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ABSTRACT

Reducing Vale’s Memory Management Overhead Through Static Analysis

Theo Watkins

Vale is a multi-purpose programming language that focuses on guaranteeing mem-

ory safety with minimal effect on performance. To accomplish this, Vale utilizes a

memory management system called Hybrid Generational Memory (HGM). HGM uses

generational references to track the state of objects in memory, and static analysis to

reduce memory management overhead at runtime. This thesis describes the program

that performs static analysis on Vale source code during compilation, and analyzes

its effect on the performance of Vale programs.
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Chapter 1

INTRODUCTION

A language’s memory management system affects all aspects of the language from

its type system, to its performance, to the cognitive model of programmers using the

language. Languages must decide if memory will be managed automatically by the

implementation, manually by the programmer, or some combination of the two. This

decision depends on the language’s desired features and use cases.

Vale [7] is a high-level language meant to be flexible and easy to use for many ap-

plications. Like Python, JavaScript, Swift, Golang, and many other languages that

share these characteristics, Vale aims to provide fully automatic memory manage-

ment. Automating memory management is an expensive task, and most languages

that do so cannot compete with the performance of languages with manual mem-

ory management. Vale aims to close this performance gap with a novel approach

to memory management called Hybrid Generational Memory [8] (HGM). HGM uses

generational references to track objects in memory, and static analysis to improve

performance.

1.1 Hybrid Generational Memory

HGM is Vale’s system for memory management. This section introduces the three

main parts of HGM: generational references, generation checks, and static analysis.

1



1.1.1 Generational References

HGM uses generational references to ensure memory safety. Generation numbers are

assigned to chunks of memory; each number starts at zero and increases monotoni-

cally. When an object is created in a Vale program, it is placed in a suitable chunk

of memory and any reference to the object stores a copy of the object’s current gen-

eration number, called the target generation. In Vale, objects are freed via the drop

function which marks the object’s memory as available for reuse and increments the

generation number of the object’s memory. This setup slightly increases the size of

objects and references in memory because they must store a generation number. The

following section discusses why these generation numbers are necessary in HGM and

how they are used.

1.1.2 Generation Checks

Each time a Vale program attempts to use a reference to an object, HGM will check if

the target generation number of the reference matches the actual generation number

of the associated memory. If the generation numbers do not match, then the object

is no longer accessible because the memory may have been reused. In this situation,

Vale will report an error and safely exit the program. This process of comparing

generation numbers is called a generation check; these are the primary focus of Vale’s

static analysis because of the runtime overhead that they induce.

Generation checks are a large source of overhead in HGM for three main reasons:

branching, cache misses, and code size.
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1.1.2.1 Branching

Branch predictors help modern CPUs quickly execute branching instructions, but

no predictor is perfect, so it can still be an expensive operation. In the event that

the predictor is wrong, the CPU must rewind and replace the previously queued

instructions which can take a significant amount of time. Generation checks in HGM

require a branching operation because the processor must decide if the generation

numbers match and execution should continue, or if the numbers do not match and

the program should halt.

1.1.2.2 Cache Misses

In addition to branch prediction, CPUs use caches to improve execution times. Fre-

quently used chunks of memory are stored in caches which can be accessed much

faster than main memory. Cache misses occur when the CPU requires some memory

not currently present in the caches. Cache misses require the CPU to access main

memory, slowing down the program.

In HGM, generation checks can incur cache misses. Usually the generation number is

loaded in to the cache with the object, so there will only be cache miss if the object

being accessed is not already in the cache. However, some large objects occupy more

memory than a single cache line. For these objects, it is possible that the requested

memory is loaded into the cache, but the generation number is not. This could lead

to an additional cache miss in order to perform a generation check.

3



1.1.2.3 Code Size

Generation checks in HGM inflate the code size and instruction count of a program.

The additional instructions not only take time to execute, but also take up space in

the CPU’s instruction cache. This decreases the space available in the cache for other

instructions, further slowing down the program.

1.1.3 Static Analysis

Generational references and generation checks make HGM safe, but static analysis is

what makes the HGM fast. The three sources of runtime overhead outlined in 1.1.2

are the main motivation for HGM’s static analysis. The Vale compiler produces an

abstract syntax tree (AST) that can be modified to eliminate generation checks in

situations where static analysis can guarantee that the accessed object is still alive.

HGM’s algorithm for analyzing and modifying this AST is the focus of this thesis

and is described in detail in Chapter 4.

The remainder of this thesis is structured as follows: Chapter 2 evaluates some pop-

ular memory management techniques in order to contextualize HGM. Chapter 3 dis-

cusses Rust and Lobster, two languages with goals similar to Vale’s that inspired

some of the techniques used in HGM. Chapter 5 describes how HGM’s static analysis

is tested to verify accuracy, and presents the effects of static analysis on a bench-

mark program written in Vale. Chapter 6 discusses features that could be added to

the static analysis program described in Chapter 4 to increase its effectiveness, and

Chapter 7 concludes.
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Chapter 2

BACKGROUND

This chapter introduces some common memory management techniques before pre-

senting Vale’s Hybrid Generational Memory (HGM) model. The description of HGM

also provides some motivations for the static analysis discussed in Chapter 4.

2.1 Memory Management

In programming languages, memory management refers to tracking memory that is,

or is no longer, in use by a program. Memory that is not reachable in the code should

be reclaimed so that it can be reused. Unreachable memory can unnecessarily inflate

the amount of memory a process is using and slow down the system.

In general, languages fall into two categories: those that require manual memory

management by the programmer, and those that automatically handle or enforce

memory management. Languages with manual memory management place a burden

on the programmer and are vulnerable to difficult bugs, while those with automatic

memory management inevitably incur a cost at runtime.

Vale’s memory management system is the focus of this thesis. Vale is a language that

aims to provide automatic memory management with minimal runtime overhead using

a novel system called Hybrid Generational Memory (HGM). Section 1.1 discusses

Vale’s HGM model in more detail; this section provides some background on other

memory management techniques.
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2.1.1 Manual Memory Management Issues

The two most popular languages that require manual memory management are C and

C++ [2]. For decades these have been the obvious language choices when speed is a

priority. However, the lack of automatic memory management can introduce subtle

bugs that are difficult to resolve.

The C programming language does not have any protections against accessing cor-

rupted memory. This allows some harmful bugs to go unnoticed until the program

halts due to an illegal memory access (a segmentation fault). These are very com-

monly caused by subtle bugs such as accessing memory that has been freed, writing

to read-only memory, or accessing outside of array bounds.

Memory leaks are another common type of bug in C programs. These occur when

memory that is no longer in use is not released for reuse. C does not automatically

reclaim memory so it is the duty of the programmer to call free() on any previously

allocated memory; neglecting to do so results in memory leaks [10]. Memory leaks

lead to unreachable objects unnecessarily inflating the amount of memory in use by

a process.

In addition to segmentation faults and memory leaks, dangling pointers are a common

bug in C programs. Dangling pointers occur when a program attempts to use a

pointer to memory that has already been freed [10]. Use of a dangling pointer leads

to undefined behavior and must be avoided.

C++ is similar to C, but allows for object-oriented programming concepts like classes

and inheritance. These concepts have been used to help reduce the number of

memory-related bugs that are common in C programs. Popular classes from the

C++ standard library, such as unique ptr and shared ptr, provide some forms of
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automatic memory management. Only one unique ptr can refer to its object; when

the unique ptr goes out of scope and the object is no longer accessible, its object

is automatically freed. Similarly, multiple shared ptrs can point to an object; when

all the shared ptrs are out of scope the object is automatically freed [5]. Classes

like these can simplify writing programs, but they do incur some runtime cost. The

code from these classes adds to the instruction count and can contain costly opera-

tions like branching. For example, the shared ptr class uses reference counting (see

Section 2.1.2.2) to ensure memory safety which adds runtime overhead each time a

shared ptr is created or destroyed.

C++ provides a middle ground between unmanaged memory and fully automatic

memory management, giving the programmer freedom to make tradeoffs between

speed and simplicity in their programs. This can be very useful to some programmers,

but the speed of processors and the abundance of memory in modern machines have

made fully automatic memory management popular in newer languages, despite the

overhead at runtime. Unlike C or C++, Vale’s goal is to completely automate memory

management while minimizing runtime cost.

2.1.2 Automatic Memory Management

Automatic memory management is often desirable because it makes programs easier

to write and debug. Two approaches to automating memory management have been

dominant in programming languages over the last few decades: garbage collection,

and reference counting. This section will discuss the advantages and disadvantages

of each method, as well as introduce an alternate method that has gained traction

recently due to its effective usage in Rust.

7



2.1.2.1 Garbage Collection

Garbage collection provides memory safety by periodically pausing execution of a

program to free memory that is no longer in use. This approach is popular because

it usually has better throughput than naive reference counting (see Section 2.1.2.2)

which incurs more predictable but also more frequent overhead throughout execution.

Many popular languages use garbage collection, including Java and Javascript, but the

approach is not ideal for all problems. Games, for example, have trouble maintaining

a consistent frame rate when there are non-deterministic pauses in execution.

Python uses reference counting, but it is supplemented with garbage collection.

Garbage collection helps handle patterns like reference cycles that cause issues for

reference counting. Python has a library that allows the programmer to opt out

of the garbage collector when they wish to avoid non-deterministic pauses, and opt

in when they wish to reduce the reference counting workload and improve runtime

speed.

