’s sake, the rows of S are imposed to a have a variance of
one. The A matrix scales and/or transforms the few (potentially uncorrelated) components
of S. The homogeneous variance model of section (1.2.1) correspond to A = 1√

λ
IK and S is

just a matrix of the normalized u’s. The heterogeneous variances model, as implemented

by 2SRR, corresponds to A = Ω
1
2
u where Ωu is a diagonal matrix with (possibly) distinct

entries. Sparse TVPs discussed earlier consists in setting some diagonal elements of A to
zero.

Overfitting complementarily can be dealt with by reducing the rank of the generic A and S.
Thus, we can have A = Λ being K× r and S = F being r× T, which, with some additional
orthogonality restrictions, corresponds conceptually and notationally to traditional factor
model. The new primal problem is

min
Λ,F,β0

(y− Xβ0 − Zvec(ΛF))′Ω−1
ε (y− Xβ0 − Zvec(ΛF)) + f ′ f + ξ‖l‖1 (1.15)

where f = vec(F) and l = vec(Λ).19 This is neither Lasso or Ridge. However, there is still
a way to implement an iterative procedure sharing a resemblance to the updates needed
to estimate a regularized factor model as in Bai and Ng (2017). First, note these two linear
algebra facts:

vec(ΛF) = (IT ⊗Λ) f (1.16)

vec(ΛF) = (F′ ⊗ IK)l. (1.17)

These two identities are of great help: they allow for the problem to be split in two sim-

18This can be done because u has an obvious block structure. It has two dimensions, K and T, that we can
use to create a matrix. Note that the principle could be applied (perhaps in a less compelling way) to a constant
parameter VAR with many lags where the dimensions of the matrix would be M and P.

19To make the exposition less heavy, I assume throughout this section that Ωε is given and that β0 are not
penalized in any way. Everything below goes through if we drop these simplifications and adjust algorithms
accordingly.
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ple linear penalized regressions. The solution to (1.15) can be obtained by the following
maximization-maximization procedure.

1. Given Λ, we can solve

min
f ,β0

(
y− Xβ0 − ZΛ f

)′
Ω−1

ε

(
y− Xβ0 − ZΛ f

)
+ λ f ′ f (1.18)

where ZΛ = Z(IT ⊗Λ). This is just RR.

2. Given F, we can get the solution to

min
l,β0

(
y− Xβ0 − ZF l

)′
Ω−1

ε

(
y− Xβ0 − ZF l

)
+ ξ‖l‖1 (1.19)

where ZF = Z(F′ ⊗ IK). This is just Lasso.20

A first observation is that this problem is biconvex. A second one is that at each step, the
objective function is further minimized and the objective is bounded from below. Hence,
alternating these steps generate a monotonic sequence that converges to a (local) minima.21

In terms of implementation, one must be carefully imposing the identification restriction
of the factor model at all times. Algorithm 3 summarizes this and other practical aspects.

Algorithm 3 GRRRR

1: Get θ̂2 from Algorithm 1 or plain RR. Estimate F(1) and Λ(1) by fitting a factor model to the u’s.
Choose r the number of factor using a citerion of choice.22

2: Iterate the following until convergence. For iteration i > 1:
1. Run (1.18) to get F(i) given Λ(i−1). Orthogonalize factors.
2. Run (1.19) to get Λ(i) given F(i). Orthogonalize loadings.
3. Obtain σ̂2

ε,t by fitting a volatility model to (current) residuals. Normalize σ̂2
ε,t’s mean to 1

and input it to Ω(i)
ε .

It is noteworthy that doing Lasso on the loadings Λ operates a fusion of sparse and dense
TVPs. If a parameter βk does not "load" on any of the factors (because the vector Λk is
shrunk perfectly to 0), we effectively get a constant βk. In the resulting model, a given
parameter can vary or not, and when it does, it shares a common structure with fellow
parameters also selected as time-varying.

In Appendix 1.7.2, I present the multivariate extension to GRRRR and discuss its connec-
tion to Kelly et al. (2017)’s Instrumented PCA estimator for asset pricing models. Further,

20This could also be a RR if we wished to implement dense parameters only. In practice, elastic net with
α = 0.5 is the wiser choice (vs Lasso) given the strong correlation between the generated predictors.

21The other legitimate question is whether this algorithm converges to the solution of 1.15. It turns out to be
a modification of Tibshirani et al. (2015) (Chapter 4) alternative algorithm for Lin et al. (2006)’s COSSO. The
additional steps are orthogonalization of factors and loadings as in Bai and Ng (2017).
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in Appendix 1.7.3, I write the GRRRR updates using summation notation for the simpler
r = 1 case, which presents an obvious pedagogical advantage over vec and Kronecker
products operations.

1.3. Simulations
The simulation study investigates how accurately the different estimators proposed in this
chapter can recover the true parameters path. Moreover, computational times will be re-
ported and discussed for various specifications.

I consider three numbers of observations T ∈ {150, 300, 600}. Most of the attention will be
dedicated to T = 300 since it is roughly the number of US quarterly observations we will
have 15 years from now. The size of the original regressor matrix X is K ∈ {6, 20, 100} and
the first regressor in each is the first lag of y. Figure 4 display the 5 types of parameters path
fi that will serve as basic material: cosine, quadratic trend, discrete break, a pure random
walk and a linear trend with a break. f1, f2 and f4 "fit" relatively well with the prior that
coefficients evolve smoothly whereas f3 and f5 can pose more difficulties. In those latter
situations, TVP models are expected to underperform.23 The design for simulations S1, S2,
S3 and S4 can be summarized in a less cryptic fashion as

S1: βk,t follow the red line or is time invariant

S2: βk,t follow the yellow line, the negative of it or is time invariant

S3: βk,t is either the green line or the red one in equal proportions, otherwise time-
invariant.

S4: βk,t is a random mixture (loadings are drawn from a normal distribution) from the
red, purple and blue lines. Some coefficients are also time-invariant.

The considered proportions of TVPs within the K parameters are K∗/K ∈ {0.2, 0.5, 1}. For-
mally, we have

βS1
k,t = (−1)k I(k < K∗/K) f1,t + I(k > K∗/K)βk,0

βS2
k,t = (−1)k I(k < K∗/K) f2,t + I(k > K∗/K)βk,0

βS3
k,t = (−1)k I(k < K∗/2K) f3,t + (−1)k I(K∗/2K < k < K∗/K) f1,t + I(k > K∗/K)βk,0.

βS4
k,t = I(k < K∗/K) ∑

j∈{1,4,5}
lj,k f j,t , lj,t ∼ N(0, 1).

The scale of coefficients is manually adjusted to prevent explosive behavior and/or over-
whelmingly high R2’s. The most important transformation in that regard is a min-max
normalization on the coefficient of yt−1 to prevent unit/explosive roots or simply persis-
tence levels that would drive the true R2 above its targeted range. Regarding the latter, I

23This partly motivates the creation of Generalized TVPs via Random Forest in Goulet Coulombe (2020b).

18



consider four different types of noise process. Three of them are homoscedastic and have
a {Low, Medium, High} noise level. Those are calibrated so that R2’s are around 0.8, 0.5
and 0.3 for low, medium and high respectively. The last two noise processes are SV, which
is the predominant departure from the normality of εt in applied macroeconomics. For
better comparison with time-invariant volatility cases, those are "manually" forced (by a
min-max normalization) to oscillate between a predetermined minimum and maximum.
The first SV process is constrained within the Low and Medium noise level bounds. For
the second, it is Low and High, making the volatility spread much higher than in the first
SV process case.

Four estimators are considered: the standard TVP-BVAR with SV24, the two-step Ridge
Regression (2SRR), the Group Lasso Ridge Regression (GLRR) and the Generalized Re-
duced Rank Ridge Regression (GRRRR).25 TVP-BVAR results are only obtained for K = 6
for obvious computational reasons. Performance is assessed using the mean absolute error
(MAE) with respect to the true path. I then take the mean across 100 simulations for each
setup. To make this multidimensional notation more compact, let us define the permu-
tation J = {K, K∗/K, σε, Si}. I consider simulations s = 1, ..., 50 for all J ’s. Formally, for
model m and setup J , the reported performance metric is 1

50 ∑50
s=1 MAEs,m

J where

MAEs,m
J =

1
K

1
T

K

∑
k=1

T

∑
t=1
|βJ ,s

k,t − β̂J ,s,m
k,t |. (1.20)

1.3.1. Results
The results for T = 300 are in Tables 2 to 5. With these simulations, I am mostly interested
in verifying two things. First, I want to verify that 2SRR’s performance is comparable to
that of the BVAR for models’ size that can be handled by the latter. Second, I want to
demonstrate that additional shrinkage can help under DGPs that more of less fit the prior
of reduced-rank and/or sparsity. To make the investigation of these two points visually
easier by looking at the tables, the lowest MAE out of BVAR/2SRR for each setup is in blue
while that of the best one out of all algorithms is in bold.

Overall, results for 2SRR and the BVAR are very similar and their relative performance
depends on the specific setup. These two models are interesting to compare because they
share the same prior for TVPs (no additional shrinkage) but address evolving residuals
volatility differently. Namely, the BVAR models SV directly within the MCMC procedure

24For the TVP-BVAR, I use the R package by Fabian Krueger that implements Primiceri (2005)’s procedure
(with the Del Negro and Primiceri (2015) correction), available here.

25The maximal number of factors for GRRRR is set to 5 and the chosen number of factors is updated adap-
tively in the EM procedure according to a share of variance criteria.
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(a) By noise process (b) By DGP

Figure 1: This figures summarizes tables 2 to 5 results comparing 2SRR and the BVAR when K = 6 and
T = 300. The plotted quantity is the distribution of MAEs,2SRR

J /MAEs,BVAR
J for different subsets of interest.

whereas 2SRR is a two-step GLS-like approach using a GARCH(1,1) model of the first
step’s residuals. Figure 1 summarizes results of the 2SRR/BVAR comparison by reporting
boxplots showcasing the distribution of relative MAEs (2SRR/BVAR) for different subsets.
Overall, 2SRR does marginally better in almost all cases. A lower noise level seems to help
its cause. It is plausible that cross-validating λ as implemented by 2SRR plays a role (BVAR
uses default values).26

In Table 2, where the DGP is the rather friendly cosine-based TVPs, it is observed that
the BVAR will usually outperform 2SRR by a thin margin when the level of noise is high.
The reverse is observed for low noise environment and results are mixed for the medium
one. Results for the SV cases will the subject of its own discussion later. For K = 6, GLRR
will marginally improve on 2SRR for most setups, especially those where 2SRR is already
better than BVAR. In higher dimensions (K = 20 or K = 100), GLRR constantly improves
on 2SRR (albeit minimally) whereas GRRRR can provide important gains (see the K∗/K = 1
block for instance) but is more vulnerable in the high noise environment.

In Table 3, where the DGP is the antagonistic structural break, 2SRR is clearly performing
better than the BVAR, providing a smaller average MAE in 12 out of 15 cases for K = 6.
Still for the small dimensional case, it is observed that GLRR can further reduce the MAE
— albeit by a very small amount — in many instances. The same is true for GRRRR when
all parameters vary (K∗/K = 1). For GRRRR, this observation additionally extends to K =

26Replacing the absolute distance by the squared distance in (1.20) produces similar looking boxplots as in
Figure 1, with wider dispersion but a near-identical ranking of methods by simulations and noise processes.
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Table 1: Average Computational Time in Seconds

T = 150 T = 300 T = 600
K = 6 K = 20 K = 100 K = 6 K = 20 K = 100 K = 6 K = 20 K = 100

BVAR 219.3 – – 513.7 – – 1105.1 – –
2SRR 0.3 0.9 2.7 1.0 3.1 12.4 4.8 14.1 69.5
GLRR 0.3 1.2 3.7 1.3 4.1 17.0 6.9 20.9 99.2
GRRRR 2.4 5.1 22.1 4.5 6.9 42.9 14.4 20.5 98.9

Notes: The average is taken over DGPs’s, K∗/K = 1, noise processes, and all 100 runs. For all ∼RR models,
this includes tuning cross-validating λ.

20, an environment where it is expected to thrive. Nonetheless, for setups where only a
fraction of parameters vary, 2SRR and GLRR are the best alternatives for all K’s.

In Table 4, where the DGP is a mix of trending coefficients and cosine ones, Table 4 reports
very similar results to that of Simulation 1. 2SRR is better than BVAR except in the high
noise setups, where the latter has a minor advantage. GLRR often marginally improves
upon 2SRR whereas GRRRR’s edge is more visible in low-noise and high-dimensional
environments — factors being more precisely estimated with a large cross-section.

For the simulation in Table 5, a sophisticated mixture of TVP-friendly and -unfriendly
parameters paths, BVAR does a better job than 2SRR for 8 out of 15 cases. The gains are, as
before, quantitatively small. When 2SRR does better, gains are also negligible, suggesting
that BVAR and 2SRR provide very similar results in this environment. When it comes
to higher-dimensional setups (K = 20 or K = 100), GLRR emerges as the clear better
option with (now familiar) marginal improvements with respect to 2SRR. This recurrent
observation is potentially due to the iterative process producing a more precise Ω̂u when
σ2

uk
’s are heterogeneous whether sparsity is involved or not.

The results for T = 150 and T = 600 are in Tables 6 to 13. When T is reduced from 300
to 150, the performance of 2SRR relative to that of BVAR remains largely unchanged: both
report very similar results. When bumping T to 600, overall performance of all estimators
improves, but not by a gigantic leap. This is, of course, due to the fact that increasing T
also brings up the number of effective regressors. BVAR has a small edge on Simulation 1
in Table 10 whereas 2SRR wins marginally for the more complicated Simulation 4 (Table
13). What is most noticeable from those simulations with a larger T is how much more
frequently GLRR and especially GRRRR are preferred, especially in the medium- and high-
dimensional cases. For instance, for the Cosine DGP (S1) with K ∈ {20, 100}, GRRRR
almost always deliver the lowest MAE, and sometimes by good margins (e.g., {S1, K∗/K =

1, σε = Low} for both K’s). Similar behavior is observed for S3 in almost all cases of K =

20. This noteworthy amelioration of GRRRR is intuitively attributable to factor loadings
being more precisely estimated with a growing T. Thus, unlike 2SRR whose performance
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is largely invariant to T by model design, algorithms incorporating more sophisticated
shrinkage schemes may benefit from larger samples.

A pattern emerges across the four simulations: when SV is built in the DGP (σε,t in tables),
2SRR either performs better or deliver roughly equivalent results to that of the BVAR. In-
deed, with T = 300, for 17 out of 24 setups with SV-infused DGPs, 2SRR supplants BVAR.
The wedge is sometimes small ({S1, K∗/K = 0.2, SV Low-Med},{S4, K∗/K = 1, both SV}),
sometimes large ({S1, K∗/K = 1, SV Low-High},{S2, K∗/K = 0.5, both SV}). However, it fair
to say that small gaps between 2SRR and BVAR performances are the norm rather than
the exception. Nonetheless, these results suggest that 2SRR is not merely a suboptimal
approximation to the BVAR in the wake of computational adversity. It is a viable statistical
alternative with the additional benefit of being easy to compute and to tune.

Speaking of computations, Table 1 reports how computational time varies in K and T, and
how 2SRR compares to a standard BVAR implementation. When T is 300 and K is 6, 2SRR
takes one second while BVAR takes 513 seconds. When T increases to 600, BVAR takes
over 1 000 seconds whereas 2SRR takes less than 5. T = 300 with K = 300 can be seen as
a typical high-dimensional case. It takes 13 seconds to compute (and tune) 2SRRR. When
T is reduced to 150, high-dimensional 2SRR runs in less than 3 seconds on average. Only
when both T and K gets very large (by traditional macro data sets standards) do things
become harder with 2SRR taking 69.5 seconds on average. By construction, GLRR takes
marginally longer than 2SRR. Finally, by relying on an EM algorithm, GRRRR inevitably
takes longer, yet remains highly manageable for very large models with many observations
– taking a bit over 100 seconds.

1.4. Forecasting
In this section, I present results for a pseudo-out-of-sample forecasting experiment at the
quarterly frequency using the dataset FRED-QD (McCracken and Ng, 2020). The latter
is publicly available at the Federal Reserve of St-Louis’s web site and contains 248 US
macroeconomic and financial aggregates observed from 1960Q1. The forecasting targets
are real GDP, Unemployment Rate (UR), CPI Inflation (INF), 1-Year Treasury Constant
Maturity Rate (IR) and the difference between 10-year Treasury Constant Maturity rate and
Federal funds rate (SPREAD). These series are representative macroeconomic indicators of
the US economy which is based on Goulet Coulombe et al. (2019) exercise for many ML
models, itself based on ? and a whole literature of extensive horse races in the spirit of
Stock and Watson (1998a). The series transformations to induce stationarity for predictors
are indicated in McCracken and Ng (2020). For forecasting targets, GDP, CPI and UR are
considered I(1) and are first-differenced. For the first two, the natural logarithm is applied
before differencing. IR and SPREAD are kept in "levels". Forecasting horizons are 1, 2, and
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4 quarters. For variables in first differences (GDP, UR and CPI), average growth rates are
targeted for horizons 2 and 4.

The pseudo-out-of-sample period starts in 2003Q1 and ends 2014Q4. I use expanding win-
dow estimation from 1961Q3. Models are estimated and tuned at each step. I use direct
forecasts, meaning that ŷt+h is obtained by fitting the model directly to yt+h rather than
iterating one-step ahead forecasts. Following standard practice in the literature, I evalu-
ate the quality of point forecasts using the root Mean Square Prediction Error (MSPE). For
the out-of-sample (OOS) forecasted values at time t of variable v made h steps ahead, I
compute

RMSPEv,h,m =

√
1

#OOS ∑
t∈OOS

(yv
t − ŷv,h,m

t−h )2.

The standard Diebold and Mariano (2002) (DM) test procedure is used to compare the
predictive accuracy of each model against the reference AR(2) model. RMSPE is the most
natural loss function given that all models are trained to minimize the squared loss in-
sample.

Three types of TVPs will be implemented: 2SRR (section 1.2.4), GLRR (section 1.2.5), GR-
RRR (section 1.2.5). I consider augmenting four standard models with different method-
ologies proposed in this chapter. The first will be an AR with 2 lags. The second is the
well-known Stock and Watson (2002) ARDI (Autoregressive Diffusion Index) with 2 fac-
tors and 2 lags for both the dependent variable and the factors. The third is a VAR(5) with
2 lags and the system is composed of the 5 forecasted series. Finally, I consider as a fourth
model a VAR(20) with 2 lags in the spirit of Bańbura et al. (2010)’s medium VAR. Thus,
there is a total of 4× 4 = 16 models considered in the exercise. The BVAR used in section
1.3 is left out for computational reasons — models must be re-estimated every quarter for
each target. Moreover, the focus of this section is rather single equation direct (as opposed
to iterated) forecasting.

The first three constant coefficients models are estimated by OLS, which is standard prac-
tice. Since the constant parameters VAR(20) has 41 coefficients and around 200 obser-
vations, it is estimated with a ridge regression. Potential outliers are dealt with as in
Goulet Coulombe et al. (2019) for Machine Learning models. If the forecasted values are
outside of [ȳ + 2 ∗min(y− ȳ), ȳ + 2 ∗max(y− ȳ)], the forecast is discarded in favor of the
constant parameters forecast.
1.4.1. Results
I report two sets of results. Table 14 corresponds exactly to what has been described before-
hand. Table 15 gathers results where TVPs have been additionally shrunk to their constant

23



parameters counterparts by means of model averaging with equal weights. The virtues of
this Half & Half strategy are two-fold. First, k-fold CV can be over-optimistic for horizons
h>1 because of imminent serial correlation. Second, k-fold CV ranks potential λ’s using
the whole sample, whereas in the case of "forecasting", prediction always occurs at the
boundary of the implicit kernel. In that region, the variance is mechanically higher and
ensuing predictions could benefit from extra shrinkage. Shrinking to OLS in this crude
and transparent fashion is a natural way to attempt getting even better forecasts.

(a) Inflation (h = 1) (b) Inflation (h = 4)

(c) Interest Rate (h = 1) (d) Interest Rate (h = 4)

Figure 2: A subset of RMSPEv,h,m/RMSPEv,h,Plain AR(2)’s (from Tables 14 and 15) for forecasting targets
usually associated with the need for time variation. Blue is the benchmark AR with constant coefficients.
Darker green means that the competing forecast rejects the null of a Diebold-Mariano test at least at the 10%
level (with respect to the benchmark).

Overall, results are in line with evidence previously reported in the TVP literature: very
limited improvements are observed for real activity variables (GDP, UR) whereas substan-
tial gains are reported for INF and IR. For the latter, allowing for time variation in either
AR or a compact factor model (ARDI) generate very competitive forecasts. For instance,
ARDI-2SRR is the best model for IR with a reduction of 36% in RMPSE over the AR(2)
benchmark which is strongly statistically significant. Still for IR, at horizon 2 quarters,
iterating 2SRR to obtain GLRR generate sizable improvements for both AR and ARDIs.
VAR(20) is largely inferior to alternatives in any of its forms. Two exceptions are IR fore-
casts at a one-year horizon where combining VAR(20) with GRRRR yields the best forecast
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by a wide margin with improvement of 19% in RMSPE. VAR(20)-GRRRR also provide a
very competitive forecast for IR at an horizon of one quarter. Finally, at horizon 1 quarter,
any form of time variation (2SRR, GLRR, GRRRR) at least increases SPREAD’s forecasting
accuracy for for all models but the VAR(20). Precisely, it is a 16% reduction in RMSPE for
AR, about 5% for ARDI and up to 14% in the VAR(5) case. For the latter, its combination
with 2SRR provides the best forecast with a statistically significant improvement of 18%
with respect to the AR(2) benchmark.

A notable absence from the relatively cheerful discussion above is inflation, which is the
first (or second) variable one would think should benefit from time variation. It is clear
that, in Table 14, any AR at horizon 1 profits rather timidly from it. A similar finding for
Half & Half is reported in Table 15. What differs, however, are longer horizons results for
INF. Indeed, mixing in additional shrinkage to OLS strongly helps results for those targets:
every form of time variation now improves performance by a good margin. For instance,
any time-varying ARs improves upon the constant benchmark by around 15%. It is now
widely documented that inflation is better predicted by past values of itself and not much
else – besides maybe for recessionary episodes (Kotchoni et al., 2019). Results of Table 15
comfortably stand within this paradigm except for the noticeable efforts from GLRR ver-
sions of both ARDI and VAR(20). While those are the best models, they are closely matched
in performance by their AR counterparts. Nevertheless, it is noteworthy that this surge
in performance mostly occurs for their sparse TVP versions, suggesting time variation is
likely crucial for more sophisticated inflation forecasts not to be off the charts. Finally, ad-
ditional shrinkage marginally improves GDP forecasting at the two longer horizons, with
the Half & Half ARDI-GLRR providing the best forecasts.

To a large extent, forecasting results suggest that the three main algorithms presented in
section 1.2 can procure important gains for forecasting targets that are frequently associ-
ated with the need for time variation. This subset is put on the spotlight by Figure 38. The
gains for IR at h = 1 and INF at the one-year horizon are particularly visible. For those
kinds of targets, it is observed that any form of time-variation will usually ameliorate the
constant parameters benchmark, especially in the Half & Half case. This is convenient
given how easy 2SRR, GLRR and GRRRR forecasts are to generate, in stark contrast to the
typical Bayesian machinery.

1.5. Time-Varying Effects of Monetary Policy in Canada
VARs do not have a monopoly on the proliferation of parameters. Jordà (2005) local projec-
tions’ – by running a separate regression for each horizon – are also densely parametrized.
For that reason, constructing a large LP-based time-varying IRF via a MCMC procedure
would either be burdensome or unfeasible. In this section, I demonstrate how 2SRR is up
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to the task by estimating LPs chronicling the evolving effects of Canadian monetary policy
over recent decades.

The use of 2SRR for estimation of LPs constitutes a very useful methodological develop-
ment given how popular local projections have become over recent years. Particularly, it is
appealing for researchers to identify shocks in a narrative fashion (for instance, à la Romer
and Romer (2004)) and then use those in local projections to obtain their dynamic effects on
the economy.27 A next step is to wonder about the stability of the estimated relationship.
In that line of thought, popular works include Auerbach and Gorodnichenko (2012a) and
Ramey and Zubairy (2018a) for the study of state-dependent fiscal multipliers. To focus
on long-run structural change rather than switching behavior, random walk TVPs are a
natural choice and 2SRR, a convenient estimation approach.

In this application, I study the changing effects of monetary policy (MP) in Canada us-
ing the recently developed MP shocks series of Champagne and Sekkel (2018). The small
open economy went through important structural change over the last 30–40 years. Most
importantly, from a monetary policy standpoint, it became increasingly open (especially
following NAFTA) and an inflation targeting regime (IT) was implemented in 1991 – a
specific and publicly known date. Both are credible sources of structural change in the
transmission of monetary policy. Champagne and Sekkel (2018) estimate a parsimonious
VARs (4 variables) over two non-overlapping subsamples to check visually whether a
break occurred in 1992 following the onset of IT. The reported evidence for a break is
rather weak with GDP’s response increasing slightly while that of inflation decreasing
marginally. While the sample-splitting approach has many merits such as transparency
and simplicity, there is arguably a lot it can miss. I go further by modeling the full evolu-
tion of their LP-based IRFs.

I use the same monthly Canada data set as in Champagne and Sekkel (2018) and the anal-
ysis spans from 1976 to 2015. The target variables are unemployment, CPI Inflation and
GDP.28 Their original specification includes 48 lags of the narrative monetary policy (MP)
shock series which is constructed in the spirit of Romer and Romer (2004) and carefully
adapted to the Canadian context.29 Furthermore, their regression comprises 4 lags for the
controls which are first differences of the log GDP, log inflation and log commodity prices.

27Another variant of that is the so-called local projections instrumental variable (LP-IV) where creating the
shock itself is replaced by coming up with an IV (like in Ramey and Zubairy (2018a)).

28For reference, the three time series being modeled and the shock series can be visualized in Figure 5.
Notably, we can see that the conquest of Canadian inflation was done in two steps: reducing the mean from
roughly 8% to 5% in the 1980s and from 5% to 2% in the early 1990s.

29For details regarding the construction of the crucial series — especially on how to account for the 1991
shift to IT, see Champagne and Sekkel (2018). Note that a positive shock means (unexpected) MP tightening.
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To certify that time-variation will not be found as a result of omitted variables, I increase
the lag order from 4 to 6 months and augment the model with the USD/CAD exchange
rate, exports, imports and CPI excluding Mortgage Interest Cost (MIC). In terms of TVP
accounting, X contains 97 regressors (including the constant) and Y is 48. Thus, a single
TV-LP is assembled from a staggering total of 97× 48 = 4 656 TVPs.

(a) Unemployment

(b) CPI Inflation (c) GDP

Figure 3: Cumulative Time-Varying Effect of Monetary Policy Shocks. Rotations of 3D
plots are hand-picked to highlight most salient features of each time-varying IRF. Interac-
tive plots where the reader can manually explore different rotations are available here.

Figure 3 proposes clear answers to the evolving effect of monetary policy on the economy.
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Generally, short- and medium-run effects (h < 24 months) have been much more stable
than longer-run ones. This is especially true of unemployment which exhibits a strikingly
homogeneous response (through time) for the first year and half after the shock. GDP’s re-
sponse follows a similar predicament, but was marginally steeper before the 2000s. When
it comes to inflation, its usual long response lag has mildly shortened up in the 2000s. At a
horizon of 24 months, the effect of a positive one standard deviation shock was -0.3% from
1976 to the late 1990s, then slowly increased (in absolute terms) to nearly double at -0.6%.
Overall, results for horizons up to 18 months suggest that the ability of the central bank
to (relatively) rapidly impact inflation has increased, while that of GDP has decreased and
that of unemployment remained stable.

Given the long lags of monetary policy, most of the relevant action from an economic
standpoint is also where most time variation is found: from 1.5 to 4 years after the shock.
Regarding GDP and unemployment, the cumulative long-run effects of MP shocks have
substantially shrunk over the sample period. For unemployment, the decrease from a 0.6
to 0.4 unemployment percentage points effect mostly occurred throughout the 1980s, and
stabilized at 0.4 thereafter. For GDP, both its peak effect (at around h = 24 months) and
the long-run one shrunk from the 1990s onward. Both quantities are about twice smaller
around 2011 than they were in 1991. The long-run cumulative effect on inflation follows
a distinctively different route: it has considerably expanded starting from the late 1980s.
The overall effect on CPI, four years after impact, doubled from -1% in 1987 to -2% in 2011.

An important question is what happens to βt around 1992, after the onset of IT. Figure 6
(in the appendix) reports β2SRR

t − βOLS for the dynamic effect of MP shocks on the three
variables. It is found that the response of inflation (in absolute terms) is much larger at
the end of the sample than what constant coefficients would suggest. This is especially
true at the 24 months horizon. It is quite clear that, for all horizons, the effect of MP
shocks on inflation starts increasing in the years following the implementation of IT. The
vanishing effect on GDP starting from the 1990s could be consistent with an increased
openness of the economy limiting the central bank’s grip on economic activity. The story
is, however, different for unemployment. The downward trend in MP shocks’ impact
seems to have started at least since the 1970s and slowed down in recent years. More
generally, it is interesting to note that those results are consistent with a flattening Phillips’
curve – as reported in Blanchard et al. (2015) for Canada and many other countries. The
shrinking responses of GDP and unemployment leave room for expectations to act as the
main channel through which MP shocks (eventually) impact the price level.

A crucial advantage of 2SRR is that it takes something complicated and makes it easy.
Thus, one could (rather ambitiously) hope for TVPs to enter the traditional empirical
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macro robustness checks arsenal, and stand intrepidly next to ad hoc sample-splitting
tests. Using the latter strategy paired with a myriad of standard identification schemes
(Ramey, 2016), Barakchian and Crowe (2013) provide counterintuitive results (a price puz-
zle and MP tightening increases GDP) for post-1988 US data. Cloyne and Hürtgen (2016)
and Champagne and Sekkel (2018) report less economics-contorting findings for the UK
and Canada: GDP response increases marginally after IT and that of inflation shrinks.
2SRR-LPs signs and magnitudes are consistent with those reported in Champagne and
Sekkel (2018). Moreover, Figure 6 does not suggest the occurrence of a structural break
in 1992, which is in line with most of the international evidence on IT implementation.
Nonetheless, at least for GDP and inflation, 2SRR-LPs’ results point to a drastic change
in coefficients’ trending behavior, a subtle phenomenon which effectively stays under the
radar of simpler approaches. Particularly, when looking at various β2SRR

t,h − βOLS
h for in-

flation in Figure 6, it is self-evident why mere splitting of the sample would not find any
significant change. Additionally, the staircase-like trajectory of Canadian inflation in the
1980s (Figure 5c) is visually supportive of a TVP approach for the intercept, and cast strong
doubts about any approach assuming only two regimes.

Unlike most of their predecessors, results presented in this section rely on an approach that
is jointly flexible (i) in the specification of dynamics by using LPs, (ii) in the information
set by allowing for many controls and (iii) in the time variation by fully modeling βt’s
path. The 2SRR-based LPs display that while the cumulative effect of MP shocks became
more muted for real activity variables, it has increased for inflation. This suggests that
stabilizing Canadian inflation is now much less costly (in terms of unemployment/GDP
variability) than it used to be.

1.6. Conclusion
I provide a new framework to estimate TVP models with potentially evolving volatility of
shocks. It is conceptually enlightening and computationally very fast. Moreover, seeing
such models as ridge regressions suggest a simple way to tune the amount of time vari-
ation, a neuralgic quantity. The approach is easily extendable to have additional shrink-
age schemes like sparse TVPs or reduced-rank restrictions. The proposed variants of the
methodology are very competitive against the standard Bayesian TVP-VAR in simulations.
Furthermore, they improve forecasts against standard forecasting benchmarks for vari-
ables usually associated with the need for time variation (US inflation and interest rates).
Finally, I apply the tool to estimate time-varying IRFs via local projections. The large spec-
ification necessary to characterize adequately the evolution of monetary policy in Canada
rendered this application likely unfeasible without the newly developed tools. I report that
monetary policy shocks long-run impact on the price level increased substantially starting
from the early 1990s (onset of inflation targeting), whereas the effects on real activity be-
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came milder. This finding is consistent with the hypothesized flattening of the Phillips’
curve in advanced economies.
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1.7. Appendix
1.7.1. Details of GLRR
To begin with, the penalty part of (1.12) in summation notation is

K

∑
k=1

1
σ2

uk

T

∑
t=1

u2
k,t + ξ

K

∑
k=1
|σuk |.

The E-step of the procedure provides a formula for σuj in terms of u’s. Plugging it in gives

K

∑
k=1

1
σ2

uk

T

∑
t=1

u2
k,t + ξ

K

∑
k=1

(
T

∑
t=1

u2
k,t)

1
2 .

which is just a Group Lasso penalty with an additional Ridge penalty for each individual
coefficients. Hence, classifying parameters into TVP or non-TVP categories is equivalent
to group selection of regressors where each k of the K groups is defined as {Zt,k,τ}τ=T

τ=1 . If
we want a parameter to be constant, we trivially have to drop block-wise its respective
basis expansion regressors and only keep β0,k in the model.

This penalty can be obtained by iterating what we already have. Grandvalet (1998) shows
that the Lasso solution can be obtained by iterative Adaptive Ridge. Frommlet and Nuel
(2016) and Liu and Li (2014) extend his results to obtain l0 regularization without the com-
putational burden associated with this type of regularization. Frommlet and Nuel (2016)
also argue in favor of a slightly modified version of Grandvalet (1998)’s algorithm which I
first review before turning to the final GLRR problem.

To implement Lasso by Adaptive Ridge, we have at iteration i,

bi = arg min
b

T

∑
t=1

(yt − Xtb)
2 + λ

J

∑
=1

wjb2
j

wi+1,j =
1

(bi,j + δ)2

where δ > 0 is small value for numerical stability and we set wj,0 = 1 ∀j. To get some
intuition on why this works, it is worth looking at the penalty part of the problem in the
final algorithm step:

λ
J

∑
j=1

b2
j

|b̂j|+ δ
≈ λ

J

∑
j=1
|bj|.

Liu and Li (2014) show that this qualifies as a proper EM algorithm (each step improves
the likelihood). Thus, we can expect it to inherit traditional convergence properties.
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Building Iterative Weights for GLRR

The above methodology can be adapted for a case which is substantially more compli-
cated. The complications are twofold. First, we are doing Group Lasso rather than plain
Lasso. Second, the individual ridge penalty must be maintained on top of the Group Lasso
penalty. I devise a simple algorithm that will split the original Ridge penalty into two parts,
one that we will keep as is and one that will be iterated. The first is the 2SRR part and the
second implements Group-Lasso.

