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ABSTRACT 
AN OXIDATIVE STRESS RESPONSE MECHANISM BY THE VIBRIO CHOLERAE ARCAB 

TWO-COMPONENT SYSTEM  

Yitian Zhou 

Jun Zhu 

Vibrio cholerae, the causative agent of the infectious disease, cholera, is a water-borne pathogen 

with a dynamic lifestyle across physical environments of different oxygen levels with various 

sources of oxidative stress. The anaerobic respiratory control (ArcB/A) two-component system is 

a global regulator that facilitates the transition between different electron transport strategies with 

respect to the redox environment. Upon sensing a more anoxic quinone pool at the inner 

membrane, the histidine kinase ArcB activates the response regulator ArcA’s regulatory functions 

by phosphorylation. ArcA has been reported in Escherichia coli and Salmonella enterica to be 

important for oxidative stress resistance, yet the mechanism through which ArcA respond to this 

stress is unknown. Here we report ArcA’s regulatory functions being partially retained in V. 

cholerae upon oxidative stress. This additional redox-sensing under oxidative stress is dependent 

on a cysteine residue, C173, in ArcA’s C-terminal DNA-binding domain. C173 is crucial in 

sustaining in vitro oxidative stress challenges and during colonization of mouse intestines. 

Phosphorylation state analysis indicates that ArcA phosphorylation is compromised when V. 

cholerae is challenged by oxidative stress. In vitro biochemical assays reveal that C173-

dependent oxidation initiates ArcA binding to DNA containing an ArcA-binding motif. C173-

dependent oxidation also promotes ArcA-ArcA interaction, similar to the effect from a 

microaerobic induction of ArcA. ArcA C173 is conserved in various Gram-negative pathogens. In 

vitro oxidative stress challenges and human intestinal epithelial cell invasion experiments with S. 

enterica further underscore the importance of ArcA C173 for bacterial survival. This work 

uncovers a new post-translational modification, oxidation, in addition to phosphorylation, that 

serves as an activating signal for ArcA. The redox response from ArcA couples a stress response 

to other ArcA-mediated transitions for an adaptation to a new environment, demonstrating the 

intricacy of bacterial stress responses and their close association to basic energy metabolism.  
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CHAPTER 1: Introduction 
Vibrio cholerae is a facultative anaerobic motile gram-negative bacterium, the causative agent of 

the infectious disease, cholera. Many aquatic environments with a relatively warm temperature 

above 15 ºC are suitable V. cholerae habitats1,2. Virulent V. cholerae infect mammalian hosts via 

the fecal-oral route. When a human host consumes food or water contaminated by the virulent V. 

cholerae, the pathogen occupies the intestinal tract by colonizing and penetrating the mucosal 

layer that covers the villi. Upon colonization, V. cholerae produces virulence factors, toxin co-

regulated pili (TCP) and the cholera toxin (CT). TCP facilitates the aggregation of bacteria and 

the tethering of cells to the host intestinal mucus layer as microcolonies that help combat the 

shearing forces of peristalsis in the small intestine and improve colonization. CT is a secreted AB5 

multi-unit toxin. The pentameric subunit B binds to the enterocytes, that leads to endocytosis of 

the toxin, upon which subunit A becomes active and catalyzes the ADP-ribosylation of the host G 

protein. This in turn retains the G protein in a constant GTP-bound form, causing continual 

adenylyl cyclase activity and cAMP production in the host. The elevated cAMP levels inhibit 

sodium chloride absorption, promote chloride and bicarbonate secretion, and activate the cystic 

fibrosis transmembrane conductance regulator (CFTR) 3. These events cause an extensive efflux 

of electrolytes and fluid from infected enterocytes, leading to diarrhea, which allows V. cholerae to 

exit the host and return to an aquatic environment.  

V. cholerae gene regulation as seen in V. cholerae virulence regulation 

As V. cholerae transition between very different physical environments, cellular processes and 

stress responses optimized for respective environments are dynamically regulated by many 

regulators. The network of regulators that modulate V. cholerae virulence demonstrates how 

environmental cues inform V. cholerae lifestyle decisions for optimal fitness.  

 

To reach the primary colonization site, the small intestine, V. cholerae needs to endure the acid 

stress in the stomach and transition to a less oxygenated environment compared to aquatic 

reservoirs. Host signals reflecting this transition, such as changes in bile salt concentration 4,5, pH 
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6,7, unsaturated fatty acids 8,9, bicarbonate 10, iron concentration 11,12, and oxygen levels 6, 

collectively inform V. cholerae virulence regulation (Fig. 1).  

 

Figure 1: Signaling network of V. cholerae virulence regulation 

A simplified schematic of V. cholerae virulence regulatory network. Green signals have a net stimulating effect on 
virulence; red signals have a net repressive effect on virulence. Relationships indicated can be direct or via intermediate 
factors not shown. 

 

The membrane-bound transcription factor ToxR senses pH and bile salts that change its 

interaction dynamics with its stabilizing protein ToxS 7. In an acidic pH environment or in the 

presence of bile salts, enhanced ToxR-ToxS interaction activates ToxR regulatory functions, 

facilitating an outer membrane porin composition for organic acid resistance while turning on the 

virulence activator gene toxT 13–16. Another membrane-bound virulence activator TcpP, upon 

exposure to the bile salt taurocholate, transitions from a monomeric state to a transcriptionally 

active dimeric form with an intermolecular disulfide bond 17. Similar to ToxS stabilizing ToxR, 

TcpH, encoded in the same operon as tcpP, provides protection against proteolysis for TcpP 18,19. 

Activated by host signals, ToxR and TcpP collectively bind to the promoter region of toxT to 

initiate the transcription of the cytosolic master virulence activator, ToxT 20–22. ToxT in turn enters 
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a positive feedback loop where it promotes its own expression all the while activating the 

expression of ctxAB and tcpA, which encode the two major virulence factors, CT and TCP, 

respectively. Further upstream in the regulatory cascade are cytosolic regulators AphB and AphA, 

which activate the transcription of the tcpPH operon collaboratively 23.  

 

To activate tcpPH expression, AphB requires both low pH and low oxygen concentrations as 

stimulating inputs 24. AphB is transcriptionally inactive at alkaline pH sensed by key residues in its 

ligand-binding pocket 25. At low pH, AphB becomes active and also activates the expression of 

cadC, which encodes an activator for the lysine decarboxylation machinery that consumes 

protons to increase the cellular pH for acid tolerance 6. Oxygen levels are sensed by AphB 

through the oxidation state of a cysteine residue, C235, in the C-terminal regulatory domain. 

Oxidation at C235 prevents AphB oligomerization, while a more anoxic environment leads to the 

reduction of this cysteine residue, facilitating AphB oligomerization necessary for tcpPH 

transcription 24. Therefore, AphB ensures that virulence is only turned on when the bacteria have 

survived the acid barrier in the stomach and reached the microaerobic environment of the small 

intestine. To activate tcpPH expression, AphB binds cooperatively with AphA at the tcpPH 

promoter 23,26.  Since the expression of aphA is repressed by the quorum sensing regulator HapR 

27, AphA serves as an indirect cell density sensor for virulence activation. At low cell densities, 

AphA levels are high, promoting virulence production; at high cell densities, AphA levels are 

reduced due to increased levels of HapR, therefore contributing to the inverse relationship 

between V. cholerae virulence and quorum sensing response.  

 

Another regulator at the tcpPH promoter is cAMP-CRP 28, which inhibits the transcription of tcpPH 

when intracellular cyclic adenosine monophosphate (cAMP) is abundant. Envelope stress, 

usually signaled by a lack of environmental iron or efflux components, alters carbon uptake and 

utilization 11, increasing levels of intracellular cAMP that enhances the cAMP-CRP interaction. 

The resulting complex binds to the tcpPH promoter as a repressor 12. Virulence repression 
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facilitated by cAMP-CRP allows for the prioritization of external stresses such as envelope stress 

or a lack of a preferred carbon source over virulence induction. 

 

While high concentrations of bicarbonate in the upper small intestine enhance the activity of the 

virulence master activator ToxT 29, its proteolysis marks the termination of V. cholerae virulence 

30. Prior to exiting the host as V. cholerae reaches the lower intestines, the extracellular 

environment shifts from virulence-inducing to virulence-repressing due to increased pH and 

temperature, thereby breaking the ToxT-autoregulatory loop via degradation of ToxT.  

By monitoring the extracellular pH, oxygen tension and host signals such as bile salts and 

bicarbonate, V. cholerae strategically turns on virulence only when the external signals indicate 

its presence at the primary colonization site.  

 

The complex network of regulators for V. cholerae virulence illustrates the diverse measures of V. 

cholerae gene regulation in response to environmental inputs. Since running unnecessary or 

inappropriate programs is wasteful and harms the fitness of the bacteria, improper regulation 

often results in a fitness disadvantage compared to better adapted competitors. Besides virulence 

regulation, the modulation of other metabolic processes in V. cholerae also rely on regulators that 

promptly perceive external environmental cues and respond by assembling specific machineries 

to address the specific scenario.  

V. cholerae two-component systems and the Arc two-component system 

When living in the aquatic environment, V. cholerae also need constant attendance to the 

numerous stresses no less stressful than those from a host. These adversities include nutrient 

scarcity, fluctuations of temperature and salinity, antibiotics secreted by other aquatic bacteria, 

and predatory behaviors such as protozoan grazing and vibriophage infections 31–34. Some 

environmental V. cholerae may enter a metabolically quiescent state that is “viable but non-

culturable” (VBNC) under stress. This dormant state might serve similar functions as do spores 

formed by spore-forming bacteria that allow the bacteria to persist until they can resume normal 
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metabolism when the situation permits. The lifestyle switch between these scenarios is rather 

high-stake as they often require global reconfiguration of multiple metabolic processes in a 

synchronized manner. Therefore, it is crucial for bacteria to correctly situate themselves by 

perceiving external cues, whether they are in or outside of a host. The perception of these signals 

by cellular sensors feed into programmed cellular circuits that yield a response tailored to 

maximize fitness in the environment reflected by those signals.  

 

Two-component systems (TCSs) are used by V. cholerae and many other bacterial pathogens to 

perceive and respond to the environmental signals. In fact, TCSs are utilized by organisms 

across all kingdoms to modulate biological activities according to the perceived environment 35. A 

bacterial TCS consists of two modular components: the membrane bound sensor histidine kinase 

(HK) that senses the external stimuli, and the cytosolic response regulator (RR) that responds to 

the message conveyed by the HK and performs regulatory functions, often transcriptionally. The 

chemical language used between the HK and the RR is phosphorylation. Upon encountering a 

positive signal through its sensing domain, the HK activates its ATPase activity, hydrolyzes the  

phosphate from an ATP and autophosphorylates on a histidine residue. When the phosphoryl 

group is subsequently transferred to an aspartate residue on the RR, the RR becomes active and 

produces a regulatory output, most often in the form of transcriptional regulation of genes in its 

regulon with the phosphorylation-dependent RR-promoter interaction dynamics.  

 

V. cholerae encodes 52 RRs 36, many of which are involved in lifestyle switches in response to 

stressors. The PhoR/B TCS monitors periplasmic orthophosphate levels to facilitate 

dissemination at low phosphate concentrations 37. The VprB/A TCS responds to host signals such 

as bile, acidic pH, and cationic antimicrobial peptides, and facilitates lipid A glycine modification to 

evade host immune response38. The CpxA/R TCS, triggered by envelope stress signaled by low 

extracellular iron or high extracellular chloride or copper 11,12,39, represses virulence and promotes 

efflux pump production to disgorge the stressor compounds  11,12,40.  
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The archetype of a TCS is a one-HK-one-RR pair which forms an exclusive one-to-one signaling 

pathway where the HK and RR are each phosphorylated and dephosphorylated sequentially. The 

specificity-determining residues in the HKs create subtle distinctions that minimize cross talks 

between different TCSs 41,42.  Nevertheless, there are many variations of the archetypical TCS 

architecture.  

 

The V. cholerae VieSAB three-component system that modulate cellular c-di-GMP level, and 

therefore biofilm formation, is an example of a TCS variation with a built-in negative feedback by 

the third component. The vieSAB operon, repressed by the global repressor H-NS as well as the 

quorum sensing regulator HapR 43, encodes the HK VieS, the RR VieA, and a third component, 

VieB 44,45. The VieS/A HK-RR pair, when activated by signals from the host environment such as 

contact to intestinal epithelial cells 46, positively regulate the expression of the vieSAB operon and 

toxT. The RR VieA, in addition to the N-terminal phosphorylation receiver domain and the C-

terminal DNA-binding domain, has a EAL domain that hydrolyzes c-di-GMP, which in itself is 

necessary and sufficient in inducing toxT expression when cells are adhered to the host 

epithelium 46,47. Therefore, phosphorylated VieA relays the host environment signal to coordinate 

two negatively associated cellular processes, enhancing pathogenesis while intervening biofilm 

maintenance. Consistent to its repressive effect on biofilm, the VieSAB system also contributes to 

promoting motility and flagellar synthesis 48,49. The third component, VieB contains the conserved 

aspartate residue for phosphorylation yet lacks a DNA binding domain. Instead, it contains a 

structural motif that facilitate protein interactions. VieB binds to VieS and inhibits 

autophosphorylation of the HK, more efficiently so in its phosphorylated form 50. At high levels of 

transcription of the vieSAB operon, as VieB accumulates, the signal transduction is cut off by 

inhibitory binding of VieB to VieS, resulting in a down regulation of the signal transduction system 

itself and the virulence.  
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Some TCSs combine the signal sensing and transcriptional regulation modules into one protein, 

therefore simplifying into one component. Aquatic V. cholerae is often found to be associated with 

exoskeletons of crustaceans and soft-shelled turtles 51–55. These exoskeletons are rich in chitin, 

which are insoluble N-Acetylglucosamine (GlcNAc, or NAG) polymers. V. cholerae ChiS is an 

inner membrane-bound hybrid HK that monitors the oligosaccharide (GlcNAc)2 that become more 

abundant in the periplasm when chitin is present in the extracellular environment 56. When chitin 

is broken down into oligosaccharides such as (GlcNAc)2 by secreted chitinases, these 

oligosaccharides enter the periplasmic space through outer membrane-bound porins such as 

chitoporins. Here, they are bound to chitin oligosaccharide-binding proteins (CBPs) that escort 

them to inner membrane-bound ABC type permeases for further import. Upon binding to 

(GlcNac)2, CBPs are liberated from ChiS. In this CBP-free state, ChiS can change its own 

phosphorylation status by acting as a kinase or as a phosphatase 57. Counter to the traditional 

TCS RR being regulatory active in the phosphorylated form, unphosphorylated ChiS activates the 

expression of the chitin utilization pathway genes by recruiting RNA polymerase through direct 

contact 56,58. As a result, extracellular chitin detected by the HK ChiS, can be used as the sole 

source of carbon and nitrogen 57–59.  

 

A phosphorelay is a variation of the archetypical TCS with additional phosphotransfer steps in 

between. In a phosphorelay, the HK and its cognate RR are still the start and the end of the 

phosphotransfer that activates the TCS, but the phosphoryl group is transitioned from the initial 

histidine on the HK to an aspartate on a RR-like shuttle domain. From there, it is subsequently 

transferred to another histidine phosphotransfer (Hpt) domain before eventually reaching the 

aspartate residue on the response regulator. The two additional domains, the RR-like shuttle 

domain and the Hpt domain, can either exist as part of the HK itself, making it a hybrid HK, or on 

their own as separate phosphotransfer shuttle proteins. The multistep relay gives rise to the 

potential problem of signal shutdown due to transferring of the phosphoryl group from the shuttle 
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aspartate to an incorrect histidine residue in the line, but it also gives more regulation 

opportunities in the signaling pathway.  

 

The anoxic redox control, or the aerobic respiratory control (ArcB/A) two-component system is a 

phosphorelay in many Gram-negative facultative bacteria that regulates the transitions between 

different electron transport strategies with respect to the redox environment 60–62 (Fig. 2). As 

demonstrated in E. coli, the HK ArcB, located at the inner membrane (IM), directly monitors the 

redox state of menaquinone and ubiquinone dissolved within the lipid bilayer of the IM and 

autophosphorylates upon sensing a more reduced quinone pool 60(p),62,63. Under reducing 

conditions, both of ArcB’s cytosolic cysteine residues proximal to the IM are in the reduced state, 

activating ArcB kinase activities to autophosphorylate on His 292. The phosphoryl group is 

subsequently relayed on the Asp576 and His717 on ArcB before eventually phosphorylating Asp54 

on ArcA, activating the response regulator. Upon phosphorylation, ArcA becomes active and 

regulates the expression of genes in the ArcA regulon 61,62, facilitating the transition from an 

aerobic to a more anaerobic lifestyle. Upon oxidizing conditions, the quinone pool oxidizes 

rapidly, inactivating ArcB’s kinase activity by forming intermolecular disulfide bonds between ArcB 

cysteine residues 61,63. At this point, the unphosphorylated ArcB turns into a phosphatase that 

dephosphorylates ArcA, inactivating the regulatory functions of ArcA. This bidirectional regulation 

of ArcA by ArcB through different phosphorylation states allows prompt signal transduction that 

most accurately reflects the extracellular redox environment, thus facilitating a precise and 

suitable choice between metabolism modes. Although these Arc TCS observations have not been 

made specifically in V. cholerae, and the V. cholerae ArcB only has one of the two cytosolic 

cysteine residues important for modulating kinase and phosphatase activities in the E. coli ArcB, 

the otherwise high homology between the V. cholerae and E. coli Arc proteins suggests possible 

similar oxygen sensing mechanisms.  
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Figure 2: The Arc two-component system 

A simplified pictorial view of the activation of the Arc TCS by a less oxygenated extracellular environment. The inner-
membrane-bound histidine kinase ArcB autophosphorylates at H292 upon sensing a more reducing quinone pool. The 
phosphoryl group is relayed within ArcB in a H292-D576-H717 direction before phosphorylating the aspartate residue in 
the receiver domain of the response regulator ArcA. When phosphorylated, ArcA is activated for DNA-binding and 
regulation of the genes in the ArcA regulon. 

 

While V. cholerae can survive a wide spectrum of oxygen levels, from fully aerobic to completely 

anaerobic, the differences on the proteomic level between V. cholerae under aerobiosis and 

anaerobiosis have revealed drastically different metabolic needs under these respective 

conditions 64. For aerobic respiration, V. cholerae has three terminal oxidases, cbb3-oxidase, bd-

oxidase I, and bd-oxidase II, that transport electrons from the quinol to O2. When oxygen is not 

available, V. cholerae can perform anaerobic respiration using alternative terminal electron 

acceptors TMAO, fumarate, biotin sulfoxide (BSO), DMSO, or nitrate. The fumarate and nitrate 

reduction regulatory protein (Fnr) upregulates enzymes in the utilization pathways for alternative 

electron acceptors for anaerobic respiration. Although not specifically studied in V. cholerae, V. 

cholerae and E. coli Fnr homologs are 85.83% identical, suggesting possible function similarity. 

Unlike Fnr, the Arc TCS when activated transcriptionally represses carbon oxidation pathways 

that recycle redox carriers via respiration and drives the cell into using pathways that recycle 

redox carriers via fermentation, mostly by repressing genes in the TCA cycle to minimize the 

generation of NADH and promoting glycolysis to push metabolism toward fermentation 65. V. 

cholerae is capable of fermentation of various carbon sources including glucose, sucrose, 

maltose, mannitol, lactose, dextrin, and starch 66,67. Besides differences in proteins essential for 
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the respective energy metabolism, aerobiosis is associated with more carbohydrate transporters 

while anaerobiosis is associated with more stress response proteins and fewer motility proteins 

such as the flagellin B subunit. Aside from changed amounts and classes of proteins, there are 

also spatial rearrangements of existing proteins in response to oxygen levels. For example, some 

chemotaxis-related proteins localize to polar and lateral membrane regions in microaerobiosis 68. 

The holistic reprograming of cell metabolism involved in lifestyle switches across oxygen levels is 

rather dramatic. The Arc TCS directly regulates 85 and affects the expression of genes from a 

total of 229 operons in E. coli and is predicted to directly regulate 47 operons in V. cholerae 65,69, 

establishing an unequivocable central role for the Arc TCS as a global regulator.  

 

Decreased oxygen level is an important signal to V. cholerae not only because it signifies the 

need for a different collection of proteins but also because it is an activating signal for virulence 

through AphB. Intriguingly, a study by Sengupta and colleagues has suggested that V. cholerae 

ArcA activates the expression of virulence master activator toxT independently of ToxR and TcpP 

in the virulence regulatory network 70. The ArcA-dependent toxT expression is seen in both 

aerobiosis and anaerobiosis but is more pronounced in the latter 70, suggesting an important role 

for ArcA in virulence and colonization under microaerobiosis. 

 

The versatility of TCS-based signaling structures facilitates the sensing and processing of precise 

environmental signals to accurately inform the regulation of cellular processes. The modular 

structure offers many variations in the signaling pathway, providing opportunities for integration 

and coordination of environmental inputs for responses ranging from upregulation of a single 

pathway to holistic whole cell reprograming involving multiple metabolic pathways. 

Phosphorylation states of the components in these systems communicate the sensed signal and 

the extent of response execution. In fact, many other post translational modifications on 

transcriptional regulators are employed in regulating bacterial metabolic processes and stress 

responses, as seen in the case of oxidation-mediated regulation in bacterial ROS resistance.  



 
 

11 

V. cholerae ROS resistance thiol-based regulators  

V. cholerae encounters unique challenges in the aquatic environment and in the host, but some 

stressors are present in both. Among these ubiquitous stressors are reactive oxygen species 

(ROS), oxygen containing molecules that are highly reactive due to their unpaired electron. In the 

environment, exogenous ROS sources include other microbes co-inhabiting a niche 71–73 or 

completely non-biological processes such as photochemical reactions 74,75. In a host, ROS are 

produced by neutrophils, macrophages, and epithelial cells that use NADPH oxidases to reduce 

oxygen to superoxide anions and hydrogen peroxide 72. ROS can be non-radicals, such as 

hydrogen peroxide and superoxide, or more reactive and damaging radicals, such as the hydroxyl 

radical, superoxide anion, and singlet oxygen that can be generated by non-radical species in the 

presence of transition metals such as iron and copper through Fenton chemistry. To avoid the 

Fenton reaction, V. cholerae iron uptake is tightly regulated to ensure sufficient iron for normal 

functions of iron-requiring proteins while avoiding reactive species damage 76. Less prevalent but 

equally damaging are other classes of reactive molecules that damage cellular targets in 

manners similar to ROS. These species include reactive nitrogen species (RNS) generated from 

nitrogen metabolism; reactive electrophile species (RES) generated from quinones and 

aldehydes; and hypochloric acid (HOCl) generated by host myeloperoxidase in the presence of 

H2O2 and Cl- 77. 

 

Due to their reactive nature, ROS cause oxidative damage to lipids, nucleic acids, and proteins. 