In addition to non-deterministic pauses, another drawback of garbage collection is

that it does not immediately reclaim unreachable memory. Mark and sweep is a

common method of garbage collection where objects are marked when they become

unreachable, and when the program reaches a certain threshold of memory usage, the

garbage collector ”sweeps” through the program’s memory and frees all unreachable

objects. This approach allows unreachable objects to occupy memory for at least some

period of time. For some programs this is fine, but sometimes it can be desirable for a

program to constantly reclaim and reuse memory rather than periodically reclaiming

memory in large sweeps, so that the maximum amount of memory is available to the

program at all times.
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There have been many modifications and improvements to naive garbage collection.

Two of the more popular variations are generational garbage collection [1] and incre-

mental garbage collection [12]. Generational garbage collectors organize allocations

based on their age, prioritizing the reclamation of newer allocations. This is based

on the idea that most objects are used briefly before becoming unreachable, and the

oldest objects tend to remain in memory the longest. New pointers referencing old

objects are much more common than old pointers referencing new objects, so this

approach can reduce the number and length of garbage collection pauses. However, it

is not a perfect improvement because it can allow unreachable objects (especially old

ones) to occupy space in memory for longer than they might with mark and sweep

garbage collection. One study found that generational garbage collection can rival the

speed of manual memory management, but requires five times the amount of memory

to do so [3]. When limited memory is available, generational garbage collection slows

down significantly.

Incremental garbage collection is used to make garbage collection more suitable for

real-time applications. Rather than long pauses to reclaim all unreachable memory,

the tasks of the garbage collector are distributed between shorter pauses that have

less of a noticeable effect on the program’s output. While this approach is useful for

real-time applications, it does not necessarily improve runtime, and the more frequent

switching of contexts damages cache performance [13].

2.1.2.2 Reference Counting

The other popular approach to memory management is reference counting. At run-

time, reference counted languages keep track of how many references a program has

to an object in memory, automatically freeing the memory if this number drops to

9



zero. While this is a safe and simple approach to memory management, it incurs

much overhead.

Each time a new reference is created or destroyed the language must increment/decre-

ment the reference count for the object, adding to the instruction count of a program.

Reference counting also suffers poor cache performance due to the locality of objects

in memory. Garbage collection copies reachable objects to new pages in memory

when collecting; this increases locality and improves cache performance. Reference

counting never copies objects, so it does not reap this benefit [11]. Additionally, there

is a branching operation each time a reference is destroyed to determine if the object

can be freed. While branch predictors in modern processors are extremely accurate,

it is still a costly operation; especially when the processor predicts incorrectly and

must rewind instructions.

Despite its overhead, reference counting has been a popular memory management

technique for decades. It is the only widely used memory management technique

that promises automatic and immediate reclamation of unreachable memory. Because

of its popularity, many variations of reference counting have emerged that attempt

to reduce its overhead, and while improvements have been made, it remains the

obviously slow approach to memory management. Vale’s goal is to provide automatic

and immediate memory reclamation at a speed that competes with popular garbage

collected and unsafe languages.

2.1.2.3 Rust

Rust is a language with a unique approach to automatic memory management that

does not require garbage collection or reference counting. Rather than performing

additional tasks at runtime, Rust’s compiler forces the programmer to use memory-

10



safe patterns. This approach makes Rust extremely fast because there is little runtime

overhead, but it can also cause headaches for programmers that are not accustomed

to the required patterns. Vale adopts some of Rust’s memory management techniques

to reduce runtime overhead, but eliminates some of Rust’s required patterns to allow

the programmer more freedom at the expense of, by default, runtime checks.

2.2 Single Ownership

This section focuses on single ownership, a concept adopted by Vale that was pop-

ularized by Rust and C++. Implementations vary by language, but the concepts

presented in this section are essential to any language with single ownership. Sin-

gle ownership is powerful because it can reduce a language’s memory management

workload.

2.2.1 Owning References

In languages that use single ownership, objects have a single owning reference at any

given time. If an object’s owning reference goes out of scope, the object will be freed.

Single ownership helps programs run fast because using an owning reference does

not require any memory management overhead at runtime. If an owning reference is

being used, then it cannot be out of scope and the object it owns is guaranteed to be

alive.

Another rule of single ownership is that if an owning reference is used in a function

call or assigned to a new variable, then ownership of the object is transferred. This

operation is called a move, and moving ownership invalidates the old reference [4].

The old reference cannot remain valid because maintaining multiple owning references

11



� �
1 struct Spaceship {
2 fuel int;
3 }
4

5 fn printFuel(ship Spaceship) {
6 println(ship.fuel);
7 }
8

9 fn main() {
10 s = Spaceship (5); // s is an owning reference
11

12 printFuel(s);
13 // Ownership is moved to printFuel
14 // s is no longer valid
15

16 println(s.fuel); // compiler error
17 }� �

Figure 2.1: Vale program to illustrate moving ownership

would lead to bugs. If two owning references did exist, then when they go out of scope

the associated memory could be freed twice. Double freeing has undefined behavior

and should be avoided.

Figure 2.2.1 is a Vale program that shows how ownership can be moved. Line 10

creates an owning reference to the Spaceship object. Then on line 12, ownership

of the object is moved to the ship argument of the printFuel function. When

printFuel finishes executing and ship goes out of scope, the memory now owned by

ship is freed. Line 16 will therefore throw a compiler error because the old owning

reference, s, is no longer valid.

Ownership can also be moved via return values. A function can return an owning

reference that was created within the function or passed as an argument. This action

moves ownership of the returned object from the function into its caller’s scope.
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� �
1 struct Spaceship {
2 fuel int;
3 }
4

5 // ‘&Spaceship ’ denotes that the argument type
6 // is a borrow reference to a ‘Spaceship ’
7 fn printFuel(ship &Spaceship) {
8 println(ship.fuel);
9

10 // ‘ship ’ is a borrow reference , so nothing special
11 // happens when it goes out of scope
12 }
13

14 fn main() {
15 s = Spaceship (5); // s is an owning reference
16

17 printFuel (&s);
18 // ‘&s’ creates a borrow reference
19 // to the object owned by ‘s’
20

21 println(s.fuel); // ‘s’ is still a valid owning reference
22

23 // the object owned by ‘s’ is freed
24 // when ‘s’ goes out of scope
25 }� �

Figure 2.2: Vale program to illustrate borrow references

2.2.2 Borrow References

If a language only allowed owning references, memory management would be trivial,

but ownership rules would severely limit the programmer. Most languages that use

single ownership have some form of borrow references. Borrow references refer to an

object without claiming ownership.

Figure 2.2.2 modifies Figure 2.2.1 to a Vale program that uses a borrow reference

instead of moving ownership. The & annotation on line 17 creates a borrow reference

to the object owned by s. The & is also added to the type annotation in the header of

printFuel, denoting that the function receives a borrow reference. In this program,

printFuel never receives ownership of the Spaceship. Line 21 therefore compiles

and executes successfully because its owning reference is still in scope. Rust and

Vale both use the & annotation to denote borrow references, while C++ uses the
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unique ptr and shared ptr classes discussed in Section 2.1.1 to provide the same

functionality.

2.3 Variability

In Vale, variability is a reference’s ability to be pointed to a new object. References

can either be ‘varying’ or ‘final’, and are ‘final’ by default. When declaring a variable,

adding a ! to the end of the variable name will generate a varying reference. The

set keyword can then be used to point a varying reference at a different object of

the same type. If a varying owning reference is pointed to a new object, the object

it previously pointed to will be freed using the drop function (see Section 1.1.1) and

its memory will no longer be valid 1. Pointing a varying borrow reference to a new

object will not drop the object previously pointed to by the reference.

Figure 2.3 shows a small Vale program that makes use of a varying owning reference.

Line 6 creates s, a varying owning reference to a Spaceship, while line 7 creates s2,

a final owning reference to a Spaceship. On line 9, s is pointed to s2’s referend,

which is allowed because s is varying. Additionally, because both references own

their referends, line 9 drops s’s old referend and moves ownership of s2’s referend to

s, invalidating s2. Line 13 then returns a value of 20.

References in C++ and Rust cannot be varying, but similar functionality can be ac-

complished by wrapping a reference in a mutable struct. Then, because the reference

is a member of the mutable struct, the object it refers to can change. C++ also has

pointers which by default can be pointed to new memory unless they are declared

constant with the const keyword.

1set expressions in Vale actually result in the old reference, but if the old reference is not captured
its referend will be dropped
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� �
1 struct Spaceship {
2 fuel int;
3 }
4

5 fn main() int export {
6 s! = Spaceship (10); // ‘variable ’ owning reference
7 s2 = Spaceship (20); // ‘final ’ owning reference
8

9 set s = s2;
10 // the old referend of s (‘Spaceship (10) ’) is dropped
11 // ownership of s2 ’s referend (‘Spaceship (20) ’) is moved to s
12

13 ret s.fuel; // 20
14 }� �

Figure 2.3: Vale program to illustrate variability

Variability is not the same as mutability. A mutable reference allows for an object’s

data to be mutated, but does not change the location of the data in memory. A

varying reference allows the reference to point to an entirely different location in

memory. This distinction is important when considering memory management tech-

niques. Mutating the data in an object referred to by a mutable reference does not

affect the safety of accessing that object’s data via a different reference. The referend

will be at the same memory location and the memory will have the same structure

even when values change. However, when a varying owning reference is pointed to a

new object, references to the old object are no longer valid. Additionally, pointing a

varying borrow reference to a new object can change the scope of its referend.
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Chapter 3

RELATED WORKS

This chapter provides some detail on two languages that use memory management

techniques similar to Vale’s Hybrid Generational Memory (HGM). The first is Rust,

which was briefly discussed in Section 2.1.2.3, and the other is Lobster, a modern

language for gaming and graphics that uses some static analysis techniques similar

to HGM’s.