Let us first focus on the Group penalty and display why iterating the Ridge solution with
updating weights converges to be equivalent to Group Lasso. In the last step of the algo-
rithm, we have

ξ
K

∑
k=1

1
σ̂uk

T

∑
t=1

u2
k,t ≈ ξ

K

∑
k=1

(
T

∑
t=1

u2
k,t)

1
2

where σ̂uk = (∑T
t=1u2

k,t)
1
2 . The two penalties must be combined in a single penalizing

weight that enters the closed-form solution. I split the original penalty into two parts,
one that will remain as such and one that will be iterated to generate group selection. A
useful observation is the following. For a given iteration i,

λ
K

∑
k=1

1
σ2

uk

T

∑
t=1

u2
k,t + ξ

K

∑
k=1

1

σ
(i)
uk

T

∑
t=1
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k,t

can be re-arranged as

K

∑
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σ2
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+
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σ
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]
T

∑
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k,t.

To make this more illuminating, define α = λ
λ+ξ and λ̃ = (λ + ξ). We now have

λ̃
K

∑
k=1

[
α

1
σ2

uk

+ (1− α)
1

σ
(i)
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]
T

∑
t=1
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where α ∈ (0, 1) is a tuning parameter controlling how the original ridge penalty is split
between smoothness and group-wise sparsity. It is now easy to plug this into the closed-

form formula: stack λ
(i)
uk = λ̃

[
α 1

σ2
uk
+ (1− α) 1

σ
(i−1)
uk

]
on the diagonal of Ω−1

ui
at iteration i

in 1.2.4. The reader is now referred to the main text (section 1.2.5) for the benchmark
algorithm that uses these derivations to implement GLRR.
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Credible regions

In the homoscedastic case, we need to obtain

Vβ = C∗(Z∗ ′Z∗ + Ω−1
θ∗
)−1C∗ ′σ̂2

ε .

where the C∗, Z∗ and Ωθ∗ are the part of the corresponding matrices left after leaving
out the basis expansion parts that correspond to the selected constant parameters. The ∗
versions should be much smaller than the original one especially in a high-dimensional
model. Since heteroscedasticity is incorporated in a GLS fashion, credible regions can be
obtained by using the formula above with the properly re-weighted data matrix Z∗. These
bands take the model selection event as given.
1.7.2. Multivariate Extension to GRRRR
Dense TVPs as proposed (among others) by Stevanovic (2016) implement a factor structure
for parameters of a whole VAR system rather than a single equation. If time-variation
is indeed similar for all equations, we can decrease estimation variance significantly by
pooling all parameters of the system in a single factor model. First, the factors are better
estimated as the number of series increase. Second, the estimated factors are less prone
to overfit because they now target M series rather than a single one.30 The likely case
where r is smaller than M (and P not incredibly big) yields a models that will have more
observations than parameters, in contrast to everything so far considered in this chapter. I
briefly describe how to modify Algorithm 3 to obtain Multivariate GRRRR (MV-GRRRR)
estimates.

Starting values for the algorithm below can be obtained from the multivariate RR of section
(1.2.4). This is done by first re-arranging elements of Θ̂ into U = [U1 . . . U M] and then
running PCA on U . Then, the MV-GRRRR solution can be obtained by alternating the
following steps.

1. Given Λ, we can solve

min
f ,b0

(
vec(Y)− (IM ⊗ X)b0 − ZM

Λ f
)′

Ω−1
εM

(
vec(Y)− (IM ⊗ X)b0 − ZM

Λ f
)
+ f ′ f

(1.21)

where ZM
Λ stacks row-wise all the Z(IT ⊗ Λm) from m = 1 to m = M. That is, we

30This is the kind of regularization being used for linear models in Carriero et al. (2011). However, for
MV-GRRRR, the reduced-rank matrix is organized differently and the underlying factors have a different
interpretation.
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have the TM× Tr matrix

ZM
Λ =


Z(IT ⊗Λ1)

Z(IT ⊗Λ2)
...

Z(IT ⊗ΛM)


as the regressor matrix. Λm is a sub-matrix of Λ that contains the loadings for param-
eters of equation m. Also, b0 = vec(B0) where B0 is the matrix that corresponds to
the multivariate equivalent of β0. Unlike a standard multivariate model like a VAR,
here, we cannot estimate each equation separately because the f is common across
equations.

2. The loadings updating step is

min
l,b0

(
vec(Y)− (IM ⊗ X)b0 − ZF

M l
)′

Ω−1
εM

(
vec(Y)− (IM ⊗ X)b0 − ZF

M l
)
+ ξ‖l‖1

(1.22)

where ZF
M = (IM ⊗ Z(F′ ⊗ IK)). This is just a Lasso regression. The Kronecker

structure allows for these Lasso regressions to be ran separately.

As in Bai and Ng (2017) for the estimation of regularized factor models, there is orthogo-
nalization step needed between each of these steps to guarantee identification.

Note that if MT > rT + MK, which is somewhat likely, we have more observations than
parameters in step 1. This means standard Ridge regularization is not necessary for the
inversion of covariance matrix of regressors.31 Nonetheless, the ridge smoothness prior
will still prove useful but can be applied in a much less aggressive way.

An interesting connection occurs in the MV-GRRRR case: the time-varying parameter
model with a factor structure in parameters can also be seen as a dynamic factor model
with deterministically time-varying loadings. By the latter, I mean that loadings change
through time because they are interacted with a known set of (random) variables Xt. This
is a more general version of Kelly et al. (2017) Instrumented PCA used to estimate a typical
asset-pricing factor model. Formally, this means that the factor TVP model

Yt = XtΛFt + εt, Ft = Ft−1 + ut

31This also means that it is now computationally more efficient to solve the primal Ridge problem.
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can be rewritten as

Yt = ΛtFt + εt, Ft = Ft−1 + ut, Λt = XtΛ (1.23)

which is the so-called Instrumented PCA estimator if we drop the law of motion for Ft. An
important additional distinction is that Kelly et al. (2017) consider cases where the num-
ber of instruments is smaller than the size of the cross-section. Here, with the instruments
being Xt, there is by construction more instruments than the size of the cross-section. Nev-
ertheless, the analogy to the factor model is conceptually useful and can point to further
improvements of TVP models inspired by advances in empirical asset pricing research.
1.7.3. Simple GRRRR Example with r = 1
While Kronecker product operations may seem obscure, they are the generalization of
something that much more intuitive: the special case of one factor model (r = 1). I present
here the simpler model when parameters vary according to a single latent source of time-
variation. For convenience, I drop evolving volatility and use summation notation. The
problem reduces to

min
l, f ,β0

T

∑
t=1

(
yt − Xtβ0 −

K

∑
k=1

lk ftXk

)2

+
T

∑
t=1

f 2
t + ξ

K

∑
k=1
|lk| (1.24)

which can trivially rewritten as

min
l, f ,β0

T

∑
t=1

(
yt − Xtβ0 − ft

K

∑
k=1

lkXk,t

)2

+
T

∑
t=1

f 2
t + ξ

K

∑
k=1
|lk|. (1.25)

and this model can be estimated by splitting it two problems. The two steps are

1. Given the l vector, we run the TVP regression

min
f ,β0

T

∑
t=1

(yt − Xtβ0 − X̄t ft)
2
+

T

∑
t=1

f 2
t .

where X̄t ≡ ∑K
k=1 lkXk,t. Hence, the new regressors are just a linear combination of

original regressors.

2. Given f , the second step is the Lasso regression (or OLS/Ridge if we prefer)

min
l,β0

T

∑
t=1

(
yt − Xtβ0 −

K

∑
k=1

lkX f
k,t

)2

+ ξ
K

∑
k=1
|lk|.
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where the K new regressors are X f
k,t ≡ ftXk,t.
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1.7.4. Tables
Table 2: Results for Simulation 1 (Cosine) and T = 300

K = 6 K = 20 K = 100
BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR

K∗/K = 0.2
σε = Low 0.128 0.110 0.097 0.136 - 0.115 0.095 0.114 - 0.163 0.160 0.200
σε = Medium 0.159 0.165 0.163 0.193 - 0.165 0.161 0.169 - 0.197 0.192 0.314
σε = High 0.228 0.245 0.244 0.271 - 0.262 0.262 0.269 - 0.320 0.316 0.580
σε,t = SV Low-Med 0.129 0.121 0.110 0.145 - 0.131 0.120 0.132 - 0.168 0.166 0.242
σε,t = SV Low-High 0.143 0.151 0.152 0.174 - 0.159 0.158 0.175 - 0.189 0.189 0.293

K∗/K = 0.5
σε = Low 0.169 0.130 0.120 0.144 - 0.150 0.135 0.129 - 0.256 0.256 0.263
σε = Medium 0.224 0.207 0.206 0.247 - 0.227 0.224 0.221 - 0.283 0.278 0.395
σε = High 0.274 0.291 0.292 0.330 - 0.314 0.311 0.316 - 0.371 0.365 0.700
σε,t = SV Low-Med 0.186 0.147 0.138 0.184 - 0.171 0.162 0.158 - 0.259 0.260 0.303
σε,t = SV Low-High 0.211 0.189 0.189 0.229 - 0.216 0.214 0.225 - 0.273 0.274 0.361

K∗/K = 1
σε = Low 0.134 0.149 0.152 0.157 - 0.185 0.191 0.141 - 0.367 0.370 0.284
σε = Medium 0.302 0.242 0.247 0.282 - 0.278 0.289 0.252 - 0.389 0.388 0.467
σε = High 0.337 0.355 0.360 0.376 - 0.388 0.389 0.391 - 0.454 0.451 0.766
σε,t = SV Low-Med 0.171 0.168 0.172 0.180 - 0.208 0.215 0.156 - 0.380 0.381 0.351
σε,t = SV Low-High 0.262 0.222 0.232 0.268 - 0.262 0.274 0.261 - 0.383 0.382 0.368

Notes: This table reports the average MAE of estimated βt’s for various models. The number in bold is the lowest
MAE of all models for a given setup. The number in blue is the lowest MAE between BVAR and 2SRR for a given
setup.

Table 3: Results for Simulation 2 (Break) and T = 300
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.154 0.113 0.098 0.146 - 0.149 0.141 0.191 - 0.331 0.337 0.487
σε = Medium 0.216 0.176 0.165 0.296 - 0.249 0.256 0.294 - 0.587 0.578 1.165
σε = High 0.295 0.292 0.296 0.412 - 0.473 0.480 0.498 - 1.267 1.236 2.484
σε,t = SV Low-Med 0.171 0.126 0.114 0.180 - 0.175 0.169 0.218 - 0.413 0.414 0.708
σε,t = SV Low-High 0.188 0.159 0.152 0.249 - 0.232 0.248 0.287 - 0.522 0.546 0.984

K∗/K = 0.5
σε = Low 0.154 0.141 0.130 0.137 - 0.184 0.180 0.232 - 0.396 0.432 0.656
σε = Medium 0.316 0.207 0.204 0.296 - 0.295 0.318 0.362 - 0.633 0.640 1.064
σε = High 0.370 0.335 0.348 0.465 - 0.513 0.527 0.542 - 1.291 1.277 2.674
σε,t = SV Low-Med 0.197 0.156 0.148 0.156 - 0.215 0.220 0.275 - 0.469 0.487 0.769
σε,t = SV Low-High 0.242 0.193 0.190 0.298 - 0.284 0.303 0.389 - 0.587 0.620 1.035

K∗/K = 1
σε = Low 0.143 0.174 0.183 0.149 - 0.232 0.430 0.188 - 0.513 0.620 0.633
σε = Medium 0.308 0.254 0.343 0.252 - 0.349 0.493 0.308 - 0.768 0.786 1.149
σε = High 0.506 0.414 0.499 0.447 - 0.612 0.607 0.690 - 1.437 1.394 2.697
σε,t = SV Low-Med 0.168 0.195 0.205 0.165 - 0.258 0.448 0.220 - 0.571 0.663 0.758
σε,t = SV Low-High 0.205 0.231 0.294 0.231 - 0.340 0.481 0.334 - 0.695 0.726 1.054

Notes: see Table 2.
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Table 4: Results for Simulation 3 (Trend and Cosine) and T = 300
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.079 0.088 0.086 0.098 - 0.135 0.126 0.114 - 0.258 0.259 0.420
σε = Medium 0.179 0.142 0.135 0.191 - 0.202 0.204 0.203 - 0.348 0.339 0.684
σε = High 0.218 0.222 0.223 0.282 - 0.290 0.290 0.355 - 0.655 0.638 1.313
σε,t = SV Low-Med 0.093 0.103 0.094 0.119 - 0.156 0.153 0.138 - 0.281 0.278 0.498
σε,t = SV Low-High 0.137 0.129 0.121 0.165 - 0.196 0.199 0.222 - 0.340 0.339 0.602

K∗/K = 0.5
σε = Low 0.102 0.071 0.082 0.106 - 0.116 0.116 0.126 - 0.232 0.235 0.413
σε = Medium 0.131 0.119 0.122 0.176 - 0.176 0.180 0.193 - 0.324 0.320 0.722
σε = High 0.172 0.185 0.186 0.234 - 0.274 0.273 0.329 - 0.646 0.634 1.382
σε,t = SV Low-Med 0.115 0.085 0.089 0.116 - 0.133 0.138 0.146 - 0.264 0.262 0.433
σε,t = SV Low-High 0.120 0.105 0.106 0.143 - 0.166 0.171 0.195 - 0.316 0.319 0.611

K∗/K = 1
σε = Low 0.067 0.047 0.050 0.054 - 0.075 0.091 0.064 - 0.177 0.186 0.319
σε = Medium 0.086 0.080 0.087 0.097 - 0.128 0.139 0.127 - 0.302 0.304 0.607
σε = High 0.131 0.139 0.139 0.179 - 0.238 0.246 0.244 - 0.638 0.628 1.470
σε,t = SV Low-Med 0.067 0.056 0.059 0.052 - 0.088 0.102 0.081 - 0.211 0.221 0.402
σε,t = SV Low-High 0.071 0.066 0.075 0.085 - 0.115 0.131 0.137 - 0.281 0.289 0.501

Notes: see Table 2.

Table 5: Results for Simulation 4 (Mixture) and T = 300
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.054 0.054 0.051 0.066 - 0.068 0.066 0.073 - 0.150 0.147 0.269
σε = Medium 0.079 0.082 0.080 0.100 - 0.115 0.113 0.122 - 0.283 0.278 0.561
σε = High 0.126 0.138 0.136 0.160 - 0.232 0.228 0.246 - 0.628 0.613 1.326
σε,t = SV Low-Med 0.058 0.062 0.060 0.074 - 0.078 0.077 0.080 - 0.185 0.183 0.338
σε,t = SV Low-High 0.065 0.073 0.077 0.097 - 0.104 0.106 0.133 - 0.258 0.263 0.487

K∗/K = 0.5
σε = Low 0.076 0.066 0.062 0.082 - 0.086 0.085 0.090 - 0.169 0.167 0.289
σε = Medium 0.095 0.097 0.096 0.124 - 0.130 0.127 0.135 - 0.294 0.290 0.571
σε = High 0.138 0.151 0.149 0.183 - 0.238 0.234 0.254 - 0.633 0.623 1.304
σε,t = SV Low-Med 0.078 0.075 0.072 0.090 - 0.097 0.096 0.099 - 0.204 0.200 0.323
σε,t = SV Low-High 0.085 0.089 0.091 0.111 - 0.120 0.123 0.151 - 0.268 0.271 0.475

K∗/K = 1
σε = Low 0.098 0.075 0.078 0.102 - 0.110 0.114 0.116 - 0.201 0.198 0.358
σε = Medium 0.121 0.118 0.119 0.150 - 0.155 0.154 0.163 - 0.309 0.306 0.629
σε = High 0.161 0.176 0.177 0.229 - 0.264 0.257 0.288 - 0.641 0.635 1.403
σε,t = SV Low-Med 0.107 0.087 0.087 0.108 - 0.121 0.122 0.126 - 0.230 0.225 0.374
σε,t = SV Low-High 0.112 0.105 0.109 0.132 - 0.145 0.147 0.172 - 0.287 0.289 0.567

Notes: see Table 2.
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Table 6: Results for Simulation 1 (Cosine) and T = 150
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.136 0.119 0.109 0.154 - 0.139 0.133 0.159 - 0.244 0.252 0.294
σε = Medium 0.182 0.186 0.183 0.214 - 0.212 0.205 0.257 - 0.321 0.328 0.337
σε = High 0.337 0.354 0.344 0.377 - 0.393 0.396 0.568 - 0.569 0.584 0.617
σε,t = SV Low-Med 0.150 0.148 0.149 0.183 - 0.162 0.158 0.208 - 0.273 0.277 0.297
σε,t = SV Low-High 0.200 0.212 0.216 0.252 - 0.244 0.242 0.338 - 0.376 0.385 0.385

K∗/K = 0.5
σε = Low 0.200 0.142 0.136 0.187 - 0.170 0.170 0.215 - 0.358 0.368 0.347
σε = Medium 0.228 0.219 0.222 0.291 - 0.252 0.256 0.305 - 0.418 0.432 0.406
σε = High 0.360 0.383 0.374 0.396 - 0.432 0.436 0.591 - 0.624 0.633 0.712
σε,t = SV Low-Med 0.203 0.175 0.173 0.227 - 0.209 0.212 0.253 - 0.387 0.400 0.365
σε,t = SV Low-High 0.240 0.243 0.248 0.285 - 0.287 0.292 0.397 - 0.465 0.485 0.436

K∗/K = 1
σε = Low 0.262 0.158 0.161 0.189 - 0.206 0.225 0.231 - 0.492 0.511 0.429
σε = Medium 0.284 0.239 0.247 0.270 - 0.302 0.316 0.352 - 0.532 0.547 0.500
σε = High 0.390 0.421 0.431 0.433 - 0.477 0.481 0.678 - 0.717 0.737 0.722
σε,t = SV Low-Med 0.270 0.191 0.197 0.241 - 0.253 0.270 0.269 - 0.508 0.526 0.453
σε,t = SV Low-High 0.295 0.270 0.282 0.324 - 0.338 0.356 0.454 - 0.572 0.590 0.546

Notes: see Table 2.

Table 7: Results for Simulation 2 (Break) and T = 150
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.083 0.085 0.082 0.110 - 0.162 0.155 0.175 - 0.534 0.547 0.611
σε = Medium 0.154 0.162 0.160 0.188 - 0.330 0.312 0.449 - 1.070 1.073 1.283
σε = High 0.380 0.396 0.399 0.472 - 0.745 0.727 1.059 - 2.364 2.430 2.378
σε,t = SV Low-Med 0.115 0.125 0.126 0.165 - 0.229 0.214 0.304 - 0.766 0.784 0.894
σε,t = SV Low-High 0.196 0.213 0.216 0.268 - 0.387 0.380 0.592 - 1.341 1.370 1.305

K∗/K = 0.5
σε = Low 0.084 0.084 0.083 0.105 - 0.164 0.157 0.178 - 0.536 0.544 0.652
σε = Medium 0.153 0.162 0.162 0.205 - 0.336 0.317 0.445 - 1.080 1.081 1.180
σε = High 0.382 0.385 0.385 0.502 - 0.743 0.731 1.021 - 2.364 2.426 2.411
σε,t = SV Low-Med 0.113 0.121 0.120 0.136 - 0.225 0.213 0.305 - 0.770 0.792 0.905
σε,t = SV Low-High 0.198 0.215 0.220 0.240 - 0.382 0.376 0.580 - 1.341 1.385 1.379

K∗/K = 1
σε = Low 0.085 0.089 0.086 0.099 - 0.163 0.157 0.167 - 0.534 0.532 0.717
σε = Medium 0.158 0.173 0.170 0.203 - 0.330 0.320 0.460 - 1.063 1.073 1.264
σε = High 0.383 0.426 0.419 0.460 - 0.751 0.736 0.953 - 2.353 2.408 2.613
σε,t = SV Low-Med 0.114 0.124 0.126 0.154 - 0.214 0.212 0.280 - 0.771 0.785 0.894
σε,t = SV Low-High 0.198 0.224 0.225 0.278 - 0.386 0.373 0.538 - 1.362 1.414 1.467

Notes: see Table 2.
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Table 8: Results for Simulation 3 (Trend and Cosine) and T = 150
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.149 0.096 0.091 0.115 - 0.159 0.156 0.202 - 0.405 0.415 0.381
σε = Medium 0.181 0.153 0.149 0.182 - 0.244 0.243 0.342 - 0.604 0.624 0.628
σε = High 0.253 0.275 0.276 0.313 - 0.419 0.421 0.680 - 1.218 1.248 1.235
σε,t = SV Low-Med 0.167 0.121 0.114 0.140 - 0.192 0.192 0.246 - 0.485 0.501 0.480
σε,t = SV Low-High 0.193 0.177 0.178 0.210 - 0.261 0.262 0.420 - 0.749 0.767 0.609

K∗/K = 0.5
σε = Low 0.104 0.077 0.085 0.118 - 0.138 0.139 0.186 - 0.365 0.377 0.342
σε = Medium 0.128 0.127 0.131 0.161 - 0.223 0.221 0.337 - 0.585 0.599 0.602
σε = High 0.224 0.249 0.250 0.276 - 0.397 0.397 0.654 - 1.211 1.243 1.262
σε,t = SV Low-Med 0.112 0.098 0.100 0.147 - 0.173 0.175 0.223 - 0.455 0.474 0.445
σε,t = SV Low-High 0.145 0.151 0.154 0.194 - 0.241 0.241 0.374 - 0.726 0.743 0.657

K∗/K = 1
σε = Low 0.062 0.062 0.065 0.071 - 0.107 0.108 0.130 - 0.299 0.311 0.317
σε = Medium 0.096 0.103 0.107 0.116 - 0.174 0.173 0.279 - 0.547 0.559 0.604
σε = High 0.204 0.221 0.221 0.259 - 0.384 0.378 0.552 - 1.204 1.234 1.280
σε,t = SV Low-Med 0.073 0.077 0.081 0.093 - 0.126 0.128 0.164 - 0.406 0.423 0.404
σε,t = SV Low-High 0.111 0.121 0.126 0.162 - 0.202 0.202 0.323 - 0.713 0.734 0.693

Notes: see Table 2.

Table 9: Results for Simulation 4 (Mixture) and T = 150
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.065 0.063 0.061 0.069 - 0.092 0.091 0.094 - 0.277 0.280 0.337
σε = Medium 0.097 0.096 0.097 0.113 - 0.175 0.172 0.201 - 0.542 0.546 0.568
σε = High 0.203 0.212 0.206 0.227 - 0.380 0.375 0.585 - 1.187 1.214 1.230
σε,t = SV Low-Med 0.080 0.082 0.081 0.089 - 0.125 0.122 0.144 - 0.386 0.392 0.404
σε,t = SV Low-High 0.115 0.118 0.120 0.145 - 0.200 0.197 0.311 - 0.696 0.720 0.699

K∗/K = 0.5
σε = Low 0.086 0.073 0.071 0.092 - 0.106 0.104 0.119 - 0.290 0.299 0.349
σε = Medium 0.111 0.107 0.108 0.126 - 0.184 0.183 0.222 - 0.547 0.559 0.594
σε = High 0.208 0.215 0.215 0.242 - 0.381 0.378 0.547 - 1.183 1.212 1.286
σε,t = SV Low-Med 0.096 0.093 0.092 0.105 - 0.132 0.131 0.154 - 0.397 0.410 0.439
σε,t = SV Low-High 0.127 0.129 0.130 0.159 - 0.210 0.206 0.326 - 0.707 0.733 0.678

K∗/K = 1
σε = Low 0.106 0.080 0.082 0.101 - 0.124 0.125 0.138 - 0.315 0.328 0.334
σε = Medium 0.129 0.124 0.123 0.142 - 0.198 0.197 0.227 - 0.561 0.579 0.640
σε = High 0.218 0.224 0.225 0.258 - 0.410 0.409 0.583 - 1.208 1.225 1.343
σε,t = SV Low-Med 0.120 0.100 0.105 0.129 - 0.147 0.149 0.170 - 0.417 0.434 0.473
σε,t = SV Low-High 0.140 0.134 0.139 0.169 - 0.221 0.218 0.348 - 0.709 0.734 0.712

Notes: see Table 2.
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Table 10: Results for Simulation 1 (Cosine) and T = 600
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.102 0.105 0.078 0.102 - 0.112 0.080 0.077 - 0.129 0.126 0.095
σε = Medium 0.133 0.151 0.147 0.164 - 0.139 0.135 0.134 - 0.149 0.146 0.167
σε = High 0.187 0.205 0.206 0.251 - 0.204 0.199 0.206 - 0.218 0.212 0.241
σε,t = SV Low-Med 0.118 0.124 0.113 0.125 - 0.127 0.115 0.098 - 0.134 0.131 0.120
σε,t = SV Low-High 0.130 0.149 0.149 0.174 - 0.136 0.134 0.143 - 0.148 0.146 0.182

K∗/K = 0.5
σε = Low 0.087 0.132 0.115 0.120 - 0.145 0.124 0.105 - 0.219 0.219 0.109
σε = Medium 0.204 0.208 0.206 0.204 - 0.212 0.209 0.161 - 0.236 0.233 0.195
σε = High 0.242 0.263 0.262 0.308 - 0.257 0.253 0.266 - 0.279 0.275 0.297
σε,t = SV Low-Med 0.154 0.152 0.142 0.140 - 0.170 0.156 0.135 - 0.222 0.221 0.117
σε,t = SV Low-High 0.205 0.206 0.207 0.225 - 0.211 0.210 0.188 - 0.234 0.231 0.191

K∗/K = 1
σε = Low 0.087 0.146 0.148 0.158 - 0.180 0.183 0.108 - 0.339 0.340 0.128
σε = Medium 0.238 0.236 0.239 0.266 - 0.275 0.278 0.216 - 0.346 0.346 0.178
σε = High 0.312 0.338 0.336 0.350 - 0.344 0.343 0.346 - 0.374 0.372 0.407
σε,t = SV Low-Med 0.115 0.174 0.176 0.174 - 0.210 0.214 0.162 - 0.340 0.342 0.141
σε,t = SV Low-High 0.230 0.233 0.241 0.258 - 0.274 0.280 0.213 - 0.348 0.347 0.199

Notes: see Table 2.

Table 11: Results for Simulation 2 (Break) and T = 600
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.082 0.084 0.068 0.086 - 0.109 0.094 0.120 - 0.219 0.222 0.236
σε = Medium 0.140 0.136 0.128 0.177 - 0.185 0.182 0.210 - 0.372 0.365 0.418
σε = High 0.213 0.237 0.241 0.322 - 0.348 0.347 0.358 - 0.763 0.743 0.948
σε,t = SV Low-Med 0.113 0.103 0.090 0.109 - 0.133 0.123 0.155 - 0.265 0.266 0.291
σε,t = SV Low-High 0.138 0.132 0.130 0.229 - 0.175 0.179 0.233 - 0.376 0.385 0.514

K∗/K = 0.5
σε = Low 0.085 0.109 0.096 0.081 - 0.140 0.127 0.124 - 0.275 0.298 0.316
σε = Medium 0.182 0.163 0.152 0.169 - 0.221 0.230 0.251 - 0.417 0.431 0.515
σε = High 0.270 0.274 0.280 0.414 - 0.384 0.397 0.411 - 0.788 0.778 0.908
σε,t = SV Low-Med 0.121 0.130 0.121 0.108 - 0.165 0.161 0.162 - 0.315 0.341 0.355
σε,t = SV Low-High 0.185 0.162 0.163 0.209 - 0.211 0.230 0.274 - 0.421 0.446 0.539

K∗/K = 1
σε = Low 0.089 0.133 0.134 0.092 - 0.177 0.341 0.121 - 0.355 0.466 0.316
σε = Medium 0.151 0.205 0.248 0.163 - 0.267 0.404 0.218 - 0.505 0.524 0.587
σε = High 0.285 0.338 0.395 0.316 - 0.455 0.479 0.449 - 0.898 0.817 1.252
σε,t = SV Low-Med 0.113 0.154 0.164 0.120 - 0.203 0.375 0.146 - 0.402 0.483 0.396
σε,t = SV Low-High 0.147 0.198 0.255 0.185 - 0.255 0.409 0.246 - 0.498 0.534 0.789

Notes: see Table 2.
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Table 12: Results for Simulation 3 (Trend and Cosine) and T = 600
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.064 0.085 0.089 0.093 - 0.131 0.123 0.103 - 0.217 0.218 0.239
σε = Medium 0.120 0.143 0.133 0.157 - 0.188 0.188 0.169 - 0.264 0.263 0.380
σε = High 0.200 0.216 0.217 0.262 - 0.238 0.239 0.272 - 0.433 0.419 0.799
σε,t = SV Low-Med 0.080 0.104 0.097 0.107 - 0.156 0.148 0.127 - 0.229 0.231 0.279
σε,t = SV Low-High 0.114 0.139 0.134 0.163 - 0.183 0.187 0.181 - 0.273 0.272 0.480

K∗/K = 0.5
σε = Low 0.059 0.071 0.099 0.102 - 0.113 0.123 0.111 - 0.189 0.198 0.219
σε = Medium 0.124 0.117 0.119 0.150 - 0.156 0.163 0.148 - 0.244 0.247 0.321
σε = High 0.156 0.180 0.180 0.201 - 0.221 0.225 0.237 - 0.418 0.408 0.698
σε,t = SV Low-Med 0.084 0.086 0.108 0.116 - 0.133 0.135 0.119 - 0.202 0.210 0.282
σε,t = SV Low-High 0.118 0.112 0.121 0.145 - 0.152 0.163 0.163 - 0.249 0.258 0.484

K∗/K = 1
σε = Low 0.034 0.039 0.041 0.040 - 0.060 0.072 0.046 - 0.131 0.167 0.212
σε = Medium 0.073 0.067 0.073 0.072 - 0.101 0.125 0.080 - 0.206 0.220 0.252
σε = High 0.116 0.120 0.128 0.130 - 0.187 0.203 0.179 - 0.400 0.395 0.493
σε,t = SV Low-Med 0.044 0.048 0.049 0.050 - 0.072 0.088 0.057 - 0.152 0.181 0.210
σε,t = SV Low-High 0.065 0.064 0.072 0.068 - 0.096 0.121 0.099 - 0.217 0.236 0.369

Notes: see Table 2.

Table 13: Results for Simulation 4 (Mixture) and T = 600
K = 6 K = 20 K = 100

BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR BVAR 2SRR GLRR GRRRR
K∗/K = 0.2

σε = Low 0.049 0.050 0.038 0.053 - 0.057 0.052 0.062 - 0.109 0.105 0.108
σε = Medium 0.071 0.076 0.070 0.096 - 0.092 0.091 0.095 - 0.182 0.178 0.206
σε = High 0.107 0.117 0.114 0.144 - 0.171 0.169 0.170 - 0.383 0.371 0.642
σε,t = SV Low-Med 0.057 0.059 0.051 0.069 - 0.069 0.066 0.075 - 0.131 0.127 0.144
σε,t = SV Low-High 0.066 0.069 0.068 0.087 - 0.088 0.090 0.107 - 0.192 0.192 0.292

K∗/K = 0.5
σε = Low 0.062 0.061 0.052 0.066 - 0.078 0.073 0.082 - 0.134 0.135 0.141
σε = Medium 0.091 0.089 0.085 0.109 - 0.113 0.114 0.117 - 0.205 0.199 0.221
σε = High 0.127 0.134 0.136 0.179 - 0.189 0.187 0.190 - 0.393 0.382 0.532
σε,t = SV Low-Med 0.074 0.068 0.062 0.075 - 0.089 0.087 0.097 - 0.156 0.154 0.163
σε,t = SV Low-High 0.089 0.084 0.085 0.111 - 0.110 0.114 0.132 - 0.206 0.209 0.333

K∗/K = 1
σε = Low 0.076 0.070 0.073 0.090 - 0.101 0.114 0.113 - 0.179 0.188 0.213
σε = Medium 0.121 0.108 0.109 0.131 - 0.141 0.150 0.145 - 0.244 0.238 0.268
σε = High 0.158 0.162 0.163 0.199 - 0.224 0.219 0.218 - 0.431 0.411 0.686
σε,t = SV Low-Med 0.096 0.083 0.084 0.107 - 0.114 0.128 0.124 - 0.200 0.201 0.244
σε,t = SV Low-High 0.120 0.105 0.110 0.146 - 0.138 0.148 0.160 - 0.248 0.248 0.381

Notes: see Table 2.
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Table 14: Forecasting Results

AR ARDI VAR5 VAR20
Plain 2SRR GLRR GRRRR Plain 2SRR GLRR GRRRR Plain 2SRR GLRR GRRRR Plain 2SRR GLRR GRRRR

GDP
h = 1 1.00 0.98 0.99 0.98 1.03 1.11 1.10 1.04 1.04 1.06 1.05 1.01 1.24 2.07 1.61** 1.45*
h = 2 1.00 1.10 1.00 1.00 1.05 1.77 1.06 1.08 1.08 1.39 1.16* 1.08** 1.27 1.32** 1.34** 1.70*
h = 4 1.00 1.23 1.06 1.06 1.07 1.41 1.06 1.08 1.06 1.41 1.14 1.15 1.10 1.27 1.23** 1.12

UR
h = 1 1.00 1.11 1.15 1.15 0.99 1.02 1.05 1.17 1.10* 1.13 1.20 1.10 1.63 1.45 1.76* 1.37
h = 2 1.00 1.46 1.29 1.19 1.00 1.80 1.48 1.03 1.11 1.44 1.44 1.39 1.40 2.11 1.76 2.21
h = 4 1.00 1.59 1.34 1.13** 1.00 1.47 1.32 1.19 1.09 1.40 1.30 1.40 1.07 1.49 1.33* 1.33*

INF
h = 1 1.00 0.93 0.96 0.95 1.01 0.99 1.09 0.95 1.00 0.94 0.95 1.22 1.79 1.79 1.81 1.85
h = 2 1.00 1.14 1.15 1.00 1.06 1.35 1.14 1.49 1.03 1.39 1.17 1.26 1.15 1.77 1.53 1.09*
h = 4 1.00 1.09 1.10 1.12 1.06* 1.20 1.11 1.15 1.00 1.11 1.09 1.02 1.38 1.64 1.12 1.10

IR
h = 1 1.00 0.64*** 0.71*** 0.79*** 0.94*** 0.64*** 0.80*** 1.05 1.07 0.72*** 0.82** 1.09** 1.46* 2.03 2.28 0.71***
h = 2 1.00 0.72*** 0.66*** 0.72*** 0.94** 0.86 0.74** 0.99 0.97 0.95 0.98 0.93 1.37 2.46 0.79** 1.34
h = 4 1.00 1.03 1.06 1.12 0.93 1.04 0.91 1.13 0.97 1.12 0.96 0.93 1.08 1.24 0.93 0.81*

SPREAD
h = 1 1.00 0.86*** 0.86*** 0.86** 0.90** 0.86** 0.85** 0.84*** 0.96 0.82*** 0.87** 0.93 2.13 2.70* 2.48* 1.94
h = 2 1.00 1.02 1.00 0.96 0.91* 1.09 1.06 0.95 0.88** 0.96 0.91 0.92 2.03 2.31 2.30 2.01
h = 4 1.00 1.58 1.14 1.32 0.90** 1.35 1.27 0.95 0.88** 1.34 1.20 1.01 0.89 1.50 1.25 1.16

Notes: This table reports RMSPEv,h,m/RMSPEv,h,Plain AR(2) for 5 variables, 3 horizons and 16 models considered in the pseudo-out-of-
sample experiment. Numbers in bold identifies the best predictive performance of the row. Diebold-Mariano tests are performed to
evaluate whether the difference in predictive performance between a model and the AR(2) benchmark is statistically significant. ’*’,
’**’ and ’***’ respectively refer to p-values below 10%, 5% and 1%.
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Table 15: Forecasting Results, Half & Half

AR ARDI VAR5 VAR20
Plain 2SRR GLRR GRRRR Plain 2SRR GLRR GRRRR Plain 2SRR GLRR GRRRR Plain 2SRR GLRR GRRRR

GDP
h = 1 1.00 0.99 0.99 0.99 1.03 1.01 1.00 1.04 1.04 1.02 1.03 1.02 1.24 1.59 1.34 1.24
h = 2 1.00 1.00 0.97 1.00 1.05 1.21 0.97 1.05 1.08 1.10 1.06 1.07* 1.27 1.19 1.20 1.33
h = 4 1.00 1.01 0.96 0.95 1.07 1.06 0.94 0.97 1.06 1.09 1.01 0.97 1.10 1.05 1.05 0.97

UR
h = 1 1.00 1.02 1.04 1.02 0.99 0.97 0.98 1.04 1.10* 1.09 1.12 1.06 1.63 1.47 1.59 1.27*
h = 2 1.00 1.08 1.08 1.03 1.00 1.16 1.12 1.01 1.11 1.15 1.17 1.17 1.40 1.67 1.50 1.70
h = 4 1.00 1.15 1.10 1.05* 1.00 1.08 1.04 1.02 1.09 1.16 1.14* 1.19* 1.07 1.20 1.15 1.11

INF
h = 1 1.00 0.94 0.95 0.96 1.01 0.98 1.01 0.97 1.00 0.96 0.96 1.06 1.79 1.78 1.78 1.74
h = 2 1.00 0.91 0.92 0.94 1.06 1.12 0.91* 1.15 1.03 1.07 0.93 1.07 1.15 1.30** 1.18 1.07
h = 4 1.00 0.85* 0.85* 0.86* 1.06* 0.88 0.84 0.91 1.00 0.93 0.84 0.87 1.38 1.45 1.17 1.13

IR
h = 1 1.00 0.80*** 0.84*** 0.88*** 0.94*** 0.76*** 0.85*** 0.96 1.07 0.87** 0.93 1.04 1.46* 1.67 1.77 0.98
h = 2 1.00 0.83*** 0.76*** 0.82*** 0.94** 0.85** 0.76*** 0.93 0.97 0.88* 0.95 0.92** 1.37 1.84 0.98 1.26
h = 4 1.00 0.99 1.01 1.02 0.93 0.95 0.90 0.99 0.97 0.99 0.92 0.91 1.08 1.07 0.97 0.88

SPREAD
h = 1 1.00 0.90*** 0.92*** 0.89*** 0.90** 0.86** 0.87*** 0.86*** 0.96 0.87*** 0.90** 0.92* 2.13 2.30 2.21 1.98
h = 2 1.00 0.97 0.98 0.97 0.91* 0.94 0.95 0.92 0.88** 0.88 0.88 0.88** 2.03 2.12 2.12 1.90
h = 4 1.00 1.21 1.03 1.12 0.90** 1.03 1.03 0.91* 0.88** 1.03 0.98 0.92 0.89 1.08 0.95 0.98

Notes: This table reports RMSPEv,h,m/RMSPEv,h,Plain AR(2) for 5 variables, 3 horizons and 16 models considered in the pseudo-out-
of-sample experiment. TVPs of each model are shrunk to constant parameters via model averaging with equal weights for both the
TVP model and its constant coefficients counterpart. Numbers in bold identifies the best predictive performance of the row. Diebold-
Mariano tests are performed to evaluate whether the difference in predictive performance between a model and the AR(2) benchmark
is statistically significant. ’*’, ’**’ and ’***’ respectively refer to p-values below 10%, 5% and 1%.
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1.7.5. Additional Graphs

Figure 4: This graph displays the 5 paths out of which the true βk,t’s will be constructed for simulations.

