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Improving Neural Network Robustness via Persistency of Excitation

Kaustubh Sridhar Oleg Sokolsky Insup Lee James Weimer

Abstract— Improving adversarial robustness of neural net-
works remains a major challenge. Fundamentally, training
a neural network via gradient descent is a parameter esti-
mation problem. In adaptive control, maintaining persistency
of excitation (PoE) is integral to ensuring convergence of
parameter estimates in dynamical systems to their true values.
We show that parameter estimation with gradient descent can
be modeled as a sampling of an adaptive linear time-varying
continuous system. Leveraging this model, and with inspiration
from Model-Reference Adaptive Control (MRAC), we prove
a sufficient condition to constrain gradient descent updates
to reference persistently excited trajectories converging to the
true parameters. The sufficient condition is achieved when the
learning rate is less than the inverse of the Lipschitz constant of
the gradient of loss function. We provide an efficient technique
for estimating the corresponding Lipschitz constant in practice
using extreme value theory. Our experimental results in both
standard and adversarial training illustrate that networks
trained with the PoE-motivated learning rate schedule have
similar clean accuracy but are significantly more robust to
adversarial attacks than models trained using current state-
of-the-art heuristics.

I. INTRODUCTION

Neural networks are vulnerable to adversarial examples
[1] and most existing defenses are still highly susceptible
to white box attacks [2], [3] (where the adversary has full
access to the network and its defense mechanism).

We believe that adversarial robustness can be improved by
leveraging the fact that every neural network training process
(standard or robust) is a parameter estimation problem [4],
where the goal is to find the true parameters of a model. A
model1 with its true parameters, i.e., the parameters of the
true mapping from its input space to output space, always
maps similar inputs to similar outputs [4]. We posit (and em-
pirically demonstrate) that this implies increased adversarial
robustness for neural networks with their true parameters.

In system identification and adaptive control, Persistency
of Excitation (PoE) conditions [5] are integral to robust
estimation of true parameters. They restrict parameter estima-
tion dynamics to exponentially-stable trajectories that ensure
robust convergence to true values. Further, recent work [4]
analyzed neural network training and identified the lack of
PoE in gradient descent (GD) as a major roadblock on the
path to robustness. Thus, the main challenge addressed by

The authors would like to acknowledge the support of the Army Research
Office award number W911NF2010080.

The authors are with the PRECISE Center in the Departments of
Electrical & Systems Engineering and Computer & Information Sci-
ence, University of Pennsylvania, Philadelphia, PA, USA; {ksridhar,
sokolsky, lee, weimerj}@seas.upenn.edu.

Code: github.com/kaustubhsridhar/PoE-robustness
1Model and neural network are used interchangeably.

this work is ensuring neural network training dynamics, and
specifically gradient descent dynamics, is persistently excited
and converges to the network’s true parameters.

Earlier attempts to characterize PoE for GD were either
impeded by a neural network’s inherent nonlinearities [6],
[7] or limited to simple two layer networks and specific loss
functions [4]. In this work, we overcome the nonlinearity
and complexity trap faced by [4], [6], [7] with the insight of
modeling GD as a discretization of an adaptive continuous-
time (CT) linear time-varying (LTV) system. We take in-
spiration from Model-Reference Adaptive Control (MRAC)
[5], where adaptive control laws are chosen such that the
system’s dynamics emulate a reference system’s dynamics,
to propose the following two-step approach.

First, we choose a reference family of persistently excited
systems with a globally exponentially stable (GES) equilib-
rium at the unknown true parameters of the network. Then
we prove sufficient conditions for consecutive updates of
the discrete-time (DT) GD dynamics to lie on the exact
discretization of a system from our reference family. Our
novel two part approach theoretically guarantees convergence
to the unknown true parameters of any model trained by min-
imizing a smooth loss with GD and empirically demonstrates
increased robustness to adversarial attacks in stochastic gra-
dient descent (SGD) based standard and adversarial training.

Our proven sufficient condition is equivalent to scaling
a baseline learning rate schedule where the initial value
is a function of the inverse of Lipschitz constant of the
loss gradient. To ensure a rigorous evaluation with minimal
increase in model training time, we estimate this second-
order Lipschitz constant with an inexpensive addition to the
baseline model training procedure via extreme value theory
[8], [9]. To observe the utility of our persistently exciting
learning schedule, we apply it to standard training on MNIST
[10], CIFAR10, CIFAR100 [11] datasets, and adversarial
training on CIFAR10 dataset. We see an increase in adver-
sarial accuracy of up to 15 points against a 20-step PGD
adversary [12] with perturbation budget ε = 1

255 in standard
training and an increase up to 0.7 points in adversarial
training on the competitive Autoattack benchmark [13] (with
ε = 8

255 ) composed of both white-box and black-box attacks.

A. Related Work

PoE in Control Theory and Deep Learning. PoE has
been thoroughly explored for CT LTV systems and is essen-
tial to robust parameter estimation in guaranteeing GES of
parameter error dynamics which ensures convergence of es-
timated parameters to the true values [5], [14]. For learning-
based system identification, early work [15], [16] found PoE
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conditions for Radial Basis Functions but emphasizes the
difficulty in characterizing PoE conditions for general neural
networks because of the nonlinearities in the models [6], [7].

Recent seminal work in [4] aims to tackle this challenging
problem. Based on the premise of robust neural networks
having bounded Lipschitz constants [1], the authors derive
sufficient richness conditions on the inputs to a two-layer
network with ReLU activation functions trained with GD.
However, their results are specific to a two-layer network
initialized close to its true optima, particular loss functions
and dependent on the gradient update rule. Moreover, these
conditions do not scale to modern deep neural networks. To
scale, they are forced to adopt an optimization trick to force
noise (for PoE) into each layer of a network. This trick can
also be found in other robust learning approaches [17], [18].

