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ABSTRACT 

DISCOVERING PLEIOTROPY ACROSS CIRCULATORY SYSTEM DISEASES AND 

NERVOUS SYSTEM DISORDERS 

Xinyuan Zhang 

Marylyn D. Ritchie 

Pleiotropy is a phenomenon which describes a gene or a genetic variant that affects more 

than one phenotype. This fundamental concept has been thought to play a critical role in 

genetics, medicine, evolutionary biology, molecular biology, and clinical research. With the recent 

development in sequencing technologies and statistical methods, pleiotropy can be characterized 

systematically in human genome. Circulatory system diseases and nervous system disorders 

have a significant impact on mortality rates worldwide and frequently co-occur in patients. Thus, 

the field would benefit greatly from the knowledge of the underlying genetic relationship between 

multiple diseases in these disease categories. In this dissertation, we aim to identify pleiotropy 

across a wide range of circulatory system diseases and nervous system disorders using large-

scale electronic health record-linked biobank datasets. For common genetic variants, we applied 

an ensemble of methods including univariate, multivariate, and sequential multivariate association 

methods to characterize pleiotropy in the UK Biobank and the eMERGE network. Our results 

implicated five pleiotropic regions that help to explain the disease relationships across these 

disease categories. For rare variants, we performed univariate burden and dispersion tests using 

whole-exome sequencing data from the UK Biobank and characterized 143 Bonferroni significant 

pleiotropic genes. Our analytical framework on both common and rare genetic variants offer novel 

insights into biology and provide a new perspective for studying pleiotropy in large-scale biobank 

datasets. Besides the application of statistical methods on natural biomedical datasets, we also 

conducted simulation projects investigating the impact of sample size imbalance on the 

performance of the proposed statistical methods. Our simulation results can serve as a reference 

guideline to assist sample size design for association studies.  
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CHAPTER 1 Analytical methods to uncover pleiotropy in electronic health record 

linked biobanks 

 

1.1 Abstract 

Pleiotropy, which describes a genetic variant or a gene that affects more than one trait, is an 

important concept in biology. The advances in sequencing technologies and statistical methods 

offer new opportunities to study pleiotropy in human genome. Many promising electronic health 

record (EHR)-linked biobanks are being built to elucidate the genetic architecture of human 

diseases. With effective analytical approaches being applied to data from EHR-linked biobanks, 

pleiotropy in the human genome can be characterized to understand shared biology underlying 

human traits. Here, we first introduce the history of pleiotropy studies in human genome. We then 

review analytical methods deigned for common variants and rare variants for detecting pleiotropy. 

We lastly discuss challenges and future directions in this topic.  

1.2 Introduction 

A genetic variant or a gene may affect multiple traits. The phenomenon, known as 

pleiotropy, has had important influence on many aspects of biology1. Previous genetics studies 

limited to focus on defining a single function of each gene, which works well for ubiquitously 

expressed (or “housekeeping”) genes and tissue-specific (or “luxury”) genes2. However, most of 

the genes in complex organisms are expressed in multiple tissues, with potential functional 

variation, meaning that each gene may have different functions in each scenario2. This leads to 

various forms of trait manifestations, or even may result in seemly unrelated phenotypes. A better 

understanding of this inherent property of genetic material is one of the critical research 

endeavors in human genetics as the field attempts to elucidate the genetic architecture for 

complex traits. 
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Biomedical datasets, which link genotypic information to clinical phenotypes, provide 

unprecedented opportunities to design powerful studies to understand complex traits3. The 

information from the healthcare records from a healthcare system, such as the electronic health 

records (EHRs), offer a systematic characterization of health and disease profile for every patient-

participant. Meanwhile, the genetic materials are being curated in a variety of aspects, including 

common variants, rare variants, copy-number variations, structural variations, etc. Coupling these 

resources, bioinformatics tools, and statistical methods will provide the necessary infrastructure to 

assist in revealing novel biological knowledge.  

In this chapter, we review the current states of statistical methods that can be applied to 

identify pleiotropy in an EHR-linked biobank. Specifically, this review is focused on methods that 

are designed for studies where individual-level data are available. There are a number of new 

methods that focus on using genome-wide association study (GWAS) summary statistics for 

these types of investigations4-10; however, we are not going to focus on those methods. We will 

first review the history of studying pleiotropy in human genome. Next, we outline the analytical 

approaches for either common genetic variants or rare genetic variants. Finally, we discuss 

challenges and future directions for uncovering pleiotropy from large-scale biomedical datasets. 

1.3 History of studying pleiotropy in human genome 

The term pleiotropy was first defined by the geneticist Ludwig Plate in 1910. In the late 

1970s, researchers started to learn the mechanisms of pleiotropy at a molecular level in model 

organisms11. For instance, fundamental questions have been addressed in model organisms, 

such as the number of traits that can be influenced by pleiotropy and the multiple functions of 

certain genes12-17. Research on pleiotropy in humans is only at the beginning of its era. With the 

advancement of sequencing technologies, curation of large-scale datasets, and effective 

statistical methods, a broad genotype to phenotype map is being established; this is enabling 

pleiotropy to be more thoroughly investigated in humans.  
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Genome-wide association studies (GWAS) have identified more than 200,000  variants 

associated with a wide range of traits18,19. An interesting observation is that many GWAS loci 

have been found to be associated with multiple traits, also known as cross-phenotype 

associations20. Cross-phenotype associations may harbor pleiotropy, though it is important to 

note that pleiotropy is only one of the possible underlying causes for cross-phenotype 

associations 20. An overview of the GWAS catalog suggested that 90% of GWAS loci are 

associated with more than one trait21, which implies that there may be ubiquity of pleiotropy 

across the human genome. 

Most studies of pleiotropy are inferred using independent single phenotype GWAS 

approach. Each GWAS was focused on one specific trait, therefore, the inference of pleiotropy 

must be drawn using only the GWAS summary statistics across many independent studies. 

Interestingly, both concordant and discordant pleiotropy have been identified among immune-

mediated diseases22; similar observations have been seen across eight psychiatric disorders as 

well23. Combining multiple GWAS studies offers invaluable insights into biology. However, since 

each study has its own unique disease definition, study design, and statistics models, there may 

be bias in the estimates for pleiotropy due to these inconsistencies, which reduce power for 

methods that were designed for summary statistics only. Moreover, most published GWAS focus 

on relatively common diseases, which makes finer, more rare clinical phenotypes largely 

unstudied.  

EHR-linked biobank datasets have great potential for exploring and discovering pleiotropy. 

EHRs provides a comprehensive phenotype landscape for each patient-participant from the 

biobank, which allows for the expansion of focus from a single disease to a whole spectrum of 

diseases phenotypes. Using a broad set of phenotypes can be powerful for identifying pleiotropy 

by providing the entire phenome for each participant; and it also enables researchers to conduct 

robust study designs, such as the use of a discovery-replication scheme. With the application of 
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effective statistical methods on individual-level genetics and phenotype data, EHR-linked 

biobanks could offer the opportunity for robust inferences about pleiotropy. Fortunately, impactful 

EHR-linked biobanks are being developed, such as the UK Biobank24, the Million Veteran 

Program25, All of Us, the Penn Medicine Biobank, and the set of EHR-linked biobanks affiliated 

with the eMERGE network26. We believe that EHR-linked biobanks will provide the resources 

needed to shed light on the shared biology underlying various traits, thus assisting in our 

understanding of fundamental biology as well as drug discovery and repositioning in near future.  

1.4 Pleiotropy methods for common variants 

Analytical methods for identifying pleiotropy for the association of common genetic variants 

with phenotypes can be broadly categorized into univariate, multivariate, and sequential 

multivariate association methods. We review current methodologies and discuss the advantages 

and disadvantages for each category of methodology.   

1.4.1 Univariate association methods 

The univariate association method refers to the statistical model that tests the association 

between one phenotype and one genetic variant at a time27. GWAS is an example of the most 

widely used univariate approach. In a GWAS, any association statistic can be used, depending 

on the phenotype, such as logistic regression or linear regression. A chi-square test of 

association can also be used. In the context of pleiotropy, a univariate approach scans the 

genome, testing for the association of each common genetic variant, with each phenotype across 

the phenome. This results in a genome-wide, phenome-wide association analysis which provided 

the opportunity to make inferences about potential pleiotropy. Since summary statistics are 

derived from single phenotype association tests, the term univariate method also has been used 

to describe methods that combine GWAS summary statistics. There are several reviews have 

discussed those methods extensively28-30. Since we are interested in methods that can be applied 
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specifically to EHR-linked biobanks, we are focusing only on discussing methods that are 

designed for individual-level data.  

The test for univariate associations across a wide range of phenotypes is called a phenome-

wide association studies (PheWAS). PheWAS builds a genotype-to-phenotype map for every 

genetic variant across hundreds of phenotypes31-34. The inference of pleiotropy for common 

variants can be observed by evaluating the cross-phenotype associations from PheWAS. 

PheWAS has demonstrated the potential to identify pleiotropy in multiple studies such as 

Electronic Medical Records and Genomics (eMERGE) network35 and the Population Architecture 

using Genomics and Epidemiology (PAGE) study36. The choice of statistical method largely 

depends on the type of phenotype being tested. For disease status (binary outcome), logistic 

regression can be applied. For quantitative traits (continuous outcome), linear regression can be 

applied. Statistical models can also be adjusted for the desired covariates obtained from the 

health records of the biobank participants. These may include age, race/ethnicity, sex, or body 

mass index to name a few. A number of different software packages can be used to perform 

these types of univariate analyses include PLINK37, PLATO38, SAIGE39, Regenie40. 

One advantage of the univariate association method is its ability to provide a detailed map 

for each genotype-phenotype pair. The genetic effect size obtained from the univariate 

association tests indicates the direction of the genetic effect as well as the magnitude of the effect 

that the genetic variant has on phenotype. On the flip side, the number of tests being performed 

increases with the number of phenotypes being tested, thus, multiple testing corrections should 

be considered for univariate association tests. However, using a stringent p-value threshold, like 

a Bonferroni correction for all genetic variants and all phenotypes, may lead to a high false 

negative rate, where true associations do not reach the multiple testing p-value threshold. As 

such, there is a balance between false positive rates and false negative rates that needs to be 

considered for interpreting pleiotropy from univariate association results.  
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1.4.2 Multivariate association methods 

Multivariate association methods describe statistical methodology that jointly tests two or 

more phenotypes simultaneously27. This type of methodology often requires individual-level data, 

and the phenotypes need to be measured and available for each patient-participant. From 

electronic health records, disease status or biometric measurements are available for most of the 

participants, making these data suitable for identifying genetic variants that are associated with 

multiple traits using multivariate association methods. One benefit of multivariate association 

method is that they tend to have higher power than univariate association methods as these 

methods can account for the covariance among traits30; this makes multivariate association 

methods favorable for the discovery of pleiotropy in EHR-linked biobank datasets. 

The choice of multivariate association method will largely depend on the type of phenotype 

under consideration. There are numerous different multivariate association methods proposed for 

analyzing continuous traits. For example, multivariate linear mixed models (mvLMMs) are 

powerful methods for testing associations among correlated traits, while accounting for population 

stratification and sample relatedness41. The phenotypic input data for mvLMMs should be 

multivariate normally distributed41. A similar method that requires a multivariate normal input is 

BIMBAM, which is developed based on a Bayesian model and is suitable for a modest number of 

phenotypes (e.g. 5-10)42. Dimensionality reduction methods, such as principal component 

analysis methods, have also been proposed for multivariate association approaches43,44. As for 

binary traits, several methods have also been developed, including MultiPhen45 and reduced-rank 

regression46. MultiPhen implements an ordinal regression with the genotype being the response 

variable and the phenotypes being predictor variables. MultiPhen captures the linear combination 

of the most associated phenotypes for each genetic variant45. The reduced-rank regression is a 

dimensionality reduction method that can identify important patterns by restricting the rank in the 

coefficient matrix; this approach allows for testing multiple genotypes with multiple phenotypes 

simultaneously46. 
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The advantage of multivariate association methods over univariate association methods is 

their ability to account for the relationship or correlation among multiple phenotypes. Multivariate 

association methods have demonstrated their increased power in several simulation settings29,30. 

These methods also have a reduced multiple testing correction burden due to the joint test of 

multiple traits28, rather than multiple separate tests. However, given that the rejection of the null 

hypothesis suggests association with ‘one or more traits’, most of the multivariate frameworks do 

not necessarily fulfill the requirement for pleiotropy – which needs at least two traits. So, it could 

be that the multivariate association test has a p-value that is statistically significant whereby the 

null hypothesis is rejected; however, there is only one trait that is associated, rather than two. 

Thus, this would not be pleiotropy. Also, the significance of the multivariate p-value does not 

indicate which exact trait(s) are associated with the SNP, thus it is challenging to interpret 

pleiotropy solely from multivariate association results. Often, an additional downstream analysis is 

needed to decompose which traits are associated. For example, performing a univariate 

association test where you see significant multivariate association may assist with the 

interpretation of the multivariate results. Indeed, it has been suggested to view both univariate 

association and multivariate association methods as complementary rather than competing 

methodologies41. 

1.4.3 Sequential multivariate association methods 

Sequential multivariate association methods, also known as ‘formal test of pleiotropy’, have 

been developed to address the above-mentioned challenge facing multivariate method ¾ inability 

to pinpoint the exact set of associated traits. Schaid et al. proposed a sequential multivariate 

method called ‘pleio’, which performs multivariate generalized linear models iteratively47. The 

input phenotype can be binary, ordinal, or continuous. This approach tests the null hypothesis 

that k+1 traits are associated with the genetic variant, given that the null of k associated traits was 

rejected. By performing multivariate analysis sequentially, this powerful method can pinpoint the 
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exact set of phenotypes that are associated with the genetic variant, thus, a researcher can 

discover pleiotropy based on their associated phenotypes of interests.  

This type of method offers a robust estimation of the phenotypes that are associated with 

each SNP. However, as the number of associated phenotypes increases, the iterations needed to 

find which combinations of phenotypes are associated increases drastically. Because of this, 

pleio works well for small to moderate numbers of phenotypes (such as less than 65), but would 

be extremely time-consuming if too many associated phenotypes are present in the dataset. 

Another drawback of pleio is that, in a similar vein as the general multivariate association method 

framework, the genetic effect size is unknown for each genotype-phenotype pair. Univariate 

results could be helpful to resolve this challenge. Again, like with multivariate methods, univariate 

association results can be helpful to resolve this challenge with sequential multivariate methods 

like pleio. 

1.5 Pleiotropy methods for rare variants 

In addition to common genetic variants, rare genetic variants are also important to improve 

our understanding of pleiotropy. Methods for single locus association analysis are underpowered 

for rare variants due to their low frequency, unless the effect size is very large48. Generally, 

grouping rare variants into regions (e.g. genes or pathways) assists in the discovery of rare 

variant associations as these groupings of rare variants can increase statistical power48. In the 

next sections, we review the region-based tests for rare variants and describe in their potential for 

identifying pleiotropy. 

1.5.1 Univariate Association Methods 

Here, univariate association methods refer to the association between one biological region 

and one phenotype per statistical model. Methods in this category can be grouped into burden 

and dispersion tests, which are two categories of standard methods in rare variant association 



9 

 

studies. In the context of pleiotropy, univariate methods can be applied across the phenome to 

characterize pleiotropic genes/regions that are associated with traits of interests. For instance, 

Park et al. characterized novel predicted loss-of-function genes via an exome-by-phenome 

scheme using burden tests in the Penn Medicine Biobank49. Software such as rvtest50 and 

BioBin51 offer multiple choices of statistical models and weighting schemes for these types of 

univariate association tests. Users can refer to the software manuals and perform the analysis 

according to the type of phenotype (binary, continuous, or ordinal), adjustment for covariates, 

research hypothesis being tested, etc. A recent proposed method ‘SKAT-robust’ can account for 

unbalanced case-control sample size using saddle point approximation and efficient resampling52. 

Within these methods, much like for the common variant univariate association methods, multiple 

testing can be an issue of concern as these methods do one statistical test per gene/region and 

per phenotype. Thus, with a large number of phenotypes and a genome-wide burden or 

dispersion test, there can be a hefty multiple testing burden.   

1.5.2 Multivariate association methods 

Multivariate association methods refer to performing rare variant association tests across a 

set of multiple phenotypes jointly. This type of method is in its early development. Here, we 

review a few proposed methods. For continuous traits, MultiSKAT implements a multivariate 

kernel regression to jointly analyze multiple phenotypes53. In addition to continuous traits, 

KMgene can also handle continuous longitudinal, survival and binary family data54. Another tool 

called MARV55 can take both binary and continuous phenotypes, however, it seems that it does 

not allow for adjustment of covariates. Methods that can handle binary traits include adaptive 

weighting reverse regression (AWRR)56, weighted sum reverse regression (WSRR)56 and 

multivariate association analysis using score statistics (MAAUSS)57. AWRR performs a reverse 

regression with phenotypes as predictor variables and collapsing genotype as the outcome or 

response variable56. WSRR is developed using the same ideas as AWRR but uses the Madsen 
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and Browning weighting scheme and has been suggested to be less powerful than AWRR. 

MAAUSS extends the SKAT framework to multiple phenotypes57. However, to our knowledge, the 

software for these multivariate rare variant association methods are not readily available to the 

scientific community yet.   

1.6 Challenges and future directions 

Unfortunately, there is no single statistical method that is the most powerful and can cover all 

of needed information for a robust and thorough investigation of pleiotropy across the human 

genome. It is currently recommended to use an ensemble of methods to maximize the ability to 

identify pleiotropy. For example, we recently conducted a study where we applied multiple 

association methods and characterized pleiotropy for common variants across cardiovascular and 

neurological diseases from the eMERGE network58. In this study, we observed that different 

signals can be detected by using different methods, which suggest that the association results 

are largely driven by the chosen statistical method(s). With the application of multiple powerful 

methods, one can hope to provide a relatively complete picture of the genotype-to-phenotype 

relationships and to understand pleiotropy. 

For common variant association methods, one possible future direction is to develop efficient 

and powerful tools to characterize pleiotropy. As discussed above, the multivariate association 

framework is, in general, more powerful than a univariate framework. However, in order to 

address the challenges facing multivariate methods, sequential multivariate approaches have 

been developed. These methods are more powerful but less computationally efficient, especially 

given a large number of associated phenotypes. Pre-selection of a set of phenotypes using 

thresholding or dimensionality reduction techniques could be helpful. On the other hand, 

currently, the interpretation of pleiotropy from multivariate models needs to take univariate results 

into consideration. Perhaps future sequential multivariate methods will provide the specificity of 

which traits show evidence of pleiotropy and remove the need for the complementary univariate 
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association analysis. With the application on large-scale EHR-linked biobanks, a unified and 

efficient analytical approach that addresses these challenges would be beneficial.  

Multivariate association methods for rare variants is still in their infancy. We would expect to 

see more multivariate rare variant methods becoming available for use on EHR-linked biobank 

data in the future, especially given the increasingly expanding whole exome sequencing data 

available in the scientific community. Possible functional annotation and filtering strategies could 

assist in the understanding of the influence of pleiotropy on the human genome. A promising 

future is to combine the pleiotropy association results from common variants along with 

information about the nearby regulatory regions as well as functional rare variants. In this way, 

researchers can link often non-coding common variants to the functional rare variants across 

multiple traits to elucidate the architecture of pleiotropy as a whole.  

1.7 Conclusions 

Understanding pleiotropy is crucial to elucidate the genetic architecture of complex traits. 

With the accumulation of rich genetics datasets linked with deep phenotypes, charactering 

pleiotropy in the human genome became has become more possible and very exciting. In this 

review, we covered the current state of analytical methods for identifying pleiotropy in EHR-linked 

biobank datasets. We offered an overview of the current stages for statistical methods for 

identifying pleiotropy in common genetic variants and rare genetic variants. We discussed the 

assumptions for choosing the desired methods, serving as a reference for the researchers. 

Meanwhile, we outlined advantages and disadvantages for each method category, followed by a 

discussion on the challenges and future directions in the field. Large-scale EHR-linked biobank 

datasets are expanding at a fast pace, with the application of effective statistical methods, 

pleiotropy can be captured and will help with the understanding of human biology. Improving our 

understanding of pleiotropy could assist future disease risk prediction, minimizing drug side 
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effects, possible drug repositioning, and preventive identification and care for vulnerable 

populations. 

 

1.8 Outline for dissertation 

In Chapter 1, we review current analytical approaches for detecting pleiotropy in EHR-linked 

biobank datasets, for common variants and rare variants respectively. The review is focused on 

the univariate and multivariate association methods designed for individual level data. We also 

discuss the challenges and future directions in this topic.  

Since most of previously published simulation studies were conducted using a balanced 

case-control sample size, the statistical performance for unbalanced case control scenarios are 

largely unknown. For common variants, the impact of sample size imbalance for univariate 

association methods has been discussed previously59. In Chapter 2, we design a large-scale 

simulation study for unbalanced case-control scenarios for multiple related traits. The statistical 

performance for univariate and multivariate methods on common variants is also carefully 

evaluated. As for the application, a case study of five traits with sample size imbalance in the UK 

Biobank has been included in this chapter. 

In Chapter 3, we present our pilot study on identifying pleiotropy across circulatory system 

diseases and nervous system disorders in the eMERGE network. In Chapter 4, we conduct our 

analyses using a discovery-replication scheme on two independent biobank datasets, the 

eMERGE network and the UK Biobank. We implement a unified analytical framework and present 

pleiotropic regions that are associated with circulatory system diseases and nervous system 

disorders. We demonstrate disease relationships that can be linked by the discovery of 

pleiotropy. 
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In Chapter 5, we investigate the sample size imbalance for univariate rare variant 

association study. We characterize statistical performance for two widely used association 

methods – burden and dispersion tests across a wide range of sample size designs. In Chapter 6, 

we apply both burden and dispersion tests on the whole-exome sequencing data from the UK 

Biobank and characterize pleiotropic genes that are associated with circulatory system diseases 

and nervous system disorders. 

