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ABSTRACT 

 

THE MOLECULAR AND REGULATORY MECHANISM OF MULTI-SUBUNIT N-TERMINAL 

ACETYLTRANSFERASES 

Sunbin Deng 

Ronen Marmorstein 

 

N-terminal acetylation (NTA) is one of the most widespread protein modifications, 

which occurs on most eukaryotic proteins, but is significantly less common on bacterial 

and archaea proteins. This modification is carried out by a family of enzymes called N-

terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring 

different composition, substrate specificity, and in some cases, modes of regulation. In 

the first chapter, we review the molecular features of NATs. 

NatA/E, NatB and NatC, are multi-subunit enzymes, responsible for the majority 

of eukaryotic protein NTA. Their mechanisms of action and regulation remain poorly 

understood before this dissertation. In the second chapter, we determined the X-ray 

crystal structure of yeast NatA/Naa50 as a scaffold to understand coregulation of 

NatA/Naa50 activity in both yeast and human. We found that Naa50 makes 

evolutionarily conserved contacts to both the Naa10 and Naa15 subunits of NatA. These 

interactions promote catalytic crosstalk within the human complex, but do so to a lesser 

extent in the yeast complex, where Naa50 activity is compromised.  

Thirdly, we reported the Cryo-EM structures of human NatE and NatE/HYPK 

complexes and associated biochemistry. We revealed that NAA50 and HYPK exhibit 

negative impacts on their binding to NAA15 in vitro and in human cells by inducing 
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NAA15 shifts in opposing directions. NAA50 and HYPK each contribute to NAA10 

activity inhibition through structural alteration of the NAA10 substrate binding site. 

Fourthly, we reported the Cryo-EM structure of hNatB bound to a CoA-αSyn 

conjugate, together with structure-guided analysis of mutational effects on catalysis. This 

analysis revealed functionally important differences with human NatA and Candida 

albicans NatB, resolved key hNatB protein determinants for αSyn N-terminal acetylation, 

and identified important residues for substrate-specific recognition and acetylation by 

NatB enzymes.  

Lastly, we report the Cryo-EM structure of S. pombe NatC with a NatE/C-type bi-

substrate analogue and inositol hexaphosphate (IP6), and associated biochemistry. We 

find that all three subunits are prerequisite for normal NatC acetylation activity, IP6 binds 

tightly to NatC to stabilize the complex, and we determine the molecular basis for IP6-

mediated stability of the complex and the overlapping yet distinct substrate profiles of 

NatC and NatE. 
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1.1 Evolutionarily conserved NTA has diverse biological functions 

The majority of eukaryotic proteins are subject to several N-terminal 

modifications at the early stage of their biogenesis by the ribosome, including Nt-

methionine excision (NME), Nt-acetylation (NTA), Nt-myristoylation (MYR), Nt-

methylation and Nt-arginylation (Eldeeb and Ragheb 2018; Varland, Osberg, and 

Arnesen 2015; Giglione, Fieulaine, and Meinnel 2015). The evolutionarily conserved and 

irreversible NME and NTA modifications affect the functions of many proteins and 

increase the diversity of the proteome (Varland, Osberg, and Arnesen 2015; Giglione, 

Fieulaine, and Meinnel 2015). NTA occurs when the iMet is removed or retained, co-

translationally or post-translationally (Aksnes, Ree, and Arnesen 2019; Aksnes et al. 

2016; Linster and Wirtz 2018) and on 50-90% of eukaryotic proteins but only 10-29% of 

bacterial and archaea proteins (Arnesen et al. 2009; Bienvenut et al. 2012; Kelkar et al. 

2011; Bienvenut, Giglione, and Meinnel 2015; Schmidt et al. 2016; Kirkland et al. 2008; 

Aivaliotis et al. 2007), correlating the abundance of NTA with organism complexity. 

NTA changes the chemical properties of the protein N-termini: neutralizing the 

charge, creating a new h-bond acceptor, changing the α-amino nitrogen nucleophilicity 

and basicity, and increasing its hydrophobicity and size. These changed chemical 

properties have diverse biological consequences on protein function including protein 

half-life, folding, complex formation, and localization (Aksnes et al. 2016; Oh, Hyun, and 

Varshavsky 2017). Correlating with these diverse functions, knockout of individual 

eukaryotic N-terminal acetyltransferases (NATs) display different phenotypes, 

presumably associated with the differential misregulation of their respective client 

proteins (Aksnes et al. 2016). Alteration in NTA activity is also linked to disease such as 

various developmental and neurodegenerative disorders and cancers (Myklebust, Stove, 
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and Arnesen 2015; Kalvik and Arnesen 2013; Dorfel and Lyon 2015) in humans and 

stress response in plants (Linster and Wirtz 2018; Huber et al. 2020).  While several 

other reviews cover the biology of NATs (Aksnes, Ree, and Arnesen 2019; Ree, 

Varland, and Arnesen 2018; Aksnes et al. 2016; Dorfel and Lyon 2015) , this chapter will 

focus on their structure, mechanism and regulation over evolution.     

     

1.2 General molecular features of NATs 

The GCN5 related N-acetyltransferases (GNAT) superfamily of proteins is one 

of the largest protein families, with over 10,000 protein members present in all domains 

of life. These proteins catalyze a bi-reactant process: transferring an acetyl group from 

the donor acetyl-CoA cofactor to the primary amine group of a variety of biomolecules 

including small molecules and protein or peptides lysine sidechains and N-termini. 

GNATs share a common structurally conserved α/β fold, despite their low degree of 

sequence identity; and mode of acetyl-CoA binding (Salah Ud-Din, Tikhomirova, and 

Roujeinikova 2016). GNATs typically contain distinct flanking N and C terminal regions 

that directly contributing to their distinct functions. 

   NTA is carried out by the NAT subfamily of GNATs, which typically contain four 

α-helices and seven β-strands, although addition secondary structural elements are 

often present at their N or C termini (Figure 1.1A). β1-β4 and β5-β6 are arranged 

antiparallelly, while the parallel β4 and β5 strands split to create a splay in between for 

binding peptide and acetyl-CoA (Figure 1.1A). The peptide binding site of NATs is 

typically flanked by the β6-β7 and α1-α2 loops, which directly participate in N-terminal 

substrate binding and take on a relatively closed configuration relative to GNATs that 
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acetylate internal lysine substrates, thereby disfavoring lysine sidechain binding (Magin, 

March, and Marmorstein 2016; Evjenth et al. 2009; Abboud et al. 2020).  NATs typically 

make extensive h-bond interactions with the backbone atoms of the first 2-3 N-terminal 

residues further contributing to specificity for protein N-termini. These two distinct 

features distinguish NATs from KATs (lysine acetyltransferases) and other members 

of GNATs. NTA by NATs follows an ordered Bi-Bi reaction mechanism, where acetyl-

CoA cofactor binding promotes subsequent N-termini binding prior to direct acetyl-group 

transfer from the cofactor to protein (Evjenth et al. 2012).  One or two residues function 

as a general base (s) (often through an intervening water molecule) to deprotonate the 

terminal amino group to facilitate its nucleophilic attack of the acetyl group of acetyl-CoA 

(Figure 1.1B).  This reaction proceeds through a tetrahedral intermediate, thus making 

CoA-peptide conjugate bi-substrate analogues in which N-terminal peptides are linked to 

CoA through an acetaldehyde group potent NAT inhibitors (Figure 1.1C) (Foyn et al. 

2013). 

  A wealth of mechanistic information about the substrate specific activities of 

NATs has been derived from their structures and associated biochemical studies. The 

NATs that have been structurally characterized to date are listed in Table 1.1. As 

described below, each NAT employs a unique strategy to achieve substrate-specific 

acetylation and regulation.   
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   Table 1.1 N-terminal acetyltransferases are characterized in all domains of life 

 NATs Subunits 
Substrates 
specificity 

PDB 

Bacteri
a 

RimI monomer 
Ribosomal protein 

S18, relaxed 
S. 

typhimurium 
   2CNM 

RimL homodimer 
Ribosomal protein 

L7/L12 
S. 

typhimurium 
1S7N 

RimJ monomer 
Ribosomal protein 

S5, relaxed 
Mycobacteri

um 
6C32 

Archae
a 

ssNAT monomer relaxed 
S. 

solfataricus 
4LX9 

Eukary
-otes 

NAA10 monomer Acidic substrates S. pombe    4KVX 

NatA NAA10, NAA15 

A-, S-, T-, V-, G- 

S. pombe 
Human 

4KVM 

6C9M 

NatA/HYPK 
NAA10, 

NAA15, HYPK 

C. 
thermophilu

m 

Human 

5NNR 

6C95 

NatB NAA20, NAA25 M-D/E/N/Q- 
C. albicans 

Human 
5K18 

6VP9 

NatC NAA30, 
NAA35, NAA38 

M-L/I/F/Y/K- 
S. cerevisiae 

S. pombe 
6YGD 
7L1K 

NatD NAA40, 
monomer 

Histones H2A/H4 
(S-G-R-G-) 

S. pombe 
Human 

4UA3 

4U9W 

NAA50 monomer 
M-

S/T/A/V/L/I/F/Y/K-  
Human 3TFYc,e 

NatE NAA50, 
NAA10, NAA15 

NatA- and NAA50-
type 

S. 
cerevisiae 

Human 

6O07c 
6PPL 

NatE/HYPK 

NAA50, 
NAA10, 

NAA15, HYPK 
Human 6PW9 

NatF 
Homodimer/mo

nomer 
M-L/I/F/Y/K- 

Human 
A. thaliana  

5ICW,5I
CV 

6TGX 

NatG NAA70 M-, A-, S-, T- - 
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NatH 
NAA80, 

monomer Actins (D/E-D/E-
D/E-)  

Drosophila 5WJE 

NatH/profilin
/actin 

NAA80, profilin, 
actin 

Human 6NBE 

 

 

Figure 1.1 NAT catalytic domains share common topology and related catalytic 

mechanism 

(A) The general topology of NAT catalytic subunits is depicted as in 2D cartoon on the 

left and 3D on the right panel with secondary structures shown. NATs usually contain 

seven β strands and four helices, but additional secondary structural elements within this 

topology and at their N-, C- termini are sometimes present. The α1- α2 and β6-β7 

substrate binding loops are highlighted in yellow. The length of α helices and β strands 
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does not accurately reflect actual scale in the 2D representation. The transparent 

magenta dots and spheres in the 3D representation represent the peptide and acetyl-

CoA substrates, respectively. The 3D representation was generated using human 

NAA50 PDB: 3TFY. (B) General catalytic mechanism of NATs, which transfer an acetyl 

group from acetyl-CoA to protein Nt-amino group is depicted. The acetyl and Nt-amino 

groups are colored as blue and red, respectively. A general base (or two, sometimes 

through a coordinated water molecule) is utilized to deprotonate the protein Nt-amino 

group, which subsequently attacks the acetyl group to form a tetrahedral intermediate. 

The deprotonated CoA is then deprotonated by a general acid (not shown) and released 

as the tetrahedral intermediate collapses. (C) The chemical structure of a CoA-peptide 

conjugate Bi-substrate analogue is shown. A linker (acetaldehyde group) is used to 

covalently link the CoA and peptide substrate. Abbreviations: NAT, N terminal 

acetyltransferase; CoA, Coenzyme A; PDB, Protein Data Bank. 

 

1.3 Bacterial NATs 

The three E. coli homologs, RimI, RimJ and RimL were among the first 

characterized NATs, showing post-translational NTA activity towards the ribosomal 

proteins S18, S5, and L7/L12, respectively (Favrot, Blanchard, and Vergnolle 2016). 

Some recombinant proteins overexpressed in E coli were later found to undergo NTA 

(Bernal-Perez et al. 2012), and more recent proteome-wide analysis found that ~30-100 

E. coli N-termini are at least partially acetylated, predominantly at N-terminal serine, 

alanine, methionine and threonine residues (Bienvenut, Giglione, and Meinnel 2015; 

Schmidt et al. 2016). The abundance of NTA in Pseudomonas aeruginosa PA14 and 

Mycobacterium tuberculosis appears to be in the range of 10% ~ 29% (Kelkar et al. 



8 

 

2011; Ouidir et al. 2015), although their biological importance have not been rigorously 

evaluated. 

Bacterial orthologs of each of the Rim proteins have been structurally 

characterized. The Salmonella typhimurium RimI (StRimI) structure was determined in 

complex with CoA, acetyl-CoA or a CoA-peptide conjugate showing a typical GNAT fold 

(Figure 1.2A) (Vetting et al. 2008). Several StRimI residues change conformation when 

in complex with the peptide portion of the conjugate with several residues making 

backbone h-bonds to carbonyl and nitrogen atoms of the first three residues of the 

peptide portion, while several RimI residues make van der Waals and h-bonds to side 

chains 2-4 (Figure 1.3). RimI Glu103 is proposed to function as a general base through 

an intervening water molecule, while Tyr115 is proposed to act as the general acid 

(Figure 1.3). A more recent biochemical characterization of Mycobacterium tuberculosis 

RimI demonstrated a conventional eukaryotic NatA/NatC/NatE substrate preference, 

consistent with a relaxed substrate specificity for RimI (Pathak et al. 2016).  

Crystal structures of StRimL in apo form and in complex with CoA reveals a 

similar overall fold to bacterial StRimI, however StRimL forms a homodimer through 

antiparallel b-strands (b6) from opposing subunits to form a contiguous b-sheet that 

spans the entire dimer (Figure 1.2B) (Vetting et al. 2005). This 2-fold symmetry appears 

to be precisely configured to acetylate its cognate dimeric L7 N-termini (Wahl et al. 2000; 

Bocharov et al. 2004). Compared to the apo StRimL structure, the bound of CoA 

appears to stabilize the α1-α2 loop, which could also facilitate the cooperative binding of 

the dimeric L7/L12. Like StRimI, StRimL is proposed to use a ternary complex 

mechanism involving a glutamate general base residue (Glu160), while a tyrosine 
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(Tyr98) is proposed to stabilize the tetrahedral intermediate, with a serine residue 

(Ser141) functioning as a general acid.  

Mycobacterium smegmatis RimJ structures alone and in complex with cofactor or 

cofactor analogs has recently been deposited to the PDB (PDB: 6C32, 6C30, 6C37. 

Taken together, the bacterial NAT proteins reveal a general GNAT fold in either 

monomeric or homodimeric form with substrate protein recognition occurring through 

backbone and sidechain interaction to the first few N-terminal residues, with acid-base 

catalysis proceeding through dedicated residues.    

 

Figure 2.2 Some NATs function independently, either in monomeric or homodimer 

form  
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(A) Structures of monomeric StRimI (PDB: 2CNM), SsNAT (PDB: 4LX9), uncomplexed 

SpNAA10 (PDB: 4KVX), hNAA50 (PDB: 3TFY), hNAA40 (PDB: 4U9W), and DmNAA80 

(PDB: 5WJE) are shown in cartoon and color in cyan. The α1- α2 and β6-β7 substrate 

binding loops are highlighted in yellow. Substrates in the structures are shown in stick 

and colored in magenta. The hNAA40-specific N terminal domain is highlighted in grey. 

(B) Dimeric RimL (PDB:1S7N) and hNAA60 (PDB: 5ICW) are shown. The α1-α2 and β6-

β7 substrate binding loops are highlighted in yellow. Substrates in the structures are 

shown in stick and colored in magenta. To form a dimer, StRimL utilizes the two β6 

strands from each subunit, while hNAA60 uses the extended β6-β7 loops. The NAA60-

specific N terminal domain is highlighted in grey. NAT catalytic subunits that have not 

been shown to function independently are not shown. 
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Figure 3.3  NATs use related but distinct mechanism to recognize their peptide 

substrate N-termini 

Peptide binding sites of StRimI (PDB: 2CNM), complexed SpNAA10 (PDB: 4KVM, with 

SpNAA15 hidden), CaNAA20 (PDB: 5K04, with CaNAA25 hidden), hNAA40 (PDB: 

4U9W), hNAA60 (PDB: 5ICV), and DmNAA80 (PDB: 5WJE) are shown in cartoon. 

Peptide substrates are shown in magenta sticks. The residues labeled with a * symbol 

are proposed catalytic residues. Broken lines indicate h-bonds formed between atoms. 
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The α1- α2 and β6-β7 substrate binding loops are highlighted in yellow. Water-mediate 

interactions in the PDB structures are not shown. 

 

1.4 Archaea NATs 

Like in bacteria, while earlier studies indicated that NTA occurs on only ribosomal 

proteins in archaea, more recent N-terminomics studies reveal that NTA occurs on 14–

29% of archaeal proteins (Falb et al. 2006; Aivaliotis et al. 2007; Kirkland et al. 2008). 

Archaea contains only one conserved NAT, which exhibits a very relaxed substrate 

spectrum including substrates by eukaryotic NatA/B/C/E (Mackay et al. 2007; Liszczak 

and Marmorstein 2013). The Sulfolobus solfataricus NAT (SsNAT) shows the greatest 

sequence conservation with the NAA10 catalytic subunit of the eukaryotic NatA complex, 

with 33% sequence identity (Liszczak and Marmorstein 2013), as confirmed by its 

structure bound to acetyl-CoA (PDB: 4LX9) (Figure 1.2A) (Liszczak and Marmorstein 

2013). Interestingly, the monomeric SsNAT is more structurally similar to the active form 

of Naa10 within the binary NatA complex, rather than NAA10 alone, which is not active 

towards NatA substrates. A notable place where SsNAT and NAA10 diverge is in the C-

terminal end of the a1 helix that is part of the a1-a2 loop substrate binding region of 

NATs. This region of SsNAT is more similar to the eukaryotic NAA50, which is also 

active towards NatE substrates as a monomer. This suggests that SsNAT is a hybrid of 

the NAA10 and NAA50 eukaryotic NATs. This is consistent with biochemical studies on 

SsNAT demonstrating that different catalytic residues are used to acetylate NatA (Glu84) 

and NAA50/NatE (Tyr73/His112) -like substrates, analogous to corresponding residues 

in these eukaryotic NATs (Liszczak and Marmorstein 2013). It is possible that the 

archaea NAT serves as one of the ancestors of eukaryotic NATs, which subsequently 
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evolved to be substrate-specific. An unusually long β3-β4 loop in SsNAT, was also 

shown to play a more selective role in acetylating NAA50-type substrates, although the 

mechanism for this is still unclear. A more recent SsNAT structure (called Ard1) (Chang 

and Hsu 2015) and Thermoplasma volcanium Ard1 (Ma et al. 2014), were consistent 

with the earlier study, reinforcing the substrate flexibility of the archaeal NATs. 

Interestingly, it was demonstrated that mutations of the catalytic Glu residue of ssNAT 

could shift its substrate preference (Chang and Hsu 2015). 

 

1.5 Eukaryotic NATs 

NatA: NatA acetylates ~ 40% of human proteins, the most of any NAT (Arnesen 

et al. 2009).  NatA is a heterodimer of catalytic NAA10 (also named ARD1) and auxiliary 

NAA15 subunits (Mullen et al. 1989; Park and Szostak 1992). Notably, NAA10 can also 

exist independently (Arnesen et al. 2005; Van Damme, Evjenth, et al. 2011a). When the 

second residue of a protein is relatively small and uncharged (Table 1.1), it will be 

acetylated by NatA after the initiator methionine is cleaved (Polevoda et al. 1999; 

Arnesen et al. 2009). In contrast, the NAA10 monomer is not able to acetylate canonical 

NatA substrate, but instead exhibits specificity for acidic N-terminal sequences in vitro 

(Van Damme, Evjenth, et al. 2011a; Drazic et al. 2018; Goris et al. 2018).  

The structure of Schizosaccharomyces pombe NatA (SpNatA) bound to a CoA-

peptide conjugate reveals that the SpNAA15 auxiliary subunit adopt a ring-like structure 

of tetratricopeptide repeat (TPR) motifs, which completely wraps around the SpNAA10 

catalytic subunit, with the two proteins making extensive hydrogen bonding and van der 

Waals interactions (Figure 1.4A) (Liszczak et al. 2013). The Chaetomium thermophilum 
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(Weyer et al. 2017) and  Saccharomyces cerevisiae (Deng et al. 2019) NatA display 

similar overall folds. A structural comparison of the SpNatA complex with SpNAA10 

alone, reveals that SpNAA15 binding to SpNAA10 induces a conformational change of 

the a1-a2 loop region of SpNat10 to position key catalytic residues for substrate-specific 

recognition and catalysis (Liszczak et al. 2013). The SpNAA10 active site reveals that h-

bonds to the backbone carbonyl groups of the first two residues and van der Waals 

contacts to Ser1 anchor the peptide portion of the CoA-peptide conjugate (Figure 1.3). 

Glu24 was also proposed to play role as a general base for catalysis. Each of the 

residues revealed to play important roles in substrate binding and catalysis are highly 

conserved within NatA orthologs and shown to result in decreased NatA activity when 

mutated (Liszczak et al. 2013). Importantly, modeling of amino acid side chains in the 

Ser1 position, reveals that only small uncharged amino acids could be accommodated, 

consistent with the known substrate specificity of NatA (Liszczak et al. 2013). 

Interestingly, this same study showed that a non-cognate EEE peptide could be 

acetylated by the SpNAA10-E24A mutant but not by WT SpNatA, suggesting that free 

NAA10 uses a different catalytic strategy to acetylate NatH-type substrates.  

The structure of the human NatA (hNatA) shows a high degree structural 

conservation with SpNatA (Gottlieb and Marmorstein 2018), except for the presence of 

an extended metazoan-specific Sel1-like repeat region at the C-terminal end of the 

hNAA15 auxiliary subunit, which was shown to play a role in overall hNatA stability 

(Gottlieb and Marmorstein 2018). In addition, the hNatA structure reveals the presence 

of an endogenously bound inositol hexaphosphate (IP6) molecule at an interface region 

between hNAA10 and hNAA15 via electrostatic interactions (Gottlieb and Marmorstein 

2018; Deng, McTiernan, et al. 2020). A recently identified hNatA mutant K450E displays 
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defects in IP6 binding and leads to NatA activity loss which can be rescued by the 

addition of IP6 (Cheng et al. 2019), consistent with a role of IP6 in hNatA stability and 

activity.  

NatB: NatB, conserved from yeast to man, acetylates ~21% of human proteins, 

such as actin, tropomyosin, CDK2, and α-synuclein. NatB is a binary complex containing 

catalytic NAA20 and auxiliary NAA25 subunits and has specificity for N termini 

containing MD-, ME-, MN- and MQ- sequences (Van Damme et al. 2012). The structure 

of Candida albicans NatB (CaNatB) was determined alone and in complex with a CoA-

peptide conjugate (Hong et al. 2017). The catalytic CaNaa20 subunit shows a typical 

GNAT fold, and the CaNAA25 auxiliary subunit also displays high structural similarity to 

SpNAA15, particularly in the way it wraps around the catalytic subunit (Figure 1.4A). 

Unlike NAA10, NAA20 is unstable in the absence of NAA25. Extensive interactions are 

observed between CaNAA25 and CaNAA20, with the major contact interface mediated 

by the α1- α2 loop of CaNAA20 (Hong et al. 2017), similar to the NatA complex. The 

interaction between NAA20 and the peptide substrate mainly involves h-bond 

interactions to the backbone amides of the first three residues of the peptide portion of 

the CoA-peptide conjugate, with side chain contacts to residues Met1 and Asp2 through 

van der Walls and h-bond interactions (Figure 1.3).  Mutation of contact residues 

generally reduce NatB acetylation activity, consistent with the structural observations 

(Hong et al. 2017).  A more recent Cryo-EM structure of human NatB bound to a CoA-a-

synulein peptide conjugate shows a high degree of structural similarity to CaNatB, 

although provides structural and biochemical data consistent with a role for Tyr124 

(hNAA20-Tyr123) acting as a general base for catalysis (Deng, Pan, et al. 2020).  
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NatC: NatC is a heterotrimer of a catalytic subunit NAA30 and two auxiliary 

subunits NAA35 and NAA38 (Polevoda and Sherman 2001). NatC acts co-translationally 

on the peptide substrate staring with ML-, MF, MI, MW-, playing roles in viral particle 

assembly, maintaining mitochondrial integrity and apoptosis (Van Damme et al. 2016a; 

Starheim et al. 2009). Recent x-ray crystal structures of S. cerevisiae NatC with cofactor 

and ligand bound revealed that it has distinct divergent architecture compared to other 

NATs (Grunwald et al. 2020). Overall, the larger auxiliary subunit NAA35 serves as the 

central assembly hub to form extensive interaction with the smaller auxiliary subunit 

NAA38 and NAA30. NAA38 displays an Sm fold, consisting of an α-helix followed by a 

five-strand β-sheet, and interacts with the N-terminal region of NAA35. The absence of 

NAA38 compromises NatC activity in vitro, indicating its indispensable role in the whole 

complex. NAA30 adopts a typical GNAT fold, however, unlike NatA or NatB, its α1–α2 

and β6–β7 loops are both buried inside the interface between NAA30 and NAA35. 

Biochemical analysis suggested that NatC preferably recognizes its substrates not just 

by the identity of the second residue, but also residues beyond position 2 (Grunwald et 

al. 2020). It was proposed that ScNaa30-Glu118 functions as the general base residue 

to deprotonate the substrate and ScNaa30-Tyr130 serves as the general acid to re-

protonate the initially formed thiolate anion of CoA (Grunwald et al. 2020).  Our recent 

structural and biochemical studies on SpNatC showed some distinct features but agreed 

mostly with the results on ScNatC describe above (See chapter 5).     

NatD: NatD (NAA40), which functions as a monomer, is conserved from yeast to 

human, and is the most selective NAT, carrying out NTA of only histones H4 and H2A 

(Song et al. 2003; Hole et al. 2011), which most commonly contain the sequence 

SGRGK. The structure of hNatD bound to acetyl-CoA and CoA and an N-terminal 
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histone H4/H2A peptide, reveals that while NatD adopts a GNAT fold, it also contains a 

unique N terminal helix-loop-strand segment, which wraps around the GNAT domain 

and plays an important role in hNatD stability, partially mimicking similar roles of the 

auxiliary subunits of NatA and NatB (Magin, Liszczak, and Marmorstein 2015) (Figure 

1.2A). Another unique feature of NatD is found in its substrate binding loops, where the 

α1- α2 loop is extended and flipped towards the peptide substrate, such that the 

opposing β6-β7 loop is flipped away (Magin, Liszczak, and Marmorstein 2015). This 

alters the peptide binding site to make it uniquely suited for its cognate N-termini. 

Indeed, the structure of hNatD bound to CoA and peptide reveals that nearly every 

hydrogen bond donor and acceptor atom within the first four residues are engaged in 

hydrogen bounding interactions, with Arg3 playing a particularly important role, and the 

small sizes of Gly2 and Gly4 also being critical (Figure 1.3). Activity assays also 

revealed that Glu139 is essential for catalyst, possibly acting as a general base (Figure 

1.3).   

NatE: NatE refers to the complex between the NAA50 catalytic subunit and the 

NatA complex (also containing the NAA10 catalytic subunit). Monomeric NAA50 is also 

stable. However, yeast NAA50 is inactive, while in higher eukaryotes, such as human 

and Drosophila, NAA50 is active in the absence or presence of NatA (Evjenth et al. 

2009; Liszczak, Arnesen, and Marmorstein 2011; Van Damme et al. 2015; Rong et al. 

2016; Deng et al. 2019). NAA50 has specificity for N-terminal Met residues followed by a 

less restricted set of amino acids at the second position (Table 1.1) (Evjenth et al. 2009) 

. The structure of hNAA50 bound to CoA and an N-terminal peptide reveals that the 

peptide is recognized almost exclusively through interactions to residues one and two 

(Liszczak, Arnesen, and Marmorstein 2011) (Figures 1.2A and 1.3). While the carbonyl 
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and amino groups of residues Met1 and Leu2 engage in h-bond interactions, the side 

chains make extensive van der Walls interactions. Consistent with the known specificity 

of NAA50, the active site appears exquisitely suited for Met1, while the Val2 binding site 

appears to have greater flexibility to accommodate several amino acid substitutions 

(Figure 1.3). A combination of mutagenesis, kinetics and structural observations 

suggest that hNAA50 Tyr73 and His112 are essential for catalysis via an ordered water 

molecule, likely serving as general acid or base residues (Liszczak, Arnesen, and 

Marmorstein 2011) (Figure 1.3). Interestingly, these two catalytic residues of hNAA50 

are absent in the corresponding positions of yeast homologous, which likely explains the 

inactivity of the yeast NAA50 proteins. A recent structure of ScNatE and related 

biochemical studies also shows that ScNAA50 has relatively poor acetyl-CoA binding 

capacity, consistent with its catalytic inactivity (Deng et al. 2019).  

The binding affinity between NAA50 and NatA is in the nanomolar range (Deng 

et al. 2019), consistent with the fact that a significant portion of NAA50 in the cell is 

bound to NatA (Hou et al. 2007). The molecular basis for association between NAA50 

and NatA from yeast and human were recently revealed (Deng et al. 2019; Deng, 

McTiernan, et al. 2020) , demonstrating that NAA50 docks onto a unique surface of the 

NAA15 auxiliary subunit primarily through hydrophobic interactions, while making 

significantly more modest electrostatic interactions with NAA10 (Figure 1.4). 

Nonetheless biochemical experiments reveal that NAA10 and NAA50 can influence each 

other’s activity within the NatE complex (Deng et al. 2019; Deng, McTiernan, et al. 2020) 

.  

NatF: NatF (NAA60), found only in higher eukaryotes (Rathore et al. 2016; Van 

Damme, Hole, et al. 2011), is located on the cytosolic side of Golgi membranes to 
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acetylate transmembrane protein (Aksnes et al. 2015; Aksnes et al. 2017).  It has an 

unique membrane binding domain at its C-termini (Aksnes et al. 2015; Chen et al. 2016; 

Stove et al. 2016; Aksnes et al. 2017), which mediates Golgi membrane binding (Aksnes 

et al. 2017). Recently, Arabidopsis thaliana NatF was demonstrated to associate with the 

plasma membrane also via its C-termini (Linster et al.). NatF has specificity for N-

terminal Met residues followed by Leu, Ile, Phe, Tyr and Lys residues (Table 1.1). Unlike 

other NATs, NatF is homodimeric in solution but shifts to a monomer state when peptide 

substrate binds (Figure 1.2B) (Stove et al. 2016). The structure of hNatF in complex 

with CoA or a CoA-peptide conjugate reveals that it has a unique extended β -β7 loop, 

which mediates dimerization and sterically occludes peptide binding, but participates in 

peptide recognition of the NatF monomer when cofactor and peptide are both bound 

(Stove et al. 2016). hNatF peptide recognition in hNatF is mainly to the first two residues, 

through backbone h-bonds and a hydrophobic pocket (similar to NAA50) that recognizes 

Met1 with less specificity for residue Lys2 (Figure 1.3) (Stove et al. 2016). Tyr97 and 

His138 are proposed to function as general base residues in hNatF, similar to roles 

played by residues of Tyr73 and His112 from hNAA50 (Stove et al. 2016), which is 

consistent with mutagenesis studies (Figure 1.3) (Chen et al. 2016).  

NatG: NatG is localized within the chloroplast of plant, processing M-, A-, S-, T- 

staring-termini as substrates (Dinh et al. 2015). As of the writing of this review, a detailed 

structure/function analysis of NatG had not yet been reported. 

NatH: NatH (NAA80) is widespread only in animals (Drazic et al. 2018), and 

post-translationally active toward processed cytoplasmic β- and γ-actin in vivo with acidic 

N termini DDDI and EEEI, respectively (Drazic et al. 2018; Arnesen, Marmorstein, and 

Dominguez 2018; Wiame et al. 2018). The structure of Drosophila melanogaster Naa80 
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(DmNaa80) bound to a CoA-peptide conjugate reveals a more open and highly basic 

substrate binding site than other NATs, which is specifically configured to bind its acidic 

substrates (Goris et al. 2018) (Figure 1.2A). H-bonds extend through the first three 

backbone and side-chain residues (Figure 1.3), explaining the specificity for highly 

acidic substrates. An unusual intramolecular hydrogen bond is also observed between 

the backbone amide nitrogen of I4 and the sidechain of D2 (Figure 1.3). Mutational and 

activity assays is consistent with substrate preference deriving mostly from the acidic 

residues at positions two and three (Goris et al. 2018), which is unusual for NAT proteins 

that typically specify residues one and two.  
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Figure 4.4 Some NATs function by forming complexes with auxiliary subunits or 

regulatory proteins 

 (A) Structures of SpNatA (PDB:4KVM), CaNatB (PDB:5K04), ScNatE (PDB: 6O07), and 

hNAA80-actin-profilin complexes (PDB:6NBE) are shown in cartoon. (B) In humans, the 

dynamics and interplay between hNatA, hNAA50, and HYPK are shown. hNAA10 can 

exist independently. Two subunits and Inositol hexaphosphate (IP6) form hNatA (PDB: 

6C9M) complex. HYPK and hNAA50 each can associate with hNatA to form competing 

complexes (hNatA/HYPK PDB: 6C95 and hNatE PDB:6PPL). Tetrameric complex 



22 

 

hNatE/HYPK (PDB: 6PW9) can be formed when both HYPK and hNAA50 are bound to 

hNatA. hNAA10, HYPK, hNAA50, and hNAA15 are shown in chartreuse, salmon, teal, 

and grey, respectively. (C) Structure of ScNatE bound to ribosome (PDB: 6HD7) is 

shown. Two rRNA expansion segments ES27a and ES7a are contacting NAA15 and 

NAA50, respectively. Two electropositive regions ERP1 (N terminus of NAA15), and 

EPR2 (internal basic helix) on NAA15, which directly contact ribosome, are shown in the 

zoom-in view. 

 

1.6 Regulation of NATs 

1.6.1 Huntingtin-Interacting Protein K regulates both NatA and NatE activity 

The Huntingtin-Interacting Protein K (HYPK)  , was found to associate with the 

human NatA complex (Arnesen et al. 2010). It is absent in most yeast , but found in 

Chaetomium thermophilum (Weyer et al. 2017) and human (Deng, McTiernan, et al. 

2020; Gottlieb and Marmorstein 2018) where it was structurally characterized bound to 

NatA. In both cases, HYPK was shown to have intrinsic NatA inhibitory activity, and in 

the study of the human complex proposed to contribute to cognate substrate specificity 

as HYPK was shown to be partially uncompetitive and noncompetitive with respect to 

acetyl-CoA and peptide substrate, respectively (Gottlieb and Marmorstein 2018). When 

bound to NatA, HYPK forms a bipartite structure: a C-terminal ubiquitin-associated 

domain (a3-a5) binds extensively to the NAA15 auxiliary subunit, a N-terminal loop-a1-

helix region binds across the catalytic NAA10 subunit to distort its active site, and a long 

a2 helix connects these two ends of HYPK. Biochemical data is consistent with the 

structural findings that the ubiquitin-associated domain forms the high affinity interaction, 
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while the loop-a1-helix region harbors the catalytic inhibitory activity. More recently, 

structural and biochemical studies reveal that HYPK can also form a stable complex with 

the NatE complex (Figure 1.4B), although HYPK and NAA50 where shown to 

allosterically reduce the binding affinity of each other (Deng, McTiernan, et al. 2020).  

 

1.6.2 NAA80 activity is regulated by the actin chaperone profilin 

Naa80 is preferentially active towards monomeric actin and the presence of 

profilin has been shown to increase its catalytic efficiency (Rebowski et al. 2020). The 

crystal structure of hNaa80 in complex with monomeric actin and profilin with cofactor 

and cofactor analogs reveals the first structure of a NAT bound to its intact protein 

substrate (Rebowski et al. 2020). The structure shows that a Naa80-specific extended 

β6-β7 proline-rich loop and α2-helix of hNAA80 is utilized to meditate interaction with 

both actin and profilin (Rebowski et al. 2020). Thus formation of hNAA80-actin-profilin 

complex orients the N termini of actin perfectly into the substrate binding groove of 

hNAA80 (Figure 1.4A) (Rebowski et al. 2020). It is proposed that, with the aid of profilin, 

hNAA80 can act more efficiently to compensate for the low abundance of hNAA80 

relative to actin in the cell.  

 

1.6.3 Ribosome association by NATs 

In eukaryotes, NatA/B/C/E associate with the ribosome for co-translational 

activity, utilizing their auxiliary subunits as the predominant anchoring point (Polevoda et 

al. 2008), while NatD could potentially use its extended N terminal region (Magin, 
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Liszczak, and Marmorstein 2015; Hole et al. 2011). This proximity of the NATs to the 

ribosome likely facilitates the relatively high stoichiometry of NTA that is observed in 

vivo.  

 The current molecular understanding of the interactions between NATs and the 

ribosome is limited to NatA or NatE. Early studies suggested that NatA contacts 

ribosomal protein uL23 and uL29 around the peptide exit tunnel (Polevoda et al. 2008) to 

interact with the nascent chain (Gautschi et al. 2003). The ratio of ribosome to NatA is 

around 40:1 in yeast, leading to questions about the dynamics of NatA/ribosome 

interactions (Raue, Oellerer, and Rospert 2007). Purified non-translating ribosome can 

also interact with NatA in vitro via two conserved electropositive regions (EPR) on 

NAA15 (Magin et al. 2017), which is confirmed through mutational studies (Magin et al. 