To avoid the issues faced in forward analysis by [4], we
flip the problem around: we start with a well-characterized
CT LTV family of persistently excited dynamics and then
find sufficient conditions for GD updates to fit on the
trajectories in this family. Our approach is only dependent
on the gradient update rule and in practice, generalizes to all
loss functions and scales to models that converge in training.

Techniques for Robust Learning. Adversarial training
(AT), first introduced in [19], is currently, the most effective
defense to white-box attacks. AT requires solving a min-max
optimization problem. The inner maximization problem is
approximately solved with the PGD attack in PGD-AT [12].
A variant that modifies the inner maximization problem to
tradeoff clean accuracy for robust accuracy was proposed in
TRADES [20]. Further improvement with additional unla-
belled data (RST) [21] has increased robustness of models on
the competitive AutoAttack benchmark, a.k.a. RobustBench
(an ensemble of four white-box and black-box attacks with
a single hyperparameter - perturbation budget ε = 8

255 ) [13].
Employing our PoE-motivated learning rate schedule further
increases the robustness of models trained with the above
state-of-the-art (SOTA) AT frameworks, thereby proving its
importance as a force multiplier for any training algorithm.

Estimating Lipschitz Constant of Loss Gradient. Sev-
eral works have studied neural network Lipschitz constant
estimation (e.g. [22], [9]) but here, we are concerned with
the Lipschitz constant of loss gradient (denoted L). In [23],
approximate upper bounds were derived for L but to our
best knowledge, no efficient estimation method has been
previously proposed and implemented in practical SGD. In
this work, we apply an extreme value theory approach [8],
[9] and estimate L in both standard and adversarial training.

B. Contributions

1) We propose extending PoE, with inspiration from
MRAC, to neural network training to obtain sufficient condi-
tions for convergence of GD dynamics for any model to its
true parameters. Our insight into modeling GD as a sampling
of an adaptive CT LTV system is vital to generalizing beyond
the simple 2-layer network and certain loss functions in [4].

2) We present an efficient implementation strategy in
practical SGD training, based on extreme value theory, to

obtain an estimate of the initial learning rate in a learning
schedule for PoE. We also detail a simple heuristic to tune
batch size to satisfy a principal assumption in our derivation.

3) We demonstrate the effectiveness of our approach
in standard training with SGD on MNIST, CIFAR10, and
CIFAR100 (up to 15 points accuracy increase on 20-step, ε =
1/255 PGD attack) & with various SOTA adversarial trained
CIFAR10 models on the competitive Autoattack benchmark
(universal improvements of up to 0.7 points with ε = 8/255).

II. PROBLEM FORMULATION

In this Section, we mention some preliminaries from
adaptive control & GD and then formally state our problem.
Adaptive Control Preliminaries: For a continuous-time
(CT) linear time-varying (LTV) system given by,

ż(t) = −Φ(t)Φ(t)T z(t), t ≥ 0 (1)

with z(t) ∈ Rd, Φ(t) ∈ Rd×p, PoE is defined as follows.

Definition 1 (PoE [5]). The signal Φ(t) : R≥0 → Rd×p is
persistently exciting if there exists µ1, µ2, T0 > 0 such that,

µ2I ≥
∫ t+T0

t

Φ(s)Φ(s)>ds ≥ µ1I (2)

where I is the d× d Identity matrix.
PoE and GES are connected via the following lemma.

Lemma 1 (PoE and GES [5, Theorem 2.5.1]). If Φ(t) is
piece-wise continuous and persistently exciting, then system
(1) is GES.

Lemma 1 ensures GES convergence of states on (1) to their
equilibrium and informs our definition of the persistently
exciting reference family for GD updates to track.
GD Preliminaries. We represent feature space with X , label
space with Y and model with parameters Θ ∈ P given by
hΘ : X → Y . In the theoretical part of this work, we focus on
model training with GD wherein, we represent the training
data with (X,Y ) ∈ X ×Y and the loss function minimized
with L : Y × Y → R. We denote the vectorized version of
parameters as θ = vec(Θ) ∈ Rd, vectorized loss gradients
as ∇l(θ) = vec (∇L(hΘ(X), Y )) ∈ Rd, and learning rate as
η. Now, we write the vectorized GD update step below.

Definition 2 (Vectorized GD Update). The vectorized form
of the kth update step in GD for training a model hΘ on
training data (X,Y ) by minimizing loss L(hΘ(X), Y ) with
learning rate ηk is given by

θk+1 = θk − ηk∇l(θk), k = 1, 2, . . . . (3)

The above definition casts GD into a DT nonlinear time-
varying (NLTV) system. Analyzing this system for a particu-
lar loss function l and model architecture hθ is intractable for
increasingly larger models trained by minimizing custom loss
functions. We propose a bottom-up solution for this problem.

First, we choose a family of persistently excited CT dy-
namics such that all of its members converge exponentially-
fast to the unknown true parameters (denoted θ∗) of a model.
In this work, we conjecture (and empirically demonstrate



in Sections IV, V) that the true parameters coincide with
the maximal ε-robust optimum (where an ε-robust optimum
provides a model with the same output for all inputs in a
ball of perturbation size ε around any input in domain X ).

Second, we find sufficient conditions to constrain consecu-
tive states of the DT NLTV system in (3) to lie on discretized
trajectories from the aforementioned family. Through these
two steps we obtain sufficient conditions for convergence of
GD updates to the true parameters of the model. We tackle
the first of the two steps below by choosing the following
family of dynamics with each member of the family, for
k ≥ 1, starting at the kth GD update (θk).

