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ABSTRACT 
 

ELUCIDATING THE ROLE OF THE AFRICAN-CENTRIC P47S VARIANT OF TP53 IN 

METABOLISM AND FERROPTOSIS 

Keerthana Gnanapradeepan 

Maureen E. Murphy 

 

The tumor suppressor gene TP53 is the most frequently mutated gene in cancer and 

plays a key role in mediating several processes that are critical for preventing tumor formation 

and progression. Known as the guardian of the genome, p53 regulates hundreds of genes 

involved in various pathways such as apoptosis, cell cycle arrest and senescence. In recent 

years, the role of p53 in metabolism, redox state and ferroptosis has begun to emerge. Our lab 

has identified an African-specific polymorphic variant of p53 that encodes a serine residue 

instead of a proline at amino acid 47 (hereafter S47) and predisposes carriers to cancer. The S47 

variant is impaired for tumor suppression and ferroptosis, and S47 cells have an altered redox 

state. We sought to use the tumor prone S47 model as a tool to better understand the role of p53 

in tumor suppression. Our results demonstrate that mice carrying the S47 variant have greater 

metabolic efficiency compared to those with WT p53, along with increased mTOR activity. This 

difference in mTOR stems from an impaired protein-protein interaction that occurs in S47, 

ultimately due to a difference in cellular redox state. We next identified PLTP as a p53 target 

gene that shows decreased transactivation in the S47 variant and mediates ferroptosis resistance 

by enhancing lipid storage in HepG2 cells. Taken together, this work sheds light on the emerging 

roles p53 plays in tumor suppression, metabolism and ferroptosis. It also provides a better 

understanding of an ethnic genetic variant of p53. We expect this work will enable better 

personalized medicine approaches and therapeutic options for people who carry this variant.  
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Chapter 1: Introduction 
 

This chapter contains excerpts from the following manuscript: 

Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP, Murphy 

ME. The p53 tumor suppressor in the control of metabolism and ferroptosis. 

Frontiers in Endocrinology (2018); 9:124. 

 

1.1 p53: Guardian of the Genome 

1.1.1 The role of p53 in cancer  

Cancer is most simply described as a disease of uncontrolled cell growth, 

resulting from genetic mutations. Hundreds of genes have been identified as playing a 

role in tumorigenesis, but among the most notable genes in cancer is TP53, mutated in 

more than 50% of human tumors (Leroy et al., 2014). Since first being discovered in 

1979, there have been more than 80,000 somatic and germline mutations that have 

been observed in this single gene (http://p53.fr). Many factors determine the prevalence 

of p53 mutations, such as cancer type and the stage of the tumor. For example, TP53 

mutations are found in 80% of small-cell lung cancer and 90% of ovarian cancer, while 

there are less than 5% observed in cervical cancer and 10% in leukemia. Exogenous 

influences such as viral infection and geographic distribution, in other words how 

environmental conditions affect carriers from different areas of the world, are also factors 

that can affect the frequency of TP53 mutations (Leroy et al., 2014). 
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In many tumor suppressor genes, such as the Retinoblastoma susceptibility gene 

RB1, it has been observed that mutations inactivating the tumor suppressive function are 

due to loss of the wild-type form of the protein. Interestingly, most cancer-causing TP53 

mutations still express a version of the p53 protein. Mutants of p53 generally possess a 

single amino acid change that has a profound impact on the function of the protein 

(Vousden and Lane, 2007). The most well studied mutations in TP53 occur in the DNA 

binding domain of the protein. Mutations in this region impair the ability of p53 to bind to 

its target genes and result in the accumulation of mutant p53 (Soussi and Lozano, 

2005). Mouse models expressing mutant p53 develop more aggressive cancers and 

increased metastasis compared to mice lacking p53 all together (Lang et al., 2004; Olive 

et al., 2004).  

Most patients carry somatic mutations of p53, in which mutations spontaneously 

arise in a certain subset of cells. Germline transmission of p53 mutations has been 

characterized as Li-Fraumeni syndrome. Individuals with this disease are born with a 

wild-type and mutant from of p53 in all tissues, and exhibit an extremely high incidence 

of cancer (Vousden and Lane, 2007). Li-Fraumeni patients have an estimated cancer 

risk of 90% by the age of 60, highlighting the devastating impacts of TP53 mutations 

(Malkin et al., 1990). 

 

1.1.2 The story of p53: A brief history 

In 1979, several research groups independently discovered p53 while studying 

the small DNA tumor virus, SV40. These groups reported that when SV40 large tumor 

antigen was immunoprecipitated from either SV40 induced tumors or SV40 transformed 
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cells, a non-viral protein with a molecular mass of roughly 53 kilodaltons was also pulled 

down with it (Lane and Crawford, 1979; Linzer and Levine, 1979). Shortly after, it was 

revealed that this same protein was produced at high levels in tumors whereas very low 

levels were found in normal tissue (Rotter, 1983). This corroborated earlier findings that 

this protein is abundant in transformed cells and cancer cells, but not in non-transformed 

cells (DeLeo et al., 1979). By the mid 1980s, it was widely believed that p53 functioned 

as an oncogene, as p53 expression appeared to correlate with enhanced tumorigenesis 

(Levine and Oren, 2009).  

As more groups began publishing on this protein, each group derived their own 

name resulting in confusion in this rapidly growing field. In 1983 at the first International 

p53 Workshop in Oxted, UK, several researchers in the field came together and 

collectively agreed upon the name ‘p53’, as this protein appears at a molecular weight of 

53 kDa when run on an SDS-polyacrylamide gel. Interestingly, it was later found that the 

predicted molecular mass is around 43.7 kDa and the overestimation in size is due to 

the fact that the proline-rich region hinders the migration of the protein. By then, p53 had 

become the standard nomenclature in the field thus this name for the protein remains 

today (Levine and Oren, 2009).  

As research and technology progressed, many groups began to recognize the 

discrepancies with the theory that p53 functioned as an oncogene. Varda Rotter’s group 

discovered that the coding sequences for TP53 were essentially deleted in the cell line 

HL60, derived from human leukemia (Wolf and Rotter, 1985). Meanwhile the Vogelstein 

group found that human colorectal tumors did not contain WT p53, and that the TP53 

allele was subject to mutations and/or deletions (Vogelstein et al., 1989). Finlay and 

Hinds began studying a clone of p53 that could not recapitulate the transforming 



4 
 

phenotype observed with other clones. They began investigating the DNA sequences of 

p53 clones they had used in the past, as well as clones obtained from other groups. It 

was discovered that each clone carried a unique sequence, suggesting it was very likely 

that almost all the clones studied until then carried p53 mutations (Finlay et al., 1988). 

This was further validated by comparing the sequence of wild type (WT) Trp53 taken 

from normal mouse tissue to the Trp53 sequence taken from mouse tumor tissue. It was 

found that the mouse tumor tissue did, in fact, contain mutations of p53 and that these 

mutants were capable of inducing cell transformation whereas the WT p53 did not 

(Halevy et al., 1991). When WT p53 was overexpressed in the presence of oncogenes 

such as MYC and HRAS, transformation was suppressed thus validating the tumor 

suppressive function of p53 (Eliyahu et al., 1989; Finlay et al., 1989).  

In order for a gene to be considered a tumor suppressor gene, it typically should 

meet at least two criteria: 1) humans who harbor germline mutations of this gene should 

show increased risk of cancer and 2) animal models who lose this gene should display a 

cancer-prone phenotype (Levine and Oren, 2009). TP53 meets both these criteria, as 

germline TP53 mutations in humans cause Li-Fraumeni syndrome which results in early-

onset cancer, and p53 null mice were found to be extremely cancer prone (Donehower 

et al., 1992; Malkin et al., 1990; Srivastava et al., 1990). All these data, in addition to 

many other studies, indicated that TP53 is a tumor suppressor gene and not an 

oncogene as originally thought. 
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1.2 The structure and function of p53 

1.2.1 The Structure of p53 

The structure of p53 is composed of two transactivation domains located on the 

intrinsically disordered N-terminal region, adjacent to a conserved proline-rich domain, 

then followed by the central DNA binding domain (Figure 1.1). The C-terminal region of 

the protein encodes its nuclear localization signals, and contains the oligomerization 

domain required for p53 transcriptional activity (Kastenhuber and Lowe, 2017). p53 

typically exists as a homotetramer (a dimer of dimers), composed of four subunits each 

containing 393 amino acids. Under normal conditions, p53 is expressed at low levels. 

Each subunit alone has low thermodynamic stability and will rapidly unfold at body 

temperature. However, upon stress such as DNA damage, p53 is stabilized by post 

translational modifications. The primary dimers are stabilized by antiparallel 

intermolecular β-sheet and helix packing interactions. The two dimers come together via 

a hydrophobic helix and interact to form a tightly packed tetramer that now has high 

thermodynamic stability (Canadillas et al., 2006; Cho et al., 1994). The modular structure 

of p53 along with the regions of intrinsic disorder enable p53 to adopt various 

conformations, allowing it to interact with a number of other proteins. 

In order to bind to DNA, a specific response element is required that is generally 

composed of two 10 basepair motifs separated by a spacer. The spacer can range from 

0-13 basepairs but is typically 0-1 basepairs in most p53 response elements. Different 

spacer lengths can pose various conformational restraints and generally, increasing 

spacer length decreases the binding affinity of p53. For example, a 5 basepair spacer 

would result in two p53 dimers on opposite faces of DNA, whereas a 10 basepair spacer 

would result in two dimers on the same face of DNA, requiring significant bending of 
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DNA to enable this interaction (Joerger and Fersht, 2016). TP53 mutations are generally 

categorized as contact mutants or conformation mutants, and the majority of tumor 

causing TP53 mutations occur in the DNA binding domain. Contact mutants impede p53 

from binding to DNA, such as the R273H and R245W mutants, resulting in loss of 

transactivation of target genes. Conformation mutants disrupt the physical structure of 

p53, such as V143A and R175H mutants (Raj and Attardi, 2017).  

1.2.2 Transactivation Domains of p53 

Two transactivation domains (TADs) are located on the N-terminus of p53 and 

are essential for protein-protein interactions that regulate p53 stability. For example, the 

histone acetyltransferase p300, or its paralog CBP, binds in this region and promotes 

stabilization of p53 through the acetylation of lysine residues on the C-terminal region of 

the protein. This also results in acetylation of nearby histones, enabling chromatin 

unwinding and transcription of target genes (Miller Jenkins et al., 2015). Various proteins 

bind to this region, such as TFIIH, which is a key component in transcriptional 

machinery, or RPA, a protein that plays an important role in DNA replication. Proteins 

involved in p53 regulation also bind to this region, such as MDM2 and MDMX, which 

both work to inhibit p53 function (Raj and Attardi, 2017).  

Under basal conditions, the TAD1/2 domains are intrinsically disordered regions 

that adopt a helical conformation when bound to another protein. This disordered 

structure in the unbound state allows p53 to adapt easily, bind to a broad range of 

proteins and allows for post translational modifications (Miller Jenkins et al., 2015). The 

transactivation domains are composed of several acidic amino acids that are 

interspersed with bulky hydrophobic residues, which are key to promote binding to other 
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proteins. There are also several serines and threonines in the TAD region, which serve 

as targets of phosphorylation and further affect interactions with binding partners (Raj 

and Attardi, 2017). For example, phosphorylation of threonine 18 prevents MDM2 from 

binding to TAD1 of p53, while enhancing the affinity for many domains of CBP/p300 (Lee 

et al., 2010; Teufel et al., 2009). Phosphorylation at serine 46 and threonine 55 enables 

subunits of TFIIH to bind (Di Lello et al., 2006). These examples highlight how 

modification of the transactivation domains via phosphorylation can modulate p53 

function in response to stress (Joerger and Fersht, 2016).  

The two transactivation domains (TAD) are both necessary for full p53-mediated 

tumor suppression and target gene transactivation, however there are differences with 

regards to how certain mutations in each TAD affects gene expression (Hafner et al., 

2019). Brady et al. demonstrated that creating a knock-in mouse with a mutation in the 

TAD1 domain (L25Q, W26S) severely impairs transactivation of the majority of p53 

dependent genes (Brady et al., 2011). Interestingly, the TAD1 mutant is still capable of 

tumor suppression despite being unable to induce apoptosis or cell cycle arrest. When 

the TAD2 domain is mutated (F53Q, F54S), no major changes in the transcriptional 

activity of p53 were found and at a glance this synthetic mutant appears to retain the 

functions of WT p53. However, when both TAD1 and TAD2 are mutated, p53 loses all 

transcriptional function and can no longer inhibit tumorigenesis, resembling a p53-null 

phenotype (Brady et al., 2011).  It is believed that these two domains act in a synergistic 

fashion, rather than an additive fashion, and are both required for p53 to prevent 

oncogenesis (Raj and Attardi, 2017).  
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Figure 1.1: Domains of p53.  

Structural organization of p53, with amino acid residue numbers labeled from amino-terminus to 

carboxyl-terminus. The P47S variant occurs in TAD2. 

 

1.2.3 p53 Activation  

The p53 tumor suppressor protein has been dubbed the “Guardian of the 

Genome”. It acts as a transcription factor and serves as a master regulator of hundreds 

of target genes. Several transcription independent functions of p53 have also been 

identified, for example p53 can promote apoptosis by interacting with Bcl-2 and Bcl-XL in 

the mitochondria (Chipuk et al., 2004; Tomita et al., 2006). Additionally, p53 can directly 

or indirectly repress transcription of certain genes such as SLC7A11, GLUT1 and Nanog 

(Kaiser and Attardi, 2018).  

There are several cellular stresses that can activate p53, such as DNA damage, 

replication stress, oncogene activation, hypoxia, telomere erosion and nutrient 

deprivation. Depending on the stress encountered, p53 will induce the appropriate 

response that will halt the accumulation of oncogenic mutations and ultimately prevent 
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the initiation and spread of cancer (Figure 1.2). If damage to the cell is beyond repair, 

p53 can eliminate the cell completely through a form of cell death, such as apoptosis or 

ferroptosis. If the cell can be rescued, p53 can arrest the growth of a cell, presumably to 

give the cell enough time to correct the damage that has been done and resume normal 

proliferation after the mutation has been repaired (Kastenhuber and Lowe, 2017).  

p53 controls a diverse range of responses, thus it is important to keep in mind 

that the activation and function of p53 can be context dependent. For example, the 

response of p53 depends on cell type, differentiation state, the activating stress, 

epigenetic state, and tissue microenvironment. Post-translational modifications are also 

important to consider when assessing p53 activity, as specific post-translational 

modifications can alter the affinity of p53 for different target genes and trigger various 

responses. For example, phosphorylation of the Ser46 site of p53 is key event 

necessary for stimulating apoptosis (Smeenk et al., 2011). There are several other 

modifications such as SUMOylation, glycosylation, acetylation, and prolyl isomerization 

that occur throughout the p53 protein, and result in modifying protein stability and target 

gene binding (Kastenhuber and Lowe, 2017).  These multiple levels of control enable  

p53 to selectively regulate different sets of target genes to ensure the cell will have the 

optimal response to the specific stress that is encountered.  

1.2.4 Canonical functions of p53 

The most well-studied functions of p53 include controlling cell cycle arrest, 

senescence and apoptosis. Upon DNA damage in the cell, DNA damage response 

kinases phosphorylate and stabilize p53, enabling p53 to turn on the appropriate 

downstream target genes (Williams and Schumacher, 2016). Initially p53 was found to 
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halt proliferation in response to DNA damage by inducing a brief G1 cell cycle arrest, 

giving the cell time to correct any mutations that could lead to tumorigenesis (Kastan et 

al., 1991). It was found that CDKN1A is key p53 target gene that drives this induced cell 

cycle arrest, as this gene encodes the cyclin dependent kinase inhibitor p21 (Brugarolas 

et al., 1995; Deng et al., 1995). When damage is irreparable and the cell must 

permanently shut down, p53 can induce senescence through target genes such as 

CDKN1A/p21, PAI-1 or PML. Alternatively, p53 can halt proliferation by inducing 

apoptosis through target genes such as PUMA and NOXA (Kaiser and Attardi, 2018).  

Though apoptosis, cell cycle arrest and senescence are widely regarded as the 

predominant functions of p53, many studies have recently emerged demonstrating that 

p53 can suppress cancer through other pathways. These other pathways regulated by 

p53 include autophagy, metabolism, ferroptosis, cellular plasticity and pluripotency, ROS 

control, inflammation, the epithelial-to-mesenchymal (EMT) transition, and angiogenesis 

(Kastenhuber and Lowe, 2017).   

Many studies have shown p53 promotes differentiation of stem cells and 

suppresses the programming of somatic cells into pluripotent stem cells (Hong et al., 

2009; Marion et al., 2009). If cells exhibit less plasticity and are instead more 

differentiated, it will result in a less plastic phenotype in young cancer cells and prevent 

proliferation of cancer stem cells. There is also evidence that p53 opposes EMT and 

restricts cancer cell invasion and metastasis to other sites. It has been shown that p53 

downregulates transcription factors such as Snail1, Slug and Zeb, that are all crucial for 

EMT (Kim et al., 2011; Wang et al., 2009). Several in vitro studies have demonstrated 

that p53 plays a role in impeding motility and invasiveness of various cancer cell types 

(Kaiser and Attardi, 2018). p53 has also been indicated in playing a role in immune 
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response, by activating a subset of genes involved in immune cell recruitment and 

surveillance. For example, in liver carcinoma it has been shown that p53 activation leads 

to the transcription of cytokines such as Csf1 and Il15. The activation of these cytokines 

will promote the recruitment of neutrophils, natural killer cells and macrophages, which in 

turn will halt tumorigenesis (Xue et al., 2007).  
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Figure 1.2: p53 activation and response. 

p53 is activated by various stresses, indicated by the red words, and responds by turning on the 

appropriate downstream response, as depicted by the green words.  

 

1.3 Emerging roles of p53  

1.3.1 p53 and metabolism  

A major function of p53 that has been gaining momentum in recent years is the 

ability of p53 to respond to metabolic stress and limit cell proliferation and growth. 

Metabolic stresses that activate p53 tend to be more transient, such as hypoxia or low 

nutrient availability. These stresses require a more adaptive response from the cell, 

rather than complete shutdown of the cell that tends to occur when a genotoxic stress is 

encountered (Berkers et al., 2013). A common feature of cancer cells is the ability to 

reprogram metabolic pathways. Doing so enables a cancer cell to survive under adverse 

conditions such as low nutrients or low oxygen, promotes the activation of anabolic 

pathways, and can limit oxidative damage to the cell (Vousden and Prives, 2009). 

Generally, p53 will oppose tumorigenesis by increasing catabolism and 

decreasing proliferation. Glucose is one of the primary sources of energy for the cell and 

cancer cells exhibit increased glucose consumption and increased glycolysis. p53 has 

been shown to transcriptionally repress two of the major glucose transporters in the cell, 

GLUT1 and GLUT4 (Schwartzenberg-Bar-Yoseph et al., 2004).  It has been shown to 

decrease glycolysis by inducing the transcription of RRAD and TIGAR, which are both 

known inhibitors of glycolysis (Bensaad et al., 2006; Zhang et al., 2014). While p53 

generally acts to suppress glycolysis, it is believed to increase oxidative phosphorylation. 
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p53 transactivates the SCO2 gene, which encodes a protein that facilitates the transfer 

of electrons during mitochondrial respiration (Matoba et al., 2006). p53 also 

transactivates GLS2, which encodes an enzyme that catalyzes the conversion of 

glutamine to glutamate, enabling glutamate to be used as an alternate energy source in 

the mitochondria (Hu et al., 2010).  