2017) and in vivo (Varland and Arnesen 2018). A recent structure of a ScNatE/ribosome 

complex reveals that ScNatE docks at the nascent peptide exit tunnel near uL31 and 

uL22, with rRNA expansion segments making key contacts to ScNAA15 and ScNaa50 

(Figure 1.4C) (Knorr et al. 2019).  

 

1.7 Remaining Questions 

NTA occurs on countless proteins in three domains of life both co-translationally 

and post-translationally, impacting diverse cellular functions of their client protein.  

Although sharing an evolutionarily conserved GNAT fold and related catalytic 

mechanism, each NAT employs unique elements to mediate substrate-specific activity to 

carry out their distinct cellular functions. NAT auxiliary and regulatory subunits also play 

NAT-type specific roles. While some NATs have dedicated co-translational and post-
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translational roles, the mechanisms that may toggle some NATs such as NAA10 and 

NAA50 between the two roles requires further investigation. Still missing from the PDB 

are the chloroplast localized NATs, which may have unique functions. Do other NAT 

agonists or antagonists exist and how might they work? Finally, a greater molecular 

understanding of how NATs carry out and navigate between each other co-translational 

NTA on the ribosome warrants further study (See Chapter 6 for more details).  
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CHAPTER 2: Structure and Mechanism of Acetylation by the N-Terminal Dual 

Enzyme NatA/Naa50 Complex 

 

 

 

 

 

 

 

 

 

This work is adapted from Structure (Deng et al. 2019) © Cell Press
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2.1 Introduction 

The majority of nascent peptides biosynthesized by the eukaryote cytosolic 

ribosome undergo several N-terminal co-translational modifications before they become 

fully functional and mature proteins. Along with initial methionine cleavage by methionine 

aminopeptidase (iMAP) and N-terminal myristoylation, N-terminal acetylation (Nt-

acetylation), which transfers an acetyl moiety from acetyl-CoA to the N-terminal amino 

group of proteins, is an irreversible, highly conserved and abundant modification 

(Giglione, Fieulaine, and Meinnel 2015). About 50-70% of S. cerevisiae proteins, 70%-

75% of A. thaliana proteins, and 70-90% of H. sapiens proteins are subject to Nt-

acetylation by a family of N-terminal acetyl transferases (NATs) (Starheim, Gevaert, and 

Arnesen 2012).  Nt-acetylation is generally considered to be a co-translational process, 

with most NATs making direct interactions with both nascent peptide and the ribosome 

(Gautschi et al. 2003; Polevoda et al. 2008; Magin et al. 2017; Knorr et al. 2019).  

Numerous studies have demonstrated that Nt-acetylation can affect diverse 

protein and cellular activities including gene regulation, apoptosis, protein folding, protein 

degradation, protein complex formation and subcellular localization (Aksnes et al. 2016; 

Holmes et al. 2014; Shemorry, Hwang, and Varshavsky ; Behnia et al. 2004; Yang et al. 

2013; Dikiy and Eliezer 2014; Hwang, Shemorry, and Varshavsky 2010; Schiza et al. 

2013; Starheim et al. 2009; Arnesen, Gromyko, et al. 2006; Setty et al. 2004b; Pavlou 

and Kirmizis 2016). Knockout of NATs frequently results in severe cellular defects 

including slow growth and reduced mating efficiency in yeast. In higher eukaryotes, 

misregulation of N-terminal acetylation can lead to numerous developmental disorders 

and cancers (Kalvik and Arnesen 2013; Myklebust, Stove, and Arnesen 2015; Lee et al. 
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2010; Yu et al. 2009; Arnesen, Gromyko, et al. 2006; Ametzazurra et al. 2008; Starheim 

et al. 2008; Starheim et al. 2009; Fluge et al. 2002; Hua et al. 2011). For example, the 

NatA catalytic subunit, Naa10, plays important roles in mammalian cells including 

cellular hypoxia, bone formation and DNA damage (Dorfel and Lyon 2015; Jeong et al. 

2002; Yoon et al. 2014; Yi et al. 2007). Mutation in human Naa10 causes the genetic 

disorder Ogden syndrome (Rope et al. 2011). 

Several NATs, including NatA, NatB, NatC, NatD, NatE, and NatF are conserved 

across eukaryotes (Aksnes et al. 2016) (Aksnes et al. 2015; Aksnes et al. 2017; Stove et 

al. 2016). NatG is resident in chloroplasts of plant cells (Dinh et al. 2015), and the 

recently identified NatH/Naa80 exists only in animals to acetylate a subset of processed 

actins (Drazic et al. 2018). The presence of NatF, NatG, and NatH indicates that this 

modification can also occur post-translationally. NATs can acetylate the N-termini either 

when the initiator methionine (iMet) is cleaved or retained, mostly depending on the 

identity of the first two amino acids of the nascent peptide (Aksnes et al. 2016), which 

further enriches the complexity of the eukaryote proteome. Both NatA and NatD 

complete the process after iMet is cleaved. NatA shows specificity toward the N-termini 

of exposed A-, S-, T-, V-, C-, and sometimes G-, while NatD can only acetylate the N-

terminal serine of histones H2A and H4 (Magin, Liszczak, and Marmorstein 2015; 

Gottlieb and Marmorstein 2018; Liszczak et al. 2013; Arnesen et al. 2009; Song et al. 

2003). Other NATs like NatB, NatC, NatE, and NatF modify peptides with the iMet 

retained. NatB prefers the Met-Asx/Glx type N-termini (MD-, ME-, MN-, and MQ-starting) 

, whereas NatC, NatE, and NatF have some substrate overlap, and they acetylate 

peptides with “hydrophobic/amphipathic” residues like L, I, F, Y, K directly following iMet 

(Liszczak, Arnesen, and Marmorstein 2011; Stove et al. 2016; Van Damme et al. 2016b; 
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Tercero, Dinman, and Wickner 1993; Evjenth et al. 2009; Van Damme, Hole, et al. 

2011). NatA, B and C are the three major contributors to the Nt-acetylome, as they cover 

about 80% of all NAT substrates (Aksnes et al. 2016). Notably, NatA, B and C contain at 

least one auxiliary subunit to couple with the catalytic subunit for enzymatic activity 

towards cognate substrates and anchoring of the catalytic subunit to the ribosome, while 

NatD, F, G, H are each composed of only one single catalytic subunit. NatE is composed 

to two catalytic and one auxiliary subunit.  

NatA is comprised of the catalytic subunit Naa10 and the auxiliary subunit Naa15 

(Liszczak et al. 2013; Gottlieb and Marmorstein 2018). Naa10 can also exist 

independently of Naa15, exhibiting altered substrate specificity and might also be 

involved in transcriptional activity inside the nucleus (Arnesen et al. 2005; Van Damme, 

Evjenth, et al. 2011b). Alternatively, NatA can also form a complex with another catalytic 

subunit Naa50 to form a ternary NatA/Naa50 complex (also called NatE) (Gautschi et al. 

2003), and NatA from some eukaryotic species including Chaetomium thermophilum and 

human exhibit tight binding affinity with a regulatory protein called HYPK (Gottlieb and 

Marmorstein 2018; Weyer et al. 2017; Arnesen et al. 2010). Deletion of Naa50 in yeast 

shows no phenotype (Gautschi et al. 2003), while Naa50 knockout can affect sister 

chromatid cohesion in higher organisms like Drosophila and human (Hou et al. 2007; 

Chu et al. 2011; Ribeiro et al. 2016; Williams et al. 2003). Endogenous pulldown of 

NatA/Naa50 complexes from human cells indicates that over 80% of Naa50 is not 

associated with NatA in vivo (Hou et al. 2007), whereas the remaining ~20% forms a 

stable and stoichiometric complex. Furthermore, another recent study demonstrates that 

loss of Naa50 in Drosophila leads to a decrease of NatA in vivo acetylation activity 

(Rathore et al. 2016). A recent Cryo-EM structure of a yeast NatA/Naa50-ribosome 
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complex with an 8 Å NatA local resolution reveals that both Naa50 and the Naa15 

regulatory subunit of NatA contribute to ribosome interaction, with the Naa10 active site 

about 50 Å from the ribosome exit tunnel, and the Naa50 active site about 2-times that 

distance (Knorr et al. 2019). The underlying molecular basis for the potential functional 

coupling and interplay between the catalytic subunits of the NatA/Naa50 complex is still 

poorly understood.  

To understand the molecular basis for NatA/Naa50 co-regulation of N-terminal 

protein acetylation across species, we determined the X-ray crystal structure of a yeast 

NatA/Naa50 complex and used it as a scaffold to understand coregulation of 

NatA/Naa50 activity in yeast and human. We find that NatA/Naa50 forms a stable 

complex in yeast and human through conserved interactions: Naa50 makes contacts to 

both the Naa10 and Naa15 subunits of NatA. We demonstrate that NatA-Naa50 

interactions can significantly promote the catalytic activities of the two catalytic subunits 

within the human complex relative to NatA or Naa50 alone.  In contrast, in the yeast 

complex, Naa50 modestly increases the activity of NatA, and Naa50 is defective in 

catalytic activity, likely through compromised peptide binding. These studies have 

implications for understanding the role of the NatA/Naa50 complex in modulating the 

majority of the N-terminal acetylome in diverse species. 
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2.2 Results 

2.2.1 NatA and Naa50 form stable complexes in yeast and human 

We used recombinant proteins to characterize the interaction between Naa50 

and NatA from human (h) and S. pombe (Sp) in vitro. Recombinant SpNatA, SpNaa50, 

and human Naa50 were overexpressed and purified from E. coli, while hNatA was 

prepared from baculovirus-infected Sf9 insect cells. Consistent with previous data 

reporting a direct interaction between NatA and Naa50 (Gautschi et al. 2003; Hou et al. 

2007), we found that N-terminal GST-tagged Naa50 can pull-down NatA. We also found 

that human and S. pombe NatA and Naa50 co-migrate by size-exclusion 

chromatography to form stochiometric complexes under near native salt concentration 

(200 mM NaCl) (Figure 2.1A). Interestingly, SpNaa50 maintained the ability to co-

migrate with SpNatA in sizing buffer with NaCl concentration as high as 1 M (Figure 

2.1A), suggesting that this interaction in S. pombe is robust and not dominated by 

electrostatic interactions, while hNatA and hNaa50 failed to form a stochiometric 

complex in the high salt buffer (Figure 2.1A) suggesting some divergence of the NatA-

Naa50 interaction between the yeast and human complexes. In addition, we observed 

that SpNaa50 displays similar comigration with ScNatA under both native and high NaCl 

concentrations (Figure 2.1A), strongly indicating that the NatA-Naa50 interaction within 

yeast is highly conserved.  

To more quantitatively assess the interaction between NatA and Naa50, we 

carried out a Fluorescence Polarization (FP) assay, using Naa50 labeled with 

Fluorescein-5-Maleimide via exposed surface cysteines. We observed that Naa50 tightly 

binds to NatA in both the S. pombe and human systems with Kd values of 17 ± 3.4 nM 
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and 29 ± 5.6 nM, respectively (Figure 2.1B). These data, together with the high degree 

of sequence conservation of the interaction interfaces between Naa50 and NatA in the 

two species, suggest that Naa50 and NatA from yeast and human are very likely to have 

similar association mechanisms. However, we found that GST-hNaa50 failed to pull 

down SpNatA, and that hNaa50 and SpNatA could not form a stoichiometric complex in 

size-exclusion chromatography (data not shown), indicating that the details of the 

hNatA/Naa50 interaction have diverged over evolutionary time. This was further 

validated using differential scanning fluorimetry experiments, where we found that the 

addition of SpNaa50 to SpNatA and hNaa50 to hNatA had thermal melting temperature 

increases of 37.8 °C to 40.4 °C and 44 °C to 46.6 °C, respectively; while the addition of 

hNaa50 to SpNatA had a thermal melting temperature of 37.5 °C, very close to SpNatA 

alone (Figure 2.1C). Notably, SpNaa50 significantly extended the melting temperature 

of ScNatA by 7.4°C, further confirming the existence of a conserved robust interaction 

across these two yeast species (Figure 2.1C).  
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Figure 5.1 NatA and Naa50 form stable complexes in yeast and human 

 (A) Gel filtration elution profiles of Naa50 with NatA in S. pombe (top), human (middle), 

and cross-species between yeast S. pombe and S. cerevisiae (bottom), using a 

SuperdexS200column, with either 200 mM or 1MNaCl in sizing buffer. Coomassie-

stained SDS-PAGE of peak fractions are shown to the right of the chromatograms. (B) 

Fluorescence polarization assays with NatA titrated into fluorescein-5-maleimide-labeled 

Naa50 in both S. pombe (left) and human (right) systems. The data are fit to calculate a 

dissociation constant between NatA and Naa50. Errors bars are reported in SD with n = 

3. (C) Differential scanning fluorimetry assays of NatA alone or with Naa50 in both yeast 

and human systems. Recorded melting temperature transitions are indicated. Error bars 

in the figure indicate the SD of each sample, n = 3. 

 

2.2.2 Crystal structure of the ternary NatA/Naa50 complex shows that Naa50 contacts 

both subunits of NatA 

To reveal the molecular basis for the association and regulation mechanism of 

the NatA/Naa50 complex, we determined its crystal structure. We were unable to obtain 

crystals of the human complex, and crystals of the S. pombe complex diffracted X-rays 

poorly. However, we found that full-length ScNaa15 (residues 1–854) from S. cerevisiae 

(Sc) with a C-terminal truncation of ScNaa10 (1–226 out of 238 total residues) and full-

length ScNaa50 (residues 1–176) produced crystals with good diffraction quality, in the 

presence of inositol hexaphosphate (IP6) and bi-substrate analogs for both Naa50 and 

Naa10. The crystals formed in the P212121 space group with one ternary complex in the 

asymmetric unit. The diffraction data set was collected to 2.7 Å resolution, and the 
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structure was determined by molecular replacement with an unpublished ScNatE 

complex (Protein Data Bank code: 4XNH) as an initial search model. The final structure 

was refined to Rwork and Rfree values of 22.21% and 25.03%, respectively. Refinement 

statistics can be found in Table 2.1.  

Not surprisingly, the ScNaa15 auxiliary subunit of NatA displays a high degree of 

structure conservation with SpNaa15 and hNaa15, with root-mean square deviation of 

1.409 Å (over 577 common Cα atoms) and 1.537 Å (over 640 common Cα atoms), 

respectively. Shaped like a horseshoe, ScNaa15 is comprised of 15 TPR motifs, which 

often mediate protein-protein interactions. The electron density for the first two alpha 

helices (N terminal 1-53 residues) is poorly resolved and not built in our model. This 

auxiliary subunit, consisting of a total 42 α-helices, serves as the binding scaffold for 

both catalytic subunits. ScNaa10 is completely wrapped by the Naa15 helices (from α11 

to α30, encompassing residues Lys198- Gly595) with extensive interactions, with an 

overall contact surface area of 3555.5 Å2 (Figure 2.2A). The longest alpha helix is α29, 

expanding to be as long as 70 Å across almost the entire length of the protein. This 

extremely long helix bridges the overall ring-like tertiary structure of Naa15 and locks 

Naa10 into the well-formed cradle made by the surrounding helices. Naa50 sits adjacent 

to Naa10 and interacts mostly with several Naa15 helices (α21, α22, α23, α24, 

encompassing residues Pro380-Asp448), and more modestly with the 2- 3 loop of 

Naa10, with an overall contact surface area of only 632.3 Å2 (Figure 2.2B). 

The significantly less contact surface between Naa50 and Naa15, relative to 

between Naa10 and Naa15, is probably one reason that Naa50 in this ternary complex 

displays surprising flexibility, as indicated by its high average B factor (87.6 Å2) 

compared to Naa10 (48.9 Å2) and Naa15 (56.2 Å2). Several Naa50 residues away from 
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the Naa50-Naa15 interface have poor side chain density and are therefore modeled as 

alanine residues and some parts of α helices and β strands are built as loops. 

Interestingly, the NatA bisubstrate analog used in the cocrystallization could not be 

resolved due to its poor electron density and was therefore omitted from the model, 

while only the CoA portion of the Naa50 bisubstrate inhibitor was well resolved and are 

therefore included in the model.  

Previous studies have revealed that human NatA contains a bound IP6 molecule 

that bridges interactions between helices α19, α24, α25 of hNaa15 and the β2-loop-β3 of 

hNaa10 (Gottlieb and Marmorstein 2018). To identify whether a similar IP6 binding 

pocket exists in ScNatA, IP6 was added to the crystallization of the ternary 

ScNatA/Naa50 complex. Clear electron density for IP6 was visible between Naa10 and 

Naa15, in almost the same position identified in the corresponding human NatA complex 

(data not shown). Extensive electropositive and hydrogen-bond interactions contribute to 

this interaction including K80, Y85, and K91 from Naa10, and K429, K457, R464, R426, 

H430 and Y461 from Naa15 (Figure 2.2C). All these residues in Naa15 are conserved 

from yeast to human, which suggests that this binding mode is structurally conserved. 

We validated the conserved intimate binding of IP6 by also showing its robust binding to 

SpNatA using isothermal titration calorimetry (ITC), measuring a dissociation constant of 

~130 nM, with a 1:1 stoichiometry (Figure 2.2D). 
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Figure 6.2 Crystal structure of the ternary NatA/Naa50 complex shows that Naa50 

contacts both subunits of NatA 

 (A) ScNaa10 (yellow), ScNaa15 (cyan), and ScNaa50 (violet) are shown in cartoon. The 

N-terminal two alpha helices (residues 1-53) of Naa15 are not resolved and not shown in 

the structure. Several alpha helices of Naa15 that contribute to Naa10 and Naa50 

binding are labeled. (B) Zoom-in view of the interface between Naa50, Naa10 and 

Naa15. Residues that contribute to interactions between Naa10 and Naa50 are shown. 

(C) Zoom-in view showing key residues involved in interactions with IP6. (D) 

Representative isothermal titration calorimetry (ITC) of curve of IP6 titrated into SpNatA 

with the calculated dissociation constant indicated. 
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Table 2.1 Data statistics for ScNatA/Naa50 crystal structure (PDB: 6O07) 
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2.2.3 Hydrophobic interactions dominate the ScNatAScNaa50 binding interface 

The NatA/Naa50 structure reveals that Naa15 is the primary docking site for 

Naa50. The contact interface is mediated primarily by the Naa50 β2-β3 and β4-α2 loops 

with the Naa15 α22-α23 loop. These regions form a network of hydrophobic interactions 

mediated by several non-polar residues, including Met18, Leu22, Tyr65, Pro70, and 

Val71 from Naa50 and Leu447, Val418, Thr416, Leu417 from Naa15 (Figure 2.3A). A 

few H-bonds are observed: the Naa15 Thr414 sidechain bridges and interaction with the 

side chain of Naa50 Tyr102 and Naa15 His413, and the Naa15 Thr416 sidechain 

interacts with the backbone carbonyl group of Naa50 Pro70 (Figure 2.3A). The largely 

hydrophobic nature of the interface is consistent with our biochemical observation that 

the SpNatA and Naa50 interaction can be maintained under high salt. Importantly, we 

found that the TPTLXE (where X represents either V or I) motif in the Naa15 α20-α21 

loop is highly conserved in both yeast and human, thus suggesting that yeast and 

human share a similar NatA-Naa50 binding mode. 

Unlike Naa10, which is surrounded on all sides by interactions with Naa15 helical 

segments, thereby locking Naa10 in place, contacts between Naa50 and Naa10 are 

more modest and mediated by the α3-β4 loop of Naa10. Specifically, contact between 

Naa10 and Naa50 involves several basic residues within the α3-β4 loop of Naa10 

(Arg122, Arg125 and Arg126) and Glu68 within the β2-β3 of Naa50, which make a 

network of electrostatic interactions (Figure 2.3B). The distance of Glu68 to Arg122, 

Arg125 and Arg126 is 2.3 Å,3.8 Å, and 6.2 Å, respectively.  The relative paucity of 

Naa50-NatA interactions likely allows Naa50 to be conformationally flexible to allow it to 

impose regulatory effects on Naa10 activity. Supporting this notion is the fact that Naa10 

Arg125 is the first conserved residue of the acetyl-CoA binding motif Q/RxxGxG/A. 
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Figure 7.3 Hydrophobic interactions dominate the ScNatA-ScNaa50 binding 

interface 

 (A) Zoom-in view of the major hydrophobic binding interface between Naa15 and Naa50 

with residues that participate in interaction shown. (B) Zoom-in view of the contacts 

between Naa10 and Naa50 with residues that participate in interaction shown. 

 

2.2.4 The NatA/Naa50 complex promotes catalytic crosstalk 

Since deletion of ScNaa50 shows no phenotype (Gautschi et al. 2003), while 

Naa50 knockout in higher organisms has been shown to perturb sister chromatid 

cohesion (Hou et al. 2007; Chu et al. 2011; Ribeiro et al. 2016) and NatA acetylation 

activity in vivo (Rathore et al. 2016), we hypothesized that there might be fundamental 

functional differences in the catalytic properties of Naa50 within the NatA/Naa50 

complexes in yeast and human. To test this hypothesis, we took advantage of the fact 

that NatA and Naa50 have distinct substrate preferences. Canonical NatA substrates 

include peptides with the first four amino acids of SASE (Arnesen et al. 2009; Liszczak 

et al. 2013) (hereinafter called “SASE peptide”) and Naa50 substrates include peptides 

with the first four amino acids MLGP (Liszczak, Arnesen, and Marmorstein 2011; Evjenth 

et al. 2009) (hereinafter called “MLGP peptide”). These peptides were used because of 

their high specificity by their cognate NATs. For our kinetic analysis, we ignored any 

background activity contribution of NatA toward MLGP peptide and Naa50 toward SASE 

peptide, based on our data that NatA has negligible activity towards an MLGP peptide 

(Figure 2.7) and previously published data showing that Naa50 has negligible activity 

towards non-methionine containing N-termini (Evjenth et al. 2009). 
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We found that hNaa50, either alone or in complex with hNatA, harbored robust in 

vitro acetylation activity toward the Naa50 cognate peptide, MLGP (Figure 2.4A). Unlike 

hNaa50, we found that both SpNaa50 alone or with SpNatA, and ScNaa50 alone or with 

ScNatA, were enzymatically inactive toward the MLGP peptide (Figure 2.4A), consistent 

with the reported lack of in vivo phenotype of ScNaa50 deletion (Gautschi et al. 2003). 

Notably, we found that that hNaa50 activity was significantly promoted within the ternary 

hNatA/Naa50 complex (Figure 2.4B). Indeed, kinetic analysis as a function of peptide 

substrate demonstrated that hNaa50 harbored a 14-fold decrease in Km value and 11-

fold increase of catalytic efficiency when bound to hNatA (Figure 2.4B, Table 2.2). The 

dramatic change in Km value suggested that either hNaa15 or hNaa10 can affect 

hsNaa50 activity by increasing its substrate binding affinity.   

We also investigated the effect of Naa50 binding on hNatA activity towards its 

cognate SASE peptide in both the yeast and human systems. We observed that hNatA 

showed about a 2.29-fold decrease of Km value and 1.75-fold decrease of Vmax when it 

bound to hNaa50 (Figure 2.4C, Table 2.2). Similarly, we found that SpNatA showed 

about a 2.45-fold decrease of Km value and 1.60-fold decrease of Vmax when bound to 

SpNaa50 (Figure 2.4D, Table 2.2). Overall, SpNatA and hNatA showed comparably 

significant but modest increases in catalytic efficiencies of 1.53-fold and 1.31-fold, 

respectively. It is noteworthy that both the Naa10 catalytic subunit of the NatA complex 

and hNaa50 display a lower Km for peptide when in the ternary complex, while SpNaa10 

also displays a lower Km in the yeast complex. Taken together, we conclude that the 

acetylation activities of both catalytic subunits- Naa10 and Naa50 are promoted in this 
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ternary human NatA/Naa50 complex and Naa10 activity is more modestly promoted in 

the S. pombe complex.  

 

Figure 8.4 The NatA/Naa50 complex promotes catalytic crosstalk 

 (A) Time course acetylation activity of SpNaa50, SpNatA/Naa50, hNaa50, 

hNatA/Naa50, ScNaa50 and ScNatA/Naa50 against the MLGP peptide substrate. (B) 

Michaelis–Menten kinetic curve of hNaa50 and hNatA/Naa50 against the MLGP peptide 

substrate. (C) Michaelis–Menten kinetic curve of hNatA and hNatA/Naa50 against the 

SASE peptide substrate. (D) Michaelis–Menten kinetic curve of SpNatA and 

SpNatA/Naa50 against the SASE peptide substrate. 
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Table 3.2 Catalytic parameters for NatA, Naa50, and NatA/Naa50 

against peptide substrate 
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2.2.5 Narrow substrate binding sites likely contribute to the catalytic inactivity of yeast 

Naa50s 

Since we were unable to observe catalytic activity for SpNaa50 and ScNaa50, 

we were surprised to observe electron density in the ScNaa50 active site that could be 

used to model the acetyl-CoA portion of the acetyl-CoA-MLGP bisubstrate inhibitor that 

was used in the cocrystallization. Moreover, sequence alignment of Naa50 in human and 

yeast reveals that SpNaa50 and ScNaa50 do not contain an optimal Q/RxxGxG/A 

consensus acetyl-CoA binding motif, where in both SpNaa50 and ScNaa50 the first 

glycine residue is replaced with a serine residue. Using ITC, we were able to detect 

acetyl-CoA binding to hNaa50 (Figure 2.5A) but not to SpNaa50 (Figure 2.5B). We also 

observed that the SpNatA/Naa50 complex bound acetyl-CoA about 4.5-fold more 

strongly than SpNatA alone (Figures 2.5C and 2.5D). Given that SpNaa50 alone 

binding is not detected in ITC, we propose that the 4.5-fold increase in acetyl-CoA 

binding affinity for SpNatA/Naa50 relative to SpNatA alone suggests that SpNaa50 

binding to SpNatA facilitates acetyl-CoA binding activity to SpNatA. This is consistent 

with our structural observation that ScNaa50 sits closely to the Q/RxxGxG/A acetyl-CoA 

binding motif of ScNaa10, and thereby able to modulate the acetyl-CoA binding activity 

of ScNatA. Surprisingly, binding signal was detected by ITC between GST-ScNaa50 and 

acetyl-CoA (Figure 2.5E), but not the free GST or GST-SpNaa50 controls (Figure 2.5F 

and 2.5G). This result suggests that the lack of acetyltransferase activity of ScNaa50 is 

unlikely due to a defect in acetyl CoA binding.  

Consistent with the catalytic inactivity of SpNaa50 and ScNaa50, we found that 

the α1-α2 and β6-β7 loops of ScNaa50 that typically flank the peptide substrate, form a 

much narrower groove compared to hNaa50 for peptide binding, with the most intimate 
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distance between the loops of less than 2.8 Å (Figure 2.5H). In addition, both SpNaa50 

and ScNaa50 lack the characteristic YY motif found in the β6- β7 loop which is important 

for substrate binding in all NATs except for Naa40 and Naa80 (Liszczak et al. 2013; 

Liszczak, Arnesen, and Marmorstein 2011; Magin, Liszczak, and Marmorstein 2015; 

Goris et al. 2018; Hong et al. 2017; Aksnes et al. 2015). Taken together, it appears that 

the acetyl-CoA and N-terminal peptide substrate binding sites of SpNaa50 are not 

properly configured for catalytic activity, while ScNaa50 binds acetyl-CoA but likely does 

not bind peptide substrate.  



48 

 

 



49 

 

Figure 9.5 Weak acetyl-CoA binding activity and a narrow substrate binding grove 

contributes to the catalytic inactivity of yeast Naa50 

 (A) Representative ITC curve of acetyl-CoA titrated into hNaa50. (B) Representative 

ITC curve of acetyl-CoA titrated into SpNaa50. (C) Representative ITC curve of acetyl-

CoA titrated into SpNatA. The calculated dissociation constant is indicated. (D) 

Representative ITC curve of acetyl-CoA titrated into SpNatA/Naa50. The calculated 

dissociation constant is indicated. (E) Representative ITC curve of acetyl-CoA titrated 

into GST-ScNaa50. (F) Representative ITC curve of acetyl-CoA titrated into GST-

SpNaa50. (G) Representative ITC curve of acetyl-CoA titrated into free GST. (H) 

Superimposition of ScNaa50 and hNaa50 (PDB: 3TFY) structures. 

 

2.2.6 NatA-Naa50 from yeast and human make conserved interactions 

To evaluate the degree of evolutionary conservation of the NatA-Naa50 interface, 

we first used the ScNatA/Naa50 complex as a scaffold to carry out mutagenesis and 

binding studies of the yeast NatA/Naa50 complex, using S. pombe for mutagenesis for 

consistency with the earlier biochemical studies in S. pombe. Superimposition of the 

ScNatA/Naa50 and SpNatA structures highlighted a few potential key S. pombe 

candidate residues for interaction, including SpNaa10 R117, SpNaa15 T412, and 

SpNaa50 Y49 and V53 (Figures 2.3). Using pull-down assays, we demonstrated that 

SpNaa10-R117E had an insignificant effect on SpNatA binding, while SpNaa50-V53K 

and -Y49A displayed some decrease in SpNatA binding (Figure 2.6A, left). As 

expected, the double mutation, SpNaa50- Y49A/V53K was significantly defective in 

SpNatA and ScNatA binding (Figure 2.6A). As these two residues are conserved from 
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yeast to human, it was not surprising that the double mutation of hNaa50-Y50A/I54K 

displayed similar defects in hNatA binding. The ScNatA/Naa50 crystal structure reveals 

that ScNatA-T412 sits roughly in the middle position of the conserved Naa15 TPTLXE 

motif and is located in the center of the binding interface within Naa15 and Naa50 

(Figure 2.3A). Interestingly, we found that a single SpNaa15-T412 mutation to either 

tyrosine or lysine completely disrupted complex formation with SpNaa50 (Figure 2.6A). 

As expected, sequence alignment demonstrates that SpNaa15-T412 is well conserved 

in both human and yeast. We further observed that both ScNaa15-T416Y and hNaa15-

T406Y (hereinafter referred to as TY mutants) lost their ability to association with Naa50 

in pull down assays (Figure 2.6A). Consistent with the pull-down results (Figure 2.6A), 

the Naa15 TY mutant from S. pombe, S. cerevisiae and human did not co-migrate with 

Naa50 by size-exclusion chromatography (Figure 2.6B). For further studies, we focused 

on SpNatA T412Y and the conserved hNatA T406Y and characterized their roles in 

NatA-Naa50 association. While the addition of Naa50 to NatA showed robust binding 

using a FP assay (Figure 2.1A) and increased thermal melting temperature of NatA by 

about 2.5 °C using DSF assay (Figure 2.1B), addition of Naa50 to the NatA TY mutants 

did not show detectable binding (Figure 2.7A) or increase in NatA TY mutant thermal 

melting temperature (Figure 2.7B). We further tested the effect of the NatA TY mutants 

on NatA acetylation activity and found that they maintained acetylation activity towards 

cognate substrates although the hNatA TY mutant showed an apparent increase in 

acetylation activity relative to WT (Figure 2.7C). The reason for this is unclear. Taken 

together, the Naa15 TY mutants can disrupt the association between NatA and Naa50 in 

yeast and human. These studies highlight the important roles of this conserve threonine 

residue in the association between Naa50 and NatA.  
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Figure 10.6 NatA TY mutants are unable to pull-down Naa50 and co-migrate with 

Naa50 

 (A) GST pull-down assay with NatA/Naa50 mutants to interrogate the contribution of 

residues in Naa50-NatA association. (B) Gel filtration elution profiles of Naa50 with 

either wild-type (dotted red line taken from Figure 1A) or TY mutants (blue line) of NatA 

using a Superdex S200 column. Coomassie-stained SDS–PAGE of peak fractions of 

Naa50 with NatA TY mutants shown below the chromatograms. 
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Figure 11.7 NatA TY mutants disrupt NatA/Naa50 complex interactions 

 (A) Fluorescence polarization assays of NatA TY mutants and Naa50 in S. pombe and 

human. (B) Differential scanning fluorimetry assays of NatA TY mutants with and without 

Naa50. Recorded melting temperature transitions are indicated. (C) Comparison of 

acetylation activity of NatA wild-type and TY mutants. Activities are normalized to WT 

protein activity level. 
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2.3 Discussion  

While the molecular basis for acetylation activity by either NatA or Naa50 

independently has been previously described, the underlying molecular mechanism of 

how these enzymes work in complex was poorly understood before this study. Although 

similar to an unpublished structure of ScNatE that has been deposited in the PDB 

(4XNH), our reported crystal structure of the ScNatA/Naa50 complex in combination with 

related biochemical data provides a peer reviewed and comprehensive analysis of the 

structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 

complex across evolution. Overall, the Naa50 electron density is poorly resolved relative 

to NatA, which suggested that its association with NatA is likely dynamic. Indeed, the 

major contact region between Naa50 and Naa15 is mediated by loop-loop interactions, 

unlike the extensive interactions made between Naa10 and Naa15 within the NatA 

complex. We also found that ScNaa50 makes direct electrostatic interactions with 

Naa10, providing a path of contact for Naa10 and Naa50 to influence each other’s 

catalytic functions. 

Because of their conserved association motif, the hNaa50 docking site on 

hNaa15 could be identified, and was further supported by mutational analysis. We 

propose that the proper distance between Naa10 and Naa50 that is required for cognate 

acetylation of N-terminal protein substrates by the respective NATs, coupled to the less 

rigid positioning of Naa50, relative to Naa10, may allow Naa50 to adopt multiple 

conformations within the NatE complex to facilitate both Naa50 and Naa10 cognate 

substrate binding. Indeed, we found that hNaa50 and hNatA displayed significant 

enhancement in substrate affinity and catalytic efficiency in the context of the complex, 

although such enhancement was not observed in the yeast complex, where we found 
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that Naa50 is catalytically defective. This is consistent with our structural data showing 

that unlike Naa10, Naa50 harbors a narrow substrate binding site that is incompatible 

with N-terminal protein substrate binding. However, we cannot exclude the possibility 

that yeast Naa50 is enzymatically active against another substrate. Regardless, our 

findings suggest some evolutionary divergence between yeast and human NatE 

complexes. Nonetheless, we also found that SpNaa50 does not bind human NatA and 

vice versa, yet from conservation analysis there is no obvious reason why this should be 

the case. There may be subtle differences in the yeast and human systems that have co 

evolved, perhaps to reflect the regulatory role of the HYPK protein in the human but not 

S. pombe and S. cerevisiae yeast systems (Arnesen et al. 2009). 

Based on our in vitro activity data, it is noteworthy that both human Naa10 and 

Naa50 catalytic subunits display lower Km values for their respective peptide substrates 

and increased catalytic efficiencies, when they are in the NatA/Naa50 relative to when 

they are not in complex. Meanwhile, we observed that the other substrate, acetyl-CoA, 

while not showing detectable binding to SpNaa50, binds to SpNatA/Naa50 about 4.5-fold 

tighter than SpNatA alone. It is likely that SpNaa50 facilitates acetyl-CoA binding to 

SpNatA and the structural observation that ScNaa50 sits closely to the Q/RxxGxG/A 

acetyl-CoA binding motif of ScNaa10 provides a plausible explanation for how SpNaa50 

may modulate the acetyl-CoA binding activity of SpNatA. Taken together, we conclude 

that in human, NatA and Naa50 have cooperative effects on their acetylation activities 

when associating together, while in yeast, the inactive Naa50 still contributes to NatA 

activity, which is consistent with previous result that reduction of some NatA type N-

termini was detected in yeast Naa50 deletion mutants (Van Damme et al. 2015) We note 

that the cooperative effects between NatA and Naa50 that we observed in vitro are 



55 

 

based only on single cognate NatA and Naa50 peptide substrates. It is currently 

unknown if the degree of cooperation varies with different peptide substrates.  

One surprising aspect of the ScNatA/Naa50 structure is the identification of 

Inositol hexaphosphate (IP6), which bridges interactions between the Naa10 and Naa15 

subunits of NatA with a dissociation constant in the sub-mircomolar range. A similar role 

for IP6 was identified in the recently reported hNatA/HYPK complex (Gottlieb and 

Marmorstein 2018), suggesting an evolutionarily conserved role of IP6 in stabilizing the 

NatA complex. Since IP6 has long been appreciated to have many signaling properties in 

diverse organisms including yeast and mammals (Kalam Shamsuddin and Bose 2012), it 

is also possible that IP6 may have a yet unidentified signaling role in NatA function.  

HYPK is an important regulatory protein that binds to hNatA but is not conserved 

in S. pombe or S. cerevisiae. Recent structural studies suggest that HYPK was a 

nanomolar dissociation constant NatA binding partner and that HYPK binding likely 

inhibits Naa50 binding (Weyer et al. 2017; Gottlieb and Marmorstein 2018). Here we 

have demonstrated that hNaa50 can promote hNatA acetylation activity. We propose 

that the slightly divergent association mechanism between NatA and Naa50 in yeast and 

human may be related to the presence of HYPK in human and higher eukaryotes but not 

in most yeast. It will be of interest to further investigate the interplay among these 

binding partners within the tetrameric human NatA/Naa50/HYPK complex.   