Definition 3 (Reference Family of Persistently Exciting
CT Systems). The reference family of persistently exciting
CT systems, with GES equilibrium at θ∗, that governs the
evolution of a state vector Γ(t) ∈ Rd, t ≥ k with initial
value Γ(k) = θk, is given by

Γ̇(t) = −Φ(t)Φ(t)>(Γ(t)− θ∗) (4)

where Φ(t) = Φk ∀ t ∈ [k, k + 1) is piece-wise constant
matrix ∈ Rd×p and ΦkΦk

>
is full rank ∀ k.

Equation (4) is a form of the CT LTV system in (1) with an
equilibrium at θ∗. Our choice of Φ(t) in the above definition
ensures that Φ(t) is persistently exciting and consequently
that the system in (1) has GES equilibrium (Proved in Section
III). Finally, with the requisite family defined, we formally
state the problem considered by this paper below.

Problem Statement 1 (PoE of GD). We aim to find sufficient
conditions for every pair of consecutive kth-step GD updates
θk, θk+1 (Definition 2) to lie on a discretized trajectory from
the reference persistently excited CT family in Definition 3.

We remark that any mention of ’PoE of GD’ in this work
denotes the above desired property of the GD dynamics.

III. MAIN THEORETICAL RESULTS ON
LEARNING RATES FOR POE OF GD

In this section, we present our main theoretical result in
Theorem 1 which proposes an upper bound on learning rates
ηk, k ≥ 1 to accomplish our problem statement. Also, we
discuss the proven sufficient condition and its connections
to convex optimization & constant learning rate training.
Before stating Theorem 1, we present our assumptions on
the L−smoothness of loss and the acuteness of descent
directions below.

Assumption 1 (L−Smooth Loss Function). The loss func-
tion is L−smooth if its gradient ∇l : Rd → Rd is
L−Lipschitz, i.e. there exists a constant L > 0 such that

∀ θ1, θ2 ∈ Rd, ‖∇l(θ2)−∇l(θ1)‖2 ≤ L‖θ2 − θ1‖2. (5)

L is also called the second-order Lipschitz constant. L-
smoothness is a commonly recurring assumption in optimiza-
tion theory [24], [25]. In practice, standard and adversarial
losses are smooth for certain models [26], [27] and not
others. Yet, in Section V, our approach results in increased
robustness for a wide variety of architectures.

Assumption 2 (Acuteness of descent directions). The angle
between the kth descent direction and the next true descent
direction (from (k+1)th update to true parameters) is acute.

i.e. (θk − θk+1)>(θk+1 − θ∗) ≥ 0 (6)

Assumption 2 states that the local gradient and true gradient
are acute, an intuitive property of GD with training data that
is representative of the population. Further, we monitor this
assumption in our experiments in Section IV and observe that
it is indeed satisfied throughout model training with large
batch SGD and with GD (full-batch SGD). Thus, leveraging
Assumptions 1, 2, we state the main theorem below.

Theorem 1 (Sufficient Conditions for PoE of GD).
Consider a model trained via GD with a learning rate
schedule given by

(
ηk
)
k≥1

by minimizing a L−smooth loss
(Assumption 1) and satisfying Assumption 2. We have PoE
of GD and hence convergence of GD updates to the model’s
true parameters if ηk < 1/L for all k.

Proof. We begin with our sufficient condition: ηk < 1
L which

can be rewritten as L < 1
ηk

such that,

‖∇l(θk)−∇l(θ∗)‖2
‖θk − θ∗‖2

<
1

ηk
(7)

Observing the gradient at the optima is zero in (7),
i.e., ∇l(θ∗) = 0, we have, ‖∇l(θ

k)−0‖2
‖θk−θ∗‖2 < 1

ηk
⇐⇒

ηk‖∇l(θk)‖2 < ‖θk − θ∗‖2. By substituting (3), we have,

‖θk − θk+1‖2 < ‖θk − θ∗‖2
⇐⇒ ‖U>(θk − θk+1)‖2 < ‖U>(θk − θ∗)‖2 ∀ U ∈ SO(d)

where SO(d) is the set of orthonormal rotation matrices in d-
dimensions (since rotated vectors maintain their magnitudes).
Now, choosing U = [v1, v2, v3, ..., vd], v

>
i vj = 0, ‖vi‖2 =

1 where (for infitesimally small δ > 0),

v1 =
(θk − θk+1)− δ(θk − θ∗)
‖(θk − θk+1)− δ(θk − θ∗)‖2

(8)

v>2 v1 = 0 =⇒ v>2 (θk − θk+1)− δv>2 (θk − θ∗) = 0 (9)

then we can write, (θk − θk+1) = a1v1 + a2v2 and (θk −
θ∗) = b1v1 + b2v2 for constants a1, a2, b1, b2 as follows.

a1 = v>1 (θk − θk+1)

=
‖θk − θk+1‖22 − δ(θk − θk+1)>(θk − θ∗)

‖(θk − θk+1)− δ(θk − θ∗)‖2
(10)

b1 = v>1 (θk − θ∗)

=
(θk − θk+1)>(θk − θ∗)− δ‖θk − θ∗‖22
‖(θk − θk+1)− δ(θk − θ∗)‖2

(11)

a2 = v>2 (θk − θk+1) = δv>2 (θk − θ∗) (via (9)) (12)

b2 = v>2 (θk − θ∗) (13)

From Assumption 2, we have

(θk − θk+1)>(θk − θ∗)
‖θk − θk+1‖22

= 1 +
(θk − θk+1)>(θk+1 − θ∗)

‖θk − θk+1‖22
≥ 1 (from (6))

=⇒ (θk − θk+1)>(θk − θ∗) ≥ ‖θk − θk+1‖22. (14)



Therefore, in the limit of δ → 0, we have b1 ≥ a1 > 0 (from
(10), (11), (14)) and b2 > a2 → 0+. The latter is because as
δ → 0, we have v1 lying along (θk − θk+1) which means,
from (14), v1 and (θk − θ∗) are acute. This in turn implies
v2 and (θk − θ∗) are acute and hence from (13), b2 > 0 and
from (12), a2 → 0 from the positive side.