In Chapter 7, we conclude the dissertation and discuss future directions in the field of 

identifying pleiotropy in the EHR-linked biobank datasets. We also discuss possible future 

applications of pleiotropy for clinical practice and the pharmaceutical field.
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CHAPTER 2 Statistical impact of sample size and imbalance on multivariate 

analysis in silico and a case study in the UK Biobank 

 

This chapter was adapted from:  

Xinyuan Zhang, Ruowang Li, Marylyn D. Ritchie. (2020) “Statistical Impact of Sample Size and 
Imbalance on Multivariate Analysis in silico and A Case Study in the UK Biobank”. Accepted. 

XZ and MDR conceptualized the project. XZ led the project. XZ contributed to designing the 
analysis, performing the analysis and manuscript writing. RL assisted with analysis design and 
RL and MDR provided important feedback on the manuscript. All the authors read and approved 
the final manuscript. 

 

2.1 Abstract  

Large-scale biobank cohorts coupled with electronic health records offer unprecedented 

opportunities to study genotype-phenotype relationships. Genome-wide association studies 

uncovered disease-associated loci through univariate methods, with the focus on one trait at a 

time. With genetic variants being identified for thousands of traits, researchers found that 90% of 

human genetic loci are associated with more than one trait, highlighting the ubiquity of pleiotropy. 

Recently, multivariate methods have been proposed to effectively identify pleiotropy. However, 

the statistical performance in natural biomedical data, which often have unbalanced case-control 

sample sizes, is largely known. In this work, we designed 21 scenarios of real-data informed 

simulations to thoroughly evaluate the statistical characteristics of univariate and multivariate 

methods. Our results can serve as a reference guide for the application of multivariate methods. 

We also investigated potential pleiotropy across type II diabetes, Alzheimer’s disease, 

atherosclerosis of arteries, depression, and atherosclerotic heart disease in the UK Biobank. 
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2.2 Introduction 

Understanding genetic factors that contribute to disease susceptibility is the center of human 

genetics research. Genome-wide association studies (GWAS) have uncovered thousands of 

genetic variants that are associated with complex diseases. A recent study found that 90% of 

these GWAS significant loci are associated with multiple diseases, suggesting widespread 

pleiotropy in the human genome21. Pleiotropy describes a variant or a gene that influences more 

than one phenotype and plays a critical role in many aspects of biology1,11,20. Univariate and 

multivariate methods are two types of statistical methods that can be applied to detect genetic 

associations with multiple diseases28. Univariate models focus on one phenotype at a time, such 

as GWAS, while multivariate methods jointly model the association across multiple phenotypes 

simultaneously. Previous studies demonstrated that multivariate methods have higher power than 

univariate methods, which holds great potential in discovering pleiotropy with multivariate 

methods. However, previous simulations were based on quantitative traits or balanced sample 

sizes (equal numbers of cases and controls)29,30,60. With the application to natural biomedical 

data, it is beneficial to acquire the expected type I error and power under unbalanced sample size 

scenarios. 

Sample size imbalance is a key feature of natural biomedical data. The wide range of 

disease prevalence in the population introduces different case control sample size to the human 

phenome. For instance, phenome-wide association studies evaluate the genetic association 

across hundreds and thousands of diseases obtained from electronic health records3,31, with 

varying case control sample sizes. Most of the statistical methods are developed based on the 

balanced case control assumptions. With the application of statistical methods to natural 

biomedical data, it is crucial to understand the statistical characteristics under real-world 

scenarios. The role of sample size imbalance has been previously studied for univariate methods 

for both common and rare variants59,61. However, to our knowledge, the impact of sample size 

imbalance on multivariate analyses is largely unknown. 
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Here, we conducted a natural biomedical data informed simulation study to evaluate 

univariate and multivariate methods in identifying pleiotropy for binary phenotypes with different 

sample sizes. We designed 21 scenarios of various degrees of sample size imbalance and 

characterized type I error and power for logistic regression and MultiPhen45. MultiPhen is chosen 

in our study because it is designed for studying binary traits and has sufficient statistical power30. 

The correlation structure used in the simulation was obtained from selected traits with different 

case sample sizes from the UK Biobank. Our simulation results provide the landscape of type I 

error and power of univariate and multivariate methods under various scenarios, thus providing a 

potential reference guide for the application of these methods to natural biomedical data. 

Furthermore, it has been previously suggested that studying pleiotropy in large biobank cohorts 

coupled with electronic health records provides novel insights into biology31,34,36,58,62. As a case 

study, we applied logistic regression (univariate method) and MultiPhen (multivariate method) to 

investigate potential pleiotropy across type II diabetes, Alzheimer’s disease, atherosclerosis of 

arteries, depression, and atherosclerotic heart disease in the UK Biobank. 

2.3 Methods 

2.3.1 Simulation Design 

We designed 5 balanced and 16 unbalanced case sample size scenarios (Table 2.1) with a 

total sample size of 10,000. For balanced case sample size design, each trait has the same case 

sample size across five traits, e.g. 100 cases for all five traits (Table 2.1). Our simulation was 

performed via a multivariate binary phenotype generation tool ‘bindata’ R package180. An example 

of our simulation code is provided at the end of this manuscript, and we also deposited our 

simulation code on GitHub [https://github.com/blairzhang126/Multivariate-Sim]. We simulated 10 

replicates for each scenario, with 100 independent datasets per replicate. We simulated one 

common genetic variant per dataset, with a minor allele frequency of 0.05. The simulation of the 

genetic variant is based on Hardy-Weinberg equilibrium. The genetic effect size was set as 0 for 
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type I error simulations and 0.3 for power evaluations. The disease prevalence was set to achieve 

the desired case sample size. Phenotype correlation was estimated from five selected 

phenotypes given their case sample sizes (Table 2.2) from European individuals in the UK 

Biobank3 based on the following ICD-10 codes: severe depression episode without psychotic 

symptoms (F32.2), adjustment disorders (F43.2), other forms of angina pectoris (I20.8), other 

forms of chronic ischaemic heart disease (I25.8) and unspecified cardiomyopathy (I42.9).  

 

 

 

 

 

 

 

 

 

 

2.3.2 Type I error and Power calculation 

For each replicate, we simulated 100 independent datasets. For MultiPhen, Type I error and 

power were calculated as the number of datasets with a p-value less than 0.05 out of 100 total 

datasets. The p-value threshold for logistic regression was 0.01, as corrected for multiple testing 

 Balanced Case Sample Size for Each of Five Traits Labels in plot 
100 200 300 400 500 Scenario1-5 

Unbalanced Case Sample Size across Five Traits 
Trait1 Trait2 Trait3 Trait4 Trait5  
100 100 100 100 500 Scenario6 
100 100 100 500 500 Scenario7 
100 100 500 500 500 Scenario8 
100 500 500 500 500 Scenario9 
200 200 200 200 500 Scenario10 
200 200 200 500 500 Scenario11 
200 200 500 500 500 Scenario12 
200 500 500 500 500 Scenario13 
300 300 300 300 500 Scenario14 
300 300 300 500 500 Scenario15 
300 300 500 500 500 Scenario16 
300 500 500 500 500 Scenario17 
400 400 400 400 500 Scenario18 
400 400 400 500 500 Scenario19 
400 400 500 500 500 Scenario20 
400 500 500 500 500 Scenario21 

Table 2.1 Case Sample Size Design 
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burden across five traits (calculated as 0.05/5). Each bar in the bar plot in the results section 

represents the type I error or power obtained from 10 replicates. The plots of simulation results 

were generated using ggplot2 R package64. 

2.3.3 Quality Control in the UK Biobank 

Our analyses were performed on white British individuals from the UK Biobank. We followed 

quality control procedure described in the previous literature24. We excluded poor quality samples 

that had a sample missing rate higher than 5% and an unusual heterozygosity24, and individuals 

who were closer than 2nd degree relatives. We further removed the samples with sex 

mismatches. Among the rest of them, we included individuals whose phenotype and covariate 

information are available. For imputed genotype data, we performed our analysis on the common 

variants with a minor allele frequency of ≥ 0.01 and had an imputation info score of ≥ 0.3. We 

applied a linkage disequilibrium filtering to select independent SNPs with “--indep-wise 1000 80 

0.1” in PLINK37. In total, there are 214,318 SNPs and 295,423 white British individuals included in 

our subsequent analyses.  

2.3.4 Association Analyses in the UK Biobank 

We defined our phenotypes based on the ICD-10 codes, and selected five traits that consist 

of unbalanced case sample sizes (Table 2.2). We performed logistic regression and MultiPhen on 

individuals and genetic variants that passed quality control. All of the association models were 

adjusted by age, genetic inferred sex, genotyping array and first 20 principal components. There 

were in total 1,071,590 tests being performed for logistic regression and the Bonferroni correction 

threshold is 4.67*10-8 (calculated as 0.05/(214318*5)). For MultiPhen, the Bonferroni threshold is 

2.33*10-7 (calculated as 0.05/214318). 
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Table 2.2 Phenotypes and Case Sample Size from UK Biobank 

ICD10 Description Broad disease category Case sample 
size 
(after quality 
control) 

E11.9 Type II diabetes without 
complications 

Endocrine, nutritional and 
metabolic diseases 

16,516 

F32.3 Severe depressive episode 
with psychotic symptoms 

Mental, behavioral and 
neurodevelopmental 
disorders 
 

236 

G30.9 Alzheimer’s disease Diseases of the nervous 
system 
 

325 

I70.2 Atherosclerosis of arteries 
of the extremities 

Diseases of the circulatory 
system 

501 

I25.1 Atherosclerotic heart 
disease 

Diseases of the circulatory 
system 

16,932 

 

2.4 Results 

We observed an overall controlled type I error for all of the simulation scenarios (Figure 2.1). 

We observed comparable type I error rates for logistic regression and MultiPhen and most of the 

values are less than 0.1. The mean of type I error across 10 replicates is around 0.05 for all 

simulation scenarios (Figure 2.1). Even with varying degrees of case sample size imbalance 
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across the five traits, we did not observe an obvious trend between sample size imbalance and 

type I error under our simulation settings.  

 

Figure 2.1 Type I error Simulation Results. Each bar in the bar plot represents the 

distribution of Type I error from 10 replicates. Scenarios 1-5 are simulated based on balanced 

sample size, while others are simulated based on the unbalanced sample size. 

 

For balanced case sample size settings (scenarios 1-5), we observed an increasing trend of 

power with the increase of case sample size (Figure 2.2). And case numbers of more than 200 

(scenario 3-5) yield a mean of statistical power of >60%. For unbalanced case sample size 

scenarios (6-21), we observed the increase of power when adding more traits with larger case 

sample sizes (refer to Table 2.1). We have also observed the baseline power for each set 

(scenario 6,10,14,18) increases as the case sample size increases.  Interestingly, we see that 

MultiPhen has higher power than logistic regression for most of the simulation scenarios (Figure 

2.2).  
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Figure 2.2 Power Simulation Results. Each bar in the bar plot represents the distribution of 

power from 10 replicates. Scenarios 1-5 are simulated based on balanced sample size, while others 

are simulated based on the unbalanced sample size. 

 

We demonstrated our univariate and multivariate results from the UK Biobank in a Hudson 

plot (Figure 2.3) (https://github.com/anastasia-lucas/hudson). The SNPs evaluated in our study 

are independent from each other with the R-squared less than 0.1 (see Methods). We observed 

very similar patterns of the associations identified by logistic regression and MultiPhen (Figure 

2.3). In total, we observed 22 Bonferroni significant variants identified by MultiPhen, and 32 

Bonferroni significant variants by logistic regression. Interestingly, Bonferroni significant variants 

identified by MultiPhen have all been identified by logistic regression (Figure 2.4).   

We observed a missense common variant rs11591147 located on PCSK9 gene on 

chromosome 1, which is associated with atherosclerotic heart disease (p-value: 6.029 * 10-11). 

PCSK9 protein regulates cholesterol in the bloodstream and has been suggested to play a role in 

atherosclerosis67. SNP rs10738609 on chromosome 9 is an intron variant that is located at 

CDKN2B-AS1 gene, which is a known hot spot gene for cardiovascular diseases68. We observed 

its significant association (univariate p-value: 3.252 * 10-76) with atherosclerotic heart disease in 

our study. We further looked at its association with other tested diseases and observed its 
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association with type II diabetes (univariate p-value: 1.461 * 10-5) and a moderate level of 

association with atherosclerosis of arteries (univariate p-value: 0.0003428). 

 

Figure 2.3 Hudson Plot of Univariate and Multivariate Results. The top plot is the result 

of univariate analysis and the bottom plot is the result of multivariate analysis. The red line 

denotes the Bonferroni threshold. X-axis stands for the genomic position across 22 

chromosomes; Y-axis stands for the -log10(p-value). Color in the top plot denotes the phenotype. 

In the top plot, color denotes diseases: red denotes ICD-10 code of E11.9; green denotes ICD-10 

code of F32.3; purple denotes ICD-10 code of G30.9; yellow denotes ICD-10 code of I25.1; dark 

red denotes ICD-10 code of I70.2. In the bottom plot, because the phenotypes are jointly 

analyzed, we use blue to denote the results from MultiPhen analysis.  
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Figure 2.4 Venn Diagram of the Bonferroni Significant Variants Identified by Logistic 

Regression and MultiPhen 

There are 15 Bonferroni significant variants that are associated with type II diabetes. We 

identified one genetic variant SNP rs8047395 located on chromosome 16 near FTO gene 

(univariate p-value: 5.607 * 10-12), which is a previously known genetic variant that is associated 

with type II diabetes69. We also identified a known SNP rs76895963 to be associated with type II 

diabetes18,19. SNP rs2673142 showed a moderate significant association with depression (p-

value: 0.00034) in addition to type II diabetes.   

For depression, we identified one novel variant rs548613298 that is associated with 

depression from our analysis. For Alzheimer’s disease, both methods identified three Bonferroni 

significant genetic variants located on chromosome 19 near APOC1/APOE region (rs12691088, 

rs79701229 and rs60049679). The region was known to have a strong association with 

Alzheimer’s disease70,71. These three genetic variants showed a moderate significant association 

with atherosclerotic heart disease (with univariate p-values around 0.005). As for atherosclerosis 

of arteries, we did not observe any Bonferroni significant variant.  
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2.5 Discussion 

Type I error was mostly controlled under 0.1 for our simulation scenarios. We did not 

observe an obvious impact of sample size imbalance on type I error (Figure 2.1). We found that 

statistical power increases as the number of phenotypes with larger case sample size increases 

(Figure 2.2). We also observed an elevation of statistical power for unbalanced case sample 

sizes when adding more phenotypes with 500 cases. MultiPhen outperforms logistic regression 

on many sample size imbalance simulation settings (Figure 2.2). Multivariate methods previously 

demonstrated higher power than logistic regression45 under balanced sample size, and our work 

demonstrated the same trend in sample size imbalance scenarios.  

For our case study in UK Biobank, we performed logistic regression and MultiPhen analyses 

across type II diabetes, atherosclerotic heart disease, depression, Alzheimer’s disease and 

atherosclerosis of arteries. We identified many previously known genetic variants as well as novel 

variants. We demonstrated the effectiveness of applying both methods in identifying pleiotropy. 

There were 22 Bonferroni significant variants being identified by MultiPhen, which have all been 

identified by logistic regression. The reason that MultiPhen has identified lesser number of 

significant variants might due to its limited power in scenarios when the genetic effect is 

inconsistent with the phenotypic correlation45. By applying both methods, it assists us to limit the 

false positives in the discovery of pleiotropy as well as help with the interpretation of the results.  

One limitation of the present study is that only genetic risk was considered. Future work on 

protective genetic effect and a mixture of both directions of genetic effect is needed to 

comprehensively understand the power of these methods. Evaluating additional scenarios that 

may provide more understanding of the inflation of type I error, which likely also lead to higher 

power for MultiPhen, would be also warranted. While controlled at a rate of 0.10 or less, it would 

be beneficial to get the type I error controlled under 0.05 or less if possible. As for the case study, 
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we only investigated the independent SNPs. Future study on more coverage of the genetic 

variants would shed more light on the biology.  

In this work, we conducted a natural biomedical data-informed simulation study to 

characterize statistical performance of univariate and multivariate methods in detecting genetic 

associations with multiple phenotypes. Our design of sample size imbalance offers a new 

perspective of the statistical performance of these methods, which would greatly assist future 

discovery of pleiotropy. Our case study showcases the effectiveness of applying univariate and 

multivariate methods in identifying pleiotropy in large-scale biobank cohort. 

2.6 Simulation code example 

#R code for simulating 100 balanced case sample size for power 
evaluation. This code is for simulating 5 traits.  
library(bindata) 
library(MultiPhen) 
n=10000 
maf=0.05 
 
#User can specify different beta0 to control case sample size 
beta0=c(-4.6,-4.6,-4.6,-4.6,-4.6) 
x<-sample(c(0,1,2),n,replace=T,prob=c((1-maf)*(1-maf),2*maf*(1-
maf),maf*maf)) 
x<-as.matrix(x) 
#User can specify different beta to control the effect sizes of the 
SNPs 
beta=c(0.3,0.3,0.3,0.3,0.3) 
 
#User can input a phenotype matrix which they wish to produce the 
correlation matrix for simulated traits. Here I'm posting an example of 
the correlation matrix (b_cor) among 5 traits that described in the 
manuscript. 
 
b_cor<-matrix(c(1.0000000000,0.0415276512,0.0007543885,0.001951613,-
0.001077797, 0.0415276512, 1.0000000000, 0.0008421039, 0.005441721,  
0.002168689, 0.0007543885, 0.0008421039, 1.0000000000, 0.098728472,  
0.003179557, 0.0019516132, 0.0054417214, 0.0987284719, 1.000000000,  
0.029784037, -0.0010777969, 0.0021686888, 0.0031795574, 0.029784037,  
1.000000000),nrow=5,ncol=5,byrow=TRUE) 
 
prob<-matrix(nrow=10000, ncol=5) 
prob[,1]<-exp(beta0[1]+x %*% t(beta[1]))/(1+exp(beta0[1]+x %*% 
t(beta[1]))) 
prob[,2]<-exp(beta0[2]+x %*% t(beta[2]))/(1+exp(beta0[2]+x %*% 
t(beta[2]))) 
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prob[,3]<-exp(beta0[3]+x %*% t(beta[3]))/(1+exp(beta0[3]+x %*% 
t(beta[3]))) 
prob[,4]<-exp(beta0[4]+x %*% t(beta[4]))/(1+exp(beta0[4]+x %*% 
t(beta[4]))) 
prob[,5]<-exp(beta0[5]+x %*% t(beta[5]))/(1+exp(beta0[5]+x %*% 
t(beta[5]))) 
 
y<-t(apply(prob, 1, function(m) rmvbin(1, margprob=m, bincorr=b_cor))) 
 
colnames(y) <-c("Trait_1","Trait_2", "Trait_3", "Trait_4", "Trait_5") 
logistic.out1 <- glm(y[,1] ~ x[,1],family=binomial) 
tmp1 <- summary(logistic.out1)[[12]][2,] 
 
logistic.out2 <- glm(y[,2] ~ x[,1],family=binomial) 
tmp2 <- summary(logistic.out2)[[12]][2,] 
 
logistic.out3 <- glm(y[,3] ~ x[,1],family=binomial) 
tmp3 <- summary(logistic.out3)[[12]][2,] 
 
logistic.out4 <- glm(y[,4] ~ x[,1],family=binomial) 
tmp4 <- summary(logistic.out4)[[12]][2,] 
 
logistic.out5 <- glm(y[,5] ~ x[,1],family=binomial) 
tmp5 <- summary(logistic.out5)[[12]][2,] 
 
tmp<-cbind(tmp1,tmp2,tmp3,tmp4,tmp5) 
tmp_t<-t(tmp) 
write.table(tmp_t,file="run1.logistic.output",quote=F,row.names=T,col.n
ames=T,sep='\t') 
 
 
y<-as.matrix(y) 
rownames(y)<-seq(1:10000) 
rownames(x)<-seq(1:10000) 
mPhen_out <- mPhen(x[,1, drop=FALSE], y, phenotypes = all,  resids = 
NULL, covariates=NULL, strats = NULL,opts = 
mPhen.options(c("regression","pheno.input"))) 
mPhen_jointp <- mPhen_out$Results[,,,2][6] 
write.table(mPhen_jointp, file="run1.multiphen.output", col.names=T, 
row.names=T, sep="\t",quote=F) 
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CHAPTER 3 Detecting potential pleiotropy across cardiovascular and 

neurological diseases using univariate, bivariate, and multivariate methods on 

43,870 individuals from the eMERGE network 

 

This chapter was adapted from:  
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3.1 Abstract 

The link between cardiovascular diseases and neurological disorders has been widely 

observed in the aging population. Disease prevention and treatment rely on understanding the 

potential genetic nexus of multiple diseases in these categories. In this study, we were interested 

in detecting pleiotropy, or the phenomenon in which a genetic variant influences more than one 

phenotype. Marker-phenotype association approaches can be grouped into univariate, bivariate, 

and multivariate categories based on the number of phenotypes considered at one time. Here we 

applied one statistical method per category followed by an eQTL colocalization analysis to identify 
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potential pleiotropic variants that contribute to the link between cardiovascular and neurological 

diseases. We performed our analyses on ~530,000 common SNPs coupled with 65 electronic 

health record (EHR)-based phenotypes in 43,870 unrelated European adults from the Electronic 

Medical Records and Genomics (eMERGE) network. There were 31 variants identified by all 

three methods that showed significant associations across late onset cardiac- and neurologic- 

diseases. We further investigated functional implications of gene expression on the detected 

“lead SNPs” via colocalization analysis, providing a deeper understanding of the discovered 

associations. In summary, we present the framework and landscape for detecting potential 

pleiotropy using univariate, bivariate, multivariate, and colocalization methods. Further exploration 

of these potentially pleiotropic genetic variants will work toward understanding disease causing 

mechanisms across cardiovascular and neurological diseases and may assist in considering 

disease prevention as well as drug repositioning in future research.  

3.2 Introduction 

Cognitive decline has been observed in nearly 42% of elderly individuals at five years after 

cardiac surgery72. Of late, there has been increasing clinical evidence suggesting a link between 

cardiovascular and neurological diseases. To facilitate efficient disease prevention and treatment 

for cardiovascular and neurological diseases, it is imperative to understand the underlying, often 

unexplained, disease-causing mechanisms across multiple phenotypes. Pleiotropy is a 

phenomenon that can explain the influence of a specific allele on two or more unrelated 

phenotypes. While there has been evidence of polygenic pleiotropy  (where multiple variants are 

causally associated with multiple traits) among cardiovascular73 and neurological diseases74, 

recent work has also demonstrated a genetic basis for the link between these disease groupings. 