We find in our study that SpNaa50 is catalytically inactive, and this is likely due to 

its reduced affinity for acetyl-CoA and the relative narrowness of the peptide substrate 

binding site of ScNaa50 observed in the ScNatA/Naa50 structure. Surprisingly, we 

observed binding between ScNaa50 and acetyl-CoA, although the optimal acetyl-CoA 
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binding motif is missing in both ScNaa50 and SpNaa50. Nonetheless, both ScNaa50 

and SpNaa50 are catalytically inactive in out acetyltransferase assays. We propose that 

the yeast lineage lost catalytically active Naa50 at least due to the lack of peptide 

substrate binding. Indeed, unlike metazoans, ScNaa50 knock out displays no phenotype 

(Gautschi et al. 2003). In another study, no impact on Met-starting yeast N-termini was 

observed where yeast Naa50 was deleted (Van Damme et al. 2015). Meanwhile, Naa50 

has functional roles in sister chromatic cohesion in higher organism, independent of the 

NatA complex, which is not observed in yeast (Rong et al. 2016; Ribeiro et al. 2016; 

Williams et al. 2003). Thus, yeast Naa50 is very likely enzymatically inactive, only 

providing extra stability and regulatory roles for NatA, including participation in ribosome 

binding (see below). We propose that Naa50 substrates are processed by NatC, which 

recognizes a similar cognate sequence. 

A recent Cryo-EM structure of a native ScNatA/Naa50-ribosome structure, where 

the ribosome is resolved to 3.4 Å and the NatA/Naa50 portion is resolved to about 8 Å 

resolution, indicates that NatA/Naa50 associates with the ribosome through interaction 

with the ribosomal RNA expansion segments involving predominantly Naa15, but also 

Naa50 (Knorr et al. 2019). While Naa10 is positioned proximal to the ribosome peptide 

exit tunnel, Naa50 is remote from the peptide exit tunnel. A docking of our 2.7 Å 

resolution NatE structure onto the Cryo-EM structure (PDB: 6HD7) provides a pseudo-

3.4 Å resolution structure of the NatE-ribosome complex (Figure 2.8). This superposition 

reveals that Naa50 is positioned ~80 Å away from the peptide exit tunnel of the 

ribosome, consistent with the finding of Knorr et al. that approximates this distance to be 

~ 85 Å (Knorr et al. 2019). As this observation suggests that peptides emerging from the 

ribosome exit tunnel encounter the Naa10 active site prior to the Naa50 active site, we 
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speculate that it is likely that Naa50 requires a longer nascent chain for acetylation. 

However, we found that SpNaa50 binding slightly promotes SpNatA acetylation catalytic 

efficiency. This effect could be more significant in the context of the ribosome, given that 

Knorr et al. observe that Naa50 makes contact to the ribosome RNA expansion 

segment, thus also playing a role in NatA recruitment to the ribosome. Such a 

contribution to NatA-ribosome recruitment by Naa50 is consistent with a recent 

observation that D. melanogaster Naa50 knockout impairs NatA acetylation activity in 

vivo (Rathore et al. 2016). We placed the Naa10 acetyl CoA binding site by overlapping 

our structure to the SpNatA structure in complex with bi-substrate analogue 

(PDB:4KVM) and found that the acetyl-CoA binding sites for both Naa10 and Naa50 are 

oriented in the same direction and facing the ribosome nascent peptide exit tunnel and 

separated by a distance of only 26.6 Å (Figure 2.8). It is likely that the relative position of 

these two catalytic subunits, Naa10 and Naa50, might change on the ribosome to 

accommodate the cognate peptide substrate that emerges out of the ribosome exit 

tunnel. We propose that the flexibility of the hNatA-Naa50 interface (as suggested by the 

relatively high B-factor of Naa50 relative to NatA) may also facilitate movement of Naa50 

closer to the ribosome exit tunnel once its cognate substrate is in proximity for N-

terminal acetylation. This might be facilitated further if human Naa50 did not participate 

in NatA anchoring to the ribosome as it does in the yeast system. Additional interactions 

might be compensated through the binding of HYPK.  

Taken together, our biochemical and structural characterization of ternary 

NatA/Naa50 complexes in yeast and human in this study has provided new and 

significant insights into the association and regulatory mechanism of this unusual dual 

enzyme system. These studies set the stage for future studies to decipher the molecular 
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mechanism of the human NatA/Naa50/HYPK complex.  In addition, our identification of 

mutants that prevent NatA/Naa50 association in yeast and humans will facilitate analysis 

of the uncoupling of co- and post-translational protein acetylation by Naa50. 

 

Figure 12.8 Docking of our ScNatA/Naa50 crystal structure onto the ribosome-

NatA/Naa50 Cryo-EM structure 

The ScNatA/Naa50 crystal structure is aligned to the NatA/Naa50-ribosome structure 

(PDB: 6HD7). The magnified view shows that Naa10 is most proximal to the ribosome 

peptide exit tunnel, while the acetyl-CoA binding sites of Naa10 and Naa50 are facing 

the same side. 
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2.4 Materials and methods 

2.4.1 NatA and Naa50 expression and purification 

Human NatA (hNatA), human Naa50 (hNaa50), and Schizosaccharomyces 

pombe NatA (SpNatA) were expressed and purified as described previously (Liszczak et 

al. 2013; 2018; Liszczak, Arnesen, and Marmorstein 2011). Full-length 

Schizosaccharomyces pombe Naa50 (spNaa50) was cloned into pRSF with a N-terminal 

GST fusion, and expressed and purified with the same method as described for spNatA 

(Liszczak et al. 2013). Full-length Saccharomyces cerevisiae Naa15 (ScNaa15) was 

cloned into pRSF_Duet vector with a N terminal PolyHis tag and a Tobacco Etch Virus 

(TEV) cleavage site. C-terminal truncated ScNaa10 (1-226) with no tag was cloned into 

pET_Duet, and un-tagged full-length ScNaa50 was cloned into pCDF-Duet. To express 

the ternary ScNaa10-ScNaa15-ScNaa50 complex (ScNatA/Naa50 complex), these three 

plasmids were co-transformed into Rosetta (DE3)pLysS competent E. coli cells, which 

were grown to an OD600 of 1 and induced with 0.5 mM of Isopropyl β-D-1-

thiogalactopyranoside (IPTG) at 16 °C for ~16 h. ScNatA/Naa50 complex purification 

procedure was modified from SpNatA as described (Liszczak et al. 2013). Cells were 

isolated by centrifugation for 20 mins at 4500 rpm and lysed by sonication in a buffer 

containing 25 mM Tris, pH 8.0, 500 mM NaCl, 0.1 mg/mL PMSF. After centrifugation, the 

supernatant was isolated and passed over Ni-resin (Thermo Scientific), which was 

subsequently washed with 10 column volumes of lysis buffer supplemented with 25 mM 

imidazole and 10 mM 2-mercaptoethanol. Protein was eluted with 300 mM imidazole 

and dialyzed into buffer containing 25 mM sodium citrate monobasic, pH 5.5, 10 mM 

NaCl and 10 mM 2-mercaptoethanol. Protein was purified with a 5-mL HiTrap SP ion-

exchange column and eluted in a salt gradient (10–700 mM NaCl). Peak fractions were 
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concentrated to ~ 0.5 mL with a 100-kDa concentrator (Amicon Ultra, Millipore), and 

loaded onto an S200 gel-filtration column (GE Healthcare) in a buffer containing 25 mM 

HEPES, pH 7.0, 200 mM NaCl, 5% glycerol and 1 mM TCEP. Proteins were aliquoted, 

snap-frozen in liquid nitrogen, and stored at −80 °C for further use. Full-length ScNaa50 

was cloned into pRSF with a N-terminal GST tag and a TEV cleavage site, to express 

and purify ScNaa50 alone. We observed that ScNaa50 was not stable in the absence of 

the GST tag and absorbs minimally at 280 nm. We therefore only worked with GST-

ScNaa50 in biochemical experiments. GST-ScNaa50 was purified using the same 

method as described above. Concentrations of hNatA, hNaa50, SpNatA, SpNaa50, 

ScNatA/Naa50 and GST-ScNaa50 were determined by absorbance at 280 nm and using 

their extinction coefficient of 132,480 cm-1M-1,13,410 cm-1M-1, 120,000 cm-1M-1, 14,440 

cm-1M-1, 151,800 cm-1M-1, and 58,790 cm-1M-1, respectively. All protein mutants were 

generated using the QuikChange protocol from Stratagene and obtained following the 

expression and purification protocols described above. 

 

2.4.2 Fluorescence polarization (FP) assays 

There are five cysteine residues present in SpNaa50 (Cys22, Cys54, Cys60, and 

Cys96) and four cysteine residues in hNaa50 (Cys60, Cys61, Cys79, and Cys100). We 

found that we did not have to make mutations to obtain the fluorescein labeled Naa50, 

which suggested that at least one cysteine in each is exposed to solvent. 25-fold excess 

of Fluorescein-5-Maleimide (ThermoFisher) was added into about 100 μL of 1 mg/ml 

purified hNaa50 or SpNaa50 in sizing buffer. The reaction was quenched with 2-

mercaptoethanol after overnight incubation at 4°C. Excess Fluorescein-5-Maleimide was 
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removed by S75 gel-filtration chromatography. To run the assays,10 nM of labeled 

Naa50 was used in all reactions, and NatA concentrations were varied to determine the 

dissociation constant (Kd). 5 mg/mL BSA and 0.2% v/v Tween were added into the 

reaction buffer (25 mM HEPES, pH 7.0, 200 mM NaCl and 10 mM DTT) to prevent non-

specific binding. FP readings were recorded with a Perkin Elmer EnVision and each 

curve was repeated in triplicate. GraphPad Prism, version 5.01, was used for all data 

fitting. Errors were reported in SD with n = 3. 

 

2.4.3 Acetyltransferase activity assays 

All the acetyltransferase assays were performed essentially as previously 

described (Liszczak et al. 2013; Liszczak, Arnesen, and Marmorstein 2011) and carried 

out at room temperature in the reaction buffer containing 75 mM HEPES, pH 7.0, 120 

mM NaCl, 1 mM DTT. The SASE substrate peptide (NH2-

SASEAGVRWGRPVGRRRRP-COOH; GenScript) and the MLGP substrate peptide 

(NH2-MLGPEGGRWGRPVGRRRRP-COOH; GenScript) were used to determine the 

enzymatic activity of NatA and Naa50, respectively. For Naa50 activity test in time 

course manner, 500 nM of SpNaa50, SpNatA/SpNaa50, hNaa50, hNatA/hNaa50, 

ScNaa50, and ScNatA/Naa50 were mixed with 300 μM of C14 labeled acetyl-CoA (4 mCi 

mmol−1; PerkinElmer Life Sciences), 500 μM MLGP peptide in a 100 μL reaction. To 

quench the reaction at specific time, 15 µL of the reaction mixture was added to P81 

paper discs (Whatman), and the paper discs were immediately placed in wash buffer 

with 10 mM HEPES, pH 7.5. Unreacted acetyl CoA should be removed by washing at 

least three times. Paper discs was then dried with acetone and mixed with 4 scintillation 
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fluid for signal measurement by a Packard Tri-Carb 1500 liquid scintillation analyzer. 

Data was plotted with GraphPad Prism, version 5.01. To determine steady-state catalytic 

parameters, enzymes were mixed with 500 µM C14 labeled acetyl-CoA and 

corresponding peptide substrate concentration was varied. 20 µL reaction were 

performed but only 15 µL reaction mixture was quenched onto the paper discs after 

specific time. For hNaa50 and hNatA/hNaa50 against MLGP peptide, 300 nM enzyme 

was used in 40-minute reaction. For hNatA and hNatA/hNaa50 against SASE peptide, 

100 nM enzyme was used in 12-minute reaction. For SpNatA and SpNatA/SpNaa50 

against SASE peptide, 50 nM enzyme was used in 10-minute reaction. Paper discs 

washes and signal reading steps were performed in the same manner as mentioned 

above. GraphPad Prism, version 5.01, was used for all kinetic data fitting to the 

Michaelis–Menten equation. Each curve was repeated at least 3 times. In NatA TY 

mutant activity tests, 100 nM of SpNatA, SpNatA-T412Y, hNatA, hNatA-T406Y were 

mixed with 300 μM of C14 labeled acetyl-CoA and 500 μM peptide substrate for a 30-

minutes reaction. Signals were normalized to the WT activity, and errors were reported 

in SEM with n = 3. 

2.4.4 Size exclusion chromatography assays 

A total of 500 μl of purified NatA (4.2 µM) and purified Naa50 (12.6 µM) was 

injected onto a S200 gel-filtration column (GE Healthcare). UV absorbance values were 

normalized to the maximum value at first elution peak, then plotted against the elution 

volume in GraphPad Prism, version 5.01. Only elution volume around two peaks were 

shown in the figure. Corresponding peak fractions were run on SDS-PAGE and stained 

with colloidal Coomassie blue for imaging. 
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2.4.5 GST pull-down assays 

1 µM of GST tagged Naa50 and 5 µM of NatA was incubate with 50 µL of 

glutathione agarose resin at 4 °C for 1 hour in reaction buffer containing 25 mM HEPES, 

pH 7.0, 200 mM NaCl and 1 mM TCEP. Resin was then washed extensively with the 

same buffer and eluted with glutathione. Samples were collected for analysis on SDS-

PAGE. 

  

2.4.6 Differential scanning fluorimetry assays 

Sypro Orange (5000X stock, ThermoFisher Scientific) was diluted 1:200 and 4 µL 

was mixed with 16 µL solution with 5 µM NatA and 5 µM Naa50 in sizing buffer. 

Fluorescent readings were recorded using a qPCR (ABI 7900 RealTime PCR) with a 2% 

ramp rate, while heated from 20 °C to 95 °C. Melting curves were generated from these 

readings and melting temperatures were determined by taking the first derivative of the 

curves. DSF scans of all samples were performed in triplicates. Error bars in the figure 

indicated the SD of each sample. 

 

2.4.7 ITC measurements 

Measurements were recorded on a MicroCal iTC200 at 20 °C. Samples were 

dialyzed into buffer containing 25 mM HEPES pH 7.0, 200 mM NaCl, 1 mM DTT. Protein 

samples (SpNaa50, SpNatA, SpNatA/Naa50, GST-SpNaa50, GST-ScNaa50, GST) with 
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concentrations of 50 μM in the cell and 1mM of acetyl-CoA in the syringe were used in 

the experiments.  For hNaa50, 100 μM protein and 0.5 mM of acetyl-CoA were used. 

The raw data was analyzed with MicroCal ITC analysis software. 

 

2.4.8 ScNatA/Naa50 crystallization and data collection 

Ternary ScNatA/Naa50 complex was mixed with 3 molar excess of NatA 

bisubstrate inhibitor (CoA-SASEA), Naa50 bisubstrate inhibitor (CoA-MLGPE) and IP6. 

Bisubstrate inhibitors were prepared as previously described (Liszczak et al. 2013). 

Crystals were grown within ~3 days by hanging drop vapor diffusion at 20 °C at 7.5 

mg/ml, using one to one drop ratios against reservoir solution containing 10% PEG 

3350, 0.1 M Sodium Malonate (pH 5.0). Crystals were transferred into mother liquor 

supplemented with 25% glycerol and flash-frozen in liquid nitrogen. Data were collected 

at the Advanced Photon Source (beamline 24-ID-C) and processed using HKL2000 

(Otwinowski and Minor 1997). 

 

2.4.9 ScNatA/Naa50 structure determination and refinement 

The collected diffraction data showed strong anisotropy and ellipsoidal truncation 

and anisotropic scaling was performed (Strong et al. 2006). The resolution limit along a*, 

b*, c* are 2.7 Å, 3.4 Å, 2.7 Å, respectively. The crystal structure of ScNatA/Naa50 was 

determined by molecular replacement using a structure of unpublished ScNatE (PDB ID 

Code: 4XNH) without ligand or solvent molecules as a search model. Molecular 

replacement was done using Phaser in Phenix (Adams et al. 2010).  
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Initial Manual model building was done in Coot (Emsley and Cowtan 2004) and 

all subsequent rounds of refinement were performed using Phenix refine and Coot 

interchangeably. Refinement statistics can be found in Table 2.1. The final model and 

structure factors were submitted to the Protein Data Bank with code 6O07 (Research 

Collaboratory for Structural Bioinformatics). 

Distance calculations, as well as three-dimensional alignment r.m.s. deviations 

and graphics were generated in PyMOL (http:// www.pymol.org/) 

Sequence alignments in the manuscript were performed using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) and visualized using ESPript 3.0 (Robert and 

Gouet 2014a) (http://espript.ibcp.fr/ESPript/ESPript/) 

All surface area calculations were performed using PDBePISA (Proteins, 

Interfaces, Structures and Assemblies) (http://www.ebi.ac.uk/pdbe/pisa/) 
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CHAPTER 3: Molecular Basis for N-terminal Acetylation by Human NatE and Its 

Modulation by HYPK 
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3.1 Introduction 

About one-half of the human N-terminal acetylome is mediated by hNatA. 

Mutations in either the NAA10 catalytic or NAA15 auxiliary subunits have been 

correlated with a broad spectrum of pathologies including intellectual disabilities, 

developmental delay, autism spectrum disorders, craniofacial dysmorphology, congenital 

cardiac anomalies and Ogden syndrome (Dorfel and Lyon 2015; Lee et al. 2010; Yoon 

et al. 2014; Saunier et al. 2016; Popp et al. 2015; Esmailpour et al. 2014; Casey et al. 

2015; Cheng et al. 2019; Ree et al. 2019; Rope et al. 2011).  Aberrant NatA activity has 

also been correlated with neurodegenerative disorders and cancer although a causative 

role of NatA is less clear (Kalvik and Arnesen 2013). NatA forms complexes with at least 

two other proteins, NAA50 and the chaperone protein Huntingtin interacting protein K 

(HYPK) (Arnesen et al. 2010; Gautschi et al. 2003; Arnesen, Anderson, et al. 2006; 

Liszczak et al. 2013; Weyer et al. 2017). The trimeric hNAA10/hNAA15/hNAA50 

complex is referred to as hNatE, and we refer to the tetrameric 

hNAA10/hNAA15/hNAA50/HYPK complex as hNatE/HYPK. Previous studies have 

demonstrated that HYPK may be important for cellular NatA activity and that NAA50 and 

NatA can affect each other’s function (Weyer et al. 2017; Arnesen et al. 2010; Gottlieb 

and Marmorstein 2018; Rathore et al. 2016; Deng et al. 2019). Previous studies also 

demonstrated that hNatA can physically associate with hNAA50 (Gautschi et al. 2003) 

and HYPK (Arnesen et al. 2010), separately. Moreover, the crystal structures of hNatA 

with HYPK and related pull-down experiments indicated that HYPK and hNAA50 binding 

to hNatA might be mutually exclusive (Gottlieb and Marmorstein 2018). However, 

another study suggested that HYPK and NatE form a tetrameric complex in Drosophila 

cells (Rathore et al. 2016).  
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To delineate the mechanistic basis for how the NAA10 and NAA50 catalytic 

subunits of the NatE complex coordinate function and how this is regulated by HYPK, we 

characterized the human NatE and NatE/HYPK complexes biochemically, structurally 

and in cells. We show that NAA50 and HYPK exhibit negative cooperative binding to 

NatA in vitro and in human cells, by inducing NAA15 shifts in opposing directions. We 

show that NAA50 and HYPK both mediate NAA10 inhibition through structural alteration 

of the NAA10 substrate binding site. We show that NatE is about 10-fold more active 

than NAA50, likely due to a reduced entropic cost for substrate binding through NatA 

tethering, but is inhibited by HYPK through structural alteration of the NatE substrate 

binding site. Taken together, these studies reveal the molecular basis for coordinated N-

terminal acetylation by the NAA10 and NAA50 catalytic subunits of NatE and its 

modulation by HYPK. 

 

3.2 Results 

3.2.1 hNatE and HYPK form a tetrameric complex 

To determine if human NAA50 and HYPK can simultaneously bind to NatA to 

form a NatE/HYPK complex, we prepared the recombinant hNatA/HYPK complex from 

insect cells and mixed it with recombinant hNAA50 for analysis on size exclusion 

chromatography (Fig. 3.1a – left). Analysis of the peak fractions on SDS-PAGE 

revealed that the four protein components (hNAA10, hNAA15, hNAA50 and HYPK) co-

eluted in a single major peak with excess hNAA50 eluting in later fractions (Fig. 3.1a). 

This result demonstrates that HYPK and hNAA50 can bind to hNatA simultaneously to 

form a tetrameric hNatE/HYPK complex. 
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Figure 13.1 HYPK and hNatE form a tetrameric complex 

(a) Left - gel filtration elution profile of the hNatA/HYPK complex with excess hNAA50, 

using a Superdex S200 column. Right - Coomassie-stained SDS-PAGE of peak 

fractions. Red bars indicated the peak of complex. (b) Fluorescence polarization assays 

with either hNatA or hNatA/MBP-HYPK titrated into fluorescein-5-maleimide labeled 
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hNAA50. The data is fit to calculate a dissociation constant (Kd). Replicates were shown 

in the curve with n = 3 independent experiments. Source data are provided as a Source 

Data file. (c) Representative ITC curve of MBP-HYPK titrated into hNatA. The calculated 

dissociation constant is indicated. (d) Representative ITC curve of MBP-HYPK titrated 

into hNatE. (e) The ITC fitting information and calculated dissociation constant (Kd) is 

provided for (c) and (d) curves.  

 

3.2.2 HYPK and hNAA50 display negative cooperative binding to hNatA 

Previous studies demonstrated that both human HYPK and hNAA50 bind 

tightly to hNatA, with dissociation constants in the nanomolar range (Gottlieb and 

Marmorstein 2018; Deng et al. 2019). We set out to determine if the HYPK and 

hNAA50 binding properties to hNatA are altered in the context of the tetrameric 

complex. Using fluorescence polarization (FP) assays, we observed that hNAA50 

bound to hNatA with a Kd of 46 ± 8.8 nM (Fig. 3.1b), consistent with previous 

results. However, in the presence of MBP-HYPK, this binding Kd decreased 

about ~3-fold to 127 ± 13 nM (Fig. 3.1b). This data demonstrates that HYPK can 

negatively affect the stability of the hNatE complex by about 3-fold. Based on this 

data, we hypothesized that in the presence of hNAA50, the binding affinity 

between hNatA and HYPK would also decrease. Using isothermal titration 

calorimetry (ITC), we determined that the Kd between hNatA and MBP-HYPK 

was 29.9± 16.7 nM (Fig. 3.1c), which is consistent with the previously reported 

Kd in the thermophilic fungus Chaetomium thermophilum (Weyer et al. 2017). 
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The reason for the apparent two-binding transition when HYPK is titrated into 

hNatA is unknown. We further determined the Kd between HYPK and hNatE and 

observed that the affinity was 154 ± 55.3 nM, ~ 5-fold weaker than HYPK binding 

to hNatA (Fig. 3.1d). A control ITC run of MBP titrated into hNatA failed to show 

binding. Taken together, these data indicate that HYPK and NAA50 display 

negative cooperative binding with respect to hNatA.  

 

3.2.3 hNAA50 and HYPK inhibit hNatA activity, and HYPK is dominant 

While our previous studies demonstrated that yeast and human NatA have 

slightly elevated catalytic efficiencies in the presence of NAA50, we set out to make a 

more direct comparison of NatA activity as a function of added NAA50 vs. HYPK. To do 

this, we used an in vitro acetylation assay using a cognate SASE NatA substrate to 

compare the hNatA catalytic activity as a function of added hNAA50 or MBP-HYPK. This 

comparison revealed that while MBP-HYPK showed about 90% inhibition of hNatA 

activity at an MBP-HYPK concentration beyond ~100 nM, hNAA50 only decreased 

hNatA activity by about 50% at concentrations between ~ 100 nM - 1µM (Fig. 3.2a), 

consistent with previous data (Gottlieb and Marmorstein 2018; Deng et al. 2019). 

Titrating both MBP-HYPK and hNAA50 into hNatA showed a similar degree to hNatA 

inhibition as did titrating in MBP-HYPK alone, illustrating that HYPK inhibition of hNatA 

overrides the incomplete inhibitory effect of hNAA50 (Fig. 3.2a). 
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Figure 14.2 HYPK binding negatively affects hNatE acetylation activity 

(a) Either MBP-HYPK (green), hNAA50 (red), or both (blue) are titrated into hNatA 

(100 nM) to evaluate their modulatory effect on hNatA activity against an SASE peptide 

substrate. A best line is drawn through the data points for ease of visualization. Source 

data are provided as a Source Data file. (b) Comparison of time course acetylation 

activity of hNAA50 (black), preformed hNatE (red), and preformed hNatE/HYPK (blue; all 

500 nM) against an MLGP peptide substrate. Source data are provided as a Source 

Data file. (c) hNatA acetylation activity against an SASE peptide with addition of buffer, 

wild type (WT), or hNAA50 mutants. Errors were reported in SEM with n = 3 independent 

experiments. Source data are provided as a Source Data file. (d) Activity of hNAA50 WT 

and mutants against MLGP peptide was tested, either alone (black), in the context of 
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hNatE (+hNatA; red), or in the context of preformed hNatE/HYPK (+hNatA/HYPK; blue). 

Data were normalized to WT hNatE activity as 100%, represented as mean ± SD, n = 3 

independent experiments.  

 

3.2.4 HYPK inhibits hNatE activity 

Given that HYPK was shown to be a negative regulator for hNatA acetylation 

activity (Weyer et al. 2017; Gottlieb and Marmorstein 2018), we asked if it also inhibited 

the activity hNatE. To do this, we used the same in-vitro acetyltransferase activity assay 

but employed a cognate MLGP hNatE substrate in the absence or presence of HYPK, 

as well as a hNAA50 only control. This analysis revealed that while hNatE was more 

active than hNAA50, this improvement was essentially nullified with the addition of 

HYPK (Figs. 3.2b, 3.2c and 3.2d). A full kinetic analysis of hNAA50, hNatE, and 

hNatE/HYPK revealed the kinetic parameters responsible for this modulation of hNAA50 

function. Specifically, we found that hNatE displayed ~8.6-fold decrease of Km, and ~1.1-

fold decrease of kcat, with an overall ~7.7-fold increase of catalytic efficiency, compared 

to hNAA50 (Table 3.1). These findings are in general agreement with previous studies 

with the orthologous yeast proteins (Deng et al. 2019). A comparison of the activities of 

hNatE and hNatE/HYPK revealed that in the presence HYPK, hNatE displayed an ~1.3-

fold decrease in Km, and an ~3.8-fold decrease of kcat, with an overall ~2.9-fold decrease 

in catalytic efficiency (Table 3.1). This data suggests that HYPK can compromise hNatE 

activity. Taken together, while hNatA significantly enhances the catalytic efficiency of 

hNatE, HYPK binding to hNatE largely nullifies this effect, demonstrating that HYPK can 

indirectly inhibit hNatE activity. 
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 Table 4.1 Catalytic parameters for hNAA50, hNatE, and hNatE/HYPK 

 

 

3.2.5 hNatA forms competing complexes with hNAA50 and HYPK in cells 

To further confirm the existence of the tetrameric hNatE/HYPK complex 

observed in vitro in human cells, we immunoprecipitated hNAA15 (c-terminal V5 tagged) 

from HeLa cells to evaluate the associated proteins. Mass spectrometry analysis of this 

sample revealed that endogenous hNAA10, hNAA50 and HYPK were all co-

immunoprecipitated with NAA15-WT-V5, in agreement with the tetrameric hNatE/HYPK 

complex formation (Fig. 3.3a). 

In prior studies, we reported that a hNAA15-T406Y mutant can disassociate 

hNAA50 from hNatA in vitro (Deng et al. 2019), while a hNAA15-L814P mutant is 

defective for HYPK inhibition and reduces hNatA thermostability (Cheng et al. 2019). 

Based on these observations, we also carried out a mass spectrometry analysis of the 

V5-immunoprecipitates of the hNAA15-T406Y-V5 and hNAA15-L814P-V5 mutants to 

evaluate the effect of the mutation’s on formation of the hNatE/HYPK tetrameric 
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complex. For relative quantification of the hNatA proteins, the IBAQ intensities of the 

hNatA components in each sample were normalized to the IBAQ intensity of hNAA15 in 

the respective sample and to the corresponding protein in the WT sample (Fig. 3.3a). 

This analysis demonstrated that hNAA15-T406Y-V5 and hNAA15-L814P-V5 had 

reduced binding of hNAA50 and HYPK respectively, indicating that the mutations 

negatively affected the ability of hNAA15 to bind hNAA50 and HYPK, respectively. 

Furthermore, it appeared that the reduced binding of HYPK or hNAA50 resulted in 

greater binding of the other component: hNAA15-T406Y-V5 bound less hNAA50, but 

more HYPK than hNAA15-WT, while hNAA15-L814P-V5 bound less HYPK and more 

hNAA50 than hNAA15-WT (Fig. 3.3a). These observations are in agreement with the in 

vitro FP and ITC assays, demonstrating that HYPK and hNAA50 display negative 

cooperative binding with respect to hNatA. Taken together, these cellular studies agree 

with the in vitro studies by confirming the existence of the tetrameric hNatE/HYPK 

complex and indicating that HYPK and hNAA50 display negative cooperative binding 

with respect to hNatA. 

The intrinsic hNatA catalytic activities of the hNAA15-T406Y-V5 and hNAA15-

L814P-V5 variants were also tested in a Nt-acetylation assay and westernbloted (Fig. 

3.3b). Importantly, equal levels of hNAA10 were pulled out with the lysates supporting 

that none of the mutants affect hNAA10 binding. The hNAA15-T406Y-V5 hNatA complex 

displayed a decreased catalytic activity towards the hNatA substrate SESS24 compared 

to WT hNatA. This could be explained by an increased binding and inhibitory effect of 

HYPK and/or due to the reduced binding of hNAA50. The hNAA15-L814P-V5 hNatA 

complex showed an increased catalytic activity compared to WT hNatA, which is 
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consistent with the in vitro findings of reduced binding of HYPK and consequently less 

inhibition of the catalytic activity and/or an increased binding of hNAA50. 

 

Figure 15.3 hNatA forms competing complexes with hNAA50 and HYPK 

(a) Heat map showing the mean relative IBAQ intensity of NatA components from three 

independent MS analyses of immunoprecipitated NAA15 variants, NAA15-WT-V5, 

NAA15-T406Y-V5, and NAA15-L814P-V5. The IBAQ intensities of each component 

were normalized to the IBAQ intensity of NAA15 in the respective sample and to the 

corresponding NatA WT protein. Source data are provided as a Source Data file. 

(b) Western blot analysis and NatA Nt-acetylation assay of V5-immunoprecipiated 

NAA15 variants. The measured DPM signal for each reaction was normalized to the 

corresponding V5-band in the IP. The immunoprecipitation and activity assay were 

performed in n = 3 independent experiments, each with three technical replicates 

(indicated by dot plots) per assay.  
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3.2.6 hNatE structure reveals molecular basis for enzyme crosstalk 

To determine the molecular basis for interaction and enzymatic crosstalk 

between human NAA10 and NAA50 enzyme subunits within the NatE complex, we 

determined the single particle Cryo-EM structure of the hNatE complex in the presence 

of inositol hexaphosphate IP6 and bi-substrate analogues of both hNatA and hNAA50. 

The model of the human complex was rigid-body fitted with the coordinates of the crystal 

structure of hNatA (PDB: 6C9M) and hNAA50 (PDB: 3TFY), with all ligands removed. 

After refinement of the model, we observed clear density of IP6 and acetyl-CoA cofactors 

in each catalytic subunit, but the peptide portion of the bisubstrate inhibitors were not 

resolved. The structure was refined to an overall resolution of 3.0 Å, with most residues 

of hNAA10 and hNAA50 subunits resolved to 2.5 Å. The refinement statistics can be 

found in Table. 3.2. The N-terminal 112 residues of hNAA15 subunit were not modeled 

due to a lack of traceable Cryo-EM density for this region.  

Consistent with previous studies with the orthologous yeast proteins (Deng et al. 

2019), hNAA50 predominantly interacts with hNAA15 (α21, α22, α23 and α24), and 

makes relatively few interactions with hNAA10 (Fig. 3.4a), burying a solvent excluded 

surface of 34,316 Å2 with hNAA15, and 9,100 Å2 with hNAA10. Based on the structure of 

the ScNatE complex, a hNAA15-T406Y mutant was shown to disrupt the hNatA-NAA50 

interaction (Deng et al. 2019). Indeed, we find that hNAA15-Thr406 is located at the 

center of the hNAA50-hNAA15 interface, making hydrogen bond interactions with the 

backbone carbonyl group of hNAA50-Ala55 (Fig. 3.4b). Additional hydrogen bonds are 

formed between the backbone carbonyl of hNAA50-His14 with the backbone amide of 

hNAA15-Thr439, between hNAA50-Arg21 and the backbone carbonyl of hNAA15-

Pro405, and between hNAA50-Asn52 and hNAA15-Thr371 (Fig. 3.4b). hNAA50-Arg21 
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also makes direct ionic interaction with hNAA15-Glu433, which is absent in yeast (Fig. 

3.4b). It is possible that this ionic interaction underlies the increased salt sensitivity of the 

human vs. yeast NatE complex (Deng et al. 2019). Interestingly, we do not observe 

significant hydrophobic interactions at the hNAA15-hNAA50 contact interface. 

hNAA50-hNAA10 interactions are less extensive than hNAA50-hNAA15, yet still 

significant. Interactions are observed between hNAA50-Glu7 and hNAA10-Arg116, and 

between hNAA50-Asp53 and hNAA10-Arg83 (Fig. 3.4c). This structural observation 

highlights the recent identification of a missense mutation of hNAA10 R83H which 

exhibits decrease acetylation activity in boys with intellectual disability and 

developmental delay (Ree et al. 2019). It is noteworthy that hNAA10-Arg83 also makes 

interaction with the 3’ phosphate of the acetyl-CoA molecule bound to hNAA10 (Fig. 

3.4c).  

To assess the importance of the NatA-NAA50 interactions on the catalytic 

crosstalk of the two enzymes, we prepared hNAA50-E7A, -D53A and -E7A/D53A 

mutants and evaluated their effect on hNatA activity (Fig. 3.2c).  We found that the 

single and double mutants were able to restore between 12-17% of hNatA activity 

relative to the activity of hNatA bound to WT-hNAA50 (Fig. 3.2c). These results 

demonstrate that the observed hydrogen bond interactions between NatA and NAA50 

make a small, albeit significant, contribution to the catalytic crosstalk between the two 

enzymes. 

An overlay of the Saccharomyces cerevisiae (PDB: 6O07) and human NatE 

structures reveals a high degree of structural conservation with a root-mean square 

deviation (RMSD) of 1.517 Å (over 622 common Cα atoms). However, it is noteworthy 
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that when bound to NatA, we observe that NAA50 shifts significantly closer to NAA10 in 

the human over the yeast complex, resulting in more significant and intimate NAA10-

NAA50 interactions in the human complex (Fig. 3.5a). α3 and β7 of hNAA50 shift toward 

NAA10 about 10 Å and 11 Å, respectively (Fig. 3.5a). Such significant shift in NAA50 

position relative to NatA is surprising and may reflect a functional importance when 

these proteins are associated with the ribosome (see discussion).  

To understand other structural contributions that hNAA50 might have on hNatA 

activity, we superimposed the hNatE structure with the hNatA crystal structure 

(PDB:6C9M). We found that hNAA15 and hNAA10 in the ternary hNatE complex 

displayed an RMSD of 0.747 Å (over 624 common Cα atoms), and 0.897 Å (over 141 

common Cα atoms), respectively (Fig. 3.5b). The NAA10 β6-β7 loop displayed about a 

4 Å shift toward hNAA50 in the hNatE complex relative to the hNatA complex (Fig. 

3.5b). Given that the β6-β7 loop of NAA10 plays an important role in peptide substrate 

recognition, we propose that this shift in position also contributes to the inhibitory effect 

that hNAA50 binding has on hNatA activity.  

To understand the molecular basis for why hNatA binding increases the catalytic 

efficiency of hNatE by nearly 8-fold (Fig. 3.2b and Table 3.1), we superimposed the 

hNAA50 crystal structure (PDB: 3TFY) with the hNAA50 subunits of the NatE structure. 

Remarkably, we did not observe any significant structural changes in hNAA50 with an 

overall RMSD for all atoms of 0.437 Å (Fig. 3.5b). Notably, the β6-β7 and α1-α2 peptide 

substrate binding loops of hNAA50 within the hNatE complex superimposed well with 

hNAA50 bound to CoA and substrate peptide (Fig. 3.5b). Based on this observation, we 

hypothesize that the increased activity of hNatE is due to a reduced entropic cost for 
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substrate binding to the hNAA50 subunit due to hNatA tethering. This is consistent with 

the observations of Wand and colleagues for other protein systems (Caro et al. 2017).     
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Table 5.2 Cryo-EM data collection, refinement, and validation statistics 
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Figure 16.4 Cryo-EM structure of the hNatE complex 

(a) hNAA50 (magenta), hNAA15 (green), and hNAA10 (orange) within the hNatE 

complex shown in cartoon. (b) Zoom-in view of the contacts between hNAA15 and 

hNAA50 with residues that participate in interaction labeled. (c) Zoom-in view of the 

contacts between hNAA10 and hNAA50 with residues that participate in interaction 

shown. Acetyl-CoA bound to hNAA10 is shown in ball and stick. 
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Figure 17.5 Subunit crosstalk within the hNatE complex 

(a) hNAA50 (magenta), hNAA15 (green), and hNAA10 (orange) within the hNatE 

complex overlay with ScNatE (grey, PDB: 6O07). The α3 helix and β7 strand of Naa50 is 

shown to shift towards Naa10 in the human structure (b) hNatE aligned with hNatA (light 
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blue, PDB:6C9M) and hNAA50 (wheat, PDB: 3TFY). The top zoom-in area shows the 

alignment of free hNAA50 and hNatE. The below zoom-in area shows the hNAA10 

conformational change induced by hNAA50 binding. 