Thus, for the above choice of U , in the limit of δ →
0, we have, U>(θk − θk+1) = [v>1 , v

>
2 , . . . , v

>
d ]>(a1v1 +

a2v2) = [a1, a2, 0, . . . , 0]> ≤ [b1, b2, 0, . . . , 0]> =
[v>1 , v

>
2 , . . . , v

>
d ]>(b1v1 + b2v2) = U>(θk − θ∗).

Continuing in the limit of δ → 0 and choosing Σ =

diag
(
a1
b1
, a2b2 , c3, . . . , cd

)
where 0 < ci < 1 for i = 3, . . . , d

(note 0 < Σ < I), we can scale down the right hand side
vector above to match the left hand side vector as follows,

U>(θk − θk+1) = ΣU>(θk − θ∗)
⇐⇒ (θk − θk+1) = UΣU>(θk − θ∗)

⇐⇒ (θk − θk+1) = (I− e−ΦkΦk>
)(θk − θ∗) (15)

Since ΦkΦk
> is full rank and we observe (I− e−ΦkΦk>

) =
V DV > with V ∈ SO(d) and diagonal 0 < D < I, we can
choose Φk such that V = U and D = Σ. Rewriting (15),

θk+1 − θ∗ = e−ΦkΦk>
(θk − θ∗). (16)

Since (16) is equivalent to the discretization of the CT
dynamics of system (4) in time interval [k, k + 1] with
Γ(k + 1) = θk+1 and initial value Γ(k) = θk, we have
proven that θk, θk+1 lie on the discretized trajectory of said
system from the reference family of Definition 3.

Finally, since ΦkΦk
> is full rank and ΦkΦk

> is positive
definite, the system from (4) in time interval [k, k+ 1] given
by Γ̇(t) = −ΦkΦk

>
(Γ(t)−θ∗), t ≥ k is persistently excited

(since for any T > 0, we have
∫ t+T
t

ΦkΦk
>
ds = ΦkΦk

>
T

and 0 < λminT ≤ ΦkΦk
>
T ≤ λmaxT where λmin, λmax are

the minimum and maximum eigenvalues of positive definite
ΦkΦk

>) and has GES equilibrium at true optimum θ∗.

Next, we provide some discussions on the main result.
Remark 1. On sufficient conditions for PoE and the
conservative upper bound of 1/L. It is worth noting that the
proof has two sufficient conditions: full rankness of ΦkΦk

>

which is sufficient but not necessary for PoE and ηk < 1/L
which is sufficient but not necessary for Inequality (7) to
hold. With these 2 sufficient conditions, our upper bound 1/L
is conservative and values greater than it may also ensure
PoE. In fact, inspired by empirical successes in Sections IV,
V we later conjecture that an upper bound of 2/L may ensure
PoE. Further, a necessary & sufficient condition for PoE
instead of the first sufficient condition above may provide
a larger upper bound and is an interesting open problem.
Remark 2. On the connection to convex optimization.
In GD on a L−smooth and convex loss function, a learning
rate choice of ηk ≤ 1

L guarantees monotonic progress to the
minima [24]. Our similar result is expected because every
persistently exciting trajectory, on which states converge
exponentially fast to minima θ∗, is a convex shortcut from

θk to θ∗ through θk+1 that may/may not lie on the loss
surface. This relationship provides an interesting intuition
for our approach and strengthens its validity.
Remark 3. On training with a constant learning rate and
GD vs SGD. In GD on any L−smooth differentiable loss
function with a fixed learning rate η, the algorithm converges
to local minima if η < 2

L [25]. Thus, if a model converges via
GD with a fixed learning rate, halving it should be adequate
for PoE. Unfortunately the simplicity of dividing by 2 does
not always work in practice because modern neural network
training algorithms, faced with GPU constraints, use SGD
rather than GD and learning schedules rather than a constant
learning rate for which this holds. We discuss this gap ahead.

IV. IMPLEMENTATION IN SGD TRAINING
In practice, models are trained with SGD and its vari-

ants [24] rather than GD where a slowly-decaying learn-
ing rate schedule (such as a sequence obeying

∑
k η

k =

∞,
∑
k η

k2
< ∞ [28]) is often necessary for training to

converge in the first place. Thus, in this Section, we present
an implementation strategy for SGD based training that
satisfies Theorem 1, Assumption 2 and actually converges.

A. PoE-motivated learning rate schedules for SGD
We assume a baseline learning rate schedule, (γk)k≥1

with γk ≤ γ1 ∀ k, that ensures convergence to a local
optima. Our PoE-motivated learning rate schedule starts at
η1 = 1

Lest
and is subsequently scaled in the same way as the

baseline schedule, i.e. ηk = η1 γ
k

γ1 ∀ k ≥ 2. Our algorithm
for obtaining Lest (see Section IV-B) always provides an
estimate larger than the true value [8], [9] ensuring that
η1 = 1

Lest
< 1
Ltrue

and since ηk ≤ η1 ∀ k ≥ 2, Theorem
1 is satisfied. Further, by following a similar annealing cycle
as the baseline schedule, we have convergence in practice.
Lastly, following Remark 1, we analyze another schedule,
a.k.a. largest convergent schedule, where η1 = 2/Lest and we
similarly scale subsequent values ηk = η1 γ

k

γ1 ∀ k ≥ 2. This
too ensures convergence in practice and we later conjecture
in Section VI that it also leads to PoE. Figure 1 shows an
example of these schedules for typical annealing strategies.