(a) Unemployment Rate (b) Month over Month GDP growth

(c) Month over Month Inflation Rate (d) Monetary Policy Shocks

Figure 5: Four Main Canadian Time series
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Figure 6: β2SRR
t − βOLS for the cumulative effect of MP shocks on variables of interest. Note

that for better visibility, GDP and CPI Inflation units are now percentages. Dashed black
line is the onset of inflation targeting.
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CHAPTER 2 : THE MACROECONOMY

AS A RANDOM FOREST

2.1. Introduction
The rise of Machine Learning (ML) led to great excitement in the econometrics community.
In applied macroeconomics, a first wave of papers took ML algorithms off the shelf and
went hunting for forecasting gains. With the emerging consensus that some ML offerings
can appreciably increase predictive accuracy, a question emerges: what is the place of
economics in all that?

The conditional mean is the most basic input to any empirical macroeconomic analysis.
Anything else that follows (e.g., structural analysis) depends on it. Thus, getting it right
is not merely useful, it is necessary. Clearly, in that regard, ML can help. However, while
the latter gladly delivers prediction accuracy gains (and ergo a conditional mean closer to
the truth), it is much more reluctant to disclose its inherent model. Consequently, ML is
currently of great use to macroeconomic forecasting, but of little help to macroeconomics. I
propose a simple remedy: shifting the focus of the algorithmic arsenal away from predict-
ing yt into modeling βt, which are economically meaningful coefficients in a time-varying
macroeconomic equation. The newly proposed algorithm, Macroeconomic Random Forest
(MRF) kills two coveted birds with one stone. First, in most instances, MRF forecasts better
than off-the-shelf ML algorithms and traditional econometric approaches. Second, its main
output, Generalized Time-Varying Parameters (GTVPs), can be interpreted. Their versatility
comes from nesting many popular specifications (structural breaks/change, threshold ef-
fects, regime-switching, etc.) and letting the data decide whichever combination of them
is most suitable. Ultimately, we get a new methodology leveraging the power of ML and
big data to provide a modern take on the decades-old challenge of estimating latent states
driving linear macroeconomic equations.

THE STATE OF EMPIRICAL MACRO AFFAIRS. Answering positively two questions guar-
antees a viable conditional mean: "are all the relevant variables included in the model?"
and at a higher level of sophistication, "is linearity a valid approximation of reality?". The
first one led to the successful development of factor models and large Bayesian Vector Au-
toregressions (VARs) over the last two decades. To address the second, applied macroeco-
nomic researchers have proposed many non-linear time series models based on reasonable
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economic intuition. Most of them amount to have regression coefficients βt in

yt = Xtβt + εt

evolving through time. The βt process can take many forms, and a choice must be made
a priori out of many equally plausible alternatives. Notable members of the vast time-
variations catalog are threshold/switching regressions (Hansen, 2011), smooth transition
(Teräsvirta, 1994), structural breaks (Perron et al., 2006; Stock, 1994), and random walk
time-varying parameters (Sims, 1993; Cogley and Sargent, 2001; Primiceri, 2005). While it
is uncontroversial that factor models and large Bayesian VARs have gone a long way in
meeting their original goals, less victorious statements are available for the various time-
variation proposals. Why?

More often than not, nonlinear time series models use little data and/or restrict stringently
the shape of βt’s path. While the consequences for forecasting are direct and obvious, those
for analysis of macroeconomic relationships are equally problematic. Is the evolving Tay-
lor rule characterized by switching regimes (Sims and Zha, 2006), a Volker structural break
(Clarida et al., 2000), or gradually evolving parameters (Boivin, 2005; Primiceri, 2005)? This
discordance interferes with our understanding of the past while impacting our expecta-
tions for tomorrow’s βt. I now divide popular time-variation approaches into two strands,
discuss their shortcomings, and complete by explaining how MRF addresses them.

OBSERVABLE TIME-VARIATION VIA INTERACTION TERMS. Using interaction terms and
related refinements is a parsimonious way to create time variation in a linear equation. For
instance, switching regimes based on an observed regressor can be obtained by interacting
the linear equation with the indicator function I(qt > c), where c is some value, and qt is a
threshold variable chosen by the researcher. However, using the FRED-QD US macro data
set (McCracken and Ng, 2016) reveals an overwhelmingly large number of candidates for
qt. Additionally, there may be multiple regimes interacting together. Or the "true" qt could
be an unknown function of available regressors. And structural breaks or slow exogenous
variation could get in the way. The list goes on. This renders a credible exploration of
the threshold structures’ space impossible and the enterprise of manually specifying the
model very much compromised.

Here is an empirical example. Auerbach and Gorodnichenko (2012b) and Ramey and
Zubairy (2018b) use a GDP/unemployment indicator to let the effects of fiscal stimulus
(potentially) vary with the state of the economy. Batini et al. (2012) allow for additional
dependence on the origin of the impulse (revenue or spending). Such honorable explo-
rations could go on endlessly. MRF provides a hammer solution to the problem. First,
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the near-universe of threshold structures can be characterized by regression trees — see
section 2.2.1. Second, MRF embeds, among other things, a powerful greedy algorithm
designed to explore such "structure" spaces.

LATENT TIME-VARIATION. Some methods with an aura of greater flexibility are labeled
as "latent change". In this line of work, βt either follows a law of motion (random walk,
Markov process) or could be subject to discrete breaks.1 At first glance, this appears to
solve many of the problems of interaction terms approaches. By treating βt as a state to
be filtered/estimated within the model, the complexity of characterizing its path correctly
out of abundant data seems to vanish. Alas, estimating βt’s path implies a great number
of parameters (in fact, often greater than the number of observations, Goulet Coulombe
2020a) which inevitably necessitates strong regularization. That regularization is the law
of motion itself, a choice far from innocuous – and akin to that of qt in "observable" change
models. Accordingly, whether it is latent regime-switching, exogenous breaks, or slow
change, none can easily accommodate for the additional presence of the other. Yet, these
models are routinely fitted separately on the same data. Consequently, methods often detect
what they are designed to detect, in near-complete abstraction of imaginable interference
from other nonlinearities.

Additionally, while "latent" approaches may sometimes rationalize the data well in-sample,
many of them will struggle to outperform a simple benchmark out-of-sample. Often, the
very nature of βt’s law of motion creates forecasting headaches. Classical TVPs imply
a two-sided vs one-sided filtering problem. Analogously, detecting a structural break is
much harder without a great amount of data on both sides of it. Moreover, there is the ob-
vious problem of statistical efficiency. If the Phillips curve flattened because an economy
became increasingly open, including an interaction term with imports/exports is wildly
more efficient than obtaining the whole βt path non-parametrically. Thus, exogenous
structural change should be, in some sense, a time variation of last resort. The advan-
tage of MRF is that it algorithmically search for "observable" low-hanging fruits, and turn
to split the sample with t only if necessary. Further, it implicitly creates a forecasting func-
tion for βt which is an RF in its own right. This is, almost in any case, much more powerful
than existing alternatives – like random walks.

MECHANICS. The key difference when adding the M to MRF is the inclusion of a lin-
ear part within each of the tree leaves, rather than just an intercept. Motivated in cross-
sectional applications to improve the efficiency of nonparametric estimation (in the spirit

1Simpler derivatives are often used in applied work. In forecasting, rolling-window estimation drops early
observations. In empirical macro, pre-defined subsamples are popular (Clarida et al., 2000; Del Negro et al.,
2020).

49



of local linear regression), trees with linear parts have been considered (among others)
in Alexander and Grimshaw (1996) and Wang and Witten (1996). Friedberg et al. (2018)
expand on this by considering an ensemble of them (i.e., a forest) and focusing on the
problem of treatment effect heterogeneity. Of course, the difference here is that a linear
part is much more meaningful when one can look at βt as a process of its own – and as a
synthesis of nonlinear time series models. Finally, it is noteworthy that the approach may
come in semiparametric partially linear clothing, yet it makes no compromise on the range
of nonlinearities it captures. This is a virtue of time-varying coefficients models being able
to approximate any nonlinear function (Granger, 2008).

The chapter also introduces new devices enhancing MRF’s predictive and interpretability
potential. First, I propose Moving Average Factors (MAFs) as a simple way to compress
ex-ante the information contained in the lags of a regressor entering the RF part of MRF.
They boost the meaningfulness of tree splits and helps avoid running out of them quickly.
The transformation is motivated by the literature on constraining/regularizing lag poly-
nomials (Shiller, 1973). Precisely, MAFs’ contribution is to induce similar shrinkage when
there are no explicit coefficients to shrink. When it comes to GTVPs themselves, I provide
a regularization scheme better suited for time series which procures a desirably smoother
path with respect to time. It is inspired by the random walk shrinkage of the classical TVP
literature and is implemented within the tree procedure by weighted least-squares. Finally,
a variant of the Bayesian Bootstrap provides credible regions that are instrumental for the
interpretation of GTVPs.

RESULTS. In simulations, the tool does comparably well to traditional nonlinear time se-
ries models when the data generating process (DGP) matches what the latter is designed
for. When the time-variation structure becomes out of reach for classical approaches, MRF
wins. Additionally, it supplants plain RF whenever persistence is pervasive. In a forecast-
ing application, the MRFs gains are present for almost all variables and horizons under
study, a rarity for nonlinear forecasting approaches. For instance, the Autoregressive Ran-
dom Forest (ARRF) almost always supplant its resilient OLS counterpart. Also, an MRF
where the linear part is a compact factor-augmented autoregression generates very accu-
rate forecasts of the 2008 downturn for both GDP and the unemployment rate (UR). In-
spection of resulting GTVPs reveals they behave differently from random walk TVPs. For
instance, in the UR equation, the contribution of forward-looking variables nearly doubles
before every recession — including 2008 where the associated βt is forecasted to do so
out-of-sample. This reinforces the view that financial indicators and other market-based
expectations proxies can rapidly capture downside risks around business cycle turning
points (Adrian et al., 2019). MRF learned and applied it to great success.
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Inflation is subject to a variety of time-variations, detection of which would be compro-
mised by approaches lacking the generality of MRF. The long-run mean and the persis-
tence evolved slowly and in an exogenous fashion — this has been repeatedly found in the
literature (e.g., Cogley and Sargent 2001). More novel is the finding that the real activity
factor’s effect on the price level depends positively on the strength of well-known lead-
ing indicators, especially housing-related. Following this lead, I complete the analysis by
looking at a traditional Phillips’ curve specification. I report that the inflation/unemploy-
ment trade-off coefficient decreased significantly since the 1980s and also varies strongly
along the business cycle. Among other things, it is extremely weak following every re-
cession. This nuances current evidence on the flattening Phillips curve, which, by design,
focused almost entirely on long-run exogenous change (Blanchard et al., 2015; Galí and
Gambetti, 2019; Del Negro et al., 2020). Overall, MRF suggests inflation can rise from a
positive unemployment gap, but it goes down much more timidly from economic slack.
These findings are made possible by combining different tools within the new framework,
such as credible intervals for the GTVPs, new variable importance measures specifically
designed for MRF, and surrogate trees as interpretative devices for βt.

OUTLINE. Section 2.2 introduces MRF, motivates its use, considers practical aspects, and
discusses relationships with available alternatives. Sections 2.3 and 2.4 report simulations
and forecasting results, respectively. Section 2.5 analyzes various GTVPs of interest. Sec-
tion 3.5 concludes.

2.2. Macroeconomic Random Forests
This section introduces MRF. I first motivate the use of trees as basis functions by casting
standard switching structures for autoregressions as special cases. Second, I detail the
MRF mechanics and how it yields GTVPs. Third, I discuss how the approach relates to
both standard RF and traditional random walk TVPs. Fourth, I discuss interpretability
potential and provide a way to assess parameter uncertainty.
2.2.1. Traditional Macro Non-Linearities as Trees
Within the modern ML canon, Random Forest (RF) is an extremely popular algorithm
because it allows for complex nonlinearities, handles high-dimensional data, bypasses
overfitting, and requires little to no tuning. This is in sharp contrast with, for example,
Neural Networks, whose ability to fail upon a bad choice of hyperparameters is largely
unmatched. Thus, RF is a reasonable device to look into for constructing GTVPs. But there
is more: many common time series nonlinearities fit within a tree structure. Hence, it will
be all the more natural to think of MRF as a generalization of previous nonlinear offerings.
Overall, it eliminates the arbitrary search for a specification. By creating a unified view,
the myriad of time-variations suggested separately can now be tackled jointly.
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I now present two examples displaying how common time series nonlinearities imply a
tree structure for an AR process. Let us consider the inflation process in a country where
inflation targeting (IT) was implemented at a publicly known date (like in Canada). Let
πt be inflation at time t and t∗ is the onset date of IT. Additionally, gt is some measure of
output gap. A plausible model is reported in the tree graph below. The story is straight-
forward. Inflation behaved differently before vs after IT. After IT, it is a simple AR process.
Before IT, it was a switching AR process which dynamics and mean depended on the sign
of the output gap.2

Full Sample

t < t∗

gt−1 < 0

πt = c1 + φ1πt−1 + εt

gt−1 ≥ 0

πt = c2 + φ2πt−1 + εt

t ≥ t∗

πt = c3 + φ3πt−1 + εt

This is one story out of many that trees can characterize. In practice, none of the above is
known. The structure, the splitting variables, and the splitting points could be different.
This is both good and bad news. It highlights the flexibility of trees. It also suggests that
designing the "true" one from economic deduction is a daunting task — equally plausible
alternatives are easily imaginable. Fortunately, algorithms can point out which trees in
better agreement with the data.

A global grid search is computationally unfeasible if either St is large or if we want to
consider more than a few splits (examples above included 2 and 3, respectively). A natural
way forward is recursive partitioning of the data set via a greedy algorithm (Breiman et al.,
1984).3 A greedy algorithm optimizes functions by iteratively doing the best local update,
rather than directly solving for a global optimum. As a result, it is prone to high variance
(Friedman et al., 2001). Hence, considering a diversified portfolio of trees appears as the
most sensible route. To achieve that, it is highly effective to use Bootstrap Aggregation
(Bagging, Breiman 1996) of many de-correlated trees. This is the famous Random Forest
proposition of Breiman (2001).

2Note that a standard regression tree would set all φ’s to 0.
3A single autoregressive tree was proposed in Meek et al. (2002).
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2.2.2. Generalized Time-Varying Parameters
The general model is

yt = Xtβt + εt

βt = F (St)

where St are the state variables governing time variation and F a forest. St is oberved
macroeconomic data which composition is motivated in section 2.2.6 and laid out explicitly
in section 2.4. X determines the linear model that we want to be time-varying. Typically,
Xt ⊂ St is rather small (and focused) compared to St. For instance, an autoregressive
random forests (ARRF) – which generalizes the cases of the previous section – uses lags of
yt for Xt. The tree fitting procedure underlying plain RF is not adequate, as it sets Xt = 1
by default. Thus, analogously to Friedberg et al. (2018), it is modified to

min
j∈J −, c∈IR

[
min

β1
∑

{t∈l|Sj,t≤c}
(yt − Xtβ1)

2 + λ‖β1‖2

+min
β2

∑
{t∈l|Sj,t>c}

(yt − Xtβ2)
2 + λ‖β2‖2

]
.

(2.1)

The purpose of this problem is to find the optimal variable Sj (so, finding the best j out
of the random subset of predictors indexes J −) to split the sample with, and at which
value c of that variable should we split.4 It outputs j∗ and c∗ which are used to split l
(the parent node) into two children nodes, l1 and l2. We start with the leaf l being the full
sample. Then, we perform a split according to the minimization problem, which procures
us with 2 subsamples. Within each of these two newly created subsamples, we run (2.1)
again. Repeating this process recursively constructs an ever-growing set of l’s which are
of ever-shrinking size. Doing so until a stopping criteria is met generates a tree.

LET THE TREES RUN DEEP. Recursively splitting β0 into β1 and β2 eventually leads to
βt. However, βt, by construction, has very little company within its terminal node/leaf.
As result, a single tree has low bias, but also very high variance for βt. When fitting a
single tree, the (early) stopping point must be tuned to avoid overfitting. However, this is
not necessary when a sufficiently diversified ensemble of trees is considered. Originally,
Breiman (2001) himself provided a bound on the generalization error that grows with the

4Note that, unlike Friedberg et al. (2018), St and Xt will differ, which is natural when motivated from a
TVP perspective (but not so much from local linear regression one). Forcing their equivalence is not feasible
nor desirable in a macro environment.
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correlation between trees.5 In Chapter 3, I go further by showing that RF’s out-of-sample
prediction is equivalent to the optimally "stopped" or "pruned" one, provided sufficiently
diversified trees. The desirable property is attributed to the peculiar behavior of "random-
ized greedy algorithms", which are often overlooked as mere computational necessities.
Those insights are of even greater use when it comes to time series since dependence and
structural change pose challenges to hyperparameter tuning. Given a large enough B, a
reasonable mtry (see "De-Correlation" below on this) and standard subsampling rate, we
can be confident that the out-of-bag prediction and βt’s exclude fitted noise. In our spe-
cific context, it means the sample will not be over-split, and we are not going to see time
variation when it is not there. Naturally, the credible regions proposed in section 2.2.7 will
also help in that regard. The property will be illustrated in section 2.3.2.

(M)RF prediction is the simple average from those of its single trees. Same goes for βt. RF is a
clever diversification scheme which generates sufficient randomization for that average to
inherit the above properties. To achieve that, it mixes elements of re-sampling and model
averaging: Bagging and de-correlated trees.6

BAGGING. Each tree is "grown" on a bootstrapped sample (or a random subsample)
(Breiman, 1996).7 When the base learner is highly nonlinear in observation and/or un-
stable, gains from Bagging can be large (Breiman, 1996; Grandvalet, 2004). Nonparametric
(or "pairs" MacKinnon 2006) bootstrap is being used — i.e., we are not shuffling residuals.8

Rather, we are randomly selecting many observations triples [yt Xt St] (or pairs [yt St] for
Plain RF), and then fit a tree on them. To deal with the dependence inherent to time series
data and other reasons detailed in section 2.2.7, a slightly more sophisticated bootstrap-
ping/subsampling procedure (involving blocks) will be used for MRF.

DE-CORRELATION. The second ingredient, proposed in Breiman (2001), is to consider
"de-correlated" trees. RF is an average of many trees, and any averaging scheme reduces
variance at a much faster rate if its components are uncorrelated. In our context, this is
obtained by growing trees semi-stochastically. In equation (2.1), this is made operational
by using J − ⊂ J rather than J . In words, this means that at each step of the recursion, a
different subsample of regressors is drawn to constitute candidates for the split. This pre-

5Also, Duroux and Scornet (2016) derive a formula (for a "median" forest) linking tuning parameters related
to the depth of the trees and that of diversification.

6See Chapter 3 for a discussion on how RF compares and contrast with the forecast combinations/averag-
ing literature.

7This does not preclude from obtaining βt for all t’s since βt’s attached to the excluded observations are
simply generated by applying the tree on the "out-of-bag" data.

8Nonetheless, Bagging in itself is not estranged to macro forecasting (Inoue and Kilian, 2008; Hillebrand
and Medeiros, 2010; Hillebrand et al., 2020). However, nearly all studies consider the more common problem
of variable selection via hard-thresholding rules – like t-tests (Lee et al., 2020).
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vents the greedy algorithm (which, as we know, only "thinks" locally) to always embark
on the same optimization route. As a result, trees are further diversified and computing
time, reduced. The fraction of randomly selected predictors is a tuning parameter typi-
cally referred to as mtry in the literature (and all software), with a default value of 1

3 for
regression settings. This, other algorithmic parameter settings, and some practical aspects
are discussed in appendix 2.7.4.

Plain RF has many qualities readily transferable to MRF. It is easy to implement and to
tune. That is, it has few tuning parameters that are usually of little importance to the over-
all performance – robustness. It is relatively immune to the adverse effects of including
many irrelevant features (Friedman et al., 2001). Given the standard ratio of regressors
to observations in macro data, this is a non-negligible advantage. Furthermore, with a
sufficiently high mtry, it can adapt nicely to sparsity and discard useless predictors (Ol-
son and Wyner, 2018). Finally, its vanilla version already shows good forecasting perfor-
mance for US inflation (Medeiros et al., 2019) and macro data in general (Chen et al., 2019;
Goulet Coulombe et al., 2019).
2.2.3. Random Walk Regularization
Equation (2.1) uses Ridge shrinkage which implies that each time-varying coefficient is
implicitly shrunk to 0 at every point in time. λ and the prior it entails can exert a significant
influence. For instance, if a process is highly persistent (AR coefficient lower than 1 but
nevertheless quite high) as it is the case for SPREAD (see section 2.4), shrinking the first lag
heavily to 0 could incur serious bias. Fortunately, this can easily be refined to a Minnesota-
style prior if Xt corresponds to a Bayesian VAR equation. If Xt is low-dimensional (as
it will often be), a simpler alternative consists in using OLS coefficients as prior means.
Nonetheless, the specification of previous sections implies that if λ grows large, ∀t βt = 0
(or whatever the prior mean is). βi = 0 is a natural stochastic constraint in a cross-sectional
setting, but its time series translation βt = 0 can easily be suboptimal. The traditional
regularization employed in macro is rather the random walk

βt = βt−1 + ut.

Thus, it is desirable to transform (2.1) so that it implements the prior that coefficients
evolve smoothly (at least, to minimal extent), which is just shrinking βt to be in the neigh-
borhood of βt−1 and βt+1 rather than 0. This is in line with the view that economic states
(as expressed by βt here) last for at least a few consecutive periods. Note that unlike tradi-
tional TVP methods which rely extensively on smoothness regularization – as it is the sole
regularizer, MRF makes only an very mild use of it to get rid of high-frequency noise that
may be left in βt. The main benefit is to facilitate the interpretation of resulting GTVPs.
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I implement the desired regularization by taking the "rolling-window view" of time-varying
parameters, which has been exploited recently to estimate large TVP-VARs (Giraitis et al.,
2018; Petrova, 2019). That is, the tree, instead of solving a plethora of small ridge problems,
will rather solve many weighted least squares problems (WLS) which includes close-by ob-
servations. The latter are in the neighborhood (in time) of observations within current leaf.
They are included in estimation, but are allocated a smaller weight.

For simplicity and to keep computational demand low, the kernel used by WLS is rather
rudimentary: it is a symmetric 5-step Olympic podium. Informally, the kernel puts a
weight of 1 on observation t, a weight of ζ < 1 for observations t − 1 and t + 1 and a
weight of ζ2 for observations t− 2 and t + 2. Since some specific t’s will come up many
times (for instance, if both observations t and t + 1 are within the same leaf, podiums
overlap), I take the maximal weight allocated to t as the final weight w(t; ζ).

Formally, define l−1 as the "lagged" version of leaf l. In other words, l−1 is a set containing
each observation from l, with all of them lagged one step. l+1 is the "forwarded" version.
l−2 and l+2 are two-steps equivalents. For a given candidate subsample l, the podium is

w(t; ζ) =



1, if t ∈ l

ζ, if t ∈ (l+1 ∪ l−1)/l

ζ2, if t ∈ (l+2 ∪ l−2)/ (l ∪ (l+1 ∪ l−1))

0, otherwise

where ζ < 1, a tuning parameter guiding the level of time-smoothing. Then, it is only a
matter of how to include those additional (but down weighted) observations in the tree
search procedure. The usual candidate splitting sets

l1(j, c) ≡ {t ∈ l|Sj,t ≤ c} and l2(j, c) ≡ {t ∈ l|Sj,t > c}

are expanded to include all observations of relevance to the podium

for i = 1, 2 : lRW
i (j, c) ≡ li(j, c) ∪ li(j, c)−1 ∪ li(j, c)+1 ∪ li(j, c)−2 ∪ li(j, c)+2.
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The splitting rule becomes

min
j∈J −, c∈IR

[
min

β1
∑

t∈lRW
1 (j,c)

w(t; ζ) (yt − Xtβ1)
2 + λ‖β1‖2

+min
β2

∑
t∈lRW

2 (j,c)

w(t; ζ) (yt − Xtβ2)
2 + λ‖β2‖2

]
.

(2.2)

Note that the Ridge penalty is kept in anyway, so the final model has in fact two sources
of regularization. With ζ → 0, we are heading back to pure Ridge.

Although not considered in the main applications of this chapter, models with a larger
linear part Xt are possible. For instance, one could estimate, equation by equation, a high-
dimensional VAR. In practice, this simply requires harsher regularization via higher val-
ues of λ, ζ and a larger minimum leaf size. Nevertheless, the forecasting benefits from this
strategy could prove limited: MRF is "high-dimensional" whenever St is large. The time-
varying constant in MRF is a RF in its own right. It can be seen as a complex misspecifica-
tion function (in the deep learning jargon, it is effectively called the bias) that adaptively
controls for omitted variables in a way that is both non-linear and strongly regularized via
randomization. Consequently, the cost from omitting a regressor of minor importance in
Xt is low since it can be picked up by the time-varying intercept.

Of course, the small Xt strategy treats the extra regressors as exogenous, which could be at
odds with some researchers’ will to investigate a large web of impulse response functions.
Anyhow, both approaches are possible. The dynamic coefficients of a (large) GTVP-VARs
can be estimated by either fitting MRF equation by equation, or modifying the splitting
rule in (2.2) to be multivariate so that each tree is fitted jointly for all equation – pooling
time-variation across equations. Finally, elements of the covariance matrix of residuals can
be fitted separately with a plain RF, which is very fast.
2.2.4. Relationship to Random Walk Time-Varying Parameters
GTVPs have many advantages over classical TVPs. While it is known that any nonlinear
model can be approximated by a linear one with TVPs (Granger, 2008), nothing is said
about how efficient that estimation is going to be. As it turns out, efficiency crucially mat-
ters in a macro context, and random-walk TVPs can be quite inefficient (Aruoba et al.,
2017). For example, if the true βt follows a recurrent switching mechanism, random walk
parameters already have two strikes against them. Some dimensionality reduction tech-
niques – like reduced-rank restrictions (de Wind and Gambetti, 2014; Stevanovic, 2016;
Chan et al., 2018; Goulet Coulombe, 2020a) – can help, but nothing in that paradigm can
come close to the parsimony of simply interacting Xt with relevant variables. In contrast,
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MRF considers all time-variations options, and choose the "obvious thing", which may or
may not be splitting on t. Also, it is absolutely possible that the resulting F pools both
latent and observable time variation.

Even though MRF is remarkably flexible, its variance remains low thanks to the diversified
portfolio of trees. The variance of classical TVPs can be controlled by cross-validation
(Goulet Coulombe, 2020a) or via an elaborate hierarchical prior (Amir-Ahmadi et al., 2018).
A number of applications opt for a "manual" approach (D’Agostino et al., 2013). However,
it is understood that no tuning, however careful it may be, can overcome the hardship of
fitting random-walks when the true βt’s look nothing like it.

Econometrically, one way to more formally connect this paradigm to recent work on TVPs
is to adopt the view that RF are adaptive kernel estimators (Meinshausen, 2006; Athey
et al., 2019; Friedberg et al., 2018). That is, the tree ensemble is a machine generating
kernel weights. Once those are obtained, estimation amounts to weighted least squares
(WLS) problem with a Ridge penalty. By running (2.1) recursively, one obtains terminal
nodes/leaves Lb() to construct kernel weights

αt (x0) =
1
B

B

∑
b=1

1 {Xt ∈ Lb (x0)}
|Lb (x0)|

to use in

∀t : argminβt

{
T

∑
τ=1

αt (sτ) (Yτ − Xτ βτ))
2 + λ‖βt‖2

}
. (2.3)

As shown in Chapter 1, standard random walk TVPs are in fact a smoothing splines prob-
lem, and for those, a reproducing kernel exists (Dagum and Bianconcini, 2009a). Giraitis
et al. (2014) drop the random walk altogether and proposed to use kernels directly. Any-
how, in both cases, the only variable entering the kernel is t. In other words, only proximity
in time is considered for the clustering of observations. This makes the seemingly flexible
estimator in fact quite restrictive – and dependent on its inherent smoothness prior. More-
over, standard kernel methods are known to break down even in medium dimensions (say
<10 variables) (Friedberg et al., 2018). Therefore, augmenting t – the sole variable in the
kernel (implicit of explicit) of traditional TVP methods – with additional regressors is not
an option. No such constraints bind on the RF approach.
2.2.5. Relationship to Standard Random Forest
The standard RF is a restricted version of MRF where Xt = ι, λ = 0 and ζ = 0. In words,
the only regressor is a constant and there is no within-leaf shrinkage. Previous sections
motivated MRF as a natural generalization of non-linear time-series models. At this point,
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a reasonable question emerges from a ML standpoint. Why should we prefer the partially
linear MRF to the fully nonparametric RF? One reason is statistical efficiency. The other is
potential for interpretation.

Smooth Relationships are Hard Relationships (to estimate)

In finite samples, plain RF can have a hard time learning smooth relationships – like a
AR(1) process. This is bad news for time series applications. For prediction purposes,
estimating

yt = φyt−1 + εt

by OLS implies a single parameter. However, approximating the same relationship with
a tree (or an ensemble of them) is far more consuming in terms of degrees of freedom.
To get close to the straight line once parsimoniously parametrized by φ, we now need a
succession of many step functions.9 With short time series, modeling smooth/linear re-
lationships in such a way is a luxury one rarely can afford. The mechanical consequence
is that RF will waste many splits on capturing the linear part, and may run out of them
before it gets to focus more subtle nonlinear phenomena.10 In a language more familiar to
economists, this is simply running out (quickly) of degrees of freedom. MRF provides a
workaround. Modeling the linear part concisely leaves more room to estimate the nonlin-
ear one. By its more strategic budgeting of degrees of freedom, the resulting (estimated)
partially linear model could be, in fact, more non-linear than the fully nonparametric one.

This chapter is not the first to recognize the potential need for a linear part in tree-based
models. For instance, both Alexander and Grimshaw (1996) and Wang and Witten (1996)
proposed linear regressions within a leaf of a tree, respectively denominated "Treed Re-
gression" and "Model Trees". More focused on real activity forecasting, Woloszko (2020)
and Wochner (2020) blend insights from macroeconomics to build better-performing tree-
based models.11 On a different end of the econometrics spectrum, Friedberg et al. (2018)
proposed to improve the nonparametric estimation of treatment effect heterogeneity by
combining those ideas developed for trees into a forest.12 To my knowledge, this chapter
is the first to exploit the link between this strand of work and the sempiternal search for
the "true" state-dependence in empirical macroeconomic models.

9In a standard regression setup, nobody would model a continuous variable as an ordinal one unless some
wild nonlinearities are suspected.

10One necessary (but not sufficient) symptom is AR terms being flagged as really important by typical RF
variable importance measures (one example is Borup et al. (2020b)).

11Specifically, Wochner (2020) also note that using trees in conjunction with factor models can improve GDP
forecasting. An analogous finding will be reported in section 2.4.

12More broadly, this is extending to trees and ensemble of trees the "classical" non-parametrics literature’s
knowledge that local linear regression usually has much better properties (especially at the sample bound-
aries) than the Naradaya-Watson estimator.
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A Note on Interpretability

The interpretation of ML outputs is now a field of its own (Molnar, 2019). RF is widely
regarded as a black box model which needs to be interpreted using an external device.
Indeed, it usually averages over 100 trees of substantial depth, which makes individual
inspection impossible. MRFs partially circumvent the problem by providing time series
βt which can be examined, and have a meaning as time-varying parameters for the linear
model. Thus, whatever one may do with TVPs, it can be done with GTVPs. There are also
some new avenues. For instance, Variable Importance (VI) measures usually deployed to
dissect RF’s prediction can be used to inspect what is driving βt’s. Those will be used in
section 2.5.3.