In particular, there has been evidence of genetic overlap between cardiovascular disease and (a) 

multiple sclerosis75 as well as (b) schizophrenia76. Large-scale genomics data coupled with 

electronic health record (EHR) data can enhance our ability to uncover novel cross phenotype 

associations and potentially pleiotropic variants (cross-phenotype association could also be an 
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artifact of linkage disequilibrium (LD) or disease co-morbidities rather than true pleiotropy)3. In 

this study, we sought to identify common genetic variants that contribute to the link between 

diseases of the circulatory and nervous system using 43,870 unrelated European adults and 65 

disease phenotypes from the Electronic Medical Records and Genomics (eMERGE) network.   

Statistical approaches to detect pleiotropy across multiple phenotypes can be univariate 

(CPMA6, ASSET77, MultiMeta9, GPA10, MTAG4, etc.), bivariate, and multivariate (MTMM78, 

MultiPhen45, GEMMA41, mvLMM79, mvBIMBAM42, etc.) in addition to network-based approaches, 

among others80. Univariate methods (e.g. Phenome wide association studies or PheWAS) are a 

powerful way to characterize the effect of a genetic variant on each phenotype independently, 

and potential pleiotropy can be detected when the same SNP is found to be significantly 

associated with multiple phenotypes. This method has shown great success in identifying 

potential pleiotropy in several clinical genomics studies33,35,36,62,81,82. However, a limitation of 

univariate analysis is that it tests only one trait at a time, so it cannot be a formal test of 

pleiotropy. In contrast, bivariate analysis has been shown to have higher power over univariate 

analysis by analyzing pairs of phenotypes simultaneously83.  Furthermore, because bivariate 

analysis can be structured to test the association of a trait with a variant, while adjusting for 

another trait’s association with the variant, bivariate analyses can be constructed to formally test 

pleiotropy, and extended to multivariate traits to perform sequential tests for pleiotropic 

effects47,84.  In this study, we used a bivariate analysis approach using summary-statistics from 

univariate analysis to test the hypothesis of “joint association” of a SNP with a trait pair while 

accounting for correlation in z-scores between the trait pair83. The alternative hypothesis here is 

that at least one of the two traits is significantly associated with a SNP marker. This 

implementation of bivariate analysis has suggested potential pleiotropy as well as hinted at 

underlying disease-causing mechanisms in many recent studies66,85. Finally, multivariate analysis 

is designed to test the joint association between genotype with multiple phenotypes in a single 

regression model. Multivariate analysis has been shown to have increased power over univariate 
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analysis in many scenarios, including when the genotype affects either a single phenotype or 

multiple correlated phenotypes29,30. We chose MultiPhen45 to perform multivariate analysis 

because of its ability to handle binary phenotypes as well as its high power, as demonstrated via 

simulations29. In this paper, we refer to MultiPhen as multivariate analysis for the sake of 

convenience. Again, here the alternative hypothesis is that at least one of many traits is 

significantly associated with the SNP marker. 

Since the “true” pleiotropic associations among cardiovascular diseases and neurological 

disorders are largely unknown, we applied three types of widely used methods to characterize the 

landscape of potential pleiotropy at genome-wide level27,86. To improve our confidence that the 

list of potential pleiotropic variants obtained across all three methods reflect a single causal 

variant instead of coincidental overlap, we performed statistical colocalization for these signals 

with gene expression datasets across all 48 available tissues from the Genotype-Tissue 

Expression (GTEx) consortium63. For instance, if a SNP colocalizes with an eQTL for traits A and 

B, it means that the same SNP associates with both: (a) gene expression and trait A, (b) gene 

expression and trait B. This can help us infer that the same SNP associates with both traits A and 

B and is likely pleiotropic. We found that many of the potentially pleiotropic signals associated 

with both disease groupings (diseases of the nervous and circulatory system) colocalized with 

eQTLs from the GTEx consortium (especially on chromosome 22) indicating that gene expression 

might be influencing risk of disease at those loci. This study is one of the first large-scale natural 

data applications and evaluation of univariate, bivariate, multivariate and colocalization methods 

in one comprehensive analysis. The overall study design is shown in Figure 3.1.  

3.3 Methods 

3.3.1 eMERGE network 
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In this study, we used data from the Electronic Medical Records and Genomics (eMERGE) 

network Phase III. The eMERGE network is a National Human Genome Research Institute 

(NHGRI) organized consortium to explore the utility of DNA biorepositories coupled with 

Electronic Health Record (EHR) systems for large-scale genomic research. The eMERGE 

network Phase III consists of 83,717 genotyped samples across multiple platforms that are 

imputed to Haplotype Reference Consortium 1.1 reference in genome build 37 covering ~39 

million genetic variants. There are seven eMERGE adult sites included in our study: Marshfield 

Clinic Research Foundation, Vanderbilt University Medical Center, Kaiser Permanente 

Washington/University of Washington, Mayo Clinic, Northwestern University, Geisinger, and 

Harvard University. 

3.3.2 Genotypic Data and Quality Control 

Figure 1. Overview of the analysis plan 

 

Phenotype Selection

European adults only (age ≥ 25 years)

Define phenotype based on ICD-9 category

Number of cases ≥ 200

eMERGE Phase III Imputed Data

Association analyses, adjusted by age, sex, eMERGE site, 6PCs

Univariate Analysis Multivariate Analysis

Bivariate Analysis

Test for colocalization of potential pleiotropic variants with eQTLs
across 48 tissues from the GTEx consortium33

Genotype Quality Control

Sample call rate ≥ 99%; SNP call rate ≥ 99%

Minor allele frequency ≥ 0.05; Imputation 'info' score > 0.4

Drop related individuals (pi_hat ≥ 0.25) 

Remove variants in LD (r-squared > 0.5)

Figure 3.1 Overview of the Analysis Plan 
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eMERGE Phase III imputed genotypic data were cleaned following the “best-practice” quality 

control (QC) pipeline designed for imputed data87. We included genetic variants with genotype 

call rate ³ 99% and sample call rate ³ 99%. We selected common variants with minor allele 

frequency (MAF) ³ 0.05. To account for sample relatedness, we dropped one of each related pair 

of individuals with pi_hat ³ 0.25 (obtained from identity-by-descent estimation using PLINK37). We 

filtered out variants that had a linkage disequilibrium r2 greater than 0.5 using a 100kb sliding 

window. We also filtered out the variants with a mean of imputation score less than or equal to 

0.4. We further removed variants which have MAF difference greater than 0.1 compared to 

European population from 1000 Genomes Project87. After genotypic QC assessment and LD 

pruning, we had 54,942 unrelated individuals of European ancestry and 533,878 SNPs.  

3.3.3 Phenotype Definition and Selection Criteria 

Phenotype Definition 

Cardiovascular and neurological phenotypes were defined using International Classification 

of Diseases, Ninth Revision Clinical Modification (ICD-9-CM) billing codes. We selected 98 ICD-

9-CM codes from “Diseases of the circulatory systems” and “Diseases of nervous system and 

sense organs” as our primary phenotypes. Table 3.1 presents the major disease groups and 

corresponding ICD-9-CM codes. Of note, association analyses were performed using individual 

ICD-9-CM codes to define case/control status, and we used broader major disease categories for 

the purpose of presentation. The number of clinical visits per ICD-9-CM code per individual was 

used to define case-control status for each ICD-9-CM code: a case would be assigned if an 

individual had ³ 3 instances; a control would be assigned if an individual had zero instances; an 

NA would be assigned if an individual had one or two instances35.  

Phenotype Selection Criteria 
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Our cohort comprised adults of European ancestry (age ³ 25 years) from eMERGE network 

Phase III. We only used ICD-9-CM codes with more than or equal to 200 cases so as to increase 

statistical power of association tests59. As a result, a total of 65 cardiovascular and neurological 

ICD-9-CM based diagnoses and 43,870 individuals were included in our final round of association 

analyses. Individuals who have both cardiovascular and neurological disease were counted as 

cases for both. The sample size distribution of the 65 phenotypes is shown in Figure 3.2.  

Table 3.1 Major Group and ICD-9-CM Category of Neurological Disorders and 

Cardiovascular Diseases 

 

3.3.4 Association Methods 

Univariate Analysis 

We performed univariate logistic regression using 65 ICD-9-CM based diagnoses with 

533,878 variants. We adjusted logistic regression models for sex, age, eMERGE site, and the first 

six principal components. We used PLINK 1.90 software37 to perform the first round of univariate 

analysis because of its high computational efficiency. The logistic regression models converged 

 

 Major Group ICD-9 
Codes 

 
 
 
Circulatory 
System 

Chronic rheumatic heart disease  
Hypertensive disease  
Ischemic heart disease  
Diseases of pulmonary circulation  
Other forms of heart disease  
Cerebrovascular disease  
Diseases of blood vessels   
Other diseases of circulatory system  

393-398 
401-405 
410-414 
415-417 
420-429 
430-438 
440-449 
451-459 

 
 
Nervous 
System 

Inflammatory diseases of the central nervous  
system 
Hereditary and degenerative diseases of the 
central nervous system 
Pain  
Disorders of the central nervous system  
Disorders of the peripheral nervous system  

320-327 
330-337 
 
338 
340-349 
350-359 



 

34 

 

for 33 out of 65 phenotypes. The major reason contributing to the non-convergence was the low 

sample sizes corresponding to some of the sites when we adjusted for eMERGE site (7 levels) as 

a categorical covariate. To address this, we used PLATO 2.1.038 to perform the second round of 

logistic regression tests on the remaining 32 phenotypes with the same set of covariates as 

before. Since PLATO implements an increased number of iterations compared to PLINK to find 

the best solution for logistic models, the software achieved convergence for all the remaining 

models. It should be noted that when both PLINK and PLATO converge, the results are 

concordant; these tools have been extensively compared previously88. 

 

 

 

Bivariate Analysis 

Bivariate analysis involved using summary-statistics (Z scores) from univariate analyses. We 

modeled our bivariate analysis protocol (with modifications) on the one followed by Siewert et 

al66. We first estimated mean and covariance of the Z scores obtained from univariate analyses 
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for each of the 2,080 pairs of phenotypes using all the available LD-pruned SNPs. This was done 

to ensure a null bivariate normal distribution of Z scores for each pair of phenotypes and to satisfy 

the “independence” assumption for hypothesis testing. Subsequently, we applied a p-value 

threshold of 0.005 on the univariate GWAS results and filtered out any SNPs that did not meet 

this threshold. We also filtered out SNPs with MAF = 0.5 to remove ambiguity pertaining to which 

allele was chosen as the referent allele in univariate analyses. Finally, we identified a list of 

common SNPs and estimated a p-value for each of 2,080 “pairs” of phenotypes using a chi-

squared test with two degrees of freedom. Although we conducted a reduced number of tests, it 

should be noted that we corrected for multiple comparisons using the original “unfiltered” SNP set 

in order to control our type I error rate well.  

Multivariate Analysis 

We performed multivariate analysis using MultiPhen 2.0.2 R package45. MultiPhen analyzes 

multiple phenotypes jointly by testing linear combinations of phenotypes against each SNP using 

reverse ordinal regression. We adjusted for the same set of covariates as we did for univariate 

tests. By default, MultiPhen excludes individuals with at least one NA out of 65 phenotypes. 

Under this scenario, the power of association tests would be limited as there would only be 7,535 

individuals in total with extremely low case sample size per phenotype. Since we applied the “rule 

of three” to define a case, any person who had one or two instances of the occurrence of an ICD-

9-CM code was set to missing (N/A). Because we did not want to drop so many individuals, we 

needed to fill in an alternative value for the N/A.  For the purposes of multivariate analyses, these 

missing values were replaced by 0.5 to retain comparable sample size with univariate and 

bivariate analysis (sensitivity analyses on top significant SNPs yielded comparable results -- see 

Discussion). These individuals are likely cases since they have the ICD code in their record one 

or two times. A detailed evaluation of this replacement strategy will be conducted in the future to 

determine if a more optimal imputation strategy exists. Finally, to increase computational 
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efficiency of MultiPhen, we parallelized the runs by splitting the genome into chunks of 10Mb 

each.  

3.3.5 Statistical Correction 

We implemented two Bonferroni correction calculation strategies to adjust for multiple testing 

when comparing the statistical performance of three types of methods. The Bonferroni threshold 

was calculated by dividing the level of significance by the number of tests. In the first strategy 

(“method-specific Bonferroni”) we calculate Bonferroni threshold separately for each method. The 

derived significant thresholds for univariate, bivariate, multivariate testing were 1.44x10-9 

[0.05/65*533,878], 4.50x10-11 [0.05/(2,080*533,878)], and 9.37x10-8[0.05/533,878], respectively. 

We used an overly conservative significance threshold for bivariate analyses due to potential non-

independence of tests (even after LD pruning). In the second strategy (“family-wise Bonferroni”) 

we calculated the Bonferroni threshold based on the total number of tests across all three 

methods. The derived significant threshold was 4.36x10-11 

[0.05/(65*533,878+2,080*533,878+533,878)], and the criteria was applied across all three 

methods. Again, this correction is overly conservative given the correlation across the tests and 

methods but offers good control of the type I error rate. 

3.3.6 Colocalization   

Finally, we performed colocalization analysis to have greater confidence in our assessment 

of pleiotropy. We first obtained a list of potentially pleiotropic variants that cleared the “family-wise 

Bonferroni” multiple comparison threshold for univariate, bivariate and multivariate methods and 

narrowed down this list to SNPs that were associated with at least one disease from both nervous 

and circulatory systems. Finally, we ensured that for any given SNP, if one of the two traits in this 

circulatory-nervous trait pair had a univariate p-value that did not meet the “family-wise 

Bonferroni” threshold, it had a univariate -log10 p-value of at least 3. We termed the final list of 

SNPs as our “lead” SNPs. To test if these signals were being influenced by gene expression as 
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well as driven by the same underlying variant, we performed statistical colocalization analyses 

using the “coloc” R package89 between these signals and eQTLs (across all 48 available tissues) 

from the GTEx consortium63. We first obtained a 200KB window on either side of a “lead” SNP 

and looked for whether the lead SNP (or one in close LD with it) was an eQTL in a given tissue. If 

it was not an eQTL, that lead SNP was ignored. If it was an eQTL for a given tissue, we identified 

the corresponding “eGene” and obtained summary statistics from GTEx for all gene-variant 

associations in that 200KB window (either side). Note that we only chose the eGene that had the 

smallest p-value for a given eQTL from GTEx. Finally, for each phenotype with which the lead 

SNP is significantly associated, we performed statistical colocalization between the SNP and the 

corresponding eQTL in that tissue. We set a coloc threshold of PP4/(PP3+PP4) > 0.8 to identify 

pleiotropic signals that are strongly influenced by gene expression. Here PP4 refers to the 

posterior probability that a single SNP associates with the phenotype as well as the gene 

expression whereas PP3 refers to the posterior probability of having two independent SNPs 

associate with either. 

3.4 Results 

3.4.1 Landscape of Univariate, Bivariate and Multivariate Associations 
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Figure 3.3 Univariate, Bivariate and Multivariate Results A position-by-position 

comparison of genetic associations for univariate, bivariate and multivariate methods using code 

modified from Hudson R package (https://github.com/anastasia-lucas/hudson). The horizontal 

axis represents genomic locations by chromosome and the vertical axis represents –log10(p-

value). Colors represent major disease groups of circulatory and nervous systems. The top plot 

presents univariate results with p-value less than 0.01 in triangles and multivariate results that 

passed “method-specific Bonferroni” threshold in black dots. The bottom plot present bivariate 

analysis results in a two-colored circle, denoting the two phenotypes with which a variant is 

associated with. The red lines in both plots are the “family-wise Bonferroni” threshold.  
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The landscape of univariate, bivariate, and multivariate association results is shown in 

Figure 3.3. There is an overall similar trend of association signals for univariate and bivariate 

analysis. We found that bivariate analysis identified more significant associations than univariate 

analysis when the correlation between phenotypes was low (less than 0.4). From the bottom half 

of Figure 3.3, we can see if the association signal from bivariate analyses comes from pairs of 

circulatory, nervous or circulatory-nervous traits. Black dots in Figure 3.3 represent the variants 

that passed “method-specific Bonferroni” significance from multivariate analysis. There are 

scenarios in which there is no significant association from univariate/bivariate analyses but 

significant results from multivariate analyses.  Using “method-specific Bonferroni” threshold, 

univariate, bivariate, and multivariate methods detected 124, 108, and, 107 unique statistically 

significant SNPs, respectively; and there are 49 overlapping SNPs across three methods (data 

not shown). The number of variants detected at the more stringent “family-wise” threshold is 

given in Figure 3.4. 

3.4.2 Variants associated with cardiovascular disease and neurological 

disorders 

Figure 3.4 Venn Diagram of the Number of SNPs Obtained at a “family-wise Bonferroni” 
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Among the 31 “family-wise Bonferroni” SNPs across all three methods, we obtained 9 

unique variants that are significantly associated with at least one cardiovascular disease and one 

neurological disorder from bivariate analysis that also “colocalized” with eQTLs across a host of 

tissues with a coloc PP4/(PP3+PP4) probability threshold of at least 0.8. Table 3.2 shows a 

comprehensive summary of these identified 9 variants. Our colocalization analyses revealed 

whether there was a shared variant underlying our potentially pleiotropic signals and whether 

gene expression may be influencing disease risk at these loci. For instance, the SNP at 

chromosome 1 and position 36822024 colocalized with eQTLs in the same 35 tissues for 

“Muscular dystrophies and other myopathies”, “Pain” and “Other conditions of the brain” 

(neurological phenotypes) as well as “Heart failure”, “Essential hypertension”, “Cardiac 

dysrhythmias” and “Hypotension” (cardiovascular phenotypes) (eGenes: EVA1B, TRAPPC3). 

This means that rs10796883 influences 4 different cardiovascular disease categories, 3 different 

neurological disease categories as well as gene expression for EVA1B and TRAPPC3 eGenes 

across 35 different tissues. Likewise, the variant on chromosome 22 position 22947156 

colocalized with eQTLs in 4 tissues (Brain-cerebellum, testis, transformed fibroblasts, small 

intestine ileum) for 4 different neurological phenotypes as well as 9 other cardiovascular 

phenotypes (eGenes: IGLV3-21, GGTLC2). Please refer to Appendix D for a complete list of 

tissues in which each of the lead SNPs colocalizes with eQTLs. 

 

Table 3.2 Potential Pleiotropic SNPs and Their Associated Disease Groups 

SNP 

Circulatory NeglogP(Uni-

variate) Nervous NeglogP(Uni-variate) 

NeglogP  

(Bi-

variate) 

NeglogP 

(Multi-

variate) 

Tissu

e 

count eGenes 

1:36822024 Cardiac_dysrhythmias(11.305) 
Muscular_dystrophies_and_other_myopath

ies(4.921) 13.247 
11.165 

35 EVA1B, TRAPPC3 
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rs10796883 

 

Other_conditions_of_brain(3.451) 12.030 35 EVA1B, TRAPPC3 

Pain(4.151) 12.363 35 EVA1B, TRAPPC3 

Essential_hypertension(9.125) 
Muscular_dystrophies_and_other_myopath

ies(4.921) 11.325 35 EVA1B, TRAPPC3 

Heart_failure(10.029) 

Muscular_dystrophies_and_other_myopath

ies(4.921) 11.988 35 EVA1B, TRAPPC3 

Pain(4.151) 11.452 35 EVA1B, TRAPPC3 

Hypotension(8.660) 

Muscular_dystrophies_and_other_myopath

ies(4.921) 10.699 35 EVA1B, TRAPPC3 

6:32569056 

rs9270779 

Atherosclerosis(14.165) 

Multiple_sclerosis(6.355) 18.112 

10.861 

8 

HLA-DRB5, HLA-

DRB9 

Parkinson's_disease(3.196) 15.097 11 

HLA-DRB5, HLA-

DRB9 

Occlusion_and_stenosis_of_pre

cerebral_arteries(6.355) Multiple_sclerosis(5.913) 10.400 7 

HLA-DRB5, HLA-

DRB9 

Other_peripheral_vascular_dise

ase(6.355) Multiple_sclerosis(7.442) 11.787 4 

HLA-DRB5, HLA-

DRB9 

14:106995720 

rs7160440 

 

Cardiac_dysrhythmias(11.322) 

Muscular_dystrophies_and_other_myopath

ies(4.394) 12.989 

18.291 

5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Other_conditions_of_brain(3.726) 12.420 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Pain(6.297) 14.259 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Essential_hypertension(7.451) Pain(6.297) 10.610 1 IGHV3-49 

Heart_failure(9.038) Muscular_dystrophies_and_other_myopath

ies(4.394) 10.752 8 

IGHV3-53,IGHV4-

39, IGHV3-49, 

HOMER2P1 
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Other_conditions_of_brain(3.726) 10.469 6 

IGHV3-53,IGHV4-

39, IGHV3-49 

Pain(6.297) 12.465 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Hypertensive_chronic_kidney_d

isease(8.116) Pain(6.297) 11.623 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Hypotension(10.278) 

Muscular_dystrophies_and_other_myopath

ies(4.394) 11.832 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Other_conditions_of_brain(3.726) 11.252 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Pain(6.297) 13.004 5 

IGHV3-53,IGHV4-

39, IGHV3-49 

Ill-

defined_descriptions_and_comp

lications_of_heart_disease(7.61

0) Pain(6.297) 11.224 1   

22:22876236 

rs361535 

 

Other_forms_of_chronic_ische

mic_heart_disease(4.985) 

Inflammatory_and_toxic_neuropathy(14.21

1) 14.702 

10.424 

1   

22:22947156 

rs2097594 

Cardiac_dysrhythmias(10.930) 

Inflammatory_and_toxic_neuropathy(3.011

) 11.236 

28.019 

1 

 
Muscular_dystrophies_and_other_myopath

ies(3.773) 12.116 1 

 
Other_conditions_of_brain(3.328) 11.738 1 

 
Pain(5.622) 13.348 1 

 