There are also transcription-independent functions of p53 that regulate 

metabolism, as p53 can bind to and inhibit glucose-6-phosphate dehydrogenase 

(G6PDH). G6PDH is an enzyme that catalyzes the rate limiting step of the pentose 

phosphate pathway, using a product of glycolysis as a substrate. The pentose 

phosphate pathway serves as a major source of NADPH generation. NADPH serves as 

a key reducing agent for many reactions such as glutathione generation and de novo 

lipid synthesis. The pentose phosphate pathway is found to be upregulated in cancer 

cells, thus by inhibiting G6PDH, p53 is able to suppress cancer cell proliferation (Jiang et 

al., 2011).  

It is important to note that p53 can perform opposing functions on the same 

metabolic process depending on the cell type (Kastenhuber and Lowe, 2017). Studies 

have clearly demonstrated that p53 inhibits glycolysis in breast and lung cells by 

repressing the expression of glycolytic enzymes (Kim et al., 2013) or by impeding 

glucose uptake (Zhang et al., 2013). However, in muscle cells p53 induces glycolytic 

enzymes resulting in increased glycolysis (Kruiswijk et al., 2015). Thus, when assessing 

the role of p53 in metabolism, it is necessary to consider the context such as the stress 

encountered, tissue location and other biochemical pathways that have been activated 

(Figure 1.3).  
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1.3.2 p53 and mTOR 

mTOR (mechanistic target of rapamycin), is a serine/threonine kinase that serves 

as a master regulator of metabolism and cell growth, and functions by phosphorylating 

its downstream targets. This pathway is activated by environmental signals such as 

nutrients and growth factors, thus levels of glucose and amino acids play an important 

role in regulating mTOR activity. In addition to proliferation, mTOR is known to regulate 

translation, ribosome biogenesis, autophagy, and cytoskeletal reorganization (Liu and 

Sabatini, 2020b).  However, heightened mTOR activity can also contribute to 

oncogenesis thus a delicate balance must be maintained between the mTOR and p53 

pathways in order to balance the requirement for normal cell growth and stress response 

(Hasty et al., 2013).  

p53 target genes such as PTEN, LKB1 and TSC2 that are also tumor 

suppressors have been found to be negative regulators of mTOR (Shaw et al., 2004). 

The TSC2 subunit of the TSC1:TSC2 complex serves as a GTPase-activating protein for 

the protein Rheb, which is a GTPase known to activate mTOR. Through this interaction, 

TSC2 binds to and inhibits Rheb, thereby decreasing mTOR activity (Corradetti and 

Guan, 2006; Hay and Sonenberg, 2004). AMPK-activated protein kinase (AMPK) is an 

enzyme that monitors the ATP/AMP ratios in the cell and is activated under low nutrient 

levels or energy stress (Feng et al., 2007; Feng et al., 2005). When nutrient levels fall 

below a certain threshold, AMPK will phosphorylate and thereby activate TSC2 which 

then shuts down mTOR activity. AMPKβ1 is a subunit of the AMPK complex which plays 

an important role in regulating AMPK activity and localization within the cell (Warden et 

al., 2001). It has been shown that AMPKβ1is a direct p53 target gene, further 

highlighting how p53 negatively regulates the mTOR pathway (Feng et al., 2007). AMPK 
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can also activate p53 by inducing phosphorylation of p53 at the serine 15 site (Jones et 

al., 2005). Sestrin1 (SESN1) and Sestrin 2 (SESN2) are two p53 target genes that are 

generally induced upon DNA damage and oxidative stress; however, both have also 

been shown to inhibit mTOR signaling. These genes activate AMPK, which in turn will 

phosphorylate TSC2 and stimulate its GAP activity, ultimately resulting in the inhibition of 

mTOR. In vivo studies confirmed that Sestrin2-deficient mice are unable to inhibit mTOR 

signaling upon genotoxic stress (Budanov and Karin, 2008). Taken together, these 

studies demonstrate that there are multiple nodes connecting the p53 pathway to the 

mTOR pathway and how a homeostasis must be maintained for optimal cell function.  

1.3.3  p53 regulates lipid metabolism 

Though p53 is well known for regulating metabolic pathways commonly studied 

in cancer, such as glycolysis and the TCA cycle, p53 has also been shown to play a 

major role in mediating lipid metabolism (Berkers et al., 2013).  Wild-type and mutant 

p53 regulate lipid metabolism on both the transcriptional level and on the protein-protein 

interaction level (Parrales and Iwakuma, 2016).  It is believed that p53 enhances fatty 

acid oxidation while inhibiting fatty acid synthesis, thus acting as a negative regulator of 

lipid synthesis.  Fatty acid oxidation involves the breakdown of fatty acids in the 

mitochondria; this is one mechanism cells use to produce substrates such as NADH, 

acetyl-CoA and FADH2 , which are subsequently used in the TCA cycle and electron 

transport chain (Berkers et al., 2013).  Sanchez-Macedo and colleagues demonstrated 

that carnitine palmitoyltransferase 1C (CPT1C), an enzyme that aids in the transport of 

activated fatty acids to the mitochondria, is expressed in a p53-dependent manner both 

in vitro and in vivo and that Cpt1c deficient mice displayed delayed tumor development 

and higher survival rates (Sanchez-Macedo et al., 2013).  Lipin 1 (LPIN1) is a p53 target 
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gene necessary for proper adipocyte development and was found to be induced under 

low nutrient conditions (Assaily et al., 2011).  Using a series of gain-of-function and loss-

of-function experiments, Finck and colleagues showed that LPIN1 interacts with PGC1-

alpha, another known p53 metabolic target, and that this interaction activates the 

expression of other genes involved in promoting fatty acid oxidation (Finck et al., 2006).   

The sterol regulatory element-binding proteins (SREBP) family are a family of 

transcription factors that modulate the expression of genes involved in cholesterol, fatty 

acid, triacylglycerol and phospholipid synthesis, and is often upregulated in many types 

of cancer (Ettinger et al., 2004; Guo et al., 2009; Parrales and Iwakuma, 2016).   

Deleting p53 in ob/ob mice led to increased levels of SREBP-1 and downstream targets, 

meanwhile ob/ob mice expressing p53 displayed low levels of SREBP-1 and 

downstream targets, indicating that p53 represses SREBP-1 (Yahagi et al., 2003). 

A microarray analysis of human liver-derived cells identified phospholipid transfer 

protein (PLTP), ATP binding cassette A12 (ABCA12) and carboxyl ester lipase (CEL) as 

three p53 target genes that all play a role in lipid transport (Goldstein et al., 2012).  PLTP 

is a secreted molecule bound to high-density lipoprotein (HDL) that transfers 

phospholipids from very low-density lipoproteins (VLDL) and low-density lipoproteins 

(LDL) to HDL particles in the liver, where reverse cholesterol transport occurs (Masson 

et al., 2009).  Both ABCA12 and ABCA5, another p53 target gene, have been shown to 

mediate cholesterol efflux and both genes have been implicated in atherosclerosis (Fu et 

al., 2013; Ye et al., 2010).  CEL is an enzyme that hydrolyzes dietary lipids into fatty 

acids and cholesterol and also plays a role in HDL uptake in the liver (Goldstein et al., 

2012).  It is evident that p53 plays an important role in lipid shuttling as it regulates a 

variety of genes that mediate lipid transport (Goldstein and Rotter, 2012).  Though there 
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is a clear role of p53 in mediating several genes that are essential for lipid metabolism, 

many of these genes have not been directly shown to be involved in suppressing tumor 

formation.  The exact mechanism for how and when p53 induces many of these genes 

remains to be uncovered, for example it is not known if p53 activates these genes in 

response to metabolic stress or if basal levels of p53 are required to maintain lipid 

homeostasis (Goldstein and Rotter, 2012).  Some may argue that this implies the role of 

p53 extends beyond a tumor suppressor, however one could also postulate that there 

are other tumor suppressor functions of p53 involving lipids that have not been fully 

explored.   

 

Figure 1.3: Role of p53 in metabolism. 

The role of WT p53 in metabolism. Genes positively regulated by p53 are shown in green, genes 

negatively regulated by p53 are shown in red. p53 inhibits glucose transport, glycolysis and fatty 
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acid synthesis while it promotes lipid uptake, fatty acid oxidation, oxidative phosphorylation and 

glutaminolysis.  

1.3.4 Ferroptosis  

In 2012, Dixon and colleagues discovered a novel form of regulated cell death 

called ferroptosis, which is best described as an iron-dependent, caspase-independent 

form of cell death resulting from the accumulation of lipid reactive oxygen species (Dixon 

et al., 2012; Yang et al., 2014).  This process is driven by the inactivation of glutathione 

peroxidase 4 (GPX4), an enzyme that is responsible for converting lethal lipid 

hydroperoxides to non-toxic lipid alcohols and requires glutathione to function (Yang et 

al., 2014).  Ferroptosis is commonly induced using either erastin or 1S,3R-RSL3 

(hereafter referred to as RSL3). Erastin inhibits the cystine/glutamate antiporter 

SLC7A11, which results in depleted glutathione and subsequent inactivation of GPX4. 

RSL3 directly binds to and inhibits GPX4, resulting in the induction of ferroptosis (Dixon 

et al., 2012; Jiang et al., 2015; Yang et al., 2016).   

It is believed that peroxidation of polyunsaturated fatty acids (PUFAs) is the 

stimulus that drives ferroptosis.  PUFAs contain bis-allylic protons that can easily be 

abstracted and produce radicals that will react with oxygen, creating more radicals and 

resulting in a chain reaction of lipid ROS (Yang et al., 2016).  The exact mechanism of 

cell death remains unknown, however one hypothesis is that the lipid damage leads to 

the destruction of the cell membrane (Magtanong et al., 2016).  It has been postulated 

that ferroptosis could be another mechanism of tumor suppression by eliminating cells 

that are nutrient deprived or have been exposed to an environmental stress or infection.  

Death by ferroptosis can be prevented by suppressing lipid peroxidation, which can be 
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accomplished by using lipophilic antioxidants such as ferrostatin-1 or Vitamin E, as well 

as by using iron chelators or depleting PUFAs (Stockwell et al., 2017).   

1.3.5 The role of p53 in the regulation of ferroptosis has been controversial  

Wei Gu’s research group developed a mouse model in which three normally 

acetylated lysine residues in the DNA binding domain of p53 were mutated to arginine, 

hereafter referred to as the 3KR model.  The 3KR mouse lost the ability to undergo 

apoptosis, cell cycle arrest and senescence, and failed to transactivate the majority of 

p53 target genes.  Interestingly, this mouse model did not develop cancer implying p53 

has an alternate mechanism of tumor suppression (Li et al., 2012).  It was found that the 

mutant p53 3KR fully retains the ability to undergo ferroptosis and regulate cystine 

metabolism by repressing SLC7A11 expression, thus explaining the observed 

phenotype.  When wild-type and 3KR MEFs were treated with the ferroptosis inducer, 

erastin, almost 50% cell death was observed whereas p53 null MEFs exhibited only 20% 

cell death, indicating that p53 sensitizes cells to ferroptosis. Perhaps the most 

compelling piece of data that ferroptosis is key to p53 function was the phenotype of 

p533KR/3KRMdm2-/- embryos treated with ferrostatin-1.  Prior studies have demonstrated 

that apoptosis, cell cycle arrest and senescence cause lethality in p53+/+Mdm2-/- yet 

interestingly, the p533KR/3KRMdm2-/-, which retains the ability to undergo these processes, 

were still unable to bear offspring.  After treating the p533KR/3KRMdm2-/- embryos with 

ferrostatin-1, it was found that the embryos were significantly larger with more well-

developed physiology compared to the untreated embryos, thus demonstrating p53 

mediated ferroptosis is what drives embryonic lethality in the 3KR model (Jiang et al., 

2015).    
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An additional acetylation site was identified at K98, and a 4KR mouse model was 

developed.  Mutating this single residue from a lysine to arginine had very little effect on 

p53 mediated transactivation of downstream targets, however mutating this residue in 

addition to the three lysine residues in the 3KR model completely ablated the ability of 

p53 to regulate its metabolic targets, including SLC7A11.  Unlike the 3KR model, the 

4KR model is unable to suppress tumor growth in mouse xenograft models and lost the 

ability to induce ferroptosis (Wang et al., 2016).  Taken together, these results indicate 

that p53 plays an important role in mediating ferroptosis and that p53 acetylation can 

dictate ferroptotic responses and tumor suppression.    

Other p53 target genes associated with ferroptosis include PTGS2, SAT1 and 

GLS2 (Gao et al., 2015; Ou et al., 2016; Yang et al., 2014). PTGS2 is significantly 

upregulated upon ferroptotic induction and is often used as a marker of ferroptosis, 

however the exact role and function remain unclear (Yang et al., 2014). Activation of 

SAT1 was found to sensitize cells to ferroptosis and induce lipid peroxidation through 

regulating the lipoxygenase ALOX15 (Ou et al., 2016). GLS2 converts glutamine to 

glutamate and knockdown of GLS2 was found to completely inhibit ferroptosis in MEFs 

(Gao et al., 2015; Jennis et al., 2016). 

Though many studies suggest that p53 plays a role in enhancing ferroptosis 

sensitivity, several groups have shown that under certain contexts, p53 can actually 

suppress ferroptosis. In work by Xie et al., the authors demonstrate that p53 functions in 

a transcription-independent manner by binding to and sequestering dipeptidyl-peptidase-

4 (DPP4). This results in nuclear accumulation of DPP4 and renders it inactive. Upon 

loss of p53, DPP4 is able to localize to the plasma membrane and facilitate lipid 

peroxidation, ultimately contributing to ferroptotic cell death (Xie et al., 2017).  
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Tarangelo and colleagues also published evidence that p53 may negatively 

regulate ferroptosis (Tarangelo et al., 2018).  It was found that pre-treating cells with 

Nutlin-3, a compound used to stabilize p53, for 48 hours prior to treating cells with a 

ferroptosis inducer delayed the onset of ferroptosis in several cell types.  The delayed 

onset of ferroptosis was found to depend on CDKN1A (encoding p21), a critical p53 

transcriptional target.  The mechanism through which p21 delays ferroptosis has yet to 

be elucidated, however cell cycle arrest due to CDK 4/6 inhibition and enhanced NRF2 

activity were excluded as a part of this mechanism.  It was found that there is an 

increase in glutathione production during the pre-treatment phase, and it is believed that 

the conservation of intracellular glutathione is another contributing factor for reduced 

ferroptosis sensitivity.  The authors concluded that the p53-p21 axis enables cancer cells 

to survive under conditions of metabolic stress, such as cystine deprivation, by 

suppressing the onset of ferroptosis (Tarangelo et al., 2018).  

Work by the Prives group has shown that MDM2 and MDMX, known negative 

regulators of p53 activity, promote ferroptosis in a p53-independent manner. The MDM2-

MDMX complex was found to alter the lipid profile of cells through regulating PPARα 

activity and suppressing the antioxidant response of cells. This work supports the 

premise that ferroptotic regulation extends beyond the p53 axis (Venkatesh et al., 2020).  

A role for p53 in the regulation of metabolism is quite clear: WT p53 limits 

glucose metabolism and lipid synthesis, while mutant p53 appears to do the opposite.  

The contribution of this activity to tumor suppression by p53, and to the ability of mutant 

p53 to drive tumor progression, remains to be unequivocally proven.  However, the role 

of p53 in the regulation of ferroptosis, and the contribution of this function to tumor 

suppression is even less clear.  While compelling data from mouse models support the 
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premise that p53 regulates the sensitivity of cells to ferroptosis, this may be restricted to 

the ability of basal p53 to suppress spontaneous tumor development, and in oncogene-

stressed mouse models it is clear that senescence and apoptosis play the predominant 

role.  Similarly, p53 may regulate ferroptosis sensitivity in a cell type-specific manner.  

More studies in animal models, with attention to ferroptosis in different tissues, need to 

be done to more fully understand the role of p53 in ferroptosis, and ferroptosis in tumor 

suppression.  Additionally, a clearer idea of what p53-target genes play a role in 

sensitivity to ferroptosis needs to be attained (Figure 1.4).   

 

Figure 1.4: Various roles of p53 in ferroptosis.  

Ferroptosis is driven by inhibition of GPX4, the enzyme that catalyzes the conversion of 

polyunsaturated fatty acids containing peroxides (depicted by red dots) to alcohols. Depending on 

the context, p53 can suppress ferroptosis or promote ferroptosis. Mutant p53 sensitizes cells to 

ferroptosis even more than WT p53.  



23 
 

1.3.6 The African-specific P47S variant 

A naturally occurring polymorphism in TP53 was reported in TAD2 at codon 47, 

in which a proline is replaced by a serine (P47S, rs1800371) (Felley-Bosco et al., 1993). 

This SNP, hereafter referred to as S47, was reported over two decades ago and is found 

predominantly in people of African and African American descent, with a frequency of 

about 6-8% in Africans and 1.5% in African Americans (Jennis et al., 2016). This SNP is 

also present in Hispanic populations and has not been reported in Caucasian 

Americans. Our group showed that women of African ancestry who carried the S47 

allele had a higher risk of developing pre-menopausal breast cancer, with a per allele 

odds ratio of 1.72  (Murphy et al., 2017). It is believed that there may be a correlation 

between this SNP and other types of cancer in African descent populations; however 

due to the dearth of large sample or data sets from African descent populations, such 

associations await determination.  

Interestingly, this polymorphism is adjacent to a key phosphorylation site in p53 

located at the Serine 46 residue. The Serine 46 site is phosphorylated by proline 

directed kinases including p38 MAPK, HIPK2 and DYRK, and this phosphorylation event 

has been shown to be very important for p53’s ability to induce apoptosis (Bulavin et al., 

1999; Felley-Bosco et al., 1993; Hofmann et al., 2002). In-vitro kinase assays revealed 

that cells containing the S47 variant are impaired for phosphorylation at the Ser46 site 

by proline directed kinases, such as purified p38MAPK. It was also found that cells 

containing this variant have a 5-fold decreased ability to undergo cell death when 

compared to cells containing WT P47 form of p53 (Li et al., 2005).  

To further study the biological consequences of this variant, our lab generated a 

knock-in mouse model using a humanized p53 knock-in (Hupki) containing the S47 
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allele. This humanized version of p53 replaces mouse exons four through nine with the 

corresponding human p53 exons (codon 32-332). Mice with the homozygous S47 allele 

spontaneously developed cancer between 12 to 18 months of age, and heterozygous 

mice were also found to be susceptible to cancer. The most common cancer type 

observed was hepatocellular carcinoma, however B-cell lymphoma, histiocytic sarcoma, 

colorectal carcinoma and pancreatic ductal adenocarcinoma were also observed. The 

S47 mouse phenotype is distinct from Li-Fraumeni mouse models generated by Lozano 

and Jacks, which develop more epithelial cancers (Lang et al., 2004; Olive et al., 2004). 

It is also very distinct from the p53 knockout mouse, which develops T cell lymphoma 

and sarcoma (Basu and Murphy, 2016).  