A popular approach to dissect a standard RF is to use interpretable surrogate tree models
to partially replicate the black box model’s fit. The idea can be transferred to MRF (Mol-
nar, 2019). In fact, partial linearity facilitates such an exercise. The linear part in MRF
splits the nonparametric atom into different pieces (Xt,kβt,k) which can be analyzed sepa-
rately. Each time series βt,k can be dissected with its own surrogate model, and meaningful
combination/transformations of coefficients can be considered.
2.2.6. Engineering St

This section discusses principles guiding the composition of St, which is the raw material
for F in both MRF and plain RF. Macroeconomic data sets (e.g. FRED, McCracken and Ng
2020) typically contains many regressors and few observations. After incorporating lags
for each variable, it can easily be the case that predictors outnumber observations. The
curse of dimensionality has both computational and statistical ramifications. The former
is mostly avoided in RF since it does not rely on inverting a matrix. However, the statistical
curse of dimensionality, a feature of the regressors/observations ratio, remains a difficulty
to overcome.

There are two extreme ways of reducing dimensionality: sparse or dense. The former
selects a small number of features out of the large pool in a supervised way (e.g. LASSO),
the latter compresses the data in a set of latent factors that should span most of the original
regressors space. This is often seen as a necessity to choose one of them.13 However, in a
regularized model, both can be included, and we can let the algorithm select an optimal
combination of original features and factors.14 This is useful — it is not hard to imagine
a situation where opting for one or the other would prove suboptimal to a more nuanced
solution.

13In macro forecasting work using RF, Goulet Coulombe et al. (2019) follow a dense approach by only
including factors while Borup et al. (2020a) opt for sparsity by proposing a Lasso pre-selection step.

14A more detailed discussion of this can be found in Appendix 2.7.1.
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LAG POLYNOMIALS. From a predictive standpoint, residuals autocorrelation implies there
is forecasting power left on the table. To get rid of it, many lags might be necessary. In
multivariate contexts (like that of a VAR), doing so quickly pushes the model to overfit.
A standard solution is Bayesian estimation and the use of priors in the line of Doan et al.
(1984), which are specially designed for blocks of lags structures. Outside of the VAR
paradigm, there is an older literature estimating restricted/regularized lag polynomials
in Autoregressive Distributed Lags (ARDL) models (Almon, 1965; Shiller, 1973). More re-
cently, these methods have found new applications in mixed-frequency models (Ghysels
et al., 2007) where the design of the model leads to an explosion of lag parameters.

(M)RF experiences an analogous situation. A tree may waste many splits trying to effi-
ciently extract information out of a lag polynomial: for instance, splitting on the first lag,
then the 7th one, then the 3rd one. In linear parametric models, the above methods can
extract the relevant information out of a lag polynomial without sacrificing many degrees
of freedom. A significant roadblock to this enterprise in the RF paradigm is that there
are no explicit lag polynomials to penalize. An alternative route is to exploit the insight
that RF can choose for itself relevant restrictions. We just have to construct regressors that
embodies those, and include them in St.

MOVING AVERAGE FACTORS. To extract the essential information out of the lag poly-
nomial of a specific variable, a linear transformation can do the job. Consider forming a
panel of P lags of variable j:

X1:P
t,j ≡ [Xt−1,j ... Xt−P,j] .

We want to form weighted averages of the P lags so that it summarizes most efficiently
the temporal information of the feature indexed by j.15 The weighted averages with that
property will be the first few factors (extracted by PCA) of X1:P

t,j .16 This can be seen as
the time-dimension analog to the traditional cross-sectional factors. The latter are defined
such as to maximize their capacity to replicate the cross-sectional distribution of Xt,j fixing
t while the Moving Average Factors (MAFs) proposed here seek to represent the temporal
distribution of Xt,j for a fixed j in a lower-dimensional space.17 By doing so, our goal to
summarize the information of X1:P

t,j without modifying the RF algorithm (or any other) is

15P is a tuning parameter the same way the set of included variables in a standard factor model is one.
16While I work directly with the latent factors, a related decomposition called singular spectrum analysis

works with the estimate of the summed common components. Since this decomposition naturally yields a
recursive formula, it has been used to forecast macroeconomic and financial variables (Hassani et al., 2009,
2013).

17In the spirit of the Minnesota prior, one can assign decaying (in p) weights to each lag before running
PCA. This has the analogous effect of shrinking more heavily the distant lags and less so the recent ones.
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achieved: rather than using the numerous lags as regressors, we can use the MAFs which
compress information ex-ante. As it is the case for standard factors, MAF are designed to
maximize the explained variance in X1:P

t,j , not the fit of the final target. It is the RF part’s
job to select the relevant linear combinations among St so to maximize the fit. Finally, it
is noteworthy that MAFs facilitate interpretation. As these are moderately sophisticated
averages of a single time series, they can be viewed as a smooth index for a specific (but
tangible) economic indicator. This is arguably much easier to interpret than a plethora of
lags coefficients.

The take-away message from this subsection can be summarized in three points. First,
there is no need to choose ex-ante between sparse and dense when the model performs
selection/regularization. We can let the algorithm find the optimal balance. Second, to
make the inclusion of many lags useful, we need to regularize the lag polynomial. Third,
such compression can be achieved most easily by generating MAFs and using those as
regressors in RF – or any algorithm.
2.2.7. Quantifying Uncertainty of βt’s Estimates
Taddy et al. (2015) and Taddy et al. (2016) interpret RF’s prediction as the posterior mean
of a tree functional T (the splitting algorithm) obtained by an approximate Bayesian boot-
strap.18 Through those lenses, each tree is a posterior draw. Seeing T as a Bayesian non-
parametric statistic (independently of the DGP) is of even greater interest in the case of
MRF.19 It provides inference for meaningful time-varying parameters βt rather than an
opaque conditional mean function. Such techniques, originating from Ferguson (1973),
have seldomly found applications in econometrics, such as Chamberlain and Imbens (2003)
for instrumental variable and quantile regressions.

While the Bayesian Bootstrap desirably does not assume many things about the data, it
yet makes the assumption that Zt = [yt Xt St] is an iid random variable. Thus, it cannot
be used directly as a proper theoretical motivation for using the bag of trees directly to
conduct inference. I propose a block extension to make Taddy et al. (2015)’s convenient
approach amenable to this chapter’s setup.

Block Bayesian Bootstrap (BBB) is a simple redefinition of Z so that it is plausibly iid.
Hence, in the spirit of traditional frequentist block bootstrap (MacKinnon, 2006), blocks

18The connection between Breiman (1996)’s bagging and Rubin (1981)’s Bayesian Bootstrap was acknowl-
edged earlier in Clyde and Lee (2001).

19An alternative (frequentist) inferential approach is that of Friedberg et al. (2018). However, their asymp-
totic argument requires estimating the linear coefficients and the kernel weights on two different subsamples.
This is hard to reconciliate with our goal of modeling time-variation and different regimes throughout the
entire sample. Furthermore, when the sample size is small, splitting the sample in such a way carries binding
limitations on the complexity of the estimated function.
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of a well-chosen size will be exchangeable. Thus, a new variable can be defined Zb ≡
[yb:b̄ Xb:b̄ Sb:b̄]. There will be a total of B = T/block size fixed and non-overlapping blocks.
Under covariance stationarity, Z̃b = vec(Zb) are iid, for a properly chosen block length.20

Analogously to Taddy et al. (2015), block-subsampling is preferred to BBB in implementa-
tions since it is faster and gives nearly identical results. Details of BB and BBB are available
in Appendix 2.7.2.

It is reasonable to wonder how the above procedure deals with the possible presence of
heteroscedasticity. Fortunately, the nonparametric bootstrap/subsampling that RF uses is
in fact the "pairs" bootstrap of Freedman et al. (1981) which is valid under general forms
of heteroscedasticity (MacKinnon, 2006). From a Bayesian point of view, Lancaster (2003)
show that the obtained variance for OLS from using such a bootstrap is asymptotically
equivalent to that of White’s sandwich formula.21 Hence, in the spirit of heteroscedasticity-
robust estimation, no attempt will be made at directly evolving volatility (which is a GLS
approach). Rather, it will be reflected in larger bands for periods of smaller signal-to-noise
ratio.

2.3. Simulations
Simulations are divided in two parts. The first shows that Autoregressive Random Forest
(ARRF) delivers forecasting gains over standard nonlinear time series model when the true
DGP mixes both endogenous and exogenous time-variation. Moreover, the former is very
resiliant against traditional approaches, even when the DGP matches the latter’s restrictive
assumptions. Additionally, those simulations will numerically document the superiority
of ARRF over RF when the AR part is pervasive (as discussed in section 2.2.5). Overall,
this helps rationalizing forecasting results from section 2.4, where ARRF supplants∼TARs
for the vast majority of targets.

The second simulations section considers simpler linear parts and look at how the algo-
rithm behaves when St is large. Further, I focus on βt itself and its credible regions. The
main point is to visually show that (i) GTVPs adapts nicely to a wide range of DGPs and
(ii) are not prone to discover inexistent time-variation.
2.3.1. Comparison of ARRF to Traditional Nonlinear Autoregressions
I consider 3 DGPs: Autoregression (AR), Self-Exciting Threshold ARs (SETAR), and a SE-
TAR model that collapse to an AR (via a structural break). Those DGPs include two types
of time variations, endogenous (yt−1) and exogenous (t).22 They are meant to encapsulate

20In practice, I will use block of two years for both quarterly or monthly data.
21Poirier (2011) propose better priors and Karabatsos (2016) incorporate such ideas into a generalized ridge

regression.
22Since a structural break is just a threshold effect with respect to variable t, one can conclude without loss

of generality that similar results would be obtained using different additional switching variables.
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compactly the usual nonlinearities considered in empirical studies, like dependence on
the state of the business cycle (Auerbach and Gorodnichenko, 2012a; Ramey and Zubairy,
2018b) and exogenous time variation (Clarida et al., 2000).

For all DGPs, Xt = [1 yt−1 yt−2]. The simulated series sample size is either T = 150 or T =

300. The last 40 observations of each sample consist the hold-out sample for evaluation. I
forecast 4 different horizons: h = 1, 2, 3, 4. Models are estimated once at the last available
data point.

MODELS. SETAR, Rolling-Window (RW) AR, Random Forest (RF) and Autoregressive
Random Forest (ARRF) are included. Iterated SETAR forecasts are obtained via the stan-
dard bootstrap method (Clements and Smith, 1997) and all the others are generated via
direct forecasting. That is, in the latter case, I fit the model directly on yt+h rather than iter-
ating forward the one-step ahead forecast. To certify that the observed differences between
SETAR and other models is not merely due to the choice of iterated vs direct forecasts – a
non-trivial choice in many environments (Chevillon, 2007) –, I also include SETAR-d where
"d" means its forecasts were alternatively obtained by direct forecasting.

In all simulations, MRF’s St includes 8 lags of yt and a time trend, which match what will
be referred to in section 2.4 as "Tiny ARRF". Thus, unlike ∼TARs, it is "allowed" to split on
what we know (by the DGP choices) to be useless regressors (especially at horizon h = 1).
The specified linear part for all models matches that of the true DGP (Xt = [1 yt−1 yt−2]).

PERFORMANCE METRIC. Performance is evaluated using the mean squared prediction
error (MSPE). In simulation s, for the forecasted value at time t made h steps ahead, I
compute

RMSEh,m =

√√√√ 1
40× 100

100

∑
s=1

∑
t∈OOS

(ys
t − ŷs,h,m

t−h )2.

100 different simulations are considered, which means the total number of squared er-
rors being averaged for a given horizon and model is 100×40=4000. To provide a visu-
ally useful normalization, bar plots report RMSEh,m’s relative to that of the oracle, who
knows perfectly the law of motion of time-varying parameters βt.23 Formally, the metric
is ∆oRMSEh,m = RMSEh,m/RMSEh,o − 1.

SETAR MORPHING INSTANTLY INTO AR(2). The two sources of time-variation are com-
23Precisely, if the model has a break and a switching variable, it knows exactly the break points, thresholds

and AR parameter values in each regime. The only things the oracle does not know are the future shocks
(εt+h), and the out-of-sample evolution of parameters (βt+h) – unless the latter is purely deterministic.
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bined to display MRF’s edge in this not so implausible situation. Further,

DGP 1 =

SETAR, if t < T/2

AR, otherwise

can rightfully be hypothesized for some economic time series: complex dynamics up until
the mid-1980’s followed by a very simple autoregressive structure during the Great Mod-
eration.24 In Figure 7a, MRF comes out as the best model for all horizons in the smaller
sample. RF fails particularly at short horizons because it attempts to model all dynamics
nonparametrically. Doubling the sample size helps, but its disimprovement with respect
to the oracle remains at least twice as large as that of MRF. SETAR and AR both focus on
dynamics but are misspecified. Their increase in relative RMSE is about thrice that of MRF
at longer horizons for the shorter sample. For horizon 1, RW-AR does equally well as MRF,
which is expected in this DGP since it discards earlier observations we only know ex-post
to be harmful. Thus, in this DGP much akin to that of the hypothetical inflation tree of
section 2.2.1, MRF comes out as the clear winner.

PERSISTENT SETAR. DGP 2, with βt = I(yt−1 ≥ 0)[2 0.8 − 0.2]+ I(yt−1 < 0)[0.25 1.1 −
0.4], represents an endogenous switching process which may suit well real activity vari-
ables: it includes high/low regimes, and mildly different dynamics in each of them. Can
MRF match traditional nonlinear times series model when the world is nonlinear, yet sim-
ple? The broad answer from Figure 7b is yes. For all horizons and sample sizes considered,
MRF is practically as good as SETAR, the optimal model in this context. Because of its ca-
pacity to control overfitting, MRF will be competitive even if nonlinearities turn out to be
as simple as often postulated in the empirical macroeconomics literature. With the relative
importance of changing persistence, RF cannot match MRF’s performance and is trailing
behind with RW-AR.25 Nevertheless, RF improves substantially at shorter horizons when
the sample size increase. Finally, AR is resilient at longer horizons but is much worse than
MRF and SETAR at shorter ones.

NO TIME-VARIATION. Given the widespread worry that ML-based algorithms can over-
fit, a time-invariant DGP is a natural check.26 Can MRF still deliver competitive perfor-
mance if reality equates simple linear dynamics? Results for DGP 3, an AR(2) process with
β = [0 0.7 − 0.2], are reported in Figure 7c. As expected, AR is the best model for all

24The AR has β = [0 0.7 − 0.2] and the SETAR has βt = I(yt−1 ≥ 1)[2 0.8 − 0.2] + I(yt−1 < 1)[0.25 0.4 −
0.2]. Results for the latter in isolation are in Appendix 2.7.5.

25In Appendix 2.7.5, the case where the changing persistence is less important is considered.
26Also, the incredible resilience of linear AR models is well documented in the macroeconomic forecasting

literature (see Kotchoni et al. (2019) and references therein).
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(a) DGP is SETAR morphing into AR(2).

(b) DGP is Persistant SETAR.

(c) DGP is Plain AR(2).

Figure 7: Displayed are increases in relative RMSE with respect to the oracle.
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horizons and both sample sizes. The RW-AR suffers from high variance and it is assumed
that tuning the window length in a data-driven way would help. Plain RF struggles irre-
spective of the sample size. For the smaller sample, MRF performs as well as the tightly
parametrized SETARs. Their marginal increases in RMSE with respect to the oracle are
typically less than 10%, which is small in contrast to that of previous DGPs. More obser-
vations generally helps AR, the iterated SETAR, and MRF especially at longer horizons.

ABOUT MISSPECIFICATION OF Xt . Most of the reported gains from using MRF come from
avoiding misspecification when a more complex DGP arises. What happens if the arbitrary
linear part in MRF, Xt, is itself misspecified? Figure 20 in the appendix report correspond-
ing results. For all DGPs under consideration, a "Bad" MRF, where Xt is composed of two
white noise series (instead of the first two lags of yt), performs similarly well (or bad) as
plain RF.27

SUMMARY. First, when the true DGP is not that of the tightly parametrized classical non-
linear time series model, the more flexible MRF does better. Second, when classical non-
linear time series model are fitted on their corresponding DGPs, those perform better than
MRF – but only marginally. Third, when there are pervasive linear autoregressive relation-
ships, plain RF struggles. Fourth, MRF and RF relative performance both increase with the
number of observations but MRF’s one increases faster if the linear part is well-chosen. In
Appendix 2.7.5, results for 3 additional DGPs are reported: another SETAR, AR with a
structural break, and SETAR morphing in another SETAR (through a break). Again, MRF
is shown to have an edge when other models are misspecified and almost as good when
those are not.
2.3.2. A Look at GTVPs when St is Large
A notable difference between the simulations presented up to now and the applied work
being carried in later sections is the size of St. In many macro applications, there is no
shortage of variables to include in MRF’s F . For instance, the FRED-QD data base (Mc-
Cracken and Ng, 2020) contains over 200 potential predictors that can join lags of y and a
time trend within St. As a result, there is now considerable interest in allowing for time
variation in empirical models using large information sets. For instance, Koop and Ko-
robilis (2013) propose large TVP-VARs while Abbate et al. (2016) extend Bernanke et al.
(2005)’s factor-augmented VAR to be time-varying. Interestingly, those papers (and the
corresponding literature) almost exclusively focus on a setup where, in MRF notation, Xt

27This result may not hold, however, when the law of motion for the intercept is highly complex and requires
a great number of split (unlike what is considered here). This is due to the linear part restricting the depth of
trees (with to what plain RF could allow for), especially if observations are scarce. In that regard, increasing the
ridge penalty (via λ) will help. Nevertheless, in practice, it is a safer bet to use a small linear part if uncertainty
around its composition is high. More on this and the effect of hyperparameters can found in appendix 2.7.4.
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is large and St is extremely small (usually just t). Of course, MRF could deal with this case
(as discussed in section 2.2.3), but its edge will be more apparent when we let the RF part
deal with large data and keep Xt concise. Indeed, in addition to lessened misspecifica-
tion concerns, RFs also benefits from more data through increased randomization – which
prevents fully grown trees from overfitting (Breiman, 2001; Goulet Coulombe, 2020c).

The additional simulations go as follow. First, I simplify the analysis by looking at a static
model with mutually orthogonal but autocorrelated regressors X1 and X2, both driving
yt according to some process. I simulate each of them for 1000 periods and estimate the
models with the first 400 observations. The remaining 600 are used to evaluate the out-of-
sample performance. The signal to noise ratio is calibrated to 2/3 which is about what is
found (out-of-sample) for most models in the empirical section.

The only remaining questions are that of the constitution of St and the generation of βt’s. I
create two autocorrelated (but not cross-correlated) factors. Out of each of them, I create 50
series with a varying amount of additional white noise.28 Joining those 100 series with lags
of yt and a time trend, the final size of St is slightly above 100. Finally, βt’s are functions of
the underlying first factor which (like the second) is not directly included in the data set.
In certain DGPs, some βt’s will also be a pure function of t (like random walks, structural
breaks).29 Table 16 summarizes the six DGPs in words.

Table 16: Summary of Data-Rich Simulations DGPs

DGP # Intercept βX1
t βX2

t Residuals Variance

1 Switching Switching Switching Flat
2 Flat Random Walk Random Walk Flat
3 Flat Latent factor directly Slow Change (function of t) Flat
4 Flat Switching Slow Change (function of t) Flat
5 Flat Switching Structural Break Flat
6 Flat Flat Flat Stochastic Volatility

More illustratively, Figures 8 and 21 (appendix) plots one example of each DGPs as well as
the estimated GTVPs and their credible region (as discussed in section 2.2.7). It is visually
obvious that GTVPs are adaptive in the sense that it can discover which kind of time-
variation is present in the data while estimating it. In Figure 8a, MRF successfully estimate
the rather radical switching regimes present in all coefficients. In Figure 8b, MRF realizes
that almost all of St is useless because true βt follow random walks. Rather, it manages to
fit βt’s nicely by relying on a multitude of t splits. In Figure 8c, things get "easier" for the

28To be precise, their standard deviation is U[0.5, 3]% that of the original factor standard deviation.
29To clarify, the second factor and underlying series are completely useless to the true DGP – arguably

mimicking the inevitable when using a data base of the size of FRED-QD.
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(a) DGP 1

(b) DGP 2

(c) DGP 3

Figure 8: The grey bands are the 68% and 90% credible region. After the blue line is the
hold-out sample. Green line is the posterior mean and orange is the truth. The plots
include only the first 400 observations for visual convenience.
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true βX1,t as it is driven directly by the first latent factor. MRF discovers that and leverage it
to have a very tight fit for it, both in-sample and out-of-sample. This is merely a reflection
that if time variation can be constructed by simple interaction terms, this is certainly the
easiest statistical route to by – and MRF chooses it thanks to its inherent ability to perform
"time variation selection".

Figure 22 reports distributions of RMSE differentials with respect the oracle (the fore-
cast that knows the βt’s law of motion). MRF performance is compared to OLS, Rolling-
Window OLS (RW-OLS) and plain RF. As expected, MRF outperforms all alternatives by
wide margins for most DGPs. By construction, RW-OLS and OLS also perform well for
DGP 5 (random walks) and DGP 6 (constant parameters). Nonetheless, it is reassuring to
see that MRF either performs much better than OLS or worse by a thin margin (in cases
with no time-variation).

2.4. Macroeconomic Forecasting
In this section, I present results for a pseudo-out-of-sample forecasting experiment at the
quarterly frequency using the dataset FRED-QD (McCracken and Ng, 2020). The latter
is publicly available at the Federal Reserve of St-Louis’s web site and contains 248 US
macroeconomic and financial aggregates observed from 1960Q1. The forecasting targets
are real GDP, Unemployment Rate (UR), CPI Inflation (INF), 1-Year Treasury Constant
Maturity Rate (IR) and the difference between 10-year Treasury Constant Maturity rate and
Federal funds rate (SPREAD). These series are representative macroeconomic indicators of
the US economy which is based on Goulet Coulombe et al. (2019) exercise for many ML
models, itself based on Kotchoni et al. (2019) and a whole literature of extensive horse races
in the spirit of Stock and Watson (1998a). The series transformations to induce stationarity
for predictors are indicated in McCracken and Ng (2020). For forecasting targets, GDP,
UR, CPI and IR are considered I(1) and are first-differenced. For the first two, the natural
logarithm is applied before differencing. SPREAD is kept in "levels". Forecasting horizons
are 1, 2, 4, 6 and 8 quarters.

The pseudo-out-of-sample period starts in 2003Q1 and ends 2014Q4. I use expanding win-
dow estimation from 1961Q3. Models are estimated (and tuned, when applicable) every
two years. For all models except SETAR and STAR, I use direct forecasts, meaning that
ŷt+h is obtained by fitting the model directly to yt+h rather than iterating one-step ahead
forecasts. ∼TAR iterated forecasts are calculated using the block-bootstrap method which
is standard in the literature (Clements and Smith, 1997).

Following standard practice, the quality of point forecasts is evaluated using the root Mean
Square Prediction Error (MSPE). For the out-of-sample (OOS) forecasted values at time t
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of variable v made h steps ahead, I compute

RMSEv,h,m =

√
1

#OOS ∑
t∈OOS

(yv
t − ŷv,h,m

t−h )2.

The standard Diebold and Mariano (2002) (DM) test procedure is used to compare the
predictive accuracy of each model against the reference AR(4) model. RMSE is the most
natural loss function given that all models are trained to minimize the squared loss in-
sample.

It has been argued in section 2.2.6 that feature engineering matters crucially when the
number of regressors exceeds the sample size. St, the set of variables from which RF
can select, is motivated by such concerns. Its exact composition is detailed in Table 17.
Among other things, it includes both cross-sectional and moving average factors, which
are compressing information along their respective dimensions. The usefulness of MAFs
is further studied in Goulet Coulombe et al. (2020a) and found to help, mostly with tree-
based algorithms. However, it is supplanted by a more computationally demanding (but
more general) transformation of the raw data that Goulet Coulombe et al. (2020a) propose
specifically for ML-based macroeconomic forecasting.

Table 17: Composition of St

What Why How

8 lags of yt Endogenous SETAR-like dynamics –

t Exogenous "structural" change/breaks –

2 lags of FRED Fast switching behavior –

8 lags of 5 traditional factors F Compress cross-sectional information ex-ante Usual PCA

2 MAFs for each variable j Compress lag polynomial information ex-ante PCA on 8 lags of j

MODELS. To better understand where the gains from MRF are coming from, I include
models that use different subsets of ideas developed in earlier sections. Those are sum-
marized in Table 18. The competitive data-rich models are in the benchmarks group.
Non-linear time series models are also included as they share an obvious familiarity with
ARRF. "Tiny" versions of both ARRF and RF are considered to gauge the effect from only
having access only to a small St — this could be the case for many non-US applications.
Conversely, this helps quantify how a data-rich environment contributes to the success
of ARRF versus its plain flexibility. Indeed, Tiny ARRF corresponds to what was shown
in the "data-poor" simulations (section 2.3) to be a generalization of ∼TARs and related
models.

Here are some remarks motivating some inclusions and specifications choices. To assess
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the marginal effects of MAFs alone, Lasso, Ridge and RF are considered using St — those
are known to handle high-dimensional feature space. When it comes to FA-ARRF, I opt
for a parsimonious linear specification including one lag of the first two factors. First, con-
cise models make interpretation easier. Second, considering compact linear specifications
within MRF is usually the better strategy. Parameters (including the intercept) are all RFs
in their own right and can palliate to the omission of marginally important features, if
need be. Consequently, it is desirable to fix a humble linear part and let βt’s take care of
the rest.30 Finally, as discussed in McCracken and Ng (2020), the first factor mostly loads
on real activity variables while the second is a composite of forward-looking indicators
like term spreads, permits and inventories. They are baptized and interpreted accordingly.

Table 18: Forecasting Models

Name Acronym Linear Part (Xm
t ) RF part

Autoregression AR [1, yt−{1:4}] ∅

Factor-Augmented Autoregression FA-AR [1, yt−{1:4}, F1,t−{1:2}, F2,t−{1:2}] ∅

Plain Random Forest RF ∅ Raw data31

Low-Dimensional Plain RF Tiny RF ∅ [yt−{1:8}, t]

Plain RF but using St RF-MAF ∅ St

RF-MAF on de-correlated yt AR+RF Filter yt first with an AR(2), then RF St

Autoregressive Random Forest ARRF [1, yt−{1:2}] St

Low-Dimensional Autoregressive RF Tiny ARRF [1, yt−{1:2}] [yt−{1:8}, t]
Factor-Augmented Autoregressive RF FA-ARRF [1, yt−{1:2}, F1,t−1, F2,t−1] St

Vector Autoregressive RF32 VARRF [1, yt−{1:2}, GDPt−1, IRt−1, INFt−1] St

Self-Exciting Threshold AR SETAR [1, yt−{1:2}] ∅

Smooth Transition AR33 STAR [1, yt−{1:2}] ∅

10 years Rolling-Window AR RW-AR [1, yt−{1:2}] ∅

Time-Varying Parameters AR34 TV-AR [1, yt−{1:2}] ∅

LASSO using St LASSO-MAF St ∅

Ridge using St Ridge-MAF St ∅

Notes: models are classified in 3 categories: benchmarks, MRFs (and related prototypes), and misc
(non-linear time series models, other reasonable additions). The main analysis in section 2.4.1 omits the
3rd club for parsimony.

2.4.1. Main Quarterly Frequency Results
Violin plots are used throughout to summarize dense RMSEs tables (like Table 20). I report
the distribution of RMSEv,h,m/RMSEv,h,AR. This is informative about the overall ranking

30Further backing a parsimonious choice (with MRF), McCracken and Ng (2020) report that the first two
factors account for 30% of the variation in the data while adding two more only bumps it up to 41%, making
the last two presumably more disposable in our context.

31Precisely, this means 8 lags of FRED-QD, after usual transformations for stationarity have been applied.
32Note that the VAR appellation refers to the linear equation consisting of typical "small monetary VAR".

The model remains univariate and direct forecasts are used.
33The state variable is yt−1, as in SETAR.
34Estimated and tuned via the Ridge approach proposed in Chapter 1.
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and versatility of considered models. Of course, being ranked first does not imply being
the best model for every h and v. Rather, it means that it performs better on average, over
all targets.

Figure 9: The distribution of RMSEv,h,m/RMSEv,h,AR. The star is the mean and the triangle is the median.

Here are interesting observations from Figure 9. Clearly, MRFs deliver important gains
over both the AR and FA-AR benchmarks (the latter is second to last). ARRF has a notice-
ably small mass above the 1 line. In other words, there are no targets for which ARRF does
significantly worse than its OLS counterpart, which makes it atypically adaptable among
nonlinear autoregressions. A look at Table 20 confirms this observation also extends to
FA-ARRF vs FA-AR. The simplification AR+RF, ranks third with a performance that is
much more volatile. This suggests that imposing time-invariant dynamics can sometimes
help (see one example in Figure 11), but can also be highly detrimental (as reported for
inflation). Of course, that we do not know ex-ante, and it is why AR+RF does not inherit
ARRF’s "off-the-shelf" quality.

MAFs are useful: RF-MAF does much better than RF which uses the raw data. The latter
only exhibits conservative gains over the benchmark. Thus, it is understood that a fraction
of MRFs’ forecasting gains emanates from considering more sensible transformations of
time series data – and which are trivially implementable. The relevance of MAFs is studied
more systematically in Goulet Coulombe et al. (2020a).

FA-ARRF provides very substantial improvements, but can also fail. This is the linear
part’s doing: FA-AR will mostly work well for real activity variables while AR is a jack of
all trades. Thus, it is not surprising to see FA-ARRF inherit some of these uneven proper-
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ties, albeit to a much milder extent. For instance, in Table 20, FA-AR is noticeably worse
than AR for all inflation horizons, while FA-ARRF beats AR for all of them. This phe-
nomenon is well summarized by FA-AR being second to last overall, well behind FA-ARRF.
VARRF has a behavior similar to that of FA-ARRF, but with less highly noticeable gains.

Does a large St pay off? Most of the time, yes. It is worth re-emphasizing that restricting St

restricts the space of time-variations possibilities as well as the potential for trees diversi-
fication. Nonetheless, if the restrictions are "true", gains are possible.35 This is reported to
be a rare occurrence, with ARRF � Tiny ARRF (and RF � Tiny RF) for almost any target.
Thus, we can safely conclude that a rich St is desirable, with F being tasked with selection
of relevant items.

As discussed in earlier sections, ARRF connects to the wider family of nonlinear autore-
gressive models. It clearly does better on average than SETAR and Smooth-Transition TAR.
This advantage is attributable to both a more flexible law of motion and a large St. Tiny
ARRF is better than the ∼TAR group, while ARRF is much better. Linking this result to
those of simulations, this means that no ∼TAR is likely the true model.

REAL ACTIVITY TARGETS. Figure 10 reports results for UR. FA-ARRF dominates strongly.
Table 20 confirms it is the best model for all horizons but the last one (8 quarters ahead,
where the encompassed RF-MAF is the best). Clearly, at an horizon of one quarter, the
preferred model successfully predicts the drastic rise in unemployment during the Great
Recession. Rather than responding with a lag to negative shocks (which is what we ob-
serve from AR and ARRF), the model visibly predicts them. As a result, improvements
in RMSE are between 25% and 30% over AR for all horizons. Specifically, predicting UR
(change) with FA-ARRF at h = 1 yields an unusually high out-of-sample R2 of about 80%.
The nearly perfect overlap of the yellow and black lines highlight the absence of a one-step
ahead shock around 2008. Note that FA-AR and STAR forecasts are omitted from Figure
10b to enhance visibility. STAR forecasts are either similar or worse than the benchmark (as
often found for nonlinear time series models). FA-AR forecasts at h = 1 follows a proac-
tive pattern similar to the yellow line, but with a 1 to 2 quarter delay – hence the inferior
results.

For h = 2, the quantitative rise is nowhere near the realized one, but it reveals 6 months
ahead the arrival of a significant economic downturn. Additionally, ARRF and FA-ARRF
both flag one year ahead the arrival of a rise in unemployment, which is a quality shared by
very few models. The barplot in Figure 10 (and Table 20) provides a natural decomposition

35An interesting specific case is Tiny ARRF being close behind ARRF for inflation. This is intuitive given
that INF has often been associated with exogenous time variation.
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(a) RMSPEUR,h,m/RMSPEUR,h,AR(4)

(b) A look at some forecasts

Figure 10: Zooming on best model within each group for UR (change)of FA-ARRF’s gains. Adding the MAFs to an otherwise plain RF procures an improvement
of roughly 15% across all horizons (RF-MAF � RF, in Table 20). The linear FA-AR part
and the rest of algorithmic modifications discussed in section 2.2 provide an additional
reduction of 10% to 15% depending on the forecasted horizon (FA-ARRF � RF-MAF and
FA-ARRF � FA-AR). It is noteworthy that good results for h = 1 are mechanically close to
impossible with a plain RF since it cannot extrapolate – i.e., predict values of yt that did
not occur in-sample. In contrast, this is absolutely feasible within MRF thanks to the linear
part.

GDP is known to have a lower signal-to-noise ratio. In Figure 24, FA-ARRF exhibits a bit
less than a 20% drop in RMSE over the AR and nicely grasp the 2008 drop one quarter
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ahead.36 However, FA-ARRF performance does not stand apart as much as it did for UR.
One reason can be traced visually to predicting higher post-recession growth than its com-
petitors. Finally, RF-MAF closing in on ARRF will be investigated on its own in section
2.5.2. In short, this occurs because once the time-varying intercept is flexibly modeled by
RF, there is very little room left for autoregressive behavior (at the quarterly frequency).

SPREAD AND INFLATION. VARRF shines for SPREAD (Figure 25) by capturing key move-
ments, even up to a year ahead. The simpler AR+RF also does remarkably well. FA-ARRF
provides successful one-year ahead forecasts. Overall, these results highlight the common
importance of the autoregressive part, which is no surprise given SPREAD’s persistence.
For INF, Table 20 displays that RF-MAF is the leading model (with ARRF close behind)
reducing RMSEs by 12-15% for all horizons. I investigate this with GTVPs in section 2.5.2.