3.1 Rust

Section 2.2 described some features of single ownership that apply to both Rust and

Vale. This section will discuss Rust’s additional single ownership rules that Vale

avoids.

Rust guarantees memory safety by placing restrictions on references to an object.

One of these restrictions is that in Rust programs there can only be one mutable

reference to an object per scope. Figure 3.1 shows an invalid pattern in the body of

a Rust program. Mutable references are created with the mut keyword and mutable

borrow references can only be created from mutable owning references. When r1 is

initialized, s can no longer mutate its object. When r2 is initialized the compiler will

throw an error because this creates a second mutable reference to the same data.

Additionally, Rust does not allow read-only references if there is a read/write (mu-

table) reference. Figure 3.1 is another invalid pattern in Rust programs. r1 and r2
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� �
1 let mut s = String ::from(" hello"); // mutable owning reference
2

3 let r1 = &mut s;
4 // ‘r1 ’ is a mutable borrow reference
5 // ‘s’ can no longer access the string
6

7 let r2 = &mut s;
8 // ‘r2 ’ attempts to be the second mutable borrow reference
9 // compiler error

10

11 println !("{}, {}", r1 , r2);� �
Figure 3.1: Rust program to illustrate the restrictions on mutable refer-
ences [4]� �

1 let mut s = String ::from(" hello"); // owning reference
2

3 let r1 = &s; // read only , no problem
4 let r2 = &s; // read only , no problem
5 let r3 = &mut s; // read/write , compiler error
6 // cannot modify data while other references have access to it
7

8 println !("{}, {}, and {}", r1 , r2 , r3);� �
Figure 3.2: Rust program to illustrate the restrictions on combinations of
muatble and immutable references [4]

are successfully initialized because Rust allows multiple read-only borrow references.

However, r3 cannot be initialized because it is a read-write reference.

In summary, Rust allows either one mutable reference or many immutable references

per scope. These rules are enforced at compile time by Rust’s ‘borrow checker’.

A large reason these rules are necessary is because of Rust’s enums. In Rust, an object

can contain an instance of an enum as one of its members, and that member’s value

can be changed via a mutable reference to the struct. The possible values of enums

are often different types, meaning they occupy a different amounts of memory and

have different shapes. Additionally, if a struct member contains an enum instance,

the memory associated with that enum instance is stored directly inside the struct’s

memory. Therefore, when the type of the enum instance is changed via a mutable

reference, the shape of the struct’s memory is changed. This means that other refer-
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ences to this struct now contain pointers to invalid memory (memory that is not of the

shape expected by the pointers). Rust prevents this with the ‘borrow checker’ which

does not allow any other references to point to an object while there is a mutable

reference pointing to it.

The ‘borrow checker’ combined with the basic rules of single ownership outlined in

Section 2.2 prevent memory leaks and segmentation faults in Rust. However, there is

one more memory-related bug that the Rust compiler must handle, dangling pointers.

The Rust compiler prevents dangling pointers by ensuring that no borrow reference

escapes the scope of its data. Usually this occurs when a borrow reference to some

data is returned from a function, and the owning reference to the data goes out of

scope upon this return. The data is freed when the owning reference goes out of

scope, and the returned borrow reference now points to invalid memory. Rust detects

and reports these occurrences at compile time.

These additional restrictions eliminate the need for runtime memory management,

making Rust fast and safe, but limiting programmers. Most modern languages allow

mutability at any time by performing runtime checks for memory safety. Programmers

that are accustomed to this freedom have historically struggled with Rust’s ‘borrow

checker’ [4].

The patterns illustrated by Figures 3.1 and 3.1 are both valid in Vale. Vale does

not yet support enums, so the shape of an object is guaranteed to be constant even

when there are mutable references to it. Because of this, owning references in Vale

are mutable by default, and Vale allows multiple mutable borrow references to the

same object. This makes it more difficult to detect some unsafe patterns like dangling

pointers, but Vale uses runtime generation checks to prevent these. This adds runtime

overhead to Vale that Rust does not have, but some of this overhead can be mitigated

with the static analysis techniques described in Chapters 4 and 6.
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3.2 Lobster

The Lobster programming language is a high-level language for programming games

and graphics. Memory management in Lobster uses a combination of single own-

ership and reference counting. Similar to Vale, Lobster reduces runtime overhead

by performing static analysis on a program’s abstract syntax tree (AST) at compile

time. Unlike Vale, Lobster’s static analysis is used to eliminate runtime reference

count operations (as opposed to Vale’s runtime generation checks described in Sec-

tion 1.1.2). Lobster’s static analysis has had great success, eliminating up to 95% of

runtime reference count operations for various benchmark programs [6].

Lobster’s static analysis is interwoven with its type checking system. It picks an owner

for every heap allocation and attempts to make every other reference to that object a

borrow reference. The initial owning reference and subsequent borrow references do

not affect the reference count of an object.

Every AST node has a predefined ownership type that it expects of its children and

an ownership type that it passes to its parent. These pre-defined ownership types

are determined by the capabilities of the type of AST node. Some nodes require

ownership of their children to be memory safe, but others do not. This section will

only look at two types of AST nodes necessary for a simple example: assignments

and constructors, and assume that all other nodes have properly safe pre-defined

ownership types. Assignment nodes want to own their children, and want their parent

to borrow from them; constructors do not have children (unlike Vale’s AST structure),

and want to be owned by their parent.

When the static analysis algorithm parses a node, it checks that the node’s expected

ownership type matches the parent ownership type of its child. In most cases the types
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match and no reference counts need to be updated. For example, in the line let a

= [1, 2, 3] the list constructor node wants to be owned, and the node assigning it

to a wants to own it, so no reference counts are required.

Sometimes though, a parent node wants to own, and the child node wants to be

borrowed. Consider the line of Lobster code: let a = b. Assuming that a and b

have already been assigned objects to own, then a wants to own b’s object , but b

wants its parent to borrow its object (because b already owns it). In this situation,

Lobster lets a and b both own the object, but increases the reference count on the

object.

It is also possible that a parent node wants to borrow, but the child node wants to be

owned. Lobster’s print function for example only wants to borrow its argument. If

a constructor is passed to print, an anonymous owning reference will be generated

to own the constructed object, and free it at the end of the current scope.

Lobster’s effective use of static analysis to eliminate reference count operations in-

spired Vale to use a similar approach for generation checks. While Lobster and Vale

use static analysis and single ownership in different ways, their goal is the same. Both

languages aim to speed up their memory management systems by eliminating runtime

checks through static analysis.
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Chapter 4

HYBRID GENERATIONAL MEMORY’S STATIC ANALYSIS

Vale’s compiler is divided into three stages: Valestrom, Catalyst, and Midas. Vale-

strom parses the source code and produces a JSON-formatted abstract syntax tree

(AST). Catalyst, the focus of this chapter, analyzes this AST and adds information

to eliminate generation checks where possible. This updated AST is then passed to

Midas, the final stage of the compiler. Catalyst is written in Java using the JSON

Simple library to parse and update the AST. This chapter describes in detail the

patterns that allow Catalyst to identify generation checks that can be eliminated by

editing the AST.

4.1 Catalyst’s Goals

Catalyst aims to eliminate as many generation checks as possible for mutable objects.

Arrays and structs are mutable in Vale, while integers, floats, booleans, and strings

are all immutable. References to these immutable types are called ‘shared’ refer-

ences in Vale, and are managed with reference counting. Structs and arrays can also

be declared as immutable and their references will then also be treated as ‘shared’

references.

Catalyst focuses on mutable structs. Mutable arrays are not yet handled, but Section

6.1 proposes a method that could allow them to be optimized in a similar fashion

to mutable structs. This chapter discusses when Catalyst can and cannot identify

generation checks that can be eliminated for mutable structs.
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4.2 Parsing the AST

Vale’s AST for a program is comprised entirely of expressions, of which there are

37 different types. Similar to a Vale program itself, the AST contains two distinct

sections: struct definitions and function definitions1 (see Figure 4.2). Section 4.3

describes the information that Catalyst extracts from the struct definitions, while

Sections 4.4 - 4.8 describe how the function definitions are parsed and optimized.

Figure 4.2 shows a simplified version of Vale’s AST, containing some of the fields

relevant to Catalyst. A few field names are also altered for clarity. The block field of

a function definition describes the code run by the function. Catalyst uses information

extracted from other functions and from the struct definitions to identify generation

checks that can be eliminated in these blocks.

In order to eliminate generation checks at runtime, Catalyst will change the knownLive

value of certain AST nodes. Nodes that dereference pointers contain the KnownLive

field; a boolean specifying whether the referend is known to be alive (and that the

runtime generation check can be skipped). Prior to Catalyst’s modifications, all

KnownLive fields in the AST are false.