Cardiomyopathy(12.330) 

Inflammatory_and_toxic_neuropathy(3.011

) 12.818 2 GGTLC2 

Muscular_dystrophies_and_other_myopath

ies(3.773) 13.768 2 

IGLV3-21, 

GGTLC2 

Other_conditions_of_brain(3.328) 13.507 1 GGTLC2 
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Pain(5.622) 15.503 2 GGTLC2 

Essential_hypertension(10.187) 

Muscular_dystrophies_and_other_myopath

ies(3.773) 11.380 2 BCRP4 

Other_conditions_of_brain(3.328) 10.968 

  
Pain(5.622) 12.386 

  

Heart_failure(20.621) 

Inflammatory_and_toxic_neuropathy(3.011

) 19.807 2 GGTLC2 

Muscular_dystrophies_and_other_myopath

ies(3.773) 20.963 3 

IGLV3-21, 

GGTLC2 

Other_conditions_of_brain(3.328) 21.000 2 GGTLC2 

Pain(5.622) 22.553 2 GGTLC2 

Hypertensive_chronic_kidney_d

isease(9.331) 

Muscular_dystrophies_and_other_myopath

ies(3.773) 10.760 2 GGTLC2 

Pain(5.622) 12.119 2 GGTLC2 

Hypotension(9.778) 

Muscular_dystrophies_and_other_myopath

ies(3.773) 10.883 2 GGTLC2 

Other_conditions_of_brain(3.328) 10.491 2 GGTLC2 

Pain(5.622) 12.026 2 GGTLC2 

Ill-

defined_descriptions_and_comp

lications_of_heart_disease(10.6

65) 

Inflammatory_and_toxic_neuropathy(3.011

) 10.863 2 GGTLC2 

Muscular_dystrophies_and_other_myopath

ies(3.773) 11.703 2 GGTLC2 

Other_conditions_of_brain(3.328) 11.478 2 GGTLC2 

Pain(5.622) 13.385 2 GGTLC2 

Other_diseases_of_endocardium

(10.340) 

Inflammatory_and_toxic_neuropathy(10.34

0) 11.032 
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Muscular_dystrophies_and_other_myopath

ies(10.340) 11.844 

  
Other_conditions_of_brain(10.340) 11.617 

  
Pain(5.622) 13.627 

  

Other_forms_of_chronic_ische

mic_heart_disease(11.873) 

Inflammatory_and_toxic_neuropathy(11.87

3) 11.335 

  
Muscular_dystrophies_and_other_myopath

ies(11.873) 12.690 

  
Other_conditions_of_brain(11.873) 12.530 

  
Pain(5.622) 14.168     

22:25420792 

rs13056641 

Cardiac_dysrhythmias(9.528) 

Inflammatory_and_toxic_neuropathy(4.159

) 10.817 

40.505 

11 

KIAA1671, 

SGSM1, CRYBB2, 

CRYBB3, IGLL3P 

Organic_sleep_disorders(4.166) 10.687 1 IGLL3P 

Pain(4.590) 11.247 6 

KIAA1671, 

IGLL3P 

Essential_hypertension(12.162) 

Inflammatory_and_toxic_neuropathy(4.159

) 12.620 16 

KIAA1671, 

SGSM1, CRYBB2, 

CRYBB3, IGLL3P, 

BCRP3 

Organic_sleep_disorders(4.166) 12.521 1 IGLL3P 

Pain(4.590) 13.284 7 

KIAA1671, 

IGLL3P 

22:25436904 

rs1040421 

Angina_pectoris(3.067) 
Pain(13.338) 15.015 

58.239 

7 

KIAA1671, 

SGSM1, IGLL3P 

Atherosclerosis(5.075) Pain(13.338) 15.580 8 

KIAA1671, 

SGSM1, IGLL3P 
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Cardiac_dysrhythmias(11.931) Pain(13.338) 20.872 7 

KIAA1671, 

SGSM1, IGLL3P 

Cardiomyopathy(4.939) Pain(13.338) 15.904 8 

KIAA1671, 

SGSM1, IGLL3P 

Conduction_disorders(5.764) Pain(13.338) 16.372 5 

KIAA1671, 

SGSM1, IGLL3P 

Essential_hypertension(10.303) Pain(13.338) 19.175 8 

KIAA1671, 

SGSM1, IGLL3P 

Heart_failure(7.101) Pain(13.338) 17.129 8 

KIAA1671, 

SGSM1, IGLL3P 

Hypertensive_chronic_kidney_d

isease(7.426) Pain(13.338) 17.404 8 

KIAA1671, 

SGSM1, IGLL3P 

Hypotension(6.693) Pain(13.338) 16.037 4 

KIAA1671, 

SGSM1, IGLL3P 

Other_diseases_of_endocardium

(5.845) Pain(13.338) 16.677 4 

KIAA1671, 

SGSM1, IGLL3P 

22:28250172 

 rs1997739 

Cardiac_dysrhythmias(10.517) 

Pain(4.966) 12.443 

22.064 

19 

ZNRF3, TTC28-

AS1 

22:33079917 

rs5749490 

Cardiac_dysrhythmias(11.280) 

Hereditary_and_idiopathic_peripheral_neu

ropathy(3.049) 11.884 

23.601 

9 

FBXO7, SLC5A4-

AS1 

Inflammatory_and_toxic_neuropathy(3.958

) 12.254 2 

FBXO7, SLC5A4-

AS1 

Mononeuritis_of_lower_limb_and_unspeci

fied_site(3.153) 12.242 2 

FBXO7, SLC5A4-

AS1 

Pain(8.424) 16.011 9 

FBXO7, SLC5A4-

AS1 

Hypertensive_chronic_kidney_d

isease(6.449) Pain(8.424) 12.064 9 

FBXO7, SLC5A4-

AS1 
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Notes: We left as missing in the table any eGene (Ensembl gene ID from GTEx) that did not have an HGNC symbol counterpart. 

3.5 Discussion 

In this study, we conducted EHR-based univariate, bivariate, and multivariate analyses on 

43,870 adults of European ancestry from the eMERGE network using 65 cardiovascular and 

neurological ICD-9 disease categories. The aim of this study was to detect pleiotropic genetic 

variants that influence diseases of the circulatory and nervous systems. We also evaluated the 

performance of three types of methods for detecting pleiotropy.  

We observed 79, 108, and, 58 unique variants, respectively that were detected by univariate, 

bivariate, and multivariate methods and 31 that overlapped among the three methods using a 

“family-wise Bonferroni” significance threshold. Univariate analysis suggests direct association 

between genetic variant and phenotype; bivariate association can offer insights into whether a 

variant is associated with a pair of phenotypes, whereas multivariate analysis is powerful in 

detecting if a variant is associated with multiple phenotypes. We took the intersection of the 

significant genetic variants across the three methods as our list of potential pleiotropic variants. 

Our colocalization analyses revealed 9 SNP variants associated with at least one disease from 

both the nervous and circulatory systems that cleared the “family-wise Bonferroni” threshold for 

multivariate and bivariate analyses. Since we were looking at trait pairs here, we ensured that at 

least one of the two traits had a univariate p-value that cleared the “family-wise Bonferroni” 

threshold while the other trait had a univariate -log10 p-value of at least 3. Note that we 

conducted sensitivity analyses for MultiPhen on identified potentially pleiotropic variants in Table 

3.2 when missing values were imputed with 0 and 1 (i.e. treated as controls or cases) in addition 

to 0.5 and observed no change in significance. To cross-check overlap between methods, we 

Hypertensive_heart_disease(4.1

91) Pain(8.424) 10.592 10 

FBXO7, SLC5A4-

AS1 

Hypotension(8.197) Pain(8.424) 12.959 3 

FBXO7, SLC5A4-

AS1 
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also performed multivariate analysis restricted to a pair of bivariate significant traits for the 9 

potentially pleiotropic variants in Table 3.2 and found 100% consensus between bivariate and 

multivariate methods. These 9 variants showed strong evidence of colocalization with eQTLs 

across a host of tissue types (see Appendix D) from the GTEx consortium63, especially on 

chromosome 22. 

Our results replicated previous association signals as well as detected novel associations. 

SNP at chromosome 6 position 32569056 (rs9270779) has been directly implicated in autonomic 

nervous system and has been shown to be associated with heart rate response to exercise in 

females suggesting it could be pleiotropic for the two disease groupings of interest90. Also, the 

corresponding eGenes for this SNP, HLA-DRB5 and HLA-DRB9 from colocalization analysis 

have been previously shown to be associated with multiple sclerosis. Among the 31 total SNP 

hits, the one at chromosome 19 position 45416741 (rs438811) is correlated with rs445925  

(r2=0.341), which has been shown to be clinically relevant to cardiovascular phenotypes90. This 

SNP is also located in the APOC1/APOE region, which has been shown to be associated with 

Alzheimer’s disease65. Among novel potential pleiotropic variants identified by all three methods 

and colocalization analysis, 6 out of 9 variants locate on chromosome 22, suggesting its potential 

crucial contribution to the link between cardiovascular and neurological diseases. In particular, 

the eGene FBXO7 has been associated with multiple sclerosis65 as well as heart disease65. As 

part of future work, we will conduct pathway analyses or conditional analyses to have confidence 

in a singular pleiotropic association or shared biology between these disease groupings.  

The limitations of this study are that (1) using only ICD-9-CM codes instead of both ICD-9-

CM and ICD-10-CM codes may have reduced the number of cases in our data; (2) the use of 

disease category instead of disease code as phenotype might have reduced the specificity of 

detected associations. We are planning to incorporate ICD-9-CM and ICD-10-CM codes to define 

primary phenotypes and examine disease heterogeneity in the future; (3) sample size 
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considerations led to some diagnosis codes being left out of analyses; (4) given our very 

conservative multiple comparison thresholds, we have likely reported only a fraction of all 

potential pleiotropic signals, leading to type II errors, and (5) we were unable to investigate how 

many additional associated variants obtained using bivariate analyses in comparison to univariate 

and multivariate were “true positives”. One way to investigate this would be to test for statistical 

colocalization on top of bivariate analysis hits66. However, this necessitates that summary 

statistics be obtained from independent datasets which was not the case with our data. 

Replication of these signals in independent cohorts in future can help us address this limitation.  

In summary, we provide a framework for future pleiotropy analyses in EHR data. Our work 

expands the pleiotropy detection framework from univariate methods (e.g. PheWAS) to bivariate 

and multivariate methods in large-scale real-world EHR data to detect a broader net of potentially 

pleiotropic signals across cardiovascular and neurological disorders. We also utilize colocalization 

analyses to enhance our understanding of the influence of gene expression on these potentially 

pleiotropic variants and consequently on disease risk. In future, we will also try to replicate the 

partially overlapping SNP signals in independent cohorts.  
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CHAPTER 4 Large-scale genomic analyses reveal insights into pleiotropy across 

circulatory system diseases and nervous system disorders  
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Wendy K. Chung, David Crosslin, Joshua C. Denny, Scott Hebbring, Gail P. Jarvik, Iftikhar Kullo, 
Eric B. Larson, Laura J. Rasmussen-Torvik, Daniel J. Schaid, Jordan W. Smoller, Ian B. 
Stanaway, Wei-Qi Wei, Chunhua Weng, Marylyn D. Ritchie. “Large-scale genomic analyses 
reveal insights into pleiotropy across circulatory system diseases and nervous system disorders.” 
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platform talk at the American Society of Human Genetics Annual Meeting in 2019. 

This project is under UK Biobank application ID 32133. The dbGaP study accession number for 
eMERGE Network Phase III is phs001584.v1.p1.  

 

4.1 Abstract 

Clinical and epidemiological studies have shown that circulatory system diseases and 

nervous system disorders often co-occur in patients. However, genetic susceptibility factors 

shared between these disease categories remain largely unknown. Here, we characterized 

pleiotropy across 107 circulatory system and 40 nervous system traits using an ensemble of 

methods in the eMERGE Network and UK Biobank. Using a formal test of pleiotropy, five 

genomic regions demonstrated statistically significant evidence of pleiotropy. We observed 

region-specific patterns of direction of genetic effects for the two disease categories, suggesting 

potential discordant and concordant pleiotropy. Our findings provide insights into the relationship 
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between circulatory system diseases and nervous system disorders which can provide context for 

future prevention and treatment strategies. 

4.2 Introduction  

Circulatory system diseases and nervous system disorders have a significant impact on 

mortality worldwide. Because of the distinct disease manifestations, diseases in these categories 

have long been diagnosed, treated, and studied independently. However, for decades, clinicians 

and researchers have noted a link between circulatory system diseases and nervous system 

disorders. For instance, it is clear that cardiac pathologies can be produced as a result of 

neurological illness91. Heart failure is a potential risk factor for Alzheimer’s disease92 and occurs 

more than twice as often in Parkinson’s disease patients compared to non-Parkinson’s disease 

patients93. However, the genetic variants influencing both disease categories are largely 

unknown.  

One of the potential genetic links can be via pleiotropy, a phenomenon by which a gene or a 

genetic variant influences more than one phenotypic trait20. Pleiotropy has long been recognized 

in model organisms11, and its ubiquitous role has recently been appreciated in the human 

genome—90% of genome-wide association study (GWAS) loci are pleiotropic21,94. The definition 

of pleiotropy in this manuscript refers to ‘statistical pleiotropy.’ which describes a genetic variant 

that is statistically associated with more than one trait21. Large-scale biobanks, coupled with 

Electronic Health Records (EHRs), offer unprecedented opportunities to study pleiotropy. 

Nevertheless, most studies of pleiotropy in biomedical data are solely inferred from GWAS 

studies21,76,94,95 in multiple independent datasets.  For instance, a global overview of pleiotropy 

across phenotypes with high disease prevalence has been demonstrated using GWAS summary 

statistics21, highlighting the extent of pleiotropy across broad disease categories. However, 

genetic variants that contribute to a wide spectrum of diseases (including the less common ones) 

across specific disease categories have not been extensively studied.  
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Methods for detecting pleiotropy can be broadly grouped into univariate and multivariate 

categories. Univariate methods test the association between one genetic variant and one 

phenotype per statistical model. Phenome-wide association studies (PheWAS) are among the 

most commonly used univariate methods that examine the impact of genetic variants across a 

broad range of phenotypes using univariate regression models34. The application of PheWAS has 

uncovered novel potential pleiotropy using EHR phenotypes in many prior studies35,36,62,81. 

Additional univariate methods in the literature also refer to a combined analysis of summary 

statistics obtained from multiple GWAS studies4-10. Multivariate methods, or multi-trait joint 

methods, refer to the inclusion of two or more phenotypes in the association test in the same 

statistical model20. Multivariate methods have demonstrated increased power for detecting 

pleiotropy but have not been widely applied on large-scale natural biomedical datasets. In this 

study, we used MultiPhen45 as our multi-trait joint analysis method as it is designed for binary 

phenotypes and has shown sufficient statistical power96. MultiPhen analyzes multiple phenotypes 

simultaneously by testing the linear combination of phenotypes with the genotype using an 

ordinal regression model. In general, multivariate methods are more powerful than combining 

univariate GWAS summary statistics80. Since no single method can detect all types of genotype-

phenotype relationships in natural biomedical data, it has been suggested to apply both univariate 

and multivariate methods80 and to view them as complementary approaches41. This is the 

strategy we adopted in this study.  

In this study, we aimed to characterize pleiotropy specifically across circulatory system 

diseases and nervous system disorders. We have applied genome-wide PheWAS and MultiPhen 

analyses on 43,015 European adults from the eMERGE network, followed by a systematic 

replication analysis in 295,423 European-ancestry participants from the UK Biobank (UKBB) 

(Appendix B Fig. S1). This effort yielded a comprehensive comparison of the characteristics of 

applying univariate and multivariate methods on independent biobank datasets. To investigate 

pleiotropy, we further performed a formal statistical test of pleiotropy, which pinpoints precisely 
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which specific phenotypes show evidence of pleiotropy via performing multivariate analyses 

iteratively using a method called Pleio47. Through these analyses, we have provided evidence to 

explain the relationship between circulatory system diseases and nervous system disorders that 

can be characterized as pleiotropic, recognizing that we observed both concordant and 

discordant pleiotropy between these disease categories. 

4.3 Methods 

4.3.1 Biobank datasets  

The eMERGE Phase III dataset contains high-density genotype data for 99,185 subjects 

coupled with longitudinal electronic health records (EHRs). Subjects were genotyped across 78 

genotype array batches and imputed to ~40 million variants97. Details of the imputation have been 

discussed elsewhere97. Among 12 contributing study sites across the United States, we have 

included six adult study sites in this study: Marshfield Clinic Research Foundation, Kaiser 

Permanente/University of Washington, Vanderbilt University Medical Center, Mayo Clinic, 

Geisinger, and Partners Healthcare. The eMERGE dataset was used for discovery analysis. 

UKBB cohort release version 2 has deep genetic and phenotypic data on ~500,000 

individuals across the United Kingdom. Individuals were genotyped on two similar types of 

genotype array across 106 batches and imputed to 96 million variants24. eMERGE network and 

UKBB have the same genome build, GRCh37/hg19. The replication analyses in UK Biobank was 

performed on the statistically significant SNPs from eMERGE (p£10-4 described more below) that 

were also present and passed QC in the UK Biobank dataset.  

4.3.2 Phenotype Definitions 

The phenotypes were defined based on the International Classification of Diseases (ICD) 

diagnosis codes extracted from the EHR. Since the disease coding practices and regulations 

differ between the US and the UK, the composition and distribution of diagnosis codes are 
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different. To maximize the phenotypic information, we have accordingly applied different, yet 

complementary strategies to the two datasets.  

Since ICD-10 codes have added specificity compared to ICD-9 codes, we chose to convert 

ICD-10 codes to ICD-9 codes. For UKBB, we have only included individuals who had ICD-10 

occurrences to retain its original collection of disease codes and because fewer data were 

available for ICD-9 codes in the UKBB. Because the disease diagnosis codes in UKBB were 

curated and represented by the presence or absence of a certain ICD codes, this information was 

used to define case status; this means that if a person has a certain ICD-10 code present in the 

EHR, that person would be assigned as a “case” for that phenotype. If the person did not have 

that diagnosis code, he/she would be assigned as a “control”. As for eMERGE, we have 

converted ICD-10-CM to ICD-9-CM codes using a combination of general equivalence 

mappings98 and manual review. Because eMERGE offers longitudinal measures on diagnosis 

codes, we have applied a “rule of three” on ICD-9-CM codes to define case status. This means 

that if a person had three or more occurrences of a certain ICD-9-CM code in their EHR on 

different clinic visits, that person would be assigned as a “case”. If a person had either one or two 

occurrences of a particular ICD-9-CM code, an “NA” status would be assigned. Finally, if a person 

did not have any occurrence of a particular ICD-9-CM code, a “control” status would be assigned 

for that phenotype. This approach was used to assign case status for all available phenotypes. 

One general caveat of EHR data in the eMERGE dataset is that the absence of certain disease 

diagnosis code for some individuals does not equal the absence of the disease, as the patients 

might get the medical care at another institution thus may not present in our datasets. This would 

bias results toward the null, thus we don’t expect that this impacted our study in a substantial 

way. 

4.3.3 Genotype Quality Control 
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For the eMERGE dataset, we dropped imputed genotype array batches with a mean R-

squared of imputation score < 0.3 as well as batches that had fewer than 50 samples97. We also 

excluded genetic variants with a mean R-squared of imputation score < 0.3 calculated across 

batches. We used a combination of self-reported European ancestry and principal component 

analyses to extract individuals of European ancestry for inclusion. We applied genotype call rate 

and sample call rate of ³ 99% and selected genetic variants with a minor allele frequency (MAF) 

³ 0.01. We excluded SNPs with Hardy-Weinberg Equilibrium exact test p-values below 1´10-10. 

We dropped related individuals that were second-degree relatives or closer with pi-hat larger than 

0.25. Since our phenotypes of interest are the late-onset nervous system and circulatory system 

diseases, we selected European ancestry adult individuals only with age ³ 25 years old. After 

QC, there are 43,015 individuals and 7,629,801 SNPs included for analysis. We generated 

principal components (PCs) for the final set of individuals using high quality, common SNPs (with 

MAF ³ 0.05 and R-squared ³ 0.7)97 and adjusted for the first two PCs in all subsequent 

association analyses based on the proportion of variance explained by the PCs. The projection of 

the first two PCs and the proportion of variance explained by the PCs are provided in Appendix B 

Fig. S4.   

For quality control in the UKBB, we largely followed the protocols of a previous publication24 

and utilized information provided as part of the data release. We excluded poor quality individuals 

according to previous publication24. We dropped related individuals that were second-degree 

relatives or closer with pi-hat larger than 0.25. We have also removed individuals who had sex 

mismatches between self-reported and genetically inferred sex. Genetic variants with an 

imputation info score < 0.3 and MAF < 0.01 were excluded. European ancestry individuals were 

extracted using a combination of self-reported white British ancestry and principal component 

analyses24. Since age at recruitment for the UKBB cohort is 40-6924, we did not apply any age 

filter. After quality control, there were 377,921 individuals and 9,505,767 SNPs available for 
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analysis. After applying the above-described phenotype filtering, there were 295,423 individuals 

from UKBB that had ICD-10 codes documented in their EHR data. This was the final sample size 

for UKBB used in all subsequent analyses. We used the first 20 PCs that were provided by the 

data release for the association analyses24. 

4.3.4 Association Analyses 

PheWAS 

We performed genome-wide PheWAS for 43,015 eMERGE individuals and 7,629,801 SNPs 

across a total of 147 circulatory system diseases and nervous system disorders via PLINK37 v1.9 

software. Logistic regression models were adjusted by age, sex, eMERGE study site, and the first 

two PCs. There were about 1 billion association tests conducted in this genome-wide PheWAS. 