2.5. Analysis
Based on forecasting results, I concentrate on FA-ARRF’s GTVPs. Additionally, its param-
eters are easier to interpret (given factors are labeled) since regressors are mechanically
orthogonal. First, I look at βt and analyze their behavior around the Great Recession. Sec-
ond, I compare GTVPs to random walk TVPs, ex-post vs ex-ante, with a focus on the reces-
sionary episode. Finally, I use a surrogate model approach to explain of the parameters’
paths in terms of observed variables.
2.5.1. Forecast Anatomy
βt’s characterize completely MRF’s forecasts. Thus, we can investigate GTVPs to under-
stand results from the previous section. The FA-ARRF forecasting equation is

yt+h = µt + φ1,tyt + φ2,tyt−1 + γ1,tF1,t + γ2,tF2,t + ut+h.

and naturally βt = [µt φ1,t φ2,t γ1,t γ2,t]. To avoid overfitting, β̂t’s are (as in section 2.3.2)
the mean over draws that did not include observations t − 4 to t + 4 (a two-year block)
in the tree-fitting process. Intuitively, this mimics in-sample the real out-of-sample experi-
ment that starts here in 2007Q2.37

Figure 11 displays GTVPs underlying the successful one-step ahead UR change forecast.
The intercept clearly alternates between at least two regimes and the "increasing UR" one
is in effect circa 2008. In levels, this translates to UR alternating between a positive and neg-
ative (albeit small) trend. Overall persistence is strikingly time-invariant, and marginally
smaller than for OLS estimates. The effect of F1, the real activity factor, is generally within

36Diebold and Rudebusch (1994) proposed an empirically sucessful regime-switching factor model. Given
that line of work and more recent results in Wochner (2020), the FA-ARRF’s success is not an anomaly.

37Note that this is partially different from what gave the results reported in section 2.4.1, where the model
was re-estimated every 2 years. Here, estimation occurs once in 2007Q2.
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Figure 11: GTVPs of the one quarter ahead UR forecast. Persistence is defined as φ1,t + φ2,t. The gray bands
are the 68% and 90% credible region. The pale orange region is the OLS coefficient ± one standard error. The
vertical dotted blue line is the end of the training sample. Pink shading corresponds to NBER recessions.

OLS confidence intervals, suggesting that while γ1,t almost doubles around recessions, this
is subject to great uncertainty.

What is less uncertain, however, is the magnified contribution of the forward-looking fac-
tor F2 during recessionary episodes, which stands out as the key difference with OLS. γ2,t

smooth-switching behavior can be best interpreted by remembering that F2 is highly cor-
related with capacity utilization, manufacturing sector indicators, building permits and
financial indicators (like spreads) (McCracken and Ng, 2020). Many of those variables are
considered "leading" indicators and have often been found to increase forecasting perfor-
mance, mostly before and during recession periods (Stock and Watson, 1989; Estrella and
Mishkin, 1998; Leamer, 2007). Recently, there has been renewed attention on the matter,
with financial indicators highlighted as capable of capturing economic activity downside
risk (Adrian et al., 2019; Delle Monache et al., 2020). This brand of nonlinearity can trans-
late to a more active γ2,t around business cycle turning points. MRF learns that, while OLS
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provides a clumsy average of two regimes. In Figure 11, the obvious consequence of OLS’
rigidity is being over-responsive to leading indicators during tranquil economic times, and
under-responsive when it matters.

Section 2.5.3 will investigate formally the underlying variables driving this time variation.
Figure 27 displays equivalent βt for GDP one quarter ahead. The pattern γ2,t is also visi-
ble for GDP, but it is quantitatively weaker and more uncertain – which is is no surprise
given GDP being generally noisier than UR. Additionally, slow and relatively mild long-
run change is observed. Interestingly, γ1,t has been shrinking since the mid 1980s, and its
regime dependence exhibited in the first four recessions is no more.
2.5.2. Comparing Generalized TVPs with Random Walk TVPs
The relationship between random walk TVPs and GTVPs was evoked earlier. I compare
them for the small factor model. I estimate standard TVPs using the ridge regression tech-
nique developed Chapter 1. Conveniently, the procedure incorporates a cross-validation
step that determines the optimal level of time variation in the random walks.38

As Figure 11 suggested for µt and γ2,t, parameters can be subject to recurrent, rapid and
statistically meaningful shifts. Such behavior creates difficulties for random-walk TVPs,
which put the accent on smooth and slow structural change. Figure 12 confirms this con-
jecture. Standard TVPs look for long-run change when regime-switching behavior is the
main driving force. As a result, they are flat and within OLS confidence bands, as of-
ten reported in the literature (D’Agostino et al., 2013). Of course, more action will me-
chanically be obtained for TVPs when considering a smaller amount of smoothness than
what cross-validation proposed. In appendix 2.7.7, I report the same figures, but using the
optimal smoothing parameters (as picked by CV) divided by 1000. This provides much
more volatile random walk TVPs that are inclined, at certain specific moments, to follow
the GTVPs. However, it is clear in Figure 12 that the end-of-sample/revision problem is
worsen by the forced lack of smoothing.

It is known in the traditional TVP literature that there is a balance between flexible (but
often erratic) βt paths and very smooth ones where time variation may simply vanish.39

Since random-walk TVPs are unfit for many forms of the time-variation present in macroe-
conomic data, high bias estimates are usually reported as only them can keep variance
at a manageable level. This can have serious implications. Relying too much on time-
smoothing can create a mirage of long-run change and/or dissimulate parameters that

38I show with simulations that this much easier approach performs similarly well (and sometimes better) to
traditional Bayesian TVP-VAR, for model sizes that the latter is able to estimate.

39In the case of ridge regression-based TVPs, cross-validation is just a data-driven way of backing this nec-
essary empirical choice.
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Figure 12: UR equation βt’s obtained with different techniques. Persistence is defined as φ1,t + φ2,t. TVPs
estimated with a ridge regression as in Chapter 1 and the parameter volatility is tuned with k-fold cross-
validation — see Figure 32a for a case where TVP parameter volatility is forced to be higher. Ex Post
TVP means using the full sample for estimation and tuning as opposed to only using pre-2002 data as for
GTVPs. The pale orange region is the OLS coefficient ± one standard error. Pink shading corresponds to
NBER recessions.

mostly (but not solely) vary according to expansions/recessions.

Another concern, particularly consequential for forecasting, is the boundary problem. As
discussed earlier, random-walk TVP models forecasts can suffer greatly from it because
by construction, forecasts are always made at the boundary of the variable on which the
kernel is based – i.e., time. One can deploy a 1-sided kernel, but this only alleviate a few
pressing symptoms without attacking the heart of the problem. In sharp contrast, GTVPs
use a large information set St to create the kernel, which implies that the likelihood of
making a forecast at the boundary is rather low, unless the RF part constantly selects t as
splitting variable.

Figures 12 and 28 show, for both random walk and generalized TVPs, their full-sample
versions (up to the end of 2014, "ex post") and their version with a training sample ending
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in 2007Q2 (the dashed blue line). There are two main observations. First, GTVPs are much
less prompt to rewrite recent history than random-walk TVPs. Indeed, the green line and
the magenta one closely follows each other all the way up to the end of the training sample.
Second, while GTVPs can change many quarters after 2007Q2 (like the GDP constant), they
are generally very close to each other at the boundary – especially when the time variation
is statistically meaningful (like that of µt and γF2,t), which is what matters for forecasting.
This is much less true of random walk TVPs as there are clear examples where the two
version differ for a long period of time (for instance, the intercept and the coefficient on F2

in the GDP equation), and this often culminates at the boundary.40

Why and When MRF Can Fail to Deliver Better Forecasts

MRF can sometimes be outperformed by simpler alternatives, like standard RF that in-
corporate MAFs. When that occurs, it is usually due to the inadequacy of the linear part
rather than GTVPs themselves. Unlike traditional TVPs, GTVPs rarely provides a model
worse than OLS.

Trivially, βt helps understanding relative performance. For instance, in the case of fore-
casting inflation with the quarterly data set, ARRF does not supplant RF-MAF. The critical
difference between ARRF (reported in Figure 13a) and its restricted analog is that the two
autoregressive coefficients of the former are shut to 0.41 In Figure 13a, the estimates of
ARRF broadly agree with the view that inflation persistence has substantially decreased
during and following Volker disinflation (Cogley and Sargent, 2001; Cogley et al., 2010).

In terms of anticipated forecasting performance, such decline in persistence suggests a
constrained version simply including µt may do better. The OOS evaluation period corre-
sponds to the region of Figure 13a where φ1,t + φ2,t is the nearest to 0. Given that obser-
vation, RF-MAF mildly improving upon ARRF is less surprising. An analogous finding
emerges for GDP at many horizons. ARRF does not outperform RF-MAF like FA-ARRF
and larger VARs versions of MRF do. GTVPs showcased in Figure 13b provide a simple
explanation. There is only a limited role for persistence when allowing for a forest-driven
µt. φ1,t + φ2,t is below the OLS counterpart most of the time and the credible 68% credible
region frequently includes 0. The ensuing forecast is essentially a time-varying constant,
which is what RF-MAF does.42 In sum, unlike many ML offerings, MRF successes and

40In (real) practice, all models would be re-estimated each quarter. However, it is worth pointing out that
re-estimating every period is much more important for random-walk TVP than it is for GTVPs. For such
reasons, the TV-AR in section 2.4 was the sole model estimated every period rather than every two years.

41Of course, lags of INF can still enter the forest part for µt, so RF-MAF does not suppress entirely the link
between current and recent inflation.

42This result is largely in accord with the reported sufficiency of a switching intercept (without additional
autoregressive dynamics) to model US GDP in Camacho and Quiros (2007). However, Figure 13b suggests
that there are rather 3 regimes: recession, expansion before 1985 (growth rate ≈ 3.5%), expansion after 1985
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(a) Inflation

(b) GDP

Figure 13: GTVPs of the one-quarter ahead forecasts using ARRF. Persistence is defined as φ1,t + φ2,t. The
gray bands are the 68% and 90% credible regions. The pale orange region is the OLS coefficient± one standard
error. The vertical dotted line is the end of the training sample. Pink shading corresponds to NBER recessions.

failures can be understood via a time-varying parameter interpretation. The helpfulness
of this attribute cannot be overstated when thinking about future model improvements.
2.5.3. Cutting Down the Forest, One Tree at a Time
Evolving βt can limit macroeconomists in their ability to use the model for counterfactu-
als. Complementarily, policy-makers will complain about the limited use for a model in
which tomorrow’s parameters are unknown (random walks). Fortunately, GTVPs may be
the result of an opaque ensemble of trees, but they are made out of observables rather
than a multiplicity of latent states. That is, they change, but according to a fixed struc-
ture. Hence, the reduced-form coefficients could easily change, and yet remain completely
predetermined as long as F itself is stable. In this paradigm, a changing βt is not necessar-
ily empirical evidence supporting Lucas (1976)’s critique – rather, a changing F could be.

(growth rate slightly below 3%). The sufficiency of the switching intercept has also been documented in
Markov-switching dynamic factor models for Norway (Aastveit et al., 2016) and Germany (Carstensen et al.,
2020).
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Hence, dissecting F is inherently interesting. One way to get started on this is to use well-
established measures of Variable Importance (VI), originally proposed in Breiman (2001).
Those extract features driving the prediction. Conveniently, they can be adapted to inquire
βt. Then, one can capitalize on VI’s insights to build interpretable small trees parsimo-
niously approximating βt,k’s path.

The construction of upcoming graphs consists in two steps. I start by computing 3 different
VI measures: VIOOB (out-of-bag predictive performance), VIOOS (out-of-sample predictive
performance) or VIβ (for a specific coefficient rather than the whole prediction). Appendix
2.7.3 contains a detailed explanation those and a discussion on how the current approach
relates to recent work in the ML interpretability literature. As a potential data set for
the construction of a surrogate tree, I consider the union of the 20 most potent predictors
as highlighted by any of the three VIs. The tree is pruned with a cost-complexity factor
(usually referred to as cp) of 0.075. That tuning parameter is set such as to balance its
capacity to mimic the original GTVP and potential for interpretation.

Unemployment Equation

I limit the attention µt and γ2,t paths, which were argued of greater importance to FA-
ARRF’s success in forecasting UR. Also, the nature of their variation is easier to charac-
terize with a single tree (ex-post). Figures 14b and 14d show that paths can sometimes be
summarized succinctly using a handful of predictors.

Most of µt can be captured by two states which are determined by a cut-off on total pri-
vate sector employees (USPRIV): 0.021 (increasing unemployment) and -0.018 (decreas-
ing). This first layer basically classifies recession vs expansions in a very parsimonious
way, which is inevitably crude and imperfect. The additional split on a MAF of non-
financial leverage provides a more refined classification: there are more of less three states.
The time series plot shows the alternation between two symmetrically opposed states of
0.021 and -0.025 (respectively entering and exiting a recession) and a transitory (and sel-
domly visited) middle ground around 0.

The impact of F2 on UR switches significantly, and most of the action can be summarized
by a private sector employees dummy (USPRIV). The indicator’s movement downwards
– which usually commence from the onset of a recession – can double the effect of F2 on UR
in absolute terms. However, some high (absolute) γ2,t episodes would be left behind when
merely using USPRIV. Those are retrieved by an additional split with a MAF of average
corporate bonds yield with a BAA rating (lower medium grade).

The GTVP (green line) often plunges earlier than the ex-post surrogate tree’s replica (or-
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(a) µUR,h=1
t : Surrogate Model Replication (b) µUR,h=1

t : Corresponding Tree

(c) γUR,h=1
t,F2

: Surrogate Model Replication (d) γUR,h=1
t,F2

: Corresponding Tree

Figure 14: Surrogate βt,k Trees. Shade is 68% credible region. Pink shading is NBER recessions.

ange). This is important, especially from a forecasting perspective. In Figure 29b, it is
clear that leading indicators (especially financial ones) play a prominent role in driving
the GTVP γ2,t – well before USPRIV starts showing signs of an imminent downturn. Since
F2 is already composed mostly of forward-looking variables, this hints at a convex effect
of market-based expectations proxies.

Lastly, a word of caution. Given the points raised earlier in section 2.2.1, it is more appro-
priate to see these surrogate trees as suggestive of one potential explanation. It is an open
secret that their exact structure is sensitive to small changes in the estimated path. For
instance, little variation in βt is needed to observe a change in the exact choice of variables
itself. As a result, some of them may rightfully seem exotic when singled out in such a
simple tree. GTVPs, as the product of a forest, will more often than not rely on a multitude
of indicators from a specific group (which we observe in Figure 29a) rather than a single
indicator.

83



Monthly Inflation Equation

As detailed in Appendix 2.7.6, FA-ARRF is a very competitive model for monthly inflation
at all horizons. By its use of F1, the real activity factor, it has the familiar flavor of a Phillips’
curve (PC).43 This is of interest given PCs have at best a very uneven forecasting track
record (Atkeson et al., 2001; Stock and Watson, 2008; Faust and Wright, 2013). For instance,
simple autoregressive/random walk/historical mean benchmarks often do much better.

Given its paramount importance within New Keynesian models, many explanations have
been proposed for PC forecasts failures. The curve could be time-varying in a way that
annihilates its forecasting potential (Stock and Watson, 2008). Closely related, some have
stipulated the PC is nonlinear (Dolado et al., 2005; Doser et al., 2017; Lindé and Trabandt,
2019; Mineyama, 2020). If that were to be true, this should be exploitable. Lastly, an ad-
jacent point of view, which became increasing popular following the Great Recession, is
that the PC has irreversibly flattened to the point of predictive desuetude (Blanchard et al.,
2015; Blanchard, 2016; Del Negro et al., 2020). Unlike the first two propositions, this one is,
by nature, terminal.

Of course, all those explanations amount to hypotheses on the nature of γ1,t’s time varia-
tion, of which MRF provides a very flexible account. It is worth emphasizing that MRF is
estimated up to 2007Q2, unlike many of the above models explaining the "missing disin-
flation" after observing that it took place.44 The variable importance measures reported in
Figure 30 showcase a "consensus" subset of variables that matters for inflation time vari-
ation. Three popular ones are the trend, MAF of building permits and MAF of housing
starts. The leading role for the trend suggests that exogenous time variation is important
to explain inflation – to no one’s surprise (Cogley and Sargent, 2001). Studying βt-specific
VI’s suggest that this is mostly a feature of the intercept and persistence.

Figures 15, 31a and 31b allow to re-conciliate PC forecasting evidence. For instance, a
visible PC death zone spans all of the 90s, which constitutes most of the sample used in
Atkeson et al. (2001).45 It also includes the post-2008 period, which motivated Blanchard
et al. (2015)’s inquiry. Most interestingly, for the latter era, γ1,t is predicted to head toward
0 out-of-sample. To clarify, the parameter is driven by post-2008 data, but the structure itself
(F ) is not re-evaluated past the dotted line.

By looking at predictive performance results ex-post, Stock and Watson (2008) report that

43As noted in Stock and Watson (2008), the plethora of output gap indicators used in literature makes the
use of a common statistical factor a credible alternative.

44Indeed, they do so either by fitting the post-2008 data directly, or by choosing a specification (or building
a theoretical model) directly inspired by the experience of the Great Recession.

45The decade-long wedge between the OLS estimate and GTVP in Figure 31b nicely explains PC failures.
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(a) γINF,h=1
1,t : Surrogate Model Replication (b) γINF,h=1

1,t : Corresponding Tree

(c) γINF,h=12
1,t : Surrogate Model Replication (d) γINF,h=12

1,t : Corresponding Tree

Figure 15: Surrogate βt,k Trees for Inflation. Shade is 68% credible region. Pink shading is NBER recessions.

Phillips’ curve forecasts usually outperform univariate benchmarks around turning points,
but suffer a reversal of fortune when the output/unemployment gap is close to 0. They
note that the finding "cannot yet be used to improve forecasts" because their gap relies on
a two-sided filter. More recently, Kotchoni et al. (2019) reinforce this view by showing an
ARMA(1,1) is triumphant for inflation except in recessionary periods, where a data-rich
environment can be helpful. But to capitalize on this, one needs a recession/expansion
forecast. MRF recognize this potential and relies on leading indicators of the housing mar-
ket to activate γ1,t in a timely manner. This is particularly evident from looking at γ1,t’s
VI measure in Figure 30 and its resulting GTVP in Figure 15. Overall, we see that the
relationship between inflation and economic activity is episodic, as conjectured by Stock
and Watson (2008), and often prevails before recessions (but not all). Figure 15 proposes a
clear-cut answer: inflation responds to the real activity factor when the housing market is
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booming.

For a long time, housing sector indicators have been known as predictors of future eco-
nomic activity (Stock and Watson, 1998b; Leamer, 2007). However, when it comes to fore-
casting inflation itself, including leading indicators (like permits) does not remedy Phillips’
curve forecasts failures (Stock and Watson, 2007). FA-ARRF differs by not using housing
permits/starts as a replacement and/or additional output gap proxy. Rather, its role is
to increase the curvature when the time is right. As mentioned above, one explanation
is that housing starts and permits are proxying for future economic activity, resolving the
conundrum posed by Stock and Watson (2008). Overall, this implies a PC which would
be highly nonlinear in real activity, as further inquired in section 2.5.4. Another hypoth-
esis is that MRF discovers – through aggregate data – how to leverage Stock and Watson
(2019)’s insights that some components of inflation are much more cyclically sensitive than
others. Stock and Watson (2019) show that the most cyclical component of inflation is hous-
ing, followed closely by food components. Accordingly, MRF activating γ1,t with building
permits and housing starts is the algorithm’s way of predicting when more cyclically sen-
sitive components take the front stage – and by doing so, revive the Philipps’ curve. In
sum, nonlinearities would be a consequence of aggregation.

The predictive PC studied here differs in many aspects from those studied, for instance, in
Blanchard et al. (2015). Importantly, F1 summarizes mostly variables in first differences (or
growth rates). A typical gap measure, being a deviation from a trend, will be much more
persistent. Also, it remains negative for many years following a downturn. In contrast,
F1, which is strongly correlated with UR change, will go back up as soon as UR stops
growing. To validate current insights and obtain new ones, I now study a prototypical
Phillips’ Curve.
2.5.4. The Phillips’ Curve: Not Dead Yet?
The behavior of inflation since the Great Recession – starting with the missing disinfla-
tion and followed by "missing inflation" of recent years – sparked renewed interest in the
Phillips curve. Much attention has been given to its hypothesized flattening (Blanchard
et al., 2015; Galí and Gambetti, 2019; Del Negro et al., 2020). This body of work supports
the view that the PC coefficient (either reduced-form or semi-structural) has substantially
declined over the last decades. The focus on slow structural change is operationalized by
the modeling strategy – either random walk TVPs or sample splitting at a specific date.
Coibion and Gorodnichenko (2015) show less worry about PC’s health. They rational-
ize post-2008 inflation with a simple OLS PC where expectations are based on consumer
survey data rather than lags or professional forecasters. Del Negro et al. (2015) demon-
strate that a standard DSGE (which encompasses a structural New Keynesian PC) is not
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baffled by post-2008 inflation since it relies on model-based forward-looking expectations
of future marginal cost. More recently, Lindé and Trabandt (2019) and Mineyama (2020)
articulate theories supporting a nonlinear specification for the reduced-form PC, which
could also account for the inflation puzzles punctuating the last 12 years. Given this back-
ground and forecasting results reported earlier, a traditional PC must be a fertile ground
for MRF-based detective work.

I contribute to the literature by fitting an MRF which linear part corresponds to an expectations-
augmented Phillips’ curve. Xt is inspired by what Blanchard et al. (2015) (henceforth BCS)
considers:

πt = θtπ̂
LR
t + (1− θt)π̂

SR
t + φtuGAP

t + ψtπ
IMP
t + εt, (2.4)

where πt stands for CPI inflation, π̂LR
t and π̂SR

t respectively for long-run and short-run
inflation expectations. uGAP

t represents the (negative) unemployment gap and π IMP
t is

import prices inflation. I translate this to the MRF framework by making µt = θtπ̂
LR
t the

time-varying intercept, letting βt,1 = 1− θt and by obtaining uGAP
t by means of Hodrick-

Prescott filtering.46 As in BCS, π̂SR
t is the average inflation over the last four quarters.

Hence, the estimated equation

πt = µt + β1,tπ̂
SR
t + β2,tuGAP

t + β3,tπ
IMP
t + εt (2.5)

does not impose the constraint implied by θt in equation (2.4). However, estimation results
will desirably have β1,t ∈ [0, 1] at almost any point in time. St is the same as that considered
in the forecasting section. The data set runs up to 2019Q4.

Figure 16: The gray bands are the 68% and 90% credible regions. Pink shading corresponds to NBER
recessions.

46Specifically, both this gap and that of BCS get out of negative territory around 2014.
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Figure 16 reports GTVPs of interest: the weight on short-run expectations and the output
gap coefficient. Additionally, it contains traditional TVP estimates as means of compari-
son. The latter convey the usual wisdom: inflation expectations slowly start to be more
anchored from the mid 1980s. Around the same time, the unemployment/inflation trade-
off begins its slow collapse. The updated data shows that the TVP-based Phillips’ curve
has further flattened to plain 0 in the last decade.

For β1,t, the weight on short-run expectations, both methods agree that it has been de-
creasing steadily after the 1983 recession. But GTVPs highlight an additional pattern for
the importance of π̂SR

t : it tends to increase during economic expansions, collapse during
recessions then start increasing again until the next downturn. Note that the phenomenon
is also observed in Figure 13b for the simpler ARRF on quarterly inflation. The decrease
in the coefficient (usually of about 0.25) is observed for every recession and usually last for
some additional quarters after the end of it. The linear rise in the coefficient occurs for all
expansions except those preceding the early 90s and 2000s recessions, where the pattern
is punctuated with additional peaks and troughs. The increased importance of short-run
expectations with the age of the expansion is also observed for recent expansionary peri-
ods. Hence, the phenomenon is not merely a matter of the 70s and 80s recessions being
preceded by a sharp acceleration of inflation.

From a more statistical point a view, the sharp decline in β1,t following every recession
suggests that in the aftermath of an important downward shock, the long-run inflation
expectation is a more reliable predictor as it is minimally affected by recent events. As the
expansion slowly progress (and recessionary data points get out of the short-run average),
π̂SR

t becomes a more up to date and reliable barometer of future inflation conditions. This
narrative is corroborated by variable importance (Figure 33) for β1,t, which highlights the
importance of the trend, but also recent lags of inflation.

When it comes to the low-frequency movement of the unemployment gap coefficient, both
methods agree about a significant decline starting from the 80s. However, GTVPs uncover
additional heterogeneity. First and most strikingly, β2,t gets very close to 0 following every
recession. This suggests a nonlinear Philipps’ curve where inflation responds strongly to
a very positive uGAP

t but not so much to a negative one. Second, the 70s and early 80s
are characterized as a series of peaks (preceding the first three recessions of the sample)
rather than a sustained high coefficient. Traditional TVPs, by excessive time-smoothing,
dissimulate the effects of inflationary spirals on β2,t. Such pre-recession accelerations still
occur during the Great Moderation but in a much milder way.

Third, VI measures (in Figure 33) confirm the importance of activity indicators (like Total
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Capacity Utilization (TCU)) in driving β2,t itself. The correlation between β2,t and TCU is
0.81, and the correspondence between the two variables is striking in Figure 17. Many no-
table increases in β2,t are nicely matched (between the two 70s recessions and before 2008).
Of course, this simple characterization remains imperfect since it misses some highs (like
the end of the 70s) and predicts a higher β2,t in the years following the 2008-2009 reces-
sion. Generally, given the strong co-cyclicality between TCU and uGAP

t , this is evidence of
a convex PC.

Figure 17: "What Goes Around Comes Around": Capacity Utilization is substantially correlated with the
inflation-unemployment trade-off. The gray band is the 68% credible region. Pink shading corresponds to
NBER recessions.

The collapse of β2,t following recessions is not unique to 2008: it happened following ev-
ery recession since 1960. As a result, inflation will rise when the economy is running well
above its potential, but much more timidly will it go down from economic slack. Recently,
Lindé and Trabandt (2019) have shown that such a phenomenon can be rationalized by a
New Keynesian DSGE model. Indeed, by allowing for additional strategic complemen-
tarity in firms price- and wage-setting behavior and solving the nonlinear model (rather
than considering the linear approximation around the steady state), the authors obtain a
state-dependent PC which becomes very flat during large downturns. This can explain
both the small coefficient during recessions and its subsequent timid increase. Theoreti-
cally, convexity can also emerge from downward wage rigidities (Mineyama, 2020), but its
plausibility for the post-2008 era has been contested (Coibion and Gorodnichenko, 2015).

This pattern remains when adding controls in the linear part for supply shocks and mon-
etary policy shocks. Those are the usual confounding factors suspected of blurring the
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relationship by introducing a positive correlation between unemployment and inflation.47

The economic suspicion particular to this application is that omitting them could create a
downward bias in β2,t that only occurs locally, generating the cyclical pattern. As it turns
out, controls make cyclicality even more obvious in Figure 34, especially for the later part
of the sample.48 However, the overall strength of the coefficient is smaller (especially for
the 70s).

Many hypotheses can be accommodated by a model estimated on two disjoint samples,
like in Del Negro et al. (2020). Much fewer of them are compatible with the richer β2,t path
extracted by MRF. This is important: learning the type of nonlinearity, rather than partially
imposing it, helps in discriminating economic suppositions. Figure 17 and recent theoret-
ical developments both suggest that much of the PC’s decline is attributable to upward
nonlinearities being less solicited in the last 3 decades. This is in accord with the policy hy-
pothesis: since Paul Volker’s chairmanship the monetary authority has responded much
more aggressively to inflationary pressures, limiting the spirals that gave rise to high β2,t’s
in the 70s. Two conclusions emerge from this observation. First, exogenous change cannot
so simply be ruled out. Second, knowing what were MRF beliefs about PC nonlinearities
at different points in time could be enlightening.

Conditional Coefficient Forecasting

β2,t’s lows are getting lower, and longer. Should we have known? Much of the recent
work on PC is directly inspired by Great Recession aftermath, and aims at explaining it.
Whether it is theoretical or empirical work, much of it could be overfitting: a model can
replicate one or two facts it is trained to replicate, but fails to generalize. That is, even if
models are tested out-of-sample (which is itself not so often the case in the literature), the
choice of nonlinearity itself is often determined in attempt to match the OOS. Beyond the
linear part being a PC, MRF does not assume much — and its nonlinearities are certainly
not "personalized" to the recent inflation experience. Thus, it is interesting to ask: what
was MRF "thinking" about β2,t in 2007? in 1995? Did it know something we did not, or did
it learn (as most economists) of PC’s collapse from the post-2008 experience? I conduct a
β2,t dynamic learning exercise to find out.

To make this operational, MRF is estimated up to 1995, 2007 and 2019, and GTVPs are pro-
jected out-of-sample from those dates (when applicable). To be clear, β̂2,t|1995 = F̂1995(St)

means the coefficient predictive structure is last estimated in 1995. Coefficients keep moving

47While the time-varying constant can go a long way at controlling for such factors – being a RF in itself, in-
cluding them in the linear part makes them "stand out" as everything going through the intercept is inevitably
heavily regularized.

48Results being similar for both curves is reminiscent of Galí and Gambetti (2019) who report little differ-
ences between paths of reduced-form and semi-structural wage PCs (although they focus on long-run change).
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out-of-sample because St does. F̂1995(St) and F̂2007(St) will differ for two main reasons.
The first is estimation error – both in terms of precision and re-evaluating which nonlin-
earity seems more appropriate.49 The second is structural change, perhaps completely
exogenous or triggered by policy interventions.

Figure 18: Conditional β2,t Forecasting. The gray band is the 68% credible region for GTVPs estimated up
to 2019Q4. Pink shading corresponds to NBER recessions. For enhanced visibility, GTVPs are smoothed with
1-year moving average. The vertical dotted lines are the end of the training samples.

Much can be learned from Figure 18. First, GTVPs are all very alike for the pre-1995 period,
suggesting little was observed post-1995 that made MRF change its reading of the past.
Similarly, the green and the magenta line, which both share the 1995-2007 period within
their training sets, are close to one another. Overall, this indicates that OOS difference
between paths are very unlikely due to a better re-estimation and/or a completely new
choice of F .

Second, unlike what we have seen for the unemployment equation (Figure 11), there are
important disparities between the ex-ante and the ex-post paths out-of-sample. Thus, one
can rightfully hypothesize that structural change got in the way, making F̂1995’s attempt
of replicating the strong nonlinearities of the 70s into the 2000s go wildly off course. An
analogous (yet far less noticeable gap) punctuates the post-2007 period. This suggests
that while β2,t was expected to fall marginally following the crisis and stay low thereafter
(according to F̂2007), it was not expected to go that low. Indeed, only F̂2019 hits 0 and stays
in its vicinity.

Of course, by design, exogenous structural change cannot be captured out-of-sample –

49The second part has the flavor of model selection "error".
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with the results that we know (F̂1995). This dismal predicament does not apply to cyclical
behavior: it has been forecastable at least since 1995. Indeed, F̂1995 propose a β2,t for 2000
and 2008 that is very similar to that of 70s inflation spirals. Moreover, β̂2,t|1995’s collapse
following 2008 is of a magnitude only seen during Arthur Burns’ days. Hence, a much
weaker PC following large downturns is hardly new. However, what β̂2,t|2007 and β̂2,t|2019

tell us is that the overall amplitude (and level) of those variations has evolved exogenously,
forcing MRF to update F repeatedly.

This exercise may rightfully seem exotic, with no obvious analog in the literature. The sim-
ple explanation is that traditional time variations only give "trivial" parameter forecasts by
construction, and there is no clear "learning" process to analyze. For example, the "fore-
casted" random walk TVP would be a straight line over the whole OOS. Doing so with a
threshold model would only inform us of the increasing precision of estimation as sam-
ple size grows – i.e., the model itself cannot be re-evaluated. Unlike traditional nonlinear
methods, MRF provides non-trivial βt paths out-of-sample — and discovers exogenous
structural change instead of imposing it.

2.6. Conclusion
I proposed a new time series model that (i) expands multiple nonlinear time series models,
(ii) adapts Random Forest for macro forecasting and (iii) can be interpreted as Generalized
Time-Varying Parameters. On the empirical front, the methodology provides substantial
empirical gains over RF and competing non-linear time series models. The resulting Gen-
eralized TVPs have a very distinct behavior vis-à-vis standard random walk parameters.
For instance, they adapt nicely to regime-switching behavior that seems pervasive for un-
employment – while not neglecting potential long-run change. This finding is facilitated
by the fact that GTVPs lend themselves much more easily to interpretation than either
standard RF or random-walk TVPs. Indeed, rather than trying to open the black box of
an opaque conditional mean function (like one would with plain RF), MRFs can be com-
partmentalized in different components of the small macro model. Furthermore, GTVPs
can be visualized with standard time series plots and credible intervals are provided by a
variant of the Bayesian Bootstrap.

When looking at Phillips’ curves in general, MRF finds both structural change in the per-
sistence and regime-dependent behavior in the economic activity/inflation trade-off. In
particular, a recurrent theme across all specifications is that the slowly decaying curve is
also much steeper when the economy is overheating – in line with the convexity/nonlin-
earity hypothesis. Hence, MRF can be of great help sorting out what is plausible and what
is not when it comes to macroeconomic equations with a history of controversy. Since there
is no shortage of those, MRF holds many possibilities for future research.
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2.7. Appendix
2.7.1. More on Engineering St

To appreciate the point that various factors and the raw data can both be included to-
gether, let us put RF aside for a moment, and look at a high-dimensional linear regression
problem. Suppose we define St = [Xt Ft] and by construction the factors are some linear
combination of original features (Ft = XtR).50 We can estimate

yt+1 = Xtβ + XtRγ + ut (2.6)

using LASSO. Of course, this would not run with OLS because of perfect collinearity,
which is the standard motivation for not mixing dense and sparse approaches. By Frisch-
Waugh-Lowell theorem and the factor model

Xt = ΛFt + et,

(2.6) above is equivalent to
yt+1 = etβ + Ftγ + ut.

At first sight, this has more parameters than either the dense or sparse approach. How-
ever, with some adequate penalization of β and γ, the model can balance a proper mix of
dense and sparse. For instance, activating some β’s "corrects" the overall prediction when
the factor model representation is too restrictive for the effect of a specific regressor Xk on
yt+1.51 This representation has been studied in Hahn et al. (2013) and Hansen and Liao
(2019) to enhance hard-thresholding methods’ performance (like LASSO) in the presence
of highly correlated regressors. Coming back to RF, this means its strong regularization/s-
election allows for both the original data and its rotation to be included in St. This also
suggests it is relatively costless to explore alternative rotations of Xt.
2.7.2. Block Bayesian Bootstrap Details
BBB is a conceptual workaround to reconcile time series data with multinomial sampling.
For completeness, I briefly review the standard Bayesian Bootstrap. Let all the available
data be cast in the matrix Zt = [yt Xt St]. Z is considered as a discrete iid random variable
with T support points. Define Nt = ∑T

τ=1 I (Zτ = zt), which is the number of occurrences
of zt in the sample. The goal is to conduct inference on the data weight vector θ1:T, and
then obtain credible regions for the posterior functional βt = T (θ1:T). To do so, we need to

50Note that in this section only, Xt denotes generic raw regressors rather than MRF’s linear part. This switch
allows for the use of familiar-looking notation.

51That problem has been documented in Bai and Ng (2008) and others.
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characterize the posterior distribution of vector θ (stripped of its subscript for readability)

π(θ|z) = f (z|θ)π(θ)∫
f (z|θ)π(θ)dθ

.

Conditional on θ, the likelihood of the data is multinomial. The prior is Dirichlet. Since
Dirichlet is the conjugate prior of the multinomial distribution, the posterior is also Dirich-
let. That is, it can be shown that combining the likelihood

f (z|θ) = N!
N1! · · ·NT !