Upon peroxidation, lipids, which are fundamental to cell membranes, degrade into cytotoxic 

aldehydes and hydrocarbons 78. When in contact with nucleic acids, ROS can act on the sugar 

backbone, leading to single-strand breakage, or on the nucleobases, resulting in base 

degradation and the generation of free radicals that lead to DNA-protein cross-links 79–81. Some of 

these damages can be amended by DNA repair enzymes such as those recruited in the SOS 

repair response 82,83, but the low fidelity of SOS polymerases such as DinB can cause mutations 

with major consequences 84. In addition to the unintended cross-linking to DNA, proteins upon 

oxidative modification on amenable residues are subject to fragmentation, altered electrical 
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charges, and conformational changes 85,86. Thus, in contrast to other stressors like nutrient 

scarcity and antibiotics, which only target specific metabolic processes and only act on actively 

metabolizing cells, reactive species attack both the blueprint and the building blocks of life, 

regardless of the metabolic state of the cells. This poses tremendous challenges for all living 

organisms. Despite self-harming consequences such as cancer 87, host cells use ROS as an 

effective weapon to eliminate pathogens. 

 

To cope with this common stress, V. cholerae encode many mitigating enzymes targeting 

different ROS (Fig. 2). Superoxide dismutases such as the manganese-binding SodA convert 

superoxide into hydrogen peroxide and oxygen 88. Catalases such as KatB and KatG detoxify 

peroxides into water and oxygen 89. Peroxiredoxins such as PrxA and AphC target organic (alkyl) 

hydroperoxides 90. DNA-binding proteins from starve cells (DPS) physically bind to DNA and 

sequester free iron to prevent ROS damage 88. The virulence regulator ToxR, activated by the 

host environment, promotes a proper intracellular manganese level for ROS resistance 91. V. 

cholerae even resorts to elevating mutation frequencies to diversify and enrich ROS resistance 

enhancing phenotypes, such as increased catalase and Vibrio polysaccharide production 92.  

 

Although protein oxidation is generally undesirable as it often leads to misfolding or aggregation 

followed by removal and degradation, bacteria utilize oxidizable cysteine residues for protein 

functions 93. Cysteine has a highly nucleophilic thiol side chain that tends to donate electrons, 

especially to other sulfhydryl groups, to form a disulfide bond. Making up only 1.3% of all reported 

proteins in the UniProt database, cysteine is a low occurrence residue commonly reserved only 

for its irreplaceable functions. For example, all V. cholerae c-type cytochromes rely on correct 

disulfide bond formation between their cysteine residues for maturation and heme-interaction 94. 

In the case of heme nitric oxide/oxygen-binding (H-NOX) proteins, oxidation induces a 

conformational change through heme dissociation or disulfide bond formation at a zinc-binding 

motif encompassing four cysteine residues 95. The resulting H-NOX binds to the HK in the 
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HnoK/B TCS, shutting down its kinase activity 96. The RR HnoB contains an EAL domain that 

hydrolyzes c-di-GMP when phosphorylated, decreasing the positive signal for biofilm formation 97. 

Therefore, the presence of oxidants causes H-NOX to inhibit the HnoK/B TCS, enhancing biofilm 

development.    

 

Furthermore, reversible oxidation at cysteine residues is utilized to regulate redox stress 

response genes on a transcriptional level 98–100. V. cholerae utilizes thiol-based transcription 

switches to adapt to different redox environments and their respective oxidative stress. As 

described previously, the AphB microaerobiosis induction of virulence is contingent on reduced 

C235 24. In fact, the non-redox sensing aphB mutant strain-with C235 mutated to a serine-is more 

susceptible to ROS 101. AphB works closely with OhrR, another thiol-based transcription regulator 

that responds to redox changes sensed by its C23 and C128, in activating the transcription of the 

organic hydroperoxidase OhrA 101. Oxidized OhrR falls off of the promoter of ohrA faster than 

oxidized AphB, derepressing the ROS resistance gene sequentially in regard to the amount of 

ROS present. Therefore, ohrA is transcribed as demanded by the severity of the imminent 

oxidative stress. Furthermore, the AphB OhrR duo exhibit the same differential kinetics when 

regulating the expression of the virulence regulator tcpP. Similar to C235 on AphB, C23 and 

C128 on OhrR in their reduced forms facilitate OhrR binding to the tcpP promoter, activating the 

transcription of the virulence activator. With multiple redox-sensing regulators, one responding 

more rapidly than the other, V. cholerae ensures a prudent initiation of virulence in a new redox 

environment 102.  
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Figure 3: Thiol-based regulation of V. cholerae ROS resistance  

A simplified schematic of the V. cholerae ROS regulatory network when challenged by ROS, with the transcriptional 
regulators in orange and the ROS resistance proteins in green. Extracellular ROS exposure reversibly oxidizes the thiols 
on cysteine residues in the thiol-based transcriptional regulators, activating their regulatory behaviors that result in the 
production of ROS resistance proteins, conferring ROS resistance. When oxidative stress is alleviated, reflected by 
reduced thiols on the regulator proteins, the transcriptional activation on the stress response proteins also pauses. 
Relationships indicated can be direct or via intermediate factors not shown. 

 

Besides OhrA, many other major ROS resistance enzymes are specifically upregulated upon 

ROS exposure, which is detected by the ROS-sensing regulators OxyR1 and OxyR2 88,90. Upon 

oxidation, sulfenation at the conserved cysteine residue Cys199 on the E. coli OxyR is critical for 

activating its regulatory functions 103,104. Two homologs of the E. coli OxyR, OxyR1 and OxyR2, 

both with the conserved redox-sensing cysteine residues, exist in the V. cholerae genome. 

OxyR1 responds to hydrogen peroxide and activates the expression of prxA, katB, katG, sodA, 

and dps, all of which contribute to ROS resistance 88. OxyR2 responds to environmental oxidative 

stress and activates the transcription of itself and the divergently transcribed ahpC, both of which 

promote V. cholerae’s transition from the oxygen-limiting gut to an oxygen-rich aquatic 

environment 90. Both OxyR1 and OxyR2 activation rely on the oxidation of the conserved cysteine 

residues equivalent to the E. coli OxyR C199. OxyR’s regulatory function becomes inactive when 

the C199 thiol oxidation is reduced by enzymes in its regulon, forming an autoregulatory negative 

feedback loop. Through the different regulation dynamics of OxyR1 and OxyR2 responding to 
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different oxidants, V. cholerae expresses ROS resistance enzymes adaptively and shut down the 

circuit when the oxidative stress is ameliorated. 

 

V. cholerae stress responses exemplify the diverse strategies for bacterial survival across 

different physical environments. V. cholerae situate themselves by perceiving environmental cues 

that directly describe the circumstance, such as oligosaccharide levels, or resort to signals that 

stably correlate with the condition, such as an elevated bile salt level as a proxy to arrival at a 

colonization site. Following the perception of environmental signals, regulators act to adjust 

cellular functions such that the bacteria is equipped with metabolic machineries optimized for the 

current situation. The result is a streamlined process of stress exposure and stress response. 

Among these, the sensing of redox signals through oxidation states on cysteine thiols is 

especially critical as it modulate very common and dynamic processes. V. cholerae is not unique 

in employing this design in redox sensing, therefore the mechanism of V. cholerae thiol-based 

switches are instructive to a better understanding of bacterial redox sensing in general. There are 

still more thiol-based transcriptional regulators in V. cholerae that can inform us about the many 

events involved in bacterial ROS resistance. A universal stress for all living organisms regardless 

of the metabolic state, ROS is a potent weapon against pathogens with its wide-range damage to 

multiple cell components. More knowledge on bacterial ROS resistance will add to the 

mechanistic underpinning that devise and guide anti-microbial therapies and interventions.  
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CHAPTER 2: The Response Regulator ArcA Contains Redox-Sensing Cysteine 
residues 

Introduction 
Previous work from the Zhu lab on the V. cholerae virulence activator, AphB, which senses 

oxygen levels by C235 in the regulatory domain, demonstrated a thiol-based switch contingent on 

a single cysteine residue105. The reversible oxidation at C235 facilitated oxygen sensing by 

changing AphB oligomerization state, and thus its DNA-binding abilities and regulatory activities. 

This redox sensing is demonstrated to be important for both virulence induction as well as 

resistance to inorganic and organic hydroperoxides in V. cholerae101. 

 

Cysteine is one of the only two sulfur-containing amino acids. Unlike methionine with its sulfur in 

a relatively stable form of sulfide, cysteine contains a sulfhydryl chain, or a free thiol. With their 

highly reactive nucleophilic sulfhydryl side chains, cysteine residues are highly responsive to the 

redox environment and can undergo a number of modifications responding to reactive oxygen or 

nitrogen species and oxidation in general 10698. Most commonly, cysteine sulfhydryl group can be 

reversibly oxidized to sulfenic acids (-SOH), further oxidized to sulfinic acids (-SO2H), or 

irreversibly to sulfonic acids (-SO3H) 99,107. When another sulfhydryl group is in the physical 

proximity, an oxidizing environment facilitates the formation of disulfide bonds. Depending on the 

location of the other cysteine, the disulfide bond can be intra- or intermolecular.  Other post-

translational oxidation on cysteine sulfhydryl side chain also include S-nitrosylation (-SNO) and S-

carbonylation 108,109. 

 

To prevent undue oxidation on cysteine residues, low molecular weight (LMW) thiol and their 

oxidized forms act as redox buffers for the cellular redox environment. Under oxidative stress, 

LMW thiols absorb the impact of an oxidative assault by dimerizing amongst themselves, or by 

forming disulfide bonds with thiol-containing proteins, a cysteine oxidation termed S-thiolation110 . 

The oxidized to reduced LMW thiol ratio increases upon extracellular oxidant exposure. Thiol 

reductases restore the LMW thiols to the reduced state, keeping the cysteine-containing cellular 
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proteins from the first line of oxidation. Glutathione (GSH), a cysteine-containing tripeptide (Glu-

Cys-Gly), together with its oxidized form (GSSG), are used in many organisms including many 

Gram-negative bacteria111. In these GSH/GSSG buffered cells, cysteine containing proteins can 

be glutathionylated. Besides GSH, other LMW thiol buffers are used similarly in other bacteria111. 

Firmicutes such as Bacillus and Staphylococcus produce bacillithiol (BSH), Actinomycetes 

produce mycothiol (MSH), while Archaea and some Gram-positive bacteria use coenzyme A 

(CoASH) as thiol-redox buffers.  

 

The oxidation-dependent thiol group post-translational modifications often lead to an altered 

oligomerization state or conformation of the transcriptional regulator. These changes in turn affect 

the regulator’s regulatory activity, thus modulating the expression of the downstream genes upon 

oxidizing environmental cues, which usually involve adapting the bacterium to lifestyles suitable 

to the new redox environment 112,113. 

 

The MarR family regulator BifR in Burkholderia thailandensis is demonstrated to use an 

intermolecular disulfide bond to change its oligomerization state 114. Upon oxidation, an 

intermolecular disulfide bond forms between two BifR dimers via C104, enhancing the binding of 

BifR to the promoters of the BifR regulon. The enhanced binding further represses the expression 

of genes involved in biofilm formation and phenazine synthesis. For a soil microbe like B. 

thailandensis, it is critical to reserve the biofilm lifestyle to the most appropriate surroundings, and 

phenazine production to only when environmental oxygen is limited. The redox sensing through 

C104 facilitates accurate adaptation that is critical for the fitness of the bacteria.  

 

An intramolecular disulfide bond can form between two cysteine residues on the same regulatory 

protein. In oxidizing conditions, the quorum sensing TCS response regulator, AgrA in the Gram-

positive bacterium Staphylococcus aureus, forms a disulfide bond between C136 and C238 in its 

DNA binding domain115. The formation of the disulfide bond changes the conformation of AgrA, 
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lifting it off of the promoter of the bsaA gene which encodes a glutathione peroxidase. As a result, 

the presence of oxidative stress turned on bacterial resistance to oxidative stress. The intrinsic 

thiol switch in AgrA enables its response to redox signals in addition to the autoinducer peptide-

based quorum sensing signals, demonstrating the versatile and complex nature of two-

component systems and bacterial signal transduction.  

 

Oxidation to sulfenic acid can also change the conformation of a regulator to facilitate 

transcriptional regulation in response oxidation. RitR in Streptococcus pneumoniae, a TCS RR, 

has a cysteine residue (C128) in its linker domain. This redox reactive cysteine residue senses 

the cellular redox state, changing the accessibility of the DNA-binding domain to interact with the 

promoter regions of the RitR regulon116. When C128 is oxidized to the sulfenic (-SOH), sulfinic (-

SO2H), or sulfonic (-SO3H) forms, the linker region undergoes a “helical unravelling” which 

activates RitR. The activated RitR form dimers and the DNA-binding domain is unfolded from the 

regulatory domain to be available for DNA-binding. This results in the repression of genes such 

as piu that activates iron uptake 116,117, as well as the activation of genes that are involved in ROS 

remediation. As a consequence, the oxidative stress triggers the cell to prevent Fenton chemistry 

and to enhance ROS resistance.  

 

Although not a transcriptional regulation as seen in the aforementioned examples, 

glutathionylation (-SG) changing the behavior of a regulator protein is seen with E. coli DnaK. 

DnaK catalyzes ATP hydrolysis and directly interacts with a number of bacterial heat shock 

response regulator proteins 118. Glutathionylation on DnaK’s only cysteine residue (C15) in its 

nucleotide-binding ATPase domain reduces its ATPase activity. Under oxidative stress, the lack 

of available ATP and the decreased ATP hydrolysis activity result in the release of σ32, triggering 

the bacterial heat shock response 119. Although this modulation is on a protein level, S-

glutathionylation on C15 plays a key role in changing the catalytic activity of DnaK, which has a 
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direct impact on the behavior of the transcriptional regulator, σ32. The oxidation of C15 on DnaK 

effectively regulates the heat shock response under oxidative stress. 

 

These examples showed the critical roles cysteine residues play in perceiving redox changes in 

the immediate extracellular environment and relaying these signals to the cell. As a result, the cell 

subsequently undergoes transcriptional reform to adapt to the new environment. As a bacterium 

with a complex life cycle that involves adaptation to different redox environments as well as 

oxidative stress, V. cholerae and its thiol-based switches for transcriptional regulation are 

important subjects in deepening our understanding of bacterial stress responses. The importance 

of the AphB C235 for regulating both virulence and ROS resistance, and the prevalence of thiol-

based regulators in bacterial stress response motivated a proteomic identification of V. cholerae 

reversibly oxidizable cysteine residues. 

Results 

Many V. cholerae proteins contain reversible thiol-oxidation  

To identify more possible thiol-based regulators, we performed a mass spectrometry-based 

proteomic profiling of V. cholerae proteins that contain cysteine residues receptive to reversible 

oxidation modifications. Cells were grown under virulence inducing conditions to the mid-log 

phase when they were challenged by sublethal concentrations of cumene hydroperoxide (CHP), 

an organic peroxide that V. cholerae might encounter in a mammalian gut. The CHP exposure 

allowed for ROS-mediated oxidation on amenable cysteine residues inside of V. cholerae cells. 

The cell lysates were then processed such that the intracellularly oxidized thiols were labeled by 

a 57Da carbamidomethyl group (Fig. 4A). The LC MS/MS result revealed 26 proteins with 37 

unique cysteine residues as labeled. Among these are proteins involved in the translation 

machinery and energy metabolism (Appendix: Table 1). ROS-dependent oxidation on ribosomal 

proteins was previously seen in E. coli 120. Thioredoxin, a major regulator for redox homeostasis, 

was also detected. However, this screen did not identify AphB which contains an oxidizable 

cysteine residue, C235 105. This suggests that this approach, with the growth condition tested, 
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does not exhaustively detect all possible cysteine oxidation. Among the proteins that contain 

reversibly oxidized thiols, we see a transcriptional regulator ArcA, the response regulator of the 

Arc TCS. ArcA is consisted of an N-terminal receiver domain, which contains the highly 

conserved phosphorylation site D54, and a C-terminal DNA-binding domain, which contains two 

cysteine residues C173 and C233. The proteomic profiling revealed both ArcA cysteine residues 

in an oxidized state upon CHP exposure under the virulence inducing growth condition (Fig. 4B 

and Table 1).  

 

Figure 4 Proteomic detection of V. cholerae reversible thiol oxidation 

A. A schematic of the thiol labeling protocol used to detect reversible oxidation on cysteine residues in V. cholerae after 
being challenged by ROS under virulence inducing conditions. Whole cell lysate is treated as shown prior to analysis by 
LC MS/MS to identify reversibly oxidized cysteine residues. B. A spectrum arising from a peptide from ArcA containing 
C173. Evidence for oxidation is observed by the 160 Da difference between species b5, b6 and y5, y6. For reference, the 
monoisotopic mass change for cysteine is 103 Da, and for carbamidomethyl modification, 57 Da.  
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An arcAC233S mutant has similar basic metabolic defects to that of a arcA mutant  

To investigate the roles of ArcA cysteine residues in V. cholerae physiology, we generated a 

arcA mutant (VC2368) by inserting a kanamycin resistance cassette with its own constitutive 

promoter in the opposite orientation of the arcA gene in V. cholerae C6706 (Fig. 5A). For 

complementation, we integrated the arcA gene with its native promoter at the lacZ locus 

(VC2338) on the large chromosome (chromosome I) in a arcA background. To elucidate the role 

of the ArcA cysteine residues, we constructed variants of ArcA with each one or both of its 

cysteine residues mutated to a serine, the amino acid that closest resembles cysteine with an 

oxygen in place of the sulfur atom on the side chain. The hydroxyl side chain is sterically similar 

to the cysteine sulfhydryl albeit insusceptible to the thiol-based oxidation modifications due to the 

lack of the reactive sulfhydryl side chain (Fig. 5A). Similar to the wild type (WT) form of arcA, 

cysteine variants, arcAC173S, arcAC233S, arcAC173SC233S, and the phosphorylation variant arcAD54A, 

where the aspartate at the phosphorylation site is mutated to an unphosphorylatable alanine, 

were introduced to arcA at the chromosomal lacZ locus with the native arcA promoter. A arcB 

mutant (VC2369) was also constructed by inserting a spectinomycin resistance cassette (spc) 

with its own constitutive promoter in the arcB gene (Fig. 5B).  

 

arcA mutants exhibited slower growth in LB with 200rpm aeration and form smaller colonies on 

a 1.5% LB agar plate (Fig. 5C and 5D). While arcAWT and arcAC173S at the lacZ locus 

complemented growth and the small colony phenotype, arcAC233S, arcAC173SC233S, arcAD54A, and 

arcB mutants showed similar growth defects and colony morphologies to arcA mutants (Fig. 

5C and 5D). One of the first characterized phenotypes of a arcA mutant is its sensitivity to 

certain dyes such as toluidine blue (TB) 121. We tested the survival of the aforementioned strains 

on 1.5% LB agar plates containing a final concentration of 1g/ml TB. Consistent with previous 

literature, a arcA mutant is at least 3 logs more sensitive to TB compared to WT (Fig. 5E). 

Again, while arcAWT and arcAC173S at the lacZ locus restored TB survival in  arcA mutants, 

arcAC233S, arcAC173SC233S, arcAD54A, and arcB mutants showed sensitivity to the dye similar to 
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arcA mutants. TB exerts oxidative stress in the presence of light 122; however, E. coli arcA 

mutants are still sensitive to TB in the dark, suggesting alternative modes of action 123. 

Nonetheless, the results in our study show that C233 is essential in basic ArcA functions.  

 

Figure 5: V. cholerae ArcA C233 affects basic ArcA functions 

A. A schematic showing the ranges of ArcA N-terminal receiver domain and C-terminal DNA-binding domain highlighting 
the phosphorylation site (D54) and cysteine residues (C173 and C233); A cysteine and a serine with their side chains 
highlighted by red circles. B. A pictorial view of arcA and arcB chromosomal deletion, and the chromosomal 

complementation of arcA variants with a native arcA promoter in a arcA mutant. C. Growth curves of respective strains in 
liquid LB media with 200rpm shaking for aeration with an optical density at 600nm as cell density readout. D. Colony 
morphology of respective strains on an 1.5% LB agar plate at 10E5 dilution of an OD600=1 cell resuspension. E. Colony 

morphology of respective strains on 1.5% LB agar plate containing 1g/ml toluidine blue.   

 

ArcA cysteine residues are reversibly oxidized under ROS stress 

To confirm that the ArcA cysteine residues are oxidized under ROS stress, a similar thiol labeling 

approach is used on whole cell lysates expressing His6-tagged ArcA variant proteins (Fig. 6A). 
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Oxidized thiols were labeled by a 0.5kDa 4-acetamido-4’-maleimidylstillbene-2,2’-disulfonic acid, 

or AMS (Fig. 6B), visualized by a 0.5kDa shift in size in their SDS-PAGE migration patterns.  

 

Figure 6: ArcA cysteine residues can be reversibly oxidized 

A. A pictorial view of the protocol used to label reversibly oxidized cysteine residues on His6-tagged ArcA variant proteins 
expressed in V. cholerae for visualization by SDS-PAGE analysis followed by western blot against His6-tag. B. The 0.5kd 
4-acetamido-4’-maleimidylstillbene-2,2’-disulfonic (AMS) used to label reduced thiols. C. A single timepoint OD600 reading 
indicating cell densities in respective strains during log-phase aerobic growth in LB media, N=6. The growth defect of 

arcA are ameliorated with His6-tagged ArcA on a plasmid when the expression is induced by including arabinose in the 
media. D. Anti-His western blot of V. cholerae cell lysates containing His6-tagged ArcAWT, ArcAC173S, ArcAC233S, or 
ArcAC173SC233S that underwent mock or CHP treatment prior to AMS labeling protocol shown in A. 

 

We used V. cholerae C6706 WT to over express ArcA on a pET41 plasmid with an N-terminal 

His6-tag under the control of a T7 promoter. Since V. cholerae does not encode a T7 RNA 

polymerase, we introduced an arabinose inducible T7 RNA polymerase on a plasmid (pTara). To 

test the functionality of over expressed His6-tagged ArcA in V. cholerae, we introduced the same 

plasmids to arcA mutants that are kanamycin sensitive. The resulting strain showed similar 

growth to V. cholerae C6706 WT in aerobic growth in liquid LB when 0.1% arabinose was 

included in the growth media, suggesting complementation to a arcA growth defect with its 

functional production of His6-ArcA from the pTara based T7 RNA polymerase (Fig. 6C). In 
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addition to His6-ArcAWT, His6-ArcAC173S, His6-ArcAC233S, or His6-ArcAC173SC233S on a pET41 plasmid 

were also introduced to a V. cholerae C6706 WT with a pTara plasmid.  

 

Same virulence-inducing growth conditions used in the proteomic profiling were imposed to grow 

the His6-ArcA variant overexpression cultures followed by mock or CHP treatment before 

subsequent thiol-labeling by the 0.5kDa ASM. A western blot analysis of these ASM labeled 

samples showed only one band corresponding to the unlabeled His6-ArcA size (28kDa) in all the 

mock treated samples, suggesting no thiol oxidation under this growth condition (Fig. 6D). Upon 

CHP exposure, the His6-ArcAC173SC233S sample migrated to the same position as the untreated 

samples, suggesting an absence of oxidized cysteine residues. In contrast, both His6-ArcAC173S 

and His6-ArcAC233S yielded a band that is slightly higher than the unlabeled protein, signifying one 

oxidized thiol (Fig. 6D). Since His6-ArcAC173S and His6-ArcAC233S each only contains one cysteine 

residue, their respective labeled bands suggest the other cysteine residue can be oxidized upon 

ROS exposure. The His6-ArcAWT sample showed an even higher shift compared to the single 

cysteine variants, suggesting more than one cysteine residues in an oxidized state under ROS 

exposure. Taken together, our results show that ArcA cysteine residues, both C173 and C233, 

are oxidized on the sulfhydryl side chains upon ROS exposure. 