Our choice of initial learn rate η1 = 1
Lest

which is close
to Theorem 1’s upper bound stems from an experimental
analysis of adversarial accuracy versus learning rate. We
trained LeNet5 models [10] (with ReLU/Tanh activations)
with various constant learning rates for 10 epochs via SGD
on MNIST. Each trained model is evaluated against a 40-step
PGD attack with ε = 0.3. Plotting the clean and PGD attack
accuracy in Figure 2, we see that PGD attack accuracy peaks
near the largest learning rate at which the model converges
to a local optima (i.e. when clean accuracy is close to 100%),
theoretically given by 2

L [25]. Also, at half this point (our
upper bound of 1

L ), we notice PGD attack accuracy is still
high but drops immediately on the left. This drop can be
explained by the ill-conditioning of ||∇l(θk)||/||θk − θ∗||
term in (7) where the denominator is small for small learning
rates. Moreover, since it is hard to predict the exact drop
point, we stay close to the upper bound and use 1

Lest
& 2
Lest

.



Fig. 1. An e.g. of baseline (η1 = 0.1), largest convergent (η1 = 2/L)
& PoE-motivated (η1 = 1/L) learning rate (lr) schedules for step decay,
exponential decay & cosine annealing strategies.

Fig. 2. Accuracy on Clean and PGD attacked MNIST validation set for a
LeNet5 model (with ReLU [left] and Tanh [right] activations) vs constant
learning rate (lr) used in training. The largest convergent and the PoE-
motivated lr’s have higher PGD accuracy than baseline lr = 0.1.

B. Estimation of Certified Lipschitz Constant Lest

Inspired by [8], [9], we estimate L with three steps:
(1) We collect average loss gradient and model parameters
after each epoch in baseline training (i.e. with the baseline
schedule). They’re denoted by (∇l(θi), θi)1,...,Nepochs .
(2) We estimate a Lipschitz constant by sampling N points,
computing N/2 slopes between consecutive pairs as si =
||∇l(θi+1)−∇l(θi)||2
||θi+1−θi||2 , i = 1, 3, 5, ..., N and finding the maxi-

mum, l = max{s1, s3, s5, ..., sN}. We repeat this M times
and applying the Fisher–Tippett–Gnedenko theorem [8], fit
a 3 parameter (shape, location, scale) reverse Weibull distri-
bution to {l1, ..., lM} given an initial shape value. The fitted
scale parameter is the desired estimate of Lipschitz constant.
(3) We certify our estimated Lipschitz constant by iterating
between Step (2) and a Kolmogorov–Smirnov (K-S) test to
test that our samples {l1, ..., lM} are drawn from a reverse
Weibull distribution with the Step (2)’s fitted parameters. Out
of various p-values obtained, we choose the Lipschitz con-
stant (i.e. scale parameter) with the highest p-value. However,
a question remains, how are hyperparameters M,N tuned?
A heuristic for hyper-parameter (M, N) tuning. We repeat
steps (2), (3) for different M , N and choose the Lipschitz
constant from the case when atleast one p-value is both
larger and smaller than a mid-to-large significance value
α = 0.4 to 0.6. This heuristic works well in practice. Using
the above, we estimate Lest for ResNet20 standard training
(i.e. minimizing cross-entropy loss on clean images) with
α = 0.55,M = 200, N = 100. Plotting clean & PGD
accuracy in Figure 3, we observe that models trained with
the PoE-motivated and largest convergent schedules are more
robust than the baseline while matching its clean accuracy.
Comparison to grid search: By having to train a baseline
model to estimate L before training with a PoE schedule, we
have a 2× increase in training time. Grid search, on the other
hand, is not theoretically motivated and is unlikely to obtain
an optimal learning rate schedule in just 2 training rounds.
Thus, our PoE-motivated approach is the clear winner.

(a) Clean accuracy vs epochs (b) PGD attack accuracy vs epochs
Fig. 3. Lipschitz constant estimated with extreme value theory for ResNet
20 standard training is 3.5258. Training with PoE-motivated (η1 = 1/Lest)
and largest convergent (η1 = 2/Lest) schedules consistently increases PGD
attack accuracy while matching clean accuracy of baseline (epochs 80-end).

Fig. 4. Fraction of total epochs (164) where Assumption 2 holds vs batch
size for ResNet20 [left], ResNet50 [right] standard training on CIFAR10
with all three schedules. The Assumption always holds for large batch sizes.

C. Batch size selection for Assumption 2

Following the discussion post Assumption 2 and with the
parameters saved every epoch in Section IV-B, we monitor
Inequality (6) in ResNet20, 50 standard training on CIFAR10
with θ∗ set to the final parameters. Plotting the fraction of
total epochs in which it holds against batch size in Figure 4,
we see that it is indeed satisfied for all epochs when trained
with large batch sizes but faces GPU memory constraints &
clean accuracy degradation [29] with said large batch sizes.
For the tradeoff, we find that a simple heuristic of starting
with the smallest batch size at which Assumption 2 holds
& decreasing until a clean accuracy threshold (here, 0.8 on
CIFAR10, 0.6 on CIFAR100) is reached, works in practice.

V. EXPERIMENTAL RESULTS

Following implementation details in Sections IV-B, IV-C,
we perform standard training and AT with baseline, PoE-
motivated and largest convergent schedules. The clean &
adversarial accuracy (across 5 random seeds) & relevant pa-
rameters for standard training is presented in Table I; for AT
in Table II. For standard training, we analyze ResNet20, 50,
110 [30] & DenseNet 40 [31] on CIFAR10 & the latter 3 on
CIFAR100. The baseline training starts at η1 = 0.1. We test
each trained model on a 20-step PGD adversary with ε = 1

255
& step-size 0.1

255 . We also use the PyTorch baseline’s standard
weight decay 1e-4, momentum 0.9, and a step schedule
with learning rate scaled down by 10 at epochs 81, 122 for
ResNets & 150, 225 for DenseNet. For CIFAR10 AT, we
train ResNet50 in PGD-AT framework [12]; WideResNet
(WRN) 34-10 [32] in TRADES [20]; WRN 28-10 in RST
[21]. PGD-AT & TRADES decay η by 10 every 50 epochs
& once at the 75th epoch respectively. RST uses 500K
additional unlabelled images from the TinyImages dataset
[21] & a cosine annealing schedule. We follow the SOTA



TABLE I
STANDARD TRAINED MODELS ON CIFAR10 AND CIFAR100 EVALUATED ON 20-STEP PGD ATTACK WITH ε = 1/255.