4.3 Struct Definitions

Catalyst’s first task is go through the list of struct definitions and add each struct to

a hashmap mapping the name of a struct to information on its members. Figure 4.3

shows pseudocode for the definition of this hashmap and the Member class used within

it. The Member class stores the name, variability (see Section 2.3), and ownership (see

1Vale does not yet support globals. Vale does support interfaces, but these are currently ignored
by Catalyst.
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� �
1 {
2 "type": "program",
3 "structs ": [
4 {"type": "struct",
5 "name": ...,
6 "mutability ": ...,
7 "members ": [...]} ,
8 ...],
9 "functions ": [

10 {"type": "function",
11 "name": ...,
12 "arguments ": ...,
13 "return ": ...,
14 "block ": ...},
15 ...]
16 }� �

Figure 4.1: Vale’s AST Structure� �
1 structInfo = HashMap <String , Member []>();
2

3 class Member {
4 String Name;
5 String Variability;
6 String Ownership;
7 Optional <String > StructName;
8 }� �

Figure 4.2: structInfo map in Catalyst

Section 2.2) of each member, as well as an optional string that will only contain a

struct name if the member is a struct itself. This hashmap contains all the struct

information that Catalyst will need for the duration of its execution.

4.4 Analyzing a Single Scope

When an object is created, its allocated memory is guaranteed to be safe until its

owning reference is destroyed via a call to drop (e.g., drop(s)). This call is usually

implicit when the function with the owning reference returns, but it can also be called

explicitly by the programmer. Dropping an owning reference frees the memory of its

referend.
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� �
1 struct Spaceship {
2 fuel int;
3 }
4

5 fn main() int export {
6 s = Spaceship (10); // owning reference
7 b = &s; // borrow reference
8

9 ret b.fuel; // generation check on b’s referend (the Spaceship)
10 // s goes out of scope here ,
11 // so there ’s an implicit drop(s),
12 // freeing the Spaceship.
13 }� �

Figure 4.3: Vale program requiring a generation check� �
1 class FunctionMaps {
2 Objects = HashMap <Long , LivenessInfo >();
3 Variables = HashMap <Long , ReferenceInfo >();
4 Return = ReturnInfo ();
5

6 // Methods for maintaining the maps and return information
7 }
8

9 class ReferenceInfo {
10 Long Object;
11 String Name;
12 String Variability;
13 String Ownership;
14 }
15

16 class LivenessInfo {
17 Boolean Liveness;
18 StructMember [] Members;
19 Optional <Long > Parent;
20 }� �

Figure 4.4: FunctionMaps class in Catalyst

Catalyst leverages this feature of single ownership to eliminate generation checks for

references to objects whose owning reference is still guaranteed to be in scope. In

Figure 4.4, s is an owning reference to a Spaceship object and b is initialized as a

borrow reference to the same object. Because b is not an owning reference, the return

expression on line 9 normally incurs a generation check. However, it is obvious that

the object referenced by b will be alive, because the owning reference has not been

dropped or moved to a different scope.
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Catalyst maintains two separate hashmaps for each function in the AST, one for

mapping objects to their liveness information, and one for mapping references to their

objects. Figure 4.4 contains pseudocode for the FunctionMaps class that maintains

these maps as well as the LivenessInfo and ReferenceInfo classes used within the

maps. A new FunctionMaps instance is created for each function in the AST. This

section focuses on the Liveness field of the LivenessInfo class, and the Object and

Name fields of the ReferenceInfo class. This information is sufficient for eliminating

generation checks for objects with immutable members whose owning reference is in

scope (like the Spaceship in Figure 4.4).

When Catalyst encounters the AST nodes describing line 6 in Figure 4.4, it first

parses the call to the Spaceship() constructor. This call returns an owning reference

to a Spaceship (see Section 4.6 for more information on function calls), generating

an entry in main’s Objects map with a key of 0. Catalyst assigns unique keys to

objects using a counter that starts at 0. The object has just been created, so Catalyst

sets the Liveness value of the object’s LivenessInfo class to ‘true’, indicating that

it is known to be alive.

Once the object is created, Catalyst will analyze the AST node describing the variable

assignment. This will generate an entry in main’s Variables map, pointing the

variable s to the previously created object. Unlike the Objects map, keys for the

Variables map are provided by the AST, which contains a unique number identifier

for each local variable in a scope. This value is available in any AST node that

dereferences a variable.

Line 7 creates a borrow reference to s, generating a new entry in the Variables map

that also points to the Spaceship. Figure 4.4 shows a simplified illustration of main’s

FunctionMaps instance after parsing line 7 of the example in Figure 4.4.
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Figure 4.5: State of main’s FunctionMaps immediately prior to the return
expression in Figure 4.4

Variable b is dereferenced on line 9. When Catalyst encounters a dereference, it

looks up the reference in the Variables map and uses the ReferenceInfo associated

with the variable to look up its referend in the Objects map. If the Liveness field

of the LivenessInfo instance associated with the referend is set to ‘true’, then the

KnownLive field in the AST is also set to ‘true’, and the generation check will not

be executed at runtime. In Figure 4.4, variable b points to object 0 whose Liveness

value is ‘true’, so the generation check on line 9 can be skipped at runtime.

4.5 Members

Catalyst also maintains a hierarchy of objects via the Members and Parent attributes

of the LivenessInfo class. If an object has members that are not shared references,

these too must populate the Objects map.

Figure 4.5 shows a Vale program that generates two objects in main’s Objects map.

Lines 10 and 11 create an Engine and Spaceship object respectively. The first

argument to the Spaceship constructor is a borrow reference to the Engine object
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� �
1 struct Engine {
2 fuel int;
3 }
4 struct Spaceship {
5 engine &Engine;
6 numWings int;
7 }
8

9 fn main() export {
10 engine = Engine (10)
11 ship = Spaceship (&engine , 4);
12 borrowShip = &ship;
13 println(borrowShip.engine.fuel);
14 }� �

Figure 4.6: Vale program to illustrate Catalyst’s member hierarchy� �
1 class StructMember {
2 Optional <Long > Id;
3 String Ownership;
4 String Variability;
5 }� �

Figure 4.7: StructMember class in Catalyst

created on the previous line. When Catalyst analyzes the AST node for this borrow

reference, it will extract the key (in the Objects map) of the Engine object pointed

to by the reference. When Catalyst finishes analyzing the node associated with the

Spaceship constructor and adds the Spaceship to the Objects map, it will also

add two StructMember entries to the Members array in the LivenessInfo instance

associated with the object.

Figure 4.5 shows pseudocode for the StructMember class. The Id field of the first

StructMember in the Spaceship from Figure 4.5 will be set to the key of the Engine

in the Objects map (0 because it was the first object created in the function). The Id

field of the second StructMember will be empty because the member is an immutable

int, and immutable objects do not generate entries in the Objects map.
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Figure 4.8: State of main’s FunctionMaps immediately prior to the print
expression in Figure 4.5

Figure 4.5 shows the state of main’s FunctionMaps after the borrowShip variable is

created on line 12 of Figure 4.5. Note the purple dashed arrow indicating that the

Engine object is a member of the Spaceship object.

The Parent field of the LivenessInfo instance (see Figure 4.4) associated with the

Engine will remain empty because the Spaceship has a borrow reference to the

Engine. Only objects owned by another object have a Parent (there is one exception

to this rule discussed in Section 4.6.3). If the Spaceship constructor’s first argument

were an owning reference (i.e., engine instead of &engine), then the Engine object’s

Parent would be set to the Spaceship’s key in the Objects map.

Normally Figure 4.5 would require two generation checks, both on line 13. The first

checks the generation of the Spaceship and can be eliminated for the same reasons

we were able to eliminate the generation check in Figure 4.4. The second checks

the generation of the Engine and requires that the Engine be accessed through the

Members field of the Spaceship’s LivenessInfo instance. The AST will provide the
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index of the member being accessed, and Catalyst will use the Id of the StructMember

instance (if it is not empty) at the appropriate index to look up the member’s entry in

the Objects map. Catalyst then checks the Liveness field of this object (the Engine)

and if it is ‘true’ changes the KnownLive field of the current AST node to match. The

Engine’s Liveness value will be ‘true’ in this example because the owning reference

has not been dropped or handed to a new scope.

4.6 Analyzing Multiple Scopes

Function calls introduce new complexity to Catalyst’s tasks. They allow owning ref-

erences to be moved out of their original scope, and therefore Catalyst must store

more information about the program to optimize function calls. The most important

information that Catalyst needs to know about a function call is the relationship be-

tween the arguments to the function and the returned value. The struct information

(see Section 4.3) and object hierarchy (see Section 4.5) pair with function-specific

information to allow Catalyst to make some inferences about objects that are guar-

anteed to be alive through function calls. This section discusses the information that

Catalyst maintains on each function and how it is used to identify more generation

checks that can be eliminated.