 

C173 is important for V. cholerae ROS resistance in vitro 

Since both ArcA cysteine residues, C173 and C233, are reversibly oxidized under ROS exposure, 

we want to test ArcA’s role in V. cholerae ROS resistance, with special focus on the 

characterization of the ArcA cysteine residues. Previous studies in E. coli and Salmonella have 

suggested critical roles for ArcA in conferring ROS resistance in these pathogens that transition 

between environments of different oxygen levels in their lifetime124–126. We first subjected the V. 

cholerae C6706 cells grown to mid-log phase under microaerobic conditions to 1hr of either mock 

or 350M H2O2 treatment. Survival rates were calculated by CFU of H2O2-treated over mock-
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treated cultures of respective strains. A arcA mutant is about 2 logs more sensitive to H2O2 

compared to WT. Consistent to the growth and TB sensitivity defect phenotypes, we see 

complementation of the arcA mutant H2O2 sensitivity when arcAWT and arcAC173S were put back 

on the chromosome (Fig. 7A). Correspondingly, the arcAC233S and the arcAC173SC233S mutants 

showed survival rates more similar to arcA mutants than to WT (Fig. 7A), further supporting that 

the C233S mutation have compromised basic ArcA functions. 

 

Figure 7: ArcA-dependent sensitivity to in vitro ROS exposure 

A. Survival rates of arcA mutants and ArcA variant complementation strains when exposed to H2O2 during log-phase 
under a microaerobic growth condition. N=9 for each strain. B. CFU quantification of cells grown in the virulence inducing 

condition in AKI media showing similar growth between WT and arcAC173S mutants. arcA mutants and arcAC233S mutants 
have growth defects at this growth condition with an inoculum of 1:300. C. Survival rates for WT and arcAC173S mutants 
when exposed to CHP under virulence inducing condition in AKI media. n=6. 

 

Although arcAC173S mutants showed similar level of survival to WT under H2O2 challenge and very 

similar growth under virulence-inducing AKI media under microaerobic conditions (Fig. 7B), when 

challenged by cumene hydroperoxide (CHP), the organic hydroperoxide used in the proteomic 

identification experiment, arcAC173S mutants showed ~30-fold lower survival compared to WT, 

suggesting a crucial role for C173 in ArcA-mediated resistance to organic ROS (Fig. 7C). Since 

the growth, colony morphology and even susceptibility to H2O2 of an arcAC173S mutant are 

unaffected under ArcA-activating conditions, we concluded that the ArcAC173S can carry out ArcA 

functions, except for those pertaining organic ROS resistance. Considering ArcA C173 is oxidized 
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upon ROS exposure and V. cholerae showed a C173-dependent resistance to CHP, we 

hypothesize C173 is specifically important for redox sensing and cell response to organic 

hydroperoxide. 

 

 

V. cholerae colonization of ROS-rich mouse guts require C173 

ArcA has been demonstrated to be important in E. coli colonization in an adult mouse model as 

well as in an infant rabbit model 127,128. An infant mouse model is commonly used to study basic 

V. cholerae colonization machinery129. Suckling mice have yet developed the many defense 

mechanisms, such as antimicrobial peptide synthesis and immune responses130. This simplified 

host environment takes away challenges V. cholerae may face in a real colonization, but the 

fundamental colonization ability of a V. cholerae strain can be examined in a minimal context. To 

investigate the roles of the ArcA cysteine residues in V. cholerae colonization of a mammalian 

host, we used the infant mouse model to test the colonization of arcA single cysteine variant 

mutants in competition with V. cholerae C6706 WT. A 1:1 mix of arcA cysteine mutant and WT 

were perorally administered to the infant mouse. 12hrs post infection, V. cholerae CFU in the 

small intestine were enumerated on LB agar plates containing 40g/ml of X-gal. Since the arcA 

cysteine variant sequences were put back onto the chromosome at the lacZ locus (VC2338), 

arcA cysteine variants form white colonies on agar plates containing X-gal while the WT C6706 

with functional lacZ gene encoding a -galactosidase form blue colonies. The competitive index 

was calculated as the ratio of mutant to wild-type colonies normalized to the input ratio in the 

inoculum that was used to infect the mice. A competitive index of 1 suggests no particular 

difference in the ability to colonize between the two strains. Although arcAC173S mutants did not 

show any disadvantage compared to WT, arcAC233S mutants showed a colonization defect with at 

least a log poorer colonization than WT, similar to that seen with arcA mutants (Fig. 8A). This 

again underlines the important role of C233 in normal ArcA functions, as a point mutation at this 

residue compromises V. cholerae basic colonization. 
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Figure 8: Colonization of an ROS rich mouse gut require C173 

A. Competitive indices (log scale) of the mutant/WT in an infant mouse model, N=5. Individual values are shown with a 
five-number summary box plot. The red line indicates a competitive index of 1, signifying no difference. arcAC173S mutants 

fall on the line when competed against WT, suggesting no colonization disadvantage. arcAC233S mutants and arcA 
mutants fall below the line, showing inferior colonization abilities when co-colonizing infant mouse guts with WT. B. 

Competitive indices of arcA mutants/WT in two cohorts of adult CD-1 mice, one without including the ROS chelator N-
acetyl cysteine (NAC) in the drinking water, representing a normal ROS level, and the other with NAC in the drinking 

water to mitigate gut ROS, N=5, data from 6 dpi. arcA mutants showed a less severe colonization disadvantage 
compared to WT in the ROS-mitigated guts. C. arcAC173S/WT competitive indices in adult mice with normal ROS level (-
NAC) and in adult mice with mitigated levels of gut ROS (+NAC), N=5. The colonization defect of arcAC173S mutants is only 
seen in an ROS-rich cohort. D. arcAC233S/WT competitive indices in adult mice with normal ROS level (-NAC) and in adult 
mice with mitigated levels of gut ROS (+NAC). The colonization defect of rcAC233S mutants are not ameliorated by ROS-
chelation. 

 

Since arcAC173S mutants are able to colonize an infant mouse gut as well as WT, arcAC173S 

mutants present an opportunity to investigate the role of the cysteine residue in more complex 

colonization conditions, such as in an ROS-rich gut in an adult mouse model. The Zhu lab has 

previously developed an infection protocol for adult CD-1 mice with the ROS scavenger, N-acetyl 
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cysteine (NAC) 101. We showed that without NAC included in the drinking water, the mouse gut is 

an ROS-rich environment, but ROS was effectively removed in the NAC-treated mouse guts. We 

used this infection model to test the colonization of arcAC173S mutants in competition with WT in 

normal ROS-rich guts as well as in the ROS-mitigated guts. A 1:1 mix of V. cholerae C6706 WT 

with functional lacZ gene encoding a -galactosidase and arcAC173S mutant with lacZ disrupted by 

the arcAC173S sequence were intragastrically introduced to two groups of mice, one without NAC 

treatment, and one with NAC in their drinking water. Fecal pellets were collected 2 and 4 days 

after inoculation for CFU enumeration on LB agar plates containing X-gal where WT and 

arcAC173S mutants form blue and white colonies, respectively. A final data point from day 6 was 

collected when the mice were sacrificed for enumeration of CFUs from homogenized small 

intestines. In the untreated mice with the ROS-rich guts, arcAC173S mutants showed a severe 

colonization defect as indicated by the low competitive indices (Fig. 8C). arcAC173S mutants 

showed 3 logs lower colonization compared to WT from day 2 and progressively decreased to 4-5 

logs at 4 days post infection, which was maintained throughout the rest of the infection until the 

conclusion of the experiment at day 6. In contrast, arcAC173S mutants showed comparable 

colonization abilities to WT throughout the course of the 6-day infection period in the ROS-

mitigated group, as indicated by competitive indices around 1 (Fig. 8C). This result mirrored the 

in vitro observations where arcAC173S mutants had a significantly lower survival rate compared to 

WT when treated with CHP (Fig. 7C) but showed no apparent defect in the absence of 

extracellular ROS stress (Fig. 7B, 5C, 5D and 5E).  

 

When arcAC233S mutants were competed against WT in adult CD-1 mouse colonization, in line 

with the infant mouse experiment results, arcAC233S mutants have a colonization defect (Fig. 8D). 

Although arcAC233S mutants are not as strongly disadvantaged as arcAC173S mutants in a normal 

adult mouse gut, the addition of NAC in the mouse drinking water failed to fully alleviate the 

colonization disadvantage, only slightly improving arcAC233S mutant colonization with competitive 

indices under 1 (Fig. 8D), similar to that seen with arcA mutants (Fig. 8B).   
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The growth experiment, the in vitro CHP challenge, and the in vivo colonization experiment 

suggest that while ArcAC233S lost many of the essential ArcA functions, ArcAC173S can carry out 

most, if not all, of ArcA functions, except for when ROS is present.  

C173 affects ArcA transcriptional regulator activity during ROS exposure 

Since ArcA is active as a transcriptional regulator, we wanted to test if C173 plays a role in the 

proper functioning of ArcA regulatory activities in the context of ROS exposure. In order to do this, 

we need to use a gene within the ArcA regulon as a reporter of ArcA activities. sdhC encodes a 

succinate dehydrogenase which is part of the TCA cycle. It is known to be directly repressed by 

phosphorylated ArcA in E. coli  65. A Vibrionaceae ArcA binding position weight matrix was 

reported from a comparative genomic analysis 69. When used to generate a sequence logo, the 

resulting Vibrionaceae ArcA binding motif, GTTAATTAAATGTTA (Fig. 9A), highly resembles that 

of the reported E. coli ArcA box 65, containing two direct repeats with a center-to-center distance 

of approximately 10bp. We scanned the V. cholerae O1 biotype El tor genome with this motif and 

confirmed an ArcA box (GTTGAATAAATGTTA) 73bp upstream of the V. cholerae sdhC gene 

(VC2091). Therefore, we examined the transcription profile of sdhC in WT (lacZ-), arcA mutants 

(lacZ-), and arcAC173S mutants under ArcA activating conditions, in the absence or in the presence 

of CHP. Using a transcriptional fusion of the sdhC promoter to a promoterless lacZ gene on a 

plasmid (pAH6), we quantified the transcription of sdhC by -galactosidase activities. Since the 

assay subject mid-log phase cells to a 1hr CHP treatment, the viable CFU in the culture is not 

best reflected by OD600. Instead, viable CFU at the time of assay were determined by serial 

diluting the cultures and subsequently spotting 5l of each dilution on an LB agar plate. 

Accordingly, instead of using OD600 to normalize the -galactosidase activity for Miller Unit 

calculations, -galactosidase activity was quantified in special units (SU) that result from 

normalizing OD420 signals from -galactosidase activity against every 10E6 CFU. To ensure the 

consistency of CHP treatment, as considerable stochasticity is often seen with ROS treatments, 

and to ensure adequate number of viable cells post CHP treatment for meaningful levels of 
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enzymatic activities, CHP-treated samples that have a 10%-20% survival rate as calculated by 

CFU in CHP treated/control of the respective strain were analyzed for -galactosidase activity 

levels. 

 

Figure 9: ArcAC173S variant failed to repress sdhC expression in the presence of ROS 

A. The Vibrionaceae ArcA binding box logo constructed based on reported predicted position weight matrix (Ravcheev et 

al., 2007). B. The expression of sdhC as quantified by -galactosidase activities in special units (SU) normalized by per 

million CFU, n=9 from 3 independent experiments.  

 

Indeed, V. cholerae ArcA represses the expression of sdhC under the microaerobic virulence 

inducing condition we tested, as shown by the much higher levels of -galactosidase activity in 

the absence or in the presence of CHP in arcA mutants compared to WT (Fig. 9B). In the 

absence of ROS, arcAC173S mutants showed similarly low levels of sdhC expression compared to 

WT, suggesting repression activities on the sdhC promoter from ArcAC173S (Fig. 9B). When 

challenged by CHP, ArcA repression on the sdhC promoter is slightly lifted, as seen in the slight 

increase in sdhC expression in WT under CHP treatment compared to untreated WT; 

nonetheless, much of the repression is retained (Fig. 9B). However, arcAC173S mutants when 

challenged by CHP, had approximately 5-fold higher sdhC expression compared to WT under the 

same condition, suggesting an ROS-mediated weaker repression on the sdhC promoter from 

ArcAC173S compared to ArcAWT (Fig. 9B). This ROS-dependent and C173-dependent ArcA 
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regulation of sdhC expression supports our hypothesis that C173 is a redox sensing cysteine key 

to ArcA regulatory functions. 

 

Collectively, we identified V. cholerae ArcA as a protein containing reversibly oxidizable cysteine 

residues. Both ArcA cysteine residues, C173 and C233, are in the C-terminal DNA binding 

domain and can be reversibly oxidized in the presence of ROS, suggesting possible redox-

sensing roles for both. C233, in addition, is instrumental in basic ArcA functions, possibly by 

maintaining proper critical conformations for the enzyme, as a point mutation at this residue 

results a strain with phenotypes highly comparable to that of arcA mutants. C173’s role is not 

evident under normal conditions, but when V. cholerae are exposed to ROS, C173 plays a critical 

part in maintaining ArcA functions as seen in the C173-dependent in vitro ROS resistance, the 

C173-dependent colonization of ROS-rich mouse guts, and the C173-dependent sdhC repression 

during ROS exposure. 
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CHAPTER 3: Biochemical studies of ArcA activities 

Introduction 
Response regulators (RRs) are defined by the presence of a receiver (REC) domain. A REC 

domain has a primary sequence encoding five consecutive -sheet--helix elements joined by 

linker sequences. These secondary structures are spatially arranged such that the five  helices 

surround the five parallel  sheets in the 21345-topology in the middle. The highly conserved 

phosphorylation site is located at the C terminus of 3. The RRs are categorized into subfamilies 

based on the presence, functions, and structural similarities in their C-terminal effector domains. 

While some RRs have enzymatic output domains, as seen in the V. cholerae VieA, VieB and 

HnoB, most RRs contain a DNA-binding effector domain. The structure of these DNA-binding  

(DBD) domains further categorizes RRs into three major subfamilies: the OmpR/PhoB, NarL/FixJ, 

and NtrC/DctD subfamilies encompassing the majority of bacterial RRs that deliver an 

transcriptional response to signal perception131. 
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Figure 10: ArcA is a PhoB/OmpR family response regulator 

A. Crystal structure of two truncated E. coli PhoB C-terminal DNA-binding domains bound to DNA with their respective 
recognition helix colored in red. B. Homology model of ArcA C-terminal DNA-binding domain constructed based on one of 
the PhoB protomers bound to DNA (PDB ID: 1GXP). The N and C termini of the domain and the wing motif are labeled. The 
recognition helix that would interact with the major groove DNA is colored red. The two cysteine residues are highlighted in 
green with side chains shown as sticks. C. An alignment of E. coli and V. cholerae ArcA amino acid sequence and predicted 

secondary structure generated by PROMALS3D.  sheet sequences are marked in blue and  helix sequences in red. The 
receiver (REC) and DNA-binding (DBD) domains are indicated. The phosphorylation site D54 is highlighted in cyan, the 
cysteine residues C173 and C233 are highlighted in green.   
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ArcA contains a C-terminal winged-helix DBD domain characteristic to a PhoB/OmpR subfamily 

RR, the most abundant RR subfamily widely distributed in all bacterial phyla. This family of RRs 

usually have their REC and DBD domains tightly packed in the absence of phosphorylation, 

conferring an inactive state of the regulator. The 1-5 and the 4-5-5 faces in the REC 

domain contain residues that facilitate salt bridge formations and hydrophobic interactions 132–134. 

These non-covalent interactions allow the RR protomers to exist in an equilibrium of monomers 

and dimers. Phosphorylation at the conserved aspartate residue in the REC domain opens up the 

REC-DBD interface, driving the monomer-dimer equilibrium toward the dimer form through 

interactions in the α4-β5-α5 face, facilitating an active conformation of the RR for DNA binding135. 

The active conformation allows proper alignment of the DBD domains, forming a structure that 

allow the recognition helices to interact with the direct repeat motif on target DNA sequences 

(Fig. 10A). This active conformation promotes RR-DNA binding and subsequently activation or 

repression of genes regulated by the RR. As seen in the PhoB/OmpR family response regulator 

RitR in S. pneumoniae, the redox state at C128 in the linker region between the N-terminal REC 

domain and the C-terminal DBD domain modulates the conformation of the RitR monomer. 

Oxidation at C128 disrupts the REC-DBD packing, making the DBD available for dimerization and 

DNA binding, therefore activating RitR regulatory function116. It is worth noting that this process is 

independent of phosphorylation. The RitR REC domain does not contain a phosphorylation site, 

oxidation at the C128 position is sufficient to relay the external signal to activate the RR for its 

transcriptional activities136.  

 

E. coli ArcA is shown to oligomerize upon phosphorylation to up to octamers in vitro137. The 

binding motif of ArcA box in E. coli is an 18bp sequence motif with two direct repeat elements 138. 

Some promoters in the E. coli ArcA regulon have up to five direct repeat elements in the ArcA 

binding region, further supporting the model where ArcA’s regulatory activities are active with a 

collaborative binding of multiple ArcA monomers at the promoter sequence 65,139. The V. cholerae 

ArcA contains a typical PhoB/OmpR family winged-helix C-terminal DNA-binding domain (Fig. 
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10B). The cysteine residues C173 and C233 flank the wing-helix motif, with C233 in a mobile 

region where it could adopt a position to interact with C173 (Fig. 10B and 10C). The V. cholerae 

ArcA is 88% identical to the E. coli ArcA, with important secondary structures fully conserved 

(Fig. 10C). The predicted Vibrionaceae ArcA box also contains two direct repeats (Fig. 9A), 

suggesting the possibility of a head-to-tail tandem docking of two ArcA protomers at the binding 

sequence. It is highly plausible that ArcA is in proximity of other ArcA monomers when activated, 

whether this ArcA-ArcA interaction happens simultaneously at the promoter sequence when 

individual ArcA monomers bind to the ArcA box, or forms prior to localizing to the promoter. 

  

Here we investigated with biochemical assays, the effect of oxidation on ArcA’s ability to be 

phosphorylated, to bind to DNA, and to interact with other ArcA monomers, with special attention 

to the role of C173 in these processes. 

Results 

ROS exposure abolishes ArcA phosphorylation in V. cholerae 

As ArcA’s regulatory function appear to be largely retained during ROS insults (Fig.9B), we want 

to test the effect of oxidative stress on ArcA phosphorylation, the known mechanism to achieve 

an active ArcA conformation for regulatory functions. V. cholerae C6706 WT with a pTara plasmid 

encoding the T7 RNA polymerase that over expresses His6-ArcAWT under the control of a T7 

promoter on a pET41 plasmid were grown under microaerobic conditions in the absence or in the 

presence of CHP for 3hrs following 2hrs of protein induction. Cell lysates were then immediately 

loaded onto a freshly made manganese-based phos-tag SDS-polyacrylamide gel for 

electrophoresis followed by an anti-His western blot to visualize ArcA phosphorylation. V. 

cholerae C6706 arcB mutants hosting the same plasmids for ArcAWT expression and V. 

cholerae C6706 WT expressing His6-ArcAD54A, the phosphorylation deficient ArcA variant, were 

also examined as controls. Phosphorylated proteins have higher affinities to the positively 

charged manganese cations immobilized to the SDS-polyacrylamide gel by the phos-tag 

reagents, therefore migrating slower compared to their unphosphorylated counterparts 140. In the 
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absence of CHP, V. cholerae C6706 WT expressing His6-ArcAWT appeared as two bands, with 

the majority being phosphorylated (Fig. 11A).  Although less in arcB mutants grown under the 

same microaerobic conditions, ArcA is still phosphorylated in the absence of its cognate kinase 

ArcB (Fig. 11A). This suggests that ArcA can be phosphorylated by alternative kinases or small 

molecule donors, expanding ArcA activation beyond the ArcB-specific phosphorylation. V. 

cholerae C6706 WT expressing His6-ArcAD54A appeared as a single band corresponding to the 

unphosphorylated species, indicating ArcA phosphorylation absolutely requires D54 as the 

reception site (Fig. 11A). In the presence of CHP, however, V. cholerae C6706 WT expressing 

His6-ArcAWT no longer have phosphorylated ArcA, appearing as a single band similar to the His6-

ArcAD54A sample (Fig. 11A). This suggests that an extracellular ROS exposure abolishes existing 

phosphorylation or prevents phosphorylation altogether for the cytosolic ArcA. 

 

Figure 11: Oxidation does not aid phosphorylation. 

A. A Mn-based phos-tag gel followed by western blot showing the effect of ROS exposure on V. cholerae cells over 
expressing His6-tagged ArcA variants. His6-ArcAWT is phosphorylated under microaerobic growth in WT, and less so in 

arcB mutants. ArcAD54A cannot be phosphorylated in WT under the same growth conditions. ArcAWT phosphorylation is 
abolished in the presence of extracellular CHP. B. In vitro phosphorylated ArcAWT were subsequently exposed to 0, 2, 10, 

20, 40, 60 or 80M of CHP to test the effect of oxidation on phosphorylation. CHP did not affect existing phosphorylation 
on His6-ArcAWT in the in vitro condition tested. C. Reduced or oxidized (by GSSG) His6-ArcAWT were subsequently 
phosphorylated by increasing concentrations of carbamoyl phosphate (CP) to test the susceptibility for phosphorylation 
with regard to oxidation state. No effect was seen. D. Quantification of the band intensities in phos-tag electrophoresis 
analyses similar to the one shown in C. by FIJI or Biorad for the ratio of phosphorylated/unphosphorylated ArcA from 
three independent experiments. 
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This observation challenges that of sdhC expression where ArcA function is retained in the 

presence of ROS (Fig. 9B). We then tested with purified ArcAWT if oxidation dephosphorylates 

phosphorylated ArcA. ArcA phosphorylated by small molecule donor carbamoyl phosphate (CP) 

were exposed to a gradient of CHP concentrations from 0 to 80M final concentrations and 

analyzed on a Mn-based phos-tag SDS-polyacrylamide gel followed by Coomassie staining to 

visualize the phosphorylation state. It appears that up to 80M of CHP does not dephosphorylate 

existing ArcA phosphorylation, as all the CHP-challenged phosphorylated samples showed very 

similar migration patterns to an unchallenged phosphorylated ArcAWT (Fig. 11B).  