Both WT and S47 cells exhibit similar transcriptional function, however gene 

expression studies revealed that S47 is impaired in its ability to transactivate Gls2 and 

Sco2, two genes that play a key role in cellular metabolism. Cells containing the S47 

variant are also found to have impaired apoptosis when confronted with various 

genotoxic stresses, particularly cisplatin. In addition to a defect in apoptosis, it was found 

that S47 cells are markedly resistant to ferroptosis (Jennis et al., 2016). The 

cystine/glutamate antiporter SLC7A11 plays a key role in regulating ferroptosis, as 

cystine is a precursor to cysteine and glutathione. Excess glutamate or treatment with 

erastin prevents cystine uptake, leading to decreased accumulation of intracellular 

cysteine and glutathione, resulting in ferroptotic cell death. WT p53 has been shown to 

repress SLC7A11, thereby preventing the import of cystine and inducing ferroptosis 

(Jiang et al., 2015). We have observed that the S47 variant is impaired for repression of 

SLC7A11, and ChIP studies have indicated decreased binding of the S47 protein at the 

p53 binding site on the SLC7A11 promoter region. S47 MEFs were found to be 27-fold 
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resistant to erastin-induced ferroptosis, and S47 LCLs were found to be 19-fold resistant 

to RSL3-induced ferroptosis. Ptgs2 transactivation and GPX4 degradation, both key 

markers of ferroptotic induction, were shown to be impaired in S47 cells. This significant 

ferroptotic defect is believed to be the primary reason for impaired tumor suppression in 

S47 mice and highlights the role of p53 in regulating ferroptosis sensitivity as a 

mechanism of tumor suppression (Jennis et al., 2016) (Figure 1.5).   

The ferroptotic defect in S47 cells can be attributed to elevated levels of 

intracellular antioxidants in S47 (Leu et al., 2019). Metabolomic analyses revealed S47 

cells have increased levels of low molecular weight thiols including Coenzyme A (CoA) 

and glutathione (GSH). Increased levels of GSH were also observed in S47 livers, 

confirming that this phenotype has in vivo relevance. Antioxidants such as CoA and 

GSH affect the redox environment of the cell, particularly affecting cysteine residues in 

proteins. There are several proteins that are sensitive to redox regulation and can adopt 

an altered conformation when this redox state is altered. p53 contains conserved 

cysteine residues at or near the DNA binding domain, and under normal conditions, the 

reduced cysteine residues enable tetramerization and subsequent activation of the p53 

protein. However, upon oxidation, the cysteine residues will form bonds with other thiol 

groups and prevent proper oligomerization of the protein. It was found that the higher 

levels of CoA and GSH feedback on p53, directly impacting structure and function of the 

protein. By modulating the redox state using reagents such as diethyl maleate or 

exogenous CoA, it is possible to manipulate p53 conformation and ferroptosis sensitivity 

(Leu et al., 2019; Leu et al., 2020). These findings are broadly consistent with data by 

Tarangelo, showing that conservation of glutathione is correlated with ferroptosis 

inhibition (Tarangelo et al., 2018).  
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Singh et al. demonstrated that the defect in ferroptosis results in iron 

accumulation in S47 macrophages, which ultimately results in more severe bacterial 

pathogenesis and greater susceptibility to Listeria infection. However, it was found that 

mice bearing the S47 variant show an improved response to malarial toxin hemozoin, 

suggesting that S47 might have provided an advantage in sub-Saharan Africa where 

there is a high risk of malaria. The ferroptotic defect has also been found to contribute to 

a higher risk of hereditary hemochromatosis in African Americans who carry this SNP 

(Singh et al., 2020).  

 

 

Figure 1.5: The S47 mouse. 

Unlike mice bearing WT p53, the S47 mouse is impaired for tumor suppression, cisplatin 

mediated apoptosis and ferroptosis.  
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1.4 Thesis objectives 
 

The aim of this dissertation is to explore the function of the S47 variant of TP53 

and to use this variant as a tool to better understand tumor suppression and ferroptosis. 

In Chapter 2, I describe the unique metabolic phenotype that was observed in S47 mice. 

I found that S47 cells and mice exhibit increased mTOR activity, ultimately stemming 

from an impaired protein-protein interaction due to the altered redox state. Our data 

support the premise that this increase in mTOR activity contributes to the increased size 

and superior metabolic efficiency observed in S47 mice. We hypothesize that the 

superior metabolic efficiency might have once provided an evolutionary fitness 

advantage, which could explain why the S47 variant remains in the population despite 

predisposing carriers to cancer. In Chapter 3, I describe how I used the S47 variant to 

identify a p53 target gene, PLTP, as a negative regulator of ferroptosis in liver cancer 

cells. An RNA-Seq experiment comparing WT and S47 cells led us to identify PLTP as 

significantly repressed in S47. I performed a series of assays to show that this gene 

contributes to ferroptosis resistance and demonstrate that the mechanism is due to 

increasing lipid storage, which sequesters lipids and prevents them from undergoing 

peroxidation at the cell membrane. To conclude, Chapter 4 provides a summary of both 

studies and discusses avenues for further studies on this work.  
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CHAPTER 2: Increased mTOR Activity and Metabolic Efficiency Found in the P47S 
Variant of TP53 

 

This chapter has been adapted from the following manuscript: 

Gnanapradeepan K, Basu S, Barnoud T, Leu JIJ, Good M, Lee J, Quinn WJ, 

Kung CP, Ahima R, Baur J, Wellen K, Schug Z, George DL and Murphy ME. 

Increased mTOR activity in mice with the tumor prone S47 variant of p53 confers 

enhanced size, metabolism and fitness. eLife (2020);9:e55994 

 

2.1 Abstract 
 

The Pro47Ser variant of p53 (hereafter S47) exists in African-descent populations and is 

associated with increased cancer risk in humans and mice.  This variant shows impaired 

repression of the cystine importer Slc7a11.  Consequently, S47 cells possess increased 

cysteine and glutathione (GSH) accumulation compared to cells with wild type p53.  In 

this study we show that mice containing the S47 variant have increased mTOR activity, 

increased oxidative metabolism, larger size, and improved metabolic efficiency.  

Mechanistically, we show that there is increased association between mTOR and its 

positive regulator Rheb in S47 cells, due to altered redox state of GAPDH, which 

normally binds and sequesters Rheb.  Compounds that decrease glutathione in S47 

cells normalize GAPDH-Rheb complex formation and mTOR activity.  The enhanced 

metabolic efficiency may have been selected for in early Africa, making the S47 variant 

one of a growing number of cancer-predisposing genetic variants that possesses other 

positive, potentially selectable attributes. 
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2.2 Introduction 
 

The p53 tumor suppressor protein serves as a master regulator of the cellular 

response to intrinsic and extrinsic stress.  Mutations in the TP53 gene occur in more 

than 50% of human cancers, and this gene is well-known as the most frequently mutated 

gene in cancer (Hollstein et al., 1991).  p53 works to suppress uncontrolled cellular 

growth and proliferation through various pathways including apoptosis, senescence, cell 

cycle arrest and ferroptosis (Stockwell et al., 2017; Vousden and Prives, 2009).  More 

recently a role for p53 in the control of metabolism has emerged.  The metabolic 

functions of p53 include the regulation of mitochondrial function, autophagy, cellular 

redox state, and the control of lipid and carbohydrate metabolism; for review see 

(Berkers et al., 2013; Gnanapradeepan et al., 2018).   

As an integral part of its control of metabolism, p53 negatively regulates the 

activity of mTOR (mammalian target of rapamycin), which is a master regulator of 

metabolism in the cell.  mTOR is a serine-threonine protein kinase that is stimulated by 

mitogenic signals, and phosphorylates downstream targets that in turn regulate protein 

synthesis and cell growth (Ben-Sahra and Manning, 2017).  mTOR exists in two distinct 

signaling complexes: mTORC1 is primarily responsible for cell growth and protein 

synthesis, while mTORC2 plays roles in growth factor signaling, cytoskeletal control and 

cell spreading (Liu and Sabatini, 2020a).  Not surprisingly, mTOR activity is frequently 

upregulated in a diverse range of cancers.  p53 negatively regulates the mTOR pathway 

in part through transactivation of the target genes PTEN, TSC2, PRKAB1 and 

SESN1/SESN2 (Budanov and Karin, 2008; Feng et al., 2005).  The regulation of mTOR 
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by p53 is believed to couple the control of genome integrity with the decision to 

proliferate (Hasty et al., 2013). 

TP53 harbors several functionally impactful genetic variants or single nucleotide 

polymorphisms (SNPs) (Basu et al., 2018; Jennis et al., 2016; Kung et al., 2016).  A 

naturally occurring variant in TP53 exists at codon 47, encoding serine instead of a 

proline (Pro47Ser, rs1800371, G/A).  This variant exists predominantly in African-

descent populations and occurs in roughly 1% of African Americans and 6% of Africans 

from sub-Saharan Africa (Murphy et al., 2017).  The S47 variant is associated with 

increased risk for pre-menopausal breast cancer in African American women (Murphy et 

al., 2017).  In a mouse model, the S47 mouse develops markedly increased incidence of 

spontaneous cancer, particularly hepatocellular carcinoma (Jennis et al., 2016). This 

variant is likewise defective in the regulation of the small subset of p53 target genes that 

play roles in ferroptosis sensitivity, including the cystine importer SLC7A11.  As a result, 

increased levels of cysteine and glutathione (GSH) accumulate in cells from S47 

humans and mice (Jennis et al., 2016; Leu et al., 2019).  More recently, we showed that 

the ferroptotic defect in S47 mice leads to iron accumulation in their livers, spleens and 

macrophages.  We also showed that the S47 variant is positively associated with 

markers of iron overload in African Americans, such as increased levels of saturated 

transferrin (Singh et al., 2020).   

An emerging paradigm in the cancer literature is that tumor-predisposing genetic 

variants may paradoxically provide selection benefit to individuals, thus potentially 

explaining the frequency of these damaging alleles in the population.  As an example, 

women carrying tumor-predisposing mutations in the BRCA1 gene tend to be physically 

larger and show increased fertility (Smith et al., 2012).  Here-in we show that mice 
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carrying a knock-in S47 allele in a pure C57Bl/6 background show increased size, lean 

content (muscle), and metabolic efficiency, relative to littermate mice with WT p53.  We 

report that mouse and human S47 cells show a significant increase in mTOR activity, 

due in part to increased mTOR-Rheb binding in S47 cells. We propose that these 

attributes may have led to a positive selection for this variant in sub-Saharan Africa.  Our 

studies shed further light on the intricate regulation that exists between p53, mTOR 

activity and metabolic output, in this case mediated by GSH and the control of cellular 

redox state. 

 

2.3 Results 

2.3.1 Higher basal mTOR activity in cells containing the S47 variant 

We previously showed that human lymphoblastoid cells (LCLs) that are 

homozygous for the S47 variant of p53 are impaired for the transactivation of less than a 

dozen p53 target genes, compared to cells from family members with WT p53 (Jennis et 

al., 2016).  We noted that several of these genes encode proteins that play roles in the 

negative regulation of mTOR (Budanov and Karin, 2008; Feng et al., 2007).  We 

confirmed via qRT-PCR that S47 LCLs show modestly decreased expression of the p53 

target genes SESN1 and PTEN, and decreased transactivation of PRKAB1, relative to 

WT cells following cisplatin treatment (Supplemental Figure 2.1A and 2.1B).  These 

findings prompted us to assess basal mTOR activity in WT and S47 LCLs, and in MEFs 

from WT and S47 mice.  To corroborate our findings, we also analyzed tissues from 

humanized p53 knock-in (Hupki) mice carrying WT and S47 alleles on a pure C57Bl/6 

background, which we previously generated and characterized (Jennis et al., 2016).  

Western blot analysis of WT and S47 LCLs, along with multiple clones of WT and S47 
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MEFs, revealed increased p-S6K1 (Thr389) in S47 cells; following normalization to total 

S6K1, this increase ranged between 2-3 fold (Figure 2.1A-B).  We next compared age- 

and sex-matched pairs of lung and muscle tissue from WT and S47 mice, because 

mTOR activity is influenced by age and gender, with increased mTOR activity in female 

and older mice (Baar et al., 2016). We found increased levels of p-S6K1 (T389) and p-

mTOR (Ser2448) in S47 lung and skeletal muscle, relative to WT tissues (Figure 2.1C 

and D).  Immunohistochemical analysis of tissues from multiple age- and sex-matched 

WT and S47 mice confirmed these findings (Figure 2.1E).  Interestingly, increased 

mTOR activity was not seen in all tissues of the S47 mouse (Supplemental Figure 2.1C), 

and lung and skeletal muscle were the most consistently different between WT and S47.  

We also did not detect significant differences in p-AKT (Ser473) in WT and S47 cells, 

suggesting that mTORC1 and not mTORC2 is likely responsible for the observed 

differences in mTOR activity (Supplemental Figure 2.1D).   

We next sought to test the kinetics of mTOR activation in WT and S47 cells by 

subjecting early passage WT and S47 MEFs to nutrient deprivation, followed by 

monitoring of mTOR activation markers after nutrient restoration using antisera to p-

S6K1 and p-mTOR.  Glucose deprivation experiments revealed consistent but modestly 

increased p-S6K1 following glucose refeed in S47 MEFs, compared to WT (Figure 2.1F), 

while serum deprivation experiments revealed more pronounced results.  For serum 

deprivation, we subjected three independent cultures each of WT and S47 MEFs to 

0.1% serum for 16 hours, followed by 10% serum, after which total and phospho -S6K1 

and -mTOR were monitored in a time course.  S47 cells consistently showed increased 

induction of markers of mTOR activation after serum re-feed compared to WT cells 

(Figure 2.1G).  We next performed amino acid deprivation experiments; these likewise 
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showed increased response in S47 cells (Supplemental Figure 2.1E).  Combined 

densitometry results from all forms of nutrient deprivation revealed an approximately 2 to 

3-fold increase in p-S6K1 in S47 cells following nutrient restoration at 30 or 60 minutes 

(Supplemental Figure 2.1F). 

Given that mTOR plays a role in autophagy inhibition (Jung et al., 2010; White et 

al., 2011), we wondered whether basal autophagy or autophagic flux might be 

decreased in S47 cells.  We were unable to see any differences in the steady state 

levels of LC3B or the autophagy adaptor protein p62SQSTM1 in WT and S47 MEFs or 

tissues, either at steady state (Supplemental Figure 2.1G) or following HBSS treatment 

to induce autophagy (Supplemental Figure 2.1H).  Likewise, we failed to see differences 

in autophagic flux (conversion of LC3-I to LC3-II when the lysosome is inhibited; 

Supplemental Figure 2.1I) between WT and S47 cells, or in cell viability after HBSS 

treatment (Supplemental Figure 2.1J). Therefore, while markers of mTOR activity are 

clearly increased in S47 cells and tissues, this does not appear to be accompanied by 

alterations of basal or induced autophagy. 



34 
 

 

Figure 2.1:  Increased markers of mTOR activity in S47 cells and tissues.   

(A) Western blot analyses reveal higher phospho-S6K1 expression in S47 LCLs and S47 MEFs, 

obtained from two separate embryos per genotype.  (B) Densitometry quantification of phospho-

S6K1 protein expression in WT and S47 MEFs from 4 independent experiments; all values 

normalized to total S6K1.  Error bars represent standard error, (*) p value < 0.05.  (C) Whole cell 

lysates were extracted from 3 WT and 3 S47 mouse lungs and analyzed by Western blot for the 

proteins indicated.  Pair 1 and 3 are lungs isolated from male mice, pair 2 are lungs isolated from 
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female mice.  Densitometry quantification of phospho-S6K1 and phospho-mTOR was performed 

and normalized to total S6K1 and total mTOR protein expression, respectively.  (D) Whole cell 

lysates were extracted from WT and S47 mouse skeletal muscle and analyzed as described 

above. Densitometry quantification of phospho-S6, phospho-S6K1, phospho-mTOR was 

performed and normalized to total S6, total S6K1 and total mTOR protein expression, 

respectively.  (E) Immunohistochemical analysis of hematoxylin and eosin (H&E), phospho-

mTOR and phospho-S6K1 in WT and S47 mouse lung and skeletal tissue.  Data are 

representative of n = 4 fields per genotype. Scale bar represents 100 μM. (F) WT and S47 MEFs 

were starved in media containing no glucose for 16 hours, then media containing 4.5 g/L glucose 

was re-introduced. Samples were collected at indicated time points and analyzed by Western blot 

for p-S6K1, total S6K1 and GAPDH. (G) WT and S47 MEFs were starved in media containing 

0.1% FBS for 16 hours, then media containing 10% serum was re-introduced and samples were 

collected at indicated time points. Cell lysates were extracted from samples and subjected to 

Western blot analysis for the proteins indicated.   

2.3.2 Enhanced mitochondrial function and glycolysis in S47 cells   

To determine the functional consequences of the increased markers of mTOR 

activity in S47 cells, we used a Seahorse BioAnalyzer to assess the oxygen 

consumption rate (OCR), as well as basal and compensatory glycolytic rate in WT and 

S47 MEFs and LCLs.  Seahorse analyses revealed that S47 LCLs show increased OCR 

under stressed conditions compared to WT (Figure 2.2A).  Seahorse analyses also 

revealed that human S47 LCLs and mouse S47 MEFs both show increased basal and 

compensatory glycolysis, compared to WT cells (Figure 2.2B and C).  We next assessed 

glucose and glutamine consumption using a Yellow Springs Instrument (YSI) Analyzer.  

These analyses revealed that S47 cells show significantly increased consumption of 

glucose and glutamine, along with increased production of lactate and glutamate, 



36 
 

compared to WT cells (Figure 2.2D and E).  S47 cells do not proliferate more quickly 

than WT cells (Jennis et al., 2016), suggesting that this increased nutrient consumption 

may be used for biomass instead of proliferation.  Interestingly, LCLs from individuals 

heterozygous for the S47 variant (S47/WT), and MEFs from S47/WT mice, showed 

values typically intermediate between homozygous WT and S47 cells (Figure 2.2D and 

E).  We next performed metabolic flux analyses in WT and S47 cells using 13C-labeled 

glucose. Analysis of 13C6-glucose tracing in WT and S47 MEFs provided evidence for a 

higher contribution of glucose carbon into the TCA cycle in S47 cells compared to WT 

cells, as evidenced by increased labeling of citrate, malate, aspartate and glutamate in 

S47 MEFs (Supplemental Figure 2.2A-D).  We reasoned that one possibility for the 

increased metabolism in S47 cells might be due to increased mitochondrial content, 

which is regulated by mTOR (Morita et al., 2013).  However, MitoTracker analyses and 

Western blotting for mitochondrial proteins revealed no obvious increase in 

mitochondrial content in S47 cells (Supplemental Figure 2.2E and F).   

Because mTOR is known to regulate mitochondrial function (Morita et al., 2013; 

Schieke et al., 2006; Ye et al., 2012), we next assessed the impact of mTOR inhibitors 

on mitochondrial function in WT and S47 cells.  Seahorse analysis of WT and S47 LCLs 

revealed that S47 cells are less susceptible to inhibition of oxygen consumption rate and 

maximal respiration by mTOR inhibitors rapamycin (Figure 2.3A and B) and Torin1 

(Figure 2.3C and D).  This finding was not due to altered efficacy of each inhibitor, as 

evidenced by similar decreases in p-mTOR and p-S6 in WT and S47 cells following 

treatment with rapamycin (Supplemental Figure 2.3A) and Torin1 (Figure 2.3E), and by 

the finding that very high concentrations of Torin1 were able to inhibit oxygen 

consumption equally well in both WT and S47 cells (Supplemental Figure 2.3B).  The 
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combined data support the premise that S47 cells possess enhanced metabolism 

compared to WT cells. 
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Figure 2.2:  Increased metabolism in S47 cells compared to WT cells.   