Out of the 147 phenotypes evaluated, nine phenotypes did not converge using PLINK due to the 

small case number per study site. To address this, we performed the same logistic association 

tests for those nine phenotypes using PLATO88. The larger number of default iterations in PLATO 

successfully resolved the non-convergence issue. From approximately 1 billion association tests, 

145,194 SNPs were statistically significant with a p-value ≤ 1´10-4 from either univariate and/or 

multivariate analyses in eMERGE; these SNPs were selected for replication in UKBB. From this 

set of SNPs, we performed PheWAS on 134,363 SNPs that passed quality control in the UKBB 

dataset (10,831 of the significant SNPs from eMERGE were either dropped during QC or were 

not available in UKBB). To address the ambiguity of SNPs with MAF near 0.5 in each of the two 

datasets, we have flipped the direction of genetic effect sizes for 552 SNPs in UKBB that had (a) 

MAF ³ 0.4 and (b) reference and alternative alleles switched in eMERGE network. In the UKBB 

PheWAS, the following covariates were included for adjustment: age, sex, genotyping array, and 

the first 20 PCs. For UKBB we also re-ran the associations with Townsend Deprivation Index 

(TDI) as an additional covariate; the results did not change and since we do not have TDI for 

eMERGE, we did not include it in the results reported. 
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Multi-trait joint analysis 

For multi-trait joint analyses, we used the MultiPhen45 R package to perform our analyses. 

MultiPhen tests the linear combination of phenotypes by treating SNPs as response variables, 

and phenotypes as predictor variables. It uses a proportional odds regression model to test for 

statistical association. As was done for the PheWAS described above, we performed a genome-

wide MultiPhen analysis for eMERGE. The MultiPhen analyses in UKBB were performed the 

same set of 134,363 SNPs (see PheWAS Method section). The same set of covariates described 

in PheWAS Methods section were used in the MultiPhen analyses. All of the phenotypes 

(including both circulatory and nervous system diseases) have been jointly analyzed in the 

MultiPhen model. Because the current version of MultiPhen is not able to deal with NA 

phenotypes, we imputed NA with 0.5 for the eMERGE phenotypes. The presence of an NA 

indicates that a person had at least one instance of the ICD9-CM code in their EHR. This leads to 

a greater likelihood that the person is a case rather than a control.  In a previous pilot study, we 

performed a sensitivity analysis on significant SNPs to evaluate this imputation method in 

eMERGE; we found that it retained the same level of statistical significance as imputing to 0 or 

158. Thus, based on our previous study, we kept the imputation of 0.5 for NA.  The time and 

memory for running MultiPhen increases with the sample size and the number of phenotypes. In 

order to run analyses efficiently, we parallelized our operations by dividing the genome into 

subset files (2000 variants per file for eMERGE and 500 variants per file for UKBB).  

Sequential multivariate analysis 

To evaluate which associations show evidence of pleiotropy, the next step in our study was 

to perform a formal test of pleiotropy.  We selected the sequential multivariate analysis using the 

‘pleio’ R package47 to perform this test for pleiotropy. ‘Pleio’ extended the multivariate analysis 

framework to sequentially test the null hypothesis that k+1 traits are associated with the genotype 

given that k traits are associated47. It characterizes the exact traits that are associated with the 
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SNP while accounting for the correlation among the traits. Note that the alternative hypothesis for 

general multivariate framework is that there is at least one phenotype being associated with the 

genotype, i.e., we would not know the exact associated traits. We have conducted sequential 

multivariate analysis on a set of 607 SNPs. This set was derived from the list of SNPs that met a 

p-value threshold of 1x10-4 in eMERGE PheWAS and/or MultiPhen AND replicated in UKBB at a 

p-value threshold of 1x10-4 in the UKBB PheWAS and/or MultiPhen. The same set of covariates 

has been adjusted as described in the PheWAS Methods section. Since the number of sequential 

tests increases drastically as the number of associated phenotypes increases, we have 

performed our analyses on a subset of selected phenotypes. We selected this set of phenotypes 

based on the univariate PheWAS analysis results. Each phenotype that had a PheWAS p-value < 

0.01 for each SNP was selected for the sequential multivariate test. The set of phenotypes tested 

can be different between the two datasets due to differences in univariate p-value for each SNP-

phenotype pair. The p-value significance threshold for rejecting the null hypothesis in the 

sequential multivariate model was set at 1´10-8, the same as the genome-wide significance level. 

This threshold was chosen due to the same number of association tests being potentially 

performed using a general multivariate framework and in a univariate GWAS study. In other 

words, the output phenotypes of ‘pleio’ would need to have a multivariate joint significance of less 

than 1´10-8 to reject the null hypothesis.  

4.3.5 Conditional Analyses 

We performed conditional analyses on the whole set of phenotypes that are associated with 

each identified pleiotropic SNP (see Results). We evaluated all pairwise combinations of the 

phenotypes, with one as the dependent variable while another one as independent variable. 

Specifically, we applied logistic regression on dependent variable while treating another 

phenotype as an independent variable, along with previously mentioned covariates. We 

evaluated the impact of adjusting for another phenotype on the significance of the SNP by 
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measuring the log odds ratio of the p-value from two events: conditional analysis and 

independent analysis (without adjusting for another phenotype). The form of log odds ratio is 

), where pc denotes the p-value from the conditional analysis and p denotes the p-

value from the independent analysis. We plotted the mean of log odds ratio (across SNPs in the 

same region) in heatmap, where the phenotype on each row denotes the dependent variable and 

each column denotes the phenotypes that were being adjusted in the conditional analysis 

(Appendix B Fig. S6). When the log odds ratio deviates from zero, it suggests that adjusting for 

that particular phenotype (independent variable) changes the significance of the association with 

the other phenotype (dependent variable), thus suggesting that the association (for certain SNP) 

between one phenotype is related to another phenotype. On the other hand, if the value is close 

to zero, it’s likely that the SNP is independently associated with both phenotypes rather than 

affect one trait through influencing the other one.   

4.3.6 Case Overlap Calculations 

We obtained the number of overlapping cases between pairwise phenotypes of identified 

pleiotropy. Since the case sample size varies among phenotypes due to different disease 

prevalence, we plotted the proportion of overlapping cases, calculated as the number of 

overlapping cases divided by the total case sample size. We demonstrated this distribution in 

heatmap, where the phenotype in the row refers to the total case sample size used as the 

denominator when calculating the proportion (Appendix B Fig. S6).  

4.3.7 Sex-stratified Analyses 

The rationale of sex-stratified analyses is the same as the combined analyses except that 

we stratified the analyses by sex in the eMERGE and UKBB. There are 22,129 female and 

20,886 male individuals in the eMERGE; there are 161,296 female and 134,127 male individuals 

in the UKBB. We performed PheWAS followed by sequential multivariate analyses to 
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characterize pleiotropy. The covariates that were adjusted were the same as before except that 

‘sex’ was excluded. The p-value threshold was also the same: the tested phenotypes in 

sequential model were selected using a PheWAS p-value of 0.01, and the p-value threshold for 

sequential multivariate testing is 1´10-8. We did not apply case number filtering in sex-stratified 

analyses. 

4.3.8 Data Visualization 

The Hudson R package (https://github.com/anastasia-lucas/hudson) was used for comparing 

association results from eMERGE and UK Biobank (Figure 4.1 & Figure 4.3). The Venn diagram 

(Figure 4.2 & Figure S2B) was created by UpSetR181. The demonstration of pleiotropy among 

disease categories were presented in circos plots182 (Figure 4.5, Appendix B Figure S5). Regional 

LD plots were generated by LocusZoom183. The heatmap were generated using heatmap.2 

function in ‘gplots’ R package184. 

4.4 Results 

4.4.1 Phenotypic Characterization 

The eMERGE Phase III dataset consists of 99,185 subjects coupled with longitudinal EHR 

data from the United States. The UKBB has genotypic and phenotypic data on 487,409 

individuals from the United Kingdom. Our phenotypes of interest are a comprehensive set of 

circulatory system diseases and nervous system disorders. 

The phenotypes are defined by utilizing the International Classification of Diseases (ICD) 

diagnosis codes obtained from the EHR. Because of the differences in disease coding practices 

and regulations between the US and the UK, the composition of ICD codes differs between the 

two datasets. The eMERGE network has mostly (~82%) ICD-9-CM codes, while the UKBB has 

predominantly (~98%) ICD-10 codes. However, to our current knowledge, there is no available 

official equivalence mapping that maps ICD codes between the UK and the US, given that the US 
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uses its own national variation of ICD codes (known as ICD-CM). To address this for our 

replication study design, we collected the ICD codes from the official website in three broad 

categories: ‘mental disorders’, ‘disease of the nervous system’, and ‘disease of circulatory 

system’, used the disease categories provided by ICD to assign the ICD-9-CM and ICD-10 codes 

into their respective categories, and then manually curated a common list of phenotypes that are 

present in both eMERGE and UKBB.  

We excluded phenotypes based on the following criteria: 1. Disease that was secondary to 

environmental or comorbid causes such as drug or injury; 2. Childhood-onset developmental and 

psychiatric disorders; and 3. Diseases mainly occurring in organs other than heart and brain 

(such as the limbs). We applied a minimum case number threshold of 200 to ensure adequate 

statistical power of the association tests59. In this study, we use the term “nervous system 

disorders” to refer to mental disorders and diseases of the nervous system99. In total, we curated 

40 and 25 nervous system diseases in eMERGE and UKBB, respectively; 107 and 77 circulatory 

system diseases in eMERGE and UKBB, respectively (Appendix A Table S1). These phenotypes 

are categorized into seven groups of circulatory system diseases and seven groups of nervous 

system disorders (Appendix A Table S1).  

4.4.2 Discovery and Replication of Univariate and Multivariate Associations 

After quality control, genome-wide PheWAS and MultiPhen analyses were performed on 

43,015 European ancestry adults and 7,629,801 common SNPs across 147 phenotypes in the 

eMERGE network. A formal systematic replication analyses was conducted in UKBB on 134,363 

genetic variants that had an exploratory p-value significance of ≤ 1´10-4 from analyses in 

eMERGE dataset (and passed QC in the UKBB dataset). The use of an exploratory p-value 

threshold enables studies of genetic variants beyond the most significant signals that may 

otherwise be potentially informative62. 
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From PheWAS results for eMERGE and UKBB (Figure 4.1), we found that the top 

association signals from eMERGE analyses are reproducible in the UKBB replication dataset, 

many of which serve as positive controls as they were discovered in previous studies in the 

literature. For instance, we observed that SNPs located on chromosome 4q25 are significantly 

associated with atrial fibrillation in eMERGE and replicated in UKBB. In particular, we replicated a 

previously reported SNP rs2200733 near PIXT2 gene (eMERGE p-value: 5.898´10-37, UKBB p-

value: 7.112´10-142) that was shown to be significantly associated with atrial fibrillation among 

individuals of European ancestry100. We also identified SNPs near the APOE gene at 19q13.32 to 

be associated with Alzheimer's disease and dementia; of these, we replicated a previously 

reported SNP, rs429358, as our top SNP (discovery eMERGE p-value: 1.604´10-74, replication 

UKBB p-value: 6.327´10-54) associated with Alzheimer's disease101. Similarly, we found a 

previously-detected association between SNP rs1333049 near CDKN2B-AS1 (discovery 

eMERGE p-value: 6.016´10-22, replication UKBB p-value: 7.982´10-77) and coronary artery 

disease102, and found SNPs in the HLA region to be highly associated with multiple sclerosis103.  
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A position-to-position comparison of PheWAS results between eMERGE and UKBB. X-axis 

stands for the genomic position across 22 chromosomes; Y-axis stands for the -log10(p-value). 

eMERGE PheWAS was performed genome-wide as the discovery analysis. UKBB PheWAS 

included on the SNPs that passed p £ 1x10-4 in eMERGE as the replication analysis.  The 

direction of each triangle indicates the direction of genetic effect. Colors denote various disease 

groups. The assignment of ICD codes to disease groups can be found in Appendix B Table S1. 

The red line indicates the GWAS significance threshold p-value of 1´10-8. To reduce the margin 

induced by the extremely small p-values, we have collapsed SNPs with p-value less than 1´10-95 

into one overlapping triangle indicated by an asterisk on chromosome 4 for UKBB. 

 

In the UKBB replication dataset, we observed lower p-values (high significance levels) for 

many genetic regions that showed moderate significance (1´10-8 £ p-value £ 0.001) in the 

eMERGE dataset. For example, SNPs on chromosome 4 that were moderately associated with 

essential hypertension in the eMERGE network demonstrated a strong significance of association 

Figure 4.1 Landscape of PheWAS Results.  
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in the UKBB. Similar noticeable association signals were observed in UKBB across the genome 

(Figure 4.1). Overall, the UKBB PheWAS replicated 7,607 SNPs (Figure 4.2: 4433 + 2517 + 607 

+ 50 = 7607) from the discovery eMERGE PheWAS (out of 134,363 SNPs that were evaluated in 

the UKBB replication PheWAS) using an exploratory p-value threshold (Figure 4.2).  

 

Figure 4.2 Comparison of the Number of Significant SNPs Identified by PheWAS and 

MultiPhen from eMERGE and UK Biobank. The p-value threshold is 1´10-4. The SNPs are 

counted when they suggest significant associations with at least one phenotype. For PheWAS, 

we included the SNPs when its minimum p-value among phenotypes passed the threshold. 
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The landscape of MultiPhen results is shown in Figure 4.3. Most of the strong association 

signals that were observed in PheWAS (Figure 4.1) were also significant in MultiPhen analyses. 

As with the PheWAS results, MultiPhen identified previously known SNPs in both datasets, 

including the previously-mentioned rs2200733 (eMERGE multi-trait joint p-value: 8.305´10-16, 

UKBB multi-trait joint p-value: 5.873´10-82), rs429358 (eMERGE multi-trait joint p-value: 

3.137´10-48, UKBB multi-trait joint p-value: 3.888´10-49) and rs1333049 (eMERGE multi-trait joint 

p-value: 1.309´10-15, UKBB multi-trait joint p-value: 6.208´10-62). Compared to PheWAS results 

(Figure 4.1), the overall significance level was lower in MultiPhen results (Figure 4.3). To extract 

how many unique SNPs were significant in the discovery and replication analyses using 

univariate (PheWAS) and multivariate (MultiPhen) approaches, we created an UpSet181 plot 

(Figure 4.2). For example, in eMERGE, 1,093 SNPs passed the exploratory p-value threshold 

(1x10-4) in both PheWAS and MultiPhen analyses (Figure 4.2: 607 + 436 + 50 = 1093), whereas 

there were 54 SNPs that only showed significance in eMERGE MultiPhen analyses (Figure 4.2: 

51 + 2 + 1 = 54) (Figure 4.2). For UKBB, there were 3,125 SNPs that passed the replication p-

value threshold (1x10-4) in both PheWAS and MultiPhen results (Figure 4.2: 2517 + 607 +1 = 

3125) and 26 SNPs were only identified by MultiPhen (Figure 4.2).  
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We characterized the 607 SNPs that had significant associations with at least one 

phenotype in both eMERGE and UKBB via both PheWAS and MultiPhen (Figure 4.2). These 

SNPs mapped to 32 genes using the RefSeq database104 in ANNOVAR105 (Appendix A Table S2 

and Appendix B Fig. S2A). A total of 204 of these SNP associations met a Bonferroni correction 

for multiple testing burden (Appendix B Figure S2B). Pleiotropic effects of these SNPs were 

formally tested as reported in the next section. We did not apply any linkage disequilibrium (LD) 

filtering on our discovery or replication SNPs in order to capture the SNP-specific characteristics 

that could be potentially missed by LD pruning. We wanted to ensure that we could evaluate all 

significant SNPs in both eMERGE and UKBB datasets.  However, we have provided the LD 

*

Top: eMERGE (43,015 individuals), Bottom: UKBB (295,423 individuals)

Figure 4.3 Landscape of MultiPhen Results. A position-to-position comparison of 

MultiPhen results between eMERGE and UKBB. The red line indicates a p-value of 1´10-8. To 

reduce the margin induced by the extreme small p-values, we have collapsed SNPs with p-value 

less than 1´10-75 into one overlapping circle indicated by an asterisk on chromosome 4 for UKBB. 
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pruned SNPs (r-squared > 0.8) for each genomic region in both datasets (Appendix A Table S2). 

We have also provided the regional LD structure for the discovered pleiotropy throughout the next 

section. 

4.4.3 Formal Test of Pleiotropy 

The formal test of pleiotropy was conducted on 607 SNPs using a p-value threshold of 1´10-

8 for a selected set of phenotypes in each of the two datasets, independently. There were 287 

SNPs in eMERGE and 331 SNPs in UKBB which indicated statistically significant associations 

with at least two phenotypes. Among these, 52 SNPs in eMERGE and 59 SNPs in UKBB showed 

associations with both circulatory system diseases and nervous system disorders (Figure 4.4; 

details in Appendix A Table S3). We characterized the direction of genetic effect sizes from 

PheWAS results (Appendix A Table S7). An illustration of identified pleiotropic relationships 

among disease categories is shown in Figure 4.5 (details in Appendix A Table S4). We reviewed 

the NHGRI-EBI GWAS catalog18,19 for discovered pleiotropic common SNPs, and their associated 

traits relevant to our trait of interest and the direction of genetic effect size are reported in 

Appendix A Table S3. We also discussed the number of cases that overlap between traits as well 

as the correlation among traits in the Appendix B. 
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Figure 4.4 Characterization of Top Associated Diseases for Identified Pleiotropy. The 

diseases are characterized by sequential multivariate analyses and the direction of genetic effect 

is obtained from PheWAS results. The direction of genetic effect is based on the tested allele in 

our study. More details are shown in Appendix B Table S3. Note that the direction of genetic 

effect on chromosome 9 is a mixture of risk and protective effects for our tested alleles on two 

disease categories but overall opposite directions. 
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Figure 4.5 Disease Relationships Linked by Pleiotropic SNPs. The results are obtained 

from sequential multivariate analyses for both eMERGE network and UK Biobank. We 

demonstrate pleiotropy among disease categories by connecting them using SNPs that are 

significantly associated with at least one nervous system and one circulatory system disease 

category. 
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We identified 20 SNPs at chromosome 19q13.32 that suggested pleiotropy across 

circulatory system diseases and nervous system disorders from UKBB (Appendix A Table S3, 

regional LD in Figure 4.6). Those SNPs mapped to a region containing the genes APOC1, 

APOC1P1, TOMM40, APOE, and NECTIN2. All 20 SNPs are associated with atherosclerotic 

heart disease, Alzheimer’s disease, and dementia, while 14 SNPs are also associated with 

angina pectoris and 18 SNPs are associated with delirium (Figure 4.4). This region was found to 

be significantly associated with Alzheimer’s disease in previous studies70,71,106. There are 8 SNPs 

that have previously demonstrated associations with cardiovascular disease risk factors such as 

HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides107-110. Only one SNP, 

rs4420638, has previously been associated with coronary artery disease111 based on our review 

of the NHGRI-EBI GWAS catalog18. Our study showed the associations of these SNPs with 

circulatory system disease status such as acute transmural myocardial infarction of inferior wall 

and occlusion and stenosis of carotid artery. All of the 20 SNPs demonstrated risk pleiotropic 

effects across all the identified circulatory system diseases and nervous system disorders, which 

is consistent with suggested trait-related associations from previous studies in GWAS catalog 

(Appendix A Table S3).  Based on the evidence in the literature, the chromosome 19 results are 

predominantly positive control associations that confirm previous findings (proof of concept 

signals). 
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There are in total 63 SNPs at chromosome 9p21.3 that demonstrated pleiotropic 

associations with a wide range of circulatory system diseases and major depressive affective 

disorders from the eMERGE and UKBB (Appendix A Table S3, regional LD in Appendix B Figure 

S3A). The SNPs mapped to the CDKN2B antisense RNA 1 region, which has long been known 
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Figure 4.6 Regional LD Relationships among Identified Pleiotropic SNPs on 

Chromosome 19 from UKBB. The phenotype in the top plot is Alzheimer’s disease; and the 

bottom plot is atherosclerotic heart disease. 
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as a hot spot that is associated with cardiovascular diseases112. We not only detected previously 

known SNPs associated with cardiovascular diseases, such as rs10757278113 and rs1333045114, 

but also demonstrated a novel potential pleiotropic effect on major depressive disorders in this 

region, which was not observed in the GWAS catalog. 53 of these 63 SNPs were found to have 

opposite directions of genetic effect on circulatory system diseases and major depressive 

disorders (Appendix A Table S3); an example of discordant pleiotropy. For SNPs previously 

known to be associated with circulatory system diseases, the direction of genetic effect sizes was 

consistent with previous studies in the GWAS catalog (Appendix A Table S3).  

We characterized two regions that have suggested pleiotropy on chromosome 6: 12 SNPs 

near the HLA complex region at 6p21.3 in eMERGE and 9 SNPs near the 

LOC101929163/NOTCH4 region at 6p21.3 in UKBB (Appendix A Table S3, regional LD in 

Appendix B Figure S3B & C). The genetic variants in the HLA region showed novel pleiotropic 

associations with atherosclerosis of arteries of extremities, multiple sclerosis, and Parkinson’s 

disease (Appendix A Table S3), none of which have been reported in the GWAS catalog (though 

there are other SNPs in the HLA region that have previously been associated with multiple 

sclerosis115,116). Of note, 10 of the SNPs near the HLA region demonstrated opposite directions of 

effect on circulatory system diseases and nervous system diseases (Appendix A Table S3), while 

the remaining 2 SNPs showed the same direction of effect (risk effect of tested allele) on 

pulmonary embolism and infarction and multiple sclerosis. The 9 SNPs we identified in the 

LOC101929163/NOTCH4 region, which are in high LD, have opposite directions of effect on 

essential hypertension and multiple sclerosis, which has not been characterized before in the 

GWAS catalog.  

Finally, we also identified 3 SNPs near PRDM8/FGF5 at chromosome 4q21.21 that are 

associated with essential hypertension and severe depressive episode with psychotic symptoms 

from UKBB, with risk genetic effect on both diseases (Appendix A Table S3, regional LD in 
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Appendix B Figure S3D). All 3 SNPs were suggested in the studies from GWAS catalog to 

increase the risk of hypertension or related traits117-122 (positive controls in our study), but we did 

not find evidence that they increase the risk of severe depressive disorders in the literature. 

4.5 Discussion 

Many clinical and epidemiological studies have suggested the co-occurrence of circulatory 

system diseases and nervous system disorders. However, the genetic contributions to this 

relationship are largely unknown. To bridge this knowledge gap, we have characterized pleiotropy 

across these two broad disease categories by applying an effective analytical framework on two 

biobank cohorts: eMERGE and UKBB. Even though the prospective UKBB cohort has a large 

overall sample size, the case number for specific disease phenotypes is overall comparable to 

the medical eMERGE Network in most scenarios (Appendix A Table S1). 