T

∏
t=1

θNt
t with prior distribution π(θ) =

1
B(α1:T)

T

∏
t=1

θNt+αt−1
t

gives rise to the posterior distribution

π(θ|z) = 1
B(ᾱ1:T)

T

∏
t=1

θNt+αt−1
t .

where ᾱt = αt + Nt and B(ᾱ1:T) = ∏T
t=1 Γ(ᾱt)

Γ(∑T
t=1 ᾱt)

. Using the uninformative (and improper)

prior αt = 0 ∀t, we can simulate draws from the (proper) posterior using θt ∼ Exp(1). The
object of scientific interest is typically not θ per se but rather a functional of it. In Taddy et al.
(2015), the functional of interest is a tree and inference is obtained by computing T (θ1:T)

for each θ1:T draw. BBB considers a different Zt so that it is plausibly iid when used with
stationary time series data. The derivations above can be carried by replacing t by b and
T by B. Practically, this implies drawing θb ∼ Exp(1) which means observations within
the same block (b : b̄) share the same weight. As an alternative to this BBB that would also
be valid under dependent data, Cirillo and Muliere (2013) provide a more sophisticated
urn-based approach with theoretical guarantees. It turns out their approach contains the
well-known non-overlapping block bootstrap as a special case, which the above is only its
Bayesian rendition.
2.7.3. More on Surrogate βt Trees
The approach described in section 2.5.3 belongs to a family of methods usually referred
to as "surrogate models" (Molnar, 2019). Attempting to fit the whole conditional mean
obtained from a black-box algorithm using a more transparent model is a global surro-
gate. An obvious critique of this approach is that if the complicated model justifies its
cost in interpretability with its predicting gains, it is hard to believe a simple model can
reliably recreate its predictions. Conversely, if the surrogate model is quite successful, this
casts some doubts about the relevance of the black box itself. In this line of work, a more
promising avenue is a local surrogates model as proposed in Ribeiro et al. (2016), which
fits interpretable models locally. By following Granger (2008)’s insights, we already have
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this: by looking at the βt paths directly, we effectively have a local model – in time. The
purpose of surrogate models is to learn about the model, not the data. The former is much
easier in MRF than in standard RF since the vector βt fully characterizes the prediction at
a particular point in time.52 Moreover, the coefficients are attained to predictors that can
have themselves a specific economic meaning. Considering this and the earlier discus-
sion of section 2.2.1, it is natural in a macro time series context to fit surrogate models to
time-varying parameters themselves – a blatant divide-and-conquer strategy.

About VIOOB, VIOOS and VIβ

I now explain the motivation and mechanics behind the different VI measurements. The
first measure, VIOOB, is the standard out-of-bag (hence OOB) VI permutation measure
widely used in RF applications (Wei et al., 2015). It consists of randomly permuting one
feature Sj and comparing predictive accuracy to the full model on observations that were
not used to fit the tree.53 This pseudo evaluation set is convenient because it is a direct
byproduct of the construction of the forest. Under a well-specified model that includes
enough lags of yt, autocorrelation of residuals will not be an issue. This condition is likely
to be met here since the analysis focuses on results for h = 1. 54 VIOOS considers a different
testing set more natural for time series data: the real OOS, which in this section spans from
2007q2 to the end of 2014. By construction, this measure focuses on finding variables which
contribution paid off during a specific forecasting experiment, rather than throughout the
whole sample. This is not bad per se but is a different concept that can be of independent
interest. Finally, both VIOOB and VIOOS focus on overall fit. VIβ implements the same idea
as VIOOB but is calculated using a different loss function. That is, VIβk,j reports a measure
of how much the path of βk is altered (out-of-bag) when variable Sj is randomly permuted
in the forest part. Finally, I use the various VI measurements as devices to narrow down
the set of predictors for the construction of intuitive trees.

I restrict the number of considered variables (for the next step) to be 20 for each VI crite-
ria. When VI suggest that a parsimonious set of variables matter, it is very rarely more
than 3 or 4 variables. Thus, restricting it to 20 is a constraint that only binds if all vari-
ables contribute, but marginally, in the spirit of a Ridge regression (Friedman et al., 2001).
When it comes to that, the cut-off is simply the natural reflection of a trade-off between

52More generally, any partially linear model in the spirit of MRF has a potential for local surrogate analysis
along the linear regression space rather than the observations line.

53This is thought as the equivalent for a black-box model to setting a specific coefficient to 0 in a linear
regression and then comparing fits. However, VI as implemented here (and in most applications) does not
re-estimate the model after dropping Sj. This differs from a t-test since it is well known that the latter is
equivalent to comparing two R2’s – the original one and that of a re-estimated model, under the constraint.

54Notwithstanding, at longer horizons, VIOOB could paint a distorted picture in the presence of autocorre-
lation – the same way K-fold cross validation can be inconsistent for time series data (Bergmeir et al., 2018).
This worry can be alleviated by using a block approach like in section 2.2.7.
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interpretability and fit.
2.7.4. On Tuning Parameters
The bulk of the discussion on the algorithm’s specifics is deferred to the R package. None
of the RFs reported in the text were tuned. This is not heresy, as minuscule performance
gains from doing so (like optimizing mtry) are the norm rather than the exception. Ad-
ditionally, restraining the terminal nodes size can only alter performance very mildly and
it is now clear why (Goulet Coulombe, 2020c). Nonetheless, reviewing some of those un-
tuned tuning parameters can be insightful about MRFs inner workings. "Algorithm" 4
below summarizes when and where those enter the MRF procedure.

• RWR: stands for Random Walk Regularization strength as discussed in 2.2.3. It is the
ζ in equation (2.2).

• RL: stands for Ridge Lambda (λ) in equation (2.1). Prior means are OLS estimates.

• Minimal Node Size: Minimal parent leaf size to consider a new split. Set to 10 for
quarterly data and 15 for monthly.

• MLF: stands for Minimum Leaf Fraction. It is the parameter in MRF that has a role
complementary to that of minimum node size. The so-called "fraction" is the ratio
of parameters in the linear part to that of observations in any node (which includes
most importantly the terminal ones). Here is an example. Set MLF = 2, the linear part
has 3 parameters, and we are trying to split a subset of 15 observations. This setting
implies that any split that results in having less than 6 observations in the children
note will not be considered. This specific setting ensures that the ratio of parameters
to observations never exceeds 1/2 in any node. This ensure stability, especially if
the two aforementioned HPs are set to 0. However, when RWR and RL are active,
it is possible to consider MLF = 1 or even lower. The extra regularization allows
in the latter case to have base regressions that have parameters/observations ratio
exceeding 1 (high-dimensional setting). This is desirable with quarterly data because
setting MLF > 2 or higher seriously restricts the potential depth of the trees.

• mtry: how many Sj’s do we consider as potential "splitter" at each split? It is eas-
ier to think about it as a fraction of the total number of predictors. For regression
settings, the suggested value is 1/3. The lower it gets, the more random tree gener-
ation gets, and better diversification may ensue. Moreover, mtry directly impacts
computational burden. It is often found, in a macro context, that lowering mtry to
0.2 does not alter performance noticeably, while reducing appreciably computations.
In fact, running RF-MAF with mtry∈ {0.1, 0.2, 0.33, 0.5} delivers nearly identical
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performance for all variable/horizon pairs of the quarterly exercise. This is likely
attributable to macro data having a factor structure. If Sj is "not available" for a split
when it would in fact maximize fit locally, there is another strongly correlated Sj′

ready for the task. For instance, if the unemployment rate is discarded by mtry, then
there are more than 20 other labor indicators that can possibly substitute for it. If
those 20 variables are all a noisy representation of the same latent variable the model
wants to split on, then the probability of having none to split with at a given point is(

1− mtry
#regressors

)20
≈ 0.

• Trend Push: Some minorities may end up being underrepresented as a result of
mtry’s discriminating action. While there are 20+ labor indicators in the data base,
there is only one trend. Since exogenous change should most certainly not be under-
represented, its "personalized" probability of inclusion can be pushed beyond what
mtry suggests.

• Subsampling Rate: is set at 75%.

A scaled down quarterly forecasting exercise was conducted to see whether tuning any
of those could help. Precisely, horizons 1, 2, and 4 quarters were considered and mod-
els (ARRF,FA-ARRF,VARRF) were estimated once at the beginning of the OOS period
(2002). Tuning parameters were optimized targeting 1998-2002 data as an artificial test
set. Possible values were RWR∈ {0, 0.5, 0.95}, RL∈ {0.1, 0.5}, mtry∈ {0.2, 0.33, 0.5} and
min.node.size∈ {10, 40}. It is found that results are largely invariant to pre-optimized
HPs. As mentioned earlier, what matters most in the linear part. It is observed that op-
timizing tuning parameters can help reduce marginally RMSEs of MRFs that were some-
times struggling (like VARRF). Results are available upon request.
2.7.5. Additional Simulations Results

DGP 4: SETAR. In this second SETAR example

yt = Xtβt + εt, εt ∼ N(0, 0.52)

βt =

[2 0.8 − 0.2], if yt−1 ≥ 1

[0 0.4 − 0.2], otherwise,

AR models are doing badly by not capturing the change in mean and dynamics. It is
noteworthy that in this DGP, predictive power quickly vanishes after h = 1, which is
why we observe little performance heterogeneity at longer horizons in Figure 19a: those
are dominated by the unshrinkable prediction error. Specifically tailored for this class of
DGPs, the two SETARs are offering the best performance. A less trivial observation is that
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Algorithm 4 How the key tuning parameters enter MRF, and other practical aspects

1: Draw blocks of some size (8 for quarterly, 24 monthly), that makes for Subsampling Rate%
of the sample. To simply get the mean prediction, 100 trees are usually more than enough. To
get credible regions to stabilize, 200-300 trees are typically needed.

2: • For each subsample: run (2.2) recursively on that sample given λ and ζ values until each
(potential) parent nodes are smaller than Minimal Node Size.

• A total of mtry predictors are considered at each splitting step J − is randomly picked
out of J . Those probabilities are all 1/dim(J ) by default. Trend Push pushes that of the
trend further if judged appropriate for a given data set.

• When evaluating potential splits, discard those that would not meet MLF’s requirements
on resulting children nodes.

• This outputs one tree structure T .

3: When inputted with new observations of Xt and St, each tree produces a forecast. MRF forecast
is the mean of the those.

4: Same goes for βt: each tree predicts its own βt out-of-sample and the posterior mean is the
average of all those.

5: In-sample βt’s need an extra step: only draws that did not use observation t to construct the
tree (that is, for which t was left out of the subsample) are used to characterize the distribution
of βt.

MRF and RF, while much more general, perform only marginally worse than SETARs. The
tie between MRF and RF is attributable the importance of the switching constant in the
current DGP, which both models allow for.

DGP 5: AR(2) WITH A BREAK. Results for

yt = Xtβt + εt, εt ∼ N(0, 0.32)

βt =

[0 0.7 − 0.35], if t < T/2

[0.15 0.6 0], otherwise

are reported in Figure 19b. In this setup, RW-AR is expected to have an edge, with the
estimation window excluding pre-break data. At horizon 1, both RW-AR and ARRF are
the best model, beating the robust AR by a thin margin. For h > 1, ARRF emerges as the
best model at both 150 and 300 sample sizes. Naturally, RW-AR is always close behind.55

As expected, the two models are better than the remaining alternatives by allowing for
exogenous structural change (which SETARs and AR do not) and explicitly modeling the
autoregressive part (which RF does not).

55Although not reported here, I considered a simple linear model where I search for a single break (in time)
and use the data after the break for forecasting. This option does as well as ARRF for this particular DGP.
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(a) DGP is SETAR.

(b) DGP is AR(2) with structural break.

(c) DGP is SETAR with structural break.

Figure 19: Displayed are increases in relative RMSE with respect to the oracle.
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DGP 6: SETAR WITH A STRUCTURAL BREAK. This is slight complications of DGP 1.
Again, SETARs are expected to fail because they are not designed to catch breaks. RW-AR
is also expected to fail because it does not model switching. RF is general enough, but is
anticipated to be inefficient. All these heuristics for

DGP 4 =

DGP 2, if t < T/2

DGP 3, otherwise

are verified in Figure 19c: MRF is the better model followed closely by RW-AR and RF for
short horizons. With 300 observations, the lead of ARRF, as well as the second position of
RF, are both strengthened. At longer horizons, all models perform poorly (including the
oracle) due to the fundamental unpredictability of the law of motion for βt. For these hori-
zons, misspecification only plays a minor role in total forecast error variance, explaining
the small and homogeneous decrease in performance with respect to the oracle.
2.7.6. Monthly Forecasting Results
I run a similar exercise as in Goulet Coulombe et al. (2019) which is very close to what has
been precedently conducted for quarterly data. FRED-MD is now used. It contains 134
monthly US macroeconomic and financial indicators observed from 1960M01 (McCracken
and Ng, 2016). To match the experimental design of Goulet Coulombe et al. (2019) for
ML methods, Industrial Production (IP) replaces GDP and IR is dropped. The horizons
of interest are h = 1, 3, 9, 12, 24 months. The forecast target is the average growth rate

∑h
h′ yv

t+h′/h which is much less noisy than the monthly growth rate. For example, for inflation
24 months ahead, I target the average inflation rate over the next two years – rather than
the monthly inflation rate in 2 years. The OOS period is the same as before.

In Figure 23, VARRF is now doing much better on average, ranking first in terms of mean
improvement over AR. ARRF still provides great insurance against doing worse than a
plain AR counterpart (here AR(12)).56 FA-ARRF remains very competitive. The models
that do not have the MAFs (benchmarks) are clearly outperformed by the rest that do.
This unsurprisingly indicates that lag polynomial compression can be of even greater use
at the monthly frequency.

Table 19 reports specific RMSEv,h,m/RMSEv,h,AR’s with Diebold-Mariano tests. Broadly,
they show that (i) MAFs are without any doubt the major improvement for the first three
variables (IP, UR, SPREAD), (ii) simpler approaches like RF-MAF and AR+RF do well (ex-
cept for INF) (iii) all MRFs do very well for inflation. Particularly, for (iii), ARRF and Tiny
ARRF provide significant gains of 33% and 45% over the benchmark at h = 12 and h = 24,

56This is also true for the more parsimonious AR, see Table 19.
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(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

(e) DGP 5 (f) DGP 6

Figure 20: Investigation of the consequences of Xt’s misspecification, as exemplified by "Bad ARRF". Instead
of the first two lags of yt, Xt is replaced by randomly generated iid (normal) variables. Total number of
simulations is 50, and the total number of squared errors is thus 2000.
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(a) DGP 4

(b) DGP 5

(c) DGP 6

Figure 21: The grey bands are the 68% and 90% credible region. After the blue line is the hold-out sample.
Green line is the posterior mean and orange is the truth. The plots include only the first 400 observations.
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Figure 22: The distribution of RMSE dis-improvements with respect to the oracle’s forecast for 4 models:
OLS, Rolling-Window OLS, plain RF, MRF. 50 simulations of 750 OOS forecasts each.

Figure 23: The distribution of RMSEv,h,m/RMSEv,h,AR for monthly data. The star is the mean and the
triangle is the median.

respectively. It is clear from this evidence, and that of the quarterly section, that forcing
time-invariant inflation dynamics is costly in terms of RMSPE. GTVPs will confirm that, in
accord with classic evidence on the matter (Cogley and Sargent, 2001).
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Gains for INF are miles ahead from the usual competition. Table 19 includes forecasts in-
spired by the contribution of Atkeson et al. (2001): 1, h and 12 months moving averages
are considered (where h is the targeted horizon). As in the original paper, the "AO-12"
forecasts prove remarkably resilient, but are bested with sizable margins at each horizons
by ARRF, Tiny ARRF, and FA-ARRF. For instance, at h = 24, the next best non-MRF fore-
cast delivers 16% gains over the benchmark AR, whereas the worst MRF provides a gain
of 27%. Tiny ARRF supremacy at longer horizons is sensible given that restricting St em-
phasizes long-run exogenous change, a usual suspect for INF.

Another interesting observation emerges from MRFs successes with monthly inflation. FA-
ARRF is often close to the best model, and that, at all horizons. Naturally, this is intriguing
as FA-ARRF can be thought of as a Phillips’ curve forecast, which recurrent failures are
well documented (Atkeson et al., 2001; Stock and Watson, 2007). Moreover, it is reported
that FA-AR, in contrast, does really bad. To sort this out, FA-ARRF’s GTVPs are studied in
section 2.5.3.

Non-US Data

Much attention has been paid to the prediction of US economic aggregates. An even
greater challenge is that of forecasting the future state of a small open economy. Such
an application is beyond the scope of this chapter but is considered in Goulet Coulombe
et al. (2020b). The study considers the prediction of more than a dozen key economic vari-
ables for Canada and Québec using the large Canadian data base of Fortin-Gagnon et al.
(2018). Forecasts from about 50 models and different averages of them are compared, with
ARRF and FA-ARRF among them. MRFs generate substantial improvements especially
at the one-quarter horizon for numerous real activity variables (Canadian GDP, Québec
GDP, industrial production, real investment). In such cases, ARRF or FA-ARRF provide
reductions (with respect to autoregressive benchmark) that are sizable and statistically sig-
nificant, going up to 32% in RMSE. That performance is sometimes miles ahead from the
next best option (among Complete Subset Regression, Factor models, Neural Networks,
Ridge, Lasso, plain RF and different model averagaging schemes). Goulet Coulombe et al.
(2020b)’s results suggest that MRFs forecasting abilities generalize beyond the traditional
exercise of predicting US aggregates.

More recently, Goulet Coulombe et al. (2021) uses MRF (along with a plethora of ML mod-
els) with a newly-built large UK macro data base, and finds that it can provide substantial
gains during the Pandemic Recession. One of the reasons for that is the capacity of MRF
to be nonlinear and extrapolate, which off-the-self tree-based methods (like RF) lack.
2.7.7. Additional Figures and Tables
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(a) RMSEGDP,h,m/RMSEGDP,h,AR (b) A look at forecasts

Figure 24: GDP results in detail

(a) RMSESPREAD,h,m/RMSESPREAD,h,AR (b) A look at forecasts

Figure 25: SPREAD results in detail

(a) RMSEINF,h,m/RMSEINF,h,AR (b) A look at forecasts

Figure 26: INF results in detail

105



Figure 27: GTVPs of the one-quarter ahead GDP forecast. Persistence is defined as φ1,t + φ2,t. The grey
bands are the 68% and 90% credible region. The pale orange region is the OLS coefficient ± one standard
error. The vertical dotted blue line is the end of the training sample. Pink shading corresponds to NBER
recessions.
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Figure 28: GDP equation βt’s obtained with different techniques. Persistence is defined as φ1,t + φ2,t. TVPs
estimated with a ridge regression as in Chapter 1 and the parameter volatility is tuned with k-fold cross-
validation. Ex Post TVP means using the full sample for estimation and tuning as opposed to only using
pre-2002 data as for GTVPs. The pale orange region is the OLS coefficient ± one standard error. Pink shading
corresponds to NBER recessions.
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(a) GDP horizon 1

(b) UR horizon 1

Figure 29: 20 most important series according to the various variable importance (VI) cri-
teria. Units are relative RMSE gains (in percentage) from including the specific predictor
in the forest part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out
sample. VIβ is an out-of-bag measure of how much βt,k varies by withdrawing a certain
predictor.
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(a) One month ahead inflation forecast

(b) Average inflation over the next 12 months

Figure 30: 20 most important series according to the various variable importance (VI) cri-
teria. Units are relative RMSE gains (in percentage) from including the specific predictor
in the forest part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out
sample. VIβ is an out-of-bag measure of how much βt,k varies by withdrawing a certain
predictor.
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(a) One-month ahead

(b) 12-months ahead

Figure 31: GTVPs of monthly inflation forecast. The grey bands are the 68% and 90% credible regions.
The pale orange region is the OLS coefficient ± one standard error. The vertical dotted line is the end of the
training sample. Pink shading corresponds to NBER recessions.
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(a) UR equation

(b) GDP equation

Figure 32: βt’s obtained with different techniques. TVPs estimated with a ridge regression as in Chapter
1 and the parameter volatility λ is tuned with k-fold cross-validation, then divided by 100. This means the
standard deviation of parameters shocks is allowed to be about 10 times higher than what CV recommends.
Ex Post TVP means using the full sample for estimation and tuning as opposed to only using pre-2002 data as
for GTVPs. The pale orange region is the OLS coefficient ± one standard error.
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Figure 33: 20 most important series according to the various variable importance (VI) cri-
teria. Units are relative RMSE gains (in percentage) from including the specific predictor
in the forest part. VIOOB means VI for the out-of-bag criterion. VIOOS is using the hold-out
sample. VIβ is an out-of-bag measure of how much βt,k varies by withdrawing a certain
predictor.

Figure 34: β3,t in (2.5) with additional controls for supply and monetary policy shocks. Capacity Utilization
is still substantially correlated with the inflation-unemployment trade-off. The grey band is the 68% credible
region. Pink shading corresponds to NBER recessions.
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Table 19: Monthly Results

AR4 AO-12 AO-h FAAR RF RF-MAF AR+RF ARRF FA-ARRF Tiny ARRF VARRF
IP
h=1 1.00 1.11* 1.14 0.96 1.03 0.94* 0.97 0.99 0.96 1.02 1.02
h=3 1.02 1.17* 1.02 0.99 1.12 0.98 0.96 1.03 1.01 1.02 1.08
h=9 1.01 1.04 1.03 1.06 1.02 1.06 1.02 1.04 1.10 1.09 1.03
h=12 1.01 1.00 1.00 1.05 0.99 0.97 0.91 0.97 1.05 1.13 0.96
h=24 1.00 0.84 0.84 1.17 0.92 0.86 0.86 0.88 0.95 1.11 0.89

UR
h=1 1.01 1.03 1.09 0.95 0.97 0.87*** 0.95 0.91*** 0.90** 0.98 0.94**
h=3 1.00 1.10 1.05 0.86 1.05 0.81*** 0.92 0.89** 0.82* 1.03 0.89***
h=9 0.99 1.11 1.10 0.92 1.02 0.96 0.91 0.97 0.98 1.16* 0.97
h=12 0.99 1.07 1.07 0.96 0.97 0.96 0.91 0.99 0.94 1.17 0.96
h=24 1.02** 1.02 1.03 1.06 0.91* 0.84 0.81 0.91 0.97 1.28 0.87

SPREAD
h=1 0.99 2.88*** 1.23*** 1.21** 3.52*** 1.07 0.91*** 0.99 0.98 0.96 0.93**
h=3 1.01 1.68*** 1.07 1.25 1.69*** 0.82** 0.81*** 1.06 0.85** 1.00 0.88**
h=9 1.01 1.36 1.27 1.06 0.94 0.73** 0.72** 0.70*** 0.62*** 1.07 0.67***
h=12 1.02 1.28 1.28 1.05 0.80*** 0.66*** 0.60*** 0.68*** 0.65*** 1.07 0.64***
h=24 1.03 1.34* 1.34* 0.96 0.80* 0.70* 0.71* 0.69** 0.63*** 0.90 0.70**

INF
h=1 1.02 1.11* 1.18* 0.99 1.07 1.06* 1.01 0.95 0.96 0.95 0.93**
h=3 1.04 1.02 1.24* 1.04 0.93 0.88 1.05 0.90 0.88 0.90 0.88
h=9 1.07 0.92 1.01 1.16 0.86 0.78 1.15* 0.72 0.82 0.73 0.76
h=12 1.09* 0.91 0.91 1.21 0.88 0.79 1.15* 0.73 0.67 0.67* 0.70
h=24 1.04 0.90** 0.86** 1.35 1.00 1.12 1.12 0.71 0.69 0.55** 0.73

HOUST
h=1 1.00 1.10** 1.35*** 1.07 1.08** 1.02 1.00 1.01 1.02 1.02 1.01
h=3 0.96** 1.06 1.34*** 1.15 1.03 1.07 1.03 1.04 1.03 1.01 1.04
h=9 0.98 1.05 1.12 1.35 0.98 1.02 1.01 1.02 1.14 1.03 1.03
h=12 0.98 1.05 1.05 1.32 0.95 1.00 1.01 1.00 1.12 1.11 1.03
h=24 0.95 1.09 1.07 1.17 0.87 0.94 0.95 1.00 1.15 1.23 1.06

Notes: This table report the root MSPE of the model m with respect to the root MSPE the AR(4). Best forecast of the row is in bold. Diebold-Mariano test is
for each model against the AR(4). "*", "**" and "***" means p-values of below 10%, 5% and 1%. "AO-i" means i-months moving average forecasts à la Atkeson
et al. (2001).
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Table 20: Main Quarterly Results

FA-AR LASSO-MAF Ridge-MAF RF RF-MAF AR+RF Tiny RF FA-ARRF ARRF Tiny ARRF VARRF SETAR STAR TV-AR
GDP
h=1 1.02 0.96 0.89** 0.94 0.86 0.89 1.03 0.86 0.93 1.04 1.20 1.01 1.03 0.99
h=2 0.96 0.98 0.98 0.99 0.91 0.93 1.01 0.97 0.94** 1.03 0.99 0.97 0.98 1.03
h=4 1.03 0.98 0.99*** 1.00 0.98 0.99 1.03 0.97 0.95 0.98 0.89 0.97*** 0.96*** 0.96
h=6 1.36 0.98 0.98 0.98 1.00 1.00 1.08 1.01 0.97 0.98 1.00 0.98 0.95 0.98
h=8 1.37 1.00 0.99 0.99 0.99 0.96 1.15 1.06 1.00 1.01 1.04*** 1.00 0.97 1.00

UR
h=1 0.83 0.99 0.99 1.00 0.85* 0.84 1.24** 0.72 0.90*** 1.00 1.24 1.18 1.10 1.00
h=2 0.80 0.98 0.92* 0.98 0.85 0.84 1.15* 0.76 0.90 0.96 0.89 1.03 0.97 0.99
h=4 0.88 0.96*** 0.94** 0.96* 0.87* 0.84* 1.37 0.79 0.87 0.92 0.91 1.02 1.01 1.34
h=6 1.18* 0.98 0.98 1.01 0.94 0.90 1.60* 0.89 0.95 0.97 0.95 1.07 1.04 1.14
h=8 1.25 0.98 1.01 1.01 0.95 0.95 1.57 1.01 0.98 0.98 1.04 1.09 1.06 1.11**

SPREAD
h=1 1.28 2.16*** 0.93 0.91 0.95 0.79** 0.96 1.08 0.89** 1.06 0.77** 1.51*** 1.53*** 0.98
h=2 1.13 1.20 0.77 0.66** 0.78 0.72*** 0.93 0.80 0.78** 1.11 0.74** 1.19 1.20 1.04
h=4 0.86 0.95 1.01 0.81 0.69** 0.61** 1.48* 0.66** 0.73** 1.07 0.69** 1.04 1.06 1.30
h=6 1.51 0.80* 1.13 0.98 0.80 0.80 1.43 0.72** 0.82 1.05 0.74* 1.03 1.06 1.19
h=8 1.28 0.76** 0.96 0.92 0.83 0.89 1.36 0.82 0.88 0.99 0.85 1.11 1.14 0.99

INF
h=1 1.01 0.93 0.95 0.98 0.88 1.23 0.90 0.94 0.89 0.87* 0.96 1.05 1.00 0.93
h=2 1.01 0.96 0.92 0.92 0.82 1.00 0.88 0.94 0.86 0.87 0.91 0.86* 0.86 0.89
h=4 1.08 0.92 0.87 0.94 0.85** 0.96 0.86 0.89 0.91* 0.95* 0.87* 0.90* 0.87* 0.91
h=6 1.32 0.96 0.90 1.01 0.88 1.00 0.86 0.91 0.85 0.92** 0.87 0.94 0.89 0.98
h=8 1.21 0.98 1.27 1.44 0.88* 0.94 0.88 0.91* 0.92 0.94 0.91* 0.96 0.92 0.98

HOUST
h=1 1.13 1.04 0.94* 0.92* 1.00 1.01 1.24*** 1.08 0.94** 0.95 1.09 1.01 0.99 1.00
h=2 1.13 0.99 0.94** 0.95* 1.01 1.02 1.10* 1.06 1.00 1.02 0.99 0.94 0.97 1.01
h=4 1.11 0.98** 0.97* 0.97 1.01 1.03 1.12 1.02 1.00 1.02 1.02 0.95 0.96 1.08
h=6 1.40 0.96 0.96 0.96 0.96*** 1.01 1.16 0.97*** 0.99 1.00 0.98 0.95 0.96 0.99
h=8 1.04 0.95 0.95 0.95 0.99 1.02 1.44 0.96 0.99 1.01 1.00 0.95 0.95 1.03

IR
h=1 1.85 1.02 1.55 1.17 1.11 0.97 0.99 1.29 0.94 0.92 1.43 1.39 1.20 0.97
h=2 1.49 0.96 1.01 1.00 0.93 0.98 1.29*** 1.22 0.93 0.92 1.10 1.15 1.11 1.04
h=4 0.96 1.00 1.03 1.03 1.04 0.99 1.39* 0.99 0.97 1.12 0.97 1.08 1.07 1.09
h=6 1.87 0.95 0.99 1.00 0.93 0.93 1.23* 0.98 0.95* 1.07 1.12 1.19 1.14 1.06**
h=8 1.58 0.98 1.02 1.03 0.96 0.96 1.20 1.04 0.96 1.10 0.98 1.25** 1.20** 1.06

Notes: This table report the root MSPE of the model m with respect to the root MSPE the AR(4). Best forecast of the row is in bold. Diebold-Mariano test is
conducted for each model against the AR(4). "*", "**" and "***" means p-values of below 10%, 5% and 1%.
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CHAPTER 3 : TO BAG IS TO PRUNE

3.1. Introduction
Random Forests (RF) is at the forefront of Machine Learning (ML) applications to eco-
nomics. It can successfully predict asset prices (Gu et al., 2020), house prices (Mullainathan
and Spiess, 2017), and macroeconomic aggregates (Medeiros et al., 2019; Chen et al., 2019;
Goulet Coulombe et al., 2019). It can infer treatment effect heterogeneity (Athey et al.,
2019), and estimate generalized time-varying parameters (Goulet Coulombe, 2020b). The
list goes on. But what makes it so infallible? To answer that question, and eventually un-
derstand the reasons behind RF’s growing list of successful econometric applications, it is
better to start with an apparent paradox.

Common statistical wisdom suggests that a non-overfitting supervised learning algorithm
should have approximately the same mean squared error in the training sample as in the
test sample. LASSO, Splines, Boosting, Neural Networks (NN) and MARS abide by that
principle. But not Random Forest. It is the norm rather than the exception that RF has an
exceptionally high in-sample R2 with a much lower, yet competitive, out-of-sample one.
This means not only do the individual trees overfit the training set, but that the ensemble
does, too.1 In contrast, the algorithms mentioned above usually perform poorly in such
conditions. When optimally tuned, they are expected to deliver neighboring R2

test and
R2

train. This chapter is about understanding why RF is excused from obeying this rule —
and showing how to leverage this property for other algorithms.

In hope of rationalizing Breiman (2001)’s algorithm’s overwhelming success and ever-
increasing popularity, myriad recent academic work has investigated RF’s theoretical prop-
erties. As one would expect, the first matter on the agenda was consistency, with the most
authoritative contribution to date being Scornet et al. (2015).2 Consistency is a crucial
property that any useful supervised algorithm should possess, but it is merely a neces-
sary condition for it to be included in the toolbox of the data scientist (with a statistical
sensibility). For a generic learning task, finite sample properties (usually unknown) de-
termine which algorithms are preferred in practice. That is, it is still theoretically unclear
why RF works so well, on so many data sets. It is acknowledged that much of that re-
silience is attributable to RF providing a very flexible non-linear function approximator
that does not overfit. Most importantly, unlike many models of the non-parametric family,
the latter characteristic is (almost) guaranteed even without resorting to carefully tuning

1This motivates the use of out-of-bag measures rather than in-sample fit to interpret the model.
2For a detailed review of the consistency journey and other relevant theoretical aspects, see Louppe (2014).
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Figure 35: Abalone data set: comparing R2
train and R2

test for classic models. First four models hyper-
parameters are tuned by 5-fold cross-validation. RF uses default parameters. Deep NN details are
in Appendix 3.6.4.

hyperparameters. Yet, it is still not clear what mechanism is behind this phenomenon.

Providing a theoretical reason to believe RF will not overfit, Breiman (2001) himself shows
that as the number of trees B grows large, the generalization error is bounded. That bound
goes down as the individual learners’ strength increases and goes up as correlation be-
tween them increases. Taking a perpendicular direction, Taddy et al. (2015) view the forest
prediction as a posterior mean over an empirical distribution of trees obtained by an ap-
proximation to Rubin (1981)’s Bayesian Bootstrap. In this paradigm, a tree is merely a
single draw from a posterior distribution, which provides a “hammer” argument basis for
never using only one tree.

Yet a question remains unanswered: if RF – made of fully grown completely overfitting
trees – does not overfit out-of-sample, where does regularization come from? Clearly,
increasing λ brings regularization in a ridge regression by shrinking coefficients toward
zero, lowering the individual importance of each predictor. When it comes to RF, what
contortions on the intrinsic model does its regularization entail? An appealing answer
is that bagging smooths hard-thresholding rules (Bühlmann et al. (2002)), like increasing
the smoothness parameter of smoothing splines. If that were the whole story, RF, as does
smoothing splines, would yield comparable R2

test and R2
train. Model averaging arguments
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would also have a similar implication.3 As clearly displayed in Figure 35, it is not the
case — so something else must be at work.4 The newly proposed answer is: to bag (and
perturb) is to prune. But not a tree. Rather, RF implicitly prunes a latent true underlying
tree.

More generally, I argue that randomized greedy optimization performs early stopping.
This is interesting since greedy optimization is often introduced in statistical learning
books as an inevitable (but suboptimal) practical approach in the face of computational
adversity (Friedman et al., 2001). It turns out the necessary evil has unsuspected benefits.
A greedy algorithm treats what has already happened as given and what comes next as
if it will never happen. While this depiction usually means “trouble”, it is the key to this
chapter’s argument. By recursively fitting a model and not re-evaluating what came before
as the algorithm progresses, the work of early stages will be immune to subsequent over-
fitting steps, provided the latter averages out efficiently. Mechanically, in a greedily fitted
tree, the estimated structure at the top cannot be weakened by the bottom’s doings – the
bottom’s existence is not even considered when estimating the top.5 Moreover, when faced
with only noise left to fit in a terminal node, it is shown that a Perfectly Random Forest’s out-
of-sample prediction is the sample mean, which is unbiased and has – mostly importantly
– minimum variance. In short, it performs pruning.

Fortunately, not only trees are eligible for the enviable property, but also other greedily fit-
ted additive models like Boosting and Multivariate Adaptive Regression Splines (MARS).
Based on this observation, I propose Booging and MARSquake which – like RF – are ensem-
bles (of bagged and perturbed base learners) that completely overfit the training sample
and yet perform nicely on the test set. Those are later shown to be promising alternatives
to Boosting and MARS (both with a tuned stopping point) on real and simulated data sets.
An R package implements both.