 

Similarly, we characterized oxidation’s effect on ArcA susceptibility for phosphorylation. Although 

phosphorylation state characterization of ROS-treated cell lysate suggest a negative effect from 

oxidation to phosphorylation (Fig. 11A), oxidation may facilitate unpacking of the N-terminal REC 

domain and the C-terminal DBD domain for a more permissive phosphorylation, as supported by 

a recent characterization of Salmonella ArcA showing that an ROS exposure increased ArcA 

phosphorylation 141. Purified V. cholerae ArcAWT first underwent mock or oxidation treatment 

preceding to an incubation with a gradient of CP from 0 to up to 400mM and analyzed on a Mn-

based phos-tag SDS-polyacrylamide gel followed by Coomassie staining for visualization. A 

larger population of the phosphorylated species at a lower CP concentration would indicate more 

receptivity for phosphorylation. However, for the in vitro conditions tested, oxidation of ArcA does 

not have an effect either way, neither preventing nor promoting phosphorylation (Fig. 11C). The 

ratios of the phosphorylated and unphosphorylated species in the mock and the oxidation treated 

ArcAWT are very comparable in all the CP concentrations tested. We can see that ArcA 

phosphorylation is saturated in this in vitro condition beyond 200mM, as increasing the CP 

concentration from 200mM to 400mM did not further increase the percentage of phosphorylated 

ArcAWT (Fig. 11C and 11D). Taken together, we see that oxidation subsequent to 
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phosphorylation does not nullify phosphorylation. Conversely, there is a lack of preference for 

ArcA oxidation state with respect to phosphorylation. These in vitro results lead us to believe that 

oxidation may not be directly coupled to phosphorylation and may be impacting ArcA activities in 

alternative ways.  

 

Phosphorylation and C173-dependent oxidation promote ArcA-DNA binding 

Since ArcAWT seems to retain its regulatory activity under ROS stress as seen in the example of 

sdhC repression (Fig. 9B), yet ArcA phosphorylation is compromised under ROS exposure in V. 

cholerae cells (Fig. 11A), we reasoned that oxidation inflicted by extracellular ROS act in place of 

phosphorylation in inducing a functionally active conformation in ArcA.  

 

To test this, we performed electrophoretic mobility shift assays (EMSAs) using purified ArcAWT, 

ArcAC173S, and ArcAD54A proteins with the sdhC promoter. Each ArcA variant protein was tested 

for their ability to form protein-DNA complexes under three conditions: reduced without 

phosphorylation, reduced with phosphorylation, or oxidized without phosphorylation. ArcAWT 

forms a protein-DNA complex when phosphorylated or oxidized, but not in its mock-

phosphorylation treated reduced form, suggesting an activating effect from either phosphorylation 

or oxidation (Fig. 12A). Without the suspected redox-sensing cysteine residue, C173, ArcAC173S 

still binds to DNA when phosphorylated, but oxidation no longer have an activating effect for DNA 

binding. Without the phosphorylation site D54, ArcAD54A does not respond to phosphorylation, but 

forms a protein-DNA complex when oxidized (Fig. 12A). Taken together, these data demonstrate 

that ArcA binding and repression of the sdhC promoter can be activated via a C173-reliant 

oxidation, independent of a D54-reliant phosphorylation.  
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Figure 12: C173-dependent oxidation activates ArcA DNA-binding 

A. EMSA migration patterns of purified ArcA proteins with a V. cholerae sdhC promoter. Purified tag-less ArcAWT, 
ArcAC173S, and ArcAD54A were treated in vitro such that they were in a reduced unphosphorylated (R), reduced 
phosphorylated (P), or oxidized unphosphorylated (O) state prior to incubation with sdhC promoter DNA. The protein-DNA 

mix were separated on a native gel at 4C degrees prior to development and imaging on a Typhoon phosphorimager. 
ArcAWT forms a complex with the sdhC promoter when phosphorylated or when oxidized (by GSSG). ArcAC173S binds upon 
being phosphorylated but no longer respond to oxidation. ArcAD54A binds upon being oxidized but no longer respond to 
phosphorylation. B. The total intracellular glutathione content (GSH+GSSG) of V. cholerae C6706 WT grown under 
virulence inducing conditions in the absence or in the presence of CHP in the media as quantified by a luminescent 
readout from a GSH/GSSG-Glo assay (Promega). C. The intracellular GSSG/GSH ratio of V. cholerae C6706 WT grown 
under virulence inducing conditions in the absence or in the presence of CHP as calculated based on the luminescent 
readout from a GSH/GSSG-Glo assay. Data collected from three independent experiments. 

 

Redox-sensing regulators are known to have preferential responsiveness to oxidants, many only 

respond to specific oxidants 99. RitR, the PhoB/OmpR family RR with demonstrated cysteine-

mediated redox sensing, dimerizes only upon H2O2 exposure, but remains as monomers when 

exposed to other oxidants such as CHP 116. Conforming to this convention, the oxidation 

activation of ArcA is specific to the oxidant, oxidized glutathione (GSSG). No protein-DNA 

complex is formed from oxidation imposed by CuSO4, CuCl2, CHP, or H2O2. Indeed, upon 

extracellular CHP exposure to V. cholerae WT C6706, although the total glutathione level only 

slightly increased, the GSSG/GSH ratio almost doubled, increasing from approximately 0.37 

without CHP to about 0.73 with CHP (Fig. 12B and 12C). The intracellular GSSG/GSH ratio 
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increase under extracellular ROS exposure provides more GSSG acting as a direct oxidant for 

the cytosolic ArcA, which activate ArcA for DNA binding.  

C173-dependnet oxidation enhance ArcA-ArcA interaction 

To further investigate the activating effect of oxidation on ArcA, we examined how oxidation 

affects ArcA-ArcA interactions. E. coli ArcA form dimers upon phosphorylation, and in vitro 

phosphorylation can lead to the formation of higher orders of oligomers such as a ArcA-P 

tetramer or an ArcA-P-ArcA hybrid octamer 134,137137.  The predicted Vibrionaceae ArcA binding 

motif, with two direct repeat elements (Fig. 9A), is highly similar to the E. coli ArcA box 65. The 

high homology between the V. cholerae and E. coli ArcA sequences (Fig. 10C) and similar 

binding site architectures with more than one recognition element suggest possible cooperative 

occupancy of multiple V. cholerae ArcA monomers at promoters of ArcA regulated genes. In 

other words, ArcA-ArcA interaction can be crucial in activating V. cholerae ArcA regulatory 

activities. We hypothesized that oxidation promotes ArcA-ArcA interaction, leading to activation.  

 

To quantify the interaction of V. cholerae ArcA, we utilized a bacterial two-hybrid system (BacTH) 

for detection of protein-protein interaction 142. We constructed translational fusions of V. cholerae 

ArcA variants with T25 and T18, two fragments of the catalytic domain of the Bordetella pertussis 

adenylate cyclase (CyaA) that require physical proximity to produce cyclic adenosine 

monophosphate (cAMP). A plasmid carrying T25 - ArcAvar and another for T18 - ArcAvar with ArcA 

variants translationally fused to the C-termini of the catalytic domains, are introduced 

combinatorically to a E. coli BTH101 (cyaA) background where the native adenylate cyclase is 

disrupted. By appending the T25 and T18 domains to the N-termini of ArcA variants, the 

interference from the additional domain to behaviors of ArcA cysteine residues, both in the C-

terminal of ArcA, is minimized. In this experimental design, interactions between the proteins 

fused to the T25 and the T18 domains bring the two fragments together, generating varying 

amounts of cAMP that activates the transcription of the chromosomal lacZ gene in BTH101, 

resulting in quantifiable -galactosidase activities that reflect the level of ArcA interactions.  
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Figure 13: CHP exposure induces ArcA-ArcA interactions 

A. Quantification of ArcAWT-ArcAWT or ArcAWT-ArcAC173S under aerobic or microaerobic growth by a bacterial two hybrid 

system (BacTH) by -galactosidase activities normalized to OD600 with adjustments in reaction volume and shown in 
special lacZ units (SLU), N=6. ArcA interaction is promoted by microaerobic growth for either interaction pairs. B. BacTH 
experiment showing ArcAWT-ArcAWT or ArcAWT-ArcAC173S under aerobic growth in the absence or in the presence of CHP 
in the growth media. ArcA interaction is promoted by CHP exposure in a C173-dependent manner. C and D show the 
behaviors of the positive control (with leucine zipper containing small peptides GCN4 as interacting partners) and the 
negative control (empty vector carrying only the sequences encoding the T18 and T25 catalytic domains), under the 
respective conditions. The dynamic range shown and respective signals from the positive and negative controls validates 
the BacTH assays in the conditions tested.  

 

Mirroring the in vitro conditions used in the EMSA experiments, we examined the interactions 

between V. cholerae ArcA variants with the E. coli BacTH system under three corresponding 

conditions: aerobic growth for reduced without phosphorylation, microaerobic growth for reduced 

with phosphorylation, or aerobic growth with CHP exposure for oxidation without phosphorylation. 

The BacTH system has an adequate dynamic range as indicated by the signal differences across 

all the conditions tested between the positive control carrying the leucine zipper domains from a 

yeast transcription factor (GCN4) and the negative control with standalone T18 or T25 domains of 

CyaA (Fig. 13C and 13D). ArcAWT-ArcAWT interaction in aerobically grown cells is almost 

comparable to negative control, indicating little ArcA-ArcA interaction under the non-stimulating 

condition. In comparison, cells grown microaerobically showed much higher ArcAWT-ArcAWT 

interactions, consistent with the assumption that ArcA becomes phosphorylated under low 
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oxygen conditions, and that phosphorylation promotes ArcA-ArcA interaction (Fig. 13A). When 

one of the interacting partners have a C173S mutation, the basal level of ArcA-ArcA is slightly 

increased under aerobic conditions, but a microaerobic condition induces a much higher level of 

ArcAWT-ArcAC173S interactions, similar to that of microaerobic ArcAWT-ArcAWT interaction (Fig. 

13A). This corroborates the EMSA result that a C173S mutation does not affect ArcA’s response 

to phosphorylation (Fig. 12A), in this case phosphorylation-dependent enhanced interaction as a 

response to low oxygen.  Elevated interactions between ArcAWT-ArcAWT were seen when 

aerobically grown cells were exposed to CHP (Fig. 13B), as signified by the approximately 7-fold 

increase in -galactosidase activities compared to the untreated cells. However, when one of the 

interacting partners have a C173S mutation, CHP exposure no longer increase ArcAWT-ArcAC173S 

interactions (Fig. 13B). Conforming with the EMSA data, where either phosphorylation or 

oxidation have an activating effect for ArcA-DNA binding activity (Fig. 12A), the BacTH 

experiments showed that either a microaerobic growth condition or an exposure to CHP under a 

non-stimulating aerobic growth condition promote ArcA-ArcA protein interactions. The ROS-

dependent interaction relies on an intact C173 residue, echoing our previous conclusion that 

phosphorylation and C173-dependent oxidation are two post-translational modifications capable 

of activating ArcA regulatory functions.  

Phosphorylation, but not oxidation, decreases V. cholerae ArcA solubility  

Considering ArcA dimerizes upon phosphorylation in E. coli, and that both phosphorylation and 

oxidation promote V. cholerae ArcA-ArcA interactions, we hypothesize that these post 

translational modifications have similar effects on the oligomeric state of V. cholerae ArcAWT. 

Hoping to determine the oligomeric states of ArcA under these conditions, we attempted an 

analysis of purified ArcAWT by size exclusion chromatography (SEC). ArcAWT phosphorylated by 

carbamoyl phosphate or oxidized by GSSG showed DNA-binding activities in EMSAs 6hrs after 

the in vitro reactions, suggesting the presence of DNA-binding active species throughout the 1-

hour duration of the SEC. Immediately subsequent to the respective reactions with the same 

starting concentrations of ArcAWT, phosphorylated, oxidized or mock treated ArcAWT were spun at 
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17,000 rcf for 30min at 4C to exclude any insoluble species arisen during respective reactions. 

E. coli ArcA has been reported to fall out of solution upon phosphorylation in solution analysis134. 

Similarly, we see a significant decrease of soluble ArcA after phosphorylation reaction, with only 

around 10% of starting protein content in the supernatant (Fig. 14A). Solubility is calculated as a 

percentage of the protein content in the supernatant after a spin over that of an unspun sample 

as determined by Bradford assays. In contrast, oxidation by GSSG does not change the solubility 

of ArcA, as oxidized ArcA showed similar solubilities to mock treated ArcA at approximately 50% 

even after a second spin of the supernatant at an ultracentrifugal speed of 100,000 rcf for 30min 

at 4C (Fig. 14A).  

 

The soluble ArcAWT of respective reactions, in this case the supernatants derived from the 17,000 

rcf centrifugation, were filtered through a 0.22um filter and subject to SEC to determine the 

oligomeric states resulting from phosphorylation or oxidation. A Superose 6 Increase 10/300 

column with a bed volume of 24ml was coupled to an AKTA pure system at 4C to separate 

soluble ArcAWT subsequent to the aforementioned treatments. An 8.4ml void volume was 

determined based on the blue dextran (2000kDa) elution volume. Calibration runs with urease, 

BSA and carbonic anhydrase resulted a Kav/Mw plot with a R2 of 0.9899, establishing a 

correlation between the elution volume and the molecular weight (Fig. 14B). Among these, the 

29kDa carbonic anhydrase eluting at 18.75ml serves as an important point of reference as it is 

very close in size to an His6-ArcA monomer which is around 28kDa. The eluent from the column 

was collected in 0.5ml fractions and protein concentrations in fractions with positive OD280 

readings were determined by Bradford assays.  



 
 

43 

 

Figure 14: Size-exclusion chromatography analysis of V. cholerae ArcA oligomeric state 

A. Solubility of reduced unphosphorylated, reduced phosphorylated, or oxidized unphosphorylated ArcAWT after 30min of 
centrifugation at respective centrifugal forces. Solubility were calculated as the percentage of protein concentrations in the 
supernatant divided by that in the unspun reaction, N=4. B. The chromatographs of elution pattern of reduced (lavender), 
phosphorylated (blue), or oxidized ArcAWT (turquoise) on an AKTA pure system with a Superose 6 Increase 10/300 
column at a 0.5ml/min flow rate. The following molecular weight standards were used for calibration of the size-exclusion 
column (R2=0.9899): blue dextran (2000kDa), urease hexamer (540kDa), urease monomer (90kDa), BSA (66kDa), and 
carbonic anhydrase (29kDa). Loading concentrations of 5.6uM were used for reduced and oxidized ArcAWT, and 0.5uM for 
phosphorylated ArcAWT.  

 

As expected, the total area under the curve from the chromatograph for the phosphorylated 

ArcAWT sample is much lower compared to the other two conditions, suggesting protein falling out 

of solution into the pellet prior to loading the supernatant onto the column (Fig. 14A and 14B). 

The peak elution volume of 18.5ml corresponds to that of an ArcA monomer, suggesting the 

small soluble fraction of phosphorylated ArcAWT as monomers (Fig. 14B). Mock-phosphorylation 

treated reduced ArcAWT also eluted at 18.5ml, indicating a monomeric state of the protein in a 

reduced unphosphorylated state (Fig. 14B). Oxidized ArcAWT, however, showed two peaks on the 

chromatograph, first eluting at 8.7ml then again at the 18.5ml (Fig. 14B). Since the first elution 

happened at the void volume, oxidized ArcAWT is likely in an equilibrium between being in a very 

high order oligomers and being monomers.  

 

Unfortunately, further solution studies such as analytical ultracentrifugation do not apply to 

analyzing ArcA oligomeric state due to the low solubility of phosphorylated ArcA seen here and 
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previous studies with E. coli ArcA134. Without phosphorylated ArcA as a meaningful reference for 

an active ArcA oligomeric state, it is difficult to draw conclusions from solution analysis of oxidized 

ArcA alone should any interesting results arise. Although a dramatic effect from an artificial in 

vitro oxidation condition, the observations from the SEC analysis show that oxidation is capable 

of inducing a change of the ArcAWT oligomeric state from monomeric under reduced condition to 

higher orders. These results strongly support our hypothesis that oxidation promotes ArcA-ArcA 

interaction critical in activating ArcA.  

Oxidation facilitates the formation of an intramolecular disulfide bond 

To further elucidate the nature of this increased ArcA-ArcA interaction that is required to activate 

ArcA, we examined the non-reducing SDS-PAGE migration patterns of V. cholerae C6706 WT 

hosting His6-tagged ArcA variants with or without CHP and the reducing agent 2-mercaptoethanol 

(BME) in the growth media. Cells carrying His6-tagged ArcAWT, ArcAC173S, ArcAC233S, or 

ArcAC173SC233S were grown under ArcA-stimulating conditions where protein expression was 

induced and subsequently challenged with different combinations of CHP and BME.  

 

Figure 15: Non-reducing SDS-PAGE analysis for ArcA variants in V. cholerae 

V. cholerae C6706 WT containing overexpressed His6-tagged ArcA variants were grown under virulence inducing 
conditions and induced for protein expression under mock, CHP, BME, or a combination of CHP and BME included in the 
growth media. Cell lysates were separated on a non-reducing 12% SDS-polyacrylamide gel and His6-tagged proteins are 
detected. Extracellular CHP exposure leads to the formation of an intramolecular disulfide bond in ArcA. Without C173, 
ArcA is prone to dimerizing via C233.  

 

All ArcA variants migrated as a single band to the molecular weight position corresponding to an 

ArcA monomer in the absence of CHP (Fig. 15), suggesting an intracellular environment similar 

to the reduced conditions from the SEC experiment (Fig. 14B). The ArcAWT protein when 
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exposed to CHP, mostly migrated to a slightly lower position on the non-reducing gel, suggesting 

the formation of an intramolecular disulfide bond between C173 and C233, as these are the only 

two cystine residues within ArcAWT (Fig. 15). A small fraction of ArcAWT formed dimer under CHP 

challenge, suggesting the formation of intermolecular covalent bonds. The ArcAC173S protein, 

unable to form an intramolecular disulfide bond with only an intact C233, mostly migrated to the 

dimer position when treated by CHP (Fig. 15). This suggests that in the absence of C173, when 

challenged by extracellular CHP, ArcA is prone to dimerize via a C233-dependent intermolecular 

disulfide bond. Indeed, the ArcAC233S protein, with only an intact C173, formed much less dimer 

when exposed to CHP (Fig. 15). The dimers seen in the ArcAWT, ArcAC173S and ArcAC233S 

samples when CHP is present are all cysteine-mediated, as the ArcAC173SC233S was unable to 

form any dimer under the same CHP treatment. These disulfide bonds, inter- or intramolecular, 

are oxidation-dependent, as the inclusion of reducing agent BME along with CHP in the growth 

media abrogated these species in all of the ArcA variants (Fig. 15).  

 

Figure 16: Non-reducing SDS-PAGE analysis of in vitro treated purified ArcA variants 

Purified ArcA variant proteins were treated in vitro by 30M GSSG or 20mM carbamoyl phosphate prior to non-reducing 
SDS-PAGE analysis. R denotes mock treated protein in a reduced unphosphorylated state, P denotes phosphorylated 
protein resulted from in vitro phosphorylation in a reduced state by carbamoyl phosphate, and O indicates oxidized 
unphosphorylated protein resulted from in vitro oxidation by GSSG. C233 is susceptible to various oxidation modifications 
while C173 plays an occluding role in preventing some of the C233 oxidation. 

 

The role of C173 was further validated using in vitro oxidation of ArcA variants by GSSG. Purified 

His6-ArcA variants were compared under reduced unphosphorylated or oxidized 

unphosphorylated conditions, with the reduced phosphorylated ArcAWT as an active conformation 

migration pattern control. Phosphorylated ArcAWT migrated to the exact same location as the 
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unphosphorylated ArcAWT, at the predicted His6-ArcA size, 28kDa, suggesting a non-covalent 

nature of the phosphorylation-derived ArcA active conformation (Fig. 16). This is in agreement to 

the structural analysis in E. coli that demonstrated ArcA monomers interact through several key 

residues in the N-terminal REC domain via a hydrophobic patch and salt bridges 134. When 

oxidized by GSSG, in addition to the same band seen in the reduced and phosphorylated states, 

a band with slightly higher molecular weight appeared (Fig. 16). As mentioned earlier, glutathione 

can form disulfide bonds with cysteine-containing proteins, appending a glutathione tripeptide to 

the protein. This minor shift in oxidized ArcAWT suggests possible glutathionylation when oxidized 

by GSSG, with a considerable fraction of ArcAWT remaining at the original 28kDa position (Fig. 

16). ArcAD54A exhibited the same migration pattern as ArcAWT, suggesting similar partial 

glutathionylation when oxidized by GSSG independent of the integrity of the phosphorylation 

reception site (Fig. 16). When ArcAC173S was subject to the same oxidation, however, none 

remained at the original size (Fig. 16). Instead, ArcAC173S appeared either as a slightly higher 

position band or as dimers, suggesting ArcAC173S being fully glutathionylated and partially 

dimerized via its only remaining cysteine residue, C233. This further suggests an occluding role 

for C173 in preventing some unsought oxidation modifications at C233 to preserve the active 

ArcA species that migrates to the original position of ArcA. The lack of the suspected 

glutathionylation band or the dimer band in oxidized ArcAC233S and ArcAC173SC233S mutant samples 

further corroborated the conclusion that glutathionylation seen in in vitro oxidized ArcAWT, 

ArcAD54A, and ArcAC173S, and dimerization seen in oxidized ArcAC173S act through C233. The 

absence of the suspected glutathionylated species and the dimer band in the ArcAC173SC233S 

mutant sample in the presence of CHP further suggest that the formation of those species is 

cysteine mediated (Fig. 16).  

 

Located at the far C-terminus of ArcA and bioinformatically predicted to be exposed, C233 can be 

particularly vulnerable to unsolicited oxidation that confers an unfavorable conformation of ArcA 
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for its regulatory functions. Based on the results from the non-reducing SDS-PAGE, C173 is 

critical in defending C233 from over-oxidation, likely through the formation of an intramolecular 

disulfide bond, which at the same time, converts ArcA to an active form under oxidation. C173-

C173 intermolecular disulfide bond is possible but unlikely, as indicated by the insignificant 

amount of dimer formed by ArcAC233S under CHP challenge in V. cholerae cells and a lack of 

dimer in in vitro oxidized ArcAC233S samples (Fig. 15 and Fig. 16). In the absence of C173, ArcA 

is inclined to form an intermolecular disulfide via the far C-terminal C233, an unanticipated 

observation as a disulfide bond dimer of ArcAC173S upon oxidation was not reflected in BacTH 

experiments (Fig. 13B). It is possible that with the C233-C233 intermolecular disulfide bond at the 

far C-termini of ArcAC173S fused to the C-termini of T25 and T18 domains, the catalytic domains 

are held together in unfavorable special arrangements or are still too distanced from each other to 

be catalytically active in producing cAMP for -galactosidase expression. 