One of the advantages of our analytical design is the application of standardized univariate 

PheWAS and multi-trait joint analyses on two independent large datasets. As the availability of 

summary statistics from the GWAS catalog continues to increase, our ability to compare the 

summary statistics from univariate analyses, which is the commonly used approach to 

characterize pleiotropy, will continue to grow. However, multivariate methods, which have 

demonstrated generally greater power in simulation scenarios78, have not been widely applied to 

natural biomedical datasets to study pleiotropy among disease states. The primary reasons are 

that most multivariate analyses in general are characterized by the following: 1. Require 

individual-level data; 2. Are computationally intensive, and 3. Only test a null hypothesis that a 

variant affects none of the phenotypes examined (rather than identifying which subset of 

phenotypes are associated). We have addressed these challenges by obtaining individual-level 

data, splitting the genotype file into small chunks and running the analyses in parallel, and we 

have conducted a formal test of pleiotropy to pinpoint the specific associated phenotypes. We 

have applied both univariate PheWAS and multi-trait joint analyses as complementary methods to 
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provide supporting evidence for our findings and identify a smaller set of SNPs to explore a 

formal statistical test of pleiotropy.  Subsequently, there are multivariate methods, such as 

MTAG4 or MultiABEL123, that perform multi-trait analysis using GWAS summary statistics in a 

more computationally efficient manner.  But these methods treat sample overlap as a nuisance 

and correct for it, while also being unable to consider scenarios where an individual has multiple 

phenotypes diagnosed.  This is an additional motivation for using a method, like MultiPhen, that 

requires individual level data. 

We characterized 607 SNPs that were identified by both PheWAS and MultiPhen methods in 

the discovery analyses eMERGE and replicated in UKBB (Appendix A Table S2). These SNPs 

were associated with at least one tested phenotype. However, the definition of pleiotropy requires 

a genetic variant to influence more than one phenotype. Therefore, we have identified the precise 

set of phenotypes associated with a SNP via the sequential multivariate method (a formal test of 

pleiotropy). To assist the interpretation of pleiotropy, genetic effect sizes were collected from 

univariate PheWAS results. Additionally, the evaluation of the proportion of case overlap and 

conditional analyses on each identified phenotype set indicate that our discovered pleiotropy 

signals are likely genetic associations rather than due to comorbidity between circulatory system 

diseases and nervous system disorders (see Appendix B Supplementary Text). 

SNPs that were identified on chromosome 19 were previously known to increase the risk of 

Alzheimer’s disease and cardiovascular disease risk factors from GWAS catalog124 (proof of 

concept findings). We have identified consistent pleiotropic effects in this region on 

cardiovascular disease status such as atherosclerotic heart disease, left ventricular failure, 

occlusion and stenosis of carotid artery, and acute transmural myocardial infarction. The 

associations with atherosclerotic heart disease, Alzheimer’s disease and dementia were found in 

both combined analyses and sex-stratified analyses (see Results and Appendix B Supplementary 

Text). The decreased cerebral blood flow due to atherosclerosis is known to be associated with 



 

75 

 

pathogenesis of Alzheimer’s disease125. Roher et al. found increased cerebral artery occlusion 

and stenosis as a consequence of severe atherosclerotic heart disease in Alzheimer’s disease 

from 54 consecutive autopsy cases. Moreover, reducing cardiovascular disease risk offers 

opportunities for intervention for Alzheimer’s disease126. Understanding the disease mechanisms 

of pleiotropic genes will inform disease treatment. 

We observed an association based on SNPs near CDKN2B-AS1, which is associated with 

cardiovascular diseases, with the opposite genetic effect on the phenotype of severe depressive 

episode without psychotic symptoms. Although we did not identify any significant associations 

between CDKN2B-AS1 and major depressive disorders in the GWAS catalog, a recent bivariate 

scan study suggested that the genetic variants near CDKN2B-AS1 have the opposite effect on 

type 2 diabetes and major depressive disorders127; this confirms our findings. A recent study on 

2,743 individuals suggested that coronary artery disease and obesity occur in patients with 

depression treated by selective serotonin reuptake inhibitors (SSRIs, antidepressant) 128. The 

potential discordant pleiotropic effect of CDKN2B-AS1 might explain the occurrence of coronary 

artery diseases in patients treated for depression.  

We have identified novel genetic variants near the HLA locus that are associated with 

atherosclerosis of arteries of extremities, multiple sclerosis, and Parkinson’s disease, with 

opposite genetic effects on the circulatory system and nervous system diseases. Our discovered 

SNPs have not been reported before. The HLA gene region, though, has been previously 

associated with multiple sclerosis and Parkinson’s disease129,130. Moreover, it has been 

recognized that inflammation is involved in atherosclerosis and coronary artery disease131,132, 

thus highlighting the possible importance of autoimmune mechanisms and HLA polymorphisms. 

The SNPs near the NOTCH4;LOC101929163 region demonstrated association between 

essential hypertension and multiple sclerosis, with opposite direction of genetic effect. The 

association was also seen in the female-only analyses (see Appendix B Supplementary Text). 
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We have not observed associations of our identified SNPs with hypertension or related traits and 

multiple sclerosis from the GWAS catalog, although SNP rs9267992 has been suggested to be 

associated with multiple sclerosis by one early GWAS study on 978 cases and 883 group-

matched controls130.  

The SNPs we report near PRDM8/FGF5 on chromosome 4 showed pleiotropic risk 

associations with essential hypertension and severe depressive episode with psychotic 

symptoms. While these variants have previously been associated with hypertension or related 

traits such as diastolic and systolic blood pressure (per the GWAS catalog), they have not, to our 

knowledge, been associated with depressive disorders. Previous epidemiological studies have 

consistently shown an increased risk of hypertension in patients with depression and vice 

versa133-135. Our observed novel pleiotropic associations might contribute to the explanation of the 

relationships between these diseases. 

We acknowledge that we only characterized pleiotropic common variants in individuals of 

European ancestry due to power considerations, and future research on rare variants as well as 

both common and rare variants in other ancestries will shed more light on the shared biology 

between these classes of diseases. Another limitation of our analyses is that we only tested a set 

of phenotypes for the sequential multivariate model using a univariate p-value ≤ 0.01 in each 

dataset, which resulted in different phenotypes tested between datasets and thus the formal test 

of pleiotropy was not an exact replication. The reason behind the selection of phenotypes is the 

drastically increased computational time as the number of associated phenotypes increases. For 

example, SNP rs1333046 that is associated with 20 phenotypes detected by sequential 

multivariate model in UKBB costs 587 hours of CPU time. It currently would not be feasible for us 

to conduct sequential multivariate analyses for over 100 phenotypes. Future development of 

more computationally efficient methods that use individual level data, rather than summary 

statistics, would greatly facilitate the detection of pleiotropy.  
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We have characterized pleiotropy across circulatory system diseases and nervous system 

disorders by applying a combination of univariate, multivariate, and sequential multivariate 

methods on eMERGE and UKBB datasets. Our results have provided new insights into the 

genetics underlying the relationships between these disease categories, which may assist in 

future disease prevention and treatment. Our integrative analytical framework can also be applied 

to other disease categories to study pleiotropy comprehensively.  

4.6 Acknowledgments 

We would like to thank Daniel J. Rader, Yong Chen, Dana C. Crawford and Li-San Wang for 
helpful discussion on this project. We would like to thank Rachal Kember and Scott M. Damrauer 
for providing the manually reviewed ICD-CM conversion map. Funding: This work was in part 
supported by P50GM115318-04S1. The eMERGE Network was initiated and funded by NHGRI 
through the following grants: Phase III: U01HG8657 (Kaiser Permanente Washington/University 
of Washington); U01HG8685 (Brigham and Women’s Hospital); U01HG8672 (Vanderbilt 
University Medical Center); U01HG8666 (Cincinnati Children’s Hospital Medical Center); 
U01HG6379 (Mayo Clinic); U01HG8679 (Geisinger Clinic); U01HG8680 (Columbia University 
Health Sciences); U01HG8684 (Children’s Hospital of Philadelphia); U01HG8673 (Northwestern 
University); U01HG8701 (Vanderbilt University Medical Center serving as the Coordinating 
Center); U01HG8676 (Partners Healthcare/Broad Institute); and U01HG8664 (Baylor College of 
Medicine) Phase II: U01HG006828 (Cincinnati Children’s Hospital Medical Center/Boston 
Children’s Hospital); U01HG006830 (Children’s Hospital of Philadelphia); U01HG006389 
(Essentia Institute of Rural Health, Marshfield Clinic Research Foundation and Pennsylvania 
State University); U01HG006382 (Geisinger Clinic);  U01HG006375 (Group Health 
Cooperative/University of Washington); U01HG006379 (Mayo Clinic); U01HG006380 (Icahn 
School of Medicine at Mount Sinai); U01HG006388 (Northwestern University); U01HG006378 
(Vanderbilt University Medical Center); and U01HG006385 (Vanderbilt University Medical Center 
serving as the Coordinating Center). If the project includes data from the eMERGE imputed 
merged Phase I and Phase II dataset, please also add U01HG004438 (CIDR) and 
U01HG004424 (the Broad Institute) serving as Genotyping Centers. Phase I: U01-HG-004610 
(Kaiser Permanente Washington /University of Washington); U01-HG-004608 (Marshfield Clinic 
Research Foundation and Vanderbilt University Medical Center); U01-HG-04599 (Mayo Clinic); 
U01HG004609 (Northwestern University); U01-HG-04603 (Vanderbilt University Medical Center, 
also serving as the Administrative Coordinating Center); U01HG004438 (CIDR) and 
U01HG004424 (the Broad Institute) serving as Genotyping Centers.  

 

 

 

 

 



 

78 

 

 

CHAPTER 5 Real world scenarios in rare variant association analysis: the impact 

of imbalance and sample size on the power in silico 

 

This chapter was adapted from:  

Xinyuan Zhang, Anna O Basile, Sarah A Pendergrass, Marylyn D Ritchie. (2019) “Real world 
scenarios in rare variant association analysis: the impact of imbalance and sample size on the 
power in silico”. BMC Bioinformatics, 20(1), 1-10. DOI: 10.1186/s12859-018-2591-6 

XZ, AOB, SAP and MDR conceptualized the project. XZ and MDR led the project. XZ contributed 
to designing the analysis, performing the analysis and manuscript writing. AOB and SAP assisted 
with analysis design and provided important feedback on the manuscript.  All the authors read 
and approved the final manuscript. 

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. The Creative Commons Public Domain Dedication waiver 
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this 
article, unless otherwise stated. 

 

5.1 Abstract 

The development of sequencing techniques and statistical methods provides great 

opportunities for identifying the impact of rare genetic variation on complex traits. However, there 

is a lack of knowledge on the impact of sample size, case numbers, the balance of cases vs 

controls for both burden and dispersion based rare variant association methods. For example, 

phenome-wide association studies may have a wide range of case and control sample sizes 

across hundreds of diagnoses and traits, and with the application of statistical methods to rare 

variants, it is important to understand the strengths and limitations of the analyses. We conducted 

a large-scale simulation of randomly selected low-frequency protein-coding regions using twelve 

different balanced samples with an equal number of cases and controls as well as twenty-one 
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unbalanced sample scenarios. We further explored statistical performance of different minor 

allele frequency thresholds and a range of genetic effect sizes. Our simulation results 

demonstrate that using an unbalanced study design has an overall higher type I error rate for 

both burden and dispersion tests compared with a balanced study design. Regression has an 

overall higher type I error with balanced cases and controls, while SKAT has higher type I error 

for unbalanced case-control scenarios. We also found that both type I error and power were 

driven by the number of cases in addition to the case to control ratio under large control group 

scenarios. Based on our power simulations, we observed that a SKAT analysis with case 

numbers larger than 200 for unbalanced case-control models yielded over 90% power with 

relatively well controlled type I error. To achieve similar power in regression, over 500 cases are 

needed. Moreover, SKAT showed higher power to detect associations in unbalanced case-control 

scenarios than regression. Our results provide important insights into rare variant association 

study designs by providing a landscape of type I error and statistical power for a wide range of 

sample sizes. These results can serve as a benchmark for making decisions about study design 

for rare variant analyses. 

5.2 Introduction 

During the last decade, genome-wide association studies (GWAS) have greatly advanced 

our understanding of the impact of common variants on complex traits. The associations of alleles 

with frequency more than 1-5% have provided important insights into research and clinical 

practice136,137. Despite GWAS revealing novel disease associations, limited genetic heritability 

has been explained by GWAS results138. Rare alleles, with moderately large genetic effect sizes, 

may explain more of the phenotypic variance of complex disease139. Low frequency or rare 

variants may have an essential contribution to unexplained missing heritability140,141. The 

development of sequencing technologies has increased access to rare variation data for large 

sample sizes. However, it is crucial to better understand the statistical power and analytic 

limitations of rare variant association approaches.  
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Due to the low frequency of rare variants, single locus association tests in traditional GWAS 

are underpowered for rare variant association analysis48 unless the casual variants have very 

large effect sizes142. To boost power, region-based collapsing or binning approaches have 

become a standard for analyzing rare variants48. These methods evaluate the association of the 

joint effect of multiple rare variants in a biologically relevant region with the outcome142. 

Numerous association methods have been developed48,143-151 and this manuscript focuses 

on evaluating two of the most commonly used approaches for gene-based testing, burden and 

dispersion, using a simulation approach. Burden tests summarize the cumulative effect of multiple 

rare variants into a single genetic score and test the association between this score and 

phenotypic groups using regression152. The major assumption of burden tests is that all rare 

variants in a group have the same direction and magnitude of effect on the trait153, and violation 

of this assumption leads to a loss of power151. Dispersion tests, on the other hand, evaluate the 

distribution of genetic effects between cases and controls by applying a score-based variance-

component test142. The sequence kernel association test (SKAT) is a widely used dispersion 

method. It applies a multiple regression model to directly regress the phenotype on genetic 

variants in a region, followed by a kernel association test on the regression coefficients143. SKAT 

is robust to the magnitude and direction of genetic effects as well as to the presence of neutral 

variants, or a small portion of disease variants143,153.   

Statistical power for both burden and dispersion tests has been assessed in many simulation 

settings48,143,154,155, however, these simulations have focused on an equal (or balanced) number 

of cases and controls. In real data scenarios, researchers often have unequal (or unbalanced) 

number of cases and controls. With the application of association methods on unbalanced 

samples, it is beneficial to acquire the expected type I error and power to guide the study design 

for rare variant association tests. For example, for diseases that have a low prevalence in the 

population, what number of cases and how many controls are necessary to detect the impact of 
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rare variation on the disease? In phenome-wide association studies (PheWAS)34 there are 

potentially a wide range of case and control numbers and overall sample sizes across hundreds 

of diagnoses and traits32,156,157. A challenge for PheWAS studies using rare variants is to 

understand the impact of varying sample sizes, varying case numbers, and genetic effect sizes32.  

In this study, we performed extensive simulation analyses to assess the influence of sample 

size on the type I error and power distribution for regression (a burden test) and SKAT (a 

dispersion test). We designed twelve balanced sample size datasets and twenty-one unbalanced 

sample size scenarios. Since a large sample size has been widely known as a necessity for 

detecting significant rare variant associations48,152, in this paper, we mainly simulate unbalanced 

scenarios using a large total sample size. BioBin51,158,159 was used for rare variant binning and 

association testing. Results on the statistical performance of both logistic regression and SKAT 

can serve as a benchmark for making decisions about future rare variant association studies.  

5.3 Methods  

5.3.1 BioBin 

BioBin is a C++ command line tool that performs rare variant binning and association testing 

via a biological knowledge driven multi-level approach159. The framework of a BioBin analysis is 

to group rare variants into “bins” based on user-defined biological features followed by statistical 

tests upon each bin. Biological features, which include genes, inter-genic regions, pathways, and 

others, are defined by prior knowledge obtained from the Library of Knowledge Integration (LOKI) 

database158. LOKI is a local repository which unifies resources from over thirteen public 

databases, such as the National Center for Biotechnology dbSNP and gene Entrez database 

information185, Kyoto Encyclopedia of Genes and Genomes186, Pharmacogenomics Knowledge 

Base187, and others. Several select burden and dispersion-based statistical tests have been 

implemented into BioBin51,158, namely linear regression, logistic regression, Wilcoxon rank-sum 
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test, and SKAT143, which allows users the option of choosing the appropriate test(s). All of the 

statistical tests have been retained as their original statistical testing framework within BioBin. 

BioBin also enables users to perform association analysis across multiple phenotypes in a rare 

variant PheWAS. In this paper, we evaluate power and type I error using both logistic regression 

and SKAT using the BioBin 2.3.0 software158. BioBin software and the user manual are freely 

available at Ritchie Lab website (https://ritchielab.org/software/biobin-download).   

5.3.2 Simulation Design 

Sample Size and Case Control Ratios 

Simulations were designed to systematically evaluate the impact of different sample sizes, 

as well as different case control ratios for rare variant association tests. Twelve different 

scenarios for a balanced number of cases and controls with a total sample size ranging from 20 

to 20,000 were simulated. For unbalanced scenarios, a wide range of tests were constructed with 

case numbers varying from 10 to 7000 and two sets of large control samples (10k and 30k). Case 

to control ratio was calculated as the number of cases divided by the number of controls. Details 

of the study design with respect to sample size are shown in Table 5.1. Moreover, we also 

designed a few simulations with larger control groups (50k, 100k and 200k), results of which are 

shown in Appendix C table S1. Finally, it is important to note that the results would be 

comparable even if the scenario is reversed and the data included more cases than controls. As 

long as the customized Madsen and Browning weighting scheme is used, then the results would 

be the same whether the data include 1000 cases and 100 controls or 100 cases and 1000 

controls (Appendix C Fig. S4).   

Minor Allele Frequency 

Minor allele frequencies (MAFs) were randomly assigned to our simulated rare variants 

using allele frequency distribution data from actual whole exome sequencing data from 50,726 
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patients from the MyCode Community Health Initiative as a part of the DiscovEHR project160. Due 

to the rounding precision of MAF that SeqSIMLA2188 requires, we used 0.0015 as the MAF lower 

boundary to avoid zero MAF for simulated variants. For the MAF upper bound (MAF UB), we 

simulated two sets of data, one with MAF UB 0.01 and the other with MAF UB 0.05, respectively.  

Parameter Settings 

As our primary goal is to compare the effect of case-control sample sizes, we set other 

parameters as constant across all the datasets (Table 5.2). All simulations were generated with 

an average of 143 loci per dataset as we calculated this to be the mean number of rare loci from 

800 genes in a recent PheWAS study161. Here, “locus” refers to a genetic location which harbors 

genetic variants. We also applied a customized Madsen and Browning146 weighting scheme as 

implemented in BioBin for all datasets in order to increase statistical power51.  

Simulation model 

All of the datasets were generated using the software SeqSIMLA2.8, which can be used to 

design simulated datasets given user-specified sample size, effect sizes for genetic traits, and 

genetic model188. The disease penetrance model in SeqSIMLA is based on a logistic function188: 

logit (P(case)) = α + β1x1 + β2x2 + β3x3 + ... + βpxp 

x1, x2, x3, …, xp represent the genotypes across p disease loci. β1, β2, β3, ..., βp represent the 

log of the odds ratios. SeqSIMLA will search for α so that the disease prevalence is close to the 

specified prevalence. Here, disease prevalence was set to 5%. 

Type I Error (T1E) and Power Simulation 

Each type I error or power value was calculated from 1000 independent simulated datasets 

with significance assessed at a=0.05. We replicated 1000 runs 30 times as to account for 

sampling variability. Running 30 replicates of 1000 datasets was optimal to reduce computational 
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and memory burden. The simulated data did not have any missingness in either genotype or 

phenotype. Type I error was obtained from null datasets with no genetic association signal. For 

power, 10 random disease loci with an odds ratio of 2.5 per locus were simulated. In our study, 

power is defined as the probability of detecting a true signal (i.e. to reject the null hypothesis) 

when the null hypothesis is false. Power is calculated as the number of datasets that have 

rejected the null hypothesis at a=0.05 level divided by the total number of datasets (i.e. 1000). 

We also designed three sets of mixed odds ratio models where half of the 10 disease loci had 

protective effects, and half had risk effects, as described more in the next section.           

Table 5.1 Simulation Design 

 

Table 5.2 Other Parameter Settings 

Number of Simulations 1000 * 30 times for each sample size scenario 
Upper Threshold for MAF  0.01 and 0.05 
Variant Weighting  Madsen and Browning 
Disease Prevalence 5% 
Number of Disease Loci 10 
Odds Ratio (OR) All disease loci with OR 2.5; Half of disease loci 

with risk effect, the other half with protective effect 

 

Mixed Odds ratio models 

Balanced Cases and Controls 
Total Sample Size 20, 50, 100, 200, 400, 1k, 2k, 4k, 6k, 10k, 14k, 20k 
 

Unbalanced Cases and Controls 
Number of controls 10k Number of controls 30k 
Number of cases 
10, 25, 50, 75, 85, 100, 200, 500, 1000, 
3000, 5000, 7000 

Number of cases 
10, 25, 50, 75, 85, 100, 200, 500, 
1000 

 



 

85 

 

For most of the simulations, an odds ratio of 2.5 was used for 10 disease loci, indicating 

consistent risk for all associated rare variants. We also designed three types of protective and risk 

odds ratio combinations for the 10 disease loci. The detailed odds ratio for 10 disease loci are 

shown in Table 5.3, where variants were assigned a range of “Low”, “Moderate”, or “High” risk or 

protective impact, randomly. For each mixed model, we calculated protective (OR<1) effect as 

the same as the risk effect as to retain the consistent range of association signals.  

 

Table 5.3 Detailed Parameters for Mixture Odds Ratio Design 

     

5.3.3 Boxplot 

All of the boxplots were generated using the “geom_boxplot” function within “ggplot2” R 

package64. The “reshape2” R package was used for format changing purposes. Each boxplot bar 

represents the distribution of type I error or power calculated from 30 replicates. 