 

3.2.7 hNatE/HYPK structure reveals negative cooperative mechanism 

To obtain a molecular understanding of how NAA50 and HYPK can both bind 

NatA we determined the structure of the hNatE/HYPK complex by Cryo-EM, which we 

were able to resolve to an overall resolution of 4.0 Å. The starting structure was modeled 

using the Cryo-EM NatE structure and the HYPK portion from the hNatA/HYPK crystal 

structure (PDB: 6C95), which was placed into the Cryo-EM map through rigid-body fitting 

into the EM density map, followed by adjustment and refinement. The refinement 

statistics can be found in Table. 3.2.  

In the tetrameric structure, we observe that both hNAA50 and HYPK 

simultaneously dock onto the same binding regions on hNatA as previously identified in 

the absence of the other protein (Gottlieb and Marmorstein 2018). While both hNAA50 

and HYPK contact both subunits of hNatA, no direct interactions are observed between 

hNAA50 and HYPK (Fig. 3.6a). HYPK binds NatA mainly through interactions with the 

hNAA15 subunit of hNatA: only the α1 helix of HYPK interacts with hNAA10, while the 

α2 and C-terminal UBA domain (α3, α4, and α5 helices) of HYPK interact with hNAA15 

(Fig. 3.6a). Previous studies demonstrated that the UBA domain and α2 helix play key 

roles in hNatA binding, while α1 is essential for hNatA activity inhibition (Gottlieb and 

Marmorstein 2018; Weyer et al. 2017).  
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Over the HYPK and hNatA interaction interface within the tetrameric complex, we 

observe polar interactions between HYPK-Glu74 and hNAA15-Tyr158, between the 

backbone carbonyl of HYPK-Thr100 and hNAA15-Lys687, between the backbone 

carbonyl of HYPK-Asn129 and hNAA15-Arg697, between HYPK-Asn129 and hNAA15-

Lys696, which were all overserved similarly in the hNatA/HYPK crystal structure 

(Gottlieb and Marmorstein 2018) (Fig. 3.6b). However, HYPK-Glu103 , hNAA15-Lys685 

and hNAA15-Glu655 which form a salt bridge in the hNatA/HYPK structure do not show 

a similar contact in the tetrameric hNatE/HYPK complex (Gottlieb and Marmorstein 

2018) (Fig. 3.6b). We speculate that the absence of this interaction might contribute to 

the slightly weaker affinity of HYPK for hNatE over hNatA.  

hNAA15 and hNAA50 also make similar interactions in the absence or presence 

of HYPK. The backbone carbonyl of hNAA50-His14 hydrogen bonds with the backbone 

amide of hNAA15-Thr439, and hNAA50-Asn52 hydrogen bonds with hNAA15-Thr371 

(Fig. 3.6c). Interestingly however, a key residue that stabilizes the hNatA-hNAA50 

interaction, hNAA15-Thr406, shifts from in interaction with the carbonyl of hNAA50-A55 

to a hydrogen bond to the hNAA50-Gln18 side chain in the tetrameric complex (Fig. 

3.6c). An additional H-bond is formed between hNAA50-Gln18 and the backbone 

carbonyl of hNAA15-Thr406 (Fig. 3.6c). hNAA50-Arg21, a residue that makes extensive 

contacts to NAA15 in the hNatA/NAA50 complex (Fig. 3.4b) is only contacting hNAA15-

Glu433 in the tetrameric complex (Fig. 3.6c). In addition, while hNAA50-Asp53 and 

hNAA10-Arg83 maintain interaction as observed in the hNatA/hNAA50 complex, 

hNAA50-Glu7 and hNAA10-Arg116 loose interaction in the tetrameric complex (Fig. 

3.6d). These observations correlate with the observed weaker binding interaction 

between hNAA50 and hNatA in the presence of HYPK.  
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To understand the molecular basis for the biochemical findings that the binding of 

hNAA50 and HYPK to hNatA exhibit negative cooperativity, we superimposed the 

ternary hNatA/HYPK and hNatE complexes onto the hNatE/HYPK complex (Fig. 3.7). 

To align the hNatE and hNatE/HYPK complexes we superimposed the hNAA50 position 

to delineate how the HYPK binding regions are affected by hNAA50 binding (Fig. 3.7a). 

The overall overlay suggests that both the hNAA10 and hNAA15 subunits of hNatA shift 

in the direction that is away from the hNAA50 binding region to make closer and more 

optimal contacts with HYPK (Fig. 3.7a).  The hNAA15 α36-α40 helices, which bind to the 

C-terminal UBA domain (α3-α5) of HYPK in the tetrameric hNatE/HYPK complex, clearly 

shift away from the binding interface, when only hNAA50 is bound to hNatA (Fig. 3.7c). 

Notably, α40, α38, α37, α36 display shift of ~4.5 Å, ~2.3 Å, ~1.6 Å, and ~1.8 Å, 

respectively.  The important residues of hNAA15 (Lys696, Arg697, Lys687, Lys685), 

which mediate HYPK interactions in this region suggested that most of them in the 

hNatE structure exhibit an ~ 2 Å shift away from HYPK (Fig. 3.7c). Meanwhile, hNAA15 

N-terminal helices of α7, α8, α9, α10 which are in close contact with HYPK-α2 also show 

~3.0 Å, ~4.1 Å, ~1.9 Å, ~3.5 Å shifts, respectively (Fig. 3.7d), while Tyr 158 is about ~2 

Å further away. Lastly, we observe that α2 and β3- β4 of hNAA50-bound hNAA10 move 

~2.5 Å closer to contact the HYPK N-terminal α1 helix (Fig. 3.7e). Thus, it appears that 

hNAA50 binding to hNatA, destabilizes hNatA-HYPK interactions through moving hNatA 

away from its optimal binding position to HYPK. 

Similarly, a superposition of hNatE/HYPK with the crystal structure of 

hNatA/HYPK by aligning to the HYPK position to delineate how the hNAA50 binding 

regions are affected by HYPK binding reveals that hNAA15 is shifted away from HYPK 

and closer to hNAA50 in the hNatE/HYPK complex (Fig. 3.7b). A further zoom-in view of 
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the hNAA50 binding regions in hNAA15 demonstrates that residues Glu433, Thr406, 

Thr371 and Thr439 of hNAA15 are shifted by ~ 2-3 Å away from hNAA50 when HYPK is 

bound relative to their positions in the absence of hNAA50 (Fig. 3.7f). Regarding the 

hNAA50-hNAA10 binding interface, a 4.3 Å shift of hNAA10-Arg116 was observed, with 

a 1.7 Å for hNAA10-Arg83 (Fig. 3.7g). It is also noteworthy that significant 

conformational shift of the C-terminal hNAA15 helices α41- α45 (~2.2 - 4.2 Å) was 

induced in order to have hNAA50 bound in the tetrameric hNatE/HYPK complex (Fig. 

3.7h). This suggests that HYPK bound hNatA is also not optimal for hNAA50 binding. 

Taken together, these comparisons reveal that hNAA50 and HYPK destabilize 

the binding of the other protein to hNatA, despite their independent binding surfaces to 

hNatA, and explain the observed negative cooperative binding of hNAA50 and HYPK to 

hNatA. 
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Figure 18.6 Overall structure of the hNatE/HYPK complex 

(a) hNAA50 (pink), hNAA15 (green), hNAA10 (orange), and HYPK (red) within the 

hNatE complex is shown in cartoon. (b) Zoom-in view of the contacts between HYPK 

and hNAA15 with residues that participate in interaction shown. (c) Zoom-in view of the 

contacts between hNAA15 and hNAA50 with residues that participate in interaction 

shown. (d) Zoom-in view of the contacts between hNAA10 and hNAA50 with residues 

that participate in interaction shown. 
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Figure 19.7 Molecular basis for NAA50 and HYPK binding to NatA 
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(a) hNatE/HYPK overlayed onto hNatE (purple) with NAA50 aligned. (b) hNatE/HYPK 

overlayed onto hNatA/HYPK (PDB: 6C95, blue) with HYPK aligned. (c) zoom-in view of 

HYPK C-terminal binding region as indicated in (a). (d) zoom-in view of HYPK α2 

binding region as indicated in (a). (e) zoom-in view of HYPK N terminal α1 domain 

binding region as indicated in (a). (f) zoom-in view shows the NAA50 binding region on 

NAA15 as indicated in (b). (g) zoom-in view shows the NAA50 binding region on NAA10 

as indicated in (b). (h) zoom-in view shows the NAA15 C-terminal helices conformal 

changes when HYPK bound as indicated in (b). 

 

3.2.8 Molecular basis for decrease of hNatE activity by HYPK 

Our kinetic data demonstrated that the catalytic efficiency of hNatE is greater 

than hNAA50 but that this increase is partially nullified in the presence of HYPK (Table 

3.1 and Fig. 3.2b). To understand the molecular basis for this, we overlay structures of 

hNatE and hNatE/HYPK with the common hNatA subunits aligned. This superposition 

reveals that the largest structural differences within the hNAA50 subunit map to the β6-

β7 and α1-α2 loops, which shift such that the hNAA50 peptide substrate binding groove 

is ~2.4 Å wider in the hNatE/HYPK complex relative to the hNatE complex (Fig. 3.8). In 

addition, the hNAA50 β3-β4 loop is shifted in the direction away from hNatA by about 3.5 

Å in the presence of HYPK (Fig. 3.8).  Previous studies demonstrated that Tyr73 and 

Met75 from hNAA50-β4 and Tyr138, Tyr139 and Leu142 from the hNAA50 β6-β7 loop 

are important for hNAA50 catalytic function and substrate binding (Liszczak, Arnesen, 

and Marmorstein 2011). To directly test this, we prepared the following mutants: 

hNAA50-Y73F, -M75A, -Y138A, -Y139A and -I142A, and tested their effects on hNatE 
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activity when HYPK was bound (Fig. 3.2d). Consistent with previous studies, Y73F, 

Y138A and Y139A decreased hNAA50 activity to undetectable levels (Liszczak, 

Arnesen, and Marmorstein 2011). For hNAA50-M75A and -I142A, we observed 

increased activity when bound to hNatA to form the hNatE complex, as we observed for 

hNAA50-WT.  As expected, the hNatE/HYPK complex displayed reduced activity 

compared to both hNAA50 alone and hNatE. However, we observed that hNatE-

M75A/HYPK and hNatE-I142A/HYPK exhibited similar activity, compared to their 

corresponding hNAA50 mutants alone. This data is consistent with the conclusion that 

perturbation of the hNAA50 β3-β4 and  β6-β7 loops within the hNatE/HYPK complex 

underlies the observed reduced catalytic efficiency of hNatE in the presence of HYPK. 

 

 

Figure 20.8 Molecular basis for the decrease of NAA50 activity by HYPK 

hNatE/HYPK (green) overlayed onto hNatE (magenta) with hNatA aligned. Zoom-in view 

shows the local conformational change of hNAA50. 



92 

 

 

 

3.3 Discussion 

While the interaction and catalytic crosstalk within NatE in the yeast system had 

previously been reported, the corresponding human system and the influence of HYPK 

binding on hNatE activity had not previously been characterized. Here, we biochemically 

and structurally characterize the mechanistic interplay of the hNAA10 and hNAA50 

catalytic subunits within the hNatE complex and the role of HYPK in regulating hNatE 

activity. Similar to the crystal structure of ScNatE (PDB:6O07), we find that hNAA50 

binds hNatA mainly through hNAA15, using highly conserved residues, including a key 

threonine residue located at the center of the binding interface. Notably, the distance 

between hNAA50 and hNAA10 in the human complex is significantly shorter than in the 

yeast complex. We find that these two acidic hNAA50 residues, Glu7 and Asp53 contact 

two hNAA10 arginine residues, inducing a conformational change in hNAA10, which 

contributes to a decrease in hNatA enzymatic activity.  

While both hNAA50 and hNatA are conserved from yeast to human, it had long 

been considered that HYPK is not present in yeast until the recently identified HYPK in 

thermophilic fungus Chaetomium thermophilum (Weyer et al. 2017). Nevertheless, it 

appears that evolutionarily NAA50 appeared as a NatA binding partner earlier than 

HYPK did. In both budding and fission yeast, NAA50 is inactive but regulates NatA 

acetylation activity (Deng et al. 2019). While in higher eukaryotes, NAA50 is 

enzymatically active, either with or without NatA (Liszczak, Arnesen, and Marmorstein 
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2011; Evjenth et al. 2009). Thus, within the tetrameric NatE/HYPK complex, it is likely 

that the regulation of NatA activity by NAA50 was replaced by HYPK.  

Here, we have reconstituted the tetrameric hNatE/HYPK complex to demonstrate 

that HYPK and hNAA50 can bind to hNatA simultaneously. We also confirmed the 

physiological relevance of the tetrameric hNatE/HYPK complex through 

immunoprecipitation of the complex from HeLa cells. We find that while HYPK inhibits 

hNatA activity directly, it also indirectly, but less potently, inhibits hNatE. We also find 

that hNAA50 and HYPK exhibit negative cooperativity with respect to hNatA binding in 

vitro and in vivo. The structure of the hNatE/HYPK complex suggests that this is due to 

the ability of the hNAA50 and HYPK protein to bind to the hNAA15 subunit of hNatA in a 

way that indirectly destabilizes binding of the other protein. This observation, together 

with our findings that HYPK has a dominant regulatory effect on hNatA activity relative to 

hNAA50 may explain why excess free hNAA50 is observed over hNatA in higher 

organism and HeLa cells (Hou et al. 2007).  

The nano-molar dissociation constants of HYPK and hNAA50 for hNatA is 

consistent with our immunoprecipitation of the tetrameric hNatE/HYPK complex from 

cells. Previous studies in Drosophila also reported that a dNAA50 knockout decreases 

in-vivo dNatA catalytic activity in the presence of HYPK (Rathore et al. 2016). In terms of 

the biological function of this tetrameric complex, we propose two non-mutually exclusive 

regulatory mechanism for how hNAA50 protein levels could affect hNatA activity. First, 

since hNAA50 has a negative effect on binding between hNatA and HYPK, the absence 

of hNAA50, would promote HYPK binding to hNatA to inhibit hNatA activity. Second, 

since a recent yeast NatE-ribosome structure demonstrated that yeast NAA50 

participates in ribosome association (Knorr et al. 2019), it is likely that hNAA50 in higher 
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eukaryotes also contributes to the association between tetrameric hNatE/HYPK and 

ribosome. The lower level of hNAA50 could therefore decrease the fraction of ribosome 

associated hNatA to regulate its co-translational activity.  

The overall structures of hNAA50 and ScNAA50 are well conserved with a mix of 

-helices and -strands. However, the overlay of hNatE and ScNatE suggested that 

NAA50 shifts closer to NAA10 in the human over the yeast complex. It is possible that in 

the human system NAA10 and NAA50 have more intimate contact and crosstalk in 

enzymatic activity. However, previous data indicated that the degree of NAA50 and 

NAA10 activity crosstalk is similar in yeast and human (Deng et al. 2019). In a recently 

reported yeast ScNatE-ribosome structure, the ScNAA10 and ScNAA50 catalytic sites 

are 50 Å and 85 Å away from the peptide exit site on the ribosome (Knorr et al. 2019). 

While unlike ScNAA50, hNAA50 is co-translationally enzymatically active (Evjenth et al. 

2009). Thus, we propose that this shift of NAA50 closer to NAA10 in the human over the 

yeast complex may have an impact on the relative distance between the nascent chain 

and active sites of hNAA10 and hNAA50.  

With respect to hNatA binding to the ribosome, it is possible that HYPK may also 

contribute to ribosome binding by hNatA. This could then indirectly affect hNAA50 

recruitment to the ribosome, which would be promoted by hNatA but inhibited by HYPK. 

HYPK contains a UBA domain, which is also present at the C-terminus of the alpha 

subunit of the Nascent Polypeptide-Associated Complex (NAC). Further studies are 

required to test these hypotheses for hNatA recruitment to the ribosome.  

The hNatE/HYPK complex co-translationally acetylates nascent peptides with N 

termini of either methionine maintained or cleaved, which accounts for the largest 
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number of substrates among all NATs. Given that this complex acetylates about 40-60% 

of the human proteome and has altered function in many human diseases, the studies 

presented here provides an important molecular scaffold for potential therapeutic 

development.       

 

3.4 Materials and methods 

3.4.1 Plasmid construction. 

A mammalian expression vector pcDNA3.1/NAA15-V5 was modified by site-

directed mutagenesis (Q5® Site Directed Mutagenesis Kit, New England Biolabs) to 

encode hNAA15 variants c.1216-1218ACA>TAC (p.T406Y) and c.2441T>C (p.L814P). 

Primer sequences for p.T406Y are AAGTACACCTTACTTAATAGAACTCTTTCTCGTG 

and TCAATAGCAGTATTTATGTAC. Primer sequences for p.L814P are 

TGATGGTAGCCCAGGAGACTGTA and TACAAGGCTTCCAATACC. The mutated 

plasmid sequences were verified by sequencing. 

 

3.4.2 Proteomics sample preparation of NAA15-V5 immunoprecipitates. 

For immunoprecipitation of NAA15-V5 variants, two 10 cm dishes of HeLa cells 

(ATCC CCL-2) were transfected with 10 µg of either pcDNA3.1/NAA15-WT-V5, 

pcDNA3.1/NAA15-T406Y-V5 or pcDNA3.1/NAA15-L814P-V5 using X-tremeGENE™ 9 

DNA Transfection Reagent (Roche). The growth medium was replaced after 24 h. 48 h 

post transfection, cells were harvested and lysed in 200 µl IPH lysis buffer (50 mM Tris-
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HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1× complete EDTA-free protease 

inhibitor cocktail (Roche)) per cell dish for 15 min at 4°C on a rotating wheel. Cell debris 

was pelleted by centrifugation (17000 × g, 4°C, 5 min) and the supernatant was mixed 

with 2 µg of V5-tag mouse monoclonal antibody (Invitrogen, R960-25) and incubated for 

2 h at 4°C on a rotating wheel. Thereafter, 20 µl of Dynabeads™ Protein G (Invitrogen) 

washed in IPH lysis buffer was added to the cell lysates and incubated overnight. The 

next day, beads were washed three times in IPH lysis buffer before the retrieved 

immunocomplexes were eluted in 60 µl FASP buffer (2% SDS, 100 mM Tris-HCl pH 7.6, 

0.1 M DTT) and heated for 5 min at 95 °C. Filter-aided sample preparation (FASP) 

method was performed to process the eluates for LC-MS/MS analysis (Wisniewski et al. 

2009). The protein samples were mixed with 200 µl UA buffer (8 M urea, 100 Mm Tris-

HCl pH 8.0), transferred to Microcon 30kDa MWCO filters and centrifuged. All 

centrifugation steps were carried out at 23 °C and 14 000 x g for 15 min. The filters were 

washed three times with 200 µl UA by spinning. Proteins were then Cys-alkylated by 

incubation with 100 µl 50 mM iodoacetamide (IAA) in UA for 20 min, before IAA was 

removed by centrifugation. Filters were then washed three times with 100 µl UA. Finally, 

the UA buffer was exchanged by three washes with 100 µl 50 mM ammonium 

bicarbonate (ABC), before 500 ng trypsin (Sequencing Grade Modified Trypsin, 

Promega) was added to the filters and incubated overnight at 37 °C. Digested proteins 

were collected by centrifugation and the filter was washed once with 75 µl ABC. 

Peptides were acidified with 5% formic acid (FA) and desalted using PierceTM C18-Tips 

(Thermo Scientific) according to manufacturer´s protocol. The final eluates were dried by 

speed vacuum and diluted to desired concentration with 5% FA. 
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3.4.3 MS analysis of NAA15-V5 immunoprecipitates. 

Mass spectrometric analysis was performed with an Ultimate 3000 RSLC system 

(Thermo Scientific) coupled to a Q-Exactive HF mass spectrometer (Thermo Scientific) 

equipped with EASY-spray nano-electrospray ion source (Thermo Scientific). About 1 µg 

tryptic peptides were loaded and desalted on a pre-column (Acclaim PepMap 100, 2cm x 

75µm ID nanoViper column, packed with 3 µm C18 beads) with 0.1% TFA (flow rate 5 

µl/min, 5 min). Peptides were separated during a biphasic ACN gradient from two 

nanoflow UPLC pumps (flow rate of 200 nl/min) on an analytical column (PepMap RSLC, 

50cm x 75 µm i.d. EASY-spray column, packed with 2 µm C18 beads). Solvent A and B 

were 0.1% FA (vol/vol) in water and 100% ACN respectively. The gradient composition 

was 5% B for 5 min, 5-8% B for 0.5 min, 8–24% B for 109.5min, 24–35% B for 25min, 

and 35–80% B for 15 min, 80% B over 15 min for isocratic elution and 5% B over 20 min 

for conditioning. The eluting peptides were ionized in the electrospray and analyzed by 

the Q-Exactive HF. The mass spectrometer was operated in data-dependent mode to 

automatically switch between full scan MS and MS/MS acquisition. MS spectra (m/z 

375-1500) were obtained with a resolution of 120 000 at m/z 200, automatic gain control 

(AGC) target of 3 x 106 and maximum injection time (IT) of 100 ms. The twelve most 

intense peptides above a threshold of 50 000 counts and charge states 2 to 5 were 

isolated (window of 1.6 m/z, AGC target of 1 x 105 and maximum IT of 110 ms) for 

fragmentation at a normalized collision energy of 28%. Fragments were detected in the 

orbitrap at a resolution of 15 000 at m/z 200, with first mass fixed at m/z 100. Precursor 

masses selected for MS/MS analysis were excluded by dynamic exclusion for 25 s with 

“exclude isotopes” enabled. Lock-mass internal calibration (m/z 445.12003) was used. 

The raw data acquired was processed with MaxQuant v. 1.6.2.6 and Andromeda search 
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engine. The spectra were searched against a database of Swiss-Prot annotated human 

protein sequences (20431 sequences, retrieved 25.06.2019) and a reverse decoy 

database. Cystein carbamidomethylation was selected as a fixed modification and 

variable modifications included methionine oxidation and protein N-terminal acetylation. 

The false discovery rate (FDR) was set to 1% for peptide and protein identification, 

minimum peptide length allowed was 7 and match between runs (0.7 min match time 

window, 20 min alignment time window) was enabled. Label-free quantification (LFQ) 

(Cox et al. 2014) and intensity-based absolute quantification (IBAQ) were selected. All 

other parameters were set to default values. The resulting proteingroups.txt file was 

analysed using Perseus software v. 1.6.5.0. Proteins only identified by site, common 

contaminants and reverse hits were filtered away. The IBAQ intensities of hNAA10, 

hNAA50 and HYPK were normalized to the IBAQ intensity of NAA15 in each IP sample. 

Thereafter, the IBAQ intensity of hNAA15, hNAA10, hNAA50 and HYPK in each sample 

was normalized to the IBAQ intensity of the corresponding protein in the hNAA15-WT-V5 

IP sample. 

 

3.4.4 [14C]-Ac-CoA-based acetylation and western blot analysis 

In order to test the NatA Nt-acetylation activity of hNAA15-T406Y and 

hNAA15-L815P variants, immunoprecipitation of hNAA15-V5 was performed as 

described above with minor adjustments. Five 10 cm dishes of HeLa cells (ATCC 

CCL-2) were transfected with 8 µg pcDNA3.1/NAA15-WT-V5, 8 µg 

pcDNA3.1/NAA15-T406Y-V5 or 10 µg pcDNA3.1/NAA15-L814P-V5. NAA15-WT-

V5 and NAA15-T406Y-V5 were co-transfected with 2 µg of empty pcDNA3.1/V5 
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vector to ensure equal conditions for the cells. As a negative control, five dishes 

of HeLa cells were transfected with 10 µg of pcDNA3.1/LacZ-V5. 

Immunoprecipitation from harvested and lysed cells was performed using 3 µg of 

V5-tag mouse monoclonal antibody (Invitrogen) and 30 µl of Dynabeads™ 

Protein G (Invitrogen, R960-25). The beads were washed three times in IPH lysis 

buffer and resuspended in 95 µl acetylation buffer (50 mM Tris-HCl pH 8.5, 1 mM 

EDTA, 10% Glycerol). [14C]-Ac-CoA–based Nt-acetylation assays were 

performed as described (Drazic and Arnesen 2017). In brief, three reaction 

mixture replicates were prepared containing 10 µl of immunoprecipitated 

enzyme, 200 µM synthetic 24-mer oligopeptide SESS24: NH2-

SESSSKSRWGRPVGRRRRPVRVYP-COOH (BioGenes), 50 µM [14C]-Ac-CoA 

(Perkin-Elmer) and acetylation buffer to a final volume of 25 µl. Reaction mixtures 

without oligopeptide were used as negative controls. The reaction mixtures were 

incubated at 37 °C at 1400 rpm shaking for 30 min. The reaction was stopped by 

isolating beads on a magnet and transferring 23 µl of the supernatant onto P81 

phosphocellulose filter discs (Millipore). The filter discs were washed three times 

in 10 mM HEPES buffer (pH 7.4) and air dried, before they were added to 5 ml 

Ultima Gold F scintillation mixture (Perkin-Elmer) and the incorporated [14C]-Ac 

was measured by a Perkin-Elmer TriCarb 2900TR Liquid Scintillation Analyzer. 

The immunoprecipitate input was determined by Western blot analysis. Proteins 

were separated by SDS-PAGE, transferred onto a nitrocellulose membrane 

(Amersham Protran 0.2 µM NC) and probed with V5-tag mouse monoclonal 

antibody (1:5000, Invitrogen, R960-25) and NAA10 rabbit monoclonal antibody 
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(1:1000, Cell Signaling #13357). Protein bands were imaged by ChemiDocTM 

XRS+ system (Bio-Rad) and quantified using ImagelabTM Software (Bio-Rad). 

The measured DPM signal for each reaction was normalized to the amount of 

NAA15-V5 in the respective IP sample. 

 

3.4.5 Protein expression and purification 

N-his tagged hNatA, N-his tagged hNatA/HYPK, were expressed in sf9 cells 

(ThermoFisher, cat# 12659017) and purified as described previously (Gottlieb and 

Marmorstein 2018). hNAA50 (Liszczak, Arnesen, and Marmorstein 2011) and MBP-

HYPK (Gottlieb and Marmorstein 2018) were expressed in BL21 (DE3)E. Coli cells 

(Thermo Scientific) and Rosetta (DE3)pLysS E. coli cells (Millipore Sigma), respectively, 

and purified as described previously. For hNatA and hNatA/HYPK sf9 expression, High 

density (2 x106 cells/ml) suspension cultures of Sf9 cells were infected at a multiplicity of 

infection (MOI) of 1 for 48hrs in Fernbach Shake flasks at 27 °C. Cells pellets were 

resuspended in lysis buffer of 25 mM Tris, pH 8.0, 500 mM NaCl, 10 mM Imidazole, 10 

mM β-ME, 10 mg/ml PMSF (phenylmethanesulfonylfluoride), DNase, and complete, 

EDTA-free protease inhibitor tablet (Roche). After sonication, clarified lysate was passed 

on nickel resin (Thermo Scientific), washed with 10 CV of lysis buffer, and eluted with 25 

mM Tris, pH 8.0, 200 mM NaCl, 200 mM Imidazole, 10 mM β-ME. Elute was further 

purified with HiTrap SP ion-exchange column with the salt gradient (200mM to 1M). 

Peak fractions were pooled and run on a Superdex 200 Increase 10/300 GL gel filtration 

column in sizing buffer containing 25 mM HEPES, pH 7.0, 200 mM NaCl, and 1 mM 

TCEP. Peak fractions were pooled and flash-frozen for storage in -80 °C until use.  
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For E. coli protein expression, transformed cells were cultured at 37 °C until the 

absorbance A600 reached ~ 0.7, induced with 0.5 mM IPTG (isopropyl 1-thio-β-D-

galactopyranoside), and grown overnight at 16 °C. E. coli cells overexpressing MBP-

HYPK were lysed in 25 mM Tris, pH 8.0, 150 mM NaCl, 10 mM β-ME, 10 mg/ml PMSF. 

Clarified lysate was passed on to amylose agarose resin (New England Biolabs), 

washed with lysis buffer, and elute in lysis buffer supplementary with 20 mM maltose. 

Eluted protein was purified with a 5 mL HiTrap Q ion-exchange column (GE Healthcare) 

in the same buffer with a gradient (150 mM to 1M NaCl). Peak fractions were pooled and 

loaded to a Superdex 75 Increase 10/300 GL gel filtration column (GE Healthcare) in 

buffer of 25 mM HEPES, pH 7.0, 200 mM NaCl, and 1 mM TCEP. Peak fractions were 

pooled and flash-frozen for storage in -80 °C until use. E. coli cells over-expressing GST 

tagged NAA50 were lysed in 25mM HEPES pH 7.5, 100 mM NaCl, and 10 mM β-ME by 

sonication. The supernatant was isolated and loaded to GST-binding resin (Clontech), 

washed with 10 CV lysis buffer. TEV (tobacco etch virus protease) was added to the 

resin for on-column cleavage overnight at room temperature. Untagged Naa50 was 

washed off the column with lysis buffer and collected for overnight dialysis in buffer with 

25mM HEPES (pH 7.5), 50 mM NaCl, and 10 mM β-ME. Ion exchange was done with a 

5-ml HiTrap SP ion exchange column (GE Healthcare) in gradient of 50 – 750 mM NaCl.  

Peak fractions were further purified with Superdex 75 gel filtration column (GE 

Healthcare) to homogeneity in buffer containing 25 mM HEPES, pH 7.5, 100 mM NaCl, 

and 10 mM DTT (dithiothreitol). Protein was flash-frozen for storage in -80 °C until use. 

Protein harboring mutations was generated with QuickChange protocol (Stratagene) 

(Braman, Papworth, and Greener 1996) and obtained following the same expression 

and purification protocol as wild type. Primers for making hNAA50-E7A: 

AAGGTAGCCGGATCGCGCTGGGAGATGTG and 
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CACATCTCCCAGCGCGATCCGGCTACCTT. For hNAA50-D53A: 

CTTGCCTATTTCAATGCTATTGCTGTAGGTGC and 

GCACCTACAGCAATAGCATTGAAATAGGCAAG. For hNAA50-M75A: 

GACTTTACATCGCGACACTAGGATG and CATCCTAGTGTCGCGATGTAAAGTC. For 

hNAA50-Y138A: ACAAAGAAGAACGCCTATAAGAGGATAG and 

CTATCCTCTTATAGGCGTTCTTCTTTGT. hNAA50-Y73F, hNAA50-I142A, hNAA50-

Y139A were generated as previously described (Liszczak, Arnesen, and Marmorstein 

2011). 

 

3.4.6 Acetyltransferase activity assays 

Acetyltransferase assays were modified from previous studies (Liszczak et al. 

2013; Liszczak, Arnesen, and Marmorstein 2011) and carried out at room temperature in 

a reaction buffer containing 75 mM HEPES, pH 7.0, 120 mM NaCl, 1 mM DTT. The 

SASE substrate peptide (NH2-SASEAGVRWGRPVGRRRRP-COOH; GenScript) and the 

MLGP substrate peptide (NH2-MLGPEGGRWGRPVGRRRRP-COOH; GenScript) were 

used to determine the enzymatic activity of hNatA and hNAA50, respectively. Each 

curve was repeated at least 3 times. To test the effect of hNAA50 and HYPK on hNatA 

activity, 100 nM of hNatA was mixed with 500 µM SASE peptide, 300 µM C14 labeled 

acetyl-CoA (4 mCi mmol−1; PerkinElmer Life Sciences), and varied concentrations of 

hNAA50 or HYPK modulator were added for 12-minute reactions. Signals were 

normalized against enzyme without modulator. For time course activity assays, 500 nM 

of hNAA50, hNatE, or hNatE/HYPK were mixed with 500 µM MLGP peptide, and 300 

µM C14 labeled acetyl-CoA (4 mCi mmol−1; PerkinElmer Life Sciences) in a 20 µL 
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reaction volume. Only 15 µL of each reaction mixture was quenched at specific times. 

For kinetic assays of hNAA50, hNatE and hNatE/HYPK against MLGP peptide, 300 nM 

enzyme was mixed with 300 µM C14 labeled acetyl-CoA (4 mCi mmol−1; PerkinElmer Life 

Sciences) and the concentration of the peptide substrate was varied for a 40-minute 

reaction. Data was fit to a Michaelis–Menten equation in GraphPad Prism for 

determination of kinetic parameters.  

 

3.4.7 FP binding assays 

Fluorescence polarization (FP) binding assays were performed essentially as 

described previously (Deng et al. 2019). 10 nM of fluorescein labeled hNAA50 (Deng et 

al. 2019) was used in all reactions, and hNatA or hNatA/MBP-HYPK concentrations 

were varied to determine the dissociation constant (Kd). 5 mg/mL BSA and 0.2% v/v 

Tween were added into the reaction buffer (25 mM HEPES, pH 7.0, 200 mM NaCl and 

10 mM DTT) to prevent non-specific binding. FP readings were taken with a Perkin 

Elmer EnVision and each curve was repeated in triplicate. GraphPad Prism (version 

5.01) was used for all data fitting to determine Kd. A single-site specific binding model 

was used, with equation 1, 

  (1) 

where Fi is the fluorescence reading at ligand (either hNatA or hNatA/HYPK) 

concentration [L]i; Kd is the equilibrium dissociation binding constant; [M] is the 

concentration of hNaa50; F0 is the fluorescence reading extrapolated to no ligand; F1 is 
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the maximum fluorescence increase at saturating ligand concentration. Fit parameters 

for hNatA/HYPK (MBP tagged) binding were F0 = 161.3 ± 3.3, F1 = 222.0 ± 5.2, Kd =127 

± 13 nM, and R2 = 0.98. For hNatA, F0 = 205.8 ± 4.4, F1 = 137.2 ± 5.4, Kd = 46 ± 8.8 nM, 

and R2 = 0.95. 

 

3.4.8 ITC measurements 

ITC measurements were carried out using a MicroCal iTC200 at 20 °C. Samples 

were dialyzed into buffer containing 25 mM HEPES pH 7.0, 200 mM NaCl, 1 mM DTT. 

Protein samples (hNatA, hNatE) with concentrations of 15 μM in the cell and 150 μMof 

MBP-HYPK in the syringe were used in the experiments. The raw data was analyzed 

with the MicroCal ITC analysis software. 

 

3.4.9 Cryo-EM sample preparation and data collection 

To prepare hNatE complex, purified hNatA and three molar excess of hNAA50 

were mixed and loaded onto a Superdex 200 10/30 GL column (GE Healthcare). Peak 

fractions with all subunits present, as confirmed with SDS-PAGE analysis, were 

concentrated to 1 mg/ml.  Fresh sample incubated with 3 molar excess of both hNatA 

and hNAA50 bi-substrate analogues for ~30 min on ice was applied to Quantinfoil 

R1.2/1.3 holey carbon support grids. To prepare hNatE/HYPK complex, purified 

hNatA/HYPK and three molar excess of hNAA50 were mixed and loaded onto an S200 

gel-filtration column (GE Healthcare). Peak fractions with all subunits present, as 

confirmed with SDS-PAGE were concentrated to 1 mg/ml. Fresh sample with 3 molar 
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excess of acetyl-CoA and hNAA50 bi-substrate analogues for ~30 min in ice was applied 

to Quantinfoil R1.2/1.3 holey carbon support grids.  

Both sample grids were blotted for 10-12 seconds (blot force = 2) under 100% 

humidity at 16°C before the sample was plunged into liquid ethane, using a FEI Vitrobot 

Mark IV. An FEI TF20 was used for screening the grids and data collection was 

performed either with a Talos Arctica microscope or Titan Krios equipped with a K2 

Summit direct detector (Gatan). 

 

3.4.10 Cryo-EM data processing 

Original image stacks were summed and corrected for drift and beam-induced 

motion at the micrograph level using MotionCor2 (Zheng et al. 2017). Defocus 

estimation and the resolution range of each micrograph were performed with Gctf 

(Zhang 2016).  For hNatA/hNAA50, ~3,000 particles were manually picked to generate 

several rough 2D class averages. Representative 2D classes were used to autopick 

~1,229,331 particles from 4,025 micrographs using Relion (Kimanius et al. 2016). All 

particles were extracted and binned to accelerate the 2D and 3D classifications. After 

bad particles were further removed by 2D and 3D classification, 353,541 particles were 

used for auto refinement, particle polishing and per particle CTF refinement. The final 

map of the hNatE complex was refined to an overall resolution of 3.02 Å, with local 

resolution estimated by Resmap (Kucukelbir, Sigworth, and Tagare 2014). For the 

hNatE/HYPK complex, image processing workflow was similar as described above. 

477,608 particles were picked from 1,004 micrographs and 168,536 particles were used 

for refinement. The final resolution of the hNatE/HYPK complex was 4.03 Å. 
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3.4.11 Cryo-EM model building and refinement 

For hNatE model building, the crystal structures of hNatA (PDB: 6C9M) and 

hNAA50 (PDB: 3TFY) were fit into the 3.02 Å EM map as rigid bodies, followed by 

manual adjustment in coot (Emsley and Cowtan 2004) and real-space refinement in 

PHENIX (Adams et al. 2010). For the hNatE/HYPK model building, the crystal structure 

of hNatA/HYPK (PDB: 6C95) and hNAA50 (PDB: 3TFY) were used. All representations 

of Cryo-EM density and structural models were performed with Chimera (Pettersen et al. 