 

Taken together, an extracellular ROS exposure from CHP compromises ArcA phosphorylation in 

V. cholerae cells grown under ArcA-stimulating conditions and increases the intracellular 

GSSG/GSH ratio that allows GSSG to act as a direct oxidant for cytosolic proteins. Oxidation of 

ArcA induces the formation of an intramolecular disulfide bond that activates ArcA-DNA binding 

activities and promotes ArcA-ArcA interactions.  
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CHAPTER 4: Summary and future directions 
The importance of the AphB thiol-based switch for transcriptional regulation of virulence as well 

as ROS resistance motivated the identification of more reversibly oxidizable thiol-containing 

proteins in V. cholerae. We performed a proteomic mass spectrometry analysis on samples of V. 

cholerae cells challenged with cumene hydroperoxide under virulence inducing growth conditions, 

subsequently labeled by iodoacetamide targeted at reversibly oxidized cysteine residues. Among 

the identified proteins is ArcA, the response regulator in the ArcAB two-component system, a 

global regulator for energy metabolism transition from an aerobic to a more anaerobic lifestyle. In 

chapter 2, we show that both cysteine residues on ArcA, C173 and C233, are in the DNA-binding 

domain of the response regulator and amenable to reversible oxidation. C233 is likely crucial in 

providing structural integrity to ArcA, as a mutation at this residue renders severe defects in 

growth, infant mouse colonization, sensitivity to the toluidine blue dye and hydrogen peroxide. 

C173 shows redox reactive properties that is critical in maintaining ArcA functions under ROS 

stress. A C173S mutation compromises V. cholerae’s ability to sustain cumene hydroperoxide 

exposure in vitro and to colonize ROS-rich mouse guts, possibly due to obstructed ArcA 

regulatory functions owing to a failure to respond via the C173 residue. In chapter 3, we present 

biochemical evidence of an oxidation-dependent activation mechanism of ArcA regulatory 

function. We show that an extracellular ROS exposure abolishes ArcA phosphorylation in V. 

cholerae that are grown microaerobically under a virulence inducing condition and increases the 

intracellular oxidized to reduced glutathione ratio (GSSG/GSH). Either D54-dependent 

phosphorylation or C173-dependent oxidation promotes ArcA-DNA binding. ArcA-ArcA interaction 

is high under an ArcA stimulating condition of microaerobic growth or in the presence of ROS 

under a non-stimulating aerobic growth condition. Oxidation of ArcA promotes a transition of ArcA 

monomers into higher order oligomeric states.  

Working model of ArcA activation 
The current knowledge suggests the following working model for an oxidative stress response 

mechanism by the V. cholerae ArcB/A two-component system. In the reducing cytosolic space 

without phosphorylation, the REC and DBD domains of ArcA are closely associated to one 
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another in a conformation that inhibits dimerization for active DNA-binding, typical to a 

PhoB/OmpR subfamily response regulator. Under a microaerobic growth condition, 

phosphorylation at the D54 residue disrupts the REC-DBD interface, allowing for dimerization of 

ArcA, possibly via the 4-5-5 faces in the REC domain. The resulting formation of ArcA dimers 

are capable of DNA-binding and transcriptional regulation. In the presence of extracellular ROS, 

ArcA phosphorylation is abolished in V. cholerae either by inhibited phosphorylation from possible 

kinases and phosphoryl donors, or by enhanced phosphatase activities. The cytosolic space 

transiently becomes more oxidative, facilitating the formation of an intramolecular disulfide bond 

between C173 and C233 within an ArcA monomer. The intramolecular disulfide bond likely 

increases the association constant, promoting ArcA-ArcA interactions and collaborative binding at 

the promoters of ArcA-regulated genes (Fig. 17). This ROS-induced conformation, although 

different from the phosphorylation-mediated conformation, allows ArcA to bind to DNA, which 

retains its transcriptional regulatory functions under ROS exposure.  

 

 

Figure 17: Working model for ArcA activation in V. cholerae 

A pictorial representation of ArcA activation in V. cholerae. The N-terminal receiver domain (REC) (green in the aerobic 
panel) and the C-terminal DNA-binding domain (DBD) (orange in the aerobic panel) are linked by a flexible linker region. 
The cysteine residues sulfhydryl sidechains (-SH) in the DBD are indicated. ArcA in the reduced unphosphorylated state 
is in an inactive form as monomers. A microaerobic environment facilitates phosphorylation at the D54 residue in the REC 
domain, facilitating ArcA-ArcA interaction through non-covalent interactions such as hydrophobic interactions and salt 

bridges mediated by the 4-5-5 faces in the REC domain, resulting an active conformation in the DBD domain that 
allows DNA binding. When challenged by ROS, the cysteine residues C173 and C233 in the DBD domain form an 
intramolecular disulfide bond, introducing a conformational change that promotes ArcA-ArcA interaction and DNA-binding. 
Shapes are not drawn to scale, relative positions and orientation of domains are simply illustrative, not to strictly reflect 
reality.  
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ArcA cysteine residues are conserved across different bacterial species  

The ArcB/A TCS is a major oxygen-sensing signal transduction system, regulating lifestyle 

transitions in many facultative anaerobic proteobacteria. V. cholerae have the arcA (VC2368) and 

arcB (VC2369) genes next to each other in a tail-to-tail arrangement on chromosome I. Most 

other bacteria including E. coli have a carbon source-responsive (Cre) two-component system 

(creABCD) operon immediately downstream to the arcA gene, with their arcB in a totally different 

genetic neighborhood 143 (Fig. 18). This close association of arcB and arcA in V. cholerae is 

suggestive of either a higher co-evolution pressure for these individual components in the ArcAB 

TCS in V. cholerae or a co-selection for the Cre TCS with ArcA in other bacteria for yet to be 

identified reasons, possibly attributing to the collaborative nature of the two TCSs in carbon 

metabolism necessary for the lifestyle of the bacteria in question.   

 

Figure 18: Genetic neighborhood for arcA in V. cholerae compared to that in other bacteria 

The genetic neighborhood of arcA in V. cholerae compared to other bacteria. Schematic generated by Tree-based 
Exploration of Neighborhoods and Domains (TREND) based on ArcA homolog sequences. Genes immediately 
downstream of arcA are labeled. V. cholerae arcA is upstream to arcB while in many other bacteria including E. coli, arcA 
is upstream to a cre operon that encodes a two-component system regulating carbon catabolism.  

 

Nevertheless, C173 and C233 are conserved in many ArcA homologs across different bacteria, 

including many human pathogens such as E. coli, Salmonella, and Klebsiella (Fig. 19). Similar to 

V. cholerae ArcA cysteine residues, the two cysteine residues at the conserved locations in the 

DNA-binding domain are often the only cysteine residues in these ArcA homologs. The 
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conservation at C173 is more relaxed in bacteria that do not have a part of their life cycle in a 

host environment, as seen in the example of the environmental bacterium, Shewanella 

oneidensis. Although environmental microbes such as S. oneidensis also encounter ROS75, the 

type of source oxidant they encounter might be different from those for a pathogen present in a 

host environment75. The nuances between different oxidants and ArcA oxidant specificity seen in 

our in vitro H2O2 and CHP challenges (Fig. 7A and 7C) and EMSA results suggest an ArcA 

cysteine-mediated resistance particularly equipped for host environment ROS. The high 

conservation of both cysteine residues in these facultative anaerobic bacteria, many pathogens, 

suggest possible similar important functions for ArcA cysteine residues in these other bacteria.    

 

Figure 19: Key ArcA residues are conserved in different bacteria 

A rootless phylogenetic tree constructed in MEGA5 based on ArcA homolog sequences from different bacteria using the 
neighbor-joining algorithm. The alignment around the phosphorylation site D54 and the two cysteine residues C173 and 
C233 are shown. Pseudoalteromonas sp. ArcA that is 66% identical to V. cholerae ArcA is used as the outgroup. The 
scale bar 0.1 indicates 10% diversity in amino acid sequence. 

 

To test the generalizability of the cysteine dependent maintenance of ArcA functions, especially 

bacterial fitness under ROS exposure, we constructed arcA mutants in Salmonella enterica 

serovar Typhimurium SL1344. Resembling arcA mutants in E. coli and V. cholerae, SL1344 

arcA mutants also have a small colony morphology.  arcAWT or arcAC173S with a native 

Salmonella arcA promoter is supplied to SL1344 arcA mutants on a plasmid (pACYC117). 

SL1344 cells grown under a microaerobic virulence inducing condition to the mid-log phase were 
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challenged by CHP. Similar to what is seen in V. cholerae, SL1344 arcAC173S mutants showed a 

similar survival defect to that of SL1344 arcA mutants, which are more sensitive to CHP 

compared to SL1344 WT or the complementation strain (Fig. 20A). Analogous to V. cholerae 

arcAC173S mutants having a disadvantage colonizing ROS-rich mouse guts, SL1344 arcAC173S 

mutants showed a defect when infecting immortalized human colerectal adenocarcinoma cells 

Caco-2. After virulence induction for the expression of type III secretion system in Salmonella 

pathogenicity island-1 in LB supplemented with NaCl under microaerobic growth144, SL1344 cells 

were introduced to Caco-2 cells at a multiplicity of infection (moi) of 20. Although having similar 

uptake by Caco-2 cells initially at 30 minutes post infection, SL1344 arcA mutants showed a 

defect in intracellular replication 4hrs post infection (Fig. 20B).  

 

Figure 20: ArcA C173 is important for S. enterica ROS resistance and intracellular infection 

A. Percentage survival of in vitro CHP challenge to S. Typhimurium SL1344 WT, arcA mutants, the complementation 
strain, and arcAC173S mutants, calculated by CFU remained in CHP challenged cells divided by that from unchallenged 

cells. Data collected from three biological repeats. arcA and arcAC173S mutants are more sensitive to extracellular CHP 
exposure than WT and the complementation strain. B. Recovered intracellular bacterial CFU from Caco-2 cells infected 

by SL1344 WT, arcA mutants, the complementation strain, and arcAC173S mutants. Data collected from three 

independent infections. arcA and arcAC173S mutants are defective in intracellular replication than WT and the 
complementation strain. 

 

Although less dramatic compared to the V. cholerae results, preliminary results with SL1344 in 

vitro CHP challenge and Caco-2 infection suggest a role for ArcA C173 in mediating Salmonella 

survival in the presence of ROS. As Salmonella invade epithelial cells and grow intracellularly, 
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they are physically closer to the host NADPH oxidases, one of the major sources of host-derived 

ROS. Thus, Salmonella’s lifestyle require that they endure an even more challenging oxidative 

stress environment compared to that faced by an extracellular pathogen like V. cholerae. It is 

likely that Salmonella is more resourceful and diverse in ROS resistance strategies, thus limiting 

the observable ArcA-dependent net effect. These data along with the high conservation of 

cysteine residues across different ArcA homologs suggest important roles for these reversibly 

oxidizable thiols beyond V. cholerae, the model organism used in this study. 

DBD cysteine residues are unique to ArcA in the PhoB/OmpR family RRs 

While C173 and C233 are conserved in ArcA homologs across different bacteria, these 

conservations at their respective locations in the DBD are unique to ArcA in the PhoB/OmpR 

family response regulators (Fig. 21). 

 

Figure 21: ArcA cysteine residues are unique in the PhoB/OmpR subfamily RRs 

An alignment of the DNA-binding domains of representative PhoB/OmpR subfamily response regulators with the residue 
at the C173 position highlighted in red and the C233 position residue highlighted in blue.  

 

Other regulators in the same family may contain redox-sensing cysteine residues, as seen in the 

example of S. pneumoniae RitR that regulates iron transport and nasopharyngeal colonization via 
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the oxidation states of a cysteine residue in the linker region joining the N-terminal REC and C-

terminal DBD116. BaeR, the only other RR in this subfamily containing a far C-terminal cysteine in 

the DBD domain (Fig. 21), is reported to regulate efflux pumps and the transcription of the 

superoxide dismutase gene sodA in Salmonella 145. The exclusivity of C173 and C233 in the DBD 

in ArcA, a regulator for oxygen sensing and shift between different electron transport strategies, 

presents the opportunity to couple the transition into microaerobiosis to ROS resistance, 

synchronizing two processes pivotal to a successful colonization in a mammalian host.  

ArcA in conferring V. cholerae ROS resistance 

C173 is important for the production of the ROS resistance protein OhrA 

With arcAC173S mutants showing higher sensitivity to CHP (Fig. 7C), we investigated conceivable 

mechanisms through which ArcA facilitate ROS resistance, particularly, if C173-mediated redox 

sensing is involved in conferring resistance to organic ROS.  

 

Figure 22: ArcA promotes ohrA expression under CHP exposure  

A. The expression of ohrA as quantified by qPCR, determined by number of cycles with threshold fluorescence signal 
reflecting ohrA transcripts. Regions on the 16S sequence were used as internal references to calculate delta cycle 
threshold (dCt). The average of untreated samples was used to calculate ddCt, and the linear fold change is calculated as 
2^(-ddCt). B. A gel shift assay (EMSA) of unphosphorylated and phosphorylated ArcAWT with the ohrA promoter showing 
no formation of DNA-protein complex. The last two lanes contain the same concentration of unphosphorylated or 
phosphorylated ArcAWT and the sdhC promoter as a positive control for protein activity. 

 

V. cholerae organic hydroperoxide resistance protein OhrA (VCA1006) is an organic peroxide-

specific peroxiredoxin that is important for V. cholerae resistance to ROS during 

colonization101,146(p). We tested if ArcAC173S affects ohrA expression by qPCR, in the absence or in 
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the presence of CHP under ArcA-activating conditions. CHP induced ohrA expression in WT V. 

cholerae C6706, consistent with previous findings that ohrA is derepressed upon oxidation from 

cysteine-containing regulators, OhrR and AphB 101. However, in arcAC173S mutants, ohrA 

expression remains low even in the presence of CHP, suggesting a lack of resistance proteins in 

arcAC173S mutants to provide ROS protection (Fig. 22A). Based on these results, we propose that 

ArcA C173 plays a critical role in V. cholerae adaptation to the organic ROS challenge under 

microaerobic growth, in part by activating ohrA transcription when oxidized.  

 

Although we observed an effect of ArcA on ohrA induction where C173S mutant failed to turn on 

the expression of the ROS resistance gene immediately following exposure, the C173-dependent 

oxidation-induction of ohrA transcription is not a direct regulatory effect from ArcA, as EMSAs 

with an ohrA promoter did not show any binding with either phosphorylated (Fig. 22B) or oxidized 

ArcA with CuCl2, CuSO4, CHP, or GSSG as oxidants in vitro. It is admissible that ArcA represses 

an intermediate regulator, a repressor of ohrA, in achieving a net activating effect. The apparent 

repressor for ohrA expression, OhrR (VCA1005), shares the same promoter as ohrA, as they are 

divergently transcribed with a 96bp intergenic region. Since ArcA does not bind to the ohrA/R 

promoter, included in the DNA fragment used for the EMSA experiment here, it is improbable that 

ArcA regulates ohrR transcriptionally or through competitive occupancy at the ohrA promoter. We 

speculated that ArcA regulate ohrA expression via intermediate regulator proteins or cellular flux 

of signaling molecules. 

ArcA, extracellular iron, and V. cholerae H2O2 resistance 

Another way ROS can manifest their bactericidal effects is by generating more reactive free-

radical species from the non-radical species. Fenton chemistry describes the process of the 

formation of hydroxyl radicals (•OH) and hydroxide anion, from non-radical species in the 

presence of transition metals, most commonly in the forms of iron and copper species. V. 

cholerae iron uptake is strictly regulated to sustain the need of iron-requiring enzymes such as 

the heme-containing proteins, while avoiding deleterious effects of the Fenton chemistry. One of 
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the major regulators, the ferric uptake regulator fur (VC2106) has a predicted ArcA box in its 

promoter immediately following its -10 box. In an iron deplete environment, Fur is in its apo form, 

activating the machineries for iron uptake and storage; in an iron replete condition, Fur-Fe2+ 

complex represses further iron uptake, and upregulates free iron sequestering proteins147148,149. 

The predicted ArcA box in the V. cholerae fur promoter led us to hypothesize that ArcA acts 

through regulating fur to confer ROS resistance. 

 

Figure 23: ArcA represses fur expression in V. cholerae, especially under ROS stress 

A. The expression of fur as quantified by -galactosidase activities with a fur promoter controlling a promoterless lacZ 

gene on a reporter plasmid under different extracellular iron and ROS conditions, with WT in blue and arcA in purple. 

Fold repression is calculated as the average expression levels of fur as indicated by -galactosidase activities in arcA 
mutants divided by that in WT. fur expression is repressed by ArcA regardless of the extracellular iron and hydrogen 
peroxide conditions. B. A gel shift assay (EMSA) showing fur promoter binding to phosphorylated ArcAWT, with sdhC 
promoter binding as a positive control for protein activity and sensitivity. 

 

We constructed a transcription reporter plasmid with the promoter of fur leading to a promoterless 

lacZ gene on a plasmid and quantified -galactosidase activities in V. cholerae C6706 WT and 

arcA mutants under different iron and H2O2 conditions under microaerobic growth. Since rich 

media like LB contain unquantifiable amount of unknown iron species, we used a modified EZ 

rich defined media (EZRDM by Teknova) with FeSO4 remitted from the recipe and glucose as a 

carbon source. Fe2+ or Fe3+ were supplied in the media in the forms of FeSO4 or FeCl3 at 

concentrations comparable to the original recipe when indicated. The divalent cation chelator 

diethylenetriaminepentaacetic acid (DTPA) was added to the modified no iron EZRDM to remove 



 
 

57 

any basal level iron that may be present due to adsorption to experimental vessels. As 

hypothesized, ArcA represses the expression of fur, regardless of iron abundance in the growth 

media (Fig. 23A). In fact, iron abundance does not affect fur expression, as seen by the 

comparable levels of fur expression in V. cholerae C6706 WT across different extracellular iron 

conditions (Fig. 23A). When challenged by H2O2, the ArcA-dependent repression of fur is 

exacerbated, increasing from approximately 2-fold in the absence of H2O2 to about 5-fold when 

exposed (Fig. 23A). This is unexpected since a H2O2 exposure is shown to activate fur 

transcription by OxyR in E. coli 150. The co-presence of H2O2 and extracellular ferrous iron led to 

similar expression profiles as the H2O2 only condition (Fig. 23A), suggesting a more dominant 

role of ROS, instead of iron, in ArcA-dependent fur repression. Gel shift assays with a fur 

promoter further confirmed fur an ArcA regulated gene. Phosphorylated ArcAWT can form a DNA-

protein complex with a fur promoter at the same sensitivity as a sdhC promoter (Fig. 23B), 

suggesting a direct repression of fur expression when ArcA is active.  

 

Figure 24: Iron is important for V. cholerae ROS resistance 

A. The percentage survival of WT, arcA, fur and arcAfur double mutants to a H2O2 challenge, calculated as the CFU 
in the H2O2 treated cultures divided by those in the untreated cultures. B. The fold induction of catalases KatG and KatB 
expression quantified with the respective promoters controlling the expression of the luxCDABE as a reporter, arbitrary 
unit of luminescent is normalized to growth by OD600, fold induction is calculated as the normalized luminescent signal of 
the H2O2 treated cells divided by those that were untreated. 

 

The characterization of fur expression in the context of ArcA and ROS led us to hypothesize that 

a plethora of Fur proteins in arcA mutants under ROS stress may be detrimental, contributing to 
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the higher sensitivity in arcA mutants. We constructed arcA fur double mutants to test if the 

elimination of Fur proteins in arcA mutants restores V. cholerae resistance to H2O2. Cells were 

grown microaerobically to mid-log phase in LB media supplemented with various species of iron 

or the divalent cation chelator ethylenediaminetetraacetic acid (EDTA) prior to the addition of 

H2O2 to the growth media. Contrary to our hypothesis, arcA fur double deletion mutants did not 

rescue the sensitivity to H2O2 in arcA mutants, showing even lower survival percentages 

compared to the single mutants in the conditions tested (Fig. 24A). Nevertheless, it is worth 

noting that arcA fur double mutants are extremely sick with a severe growth defect, more so 

than arcA mutants, under normal growth conditions in the absence of H2O2 exposure. Although 

we tried to challenge different strains in the same growth phase with similar OD600 as a reference, 

and survival percentages were used as a measure of sensitivity to further offset any growth 

discrepancies, the extent of basic metabolism defect seen in arcA fur double mutants may be 

too severe to reach a metabolic baseline for a meaningful H2O2 challenge.  

 

Although not having an impact on fur expression, extracellular iron levels do influence V. cholerae 

resistance to H2O2. When extracellular divalent cations including ferrous iron were chelated by 

EDTA, the H2O2 resistance advantage seen in V. cholerae C6706 WT is eliminated (Fig. 24A). 

This implies important ROS resistance roles for various divalent cations, including extracellular 

ferrous iron as a candidate for mediating the resistance to H2O2 in WT. However, supplementing 

LB with ferrous iron showed no effect in either WT or arcA mutants’ survival percentages. In 

contrast, an addition of ferric iron in the rich media significantly boosts arcA mutants’ survival by 

about 10-fold to a WT level (Fig. 24A). The co-presence of H2O2 with extracellular iron at the 

concentrations tested did not aggravate the oxidative stress but proved iron essential in 

ameliorating the stress. E. coli ArcA directly activates the expression of the feoA operon 65, which 

encodes the ferrous iron transport system. Our preliminary studies of V. cholerae feoA expression 

using a lacZ reporter also supports a positive regulation from ArcA, with higher -galactosidase 

activities indicating higher feoA expression in WT, despite having very low absolute miller unit 
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values. The exogenous supply of ferric iron in the form of FeCl3 restored the survival rate in 

arcA mutants, suggesting a lack of ferric iron uptake or sequestering machinery in arcA 

mutants that is necessary for conferring ROS resistance.  

 

V. cholerae has two major detoxifying enzymes for H2O2, catalases KatG and KatB 89. As we see 

an extracellular iron-dependent effect for V. cholerae H2O2 resistance in the context of ArcA, we 

tested if these catalases are differentially induced in WT, arcA and fur mutants as a response 

to H2O2 exposure. With the katG and katB promoters transcriptionally fused to a promoterless 

luxCDABE gene encoding a luciferase, we quantified the expression of the catalases as 

luminescence signals normalized to cell growth measured by OD600. Under the microaerobic 

growth conditions tested, we see high expression of katG in LB regardless of H2O2 exposure, 

resulting in a H2O2-dependent fold induction of 1 (Fig. 24B). In contrast, H2O2 exposure causes 

an almost 10-fold induction of katB expression, and even more to about 20-fold in iron rich 

environment such as the complete EZRDM and LB (Fig. 24B). Despite having a slightly lower 

katB expression level, arcA mutants are equally capable of producing catalases in response to 

an H2O2 exposure as WT and fur mutants.  