5.4 Results 

We evaluated burden-based tests using logistic regression and dispersion-based tests using 

SKAT. All associations are evaluated for a binary outcome on a simulated gene with an average 

of 143 rare variant loci. We varied the number of cases, controls, and also the balance between 

cases and controls. All reported results here have a MAF upper bound (UB) set at 0.01. The 

supplementary material (Appendix C Fig. S1 and Appendix C Fig. S2) shows results with a MAF 

upper bound (UB) of 0.05.  

 Randomly Selected 10 Disease loci 
Signal Level OR > 1 range (Risk) OR < 1 range (Protective) 

Low  2.3 2.73 3.15 3.58 4 0.43 0.37 0.32 0.28 0.25 
Moderate  4 5.25 6.5 7.75 9 0.25 0.19 0.15 0.13 0.11 

High  9 11.5 14 16.4 19 0.11 0.087 0.07 0.06 0.053 
Note: The numbers in bold represent the boundaries when selecting the odds ratios.  
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5.4.1 Type I error results 

 

Continued. 
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For visualization and comparison purposes, blue and red horizontal lines indicate type I error 

at 0.05 and 0.1 respectively. Figure (A) shows the results for type I error for an equal number of 

cases and controls for differing sample sizes. Note that the y-axis only goes to a type I error rate 
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Figure 5.1 Type I error Simulation Results with MAF UB of 0.01.  
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of 0.1. Figure (B) shows the type I error rate for different unbalanced cases and controls as 

arranged by case to control ratio. The axis is labeled by the number of cases then the number of 

controls for each simulation. The percentage of cases to controls is also listed below the number 

of cases and controls. Figures (C and D) show the results as ordered by the number of cases. 

Fig. 1C has 10K control and Fig. 1D has 30K control. 

 

Figure 5.1 displays the overall type I error simulation results for both balanced and 

unbalanced sample sizes. As shown in Figure 5.1A, with balanced number of cases and controls, 

the type I error for both regression and SKAT is well controlled under 0.05 with a few exceptions 

(the type I error for these was still below 0.1). Interestingly, regression had an overall higher type I 

error rate compared with SKAT for balanced samples. In addition, SKAT had an overall slightly 

increased type I error as the overall sample size increased. For regression, however, with 

increasing overall sample size, we did not observe an overall increasing trend in the Type I error 

rate. Similar results have also been observed with MAF UB of 0.05 (Appendix C Fig. S1A).  

For unbalanced sample sizes, we investigated whether the type I error rate was driven by 

the ratio of the cases to controls or by the number of cases when having a large control sample. 

We ordered the sample sizes by case to control ratio in Figure 5.1B, and by case number within 

the same control sample size in Figure 5.1C and Figure 5.1D. The type I error distribution for 

differing numbers of cases regardless of the number of controls had similar trends (Figure 5.1C 

and Figure 5.1D). Thus, our results suggest that number of cases tends to drive the type I error 

rate in addition to the case to control ratio under large control group scenarios. 

An overall higher type I error rate in unbalanced case-control ratios (Figure 5.1B) was 

observed compared to balanced case-control ratios (Figure 5.1A) for both tests, most of which 

are higher than 0.05. Contrary to what was seen in balanced samples, type I error rates for SKAT 
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were overall higher than regression. An exception to this for SKAT is seen when the case number 

increased substantially such as 5000 and 7000 cases with 10,000 controls. Overall, for SKAT 

there is decreasing type I error trend as case number increases (Figure 5.1C and Figure 5.1D). 

Regression, on the other hand, has a relatively consistent type I error in the unbalanced case 

control ratio tests. 

5.4.2 Power results 
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Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (A) shows the results when cases and controls are equal in number. Figure (B) shows the 

impact of unbalanced cases and controls on power ranked by the case/control ratio. The percent 
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Figure 5.2 Power Simulation Results with Cutoff for Evaluated Variation of MAF 0.01. 
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case to control ratio is listed below the x-axis. Figures (C and D) show the results for power with 

unbalanced cases and controls ordered by case number with 10K controls (C) and 30K controls 

(D). 

 

Odds ratio 2.5  

For balanced numbers of cases and controls and an odds ratio 2.5 for rare disease loci, the 

power distribution is shown in Figure 5.2A. The results indicate that regression has relatively 

higher power than SKAT for a sample size less than 1000, while SKAT has higher power given 

larger sample sizes (≥4000). For a total sample size less than 2000, both methods have less than 

50% power to detect true positive effects. In order to achieve 90% power, a total balanced 

sample size of 4000 is needed for SKAT and nearly 14,000 is needed for regression, based on 

our power simulation settings. 

Importantly, SKAT has an overall higher power for unbalanced cases and controls than 

regression (Figure 5.2B). Similar to the type I error distribution, power was also driven by the 

number of cases instead of the ratio of cases to controls under large control group scenarios 

(Figure 5.2B-D). Notably, overall power was improved whether tested via SKAT or regression 

approach with an unbalanced case control ratio compared to the balanced case control ratio 

simulations.      

The power analyses for unbalanced samples suggest an overall increasing trend as the 

number of cases increases. Based on the MAF UB of 0.01 results (Figure 5.2C and 2D), SKAT 

power for an unbalanced number of cases with case numbers larger than 200 does yield a mean 

power over 90%. For regression with an unbalanced sample size, more than 1000 cases would 

yield a mean power of 90% under a 10,000 controls sample size, while case numbers more than 
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500 would yield the same power under a 30,000 subject control sample size. The same trend has 

been observed for a MAF UB of 0.05 (Appendix C Fig. S2C and Fig. S2D).   

Mixture of Genetic Variation Contributing to Risk and Protection for Outcome 

The results are shown for variants contributing low, moderate, or high impact on outcome risk or 

protection. Methods describe the range of odds ratios corresponding to the different categories. 

(A) Total sample size of 4000 for balanced cases and controls with MAF UB 0.05. (B) Total 
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Figure 5.3 Power Comparison of Three Models with Differing Contributions from 

Protective and Risk Rare Genetic Variation.  
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sample size of 4000 for balanced cases and controls with MAF UB 0.01. (C) 200 cases and 

10,000 controls with MAF UB 0.05. (D) 200 cases and 10,000 controls with MAF UB 0.01. 

 

The above power simulations were performed on 10 disease loci where rare variants had an 

odds ratio 2.5 contributing to risk. In order to better assess the performance of statistical 

methods, we designed three sets of models containing variants contributing to both protection 

and risk with varied effect sizes for 10 disease loci (see Methods for more details). We compare 

four scenarios here: an upper bound on simulated rare variants with a MAF of 0.01 and 0.05; a 

balanced sample size with 2000 cases and 2000 controls, and an unbalanced sample size with 

200 cases and 10,000 controls. We chose these sample sizes from the results of our previous 

simulations as we observed both regression and SKAT to have adequate power and controlled 

type I error with these case control numbers.  

As shown in Figure 5.3, the power increases as the impact of rare variation on outcome 

increases.  SKAT outperforms regression in all scenarios, which is expected since the power for 

burden tests decrease when both protective and risk effects are present. Comparing a MAF UB of 

0.05 (left two plots) and a MAF UB of 0.01(right two plots) indicates that SKAT has higher power 

for MAF UB of 0.05 whereas regression has indistinguishable power differences. When 

comparing the top two plots of Figure 5.3 with the bottom two plots, we observe higher power for 

regression in unbalanced samples with 200 cases and 10k controls compared to 2000 cases and 

2000 controls. However, the opposite trend was observed for SKAT.  

5.5 Discussion 

Previous simulation studies have been conducted to characterize the statistical performance 

for burden and dispersion-based approaches using a balanced population of cases and 

controls48,143,154,155. However, there are many scenarios where there may not be balanced case 
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control data for a study, and it is important to know if this will be impactful as rare variant 

association methods evaluate the joint effect of multiple rare variants between case and control 

groups. In this study, we sought to evaluate the influence of case control balance on the statistical 

performance of logistic regression and SKAT rare variant methods.  

We found an overall higher type I error rate for unbalanced samples (mostly above 0.05) 

compared with balanced samples (mostly below 0.05) for both tests, suggesting that an unequal 

number of cases and controls has a clear statistical impact on type I error for rare variant 

association analysis. Previous research has reported that the type I error rate for SKAT is 

conservative for smaller sample sizes143. Indeed, our balanced sample size simulations suggest 

the same trend. However, SKAT has an inflated type I error for unbalanced samples with cases 

less than 200, thus we recommend researchers interpret those results with caution. Interestingly, 

regression shows a well-controlled type I error rate for both balanced and unbalanced samples. If 

controlling type I error is the priority, logistic regression is a more appropriate method than SKAT 

for both balanced and unbalanced scenarios.  

Statistical power largely depends on the number of disease loci and the odds ratio. In this 

paper, we evaluated both same-direction signal (i.e. 2.5 odds ratio) and mixed odds ratio models 

(Table 5.3) on 10 disease loci out of an average of 143 rare variant loci. We assessed the power 

distribution across various sample sizes using an odds ratio of 2.5. For balanced samples, given 

that both SKAT and regression have an overall controlled type I error, a total sample size less 

than 2000 obtains power less than 50% and more than 4000 obtains power higher than 50%. For 

unbalanced sample scenarios, SKAT has an overall higher power distribution than regression. 

Results show that at least 200 case samples are needed to obtain a power of 90% via SKAT, and 

an even larger number of cases are required for the regression approach.  

As for models with a range of variants contributing to risk and protection for an outcome, our 

results suggest that SKAT has an overall higher power compared with logistic regression. The 
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results are expected since burden tests lose power when variants contribute to a range of risk 

and protection for an outcome. Understandably, as the impact of the rare variants on outcome 

increases, power increases for all scenarios.  

Based on our type I error and power results across various unbalanced sample sizes, a clear 

trend exists between these statistics and the number of cases in addition to the case to control 

ratio (simulation results of constant case to control ratio are shown in Appendix C Fig. S3). As 

many studies ensure the proper case to control ratio, we also recommend that researchers pay 

attention to the number of cases in the rare variation association studies to help achieve expected 

type I error and power rates. To our knowledge, our work is the first to propose the landscape of 

statistics while varying the balance of sample sizes for rare variant association methods.  

The likely reason that our simulations present relatively lower power for regression could be 

a small proportion of disease loci being simulated. As the number of disease loci increases, we 

expect to observe higher power for burden-based approaches. Future work will aim to simulate 

various disease loci and odds ratio combinations to provide comprehensive implications on power 

assessment. 

In this paper, we have presented a simulation study through a wide range of balanced and 

unbalanced sample sizes, to fully assess the type I error and power distribution for burden and 

dispersion based rare variant association methods. We observe an impact of sample size 

imbalance on the statistical performance which can serve as a benchmark for future rare variant 

analysis.  
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CHAPTER 6 Investigating pleiotropy from whole-exome sequencing data across 

circulatory system diseases and nervous system disorders 

 

6.1 Abstract 

Clinical and epidemiological studies have indicated substantial inter-relationships between 

circulatory system diseases and nervous system disorders. Pleiotropy, which describes a gene or 

a genetic variant that affects multiple phenotypes, is one of the genetic contributions that explains 

the shared biology across different disease categories. In this study, we investigated the potential 

for pleiotropic genes using rare variants from the whole-exome sequencing data in the UK 

Biobank. We especially focused on the non-synonymous rare variants including startloss, 

stoploss, stopgain, splicing variants, insertions, and deletions. For the definition of the phenotype, 

we leveraged data from electronic health records and derived PheCodes for a wide range of 

circulatory system diseases and nervous system disorders. We performed rare variant 

association tests for each PheCode independently using both CMC (combined multivariate and 

collapsing) and SKAT (sequence kernel association test). In total, we identified 143 pleiotropic 

genes that associated with at least one circulatory system disease and one nervous system 

disorders. Our work presents potential novel biology on pleiotropy by specifically testing for the 

association of rare variants in whole exome sequence data from a large-scale biobank.  

6.2 Introduction 

The brain-heart connection has been observed throughout the history91. Circulatory system 

diseases and nervous system disorders often co-occur, which suggests the inter-relationship 

between these two types of diseases75,91,126,162,163. For instance, the prevalence of cardiac failure 

is two times higher in late-onset Parkinson’s disease patients as compared to the general 
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population93. Also, cardiovascular disease pathways are involved in Alzheimer’s disease162. 

Understanding the relationship across these two disease categories would benefit disease 

prediction, clinical preventive care as well as minimize drug side effects for vulnerable 

populations. 

A genetic variant or a gene that affects more than one phenotype is defined as pleiotropy. 

Pleiotropy has thought to be a common phenomenon for quite some time; recently, the ubiquity of 

pleiotropy has begun to be better characterized in the human genome21,94. Most of the pleiotropy 

research thus far has been focused on the common genetic variants6,23,62, including a previous 

research studied by our group on circulatory system diseases and nervous system disorders from 

the Electronic Medical Records and Genomics (eMERGE) network58. However, the role of rare 

variants remains largely unknown.  

Whole-exome sequencing (WES) data coupled with the electronic health records (EHR) 

provides great opportunities for understanding biology as it relates to low frequency genetic 

variation161,164. In this study, we investigated pleiotropic genes by leveraging WES data via rare 

variant association analyses in the UK Biobank (Figure 6.1). We conducted burden and 

dispersion tests using rvtest50 on individuals of European ancestry from the UK Biobank 

(N=32,268). Specifically, we used CMC (combined multivariate and collapsing) method for the 

burden test and SKAT (sequence kernel association test) for the dispersion test. We curated the 

phenotypes using PheCodes165 with case sample size requirement of at least 100 cases per 

phenotype to be included in the analysis. In total, we examined 66 circulatory system diseases 

and 28 neurological disorders (shown in Appendix E). Our work presents the framework for 

characterizing pleiotropy from an EHR-linked biobank across circulatory system diseases and 

nervous system disorders. Meanwhile, we demonstrated the comparison of results generated by 

burden and dispersion rare variant association tests for identifying pleiotropy. 
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6.3 Methods 

6.3.1 Datasets 

The UK Biobank offers deep genotyping and rich phenotyping for approximately 500,000 

individuals24. In the current data release for this study, the whole-exome sequencing (WES) data 

were available on approximately 50,000 samples. We excluded individuals whose disease 

diagnosis codes (ICD-10) were not available. We also dropped related samples based on those 

who were closer or equal to 2nd degree relatives; one person from each pair were excluded. Sex-

mismatches were also excluded. In total, there were 32,268 individuals of European ancestry who 

were included in this study. This project is approved under UK Biobank Project ID 32133.  

6.3.2 Rare variant selection 

Figure 6.1 Overview of Analysis 
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We define rare variants with a minimum allele count of 5 and the maximum allele frequency 

of 0.01. The variant annotation was conducted using ANNOVAR166 refGene database (Version 

Oct 24, 2019). We focus our analysis on nonsynonymous rare variants, including startloss, 

stoploss, stopgain, splicing variants, insertions and deletions.  

6.3.3 Phenotype definition 

We first obtained the International Classification of Diseases and Related Health Problems 

Version 10 (ICD-10) codes from the EHR data provided by the UK Biobank. We then derived the 

PheCodes using the R package165. We used a rule of one, which means that any code with a 

minimum count of one code occurrence was included. We also selected a case sample size of 

100 cases for each phenotype to ensure that we would have enough statistical power for rare 

variant association analysis based on previous simulation studies61. In total, we examined 66 

circulatory system diseases and 28 neurological disorders (shown in Appendix E). 

6.3.4 Rare variant region-based association analysis 

We performed CMC and SKAT using rvtest50 on the variants and samples that passed 

quality control. Among a total of 28,278 genes in the database, there were 18,285 genes being 

tested with at least one rare variant in the UK Biobank. The covariates included for adjustment in 

rare variant association models are age, sex and European-specific principal components. 

6.4 Results 

The results of the overall CMC and SKAT analyses are shown in Figure 6.2 (CMC) and 

Figure 6.3 (SKAT), without consideration of pleiotropy. We observed a difference in the overall 

results landscape between the two methods, which is likely due to the way that these two 

statistical methods work and the assumptions the methods are making. Burden tests (CMC) 

summarize the cumulative effect of multiple rare variants into a single genetic score, which has 

the best performance when the directions of genetic effects are in the same direction for all 
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variants167. Dispersion tests (SKAT), on the other hand, evaluate the distribution of genetic effects 

by applying a score-based variance components test. SKAT is robust to the magnitude and the 

direction of genetic effects as well as to the presence of neutral variants, or a small portion of 

disease variants153.  

We evaluated the number of variants per gene for the set of genes with Bonferroni 

significant results in the Figure 6.4 (CMC) and Figure 6.5 (SKAT). The goal was to evaluate the 

distribution of the number of rare variants driving the rare variant association signals. We 

observed that SKAT identified more Bonferroni significant results (1196 genes) than the CMC 

method (360 genes). We also observed that a large proportion of the genes that have statistically 

significant results include only one rare variant that contributes to the significance of the results; 

this is the case for both CMC and SKAT methods.  

We identified a total of 143 pleiotropic genes in the UK Biobank after Bonferroni correction 

(p-value threshold 2.9 ´ 10-8) that are associated with at least one circulatory system disease and 

one neurological disorder using SKAT (without any filtering on the number of variants). Among 

these, 30 genes were also statistically significant by the CMC method (results not shown). For 

genes that had at least five genetic variants, SKAT identified 59 pleiotropic genes across the two 

disease categories. The detailed results for every gene-phenotype pair is shown in Table 6.1. 

There were two genes what were also identified as Bonferroni significant and pleiotropic by CMC 

method – these are CACTIN and CACTIN-AS1 genes.  
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Figure 6.2 Gene-based Manhattan Plot for CMC Method 

Figure 6.3 Gene-based Manhattan Plot for SKAT Method 
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Figure 6.2 Number of Variants per Gene Distribution for Bonferroni Significant Hits for 

CMC Method 

 

Figure 6.3 Number of Variants per Gene Distribution for Bonferroni Significant Hits for 

SKAT Method 
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6.5 Discussion 

We applied both CMC and SKAT methods, which perform burden and dispersion tests 

respectively, to identify pleiotropy across circulatory system diseases and nervous system 

disorders using WES from the UK Biobank. Our analytical framework characterized pleiotropic 

genes that indicate statistical significance for at least one phenotype from each disease category. 

This study demonstrates the importance of considering rare variation in explorations of pleiotropy 

in human genetics studies. 

There were two pleiotropic genes identified by both CMC and SKAT methods. CACTIN and 

CACTIN-AS1 genes show statistically significant association with aphasia and late-effect of 

cerebrovascular disease. CACTIN was known to be involved in the regulation of immune 

response and is evolutionarily conserved across organisms168. CACTIN acts as a negative 

regulator for Toll-like receptors (TLRs) 169. Interestingly, the antisense RNA 1 CACTIN-AS1, 

which encodes a non-coding RNA, is also associated with both disease categories. There was no 

previous research in the literature that suggests their role on either aphasia or cerebrovascular 

disease. These are important association signals to explore in replication studies in independent 

datasets since there is limited support from the literature. 

Here, we discuss a few of the discovered pleiotropic genes from the SKAT analyses. The 

B3GAT2 gene is associated with congestive heart failure, heart valve replaced, and aphasia. The 

encoded protein is involved in the synthesis of human natural killer-1 (HNK-1), which implicates 

cellular migration and adhesion in the nervous system104. B3GAT2 is overexpressed in Brain170. 

The association with heart disease has not been previously reported in the literature. Similarly, 

the rare variants in the MYT1L gene are associated with disease of tricuspid valve and multiple 

sclerosis. The variants in this gene have been demonstrated to be associated with cognitive 

disability and autism disorder104. A recent study suggested that an intron in MYT1L is associated 

with a drug called Allopurinol, which has been recognized for its benefits in cardiovascular 
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disease171. Therefore, the MYT1L associations are somewhat supported by prior literature, 

although the association with these two specific phenotypes is novel. Another example is the 

KCNQ4 gene; it has been shown from our study that it is associated with suicide or self-inflicted 

injury, suicidal ideation or attempt, orthostatic hypotension, hypertensive chronic kidney disease 

and late effects of cerebrovascular disease. The protein encoded by KCNQ4 was suggested to 

play a critical role in regulating neuronal excitability172. The KCNQ4 potassium channels are also 

found in the heart with a lesser extent as compared to brain173. There are several drugs being 

developed around this gene174. This looks like an important gene to pursue in independent 

replication studies as well. 

As for the comparison between CMC and SKAT, SKAT clearly identified more Bonferroni 

significant pleiotropic genes than CMC (Figure 6.2 and 6.3). Interestingly, with or without the 

number of filtering based on the number of variants, all of the significant genes identified by CMC 

were also identified by SKAT. However, according to a previous simulation study by our group 

comparing the power and type I error rates between burden and dispersion tests, it was 

suggested that dispersion tests have higher type I error rates than observed in burden tests61. 

Thus, it is conceivable that some of the statistically significant results in these SKAT analyses are 

false positives. To fully evaluate the associations from this study, future replication analyses on 

additional independent large-scale biobanks would be helpful.  

In this study of the WES data in the UK Biobank, we investigated the potential for pleiotropy 

driven by rare variants grouped together by gene.  The goal was to determine whether we 

observe evidence of pleiotropy between circulatory system diseases and neurological disorders 

when considering only rare variants as most previous pleiotropy literature in human genetics has 

focused on common variants.  Through our analyses, we identified many genes that show 

evidence of pleiotropy; a total of 59 genes were identified as potentially pleiotropic using SKAT.  

While these results are certainly interesting, because of the high type I error rate of SKAT61, it is 
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critical to follow-up this study with replication in other comparable datasets. We anticipate that 

further exploration and consideration of rare variants from WES or whole-genome sequencing will 

lead to an improved understanding of the human biological mechanisms driven by pleiotropy. 