(A) Oxygen consumption rates (OCR) in WT and S47 LCLs were assessed using the Seahorse 

XF Mito Stress Test.  OCR was measured first in basal conditions, and following oligomycin, 

FCCP and finally rotenone/antimycin.  The bar graph depicts maximal OCR after FCCP injection 

at ~ 40 minute timepoint; data are representative of three independent experiments performed 

with at least six technical replicates, presented as mean ± SD.  (B-C) Basal and compensatory 

glycolysis in WT and S47 LCLs (B) and MEFs (C) were assessed using the Seahorse Glycolytic 

Rate Assay.  Basal glycolysis is first measured, followed by treatment of cells with 

rotenone/antimycin and 2-deoxy-D-glucose (2-DG).  The bar graph depicts basal glycolysis at ~1 

minute timepoint and compensatory glycolysis after antimycin/rotenone injection at ~ 22 minute 

timepoint; data are representative of 3 independent experiments performed with at least ten 

technical replicates.  Bar graphs are presented as mean ± SD for all Seahorse analyses.  (D-E) 

Consumption of glucose and glutamine from media and production of lactate and glutamate were 

analyzed from homozygous WT, heterozygous WT/S47 and homozygous S47 human LCLs (D) 

and primary MEFs (E) using a YSI-7100 Bioanalyzer.  Means and SEM are shown (n= 5).   
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Figure 2.3:  S47 mitochondria show decreased sensitivity to mTOR inhibition. 

(A) Oxygen consumption rate (OCR) as measured by the Seahorse XF Mito Stress Test in WT 

and S47 LCLs treated with 200 nM of rapamycin for 24 hours.  (B) Bar graph depicts maximal 

OCR after FCCP injection at ~ 40 minute timepoint; fold changes between rapamycin treated and 

untreated samples are shown.  Data are representative of 2 independent experiments performed 
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with at least ten technical replicates. (C) OCR as measured by the Seahorse XF Mito Stress Test 

in WT and S47 LCLs treated with 100 nM of Torin1 for 24 hours.  (D) Bar graph depicts maximal 

OCR after FCCP injection at ~ 40 minute timepoint; fold changes between Torin1 treated and 

untreated samples are shown.  Data are representative of 2 independent experiments performed 

with at least eight technical replicates. (E) WT and S47 LCLs were treated with 100 nM of Torin1, 

harvested at indicated time points after treatment and analyzed for the shown mTOR markers via 

Western blot.  

 

Because mTOR can regulate both cell size and protein translation, we were 

careful to normalize to both cell number and protein content.  For example, when 

comparing metabolic changes using the Seahorse assay, the results were standardized 

to total cell number. When quantifying differences in mTOR activity, the results were 

normalized to total protein content. In addition, phospho-S6K1 was normalized to total 

S6K1 in each sample 

2.3.3 Increased mTOR activity in S47 is due to increased mTOR-Rheb interaction 

We next sought to identify the mechanism underlying increased mTOR activity in 

S47 cells.  Although we identified decreased mRNA levels of some mTOR regulators in 

S47 cells, we found no evidence for differences at the protein level of any p53-induced 

mTOR regulators in steady state MEFs (Supplemental Figure 2.4A) or following 

treatment with Nutlin to induce p53 (Supplemental Figure 2.4B).  Therefore, we analyzed 

a key regulator of mTOR activity, the small GTPase Rheb, which binds and activates 

mTOR (Long et al., 2005).  We monitored the mTOR-Rheb association in WT and S47 

MEFs using the technique of proximity ligation assay (PLA), which quantitatively detects 
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protein-protein interactions.  PLA experiments revealed that there were consistently 

increased mTOR-Rheb complexes in S47 cells, compared to WT; this was true in 

multiple replicates, in multiple MEF clones, and using single antibody controls that 

showed no signal (Figure 2.4A).  Quantification of multiple experiments revealed an 

approximately two-fold increase in mTOR-Rheb complexes in S47 cells compared to WT 

(Figure 2.4B). 

A recently-identified regulator of the mTOR-Rheb interaction is the cytosolic 

enzyme GAPDH.  This enzyme binds to Rheb and sequesters it from mTOR in cultured 

cells, in a manner that is regulated by glucose levels (Lee et al., 2009).  First, we 

confirmed that the interaction between Rheb and GAPDH is detectable in the skeletal 

muscle of mice using IP-western, and that this interaction is regulated by glucose 

(Supplemental Figure 2.4C).  Next, we performed immunoprecipitation (IP)-western of 

skeletal muscle extracts from WT and S47 mice; we found that there was increased 

mTOR, and significantly decreased GAPDH, in Rheb IPs from S47 skeletal muscle 

compared to WT (Figure 2.4C).  The combined data from three independent IPs of Rheb 

in WT and S47 skeletal muscle revealed an approximately 2-fold decrease in the amount 

of GAPDH co-precipitating with Rheb in S47 skeletal muscle compared to WT (p<0.05, 

Figure 2.4D).  In contrast there were no differences in the levels of mTOR, Rheb and 

GAPDH in these extracts (Figure 2.4C – WCL, Supplemental Figure 2.4D).  Consistent 

with these IP-western findings, PLA analyses corroborated that the GAPDH-Rheb 

association is markedly decreased in S47 MEFs relative to WT MEFs (Figure 2.4A).  

Confocal microscopy analyses revealed no significant differences in the cellular 

localization of Rheb at the lysosome, as assessed by LAMP1 localization, nor were there 

any differences in TSC2 localization at the lysosome in WT and S47 MEFs 
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(Supplemental Figure 2.4E).  The combined data support the premise that the increased 

mTOR activity in S47 cells is due to increased Rheb-mTOR association, along with a 

decreased Rheb-GAPDH association. 
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Figure 2.4:  Increased mTOR-Rheb binding in S47 cells is due to decreased GAPDH-Rheb 

binding    

(A-B) An in situ proximity ligation assay (PLA) was performed in WT and S47 MEFs.  Each red 

dot represents an interaction between mTOR-Rheb or GAPDH-Rheb as indicated; scale bar 

represents 50 μM.  The samples were counterstained with DAPI to detect nuclei.  Cells stained in 

the absence of one primary antibody were used as a negative control.  (B) Quantification of the 

mTOR-Rheb interactions, measured as the average number of PLA signals per nuclei.  Data 

were quantified by counting the number of cells in five random fields per experimental condition.  

(***) p-value < 0.001, Student’s t-test. (C) Lysates extracted from WT and S47 skeletal tissue 

were immunoprecipitated with anti-Rheb.  The amount of co-precipitating mTOR and GAPDH, as 

well as immunoprecipitated Rheb, were assessed by Western blot.  Whole cell lysate (WCL) is 

shown on the right. (D) Quantification of the amount of GAPDH bound to Rheb, divided by total 

Rheb pulled down, in WT and S47 skeletal tissue, n = 3 independent experiments, (*) p-value < 

0.05.  

 

GAPDH is a multi-functional enzyme that is well-known to be sensitive to redox 

status (Brandes et al., 2009; Chernorizov et al., 2010).  We hypothesized that the 

increased glutathione (GSH) levels in S47 cells (Leu et al., 2019) might alter the redox 

state of GAPDH and impact its ability to bind to Rheb.  We first verified that lung tissue 

and skeletal muscle from S47 mice possess increased GSH compared to WT tissues, as 

assessed by an increased ratio of reduced versus oxidized glutathione (GSH:GSSG) 

(Figure 2.5A).  We also validated that the GSH alkylating agent diethylmaleate (DEM) 

could successfully decrease the level of GSH, and the GSH/GSSG ratio, in cells (Figure 

2.5A); these findings are consistent with previously published findings by our group (Leu 

et al., 2019).  Notably, DEM treatment of immortalized S47 MEFs (iMEFs) caused a 
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dramatic decrease in markers of mTOR activity (p-mTOR and p-S6K1), showing for the 

first time that modulation of GSH, even for as little as five hours, can impact mTOR 

activity.  We found that the impact of DEM on mTOR activity was further enhanced by 

the addition of glutamate (Figure 2.5B); glutamate decreases cystine import through 

System Xc(-), leading to decreased level of GSH. 

We next sought to test the hypothesis that the redox state of GAPDH was altered 

in WT and S47 cells.  Toward this end we employed cross-linking experiments using the 

cysteinyl cross-linking agent bismaleimidohexane (BMH), which cross-links cysteine 

residues within 13Å by covalently conjugating free (reduced) sulfhydryl groups (Green et 

al., 2001).  We treated freshly isolated lung and skeletal muscle lysates from WT and 

S47 mice, and from immortalized WT and S47 MEFs (iMEFs), with BMH.  Cysteinyl-

crosslinked proteins were resolved on SDS-PAGE gels and compared to untreated 

extracts.  Notably, we found consistent differences in GAPDH cross-linking patterns in 

S47 samples compared to WT, as evidenced by altered mobility of GAPDH on SDS-

PAGE of BMH-treated samples (Figure 2.5C).  This altered mobility of GAPDH in S47 

cells could be reversed by glutathione depletion by DEM treatment (Figure 2.5C) and by 

the compound BSO (buthionine sulfoximine; Supplemental Figure 2.5A), which inhibits 

GSH biosynthesis.  Treatment with the compound erastin, which inhibits the system Xc 

(-) cystine transporter, also led to altered mobility of GAPDH in S47 and WT cells 

(Supplemental Figure 2.5B).   

We next tested the impact of modulating GSH on the interaction between Rheb 

and GAPDH in WT and S47 cells using both IP-western and PLA.  By IP-western we 

found that supplementation of culture media with exogenous GSH decreased the Rheb-

GAPDH interaction in WT cells; conversely, depleting free GSH using either BSO or 
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DEM increased the Rheb-GAPDH interaction in S47 cells (Figure 2.5D).  These findings 

were corroborated using PLA, which revealed that depleting GSH in WT and S47 cells 

using either DEM or BSO completely restores GAPDH-Rheb complex formation and 

mTOR-Rheb complex formation in S47 cells, to levels equivalent to WT cells (Figure 

2.5E and F; Supplemental Figure 2.5C).  Our crosslinking experiments with BMH reveal 

that there is an altered conformation of GAPDH in S47 cells in tissues, however the 

exact change in conformation remains to be determined. In the future, it would be 

worthwhile to perform glutaraldehyde crosslinking experiments to determine if 

dimerization of GAPDH differs between WT and S47. The combined data support the 

conclusion that the increased GSH pool in S47 cells affects the status of reactive 

cysteines in GAPDH, and the ability of this protein to bind and sequester Rheb, thereby 

leading to increased Rheb-mTOR interaction and increased mTOR activity in S47 cells.   
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Figure 2.5:  Increased glutathione drives decreased GAPDH-Rheb binding in S47 cells 

(A) WT and S47 lung (left) and skeletal muscle (center) were assessed for GSH/GSSG ratio 

(mean ± SD, n = 3). WT and S47 immortalized MEFs (iMEFs), either untreated or treated with 50 
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μM DEM for 5 h, were analyzed for GSH/GSSG ratio (mean ± SD, n = 4). (B) WT and S47 iMEFs 

were either untreated, treated with 50 μM of DEM or 50 μM of DEM + 0.5 mM glutamate for 5 h 

and protein lysates were analyzed by Western blot for indicated mTOR markers.  (C) Whole cell 

lysates were extracted from WT and S47 mouse lung (left) and skeletal (center) tissue.  Proteins 

were cross-linked with BMH, resolved by SDS/PAGE, and detected by Western blotting with a 

GAPDH specific antibody (Top).  Untreated protein lysates were analyzed by Western blot 

analysis for total GAPDH (Bottom).  WT and S47 iMEFs were treated with 50 μM of DEM for 5 h 

and protein lysates were analyzed as described (right).  (D) WT cells were treated with PBS or 3 

mM GSH for 24 hours.  S47 cells were treated with PBS for 24 hours, PBS for 5 hours, 100 μM 

BSO for 24 hours, or 50 μM DEM for 5 hours.  IP of the lysates with anti-Rheb followed by 

Western analysis for associated GAPDH and Rheb (top panel).  The same lysates were analyzed 

by Western blotting for GAPDH and Rheb (bottom panel).  (E-F) Proximity ligation analysis (PLA) 

was performed in WT and S47 MEFs treated with 50 μM of DEM for 5 hours and analyzed as 

described in Figure 2.4A-B.   

2.3.4 Enhanced metabolic efficiency of S47 mice 

mTOR is known to regulate body mass and muscle regeneration (Laplante and 

Sabatini, 2012; Yoon, 2017).  We therefore next assessed body weight and fat/lean 

content in age-matched male mice of WT and S47 genotypes.  We also tracked body 

weight with age of multiple male and female sibling littermate mice of WT/WT, WT/S47 

and S47/S47 genotypes in our colony.  S47 mice showed significantly increased weight 

with time, compared to WT/WT and WT/S47 sibling littermates (Supplemental Figure 

2.6A).  Body composition analysis using nuclear magnetic resonance revealed that S47 

mice had significantly increased fat and lean content, compared to WT mice (Figure 

2.6A; Supplemental Figure 2.6B).  We next analyzed the metabolic activities of WT and 

S47 mice using a comprehensive lab animal monitoring system (CLAMS) over the 
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course of 48 hours.  In this analysis, S47 mice showed comparable locomotor activity to 

WT mice but reduced food intake, oxygen consumption and heat production (Figure 

2.6B).  These CLAMS data suggested that S47 mice might possess enhanced metabolic 

efficiency compared to WT mice and prompted us to assess the response of WT and 

S47 mice to exercise challenge.   

We subjected WT and S47 mice to treadmill exercise with increasing intensity 

over time.  For this analysis we studied eight age-matched male mice of each genotype 

during a 50-minute forced exercise at increasing speed and slope.  During this time 

course, oxygen consumption and serum metabolites were quantified.  Consistent with 

our CLAMs experiment, S47 mice started with lower basal VO2 and exhibited generally 

lower VO2 for the work being performed; however, as they approached the final, most 

strenuous point of the exercise, the VO2 values in WT and S47 converged, so the V02 

range for S47 mice was significantly greater than WT mice (Figure 2.6C-E).  Analysis of 

serum metabolites and proteins before and after exercise revealed decreased lactate 

dehydrogenase (LDH) levels in the sera of S47 mice, suggesting decreased muscle 

damage in S47 mice compared to WT (Figure 2.6F).  Moreover, prior to exercise, we 

noted that Ki-67 staining in S47 skeletal muscle was consistently increased relative to 

WT (Supplemental Figure 2.6C); the latter finding is suggestive of enhanced ability for 

S47 muscle to regenerate.  There were no differences in p53 level or markers of 

mitochondrial content in the skeletal muscle of WT and S47 mice (Supplemental Figure 

2.6D and E), nor were there other differences in other serum metabolites between WT 

and S47 mice (Supplemental Figure 2.6F).  The combined data, like the CLAMS data, 

point to increased metabolic efficiency in S47 mice relative to WT mice.  To address this 

further, we analyzed a small cohort of male WT and S47 mice on a continuous 
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strenuous treadmill run.  Although the numbers are small, we found that three out of four 

WT mice failed to complete 60-minute strenuous run, while three out of four S47 

successfully completed this run (Supplemental Figure 2.6G).  
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Figure 2.6:  Increased size and improved metabolic efficiency in S47 mice.   

(A) Nuclear magnetic resonance (NMR) studies revealed S47 mice have increased body weight, 

increased fat content and increased lean content, n=7 WT mice, n=8 S47 mice.  (***) p-value < 

0.001, (****) p-value < 0.0001.  Bar graphs are presented as mean ± SD.  (B) Changes in 

metabolic parameters for WT mice (blue) and S47 mice (red) were determined by using the 

Comprehensive Lab Animal Monitoring System for 48 hours.  Parameters assessed includes 

oxygen consumption, carbon dioxide production, respiratory exchange rate, energy expenditure, 

total food intake and locomotor activity.  The data are representative of 5 six-week old male mice 

per genotype and are normalized to total body weight.  (C) WT and S47 mice (n = 6-7) were 

subjected to a treadmill study of increasing intensity over time.  Oxygen consumption (VO2) is 

normalized to body mass.  (D) Mean basal VO2 in WT and S47 mice. (E) VO2 range in WT and 

S47 mice determined by subtracting the mean basal VO2 from the VO2 max, obtained during the 

most strenuous point of exercise at the tail end of the treadmill study.  (F) Lactate dehydrogenase 

(LDH) levels measured in the serum of WT and S47 mice obtained before and after the treadmill 

study.  (*) p-value < 0.05, Student’s t-test.  

 

2.4 Discussion 
 

In this study, we report that cells and mice with the S47 variant of p53 have 

increased mTOR activity and increased metabolic efficiency.  The animals also display 

increased mass and signs of superior fitness.  Our data support the premise that the 

enhanced mTOR activity is due, at least in part, to the higher levels of GSH in S47 cells 

and tissues.  The increased GSH results in impaired ability of the redox sensitive protein 

GAPDH to bind to Rheb.  This leads to greater mTOR-Rheb binding, resulting in 

increased mTOR activity in S47 cells and tissues.  These data indicate that, along with 
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pH (Walton et al., 2018), cellular redox status can also regulate mTOR activity, in a 

manner controlled by p53.  We show that oxidative metabolism in S47 cells is less 

sensitive to mTOR inhibitors, thus tying these two phenotypes together; this is not 

surprising, as a link between mTOR and a number of cellular metabolic processes is well 

known (Morita et al., 2013; Schieke et al., 2006).  

We see evidence for increased mTOR activity only in certain tissues of the S47 

mouse, so the metabolic impact of this genetic variant appears to be somewhat tissue 

restricted.  At present we do not know if this tissue specificity is due to differences in 

GSH level, or to altered mTOR-Rheb or GAPDH-Rheb interactions in different tissues, or 

to other parameters.  We also see evidence for some unexpected findings regarding the 

increase in mTOR activity in S47 cells: given that mTOR negatively regulates autophagy 

(Jung et al., 2010), we expected to see differences in steady state autophagy or 

autophagic flux in WT and S47 cells, but we found no evidence for this.  This finding may 

be due to the rather complex relationship between mTOR and autophagy (Jung et al., 

2010; White et al., 2011), and/or that other signaling pathways regulate autophagy aside 

from mTOR, including the PI3K pathway, GTPases, and calcium  (Yang et al., 2005). It 

is also interesting to note that S47 cells exhibit increased use of the pentose phosphate 

pathway and generate more NADPH compared to WT cells. Our collaborators have 

observed decreased GAPDH activity, and an increase in G6PD activity, the rate limiting 

enzyme in the pentose phosphate pathway (Leu et al., 2020). Thus, changes in NADPH 

levels can also account for some of the redox differences observed in S47.  

The increased lean content in S47 mice likely contributes to the increased fitness 

observed in these mice.  Human studies have shown that mTOR activation is crucial for 

human muscle protein synthesis (Dickinson and Rasmussen, 2011).  Treatment with the 
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well-studied mTOR inhibitor rapamycin blocks the effects of amino acid ingestion on 

mTOR activity and leads to decreased protein synthesis in human skeletal muscle 

(Dickinson and Rasmussen, 2011; Drummond et al., 2009).  Additionally, mTOR 

signaling driven through IGF-1 plays a key role in promoting muscle hypertrophy 

(Coleman et al., 1995; Musaro et al., 2001; Vandenburgh et al., 1991).  One caveat of 

this study, however, is that we do not directly demonstrate that the increased mTOR 

activity in S47 mice is causing their increased lean content or superior performance on 

treadmill assays.  Transient treatment with mTOR inhibitors elicits highly complex and 

often contrasting effects on energy expenditure and treadmill performance, likely due to 

the existence of feedback loops and the effect of inhibitors on multiple organ systems in 

the mouse.  As just two examples: rapamycin has shown contrasting effects on energy 

expenditure in animals, depending on how long mice are treated (Fang et al., 2013); 

similarly, treatment of mice with rapamycin has shown limited impact on treadmill 

endurance, despite causing decreased expression of genes involved in mitochondrial 

biogenesis and oxidative phosphorylation in the muscle (Ye et al., 2013).  Possibly the 

most consistent findings in the literature reflect the general consensus that mTORC1 is 

involved in mechanisms that drive increased muscle mass (Goodman, 2019) and that 

heightened mTOR activity leads to enhanced muscle recovery after exercise (Song et 

al., 2017; Yoon, 2017).  It remains to be tested if these are the pathways affected in S47 

mice. 
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Figure 2.7:  Proposed model of how S47 contributes to increased metabolism 

(A) The elevated levels of GSH alter the redox state of the S47 cell, in turn affecting GAPDH 

conformation and impairing GAPDH-Rheb binding.  This results in increased mTOR-Rheb 

binding, leading to increased mTOR activity and resulting an overall increase in metabolism in 

S47 mice, as seen by increased fat and lean content.  (B) Broad impact of S47 variant: though 

providing an adaptive advantage to individuals residing in sub-Saharan Africa at one point in time, 

it now predisposes modern humans with this SNP to cancer.  