2004) and PyMol (The PyMOL Molecular Graphics System, Version 1.2r3pre, 

Schrödinger, LLC.). 
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CHAPTER 4: Molecular Basis for N-Terminal Alpha-Synuclein Acetylation by 

Human NatB 
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4.1 Introduction 

NatB is conserved from yeast to human in both complex composition and in its 

substrate specificity profile (Starheim, Gevaert, and Arnesen 2012). In Saccharomyces 

cerevisiae, the deletion of NatB subunits produces more severe phenotypes, compared 

to the knockout of NatA or NatC subunits. Deletion of either NAA20 or NAA25 leads to 

similar phenotypes including slower growth rate, diminished mating, defects in actin 

cable formation, and aberrant mitochondrial and vacuolar inheritance (Polevoda et al. 

2003). These observations suggest that the proper function of actin and tropomyosin 

requires NTA by the intact NatB complex (Polevoda et al. 2003). In humans, disruption 

of NatB (hNatB) by knockout leads to defects in proper actin cytoskeleton structure, cell 

cycle progression and cell proliferation (Ametzazurra et al. 2008; Starheim et al. 2008; 

Ametzazurra et al. 2009; Neri et al. 2017). In addition, hNatB is upregulated in human 

hepatocellular carcinoma (Ametzazurra et al. 2008), where it has been suggested as a 

potential therapeutic target as silencing of this complex can block cell proliferation and 

tumor formation (Neri et al. 2017). hNatB-mediated NTA of α-synuclein (αSyn) has been 

shown to increase αSyn stability and lipid binding, and to reduce aggregation capacity 

(Watson and Lee 2019; Mason et al. 2016; Maltsev, Ying, and Bax 2012; Dikiy and 

Eliezer 2014; Trexler and Rhoades 2012; Fernández and Lucas 2018; Fauvet et al. 

2012; Kang et al. 2012; Iyer et al. 2016). Since αSyn is a key protein in Parkinson's 

disease (PD) (Halliday et al. 2011; Spillantini et al. 1998), hNatB might play an indirect 

role in PD pathogenesis in vivo as supported by a recent study (Vinueza-Gavilanes et al. 

2020). It was also recently demonstrated that NTA of αSyn increases its propensity for 

lipid membrane binding without altering its structural properties of the bound state 

(Runfola et al. 2020). 
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  Compared to the comprehensive structural and biochemical characterization of 

NatA (Liszczak et al. 2013; Weyer et al. 2017; Gottlieb and Marmorstein 2018; Deng et 

al. 2019; Knorr et al. 2019; Magin et al. 2017), the study of NatB has been limited, 

particularly in humans.  Recently, the crystal structure of Candida albicans (Ca) NatB 

bound to a bisubstrate CoA-peptide conjugate was determined, providing important 

insights into substrate specificity and NTA by caNatB (Hong et al. 2017). However, 

hNAA20 and hNAA25 share only ~40% and ~20% sequence identity with the Candida 

albicans homologue (Hong et al. 2017), respectively. Moreover, nearly all biological 

studies of NatB have been conducted in Saccharomyces cerevisiae (Lee et al. 2014; 

Caesar, Warringer, and Blomberg 2006; Singer and Shaw 2003), Arabidopsis 

(Ferrandez-Ayela et al. 2013; Huber et al. 2020), mouse (Ohyama et al. 2012) and 

human (Neri et al. 2017; Starheim et al. 2008; Ametzazurra et al. 2008; Ametzazurra et 

al. 2009) as model organisms. As a result, the mode of human NatB-mediated catalysis 

and αSyn-specific NatB recognition remains unresolved. In this study, we report the 3.5 

Å resolution cryo-electron microscopy (Cryo-EM) structure of the ~130 KDa hNatB 

bound to a bisubstrate CoA-αSyn conjugate, together with a structure-guided analysis of 

mutational effects on catalytic activity.  This analysis reveals functionally important 

structural differences between hNaB and related NAT enzymes, as well as insights into 

the molecular mechanisms that define αSyn and related substrates that are recognized 

for hNatB-mediated N-terminal acetylation.   
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4.2 Results 

4.2.1 hNatB is potently inhibited by a CoA-aSyn conjugate 

While attempts to express recombinant hNatB in E. coli were unsuccessful, we 

found that overexpression of hNatB complex with full-length hNAA25 (residues 1-972) 

and C-terminally truncated hNAA20 (residue 1-163 out of 178 total residues) in 

baculovirus-infected Sf9 insect cells produced soluble protein that could be purified to 

homogeneity (Fig. 4.1A). To evaluate the activity of the recombinant hNatB, we tested it 

against different peptide substrates. αSyn with an N-terminal sequence of “MDVF” has 

been widely considered as an in vivo hNatB substrate (Anderson et al. 2006; Ohrfelt et 

al. 2011; Theillet et al. 2016; Van Damme et al. 2012). We therefore incorporated this 

sequence into a peptide substrate named “MDVF” for an in vitro acetyltransferase assay 

(“MDVF” peptide sequence: NH2-MDVFMKGRWGRPVGRRRRP-COOH). In agreement 

with in vivo studies (Theillet et al. 2016; Anderson et al. 2006; Ohrfelt et al. 2011; Van 

Damme et al. 2012), we observed that the purified recombinant hNatB was active 

against this “MDVF” peptide, while no activity could be observed in the absence of either 

the enzyme or peptide (Fig. 4.1B). hNatB also showed no observable activity if either 

the first residue “M” or the first two residues “MD” in this αSyn peptide substrate was 

removed (“DVFM” peptide sequence: NH2-DVFMKGLRWGRPVGRRRRP-COOH; 

“VFMK” peptide sequence: NH2- VFMKGLSRWGRPVGRRRRP-COOH) (Fig. 4.1B), 

suggesting that peptide substrate recognition by NatB is highly dependent on the first 

two N-terminal residues. To further confirm the substrate specificity of hNatB, we tested 

it against several previously identified peptide substrates for other NATs (“SASE” 

peptide sequence (NatA-type): NH2-SASEAGVRWGRPVGRRRRP-COOH; “MLRF” 

peptide sequence (NatC-type): NH2-MLRFVTKRWGRPVGRRRRP-COOH; “SGRG”/H4 
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peptide sequence (NatD-type): NH2-SGRGKGGKGLGKGGAKRHR-COOH; “MLGP” 

peptide sequence (NatE-type): NH2-MLGPEGGRWGRPVGRRRRP-COOH) (Fig. 4.1B). 

Consistent with previous results (Van Damme et al. 2012), hNatB is only active toward 

its unique canonical substrate type, displaying no overlapping activity towards other NAT 

substrates.  

  In order to understand the mechanism of hNatB substrate recognition, we 

synthesized a bi-substrate inhibitor in which the first 10 residues of αSyn are covalently 

linked to CoA (Liszczak et al. 2013) for enzymatic and structural studies. Half-maximum 

inhibitory concentration (IC50) determinations revealed that this CoA-αSyn conjugate had 

an IC50 of about 1.63 ± 0.13 µM (Fig. 4.1C), significantly lower than the Km values we 

had determined for hNatB toward a “MDVF” peptide (45.08 ± 3.15 µM) and acetyl-CoA 

(47.28 ± 5.70 µM) (Table 4.1).  

 



112 

 

 

Figure 21.1 hNatB is active toward an α-Synuclein peptide and can be inhibited by 

a CoA-Syn conjugate 

A. Gel filtration elution profile of hNatB, using a Superdex S200 column. Coomassie-

stained SDS-PAGE of peak fractions is reproduced to the right of the chromatograms. B. 

Comparison of hNatB activity toward different peptide substrates. All the activities are 

normalized to the activity of hNatB toward αSyn peptide (MDVF). C. Dose-response 

curve corresponding to the titration of CoA-αSyn conjugate (CoA-MDVFMKGLSK) into 

hNatB acetyltransferase reactions. The calculated IC50 value is indicated. Reactions 

were performed in triplicate; replicates are shown in the graph as vertical dots. 
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Table 6.1 Catalytic parameter of wild-type hNatB and mutants 

 

 

4.2.2 hNatB reveals potentially biologically significant structural differences with hNatA 

and caNatB 

We performed single particle Cryo-EM of hNatB in the presence of the CoA-αSyn 

conjugate. A 3.46 Å-resolution Cryo-EM three-dimensional (3D) map was determined 

from 982,420 particles, selected from 5,281 raw electron micrographs (Table 4.2, Fig. 

4.2). The central core region of the EM map contains excellent side chain density with a 

local resolution of ~ 2.5 Å, particularly around the catalytic subunit, hNAA20.  

  Consistent with previous NAT structural studies, the atomic model of hNatB 

features a catalytic subunit, hNAA20, that adopts a canonical Gcn5-related N-

Acetyltransferase (GNAT) fold (Neuwald and Landsman 1997). Additionally, the model 
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reveals that the auxiliary subunit hNAA25 is composed of a total of 39 α-helices among 

where the predicted first and second α-helices were built as poly-alanine due to a lack of 

resolvable side-chain density (Fig. 4.2). The 39 α-helices can be roughly divided into 

three groups: an N-terminal region: α1- α8; a core region: α9- α29; and a C-terminal 

region: α30-α39 (Fig. 4.2A). The N terminal region (residue 1-164) displays relatively 

weak EM density compared to other regions, suggesting that it is relatively flexible. The 

eight helices of the N terminal region form four helical bundle tetratricopeptide repeat 

(TPR) motifs, which often participate in protein-protein interactions. While there are no 

visible contacts between the N-terminal TPR motifs and hNAA20, it is possible that this 

region participates in ribosome association, similar to the N-terminal region of the 

NAA15 auxiliary subunits of Schizosaccharomyces pombe (Magin et al. 2017) and 

Saccharomyces cerevisiae (Knorr et al. 2019) NatA.  The 21 helices of the core region 

also form a number of TPR motifs, which come together to form a ring that completely 

wraps around and extensively contacts hNAA20 within its hollow center (Fig. 4.2A). 

Indeed. the interaction between hNAA20 and the TPR motifs of this core region buries a 

total interface area is about 2300 Å2. In the core region, it is noteworthy that there is a 

long α-helix (α28, ranging 30 residues) that traverses almost from one side of the 

complex to the other. The α28 helix closes the core ring structure, locking hNAA20 in 

position, and bridging the N- and C-terminal and regions. This is similar to the role 

played by α29-α30 of the hNAA15 auxiliary subunit of hNatA (Fig. 4.2A and 4.2B). The 

C terminal region features helices that bundle together to protrude out of the plane of the 

core ring structure at an angle of ~ 45° (Fig. 4.2B).  

  The sequence identity of the catalytic and auxiliary subunits of hNatA and 

hNatB are 20%, and 15 %, respectively. To understand how this translates to key 
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structural differences, we superimposed the crystal structure of hNatA (PDB: 6C9M) with 

our model. Between the catalytic subunits, there is a high degree of superposition (1.151 

Å root-mean-square deviation [RMSD] over 105 common Cα atoms), except for an 

additional helix, α5, on the C-terminus of hNatA-NAA10, which is absent in hNatB-

NAA20 (Fig. 4.2B). Between the auxiliary subunits, the core and N-terminal regions of 

both hNatA-NAA15 and hNatB-NAA25 display similar topology, although a higher 

degree of deviation than the catalytic subunits. The core regions both wrap around their 

respective catalytic subunits (8.369 Å RMSD over 262 common Cα atoms), while the N-

terminal regions jut off to the side (7.360 Å RMSD over 55 common Cα atoms). In 

contrast, the C-terminal regions of hNatA-NAA15 and hNatB-NAA25 diverge significantly 

from one another. For hNA25, the C-terminal region of hNAA25 is oriented towards its 

N-terminal region, while the C-terminal region of hNAA15 is positioned ~ 50Å away from 

the relative position of the superimposed C-terminal domain of hNAA25 (Fig. 4.2B).  The 

positioning of hNAA25 may serve to promote hNAA25 intra-termini communication, 

which is similar to the interaction of hNatA and its regulatory protein HYPK (Gottlieb and 

Marmorstein 2018).  HYPK, which does not interact with hNatB, interacts with both the 

N- and C-terminal domains of hNatA-NAA15, potentially serving as bridge to enable 

closer communication between these two domains (Fig. 4.2).  Recent reports have 

described the role of the small molecule IP6 (inositol hexaphosphate) in hNatA activity, 

where it is found to act as “glue” between the C-terminal and core domains in hNAA15 

and hNAA10 via a series of hydrogen bonds and electrostatic interactions (Gottlieb and 

Marmorstein 2018; Cheng et al. 2019). While no corresponding small molecules have 

been identified to play a similar role in hNatB, our model shows that this interaction is 

replaced by an extended loop that connects the 31 helix with the 32 helix of hNatB-

NAA25.  This loop, which is not present in hNatA-NAA15, appears to mediate 
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hydrophobic interactions between hNatB-NAA25 and -NAA20, likely to serve a similar 

role as IP6.  

  We also compared the structures from human and the previously described C. 

albicans NatB (CaNatB, PDB: 5K18).  Although the two superimposed structures 

revealed a high degree of structural conservation (NAA20: 0.698 Å RMSD over 125 

common Cα atoms; NAA25 Core region: 3.267 Å RMSD over 266 common Cα atoms), 

the N-terminal region of hNatB-NAA25 appears to overlay more closely to hNatA-NAA15 

than to CaNatB-NAA25 (Fig. 4.2B and C). Compared to CaNAA25, the N-terminal 

regions of hNatB-NAA25 and hNatA-NAA15 are positioned more closely to the peptide 

substrate binding sites of the respective catalytic subunits. Based on the role that the N-

terminal yeast NatA-Naa15p regions play in ribosome docking (Magin et al. 2017; Knorr 

et al. 2019), we propose that the relative shift in position of the N-terminal regions of the 

human NAT auxiliary subunits, hNAA15 and hNAA25, may reflect a difference in 

mechanism for ribosome association and co-translational NTA in C. albicans compared 

with humans. In addition, the overlay of C terminal regions of hNAA25 and CaNAA25 

displays a RMSD of 15.960 Å over 133 common Cα atoms. We observe that the main 

difference that contributes to this deviation in this region is the length of helices.  
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Figure 22.2 hNatB shows structural differences with hNatA and C. albicans NatB 

hNaa20 (light orange) and hNaa25 (cyan) are shown in cartoon. The CoA- Syn 

conjugate inhibitor is shown in sticks and colored as magenta. The N- and C- terminal 

regions are indicated as “N” and “C”, respectively. Some helices are as labeled.  B. 

hNaa20 (light orange) and hNaa25 (cyan) are shown overlapped with hNatA (marine 

blue, PDB: 6C9M). Small molecule IP6 bound to hNatA is shown as surface 

representation (red). C. hNaa20 (light orange) and hNaa25 (cyan) are shown 

superimposed on CaNatB (slate blue, PDB:5K04). 
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Table 7.2 Cryo-EM data collection, refinement, and validation statistics 

 

 

4.2.3 hNAA25 and hNAA20 make intimate interactions within hNatB 

The hNatB/CoA-αSyn structure reveals an extensive interaction interface 

between the core region of the auxiliary hNAA25 and catalytic hNAA20 subunits (Fig. 

4.3A).  The most intimate contact between the two proteins are made by the α28 - α29 

segment of hNAA25 and almost the entire length of hNAA20 α2, creating a large 
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hydrophobic interface (Fig. 4.3B). Residues that contribute to interaction include Thr26, 

Gly28, Ile29, Pro30, Leu33, Gln34, Leu36, Ala37, His38, Glu41 of hNAA20 and Lys535, 

His536, Ile537, Phe569, Asp576, Thr577, Tyr580, Ala584, Tyr 587, Lys592, Phe596, 

Phe599, Leu603 of hNAA25 (Fig. 4.3B).  Another region of interaction, involving 

predominantly van der Waals interaction occurs between the hNAA20 β4- α3 loop and 

the hNAA25 α18- α19 loop. Here, residues Lys362, Pro363, Lys362-Thr367, Cys364, 

and Pro363 from hNAA25 and residues Arg85, Phe83, Glu82 and Arg84 from hNAA20 

contribute to this small batch of hydrophobic interface (Fig. 4.3C).  

  Additional intimate contacts between hNAA20 and hNAA25 are mediated 

between hNAA20 α1 helix and α26-α27 loop, and the hNAA25 α24-α25 loop, consisting 

of a mix of polar and non-polar interactions.  A few hydrogen bonds are formed, 

centered around hNAA20-Asn16, between the sidechain nitrogen atoms of hNAA20-

Asn16 and sidechain oxygen of hNAA25-Thr541, between the sidechain oxygen atom of 

hNAA20-Asn16 and sidechain nitrogen atom of hNAA25-Gln538, and between the 

sidechain nitrogen of hNAA20-Asn16 and the sidechain of hNAA25-Asp657 (Fig. 4.3D). 

A salt bridge is found between the sidechain of hNAA20-Asp10 and the sidechain of 

hNAA25-Arg602. In addition, there are hydrophobic interactions between residues 

Phe15, Leu12, Phe13, Leu19, Pro22 from hNAA20 and residues Ile537, Asp540, 

His536, Ala506, Phe662, Ser504, Ile542, Leu603 from hNAA25 (Fig. 4.3D).  

  Different sides of hNAA20 feature several potentially hNAA25-stabilizing polar 

interactions. Hydrogen bonds are formed between the Asp261 side chain of the hNAA25 

α14-α15 loop and the hNAA20-Thr2 backbone nitrogen atom (Fig. 4.3E), between the 

Glu227 backbone carbonyl group of hNAA25 α12-α13 loop and the hNAA20-Arg102 
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sidechain (Fig. 4.3F), and between the Lys535 sidechain from NAA25 α26-α27 loop and 

the hNAA20-Ser141 backbone carbonyl group (Fig. 4.3G). 

 

Figure 23.3 hNAA20 and hNAA25 make intimate interactions within hNatB 
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A. hNAA20 (light orange) and hNAA25 (cyan) are shown in cartoon with major 

associated interface denoted. B-G. Zoom-in views of the hydrophobic interface regions 

as indicated in A. 

 

4.2.4 hNatB makes specific interactions with the first 4 N-terminal residues of aSyn 

In the Cryo-EM map, density for the CoA-αSyn conjugate bisubstrate inhibitor is 

well resolved, allowing us to confidently model the CoA portion and the first five N-

terminal residues (of ten residues present) of the αSyn portion (Fig. 4.4A and 4.4B). 

Similar to other NATs, CoA enters the catalytic active site through a groove formed by 

α3 and α4 of the catalytic subunit, while the peptide substrate enters the active site on 

the opposite side of the catalytic subunit flanked by the α1-2 and β6- β7 loops (Fig. 

4.4A).  

  hNAA20 contains a conserved acetyl-CoA binding motif among NATs: 

R84R85XG87XA89. Here, we observe that the positively charged hNAA20-Arg 85 interacts 

with the negatively charged 3'-phosphorylated ADP portion of CoA to form a salt bridge 

while Arg84 makes Van der Waals interactions (Fig. 4.4C and 4.4D). A hydrogen 

bonding network is formed mainly between the 5’-diphosphate group and backbone 

atoms of a few residues including Val79, Gly87, Ala89, and Ala90 (Fig. 4.4C and 4.4D), 

and mediated by the side chains of Arg85 and Gln125. The CoA molecule anchors to the 

binding pocket through a series of van der Waals contacts formed by residues Ser67, 

Val79, Leu77, Leu88, Val118, Met 122, and Tyr123 (Fig. 4.4D).  
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  Four N-terminal residues of αSyn participate in hNAA20 interactions. Anchoring 

of the αSyn peptide is mediated by protein hydrogen bonds with the backbone atoms of 

Met1 and Asp2 of αSyn. Hydrogen bonds are formed between the backbone N-H group 

of αSyn-Met1 and the backbone carbonyl group of hNAA20-Phe111, as well as the 

backbone carbonyl group of αSyn-Met1 with the sidechain of hNAA20-Tyr138. The 

backbone N-H and carbonyl of αSyn-Asp2 also form hydrogen bonds to the sidechain of 

Tyr27, and between the backbone carbonyl group of Asp2 and sidechain of hNAA20-

Tyr27 (Fig. 4.4D). Remarkably, hNAA20 contacts each of the first four N-terminal 

residue side chains of αSyn via van der Waals interactions.  The only side chain that 

forms a hydrogen bond with hNAA20 is αSyn-Asp2, which hydrogen bonds with a 

hNAA20-His73 ring nitrogen and the hNAA20-Thr75 side chain (Fig. 4.4D). The more 

extensive van der Waals interactions include the following: αSyn-Met1 interacts with 

hNAA20 residues Glu25, Phe27, Tyr56 and Ala76; αSyn-Asp2 interacts with hNAA20 

residues Try27, Thr75, His73, Phe111, and Tyr138; αSyn-Val3 interacts with hNAA20 

residues Tyr137 and Tyr138; and αSyn-Phe4 interacts with hNAA20 residues Glu25 and 

Als140. αSyn-Met5 does not appear to make specific interactions (Fig. 4.4D). Consistent 

with the importance of the residues that mediate αSyn binding, most of the residues are 

highly conserved from yeast to humans. 
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Figure 24.4 hNAA20 makes key CoA- and substrate peptide-interactions 

A. The structure of hNAA20 bound to the CoA- Syn conjugate bound is shown in 

cartoon, with corresponding secondary structures labeled. B. The fit of the CoA- Syn 
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conjugate ligand in the EM density map. The contour level is 4.0 sigma. C. Interaction 

between CoA- Syn conjugate and hNAA20 residues is generated with LIGPLOT 

(Laskowski and Swindells 2011). Hydrogen bonds are indicated by dashed green lines, 

and van der Waals interactions are indicated with red semicirlcles. D. Highlighted polar 

and hydrophobic interactions between CoA- Syn conjugate and the hNAA20 are 

depicted in 3D view.  

 

4.2.5 Mutational analysis identifies key residues for hNatB catalysis and cognate 

substrate binding 

To determine the functional importance of hNAA20 residues that appear to make 

important peptide or CoA substrate contacts in our model, we used an in vitro 

acetyltransferase assay to kinetically characterize WT and mutant hNatB proteins. Each 

mutant was purified to homogeneity and displayed identical gel filtration chromatography 

elution profiles (data not shown), indicating that they were all properly folded. We 

prepared alanine mutants of several residues involved in the CoA binding including 

Arg84, Arg85, Gly87 and Tyr123. Among them, R84A, R85A and G87A did not show 

significant defects in overall protein catalytic function (Table 4.1). However, a Y123A 

mutant nearly abolished protein activity, with a 95% loss of protein activity, affecting both 

kcat and Km (Table 4.1). To further interrogate the properties of this residue, we prepared 

a Y123F mutant which features a similar aromatic bulky side chain but not the polar p-

hydroxyl group. We observed that Y123F displayed a similar ~88% loss of kcat, but had a 

negligible effect on the peptide Km (Table 4.1). These data suggested that the Tyr123 

hydroxyl group is critical for catalysis but not required for substrate binding, while the 

aromatic ring of Tyr123 plays a role in peptide substrate binding. Given that the hydroxyl 
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group of Tyr123 is about 3.5 Å from the sulfur atom of the CoA- Syn conjugate and 6.3 

Å away from the αSyn N-terminus, it is in a position to play a role as a general base or 

acid for catalysis, potentially through an intervening water molecule (Fig. 4.5A). This is 

analogous to the proposed general base role of Tyr31 as a general base for hNAA50 

catalysis (Liszczak, Arnesen, and Marmorstein 2011) (See discussion).  

  We also prepared alanine substitutions for residues that appeared to play 

important roles in αSyn binding: Glu25, Tyr27, His73, Tyr137, Tyr138. We were 

surprised to find that mutations of hNatB residues that mediated backbone hydrogen 

bond interactions, Y27A and Y138A, had relatively modest effects on αSyn peptide NTA 

with Y27A showing ~2-fold higher Km and Y138A showing ~2-fold reduced Kcat, together 

suggesting that side chain contacts might dominate the binding energy (Table 4.1).  

Consistent with this, and our structural observations, we found that H73A produced a 

~90% reduction in activity (Table 4.1).  This correlates with the importance of the His73 

hydrogen bond and van der Waals contacts with αSyn-Asp2. Of note, other cognate 

hNatB side chain residues at position 2, Glu, Gln, and Asn would also be well positioned 

to form hydrogen bonds with His73. Together, hNAA20-His73 appears to play a critical 

role in cognate substrate recognition by hNatB.   

  hNatB-Asn116 is a highly conserved NatB residue that caps the hNAA20 4 

helix, which also harbors the putative catalytic residue, Tyr123, and is also in position to 

make a water-mediated hydrogen bond with to CoA pantetheine nitrogen (Fig. 4.5A). 

This observation suggests that Asn116 could play an important functional role. To test 

this, we prepared and evaluated an N116A mutant and, consistent with our hypothesis, 

Ans116, we found that this mutant leads to ~ 90% loss in activity (Table 4.1).  



127 

 

Taken together, our structural and mutational analysis of hNatB highlight the 

functional importance of hNatB-NAA20 residues His73, Asn116, and Tyr123 in hNatB-

mediated N-terminal acetylation.  While Tyr123 appears to play a critical catalytic role, 

potentially as a general base and/or acid for catalysis; His73 appears to play an 

important role in the recognition of substrate residue 2 and Asn116 likely plays a 

structural role (Fig. 4.5A). Each of these residues could employ a bridging water 

molecule to mediate their functional roles, although these putative water molecules are 

not visible at the current resolution of our structure.  
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Figure 25.5 Structural comparison between hNAA20 and hNAA50 

A. Bi-substrate inhibitor-bound hNAA20 (light orange) is shown superimposed with 

hNAA50 (grey, PDB: 3TFY). H73, N116, and Y123 (sticks), mediate important functional 

roles in hNatB catalysis. B. Residues forming the Met1 binding pocket of hNAA20 are 

depicted. C. Residues forming the Met1 binding pocket of hNAA50 are depicted.  
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4.3 Discussion 

Since the identification of hNatB more than a decade ago, many studies have 

shown that it N-terminally acetylates important proteins such as actin, tropomyosin, 

CDK2, and α-Synuclein, and its function has connections to diseases such as 

hepatocellular carcinoma and Parkinson disease (Spillantini et al. 1998; Polevoda et al. 

2003; Ametzazurra et al. 2008; Starheim et al. 2008; Halliday et al. 2011; Neri et al. 

2017). Despite its clear biological importance, hNatB-mediated NTA by hNatB remained 

poorly understood. Here, we developed a CoA-αSyn conjugate hNatB inhibitor, 

determined the Cryo-EM structure of CoA-αSyn inhibitor-bound hNatB, and carried out 

associated structure-guided mutagenesis and activity assays. This has led to the 

identification of functionally important differences with human NatA and C. albicans 

NatB. These studies have also provided evidence for important hNatB-specific elements 

responsible for αSyn recognition and N-terminal acetylation, providing direct implications 

for NatB recognition of other canonical substrate proteins. 

  Consistent with previous studies, we have demonstrated that hNatB acetylates 

a cognate “MD” N-terminus, and is unable to N-terminally acetylate non-cognate N-

termini that are substrates for other NATs such as NatA, NatC, NatE. We demonstrated 

for the first time that hNatB can acetylate an α-Syn peptide in vitro, directly linking hNatB 

to NTA of α-Syn. We have also demonstrated that αSyn peptides lacking the Met1 or 

both the Met1 and Asp2, do not serve as hNatB substrates, confirming the strict 

substrate specificity of hNatB. This is consistent with our structural model showing 

significant interactions between hNatB-NAA20 and both the first and second N-terminal 

residues of an αSyn peptide, with important but less extensive interactions with the third 
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and fourth residues.  This hierarchy of interactions likely explains how NatB enzymes 

can accommodate cognate substrates that diverge at positions three and four. 

  Here, we have presented hNatB-αSyn interactions that can be used to 

rationalize the substrate specificity of hNatB: N-terminal sequences containing “MD-”, 

“ME-”, “MN-”, and “MQ-”. αSyn-Met1 sits in a hydrophobic pocket that comfortably 

accommodates a methionine residue, whereas shorter side chains or longer polar or 

charged side chains would fit poorly (Fig. 4.5B-C). The nature of this binding pocket is 

similar to the described hNAA50 recognition of Met1 (Liszczak, Arnesen, and 

Marmorstein 2011) (Fig. 4.5B-C). Although both of hNAA50 and hNAA20 can N-

terminally acetylate peptides with Met at the first position, no overlapping activity has 

been observed. This can be rationalized based on the chemical properties of the second 

residue in the cognate peptide. We find that the αSyn-Asp2 sidechain forms hydrogen 

bonds with the hNAA20 side chains His73 and Thr75. These polar residues in the 

peptide binding site of hNAA20 would likely serve as poor acceptors of the largely 

hydrophobic residues targeted by hNAA50. The hNatB substrate client profile featuring 

D-, E-, N- or Q-residues in position two is consistent with the mechanisms of substrate 

recognition observed in the binding pocket for αSyn-Asp2. The aliphatic regions of each 

of these side chains (D, E, N, Q) would all benefit from the extensive hNatB van der 

Waals interactions surrounding the aliphatic region for αSyn-Asp2 (Tyr27, His73, Thr75, 

Phe111, and Tyr138).  This second residue would also form a hydrogen bond interaction 

with His73 and Thr75, which may accommodate the carboxyl side chains of both the 

shorter D- and N- and longer E- and Q- side chains.  Notably, His73 and Thr75 are 

strictly conserved from yeast to man (Fig. 4.5). In contrast, shorter polar or nonpolar side 

chains would less efficiently fill the pocket for residue two, while larger polar or charged 
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side chains would likely result in steric clashes. In agreement with this, we have 

demonstrated that H73A mutation has severe impact on hNatB catalysis (Table 4.1).   

  The hNatB/CoA-αSyn structure has implications for the mode of hNatB 

catalysis. While previous studies have suggested that hNAA50-Tyr31 plays an important 

role in catalysis, mutation of the corresponding hNaa20 residue, Tyr27, had minimal 

effects on hNatB kinetic parameters. Strikingly, our mutational analysis has identified the 

functional importance of hNatB-NAA20 residues His73, Asn116 and Tyr123, although 

Tyr123 is the only residue that is in position to play a catalytic role (Fig. 4.5A). 

Specifically, Tyr123 is in position to play a catalytic role, potentially as a general base 

and/or acid, through a bridging water molecule (although a water molecule is not visible 

at the current resolution). Interestingly, hNAA50 contains a tyrosine residue at the same 

position (hNAA50-Tyr124), although the mechanistic significance of this tyrosine residue 

has not yet been described (Liszczak, Arnesen, and Marmorstein 2011).  It would be of 

interest to determine if hNAA50-Tyr124 also plays an important catalytic role (possibly in 

combination with hNAA50-Tyr31), similar to the corresponding hNAA20-Tyr123 of 

hNatB. 

  The biological importance of hNatB and its connection to various disease 

processes highlights it as an important target for probe and inhibitor development. 

Indeed, a recent study highlights hNatB as a therapeutic target for aSyn toxicity 

(Vinueza-Gavilanes et al. 2020). Our development of a CoA-αSyn conjugate bisubstrate 

with an IC50 of ~ 1.6 µM represents a step in this direction, although the structural 

information provided here could further aid to the rational development of more drug-like 

hNatB inhibitors with possible therapeutic applications. 
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4.4 Materials and methods 

4.4.1 Protein expression and purification 

hNAA20 with a C-terminal truncation (1-163 out of 178 residues) and full-length 

hNAA25 were cloned into two separate insect cell expression vectors pFASTBac HTA. 

hNAA20 was untagged, while hNAA25 contained a Tobacco-etch virus (TEV)-cleavable 

N-terminal 6xHis-tag. Human NatB complex (hNAA201-163/hNAA25FL) was obtained by 

co-expressing these two plasmids in Sf9 (S. frugiperda) cells (ThermoFisher, cat# 

12659017), and purified as described previously (Gottlieb and Marmorstein 2018). Sf9 

cells were grown to a density of 1x106 cells/ml and infected using the amplified 

hNAA201-163/hNAA25FL baculovirus to an MOI (multiplicity of infection) of 1-2. The cells 

were grown at 27 °C and harvested for 48 hours post-infection by centrifugation. Cell 

pellets were resuspended in lysis buffer (25 mM Tris, pH 8.0, 300 mM NaCl, 10 mM 

Imidazole, 10 mM β-ME, 0.1 mg/mL PMSF, DNase, and complete, EDTA-free protease 

inhibitor tablet) and lysed by sonication. After centrifugation, the supernatant was 

isolated and passed over Ni-NTA resin (Thermo Scientific), which was subsequently 

washed with 10 column volumes of lysis buffer. Protein was eluted with a buffer with 25 

mM Tris, pH 8.0, 300 mM imidazole, 200 mM NaCl, 10 mM β-ME, which was dialyzed 

into buffer with 25 mM HEPES pH 7.5 50 mM NaCl 10 mM β-ME. Ion-exchange was 

carried out with an SP ion-exchange column (GE Healthcare) in dialysis buffer with a salt 

gradient (50-750 mM NaCl). Peak fractions were concentrated to ~ 0.5 mL with a 50-kDa 

concentrator (Amicon Ultra, Millipore), and loaded onto an S200 gel-filtration column (GE 

Healthcare) in a buffer with 25 mM HEPES, pH 7.5, 200 mM NaCl, and 1 mM TCEP. 

Proteins were aliquoted, snap-frozen in liquid nitrogen, and stored at −80 °C for further 

use. Protein harboring mutations were generated with the QuickChange protocol 
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(Stratagene) and obtained following the same expression and purification protocol as 

described for the wild-type protein.  

 

4.4.2 Acetyltransferase activity assays 

All acetyltransferase assays were carried out at room temperature in a reaction 

buffer containing 75 mM HEPES, pH 7.5, 120 mM NaCl, 1 mM DTT as described (Deng, 

McTiernan, et al. 2020; Deng et al. 2019). The “MDVF” peptide substrate was based on 

the first 7 amino acid of α-Synuclein (“MDVF” peptide: NH2-

MDVFMKGRWGRPVGRRRRP-COOH; “SASE” peptide: NH2-

SASEAGVRWGRPVGRRRRP-COOH; “MLGP” peptide: NH2-

MLGPEGGRWGRPVGRRRRP-COOH; “SGRG”/H4 peptide: NH2-SGRGKGGKG 

LGKGGAKRHR-COOH; “MLRF” peptide: NH2-ML    RFVTKRWGRPVGRRRRP-COOH; 

“DVFM” peptide: NH2- DVFMKGLRWGRPVGRRRRP-COOH; “VFMK” peptide: NH2- 

VFMKGLSRWGRPVGRRRRP -COOH; GenScript). Reactions were performed in 

triplicate. To determine steady-state catalytic parameters of hNatB with respect to acetyl-

CoA, 100 nM hNatB was mixed with a saturating concentration of “MDVF” peptide 

substrate (500 μM) and varying concentrations (1.95 μM to 1 mM) of acetyl-CoA (14C-

labeled, 4 mCi mmol−1; PerkinElmer Life Sciences) for 10-minute reactions. To 

determine steady-state catalytic parameters of hNatB with respect to peptide substrate, 

100 nM hNatB was mixed with saturating concentrations of acetyl- CoA (300 μM, 14C-

labeled) and varying concentrations of “MVDF” peptide (1.95 μM to 1 mM) for 10 

minutes. Reactions were quenched by adding the solution to P81 paper discs 

(Whatman). Unreacted acetyl-CoA was removed by washing the paper discs in buffer 
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with 10 mM HEPES, pH 7.5, at least three times, each 5 minutes. The paper discs were 

then dried with acetone and transferred to 4 mL scintillation fluid for signal measurement 

(Packard Tri-Carb 1500 liquid scintillation analyzer). Data was fitted to a Michaelis–

Menten equation in GraphPad Prism to calculate kinetic parameters. Kinetic parameters 

on mutants with respect to peptide were carried out in the same condition as for wild 

type, with 300 μM 14C labeled acetyl-CoA and varied peptide concentration (1.95 μM to 1 

mM). All radioactive count values were converted to molar units with a standard curve 

created with known concentrations of radioactive acetyl-CoA added to scintillation fluid. 

GraphPad Prism (version 5.01) was used for all data fitting to the Michaelis–Menten 

equation. For IC50 determination of the CoA-αSyn conjugate, 100 nM hNatB was mixed 

with 500 μM “MVDF” peptide and 300 μM 14C labeled acetyl-CoA, and inhibitor 

concentrations were varied (0.23 μM to 13.44 μM). Data were fit to a sigmoidal dose-

response curve with GraphPad Prism (version 5.01). Errors represent s.d. (n = 3). 