 

Table 6.1 SKAT Bonferroni Significant Results with at least Five Variants per Gene 

Gene Chr 
Gene_Start
_Position 

Num_va
r_per_ge
ne 

SKAT  
p-value PheCode PheCode description 

Disease 
category 

AGPS 2 177392772 10 8.52E-16 292.1 Aphasia/speech_disturbance Nervous 

AGPS 2 177392772 10 1.13E-08 335 Multiple_sclerosis Nervous 

AGPS 2 177392772 10 7.57E-10 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

ANKRD33B 5 10564069 12 1.75E-11 443.1 Raynaud's_syndrome Nervous 

ANKRD33B 5 10564069 12 6.21E-12 342 Hemiplegia Nervous 

AREG 4 74445135 5 6.75E-20 296 Mood_disorders Nervous 

AREG 4 74445135 5 1.01E-29 296.1 Bipolar Nervous 

AREG 4 74445135 5 2.93E-10 428.2 Heart_failure_NOS Nervous 

ARL14EPL 5 116051465 5 3.75E-10 340 Migraine Nervous 

ARL14EPL 5 116051465 5 1.13E-08 411.9 

Other_acute_and_subacute_f
orms_of_ischemic_heart_dise
ase Nervous 

B3GAT2 6 70856678 9 4.33E-09 292.1 Aphasia/speech_disturbance Nervous 

B3GAT2 6 70856678 9 4.00E-11 395.6 Heart_valve_replaced Nervous 

B3GAT2 6 70856678 9 8.78E-17 428.1 
Congestive_heart_failure_(C
HF)_NOS Nervous 

B9D2 19 41354416 7 1.22E-08 345 
Epilepsy,_recurrent_seizures,
_convulsions Nervous 

B9D2 19 41354416 7 2.54E-09 440 Atherosclerosis Nervous 

BRAP 12 111642145 9 4.49E-59 335 Multiple_sclerosis Nervous 

BRAP 12 111642145 9 2.00E-12 357 
Inflammatory_and_toxic_neu
ropathy Nervous 

BRAP 12 111642145 9 5.00E-11 426.31 Right_bundle_branch_block Nervous 

C3AR1 12 8056843 11 1.13E-17 292.4 Altered_mental_status Nervous 

C3AR1 12 8056843 11 5.58E-10 414 
Other_forms_of_chronic_hea
rt_disease Nervous 

CACTIN 19 3610644 12 5.71E-30 292.1 Aphasia/speech_disturbance Nervous 

CACTIN 19 3610644 12 4.31E-18 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

CACTIN-
AS1 19 3607246 7 6.56E-09 292 Neurological_disorders Nervous 
CACTIN-
AS1 19 3607246 7 4.37E-31 292.1 Aphasia/speech_disturbance Nervous 
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CACTIN-
AS1 19 3607246 7 2.53E-14 433.8 

Late_effects_of_cerebrovascu
lar_disease Nervous 

CD63 12 55725442 5 2.11E-08 338 Pain Nervous 

CD63 12 55725442 5 1.05E-10 350 Abnormal_movement Nervous 

CD63 12 55725442 5 8.49E-09 427.7 Tachycardia_NOS Nervous 

CD8A 2 86784604 6 1.46E-09 292.4 Altered_mental_status Nervous 

CD8A 2 86784604 6 1.25E-08 427.1 
Paroxysmal_tachycardia,_uns
pecified Nervous 

CD8A 2 86784604 6 1.96E-12 427.11 
Paroxysmal_supraventricular
_tachycardia Nervous 

CDR2 16 730419 9 8.02E-10 338 Pain Nervous 

CDR2 16 730419 9 6.37E-10 427.9 Palpitations Nervous 

CDR2 16 730419 9 3.87E-09 428.2 Heart_failure_NOS Nervous 

CKB 14 103519666 8 1.22E-09 396 Abnormal_heart_sounds Nervous 

CKB 14 103519666 8 3.14E-09 401.22 
Hypertensive_chronic_kidney
_disease Nervous 

CKB 14 103519666 8 4.18E-09 342 Hemiplegia Nervous 

CLDN5 22 19523026 7 2.07E-08 350 Abnormal_movement Nervous 

CLDN5 22 19523026 7 1.67E-10 420 Carditis Nervous 

CLDN5 22 19523026 7 1.25E-16 420.2 Pericarditis Nervous 

CLDN5 22 19523026 7 1.45E-08 447 
Other_disorders_of_arteries_
and_arterioles Nervous 

CNN1 19 11538850 7 2.84E-09 430 Intracranial_hemorrhage Nervous 

CNN1 19 11538850 7 1.71E-12 342 Hemiplegia Nervous 

CPSF7 11 61402647 7 1.75E-08 338 Pain Nervous 

CPSF7 11 61402647 7 8.12E-09 426.3 Bundle_branch_block Nervous 

DDX41 5 177511576 11 8.32E-13 426.2 Atrioventricular_[AV]_block Nervous 

DDX41 5 177511576 11 1.14E-10 342 Hemiplegia Nervous 

DHX9 1 182839346 5 1.15E-15 433.2 
Occlusion_of_cerebral_arteri
es Nervous 

DHX9 1 182839346 5 5.67E-19 433.21 
Cerebral_artery_occlusion,_w
ith_cerebral_infarction Nervous 

DHX9 1 182839346 5 3.45E-10 342 Hemiplegia Nervous 

DPEP1 16 89613307 15 1.32E-13 357 
Inflammatory_and_toxic_neu
ropathy Nervous 

DPEP1 16 89613307 15 6.51E-20 395.6 Heart_valve_replaced Nervous 

DRD3 3 114128651 7 2.10E-08 345.3 Convulsions Nervous 

DRD3 3 114128651 7 4.16E-11 426.31 Right_bundle_branch_block Nervous 

DSCAM 21 40010998 27 9.90E-18 338 Pain Nervous 

DSCAM 21 40010998 27 6.56E-11 458.1 Orthostatic_hypotension Nervous 

DUSP28 2 240560053 7 3.45E-09 335 Multiple_sclerosis Nervous 

DUSP28 2 240560053 7 7.28E-31 338 Pain Nervous 

DUSP28 2 240560053 7 2.14E-10 430 Intracranial_hemorrhage Nervous 

DUSP28 2 240560053 7 4.47E-13 443.9 
Peripheral_vascular_disease,_
unspecified Nervous 
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EHD3 2 31234151 8 3.76E-09 357 
Inflammatory_and_toxic_neu
ropathy Nervous 

EHD3 2 31234151 8 4.59E-18 440 Atherosclerosis Nervous 

FH 1 241497556 9 3.20E-10 292.1 Aphasia/speech_disturbance Nervous 

FH 1 241497556 9 1.21E-12 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

FH 1 241497556 9 9.45E-10 342 Hemiplegia Nervous 

FRS2 12 69470387 6 3.31E-09 350.2 Abnormality_of_gait Nervous 

FRS2 12 69470387 6 2.30E-09 447 
Other_disorders_of_arteries_
and_arterioles Nervous 

GDF5 20 35433348 8 1.30E-10 296 Mood_disorders Nervous 

GDF5 20 35433348 8 4.00E-11 428.2 Heart_failure_NOS Nervous 

GOLGA8B 15 34525282 10 1.06E-17 338 Pain Nervous 

GOLGA8B 15 34525282 10 1.92E-11 433.31 Transient_cerebral_ischemia Nervous 

HDHD2 18 47107409 9 7.15E-11 433.21 
Cerebral_artery_occlusion,_w
ith_cerebral_infarction Nervous 

HDHD2 18 47107409 9 3.95E-15 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

HDHD2 18 47107409 9 8.85E-13 342 Hemiplegia Nervous 

HOXD11 2 176107279 7 7.67E-11 296 Mood_disorders Nervous 

HOXD11 2 176107279 7 2.41E-15 296.1 Bipolar Nervous 

HOXD11 2 176107279 7 1.13E-16 394.3 Aortic_valve_disease Nervous 

IQCD 12 113195445 10 9.30E-10 345.3 Convulsions Nervous 

IQCD 12 113195445 10 5.95E-10 458.9 Hypotension_NOS Nervous 

ISOC1 5 129094748 7 5.76E-12 292.1 Aphasia/speech_disturbance Nervous 

ISOC1 5 129094748 7 9.95E-09 345.3 Convulsions Nervous 

ISOC1 5 129094748 7 2.57E-09 352 
Disorders_of_other_cranial_n
erves Nervous 

ISOC1 5 129094748 7 5.28E-09 433.3 Cerebral_ischemia Nervous 

JUP 17 41754606 25 4.33E-12 327.3 Sleep_apnea Nervous 

JUP 17 41754606 25 5.98E-09 394.3 Aortic_valve_disease Nervous 

KCNQ4 1 40783786 11 1.80E-10 401.22 
Hypertensive_chronic_kidney
_disease Nervous 

KCNQ4 1 40783786 11 1.21E-11 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

KCNQ4 1 40783786 11 2.66E-16 458.1 Orthostatic_hypotension Nervous 

KCNQ4 1 40783786 11 6.73E-11 297 Suicidal_ideation_or_attempt Nervous 

KCNQ4 1 40783786 11 5.22E-11 297.2 
Suicide_or_self-
inflicted_injury Nervous 

LGALS12 11 63506083 8 9.38E-16 334 
Degenerative_disease_of_the
_spinal_cord Nervous 

LGALS12 11 63506083 8 3.68E-12 394.7 Disease_of_tricuspid_valve Nervous 

LGALS12 11 63506083 8 6.18E-15 396 Abnormal_heart_sounds Nervous 

LHX4-AS1 1 180269662 8 4.45E-11 292.1 Aphasia/speech_disturbance Nervous 

LHX4-AS1 1 180269662 8 1.09E-13 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 
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LHX4-AS1 1 180269662 8 9.13E-10 442 Other_aneurysm Nervous 

LHX4-AS1 1 180269662 8 2.59E-12 342 Hemiplegia Nervous 

LOC283335 12 53043188 5 1.27E-08 451 
Phlebitis_and_thrombophlebit
is Nervous 

LOC283335 12 53043188 5 5.61E-13 342 Hemiplegia Nervous 

LOC283335 12 53043188 5 1.55E-09 451.2 
Phlebitis_and_thrombophlebit
is_of_lower_extremities Nervous 

MICALL1 22 37906296 24 3.66E-09 296.1 Bipolar Nervous 

MICALL1 22 37906296 24 2.52E-10 394.3 Aortic_valve_disease Nervous 

MKRN2 3 12557086 11 5.87E-17 334 
Degenerative_disease_of_the
_spinal_cord Nervous 

MKRN2 3 12557086 11 4.75E-18 411.9 

Other_acute_and_subacute_f
orms_of_ischemic_heart_dise
ase Nervous 

MRPL49 11 65122182 5 3.81E-09 345 
Epilepsy,_recurrent_seizures,
_convulsions Nervous 

MRPL49 11 65122182 5 7.78E-09 447 
Other_disorders_of_arteries_
and_arterioles Nervous 

MYT1L 2 1789112 10 3.71E-15 335 Multiple_sclerosis Nervous 

MYT1L 2 1789112 10 3.30E-18 394.7 Disease_of_tricuspid_valve Nervous 

NPRL2 3 50347354 7 4.15E-11 342 Hemiplegia Nervous 

NPRL2 3 50347354 7 2.03E-09 411.9 

Other_acute_and_subacute_f
orms_of_ischemic_heart_dise
ase Nervous 

OR10K2 1 158419927 7 1.48E-20 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

OR10K2 1 158419927 7 8.08E-16 342 Hemiplegia Nervous 

PFKFB4 3 48517683 10 2.15E-12 340 Migraine Nervous 

PFKFB4 3 48517683 10 4.77E-13 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

PIGP 21 37065363 7 1.02E-09 357 
Inflammatory_and_toxic_neu
ropathy Nervous 

PIGP 21 37065363 7 5.89E-09 402 

Elevated_blood_pressure_rea
ding_without_diagnosis_of_h
ypertension Nervous 

PPWD1 5 65563238 15 3.64E-13 394.7 Disease_of_tricuspid_valve Nervous 

PPWD1 5 65563238 15 3.59E-11 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

PPWD1 5 65563238 15 1.87E-12 342 Hemiplegia Nervous 

PTHLH 12 27958083 5 1.96E-08 350 Abnormal_movement Nervous 

PTHLH 12 27958083 5 5.38E-10 420 Carditis Nervous 

PTHLH 12 27958083 5 6.22E-13 420.2 Pericarditis Nervous 

PTHLH 12 27958083 5 3.06E-09 451.2 
Phlebitis_and_thrombophlebit
is_of_lower_extremities Nervous 

RAB24 5 177301189 5 4.68E-14 340 Migraine Nervous 

RAB24 5 177301189 5 1.35E-09 428.2 Heart_failure_NOS Nervous 

RAB24 5 177301189 5 4.41E-12 433.21 
Cerebral_artery_occlusion,_w
ith_cerebral_infarction Nervous 

RPS19BP1 22 39529092 5 1.46E-14 414 
Other_forms_of_chronic_hea
rt_disease Nervous 

RPS19BP1 22 39529092 5 1.02E-10 297 Suicidal_ideation_or_attempt Nervous 
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RPS19BP1 22 39529092 5 6.72E-11 297.2 
Suicide_or_self-
inflicted_injury Nervous 

SERPINE3 13 51341031 8 8.62E-14 338 Pain Nervous 

SERPINE3 13 51341031 8 1.01E-10 394.3 Aortic_valve_disease Nervous 

SGCG 13 23180920 8 2.66E-09 317 Alcohol-related_disorders Nervous 

SGCG 13 23180920 8 4.02E-09 447 
Other_disorders_of_arteries_
and_arterioles Nervous 

SLC30A7 1 100896089 8 1.01E-10 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

SLC30A7 1 100896089 8 3.09E-09 342 Hemiplegia Nervous 

SNX30 9 112750759 7 9.04E-09 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

SNX30 9 112750759 7 7.55E-09 342 Hemiplegia Nervous 

THEM5 1 151847100 5 6.71E-10 395.6 Heart_valve_replaced Nervous 

THEM5 1 151847100 5 3.33E-09 440 Atherosclerosis Nervous 

THEM5 1 151847100 5 1.45E-10 447 
Other_disorders_of_arteries_
and_arterioles Nervous 

THEM5 1 151847100 5 7.97E-09 297.2 
Suicide_or_self-
inflicted_injury Nervous 

TMEM127 2 96250207 6 1.29E-08 340 Migraine Nervous 

TMEM127 2 96250207 6 2.86E-10 443.1 Raynaud's_syndrome Nervous 

TMEM171 5 73120574 16 3.45E-16 350.2 Abnormality_of_gait Nervous 

TMEM171 5 73120574 16 6.76E-11 433.2 
Occlusion_of_cerebral_arteri
es Nervous 

TRRAP 7 98878489 40 1.79E-08 327.3 Sleep_apnea Nervous 

TRRAP 7 98878489 40 5.17E-10 420 Carditis Nervous 

TRRAP 7 98878489 40 1.72E-15 420.2 Pericarditis Nervous 

TTLL1 22 43039515 8 1.29E-12 433.8 
Late_effects_of_cerebrovascu
lar_disease Nervous 

TTLL1 22 43039515 8 1.26E-09 342 Hemiplegia Nervous 

VAT1L 16 77788563 5 2.17E-08 416 Cardiomegaly Nervous 

VAT1L 16 77788563 5 2.11E-09 293 
Symptoms_involving_head_a
nd_neck Nervous 
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CHAPTER 7 Summary and Future Directions 

 

Pleiotropy is an important concept in understanding relationships among diseases. In this 

dissertation, we presented the contribution of pleiotropy that helps to explain the link between 

circulatory system diseases and nervous system disorders. We have reviewed the currently 

available statistical methods for analysis of pleiotropy (Chapter 1).  We have also applied some of 

these current statistical methods for characterizing pleiotropy using either common genetic 

variants (Chapters 2, 3, and 4) or rare genetic variants (Chapter 6), respectively. Meanwhile, we 

also addressed the potential issue of sample size imbalance between cases and controls for 

multivariate association methods in association analysis of common variants in Chapter 2 and 

burden/dispersion association methods for rare variants in Chapter 5. The discovery of pleiotropy 

was achieved by leveraging large-scale electronic health records linked to biobanks, specifically 

eMERGE and the UK Biobank. With the growth of EHR-linked biobanks throughout the scientific 

community, we expect to see more future work investigating pleiotropy which will improve our 

ability to investigate the shared underlying architecture of human complex traits. Beyond the work 

presented in this dissertation, there are many opportunities and challenges ahead. 

First, analytical methods for common variants continue to expand from traditional popular 

univariate association methods to more robust and powerful multivariate association methods. 

We anticipate that this trend will continue in the coming years. Because of the limitations facing 

multivariate association methods, future work is greatly needed that focuses on computationally 

and memory efficient methods to accommodate the large-scale biobank datasets. This would be 

incredibly useful especially given the drastically increasing sample sizes that are being 

assembled for the biobank resources, such as the UK Biobank (500,000)24, the VA Million 
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Veteran Program (825,000)25, and the All of Us Cohort Program (goal 1 million). As for analyzing 

a large number of phenotypes, dimensionality reduction approaches to pre-select subsets of 

phenotypes would aid in dealing with computational burden. Downstream analyses on common 

variants continue to be needed to characterize the functional implication of the specific genetic 

variants that show evidence of statistical association. These analyses include but are not limited 

to colocalization analysis89, fine-mapping175 and pathway analysis176. In addition to the GWAS 

catalog18,19, a pleiotropy database encompassing genetic associations, gene expression in 

specific tissues, and pathway analyses would be a very helpful resource.  

Next, the development of multivariate association methods for rare variants is in its infancy. 

There are a few proposed methods, described in Chapter 1, that aim to perform multivariate 

association tests for rare variants based on either burden or dispersion approaches. However, it 

is challenging to apply these different methods at this stage due to the inaccessibility of the 

source code or software packages to use the tools.  We anticipate that this will be a short-lived 

limitation as we expect that these software tools will be made available in the near future. 

Additional future work on publicly available, powerful multivariate association tools for rare variant 

association would be beneficial to the scientific community. As for considering the functional 

annotations for rare variants, there have been a variety of strategies proposed in the literature 

thus far. For example, Park et al. performed their rare variant association tests using “predicted 

loss-of-function or missense variants” and “predicated deleterious missense variants defined 

using REVEL score” 49. Similarly, Verma et al. investigated Drugbank genes (so only a subset of 

the genome) specifically using loss-of-function rare variants that were filtered by three different 

filtering criteria; in their study only 4 genes showed evidence for association by all three 

criteria161. In future, we expect to see various ways of selecting/filtering rare variants as well as 

perhaps strategies for grouping the rare variants into regions for the association tests to explore 

pleiotropy as related to rare variants. Due to the low minor allele frequency of these rare variants, 

replicating the results in independent datasets would certainly help with the confidence of the 
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discoveries; however, because the variants are rare, sometimes they do not even exist in 

independent datasets. In addition, a univariate association analysis using single rare variant 

association tests could potentially help to pinpoint the rare variant(s) that drive the signal, 

however, this assumes that the sample size is large enough to have the statistical power needed 

to identify the association for the single rare variant.  

EHR-linked biobanks will likely continue to play an important role in pleiotropy investigation 

and identification. One of the challenges that we face in the use of EHRs for extracting 

phenotypes is the manner in which we define the phenotype. One possible future direction is to 

refine the definition of each disease phenotype. The ICD codes were designed for billing 

purposes in health care systems, however, they also tend to provide a view of the disease profile 

for patients. Researchers can either use the ICD codes to define phenotypes34, or seek 

alternative phenotype definitions or algorithms to derive phenotype. PheCodes165 are one of the 

ways to define phenotypes based on ICD codes with the added interpretation of clinical experts 

who spent effort to group ICD codes that go together as well as define exclusion codes that 

should not be used177. Another recently proposed alternative data-driven approach for defining 

phenotypes is to interrogate disease ontology databases to define the disease status (research 

ongoing in Ritchie lab). There are also phenotyping algorithms developed by the eMERGE 

network and others in the field of informatics that can be accessed at PheKB 

(https://www.phekb.org/). These algorithms incorporate ICD codes, biomarker measurements, 

medications, electronic health record notes, etc. to define each phenotype. These carefully 

designed phenotype algorithms tend to have a high prediction accuracy in comparison to the 

actual clinical diagnosis. Due to the complexity involved in creating these algorithms as well as 

the time commitment to develop and evaluate them, these types of algorithms are only available 

for a small set of phenotypes at this time. Future methodology developments to improve the 

efficiency of the development of these phenotype algorithms would greatly benefit the scientific 

community.  
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Another challenge facing the use of EHRs for phenotyping is the missingness in the EHR. 

For instance, the completeness of EHRs depends on a number of factors. First, the duration of a 

patient getting their health care from the current healthcare system. Second, knowing how much 

of the previous history for the patient is on record within the system or at least transferred 

successfully to the current healthcare system from wherever a patient previously received health 

care. Third, presence or absence of health insurance in the United States can determine which 

clinical procedures, medications, or laboratory tests some patients may receive. This can create 

another type of missingness in the EHR. The reality of missing this previous disease information 

may reduce the power for the identification of pleiotropy in these types of broad association 

studies, like the ones performed in this dissertation. One other aspect of missingness to be aware 

of is the potential impact on the statistical methods. Some statistical and machine learning 

methods do not allow for any missing data and thus, the amount of missingness should be taken 

into consideration. There are approaches to perform phenotype imputation, such as imputing 

missingness as a constant value, however, more robust imputation algorithms should be 

implemented. Missingness in the EHR and strategies for dealing with it has been discussed 

elsewhere178.  

An exciting future for pleiotropy is its potential application for clinical and pharmaceutical 

fields. The knowledge of pleiotropy could potentially benefit disease prediction. This is especially 

useful for concordant pleiotropy, when a genetic variant or a gene has the same direction of 

genetic effect on different diseases. In this way, preventive care could be implemented to protect 

patients who carry the risk genetic factors for one disease before they develop another disease; 

perhaps preventive measures could be taken. From a disease treatment perspective, it is 

possible that a gene that associates with one disease also associated with a drug side effect of, 

which can be categorized as another disease phenotype. Perhaps the evidence of pleiotropy can 

help to explain these side effects and allow for alternative medications to be administered. For 

example, tricyclic drugs for treating depression have lethal effects on patients who are vulnerable 
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to cardiovascular diseases179. Future pleiotropy work in other ethnic groups would assist in 

disease treatment that benefit broader population. Future effort to develop the strategy of taking 

pleiotropic effects into clinical practice and drug development would help to minimize side effects 

for certain drugs and potentially help with preventive care.  
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