 

We hypothesize that the more efficient metabolism and enhanced fitness 

provided by the S47 variant may have once provided carriers with a bio-energetic 

advantage in Sub-Saharan western Africa, where this variant is most common.  For 

example, those carrying the S47 SNP may have possessed superior athletic prowess 

and/or ability to withstand famine (see model, Figure 2.7).  This metabolic advantage 

may explain the high frequency of this genetic variant in sub-Saharan Africa, despite the 
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fact that it predisposes individuals to cancer later in life.  A selection for this variant in 

Africa may also include an improved ability to withstand malaria infection: we recently 

reported that the S47 variant alters the immune micro-environment in mice and confers 

improved response to the malaria toxin hemozoin (Singh et al., 2020).  Both of these 

activities may have conferred selection pressure for this variant in Africa.  

Our findings provide further support for the growing premise that some tumor 

suppressor genetic variants may provide evolutionary selection benefit (Vicens and 

Posada, 2018).  For example, women who carry the BRCA1/2 mutation exhibit 

increased size and enhanced fertility when compared to controls (Smith et al., 2012).  

Similarly, people with Li Fraumeni syndrome who inherit germline mutations in TP53, as 

well as mice with tumor-derived germline mutations in Tp53, demonstrate increased 

fitness endurance (Wang et al., 2013); however, this is due to increased mitochondrial 

content, which we do not see in S47 cells.  A common genetic variant in TP53 at codon 

72, encoding proline at amino acid 72, confers increased longevity while conversely 

causing increased cancer risk (Zhao et al., 2018).  In contrast, the arginine 72 variant of 

p53 induces increased expression of LIF, which improves fecundity (Kang et al., 2009).  

The take home message from all of these studies is that the diverse roles of tumor 

suppressor proteins like p53 in metabolism, fertility and fitness may allow for positive 

selection for certain variants, even at the expense of increased cancer risk.  In mice, this 

increased cancer risk occurs quite late in life, well past reproductive selection (12-18 

months).   More needs to be done to analyze cancer risk in S47 humans.  A more 

comprehensive understanding of the function of tumor suppressor genetic variants, 

including the S47 SNP, will enable improved understanding of cancer risk, along with 
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superior personalized medicine approaches, with the ultimate goal of improving clinical 

outcomes and survival of people who carry this variant.   

 

2.5 Materials and Methods 

2.5.1 Mammalian cell culture 

WT and S47 MEFs were generated and maintained as previously described (Jennis et 

al., 2016). Human WT LCLs (Catalog ID GM18870) and S47 LCLs (Catalog ID 

GM18871) were obtained from the Coriell Institute (Camden, New Jersey) and 

maintained as previously described (Jennis et al., 2016).  MEF cultured cells were grown 

in DMEM (Corning Cellgro) supplemented with 10% fetal bovine serum (HyClone, GE 

Healthcare Life Sciences) and 1% penicillin/streptomycin (Corning Cellgro).  Human 

LCLs were grown in RPMI (Corning Cellgro) supplemented with 15% heat inactivated 

fetal bovine serum (HyClone, GE Healthcare Life Sciences) and 1% 

penicillin/streptomycin (Corning Cellgro).  Cells were grown in a 5% CO2 humidified 

incubator at 37°C.  For serum starvation experiments, cells were starved in DMEM 

containing 0.1% FBS for 16 hours. Following starvation, DMEM containing 10% FBS 

was re-introduced and cells were harvested at 0 minutes, 10 minutes, 30 minutes, 1 

hour, 2 hours and 8 hours after this point.  For glucose starvation experiments, cells 

were starved in glucose-free DMEM (Thermo Fisher Scientific 11966025) for 16 hours. 

Following starvation, DMEM containing 4.5 g/L glucose was re-introduced and cells were 

harvested at 0 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours and 5 hours after this 

point. For amino acid starvation experiments, cells were starved for 4 hours in EBSS 

(Thermo Fisher Scientific 24010043) containing 25 mM glucose, 0.5 mM Glutamine, 1X 
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MEM Vitamin (Thermo Fisher Scientific 11120052), 0.2% FBS, 25 mM HEPES, 1X 

Penicillin/Streptomycin. Following starvation, the same media recipe now containing 1X 

MEM Amino Acids (Thermo Fisher 1130051) was re-introduced and cells were 

harvested at 0 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours and 5 hours after this 

point. For HBSS experiments, cells were washed once with PBS (Corning 21-031-CV) 

and then incubated with HBSS (Thermo Fisher Scientific 14025092) for 0, 2 or 6 hours.  

Viability was assessed using Trypan Blue (Thermo Fisher Scientific 15250061).  

2.5.2 Western blot 

For Western blot analyses, 50-100 µg of protein was resolved over SDS-PAGE gels 

using 10% NuPAGE Bis-Tris precast gels (Life Technologies) and were then transferred 

onto polyvinylidene difluoride membranes (IPVH00010, pore size: 0.45 mm; Millipore 

Sigma).  Membranes were blocked for 1 hour in 5% bovine albumin serum (Sigma 

Aldrich, A9647).  The following antibodies were used for Western blot analyses: 

phospho-mTOR 1:1000 (Cell Signaling, 2971), mTOR 1:1000 (7C10, Cell Signaling, 

2983), phospho-p70S6K1 1:1000 (Cell Signaling, 9205), p70S6K1 1:1000 (Cell 

Signaling, 9202), GAPDH 1:10,000 (14C10, Cell Signaling, 2118), TFAM 1:2000 

(Abcam, ab131607), MTCO1 1:2000 (Abcam, ab14705), SDHA 1:1000 (Cell Signaling, 

5839), Tom20 1:100 (F-10, Santa Cruz,  sc17764), phospho-Akt (D9E, Cell Signaling, 

4060), p62 1:1000 (Cell Signaling, 5114), LC3B 1:1000 (D11, Cell Signaling, 3868), 

HSP90 1:1000 (Cell Signaling, 4877S), Rheb 1:1000 (E1G1R, Cell Signaling, 13879), 

TSC2 1:1000 (D93F12, Cell Signaling, 4308), Akt 1:1000 (Cell Signaling, 9272), Deptor 

1:1000 (Novus Bio, NBP1-49674SS), phospho-AMPKα (Cell Signaling, 2535).  Rabbit or 

mouse secondary antibodies conjugated to horseradish peroxidase were used at a 

1:10,000 dilution (Jackson Immunochemicals), followed by a 5-minute treatment with 
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ECL (Amersham, RPN2232).  Protein levels were detected using autoradiography and 

densitometry analysis of protein content was conducted using ImageJ software (NIH, 

Rockville, MD). 

2.5.3 Immunohistochemistry  

Tissues were harvested and fixed in formalin overnight at 4°C, followed by a wash with 

1X PBS and were then placed in 70% ethanol prior to paraffin embedding.  The Wistar 

Institute Histotechnology Facility performed the tissue embedding and sectioning. For 

the immunohistochemistry (IHC) studies, paraffin embedded tissue sections were de-

paraffinized in xylene (Fisher, X5-SK4) and re-hydrated in ethanol (100%-95%-85%-

75%) followed by distilled water.  Samples underwent antigen retrieval by steaming 

slides in 10 mM Citrate Buffer (pH 6). Endogenous peroxidase activity was quenched 

with 3% hydrogen peroxide and slides were incubated in blocking buffer (Vector 

Laboratories, S-2012) for 1 hr.  The slides were incubated with phospho-p70S6K1 

(1:100, ThermoFisher Scientific, PA5-37733) or phospho-mTOR (1:100, Cell Signaling, 

2971) primary antibody overnight at 4°C.  The following day, slides were washed with 

PBS and incubated with HRP-conjugated secondary antibody for 30 mins.  Antibody 

complexes were detected using DAB chromogen (D5637).  Light counterstaining was 

done with hematoxylin.  Slides were imaged using the Nikon 80i upright microscope and 

at least four fields were taken per section.    

2.5.4 Co-Immunoprecipitation  

Following overnight seeding of WT and S47 immortalized MEFs, the cells were washed 

with 1X DPBS and the cell culture medium was replaced with 1% FBS DMEM medium 
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[pyruvate-free DMEM (Thermo Fisher Scientific #21013024) supplemented with 1% 

FBS, 1% penicillin/streptomycin, 0.1 mM L-Methionine, 0.5 mM L-Glutamine, and 0.033 

mM L-Cystine].  WT cells were treated with PBS or 3 mM GSH for 24 h; while the S47 

cells were treated with PBS for 5 h or 24 h, 100 μM BSO for 24 h, or 50 μM DEM for 5 h.  

Cells were harvested and centrifuged at 500 x g for 10 min at 4°C.  The cell pellets were 

resuspended in CHAPS Lysis Buffer (1X DPBS with 0.3% CHAPS and freshly added 

protease inhibitors) at 4˚C.  Cell disruption was performed by passing the cells through a 

23-gauge needle attached to a 1 ml syringe.  The skeletal muscles were homogenized 

using the Qiagen Tissue Lyser II.  Total cellular homogenates were rotated/nutated at 

4°C for 30 min, and spun at 11,000 x g for 20 min at 4°C.  Protein extracts (3 mg per 

reaction) were incubated with the Rheb antibody (Santa Cruz, sc-271509) overnight at 

4˚C.  The Rheb-immunocomplexes were captured using recombinant protein G agarose 

(Thermo Fisher Scientific, 15920010) at 4˚C for 2 h.  Resins were washed three times 

using the CHAPS Lysis Buffer.  Equal volumes of 2x Laemmli Sample Buffer were 

added to each reaction, samples were heated for 10 min at 100°C.  The Rheb-

associated proteins were analyzed by Western blotting, using GAPDH (Cell Signaling, 

2118), Rheb (Cell Signaling, 13879) and mTOR (7C10, Cell Signaling, 2983) antibodies.  

2.5.5 Mitochondrial metabolism and mTOR inhibition assays 

The oxygen consumption rate (OCR) and glycolytic rate were determined using the 

Seahorse XF MitoStress Assay and the Seahorse XF Glycolytic Rate Assay, 

respectively, according to the manufacturer’s protocol.  Cells were plated one day prior 

to the assay, LCLs at 100,000 cells/well and MEFs at 60,000 cells/well.  LCLs were 

treated with 200 nM rapamycin, 100 nM Torin1 or 1 μM Torin1 for 24 hours prior to 

running the MitoStress Assay. To assess differences in mTOR inhibition, WT and S47 
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LCLs were treated with 200 nM rapamycin or 100 nM Torin1 for 0 minutes, 10 minutes, 

30 minutes, 1 hour, 2 hours, or 6 hours and subsequently cells were harvested for 

Western blot analysis.  To determine mitochondrial content, WT and S47 MEFs were 

incubated with 500 nM of MitoTracker Green (ThermoFisher Scientific, M7514) for one 

hour at 37°C.  Cells were then spun down, washed once with PBS, spun down and 

resuspended in PBS. The FACSCelesta (BD Biosciences) was used to detect 

fluorescence and at least 10,000 events were measured per sample. 

2.5.6 Metabolite measurements  

Media was collected after 24 hours after plating LCLs or MEFs, and the YSI-71000 

Bioanalyzer was used to determine glucose, glutamine, lactate and glutamate levels as 

previously described (Londono Gentile et al., 2013).  For the metabolic flux studies, cells 

were incubated in uniformly labeled 13C-glucose (25 mM) as indicated in the figure 

legends.  For intracellular extracts, after incubation, the culture medium was aspirated, 

and cells were washed once in ice-cold PBS.  Metabolites were extracted by adding a 

solution of methanol/acetonitrile/water (5:3:2) to the well.  Plates were incubated at 4oC 

for 5 minutes on a rocker and then the extraction solution was collected.  The metabolite 

extract was cleared by centrifuging at 15,000 x g for 10 minutes at 4oC.  Supernatants 

were transferred to LC-MS silanized glass vials with PTFE caps and either run 

immediately on the LC-MS or stored at -80oC.  LC-MS analysis was performed on a Q 

Exactive Hybrid Quadrupole-Orbitrap HF-X MS (ThermoFisher Scientific) equipped with 

a HESI II probe and coupled to a Vanquish Horizon UHPLC system (ThermoFisher 

Scientific).  0.002 ml of sample is injected and separated by HILIC chromatography on a 

ZIC-pHILIC 2.1-mm.  Samples were separated by ammonium carbonate, 0.1% 

ammonium hydroxide, pH 9.2, and mobile phase B is acetonitrile.  The LC was run at a 
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flow rate of 0.2 ml/min and the gradient used was as follows: 0 min, 85% B; 2 min, 85% 

B; 17 min, 20% B; 17.1 min, 85% B; and 26 min, 85% B.  The column was maintained at 

45oC and the mobile phase was also pre-heated at 45oC before flowing into the column.  

The relevant MS parameters were as listed: sheath gas, 40; auxiliary gas, 10; sweep 

gas, 1; auxiliary gas heater temperature, 350oC; spray voltage, 3.5 kV for the positive 

mode and 3.2 kV for the negative mode.  Capillary temperature was set at 325oC, and 

funnel RF level at 40.  Samples were analyzed in full MS scan with polarity switching at 

scan range 65 to 975 m/z; 120,000 resolution; automated gain control (AGC) target of 

1E6; and maximum injection time (max IT) of 100 milliseconds.  Identification and 

quantitation of metabolites was performed using an annotated compound library and 

TraceFinder 4.1 software.  The “M+X” nomenclature refers to the isotopolog for that 

given metabolite.  Isotopologs are chemically identical metabolites that differ only in their 

number of carbon-13 atoms.  For instance, “M+2 citrate” means that two of the six 

carbons in citrate are carbon-13 while the other four are carbon-12.  “M+4 citrate” means 

that four of the six carbons in citrate are carbon-13 while the other two are carbon-12. 

2.5.7 GSH/GSSG abundance and BMH crosslinking  

Relative GSH/GSSG abundance was measured using the GSH/GSSG-Glo Assay 

(Promega catalog #V6611, according to the manufacturer’s instruction.  Immortalized 

WT and S47 MEFs were generated and maintained as previously described (Jennis et 

al., 2016; Leu et al., 2019).  For BMH crosslinking studies, the WT and S47 cells were 

cultured in 1% FBS DMEM medium and treated with PBS or 50 μM diethyl maleate 

(DEM, ThermoFisher Scientific AC114440010) for 5 h; PBS or 100 μM BSO (Cayman 

Chemical item #14484) for 24 h; or DMSO or 2 μM Erastin (Cayman Chemical item 

#17754) for 24 h.   Proteins were extracted from cultured cells or mouse tissue (skeletal 
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muscle, lungs) using 1X DPBS (Thermo Fisher Scientific 14190144) supplemented with 

0.5% IGEPAL CA-630, 1 mM PMSF, 6 μg/ml aprotinin, and 6 μg/ml leupeptin at 4˚C.  

The tissues were homogenized using the Wheaton Overhead Stirrer.  Total cellular 

homogenates were pulse sonicated using the Branson digital sonifier set at 39% 

amplitude.  Total protein extracts (100 μg per reaction) were incubated with or without 1 

mM BMH (Thermo Fisher Scientific 22330) for 30 min at 30°C.  The samples were 

quenched with an equal volume of 2x Laemmli Sample Buffer (BioRad 1610737) 

supplemented with 5% β-Mercaptoethanol (BioRad 1610710) and heated for 10 min at 

100°C.  The protein samples were size fractionated on Novex 4-20% Tris-Glycine Mini 

Gels (Thermo Fisher Scientific XP04200BOX) at room temperature and subsequently 

transferred overnight onto Immuno-Blot PVDF membranes (BioRad 1620177) at 4˚C.  

The membranes were blocked with 3% nonfat dry milk (BioRad 1706404) in 1X PBST 

for 30 min at room temperature and incubated with the GAPDH antibody (Cell Signaling 

Technology 2118) overnight with rotation/nutation at 4˚C.  After washing the blots in 1X 

PBST, the membranes were incubated with Donkey anti-Rabbit (Jackson 

ImmunoResearch 711-036-152) for 2 h at room temperature.  Membrane-immobilized 

protein detection used ECL Western blotting Detection Reagents (GE Healthcare 

RPN2106; Millipore Sigma GERPN2106).  

2.5.8 Proximity Ligation Assay 

Cells were grown on Lab-Tek II 8-well chamber slides, and were either untreated, 

treated with 50 μM diethyl maleate (DEM, ThermoFisher Scientific AC114440010) for 5 

hours or treated with 10 μM of buthionine sulfoximine for 24 hours (BSO, Cayman 

Chemicals, 83730-53-4) and fixed with 4% paraformaldehyde (Electron Microscopy 

Sciences, 15710).  Protein-protein interactions were assessed using the PLA Duolink in 
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situ starter kit (Sigma Aldrich, DUO92101) following the manufacturer’s protocol.  The 

following primary antibodies were used: Rheb 1:50 (B-12, Santa Cruz, sc271509), 

mTOR 1:500 (7C10, Cell Signaling, 2983), GAPDH 1:1000 (14C10, Cell Signaling, 

2118).  ImageJ software (NIH, Rockville, MD) was used to quantify PLA signals.  

2.5.9 Immunofluorescence staining  

Cells were fixed in 4% paraformaldehyde for 10 minutes, followed by 3 PBS washes and 

then permeabilization with 0.25% Triton X-100 for 10 minutes. Cells were washed 3x 

with PBS, blocked for 1 hour in a PBS solution containing 1% bovine serum albumin and 

5% normal goat serum (Jackson Immunoresearch 005-000-121). Cells were incubated 

overnight at 4ºC with the following primary antibodies diluted in blocking buffer: Rheb 

1:800 (Cell Signaling Technologies, #13879), TSC2 1:100 (Cell Signaling Technologies, 

#4308), LAMP1 1:50 (Santa Cruz, sc-20011). Cells were washed with PBS and 

incubated with the following secondary antibodies at 37 ºC for 45 minutes: Alexa Fluor 

594 AffiniPure Goat Anti-Rabbit IgG (Jackson Immunoresearch 111-585-144) and Alexa 

Fluor 488 AffiniPure Goat Anti-Mouse IgG (Jackson Immunoresearch 115-545-062). The 

cells were mounted with media containing DAPI and images were captured using the 

Leica TSC SP5 microscope.  