Finally, it is worth contrasting this chapter’s explanation with recent "interpolating regime"
and "double descent" ideas proposed to explain the success of deep learning (Belkin et al.,
2019a,b; Hastie et al., 2019; Bartlett et al., 2020; Kobak et al., 2020). First, some terminol-
ogy. The interpolating regime is entered whenever one fits an algorithm on the training
data past the point where R2

train = 1.6 The double descent is the astonishing observation

3This renders incomplete (at best) arguments linking RF regularization to that of penalized regression (orig-
inally discussed in Friedman et al. (2001), and more recently Mentch and Zhou (2019)) using results developed
for linear models (Elliott et al., 2013; LeJeune et al., 2020).

4Mullainathan and Spiess (2017)’s Table 1 – reporting results from off-the-shelf ML algorithms applied to
house price prediction – is another convenient example where all aspects of the phenomenon are visible.

5In sharp contrast, all parameters are estimated simultaneously in a linear regression.
6Interpolation means training data points are effectively interpolated by the fitted function f̂ when R2

train =
1.
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that for large-scale deep neural networks (DNN), the out-of-sample performance starts
to increase past the point where R2

train = 1. Preceded by the typical U-shaped empirical
risk curve implied the classical bias–variance trade-off before R2

train = 1, this makes it for
a "double descent" — the first starting from R2

train = 0 and the second from R2
train = 1.

Belkin et al. (2019a) evoke that the phenomenon is also present in RF. However, they mis-
takenly associate the number of trees to be increasing complexity (as in Boosting, whereas
it is really increasing averaging/regularization in RF). Thus, there is no double descent,
but rather a single descent that never ascent as complexity increases – in line with this
chapter’s argument. Wyner et al. (2017) also argue that interpolation may be the key for
Boosted Trees and RF success because local fitting of dissident data points prevents harm-
ing the overall prediction function f̂ . But it is unclear as to why RF is so proficient at it,
why "locality" emerges in the first place, and why estimation variance does not spread.
The current chapter makes exactly clear how the (greedy) construction of RF guarantees
that overfitting washes away out-of-sample.

This chapter is organized as follows. In section 3.2, I present the main insights and discuss
their implications for RF and other greedy algorithms. In section 3.3, I demonstrate by
means of simulations the implicit optimal early stopping property of RF, Booging and
MARSquake. Section 3.4 applies the chapter’s main ideas to classic regression data sets.
Section 3.5 concludes.

3.2. Randomized Greedy Optimization Performs Early Stopping
The key ingredients for an ensemble to completely overfit in-sample while maintaining
a stellar generalization error are (i) the base learner prediction function is obtained by
greedy/recursive optimization and (ii) enough randomization in the fitting process. Sec-
tion 3.2.1 explains why their combination generates the observed phenomenon. Clearly,
RF satisfies both above requirements and is used as the leading example.

Multivariate Adaptive Regression Splines (MARS, Friedman (1991)) and Gradient Boost-
ing (Friedman (2001), Friedman (2002)) are also eligible for implicit early stopping. In fact,
for any forward stagewise regression procedure which can generate enough randomness
in the recursive model building pass and does not re-evaluate previously estimated coeffi-
cients as the model complexity increases, we can barter the choice of a stopping point for
an ensemble of bootstrapped and perturbed overfitting base models. In subsection 3.2.2,
I detail when we can expect both criteria to be fully met and when not. No base learner
perfectly satisfies both requirements, but some get closer than others.

In simulations (section 3.3), it is found that bagged and perturbed fully overfitting MARS/-
Boosting performance is quantitatively equivalent to that of stopping the respective base
learner at the ex-post optimal stopping point. Classification and Regression Tree (CART,
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Breiman et al. (1984)) also inherits the property that letting trees grow to their full extent
will not cause any harm. However, that performance is much higher than that of an opti-
mally pruned plain CART. Consequently, it is clear that, unlike MARS and Boosting, RF is
pruning something else than the base learner itself. In subsection 3.2.3, I use an analogy to
time series econometrics to argue that bagging trees (Breiman, 1996) works so well because
it is recovering a true latent tree. In combination with other ideas to be presented in this
section, this implies that RF is not merely pruning CART. Rather, it is a self-pruning latent
tree.
3.2.1. The Miracle of Randomized Recursive Fitting
It is common to see that RF will have R2

train magnitudes higher than R2
test, a symptom which

would suggest overfitting for many standard algorithms. That is, the traditionally defined
in-sample fitted values

ŷRF
i =

1
B

B

∑
b=1

ŷtree
i,b

and corresponding residuals have nothing to do with what one gets when applying the es-
timated model to new data, unless the “true” R2 is really high.7 While this R2

train curiosity
is usually of limited interest per se, it creates some intriguing headaches from a more tra-
ditional statistical perspective. For instance, any attempt to interpret the intrinsic RF model
relies on measurements obtained on pseudo hold-out samples (called out-of-bag). In con-
trast, one would not refrain from exploring the structure of MARS’ fitted values or that of a
single tree. Indeed, most algorithms, when properly tuned, will produce comparable R2

test

and R2
train. This implies that using the in-sample conditional mean ŷi for any subsequent

analysis is perfectly fine. In that way, they behave similarly to any classical nonparametric
estimators where a bandwidth parameter must be chosen to balance estimation flexibility
and the threat of overfitting. Once it is chosen according to CV or some information cri-
teria, in-sample values provide reliable estimates of the true conditional mean and error
term.

I argue that RF’s notably different behavior can be explained by the combination of two
elements: greedy optimization and randomization of the recursive model fitting sequence.
By construction, the instability of trees makes the latter an easy task: simply bootstrap-
ping the original data can generate substantially different predictors.8 The former, greedy
optimization, is usually seen as the suboptimal yet inevitable approach when solving for
a global solution is computationally unthinkable. In this section, I argue that greedy op-

7B is the total number of base learners.
8As argued in Breiman (1996), not every algorithm responds as vividly as trees to small perturbations of

the original sample. Section 3.2.2 expands on that and compare trees’ ability to generate inner randomness
(within the fitting procedure) to that of Boosting-like model building procedures.
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timization, when combined with randomization of the model building pass, has an addi-
tional benefit. When combined in a properly randomized ensemble, no harm will come in
letting each greedily optimized base learner completely overfit the training sample. In the
case of RF, this translates to the heuristic recommendation of considering fully grown trees
where each terminal node contains either a single observation or very few.

What Happens in the Overfitting Zone Stays in the Overfitting Zone

In a global estimation procedure, overfitting will weaken the whole prediction function.
More concretely, estimating many useless coefficients in a linear regression will inflate
the generalization error by increasing the variance of both the few useful coefficients and
the useless ones. Bagging such a predictor will still be largely suboptimal: the ensemble
will still rely on an average of coefficients which are largely inferior to those that would
be obtained from regression excluding the useless regressors. Hence, we are still in the
standard case where R2

test < R2
train reveals that the predictor performance is inferior to that

of an optimally pruned counterpart.

A greedily optimized model works differently. At each step of the forward pass, every-
thing that came before is treated as given and what comes next as if it will never happen.
The essential insight of this section resides in the first attribute. That is, as the algorithm
progresses past a certain step s, the function estimated before s is treated as given. In-
evitably, the algorithm will eventually reach s∗ where the only thing left to fit is the un-
shrinkable “true” error εi = ε̂i,s∗ = yi − f̂s∗(xi). The key is that entering deep in the over-
fitting zone will not alter f̂s−1 since it is not re-evaluated. As a result, early non-overfitting
steps can be immune to the weakening effect of subsequent ones, as long as the latter
efficiently averages out to 0 in the hold-out sample. An immediate implication of this sep-
arability property (which is argued to be particularly strong for trees in section 3.2.2) is that
there is no need to stop the forward pass at the unknown s∗ to obtain optimal predictions.

These abstract principles can be readily applied to think about fitting trees where a step s
is splitting the subsample obtained from step s− 1. As more formally put in section 3.2.3,
a tree does not distinguish whether the current sample to split is the original data set of the
result of an already busy sequence of splits. Moreover, like any splits along the tree path,
those optimized before venturing past s∗ cannot be subsequently revoked. This implies
that the predictive structure attached to them cannot be altered nor weaken by ulterior
decision the greedy algorithm makes.

Alternatively, we can think of fitting a linear regression with orthogonal features. A step
s is adding a regressor by fitting it to the residual of the previous step. In the (∼boosting)
linear regression case, we can hope that important predictors will go in very soon in the
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process and will be followed by a sequence of useless predictors until those are exhausted.
Unlike the coefficients from the all-at-once-OLS, the early fitted coefficients in the forward
pass of the stagewise algorithm were estimated as part of a model that only included a
handful of predictors. In effect, those are precluded from the eventual weakening effect
that comes with the inversion of a potentially near-singular X′X.9

(a) B = 10 (b) B = 100 (c) B = 1000

Figure 36: R2
test between the a toy algorithm’s prediction on the optimal prediction (x1) for varying number

of replication samples B. Notice the varying y-axis scales.

A toy simulation can help visualize the phenomenon. Suppose the DGP is y = x1 + ε

and there are 2 regressors available x1 and x2. To make this a high-dimensional problem,
there are only 3 observations. Thus, by construction, there is a sizable benefit to stopping
after including a single regressor. I compare the performance of four approaches. First,
the Oracle OLS which is an ideal regression including only x1. Second, Oracle Greedy which
is a recursive (two-step here) scheme that knows the first variable to go in is x1. Third,
Greedy is the same as the previous one, but the first variable to go in is the one with the
highest correlation with y. Fourth, OLS is simply a regression including both regressors.
The performance statistic reported in Figure 36 is the distribution of R2

test between a toy
algorithm hold-out sample prediction and the true conditional mean (x1), obtained over
100 simulations.10 Finally, B is the number of independent samples on which base learners
are fitted and then averaged. B = 1000 represent the ideal case where it is somehow very
easy to randomize the 3 observations regression and B = 10 is closer to a rough/imperfect
randomization scenario. Undeniably, even when averaged over B independent samples,
OLS is largely suboptimal to the Greedy approaches. Both perform rather similarly, with
R2

test’s that are themselves very close to the optimally pruned Oracle OLS.

9Adding a ridge penalty will alleviate the singularity problems, but will also (potentially heavily) shrink
the real coefficients of interest, compromising their predictive power.

10Each test set comprise 1000 observations.
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Bagging and Perturbing the Model as an Approximation to Population Sampling

At s∗, which corresponds to the true terminal node in the case of a tree, the DGP is simply

yi = µ + εi. (3.1)

Clearly, the best possible prediction is the mean of all observations contained in the node.
I argue that perfect randomization will also procure this optimal prediction out-of-sample,
even if the ensemble itself is completely overfitting in-sample. This Perfectly Random For-
est is, of course, merely a theoretical device and how close RF gets to this hypothetical
version is an empirical question. Nevertheless, it is widely believed (and further con-
firmed in section 3.3) that bagging (B) and perturbing (P) trees can get very close to what
would obtain from population sampling.11 By the latter, I mean that each tree is grown
on non-overlapping samples from a population. Essentially, this is what bootstrapping
any statistic is meant to approximate. It is nothing new to display that a predictor’s per-
formance improves when averaging it over many close-to independent samples.12 The
more subtle point being made here is that a good approximation to population sampling
(via B & P) can generate a predictor whose structure will be close to the optimally pruned
one, and that, without attempting any form of early stopping whatsoever. In other words,
(3.1) more generally represents the truth from the hypothetical point s∗ where a recursive
fitting algorithm should optimally stop or otherwise enter the overfitting zone.13 Proper
inner randomization assure that a prediction close to ȳ is returned.

It is known that perfectly uncorrelated trees will have a bounded generalized error (Breiman
(2001)). It is a trivial (but nevertheless interesting) byproduct to show that given a large
number of samples B, the prediction of a B & P ensemble of completely overfitting trees
that achieve perfect randomization is the (optimal) sample average. This enlightening re-
sult is possible by taking the recursive view and assuming perfect randomization. First,
the out-of-sample prediction of a RF for observation j is

µ̂RF
j =

1
B

B

∑
b=1

µ̂j,b

where µ̂j,b is the prediction of the b tree for observation j. Importantly, observation j is not
included when fitting the trees, so we are looking at the prediction for a new data point

11By perturbing trees, I refer to randomly selecting mtry features to be considered for a given split – as
implemented by RF. Of course, there exists other perturbation schemes, like injecting noise. However, mtry
is by far the most widely used, at least, for trees.

12In Breiman (2001)’s well-known equation, this corresponds to the case where ρ = 0, i.e., all the trees are
perfectly uncorrelated.

13In the case of MARS and Boosting, µ = 0.
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using a function trained on observations i 6= j. For simplicity, assume fully grown trees,
which means terminal nodes include a single observation.14 The model is applied to the
terminal node DGP in (3.1). Since the tree is fitting noise, perfect randomization implies
that each out-of-sample tree prediction is a randomly chosen yi for each b. The prediction
is thus

µ̂RF
j =

1
B

B

∑
b=1

yi(b).

Define r = B/N where N is the number of training observations and r will eventually stand
for “replicas”. Since the yi(b)’s amount to random draws of y1:N , for a large enough B, we
know with certainty that the vector to be averaged (yi(1:B)) will contain r times the same
observation yi. Hence, the prediction equivalently is

µ̂RF
j =

1
B

N

∑
i=1

r

∑
r′=1

yi,r′ =
1
B

N

∑
i=1

r

∑
r′=1

yi =
r
B

N

∑
i=1

yi.

Finally, remembering that r = B/N yields

µ̂RF
j =

1
N

N

∑
i=1

yi.

In words, when a Perfectly Random Forest is starting to fit pure noise, its out-of-sample
prediction averages out to the simple mean, which is optimal under (3.1) and a squared
loss function. Intuitively, at s∗, the test set behavior of the prediction function (from fully-
grown trees) is identical to that of doing (random) subsampling with subsamples contain-
ing one observation. Averaging the results of the latter (over a large B) is just a complicated
way to compute a mean. Hence, the out-of-sample prediction as provided by the perfectly
random forest is one where implicit/automatic pruning was performed.15 It is equivalent
to that of an algorithm which knows the “true” s∗. gives A direct implication is that we
need not to worry about finding s∗ through cross-validation, since the optimally stopped
prediction is what being reported out-of-sample. Of course, this result’s usefulness re-
lies on perfect randomization being somehow empirically attainable. Section 3.3 will ask
“How close to population sampling are we when fitting B & P trees?” and the answer will
be “surprisingly close”.

One may wonder what is the connection at a deeper level between this form of implicit reg-

14This also directly implies that each base learners’ R2
train is one and that of the ensemble is bounded below

by the subsampling rate, which will inevitably be much higher than R2
test = 0.

15This provides a justification for Duroux and Scornet (2016)’s finding that pruning the base learners while
shutting down B can deliver a performance similar to that of plain RF (provided a wise choice of tuning
parameters).
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ularization and cross-validation itself. Both aim at improving the capacity of the model to
generalize by relying on a bootstrap approximation to population sampling. By construc-
tion, the true conditional mean should be systemically present in every data set whereas
the noise vectors differ. Hence, CV chooses the optimal s∗ by assuming that anything
that happens beyond that point is not systematic and will not help in predicting new in-
stances, as revealed by the k-fold MSE for different values of s∗. The implicit pruning
detailed above operates on a similar heuristic. Each forward model building pass is done
on a pseudo-new data set and averaging those should make the signal (conditional mean)
stand out and the overfitted noise average out.16 Intuitively, if step s’s addition to the
model is meaningful and systematic, it should show up similarly in many bootstrap repli-
cas. If it is not, it won’t. Recursive fitting allows this averaging to happen piece by piece
rather than for the whole model at once, which deliver the desirable outcome that letting
the base learners (as well as their ensemble) completely overfit is practically costless.

The above also helps in understanding R2
test < R2

train in RF. The gap’s existence is a direct
implication of implicit pruning via B & P being only active out-of-sample. Population sam-
pling itself does not generate R2

test < R2
train

17, only its approximation by B & P does. A
central role in this is that of mtry – the number of randomly selected features to be consid-
ered for a split. Overfitting situations can be thought of as an overabundance of parameters
vs observations. The attached predictors are either directly available in the data or created
via some form of basis expansions which trees is one (successful) possibility out of many.
In such high-dimensional situations, it is clear that the model itself – the predictive struc-
ture – is barely identified: many different tree structure can rationalize a training sample
with R2

train = 1. Yet, these predictive structures will generate substantially different predic-
tions when applied to new data.18 This property of overfitting predictors (combined with
the recursive fitting procedure) is the channel through which mtry strongly regularize
the hold-sample prediction. However, the heterogeneity in structures that mtry generates
cannot deflate R2

train since different overfitting base learners, when trained on the same data,
provide the same fitted values.19 Ergo, R2

test < R2
train.

Not Your Average Model Averaging

At first sight, this may seem new like nothing new: RF successfully controls overfitting
by approximating more resampling by model averaging. The latter is known to provide

16Of course, this is not perfect as those data sets overlaps, which leaves an important role for mtry.
17As the subsampling rate mechanically decrease – a luxury obtained from a growing sample size and fixed

model complexity – the R2
train itself will look much like a true R2

test since the contribution of observation i to
its out-of-bag prediction shrinks with subsampling rate.

18A simpler example is that of ridge regression: if there are more regressors than observations, then λ → 0
leads to a multitude of solutions for β and the non-identification of the predictive structure.

19Namely, they all report y itself or something close to it.
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a sort of regularization that can in some special case be equivalent to more traditional
shrinkage estimator (Elliott et al., 2013; LeJeune et al., 2020). The success of simple fore-
cast combinations schemes have been detailed extensively over the last decades (Clemen,
1989). A classic application of the forecast combinations literature is that of combining
forecasts from professional economic forecasters. In this setup, it is plausible that forecasts
may differ because of different models and different information sets (Timmermann, 2006).
Following along the idea, one can think of RF as a well-designed one-model and one-
training set way of mimicking an ensemble of forecasters that puts heterogeneous weights
on observations (B) and assign different priorities to different regressors (P). What is new
is that unlike averaging a kitchen-sink OLS regression (for instance), a greedy algorithm
makes the structure estimated before s∗ immune to what happens in the overfitting zone.
In contrast, schemes like that of Eliasz et al. (2004) or those discussed in Rapach and Zhou
(2013) imply directly or indirectly tuning the number of regressors in the base learner linear
models. This means that including too many of them could damage the overall predictor’s
performance.20 This is analogous to that of tuning a ridge regression and, as one would
expect from this link, the resulting R2

test is usually in the neighborhood of R2
train.21 Hence,

B & P are not the source of the “paradox” in themselves: they need to be paired with a
greedy algorithm which has the potential to generate sufficient inner randomization.

Conversely, the ideas presented above could help at understanding why forecast combi-
nations work so well, which unlike confirming their multiple successes, is still an ongoing
venture (Timmermann, 2006). It is plausible that individual forecasters construct their pre-
dictive rule in an inductive recursive fashion. That is, human-based economic forecasting
has likely more to do with a decision tree (based on looking at multiple time series plots)
or a stepwise regression, than with the solution of a global problem (like OLS, LASSO and
others). Indeed, it is arguably much easier to learn in a greedy fashion (both for a human
and a computer) than to solve a complex multivariate problem directly for its global solu-
tion. Thus, assuming underlying forecasts are constructed as such, the average will behave
in a very distinctive way if those are overfitting. As argued in Hellwig (2018) for the survey
of IMF forecasters, the latter assertion is very likely true. As a result, the discussion above
provides yet another explanation for the success of forecast combinations (especially the
simple average scheme): significant inner randomization combined with recursively con-
structed overfitting forecasts provides implicit (and necessary) pruning. This is not a re-
placement but rather a complement to traditional explanations (usually for linear models)

20Also, see Figure 36.
21This is why using a (global) linear model to think about mtry’s effect – while it may yield interesting

insights (Mentch and Zhou, 2019) – provides an incomplete answer that fails to capture one of RF’s most
salient regularities: R2

train > R2
test.
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that link the effects of model averaging to traditional shrinkage estimators.22

3.2.2. Leveraging the Insight for Other Models
Not only trees require pruning. Many additive schemes must be optimally stopped at s∗

to obtain the best test set performance. It has been discussed that mixing B & P with a
greedy recursive algorithm can lead the algorithm to perform implicit early stopping. It
is natural to wonder if certain well-known greedy model building algorithms could also
benefit for this property. In sections 3.3 and 3.4, I consider B & P versions of MARS and
Gradient Boosted Trees. Before jumping to do so, I discuss why they can plausibly benefit
from it, but perhaps not as much as trees. As a guiding light through this discussion, here
are three conjectured commandments for B & P to implicitly perform early stopping on an
algorithm:

C1. It is greedy;

C2. It generates enough randomization so the ensemble consists of diversified predictors;

C3. The incremental improvement steps (in the model space) must not be too big.

It is clear that RF satisfies them all. Point 1 and Point 2 suggests that some form of fully over-
fitting Boosting and MARS could equivalently benefit from B & P. However, the success of
such an enterprise is bounded by the ability of the algorithm to satisfy Point 2. Indeed, if
only an insufficient amount of randomization is generated by the model building scheme,
there will be benefits from stopping base learners earlier. Point 3 excludes the option of
fitting neural networks greedily, layer by layer, as popularized in Bengio et al. (2007). In-
deed, there is little hope that an overfitting ensemble will yield a decently behaved average
since adding a layer can hardly be described as an incremental improvement in the model
space.23

Why Does it Work Best for Trees?

The usual answer is that trees are unstable and bagging works best for unstable prediction
rules. Of course, this is framed in terms of increasing predictive accuracy, while this chap-
ter rather focuses on the implicit pruning property. I revisit the "instability" argument in a
slightly different light. I ask: which prediction rule, when bootstrapped/perturbed gener-
ates enough inner randomness for an ensemble of completely overfitting base learners not

22For instance, Friedman et al. (2001) discuss the link for RF itself, Rapach and Zhou (2013) discuss it for the
case of forecasting stock returns with averages of linear models.

23Often, a single layer has enough parameters to totally overfit a data set. It is not excluded, though, that
such a deep neural net with an astonishing number of heavily regularized layers could work. Given the often
overwhelming complexity of optimizing hyperparameters in such models (and good results depending on
very specific values of them), this is an important avenue to explore in future work – and could be contrasted
with deep "interpolating" NNs which avoid overfitting for reasons of their own (Olson et al., 2018; Belkin et al.,
2019a). Furthermore, the general idea of mixing elements of deep learning (usually multiple layers) with the
robustness of forests has gain some traction in recent years (Zhou and Feng, 2017; Feng et al., 2018).
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to overfit in the hold-out sample? To provide an answer, I compare trees and a boosting-
like procedure by looking at both as additive models. In yet another episode of "what does
not kill you makes you stronger", what makes trees weak is what provides them with this
enviable pruning property. MARS and Boosting can be "weakened" in a similar fashion,
but not as much.

The reason why trees generate so much randomization is the irreversibility of the model
building pass. For parsimony, I only consider plain Boosting as the counterexample, the
principle clearly applying to MARS and similar greedily optimized additive models. Con-
sider building a small tree: after one split, the prediction function is

ŷi = β1 I(xi > 0) + β2 I(xi ≤ 0).

Further splitting within each of the newly created subsamples, the additive model becomes

ŷi = β1 I(xi > 0) [α1 I(zi > 0) + α2 I(zi ≤ 0)] + β2 I(xi ≤ 0) [(γ1 I(wi > 0) + γ2 I(wi ≤ 0)] .

Finally, define d+x,i = I(xi > 0) as a regressor and the rest accordingly. The polynomial-
looking model is

ŷi = β1d+x,i

[
α1d+z,i + α2d−z,i

]
+ β2d−x,i

[
(γ1d+w,i + γ2d−w,i

]
= θ1d+x,id

+
z,i + θ2d+x,id

−
z,i + θ3d−x,id

+
w,i + θ4d−x,id

−
w,i.

This representation is helpful to allow a look at trees in the same way one could look at
boosting. The goal is to understand why randomization is more easily obtained with a
tree than with an additive scheme like boosting. Trees are indeed very singular additive
models. In fact, they are partly multiplicative. It is clear from the above that dx,i better
be a good choice, because it is not going away: any term in the model building pass will
be multiplied by it. By construction, no term added later in the expansion has the power
to entirely undo the damage of a potentially harmful first split. In other words, splitting
the sample (here according to the dummies d+x,i and d−x,i) is an irreversible action. Of course,
observations misclassified by dx,i will eventually get some relief by additional splits within
that assigned subsample. Nonetheless, nothing comes close to bring them back to the other
side of dx,i if it is realized ex post that this would have been optimal.

To contrast with the above, let us look at a toy boosting model where the base learners are
single-split trees. The first step is

ŷi = ν
[

β1d+x,i + β2d−x,i

]
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and ν is the usual shrinkage parameter. The fitting recursion consists of taking the in-
sample prediction error at step s and consider it as the new target in step s + 1. An impor-
tant difference with respect to the plain tree fitting process is that step s leading to

ŷi = ν
[

β1d+x,i + β2d−x,i

]
+ · · · − ν

[
β1d+x,i + β2d−x,i

]
(3.2)

is absolutely possible. In words, by additivity, it is possible to correct any step that even-
tually turned out to be suboptimal in the search for a close-to global optima. With the
randomization induced in Stochastic Gradient Boosting and other practical aspects, this is
unlikely to happen exactly in those terms.24 However, a small ν and a large number of
steps/trees in the additive model will mechanically increase the algorithm’s potential for
"reversibility". Indeed, Friedman et al. (2001) detail an equivalence between a procedure
similar to the above and LASSO. If ν → 0, # of steps → ∞ and regressors are uncorre-
lated, they obtain the LASSO solution – a global solution. Thus, there is an evident tension
between how close to a global optimization a boosting-like algorithm can get and its capac-
ity to generate inner randomization sufficiently to be dispensed from tuning the stopping
point. This is intuitive. There is only one truth to be learned, and learning it slowly will
safely get you there. Alternatively, by learning fast and imprecisely, you get it right on
average over many tryouts.

On that spectrum, MARS is positioned between trees and Boosting. It is close to the exam-
ple above, with ν = 1 and using different base learners. While it is not common to refer
to a reduced number of steps in Boosting as "pruning", it is the traditional language used
to describe dropping off terms after MARS’ forward pass. Since MARS does not use ν to
slow the learning process, it can quickly overfit with much fewer additive terms than an
algorithm using a small ν. Hence, the phenomena described in (3.2) is believed to be an
oddity unlikely to happen in MARS, making the model a middle ground of sorts when it
comes to satisfying Point 2.

Given the above arguments, can pruning the underlying base learners still help? The an-
swer is yes. As Uhlig (2017) puts it (for a very different scientific question): if you know it,
impose it; if you do not: do not impose it. If both the number of observations and regres-
sors is small, respectively limiting the randomizing power of B & P), there likely will be
gains from regularizing base learners directly. As mentioned earlier, perfect regularization
is obtained under perfect randomization. If it is obvious that in a specific application, we
are very far from that idyllic case, then pruning (gently) the base learners is reasonable to
consider.

24Stochastic Gradient Boosting (Friedman, 2002) randomly selects a subset of observations at each step to
train the weak learner.
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An interesting question is whether the properties detailed here apply to LASSO, which
would free the world from ever tuning λ again. Indeed, when implemented via Least
Angle Regression (Efron et al., 2004), the algorithm very much looks like a forward stage-
wise regression. In the spirit of the above, one would hope to let a randomized version of
the regularization path roll until λ = 0, average those solutions and obtain the same R2

test

as if λ had been carefully tuned. Unfortunately, LASSO violates two of the requirements
listed before. First, parameters are re-evaluated along the regularization path. For λ’s that
lay in the overfitting territory, the estimated coefficients will be weakened since they are
re-estimated in an overcrowded model. Second, letting the model overfit (when p < N)
implies setting λ = 0 which returns the OLS solution for any iteration, making the desired
level of randomization likely unattainable.25

3.2.3. Why RF is Not Equivalent to Pruning a Single Tree
Bagging and perturbing the model as implemented by RF leads to two enviable outcomes.
The first is that the randomization procedure implicitly prunes an overfitting ensemble
when applied to new data. This was the subject of previous subsections. The second, more
standard, is that as a result of randomization, RF performs orders of magnitude better
than a single pruned true (Breiman, 1996). This is also observed in the simulations from
section 3.3: B & P CART does much better than the ex-post optimally pruned base learner.
In contrast,B & P MARS and Boosting will provide similar performance to that of their
respective base learner stopped at s∗. Thus, RF must be pruning something else. I complete
the argument of previous sections by arguing that its "pruning via inner randomization" is
applied on the true latent tree T in

yi = T (Xi) + εi (3.3)

which itself can only be constructed from randomization. In short, it is the recursive fitting
procedure itself that generates the need for Bagging.26

The inspiration for the following argument comes from forecasting with non-linear time
series models, in particular with the so-called Self-Exciting Threshold Autoregression (SE-
TAR). A simple illustrative SETAR DGP is

yt+1 = ηtφ1yt + (1− ηt)φ2yt + εt, ηt = I(yt > 0) (3.4)

25This last point could be alleviated, when in the p > N case, the LASSO solution can include at most N
predictors. In that scenario, the included set of variables would depend on the order within the regulariza-
tion path (rather than its termination) which would increase randomization. Nevertheless, we cannot expect
LASSO to benefit from automatic tuning because linear regression coefficients are re-evaluated along the esti-
mation path.

26In Appendix 3.6.3, I review a more standard case for Bagging based on presumed heteroscedascity.
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where εt is normally distributed. The forecasting problem consists in predicting yt+h for
h = 1, ..., H given information at time t. As it is clear from (3.4), yt+1 is needed to obtain the
predictive function for yt+2 which is either φ1 or φ2. Alas, only an estimate ŷt+1 = E(yt+1|yt)

is available. By construction, E(ŷt+1) = yt+1. However, by properties of expectations,
E( f (ŷt+1)) 6= f (yt+1) if f is non-linear. Hence, proceeding to iterate forward using ŷt+h’s
as substitutes for yt+h at every step leads to a bias problem that only gets worse with the
forecast horizon. If such an analogy were to be true for trees, this would mean that as the
tree increase in depth, the more certain we can be that we are far from T (Xi), the optimal
prediction function. I argue that it is the case.

Following the time series analogy, the prediction for a particular i can be obtained by a
series of recursions. Define the cutting operator

C(S; y, X, i) ≡ Si

(
arg min
k∈K,c∈IR

[
min

µ1
∑

i∈{S|Xk≤c}
(yi − µ1)

2 + min
µ2

∑
i∈{S|Xk>c}

(yi − µ2)
2

])
(3.5)

where Si extract the subset that includes i out of the two produced by the splitting step.
Inside the Si operator is the traditional one-step tree problem. K is the set of potential
features to operate the split at an optimized value c. S is the sample to split and is itself
the result of previous cutting operations from steps s− 1, s− 2 and so on. To get the next
finer subset that includes i, the operator is applied to the latest available subset: S′ =
C(S; y, X, i). The prediction for i can be obtained by using C recursively starting from S0

(the full data set) and taking the mean in the final S chosen by some stopping rule. In other
words, the true tree prediction in (3.3) is T (Xi) = E

(
yi′ |i′ ∈ CD(S0; y, X, i)

)
where D is the

number of times the cutting operator must be applied to obtain the final subset in which i
resides. To obtain the true tree prediction – the mean of observations in i’s "true" terminal
node – the sequence of C’s must be perfect. Hence, consistency remains on safe ground: as
the sample size grows large, estimation error vanishes and Ŝ → S at each step. The finite
sample story is, however, quite different.

Using ŷt+1 in situ of yt+1 in SETAR and Ŝ in situ of S in a tree generate problems of the same
nature. At each step, the expected composition of Ŝ is indeed S.27 However, just like the
recursive forecasting problem, the expected terminal subset is defined as an expectation
over a recursion of nonlinear operators. Using Ŝ rather than the unobserved S at each
step does not deliver the desired expectation. Intuitively, getting the right k and c out of
many possible combinations is unlikely. These small errors are reflected in Ŝ 6= S which

27This notion can be formalized by defining the expectation in terms of indicator functions for each can-
didate observation. Each observation at each cutting step is expected to be classified in the right one of two
groups.
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is taken as given by the next step. Those errors eventually trickle down with absolutely
no guarantee that they average out. In short, the direct CART procedure produces an
unreliable estimate of a greedily constructed predictor T (Xi) because it takes as given at
each step something that is not given, but estimated. Since C is a non-linear operator, this
implies that the mean itself is not exempted from bias.

If the direct procedure cannot procure the right expected subset on which to take the av-
erage and predict, what will? The intuition for the answer, again, stems from the SETAR
example. The proposed solution in the literature is – with a distinctively familiar sound –
using bootstrap to simulate the intractable expectation (Clements and Smith (1997)).28 ŷt+1

is augmented with a randomly drawn shock (from a parametric distribution or from those
in the sample) and a forecast of yt+2 is computed conditional on it. Then, the procedure
is repeated for B different shocks and the final forecast is the average of all predictions,
which, by the non-linearity of f (), can make it a very different quantity from f (ŷt+1). A
forecaster will naturally be interested in more than yt+2. This procedure can be adapted by
replacing the draw of a single shock by a series of them that will be used as the model is
simulated forward. The prediction at step H is an average of forecasts at the end of each b
randomly generated sequence.

Analogously, a natural approach is to simulate the distribution of S entering a next splitting
step is to bootstrap the sample of the previous step, run C a total of B times, apply C in the
next step and finally take the average of these B bootstrapped trees predictions. For a
deeper tree, the growing process continues on the bootstrapped sample and the average is
taken once the terminal condition is reached.

Coming to the original question: if RF is pruning something, what is it? I conjecture it
is pruning T in (3.3). Unlike the implicit early-stopping property explained in section
3.2.1, this statement cannot be supported or refuted by the simulations presented in section
3.3. However, in Goulet Coulombe (2021), it is shown that under a "true tree" DGP, the
performance of RF and a version of CART with a low learning rate coincides. The latter
can be linked to fitting the true tree optimally via an (extremely) high-dimensional LASSO
problem.

3.3. Simulations
Simulations are carried to display quantitatively the insights presented in the previous
section. Namely, I want to display that (i) ideal population sampling of greedy algorithms
performs pruning/early stopping, (ii) RF very closely approximates it for trees and (iii) the
property also extends to altered versions of Boosting and MARS.

28For a discussion of the SETAR case and other non-linear time series models, see section 2.7 in Khan (2015).
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3.3.1. Setup
I consider 3 versions of 3 algorithms on 5 DGPs. The 3 models are a single regression tree
(CART), Stochastic Gradient Boosting (with tree base learners) and MARS. The five DGPs
are a Tree29, Friedman 1, 2 and 3 (Friedman (1991)) as well as a linear model30. The first
two versions of each model are rather obvious. First, I include the plain model and second,
a bootstrapped and perturbed ensemble of it, as described earlier. Additionally, B & P ver-
sions of MARS and Boosting have the so-called data augmentation (DA) option activated.
It consists in enlarging the feature matrix to additionally incorporate X̃ = X + E where
E is a matrix of Gaussian noise.31 Overall, DA can improve perturbation’s potential when
regressors are scarce.32 The Boosting and MARS B & P + DA versions will be referred to by
the less gloomy-sounding sobriquets Booging and MARSquake. The R package bagofprunes
implements both. Execution details are available in Appendix 3.6.2.