BOLD AND UNDERLINED NUMBERS DENOTE THE BEST AND 2ND BEST PGD ATTACK ACCURACY IN EACH ROW.

Dataset Model baseline η1
PoE-motivated

η1 = 1/Lest (Ours)
Largest convergent
η1 = 2/Lest (Ours) Section IV-B, IV-C Parameters

Clean PGD Attack Clean PGD Attack Clean PGD Attack Lest, (M, N), epochs Batch
CIFAR ResNet20 81.55 ± 2.6 24.69 ± 2.3 83.03 ± 0.2 28.72 ± 1.3 81.92 ± 1.3 31.9 ± 3.1 3.526, (200, 100), 164 5000

10 ResNet50 84.44 ± 2.0 24.77 ± 2.5 84.29 ± 2.0 27.35 ± 2.4 84.24 ± 2.7 35.82 ± 2.8 10.79, (200, 164), 164 2000
ResNet110 83.77 ± 0.5 28.81 ± 2.5 82.63 ± 0.9 39.08 ± 2.5 84.62 ± 0.4 34.22 ± 2.8 11.85, (200, 164), 164 1000
DenseNet40 82.97 ± 2.8 12.11 ± 1.1 85.75 ± 2.4 14.81 ± 0.8 87.92 ± 2.1 15.97 ± 1.6 5.429, (100, 100), 300 2000

CIFAR ResNet50 63.46 ± 4.4 6.9 ± 1.1 63.59 ± 4.1 7.56 ± 1.1 65.01 ± 4.0 8.51 ± 1.4 8.75, (200, 164), 164 256
100 ResNet110 62.47 ± 4.2 9.43 ± 1.6 60.94 ± 4.1 12.52 ± 1.9 62.42 ± 4.8 13.48 ± 3.6 14.48, (200, 164), 164 256

DenseNet40 60.0 ± 0.2 1.82 ± 0.1 60.0 ± 0.5 2.11 ± 0.1 61.97 ± 0.6 2.0 ± 0.1 10.47, (100, 100), 300 256

TABLE II
ADVERSARIAL TRAINED MODEL ON CIFAR10 EVALUATED ON AUTOATTACK WITH ε = 8/255. (*) INDICATES EXTRA UNLABELED DATA USED.

BOLD AND UNDERLINED NUMBERS DENOTE THE BEST AND 2ND BEST AUTOATTACK ACCURACY IN EACH ROW.

Approach; Model Current SOTA
PoE-motivated

η1 = 1/Lest (Ours)
Largest convergent
η1 = 2/Lest (Ours) Section IV-B, IV-C Parameters

Clean Autoattack Clean Autoattack Clean Autoattack Lest, (M, N), epochs Batch
TRADES; WRN34-10 84.81 ± .29 52.12 ± .09 84.51 ± .19 52.56 ± .26 83.44 ± .15 52.27 ± .04 7.497, (99, 25), 75 128
PGD-AT; ResNet-50 85.98 ± .09 42.66 ± .08 86.21 ± .32 43.03 ± .13 86.35 ± .11 42.98 ± .16 10.40, (55, 150), 150 256
RST(*); WRN28-10 89.48 ± .05 59.38 ± .14 89.5 ± .15 59.6 ± .11 89.48 ± .07 59.7 ± .08 13.46, (160, 200), 200 256

code of all three AT methods for other hyperparameters &
test on Autoattack with ε = 8/255.

VI. DISCUSSION AND FUTURE WORK
Table I shows a clear improvement in PGD attack accuracy

over baseline (while maintaining similar clean accuracy) with
both the largest convergent and PoE-motivated schedules.
This demonstrates that our approach is promising in practical
SGD. In Table II, across various AT frameworks/models
evaluated on Autoattack (where small improvements are
considered noteworthy), we have consistent increase in Au-
toattack accuracy over SOTA and continued clean accuracy
similarity with our schedules. Thus, we note that, even with
the varied dynamics of AT frameworks, our approach acts as
a ’force-multiplier’ for robustness.

Lastly, based on the success of the largest convergent
schedule & our conservative upper bound, we conjecture that
starting with a learning rate just below 2

L also guarantees
PoE of GD. An immediate next step includes proving the
conjecture. In addition, future work can focus on extending
our sufficient condition proof (for PoE of GD) to PoE of
SGD and its variants.

REFERENCES

[1] C. Szegedy et al., “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[2] N. Carlini and D. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, 2017, pp. 3–14.

[3] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial
examples,” in International Conference on Machine Learning, 2018.

[4] K. Nar and S. S. Sastry, “Persistency of excitation for robustness of
neural networks,” arXiv preprint arXiv:1911.01043, 2019.

[5] S. Sastry and M. Bodson, Adaptive control: stability, convergence and
robustness. Courier Corporation, 2011.

[6] S. Lu and T. Basar, “Robust nonlinear system identification using
neural-network models,” IEEE Transactions on Neural networks, 1998.

[7] M. M. Polycarpou and P. A. Ioannou, Identification and control of
nonlinear systems using neural network models: Design and stability
analysis. Citeseer, 1991.