4.4.3 Cryo-EM data collection 

For initial sample screening, 0.6 mg/ml fresh hNatB sample with three-molar 

excess bisubstrate was used. hNatB particles on these grids exhibited a severe 

preferred orientation, which generated an incorrect 3D initial model (data not shown). To 

solve this issue, 1 μL of 0.05% NP-40 was mixed with 20 μL of hNatB (4 mg/mL). 3 μL of 

this sample was applied to glow-discharged Quantinfoil R1.2/1.3 holey carbon support 

grids, blotted and plunged into liquid ethane, using an FEI Vitrobot Mark IV. An FEI TF20 

was used for screening the grids and data collection was performed with a Titan Krios 

equipped with a K3 Summit direct detector (Gatan), at a magnification of 105,000 x, with 

defocus values from -0.1 to -2.0 µm. Each stack was exposed in super-resolution mode 
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with a total dose of 45 e-/Å2, resulting in 35 frames per stack. Image stacks were 

automatically collected with Latitude software (Gatan, Inc). 

4.4.4 Cryo-EM data processing 

Original image stacks were summed and corrected for drift and beam-induced 

motion at the micrograph level using MotionCor2 (Zheng et al. 2017), and binned 

twofold, resulting in a pixel size of 0.83 Å/pixel. Defocus estimation and the resolution 

range of each micrograph were performed with Gctf (Zhang 2016).  About 3000 particles 

were manually picked to generate several rough 2D classaverages. Representative 2D 

classes were used to automatically pick ~1,927,673 particles from 5281 micrographs in 

Relion 3.0 (Kimanius et al. 2016; Zivanov et al. 2018). All particles were extracted and 

binned to accelerate the 2D and 3D classification. After bad particles were removed by 

2D and 3D classification, 982, 420 particles were used for auto-refinement and per 

particle CTF refinement. After refinement, a mask was created in Relion with an initial 

binarization threshold of 0.005, covering the protein complex and extending the binary 

map and soft-edge by 12 pixels. The map was sharpened with the created mask by 

estimating B-factor automatically in Relion. The final map was refined to an overall 

resolution of 3.46 Å, with local resolution estimated by Resmap (Kucukelbir, Sigworth, 

and Tagare 2014). We attempted particle polishing on this data set, but this surprisingly 

resulted in artifactual density in the resulting map. We believe that this was due to some 

small defects in the K3 camera during data collection, which corrupted the particle 

polishing process. We therefore did not perform particle polishing on this data set. Raw 

micrographs were deposited in EMPIAR with access ID of EMPIAR-10477.                                         



136 

 

4.4.5 Cryo-EM model building and refinement 

The hNatB atomic model was manually built de novo using the program COOT 

(Emsley and Cowtan 2004) according to the Cryo-EM map, with the guidance of 

predicted secondary structure and bulky residues such as Phe, Tyr, Trp and Arg. The 

first two alpha helices of hNAA25 were built as poly-alanine, due to the lack of tracible 

density in the 3D map. The complete model was then refined by real-space refinement in 

PHENIX (Adams et al. 2010).  All representations of Cryo-EM density and structural 

models were performed with Chimera (Pettersen et al. 2004) and PyMol 

(https://pymol.org/2/). The sequence alignments with secondary structure display were 

created by ESPript 3.0 (Robert and Gouet 2014b). hNAA25 TPR predictions were 

performed using the TPRpred server (Karpenahalli, Lupas, and Söding 2007; 

Zimmermann et al. 2018) (https://toolkit.tuebingen.mpg.de/#/tools/tprpred). The surface 

area calculation was performed using PDBePISA (Krissinel and Henrick 2007) (Proteins, 

Interfaces, Structures and Assemblies) (http://www.ebi.ac.uk/pdbe/pisa/).  
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CHAPTER 5: Molecular Mechanism of N-terminal Acetylation by the Ternary NatC 

Complex 

 

 

 

 

 

 

 

 

 

 

This work is adapted from bioRxiv preprint (Deng et al. 2021)  
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5.1 Introduction 

Substrate recognition by eukaryotic NATs is usually dictated by the first few 

residues of the substrate via the active site structure (Liszczak et al. 2013; Hong et al. 

2017; Magin, Liszczak, and Marmorstein 2015; Stove et al. 2016; Goris et al. 2018; 

Deng et al. 2019; Deng and Marmorstein 2021; Deng, Pan, et al. 2020). The active site 

of NatA contains a relatively small binding pocket to accommodate a small, uncharged 

residue at position 1 such as alanine, valine or threonine residues that remains following 

initiator methionine (iMet) - cleavage (Liszczak et al. 2013). NatB has a hydrophobic 

pocket for a retained iMet and uses a histidine residue to recognize sequences with 

D/E/N/Q at position 2 via hydrogen bonding (Arnesen et al. 2009; Deng and Marmorstein 

2021). Interestingly, NatC and NatE share similar and relatively versatile substrate 

profiles toward substrates containing a retained iMet followed by residues other than 

D/E/N/Q (Van Damme et al. 2016a; Arnesen et al. 2009). NatD is a highly selective 

enzyme with histones H4 and H2A as its only known substrates (Hole et al. 2011; Song 

et al. 2003), arising from extensive and specific interactions with each of the first four 

residues of its substrate (Magin, Liszczak, and Marmorstein 2015). Although NATs vary 

in terms of their modes of substrate recognition, their mechanism of catalysis usually 

involves the use of dedicated residues to serve as general base and acid residues 

(Deng and Marmorstein 2021). 

The activity of some NATs is further regulated by other protein modulators. For 

example, within the human NatE complex, there is catalytic crosstalk between the two 

NAA10 and NAA50 catalytic subunits (Deng et al. 2019). Moreover, the activities of both 

NatA and NatE are inhibited to a different extent by a small protein binding partner called 

Huntingtin-interacting protein K (HYPK) (Deng, McTiernan, et al. 2020; Gottlieb and 
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Marmorstein 2018; Weyer et al. 2017; Arnesen et al. 2010). Inositol hexaphosphate (IP6, 

also named inositol hexaphosphate or phytic acid), a small molecule, usually reserved 

for cellular signaling, appears to act as a stabilizing ligand for both NatA and NatE, by 

binding in a pocket between NAA15 and NAA10, and, thus, plays an indirect role in 

promoting NatA and NatE acetylation activity (Gottlieb and Marmorstein 2018; Deng, 

McTiernan, et al. 2020; Deng et al. 2019; Cheng et al. 2019). 

NatC is distinct from other NATs since it contains two eukaryotic conserved 

auxiliary subunits – Naa38 and Naa35 – that act together with the Naa30 catalytic 

subunit (Polevoda and Sherman 2001; Ochaya et al. 2019; Starheim et al. 2009). Initial 

studies reported that NatC activity requires the interaction of all three subunits, since 

knock out of any single subunit produced a similar phenotype in yeast that was 

accompanied by diminished N-terminal acetylation of a cognate N-terminal substrate, 

MIRLK- (Polevoda and Sherman 2001). However, it was subsequently reported that the 

Naa38 subunit is not required for in vivo acetylation of an Arl3p substrate with an N-

terminal protein sequence of MPHLV- (Setty et al. 2004a). In plants, knockout of 

AtNAA35 did not lead to similar phenotypic effects as the deletion of AtNAA30 (Pesaresi 

et al. 2003), and the single subunit of the A. thaliana analogue AtNAA30 can rescue the 

knockout of yeast NatC complex subunits (Pesaresi et al. 2003). Similarly, recombinant 

human NAA30 (hMak3) was shown to have substrate-specific acetylation activity, even 

in the absence of its auxiliary subunits (Starheim et al. 2009). Thus, the functional roles 

of the NatC auxiliary subunits are not clear, particularly with respect to Naa38, which is 

not well-conserved across species. Although the recently reported crystal structures and 

associated biochemical studies of S. cerevisiae NatC (ScNatC) by Grunwald et al. have 

provided some important insights into NatC substrate specificity and its catalytic 
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mechanism (Grunwald et al. 2020), several questions remain unanswered. In particular, 

those regarding the mechanisms dictating the overlapping yet distinct substrate profiles 

of NatC and NatE and the influence of IP6 on NatC. 

In this study, we report that yeast NatC complex formation of all three subunits is 

a prerequisite for normal NatC acetylation activity and that, like NatA and NatE, IP6 binds 

tightly to and stabilizes NatC. We also report the Cryo-EM structure of ~100 kDa S. 

pombe NatC (SpNatC) bound to a NatE/C-type bisubstrate analogue and IP6, with 

related biochemistry, to reveal the molecular basis for IP6-mediated stabilization of the 

complex and the similar substrate profiles of NatE and NatC. Comparison of these 

studies with the recently published structural and functional studies of the ScNatC 

complex (Grunwald et al. 2020) reveal evolutionarily conserved and divergent features of 

NatC. 

5.2 Results 

5.2.1 NAA38 is required for normal NatC acetylation activity in yeast 

We found that overexpression of the SpNatC complex containing full-length 

SpNaa30 (residues 1–150), N-terminally truncated SpNaa35 (residues 31–708, with 

deletion of divergent residues, 1-30) and SpNaa38 (residues 48-116, with deletion of 

divergent residues, 1-47) in E. coli produced soluble protein that could be purified to 

homogeneity (Figure 5.1a). To evaluate the activity of the recombinant ternary SpNatC, 

we used an in-vitro acetyltransferase activity assay with different peptide substrates. 

Consistent with previous studies, the recombinant SpNatC is active toward both its own 

canonical substrate - “MLRF peptide” and the canonical NatE substrate – “MLGP 

peptide”, but with preference for the “MLRF peptide” (Grunwald et al. 2020) (Figure 
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5.1b, see methods section for full peptide sequences). To investigate the catalytic roles 

of Naa38, we could readily purify both binary (ScNaa301-161 and ScNaa3519-733) and 

ternary ScNatC complexes (ScNaa301-161 and ScNaa3519-733, and ScNaa381-70) from 

Saccharomyces cerevisiae to compare their activities. Consistent with the studies by 

Grunwald et al (Grunwald et al. 2020), evaluation of the activities of the binary and 

ternary ScNatC complexes toward the canonical NatC substrate (MLRF peptide) 

revealed that the ternary complex showed robust activity, while the binary complex 

showed compromised activity (Figure 5.1b). Thus, it appears that Naa38 is required for 

optimal NatC activity in yeast.   

5.2.2 Inositol hexaphosphate (IP6) binding contributes to yeast NatC complex stability 

Earlier reports demonstrated that IP6 interacts with and stabilizes both the yeast 

and human NatA and NatE complexes (Deng, McTiernan, et al. 2020; Deng et al. 2019; 

Gottlieb and Marmorstein 2018; Cheng et al. 2019), but does not appear to interact with 

human NatB (Deng, Pan, et al. 2020). To determine if IP6 could bind to the recombinant 

NatC complex, we employed isothermal titration calorimetry (ITC). We found that IP6 

binds to SpNatC with a Kd of ~225 nM (with a stoichiometry of ~1) (Figure 5.1c), similar 

to its Kd value for yeast NatA (Deng et al. 2019). Differential scanning fluorimetry (DSF) 

was used to evaluate a potential role of IP6 binding in NatC complex stability. We found 

that addition of IP6 increased the thermal stability of ternary SpNatC, binary ScNatC, and 

ternary ScNatC, by ~4.9°C, 2.7°C, and 2.1°C, respectively. Thus, IP6 can provide 

additional thermal stability to the yeast NatC complexes (Figure 5.1d). 
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Figure 26.1 Binary NatC displays deficiency in acetylation activity and inositol 

hexaphosphate (IP6) binding stabilizes NatC complex formation 

(a) Gel filtration elution profile of the ternary SpNatC complex using a Superdex S200 

column. Coomassie-stained SDS–PAGE of elution peak is shown in the box, with bands 

for corresponding SpNatC subunits labeled. (b) Comparison of SpNatC activity toward 

different peptide substrates. The activities shown in gray are normalized to the activity of 

SpNatC toward MLRF peptide. The pink and blue columns show the activity of binary 

and ternary ScNatC toward the MLRF peptide, respectively, and are normalized to the 

pink column. Errors are shown in SEM with n = 3. (c) Representative isothermal titration 

calorimetry (ITC) curve of IP6 titrated into SpNatC. The ITC fitting information is N = 

0.830 ± 0.00943 sites, ΔH = -1.091x104 ± 177.0 cal mol-1, ΔS = -6.79 cal mol-1 deg-1. (d) 



143 

 

Differential scanning fluorimetry assays of NatC alone or with IP6. Average calculated 

melting temperature transitions are indicated. Error bars in the figure indicate the SD of 

each sample, n = 3. 

 

5.2.3 NatC adopts a distinct NAT architecture 

In order to understand the molecular details underlying the ternary NatC 

complex, its overlapping yet distinct substrate specificity with NatE, and the mode of IP6 

stabilization, we performed single particle Cryo-EM analysis using ternary SpNatC 

prepared in the presence of the CoA-Ac-MLGP bisubstrate conjugate and IP6. The 

MLGP sequence was selected for synthesis of the conjugate inhibitor as it is a predicted 

substrate for both NatC and NatE. A 3.16 Å-resolution Cryo-EM three-dimensional (3D) 

map was determined from 607,131 particles, which were selected from 5,397 raw 

electron micrographs (Figure 5.2). Most areas of the EM map contained excellent 

sidechain density, with a local resolution of ~3 Å, suggesting the relative rigidity of the 

recombinant complex (Figure 5.2 and 5.3). The atomic model was built de novo based 

on the EM map and details for the model refinement statistics can be found in Table 5.1 

(Figure 5.3). 

The ternary SpNatC complex contains three proteins, the catalytic Naa30 

subunit, the large auxiliary Naa35 subunit, and the small auxiliary Naa38 subunit. Upon 

superficial inspection of the complex, it appears as though it is only formed by two 

proteins, as Naa38 is embedded within the Naa35 fold to form a “composite” auxiliary 

subunit (Figure 5.4a and 5.4b). While Naa30 displays a canonical NAT fold with mixed 

α/β secondary structure, the Naa35/38 complex forms a clamp that pinches Naa30 on 
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opposite sides. This clamp-like structure is distinct from the architecture of the large 

auxiliary subunits of NatA and NatB, which surround the base of their respective catalytic 

subunits (Gottlieb and Marmorstein 2018; Liszczak et al. 2013; Hong et al. 2017; Deng, 

Pan, et al. 2020). The Naa35 architecture is mostly helical, with 25 helices, three short β-

strands in its N-terminal region and a single β-hairpin at its C-terminal region that are 

unique to the NatC complex (Figure 5.4b). Naa38 adopts an Sm-like fold, with an N-

terminal α-helix, followed by a sharply bent β-sheet consisting of 5 five antiparallel β-

strands (Figure 5.4b). The Naa35/Naa38 clamp contains α4-α13 from Naa35 at its 

base, and α14-α25 and the C-terminal β-hairpin of Naa35 flanking one side of Naa30. 

The opposing side of Naa30 is flanked by a composite of the N-terminal end of Naa35 

(a2, a3, b1-b3) and the entirety of Naa38 (Figure 5.4a and 5.4b). Consistent with the 

composite nature of the Naa35-Naa38 interaction, the buried surface area between 

Naa38 and Naa35 is ~1925 Å2, which is notably higher than the area buried between 

Naa30 and Naa35 (~1735 Å2), and between Naa30 and Naa38 (~197 Å2). 
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Table 8.1 Cryo-EM data collection, refinement and validation statistics 

 SpNatC with Bisubstrate and IP6 
EMD-23110 
PDB: 7L1K 

Data collection and processing 

Magnification 105,000 

Voltage (keV) 300 

Electron exposure (e/Å2) 42 

Defocus range (μm) -1.0 to -3.0  

Pixel size (Å) 0.84 

Symmetry imposed C1 

Initial particles (no.) 1,860,276 

Final particles (no.) 607,131 

Map resolution (Å) 3.16 

FSC threshold 0.143 

Map resolution range (Å) 2.5-3.5 

Refinement 

Initial model used (PDB code) - 

Model resolution (Å) 3.4 

FSC threshold 0.5 

Model resolution range (Å) - 

Map sharpening B factor (Å2) 159.1 

Model composition  

Non-hydrogen atoms 7216 

Protein residues 883 

Ligands 2 

B factors (Å2) 

Protein 26.97/110.48/71.91 

Ligand 86.46/102.51/93.10 

R.M.S. deviations 

Bonds lengths (Å) 0.006 

Bond angles (°)  1.036 

Validation 

MolProbity score  1.76 

Clash score 4.10 

Poor rotamers (%) 0.38 

Ramachandran plot 

Favored (%) 89.55 

Allowed (%) 10.22 

Disallowed (%) 0.23 
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Figure 27.2 Cryo-EM workflow and resolution of SpNatC EM map 

(a) 2D and 3D classification scheme and workflow for SpNatC EM map determination. 

(b) Local resolution of the final SpNatC EM map. (c) Viewing direction distribution of 

SpNatC final EM map 3D reconstruction generated by cryoSPARC v2. (d) Gold standard 
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Fourier Shell Correlation (FSC) curves of SpNatC EM map 3D reconstruction, generated 

by cryoSPARC v2. 

 

Figure 28.3 Correlation between Cryo-EM map of SpNatC EM and its atomic model 

 (a) Atomic model of SpNatC fitted into the Cryo-EM map. (b) FSC curves of the refined 

model versus the overall map that it was refined against (black); of the model refined in 

the first of the two independent maps used for the gold-standard FSC versus the same 
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map (green); and of the model refined in the first of the two independent maps versus 

the second independent map (orange). (c) The fit of several helical segments or β-

strands from all three subunits of NatC in the EM density. The contour level is 5 sigma. 



149 

 

 



150 

 

Figure 29.4 Overall structure of SpNatC reveals intimate interactions among all 

subunits 

(a) NAA30 (bright orange), NAA38 (deep purple) and NAA35 (lime green) are shown in 

transparent surface and cartoon, with the boxed area labeled. (b) The CoA-MLGP 

bisubstrate conjugate and inositol hexaphosphate (IP6) is shown in sticks and colored in 

blue. (c) Zoom-in view of the first sub-interface between NAA38 and NAA35. Hydrogen 

bonds are indicated by dashed black lines. For simplicity, only some of the hydrophobic 

interactions are shown. (d) Zoom-in view of the second sub-interface between NAA38 

and NAA35. (e) Zoom-in view of the third sub-interface between NAA38 and NAA35, 

which also involves some residues from NAA30 (light orange). (f) Zoom-in view of the 

interface between NAA35 and NAA30 α1-α2 segment. (g) Zoom-in view of the interface 

between NAA35 and NAA30 β6-β7 segment. (h) Zoom-in view depicting key residues 

involved in interactions with IP6. The lower left shows the fit of the IP6 in the EM density 

map. The contour level is 5.0 sigma. 

 

 



151 

 

5.2.4 NAA38 plays a key role in the NatC complex 

The structure of SpNatC was consistent with our biochemical data suggesting 

that Naa38 plays important structural and functional roles within the NatC complex. A 

more detailed view of the Naa35-Naa38 interface reveals that it is nucleated by the 

formation of three anti-parallel β-sheets between Naa35 and Naa38, resulting in 

extensive hydrogen bonding and van der Waals interactions, which also involve the a2 

and a3 helices of Naa35. These interactions can roughly be divided into three regions 

according to the relative position of the β-sheets (Figure 5.4). 

The first sub-interface involves the Naa35 β1-α2 segment (Figure 5.4c). 

Hydrogen bonds are formed between the backbone nitrogen of Naa35-Ala35 and the 

backbone carbonyl of Naa38-Ala116, the backbone carbonyl of Naa35-Val38 and the 

backbone nitrogen of Naa38-Val114, the sidechains of Naa35-Asp39 and of Naa38-

Ser113, the sidechain of Naa35-Thr41 and the backbone nitrogen of Naa38-Phe112, 

and the backbone carbonyl of Naa35-Leu51 and the sidechain of Naa38-Arg79. This 

region also features a large area of van der Waals interactions involving residues Ala35, 

Gly36, Tyr37, Tyr44, Phe45, Ala47, and Thr48 from Naa35 and residues Gly48, Leu52, 

Trp55, His 61, Ile71, Thr77, Asp78, Ile109, Arg115, and Ala116 from Naa38. 

The second sub-interface is mediated by Naa35-β3 and α12 (Figure 5.4d). 

Hydrogen bonds are formed between the backbone nitrogen of Naa35-Phe71 and the 

backbone carbonyl of Naa38-Leu101, the backbone carbonyl of Naa35-Phe71 and the 

backbone nitrogen of Naa38-Leu103, the sidechains of Naa35-Asp79 and Naa38-Arg68, 

the sidechains of Naa35-Ser80 and Naa38-Arg97, and the backbone carbonyl of Naa35-

Gln296 and the sidechain of Naa38-Arg97. Residues involved in van der Waals 
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interactions include Ala70, Glu72, Ile73, Met74, Tyr84, Ala 297, Gln 298, Val30, and 

Ala301, from Naa35, and residues Phe95, Ala98, Leu99, Val102, Ile104, Pro105, and 

His108 from Naa38. 

The third sub-interface is mediated by Naa35-β2 but also involves extensive 

interactions with the catalytic Naa30 subunit (Figure 5.4e). The hydrogen bonds 

between Naa35 and Naa38 are formed between the sidechains of Naa35-Asp59 and 

Naa38-Asn57, the backbone nitrogen of Naa35-Val57 and the backbone carbonyl of 

Naa38-Thr77, and the backbone carbonyl of Naa35-Val57 and the backbone nitrogen of 

Naa38-Thr77. Naa38 engages with the α2 helix of the Naa30 subunit to form an 

extensive hydrogen bonding network via the Naa30-Tyr30 sidechain to the backbone 

carbonyl of Naa38-Ala82, and the sidechains of Naa38-Cys76 and Asp78; the sidechain 

of Naa30-Lys29 hydrogen bonds to the sidechains of Naa38-Asp78 and Glu80; and 

between the sidechains of Naa30-Arg33 and Naa38-Asp78. As the a1-a2 loop of Naa30 

plays a key role in protein N-terminal substrate recognition, these Naa38-Naa30 

interactions likely play a key role in substrate recognition by NatC (see discussion). 

Finally, the Naa30-a2 helix also interacts with Naa35 where Naa35-Glu54 forms 

hydrogen bonds with Naa30-Arg33 and His37. Within this sub-interface, the hydrophobic 

interactions are primarily mediated by residues Glu49, Leu52, Leu56, Leu75, Cys76, 

Asp78, and Ile84 from Naa38 and residues Leu56, Cys58, Asp59 and Phe62 from 

Naa35. Taken together, it appears that Naa38 plays key structural and, likely, functional 

roles in NatC. 
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5.2.5 The substrate binding α1-α2 loop and β6-β7 segments of NAA30 are buried within 

NAA35 

Naa30 uses its α1-α2 loop (Figure 5.4f) and β6-β7 segments to interact with 

Naa35 (Figure 5.4g). Analogous segments in the NatA and NatB complexes are used 

for N-terminal substrate recognition. In these complexes, however, the β6-β7 segment is 

exposed to solvent (Gottlieb and Marmorstein 2018; Liszczak et al. 2013; Deng, Pan, et 

al. 2020; Hong et al. 2017). By contrast, this interaction between Naa30 and Naa35 is 

facilitated by hydrogen bonds between the Naa30 α1-α2 loop and Naa35 α3-β3 

segment: the sidechain of Naa30-Ser28 and the backbone carbonyl of Naa35-Ala70; 

between the sidechains of Naa30-Gln20 and Naa35-Glu75; and the backbone carbonyl 

of Naa30-Gln20 and the sidechain of Naa35-Lys77. 

Notably, the interactions between Naa30 β6-β7 and Naa35 are significantly more 

extensive than those found in the NatA and NatB complexes (Figure 5.4g). Here, 

hydrogen bonds are formed between the sidechain of Naa30-Glu122 and the sidechains 

of Naa35-Gln507 and Tyr509, the sidechain of Naa30-Arg128 and the backbone 

carbonyl of Naa35-Lys504, the backbone carbonyl of Naa30-Tyr129 and the sidechain 

of Naa35-Arg446, the sidechain of Naa30-Arg131 and the backbone carbonyl of Naa35-

Gln503, the sidechain of Naa30-Arg134 and the backbone carbonyls of both Naa35-

Glu186 and Asp187, the backbone carbonyl of Naa30-Tyr136 and the sidechain of 

Naa35-Arg306, and the sidechains of Naa30-Tyr148 and Naa35-Arg597. Van der Waals 

interactions are observed between residues Cys127, Leu132, Tyr133, Leu137, Asn138, 

Phe143, Ile146, and Tyr148 from Naa30, and residues Ile308, Asn441, Cys443, Leu505, 

Phe581, Ser590, Tyr591, and Ala594 from Naa35. Together, it appears that the Naa35 
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auxiliary subunit makes extensive contacts with the protein N-terminal substrate binding 

loops of Naa30 to influence substrate recognition. 

 

5.2.6 IP6 is bound to the interface between NAA30 and NAA35 in close proximity to the 

peptide substrate binding site 

EM density corresponding to a bound IP6 molecule is well-resolved, revealing a 

IP6 binding pocket at the interface between the Naa30 and Naa35 subunits (Figure 

5.4h). Notably, the IP6 binding region is distinct from its binding sites in the NatA and 

NatE complexes (Deng, McTiernan, et al. 2020; Deng et al. 2019; Gottlieb and 

Marmorstein 2018). In SpNatC, IP6 engages in polar interactions with Naa30 residues 

His63, Arg64, Arg69, Tyr129, Lys130, and Arg144, and Naa35 residues Arg444, Arg447, 

and Asn451. Interestingly, although the IP6 binding pocket of NatC features a similar 

chemical environment to the one found in the NatA and NatE complexes, the location in 

the architecture of these NAT complexes differs. In NatC, IP6 is located close (~8 Å) to 

the peptide substrate entrance site, while the pocket found in NatA and NatE is close to 

the Ac-CoA entrance site (Figure 5.5). Therefore, the NatC-bound IP6 molecule could be 

in position to impact NatC activity. To evaluate this possibility, we assayed the effects of 

IP6 on NatC activity and found that IP6 had a relatively modest inhibitory effect on NatC 

activity, comparable to its similar modest inhibitory activity on SpNatA and hNatB 

(Figure 5.6).  While we cannot exclude the possibility that this modest inhibitor activity is 

an artifact of the effect of IP6 on the radioactive activity, it appears that IP6 plays a 

predominantly structural role in NatC.  
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Figure 30.5 Comparison of NatC with Nat and NatB reveals divergent NatC 

architecture 

The auxiliary subunits are shown as transparent surface in grey or brown, while the 

catalytic subunits are shown as cartoon in light pink (catalytic subunits are aligned in the 

same orientation). The blue spheres, cyan spheres, and magenta sticks represent Ac-

CoA, peptide substrate, and IP6, respectively. The highlighted green loops shown are 

α1-α2 and β6-β7 substrate binding loops of the catalytic subunits. The PDB models for 

generating this figure: HsNatA with IP6, PDB: 6C9M (the bisubstrate shown is aligned 

from SpNatA, PDB:4KVM); HsNatB with the bisubstrate analogue, PDB: 6VP9; model of 

SpNatC with the bisubstrate analogue and IP6, PDB: 7L1K. As NatE is a complex with 

dual catalytic subunits and shares the same auxiliary subunit with NatA, for simplicity, it 

is not compared in this figure. 
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Figure 31.6 The activity impacts of IP6 on selective NATs  

50 nM of either SpNatC, SpNatA, and hNatB was mixed with 2 µM or no IP6 for 

measuring production formation. Data was normalized to NATs activity without IP6. Error 

bars indicates Mean with SEM, n=3. 
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5.2.7 NatC displays significant differences with NatA, NatE, and NatB 

Overall, there are three notable differences between NatC and the other multi-

subunit NATs – NatA, NatE and NatB. First, the auxiliary subunits of NatA, NatE and 

NatB contain only helical secondary structure, forming 10-13 conserved tetratricopeptide 

repeat (TPR) motifs (Gottlieb and Marmorstein 2018; Liszczak et al. 2013; Hong et al. 

2017; Deng, Pan, et al. 2020; Deng, McTiernan, et al. 2020; Deng et al. 2019). In 

contrast, the NatC auxiliary subunits (Naa35 and Naa38) do not contain TPR repeats 

and but do contain several beta strands that make key interactions in the complex 

(Figure 5.4b). Secondly, the auxiliary subunits of NatA, NatE, and NatB form a closed 

ring-like cradle to completely wrap around their corresponding catalytic subunit. In 

contrast, NatC auxiliary subunits arrange themselves into a clamp-like structure to only 

wrap roughly half-way around the Naa30 catalytic subunit (Figure 5.5). Thirdly, the 

Naa30 β6-β7 peptide substrate recognition loop is buried within the auxiliary subunit, 

while the corresponding loops in NatA, NatE, and NatB are largely exposed to solvent 

(Figure 5.5). Thus, the relative orientation of the catalytic subunit to the auxiliary subunit 

(s) is different in NatC relative to NatA and NatB. In turn, this has implications in altering 

the NatC substrate binding mode: the NatC substrate binding tunnel is roughly 

perpendicular to the Naa30-Naa35 interface, while the substrate binding tunnel of NatA, 

NatE, and NatB is parallel to the catalytic-auxiliary subunit-interface (Figure 5.5). Taken 

together, the NatC complex forms an architecture that is distinct from other multi-subunit 

NATs. 
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5.2.8 Substrate recognition by NAA30 shows similarity to NAA50 

Overall, Naa30 displays a typical NAT fold containing four α-helices and seven β-

strands with similar substrate binding modes: Ac-CoA enters the catalytic active site 

through a groove formed by α3 and α4 of the catalytic subunit, while the peptide 

substrate enters the active site on the opposite side of the catalytic subunit flanked by 

the α1–α2 and β6-β7 peptide substrate binding loops (Deng and Marmorstein 2021) 

(Figure 5.7a and 5.7b). In the Cryo-EM map, density for the CoA-Ac-MLGP conjugate 

bisubstrate is well-resolved, allowing us to confidently model both the CoA portion and 

all four residues of the peptide portion (Figure 5.7c). 

Naa30 harbors a conserved Ac-CoA binding motif R82XXG85XA87 where Ac-CoA 

binding is mediated by a series of hydrogen bonds, mainly to the pyrophosphate group. 

Specifically, the sidechains of Arg82, Ser119, Arg123 and backbone atoms from Ile77, 

Gly85, Ile86, and Ala87 contribute to Ac-CoA hydrogen bonding (Figure 5.7d). 

In our NatC model, Naa30 binds the peptide substrate mainly through peptide 

backbone hydrogen bonding and hydrophobic pockets for the sidechains of the first two 

peptide residues. Direct hydrogen bonds are formed between the backbone amide 

groups of the peptide residues 1 and 2 to Naa30 residues Tyr27, Glu109, Thr110, 

Tyr121, and Tyr136 (Figure 5.7d). The binding pocket for the peptide Met1 is 

surrounded by residues Leu23, Ser24, Glu25, Glu111, and Tyr136 (Figure 5.7e), while 

the binding pocket for peptide Leu2 is half-open and surrounded by Tyr27, Val31, Tyr34, 

Phe35, Lys59, Tyr71, and Met74 (Figure 5.7f). Beyond the first two residues, there are 

no direct contacts between the peptide substrate and Naa30, with the exception of 

distant contacts between the backbones of peptide Gly3 and peptide Pro4 with Naa30-
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Tyr135 (4-4.5 Å) and Naa30-Glu25 (~4 Å), respectively. These two Naa30 residues likely 

play a role in recognizing positions 3 and 4 of high-affinity NatC peptide substrates, as 

supported by the recent report by Grunwald et al. (Grunwald et al. 2020) 

Previous studies have described the overlapping substrate profile of NatC and 

NAA50. Since our NatC model contains the canonical NatE (NAA50)-type peptide 

substrate (Met2-Leu2-Gly3-Pro4) in the bisubstrate inhibitor, we were able to evaluate 

this relationship by visual inspection of the inhibitor-bound SpNaa30 subunit from the 

model. The SpNaa30 model aligns well with the HsNAA50 structure (PDB: 3TFY) bound 

to the same MLGP peptide fragment, with a root-mean-square deviation (RMSD) of 1.23 

Å (over 105 common Cα atoms) (Figure 5.7b). A more detailed view of the peptide 

substrate binding site reveals that Met1 sits in similar binding pockets in both structures 

(Figure 5.7e), consistent with their high specificity for Met1. Specificity for Leu at 

position 2 is also similar. Notably, residues NatC-Tyr27 and Tyr71, which are 

responsible for Leu2 backbone recognition align well with the corresponding residues in 

NAA50 (Figure 5.7f). For Leu2 sidechain recognition, the residues, Naa30-Val31 and 

Lys59 are replaced by bulkier residues, NAA50-Phe35 and Arg62 (Figure 5.7f), 

respectively. However, Naa30-Phe35, Ala73 and Met74 are replaced by NAA50-Phe35, 

Met75 and Thr76 (Figure 5.7f), perhaps explaining the greater tolerance of NAA50 for 

other residues at position 2. In both models, the peptide substrates begin to diverge from 

the architecture of their respective models at residue 3, where the Ca atoms of the 

corresponding peptide Gly3 residues of both models are ~3 Å apart. This also seems to 

be correlated with a shift in the p-hydroxyl group of a nearby conserved Tyr residue 

(Naa30-Tyr135 and NAA50-Tyr138) by about 2.5 Å (Figure 5.7g). The corresponding 

peptide Pro4 residues also point in different directions (Figure 5.7g). We propose that 
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these differences in peptide substrate positioning beyond residue 2 is mediated by the 

different active site environments of Naa30 and NAA50 in this region, thus allowing 

these two enzymes to harbor varying activities toward substrates with the same residues 

at positions 1 and 2 but differing residues at position 3 and beyond (See discussion). 

Taken together, this comparison explains the overlapping yet distinct substrate profiles 

of NatC and NatE. 
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Figure 32.7 Substrate recognition by NAA30 is similar to NAA50 

(a) The sequence alignment of NAA30 orthologs from Schizosaccharomyces pombe 

(Sp), Saccharomyces cerevisiae (Sc), Arabidopsis thaliana (At), Drosophila 

melanogaster (Dm), and Homo sapiens (Hs). Numbering and secondary structure 

elements for NAA30 are indicated above the sequence alignment. Residues of NAA30 

that contact the peptide backbone (✵), CoA (❆), Met1 (✧), Leu2 (⦾), NAA38 (⦿), IP6 

(✽), and catalytic residues (✚) are indicated. (b) Structural alignment of SpNAA30 

(bright orange) with HsNAA50 (cyan), with secondary structure elements indicated. (c) 

The fit of the bi-substrate inhibitor in the EM density map. The contour level is 5.0 sigma. 

(d) Highlighted polar and hydrophobic interactions between CoA-Ac-MLGP and NAA30 

are depicted in the 3D view. (e) Residues forming a hydrophobic pocket surrounding the 

substrate peptide Met1 side chain are shown in sticks (Orange, SpNAA30; Cyan, 

HsNAA50). (f) Residues forming a hydrophobic pocket surrounding the substrate 

peptide Leu2 side chain are shown in sticks. (Orange, SpNAA30; Cyan, HsNAA50). (g) 

Residues proposed as catalytic residues are shown in sticks. (Orange, SpNAA30, E109 

and Y121; Cyan, HsNAA50, Y73 and H112). 

 

5.2.9 Mutational analysis reveals that NAA30 Tyr-121 and Glu-109 play key catalytic 

roles 

In order to evaluate key Naa30 residues identified in our model and their 

functional roles in substrate binding and catalysis, we used a radioactive in vitro 

acetyltransferase activity assay in conjunction with the MLRF peptide as the peptide 

substrate to kinetically characterize WT and mutant SpNatC proteins. Each mutant was 
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purified to homogeneity and displayed identical gel filtration chromatography elution 

profiles (data not shown), consistent with their native folding and complex formation. 

Consistent with our structural observations, mutation of a majority of residues involved in 

peptide substrate recognition resulted in an increase in Km (Table 5.2). As the “YY motif” 

is shown to be conserved in most NATs (Stove et al. 2016) (except NatD/NAA40), single 

mutation of either Naa30-Tyr135 or Tyr136 to an alanine resulted in a significant loss in 

activity, with the Y136A mutant displaying almost no detectable activity. In previous 

studies, NAA50 residues Tyr73 and His112 were proposed to contribute to catalysis 

(Liszczak, Arnesen, and Marmorstein 2011). The corresponding residues in Naa30, 

Tyr71 and Glu109, however, had an unexpected effect on catalysis. Instead, Naa30-

Y71A or Y71F primarily altered the Km, which ultimately resulted in a minor decrease 

(12-67%) in catalytic efficiency in comparison with WT. On the other hand, mutation of 

Naa30-Glu109 to either alanine or glutamine led to >90% loss of catalytic efficiency, 

impacting both Km and kcat. NAA50-Tyr124 and hNatB-Tyr123 were recently proposed to 

play analogous catalytic roles (Deng, Pan, et al. 2020), and the corresponding mutation 

of Naa30-Tyr121 to alanine demonstrated that NatC activity was almost completely 

abolished (Table 5.2). While Glu109 is positioned to function as a general base to 

deprotonate the a-amino group of the peptide substrate, Tyr121 is positioned to function 

as a general acid to re-protonate the CoA leaving group. This is consistent with the 

proposed roles of the analogous Glu118 and Tyr130 residues in ScNatC (Grunwald et 

al. 2020), as well as the conserved nature of these residues (Figure 5.7a). In addition, 

Naa30-Asn114 is highly conserved among all NATs (data not shown) and it was recently 

suggested to play a structural role in orienting the catalytic tyrosine residues (SpNaa30-

Tyr135 and Tyr136) by ensuring the proper position of the active site helix (a4) for 

interaction with Ac-CoA (Deng, Pan, et al. 2020). Consistent with the importance of 
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Asn114, we observed that Naa30-N114A exhibited an ~50% loss in activity. Taken 

together, the conserved Naa30-Glu109 and Tyr121 residues likely play key catalytic 

roles in NatC complex activity (Figure 5.7g). 