4.6.1 Global Function Information

So far Catalyst has only utilized information on the local scope to eliminate generation

checks, but maintaining information about all scopes in the program is beneficial for

handling function calls. Similar to the structInfo map from Figure 4.3, Catalyst

maintains a map of function names to information about a function’s objects and

return value. Figure 4.6.1 shows the pseudocode initialization of this map. Each time
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� �
1 functionInfo = HashMap <String , FunctionMaps >();� �

Figure 4.9: functionInfo map in Catalyst

Catalyst finishes parsing a function, the entire FunctionMaps class (see Figure 4.4)

associated with the function is added to the map. Catalyst begins by parsing the

function definitions in the order they appear in the AST, but if it encounters a call

to a function that does not yet have an entry in the functionInfo map, Catalyst

will parse the entire definition of the callee and add its information to the map before

proceeding with the call.

To handle recursive calls, Catalyst adds a function’s name as a key to the function-

Info map as soon as it begins parsing the function. The value of the functionInfo

entry will be null until the entire function definition is parsed. If a call to the

function occurs before the entire definition is parsed, this indicates some form of

recursion. Because Catalyst has not finished parsing the callee’s definition, Catalyst

cannot infer anything about the object returned from the call (as it does in Section

4.6.4). If the callee returns a mutable object, Catalyst will recognize that the callee’s

functionInfo is not yet available and will create a dummy return object. If the call

returns an owning reference, this dummy object can have a Liveness value of ‘true’,

but if the call returns a borrow reference, the object will have a Liveness value of

‘false’. This is Catalyst’s default approach to function calls, and it is used when

patterns arise that do not allow for the optimizations described in Section 4.6.4.

4.6.2 Return Information

Section 4.4 discussed the Objects and Variables attributes of the FunctionMaps

class; now we will discuss the Returns attribute. As shown in Figure 4.4, the Returns
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� �
1 class ReturnInfo {
2 Optional <String > StructName;
3 String Ownership;
4 PathToArg ReturnArg;
5 HashMap <Long , MembersToArgs > MemberMap;
6 }� �

Figure 4.10: ReturnInfo class in Catalyst

attribute is an instance of the ReturnInfo class. Figure 4.6.2 contains a pseudocode

definition of this class.

The StructName attribute of the ReturnInfo class contains a value if the function

returns a mutable struct, and is empty otherwise. The Ownership attribute contains

the ownership type of the returned value. The PathToArg and MemberMap attributes

contain information relating the returned value and its members to the function’s

arguments; Section 4.6.4 describes these attributes in more detail.

It is easiest to understand Catalyst’s design choices for function calls with an example.

Figure 4.6.2 contains a Vale program that uses some of the function call patterns

optimized by Catalyst; this program is referenced frequently for the remainder of the

chapter.

4.6.3 Arguments

The first thing Catalyst does when it begins parsing a function, is add the function’s

arguments to its Variables map (see Figure 4.4). To differentiate the arguments

from other local variables, they are added to the map in the order they appear in

the argument list with keys that begin at -1 and decrease monotonically (the unique

identifiers in the AST for each local are always positive, so using negative keys for

arguments will not interfere with the keys for locals). There are no entries yet in

the Objects map, so Catalyst will add dummy objects to the map based on the
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� �
1 struct Engine{
2 size string;
3 }
4

5 struct Spaceship{
6 wingSpan int;
7 engineA &Engine;
8 engineB &Engine;
9 }

10

11 struct Fleet{
12 ship1 Spaceship;
13 ship2 Spaceship;
14 ship3 Spaceship;
15 }
16

17 fn duplicateShip3(f &Fleet) Spaceship {
18 newShip = Spaceship(f.ship3.wingSpan , f.ship3.engineA , f.ship3.

engineB);
19 ret newShip;
20 }
21

22 fn main() int export {
23 e = Engine ("large ");
24 e2 = Engine (" medium ");
25 s1 = Spaceship (300, &e, &e2);
26 s2 = Spaceship (200, &e, &e2);
27 s3 = Spaceship (100, &e2 , &e2);
28 f = Fleet(s1, s2, s3);
29

30 dupShip = duplicateShip3 (&f);
31

32 println(dupShip.engineA.size);
33 }� �

Figure 4.11: Vale program to illustrate Catalyst’s design choices for func-
tion calls
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argument type. If the argument is an owning reference, then ownership of the object

is being moved to the function and the generated entry in the Objects map can

have a Liveness value of ‘true’. However, if the argument is a borrow reference then

the function cannot infer anything about the scope of the object’s owning reference

and the generated entry in the Objects map will have a Liveness value of ‘false’.

This inability to guarantee that objects passed to functions via borrow references are

alive, limits Catalysts optimization abilities, but could potentially be avoided using

methods described in Chapter 6.

Populating a function’s Objects map for arguments is the exception to the parent

rule mentioned in Section 4.5. This rule states that only objects owned by other

objects have a Parent entry in their LivenessInfo instance. The reason for this is

that a borrow reference can be a member of multiple objects, but an owning reference

can only be a member of one object at a time. Therefore when a borrow reference

to an object is made a member of another object, the Parent value of its referend is

not touched.

Objects associated with arguments are the exception to this rule because all references

within an argument’s object generate a new entry in the Objects map. The function

can only access these objects through the parent argument object, and therefore can

only generate borrow references to them. Borrow references will never allow owner-

ship to be moved, so the parent of these objects can never change in the function’s

scope. Therefore, it is safe to give all objects generated as members of an argument

Parent values, regardless of whether the parent object owns the member. This par-

ent information is crucial for constructing returned objects in the caller’s scope as

described in Section 4.6.4.3.

Figure 4.6.3 illustrates the state of the Objects map for duplicateShip3 from Figure

4.6.2 directly before the return expression. At the start of the function, two dummy

33



Figure 4.12: State of the Objects map for the duplicateShip3 function in
Figure 4.6.2 immediately prior to the return expression

Engine objects (objects 0 and 1) are generated as the members of the argument’s (the

Fleet’s) first Spaceship member. Once this Spaceship’s members are eagerly gen-

erated, Catalyst will add the first Spaceship object (object 2) to the Objects map.

Catalyst then repeats this process for the other two Spaceships in the Fleet, gener-

ating objects 3-8. Now there are entries in the Objects map for all of the argument’s

members, and an object can be generated as the argument’s referend (object 9).

Lastly, line 18 of Figure 4.6.2 generates a Spaceship object with a Liveness value of

‘true’ corresponding to the newShip local generated within duplicateShip3’s scope.

The Variables map for duplicateShip3 at this point (directly before the return

expression) will resemble Figure 4.6.3. There is a single entry with a negative key

referring to the Fleet passed as an argument, and an entry with a non-negative key
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Figure 4.13: State of the Variables map for the duplicateShip3 function in
Figure 4.6.2 immediately prior to the return expression

referring to the local labeled newShip 2. Objects 0-9 in Figure 4.6.3 can be accessed

through the variable with a key of -1 corresponding to duplicateShip3’s first (and

only) argument because of the member hierarchy in the Objects table (see Section

4.5).

4.6.4 Relating Returned Objects to Argument Objects

The argument variables and objects described in Section 4.6.3 paired with the object

hierarchy described in Section 4.5 allow Catalyst to determine if an object in the

return value of a function was passed as an argument or descendant of an argument

(i.e., member of an argument, member of a member of an argument, etc.). Cata-

lyst uses the ReturnInfo class from Figure 4.6.2 to store this information for each

function.

4.6.4.1 The ReturnArg Attribute

The ReturnArg attribute of the ReturnInfo class is an instance of the PathToArg

class. This class contains an argument index of the argument that the returned

object is descended from (if it is a descendant of an argument) and a list of member

2The actual key for the local in Figure 4.6.3 is extracted from the AST and may not equal 0, but
will be a non-negative integer
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Figure 4.14: Diagram of the ReturnInfo instance associated with the
duplicateShip3 function from the program in Figure 4.6.2

indexes that indicate how to access the object from the argument’s object (empty if

the returned object is not a descendant of an argument).

When Catalyst parses the return expression of the duplicateShip3 function from

Figure 4.6.2, it will populate the function’s ReturnInfo instance (see Figure 4.6.2)

as shown in Figure 4.6.4.1.

The ReturnArg attribute in Figure 4.6.4.1 indicates that the object returned by dup-

licateShip3 is not a descendant of an argument. However, the returned object

does contain members that are descended from arguments, and this must also be

indicated in the function’s ReturnInfo. For this member information, Catalyst uses

the MemberMap attribute of the ReturnInfo class.

4.6.4.2 The MemberMap Attribute

The MemberMap attribute of Catalyst’s ReturnInfo class describes the relationship

between the members of a function’s returned value and the function’s arguments.
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� �
1 class MembersToArgs {
2 StructMember [] Members;
3 PathToArg [] MembersAsArgs;
4 }� �

Figure 4.15: MembersToArgs class in Catalyst

It maps members of the returned object to PathToArg instances that indicate how

to access the member objects from the function’s arguments. Figure 4.6.4.2 shows

pseudocode for the MembersToArgs class used in this map.

Figure 4.6.4.1 displays the MemberMap for the duplicateShip3 function in the exam-

ple from Figure 4.6.2. To populate this map, Catalyst first adds an entry with a key

of -1, corresponding to the returned object itself. Catalyst looks up the returned ob-

ject in the function’s Objects map (using the ReturnArg attribute if necessary) and

extracts the Members array associated with the object. This tells Catalyst how many

members the returned object has, and where they exist in the function’s Objects

map (if they are mutable objects).