 

Figure 25: arcA mutants' sensitivity to ROS is not due to a lack of SodA 

An attempt to restore arcA mutant’s sensitivity to H2O2 by overexpressing sodA on a pBAD24 plasmid with an arabinose-
inducible promoter. Percentage survival is calculated as the CFU in the H2O2 treated cultures divided by those in the 

untreated cultures times 100. The over expression of sodA did not restore arcA mutants’ sensitivity to H2O2. arcB 

mutants exhibited intermediate sensitivity to H2O2 relative to WT and arcA mutants. 
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To further elucidate the mechanism of ArcA-dependent ROS resistance, we considered 

superoxide dismutases as a candidate. Neither the iron-binding SodB (VC2045) nor the 

manganese-binding SodA (VC2694) have a predicted Vibrionaceae ArcA box in their promoter 

sequences. Nonetheless, in iron replete conditions, Fur bind to intracellular ferrous iron to form 

Fur-Fe2+ complexes, repressing the expression of sodA, which encodes the manganese binding 

superoxide dismutase. The Fur-Fe2+ complexes are prone to dissociate upon ROS exposure 151, 

lifting such repression in WT for SodA production. Since arcA mutants have a higher level of fur 

expression, especially in the presence of ROS (Fig. 23A), it is conceivable that more Fur is 

present to form Fur-Fe2+ complexes and sodA expression is further repressed in arcA mutants, 

leading to a lack of dismutases to cope with the extracellular oxidative stress. To test this, we 

supplied arcA mutants with sodA on a pBAD24 plasmid with an arabinose inducible promoter 

that over expresses sodA upon arabinose induction. While the inclusion of arabinose in the LB 

increased survival to H2O2 for almost 10-fold in arcA mutants, it is a sodA-independent effect. 

arcA mutants and arcA mutants carrying an empty pBAD24 vector also showed improved 

survival in the presence of arabinose (Fig. 25). Over expression of sodA does not help arcA 

mutants in defending H2O2. We also tested the susceptibility of arcB mutants to H2O2. 

Consistent to the phos-tag gel shown in Chapter 3 where arcB mutants grown microaerobically 

still contain a considerable portion of phosphorylated ArcA (Fig. 11A), arcB mutants are less 

sensitive to H2O2 than arcA mutants, showing an intermediate survival rate between that of 

arcA mutants and WT (Fig. 25). 

Other attempts for elucidating the ArcA-dependent ROS resistance  

The way arabinose partially restores arcA mutants’ survival to H2O2 (Fig. 25) allude to an ArcA-

dependent metabolism defect critical to conferring ROS resistance. Although V. cholerae does 

not metabolize arabinose 152, we have observed arcA mutants having a disadvantage when co-

cultured with WT in MinA media grown microaerobically with glucose as a carbon source where 

arcA mutants grew similarly as WT in separate tubes (Fig. 26A). Cell-free spent media from WT 
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failed to elicit such growth disadvantage in arcA mutants, advising against a hypothetical WT 

toxic metabolite causing harm. Instead, impaired resource acquisition in arcA mutants may be 

responsible for the growth disadvantage compared to WT. When grown in MinA media with mucin 

as the sole carbon source, both WT and arcA mutants showed at least a log more CFU in 24hrs 

compared to using glucose, suggesting mucin as a superior carbon source for V. cholerae 

microaerobic growth (Fig. 26B).  With a preferred carbon source, the co-culture-dependent arcA 

mutants growth deficiency is ameliorated (Fig. 26B), further supporting the hypothesis that arcA 

mutants may be lacking nutrients for ROS resistance.  

 

Figure 26: arcA mutants have nutrient acquisition defects 

A Quantification of CFU of WT and arcA mutants grown in MinA media with glucose as a carbon source, separately or in 

a 1:1 mix. B Quantification of CFU of WT and arcA mutants grown in MinA media with mucin as a carbon source, 

separately or in a 1:1 mix. 

 

oppA, encoding the oligopeptide ABC transporter substrate-binding protein, is directly activated 

by ArcA in E. coli 125.When exposed to H2O2, E. coli arcA mutants are deficient in OppA and 

struggle to suffice the increased need for amino acids under ROS stress 125. We performed gel 

shift assays with the V. cholerae oppA (VC1091) promoter sequence containing a predicted 

Vibrionaceae ArcA site (TAACATTTTGTACAC). However, we did not observe any DNA-binding 

with reduced, phosphorylated, or CuSO4 oxidized ArcAWT protein. As oxidized ArcAWT binding with 

the sdhC promoter is seen with GSSG as an oxidant (Fig. 12A), it is still possible that the oppA 

promoter specifically interact with GSSG-oxidized ArcA. 
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Besides the evidence that ohrA transcription rely on ArcA in a C173-dependent manner upon 

ROS exposure, the downstream ArcA-dependent cellular processes that confer ROS resistance 

still require more investigation. At this point we speculate that it is a combined effect of multiple 

ArcA-regulated genes that lead to a lack of ROS resistance gene expression and defective 

nutrient acquisition in arcA mutants. 

arcA expression in the context of V. cholerae virulence regulation 
To further understand the relevant context of ArcA in a V. cholerae life cycle, we examined arcA 

expression in relation to the virulence regulatory cascade. With the arcA promoter leading to a 

promoterless lacZ gene on a plasmid, we quantified the -galactosidase activities as expression 

of arcA in V. cholerae C6706 WT, arcA mutants and various virulence regulator mutants 

including tcpPH, toxT, toxRS, and aphB. Cells were grown aerobically in LB to mid-log 

phase and then transitioned into virulence inducing condition in AKI media for standing growth to 

mimic an ArcA-activating condition where the virulence regulators are active.  

 

Figure 27: V. cholerae virulence regulation network on arcA expression 

The expression of arcA as quantified by -galactosidase activities controlled by an arcA promoter. Data shown is from a 
single experiment with two technical repeats but is representative of the general trend from more independent 
experiments. ArcA self-regulates, repressing the expression of itself. In the context of virulence regulatory network, arcA 
expression is affected by ToxT, ToxRS and AphB but unaffected by TcpPH.  

 

ArcA represses the expression of itself, as arcA expression indicated by the arcA promoter-

controlled -galactosidase activity in arcA mutants is elevated compared to that in WT (Fig. 27). 

TcpPH have no apparent effect on arcA expression, as demonstrated by the similar -
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galactosidase activity levels in tcpPH mutants and in WT. ToxT, ToxRS, and AphB all play a role 

in activating arcA expression, as -galactosidase activities in these mutant strains are only about 

a quarter of the levels in WT (Fig. 27). Sengupta and colleagues have described that toxT 

expression is dependent on ArcA, and here we see arcA expression depends on ToxT 70. The 

reciprocal positive regulation between ArcA and ToxT suggest a positive feedback loop for arcA 

expression under virulence inducing conditions, which is capped by ArcA self-regulation. Since 

TcpPH are downstream of AphB but upstream of ToxT in the virulence regulation cascade (Fig. 

1), the AphB-dependent yet TcpPH-independent arcA expression seen in the condition tested is 

suggestive of a ToxT-independent link between AphB and ArcA, suggesting an additional 

connection of ArcA to V. cholerae virulence under microaerobiosis. It is possible that ToxT, 

ToxRS and AphB’s close association to a microaerobiosis lifestyle led V. cholerae to associate 

the presence of these virulence regulating proteins to a need for ArcA, the regulator to transition 

the cell into microaerobiosis.  

Concluding remarks and open questions 
In this study, we have identified V. cholerae ArcA as a reversibly oxidizable cysteine-containing 

protein, among many others, in a proteomic detection of oxidized thiols in ROS-challenged V. 

cholerae by mass spec. The ArcA cysteine residues identified, C173 and C233, are the only two 

cysteine residues in ArcA, both in the C-terminal DNA-binding domain. The susceptibility of these 

cysteine residues to reversible oxidation are validated by western blot analysis of V. cholerae 

whole cell lysates containing overexpressed ArcA, subsequent to AMS-labeling targeted at 

oxidized thiols. To isolate the cysteine oxidation-dependent functions of ArcA from the rest of 

ArcA functions, we investigated various phenotypes of the cysteine to serine mutants, arcAC173S 

and arcAC233S, which lack the reactive thiol side chain and therefore unresponsive to the 

respective cysteine-dependent oxidation. A C233S mutation generally causes a arcA mutant-

like phenotype, suggesting an essential role, likely structural, for this cysteine residue at the far C-

terminus of ArcA. A C173S mutation does not affect ArcA functions under normal ArcA-activating 

conditions, yet renders ArcA unfunctional under ROS exposure, as seen in the defective survival 
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of in vitro ROS challenge and the colonization disadvantage during colonization of ROS-rich 

mouse guts. Transcriptional analysis of an ArcA repressed gene sdhC showed that ArcAC173S 

failed to repress sdhC expression in the presence of extracellular ROS while ArcAWT largely 

maintained repression under the same stress.  

 

We further investigated the molecular mechanism through which ArcA respond to oxidative stress 

while maintaining regulatory functions. Biochemical analysis revealed that ArcA phosphorylation 

is jeopardized in the presence of extracellular ROS. In vitro phosphorylation by small molecule 

donor carbamoyl phosphate and oxidation by GSSG both independently enable ArcA’s binding to 

DNA fragments encompassing a predicted Vibrionaceae ArcA box, a 15bp motif containing two 

direct repeats separated by a 10bp center-to-center distance. Similarly, in a bacterial two hybrid 

system, increased ArcA-ArcA interactions are shown under an ArcA-stimulating microaerobic 

condition or under ROS exposure in an otherwise non-stimulating aerobic condition in a C173-

dependent manner. Non-reducing SDS-PAGE analysis of V. cholerae cell lysates containing His6-

tagged ArcA revealed that ArcA forms an intramolecular disulfide bond when V. cholerae is 

challenged by extracellular ROS. C173 plays an important role in occluding the formation of an 

intermolecular disulfide bond via C233, upon its formation leads to an unfunctional conformation 

of ArcA. We propose that oxidation by extracellular ROS drives the formation of intramolecular 

disulfide bond between C173 and C233, which induces an ArcA conformation such that multiple 

ArcA monomers interact and collectively bind to the promoters of ArcA regulated genes.  

 

In conclusion, our data provides a mechanism through which ArcA’s regulatory functions remain 

active under oxidative stress. Preliminary results in S. enterica and a high conservation of C173 

in many ArcA homologs in different bacteria suggest a wide application of this mechanism 

beyond V. cholerae. This work provides evidence to explain how the response regulator ArcA 
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directly respond to oxidative stress that eventually result in ROS resistance. However, the 

attempts at elucidating the downstream cellular responses solicited by oxidized ArcA failed to 

directly tie ArcA-dependent ROS resistance to any specific process. We are intrigued by the 

oxidant specificity shown by ArcA, with arcAC173S mutants being more sensitive to CHP than to 

H2O2 and purified ArcA only responding to GSSG as an oxidant in vitro. Complex unknown 

cellular processes are involved to distinguish the nuances between different oxidative stresses. 

Our results motivate studies of glutathionylation as a post-translational modification signal in V. 

cholerae oxidative stress response. We are also curious if the relatively unique genetic 

organization of V. cholerae arcA and arcB genes in a tail-to-tail formation is indicative of special 

evolutionary pressures associated with the dynamic lifestyle of V. cholerae.  

 

To respond to external stresses with the limited resources available, bacteria are constantly faced 

with costly decisions. In the case of ArcA, when exposed to ROS in an otherwise activating 

condition, such as inside a host intestine with host and microbiome-derived ROS, it is dangerous 

to mistake an oxidative stress as an aerobic growth condition. The cysteine-mediated redox 

response in a separate domain from the aspartate-mediated activation from ArcB phosphorylation 

provides an additional channel of signal perception to inform ArcA activities. Our work establishes 

ArcA as a thiol-dependent transcriptional regulator that is involved in conferring ROS resistance 

in V. cholerae, and possibly in other bacteria. The dual signal perception, accepting oxidation or 

phosphorylation as an activating signal, allows ArcA to couple multiple important global 

transitions that require simultaneous regulation, such as ROS resistance and transition into 

microaerobiosis, with maximal synchronization and minimal compromises. 
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Chapter 5: Methods and Materials 

Growth conditions 

V. cholerae El Tor C6706 was used as the wild type strain in this study. Strains were streaked out 

from frozen (-80C) glycerol stocks to grow on 1.5% LB agar plates containing appropriate 

antibiotics overnight at 37C. Colonies were scraped off for resuspension in 0.8% (w/v) saline to 

optical density (OD600) of around 1. Colony morphology were observed by spotting 5l of 10-fold 

serially diluted cell resuspension on LB agar plates with or without 1g/ml of toluidine blue (TB) 

incubated overnight at 37C. Growth are evaluated under aerobic growth in LB with 200rpm 

shaking for aeration, or under virulent-inducing microaerobic condition with standing growth in 

AKI medium (1.5%(w/v) bacto-peptone, 0.4% (w/v) yeast extract, 0.5% (w/v) NaCl) supplemented 

with freshly made filter sterilized NaHCO3 at a final concentration of 0.3%. Cultures of V. cholerae 

were propagated at 37C and with appropriate antibiotics and inducers when necessary, at final 

concentrations of 100g/ml for streptomycin, 100g/ml for spectinomycin, 50g/ml for kanamycin, 

2g/ml for chloramphenicol, 100g/ml for ampicillin, 0.1% for arabinose and 0.5mM for IPTG. 

CFU in bacterial cell cultures were enumerated by spotting 5l of 10-fold serially diluted cultures 

in 0.8% (w/v) saline on LB agar plates incubated overnight at 37C. 

Strain construction 

Disruption of arcA (VC2368) was constructed by inserting a kanamycin resistance cassette by a 

pWM91-based suicide plasmid with a sacB counter selection protocol 153. Specifically, in both 

C6706 lacZ and C6706 WT backgrounds, the chromosomal arcA gene was disrupted by a 795nt 

PCR fragment of a kanamycin cassette with its own promoter from the pBBR1MCS2 in the 

opposite orientation of arcA, replacing the 352nd-369th bases of the 717nt gene. For 

complementation, the sequence of arcA, with its upstream promoter region, was inserted in the 

lacZ locus on the chromosome in a C6706 arcA::kan lacZ+ background on a pJL1-based plasmid 

by a double cross-over recombination 154. The native arcA promoter, followed by arcAC173S, 

arcAC233S, arcAC173SC233S, or arcAD54A, were put on the lacZ locus (VC2338) on the chromosome to 

construct the ArcA variant strains. The point mutation fragments were subcloned from pSRKTc 
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plasmids containing the promoterless arcA constructs to the pJL-1-based plasmids with StuI and 

NotI as restriction sites with the addition of 400nt upstream sequences encompassing the native 

promoter. Disruption of arcB (VC2369) by a spectinomycin resistance cassette was constructed 

by the MuGent method with chitin-induced V. cholerae natural competence 155. Plasmids were 

propagated in DH5 pir or pir2 and introduced to V. cholerae by electroporation or by 

conjugation with SM10pir as a donor when feasible. 

 

Disruption of Salmonella enterica serovar Typhimurium SL1344 was done with a P22 

transduction of kanamycin resistant LT2 arcA (STM4598) lysate. LT2 arcA::kan was obtained by 

electroporating PCR fragments of a kanamycin cassette from pKD4 flanked by the arcA genetic 

neighborhood into Salmonella enterica serovar Typhimurium LT2 containing a pKD46 as 

previously described 156. pACYC117 plasmid was digested with BamHI and HindIII to insert the 

Salmonella arcAWT or arcAC173S sequence following the Salmonella arcA promoter that disrupts 

the kanamycin resistance cassette on pACYC117, resulting in an ampicillin resistant plasmid for 

complementation in SL1344 arcA::kan. Strains, plasmids, and primers in this work are listed in 

Table 2, Table 3, and Table 4 in the Appendix, respectively. 

Proteomic profiling of cysteine-based reversible modification mass spectrometry  

Vibrio cholerae El tor C6706 WT cells were grown in vitro under virulence induction conditions, 

namely, cells grown overnight aerobically at 30C to saturation were inoculated at 1:10,000 into 

4ml AKI media supplemented with 0.3% NaHCO3 and grown standing for 4hrs. The cells were 

then challenged by 50uM CHP for 1hr with aeration. The proteomic profiling of cysteine-based 

reversible modification was carried out following 157(p). Briefly, the cell cultures were pelleted and 

then resuspended in 300ul lysis buffer (250mM HEPES, pH7.0, 6M Urea, 1mM EDTA, 0.1mM 

neocuproine, 1% v/v SDS) with 100mM freshly made NEM and incubated in the dark at 37C for 

1hr at 850rpm. After removal of excess NEM by acetone precipitation, the samples were treated 

with 10mM DTT for 1hr at 37C with 850rpm shaking in the dark. Excess DTT was removed by 

another acetone precipitation and the pellets were rinsed by 500ul of cold acetone and air dried 
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for 2min before being resuspended in 120ul of enrichment coupling buffer (50mM HEPES and 

1mM EDTA, pH 7.5) supplemented with 2.4ul of 10% SDS. Samples were then loaded onto the 

preconditioned thiopropyl Sepharose 6B resin157, with 10mg of resin in coupling buffer with 

roughly 100ul volume in a pierce spin column (Thermo fisher scientific, Rockford, IL). The resin 

column is thoroughly washed three times with 500ul of each of the enrichment washing buffers in 

the following order: 1) 8M Urea; 2) 2M NaCl; 3) 80% (v/v) CAN and 1% v/v TFA; 4) 25mM 

HEPES. Replace both the top cap and bottom plug of the column after the last wash, then spin at 

1000xg for 10sec.   [concentration] of trypsin was added to allow min digestion of the protein into 

peptides. 30ul of 25mM NH4HCO3 buffer containing 20mM of DTT was added to the resin 

column and mixed with a pipette tip and incubated at RT with shaking at 850rpm for 10min to 

elute thiol containing peptides. The eluted peptides were collected with a 1500xg spin for 1min 

with both top cap and bottom plug removed. Samples were treated in DAB buffer (6M Urea, 

250mM HEPES pH7.0, 10mM EDTA, 0.5% w/v SDS) supplemented with 100mM iodoacetamide 

for 1hr at 25C with 850rpm shaking. Samples were submitted to LC-MS/MS (FTMS) to identify a 

57Da shift signifying a carbamidomethyl modification on a cysteine residue. Peptides were 

identified by SEQUEST HT and MASCOT. The reported hits have a high confidence score from 

analysis by either one or both software. 

Thiol-labeling by 4-acetamido-4’-maleimidylstillbene-2,2’-disulfonic acid (ASM) 

V. cholerae C6706 containing a T7 polymerase on a pTara plasmid and pET41-His6-ArcAvar were 

grown in 2ml LB media containing 2g/ml chloramphenicol and 50g/ml kanamycin for plasmid 

maintenance. After 2hrs of growth at 37C with aeration, 0.1% arabinose were added to allow 

induction of ArcA variants overexpression for another 2hrs with aeration. The culture is switched 

to standing growth at 37C to mimic the virulence-inducing microaerobic condition with 1/5 final 

volume of 5x AKI media included in the culture to constitute a 1x AKI in LB media, in the absence 

or in the presence of CHP. Thiol labeling of oxidized cysteine residues were performed on acidify 

collected samples precipitated with a final 10% TCA. The protocol of Wholey and Jakob was then 

followed with 0.5kDa ASM as the modifying agent158. Briefly, after adding 10% TCA to samples 
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and a 30min incubation on ice, samples were centrifuged at 13,000rom for 30min at 4C, Pellets 

were then rinsed with 100l of 10% TCA, and centrifuged at 13,000rpm for 20min at 4C. Then 

100l of 5% TCA were used to rinse the pellet again, followed by a spin and the remainder of 

TCA were aspirated without disturbing the pellet. The pellets were resuspended in 50l DAB 

buffer (6M Urea, 250mM HEPES pH7.0, 10mM EDTA, 0.5% (w/v) SDS) supplemented with 

freshly made 100mM NEM to irreversibly alkylate all in vivo reduced thiols. Samples were 

incubated for 30min at 55C with 850rpm shaking, followed by another TCA precipitation to 

remove excess NEM. After rinsing the pellet by 50l 20%TCA, 100l of 10% TCA, and 100l of 

5% TCA, all remaining TCA was removed without disturbing the pellet. The pellets were then 

resuspended in 50l DAB buffer supplemented with 10mM DTT to reduce all in vivo oxidized 

cysteine residues at 37C for 1hr with 850rpm shaking. Excess DTT was removed by another 

TCA precipitation and rinses. The resulting pellet were then resuspended in 20l of labeling 

buffer (6M Urea, 50mM Tris pH7.5, 2% w/v SDS, 20mM ASM). 

Scanning the V. cholerae C6706 genome for ArcA regulated genes 

The position weight matrix reported by Ravcheev and colleagues69 was linearly transformed by 

the nucleic acid frequencies in V. cholerae El tor, approximately 0.262 for adenine and thymine, 

and 0.238 for cytosine and guanine. The resulting probability matrix is put in MEME version 4 

FIMO search with input genomes AE003852 for chromosome I and AE003853 for chromosome II 

of V. cholerae O1 N16961. 

Quantification of transcription of sdhC, ohrA, fur, katG, katB, feoA and arcA 

The psdhC-lacZ plasmid reporter (pYTZ104) was constructed by cloning sdhC promoter DNA into 

a promoterless lacZ transcriptional reporter plasmid pAH6159. V. cholerae WT, arcA and 

arcAC173S mutants containing psdhC-lacZ reporters were streaked out for heavy streaks on LB 

agar plates containing 2g/ml chloramphenicol to grow at 37C overnight. Cells were scraped off 

of the plate and resuspended in 0.8%(w/v) saline to inoculate at 1:100 into AKI media 

supplemented with freshly made NaHCO3 containing 2g/ml chloramphenicol to grow standing 
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for approximately 3 hours. Final concentrations of 60M-80M CHP were added to the cultures to 

generate a ~90% killing effect in the respective strains, determined by serial dilution for CFU 

enumeration. Samples that were in this range were retained in the final analysis for -

galactosidase activity quantification, normalized to per million CFU in respective samples.  

 

qPCR for ohrA expression was done with cell lysates that were grown under the virulence 

inducing conditions for 2.5hrs with or without 1hr of 60M CHP exposure. qPCR primers were 

designed such that around 100bp sequence in the transcript are amplified. Two regions in the 

16S RNA were amplified as internal references. RNA was extracted using a Qiagen RNeasy Mini 

kit. A DNA cleanup was followed using Ambion Turbo DNA-free kit DNase Treatment and 

removal reagents (AM1907). cDNA synthesis was carried out with Biorad iScript cDNA synthesis 

kit (Cat. 170-8890). The Genecopoeia All-in-One qPCR mix (Cat. AOPR-1000) was used to set 

up the qPCR reaction run on a Biorad iCycler CFX-96 with the following program: 95C, 10’; 

[95C, 10’’; 55C, 20’’, 72C 15’’] x40; 72-95C, 0.5C/unit time, 6’’/unit time for melting curve, 

25C, 30’’.  

 

-galactosidase activities were quantified for fur, feoA, and arcA expression in miller units. pAH6-

based plasmids were constructed such that approximately 1000bp upstream of a target gene, i.e., 

fur, feoA and arcA were ligated by XbaI and SalI to control the expression of a lacZ gene. V. 

cholerae strains containing the reporter plasmids are grown in media supplemented with 2g/ml 

chloramphenicol before assayed for -galactosidase activities as described before. fur expression 

was characterized in EZ rich defined media (EZRDM) by Teknova (Cat. M2105) or modified 

EZRDM with iron remitted from the recipe in sterile plastic vessels to minimize exogenous iron 

from adsorption. For arcA expression, cells were inoculated at 1:500 from saturated overnight 

cultures or 1:250 for arcA mutants to account for growth defect in LB media supplemented with 

100g/ml streptomycin and 2g/ml chloramphenicol to grow at 37C with 200rpm shaking for 2 

hours. The cells were then pelleted and resuspended in equal volume of AKI supplemented with 
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the same antibiotics to incubate standing at 37C for another hour. The resulting cultures in AKI 

were then assayed for -galactosidase activities. 