[8] G. Wood and B. Zhang, “Estimation of the lipschitz constant of a
function,” Journal of Global Optimization, vol. 8, pp. 91–103, 1996.

[9] T.-W. Weng et al., “Evaluating the robustness of neural networks: An
extreme value theory approach,” arXiv:1801.10578, 2018.

[10] Y. LeCun et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[11] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[12] A. Madry et al., “Towards deep learning models resistant to adversarial
attacks,” arXiv preprint arXiv:1706.06083, 2017.

[13] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks,” in ICML, 2020.

[14] S. Srikant and M. Akella, “Persistence filter-based control for systems
with time-varying control gains,” Systems and Control Letters, 2009.

[15] D. Gorinevsky, “On the persistency of excitation in radial basis func-
tion network identification of nonlinear systems,” IEEE Transactions
on Neural Networks, vol. 6, no. 5, pp. 1237–1244, 1995.

[16] A. Kurdila, F. J. Narcowich, and J. D. Ward, “Persistency of excitation
in identification using radial basis function approximants,” SIAM
journal on control and optimization, vol. 33, no. 2, pp. 625–642, 1995.

[17] M. Lecuyer et al., “Certified robustness to adversarial examples with
differential privacy,” in IEEE Symposium on Security & Privacy 2019.

[18] J. Cohen et al., “Certified adversarial robustness via randomized
smoothing,” in International Conference on Machine Learning, ’19.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[20] H. Zhang et al., “Theoretically principled trade-off between robustness
and accuracy,” in International Conference on Machine Learning, ’19.

[21] Y. Carmon et al., “Unlabeled data improves adversarial robustness,”
arXiv preprint arXiv:1905.13736, 2019.

[22] M. Fazlyab et al., “Efficient and accurate estimation of lipschitz
constants for deep neural networks,” arXiv:1906.04893, 2019.

[23] C. Herrera et al., “Estimating full lipschitz constants of deep neural
networks,” arXiv preprint arXiv:2004.13135, 2020.

[24] Y. Nesterov et al., Lectures on convex optimization. Springer, 2018.
[25] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational

Research Society, vol. 48, no. 3, pp. 334–334, 1997.
[26] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the

loss landscape of neural nets,” arXiv preprint arXiv:1712.09913, 2017.
[27] D. Wu et al., “Adversarial weight perturbation helps robust general-

ization,” Advances in Neural Information Processing Systems, 2020.
[28] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for

large-scale machine learning,” Siam Review, 2018.
[29] N. S. o. Keskar, “On large-batch training for deep learning: General-

ization gap and sharp minima,” arXiv:1609.04836, 2016.
[30] K. He et al., “Deep residual learning for image recognition,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2016.
[31] G. Huang et al., “Densely connected convolutional networks,” in IEEE

Conference on Computer Vision and Pattern Recognition, 2017.
[32] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016.



APPENDIX

Algorithm 1: Estimation of Certified Lipschitz Con-
stant

Input : All saved gradients and parameters
(∇l(θi), θi), M, N, intial shape choices

Output: Lest
for shape0 in initial shape choices do

for j = 1, . . . , M do
Sample N points: (∇l(θi), θi)i=1,...,N .
Compute N/2 slopes between consecutive

pairs of points:

si =
||∇l(θi+1)−∇l(θi)||2
||θi+1 − θi||2

, i = 1, 3, 5, ..., N.

Compute maximum of the N/2 slopes:
lj = max{s1, s3, s5, ..., sN}.

end for
(shape, location, scale) ← Fit three parameter

reverse Weibull distribution to {l1, . . . , lM} given
initial shape value = shape0.

p-value ← Kolmogrov-Smirnov goodness-of-fit
test.

end for
return scale corresponding to largest p-value

VII. ESTIMATION OF CERTIFIED LIPSCHITZ CONSTANT
L VIA EXTREME VALUE THEORY

We detail the estimation algorithm previously discussed
in Section IV-B in Algorithm 1. We depict our heuristic for
(M, N) tuning in Figure 5 for a ResNet-20 model [30] and
a significance value of α = 0.55. The row corresponding to
(M,N) = (200, 100) in Figure 5(a) is the only one that has
both, p-values larger & lesser than α (satisfying our heuristic)
and the largest of these corresponds to a Lipschitz constant
of 3.5258 (see red box on Figure 5(b)). Thus, our estimated
Lipschitz constant is Lest = 3.5258. Please find the complete
extended version of Figure 5(a), i.e. a complete heat map of
all (M,N) tuples vs p-values in Figure 6.

Analysis of time complexity and memory overhead.
Algorithm 1 maintains a O(mn) time complexity which is
negligible in comparison to the model training time (m,n
are the number of values of hyperparamters M,N tried in
Algorithm 1). Our primary increase in training time is a
consequence of having to train a baseline model and then
another model with a persistently exciting schedule. This
results in a 2× increase in time complexity. We hope future
work can help boost performance (for example, by adapting
learning rates online to satisfy PoE conditions). We also
note that there is a small memory overhead in having to
save gradients plus parameters after every epoch for use in
Lipschitz estimation post training. This overhead is given by
O(nepochs(nparams +npixels)) where nepochs, nparams, and npixels
denote the number of epochs, model parameters and input
image pixels respectively.

Limitations of the estimation algorithm. The estimation
algorithm is inherently random because it depends on the
gradients and parameters saved during the training process
which can change with each run even when using the same
random seed. Yet, the advantage of our results are that
future work can introduce a better estimation algorithm
(preferably with less inherent randomness) for L and use it
in conjunction with our PoE-motivated or largest convergent
learning rate schedule for increased adversarial robustness.

VIII. DETAILS OF ADVERSARIAL TRAINING
FRAMEWORKS AND AUTOATTACK

We describe the adversarial training frameworks analyzed
in this work and the autoattack benchmark used to evaluate
models trained in said frameworks below.