The returned object for duplicateShip3 is object 10 in Figure 4.6.3 which contains

two members with values in the Objects map; objects 6 and 7. Catalyst follows the

Parent value (if it exists) for each of these entries and checks to see if any arguments

point to this object. Object 8 is the parent of both object 6 and 7, but the only

argument to duplicateShip3 points to object 9, so Catalyst continues up the object

hierarchy in search of an argument object. The parent of object 8 is object 9, which

is referred to by the variable with key -1 (see Figure 4.6.3). This indicates to Catalyst

that the argument at index 0 points to object 9, a parent of objects 6 and 7. Therefore,

the argIdx attributes of the PathToArg instances for each member is set to 0.

Each time Catalyst moves up the object hierarchy in search of an argument object,

it also tracks the index of the member in the parent object. This allows Catalyst to
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produce the path attribute for each member. Objects 6 and 7 both descend from the

argument object’s (object 9’s) member at index 2, so this is the first value in both

paths (corresponds to object 8 in Figure 4.6.3). The second value in each path differs,

however, because object 6 appears at index 1 in object 8’s Members while object 7

appears at index 2.

Catalyst then recursively repeats this process for each descendant of the returned ob-

ject with an entry in the Objects map, reusing their object keys as unique keys into

the MemberMap. In the example from Figure 4.6.2, both members of duplicateShip3’s

returned object are Engine instances. They have only one immutable member and

no members that appear in the Objects map. Therefore Catalyst will give them each

an entry in the MemberMap with an empty PathToArg instance and halt recursion.

This gives us the final state of duplicateShip3’s MemberMap as displayed in Figure

4.6.4.1.

4.6.4.3 Returned Objects in the Caller’s Scope

When a function call returns a reference to an object, the caller must have an entry

in its Objects map for the reference to point to. The naive approach is to generate

objects with Liveness values of ‘true’ for all owning references, and objects with

Liveness values of ‘false’ for all borrow references (as mentioned in Section 4.6.1),

but Catalyst can do better than that. Catalyst uses the ReturnInfo struct associated

with the callee to construct an object that reuses the caller’s object data for any

references in the return value that refer to objects owned by the caller and passed as

arguments. This allows some borrow references in return values to reference objects

with Liveness values of ‘true’ in the caller’s scope.
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Figure 4.16: State of the Objects map associated with the main function in
Figure 4.6.2 after the call to duplicateShip3

In the example from Figure 4.6.2, Catalyst analyzes the call to duplicateShip3 by

first looking up the function’s ReturnInfo instance (Figure 4.6.4.1) in the functionInfo

map (see Figure 4.6.1). The AST tells Catalyst that duplicateShip3 returns an own-

ing reference to a Spaceship object, and the ReturnArg attribute of the ReturnInfo

instance for duplicateShip3 tells Catalyst that the object was not passed as an

argument. Therefore, a new Spaceship object is generated in the Objects map of

main with a Liveness value of ‘true’.

This new object is displayed in Figure 4.6.4.3 as object 6. Now we must examine

how the Members attribute of this object was filled. Catalyst begins by searching

the MemberMap associated with duplicateShip3 (see Figure 4.6.4.1) starting with

the value at -1. The first member at this value is empty, and so it will be in the

caller’s newly generated Spaceship object. The next two members contain values

so Catalyst looks to the MembersToArgs attribute to determine if the Objects map

for main already contains entries for these members. The PathToArg instances tell

Catalyst that both of these members are descendants of duplicateShip3’s argument
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at index 0 (object 5 in Figure 4.6.4.3). Catalyst then follows the path for each member

through main’s Objects map. Index 2 of object 5’s members leads to object 4, and

both indexes 1 and 2 of object 4’s members lead to object 1. Therefore, the second

and third members of main’s new object point to object 1.

That is a lot of work just to reuse some of the caller’s object information, but it

eliminates generation checks that would otherwise be executed. If Catalyst took the

naive approach to function calls, the dereference on line 32 of Figure 4.6.2 would

require a generation check. engineA is a borrow reference, so it would point to a

new object with a ‘false’ Liveness value. However, because Catalyst relates returned

objects to arguments, it can conclude that engineA in duplicateShip3’s return value

refers to an object that was passed as an argument to duplicateShip3, and originated

in main’s scope. This object has a key of 1 and a Liveness value of ‘true’ as seen in

Figure 4.6.4.3, so the generation check on line 32 is successfully eliminated.

4.7 Changing Liveness Values

The schema described in 4.6 allows Catalyst to maintain the caller’s Liveness values

for some objects even after references to these objects have been passed to function

calls. However, the Liveness values of the caller’s objects will not always be ‘true’.

There are two types of references that, when passed as arguments to a function call,

cause their referend’s Liveness value to become ‘false’: owning references that are

not returned, and varying references.
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4.7.1 Owning References

If an owning reference is passed as an argument to a function, ownership is moved

to the callee’s scope. Catalyst will use the callee’s ReturnInfo instance to determine

if the argument appears anywhere in the return value. If the argument’s object is

present in the return value Catalyst can determine that ownership of the object is

moved back into the caller’s scope after the call. This allows Catalyst to maintain a

Liveness value of ‘true’ for the argument’s referend in the caller’s scope.

However, if the entire object owned by an argument does not appear in the return

value, Catalyst will change the object’s Liveness value to ‘false’ in the caller’s scope.

Catalyst will also recursively set all Liveness values of all the object’s owned members

to ‘false’. When the callee receives ownership of an object and does not hand it back

to the caller, it is likely that the callee will drop the object, freeing its memory for

reuse. Subsequent use of borrow references (the owning references are no longer valid

to the caller) to this object or any of its owned objects in the caller’s scope should

require generation checks.

Owning references within borrowed arguments do not change their referend’s Live-

ness value. The callee can only access these objects via an argument, which will

generate a borrow reference. An object cannot be dropped via a borrow reference, so

these references cannot affect the Liveness of their referend.

4.7.2 Varying References

If a varying owning reference is passed to a function call as an argument, Catalyst

will always change the Liveness value of its referend to ‘false’. Even if the reference

is present in the function’s return value, the callee could have pointed the reference to
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a new object, freeing and invalidating the memory of the old object. Subsequent use

of references to the old object in the caller’s scope should require generation checks.

As with final owning references, if a varying owning reference is nested in an argument,

its referend’s Liveness value will not change. The callee will only be able to access

the referend via borrow references which can be pointed to new objects, but will not

destroy the old object.

If a varying borrow reference is present anywhere in an argument, then a new object

with a ‘false’ Liveness value will be created in the caller’s scope for the reference to

point to. The reference does not own the object it originally points to, so this object

cannot be dropped by the callee, and should still be guaranteed to be alive in the

caller. However, the callee could point the varying borrow reference to a new object

from the callee’s scope, so the reference gets a new dummy object as a referend in

the caller’s scope that is not guaranteed to be alive.

4.8 Conditionals

Conditionals like if-statements and while-loops limit Catalyst’s optimization abilities.

In most situations it is impossible to determine from the AST how a conditional will

execute at runtime. In Vale’s AST, conditional expressions determine which of one

or more blocks will be executed at runtime. Catalyst is cautious when it comes to

conditionals, and parses all blocks that could possibly be executed. If any block drops

an object or contains a pattern from 4.7 that eliminates the guarantee that an object

is alive, this change will be reflected in the state of Catalyst. If none of the blocks

eliminate the guarantee that an object is alive, then the object’s state in Catalyst

will not be affected by the conditional.
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Vale also errs on the side of caution when return expressions are nested in conditionals.

If a function has more than one return expression, Catalyst will not attempt to relate

any of the returned objects to arguments. Catalyst cannot determine which return

expression will be executed, and the origin of the objects in each may differ. When a

call to a function like this returns, Catalyst will create all new objects in the caller’s

scope for the references in the return value to point to (the naive approach mentioned

in 4.6.4.3). Section 6.4 describes how Catalyst could potentially infer more about

conditionals.
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Chapter 5

VALIDATION AND RESULTS

There are three ways that Catalyst can potentially error: it can produce false nega-

tives, produce false positives, or crash completely. A false negative occurs if Catalyst

does not change a knownLive value in the abstract syntax tree (AST) to ‘true’ in

a situation that matches the supported patterns. A false positive occurs if Catalyst

does change a knownLive value in the AST to ‘true’ when it should not have done

so. Crashes halt the Vale compiler completely.

This chapter discusses some of the tests that Catalyst uses to prevent these errors,

then presents some results from a benchmark program.

5.1 Crashes

Catalyst’s first line of defense against errors is Java assert statements. These state-

ments halt the program if certain conditions are not met during execution; they are

useful for debugging and verifying that smaller components of the program func-

tion as expected. Most assert statements in Catalyst appear in the methods of the

FunctionMaps class from Figure 4.4, and verify that the Objects, Variables, and

ReturnInfo attributes are populated as expected.

One example of an assert statement in Catalyst verifies that the Objects map

is eagerly populated. Each time a new entry is added to the Objects map that

contains members which are also mutable objects (meaning they too have entries

in the Objects map), the assert statement will be triggered. It verifies that the
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AST expression for each mutable member returns a valid key into the Objects map.

If a member expression returns an empty Optional<Long> or a value that is not

a valid key into the Objects map, Catalyst will halt. It is useful to halt here for

debugging purposes. Without this assertion, the bug may not cause issues until

an AST node attempts to access the member that lacks an entry in the Objects

map. Additionally, if the Vale program never accessed the member, the bug could go

completely unnoticed.