 

Expression of katG and katB were quantified as luminescence signal intensity normalized to 

OD600 as described before160.  

in vitro CHP killing assays 

V. cholerae cells streaked out from -80C storage were grown on LB agar plate overnight at 37C 

and washed once in 1x M9 salts before resuspended in 1x M9 salts to an OD600 of 1. Cell 

resuspension of each strain were introduced into AKI supplemented with freshly made filter 

sterilized NaHCO3 to a final concentration of 0.3% at a 1:300 dilution in 2ml screw top vials to 

create a more anoxic microaerobic growth condition. Cells are incubated at 37C until OD600 

reaches 0.1, around 2hrs, then challenged by 60M CHP for 1hr in the screw top vials. Bacterial 

cultures are then enumerated for CFU on LB agar plates. 

in vitro H2O2 challenge 

V. cholerae C6706 WT, arcA, arcAWT, arcAC173S, arcAC233S, arcAC173SC233S were grown overnight 

at 37C with 200rpm aeration to saturation. The saturated cultures were inoculated at 1:250 for 

arcA and 1:500 for the other strains in LB to grow standing with ambient atmosphere for 3hrs at 

37C. After 3hrs of growth, cells are challenged with 300M H2O2 for 1hr before serial dilution for 

CFU enumeration on LB agar plates.  Similar H2O2 challenges were done with mid-log cells 

grown in AKI supplemented with 0.3% NaHCO3, EZRDM or in MinA media supplemented with a 

final concentration of 0.2% glucose and 0.2% casamino acids in the anaerobic chamber. 

 

V. cholerae C6706 WT, arcA, arcB, and sodA complementation on a pBAD24 plasmid were 

inoculated at 1:500 for WT and 1:250 for the mutants to grow standing in LB with or without a final 

concentration of 0.1% arabinose to induce overexpression of SodA. After 3hrs of growth and 
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protein induction, cells are challenged with 300M H2O2 for 1hr before serial dilution for CFU 

enumeration on LB agar plates.  

Electrophoretic Mobility Shift assays (EMSA) 

His6-ArcA variant proteins were expressed in BL21(DE3) cells and purified on nickel columns 

according to the manufacturer’s instruction (Qiangen Cat. 30210). PCR products of a roughly 

300bp region in the sdhC promoter containing the predicted ArcA box were digested by HindIII 

and end-labeled with -32P dATP. Binding reactions contained purified protein at 0.1-1.5M 

concentrations were incubated with 0.1ng of DNA in a EMSA bind buffer (60mM Tris-Cl, pH7.5, 

100ug/ml BSA, 5% glycerol, 10mM MgCl2, 20mM KCl, and 1mM DTT) at 30C for 20min. In vitro 

phosphorylation was carried out with 10-30M protein with 20mM carbamoyl phosphate (Santa 

Cruz) in phosphorylation buffer (50mM Tris-Cl, pH7.5, 50mM KCl, 20mM MgCl2, 17mM DTT, 

10ug/ml BSA) at 30C for 30min, with a stoichiometry of 1-part 10x phosphorylation buffer, 1-part 

10x carbamoyl phosphate and 8-parts purified protein. Mock reaction was setup in the same 

reaction buffer as the phosphorylation reaction except adding Milli-Q water instead of carbamoyl 

phosphate. Oxidation is carried out with protein samples that have DTT removed by dialysis, with 

30mM of freshly prepared GSSG at 30C for 1hr, with a stoichiometry of 1-part oxidant and 1-part 

purified protein. The EMSA bind buffer for the oxidized samples excluded the 1mM DTT to ensure 

the oxidized state of proteins. Prior to in vitro modification reactions, His-tags were cleaved off by 

an overnight (>16hr) thrombin digestion with 1U thrombin per 100g protein at 4C and verified 

by SDS-PAGE followed by Coomassie staining. Beside GSSG, other oxidants include CuSO4, 

CuCl2, CHP, and H2O2 at varying oxidant concentrations ranging from 1M to hundreds of mM. 

Roughly 300bp region in the fur and oppA promoters containing a predicted ArcA box were also 

used in EMSAs with EcoRI sites flanking the fragments for end-labeling by -32P dATP. 

V. cholerae colonization in mouse models 

All animal experiments were performed in strict accordance with the animal protocols that were 

approved by the IACUC of the University of Pennsylvania. The streptomycin-treated adult mouse 
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model was used to examine V. cholerae ROS resistance in vivo as previously described with gut 

ROS mitigation by the antioxidant, N-acetyl cysteine (NAC) 101. Six-week-old CD-1 mice were 

provided with drinking water with or without 1% (w/v) NAC for one week. 0.5% (w/v) streptomycin 

and 0.5% (w/v) Stevia were included in the drinking water for the remainder of the experiment. 

Two days after streptomycin treatment, saturated liquid LB cultures of each of the two strains (WT 

and mutant) were mixed at a 1:1 ratio to a total of 10E8 CFU bacteria in 100l LB media and 

intragastrically administered to each mouse within 20min of neutralizing its stomach acid by 50l 

of 10% (w/v) NaHCO3 by oral gavage. Input CFU of both WT and mutant in the mix were 

obtained by enumerating the cell culture mix used to inoculate the mice immediately after 

infection. Fecal pellets were collected in days subsequent to infection for enumeration of bacterial 

counts. At 6 days post infection, mice were sacrificed, and the small intestine fragments were 

homogenized for enumeration of bacterial counts. In an infant mouse colonization experiment, 4- 

to 6-day-old CD-1 mice are infected with V. cholerae via oral gavage after separation from mother 

mouse for 2hrs. A total of 1E6 CFU of 1:1 mix of mutant and WT V. cholerae C6706 from 

overnight saturated LB liquid cultures were administered perorally to the mouse using fine plastic 

tubing (BD Cat.427401) attached to a tuberkulin syringe. Mice are monitored for signs of distress 

such as altered behavior and abdominal breathing then placed on tissue paper in a small beaker. 

The beaker is placed in a 30C incubator along with a container of water to provide humidity. 

12hrs after infection, the mice are sacrificed and the small intestine between the stomach and the 

cecum is recovered and homogenized in 5ml of LB media. The homogenate is diluted for 

enumeration of bacterial counts on LB agar plates.  

Bacterial Two Hybrid system (BacTH)  

E. coli BTH101 are co-transformed with a pKT25 derived plasmid and a pUT18c derived plasmid 

using the TSS competent methods 161. pKT25 carrying arcAWT was paired with pUT18c carrying 

either arcAWT or arcAC173S. pKT25 carrying the coding sequence for the yeast transcription factor 

GCN4 containing a leucine zipper was paired with pUT18c plasmid carrying the same sequence 

as a positive control for protein interactions. pKT25 and pUT18c vectors are co-transformed for a 
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negative control strain. Transformants were selected on LB agar plates containing kanamycin and 

ampicillin. After overnight incubation at 37C, multiple transformant colonies are inoculated to LB 

liquid media containing kanamycin and ampicillin to grow overnight at 37C with 200rpm shaking 

to saturation. These saturated cultures were then used to set up growth in a 96-well block in LB 

media containing appropriate antibiotics to grow shaking until cells reached mid-log phase. Next, 

the 96-well block either continued to be shaken for an aerobic growth condition or was switched 

to standing with 1x AKI media included in the culture to mimic a virulence inducing microaerobic 

growth condition. For ROS exposure, a final concentration of 250M CHP and 2.5mM H2O2 mix 

were included in the shaking culture for 1hr to induce protein interactions. The resulting cells were 

lysed by Popculture reagents (Millipore Cat. 71092) prior to -galactosidase assays. -

galactosidase activities were then measured in a 96-well plate as previously described 162.  

Protein purification 

An overnight culture of E. coli BL21(DE3) transformed with a pET41 derived plasmids containing 

N-terminally His6-tagged ArcA variant was used to inoculate at 1:100 into 500ml of LB containing 

kanamycin in 3L flat bottom flasks. After growth at 37C with 200rpm shaking for approximately 

2hrs, the mid-exponential phase culture was induced with a final concentration of 0.5mM IPTG 

and switched to 16C 200rpm shaking for an additional 16hrs for optimized soluble target protein 

production. Cells were harvested from the culture by centrifugation with a F12-6x500 LEX rotor in 

a Sorvall LYNX 4000 Superspeed centrifuge (Thermo Fisher) at 4248 rcf for 20min at 4C. The 

pellet was stored at -20C if not immediately proceeded to the next steps. Cell pellets were 

resuspended in 5ml Ni-NTA bind buffer (50mM NaH2PO4, pH 8.0; 300mM NaCl; 10mM 

imidazole). The cell resuspension is sonicated on ice with 10 second durations five times with 10 

second intervals. The cell lysate is centrifuged for 10min at 27,000 rcf at 4C to pellet cell debris. 

The cleared lysate is loaded on pre-equilibrated Ni-NTA agarose (Qiagen Cat. 30210) column 

with 2ml of bed volume at room tempearture. Following the lysate, 10ml of Ni-NTA bind buffer 

and 10ml of Ni-NTA wash buffer (50mM NaH2PO4, pH8.0, 300mM NaCl, 20mM imidazole) are 
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subsequently applied to the column. Protein was eluted in 1ml fractions in Ni-NTA elution buffer 

(50mM NaH2PO4, pH 8.0, 300mM NaCl, 300mM imidazole). Fractions were analyzed by standard 

SDS-PAGE to confirm elution of protein. Pooled fractions of ArcA variants were buffer exchanged 

overnight at 4C with sample buffer (10mM Tris-Cl pH7.5, 200mM NaCl, 1% glycerol) for a 

subsequent size exclusion purification. The Ni-NTA purified protein in sample buffer were passed 

through a 0.22m filter before loaded onto an AKTA purifier system (GE) with a HiLoad 16/600 

Supderdex 200 PG column equilibrated with sample buffer for size exclusion purification. 

Fractions containing ArcA as indicated by the elution chromatograph and confirmed by SDS-

PAGE analysis were pooled and concentrated using Amicon Ultra-4 10K columns (Millipore Cat. 

UFC801008) per manufacturer’s instructions. Final concentrations of 20% glycerol and 10mM 

DTT were included for storage at -20C.  

Non-reducing SDS-PAGE analysis for ArcA variants 

V. cholerae El tor (C6706) with pTara and pET41-his6-arcAWT, arcAC173S, arcAC233S, or 

arcAC173SC233S were streaked out for single colonies on LB agar plate containing kanamycin and 

chloramphenicol to grow overnight at 37C. A single colony (~1x10^6 CFU/ml) is inoculated into 

1.5ml of LB supplemented with kanamycin and chloramphenicol to grow shaking at 37C for 2hrs, 

arabinose was added to a final concentration of 0.1% to induce the expression of protein for 2hrs. 

The culture is switched to standing growth at 37C to mimic the virulence-inducing microaerobic 

condition with 1/5 final volume of 5x AKI media included in the culture to constitute a 1x AKI in LB 

media, in the absence or in the presence of a ROS mix at a final concentration of 50M of CHP 

and 500M of H2O2, and in the absence or in the presence of BME. After 3hrs of standing 

incubation at 37C, equivalent number of cells according to OD600 were spun down and 

resuspended in Popculture reagents (Millipore Cat. 71092) to allow cell lysis. Samples were 

mixed 5:1 with 6x SDS non-reducing loading dye (0.3M Tris-Cl, pH7.0, 10% (w/v) SDS, 30% 

glycerol, 0.06% bromophenol blue) and separated on 12% poly-acrylamide gels. Electrophoresis 

was performed at room temperature alongside Pageruler pre-stained protein ladder (Thermo 
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Fisher Cat.26616) with SDS running buffer (25mM Tris, 192mM glycine, 3mM SDS, pH8.3) until 

the 25kDa pre-stained band reached the bottom of the gel to allow maximal separation of 

different ArcA variant species under oxidation.  

 

in vitro oxidation of purified His6-ArcA variants was done with a 1:1 mix of 40M His6-ArcA variant 

proteins in sample buffer with 60mM freshly made GSSG dissolved in Milli-Q water. The mock 

treatment is a 1:1 mix of protein with Milli-Q water. Phosphorylation reaction was set up per 

EMSA phosphorylation. 

ArcA sequence comparisons 

V. cholerae ArcA protein sequence (NCBI accession: WP_09547195.1) was blasted against 

available protein references in the non-redundant protein sequences in NCBI blastp, excluding 

Vibrio cholerae (taxid 666). 389 ArcA homologs with 100% coverage were detected at a 66% 

identity cutoff. Among these 15 representative sequences were manually curated for a shortlist 

with amino acid sequences retrieved in fasta formats for an alignment. A subset of the short list is 

used for the TREND analysis for the arcA genetic neighborhood comparison 143. A rootless tree 

with Pseudoalteromonas sp. T1lg22 ArcA, which is 66% identical to V. cholerae ArcA, as an 

outgroup is generated by MEGA5 using the neighbor-joining algorithm. The amino acid 

sequences around residues 54, 173 and 233 are examined for conservation of aspartate residue 

and cysteine residues.  

 

The E. coli (NCBI accession: NP_418818.1) and V. cholerae ArcA C-terminal DNA binding 

domains, residues 119-238, were compared to that of representative PhoB/OmpR family RRs: 

PhoP (PBD ID: 5ED4), KdpE (4KNY), PmrA (4S04), RstA (4NHJ), BaeR (4B09), RitR (5U8K), 

and PhoB (1GXP). The amino acid sequences were aligned using the Clustal omega (1.2.4) 

multiple sequence alignment tool. 
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Phos-tag SDS-PAGE  

Mn-based phos-tag SDS-polyacrylamide gels were prepared within 3hrs of use. The resolving gel 

contains 10% acrylamide and 20M phos-tag reagent (NARD Cat. AAL-107) and 20M MnCl2. 

The phos-tag reagent was dissolved in 100l of methanol and subsequently diluted with 3.2ml 

distilled water to constitute a 5mM stock solution and stored at 4C per manufacturer’s instruction. 

Freshly made 30% ammonium persulfate (APS) is used to ensure proper polymerization of the 

cation-containing gel. V. cholerae C6706 WT with a pTara plasmid encoding the T7 polymerase 

that over expresses His6-ArcAWT on a pET41 plasmid were grown under microaerobic conditions 

in the absence or in the presence of an ROS mixture of 50M CHP and 500M H2O2 for 3hrs 

following 2hrs of induction of protein expression with 0.1% arabinose included in the media. Cell 

lysates were then immediately lysed by Popculture and mixed with 4x reducing loading buffer 

onto a freshly made Mn-based phos-tag gel. Proteins are separated by electrophoresis at a 

constant voltage of 160V for approximately 1hr at room temperature, then transferred to a PVDF 

membrane with EDTA supplemented transfer buffer for subsequent western blot.  

 

A gradient of carbamoyl phosphate (0, 0.5, 2.5, 12.5, 20, or 40mM final concentrations) was 

incubated with reduced or oxidized ArcAWT on water buffered heat block (Labnet Accublock) at 

30C for 30min. The mock and oxidation reaction prior to phosphorylation was done at 30C for 

1hr with 0 or 60mM GSSG mixed 1:1 with 36M ArcAWT. 2, 10, 20, 40, 60, or 80M final 

concentration of CHP were exposed to ArcAWT phosphorylated at a final concentration of 200mM 

carbamoyl phosphate at 30C for 30min. 

Intracellular Glutathione quantification 

V. cholerae cells were grown on LB agar plate overnight at 37C and resuspended in AKI media 

to an OD600 of 1. The cell resuspension is diluted at 1:100 into 50ml of AKI supplemented with 

freshly made filter sterilized NaHCO3 to a final concentration of 0.3% in a falcon tube to grow at 

37C standing for 2hrs. The cell culture is then exposed to none or 60M of CHP at 37C for 

30min. The culture is pelleted at 4C with 17,000 rcf for 5min, resuspend in 1ml 0.8% (w/v) saline 
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to wash away excess CHP, and pelleted again at room temperature for 3min. The pellet is 

resuspended in 200l of Milli-Q water and sonicated in Branson 1210 ultrasonic cleaner for 

10min. Total and oxidized glutathione in the lysates are quantified using the GSH/GSSG-Glo 

assay (Promega Cat. V6611) following manufacturer’s instructions. Luminescence was taken with 

clear flat bottom white polystyrene 96 well microplates on Synergy HT plate reader. Data are 

collected from three independent experiments. 

Ultracentrifugation analysis 

Purified His6-tagged ArcAWT protein is oxidized, phosphorylated, or mock treated as described for 

EMSA. Briefly, 75l of 54M His6-tagged ArcAWT is mixed with 75l of Milli-Q water for mock 

reaction, or 75l of 60mM GSSG for oxidation. 150l of ArcAWT protein reaction solution is first 

subject to a 17,000 rcf spinning in a tabletop centrifuge at 4C for 30min, then 140l of the 

supernatant is transferred to an ultracentrifuge polycarbonate tube (Beckman Cat. 343776) to 

spin at 109,000 rcf in a Beckman Coulter Optima TLX Ultracentrifuge with a TLA120.1 rotor at 

4C for 30min. The protein concentration in each sample at each step are determined by 

Bradford assays using BSA as a standard. Percentage soluble is calculated by the protein 

concentration in the supernatant after each spin divided by the initial unspun protein 

concentration immediately following the (mock) treatment.  

Size exclusion chromatography 

Purified His6-tagged ArcAWT after oxidation, phosphorylation, or mock treatment are analyzed by 

an AKTA Pure chromatography system with a Superose 6 Increase 10/300 column at a 0.5ml/min 

system flow rate with sample buffer (10mM Tris-Cl, 200mM NaCl, 1% glycerol, pH 7.5) for a total 

volume of 30ml. 30g of protein in a 200l volume (5.6M) were loaded. Similar results were 

obtained using an AKTA Purifier chromatography system with a HiLoad 16/600 Superdex 200 PG 

column at 0.5ml/min flow rate for a total volume of 120ml where approximately 1mg of protein in a 

4ml volume (9.3M) were loaded.  
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Salmonella in vitro CHP challenge 

Salmonella enterica serovar Typhimurium SL1344 were streaked out on an 1.5% LB agar plate 

containing 100g/ml ampicillin for single colonies. A single colony of each strain, SL1344 WT with 

pACYC117 vector, SL1344 arcA with pACYC117 vector, pACYC117-arcAWT or pACYC117-

arcAC173S, were confirmed for their respective colony sizes (WT and complementation strain big, 

arcA and arcAC173S mutants small) and inoculated to LB media supplemented with 100g/ml 

streptomycin and 100g/ml ampicillin to grow to saturation at 37C with 200rpm aeration 

overnight. The overnight culture is diluted 1:40 in LB supplemented with 130M NaCl, 100g/ml 

streptomycin and 100g/ml ampicillin and grown standing at 37C for 3hrs. After the 3hr virulence 

induction, cultures from a single tube were divided in half and 0 or 200M final concentrations of 

CHP was added to each part and mixed well. CFU was determined after another hour of static 

incubation at 37C. Survival percentage of each strain was calculated by the CFU in the CHP 

present sample divided by that in the CHP absent sample. Data was collected from three 

biological repeats.  

Salmonella Caco-2 Infection  

Salmonella enterica serovar Typhimurium SL1344 WT with pACYC117 vector, SL1344 arcA 

with pACYC117 vector, pACYC117-arcAWT or pACYC117-arcAC173S were induced for virulence 

expression as described in the Salmonella in vitro CHP challenge. After the 3hr virulence 

induction, cells were spun down at 8000rpm for 3min, washed in PBS once before resuspending 

in 500l PBS. OD600 were determined for each strain to calculate for a multiplicity of infection 

(moi) of 20 for 2x10E5 Caco-2 cells per well on a 48-well plate in antibiotics free fresh FBS 

medium changed 1hr before infection. An input CFU was determined by serial dilution of this 

bacterial cell resuspension to confirm the calculated moi. 100g/ml gentamycin were added 30 

minutes prior to harvesting to eliminate extracellular Salmonella. Intracellular bacterial counts 

were evaluated at 30min, 1hr, 2hr and 4hr post infection. Briefly, supernatant was discarded, and 

the adhered Caco-2 cells were washed with PBS for five times. 200l of 0.2% Triton X-100 in 

PBS was added to each well for 1hr of incubation at RT before collected in an Eppendorf tube. An 
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additional 800l of PBS was used to wash the empty wells and combined with the lysed cells. 

The resulting cell lysate was used for enumeration of CFU at respective timepoints. Data was 

collected from three infections. 

in vitro co-culturing of WT and arcA mutants in MinA media 

arcA mutants (lacZ-) and WT (lacZ+) cells were grown on an LB plate overnight and 

resuspended in 0.8% (w/v) saline to similar OD600. The cells were introduced to fresh media 

either individually, or as a 1:1 mix at a total dilution of 1:1000. Cultures were incubated at 37C 

standing. MinA media (46mM K2HPO4, 33mM KH2PO4, 7.5mM (NH4)2SO4, 1.7mM sodium citrate, 

1mM MgSO4) was supplied with a final concentration of 0.2% glucose or 0.5% (w/v) of mucin. 