PGD-AT [12]: The general adversarial training min-max
optimization problem is given by

arg min
θ

E
(X,Y )∈X×Y

[
max
δ∈S

L(hΘ(X + δ), Y )

]
where Sp = {δ | ||δ||p < ε}, X,Y represent batch
training data & labels and the rest of the notation is
defined in Section II. We are primarily concerned with l∞
perturbations in this work which is why we have S = S∞.
The inner maximization is solved by projected gradient
descent (PGD) on the negative loss function (for K steps
with α step size) to get an adversarial example represented
as X(K) = X + δ(K). The perturbed data point in the
(t+ 1)-th step (i.e. X(t+1)) is given by

X(t+1) =
∏
X+S

(X(t) + α sgn(∇XL(hΘ(X(t)), Y )))

with initialization X(0) = X + δ(0) where δ(0) can be set
to 0 or to any random point within S. The latter case is
called PGD with random initialization. The

∏
x+S denotes

projecting perturbations of perturbed data points into the set
S.

TRADES [20]: In TRADES, a theoretically motivated sur-
rogate loss that balances the trade-off between standard and
robust accuracy is minimized. The TRADES loss function is
given by,

LTRADES
Θ = L(hΘ(X), Y ) + βmax

δ∈S
DKL(hΘ(X + δ)||hΘ(X))

where DKL represents Kullback–Leibler (KL) divergence and
β is a hyperparameter that controls the aforementioned trade-
off.

RST [21]: In RST, a separate standard model is trained
over CIFAR10 and used to generate pseudo-labels for unla-
belled images from the TinyImages dataset [21]. Then a ro-
bust model is trained over the unlabelled data and its pseudo-
labels by minimizing the TRADES loss given above. By this
self-supervised training process, an adversarial-trained robust
classifier is obtained.

Autoattack [13]: Autoattack consists of 4 attacks – Auto-
PGD on cross entropy loss (white-box), Auto-PGD on dif-
ference of logits ratio loss (also white-box), Fast adaptive



Fig. 5. Estimating L for ResNet-20 model in standard classifier training using initial shape choices = {0.1, 1, 5, 10, 20, 50, 100}, M ∈
{25, 55, 105, 155, 200}, N ∈ {80, 100, 120, 150, 164}, and significance value α = 0.55. Here, (a) shows a heat map of p-values for some (M, N)
tuples vs initial shape (shape0) values; (b) shows Lipschitz constant estimates for all M, N values in a heat map; (c) depicts their corresponding max
p-values (also in a heat map); (d) and (e) are reproductions of Figure 3 and depict the variation of clean and PGD attack accuracy as a function of epochs
for all three schedules (baseline, PoE-motivated and largest convergent).

boundary attack (black-box) and Square attack (also black-
box). Evaluation on autoattack has very little (0.01%) to
no variance in different runs. Moreover, it has only one
hyperparameter ε (usually set to 8/255) while all others
are fixed and abstracted away from the evaluation making
comparison across models and frameworks easy.

Hyperparameters for Adversarial Training: We set
momentum to 0.9 in all three frameworks and set weight
decay to 5e-4 in PGD-AT & RST; 2e-4 in TRADES. The
β parameter in the TRADES formulation of adversarial
loss (which is also used in RST) is set to 0.6. It does
not exist for the adversarial loss in PGD-AT. The same
perturbation budget of ε = 8/255, attack steps = 10, and
attack step-size of 0.007 are used in all three methods. These
hyperparameters are obtained from the current SOTA of the
three frameworks as given in [12], [20], [21].

IX. ADDITIONAL DETAILS OF EXPERIMENTS

Data Augmentation for Standard and Adversarial
Training: Following the common practice for CIFAR
datasets (and following the SOTA implementations of all 4
adversarial training frameworks), training images are aug-
mented with random crops (padding by 4 pixels and cropping
to 32 × 32) and random horizontal flips.

Computation resources used in running experiments:
We ran the experiments on either two Nvidia GeForce RTX
3090 GPUs (each with 24 GB of memory) or two Nvidia
Quadro RTX 6000 GPUs (each with 24 GB of memory).
The CPUs used were Intel Xeon Gold processors @ 3 GHz.

Fig. 6. [LEFT] heat map of Lipschitz constants estimated (i.e. fitted scale
parameter) for various (M, N) tuples vs various initial shape parameters.
[RIGHT] heat map of corresponding p-values for various (M, N) tuples vs
various initial shape parameters.

Code bases utilized: The code for LeNet5 on
MNIST is based on https://github.com/
ChawDoe/LeNet5-MNIST-PyTorch (No license).
Standard training in CIFAR10, CIFAR100 for all
models is based on code from a repository of

https://github.com/ChawDoe/LeNet5-MNIST-PyTorch
https://github.com/ChawDoe/LeNet5-MNIST-PyTorch


PyTorch baselines at https://github.com/
bearpaw/pytorch-classification (MIT
license). We used the Advertorch python library at
https://github.com/BorealisAI/advertorch
(GNU general public license) for PGD implementation in
standard training.

In adversarial training, the code for PGD-AT
framework [12] is from https://github.
com/MadryLab/robustness (MIT license),
the code for TRADES [20] framework is from
https://github.com/yaodongyu/TRADES (MIT
license) and the code for RST [21] is from https:
//github.com/yaircarmon/semisup-adv (MIT
license). Our Lipschitz constant estimation code is
based on previous work by [9] and can be found at
https://github.com/huanzhang12/CLEVER
(Apache license).

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification
https://github.com/BorealisAI/advertorch
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/yaodongyu/TRADES
https://github.com/yaircarmon/semisup-adv
https://github.com/yaircarmon/semisup-adv
https://github.com/huanzhang12/CLEVER
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