Other assert statements verify that all Variables point to valid entries in the

Objects map, that indexes in PathToArg instances are valid in the caller and callee’s

Objects maps, that all objects derived from PathToArg instances match the type of

object defined by a function’s return value, and many other small but crucial features

of Catalyst.

No assert statements are triggered for any of Catlayst’s test cases or benchmark

programs. While this does not guarantee that Catalyst will never crash under any

circumstances, it is a good sign.

5.2 False Negatives

To protect against false negatives, Catalyst uses integration tests. Catalyst has a test

suite of small Vale programs and a script that generates an AST for each program.

Additionally Catalyst has a TestCatalyst class that will execute Catalyst on each

AST and produce a modified AST. TestCatalyst then traverses these modified ASTs

in search of specific nodes that should have predictable knownLive values.
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� �
1 struct Spaceship {
2 fuel int;
3 }
4

5 fn main() int export {
6 s = Spaceship (10); // owning reference
7 b = &s; // borrow reference
8

9 ret b.fuel; // generation check on b’s referend (the Spaceship)
10 }� �

Figure 5.1: Catalyst test program with a single scope

5.2.1 Programs With a Single Scope

Figure 5.2.1 (duplicated from Figure 4.4) is is the first of Catalyst’s test programs.

For the reasons given in Section 4.4, Catalyst should successfully eliminate the need

for a generation check on line 9 of this program. TestCatalyst verifies that the node

in the modified AST (produced by Catalyst) that dereferences b and accesses the

fuel member has a knownLive value of ‘true’.

Figure 5.2.1 (duplicated from Figure 4.5) is another test case used to verify that

the object hierarchy in Catalyst is working properly. TestCatalyst must verify two

nodes of the modified AST for this program, both caused by line 13. The first node

dereferences the borrowShip reference and will have a knownLive value of ‘true’

because it follows a similar pattern as the program in Figure 5.2.1. The second node

dereferences the Spaceship object’s borrow reference corresponding to the engine

member. This should also have a knownLive value of ‘true’ because the owning

reference to the Engine object has not been dropped or moved out of scope. This

test helps ensure that the object hierarchy is properly set up. Catalyst also has

further test cases with deeper nesting of objects to reinforce the correctness of the

object hierarchy.
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� �
1 struct Engine {
2 fuel int;
3 }
4 struct Spaceship {
5 engine &Engine;
6 numWings int;
7 }
8

9 fn main() export {
10 engine = Engine (10)
11 ship = Spaceship (&engine , 4);
12 borrowShip = &ship;
13 println(borrowShip.engine.fuel);
14 }� �

Figure 5.2: Catalyst test program to validate the member hierarchy

Additionally, Catalyst tests several variations of the programs in Figures 5.2.1 and

5.2.1 that place the dereferences within loops and conditional expressions. These

ensure that Catalyst performs as expected when dereferences are nested in different

types of AST nodes.

5.2.2 Programs With Multiple Scopes

Verifying that Catalyst correctly performs all the tasks described in Section 4.6 in-

volves more complex testing programs. Figure 5.2.2 verifies two features of Catalyst

mentioned in 4.6.

Firstly the program verifies that borrow references passed to function calls do not

affect the state of their referend. On line 18, getEngine is passed a borrow reference

to the Spaceship object created on line 15. On line 20, this same borrow reference is

dereferenced. TestCatalyst verifies that in the modified AST, the node dereferencing

borrowS to access engine has a knownLive value of ‘true’.

The second feature that Figure 5.2.2 helps verify is that returned borrow references

have the proper referend. The getEngine function returns a borrow reference on
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� �
1 struct Engine{
2 fuel int;
3 }
4

5 struct Spaceship{
6 engine Engine;
7 }
8

9 fn getEngine(s &Spaceship) &Engine {
10 ret s.engine;
11 }
12

13 fn main() int export {
14 e = Engine (10);
15 s = Spaceship(e);
16 borrowS = &s;
17

18 e2 = getEngine(borrowS);
19

20 e3 = borrowS.engine;
21 ret e2.fuel;
22 }� �

Figure 5.3: Catalyst test program with multiple scopes

line 10 (remember that in Vale, accessing an owning reference that is a member of

an object automatically generates a borrow reference). When getEngine is called

on line 18, the caller (main) must point the returned borrow reference to an object

in its scope. If the referend was created within the callee’s scope, Catalyst would

generate a new object in the caller’s scope with a Liveness value of ‘false’, because

the caller cannot know anything about the lifetime of an object created in another

scope (unless it is handed ownership). However, due to the methods described in 4.6,

Catalyst can determine that the object pointed to by the returned borrow reference,

was passed as the first member of getEngine’s first argument. Therefore, when

getEngine returns, Catalyst will create a new entry in the caller’s Variables map,

pointing to the Engine object from the caller’s scope that was passed as the first

member of the first argument. This object has a Liveness value of ‘true’ because its

owning reference (e) has not been dropped or moved out of scope. Line 21 of Figure

5.2.2 dereferences the returned borrow reference (e2). TestCatalyst verifies that the

AST node correlated to this dereference has a knownLive value of ‘true’.
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Figure 4.6.2 is another example of a Catalyst test case that further reinforces Cat-

alyst’s correct handling of function calls. For the reasons outlined in 4.6, Catalyst

should successfully eliminate the need for the generation check in this program.

5.3 False Positives

False positives in Catalyst are more concerning than false negatives because they

compromise the memory safety of Hybrid Generational Memory (HGM). If Catalyst

causes a false negative, the only consequence is an unnecessary generation check at

runtime. However, if Catalyst causes a false positive, the program may access cor-

rupted memory at runtime causing undefined behavior. Catalyst uses integration

tests as well as optional runtime checks to prevent false positives.

5.3.1 Integration Tests

Section 4.7 discusses patterns that cause Catalyst to no longer guarantee that an

object is alive. Catalyst has integration tests for these patterns, and TestCatalyst

double checks that knownLive values are ‘false’ in the AST when a generation check

should be required.

Figure 5.3.1 is an example of an integration test to help verify that Catalyst’s state is

properly updated after a varying reference is passed to a function call. The Spaceship

struct in this example contains a varying borrow reference, activeEngine, that ini-

tially points to the Engine owned by left. This Engine has a Liveness value of

‘true’ because its owning reference is still in scope. The call to getActiveEngine

should not change the Liveness value of this object, but should change the object

that activeEngine points to. Catalyst cannot determine what object activeEngine

49



� �
1 struct Engine {
2 fuel int;
3 }
4 struct Spaceship {
5 leftEngine Engine;
6 rightEngine Engine;
7 activeEngine! &Engine;
8 }
9 fn getActiveEngine(ship &Spaceship) &Engine {

10 return ship.activeEngine;
11 }
12 fn main() export {
13 left = Engine (10);
14 right = Engine (20);
15 leftBorrow = &left;
16 s = Spaceship(left , right , leftBorrow);
17

18 active = getActiveEngine (&s);
19

20 println(leftBorrow.fuel);
21 println(s.activeEngine.fuel);
22 }� �

Figure 5.4: Catalyst test program to verify that varying references are
properly handled through function calls

will point to after the call to getActiveEngine because it may have been re-pointed

to an object that originated outside the scope of main. Therefore, as described in

Section 4.7.2, Catalyst creates a new dummy object in main’s scope with a ‘false’

Liveness value. Figure 5.3.1 illustrates this change in the state of main’s objects.

The solid blue components represent the state before the call to getActiveEngine,

and the dashed green components represent updates to the state caused by the func-

tion call.

There are two potential generation checks in Figure 5.3.1’s program, one caused by

line 20, and one caused by line 21. TestCatalyst verifies that the modified AST for

this program contains the correct knownLive values for both. The AST node that

dereferences leftBorrow on line 20 should have a knownLive value of ‘true’. This

verifies that passing varying borrow references to calls does not affect the Liveness

of their referend. The AST node that dereferences activeEngine on line 21 should

have a knownLive value of ‘false’. As shown in Figure 5.3.1, activeEngine should
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Figure 5.5: Illustration of main’s objects for the program in Figure 5.3.1

point to a dummy object after the call to getActiveEngine, and this object should

have a ‘false’ Liveness value.

This is just one of many integration tests to prevent false positives. Others test

different patterns mentioned in Section 4.7 like objects that are no longer guaran-

teed to be alive because their owning reference is passed to a call and not returned,

or objects that are no longer guaranteed to be alive because their varying owning

reference is passed to a function call. In these tests, TestCatalyst verifies that any

attempt to dereference a borrow reference to the object after the function call requires

a generation check.
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5.3.2 Runtime Checks

To be extra safe when it comes to false positives, Vale has a feature that verifies

any generation check that Catalyst says to skip. Compiling a Vale program with the

--override-known-live-true flag verifies all of Catalyst’s changes to the AST at

runtime. With this flag, if Catalyst has changed a knownLive field in the AST to

‘true’, HGM will still perform the generation check at runtime. If the knownLive field

in the AST is ‘true’, but the generation check fails (target generation of reference does

not match generation number in memory), then the program will halt and report that

Catalyst has created a false positive.

For all of Catalyst’s integration tests and benchmark programs, no false positives are

detected by this feature.