Sterile mucin was prepared by submerging mucin in 99% ethanol and a complete evaporation of 

the ethanol in a covered-ventilated vessel on a 60C heat block. CFU in the input and after 24hr 

incubation were determined by serial dilution and tilting 10ul of each dilution on an LB agar plate 

containing 40g/ml X-gal.  
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Appendix 
Table 1: Mass spec hit summary 

Accession # Gene name Description # of unique C 
oxidation 

translation 

Q9KP07 rpsD  30S ribosomal protein S4  1 

Q9KNZ8 rpsH  30S ribosomal protein S8  1 

Q9KUF0 rpsI  30S ribosomal protein S9  1 

Q9KUZ9 rpsL  30S ribosomal protein S12  2 

Q9KNZ3 rpsQ  30S ribosomal protein S17  1 

Q9KV32 rplJ  50S ribosomal protein L10  1 

Q9KP02 rpmD  50S ribosomal protein L30 1 

Q9KNQ2 rpmE  50S ribosomal protein L31  4 

O68845 rpmI  50S ribosomal protein L35  1 

Q9KPM5 fusA2 Elongation factor G 2 2 

Q9KUZ6 tufB  Elongation factor Tu-B  3 

energy metabolism 

Q9KPJ9 arcA Aerobic respiration control response regulator 
ArcA 

2 

Q9KPF6 lpd  Dihydrolipoyl dehydrogenase  2 

Q9KNH5 atpD  ATP synthase subunit beta  1 

P0C6Q3 pgk  Phosphoglycerate kinase  1 

Q9KT07 ackA1  Acetate kinase 1  2 

Q9KQH9 fabF  3-oxoacyl-[acyl-carrier-protein] synthase 2  1 

Q9KQY1 VC_1866  Formate acetyltransferase  1 

Q9KTA8 VC_0995  PTS system, N-acetylglucosamine-specific 
IIABC component  

1 

Q9KQI5 VC_2013  PTS system, glucose specific IIBC 
component  

1 

Q9KQG5 VC_2033  Aldehyde-alcohol dehydrogenase  1 

redox homeostasis 

Q9KV51 VC_0306  Thioredoxin  2 

others 

Q9KRJ1 VC_1649  Trypsin, putative  1 

Q9KNR7 groL1  60 kDa chaperonin 1  1 

H9L4Q5 VC_0409  MSHA pilin protein MshA  1 

Q9KUV4 VC_0408  MSHA pilin protein MshB  1 

 

 

 

 



 
 

82 

Table 2: Bacterial strains 

Strain Description Source or reference 

Escherichia coli  

DH5 pir pir lysogen of DH5 Zhu lab stock 

pir2 F- △lac169, rpoS(Am), robA1, creC510, 

hsdR514, endA, recA1, uidA(△MluI)::pir 

Goulian lab stock 
(Invitrogen) 

XL1-Blue recA1, endA1, gyrA96, thi-1, hsdR17, 
supE44, relA1, lac [F' proAB lacIqZ△M15 

Tn10] 

Goulian lab stock 
(Stratagene) 

SM10 pir thi thr leu tonA lacY supE recA:: RP4-2-

TC::Mu pir, KanR 

Zhu lab stock 

BL21 (DE3) F- ompT hsdSB (rB
-, mB

-) gal dcm (DE3) Zhu lab stock 

BL21 (DE3) pYTZ105 BL21(DE3) His6-ArcAWT expression strain This work 

BL21 (DE3) pYTZ105.1 BL21(DE3) His6-ArcAC173S expression strain This work 

BL21 (DE3) pYTZ105.2 BL21(DE3) His6-ArcAC233S expression strain This work 

BL21 (DE3) pYTZ105.3 BL21(DE3) His6-ArcAC173SC233S expression 
strain 

This work 

BL21 (DE3) pYTZ105.4 BL21(DE3) His6-ArcAD54A expression strain This work 

BTH101 F-, cyaA-99, araD139, galE15, galK16, 
rpsL1 (Strr), hsdR2, mcrA1, mcrB1 

BacTH 142  

BTH101 GCN4-GCN4 BHT101 with pKT25-GCN4 and pUT18c-
GCN4 

BacTH 142 

BTH101 vector BHT101 with pKT25 and pUT18c vectors BacTH 142 

BTH101 ArcAWT-ArcAWT BTH101 with pYTZ116 and pYTZ117 This work 

BTH101 ArcAWT-
ArcAC173S 

BTH101 with pYTZ116 and pYTZ117.1 This work 

Vibrio cholerae 

C6706 WT V. cholerae serovar O1 biotype El tor Joelsson et al., 2006 
163 

C6706 △lacZ lacZ::ptcpA-sh ble Liu et al., 2008 164 

△arcA C6706 arcA (VC2368)::kan lacZ::ptcpA-sh 
ble 

This work 

△arcA lacZ+ C6706 arcA (VC2368)::kan This work 

arcAWT C6706 arcA::kan lacZ::arcAWT This work 

arcAC173S C6706 arcA::kan lacZ::arcAC173S This work 

arcAC233S C6706 arcA::kan lacZ::arcAC233S This work 

arcAC173SC233S C6706 arcA::kan lacZ::arcAC173SC233S This work 

arcAD54A C6706 arcA::kan lacZ::arcAD54A This work 

△arcB C6706 arcB::spc lacZ::ptcpA-sh ble This work 

C6706 WT pTara 
pYTZ105 

T7 RNA polymerase His6-ArcAWT V. 
cholerae expression strain 

This work 

C6706 WT pTara 
pYTZ105.1 

T7 RNA polymerase His6-ArcAC173S V. 
cholerae expression strain 

This work 

C6706 WT pTara 
pYTZ105.2 

T7 RNA polymerase His6-ArcAC233S V. 
cholerae expression strain 

This work 
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C6706 WT pTara 
pYTZ105.3 

T7 RNA polymerase His6-ArcAC173SC233S V. 
cholerae expression strain 

This work 

C6706 WT pTara 
pYTZ105.3 

T7 RNA polymerase His6-ArcAD54A V. 
cholerae expression strain 

This work 

△arcB pTara pYTZ105 T7 RNA polymerase His6-ArcAWT V. 
cholerae △arcB expression strain 

This work 

WT pYTZ104 sdhC expression lacZ reporter plasmid in a 
C6706 lacZ::ptcpA sh ble background 

This work 

△arcA pYTZ104 sdhC expression lacZ reporter plasmid in a 
C6706 arcA::kan lacZ::ptcpA-sh ble 
background 

This work 

arcAC173S pYTZ104 sdhC expression lacZ reporter plasmid in a 
C6706 arcA::kan lacZ::arcAC173S 
background 

This work 

WT pYTZ204 fur expression lacZ reporter plasmid in a 
C6706 lacZ::ptcpA-sh ble background 

This work 

△arcA pYTZ204 fur expression lacZ reporter plasmid in a 
C6706 arcA::kan lacZ::ptcpA-sh ble 
background 

This work 

△fur (lacZ-) in frame clean deletion of fur in a C6706 
lacZ::ptcpA sh ble background 

This work 

△arcA △fur in frame clean deletion of fur in C6706 
arcA::kan lacZ::ptcpA-sh ble background 

This work 

WT pkatG-lux katG expression luxCDABE reporter 
plasmid in a C6706 lacZ::ptcpA sh ble 
background 

This work 

△arcA pkatG-lux katG expression luxCDABE reporter 
plasmid in a C6706 arcA::kan lacZ::ptcpA-
sh ble background 

This work 

△fur pkatG-lux katG expression luxCDABE reporter 
plasmid in a C6706 △fur background 

This work 

WT pkatB-lux katB expression luxCDABE reporter plasmid 
in a C6706 lacZ::ptcpA sh ble background 

This work 

△arcA pkatB-lux katB expression luxCDABE reporter plasmid 
in a C6706 arcA::kan lacZ::ptcpA-sh ble 
background 

This work 

△fur pkatB-lux katB expression luxCDABE reporter plasmid 
in a C6706 △fur background 

This work 

△arcA pBAD24 C6706 arcA::kan lacZ::ptcpA-sh ble with a 
pBAD24 vector 

This work 

△arcA pYTZ115 C6706 arcA::kan lacZ::ptcpA-sh ble with 
pBAD24-sodA 

This work 

WT pYTZ103 feoA expression lacZ reporter plasmid in a 
C6706 lacZ::ptcpA-sh ble background 

This work 

△arcA pYTZ103 feoA expression lacZ reporter plasmid in a 
C6706 arcA::kan lacZ::ptcpA-sh ble 
background 

This work 

WT pYTZ205 arcA expression lacZ reporter plasmid in a 
C6706 lacZ::ptcpA-sh ble background 

This work 

△arcA pYTZ205 arcA expression lacZ reporter plasmid in a 
C6706 arcA::kan lacZ::ptcpA-sh ble 
background 

This work 
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△tcpPH pYTZ205 arcA expression lacZ reporter plasmid in a 
C6706 tcpPH lacZ::ptcpA-sh ble 
background 

This work 

△toxT pYTZ205 arcA expression lacZ reporter plasmid in a 
C6706 toxT lacZ::ptcpA-sh ble background 

This work 

△toxRS pYTZ205 arcA expression lacZ reporter plasmid in a 
C6706 toxRS lacZ::ptcpA-sh ble 
background 

This work 

△aphB pYTZ205 arcA expression lacZ reporter plasmid in a 
C6706 aphB lacZ::ptcpA-sh ble background 

This work 

△arcA(KanS) C6706 with a truncated chromosomal arcA 
(VC2368), kanamycin sensitive 

Zhu lab unpublished 

△arcA(KanS) pTara 

pYTZ105 

T7 RNA polymerase His6-ArcAWT V. 
cholerae expression strain in an arcA KanS 
background 

This work 

Salmonella enterica serovar Typhimurium 

LT2 pKD46 avirulent laboratory strain (rpoS mutant), 
with a temperature sensitive plasmid 
(AmpR) for recombination 

Datsenkko & 
Wanner, 2000 156 

LT2 arcA::Kan arcA (STM4598) KO in LT2 This work 

SL1344 WT virulent laboratory strain (hisG mutant) 
SopE+ 

Reyes Ruiz et al., 
2017 165 

SL1344 arcA::Kan P22vir(LT2 arcA::Kan) x SL1344 WT This work 

SL1344 arcA::Kan 
pYTZ210 

SL1344 arcA::Kan with pACYC117-parcA-
arcAWT 

This work 

SL1344 arcA::Kan 
pYTZ210.1 

SL1344 arcA::Kan pACYC117-parcA-
arcAC173S 

This work 
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Table 3: Plasmids 

Plasmid Description Source or 
reference 

pWM91 R6K vector with oriR oriT lacZ tetAR sacB, AmpR Metcalf et al., 
1996 153 

pYTZ101 pWM91-arcA suicide plasmid to disrupt 
chromosomal arcA (VC2368) 

This work 

pWM91-fur suicide plasmid to disrupt chromosomal fur 
(VC2106) 

Zhu lab 
unpublished 

pTara pACYC184-based plasmid with an AraBAD 
promoter regulated T7 RNA polymerase (from 
pAR1217), CmR 

Addgene 

pET41 plac, TEV, Thrombin cleavage sites, N-terminal 
His6 expression vector, KanR 

Mo et al., 2018 166 

pYTZ105 pET41-His6-ArcAWT This work 

pYTZ105.1 pET41-His6-ArcAC173S This work 

pYTZ105.2 pET41-His6-ArcAC233S This work 

pYTZ105.3 pET41-His6-ArcAC173SC233S This work 

pYTZ105.4 pET41-His6-ArcAD54A This work 

pJL1 R6K ori, sacB, lacZ(Vc)::MCS, AmpR Zhu lab stock 

pYTZ111 pJL1-parcA-arcAWT This work 

pYTZ112 pJL1-parcA-arcAC173S This work 

pYTZ113 pJL1-parcA-arcAC233S This work 

pYTZ114 pJL1-parcA-arcAC173SC233S This work 

pYTZ118.2 pJL1-parcA-arcAD54A  This work 

pAH6 pACYC184 ori, promoterless lacZ, CmR Hsiao et al., 2006 
167 

pYTZ104 pAH6-1024bp of sdhC upstream sequence-lacZ This work 

pYTZ204 pAH6-pfur-lacZ This work 

pYTZ205 pAH6-parcA-lacZ This work 

pYTZ103 pAH6-pfeoA-lacZ This work 

pKT25 MCS for C-term translational fusion to T25 ORF on 
a pSU40 derivative, KanR 

BacTH 142 

pUT18c MCS for C-term translational fusion to T18 ORF on 
a pUC19 derivative, AmpR 

BacTH 142 

pKT25-GCN4 yeast transcription factor GCN4 containing a 
leucine zipper for protein interaction on pKT25 

BacTH 142 

pUT18c-GCN4 yeast transcription factor GCN4 containing a 
leucine zipper for protein interaction on pUT18c 

BacTH 142 

pYTZ116 pKT25-arcAWT This work 

pYTZ116.1 pKT25-arcAC173S This work 

pYTZ117 pUT18c-arcAWT This work 

pYTZ117.1 pUT18c-arcAC173S This work 

pBAD24 arabinose inducible promoter, AmpR Guzman et al., 
1995 168 
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pYTZ115 pBAD24-sodA (VC2694) This work 

pkatB-luxCDABE pBBRlux backbone katB (VC1585) promoter-
luxCDABE, CmR 

Xia et al., 2017 160 

pkatG-luxCDABE pBBRlux backbone katG (VC1560) promoter-
luxCDABE, CmR 

Xia et al., 2017 160 

pACYC117 Multi-copy number cloning vector, KanR AmpR Zhu lab stock 

pYTZ210 pACYC117-Salmonella parcA-arcAWT, AmpR This work 

pYTZ210.1 pACYC117-Salmonella parcA-arcAC173S, AmpR This work 

pKD4 template plasmid for kanamycin resistance 
cassette for recombination in LT2 to knockout arcA 
(STM4598) 

Datsenkko & 
Wanner, 2000 156 

pSRKTc  pBBR1MCS-3-derived broad-host-range 
expression vector, plac, lacIq, lacZα+, TetR 

Khan et al., 2008 
169 

pSRKTc-arcAWT arcA (VC2368) on pSRKTc  Zhu lab 
unpublished 

pSRKTc-arcAC173S arcAC173S (TGT to AGC mutation) on pSRKTc Zhu lab 
unpublished 

pSRKTc-arcAC233S arcAC233S (TGT to AGC mutation) on pSRKTc Zhu lab 
unpublished 

pSRKTc-
arcAC173SC233S 

arcAC173SC233S (TGT to AGC mutation at respective 
loci) on pSRKTc 

Zhu lab 
unpublished 
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Table 4: Primers 

Primer Sequence Resulting construct or 
purpose 

arcA5upFW GGCGAATTGGGTACCGGGCCCCCC
CAACTCTCTTCAAACCAGTGAAAAT
GAGC 

pYTZ101 (arcA::kan by Gibson 
cloning inserted to pWM91) 

arcA5upRV AAATGACCGACCACAAGTTACGTG
CGCGAAT 

pYTZ101 (arcA::kan by Gibson 
cloning inserted to pWM91) 

KmrFW GCACGTAACTTGTGGTCGGTCATTT
CGAACCCC 

pYTZ101 (arcA::kan by Gibson 
cloning inserted to pWM91) 

KmrRV TGAGCGGCTCAACAAAGAGAAAGC
AGGTAGCTTGCAGT 

pYTZ101 (arcA::kan by Gibson 
cloning inserted to pWM91) 

arcA3dnFW TGCTTTCTCTTTGTTGAGCCGCTCA
ATGCATG 

pYTZ101 (arcA::kan by Gibson 
cloning inserted to pWM91) 

arcA3dnRV GGTGGCGGCCGCTCTAGAACTAGT
GTTTATCGGTAGCGGCGGTGCG 

pYTZ101 (arcA::kan by Gibson 
cloning inserted to pWM91) 

StuI400arcA5 CGAGGCCTCAGTAAAATGGCCAAT
TTACTGG 

insert with a StuI site followed by 
400 bp of arcA upstream 
sequences (native promoter) for 
chromosomal complementation 
with pJL1 derived plasmids 

arcA3NotI CGGCGGCCGCTTAATCTTCTAAATC
ACC 

arcA sequence including stop 
codon followed by a NotI site for 
chromosomal complementation 
with pJL1 derived plasmids 

parcA5 (f1 For) GGGGATTGGTACCGCCAGTAAAAT
GGCCAATTTACTGGCT 

amplify native arcA promoter 
from V. cholerae genome for 
pJL1 based plasmids 

parcA3 (f1 Rev) GGTTTGCATTAGCGTTACCTAAACT
TG  

amplify native arcA promoter 
from V. cholerae genome for 
pJL1 based plasmids 

arcA3 (f2 For) TTGGTACCAGATCTTAATTAAGGTT
AATCTTCTAAATCACCACAGAAGC 

PCR fragment for Gibson 
assembly for pJL1 based 
plasmids from pSRKTc 
subcloning 

arcA5 (f2 Rev) GTAACGCTAATGCAAACCCCGCAG
A 

PCR fragment for Gibson 
assembly for pJL1 based 
plasmids from pSRKTc 
subcloning 

arcA3C2S (f2 for') TTGGTACCAGATCTTAATTAAGGTT
AATCTTCTAAATCACCGCTGAAGC 

PCR fragment for Gibson 
assembly for pJL1 based 
plasmids from pSRKTc 
subcloning 

pJL1seqFW GATGAGCCGACTTTCCAA sequencing primer to confirm 
insert sequences on a pJL1 
derived plasmid 

pJL1seqRV TCGACCCGCGCATACATC sequencing primer to confirm 
insert sequences on a pJL1 
derived plasmid 

pJL1StuIparcA5F
OR1 

TTGGTACCAGATCTTAATTAAGGCC
TCAGTAAAATGGCCAATTTACTGGC
TTTTCA 

pYTZ118.2 (pJL1-arcAD54A) 
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pYTZ118.2REV1 GCAGGTTGATGGCCATAATCACCA
A 

pYTZ118.2 (pJL1-arcAD54A) 

pYTZ118.2FOR2 GATTATGGCCATCAACCTGCCAGG
A 

pYTZ118.2 (pJL1-arcAD54A) 

pJL1arcA3NotIRE
V2 

GAATCGGGGATTGGTACCGCGGCC
GCTTAATCTTCTAAATCACCACAGA
AGCGGT 

pYTZ118.2 (pJL1-arcAD54A) 

lacZ insertion 
sequencing NotI 

TTTGGTCGCTCGGCAATG sequencing primer to confirm 
pJL1 insert on genome 

lacZ insertion StuI 
sequencing 

GATGGGTCGCGCTGTTTC sequencing primer to confirm 
pJL1 insert on genome 

arcB F1 CAACTGGTGAACACCATAGG arcB::spec by MuGent 

arcB R1 GTCGACGGATCCCCGGAATCATTC
ACTGCTCCGTCAGATAAAG 

arcB::spec by MuGent 

arcB F2 GAAGCAGCTCCAGCCTACACAAGC
AAACGCAAAGCAG 

arcB::spec by MuGent 

arcB R2 CTCGCATCCCTTCCTCCAAA arcB::spec by MuGent 

ABD123 ATTCCGGGGATCCGTCGAC MuGent primers for introducing 
antibiotics cassettes 

ABD124 TGTAGGCTGGAGCTGCTTC MuGent primers for introducing 
antibiotics cassettes 

arcB check TTCTTTTATATCTAATTAGA primer to check MuGent 
arcB::spec on chromosome 

arcA-3NdeI-TEV GGCCATATGGAGAACCTCTACTTCC
AATCGATGCAAACCCCGCAGATCC 

PCR insert with 3 random bases 
for NdeI cleavage for pET41 
derived plasmids for His6-tag 
ArcA variants  

arcA3-XhoI GTCTCGAGTTAATCTTCTAAATCAC
C 

PCR insert for pET41 derived 
plasmids for His-tagged ArcA 
variants 

sdhClacZ-SalI GAGTCGACGGCTTGCTCACTCAGC
TCC 

pYTZ104 (pAH6 derived psdhC-
lacZ reporter plasmid) 

sdhClacZ-XbaI GATCTAGAGGCAAACATCATGTGCA
GG 

pYTZ104 (pAH6 derived psdhC-
lacZ reporter plasmid) 

feoAlacZ-XbaI GATCTAGAGTCGTTAAATGAGGTTC
GC 

pYTZ103 (pAH6 derived pfeoA-
lacZ reporter plasmid) 

feoAlacZ-SalI ATGTCGACGTGACAATTTCATAGAG
G 

pYTZ103 (pAH6 derived pfeoA-
lacZ reporter plasmid) 

fur-SalI TGGTCGACTGACATATACTTTCCTG pYTZ204 (pAH6 derived pfur-
lacZ reporter plasmid) 

fur-XbaI GCTCTAGACAGGGAAGCATTTATC
GC 

pYTZ204 (pAH6 derived pfur-
lacZ reporter plasmid) 

arcA_SalI ATGTCGACTTGCTCGTCTTCGACGA
T 

pYTZ205 (pAH6 derived parcA-
lacZ reporter plasmid) 

arcA-XbaI CCTCTAGACGATCAAGCATTGCTGT
A 

pYTZ205 (pAH6 derived parcA-
lacZ reporter plasmid) 

pKT25-ArcA-
EcoRI 

ATGAATTCTTAATCTTCTAAATCACC pYTZ116 and pYTZ117 derived 
plasmids for BacTH 

pKT25-ArcA-XbaI GGTCTAGAGATGCAAACCCCGCAG
ATCC 

pYTZ116 and pYTZ117 derived 
plasmids for BacTH 

pUT18c 
sequencing 

TGCCGGGAGCAGACA pUT18c sequencing to confirm 
correct insert 
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sdhC EMSA1 Hin
dIII 

GCAAAGCTTTTGCAGTCCGTATAGT
GA 

HindIII site 5' to a ~300bp of 
sdhC promoter 

sdhC EMSA2 Hin
dIII 

GCAAAGCTTATTGCTGAGATCGGAA
AG 

HindIII site 3' to a ~300bp of 
sdhC promoter 

fur_EMSA ATGAATTCGCCGTCTACCTGCATCT
C 

EcoRI site 5' to a fur promoter 
sequence 

fur EMSA2 ATGAATTCCAAAATGGAGGCCAAGA EcoRI site 3' to a fur promoter 
sequence 

oppA EMSA1 GCGAATTCAGATTGATAGGCTTGAA
GGAGGC 

EcoRI site 5' to an oppA 
promoter sequence 

oppA EMSA2 GCGAATTCAACAGACTATCCTCTTT
GG 

EcoRI site 3' to an oppA 
promoter sequence 

Fur Check 5F GTAAGAGCACTTTGTTCAG PCR primer to confirm 
chromosomal fur deletion  

Fur Check R3 CGGTGCGGATTTCCCAAC PCR primer to confirm 
chromosomal fur deletion  

sodA-EcoRI ATGAATTCATGCTATCCGCCTTGCT
GA 

pYTZ115 (pBAD24-sodA) 

sodA-HindIII GAAAGCTTCCCTTCTGATGATTTAC
G 

pYTZ115 (pBAD24-sodA) 

5'pcr GGCAGGTCAGGGACTTTTGT arcA (STM4598) KO in LT2 

3'pcr AAGAAACAGCCAGTAAGAAT arcA (STM4598) KO in LT2 

5'+P1 ACTTCCTGTTTCGATTTAGTTGGCA
ATTTAGGTAGCAAAC 
GTGTAGGCTGGAGCTGCTTC 

arcA (STM4598) KO in LT2 

3'+P2 AACTTACCGGCTGTTTTTACAGTTT
GGCGCCTGGGCCGAA 
CATATGAATATCCTCCTTAG 

arcA (STM4598) KO in LT2 

SLarcA5BamHI GCCGGATCCTACGTCTTAGCCTGTT
ATG 

pYTZ210 and pYTZ210.1 inserts 
(with native SL1344 arcA 
promoter) PCR primers using 
synthesized fragment (Genewiz) 
as template 

SLarcA3HindIII GGCAAGCTTGGCCGAATTAATCCT
GC 

pYTZ210 and pYTZ210.1 inserts 
(with native SL1344 arcA 
promoter) PCR primers using 
synthesized fragment (Genewiz) 
as template 

ohrAqPCRF CAAAAGAGATGGGTGGAAGC ohrA qPCR primer 

ohrAqPCRR GAAAAGCAAGCAGCATAGCC ohrA qPCR primer 

16S60bpcontrol 
Fw 

CGGTAATACGGAGGGTGCAA 16s RNA qPCR primer for 
internal control 

16S60bpcontrol 
Rv 

CACCTGCATGCGCTTTACG 16s RNA qPCR primer for 
internal control 

16S-C6706-For GTGTAGCGGTGAAATGCGTAG 16s RNA qPCR primer for 
internal control 

16S-C6706-RT TAGGGCACAACCTCCAAGTAG 16s RNA qPCR primer for 
internal control 
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