 

Table 9.2 Catalytic parameter of wild-type and mutant NAA30 in SpNatC 

Substrate 
Protein  

 (SpNatC) 
kcat* 

 (min-1) 

Relative kcat 

 (normalized 
to WT) 

Km* 

 (μM) 

Relative Km 
 (normalized 

to WT) 

kcat/Km 
 (normalized 
to WT) 

gag 
Peptide 

 (MLRF-) 

WT 23.9 ± 1.4 1.0 7.6 ± 2.1 1.0 1.0 

S24A 22.7 ± 1.6 0.95 10.3 ± 3.2 1.4 0.70 

E25A 49.3 ± 2.3 2.1 19.7 ± 3.6 2.6 0.79 

Y27A 7.33 ± 0.5 0.31 3.0 ± 1.0 0.39 0.79 

Y71A 44.7 ± 2.8 1.9 16.1 ± 4.2 2.1 0.88 

Y71F 30.2 ± 2.3 1.3 29.6 ± 8.5 3.9 0.32 

M74A 13.7 ± 1.1 0.57 18.7 ± 6.1 2.5 0.23 

E109A 10.5 ± 1.6 0.44 28.7 ± 16 3.8 0.11 

E109Q 3.2 ± 0.9 0.13 201 ± 130 27 0.0050 

N114A 9.5 ± 0.6 0.40 5.6 ± 1.7 0.74 0.53 

Y121A 1.2 ± 0.1 0.050 16.0 ± 5.4 2.1 0.023 

Y121F 1.4 ± 0.2 0.060 7.9 ± 4.3 1.0 0.057 

Y135A 6.3 ± 0.8 0.26 9.5 ± 5.7 1.3 0.21 

Y136A N.A N.A N.A N.A N.A 

*values indicated represent mean ± S.D. of best-fit curves 
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5.3 Discussion 

Here, were report that the notably small SpNaa38 auxiliary subunit cooperates 

with the large Naa35 auxiliary subunit to stabilize the active N-terminal acetyltransferase 

NatC complex for its robust N-terminal acetylation activity. Through structure/function 

studies, we observed that Naa38 interacts with Naa30-α2, a region that directly 

contributes to recognition of peptide substrate backbone and sidechain residues. Based 

on these observations and similar ScNatC complex biochemical and structural findings 

described by Grunwald et al. (Grunwald et al. 2020), it appears that Naa38 is essential 

for normal NatC acetylation activity. Therefore, we propose that Naa38 plays a 

conserved role in yeast. Future studies are needed to further interrogate this in the plant 

or human systems, as some reports suggest that Naa38 may not be as important in 

higher eukaryotes (Pesaresi et al. 2003; Starheim et al. 2009), but there has also been a 

report of a human developmental disorder linked to NAA38 deletion (Zhao et al. 2016). 

In S. pombe, we have found that the ternary SpNatC complex displays 

acetylation activity toward both canonical NatC and NatE-type peptide substates, but 

with a preference for NatC-type substrates. While recognition of residues 1 and 2 of the 

cognate substrate appears highly homologous between the Naa30 and NAA50 catalytic 

subunits of NatC and NatE, respectively, the substrate binding pockets responsible for 

recognizing substrate residues beyond the penultimate sidechain diverge significantly. 

This likely explains the divergence in substrate profiles observed between these two 

NATs. 

IP6 was previously found to play a stabilizing role at the interface between the 

NAA15 and NAA10 subunits of the NatA and NatE complexes (Deng, McTiernan, et al. 

2020; Deng et al. 2019; Gottlieb and Marmorstein 2018), (Cheng et al. 2019). Here, we 
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find that IP6 also appears to play a stabilizing role in both ScNatC and SpNatC, and that 

the SpNatC structure reveals that IP6 binds at the Naa35-Naa30 interface located near 

the peptide substrate entrance site, although it does not appear to play a major direct 

role in modulating NatC activity. 

Grunwald et al. recently reported X-ray crystal structures of ScNatC in several 

liganded states along with associated biochemical studies (Grunwald et al. 2020). 

Overall, their findings are in agreement with our findings on SpNatC reported here. 

There are, however, some notable differences when comparing NatC from S. pombe 

and S. cerevisiae, which have implications for the conserved and unique features of 

NatC. 

The ScNatC structures bound to cognate NatC-type peptide substrates shows 

specificity for the first four residues, which is consistent with their reported peptide 

substrate mutation and binding data. In contrast, our structure, featuring SpNatC bound 

to a peptide sequence that is optimal for NatE (NAA50) acetylation, shows SpNaa30’s 

specificity for only the first two residues. This mode of recognition is consistent with 

recognition for these same residues by NAA50, while there is significant divergence in 

the regions of the peptide binding grooves of Naa30 and NAA50 that are responsible for 

interaction with substrates residues beyond residue 2. This comparison suggests that 

discrimination between Naa30 and NAA50 substrates is largely dictated by the identities 

of the third and fourth residues in an N-terminal substrate. As NatC-type and NatE-type 

substrates can include many different hydrophobic/amphipathic N-termini (ML- MI-, MF, 

MW-, MV-, MM-, MH-, and MK-) (Ree, Varland, and Arnesen 2018), it may be difficult for 

a single enzyme to cover acetylation of such a broad repertoire of protein N-termini. 

Given that Naa50 is inactive in yeast (Deng et al. 2019), we propose that the overlapping 
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substrate profile for residues at positions 1 and 2 by NatC and NatE may have evolved 

in higher eukaryotic cells to fully cover the acetylation on these types of N-terminal 

substrates. 

Grunwald et al. identified several electropositive regions (EPR) on ScNatC that 

are implicated in ribosome association. Of these regions, labeled EPR1-EPR4 

(Grunwald et al. 2020) (Figure 5.8), mutation of only EPR2 was found to influence 

ribosome association. Comparison with the electrostatic surface potential of SpNatC 

shows notable differences with ScNatC (Figure 5.8). Specifically, EPR2 is not present in 

SpNatC, since the ScNatC “ScNaa35 tip” is missing in SpNatC. While EPR1 is 

conserved, this electropositive patch harbors the IP6-binding pocket in SpNatC and, 

therefore, is likely the IP6 binding site in ScNatC. In addition, the surface region of 

SpNatC corresponding to EPR3 is broader compared to the corresponding surface of 

ScNatC and is located close to where ScNatC-EPR2 would be. It is therefore possible 

that SpNatC utilizes EPR3 to compensate for the absence of EPR2. Taken together, this 

comparison suggests that the mode of ribosome association utilized by SpNatC and 

ScNatC and, by extension, NatC complexes from other species, may differ. Future 

studies would investigate the molecular details of these differing interactions. 

NatC has been shown to be important for proper chloroplast (Pesaresi et al. 

2003) and mitochondrial (Van Damme et al. 2016a) function, essential for embryonic 

development (Wenzlau et al. 2006), cell viability and p53-dependent apoptosis (Starheim 

et al. 2009), and as a potential therapeutic target in cancer (Mughal et al. 2015). In light 

of these important connections to NatC function, the studies reported here have 

important implications for health and disease. 
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Figure 33.8 Divergent structural features exist between NatC in S. pombe and S. 

cerevisiae 

(a) Electrostatic surface potential of the ScNatC structure (PDB:  6YGB) with previous 

EPRs indicated. (b) Electrostatic surface potential of SpNatC (PDB: 7L1K) aligned with 

the orientations shown in (a). 
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5.4 Materials and Methods 

5.4.1 SpNatC expression and purification 

SpNaa3531-708 (with truncation of the N-terminal 30 residues) and full-length 

SpNaa30FL were cloned into a modified pET DUET vector containing an N-terminal His6-

SUMO tag. SpNaa3848-116 (with truncation of the N-terminal 47 residues) was cloned into 

a pCDF vector with an N-terminal His6 tag. To obtain the heterotrimeric NatC complex 

(WT ternary SpNatC), these two plasmids were used to co-transform Rosetta 

(DE3)pLysS competent E. coli cells, which was then cultured to grow at 37 °C in the 

presence of both ampicillin (100 µg/mL) and streptomycin (50 µg/mL). When the 

absorbance OD600 reached ~ 0.7, protein expression was induced at 16°C with 0.5 mM 

isopropyl 1-thio-β-galactopyranoside (IPTG) overnight. Cells were harvested by 

centrifugation, resuspended, and lysed by sonication in lysis buffer containing 25 mM 

Tris, pH 8.0, 300 mM NaCl, 10 mg/ml PMSF (phenylmethanesulfonylfluoride). The lysate 

was clarified by centrifugation and passed over Nickel-NTA resin (Thermo Scientific), 

which was subsequently washed with ~10 column volumes of wash buffer containing 25 

mM Tris, pH 8.0, 300 mM NaCl, 20 mM imidazole, 10 mM 2-mercaptoethanol (βME). 

The protein was eluted in batches with buffer containing 25 mM Tris, pH 8.0, 300 mM 

NaCl, 200 mM imidazole, 10 mM βME. After elution, His6-tagged Ulp1 protease was 

added to the eluate to cleave the His6-SUMO tag and dialyzed further into buffer 

containing 25 mM sodium citrate monobasic, pH 5.5, 10 mM NaCl and 10 mM βME. 

Protein was purified with a 5-mL HiTrap SP cation-exchange column (GE Healthcare) 

and eluted with a salt gradient (10–1000 mM NaCl). Peak fractions were concentrated to 

~0.5 mL with a 50 kDa concentrator (Amicon Ultra, Millipore), and loaded onto an S200 

gel-filtration column (GE Healthcare) in a buffer containing 25 mM HEPES, pH 7.0, 200 
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mM NaCl, 1 mM dithiothreitol (DTT). Peak fractions were pooled and concentrated to 

~15 mg/ml as measured by UV280 using a Nanodrop and flash-frozen for storage at −80 

°C until use. All protein mutants were generated using the QuikChange protocol from 

Stratagene and obtained following the expression and purification protocols described 

above. 

5.4.2 Binary and ternary ScNatC expression and purification 

ScNaa301-161 and ScNaa3519-733 were cloned into a pET DUET vector containing 

an TEV cleavable N-terminal His6-tag. Binary complex (ScNaa301-161/ScNaa3519-733) was 

obtained by transforming this plasmid in ScarabXpress T7lac (Scarab Genomics) 

competent E. coli cells, which were grown in terrific broth media (DOT Scientific) 

supplemented with ampicillin (100 µg mL-1) at 37°C to an OD600 of ~0.9 and induced by 

addition of 0.5 mM IPTG at 17°C for 16 hr. All subsequent purification steps were carried 

out at 4°C. Cells were isolated by centrifugation, lysed by sonication in lysis buffer 

containing 25 mM Tris, pH 8.0, 300 M NaCl, 10 mM β-ME and 10 mg/mL PMSF. The 

lysate was clarified by centrifugation and passed over nickel resin, which was 

subsequently washed with >20 CV of lysis buffer supplemented with 25 mM imidazole. 

The protein was eluted in lysis buffer supplemented with 200 mM imidazole by batch 

elution. TEV protease (~1 mg/ml) was added to the eluted protein and dialyzed into 

buffer containing 25 mM Tris, pH 8.0, 300 mM NaCl, 5 mM Imidazole, 10 mM β-ME. This 

solution was passed through an additional nickel column to remove TEV protease as 

well as any uncut binary ScNatC. The resin was then washed with approximately 3 CV 

of dialysis buffer supplemented with 25 mM imidazole, which was then pooled with the 

initial flowthrough. This solution was dialyzed into ion exchange buffer containing 25 mM 

HEPES, pH 7.5, 50 mM NaCl and 10 mM β-ME and loaded onto a 5 ml HiTrap SP anion 
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exchange column (GE HealthcarE). The binary complex ScNatC was then eluted using a 

salt gradient (50–750 mM NaCl). Peak fractions were concentrated using a 50-kDa 

MWCO concentrator (Amicon) and further purified Superdex 200 Increase 10/300 GL gel 

filtration column (GE Healthcare) in a buffer containing 25 mM HEPES, pH 7.0, 200 mM 

NaCl, 1 mM TCEP. Peak fractions were concentrated to a UV280 of ~4-5 mg mL-1 as 

measured by nanodrop. The protein was then flash-frozen and stored at -80°C until use. 

 

To obtain the ternary ScNatC complex, ScNaa381-70 was cloned into a pRSF 

vector with a TEV-cleavable N-terminal STREP-tag. This plasmid was co-transformed 

with the pET DUET plasmid containing ScNaa301-161 and ScNaa3519-733 and cultured as 

described above except with the addition of kanamycin (50 µg mL-1) to select for pRSF 

ScNaa381-70 plasmid. The purification of the ternary ScNatC complex was the same as 

described for the binary ScNatC complex. 

 

5.4.3 Acetyltransferase activity assays 

All acetyltransferase assays were carried out at room temperature in a reaction 

buffer containing 75 mM HEPES, pH 7.0, 120 mM NaCl, 1 mM DTT as described 

previously (Deng et al. 2019). The full sequence of peptide substrates are listed below: 

“SASE” peptide (NatA-type): NH2-SASEAGVRWGRPVGRRRRP-COOH; “MDVF” 

peptide (NatB-type): NH2-MDVFMKGRWGRPVGRRRRP-COOH; “MLRF” peptide 

(NatC-type): NH2-MLRFVTKRWGRPVGRRRRP-COOH; “MLGP” peptide (NatE-type): 

NH2-MLGPEGGRWGRPVGRRRRP-COOH; “SGRG”/H4 peptide (NatD-type): NH2-
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SGRGKGGKG LGKGGAKRHR-COOH). All peptides were purchased from GenScript. 

To evaluate SpNatC activity against these peptides, 50 nM SpNatC was mixed with 50 

μM Ac-CoA and 500 μM peptide, and allowed to react for 10 min. To determine steady-

state catalytic parameters of SpNatC (WT or mutants) with respect to the peptide 

substrate, 50 nM SpNatC (WT or mutants) was mixed with 50 μM Ac-CoA (14C-labeled, 

4 mCi mmol−1; PerkinElmer Life Sciences) and varying peptide concentrations (ranging 

from 1.95 μM to 500 μM, 9-data points) for 5-minute reactions. P81 paper was 

purchased from SVI (St. Vincent’s Institute Medical Research). All radioactive count 

values were converted to molar units with a standard curve created with known 

concentrations of radioactive Ac-CoA added to scintillation fluid. GraphPad Prism 

(version 5.01) was used for all data fitting to the Michaelis–Menten equation. The errors 

in Table 2 represent the standard deviation of the best fit values of the curves. 

For the comparison of ternary and binary ScNatC complex activity, 10 nM of 

either binary ScNatC or ternary ScNatC was mixed with 100 μM of 14C-labeled Ac-CoA 

and “MLRF” peptide, for a 12-minute reaction in buffer containing 50 mM HEPES, pH 

7.5, 150 mM NaCl and 1 mM DTT. 

For the activity comparison of ternary SpNatC and other NATs in the presence or 

absence of IP6, 50 nM of SpNatC, SpNatA or hNatB was mixed with 50 μM of 14C-

labeled Ac-CoA, 50 μM of their peptide substrate, in reaction buffer containing 75 mM 

HEPES, pH 7.0, 120 mM NaCl, 1 mM DTT, supplemented with either 0 or 2 μM IP6 

(Sigma-Aldrich), for a 5-minute reaction. The peptide substates for SpNatA and hNatB 

are SASE peptide and MDVF peptide, respectively. SpNatA (Liszczak et al. 2013) and 

hNatB (Deng, Pan, et al. 2020) are purified as previously described.  
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5.4.4 ITC measurements 

ITC measurements were carried out using a MicroCal iTC200 at 20 °C. Samples 

were dialyzed into buffer containing 25 mM HEPES pH 7.0, 200 mM NaCl, and 1 mM 

DTT. 15 μM of SpNatC in the cell and 300 μM of IP6 in the syringe were used. The raw 

data were analyzed with the MicroCal ITC analysis software. 

 

5.4.5 Differential scanning fluorimetry assays 

Sypro Orange (50,000X stock, ThermoFisher Scientific) was diluted 1:200, and 4 

µL was mixed with 16 µL solution with 0.1 mg/ml of various NatC samples in pH 7.0, 200 

mM NaCl, and 1 mM DTT, with or without 10 µM IP6. Fluorescent readings were 

recorded using a qPCR (ABI 7900 RealTime PCR) with a 1% ramp rate, while heated 

from 20 °C to 95 °C. Melting curves were generated from these readings and melting 

temperatures were determined by taking the first derivative of the curves. DSF scans of 

all samples were performed in triplicate as technical replicates. Error bars in the figure 

indicates the Standard Deviation (SD) of each sample. 

 

5.4.6 Cryo-EM data collection 

For initial sample screening, 0.05 mg/ml fresh SpNatC sample was prepared with 

3-molar excess of both bisubstrate and IP6. SpNatC particles on cryo grids exhibited a 

severe preferred orientation, which generated an incorrect initial 3D model (data not 
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shown). Further screening by addition of detergent NP-40 in sample did not improve this 

situation. To solve this issue, 1 μL of 80 mM CHAPSO was mixed with 20 μL of 12 

mg/mL SpNatC. 3 μL of this mixed sample was applied to Quantifoil R1.2/1.3 holey 

carbon support grids, blotted and plunged into liquid ethane, using an FEI Vitrobot Mark 

IV. An FEI TF20 was used for screening the grids and data collection was performed 

with a Titan Krios equipped with a K3 Summit direct detector (Gatan), at a magnification 

of 105,000 ×, with defocus values from −0.1 to −3.0 µm. Each stack was exposed and 

counted in super-resolution mode with a total dose of 42 e-/Å2, resulting in 35 frames per 

stack. Image stacks were automatically collected with EPU. A full description of the 

Cryo-EM data collection parameters can be found in Table 5.1. 

 

5.4.7 Cryo-EM data processing 

Original image stacks were summed and corrected for drift and beam-induced 

motion at the micrograph level using MotionCor2 (Zheng et al. 2017), and binned 

twofold, resulting in a pixel size of 0.84 A˚ /pixel. After motion correction in Relion 3.0 

(Kimanius et al. 2016), corrected micrographs were imported into CryoSPARC (Punjani 

et al. 2017) to perform defocus estimation, the resolution range of each micrograph with 

Gctf (Zhang 2016) and all the subsequent data analysis. 2D classifications were 

performed on the particles auto-picked by “blob picker” with particle diameter of 100 - 

200 Å. The representative 2D classes were used as templates to further auto-pick 

1,860,276 particles from 5514 micrographs. After bad particles were removed by two 

runs of 2D classification, 849,844 particles were used to generate four Ab-Initio models 

and two rounds of heterogeneous refinement were performed using the four models. 
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508, 298 particles were used for auto refinement and per particle CTF refinement. The 

final map was refined to an overall resolution of 3.20 Å, with local resolution estimated in 

Cryo-SPARC (Punjani et al. 2017). 

5.4.8 Cryo-EM model building and refinement 

The SpNatC atomic model was manually built de novo using the program COOT 

(Emsley and Cowtan 2004) according to the Cryo-EM map, with the guidance of 

predicted secondary structure and bulky residues such as Phe, Tyr, Trp and Arg. The 

complete model was then refined by real-space refinement in PHENIX (Adams et al. 

2010).  All representations of Cryo-EM density and structural models were performed 

with Chimera (Pettersen et al. 2004) and PyMol (Schrodinger 2015) 

(https://pymol.org/2/). The sequence alignments with secondary structure display were 

created by ESPript 3.0 (Robert and Gouet 2014a). The surface area calculation was 

performed using PDBePISA (Krissinel and Henrick 2007) (Proteins, Interfaces, 

Structures and Assemblies) (http://www.ebi.ac.uk/pdbe/pisa/ ).  
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CHAPTER 6: Conclusions and Future Directions 
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While Nt-acetylation is a protein modification present in all kingdoms of life, it’s 

much more abundant and complicated in eukaryotes than in bacterial and archaea, in 

term of target substrate profile. Meanwhile, the biological relevance of Nt-acetylation is 

also comparably more significant in eukaryotes, impacting diverse cellular processes 

and diseases. In correspondence to these, eukaryotic NATs have evolved some distinct 

features. Among these features, the major one is that some eukaryotic NATs, like NatA, 

B, C, and E collaborate with at least one auxiliary subunit, a small molecule (IP6, for 

NatA, NatC, and NatE), and in the case of NatA and NatE, the HYPK regulatory protein 

to form multi-subunit enzyme complexes and perform the acetylation co-translationally in 

a controlled manner. Overall, these enzymes are collectively responsible for Nt-

acetylation of over 80% human proteins and abnormal activities of them have been 

reported to be corelated with developmental diseases such as Ogden syndrome, 

neurodegenerative diseases, and cancers (Dorfel and Lyon 2015; Myklebust, Stove, and 

Arnesen 2015; Kalvik and Arnesen 2013).  Motivated by the biological significance and 

disease connections of these protein complexes, this thesis set out to provide 

comprehensive studies towards understanding the molecular and regulatory mechanism 

of these multi-subunit NATs, as described in previous chapters. 

 While important insights are provided here, some questions remain unanswered. 

How do NatA and NatE toggle between co-translational activity and post-translational 

activities? NAA10 has been reported to act alone towards acidic substrates (distinct from 

NatA-type), while human NAA50 per se is also active towards NatE-type substrates. 

Moreover, controversial reports indicate that both NAA10 and NAA50 can perform lysine 

acetylation and auto-acetylation (Magin, March, and Marmorstein 2016; Seo et al. 2010; 
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Evjenth et al. 2009). Thus, the biological relevance of these potential versatile activities 

of NAA10 and NAA50 requires further investigation.  

 Can NATs carry out cross regulation amongst themselves? Nt-acetylation is 

known to be important for protein complex formation and protein function in some cases. 

NATs themselves are also subjected to Nt-acetylation depending on their N-terminal 

sequence identity. A recent report highlighted that NAA20 maturation mediated by NatA 

activity is essential for NatB complex formation (Lasa et al. 2020).   

What is the molecular mechanism of co-translational acetylation on the ribosome 

of NatA/E, and other NATs that function co-translationally such as NatC/B/D? How do 

NATs with co-translational activities navigate the same or different ribosomes? How do 

ribosomes distinguish and selects the correct NAT for co-translational nascent chain Nt-

acetylation? How do NATs cooperate or compete with other N-terminal modification 

enzymes like NME? These are challenging but important questions that remain to be 

answered. For the known yeast NatE-ribosome architecture, ScNAA50 is inactive and 

remote from the ribosome exit tunnel. However, in humans, hNAA50 is active, and how 

hNAA50 shifts its distance relative to the exit tunnel when the nascent chain contains a 

NatE-type substrate is also an interesting question that remains to be answered. 

Recently, Electropositive regions (EPRs) on the surface of NatB and NatC were 

proposed to participate in ribosome association (Magin et al. 2017; Grunwald et al. 

2020), structural studies are required to confirm these results 

As HYPK reduces ~ 90% of hNatA activity and influences NatE activity as well in 

vitro (Gottlieb and Marmorstein 2018; Deng, McTiernan, et al. 2020), why are such 

strong inhibition effects on hNatA not observed in vivo? What is the biological function of 
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the presence of HYPK in humans, as HYPK is absent in most yeast? Do other NATs 

agonists or antagonists exist? Learning from HYPK, can we develop novel and specific 

inhibitors for NATs? In humans, NATs are frequently correlated with disease and 

cancers, especially hNatA. The development of bi-substrate analogues has been 

important for understanding NAT catalytic mechanism but are unsuitable as drugs. It will 

be of great interest to develop drug-like NAT-specific inhibitors.     

Lastly, to date, the structure and mechanism of the chloroplast localized NATs 

are unknown. What are the unique features of these NATs? These, among many other 

remaining questions, regarding NAT mechanism will keep the field vibrant for decades to 

come. 

 

 

 

 

 

 

 

 

 

 



180 

 

REFERENCES 

 

Abboud, A., P. Bedoucha, J. Byska, T. Arnesen, and N. Reuter. 2020. 
'Dynamics-function relationship in the catalytic domains of N-terminal 

acetyltransferases', Comput Struct Biotechnol J, 18: 532-47. 

Adams, P. D., P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. 
J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. 

Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, 
and P. H. Zwart. 2010. 'PHENIX: a comprehensive Python-based system for 

macromolecular structure solution', Acta Crystallogr D Biol Crystallogr, 66: 213-21. 

Aivaliotis, M., K. Gevaert, M. Falb, A. Tebbe, K. Konstantinidis, B. Bisle, C. Klein, 
L. Martens, A. Staes, E. Timmerman, J. Van Damme, F. Siedler, F. Pfeiffer, J. 

Vandekerckhove, and D. Oesterhelt. 2007. 'Large-scale identification of N-terminal 
peptides in the halophilic archaea Halobacterium salinarum and Natronomonas 

pharaonis', J Proteome Res, 6: 2195-204. 

Aksnes, H., A. Drazic, M. Marie, and T. Arnesen. 2016. 'First Things First: Vital 
Protein Marks by N-Terminal Acetyltransferases', Trends Biochem Sci, 41: 746-60. 

Aksnes, H., M. Goris, O. Stromland, A. Drazic, Q. Waheed, N. Reuter, and T. 
Arnesen. 2017. 'Molecular determinants of the N-terminal acetyltransferase Naa60 

anchoring to the Golgi membrane', J Biol Chem, 292: 6821-37. 

Aksnes, H., R. Ree, and T. Arnesen. 2019. 'Co-translational, Post-translational, 
and Non-catalytic Roles of N-Terminal Acetyltransferases', Mol Cell, 73: 1097-114. 

Aksnes, H., P. Van Damme, M. Goris, K. K. Starheim, M. Marie, S. I. Stove, C. 
Hoel, T. V. Kalvik, K. Hole, N. Glomnes, C. Furnes, S. Ljostveit, M. Ziegler, M. Niere, K. 

Gevaert, and T. Arnesen. 2015. 'An organellar nalpha-acetyltransferase, naa60, 
acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity', 

Cell Rep, 10: 1362-74. 

Ametzazurra, A., C. Gazquez, M. Lasa, E. Larrea, J. Prieto, and R. Aldabe. 2009. 
'Characterization of the human Nalpha-terminal acetyltransferase B enzymatic complex', 

BMC Proc, 3 Suppl 6: S4. 



181 

 

Ametzazurra, A., E. Larrea, M. P. Civeira, J. Prieto, and R. Aldabe. 2008. 
'Implication of human N-alpha-acetyltransferase 5 in cellular proliferation and 

carcinogenesis', Oncogene, 27: 7296-306. 

Anderson, J. P., D. E. Walker, J. M. Goldstein, R. de Laat, K. Banducci, R. J. 
Caccavello, R. Barbour, J. Huang, K. Kling, M. Lee, L. Diep, P. S. Keim, X. Shen, T. 

Chataway, M. G. Schlossmacher, P. Seubert, D. Schenk, S. Sinha, W. P. Gai, and T. J. 
Chilcote. 2006. 'Phosphorylation of Ser-129 is the dominant pathological modification of 
alpha-synuclein in familial and sporadic Lewy body disease', J Biol Chem, 281: 29739-

52. 

Arnesen, T., D. Anderson, C. Baldersheim, M. Lanotte, J. E. Varhaug, and J. R. 
Lillehaug. 2005. 'Identification and characterization of the human ARD1-NATH protein 

acetyltransferase complex', Biochem J, 386: 433-43. 

Arnesen, T., D. Anderson, J. Torsvik, H. B. Halseth, J. E. Varhaug, and J. R. 
Lillehaug. 2006. 'Cloning and characterization of hNAT5/hSAN: an evolutionarily 

conserved component of the NatA protein N-alpha-acetyltransferase complex', Gene, 
371: 291-5. 

Arnesen, T., D. Gromyko, F. Pendino, A. Ryningen, J. E. Varhaug, and J. R. 
Lillehaug. 2006. 'Induction of apoptosis in human cells by RNAi-mediated knockdown of 

hARD1 and NATH, components of the protein N-alpha-acetyltransferase complex', 
Oncogene, 25: 4350-60. 

Arnesen, T., R. Marmorstein, and R. Dominguez. 2018. 'Actin's N-terminal 
acetyltransferase uncovered', Cytoskeleton (Hoboken), 75: 318-22. 

Arnesen, T., K. K. Starheim, P. Van Damme, R. Evjenth, H. Dinh, M. J. Betts, A. 
Ryningen, J. Vandekerckhove, K. Gevaert, and D. Anderson. 2010. 'The chaperone-like 

protein HYPK acts together with NatA in cotranslational N-terminal acetylation and 
prevention of Huntingtin aggregation', Mol Cell Biol, 30: 1898-909. 

Arnesen, T., P. Van Damme, B. Polevoda, K. Helsens, R. Evjenth, N. Colaert, J. 
E. Varhaug, J. Vandekerckhove, J. R. Lillehaug, F. Sherman, and K. Gevaert. 2009. 

'Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal 
acetyltransferases from yeast and humans', Proc Natl Acad Sci U S A, 106: 8157-62. 

Behnia, Rudy, Bojana Panic, James R. C. Whyte, and Sean Munro. 2004. 
'Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and 

the membrane protein Sys1p', Nature Cell Biology, 6: 405. 



182 

 

Bernal-Perez, L. F., F. Sahyouni, L. Prokai, and Y. Ryu. 2012. 'RimJ-mediated 
context-dependent N-terminal acetylation of the recombinant Z-domain protein in 

Escherichia coli', Mol Biosyst, 8: 1128-30. 

Bienvenut, W. V., C. Giglione, and T. Meinnel. 2015. 'Proteome-wide analysis of 
the amino terminal status of Escherichia coli proteins at the steady-state and upon 

deformylation inhibition', Proteomics, 15: 2503-18. 

Bienvenut, W. V., D. Sumpton, A. Martinez, S. Lilla, C. Espagne, T. Meinnel, and 
C. Giglione. 2012. 'Comparative large scale characterization of plant versus mammal 
proteins reveals similar and idiosyncratic N-alpha-acetylation features', Molecular & 

cellular proteomics : MCP, 11: M111 015131. 

Bocharov, E. V., A. G. Sobol, K. V. Pavlov, D. M. Korzhnev, V. A. Jaravine, A. T. 
Gudkov, and A. S. Arseniev. 2004. 'From structure and dynamics of protein L7/L12 to 

molecular switching in ribosome', J Biol Chem, 279: 17697-706. 

Braman, J., C. Papworth, and A. Greener. 1996. 'Site-directed mutagenesis 
using double-stranded plasmid DNA templates', Methods Mol Biol, 57: 31-44. 

Caesar, R., J. Warringer, and A. Blomberg. 2006. 'Physiological importance and 
identification of novel targets for the N-terminal acetyltransferase NatB', Eukaryot Cell, 5: 

368-78. 

Caro, J. A., K. W. Harpole, V. Kasinath, J. Lim, J. Granja, K. G. Valentine, K. A. 
Sharp, and A. J. Wand. 2017. 'Entropy in molecular recognition by proteins', Proc Natl 

Acad Sci U S A, 114: 6563-68. 

Casey, J. P., S. I. Stove, C. McGorrian, J. Galvin, M. Blenski, A. Dunne, S. Ennis, 
F. Brett, M. D. King, T. Arnesen, and S. A. Lynch. 2015. 'NAA10 mutation causing a 

novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase 
impairment', Sci Rep, 5: 16022. 

Chang, Y. Y., and C. H. Hsu. 2015. 'Structural basis for substrate-specific 
acetylation of Nalpha-acetyltransferase Ard1 from Sulfolobus solfataricus', Sci Rep, 5: 

8673. 

Chen, J. Y., L. Liu, C. L. Cao, M. J. Li, K. Tan, X. Yang, and C. H. Yun. 2016. 
'Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional 

acetyltransferase', Sci Rep, 6: 31425. 



183 

 

Cheng, H., L. Gottlieb, E. Marchi, R. Kleyner, P. Bhardwaj, A. F. Rope, S. 
Rosenheck, S. Moutton, C. Philippe, W. Eyaid, F. S. Alkuraya, J. Toribio, R. Mena, C. E. 
Prada, H. Stessman, R. Bernier, M. Wermuth, B. Kauffmann, B. Blaumeiser, R. F. Kooy, 
D. Baralle, G. M. S. Mancini, S. J. Conway, F. Xia, Z. Chen, L. Meng, L. Mihajlovic, R. 

Marmorstein, and G. J. Lyon. 2019. 'Phenotypic and biochemical analysis of an 
international cohort of individuals with variants in NAA10 and NAA15', Hum Mol Genet, 

28: 2900-19. 

Chu, C. W., F. Hou, J. Zhang, L. Phu, A. V. Loktev, D. S. Kirkpatrick, P. K. 
Jackson, Y. Zhao, and H. Zou. 2011. 'A novel acetylation of beta-tubulin by San 

modulates microtubule polymerization via down-regulating tubulin incorporation', Mol 
Biol Cell, 22: 448-56. 

Cox, J., M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj, and M. Mann. 2014. 
'Accurate proteome-wide label-free quantification by delayed normalization and maximal 

peptide ratio extraction, termed MaxLFQ', Molecular & cellular proteomics : MCP, 13: 
2513-26. 

Deng, S., R. S. Magin, X. Wei, B. Pan, E. J. Petersson, and R. Marmorstein. 
2019. 'Structure and Mechanism of Acetylation by the N-Terminal Dual Enzyme 

NatA/Naa50 Complex', Structure, 27: 1057-70 e4. 

Deng, S., and R. Marmorstein. 2021. 'Protein N-Terminal Acetylation: Structural 
Basis, Mechanism, Versatility, and Regulation', Trends Biochem Sci, 46: 15-27. 

Deng, S., N. McTiernan, X. Wei, T. Arnesen, and R. Marmorstein. 2020. 
'Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK', 

Nat Commun, 11: 818. 

Deng, S., B. Pan, L. Gottlieb, E. J. Petersson, and R. Marmorstein. 2020. 
'Molecular basis for N-terminal alpha-synuclein acetylation by human NatB', Elife, 9: 

e57491. 

Deng, Sunbin, Leah Gottlieb, Buyan Pan, Julianna Supplee, Xuepeng Wei, 
James Petersson, and Ronen Marmorstein. 2021. 'Molecular mechanism of N-terminal 

acetylation by the ternary NatC complex', bioRxiv: 2021.02.01.429250. 

Dikiy, I., and D. Eliezer. 2014. 'N-terminal acetylation stabilizes N-terminal helicity 
in lipid- and micelle-bound alpha-synuclein and increases its affinity for physiological 

membranes', J Biol Chem, 289: 3652-65. 



184 

 

Dinh, T. V., W. V. Bienvenut, E. Linster, A. Feldman-Salit, V. A. Jung, T. Meinnel, 
R. Hell, C. Giglione, and M. Wirtz. 2015. 'Molecular identification and functional 

characterization of the first Nalpha-acetyltransferase in plastids by global acetylome 
profiling', Proteomics, 15: 2426-35. 

Dorfel, M. J., and G. J. Lyon. 2015. 'The biological functions of Naa10 - From 
amino-terminal acetylation to human disease', Gene, 567: 103-31. 

Drazic, A., H. Aksnes, M. Marie, M. Boczkowska, S. Varland, E. Timmerman, H. 
Foyn, N. Glomnes, G. Rebowski, F. Impens, K. Gevaert, R. Dominguez, and T. Arnesen. 

2018. 'NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton 
assembly and cell motility', Proc Natl Acad Sci U S A, 115: 4399-404. 

Drazic, A., and T. Arnesen. 2017. '[ (14)C]-Acetyl-Coenzyme A-Based In Vitro N-
Terminal Acetylation Assay', Methods Mol Biol, 1574: 1-8. 

Eldeeb, M. A., and M. A. Ragheb. 2018. 'Post-translational N-terminal 
Arginylation of Protein Fragments: A Pivotal Portal to Proteolysis', Curr Protein Pept Sci, 

19: 1214-23. 

Emsley, P., and K. Cowtan. 2004. 'Coot: model-building tools for molecular 
graphics', Acta Crystallogr D Biol Crystallogr, 60: 2126-32. 

Esmailpour, T., H. Riazifar, L. Liu, S. Donkervoort, V. H. Huang, S. Madaan, B. 
M. Shoucri, A. Busch, J. Wu, A. Towbin, R. B. Chadwick, A. Sequeira, M. P. Vawter, G. 
Sun, J. J. Johnston, L. G. Biesecker, R. Kawaguchi, H. Sun, V. Kimonis, and T. Huang. 
2014. 'A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid 
signalling pathway and causes Lenz microphthalmia syndrome', J Med Genet, 51: 185-

96. 

Evjenth, R. H., A. K. Brenner, P. R. Thompson, T. Arnesen, N. A. Froystein, and 
J. R. Lillehaug. 2012. 'Human protein N-terminal acetyltransferase hNaa50p 

(hNAT5/hSAN) follows ordered sequential catalytic mechanism: combined kinetic and 
NMR study', J Biol Chem, 287: 10081-8. 

Evjenth, R., K. Hole, O. A. Karlsen, M. Ziegler, T. Arnesen, and J. R. Lillehaug. 
2009. 'Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-

acetyltransferase activity', J Biol Chem, 284: 31122-9. 