2.5.10 Body composition and metabolic cage studies 

WT and S47 mice in a pure C57Bl/6 background are previously described (Jennis et al., 

2016).  All mouse studies were performed in accordance with the guidelines in the Guide 

for the Care and Use of Laboratory Animals of the NIH and all protocols were approved 

by the Wistar Institute Institutional Animal Care and Use Committee (IACUC).  Mice 
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were fed an ad libitum diet and were housed in plastic cages with a 12-hour/12-hour light 

cycle at 22°C unless otherwise stated.  Fat and lean content were measured in live male 

mice at 6 weeks of age using nuclear magnetic resonance (NMR) with the Minispec 

LF90 (Bruker Biospin, Billerica, MA).  Indirect calorimetry was conducted to assess 

metabolic capabilities in mice (Oxyman/Comprehensive Laboratory Animal Monitoring 

System (CLAMS); Columbus Instruments).  Data for the WT mice was previously 

published in supplemental data of Kung et al., 2016.  Six-week old mice were single 

caged, provided with water and food ad libitum and allowed to acclimate to the cages for 

2 days. Oxygen consumption (VO2) and carbon dioxide production (VCO2) were 

recorded for 48 hours using an air flow of 600 ml/min and temperature of 22°C.  

Respiratory exchange ratio (RER) is calculated as VCO2/VO2 and heat (kcal/h) is 

calculated by 3.815 + 1.232*(RER).  Photodetectors were used to measure physical 

activity (Optovarimex System; Columbus Instruments).  

2.5.11 Treadmill and serum metabolite studies 

Mice were allowed to acclimate to the metabolic treadmill (Columbus Instruments) for 5 

minutes before beginning their runs.  The treadmill was then set to 5m/min and speed 

increased by 5m/min every 2 minutes until 20m/min was reached.  Upon reaching 20 

m/min, the incline was increased by 5 degrees every 2 minutes until reaching a 

maximum of 25 degrees.  Mice were allowed to run at this maximum speed and incline 

until exhaustion, defined by the mice spending 10 continuous seconds on the shock grid.  

Lactate (Nova Biomedical) and glucose (One Touch) measurements were taken using 

test strips just prior to treadmill entry and immediately after exhaustion using handheld 

meters.  Tail blood was also taken prior to treadmill entry and immediately after 
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exhaustion and metabolites measured using the Vettest serum analyzer (Idexx 

Laboratories). 

2.5.12 Statistical Analysis 

Unless otherwise stated, all experiments were performed in triplicate. The two-tailed 

unpaired Student t-test was performed. All in vitro data are reported as the mean ± SD 

unless stated otherwise, and in vivo are reported as the mean ± SE. Statistical analyses 

were performed using GraphPad Prism, p-values are as follows:  (*) p-value < 0.05, (**) 

p-value < 0.01, (***) p-value < 0.001, (****) p-value < 0.0001.  For the CLAMs and mouse 

exercise data, the Wilcoxon rank-sum test was used to compare the differences between 

S47 and WT mice. 
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2.6 Supplemental Figures 
 

 

 

Supplemental Figure 2.1:  Altered metabolic markers in S47 cells and tissues. 

(A) Microarray analysis of WT and S47 LCLs treated with 10 μM cisplatin for 0, 8 & 24 hours 

reveal several metabolism genes as differentially expressed.  * regulators of mTOR (B) qRT-PCR 

analysis of PRKAB1, SESN1 and PTEN in human LCLs treated with 10 µM cisplatin for 24 hours.  

All values were normalized to a control gene (18S); n=4, error bars indicate standard deviation.  

(*) p-value < 0.05, (**) p-value < 0.01, (***) p-value < 0.001, (****) p-value < 0.0001, Student’s t-
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test. (C) Whole cell lysates were extracted from WT and S47 liver, lung, heart and kidney 

followed by Western blot analysis for the proteins indicated. (D) Whole cell lysates were extracted 

from 3 WT and 3 S47 mouse lungs and analyzed by Western blot for the phospho-Akt and 

GAPDH (loading control).  Light and dark exposures are shown.  (E) WT and S47 MEFs were 

starved in amino acid free media for 4 hours, then media containing amino acids was re-

introduced and samples were collected at indicated time points. Cell lysates were extracted from 

samples and subjected to Western blot analysis for the proteins indicated. (F) Densitometry 

quantification of phospho-S6K1 protein expression in WT and S47 MEFs at one-hour time point 

for serum and glucose starvation, 30-minute time point for amino acid starvation; all values 

normalized to total S6K1.  Densitometry values are averaged from a minimum of two independent 

experiments. (G) Whole cell lysates were extracted from WT and S47 mouse lung and skeletal 

tissue and were subjected to Western blot analysis, probing for p62, LC3B and HSP90 (loading 

control).  (H) WT and S47 MEFs were treated with HBSS for 0, 2 and 6 hours and were subjected 

to Western blot analysis for the indicated proteins. (I) Autophagic flux was measured in WT and 

S47 MEFs pretreated with NH4Cl for indicated time points, followed by HBSS treatment for 6 

hours. Cell lysates were subjected to Western blot analysis and immunoblotted for LC3B and 

GAPDH (loading control). (J) WT and S47 MEFs were treated with HBSS for indicated time points 

and were subjected to viability analysis using Trypan Blue; n = 3, error bars indicate standard 

deviation.   
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Supplemental Figure 2.2:  Increased metabolism in S47 MEFs but no differences in 

mitochondrial content in WT and S47 cells.   

(A-D) WT and S47 MEFs were incubated with 25 mM 13C-glucose for 15 minutes and the 

abundance of citrate (A), malate (B), aspartate (C) and glutamate (D) isotopologs was quantified 

by LC-MS/MS.  Data are presented as mean ± SD, n =3; 2-way ANOVA.  (*) p-value < 0.05, (**) 

p-value < 0.01, (***) p-value < 0.001, (****) p-value < 0.0001. (E) Mitochondrial mass in WT and 

S47 MEFs measured by Mitotracker Green fluorescence.  Data depicted are representative of 

three independent experiments performed in triplicate.  (F) Cell lysates extracted from WT, 
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WT/S47 (het) and S47 LCLs and WT and S47 homozygous MEFs were subjected to Western blot 

analysis and immunoblotted for TFAM, MTCO1, SDHA, TOMM20 and GAPDH (loading control). 

 

 

 

Supplemental Figure 2.3: Attenuated response to mTOR inhibition in S47 cells 

(A) WT and S47 LCLs were treated with 200 nM of rapamycin, harvested at indicated time points 

after treatment and analyzed for shown mTOR markers via Western blot. (B) OCR as measured 

by the Seahorse XF Mito Stress Test in WT and S47 LCLs treated with 1 μM of Torin1 for 24 

hours. Note that samples were run on the same plate as the data depicted in Figure 2.3C; 

therefore, the untreated samples are identical to Figure 2.3C but are presented here for 

comparison sake and clarity.   
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Supplemental Figure 2.4: No differences in the level of mTOR regulators in WT and S47 

cells  

(A) Cell lysates were extracted from two sets of WT and S47 MEFs and were analyzed by 

Western blot for TSC2, DEPTOR, AKT, p53, Sco2 and GAPDH. (B) Cell lysates were extracted 

from WT and S47 MEFs treated with 10 μM Nutlin for indicated time points. TSC2, phospho-

AMPKα and GAPDH were assessed by Western blot. (C) Mice were fasted for 24 hours and 
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intraperitoneally injected with saline or glucose (2g/kg body weight).  Whole cell lysates were 

extracted from skeletal muscles at 1 hour post-injection and subjected to Western blot analysis 

for GAPDH and Rheb (left).  The same lysates were immunoprecipitated (IP) with Rheb antibody 

followed by Western analysis for the level of associated GAPDH and Rheb (right). (D) WT and 

S47 MEFs were untreated or treated with 50 μM of DEM for 5 h.  Cell lysates were subjected to 

Western blot analysis and immunoblotted for total mTOR, Rheb and GAPDH. (E) WT and S47 

MEFs were immunostained with LAMP1 (Alexa488-green) and either TSC2 or Rheb (Alexa594-

red) to determine co-localization. Nuclei are visualized with DAPI staining. Scale bars represent 

30 µM. 
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Supplemental Figure 2.5: Glutathione depletion by BSO alters GAPDH cross-linking and 

the GAPDH-Rheb interaction 

(A) WT and S47 cells were treated with PBS or 100 μM BSO for 24 hours.  Lysates were 

prepared, treated with or without BMH, run on SDS-PAGE and detected by Western blotting with 

a GAPDH antibody. (B) WT and S47 cells were treated with DMSO or 2 μM Erastin for 24 hours.  

Lysates were prepared, treated with or without BMH, resolved by SDS-PAGE, and probed by 

Western blotting for GAPDH. (C) An in situ proximity ligation assay was performed in WT and 

S47 MEFs that are treated with 10 μM of BSO for 24 h. Shown on the right is the quantification of 

the mTOR-Rheb interactions, measured as the average number of PLA signals per nuclei.   
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Supplemental Figure 2.6: Serum metabolites and protein markers pre- and post- exercise.  

(A) Record of mouse weights in WT, S47 and heterozygous WT/S47 mice over the course of 18 

weeks; a minimum of 10 mice of each genotype were tracked, and error bars mark standard 

error. (B) Body weight, fat content and lean content as measured by proton magnetic resonance 

spectroscopy (H-MRS); n=5 mice per genotype, error bars mark standard error, (*) p-value < 

0.05.  (C) Ki67 immunohistochemical staining of skeletal muscle from WT and S47 mice. IgG 

control shown on right. (D) Total p53 protein levels in WT and S47 lung and skeletal tissue. (E) 

Whole cell lysates were extracted from gastrocnemius or soleus muscle from untreated WT and 
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S47 mice and subjected to Western blot analysis for the proteins indicated. (F) Blood serum 

metabolite levels measured in WT and S47 mice before and after treadmill run: Ca (calcium), ALB 

(albumin), PHOS (phosphate), CK (creatine kinase), BUN (blood urea nitrogen), LAC (lupus 

anticoagulant), TP (total protein).  n.s.  not significant, Student’s t-test.  (G) WT and S47 mice 

were subjected to a 60-minute treadmill run. Table indicates proportion of mice that completed 

run; n = 4. 
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Chapter 3: PLTP Identified as a p53-Target Gene that Mediates Ferroptosis 
Resistance in HepG2 Cells 

 

This chapter has been adapted from the following manuscript in preparation: 

Gnanapradeepan K, Murphy ME. PLTP Identified as a p53-Target Gene that 

Mediates Ferroptosis Resistance in Liver Cancer Cells. (in prep) 

3.1 Abstract 
 

The tumor suppressor protein p53 prevents oncogenesis through processes such as 

apoptosis and cell cycle arrest, however recently its role in regulating ferroptotic cell 

death has begun to emerge. Ferroptosis is driven by the inactivation of glutathione 

peroxidase 4 (GPX4), a phospholipid peroxidase, leading to accumulation of lethal levels 

of lipid peroxidation and ultimately resulting in cell death. How exactly p53 mediates 

ferroptosis remains poorly understand, as it has been shown to play a role in both 

inducing and suppressing ferroptosis based on the context. Here, we identified PLTP 

(phospholipid transfer protein) as a direct p53 target gene that plays a role in mediating 

ferroptosis resistance in HepG2 cells. We found that silencing PLTP expression 

sensitized cells to RSL3-induced cell death and lipid peroxidation, while activation of 

PLTP expression protected cells from RSL3-induced cell death and decreased lipid 

peroxidation. Our data suggest that PLTP promotes lipid storage, sequestering lipids into 

lipid droplets and away from the cell membrane, thus protecting lipids from peroxidation 

at the membrane. Taken together, our findings reveal a novel role for p53 in driving 

ferroptosis resistance and indicate lipid transport as another key pathway involved in the 

regulation of ferroptosis.  
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3.2 Introduction  
 

The TP53 gene is the most frequently mutated gene in cancer and has a well-

established role in tumor suppression. It encodes the protein p53, which most commonly 

serves as a transcription factor that regulates hundreds of downstream target genes to 

prevent tumorigenesis (Kastenhuber and Lowe, 2017). For decades, it was believed that 

cell cycle arrest, senescence and apoptosis were the primary modes of tumor 

suppression and in recent years many other p53 functions have begun to emerge such 

as control of metabolism, autophagy, cellular redox state, and ROS control (Berkers et 

al., 2013; Gnanapradeepan et al., 2018). It is clear that the context of p53 activation, 

such as type of stress encountered or tissue in which this stress occurs, plays a vital role 

in the type of response p53 subsequently elicits.  

A mouse model with a defective acetylation site, known as the 3KR mouse, was 

characterized as being impaired for cell cycle arrest, senescence and apoptosis, yet still 

retained its ability to halt tumor formation (Li et al., 2012). This suggested that the 

canonical functions of p53 are not solely responsible for tumor suppression. Upon further 

investigation, it was revealed that these mice were protected from cancer because they 

retained the ability to undergo ferroptosis. Ferroptosis is best described as an iron 

mediated, caspase independent form of cell death driven through the peroxidation of 

polyunsaturated fatty acids. It is a process that differs from other forms of cell death on a 

genetic, biochemical and morphological level (Dixon et al., 2012). GPX4 is a key protein 

that is inactivated in ferroptosis, as it normally functions to neutralize the harmful lipid 

reactive oxygen species that build up at the cellular membrane. SLC7A11 is a gene that 

encodes part of a cystine/glutamate antiporter, and when repressed leads to ferroptosis 
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induction (Jiang et al., 2015). Two small molecule inhibitors that are commonly used to 

induce ferroptosis in vitro are RSL3 and erastin, which function by inhibiting GPX4 and 

SLC7A11, respectively (Stockwell et al., 2017).  

Various lipid metabolism genes have been implicated in ferroptosis sensitivity, as 

lipid peroxidation plays such a crucial role in this process. Acyl-CoA synthetase long-

chain family member 4 (ACSL4) has been shown to drive ferroptosis by converting free 

fatty acids into fatty CoA esters that are required for ferroptosis (Doll et al., 2017; Yuan 

et al., 2016). ALOX15 and ALOX12 are two p53 target genes that promote ferroptosis by 

serving as a lipoxygenases, necessary for the peroxidation of the polyunsaturated fatty 

acids (Chu et al., 2019; Ou et al., 2016). Recently, stearoyl-CoA desaturase 1 (SCD1) 

was found to protect ovarian cancer cells from ferroptosis by catalyzing the rate-limiting 

step in monosaturated fatty acid synthesis (Tesfay et al., 2019). As ferroptosis is a 

relatively new field, the precise mechanisms of regulation are still be ironed out.   

The exact role of p53 in ferroptosis is likely to be cell type and stimulus specific. 

Initial studies highlighted the role of p53 in promoting ferroptosis sensitivity (Gao et al., 

2015; Jennis et al., 2016; Jiang et al., 2015; Ou et al., 2016). However, other studies 

have suggested that p53 stabilization can negatively regulate ferroptosis through 

expression of CDKN1A/p21 (Tarangelo et al., 2018). In colorectal cancer cells, it was 

found that p53 inhibits ferroptosis by blocking dipeptidyl-peptidase-4 (DPP4) activity (Xie 

et al., 2017). Thus, further investigation is required in order to dissect the pleiotropic 

functions of p53 in the control of ferroptosis.  

Our lab generated a mouse model with a single nucleotide polymorphism at 

amino acid 47 in TP53, hereafter referred to as the S47 mouse, and discovered it had 
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impaired tumor suppressive function and a defect in ability to undergo ferroptosis (Jennis 

et al., 2016). Using S47 as a tool, we have identified phospholipid transfer protein 

(PLTP) as a novel p53 target gene that plays a role in mediating ferroptosis resistance in 

HepG2 cells. PLTP is a lipid transport protein secreted predominantly from the liver and 

plays a role in the transfer of various lipid molecules such as phosphatidylcholine, 

phosphatidylethanolamine and phosphatidylglycerol to name a few (Albers et al., 2012). 

Our findings characterize the function of PLTP in a p53 dependent context for the first 

time and suggest a novel role for p53 in regulating ferroptosis through lipid transport. 

 

3.3 Results 

3.3.1 PLTP identified as gene that is downregulated by the S47 variant of p53 

We have previously shown that the S47 variant of p53 is resistant to ferroptosis 

induction, in part through decreased ability to repress SLC7A11 and transactivate GLS2 

(Jennis 2016). Thus, we sought to use S47 as a tool to identify novel p53 target genes 

that could play a role in mediating ferroptosis. To address this, human lymphoblastoid 

cells (LCLs) homozygous for the S47 variant or WT p53 were jointly treated with the 

ferroptosis inducers Nutlin plus tert-Butyl-hydroperoxide (TBH). TBH is widely used to 

induce ROS and the combination of Nutlin and TBH has been used as a method of 

ferroptotic induction (Ou et al., 2016). We focused our initial studies on the Nutlin/TBH 

combination as we have found the LCLs used in our studies appear to be resistant to 

erastin. RSL3 was found to be too cytotoxic on this cell type and results in a very low 

yield of RNA. The RNA obtained from these samples was subjected to RNA sequencing, 

which revealed PLTP as the top gene that was differentially expressed between WT and 

S47 cells (Table 3.1, Figure 3.1A). To validate these findings, we performed qRT-PCR in 
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LCLs that were either treated with Nutlin, TBH, or the combination of Nutlin and TBH, 

and found that PLTP was significantly downregulated in S47 LCLs under all tested 

conditions (Figure 3.1B). This was further confirmed by a similar qRT-PCR in WT and 

S47 mouse embryonic fibroblasts (MEFs), which showed Pltp is also downregulated in 

the mouse S47 cells (Figure 3.1C). Western blot analyses revealed that the protein 

levels of PLTP are significantly lower in S47 LCLs (Figure 3.1D). In order to determine if 

there was a difference in localization of PLTP in mouse tissue, IHC analyses were 

conducted on liver tissue extracted from WT and S47 mice. It was found that PLTP is a 

secreted protein that exists mostly in the extracellular space and appears to be present 

at much lower levels in S47 liver tissue (Figure 3.1E). These collective data demonstrate 

that PLTP is expressed at much lower levels in S47. 

Table 3.1: Genes identified as being at least 3-fold downregulated in S47 LCLs 

Gene Function 

PLTP Transfers phospholipids from triglyceride-rich lipoproteins to high 
density lipoprotein (HDL) 

ASPA Catalyzes conversion of N-Acetyl_L-aspartic acid to aspartate 
and acetate 

RBPMS2 Involved in development and dedifferentiation of digestive 
smooth muscle cells 

STRA6 Membrane protein that acts as receptor for retinol/retinol binding 
protein complexes 

EPS8L2 Links growth factor stimulation to actin organization 

DUSP14 Dephosphorylates tyrosine and serine/threonine residues 

CD6 Encodes protein found on outer membrane of T-
lymphocytes/other immune cells; plays role in continuation of T-
cell activation 
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Figure 3.1: PLTP is differentially regulated by WT p53 and the S47 variant 

(A) RNA-Seq identifying genes with significantly different expression between WT and S47 LCLs 

treated with 5 µM Nutlin and 25 µM TBH for 0, 8 and 24 hours. Blue indicates decrease in gene 

expression relative to untreated WT, red indicates increase. P-value <0.05 (unpaired t-test) and 

FDR <25%. (B) qRT-PCR analysis of PLTP in LCLs treated with 5 µM Nutlin, 25 µM TBH or 

combination of both, for 24 hours. All values were normalized to a control gene (18S); n=3, error 

bars indicate standard error.  (***) p-value < 0.001, Student’s t-test. (C) qRT-PCR analysis of Pltp 
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in MEFs treated with 10 µM Nutlin and 25 µM TBH for 24 hours. All values were normalized to a 

control gene (Cyclophilin A); n=3, error bars indicate standard error.  (*) p-value < 0.05, Student’s 

t-test. (D) Western blot analyses comparing PLTP expression in WT and S47 LCLs treated with 5 

µM Nutlin, 25 µM TBH or combination of both, for 24 hours. (E) Immunohistochemical analysis of 

PLTP in WT and S47 liver tissue. Data are representative of n = 4 fields per genotype. Scale bar 

represents 100 μm. 