The third version of each model, "Population Sampling" aims at displaying what results
look like under the ideal case of perfect randomization. In this third version, subsampling
is replaced by sampling B non-overlapping subsets of N observation from a population of
B × N observations. This third version has the benefit of making clear which algorithm
generates enough inner randomization to get close to that desirable upper bound. For all
simulations, N = 400 and the test set also has 400 observations.

In terms of standard hyperparameters, Boosting has the shrinkage parameter ν = 0.1,
the fraction of randomly selected observations to build trees at each step is 0.5, and the
interaction depth of those trees is 3. Of course, while those are fixed for all simulations, we
will want to tune them once we get to real data. However, here, the point is rather to study
the hold-out sample performance of each model as its depth increase, and compare that
across the 3 versions. MARS has the polynomial degree set to 3.33 RF is used with a rather
high mtry of 9/10 so to be better visually in sync with plain CART at a given depth.34 The
subsampling rate is 2/3 for all bagged models.
3.3.2. Results
Figures 37 and 39 report the median R2 between hold-out sample predictions and the true
conditional mean for 30 simulations. Columns are DGPs and rows are models. The x-axis
is an increasing index of complexity/depth for each greedy model. Overfitting should

29The true tree DGP is generated using a CART algorithm’s prediction function as a "new" conditional mean
function from which to simulate. The "true" minimal node size being used is 40 (10% of the training set).

30The linear DGP is the sum of five mutually orthogonal and normally distributed regressors.
31For categorical variables, X̃ is obtained by duplicating X and shuffling a fraction of its rows.
32This is the case for the considered Friedman’s DGPs which have 5 useful regressors and 5 useless ones.
33For those unfamiliar with this machinery, see Friedman (2002) for Boosting and Friedman (1991) or Mil-

borrow (2018) for MARS.
34For completeness, results when using mtry= 1/2 for both plain CART and RF are reported in Figure 40. It

is clear that in the high signal-to-noise ratio environment, the milder perturbation of mtry=9/10 is preferable.
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Figure 37: This plots the hold-out sample R2 between the prediction and the true conditional mean. The
level of noise is calibrated so the signal-to-noise ratio is 4. Column facets are DGPs and row facets are base
learners. The x-axis is an index of depth of the greedy model. For CART, it is a decreasing minimal size node
∈ 1.4{16,..,2}, for Boosting, an increasing number of steps ∈ 1.5{4,..,18} and for MARS, it is an increasing number
of included terms ∈ 1.4{2,..,16}.

manifest itself by a decreasing R2 past a certain depth. I consider two levels of noise, one
that corresponds to a signal-to-noise ratio of 4 (Figure 37) and one of 1 (Figure 39).

What does section 3.2 imply for the curves in Figure 37? First, the population sampling
versions (purple line) should be weakly increasing since they perform implicit "perfect"
early stopping. Second, the B & P versions (orange), should be parallel to those provided
the underlying greedy model is generating enough inner randomization. Third, the value
of the orange line at the point of maximal depth should be as high or higher than the
maximal value of the green curve (i.e, the plain version’s ex-post optimal stopping point).

When it comes to CART, those three properties are verified exactly. For any DGP, and
both the population sampling and the B & P versions, increasing the complexity of the
model by shrinking the minimal node size does not lead to a performance metric that
eventually decrease. The striking parallelism of the purple and orange lines is due to trees
generating enough inner randomization with B & P so it performs self-pruning at a level
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comparable to that of the ideal experiment.35 Depending on the DGP, the plain version
generally follows the B & P one for some time before detaching itself from it past its ex-
post optimal point of early stopping — in like with the idea that B & P CART (aka RF)
performs implicit pruning.

Looking at Boosting and MARS, we again see that the population sampling line is weakly
increasing in the respective depth of both models. If the B & P version fails to match this
ideal shape, it is because the current specification cannot generate enough inner random-
ization. Figure 37 shows unequivocal encouraging results for both Boosting and MARS.
For all DGPs, a clear pattern is observed: the B & P version’s performance increases until
it approximately reaches the optimal point (as can be ex-post determined by the hump in
the green line) and then remains at that level, even if the base learners (one example being
the ’Plain’ version) are clearly suffering from overfitting. Under those conditions, it is fair
to say that the enviable RF property is transferable to Boosting, and in a more pronounced
fashion, MARS. When the noise level increase as depicted in Figure 39, we observed the
same – albeit marginally less successful – phenomenon. Indeed, in those harder conditions,
there is a small gap between ideal randomization and the one generated by MARSquake.
However, the decrease in performance following the optimal depth is orders of magnitude
smaller than what is observed for the plain version.

As discussed earlier, while it is eligible for the self-pruning property, Boosting is expected
to be overall more recalcitrant than MARS, especially if a small ν is used. This is observed
in a mild form for the higher level of noise in Figure 39. Nevertheless, the decline in R2

between the hold-out sample prediction and the true conditional mean is, again, much
smaller than what the plain version yields. Additionally, for all DGPs under a signal-to-
noise ratio of 4, we see Booging obeying a pattern close to the ideal population sampling
version. As depth increase, it yields a R2 that remains at the optimal non-overfitting level,
all the while its respective plain versions is slowly (but clearly) suffering from overfitting.
Finally, it is observed for all DGPs and base learners that a higher signal-to-noise ratio
will help in reducing the gap between post-s∗ slopes of the orange and purple lines. In
sum, with DGPs ranging from the rather complex true tree36 to a simple linear models,
these simulations demonstrate the main insights advanced in the previous sections. They
provide reasons to believe that Booging and MARSquake could (at least) seldomly yield
performance improvements on standard data sets – without CV.

35The purple line is mechanically expected to be at least above the orange one for a fixed depth: the former
uses more data points which also helps at reducing estimation error.

36Overall performance is lower for this harder DGP except, obviously, for RF.
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3.4. Empirics
Applying B & P to Boosting and MARS is nothing new in itself. For instance, Rasmussen
(1997) report that Bagged MARS supplant MARS on many data sets. This section has a
slightly more subtle aim than crowning the winner of a models’ horse race. Rather than
focusing on improving the tuned/pruned model which is already believed to be optimal,
Booging and MARSquake bag and perturb completely overfitting based learners, which, as
we will see, perform very poorly by themselves. Their performance will be compared to
versions of Boosting and MARS where the optimal stopping point has been tuned by CV.
The goal is to verify that in many instances, Booging and MARSquake provide a similar
predictive power to that of tuned models. Since CV’s circumstantial imperfections are
vastly documented (Krstajic et al., 2014; Bergmeir et al., 2018), it is not unrealistic to expect
the B & P versions to sometimes outperform their tuned counterparts. In sum, this small
application shows that the equivalence championed in previous chapters holds with real
data and thus provides data scientists with a fruitful alternative to consider when building
models.
3.4.1. Setup
Most data sets are standard in the literature (mostly from UCI repository) with a few ad-
ditions which are thought to be of particular interest here. For instance, many of the stan-
dard regression data sets have a limited number of features with respect to the number
of observations. A less standard inclusion like NBA Salary has 483 observations and 26
features. Crime Florida pushes it much further with a total of 98 features and 90 observa-
tions. Those data sets are interesting because avoiding CV could generate larger payoffs
in higher-dimensional setups. Further information on data sets is gathered in Table 21.

Still in the high-dimensional realm, but with the additional complication of non-iid data,
are the 6 US macroeconomic data sets based on McCracken and Ng (2020).37 There are two
obvious potential benefits from self-tuning models in a macroeconomic forecasting envi-
ronment. First, traditional CV is known to be overoptimistic in a time series context and
avoiding it could generate forecasting gains (Bergmeir et al., 2018). Second, forecasting
"horse races" are usually conducted in a recursive fashion which mimics the reality of eco-
nomic forecasting in quasi-real-time. That is, as new observations are available, the model
must be constantly re-estimated (or at least, often) along with the optimization of its hy-
perparameters. Avoiding the latter implies substantial decrease in computational burden,

37Bagging has received attention of its own in the macroeconomic forecasting literature (Inoue and Kil-
ian, 2008; Hillebrand and Medeiros, 2010; Hillebrand et al., 2020). However, nearly all studies consider the
more common problem of variable selection via hard-thresholding rules – like t-tests (Lee et al., 2020). Those
strategies are akin to what discussed in section 3.2.1, and cannot (and do not) strive for automatic pruning.
Nevertheless, the motivation for using Bagging in their context is very close to what described for trees in
section 3.2.3.
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which can sometimes be a matter of days. The 3 macroeconomic variables are quarterly
GDP growth, unemployment change and inflation. I consider predicting those variables
at an horizon of 1 quarter (h = 1) and 2 quarters (h = 2). The X matrix is based on
Goulet Coulombe (2020b)’s recommendations for ML algorithms when applied to macro
data, which is itself a twist (for statistical efficiency and lessen computational demand)
on well-accepted time series transformations (to achieve stationarity) as detailed in Mc-
Cracken and Ng (2020).38 Each data set has 212 observations and around 600 predictors.39

Beyond Boosting, MARS, and their different variants under scrutiny for this exercise, I
include a few benchmark models. Those include LASSO, RF with default tuning param-
eters (mtry=1/3), a cost-complexity pruned regression tree, and two different neural net-
works. The first NNs is shallow (2 layers of 32 and 16 neurons) and is inspired from
Gu et al. (2020). Such an architecture has provided reasonable performance on Cana-
dian (Goulet Coulombe et al., 2020b) and UK macroeconomic data Goulet Coulombe et al.
(2021). The second is a deep NN (DNN, with 10 layers of 100 neurons) following the rec-
ommendations of Olson and Wyner (2018) for small data sets. Additional NNs details (like
their tuning) are in Appendix 3.6.4. For macro data sets, the benchmarks additionally in-
clude an autoregressive model of order 2 (AR) and a factor-augmented regression with 2
lags (FA-AR) which are widely known to be hard to beat (Kotchoni et al., 2019).

For all data sets, I keep 70% of observations for training (and optimizing hyperparameters
if needed) and the remaining 30% to evaluate performance. For cross-sectional data sets,
those observations are chosen randomly. For time series applications, I keep the observa-
tions that consist of the first 70% in the sample as the training set. The test set starts before
the 2001 recession and ends in 2014, which conveniently includes two recessions. Lastly, a
seldomly binding outlier filter is implemented. Every prediction that is larger than twice
the maximal absolute difference (in the training sample) with respect to the mean is re-
placed by the RF prediction (which is immune to outliers since it cannot extrapolate). This
last addition is particularly helpful to prevent wildly negative R2

test for non-tuned plain
MARS and (less frequently) Boosting.
3.4.2. Results
All prediction results are reported in Table 22 and an illustrative subset of those is included
in Figure 38.40 Moreover, to empirically document the R2

test and R2
train gap, Table 23 reports

R2
train’s. On the Abalone data set, non-tuned MARS is overfitting, which leads to subpar

38Goulet Coulombe et al. (2019) further study optimal data transformations for machine macroeconomic
forecasting for many series and algorithms.

39The number of features varies across macro data sets because a mild screening rule was implemented
ex-ante, the latter helping to decrease computing time.

40NN and Tree are left out of Figure 38 to enhance readability since neither of them were ever the best model
for a given data set, execpt for NN beating B & P MARS by 1% on Crime Florida.
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(a) Abalone (b) Boston Housing

(c) Crime Florida (d) Fish Toxicity

(e) US Unemployment Rate (h = 1) (f) US Inflation (h = 1)

(g) California Housing (h) White Wine

Figure 38: A Subset of Empirical Prediction Results. Performance metric R2
test. Darker green bars means

the performance differential between the tuned version and the three others is statistically significant at the
5% level using t-tests (and Diebold and Mariano (2002) tests for time series data). Light green means the
difference is not significant at the prescribed level. To enhance visibility in certain cases, R2

test’s below -0.25 are
constrained to 0.25.
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performance. In line with simulation results, Booging and MARSquake perform almost
indistinguishably as well as using a single base learner and tuning it. Even better, the
newly proposed overfitting Boosting ensembles deliver statistically significant gains at the
5% confidence level. As RF, those two ensembles have a very high R2

train (see Table 23) and
yet, stellar performance is reported on the test set. However, it is noted that B & P MARS
does not generate enough inner randomization to match the tuned model. This wedge
between B & P MARS and MARSquake suggests an important role for data augmentation
when features are scarce (7 in the case of Abalone).

For Boston Housing, all models behave similarly (including the plain versions) which is
attributable to the true R2 (very) likely being quite high for that particular data set. Thus,
there is little room for overfitting in the first place. Yet, the ensembles R2

train’s are all in the
vicinity of 1, which is markedly higher than 0.85 as obtained for most models on the test
set. Clearly, implicit pruning via randomization acted as a potent regularizer.

Crime Florida – the very high-dimensional case which is not time series – brings new in-
sights to the table. While B & P Boosting and Booging are doing marginally better than
the tuned version, the two ensembles of completely overfitting MARS (their R2

train are re-
spectively 0.97 and 0.98) are doing much better than the tuned version. They both deliver
a surprisingly high R2

test of almost 0.8 in the case of MARSquake, an improvement which
is statistically significant for the B & P version. The latter is also the overall second best
model (being 1% less than NN) for this data set.

Fish Toxicity, Red Wine, White Wine are data sets with a more common ratio of predictors to
observations. In both cases, the plain overfitting versions are significantly worse than the
tuned versions. The ensembles deliver a performance (with respect to tuned counterparts)
that is either significantly better or not statistically distinguishable. California Housing is
an example of data set with an enviable number of observations (more than 20,000). It is
observed that all ensembles do significantly better than the tuned versions for MARS. All
performances are nearly identical for Boosting. Furthermore, for both California Housing
and Bike Sharing, which are the sole data sets with more than 15,000 observations, the tuned
version of MARS is worse than RF or any version of Boosting. In contrast, the overfitting
MARS ensembles perform similarly well.

As one should expect, results are more disparate when looking at the macroeconomic data
sets. The economic forecasting problem is (i) high-dimensional (ii) incorporates a strong
unpredictable component (economic shocks) and (iii) the target variable surely contains a
sizable measurement error. To make things even more gruesome, the true model – if there
is any – may be constantly evolving. Thus, those data sets are difficult laboratories which
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differ in many aspects to those considered up to now. Consequently, it is recomforting
that a (now) very familiar pattern is also visible for both unemployment and (to some
extent) GDP at h = 1. Booging does as well as the tuned Boosting. Moreover, the former
provides the best outcome among all models, with a 11% R2

test increase with respect to
both economic forecasting workhorses (AR, FA-AR). When it comes to plain and tuned
MARS, all models are somewhat worse than the benchmarks with the tuned model itself
delivering a terrible R2

test. MARSquake is partially exempted from this failure for GDP,
and completely is for unemployment. In the latter case, MARSquake is as good as FA-AR
which incredible resilience is vastly documented (Kotchoni et al., 2019; Goulet Coulombe
et al., 2019, 2020a). For inflation (h = 1), the best models are clearly B & P MARS and
DNN. Generally, it is expected that the DA option has less bite for those data sets since the
raw data is already extremely "wide" and has a strong factor structure (McCracken and
Ng, 2020).

In terms of overall performance, a quick look at Table 22 reveals how well ensembles of
overfitting base learners do. One version or another (including RF) is the best model for
11 out of 20 data sets, and the 9 other cases are often 1% (or less) away from being ties.
The leading models in that regard are RF and MARS-based ensembles, with 5 wins and
4 wins, respectively. Zooming on macroeconomic data sets, Booging dominates its tuned
counterpart for all 6 data sets. For MARS, when R2

test’s are positive, MARSquake subdues
tuned MARS 3 times out of 4. Thus, overfitting ensembles of any kind work well for macro
forecasting where the use of CV is seldomly hazardous.

For the vast majority of cases, we observe that R2
test < R2

train by a wide margin because the
latter is excessively high. For instance, R2

train are almost all above 0.95 for Booging and RF,
and MARSquake as well when X is large. In Table 23, plain MARS’ R2

train can sometimes be
"deceivingly" far from 1, something that never happens for Boosting and RF. This is due to
MARS being occasionally recalcitrant to continue adding redundant and/or useless terms
(see Appendix 3.6.2 for details). Nonetheless R2

test < R2
train is clearly maintained. This

rarity can be thought of as "earlier" stopping, a reasonable form of very mild regularization
applied on base learners.

Lastly, a comment on overall NN and Deep NN performances. DNN’s performance tends
to be more stable than that of NN, especially for macroeconomic targets — against the
traditional wisdom that tighter architectures are more appropriate for the noisy macro
data environment (Goulet Coulombe et al., 2019). The computationally demanding DNN
is usually dominated by RF and other ensembles, with the noticeable exception of inflation
where it narrowly beats B & P MARS by 4% at h = 1 with a R2

test of 0.49, and distance the
competition even further at h = 2 with a R2

test of 0.51. In line with Olson et al. (2018)’s
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results, this suggests econometricians should not refrain from using deep architecture in
future research, even when faced with small sample sizes. In the meantime, RF, Booging
and MARSquake remain a trio that is very hard to beat.

Giving the ongoing discussion on the non-overfitting properties of DNN’s in the ML lit-
erature, it is interesting to investigate through Tables 22 and 23 how their R2

test and R2
train

compares, and check if DNN inherit similar properties to RF, as put forward in Belkin et al.
(2019a) and others. The short answer is "much less". RF’s R2

train is almost always above 0.9,
whereas that of DNN fluctuates highly depending on the target, being roughly evenly dis-
tributed between 0.5 to 0.9. Even though DNN’s gap between R2

train and R2
test is high for

macro data sets (and yet DNN delivers solid performances sporadically), we remain far
from what could be referred to as the "interpolating" regime.

All in all, empirical results confirm the insights developed in section 3.2. In almost every
instance, the overfitting ensembles do at least as well as the tuned version while completely
overfitting the training sample, the same way RF would. Sometimes they do much better.
Thus, they are alternatives to their cross-validated counterparts. In sum, it seems that,
mixed with a proper amount of randomization, greed is good.

3.5. Conclusion
A fundamental problem is to detect at which point a learner stops learning and starts imi-
tating. In ML, the common tool to prevent an algorithm from damaging its hold-out sam-
ple performance by overfitting is the intuitive solution of cross-validation. It is widespread
knowledge that performing CV on Random Forests rarely yields dramatic improvements.
Concurrently, it is often observed that R2

test < R2
train without R2

test being any less compet-
itive. In this chapter, I argued that proper inner randomization as generated by Bagging
and perturbing the model, when combined with a greedy fitting procedure, will implicitly
prune the learner once it starts fitting noise. By the virtues of recursive model building,
the earlier fitting steps are immune to the instability brought upon by ulterior (and po-
tentially harmful) steps. Once upon a time, the author heard a very senior data scientist
and researcher say in a seminar, ’If you put a gun to my head and say "predict", I use
Random Forest.’ This chapter rationalizes this feeling of security by noting that unlike
any standard ML algorithms out there, RF performs its own pruning without the perils of
cross-validation.
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3.6. Appendix
3.6.1. Additional Graphs and Tables

Figure 39: This plots the hold-out sample R2 between the prediction and the true conditional mean. The
level of noise is calibrated so the signal-to-noise ratio is 1. Column facets are DGPs and row facets are base
learners. The x-axis is an index of depth of the greedy model. For CART, it is a decreasing minimal size node
∈ 1.4{16,..,2}, for Boosting, an increasing number of steps ∈ 1.5{4,..,18} and for MARS, it is an increasing number
of included terms ∈ 1.4{2,..,16}.

Figure 40: This is Figure 37’s first row with mtry= 0.5.
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Table 21: 20 Data Sets

Abbreviation Observations Features Data Source

Abalone 4,177 7 archive.ics.uci.edu
Boston Housing 506 13 lib.stat.cmu.edu
Auto 392 7 archive.ics.uci.edu
Bike Sharing 17,379 13 archive.ics.uci.edu
White Wine 4,898 10 archive.ics.uci.edu
Red Wine 1,599 10 archive.ics.uci.edu
Concrete 1,030 8 archive.ics.uci.edu
Fish Toxicity 908 6 archive.ics.uci.edu
Forest Fire 517 12 archive.ics.uci.edu
NBA Salary 483 25 kaggle.com
CA Housing 20,428 9 kaggle.com
Crime Florida 90 97 census.gov
Friedman 1 R2=.7 1,000 10 cran.r-project.org
Friedman 1 R2=.4 1,000 10 cran.r-project.org
GDP h=1 212 599 Google Drive
GDP h=2 212 563 Google Drive
UNRATE h=1 212 619 Google Drive
UNRATE h=2 212 627 Google Drive
INF h=1 212 619 Google Drive
INF h=2 212 611 Google Drive

Notes: The number of features includes categorical variables expanded as multiple
dummies and will thus be sometimes higher than what reported at data source website.
Data source URLs are visibly abbreviated but lead directly to the exact data set or pack-
age being used. The number of features varies for each macro data set because a mild
screening rule was implemented ex-ante, the latter helping to decrease computing time.
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http://archive.ics.uci.edu/ml/datasets/Abalone
http://lib.stat.cmu.edu/datasets/boston
https://archive.ics.uci.edu/ml/datasets/Auto+MPG
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity
https://archive.ics.uci.edu/ml/datasets/Forest+Fires
https://www.kaggle.com/aishjun/nba-salaries-prediction-in-20172018-season/data
https://www.kaggle.com/camnugent/california-housing-prices
https://www.census.gov/data/datasets/1990/dec/summary-file-3.html
https://cran.r-project.org/web/packages/tgp/vignettes/tgp.pdf
https://cran.r-project.org/web/packages/tgp/vignettes/tgp.pdf
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing
https://drive.google.com/file/d/1NxDKvr-gyf2hhZS7oJ2h12vFk-N3SZAJ/view?usp=sharing


Table 22: R2
test for all data sets and models

Benchmarks GBM MARS

FA-AR AR LASSO RF Tree NN DNN Tuned Plain B & P Booging Tuned Plain B & P Quake

Abalone 0.52 0.56 0.45 0.54 0.53 0.50 0.48 0.53* 0.54** 0.57 0.35* 0.31* 0.58***
Boston Housing 0.67 0.88 0.79 0.86 0.85 0.89 0.88 0.90 0.85* 0.83 0.87 0.92 0.91
Auto 0.66 0.71 0.61 0.13 0.64 0.64 0.59∗∗ 0.65 0.64* 0.71 −0.54 * 0.53 0.63
Bike Sharing 0.38 0.91 0.73 0.88 0.94 0.95 0.93*** 0.91*** 0.91*** 0.71 0.89*** 0.87*** 0.90***
White Wine 0.28 0.52 0.28 0.37 0.26 0.37 0.32* 0.44*** 0.38 0.33 0.33*** 0.39** 0.38***
Red Wine 0.34 0.47 0.35 0.33 0.37 0.37 0.23** 0.37 0.38 0.38 0.29* 0.33 0.35
Concrete 0.59 0.90 0.71 0.89 0.88 0.92 0.92 0.90* 0.90*** 0.83 0.87 0.30*** 0.89
Fish Toxicity 0.56 0.65 0.57 0.60 0.63 0.63 0.54*** 0.61 0.62 0.56 −0.25 *** 0.54* 0.61
Forest Fire 0.00 −0.11 0.00 −0.02 0.01 −0.03 −0.68 *** −0.32 *** −0.08 0.01 −1.55 * −0.68 −0.36
NBA Salary 0.52 0.60 0.34 0.22 0.21 0.50 0.29*** 0.49 0.50 0.36 0.11* 0.59* 0.53
CA Housing 0.64 0.82 0.59 0.75 0.74 0.82 0.82 0.83*** 0.82** 0.72 0.77*** 0.81*** 0.79***
Crime Florida 0.66 0.79 0.60 0.82 0.75 0.75 0.77 0.81* 0.79 0.70 0.44* 0.81 0.80
F1 R2 = 0.7 0.53 0.62 0.50 0.43 0.51 0.65 0.54*** 0.60*** 0.67** 0.68 0.55 0.62 0.69***
F1 R2 = 0.4 0.32 0.40 0.36 0.19 0.28 0.40 0.16*** 0.34* 0.41 0.41 0.14* 0.35 0.40*
GDP h=1 0.27 0.27 0.24 0.35 0.18 0.06 0.26 0.36 0.17 0.37 0.38 0.00 −9.08 *** −0.45 ** −0.12 **
GDP h=2 −0.03 0.17 −0.01 0.16 0.00 −0.06 −0.52 0.15 −0.56 ** 0.20 0.18 −0.40 −4.37 ** −0.41 * −0.37 ***
UNRATE h=1 0.71 0.53 0.43 0.59 0.22 −0.69 0.62 0.59 0.66 0.58 0.65 −0.65 −0.72 *** 0.53 0.68
UNRATE h=2 0.52 0.29 0.26 0.37 0.16 0.14 0.41 0.43 0.35 0.42 0.48 0.16 −0.80 ** −0.28 0.26
INF h=1 0.25 0.33 0.43 0.42 0.25 0.41 0.49 0.35 0.24 0.37 0.39 0.37 −0.57 ** 0.45 0.34
INF h=2 0.05 0.22 0.09 0.28 0.45 0.19 0.51 0.15 −0.26 *** 0.16 0.27* 0.39 −2.50 ** 0.24 0.42

Notes: This table reports R2
test for 20 data sets and different models, either standard or introduced in the text. For macroeconomic targets (the last 6 data sets),

the set of benchmark models additionally includes an autoregressive model of order 2 (AR) and a factor-augmented regression with 2 lags (FA-AR). Numbers
in bold identify the best predictive performance of the row. For GBM and MARS, t-test (and Diebold and Mariano (2002) tests for time series data) are per-
formed to evaluate whether the difference in predictive performance between the tuned version and the remaining three models of each block is statistically
significant. ’*’, ’**’ and ’***’ respectively refer to p-values below 5%, 1% and 0.1%. F1 means "Friedman 1" DGP of Friedman (1991).
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Table 23: R2
train for all data sets and models

Benchmarks GBM MARS

FA-AR AR LASSO RF Tree NN DNN Tuned Plain B & P Booging Tuned Plain B & P Quake

Abalone 0.50 0.92 0.50 0.60 0.59 0.53 0.85 0.86 0.91 0.57 0.65 0.78 0.61
Boston Housing 0.72 0.98 0.87 0.90 0.89 1.00 1.00 0.99 0.99 0.90 0.97 0.97 0.98
Auto 0.68 0.96 0.77 0.13 0.81 0.86 1.00 0.98 0.98 0.77 0.98 0.93 0.96
Bike Sharing 0.38 0.98 0.89 0.95 0.96 0.95 0.94 0.95 0.71 0.89 0.88 0.90
White Wine 0.26 0.92 0.27 0.47 0.75 0.44 0.82 0.85 0.88 0.37 0.46 0.52 0.51
Red Wine 0.29 0.91 0.41 0.40 0.42 0.41 0.96 0.94 0.95 0.44 0.56 0.69 0.67
Concrete 0.61 0.98 0.75 0.91 0.93 0.98 0.99 0.98 0.99 0.88 0.98 0.74 0.95
Fish Toxicity 0.54 0.93 0.60 0.64 0.61 0.92 0.97 0.95 0.97 0.63 0.96 0.82 0.88
Forest Fire 0.00 0.81 0.00 0.00 0.07 0.40 0.97 0.88 0.91 0.04 0.62 0.73 0.76
NBA Salary 0.47 0.93 0.72 0.65 0.71 0.99 1.00 0.97 0.97 0.64 0.92 0.84 0.93
CA Housing 0.63 0.97 0.61 0.78 0.85 0.86 0.89 0.91 0.90 0.72 0.80 0.83 0.81
Crime Florida 0.65 0.96 0.84 0.88 0.94 1.00 1.00 0.98 0.98 0.75 1.00 0.97 0.98
F1 R2 = 0.7 0.45 0.93 0.45 0.62 0.71 0.95 1.00 0.97 0.97 0.65 0.81 0.84 0.86
F1 R2 = 0.4 0.23 0.89 0.30 0.34 0.35 0.48 1.00 0.94 0.94 0.38 0.64 0.75 0.76
GDP h=1 0.41 0.11 0.23 0.91 0.51 0.26 0.44 0.81 1.00 0.96 0.96 0.47 1.00 0.94 0.94
GDP h=2 0.26 0.06 0.07 0.89 0.00 0.26 0.55 0.76 1.00 0.95 0.95 0.29 1.00 0.94 0.95
UNRATE h=1 0.57 0.40 0.48 0.93 0.81 -0.07 0.82 0.83 1.00 0.97 0.97 0.76 0.99 0.97 0.96
UNRATE h=2 0.41 0.13 0.35 0.92 0.38 0.42 0.25 0.99 1.00 0.96 0.96 0.75 1.00 0.96 0.96
INF h=1 0.76 0.73 0.90 0.97 0.81 0.64 0.94 1.00 1.00 0.99 0.99 0.73 1.00 0.99 0.99
INF h=2 0.69 0.63 0.72 0.96 0.72 0.67 0.92 1.00 1.00 0.99 0.98 0.81 1.00 0.99 0.98

Notes: This table reports R2
train for 20 data sets and different models, either standard or introduced in the text. For macroeconomic targets (the last 6 data

sets), the set of benchmark models additionally includes an autoregressive model of order 2 (AR) and a factor-augmented regression with 2 lags (FA-AR).
F1 means "Friedman 1" DGP of Friedman (1991).
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3.6.2. Implementation Details for Booging and MARSquake
Booging and MARSquake are the B & P +DA versions of Boosted Trees and MARS, respec-
tively. The data-augmentation option will likely be redundant in high-dimensional situa-
tions where the available regressors already have a factor structure (like macroeconomic
data).

ABOUT B. For both algorithms, B is made operational by subsampling. As usual, reason-
able candidates for the sampling rate are 2/3 and 3/4. All ensembles use B = 100 subsam-
ples.

ABOUT P. The primary source of perturbation in Booging is straightforward. Using sub-
samples to construct trees at each step is already integrated within Stochastic Gradient
Boosting. By construction, it perturbs the Boosting fitting path and achieve a similar goal
as that of the original mtry in RF. Note that, for fairness, this standard feature is also acti-
vated for any reported results on "plain" Boosting.

The implementation of P in MARSquake is more akin to that of RF. At each step of the
forward pass, MASS evaluate all variables as potential candidates to enter a hinge function,
and select the one which (greedily) maximize fit at this step. In the spirit of RF’s mtry, P
is applied by stochastically restricting the set of available features at each step. I set the
fraction of randomly considered X’s to 1/2.

To further enhance perturbation in both algorithms, we can randomly drop a fraction of
features from base learners’ respective information sets. Since DA creates replicas of the
data and keep some of its correlation structure, features are unlikely to be entirely dropped
from a boosting run, provided the dropping rate is not too high. I suggest 20%. This can is
analogous to mtry-like randomly select features, but for a whole tree (in RF) rather than
at each split.

ABOUT DA. Perturbation work better if there is a lot to perturb. In many data sets, X is
rich in observations but contains few regressors. To assure P meets its full randomiza-
tion potential, a cheap data augmentation procedure can be carried. DA is simply adding
fake regressors that are correlated with the original X and maintain in part their cross-
correlation structure. Say X contains K regressors. I take the N × K matrix X and create
two duplicates X̃ = X + E where E is a matrix of Gaussian noise. SD is set to 1/3 that of
the variable. For Xk’s that are either categorical or ordinal, I create the corresponding X̃k

by taking Xk and shuffling 20% of its observations.
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LAST WORD ON MARS. It is known that standard MARS has a forward and a backward
pass. The latter’s role is to prevent overfitting by (traditional) pruning. Obviously, there
is no backward pass in MARSquake. Certain implementations of MARS (like earth, Mil-
borrow (2018)) may contain foolproof features rendering the forward pass recalcitrant to
blatantly overfit in certain situations (usually when regressor are not numerous). To par-
tially circumvent this rare occurrence, one can run MARS again on residuals obtained from
a first MARS run which failed to attain a high enough R2

train.
3.6.3. Bagging and Heteroscedasticity
Grandvalet (2004) expands on Breiman (1996) and discuss in greater detail why bagging
can boost trees’ performance but not so much for OLS or splines. His argument basically
boils down that trees are non-linear functionals of the data while splines or OLS are just
linear combinations of the data. In the case of OLS, perturbing the data weights B times
gives a similar β̂ as computing OLS with all weights being equal to 1. However, Êtree

ω (y|X)

can be very far from just computing the same expectation at the mean ωi = 1 ∀i. Hence,
if ωi in

yi = T (Xi) + ωiεi, εi ∼ N(0, 1) (3.6)

follows a certain non-degenerate distribution, it is argued that bagging will yield signif-
icant improvements. Of course, under these conditions (and a linear DGP), OLS would
still be consistent, so that as the sample gets large, heteroscedascity does not compromise
prediction.41 That is, ÊOLS(y|X; ω)→ ÊOLS(y|X; ω̂ = 1) as the sample size grows. No such
guarantees are available for complicated non-linear recursive estimators, such as trees.

Such reasoning can be extended to finite samples and in a straightforward application of
a basic property of expectations: E( f (ω)) 6= f (E(ω)) unless f is linear in ω. If f is only
mildly non-linear – like for the OLS or ridge functional, the shortcut f (E(ω)) will be a
reliable approximation to the real expectation of interest (Breiman (1996) refers to those as
"stable" predictors). If f = T , the shortcut likely provides an abysmal approximation. An
alternative is to resort to "pairs" bootstrap (or subsampling) to implicitly simulate from a
plausible distribution of ωi and then use the mean over many bootstrapped trees to obtain
Êtree

ω (y|X). Coming back to the main point of this chapter, it is clear that pruning CART
is an imperfect enterprise because the model it is pruning will not coincide to the true
conditional expectation if ωi’s are heterogeneous.

Nevertheless, relying on presumed "badness" in the data to justify RF’s usual supremacy

41A different story occurs in small samples where down-weighting noisy observations can provide sub-
stantial improvements. One example out of many is the use of stochastic volatility to improve (even) point
forecasts in a macroeconomic context.
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over a single tree seems thin. There are many examples where heteroscedascity is visibly
absent from the test set errors and yet, RF will do much better than (pruned) CART.
3.6.4. Additional NN details
For both neural networks, the batch size is 32 and the optimizer is Adam (with Keras
default values). Continuous X’s are normalized so that all values are within the 0-1 range.

NN in Table 22 is a standard feed-forward networks with an architecture in the vein of
Gu et al. (2020). There are two hidden layers, the first with 32 neurons and the second
with 16 neurons. The number of epochs is fixed at 100. The activation function is ReLu
and that of the output layer is linear. The learning rate ∈ {0.001, 0.01} and the LASSO λ

parameter ∈ {0.001, 0.0001} are chosen by 5-fold cross-validation. A batch normalization
layer follows each ReLu layers. Early stopping is applied by stopping training whenever
20 epochs pass without any improvement of the cross-validation MSE.

DNN in Table 22 is a standard feed-forward networks with an architecture closely follow-
ing that of Olson and Wyner (2018) for small data sets. There are 10 hidden layers, each
featuring 100 neurons. The number of epochs is fixed at 200. The activation function is eLu
and that of the output layer is linear. The learning rate ∈ {0.001, 0.01, 0.1} and the LASSO
λ parameter ∈ {0.001, 0.00001} are chosen by 5-fold cross-validation. No early stopping is
applied.
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