Falb, M., M. Aivaliotis, C. Garcia-Rizo, B. Bisle, A. Tebbe, C. Klein, K. 
Konstantinidis, F. Siedler, F. Pfeiffer, and D. Oesterhelt. 2006. 'Archaeal N-terminal 



185 

 

protein maturation commonly involves N-terminal acetylation: a large-scale proteomics 
survey', J Mol Biol, 362: 915-24. 

Fauvet, B., M. B. Fares, F. Samuel, I. Dikiy, A. Tandon, D. Eliezer, and H. A. 
Lashuel. 2012. 'Characterization of semisynthetic and naturally Nalpha-acetylated alpha-
synuclein in vitro and in intact cells: implications for aggregation and cellular properties 

of alpha-synuclein', J Biol Chem, 287: 28243-62. 

Favrot, L., J. S. Blanchard, and O. Vergnolle. 2016. 'Bacterial GCN5-Related N-
Acetyltransferases: From Resistance to Regulation', Biochemistry, 55: 989-1002. 

Fernández, Ricardo D., and Heather R. Lucas. 2018. 'Mass spectrometry data 
confirming tetrameric α-synuclein N-terminal acetylation', Data in brief, 20: 1686-91. 

Ferrandez-Ayela, A., R. Micol-Ponce, A. B. Sanchez-Garcia, M. M. Alonso-Peral, 
J. L. Micol, and M. R. Ponce. 2013. 'Mutation of an Arabidopsis NatB N-alpha-terminal 

acetylation complex component causes pleiotropic developmental defects', PLOS ONE, 
8: e80697. 

Fluge, O., O. Bruland, L. A. Akslen, J. E. Varhaug, and J. R. Lillehaug. 2002. 
'NATH, a novel gene overexpressed in papillary thyroid carcinomas', Oncogene, 21: 

5056-68. 

Foyn, H., J. E. Jones, D. Lewallen, R. Narawane, J. E. Varhaug, P. R. 
Thompson, and T. Arnesen. 2013. 'Design, synthesis, and kinetic characterization of 

protein N-terminal acetyltransferase inhibitors', ACS Chem Biol, 8: 1121-7. 

Gautschi, M., S. Just, A. Mun, S. Ross, P. Rucknagel, Y. Dubaquie, A. 
Ehrenhofer-Murray, and S. Rospert. 2003. 'The yeast N (alpha)-acetyltransferase NatA 
is quantitatively anchored to the ribosome and interacts with nascent polypeptides', Mol 

Cell Biol, 23: 7403-14. 

Giglione, C., S. Fieulaine, and T. Meinnel. 2015. 'N-terminal protein 
modifications: Bringing back into play the ribosome', Biochimie, 114: 134-46. 

Goris, M., R. S. Magin, H. Foyn, L. M. Myklebust, S. Varland, R. Ree, A. Drazic, 
P. Bhambra, S. I. Stove, M. Baumann, B. E. Haug, R. Marmorstein, and T. Arnesen. 

2018. 'Structural determinants and cellular environment define processed actin as the 
sole substrate of the N-terminal acetyltransferase NAA80', Proc Natl Acad Sci U S A, 

115: 4405-10. 



186 

 

Gottlieb, L., and R. Marmorstein. 2018. 'Structure of Human NatA and Its 
Regulation by the Huntingtin Interacting Protein HYPK', Structure, 26: 925-35 e8. 

Grunwald, S., L. V. M. Hopf, T. Bock-Bierbaum, C. C. M. Lally, C. M. T. Spahn, 
and O. Daumke. 2020. 'Divergent architecture of the heterotrimeric NatC complex 

explains N-terminal acetylation of cognate substrates', Nat Commun, 11: 5506. 

Halliday, Glenda M., Janice L. Holton, Tamas Revesz, and Dennis W. Dickson. 
2011. 'Neuropathology underlying clinical variability in patients with synucleinopathies', 

Acta Neuropathologica, 122: 187-204. 

Hole, K., P. Van Damme, M. Dalva, H. Aksnes, N. Glomnes, J. E. Varhaug, J. R. 
Lillehaug, K. Gevaert, and T. Arnesen. 2011. 'The human N-alpha-acetyltransferase 40 

(hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and 
H4', PLOS ONE, 6: e24713. 

Holmes, W. M., B. K. Mannakee, R. N. Gutenkunst, and T. R. Serio. 2014. 'Loss 
of amino-terminal acetylation suppresses a prion phenotype by modulating global protein 

folding', Nat Commun, 5: 4383. 

Hong, H., Y. Cai, S. Zhang, H. Ding, H. Wang, and A. Han. 2017. 'Molecular 
Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB', Structure, 

25: 641-49 e3. 

Hou, F., C. W. Chu, X. Kong, K. Yokomori, and H. Zou. 2007. 'The 
acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a 

shugoshin-independent manner', J Cell Biol, 177: 587-97. 

Hua, K. T., C. T. Tan, G. Johansson, J. M. Lee, P. W. Yang, H. Y. Lu, C. K. 
Chen, J. L. Su, P. B. Chen, Y. L. Wu, C. C. Chi, H. J. Kao, H. J. Shih, M. W. Chen, M. H. 
Chien, P. S. Chen, W. J. Lee, T. Y. Cheng, G. Rosenberger, C. Y. Chai, C. J. Yang, M. 

S. Huang, T. C. Lai, T. Y. Chou, M. Hsiao, and M. L. Kuo. 2011. 'N-alpha-
acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins 

and inhibiting Cdc42/Rac1 activity', Cancer Cell, 19: 218-31. 

Huber, M., W. V. Bienvenut, E. Linster, I. Stephan, L. Armbruster, C. Sticht, D. 
Layer, K. Lapouge, T. Meinnel, I. Sinning, C. Giglione, R. Hell, and M. Wirtz. 2020. 

'NatB-Mediated N-Terminal Acetylation Affects Growth and Biotic Stress Responses', 
Plant Physiol, 182: 792-806. 



187 

 

Hwang, Cheol-Sang, Anna Shemorry, and Alexander Varshavsky. 2010. 'N-
Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals', Science, 

327: 973-77. 

Iyer, A., S. J. Roeters, N. Schilderink, B. Hommersom, R. M. Heeren, S. 
Woutersen, M. M. Claessens, and V. Subramaniam. 2016. 'The Impact of N-terminal 

Acetylation of alpha-Synuclein on Phospholipid Membrane Binding and Fibril Structure', 
J Biol Chem, 291: 21110-22. 

Jeong, J. W., M. K. Bae, M. Y. Ahn, S. H. Kim, T. K. Sohn, M. H. Bae, M. A. Yoo, 
E. J. Song, K. J. Lee, and K. W. Kim. 2002. 'Regulation and destabilization of HIF-1alpha 

by ARD1-mediated acetylation', Cell, 111: 709-20. 

Kalam Shamsuddin, Abul, and Sanchita Bose. 2012. 'IP6 (Inositol 
Hexaphosphate) as a Signaling Molecule', Current Signal Transduction Therapy, 7: 289-

304. 

Kalvik, T. V., and T. Arnesen. 2013. 'Protein N-terminal acetyltransferases in 
cancer', Oncogene, 32: 269-76. 

Kang, L., G. M. Moriarty, L. A. Woods, A. E. Ashcroft, S. E. Radford, and J. 
Baum. 2012. 'N-terminal acetylation of alpha-synuclein induces increased transient 
helical propensity and decreased aggregation rates in the intrinsically disordered 

monomer', Protein Sci, 21: 911-7. 

Karpenahalli, Manjunatha R., Andrei N. Lupas, and Johannes Söding. 2007. 
'TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein 

sequences', BMC Bioinformatics, 8: 2. 

Kelkar, D. S., D. Kumar, P. Kumar, L. Balakrishnan, B. Muthusamy, A. K. Yadav, 
P. Shrivastava, A. Marimuthu, S. Anand, H. Sundaram, R. Kingsbury, H. C. Harsha, B. 

Nair, T. S. Prasad, D. S. Chauhan, K. Katoch, V. M. Katoch, P. Kumar, R. Chaerkady, S. 
Ramachandran, D. Dash, and A. Pandey. 2011. 'Proteogenomic analysis of 

Mycobacterium tuberculosis by high resolution mass spectrometry', Molecular & cellular 
proteomics : MCP, 10: M111 011627. 

Kimanius, D., B. O. Forsberg, S. H. Scheres, and E. Lindahl. 2016. 'Accelerated 
Cryo-EM structure determination with parallelisation using GPUs in RELION-2', Elife, 5. 



188 

 

Kirkland, P. A., M. A. Humbard, C. J. Daniels, and J. A. Maupin-Furlow. 2008. 
'Shotgun proteomics of the haloarchaeon Haloferax volcanii', J Proteome Res, 7: 5033-

9. 

Knorr, A. G., C. Schmidt, P. Tesina, O. Berninghausen, T. Becker, B. Beatrix, 
and R. Beckmann. 2019. 'Ribosome-NatA architecture reveals that rRNA expansion 

segments coordinate N-terminal acetylation', Nat Struct Mol Biol, 26: 35-39. 

Krissinel, E., and K. Henrick. 2007. 'Inference of macromolecular assemblies 
from crystalline state', J Mol Biol, 372: 774-97. 

Kucukelbir, A., F. J. Sigworth, and H. D. Tagare. 2014. 'Quantifying the local 
resolution of Cryo-EM density maps', Nat Methods, 11: 63-5. 

Lasa, M., L. Neri, B. Carte, C. Gázquez, T. Aragón, and R. Aldabe. 2020. 
'Maturation of NAA20 Aminoterminal End Is Essential to Assemble NatB N-Terminal 

Acetyltransferase Complex', J Mol Biol, 432: 5889-901. 

Laskowski, Roman A., and Mark B. Swindells. 2011. 'LigPlot+: multiple ligand-
protein interaction diagrams for drug discovery', Journal of chemical information and 

modeling, 51: 2778-86. 

Lee, C. F., D. S. Ou, S. B. Lee, L. H. Chang, R. K. Lin, Y. S. Li, A. K. Upadhyay, 
X. Cheng, Y. C. Wang, H. S. Hsu, M. Hsiao, C. W. Wu, and L. J. Juan. 2010. 'hNaa10p 

contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene 
silencing', J Clin Invest, 120: 2920-30. 

Lee, K. E., J. Y. Ahn, J. M. Kim, and C. S. Hwang. 2014. 'Synthetic lethal screen 
of NAA20, a catalytic subunit gene of NatB N-terminal acetylase in Saccharomyces 

cerevisiae', J Microbiol, 52: 842-8. 

Linster, E., D. Layer, W. V. Bienvenut, T. V. Dinh, F. A. Weyer, W. Leemhuis, A. 
Brunje, M. Hoffrichter, P. Miklankova, J. Kopp, K. Lapouge, J. Sindlinger, D. Schwarzer, 

T. Meinnel, I. Finkemeier, C. Giglione, R. Hell, I. Sinning, and M. Wirtz. 2020. 'The 
Arabidopsis N (alpha) -acetyltransferase NAA60 locates to the plasma membrane and is 

vital for the high salt stress response', New Phytol, 228: 554-69. 

Linster, E., and M. Wirtz. 2018. 'N-terminal acetylation: an essential protein 
modification emerges as an important regulator of stress responses', J Exp Bot, 69: 

4555-68. 



189 

 

Liszczak, G., T. Arnesen, and R. Marmorstein. 2011. 'Structure of a ternary 
Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis 

for substrate-specific acetylation', J Biol Chem, 286: 37002-10. 

Liszczak, G., J. M. Goldberg, H. Foyn, E. J. Petersson, T. Arnesen, and R. 
Marmorstein. 2013. 'Molecular basis for N-terminal acetylation by the heterodimeric NatA 

complex', Nat Struct Mol Biol, 20: 1098-105. 

Liszczak, G., and R. Marmorstein. 2013. 'Implications for the evolution of 
eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an 

archaeal ortholog', Proc Natl Acad Sci U S A, 110: 14652-7. 

Ma, C., C. Pathak, S. Jang, S. J. Lee, M. Nam, S. J. Kim, H. Im, and B. J. Lee. 
2014. 'Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family 

member suggesting multiple ligand binding modes with acetyl coenzyme A and 
coenzyme A', Biochim Biophys Acta, 1844: 1790-7. 

Mackay, D. T., C. H. Botting, G. L. Taylor, and M. F. White. 2007. 'An acetylase 
with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus 

solfataricus', Mol Microbiol, 64: 1540-8. 

Magin, R. S., S. Deng, H. Zhang, B. Cooperman, and R. Marmorstein. 2017. 
'Probing the interaction between NatA and the ribosome for co-translational protein 

acetylation', PLOS ONE, 12: e0186278. 

Magin, R. S., G. P. Liszczak, and R. Marmorstein. 2015. 'The molecular basis for 
histone H4- and H2A-specific amino-terminal acetylation by NatD', Structure, 23: 332-41. 

Magin, R. S., Z. M. March, and R. Marmorstein. 2016. 'The N-terminal 
Acetyltransferase Naa10/ARD1 Does Not Acetylate Lysine Residues', J Biol Chem, 291: 

5270-7. 

Maltsev, A. S., J. Ying, and A. Bax. 2012. 'Impact of N-terminal acetylation of 
alpha-synuclein on its random coil and lipid binding properties', Biochemistry, 51: 5004-

13. 

Mason, R. J., A. R. Paskins, C. F. Dalton, and D. P. Smith. 2016. 'Copper 
Binding and Subsequent Aggregation of alpha-Synuclein Are Modulated by N-Terminal 
Acetylation and Ablated by the H50Q Missense Mutation', Biochemistry, 55: 4737-41. 



190 

 

Mughal, A. A., Z. Grieg, H. Skjellegrind, A. Fayzullin, M. Lamkhannat, M. Joel, M. 
S. Ahmed, W. Murrell, E. O. Vik-Mo, I. A. Langmoen, and B. Stangeland. 2015. 

'Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating 
cells', Mol Cancer, 14: 160. 

Mullen, J. R., P. S. Kayne, R. P. Moerschell, S. Tsunasawa, M. Gribskov, M. 
Colavito-Shepanski, M. Grunstein, F. Sherman, and R. Sternglanz. 1989. 'Identification 

and characterization of genes and mutants for an N-terminal acetyltransferase from 
yeast', EMBO J, 8: 2067-75. 

Myklebust, L. M., S. I. Stove, and T. Arnesen. 2015. 'Naa10 in development and 
disease', Oncotarget, 6: 34041-2. 

Neri, L., M. Lasa, A. Elosegui-Artola, D. D'Avola, B. Carte, C. Gazquez, S. Alve, 
P. Roca-Cusachs, M. Inarrairaegui, J. Herrero, J. Prieto, B. Sangro, and R. Aldabe. 
2017. 'NatB-mediated protein N-alpha-terminal acetylation is a potential therapeutic 

target in hepatocellular carcinoma', Oncotarget, 8: 40967-81. 

Neuwald, A. F., and D. Landsman. 1997. 'GCN5-related histone N-
acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 

protein', Trends Biochem Sci, 22: 154-5. 

Ochaya, S., O. Franzen, D. A. Buhwa, H. Foyn, C. E. Butler, S. I. Stove, K. M. 
Tyler, T. Arnesen, E. Matovu, L. Aslund, and B. Andersson. 2019. 'Characterization of 

Evolutionarily Conserved Trypanosoma cruzi NatC and NatA-N-Terminal 
Acetyltransferase Complexes', J Parasitol Res, 2019: 6594212. 

Oh, J. H., J. Y. Hyun, and A. Varshavsky. 2017. 'Control of Hsp90 chaperone and 
its clients by N-terminal acetylation and the N-end rule pathway', Proc Natl Acad Sci U S 

A, 114: E4370-E79. 

Ohrfelt, A., H. Zetterberg, K. Andersson, R. Persson, D. Secic, G. Brinkmalm, A. 
Wallin, E. Mulugeta, P. T. Francis, E. Vanmechelen, D. Aarsland, C. Ballard, K. 

Blennow, and A. Westman-Brinkmalm. 2011. 'Identification of novel alpha-synuclein 
isoforms in human brain tissue by using an online nanoLC-ESI-FTICR-MS method', 

Neurochem Res, 36: 2029-42. 

Ohyama, K., K. Yasuda, K. Onga, A. Kakizuka, and N. Mori. 2012. 'Spatio-
temporal expression pattern of the NatB complex, Nat5/Mdm20 in the developing mouse 
brain: implications for co-operative versus non-co-operative actions of Mdm20 and Nat5', 

Gene Expr Patterns, 12: 36-45. 



191 

 

Otwinowski, Zbyszek, and Wladek Minor. 1997. '[20] Processing of X-ray 
diffraction data collected in oscillation mode.' in, Macromolecular Crystallography Part A 

(Academic Press). 

Ouidir, T., F. Jarnier, P. Cosette, T. Jouenne, and J. Hardouin. 2015. 
'Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14', 

J Proteomics, 114: 214-25. 

Park, E. C., and J. W. Szostak. 1992. 'ARD1 and NAT1 proteins form a complex 
that has N-terminal acetyltransferase activity', EMBO J, 11: 2087-93. 

Pathak, D., A. H. Bhat, V. Sapehia, J. Rai, and A. Rao. 2016. 'Biochemical 
evidence for relaxed substrate specificity of Nalpha-acetyltransferase (Rv3420c/rimI) of 

Mycobacterium tuberculosis', Sci Rep, 6: 28892. 

Pavlou, Demetria, and Antonis Kirmizis. 2016. 'Depletion of histone N-terminal-
acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells 

via the mitochondrial pathway', Apoptosis, 21: 298-311. 

Pesaresi, P., N. A. Gardner, S. Masiero, A. Dietzmann, L. Eichacker, R. Wickner, 
F. Salamini, and D. Leister. 2003. 'Cytoplasmic N-terminal protein acetylation is required 

for efficient photosynthesis in Arabidopsis', Plant Cell, 15: 1817-32. 

Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. 
C. Meng, and T. E. Ferrin. 2004. 'UCSF Chimera--a visualization system for exploratory 

research and analysis', J Comput Chem, 25: 1605-12. 

Polevoda, B., S. Brown, T. S. Cardillo, S. Rigby, and F. Sherman. 2008. 'Yeast N 
(alpha)-terminal acetyltransferases are associated with ribosomes', J Cell Biochem, 103: 

492-508. 

Polevoda, B., T. S. Cardillo, T. C. Doyle, G. S. Bedi, and F. Sherman. 2003. 
'Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal 

acetyltransferase and of actin and tropomyosin', J Biol Chem, 278: 30686-97. 

Polevoda, B., J. Norbeck, H. Takakura, A. Blomberg, and F. Sherman. 1999. 
'Identification and specificities of N-terminal acetyltransferases from Saccharomyces 

cerevisiae', EMBO J, 18: 6155-68. 



192 

 

Polevoda, B., and F. Sherman. 2001. 'NatC Nalpha-terminal acetyltransferase of 
yeast contains three subunits, Mak3p, Mak10p, and Mak31p', J Biol Chem, 276: 20154-

9. 

Popp, B., S. I. Stove, S. Endele, L. M. Myklebust, J. Hoyer, H. Sticht, S. 
Azzarello-Burri, A. Rauch, T. Arnesen, and A. Reis. 2015. 'De novo missense mutations 

in the NAA10 gene cause severe non-syndromic developmental delay in males and 
females', Eur J Hum Genet, 23: 602-9. 

Punjani, Ali, John L. Rubinstein, David J. Fleet, and Marcus A. Brubaker. 2017. 
'cryoSPARC: algorithms for rapid unsupervised Cryo-EM structure determination', Nat 

Methods, 14: 290-96. 

Rathore, O. S., A. Faustino, P. Prudencio, P. Van Damme, C. J. Cox, and R. G. 
Martinho. 2016. 'Absence of N-terminal acetyltransferase diversification during evolution 

of eukaryotic organisms', Sci Rep, 6: 21304. 

Raue, U., S. Oellerer, and S. Rospert. 2007. 'Association of protein biogenesis 
factors at the yeast ribosomal tunnel exit is affected by the translational status and 

nascent polypeptide sequence', J Biol Chem, 282: 7809-16. 

Rebowski, G., M. Boczkowska, A. Drazic, R. Ree, M. Goris, T. Arnesen, and R. 
Dominguez. 2020. 'Mechanism of actin N-terminal acetylation', Sci Adv, 6: eaay8793. 

Ree, R., A. S. Geithus, P. M. Torring, K. P. Sorensen, M. Damkjaer, D. D. D. 
study, S. A. Lynch, and T. Arnesen. 2019. 'A novel NAA10 p. (R83H) variant with 

impaired acetyltransferase activity identified in two boys with ID and microcephaly', BMC 
Med Genet, 20: 101. 

Ree, R., S. Varland, and T. Arnesen. 2018. 'Spotlight on protein N-terminal 
acetylation', Exp Mol Med, 50: 1-13. 

Ribeiro, A. L., R. D. Silva, H. Foyn, M. N. Tiago, O. S. Rathore, T. Arnesen, and 
R. G. Martinho. 2016. 'Naa50/San-dependent N-terminal acetylation of Scc1 is 

potentially important for sister chromatid cohesion', Sci Rep, 6: 39118. 

Robert, X., and P. Gouet. 2014a. 'Deciphering key features in protein structures 
with the new ENDscript server', Nucleic Acids Res, 42: W320-4. 



193 

 

Robert, Xavier, and Patrice Gouet. 2014b. 'Deciphering key features in protein 
structures with the new ENDscript server', Nucleic Acids Research, 42: W320-W24. 

Rong, Z., Z. Ouyang, R. S. Magin, R. Marmorstein, and H. Yu. 2016. 'Opposing 
Functions of the N-terminal Acetyltransferases Naa50 and NatA in Sister-chromatid 

Cohesion', J Biol Chem, 291: 19079-91. 

Rope, A. F., K. Wang, R. Evjenth, J. Xing, J. J. Johnston, J. J. Swensen, W. E. 
Johnson, B. Moore, C. D. Huff, L. M. Bird, J. C. Carey, J. M. Opitz, C. A. Stevens, T. 

Jiang, C. Schank, H. D. Fain, R. Robison, B. Dalley, S. Chin, S. T. South, T. J. Pysher, 
L. B. Jorde, H. Hakonarson, J. R. Lillehaug, L. G. Biesecker, M. Yandell, T. Arnesen, 

and G. J. Lyon. 2011. 'Using VAAST to identify an X-linked disorder resulting in lethality 
in male infants due to N-terminal acetyltransferase deficiency', Am J Hum Genet, 89: 28-

43. 

Runfola, M., A. De Simone, M. Vendruscolo, C. M. Dobson, and G. Fusco. 2020. 
'The N-terminal Acetylation of alpha-Synuclein Changes the Affinity for Lipid Membranes 

but not the Structural Properties of the Bound State', Sci Rep, 10: 204. 

Salah Ud-Din, A. I., A. Tikhomirova, and A. Roujeinikova. 2016. 'Structure and 
Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)', Int J Mol Sci, 17. 

Saunier, C., S. I. Stove, B. Popp, B. Gerard, M. Blenski, N. AhMew, C. de Bie, P. 
Goldenberg, B. Isidor, B. Keren, B. Leheup, L. Lampert, C. Mignot, K. Tezcan, G. M. 

Mancini, C. Nava, M. Wasserstein, A. L. Bruel, J. Thevenon, A. Masurel, Y. Duffourd, P. 
Kuentz, F. Huet, J. B. Riviere, M. van Slegtenhorst, L. Faivre, A. Piton, A. Reis, T. 

Arnesen, C. Thauvin-Robinet, and C. Zweier. 2016. 'Expanding the Phenotype 
Associated with NAA10-Related N-Terminal Acetylation Deficiency', Hum Mutat, 37: 

755-64. 

Schiza, Vassia, Diego Molina-Serrano, Dimitris Kyriakou, Antonia Hadjiantoniou, 
and Antonis Kirmizis. 2013. 'N-alpha-terminal Acetylation of Histone H4 Regulates 
Arginine Methylation and Ribosomal DNA Silencing', Plos Genetics, 9: e1003805. 

Schmidt, A., K. Kochanowski, S. Vedelaar, E. Ahrne, B. Volkmer, L. Callipo, K. 
Knoops, M. Bauer, R. Aebersold, and M. Heinemann. 2016. 'The quantitative and 

condition-dependent Escherichia coli proteome', Nat Biotechnol, 34: 104-10. 

Schrodinger, LLC. 2015. "The PyMOL Molecular Graphics System, Version 1.8." 
In. 



194 

 

Seo, J. H., J. H. Cha, J. H. Park, C. H. Jeong, Z. Y. Park, H. S. Lee, S. H. Oh, J. 
H. Kang, S. W. Suh, K. H. Kim, J. Y. Ha, S. H. Han, S. H. Kim, J. W. Lee, J. A. Park, J. 
W. Jeong, K. J. Lee, G. T. Oh, M. N. Lee, S. W. Kwon, S. K. Lee, K. H. Chun, S. J. Lee, 
and K. W. Kim. 2010. 'Arrest defective 1 autoacetylation is a critical step in its ability to 

stimulate cancer cell proliferation', Cancer Res, 70: 4422-32. 

Setty, S. R., T. I. Strochlic, A. H. Tong, C. Boone, and C. G. Burd. 2004a. 'Golgi 
targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral 

membrane protein Sys1p', Nat Cell Biol, 6: 414-9. 

Setty, Subba Rao Gangi, Todd I. Strochlic, Amy Hin Yan Tong, Charles Boone, 
and Christopher G. Burd. 2004b. 'Golgi targeting of ARF-like GTPase Arl3p requires its 
Nα-acetylation and the integral membrane protein Sys1p', Nature Cell Biology, 6: 414. 

Shemorry, A., C. S. Hwang, and A. Varshavsky. 2013. 'Control of protein quality 
and stoichiometries by N-terminal acetylation and the N-end rule pathway', Mol Cell, 50: 

540-51. 

Singer, J. M., and J. M. Shaw. 2003. 'Mdm20 protein functions with Nat3 protein 
to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast', 

Proc Natl Acad Sci U S A, 100: 7644-9. 

Song, O. K., X. Wang, J. H. Waterborg, and R. Sternglanz. 2003. 'An Nalpha-
acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 

and H2A', J Biol Chem, 278: 38109-12. 

Spillantini, M. G., R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert. 
1998. 'alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's 
disease and dementia with lewy bodies', Proc Natl Acad Sci U S A, 95: 6469-73. 

Starheim, K. K., T. Arnesen, D. Gromyko, A. Ryningen, J. E. Varhaug, and J. R. 
Lillehaug. 2008. 'Identification of the human N (alpha)-acetyltransferase complex B 
(hNatB): a complex important for cell-cycle progression', Biochem J, 415: 325-31. 

Starheim, K. K., K. Gevaert, and T. Arnesen. 2012. 'Protein N-terminal 
acetyltransferases: when the start matters', Trends Biochem Sci, 37: 152-61. 

Starheim, K. K., D. Gromyko, R. Evjenth, A. Ryningen, J. E. Varhaug, J. R. 
Lillehaug, and T. Arnesen. 2009. 'Knockdown of human N alpha-terminal 

acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human 
Arl8b localization', Mol Cell Biol, 29: 3569-81. 



195 

 

Stove, S. I., R. S. Magin, H. Foyn, B. E. Haug, R. Marmorstein, and T. Arnesen. 
2016. 'Crystal Structure of the Golgi-Associated Human Nalpha-Acetyltransferase 60 
Reveals the Molecular Determinants for Substrate-Specific Acetylation', Structure, 24: 

1044-56. 

Strong, M., M. R. Sawaya, S. Wang, M. Phillips, D. Cascio, and D. Eisenberg. 
2006. 'Toward the structural genomics of complexes: crystal structure of a PE/PPE 
protein complex from Mycobacterium tuberculosis', Proc Natl Acad Sci U S A, 103: 

8060-5. 

Tercero, J. C., J. D. Dinman, and R. B. Wickner. 1993. 'Yeast MAK3 N-
acetyltransferase recognizes the N-terminal four amino acids of the major coat protein 

(gag) of the L-A double-stranded RNA virus', Journal of bacteriology, 175: 3192-4. 

Theillet, F. X., A. Binolfi, B. Bekei, A. Martorana, H. M. Rose, M. Stuiver, S. 
Verzini, D. Lorenz, M. van Rossum, D. Goldfarb, and P. Selenko. 2016. 'Structural 

disorder of monomeric alpha-synuclein persists in mammalian cells', Nature, 530: 45-50. 

Trexler, A. J., and E. Rhoades. 2012. 'N-Terminal acetylation is critical for 
forming alpha-helical oligomer of alpha-synuclein', Protein Sci, 21: 601-5. 

Van Damme, P., R. Evjenth, H. Foyn, K. Demeyer, P. J. De Bock, J. R. Lillehaug, 
J. Vandekerckhove, T. Arnesen, and K. Gevaert. 2011a. 'Proteome-derived peptide 

libraries allow detailed analysis of the substrate specificities of N (alpha)-
acetyltransferases and point to hNaa10p as the post-translational actin N (alpha)-

acetyltransferase', Molecular & cellular proteomics : MCP, 10: M110 004580. 

Van Damme, P., K. Hole, K. Gevaert, and T. Arnesen. 2015. 'N-terminal 
acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic 

competition between N-terminal acetyltransferases and methionine aminopeptidases', 
Proteomics, 15: 2436-46. 

Van Damme, P., K. Hole, A. Pimenta-Marques, K. Helsens, J. Vandekerckhove, 
R. G. Martinho, K. Gevaert, and T. Arnesen. 2011. 'NatF contributes to an evolutionary 

shift in protein N-terminal acetylation and is important for normal chromosome 
segregation', PLoS Genet, 7: e1002169. 

Van Damme, P., T. V. Kalvik, K. K. Starheim, V. Jonckheere, L. M. Myklebust, G. 
Menschaert, J. E. Varhaug, K. Gevaert, and T. Arnesen. 2016a. 'A Role for Human N-
alpha Acetyltransferase 30 (Naa30) in Maintaining Mitochondrial Integrity', Molecular & 

cellular proteomics : MCP, 15: 3361-72. 



196 

 

Van Damme, P., M. Lasa, B. Polevoda, C. Gazquez, A. Elosegui-Artola, D. S. 
Kim, E. De Juan-Pardo, K. Demeyer, K. Hole, E. Larrea, E. Timmerman, J. Prieto, T. 

Arnesen, F. Sherman, K. Gevaert, and R. Aldabe. 2012. 'N-terminal acetylome analyses 
and functional insights of the N-terminal acetyltransferase NatB', Proc Natl Acad Sci U S 

A, 109: 12449-54. 

Van Damme, Petra, Rune Evjenth, Håvard Foyn, Kimberly Demeyer, Pieter-Jan 
De Bock, Johan R. Lillehaug, Joël Vandekerckhove, Thomas Arnesen, and Kris Gevaert. 

2011b. 'Proteome-derived Peptide Libraries Allow Detailed Analysis of the Substrate 
Specificities of Nα-acetyltransferases and Point to hNaa10p as the Post-translational 

Actin Nα-acetyltransferase', Molecular & Cellular Proteomics, 10. 

Van Damme, Petra, Thomas V. Kalvik, Kristian K. Starheim, Veronique 
Jonckheere, Line M. Myklebust, Gerben Menschaert, Jan Erik Varhaug, Kris Gevaert, 

and Thomas Arnesen. 2016b. 'A Role for Human N-alpha Acetyltransferase 30 (Naa30) 
in Maintaining Mitochondrial Integrity', Molecular & cellular proteomics : MCP, 15: 3361-

72. 

Varland, S., and T. Arnesen. 2018. 'Investigating the functionality of a ribosome-
binding mutant of NAA15 using Saccharomyces cerevisiae', BMC Res Notes, 11: 404. 

Varland, S., C. Osberg, and T. Arnesen. 2015. 'N-terminal modifications of 
cellular proteins: The enzymes involved, their substrate specificities and biological 

effects', Proteomics, 15: 2385-401. 

Vetting, M. W., D. C. Bareich, M. Yu, and J. S. Blanchard. 2008. 'Crystal 
structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N (alpha)-

acetylation of ribosomal protein S18', Protein Sci, 17: 1781-90. 

Vetting, M. W., L. P. de Carvalho, S. L. Roderick, and J. S. Blanchard. 2005. 'A 
novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella 

typhimurium', J Biol Chem, 280: 22108-14. 

Vinueza-Gavilanes, R., I. Inigo-Marco, L. Larrea, M. Lasa, B. Carte, E. 
Santamaria, J. Fernandez-Irigoyen, R. Bugallo, T. Aragon, R. Aldabe, and M. Arrasate. 
2020. 'N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and 

neuronal toxicity', Neurobiol Dis: 104781. 

Wahl, M. C., G. P. Bourenkov, H. D. Bartunik, and R. Huber. 2000. 'Flexibility, 
conformational diversity and two dimerization modes in complexes of ribosomal protein 

L12', EMBO J, 19: 174-86. 



197 

 

Watson, M. D., and J. C. Lee. 2019. 'N-Terminal Acetylation Affects alpha-
Synuclein Fibril Polymorphism', Biochemistry, 58: 3630-33. 

Wenzlau, J. M., P. J. Garl, P. Simpson, K. R. Stenmark, J. West, K. B. Artinger, 
R. A. Nemenoff, and M. C. Weiser-Evans. 2006. 'Embryonic growth-associated protein is 

one subunit of a novel N-terminal acetyltransferase complex essential for embryonic 
vascular development', Circ Res, 98: 846-55. 

Weyer, F. A., A. Gumiero, K. Lapouge, G. Bange, J. Kopp, and I. Sinning. 2017. 
'Structural basis of HypK regulating N-terminal acetylation by the NatA complex', Nat 

Commun, 8: 15726. 

Wiame, E., G. Tahay, D. Tyteca, D. Vertommen, V. Stroobant, G. T. Bommer, 
and E. Van Schaftingen. 2018. 'NAT6 acetylates the N-terminus of different forms of 

actin', Febs j, 285: 3299-316. 

Williams, B. C., C. M. Garrett-Engele, Z. Li, E. V. Williams, E. D. Rosenman, and 
M. L. Goldberg. 2003. 'Two putative acetyltransferases, san and deco, are required for 

establishing sister chromatid cohesion in Drosophila', Curr Biol, 13: 2025-36. 

Wisniewski, J. R., A. Zougman, N. Nagaraj, and M. Mann. 2009. 'Universal 
sample preparation method for proteome analysis', Nat Methods, 6: 359-62. 

Yang, Dongxue, Qianglin Fang, Mingzhu Wang, Ren Ren, Hong Wang, Meng 
He, Youwei Sun, Na Yang, and Rui-Ming Xu. 2013. 'Nα-acetylated Sir3 stabilizes the 
conformation of a nucleosome-binding loop in the BAH domain', Nature Structural & 

Molecular Biology, 20: 1116–18. 

Yi, C. H., D. K. Sogah, M. Boyce, A. Degterev, D. E. Christofferson, and J. Yuan. 
2007. 'A genome-wide RNAi screen reveals multiple regulators of caspase activation', J 

Cell Biol, 179: 619-26. 

Yoon, H., H. L. Kim, Y. S. Chun, D. H. Shin, K. H. Lee, C. S. Shin, D. Y. Lee, H. 
H. Kim, Z. H. Lee, H. M. Ryoo, M. N. Lee, G. T. Oh, and J. W. Park. 2014. 'NAA10 

controls osteoblast differentiation and bone formation as a feedback regulator of Runx2', 
Nat Commun, 5: 5176. 

Yu, M., M. Ma, C. Huang, H. Yang, J. Lai, S. Yan, L. Li, M. Xiang, and D. Tan. 
2009. 'Correlation of expression of human arrest-defective-1 (hARD1) protein with breast 

cancer', Cancer Invest, 27: 978-83. 



198 

 

Zhang, K. 2016. 'Gctf: Real-time CTF determination and correction', J Struct Biol, 
193: 1-12. 

Zhao, Jianhua, Sarah E. Noon, Ian D. Krantz, and Yaning Wu. 2016. 'A de novo 
interstitial deletion of 7q31.2q31.31 identified in a girl with developmental delay and 
hearing loss', American Journal of Medical Genetics Part C: Seminars in Medical 

Genetics, 172: 102-08. 

Zheng, S. Q., E. Palovcak, J. P. Armache, K. A. Verba, Y. Cheng, and D. A. 
Agard. 2017. 'MotionCor2: anisotropic correction of beam-induced motion for improved 

cryo-electron microscopy', Nat Methods, 14: 331-32. 

Zimmermann, Lukas, Andrew Stephens, Seung-Zin Nam, David Rau, Jonas 
Kübler, Marko Lozajic, Felix Gabler, Johannes Söding, Andrei N. Lupas, and Vikram 

Alva. 2018. 'A Completely Reimplemented MPI Bioinformatics Toolkit with a New 
HHpred Server at its Core', Journal of Molecular Biology, 430: 2237-43. 

Zivanov, J., T. Nakane, B. O. Forsberg, D. Kimanius, W. J. Hagen, E. Lindahl, 
and S. H. Scheres. 2018. 'New tools for automated high-resolution Cryo-EM structure 

determination in RELION-3', Elife, 7: e42166. 
 


	The Molecular And Regulatory Mechanism Of Multi-Subunit N-Terminal Acetyltransferases
	Recommended Citation

	The Molecular And Regulatory Mechanism Of Multi-Subunit N-Terminal Acetyltransferases
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	tmp.1630407043.pdf.fzqFh