5.4 Results

At the time of this thesis Vale is in its development stages so there are few large

programs written in the language. Catalyst is therefore only tested on one benchmark

program, a small game written in Vale. Without Catalyst, the program required

426,256,014 generation checks at runtime. Catalyst was able to change 11 knownLive

values in the program’s AST, which amounted to 69,238 (about 0.016%) generation

checks eliminated at runtime.

These results are not ideal, but also not entirely unexpected. Catalyst still has some

large weaknesses in its static analysis. It currently covers some very specific patterns

that are conducive to static analysis, but not common in all programs. Additionally,

like most game code, the benchmark program uses arrays heavily, which are not yet
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supported by Catalyst. The features described in Section 6.1 could have a significant

impact on Catalyst’s ability to optimize this benchmark program.

Catalyst does work for all of its test cases which are valid and potentially useful

patterns, so other types of large programs might use these patterns more frequently

and benefit more from Catalyst’s static analysis. Additionally, in its current state,

Catalyst is an excellent stepping stone for some potentially more lucrative static

analysis techniques described in Chapter 6.
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Chapter 6

FUTURE WORK

There is plenty more information in a Vale program’s abstract syntax tree (AST) that

Catalyst could potentially leverage to identify more unnecessary generation checks.

This chapter discusses some of the weaknesses in Catalyst’s static analysis and po-

tential solutions.

6.1 Arrays

At the time of this thesis, Vale has not finalized the semantics of arrays. The structure

of AST nodes for generating and maintaining arrays is still changing, so Catalyst

currently disregards them completely and focuses on user-defined structs. However,

when the AST structure is finalized, there is a simple solution that Catalyst could

implement to eliminate some generation checks for arrays. There are two types of

arrays in Catalyst: fixed size arrays, and unknown size arrays.

6.1.1 Fixed Size Arrays

Fixed size arrays will always have the same shape and size in memory, so it is tempting

to treat the array as a struct where each member is an entry into the array. However,

arrays are often dynamically accessed which means that, unlike accessing the member

of a struct, the exact object being accessed is not known at compile time. For example,

if an array named arr is accessed at index i (e.g., arr[i]), then even if the size of
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arr is known, Catalyst would be unable to determine which object in the array is

being accessed because i is a variable.

A better approach is to treat arrays as structs with a single member. Then any

nodes that access an object in the array would evaluate to the member object. As

long as the array does not contain varying owning references (see Section 2.3), it can

then be read from or written to with no effect on the member’s Liveness value in

Catalyst. However, if a fixed size array of varying owning references is written to,

then its member’s Liveness value will be set to ‘false’. The array could point one

of its references to a new object, invalidating the memory of the old object. Use of

borrow references to the old object should then require a generation check.

6.1.2 Unknown Size Arrays

Arrays with an unknown size at compile time can be handled almost the same as

fixed size arrays except when they are re-sized. This operation drops the old array

and creates a new one of the desired size. When this happens, Catalyst must change

the Liveness value of the old array to false and create a new array object with a

Liveness value of ‘true’.

6.2 Arguments that are Always Alive

One of Catalyst’s biggest weaknesses is that it does not eliminate generation checks

(in the callee’s scope) for any objects passed to functions via a borrow reference. This

weakness could be mitigated with a feature to detect borrow reference arguments that

evaluate to objects known to be alive in all instances. In other words, if a function

takes a borrow reference as an argument and every call to the function in the program
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hands it a borrow reference pointing to an object with a Liveness value of ‘true’,

then the argument’s object in the callee’s scope can also have a Liveness value of

‘true’.

To implement this feature, Catalyst would need to perform another pass of the AST.

Currently Catalyst implements all of its optimizations in a single pass, which limits

the information it knows when it begins analyzing a function. Catalyst analyzes

most functions as soon as they are called for the first time (see Section 4.6.1), so

it is impossible to determine anything about the subsequent calls to the function.

However, with two passes, Catalyst could maintain a boolean for all borrow reference

arguments that is ‘true’ until the argument evaluates to an object with a ‘false’

Liveness value in a call. Then in the second pass, if an argument’s boolean is still

‘true’, the function can be re-analyzed and the object associated with the argument

(in the callee’s scope) will have a Liveness value of ‘true’.

It is not uncommon for functions to be called just a few times with arguments known

to be alive. Adding a feature to detect these arguments could eliminate many gener-

ation checks within functions of this nature.

6.3 Arguments and Scope Tethering

Another feature that could help Catalyst guarantee argument objects are alive is

scope tethering, the practice of tying an object’s lifetime to a scope that does not

own the object. This feature cannot be implemented by Catalyst alone, it requires

some setup from other parts of Hybrid Generational Memory (HGM).
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6.3.1 Scope Tethering in HGM

HGM was designed with scope tethering in mind. In addition to a generation number

(see Section 1.1.1), each object stores an extra bit that contains a 1 if the object is

scope tethered, and a 0 otherwise. All local variables pointing to mutable objects also

have a scope tether bit. When an object is initialized, its scope tether bit contains a

0, and when a variable is initialized, its scope tether bit equals that of its referend.

A function can then request (through the AST) that an argument be tethered to

its scope. If a function call made this request for an argument, HGM would set the

value of the argument object’s scope tether bit to 1, and store the old value in the

reference’s scope tether bit. Then, when the function returns, HGM will revert the

object’s scope tether value, again storing the old value with the reference.

If drop is called on an object whose scope tether bit is set to 1, the object will not be

freed until its scope tether bit reverts to 0. The scope tether is like a reference count,

but it keeps track of scopes that have access to an object rather than references.

Scope tethering is also more efficient than reference counting because it maintains

a boolean which requires fewer instructions per update (load/store as opposed to

load/add/store), and because it requires fewer updates (creating/destroying scopes

is less common than creating/destroying references). Additionally, scope tethering

could allow Catalyst to eliminate more generation checks, speeding up programs.

6.3.2 Scope Tethering in Catalyst

In the AST, borrowed arguments have a boolean keepAlive field. This field is ‘true’

if the function requests that the argument be alive, and ‘false’ otherwise. It is not

always necessary to request that an argument stay alive, if the function does not
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dereference the argument for example, then there is no reason to scope tether it.

Catalyst could detect an argument like this and change its keepAlive value to ‘false’.

Borrowed arguments that point to an object in the caller’s scope with a Liveness

value of ‘true’, and have a keepAlive value of ‘true’, will be scope tethered at runtime.

This means that the referend of the object will be alive for the duration of the function,

and Catalyst can point the argument to an entry in the Objects map with a Liveness

value of ‘true’. Scope tethering, along with the feature described in Section 6.2, could

eliminate many generation checks caused by Catalyst’s current inability to guarantee

that the borrowed arguments are alive.

6.4 Return Expressions in Conditional Blocks

Another weakness of Catalyst is its handling of conditional expressions. For most

conditionals, Catalyst does all that it can, parsing each block that could potentially

execute, and if any block creates or destroys an object, reflecting this change in the

state of Catalyst. However, Catalyst could do more for return expressions within

conditional blocks.

Currently, if a function has multiple return expressions, Catalyst aborts any attempt

to relate returned objects to function arguments (as described in Section 4.6.4), but

this may not be entirely necessary. If all possible return expressions return the same

object passed as an argument, then it is safe to say that all calls to the function

will return the object in the caller’s scope corresponding to the argument. Catalyst

could then use this information to populate the function’s ReturnInfo as described

in Section 4.6.4.
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It is likely though that different return expressions in a function will return different

objects. If only one of the expressions returns an object passed as an argument, then

Catalyst cannot conclude that the returned object is related to that argument. The

outcome of the conditional is unknown, so Catalyst must still use its naive approach

to return values (see Section 4.6.4.3).

6.5 Recursive Calls

Recursion is another pattern that causes Catalyst to abort attempts to relate returned

objects to arguments. As described in Section 4.6.1, Catalyst currently uses the

naive approach to return values (see Section 4.6.4.3) for recursive calls, but this could

change in the future. Catalyst could delay its attempts to relate returned objects

to arguments for recursive calls. This would be easiest with a second pass of the

AST. Catalyst could use the naive approach on the first pass, and save the recursive

function’s functionInfo entry. Then, it can use the function’s ReturnInfo in the

second pass, potentially eliminating more generation checks in both the recursive

function and its caller using the methods described in Section 4.6.4.
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Chapter 7

CONCLUSION

The goal of this thesis was to improve the runtime of Vale programs by adding a

static analysis stage to Vale’s compiler. Vale uses a unique memory management

model called Hybrid Generational Memory (HGM). HGM uses a combination of single

ownership and generational references to ensure memory safety in Vale programs.

Like most frameworks for automatic memory management, HGM incurs significant

overhead at runtime. Vale uses a static analysis program called Catalyst to reduce

this runtime overhead. Catalyst accomplishes this by marking in the abstract syntax

tree (AST) where unnecessary generation checks can be skipped.

Currently Catalyst eliminates generation checks for objects whose owning reference

is in scope. Catalyst can also track references through function calls to maintain

information on their owning references.

Catalyst proved effective for its test suite of small Vale programs, and was able to

eliminate some generation checks in a larger benchmark program. In its current state,

Catalyst was unable to remove enough generation checks in the benchmark program

to have a significant effect on the program’s runtime, but this could change with future

improvements to Catalyst. As discussed in Chapter 6, there are some powerful static

analysis features that could easily be built on top of Catalyst’s current framework.
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