3.3.2 The role of p53 in regulating PLTP and ferroptosis in HepG2 cells 

The PLTP protein is secreted predominantly from the liver thus we focused our 

studies on the HepG2 cancer cell line, which is derived from liver and expresses WT 

p53. To ensure that PLTP is activated in a p53 dependent manner, we silenced p53 in 

HepG2 cells using a short hairpin RNA. Nutlin was used to activate p53, and PLTP gene 

expression was found to be significantly lower in the cells that were silenced for p53 

(Figure 3.2A). We next treated our cells with Nutlin over a time course and found that 

PLTP protein levels were again significantly lower in the sh-p53 cell line (Figure 3.2B). 

Our data are consistent with previously reported findings, suggesting that PLTP is a 

direct transcriptional target of p53 (Goldstein et al., 2012).  

Before directly assessing the role of PLTP in ferroptosis, we wanted to assess 

the sensitivity of HepG2 cells to ferroptosis, as it has been reported that different cell 

lines express differential sensitivity to ferroptosis (Doll et al., 2017; Yuan et al., 2016). 

Both erastin and RSL3 were capable of inducing ferroptosis in HepG2 cells, however 

RSL3 was found to be a more potent inducer thus was used for the remainder of the 

studies (Figure 3.2C-D). We compared the effects of silencing p53 on ferroptosis in 

HepG2 cells and were surprised to detect no significant differences in ferroptosis 

sensitivity between the silenced p53 cell line and control (Figure 3.2C-D). Recent studies 
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have emerged suggesting that cell media and metabolism can influence ferroptosis 

sensitivity in a p53 dependent manner (Leu et al., 2019; Tarangelo et al., 2018), so we 

repeated this assay under low glucose and low serum media conditions. As expected, 

these conditions further sensitized cells to ferroptosis using both erastin and RSL3, and 

surprisingly, p53 silenced cells showed greater susceptibility to ferroptosis (Figure 3.2E-

F). Taken together, our data suggest that p53 plays a key role in regulating PLTP and 

that in HepG2 cells, p53 negatively regulates ferroptosis.    

 

 

Figure 3.2: p53 positively regulates PLTP but negatively regulates ferroptosis in HepG2 

cells 

(A) qRT-PCR analysis of PLTP in HepG2 cells treated with 10 µM Nutlin for 24 hours, with and 

without p53 knockdown. All values were normalized to a control gene (18S); n=3, error bars 

indicate standard error.  (***) p-value < 0.001, Student’s t-test. (B) Western blot analyses 
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comparing PLTP expression in HepG2 cells with and without p53 knockdown. Cells were treated 

with 10 µM Nutlin and lysates were harvested at 0 hr, 30 minutes, 24 hrs and 48 hrs. Data 

representative of 3 independent experiments. (C-D) Viability analysis of HepG2 cells with and 

without p53 knockdown treated with indicated doses of (c) erastin or (d) RSL3 for 72 hours in 

complete media. Error bars represent standard error of mean, n=4. (E-F) Viability analysis of 

HepG2 cells with and without p53 knockdown treated with indicated doses of (e) erastin or (f) 

RSL3 for 72 hours in low glucose low serum media. Error bars represent standard error of mean, 

n=4.   

3.3.3 PLTP promotes ferroptosis resistance  

Knowing that S47 cells are impaired in ferroptosis prompted us to assess the role 

PLTP might play in ferroptosis. Two knockdown cell lines were generated using short 

hairpins for PLTP in HepG2 and qRT-PCR confirmed that PLTP was effectively silenced 

(Figure 3.3A). Knockdown of PLTP using two different short hairpins sensitized cells to 

RSL3 induced cell death (Figure 3.3B and C). We next examined the effects of PLTP 

silencing on the generation of lipid ROS, as lipid peroxidation is a key hallmark of 

ferroptosis. Consistent with our viability data, we found that silencing PLTP significantly 

increased lipid peroxidation that occurs after treatment with RSL3 (Figure 3.3D-E).  
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Figure 3.3: Knockdown of PLTP increases RSL3-induced ferroptosis sensitivity. 

(A) qRT-PCR analysis of PLTP expression in indicated knockdown HepG2 cells. All values were 

normalized to a control gene (18S); n=3, error bars indicate standard error.  (***) p-value < 0.001, 

Student’s t-test. (B) Viability analysis of short hairpin control or PLTP knockdown cells treated 

with indicated doses of RSL3 for 72 hours. Data are representative of three independent 

experiments, four technical replicates, error bars represent standard error of mean. (C) Viability 

analysis of short hairpin control or PLTP knockdown cells treated 0.1 µM RSL3 for 72 hours 

(single point from b). Error bars represent standard deviation, (****) p-value < 0.0001, Student’s t-

test. (D) Lipid peroxidation in knockdown cell lines treated with 0.5 µM RSL3 for 3 hours was 

assessed by flow cytometry using C11-BODIPY. Data are representative of three independent 
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experiments. (E) Quantification of lipid peroxidation levels. Error bars indicate standard deviation.  

n=3, (**) p-value < 0.01 

 

To extend these findings, we examined the effect of overexpressing PLTP in 

HepG2 cells. Once the expression was confirmed via qRT-PCR (Figure 3.4A), we 

proceeded to assess cell viability after RSL3 treatment. We found that PLTP 

overexpression leads to ferroptosis resistance in cells treated with Nutlin and RSL3 

(Figure 3.4B-C). Overexpression of PLTP significantly decreased RSL3 induced lipid 

peroxidation (Figure 3.4D-E). The combined data support the premise that PLTP 

expression drives ferroptosis resistance in HepG2 cells.   
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Figure 3.4: Overexpression of PLTP confers ferroptosis resistance. 

(A) qRT-PCR analysis of PLTP expression HepG2 cells containing empty vector and PLTP 

cDNA. All values were normalized to a control gene (18S); n=3, error bars indicate standard 

error.  (***) p-value < 0.001, Student’s t-test. (B) Viability analysis of vector control or cells 

overexpressing PLTP treated with 10 µM Nutlin and indicated doses of RSL3 for 72 hours. 

Viability normalized to treatment with 10 µM Nutlin alone. Data are representative of three 

independent experiments, four technical replicates, error bars represent standard error of mean. 

(C) Viability analysis of vector control or cells overexpressing PLTP treated with 10 µM Nutlin and 

0.1 µM RSL3 for 72 hours (single point from b). Error bars indicate standard deviation, (***) p-

value < 0.001. (D) Lipid peroxidation in cells overexpressing PLTP treated with 0.5 µM RSL3 for 3 

hours was assessed by flow cytometry using C11-BODIPY. Data are representative of three 

independent experiments. (E) Quantification of lipid peroxidation levels. Error bars indicate 

standard deviation.  n=3, (**) p-value < 0.01 

 

3.3.4 PLTP silencing does not impact other cell death processes  

To verify that the cell death being observed is, in fact, due to ferroptosis, a 

rescue assay was performed using ferroptosis-specific rescue agents ferrostatin and 

liproxstatin. PLTP-silenced cells experienced 100% cell death when treated with a high 

dose of RSL3. However, when PLTP-silenced cells were pretreated with either 

ferrostatin or liproxstatin for 30 minutes, and then treated with the same dose of RSL3, 

little to no cell death was observed indicating that ferroptosis is the primary mode of cell 

death occurring in these PLTP-silenced cells (Figure 3.5A). Prior studies from our lab 

show that the S47 variant is impaired for cell death by cisplatin (Jennis et al., 2016). No 

significant differences in cell death were observed in PLTP-silenced cells when treated 
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with cisplatin (Figure 3.5B-C). We next assessed several other chemotherapeutic agents 

such as doxorubicin, etoposide, camptothecin and tunicamycin. Our studies revealed no 

significant differences in cell viability when comparing PLTP-silenced cell lines to the 

shCtrl cell lines (Figure 3.5D-G), highlighting the fact that PLTP silencing seems to affect 

ferroptosis but not other cell death pathways.  

 

Figure 3.5: PLTP silencing does not affect sensitivity to other forms of cell death.  

(A) Viability analysis of PLTP knockdown cells subjected to indicated treatments. Cells pretreated 

with either 2 µM ferrostatin or 50 nM liproxstatin for 30 minutes, followed by treatment with 1 µM 

RSL3 for 24 hours. Viability normalized to untreated cells, error bars indicate standard deviation, 

n = 4. (B) Viability analysis of short hairpin control or PLTP knockdown cells treated with indicated 

doses of cisplatin for 72 hours. Error bars represent standard error of mean, n = 4. (C) Viability 

analysis of short hairpin control or PLTP knockdown cells treated 1 µM cisplatin for 72 hours 

(single point from b). Error bars indicate standard deviation, p-value not significant. (D-G) Viability 
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analysis of short hairpin control or PLTP knockdown cells treated with indicated doses of (d) 

doxorubicin, (e) etoposide, (f) camptothecin or (g) tunicamycin for 72 hours. Error bars represent 

standard error of mean, n = 4.  No significant differences observed.  

3.3.5 PLTP protects cells from ferroptotic cell death by promoting lipid storage 

We next sought to determine the mechanism by which PLTP mediates 

ferroptosis resistance. It is well known that PLTP plays a role in transporting various lipid 

molecules, including phosphatidylethanolamine which is one of the key lipids that 

undergo peroxidation at the cellular membrane during ferroptosis (Albers et al., 2012; 

Kagan et al., 2017). A recent study demonstrated enhanced lipid storage in the form of 

lipid droplets can inhibit ferroptosis (Bai et al., 2019). This is supported by other studies 

that show lipid droplet formation can protect cells from forms of oxidative cell death by 

sequestering polyunsaturated fatty acids away from the cellular membrane (Li et al., 

2018). Based on these findings, we hypothesized that PLTP could promote ferroptosis 

resistance by transporting lipids away from the cellular membrane and into lipid droplets, 

thereby reducing the lipids available to undergo peroxidation at the membrane.  

We verified PLTP influences lipid droplet formation by visualizing cells stained 

with the lipid droplet marker BODIPY 493/503 and found PLTP-silenced cells showed 

very few lipid droplets in comparison to the control (Figure 3.6A). To determine whether 

PLTP drives ferroptosis resistance through enhanced lipid storage, we treated cells 

overexpressing PLTP with RSL3 and assessed the levels of lipid droplets using flow 

cytometry. When comparing control cells to cells overexpressing PLTP that are 

untreated, there is an increase in lipid droplet content as depicted by the rightward shift 

of the solid green curve to the solid orange curve (Figure 3.6B). Upon treatment with 
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RSL3, there is a decrease in lipid droplet content in both control cells and cells 

overexpressing PLTP, as shown by the leftward shift of the curves from the solid colors 

to the respective transparent colors (Figure 3.6B). These data are consistent with 

previously reported data showing induction of ferroptosis leads to a decrease in lipid 

droplet levels (Bai et al., 2019). Whereas RSL3 causes decreased lipid droplet 

accumulation in cells overexpressing PLTP, the overall lipid droplet levels remain higher 

compared to the control cells. (Figure 3.6B). Taken together, these data support the 

premise that PLTP protects cells from ferroptotic cell death by enhancing lipid storage 

and preventing lipids from undergoing peroxidation at the cellular membrane (Figure 

3.6C). 
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Figure 3.6: A model for PLTP in ferroptosis resistance by promoting lipid storage.  

(A) Knockdown of PLTP decreases lipid droplet accumulation, visualized using BODIPY 493/503. 

DAPI staining used to visualize nuclei, scale bar represents 20 μm. (B) Lipid droplet accumulation 

assessed using BODIPY 493/503 in cells overexpressing PLTP, treated with and without 500 nM 

RSL3 for 12 hours. Data representative of 2 independent experiments, 4 technical replicates. (C) 

Proposed mechanism of how PLTP promotes ferroptosis resistance: PLTP enables increased 

lipid droplet formation, thus protecting polyunsaturated fatty acids from undergoing ferroptosis at 

the cell membrane.  
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3.4 Discussion 
 

Programmed cell death is a complex network that is mediated by various intrinsic 

and extrinsic signals. In recent years lipids have emerged as key drivers of various cell 

death pathways, shown to play roles in apoptosis, necroptosis and ferroptosis 

(Magtanong et al., 2016). Cell death via ferroptosis occurs by lipid peroxidation at the 

cellular membrane, yet precise mechanisms of this process are still being ironed out 

especially with regard to the role of p53 (Gnanapradeepan et al., 2018; Murphy, 2016). 

In this study, we demonstrate that the p53 target gene PLTP promotes ferroptosis 

resistance in HepG2 cells. Silencing PLTP was found to sensitize cells to cell death by 

RSL3 and increased lipid peroxidation, while overexpressing PLTP led to greater 

resistance to cell death by RSL3 and decreased lipid peroxidation. The cell death 

differences that were observed were confirmed to be specific to ferroptosis. PLTP 

appears to increase lipid storage in the form of lipid droplets, thereby protecting lipids 

from peroxidation at the membrane. These data are the first to characterize the function 

of PLTP in a p53 dependent context and reveal a novel potential role for p53 in driving 

ferroptosis resistance through lipid transport. 

There are several experiments that should be done in order to strengthen these 

findings. An important control for the short hairpin silencing data is to combine treatment 

with a non-silenceable, rescue cDNA. This study was performed in HepG2 cells, and 

further work in other liver cancer cell lines containing WT p53 such as SK-Hep-1 are 

required. It would also be interesting to see if this phenotype is specific to liver cancer 

cells, thus extending these studies to other lipid rich cancer cell lines such as melanoma 

or ovarian cancer would be very interesting. We provided evidence that PLTP increases 

lipid storage, yet the exact lipids that are involved remain unknown. Ferroptosis is driven 
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through oxidation of phophatidylethanolamines containing arachidonic acid or adrenic 

acid (Kagan et al., 2017) and it is known that certain lipid types, such as 

monounsaturated fatty acids, can lead to ferroptosis resistance (Magtanong et al., 2019). 

A lipidomics study would be very informative to further dissect this mechanism and 

understand exactly what lipid types are involved in PLTP-mediated transport that results 

in ferroptosis resistance. PLTP is known to transport Vitamin E (also known as a-

tocopherol), a lipophilic antioxidant that has been shown to protect cells from oxidative 

damage and ferroptosis.(Raederstorff et al., 2015; Yang and Stockwell, 2016). An 

alternate hypothesis is that PLTP drives ferroptosis resistance by transporting Vitamin E 

to cells, thus it would be worthwhile to investigate the role of Vitamin E in this process.    

Insight into the function of PLTP come from studies of the PLTP knockout 

mouse.  The PLTP knockout mouse displays an interesting and complex phenotype. 

These mice lose the ability to transfer lipids such as phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylinositol, and sphingomyelin, as well as partially 

losing the ability to transfer free cholesterol (Jiang et al., 1999). These data demonstrate 

the in vivo relevance of PLTP and highlights the crucial role PLTP plays in mediating the 

transfer of lipids implicated in ferroptosis. PLTP knockout mice were also found to have 

significantly lower levels of HDL cholesterol found in the plasma, due to impaired 

cholesterol absorption in the intestine (Liu et al., 2007). It was also found that HDL from 

PLTP deficient mice had improved anti-inflammatory properties and that these mice 

have decreased atherosclerosis (Yan et al., 2004).  PLTP has been shown to regulate 

the phagocytic activity of macrophages and microglial cells. PLTP deficient mice express 

much lower levels of cytokine interleukin 6 (IL-6) and lower levels of infiltrating 

macrophages after stress (Desrumaux and Lagrost, 2018). Studies in humans show 
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increased PLTP activity in patients with bacterial infection and systemic inflammation, 

supporting the role of PLTP in immune function (Desrumaux et al., 2016). These 

combined studies suggest PLTP plays a complex role in mediating several processes 

ranging from lipid metabolism to immune function, and this could account for why PLTP 

has altered regulation in the S47 mouse.   

The S47 variant is impaired for ferroptosis and tumor suppression.  Hence, we 

predicted that a gene such as PLTP, which shows impaired induction in S47 cells, might 

confer ferroptosis sensitivity. In contrast we found that this gene mediates ferroptosis 

resistance.  Indeed, our data suggest that even p53 confers ferroptosis resistance in 

HepG2 cells, and not sensitivity as one might have been predicted.  These findings 

reinforce the premise that the role for p53 and its target genes in ferroptosis sensitivity is 

complex and may be cell type or tissue specific.  Our findings add to the growing body of 

literature on the complex role of p53 in regulating ferroptosis. One point to consider is 

whether stabilization of p53 is a critical step in mediating ferroptosis resistance. Many of 

our experiments used Nutlin to activate p53, and prior studies found the most 

pronounced effects on ferroptosis resistance occur after a 24-hour stabilization of p53 

with Nutlin (Tarangelo et al., 2018). It is also necessary to consider the type of stress 

encountered and location of stress that triggers the p53 response, as it is well known 

that p53 responds differently under different circumstances (Kastenhuber and Lowe, 

2017). Our data on the effect of low nutrient media increasing ferroptosis sensitivity in a 

p53 dependent manner highlights the fact that metabolites play a key role in determining 

sensitivity to ferroptosis, consistent with prior findings (Tarangelo et al., 2018). The 

crosstalk between various pathways is also very important to bear in mind. A recent 

study provided evidence that MDM2 and MDMX, known negative regulators of p53, 
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promote ferroptosis through PPARα-mediated lipid remodeling. Thus, it is important to 

consider the intricate nature of metabolic regulation and context specificity when thinking 

about both p53 and ferroptosis.   

The role of p53 is not limited to tumor suppression, as p53 has been shown to 

possess anti-atherogenic properties (Mercer and Bennett, 2006; Tabas, 2001). PLTP 

has been extensively characterized in the context of atherosclerosis and studies have 

shown that low levels of PLTP are associated with greater risk of atherosclerosis 

(Schgoer et al., 2008). There is evidence that inhibition of ferroptosis alleviates 

atherosclerosis (Bai et al., 2020), therefore a possible explanation could be that p53 

functions to prevent atherosclerosis by inducing ferroptosis resistance through PLTP. 

Taken together, our findings provide evidence for a novel role for p53 and a p53 target 

gene on the regulation of ferroptosis through lipid transport.  More studies of the role of 

p53 and PLTP in ferroptosis sensitivity in the liver and other tissues of the WT and S47 

mouse can help clarify these roles. 

 

3.5 Materials and Methods  

3.5.1 RNA Sequencing  

WT and S47 LCLs were treated with 5 µM Nutlin for 30 minutes followed by the addition 

of 25 µM TBH for 0, 8 and 24 hours. RNA was extracted using RNeasy minikits (Qiagen) 

following the manufacturer’s protocol. The QuantSeq FWD library preparation kit 

(Lexogen) was used to generate 3’ mRNA-seq libraries from DNase I-treated RNA. The 

Agilent Tapestation and Agilent DNA 5000 Screentape were used to determine overall 

library size and real-time PCR (Kapa Biosystems) was used to quantitate the libraries. 
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Libraries were pooled and the NextSeq 500 (Illumina) was used to carry out high-out-put 

single-read 75-base-pair next-generation sequencing. Bowtie2 (Langmead and 

Salzberg, 2012) was used to align RNA-seq data against the human genome version 

hg38. Raw read counts for each gene were estimated using RSEM version 1.2.12 

software (Li and Dewey, 2011). The significance of differential expression between 

samples was determined using DESeq2 (Love et al., 2014).  

3.5.2 qRT-PCR 

RNA was extracted from cells using the RNeasy minikits (Qiagen) following the 

manufacturer’s protocol. Equal amounts of the isolated RNA were used to generate 

cDNA using a high-capacity reverse transcription kit (Applied Biosciences, 4368814).The 

Brilliant III UltraFast SYBR Green qPCR mix kits (Agilent) were used to conduct qPCR 

on the Stratagene Mx3005P machine (Agilent). RNA expression levels were normalized 

to housekeeping gene 18S for human and cyclophilin A for mouse. Primer sequences 

are as follows: PLTP (human-F) 5’-TGATTGACTCCCCATTGAAGC-3’ and (human-R) 

5’-CGTCCATAGTCATGCTGGACA-3’. Pltp (mouse-F) 5’-

TTCCTCCTCAACCAGCAGATCT-3’ and (mouse-R) 5’-

CAGGAGGGAGTTGAGCAACAC-3’.  

 

3.5.3 Silencing and overexpression studies 

PLTP knockdown cell lines were generated by lentiviral infection, using the vector 

pLKO.1-puro-carrying shRNA sequence against human PLTP (shRNA1 

[CTGATGCTTCAAATCACCAAT; TRCN0000150129], shRNA2 
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[CGAATCTATTCCAACCATTCT; TRCN0000148250]) and human TP53 

(TCAGACCTATGGAAACTACTT, TRCN0000003754). Short hairpin constructs and 

packaging vectors were cotransfected in 293-FT cells to generate lentivirus. HepG2 cells 

were infected with lentivirus with 8 µg/mL polybrene, spun for 30 minutes at 2250 rpm, 

allowed to rest for 3.5 hours followed by a media change. Puromycin was added the 

following day at 2 µg/mL and gene knockdown was validated by qRT-PCR. Cells 

overexpressing PLTP were generated by transfecting the vector pcDNA3.1+/C-(K)DYK 

with and without PLTP ORF (NM_006227.3) obtained from GenScript. Transfections 

were performed with Lipofectamine 3000 (ThermoFisher) following the manufacturer’s 

protocol.  

3.5.4 Flow cytometry 

Analysis of lipid peroxidation was performed using C11-BODIPY 581/591 (ThermoFisher 

D3861) and analysis of lipid droplet accumulation was performed using BODIPY 

493/503 (ThermoFisher D3922). Cells were plated at a density of 3x105 cells per well in 

6-well plates. The following day, cells were treated with 0.5 µM of RSL3 for 3 hours. 

Cells were collected, washed with PBS and stained with 5 µM of C11-Bodipy for 30 

minutes at 37°C for lipid peroxidation analysis or 2 µM of Bodipy 493/503 for 15 minutes 

at 37°C for lipid droplet analysis. Cells were then washed with PBS three times and 

analyzed using FACSCelesta (Becton Dickinson) flow cytometer.  Dead cells were 

removed from analysis using FSC/SSC profiles, and cell doublets were eliminated by 

comparing forward scatter signal height vs forward scatter signal area.  At least 10,000 

events in the analysis gate were obtained.  
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3.5.5 Immunofluorescence staining  

Cells were washed once with PBS, fixed in 4% PFA for 10 minutes, followed by 3 PBS 

washes. Samples were then treated with 2 µM of Bodipy 493/503 (ThermoFisher D3922) 

for 15 minutes at 37°C in the dark. The cells were mounted with media containing DAPI 

and images were captured using the Leica TSC SP5 microscope.  

3.5.6 Immunohistochemistry  

Liver tissues were fixed in formalin overnight at 4°C. The following day, tissues were 

washed in 1X PBS and placed in 70% ethanol. The tissue embedding and sectioning 

were performed by the Wistar Institute Histotechnology Facility. Paraffin embedded 

sections were de-paraffinized in xylene (Fisher, X5-SK4), re-hydrated in ethanol (100%-

95%-85%-75%) and then placed in distilled water.  Sample slides were steamed in 10 

mM Citrate Buffer, pH 6, for antigen retrieval. Three percent hydrogen peroxide was 

used to quench endogenous peroxidase activity and slides were blocked for 1 hour 

(Vector Laboratories, S-2012). The slides were incubated with the primary antibody 

PLTP (1:100, Santa Cruz sc-271596) overnight at 4°C.  The next day, slides were 

washed with PBS, incubated with HRP-conjugated secondary antibody for 30 minutes 

and treated with DAB chromogen (D5637). Hematoxylin was used to perform a light 

counterstaining. The Nikon 80i upright microscope was used to image slides, at least 

four fields per section were imaged.  

3.5.7 Viability assays 

Cells were seeded at 2000 cells per well on a 96-well plate and were grown overnight at 

37°C. The following day cells were treated with the following drugs at indicated 
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concentrations for 72 hours for IC50 assays: erastin (Cayman Chemicals), RSL3 (Apex 

Bio), tert-Butyl hydroperoxide/TBH(Sigma), Nutlin (Calbiochem), cisplatin (Acros 

Organics), Etoposide (Sigma), Camptothecin (Cayman Chemicals), Doxorubicin (Cell 

Signaling). For rescue assays, cells were pretreated with ferrostatin (Cayman 

Chemicals) or liproxstatin (Sigma) for 30 minutes prior to treatment with RSL3 for 24 

hours. At assay endpoint, cells were treated with Alamar blue (Life Technologies 

Dal1025) for 3 hours at 37°C and absorbance was read out using a SynergyHT plate 

reader (BioTek). GraphPad Prism software was used to perform the data analysis.  

3.5.8 Mammalian Cell Culture 

Human WT LCLs (Catalog ID GM18870) and S47 LCLs (Catalog ID GM18871) were 

obtained from the Coriell Institute (Camden, New Jersey) and grown in RPMI (Corning 

Cellgro) supplemented with 15% heat inactivated fetal bovine serum (HyClone, GE 

Healthcare Life Sciences) and 1% penicillin/streptomycin (Corning Cellgro). WT and S47 

MEFs were generated as previously described (Jennis et al., 2016) and maintained in 

complete growth medium. HepG2 cells were obtained from ATCC (ATCC HB-8065) and 

maintained in complete growth medium. Complete growth medium is composed of 

DMEM (Corning Cellgro, 4.5 g/L glucose) supplemented with 10% fetal bovine serum 

(HyClone, GE Healthcare Life Sciences) and 1% penicillin/streptomycin (Corning 

Cellgro). Cells were grown in a 5% CO2 humidified incubator at 37°C. For low glucose 

low serum experiments, cells were grown in DMEM containing 1 g/L (Gibco 11885084) 

and 1% fetal bovine serum.  
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3.5.9 Western blot 

Protein lysates were obtained from indicated cell lines and 50-100 µg of protein was run 

on SDS-PAGE gels using 10% NuPAGE Bis-Tris precast gels (Life Technologies). 

Proteins were transferred onto polyvinylidene difluoride membranes (IPVH00010, pore 

size: 0.45 mm; Millipore Sigma) and blocked for 1 hour in 5% milk. Primary antibodies 

include PLTP 1:1000 (Abcam ab18990) and GAPDH 1:10,000 (14C10, Cell Signaling, 

2118). HRP-conjugated rabbit secondary antibody (Jackson Immunochemicals) was 

used at a 1:10,000 dilution. Blots were treated for 5 minutes with ECL (Amersham, 

RPN2232) and autoradiography was used to determine protein levels.  

3.5.10 Statistical Analysis 

All experiments were performed in triplicate unless otherwise stated and the two-tailed 

unpaired Student t-test was performed to determine significance. All in vitro data are 

reported as the mean ± SD unless stated otherwise. Statistical analyses were performed 

using GraphPad Prism, p-values are as follows:  (*) p-value < 0.05, (**) p-value < 0.01, 

(***) p-value < 0.001, (****) p-value < 0.0001.   
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Chapter 4: Future Direction and Concluding Remarks 
 

4.1 Summary of findings 
 

For decades it was believed that p53 functions as a tumor suppressor predominantly by 

controlling apoptosis, senescence and cell cycle arrest. However, in recent years more 

data has begun to emerge highlighting the key role p53 plays in less studied processes 

such as metabolism and ferroptosis. This is a rapidly expanding field and much more 

work remains to be done to fully understand how exactly p53 behaves in various 

contexts. Coding region variants of p53 can be used as tools to further dissect such 

mechanisms and enable us to develop a broader understanding of how p53 functions. 

This thesis provides deeper insight on how the S47 SNP of TP53 regulates metabolism 

and ferroptosis.  

 

In our first study, we sought to characterize the metabolic phenotype that we had 

observed in the S47 mouse. I was able to demonstrate the following: 

 

1. S47 cells and tissues exhibit increased mTOR activity compared to the WT 

counterpart, as determined by assessing levels of mTOR markers using Western 

blot and immunohistochemistry.  
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2. S47 cells show higher rates of cellular metabolism, as demonstrated through 

Seahorse assays assessing cellular respiration and glycolysis, as well as 

analysis of metabolites using the YSI analyzer.  

 

3. The increased mTOR activity in S47 cells can be attributed to greater interaction 

between mTOR and Rheb, resulting from a decreased interaction between 

GAPDH and Rheb. This was validated by performing both proximity ligation 

assays and co-immunoprecipitation assays. 

 

4. The altered mTOR-Rheb binding observed in S47 ultimately stems from the 

altered redox state present in S47 cells. The conformation of GAPDH is altered in 

S47 cells due to elevated glutathione levels, thus impairing the GAPDH-Rheb 

interaction. We were able to show that manipulating levels of glutathione could 

alter the GAPDH-Rheb interaction.  

 

5. S47 mice possess greater metabolic efficiency compared to WT mice. In both 

comprehensive lab animal monitoring studies and treadmill studies, S47 mice 

demonstrated greater metabolic resilience.  

 

Taken together, this study shows how a single amino acid change in p53 can lead to 

a profound change in various metabolic processes. Our work elegantly connects the 

mTOR pathway, p53 and the role of redox state together, and provides a unique lens to 

think about the interplay between these various pathways.  
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 We next sought to use the S47 variant as a tool to unearth novel p53 target 

genes that could play a role in mediating ferroptosis. In our second study, I identified 

PLTP as a p53 target gene that appears to mediate ferroptosis resistance and 

demonstrated the following: 

 

1. PLTP is expressed at much lower levels in S47 compared to WT. I validated this 

through multiple methods assessing expression on the mRNA, protein and tissue 

level.  

 

2.  p53 regulates the expression of PLTP in HepG2 cells. By generating a p53 null 

cell line, I was able to validate that PLTP is expressed in a p53 dependent 

manner. 

 
3. PLTP promotes ferroptosis resistance. After silencing PLTP, I found increased 

sensitivity to RSL3-induced cell death and increased levels of lipid peroxidation. 

Consistent with this finding, overexpressing PLTP led to decreased sensitivity to 

RSL-induced cell death and decreased levels of lipid peroxidation.  

 
4. The RSL3-induced cell death that is observed is ferroptosis specific. This was 

validated by using ferroptosis specific rescue agents, as well as observing no 

significant differences in viability after treatment with many other 

chemotherapeutic agents. 

 
5. PLTP protects cells from ferroptosis by enhancing lipid storage. We found that 

PLTP contributed to increased levels of lipid droplets and also had overall 
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increased levels of lipid droplets after treatment with RSL3. This suggests that 

PLTP is sequestering lipids away from the cell membrane, leaving less lipids 

available to undergo peroxidation.  

 

This study identifies PLTP as a novel p53 target gene that plays a role in regulating 

ferroptosis and adds to the growing body of literature on the perplexing role of p53 in 

ferroptosis. The exact role of p53 in mediating ferroptosis remains inconclusive, as it 

promotes ferroptosis in certain situations and prevents ferroptosis in other situations. 

However, what is clear from both studies presented in this dissertation is that the 

function of p53 appears to be very context specific. Several factors such as type of 

stress, duration of stress, location of the stress, and other parameters all contribute to 

the response p53 elicits.  

 

4.2 Outstanding questions regarding p53, S47, mTOR, ferroptosis and tumor 
suppression 
 

There are many remaining questions with regard to the S47 variant. One major 

point of future investigation regards the impact of this genetic variant on glucose 

metabolism. A difference that was observed but not further pursued is that the GLUT 

family of glucose transporters are expressed at much lower levels in S47 compared to 

WT. It is known that p53 downregulates the expression of GLUT1 and GLUT4 

(Schwartzenberg-Bar-Yoseph et al., 2004), which would result in less available glucose 

in a cancer cell that could be used for other anabolic processes. Our data suggest S47 

cells consume more glucose, yet we have observed that various members of the GLUT 
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family, including GLUT 1, GLUT3, GLUT4 and GLUT5, are expressed at much lower 

levels in S47 tissues compared to WT. This raises the question, how exactly are S47 

cells importing this excess glucose? It suggests that the S47 cells are likely utilizing 

other pathways to modulate glucose uptake and usage. Moreover, one might have 

hypothesized that increased glucose consumption would result in larger cells or 

increased rates of proliferation in S47. However, we have not observed any changes in 

proliferation rate or cell size in S47 MEFs or lymphoblastoid cells, compared to WT, in 

vitro. That being said, we have noted increased Ki-67 staining in tumors containing the 

S47 variant, compared to WT (Barnoud et al., 2018).  Additionally, Ki-67 staining in small 

intestine and skeletal tissue appears to be increased in S47 mouse tissues (K. 

Gnanapradeepan, unpublished results).  It is also worthwhile to note that the ferroptotic 

defect in S47 contributes to iron accumulation in macrophages and the spleen, however 

no major differences are observed in tissues such as the liver. These data reinforce our 

findings that the phenotype of the S47 variant appears to be restricted to certain tissues.  

Another unresolved question is the basis for the tissue-restricted increase in 

mTOR activity that we observed in S47 tissues, in spite of the fact that we found 

evidence for increased levels of reduced glutathione in multiple tissues of the S47 

mouse.  For example, we were unable to detect significant changes in levels of mTOR 

markers when comparing S47 liver to WT liver, however S47 liver does exhibit higher 

levels of glutathione (Leu et al., 2019). These data suggest that there are other 

pathways that are likely contributing to the increased mTOR phenotype aside from the 

mTOR-Rheb-GAPDH interaction that we described, and more work remains to be done 

in this area.  
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We have identified the regulation of glutathione synthesis, and the consequent 

regulation of cellular redox state, on the regulation of mTOR.  Two obvious avenues 

stem from this area.  The first involves the potential for redox regulation of other 

enzymes in metabolism.  Indeed, our collaborators have identified at least two other key 

metabolic enzymes, PKM2 and G6PDH, as redox sensitive proteins that also show 

altered regulation in S47 cells (Leu et al., 2020). It is likely that there are several other 

redox sensitive proteins impacted in S47 cells, thereby affecting several other processes 

beyond what is normally regulated by p53.  

A second area for future analysis is the potential contribution of enhanced mTOR 

activity to the increased cancer risk, and resistance to ferroptosis in S47 mice and 

humans.  Whereas the contribution of increased mTOR activity to cancer risk in S47 

humans remains to be determined, there are data supporting increased mTOR activity in 

ferroptosis resistance.  For example, Yi et al. found that oncogenic activation of the 

PI3K-AKT-mTORC1 signaling axis causes ferroptosis resistance (Yi et al., 2020).  The 

authors found that cancer cells containing mutations in the PI3K-AKT-mTORC1 pathway 

were far more resistant to cell death by RSL3. Interestingly, these cells were sensitized 

to cell death by RSL3 when treated concurrently with mTOR inhibitors such as 

Temsirolimus and Torin1.  The authors went on to show that this ultimately stems from 

mTORC1 activating the master regulator of lipid metabolism, SREBP1, which then goes 

on to upregulate the expression of SCD1, a gene implicated in mediating ferroptosis 

resistance. Pharmacological and genetic inhibition of both SREBP1 and SCD1 resulted 

in increasing ferroptosis sensitivity in cancer cells harboring the PI3K-AKT-mTOR 

mutation. The authors demonstrated how the synergistic effects of combining ferroptotic 

induction with mTOR inhibition can significantly reduce tumor formation in vivo (Yi et al., 
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2020). This study highlights how inducing ferroptosis can serve as a promising 

therapeutic approach for cancers that possess specific genetic backgrounds.  

This study connects lipid metabolism to the mTOR/ferroptosis phenotype and 

highlights how these pathways appear to be intricately connected. The data presented 

corroborate a previous study that also demonstrated elevated mTOR activity suppresses 

ferroptosis in cardiomyocytes (Baba et al., 2018). Knowing that S47 exhibits elevated 

mTORC1 activity, impaired ferroptosis and altered expression of lipid metabolism genes, 

it would be worthwhile to explore if and how these various pathways are interconnected. 

For example, it would be interesting to determine if the elevated mTOR activity observed 

in S47 is directly responsible for the ferroptosis defect. To assess this, one could first 

treat S47 cells with mTOR inhibitors such as Temsirolimus or Torin1, and then 

determine if ferroptosis sensitivity is affected in S47 cells. If this looks promising, the 

next logical step would be to assess the impact off this combined therapy in vivo. A key 

experiment would be to treat S47 mice with a ferroptosis inducer such as imidazole 

ketone erastin (IKE), and with an mTOR inhibitor such as Temsirolimus or Torin1 and 

see if this combined therapy significantly reduces tumor formation.  

There is also therapeutic potential for combined therapy with mTORC1 inhibitors 

and inhibitors of glutathione. A study published by Li et al. demonstrated that combining 

inhibitors of mTORC1 and glutamate cysteine ligase (GCLC), the rate limiting enzyme in 

glutathione synthesis, can enhance cell death in cells with high mTORC1 activity. The 

authors created mTORC1 driven tumor cells by generating mouse embryonic fibroblasts 

null for Tsc2, a negative regulator of the mTOR pathway. When mTORC1 is hyperactive, 

the authors found increased levels of antioxidants such as NADPH and glutathione. 

Interestingly, the authors discovered treating cells with rapamycin decreases overall 
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glutathione content in addition to decreasing mTOR activity. In vivo, it was found that 

using nontoxic doses of BSO, an inhibitor of GSH synthesis, with rapamycin promotes 

significant tumor regression in Tsc2-deficient xenograft models (Li et al., 2016). As 

described in Chapter 2, the S47 variant has higher mTOR activity and higher glutathione 

levels, thus it would be worthwhile to treat S47 mice with an inhibitor of glutathione such 

as BSO or DEM in conjunction with rapamycin.  

In conclusion, there are several opportunities for further exploration harnessing 

the mTOR, ferroptosis, metabolism and redox phenotype observed in the S47 variant. 

The following experiments are ways to exploit the unique differences observed in the 

S47 variant, and determine if manipulating these factors can reduce cancer risk in vivo: 

 

1. Treat S47 mice with reagents that deplete glutathione levels such as DEM and 

BSO. 

2. Treat S47 mice with mTOR inhibitors such as rapamycin, Temsirolimus and 

Torin1. 

3. Treat S47 mice with a combination of the aforementioned mTOR inhibitors and 

glutathione inhibitors, such as BSO.  

4. Treat S47 mice with a combination of the aforementioned mTOR inhibitors and 

ferroptosis inducers, such as imidazole ketone erastin. 

 

The ultimate goal of studying the S47 variant is to develop better therapeutic options for 

patients who carry this allele. To that end, our lab has identified cisplatin and BET 

inhibitors as two classes of drugs that have superior efficacy on S47 tumors compared to 
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WT tumors (Barnoud et al., 2018). S47 tumor cells have also shown preferential 

sensitivity to the glycolytic poison 2-deoxy-glucose (Barnoud et al., 2019). Much of the 

data presented and discussed are taken from cells and mouse experiments, thus it is of 

utmost importance to gather more genetic data from human studies with patients 

carrying this S47 variant. Doing so will enable a better understanding of the phenotype 

and provide opportunity for improved personalized medicine approaches.  
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